
Radio Resource Management for Wireless Mesh

Networks Supporting Heterogeneous Traffic

by

Ho Ting Cheng

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c©Ho Ting Cheng 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Wireless mesh networking has emerged as a promising technology for future broadband

wireless access, providing a viable and economical solution for both peer-to-peer applications

and Internet access. The success of wireless mesh networks (WMNs) is highly contingent

on effective radio resource management. In conventional wireless networks, system through-

put is usually a common performance metric. However, next-generation broadband wireless

access networks including WMNs are anticipated to support multimedia traffic (e.g., voice,

video, and data traffic). With heterogeneous traffic, quality-of-service (QoS) provisioning

and fairness support are also imperative. Recently, wireless mesh networking for subur-

ban/rural residential areas has been attracting a plethora of attentions from industry and

academia. With austere suburban and rural networking environments, multi-hop commu-

nications with decentralized resource allocation are preferred. In WMNs without powerful

centralized control, simple yet effective resource allocation approaches are desired for the

sake of system performance melioration. In this dissertation, we conduct a comprehensive

research study on the topic of radio resource management for WMNs supporting multimedia

traffic. In specific, this dissertation is intended to shed light on how to effectively and effi-

ciently manage a WMN for suburban/rural residential areas, provide users with high-speed

wireless access, support the QoS of multimedia applications, and improve spectrum utiliza-

tion by means of novel radio resource allocation. As such, five important resource allocation

problems for WMNs are addressed, and our research accomplishments are briefly outlined

as follows:

Firstly, we propose a novel node clustering algorithm with effective subcarrier alloca-

tion for WMNs. The proposed node clustering algorithm is QoS-aware, and the subcarrier

allocation is optimality-driven and can be performed in a decentralized manner. Simula-

tion results show that, compared to a conventional conflict-graph approach, our proposed
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approach effectively fosters frequency reuse, thereby improving system performance;

Secondly, we propose three approaches for joint power-frequency-time resource alloca-

tion. Simulation results show that all of the proposed approaches are effective in provisioning

packet-level QoS over their conventional resource allocation counterparts. Our proposed ap-

proaches are of low complexity, leading to preferred candidates for practical implementation;

Thirdly, to further enhance system performance, we propose two low-complexity node co-

operative resource allocation approaches for WMNs with partner selection/allocation. Sim-

ulation results show that, with beneficial node cooperation, both proposed approaches are

promising in supporting QoS and elevating system throughput over their non-cooperative

counterparts;

Fourthly, to further utilize the temporarily available radio spectrum, we propose a simple

channel sensing order for unlicensed secondary users. By sensing the channels according to

the descending order of their achievable rates, we prove that a secondary user should stop

at the first sensed free channel for the sake of optimality; and

Lastly, we derive a unified optimization framework to effectively attain different degrees

of performance tradeoff between throughput and fairness with QoS support. By introducing

a bargaining floor, the optimal tradeoff curve between system throughput and fairness can

be obtained by solving the proposed optimization problem iteratively.
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Chapter 1

Introduction

1.1 Overview of Wireless Mesh Networks

Wireless mesh networking has emerged as a promising solution for future broadband wireless

access [4,11,18], supporting ubiquitous communications and mobile computing. Ubiquitous

wireless access can be realized in various practical scenarios, namely home networking, of-

fice networking, and city networking [4,18]. This new networking paradigm provides not

only a viable but also economical solution for both peer-to-peer applications and Internet

access. Although the notion of mesh networking has been discussed extensively in wireline

and optical networks [27], the preceding research mainly focuses on restoration of link failure

and/or design of survivable and healing networks. On the other hand, with unique char-

acteristics of wireless channels and scarcity of network resources, many new challenges on

radio resource management for wireless mesh networks (WMNs) are raised such as capacity

enhancement, interference control, quality-of-service (QoS) provisioning, effective medium

access control (MAC), efficient packet scheduling, fairness assurance, etc. Therefore, di-

rectly applying existing resource management schemes for wireline and/or optical networks

to WMNs can be inefficient and ineffective. In order to fully optimize system performance,
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novel radio resource management approaches tailored for WMNs are imperative, which is

the focus of this dissertation.

In general, WMNs consist of wireline gateways, mesh routers, and mesh clients, orga-

nized in a multi-tier hierarchical architecture [18], as shown in Figure 1.1. A mesh client

network comprising several mesh clients can be formed in an ad hoc manner, and connected

to one or more mesh routers. Mesh routers in fixed sites render a robust and reliable mesh

backbone via wireless technology, providing relay service to the mesh client networks and

other access networks such as cellular networks, wireless local area networks (WLANs), etc.

This wireless mesh backbone provides a platform to integrate the wireless access networks,

whereby a multi-mode mobile station with multiple air interfaces can roam freely among

the access networks and subscribe to desired services. Wireline gateways are to connect

the mesh backbone to the Internet backbone. One prominent attraction of this architecture

stems from large-scale deployment, dynamic self-configuration, and self-management with

high link reliability [4]. WMNs can be deployed in various practical scenarios with different

purposes, thus referred to as multi-purpose WMNs [18]. Recently, the notion of wireless

mesh networking has been attracting a plethora of attentions from academia and industry.

In specific, wireless mesh networking for suburban/rural residential areas has been of great

interest, for example, Mesh@Purdue [75], MIT Roofnet [78], Microsoft WMNs [76], Wray

WMN [45], Nokia last mile access (LMA) [86], BelAir Networks [7], MeshDynamics [74],

etc. Mesh routers can be set up at premises in the neighborhood, forming a resilient mesh

backbone and providing an all-wireless environment for the target residential area. In con-

trast, the deployment of conventional urban community networking is mostly based on cable

modems or digital subscriber lines (DSLs) connected to the Internet. With this conventional

yet archaic networking structure, accommodating new terminals usually requires the addi-

tion of new switches and cables. An obvious pitfall is ascribed to its inflexibility. Suburban

and rural areas can be underdeveloped and/or austere. Time-consuming operations such as
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land construction are usually required, and cable deployment in these austere environments

becomes convoluted, leading to high setup and maintenance costs [86]. As a result, it is

not favorable or even feasible to adopt such a traditional network design methodology for

suburban/rural residential areas. In future suburban/rural area networking for broadband

wireless access, a flexible, simple, cost-effective, and robust networking paradigm with the

support of pervasive communications and computing is undoubtedly desired [52]. As such,

wireless mesh networking offers a viable alternative with several advantages [18,86]: 1) large

coverage; 2) scalability; 3) low provisioning cost; and 4) increased system capacity. As a

consequence, WMNs are expected to be deployed extensively in suburban/rural residential

areas in the foreseeable future.

1.2 Resource Management for Wireless Mesh Networks

In wireless communications, radio resource management is vital in controlling how scarce

radio resources can be allocated, distributed, and utilized among all terminals in a system.

Unlike wired links which have a constant link capacity, wireless links are relatively vulnerable

due to fading over frequency and interference over time [73]. Effective resource management

should be capable of mitigating the link impairments and exploiting the unique link features

so as to optimize system-wise and user-wise performance. In order for WMNs to be deployed

in suburban/rural residential areas successfully, we need to address certain challenges and

issues with respect to resource management tailored for WMNs, outlined as follows.

• Multi-channel communications – In future broadband WMNs targeting high-speed

communications, the notion of orthogonal frequency division multiplexing (OFDM)

has been demonstrated as a promising modulation technology to support high data-

rate transmissions with resistance to delay dispersion due to multi-path propagation.

OFDM essentially converts a frequency-selective fading channel into a flat fading chan-
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nel by employing multiple subcarriers [105], thereby mitigating the effect of inter-

symbol interference (ISI). One pitfall of employing OFDM, however, is the need of

accurate frequency synchronization so as to maintain perfect orthogonality among all

OFDM subcarriers [105]. Mesh routers in WMNs, notwithstanding, are stationary.

With no mobility and hence no Doppler effect, accurate frequency synchronization can

be facilitated. As a result, OFDM-based transmissions can give better performance

by mitigating the ISI problem in the high-speed WMNs. To cope with multimedia

traffic, transmission rates can be varied by allocating a different number of subcarriers

using orthogonal frequency division multiple access (OFDMA), realizing the notion

of multi-channel communications. However, system performance depends upon the

effectiveness and efficiency of channel allocation. Thus, simple yet effective channel

allocation tailored for WMNs is essential.

• Distributed multi-hop transmissions – In urban metropolitan areas, cellular systems

can be easily deployed. In contrast, underdeveloped terrains in suburban/rural residen-

tial areas discourage the setup of base stations, thereby favoring distributed control [86].

Besides, such adverse environments thwart the direct line-of-sight communications (i.e.,

1-hop transmissions). Even if the maximum power constraint can be relaxed, a suc-

cessful data transmission over a poor wireless link requires a very high transmit power.

As such, more interference is induced, deterring the notion of frequency reuse and

hence resulting in inefficient use of scarce network resources. On the other hand, mesh

networking provides ease of deployment, and offers greater coverage of wireless access

by means of multi-hop transmissions. In multi-hop WMNs, data generated from a

source is to be forwarded to a destination by intermediate nodes via multiple hops.

Thus, lower transmit power is needed for transmissions over each hop, and/or a higher

transmission rate can be achieved. In addition, with the help of meshing, the isolation

of nodes and the network breakdown can be avoided by providing alternative paths.
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However, the way of packet delivery can affect interference control, whereby system

performance can be degraded. Without centralized control, new distributed resource

allocation strategies with efficient packet delivery are needed.

• MAC-layer packet scheduling – With the rising demand for multimedia applications

such as videoconferencing, PowerPoint presentation streaming, voice over IP (VoIP)

calls, and file transfer, MAC-layer service differentiation is vital in providing fine-grain

QoS assurance. In particular, real-time traffic (e.g., VoIP calls) should be assigned

high priority, while non-real-time traffic (e.g., emails) should be assigned low priority.

To further support aforementioned multimedia services effectively, (per-class) packet

scheduling with resource reservation is imperative for QoS provisioning. In WMNs

with distributed control, however, resource reservation can be difficult. Without proper

network coordination, packet collisions can occur, voiding the effectiveness of service

differentiation and hence packet-level QoS provisioning. In addition, the overhead

incurred by message exchanges can cause resource utilization reduction. Thus, new

efficient MAC with effective packet scheduling tailored for WMNs is indispensable.

• Effective frequency reuse – The efficiency of a multi-channel WMN is key to the suc-

cess of providing high-speed wireless access for diverse multimedia applications. With

meager radio resources, efficient use of network resources is important. Apart from

packet scheduling, the concept of frequency reuse can be exploited to utilize the re-

sources more efficiently. Two transmissions can employ the same channel(s) if they are

far away enough such that the co-channel interference level is below a required thresh-

old [73]. With effective frequency reuse, system capacity can be further increased.

To realize frequency reuse, interference control is necessary. Without powerful central

controllers, distributed channel allocation for WMNs is required, and how to achieve

maximal frequency reuse in WMNs by means of distributed channel allocation is cer-

tainly a challenging research issue.
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• Tradeoffs among resource utilization, QoS provisioning, and fairness1 – With limited

resources, the goals of attaining high resource utilization, provisioning QoS, and main-

taining fairness are conflicting with each other. For example, resources can be utilized

efficiently if only the terminal with the best channel condition transmits, whereby the

maximum throughput can be acquired [106]. Such an opportunistic transmission, how-

ever, gives rise to unfairness and plausibly violates the QoS requirements (e.g., delay

bound of a voice packet) of some wireless terminal(s). If strict fairness is achieved

according to some fairness criteria (such as max-min fairness and proportional fair-

ness [83]), resource utilization can be quite low, and QoS support cannot be guaran-

teed [71]. Simply providing QoS assurance will result in poor resource utilization and

unfairness, for some resources are usually reserved for high-priority terminals, lead-

ing to conservative resource allocation. Thus, finding a desired performance balance

among the three aforesaid research goals is imperative.

• Performance enhancement via advanced technologies – Advanced communications tech-

nologies are commonly used to enhance system performance, particularly in the phys-

ical layer. For example, with a large array of antennas set up at a transmitter and/or

a receiver, the multiple-input-multiple-output (MIMO) technology can be employed to

not only tremendously boost the system capacity but also effectively attain a tradeoff

between spatial multiplexing gain and diversity performance [104]. Given complete

knowledge of channel state information, system performance can be further improved

by signal beamforming with the help of directional antennas. With the directional

antennas in place, the notion of frequency reuse can be fostered due to efficient inter-

ference control [104]. Recently, the concept of network coding has emerged and drawn

a lot of attention [67]. By employing network coding-based routing in the network

1Due to the subjective nature, the notion of fairness cannot be uniquely and well defined. The simplest

interpretation of it is the equitable share of resources according to a prearranged consensus or agreement [83].
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layer, it can be shown that system throughput can be further increased, compared

to conventional routing. To resemble MIMO, distributed node cooperation is also of

great interest [64]. Beneficial node cooperation not only increases system throughput,

but also improves transmission accuracy (i.e., higher diversity order can be achieved).

To better utilize network resources, the notion of cognitive radio, where unlicensed

secondary users can use the temporarily unoccupied spectrum licensed to primary

users [38]. Thus, performance enhancement in WMNs can be realized by means of

advanced communications technologies.

• Simplicity versus optimality – To attain the best system performance, optimal resource

allocation is needed. However, obtaining globally optimal resource allocation solutions

usually requires high computational complexity. In most cases, even powerful devices

such as base stations cannot execute optimal resource allocation algorithms in a timely

fashion. Therefore, applying those optimal resource allocation algorithms can be very

inefficient and ineffective in practice. On the other hand, simple resource allocation

algorithms can easily be implemented in practical systems. An obvious drawback of

simple algorithms is that the system performance can be far from optimal. To strike

a balance between simplicity and optimality, we should focus on devising efficient yet

effective resource allocation strategies for decentralized WMNs with QoS support. In

specific, our proposed approaches should be simple in terms of time complexity, and

effective in terms of system performance improvement and QoS support assurance.

1.3 Motivations and Objectives

In this section, we present our motivations and research objectives.

• Why WMN-specific node clustering? In a wireless network with random channel

access, the throughput of a wireless node generally decreases with the number of
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nodes [36]. The implication is that a node should only communicate with nearby nodes,

thereby favoring clustering [4,24]. In the literature, clustering is an effective way to

manage a large wireless network [119]. Multi-level hierarchical clustering schemes are

shown to achieve better system performance [6]. In fact, the notion of clustered WMNs

has recently received an increasing attention from industry such as MeshAP-Pro and

MeshBroschure. Although clustering has been researched in the context of sensor

networks and mobile ad hoc networks (MANETs) for years, applying the existing clus-

tering schemes to WMNs can be inefficient and ineffective due to different networking

characteristics and design objectives. Thus, a new node clustering approach specifi-

cally tailored for QoS-sensitive WMNs is indispensable. On the other hand, in order to

efficiently support multimedia services and increase system capacity, effective channel

assignment and hence interference control are imperative to facilitate QoS provisioning

and frequency reuse [21]. However, as mentioned in Section 1.2, austere suburban and

rural environments discourage the notion of centralized control. With the help of node

clustering, interference control and hence frequency reuse can be facilitated by chan-

nel allocation via clusterheads in a decentralized manner. In a cluster, collision-free

scheduling is feasible, to satisfy various QoS demands. Resource allocation can then

be carried out in a hybrid centralized-distributed fashion. Therefore, devising a node

clustering scheme with effective channel allocation tailored for WMNs is imperative,

taking into consideration the frequency reuse and QoS requirements of heterogeneous

traffic.

• Why joint power allocation, subcarrier allocation, and packet scheduling? In OFDM-

based WMNs, subcarrier allocation over the frequency domain is necessary to support

high-speed multimedia applications (e.g., voice, video, and data) and grant diverse

transmission rates. By assigning different subcarriers to different nodes, simultaneous

transmissions can be fostered in a cooperative manner, plausibly increasing system
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capacity. Since different frequency bands experience different fading characteristics,

power allocation with respect to channel conditions is shown to be crucial for QoS

provisioning in multi-channel communications. In order to effectively and efficiently

support various services with QoS assurance in the MAC layer, bandwidth reserva-

tion and hence packet scheduling over the time domain are imperative. Therefore,

joint power-frequency-time resource allocation is required. However, since this joint

resource allocation problem is NP-hard, low-complexity algorithms are strongly de-

sired. To further streamline packet-level QoS provisioning, service differentiation in

the MAC layer is fundamental, which can be achieved via packet prioritization. In

particular, higher-priority packets are served before lower-priority ones, realizing the

notion of per-class packet scheduling. Therefore, efficient resource allocation algo-

rithms with effective packet-level QoS provisioning for the joint power-frequency-time

resource allocation problem are imperative.

• Why node cooperation? Increasing throughput is one of the key factors to the success

of WMNs. Many resource allocation strategies have been proposed so as to provide a

high-speed mesh backbone with QoS assurance. To further enhance the system perfor-

mance, cooperative diversity or node cooperation can be employed to achieve a spatial

diversity gain by way of a virtual antenna array formed by multiple wireless nodes in

a distributed fashion [82]. In fact, node cooperation has been demonstrated promising

in improving the spectral and power efficiency of wireless networks without additional

complexity of multiple antennas [64]. The basic idea behind node cooperation rests on

the observation that the signal transmitted by a source node can be overheard by other

nodes in a wireless environment. The source and its partner(s) can jointly process and

transmit their information, thereby creating a virtual antenna array and achieving a de-

sired diversity-multiplexing tradeoff [8]. Although traditional co-located multi-antenna

techniques are quite attractive for future broadband wireless access, setting up a large
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antenna array at wireless terminals (e.g., wireless mesh routers) is impractical due to

their size and power limitations. In contrast, node cooperation can provide a compara-

ble spatial diversity gain without imposing extra hardware complexity on the devices.

However, in the context of non-altruistic node cooperation, cooperative transmissions

do not always outperform ordinary direct transmissions in terms of throughput [25].

Therefore, exploiting the merits of beneficial node cooperation is important for effective

system performance enhancement.

• Why channel sensing via cognitive radio? In conventional wireless communication

systems, spectrum resources are usually governed by license holders. This radio re-

source management allows licensed users to access the spectrum with no or minimal

interference. However, recent studies show that many frequency bands in the radio

spectrum are underutilized most of the time [103]. Due to the inefficiency of our cur-

rent spectrum allocation, the notion of cognitive radio has emerged as an intelligent

and promising solution, allowing dynamic spectrum access and hence alleviating the

problem of low resource utilization. The success of cognitive radio is highly contin-

gent upon the effectiveness of how (unlicensed) secondary users utilize the temporarily

available spectrum bands that are licensed to primary users. In the context of WMNs,

primary users are the registered subscribers who are guaranteed access to assigned

radio resources, whereas secondary users are unregistered who can only access the

spectrum when no primary users are active (i.e., no primary activity) in the neighbor-

hood of interest. As such, in cognitive radio networks (CRNs), to guarantee the QoS

of primary users, it is indispensable for secondary users to ensure that the spectrum is

free of primary activities before transmitting their information. In the case of multi-

channel networks, secondary users equipped with a simple transceiver have to sense

the channels one at a time to determine which channel is available, if any. Therefore,

an effective and efficient channel sensing order is crucial in both resource utilization
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improvement and QoS support.

• Why a unified framework for balancing throughput and fairness? In traditional wire-

less networks, system throughput is a common performance metric [55]. However,

next-generation wireless networks including WMNs are anticipated to support mul-

timedia traffic (e.g., voice, video, and data traffic). With heterogeneous traffic, QoS

provisioning and fairness support are also important. As mentioned in Section 1.2,

with limited available radio resources, throughput maximization, QoS provisioning,

and fairness assurance are conflicting goals [71], conducing to a natural tradeoff among

these three performance measures. In particular, balancing system throughput and

fairness for WMNs with QoS support and high resource efficiency is of great interest.

However, little research work addresses the optimal relationship between throughput

and fairness. In addition, there is no widely accepted unified framework to effectively

attain different degrees of performance tradeoff between throughput and fairness with

QoS support and efficient resource utilization. Therefore, a unified framework to effec-

tively and efficiently balance throughput and fairness with QoS support is desired.

1.4 Research Contributions

In this research, we intend to address the following research question:

Given a suburban/rural residential area, how can we design a WMN so as to provide users

with high-speed wireless access, support the QoS of multimedia applications, and improve

radio spectrum utilization by means of effective and efficient resource allocation?

As such, this dissertation is to tackle the issues of radio resource allocation for WMNs

supporting heterogeneous traffic in the avenues of QoS assurance, throughput melioration,
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resource utilization improvement, and system performance balancing. The research contri-

butions and significance of this dissertation are summarized as follows.

• QoS-Aware Node Clustering and Subcarrier Allocation for WMNs [24] –

We study the joint problem of node clustering and subcarrier allocation with QoS as-

surance. By introducing an upper bound on the number of subcarriers allocated to

a cluster, we propose a joint QoS-aware node clustering and subcarrier allocation ap-

proach tailored for WMNs. This novel resource management approach achieves Pareto

optimality, demonstrating efficient use of network resources. Our proposed approach

is of low complexity, leading to a viable candidate for practical implementation. Our

findings reveal that how to allocate resources in a decentralized fashion can affect the

solution space of a performance tradeoff between QoS provisioning and throughput

maximization. This work is presented in Chapter 3.

• Joint Power-Frequency-Time Resource Allocation with Effective QoS Pro-

visioning for WMNs [21,23] – We address the joint problem of power-frequency-time

resource allocation for WMNs with QoS support. First, we prove that the joint re-

source allocation problem is an NP-hard problem. Then, we propose three resource

allocation approaches, namely 1) a Karush-Kuhn-Tucker (KKT)-driven approach, 2)

a genetic algorithm (GA)-based approach, and 3) a hybrid KKT-GA approach. Sim-

ulation results show that our newly proposed approaches outperform their resource

allocation counterparts in terms of packet-level QoS provisioning. Our results show

that call admission control is vital to guarantee the QoS support of ongoing multime-

dia calls in service. We also observe that admitting more multimedia calls can greatly

reduce the system throughput. This work is presented in Chapter 4.

• Performance Enhancement I for WMNs via Node Cooperation [20] – We in-

vestigate the problem of non-altruistic node cooperative resource allocation for WMNs
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with QoS support, taking subcarrier allocation, power allocation, partner selection/allocation,

service differentiation, and packet scheduling into account. Two low-complexity node

cooperative resource allocation approaches are proposed, namely four-phase central-

ized resource allocation and two-phase distributed resource allocation. Both proposed

approaches are shown effective in both packet-level QoS provisioning and system per-

formance enhancement. Simulation results also demonstrate that the proposed ap-

proaches are less vulnerable to the changes in the system parameters such as the

accuracy of traffic load estimates. Further, our study reveals a critical principle that

whether node cooperation is beneficial depends upon the nature of node cooperation,

the mode of network operation, and the traffic pattern. This work is presented in

Chapter 5.

• Performance Enhancement II for WMNs via Cognitive Radio [19] – We ad-

dress the issue of how secondary users utilize unoccupied network resources by means

of cognitive radio. By employing the theory of optimal stopping, we propose a simple

channel sensing order for cognitive radio networks, referred to as instinctive channel

sensing. By sensing the channels according to the descending order of their achievable

rates, we can prove the optimality of our stopping rule that a secondary user should

stop at the first sensed free channel. The probability of collision in a multi-secondary

user scenario with respect to the proposed instinctive channel sensing is derived ana-

lytically and validated by extensive simulations. Further, we show that, as the number

of secondary users increases, the system performance can be improved with the pro-

posed channel sensing order. Our results also indicate that resource utilization can be

maximized when the number of secondary users approaches the number of channels at

the expense of a higher collision probability. This work is presented in Chapter 6.

• Balancing Throughput and Fairness for WMNs with QoS Support [22] – We

derive a unified optimization framework to effectively balance throughput and fairness
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with QoS support. With our proposed framework, we can procure the optimal rela-

tionship (i.e., tradeoff curve) of system throughput and fairness with QoS support. By

introducing a bargaining floor, a relationship curve is obtained by solving the proposed

optimization problem iteratively. Different degrees of performance tradeoff between

throughput and fairness can be acquired by simply choosing appropriate values of the

bargaining floor. Given an application of interest, the desired operating tradeoff can be

determined. Verified by game theory, the resource utilization is efficient. Further, our

numerical study shows that the tradeoff curve of system throughput against fairness is

concave in shape, meaning that a unit decrease in system throughput leads to a larger

marginal improvement in fairness performance. This work is presented in Chapter 7.

1.5 Outline of the Dissertation

This dissertation is organized as follows. The system model of this research is presented in

Chapter 2. The joint problem of node clustering and subcarrier allocation is given in Chapter

3. Joint power-frequency-time resource allocation is presented in Chapter 4. Performance

enhancement via non-altruistic node cooperation is described in Chapter 5. Performance

enhancement via cognitive radio is given in Chapter 6. Chapter 7 presents an optimization

framework for balancing throughput and fairness with QoS support. Finally, conclusions and

further work are given in Chapter 8. To better illustrate the interplay among our research

accomplishments, the organizational flowchart of this dissertation is depicted in Figure 1.2.
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Chapter 2

System Model

2.1 Network Architecture

In this research, we consider an OFDM-based WMN for suburban/rural residential areas,

consisting of a wireline gateway attached to the Internet backbone and a number of mesh

routers and mesh clients scattered around. Some mesh routers are directly connected to a

gateway, whereas the others are scattered around, rendering a hierarchical multi-hop net-

work (see Figure 2.1). As discussed in Chapter 1, adverse suburban/rural residential areas

favor the distributed control for the network operation. Besides, such austere networking

environments thwart one-hop direct communications as opposed to multi-hop transmissions,

providing ease of deployment and offering greater coverage of wireless access. In multi-hop

WMNs, the links are relatively shorter, and hence the channel conditions are better. As a

result, higher data rates can be attained at the cost of longer delays. In order to achieve load

balancing and high throughput performance, gateways should be opportunistically placed in

the WMN of interest (e.g., [31,66]); but how to place multiple gateways effectively in WMNs

is beyond the scope of this work. In our research, mesh routers are assumed non-mobile

and hence the channel gains can be estimated accurately (e.g., via pilot symbols [15]). We
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consider that each mesh node is equipped with one transceiver with an omni-directional

antenna, so that it cannot transmit and receive simultaneously. A mesh router can be a

transmitter, relay, or receiver at different times. Mesh routers have no power-consumption

constraints, but their maximum transmit power is bounded. To strive for a stable and scal-

able wireless network, node clustering is shown effective in providing networking stability

and system throughput increase [119]. Besides, frequency reuse and QoS provisioning can

be facilitated by means of node clustering. In this research, we consider that the WMN

of interest is divided into several clusters according to our novel node clustering algorithm

(proposed in Chapter 3). In specific, one node is selected as a clusterhead in a cluster.

The main responsibility of the clusterhead is to facilitate interference control by effective

channel allocation and perform packet scheduling for the active connections in the cluster.

As a consequence, resource allocation can be carried out in a hybrid centralized-distributed

fashion (i.e., centralized intra-cluster and distributed inter-cluster resource allocation). More

details are to be discussed in Chapter 3. Further, we consider a synchronized WMN. Time

is partitioned into frames, each of which is further divided into a beacon slot, a control

slot, and L DATA slots. The structure of a frame is shown in Figure 2.2. In essence, a

clusterhead collects the transmission requests from its clustermember(s) in the control slot,

and announces the transmission schedule in the subsequent beacon. Call admission control

(CAC) is assumed in place such that the QoS requirements of an admitted call (flow) can be

satisfied. With the OFDM technology, each mesh router can choose a set of subcarriers for

DATA transmissions and/or receptions, allowing simultaneous transmissions over different

subcarriers in the WMN of interest.
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2.2 Traffic Traversal over WMNs

2.2.1 Traffic Characterization

In typical WMNs, traffic characteristics (i.e., traffic load and traffic types) can vary greatly

from one mesh router to another as different routers are placed in different locations (e.g.,

access/client networks). In the context of suburban/rural residential mesh networks, mesh

routers mounted on the rooftops of residences comprise a wireless mesh backbone, while

mesh clients associated with their closest mesh router(s) constitute various access networks.

Depending on practical applications, traffic flows in WMNs can be classified into two types:

1) Vertical traffic – Traffic is to traverse from mesh clients to mesh routers to the gateway

or vice versa (i.e., to/from the Internet); and

2) Horizontal traffic – Traffic is to traverse within the same WMN (i.e., to/from the mesh

router(s)) in a peer-to-peer fashion.

For the vertical traffic traversal, in essence, mesh routers receive the packets generated

from different traffic sources (i.e., wireless devices such as wireless phones, Internet Protocol

Television (IPTV), and laptops) in mesh client networks (i.e., residential houses). Then, the

mesh routers access the wireless medium and transmit the received packets to their neigh-

boring mesh routers or the gateway. The transmission path of a traffic flow is determined

by a routing protocol. In this research, we assume that there is a routing protocol in place

so that over which link a packet is to traverse can be predetermined. Packets can then

be transmitted to the next-hop mesh router(s) or dropped due to delay bound violation.

Whether a packet transmission is successful over the wireless medium depends upon channel

conditions (e.g., fading) and medium access strategies (e.g., MAC protocols). End-to-end

packet delivery is considered complete when a packet generated from a source (e.g., a wireless

device at a residence) is successfully transmitted to a destination (e.g., the Internet). On

20



the other hand, for the horizontal traffic traversal (i.e., peer-to-peer transmissions), packets

generated from one residence are transmitted to a mesh router which forwards the packets to

a mesh router at the target destination (i.e., the target residence) through multi-hop packet

transmissions.

2.2.2 Traffic Model

In future broadband wireless access, WMNs are expected to support various kinds of multi-

media applications. In suburban/rural residential areas, plausible applications include VoIP

for phone conversations, video streaming for a home theater, file sharing, web browsing,

etc. To realize all the aforementioned services in practice, we consider three types of traffic,

namely voice, video, and data.

• Voice traffic – Voice traffic is similar to constant-bit-rate (CBR) class in asynchronous

transfer mode (ATM) networks. It is real-time traffic with strict delay (and jitter)

requirements, but can tolerate a certain bit error rate (BER). Voice packets are nor-

mally assigned high priority for transmission. In packet-switched wireless networks,

compressed voice packets are preferred so as to avoid collisions (in case of contention-

based MAC) and/or reduce interference (in case of interference-based MAC). A com-

mon voice codec designed for VoIP applications is G.729, which can be modeled as a

two-sate ON-OFF model [2]. In the ON state, a fixed-size packet arrives at a constant

rate, whereas in the OFF state, no packet is generated. The duration of an ON period

and that of an OFF period both follow an exponential distribution. A desirable packet

loss rate (PLR) is 1% or less for a good quality conversation [49].

• Video traffic – Like voice traffic, video traffic is real-time traffic, but its bandwidth

requirement varies over time, depending on video contents, network congestion, phys-

ical channel conditions, etc. Based on different video coding schemes, transmission

21



rates can be dynamically adapted. Thus, different BER targets and video resolutions

can be adjusted accordingly [65]. Video traffic is usually assigned high priority. A

common video codec designed for video transmission (i.e., video streaming and video-

conferencing) is H.323, which is an umbrella recommendation from the International

Telecommunications Union (ITU) that defines protocols to provide audio-visual com-

munication sessions without any QoS guarantee. However, QoS assurance for video

applications is indispensable in future broadband wireless access. Typical video traffic

can be modeled as a combination of multiple ON-OFF mini-sources [2].

• Data traffic – In general, data traffic can be viewed as non-real-time traffic. Data

traffic is normally assigned the lowest priority, for it has neither delay requirements

nor rate requirements. This non-real-time traffic can further be divided into two types:

1) bursty data traffic, where data packet arrivals are commonly modeled as a Poisson

process; and 2) background data traffic, where data packets can be transmitted when-

ever possible. The size of a data packet usually follows a heavy-tailed distribution [91]

(e.g., Weibull distribution). Since data packets are delay-insensitive, advanced channel

coding, error control mechanisms, and/or TCP can be employed to ensure transmission

accuracy (i.e., to satisfy BER requirements).

In practice, each mesh router relays an aggregate of mixed diverse traffic types generated

from client mesh networks (i.e., residential houses). To resemble mixed traffic types in

WMNs, we consider that a voice source, a video source, and a data source reside at every

mesh node in our research.

2.2.3 Traffic Differentiation

Concerning the way of how packets are transmitted over WMNs, packet delivery can be

categorized into three types [35]: 1) best-effort packet delivery; 2) per-class packet delivery;
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and 3) per-flow packet delivery. For the best-effort packet delivery, incoming packets from

different traffic flows are put in a single queue at a mesh router which then basically transmits

the queued packets in a first-in-first-out (FIFO) manner. No scheduling is involved. One

obvious drawback is that there is no service differentiation and hence no QoS provisioning.

In order to differentiate various traffic types, per-class packet delivery is needed. The notion

of the per-class packet delivery rests on the fact that a mesh router schedules and delivers the

packets based on their class, by assigning different priorities to different traffic types. In per-

class scheduling, each mesh router possesses multiple queues designated for different traffic

classes. Incoming packets from different traffic flows are classified and put into different

queues according to their classes. Then, a per-class scheduler is to allocate bandwidth for

transmitting the packets based on their class QoS specifications. For example, real-time

traffic such as voice is usually assigned a higher priority over non-real-time traffic such as

background data traffic. In a nutshell, higher-priority (lower-priority) traffic is to be served

first (later). However, individual traffic flow information is lost during the traffic classification

at the queues. On the other hand, per-flow packet delivery is capable to provide fine-grain

QoS guarantees, for each mesh router allots a separate queue for each incoming traffic flow. A

per-flow packet scheduler then allocates network resources according to the QoS requirements

of each individual flow. One major pitfall of using per-flow scheduling, however, is its poor

scalability. Since the complexity of per-flow resource allocation increases greatly with the

number of traversing flows, applying the methodology of per-flow resource allocation to

large-scale WMNs is not practical or even feasible. For the sake of practical implementation,

therefore, we mainly focus on per-class traffic differentiation for resource management with

heterogeneous traffic in this research.
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2.3 Medium Access with QoS Provisioning

To facilitate resource allocation and packet scheduling at the packet level, an efficient and

effective MAC protocol1 is imperative. In this research, we make use of a simple MAC

protocol to illustrate our proposed (per-class) packet scheduling. First, each mesh node

estimates its traffic load by averaging the rate requirement over a fixed estimation window

(e.g., 100ms) on a regular basis. Second, in the control slot of an MAC frame (see Figure 2.2),

a clusterhead polls its clustermembers and collects their traffic demands periodically. Third,

the clusterhead runs our proposed resource allocation algorithm(s) and announces a resource

allocation decision (such as subcarrier allocation and power allocation) in the next beacon

slot. To provide fine-grain QoS support, bandwidth reservation is imperative. As such, those

timeslots and channels/subcarriers allocated to a particular node (or link) are reserved for

packet transmissions in the DATA slots until the next polling. To further streamline QoS

provisioning and provide service differentiation, packet prioritization is imperative, where

a higher-priority packet is served before a lower-priority one, as discussed in Section 2.2.3.

We conceive that the priority of real-time traffic (packets) is related to the performance of

their packet dropping rates. Notice that, in this research, we consider that packet dropping

is merely due to delay bound violation, under the assumption of accurate transmission at

the physical layer. The higher the packet dropping rate that a real-time traffic flow suffers

from, the higher the priority of the packets associated with that flow. After gathering the

transmission requests, the clusterhead grants the requests of those higher-priority packets

first. In other words, our QoS provisioning strategy for the real-time traffic is contingent on

the packet dropping rate.

1Notice that optimal MAC protocol design for WMNs is desired [18]; addressing this issue, however, is

beyond the scope of this dissertation.
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2.4 Performance Metrics

To gauge the effectiveness and efficiency of our proposed resource allocation strategies, cer-

tain performance measurements are necessary. In this research, we consider the following

performance metrics.

• Throughput – The throughput is defined as the number of successful bits transmitted

over a link per second. This performance measure is applied to both the non-real-time

and real-time traffic.

• System throughput – The system throughput is defined as the sum of the throughputs

obtained over all the active links.

• System capacity – The system capacity is defined as the maximum achievable system

throughput in the whole WMN of interest.

• Channel utilization – The channel utilization is defined as the ratio of the throughput

obtained over a link to the maximum transmission rate of a channel.

• Resource utilization – The resource utilization2 is defined as the fraction of system

throughput contributed by all the active links.

• Packet delay – The packet delay is defined as the interval between the instant that a

packet arrives at a source node and the instant the packet is transmitted successfully

to its destination. This performance measure is applied to the real-time traffic.

• Packet dropping rate – The packet dropping rate is defined as the fraction of discarded

packets due to the delay bound violation. This performance measure is applied to the

real-time traffic.

2In this research, signalling overhead is not taken into account when we evaluate resource utilization.
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• Frequency reuse ratio – The frequency reuse ratio is defined as the average number of

occurrences that a channel (or subcarrier) is used simultaneously per DATA slot.

In this research, we conduct both numerical analysis and computer simulations to evaluate

system performance, where our simulation programs are written using Matlab.

2.5 Chapter Summary

In this Chapter, we present the system model under consideration in this research. In specific,

we focus on a multi-hop multi-channel clustered WMN for suburban/rural residential areas.

We consider both vertical traffic and horizontal traffic traversing the WMN of interest,

where diverse traffic types are taken into account. To strike a desired balance between

time complexity and QoS support, per-class traffic differentiation is used in our resource

management. Our QoS provisioning strategy at the packet level is also described. Further,

the performance measurements employed in this research are defined.
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Chapter 3

QoS-Aware Node Clustering and

Subcarrier Allocation

3.1 Introduction

As discussed in Section 1.3, node clustering is a viable approach to improve system perfor-

mance and facilitate QoS support. Although clustering has been researched in the context

of sensor networks and mobile ad hoc networks (MANETs) for years, applying the existing

clustering schemes to WMNs may not be efficient or effective due to different networking

characteristics and design objectives. The goal for establishing WMNs is to provide ubiqui-

tous communications to users and render an efficient mesh backbone with QoS support [18],

while the primary purpose for deploying sensor networks is to offer environmental monitoring

(e.g., temperature, pressure, etc) and/or surveillance (e.g., military field surveillance) [118].

Mobility and energy efficiency are the major concerns in MANETs [119], where the nodes

are mobile and have power constraints, but there are no such limitations in WMNs. Further,

the deployment of WMNs is relatively permanent, giving rise to the need of high efficiency

of WMNs with QoS support. With the help of clusterheads, interference control and hence
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frequency reuse can be facilitated by channel allocation in a decentralized manner. In this

Chapter, we address the issues of node clustering and subcarrier allocation for WMNs with

QoS support. The contributions and significance of this research work are three-fold [24].

• First, we study the joint problem of node clustering and subcarrier allocation for

WMNs. By introducing an upper bound on the number of subcarriers allocated to

a cluster, we propose a node clustering algorithm with effective subcarrier allocation.

The proposed node clustering algorithm is QoS-aware, and the subcarrier allocation is

optimality-driven and can be performed in a decentralized manner.

• Second, our proposed resource allocation approach outperforms two counterparts,

namely a baseline approach and a conflict-graph approach. With increased frequency

reuse, our proposed approach achieves high system throughput, and provides a good

performance compromise between packet delay and end-to-end transmission rate for

real-time traffic. Simulation results show that, by adjusting the value of the upper

bound of subcarriers allocated to clusters carefully, we can achieve an improved sys-

tem performance. The proposed scheme is also shown to be Pareto optimal, making

efficient use of scarce radio resources.

• Third, our results not only confirm the fact that QoS provisioning and throughput

maximization are two conflicting performance metrics [22], but also reveal that how

to allocate resources in a decentralized wireless network can affect the solution space

of a performance tradeoff between QoS provisioning and throughput maximization.

This important revelation gives rise to the need of a new framework for distributed

QoS-aware resource allocation for WMNs.

The remainder of this Chapter is organized as follows. Related work is given in Section

3.2. The proposed joint QoS-aware node clustering and tax-based subcarrier allocation is

presented in Section 3.3. Efficiency of the proposed resource allocation approach from the

28



Table 3.1: Summary of important symbols used in this Chapter.

Symbol Definition

Um(c,p, Rd
m) utility function the mth clusterhead

Rd
m QoS demand of the mth clusterhead

Sl
m,n(·) payoff function of the mth clusterhead over the nth subcarrier on the lth timeslot

rl
m,n achievable data rate of the mth clusterhead over the nth subcarrier on the lth timeslot

cl
m,n indicator of allocating the nth subcarrier to the mth clusterhead on the lth timeslot

pl
m,n transmit power of the mth clusterhead over the nth subcarrier on the lth timeslot

T l
km,n tax paid by the mth clusterhead for generating interference to the kth clusterhead

over the nth subcarrier on the lth timeslot

M number of clusterheads

N number of available subcarriers

L number of timeslots (i.e., DATA slots) in a frame

Bmax upper bound of the number of allocated subcarriers in a cluster

perspective of game theory is addressed in Section 3.4. Performance evaluation is given in

Section 3.5. A brief discussion is provided in Section 3.6. Finally, we will summarize this

Chapter in Section 3.7. A summary of important symbols used in this Chapter is given in

Table 3.1 for easy reference.

3.2 Related Work

Node clustering is an effective way to maintain network stability and scalability, where

changes in cluster membership only introduce the information update locally (i.e., in the

corresponding clusters) rather than globally (i.e., the entire network), thereby lessening the

overhead of message exchanges [119]. In [68], an adaptive clustering algorithm is proposed to

provide guaranteed QoS to real-time multimedia traffic in a decentralized manner. Similar

work with power control is also presented in the recent literature (e.g., [37,116]). In the

aforementioned work, inter-cluster communications are facilitated by means of code divi-
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sion multiple access (CDMA). However, channel allocation and interference control are not

taken into consideration, thereby hindering system throughput improvement. Besides, the

preceding work focuses on small-scale ad hoc networks, where the issue of frequency reuse

is not addressed properly. Other node clustering schemes based on different system metrics

(i.e., node degree and cluster size) are proposed for MANETs [119]. Most of the existing

schemes aim at maximizing network connectivity and minimizing energy consumption; how-

ever, packet-level QoS provisioning is often neglected. Thus, applying those node clustering

algorithms directly to WMNs can be ineffective or inefficient to support different multime-

dia applications (e.g., voice, video, and data) with diverse QoS requirements. In addition,

increasing throughput is the key to the success of providing a robust wireless mesh backbone

in large-scale WMNs. Therefore, the notion of frequency reuse and QoS provisioning should

be taken into account in designing a node clustering algorithm for WMNs.

In the literature, there exists a wide range of channel assignment schemes for wireless

networks [5,13,30,46,57,62,80]. The objective of most existing techniques is to achieve opti-

mal channel allocation [13,30,57,80]. In the context of cellular systems, channel allocation is

relatively straightforward, thanks to the robust hexagonal cellular structure [57]. For fixed

channel allocation, a channel set is assigned to every cell. In order to deal with the traffic load

variations, channel re-assignment and negotiation (e.g., channel borrowing [53]) can be per-

formed with the help of mobile switching centers. To further attain high channel efficiency,

dynamic channel allocation schemes are proposed (e.g., dynamic channel selection [92]),

where centralized control is usually needed to ensure the effectiveness of frequency reuse at

the cost of computational complexity. Since the mesh routers in a large-scale WMN are

likely scattered around, the clustered WMN is not expected to be as structured as its afore-

said counterpart. In addition, mobile switching centers are not always available in WMNs,

especially in suburban and rural residential areas. Therefore, simply applying existing chan-

nel allocation schemes designed for the cellular systems to large-scale WMNs can plausibly
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degrade the system performance. On the other hand, centralized algorithms are devised

to maximize the number of transmission links in the network and balance the traffic load

among different channels in [30] and [13], respectively. For the sake of practical implementa-

tion, distributed schemes based on an interference conflict graph are proposed [5,46,57,62].

With the set of vertices representing the transmission links in a wireless network and the

set of edges representing the transmission conflicts, channel allocation is performed in such

a way that the adjacent links (or vertices) in an interference conflict graph cannot use the

same channel(s) for packet transmissions. However, most of the existing approaches are not

QoS-aware. In addition, packet scheduling deduced by the interference conflict graph may

not guarantee collision-free transmissions in a large-scale WMN, for the aggregate interfer-

ence coming from the transmissions outside the neighborhood can be very large. As such,

the schedule deduced by an interference conflict graph can discourage feasible concurrent

transmissions and/or reduce the transmission rates of adjacent nodes. TiMesh is proposed

to avoid a ripple effect [80], but hampers the notion of frequency reuse, underutilizing the

scarce radio resources. Thus, combining topology control with distributed channel allocation

tailored for WMNs is necessary.

In this Chapter, we propose a QoS-aware node clustering algorithm with effective tax-

based subcarrier allocation tailored for WMNs. Our novel resource allocation approach

achieves Pareto optimality and outperforms the approach using an interference conflict graph.

3.3 Joint QoS-Aware Node Clustering and Tax-Based

Subcarrier Allocation

In this section, a QoS-aware node clustering algorithm with tax-based subcarrier allocation

tailored for WMNs is proposed. As increasing throughput in a mesh backbone is vital, the

objective of the joint node clustering and subcarrier allocation problem is chosen to maxi-
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mize the system throughput. Nonetheless, the node clustering problem and the subcarrier

allocation problem are coupled. To reduce computational complexity, our approach is to

solve the node clustering problem and to allocate subcarriers in succession alternatively, to

be described in Section 3.3.4.

Considering various aspects such as system capacity, QoS provisioning, the burden on

clusterheads, packet delivery delay, and the austere suburban/rural environment, we formu-

late the node clustering problem by setting an upper bound on the number of subcarriers

allocated to a cluster. Denote Bmax as the upper bound of the number of allocated subcarri-

ers in a cluster. The bound caps the maximum traffic load in a cluster and hence the burden

on a clusterhead, controls a cluster size to a certain extent, and facilitates packet scheduling

assisted by clusterheads. In fact, as we will discuss in Section 3.5, choosing the value of this

upper bound carefully can further improve system performance. Our proposed approach for

the joint problem of node clustering and subcarrier allocation includes: 1) neighbor discov-

ery; 2) initial path establishment; 3) traffic load estimation; 4) node clustering algorithm;

and 5) subcarrier allocation.

3.3.1 Neighbor Discovery

A mesh router can discover its neighbor(s) via any routing protocol. In this research, a

neighbor is identified if the channel gain between the node of interest and the neighboring

node is above a certain threshold. As mesh routers are considered stationary, all the possible

paths of a mesh router to the gateway can be predetermined.

3.3.2 Initial Path Establishment

Establishing an initial path is imperative to facilitate traffic load estimation and hence QoS-

aware node clustering. Denote pe
m as the eth link along the pth shortest path of the mth
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node to the gateway. The initial path of a mesh router to the gateway is determined by the

following condition. Choose the path p∗ that can maximize the end-to-end rate of the mth

node.

p∗ = arg max
p
{min
∀e∈p

{R̃m(pe
m)}}, ∀m (3.1)

where R̃m(y) = log2

(
1 + G̃m(y)Pmax

m /η
)

can be viewed as a data rate obtained at the mth

node on the yth link with G̃m(y) being the (constant) channel gain over the available radio

spectrum on the yth link, Pmax
m the maximum power constraint of the mth node, and η the

noise power. The effect of co-channel interference is discussed in Section 3.3.5. The objective

of (3.1) is to find the shortest path of a node to the gateway which maximizes the minimum

of all link rates (i.e., maximize the end-to-end rate). This initial path establishment criterion

ends in a tree architecture for a WMN (see Figure 3.1). For simplicity, the shortest paths

are used as an example to demonstrate node clustering and subcarrier allocation.

3.3.3 Traffic Load Estimation

To facilitate resource allocation at the MAC layer, traffic load estimation is necessary [18].

Each node estimates the traffic load of real-time traffic by averaging the rate requirement

over a fixed observation window (e.g., 100ms). The sum of the local traffic load estimate of a

node and the relay load received is forwarded to its next-hop neighbor (toward the gateway)

determined by its initial established path. Let Xm be the local traffic load estimate at the mth

node, and Ym be the relay load received by the mth node. Figure 3.2 illustrates how the traffic

load estimation works. Then, Yu = Xw + Yw, where the uth node is the next-hop neighbor

(toward the gateway) of the wth node. We assume that there is no local traffic generation at

the gateway. Such traffic load estimation is also shown to be crucial for supporting QoS in

intra-cluster resource allocation [21]. Details of intra-cluster resource allocation are given in

Chapter 4.
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Figure 3.1: An illustration of the network topology under consideration.
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Figure 3.2: Traffic load estimation.

3.3.4 Node Clustering Algorithm

We assume that clusterheads can operate in a dual-power mode [118], where higher power

levels are reserved for inter-cluster signaling1 and lower power levels are dedicated to intra-

cluster communications. Define an I-tier cluster as a cluster formed at the Ith clustering

level from the gateway. The proposed node clustering algorithm is described as follows.

Step 1: All nodes are set to be unassigned (i.e., neither clusterheads nor clustermembers).

The gateway is set to be the default clusterhead. Set I=1.

Step 2: The clusterhead of interest selects one of its 1-hop unassigned nodes2 and collects

its QoS requirement (i.e., traffic load demand). If no neighbors can be selected, go to

Step 5.

Step 3: The clusterhead of interest chooses the best available subcarrier(s) for the selected

1In case direct inter-cluster transmissions fail, we assume that cooperative communications [15,16] are in

place such that the inter-cluster signaling is always feasible.
2For simplicity, we only consider the case where a clusterhead selects its 1-hop neighbors as its cluster-

members in this work.
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node based on the subcarrier allocation criterion given in (3.5), to be discussed in

Section 3.3.5. If the QoS requirement of the selected node cannot be satisfied, go to

Step 5.

Step 4: If the total number of subcarriers acquired is less than or equal to Bmax in the

cluster of interest, the selected node becomes a clustermember of that cluster, the

chosen subcarriers are recorded in a table stored at the clusterhead of interest, and go

back to Step 2.

Step 5: An I-tier cluster is created. The clusterhead of interest keeps selecting the best

available subcarrier(s), if feasible, until the total number of chosen subcarriers is Bmax

so as to further improve both the total throughput and interference tolerance of that

cluster. Repeat Steps 2-4 with another I-tier clusterhead, if any, until no more clusters

can be formed at the I-tier.

Step 6: The set of (I+1)-tier clusterhead(s) is chosen by the J-tier clusterhead(s) by means

of Black-Burst jamming [18]3, where J = 1, 2, . . . , I. The J-tier clusterhead(s) is(are)

to signal its(their) unassigned neighbors, and the closest unassigned neighbor(s) then

transmit its(their) Black-Burst jamming signal. Note that the length of a Black-Burst

jamming signal is a decreasing function of the smallest number of hops from a node

to the gateway. Therefore, with the gateway as a coordinator, the unassigned node(s)

with the longest Black-Burst jamming signal (i.e., the smallest number of hops to the

gateway) win(s) the contention and is(are) chosen to be the (I+1)-tier clusterhead(s),

and the order of their cluster formation is randomly assigned. If a clusterhead can be

elected, set I=I+1 and go back to Step 2.

Step 7: Any unassigned node joins its closest clusterhead(s). Any node that is a 1-hop

3The notion of Black-Burst jamming was originally proposed for channel contention and service differen-

tiation in the MAC layer [18]. In our work, we use this approach to select a set of clusterheads.
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neighbor of a clusterhead automatically becomes a clustermember of that cluster. Any

clustermember that is a 1-hop neighbor of more than one clusterhead and any cluster-

head that is a clustermember of another clusterhead can be viewed as a clustergateway.

Notice that a node can have multiple roles in the network.

Step 8: If there are any subcarriers unallocated, the remaining subcarriers are allocated

according to the subcarrier allocation criterion given in (3.5) in sequence, starting from

the first formed clusterhead (i.e., the gateway) to the last formed clusterhead, until all

subcarriers are employed. The value of Bmax is adjusted accordingly.

Clusters closer to the gateway have higher priority, whereas the ones farther away from

the gateway have lower priority. The rationale is that traffic bottlenecks are usually found

at (and near) the gateway and hence those clusters close to the gateway are assigned higher

priority in the proposed resource allocation approach. Besides, a clustered WMN will consist

of 1- and/or 2-clusters4, and different clusters may have different sizes. Clusterheads are

usually located in the middle of their cluster. Further, clusterheads in the dual-power mode

form a connected graph.

3.3.5 Tax-Based Subcarrier Allocation

Without any effective subcarrier allocation, it is plausible that large co-channel interference is

introduced by unfavorable simultaneous transmissions. Consider the case where clusterheads

do not exchange any information and myopically maximize the aggregate throughput in their

clusters. Since there is no penalty for a cluster to use all the (chosen) subcarriers for its intra-

cluster communications, the resultant co-channel interference generated to other clusters can

be very large, decreasing overall system throughput. The above solution can be far from

4A j-cluster is defined as a subset of nodes which are mutually reachable by a path of length at most

j-hops for a positive integer j.
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optimal, and hence an effective resource allocation approach tailored for large WMNs is vital.

In the following, we view a clusterhead as the representative of its cluster.

We propose a novel QoS-aware subcarrier allocation scheme motivated by Karush-Kuhn-

Tucker (KKT) optimality conditions [9] (see Appendix-A.1). Let M denote the number of

clusterheads, N the number of available subcarriers, and L the number of timeslots (i.e.,

DATA slots) in a frame. Consider the following payoff function of the mth clusterhead over

the nth subcarrier on the lth timeslot.

Sl
m,n

(
cl
m,n, pl

m,n

)
= cl

m,nrl
m,n − pl

m,n

M∑

k 6=m

T l
km,n (3.2)

where rl
m,n = log2(1 + γl

m,n) represents the achievable data rate of the mth clusterhead over

the nth subcarrier on the lth timeslot with the received signal-to-interference-plus-noise ratio

(SINR) γl
m,n, cl

m,n is the indicator of allocating the nth subcarrier to the mth clusterhead on

the lth timeslot, i.e., cl
m,n ∈ {0, 1}, pl

m,n is the transmit power, and T l
km,n is tax paid by the

mth clusterhead for generating interference to the kth clusterhead over the nth subcarrier on

the lth timeslot, defined as

T l
km,n = −∂Uk(c,p, Rd

k)
∂pl

m,n

(3.3)

=

(
∂Uk(c,p, Rd

k)
∂γl

k,n

)
·
(
− ∂γl

k,n

∂P l
I,k,n

)
·
(

∂P l
I,k,n

∂pl
m,n

)

= εl
k,n · I l

k,n · cl
m,nGkm,n

where Uk(c,p, Rd
k) is the utility function of the kth clusterhead with Rd

k being the QoS demand

of the kth clusterhead, P l
I,k,n =

∑
i6=k cl

i,nGki,npl
i,n being the received interference power level

of the kth clusterhead over the nth subcarrier on the lth timeslot, c = [cl
k,n]M×N×L, and p =

[pl
k,n]M×N×L. The SINR of the mth clusterhead over the nth subcarrier on the lth timeslot is

given by γl
m,n = ϕGmm,npl

m,n

σ
∑

k 6=m cl
k,nGmk,npl

k,n+η
, where Gmk,n is the channel gain from the kth clusterhead

to the mth clusterhead over the nth subcarrier, ϕ a BER measure, and σ the cross-correlation

factor between any two signals, i.e., σ ∈ [0, 1]. The utility function of the kth clusterhead is
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defined as

Uk(c,p, Rd
k) =





∑L
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∑N
n cl
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k,n −Rd

k,
∑L

l

∑N
n cl

k,nrl
k,n −Rd

k ≥ ε

0,
∑L

l

∑N
n cl

k,nrl
k,n −Rd

k < ε

(3.4)

where 0 < ε ¿ 1. We assume that for 0 <
∑L

l

∑N
n cl

k,nrl
k,n − Rd

k < ε,
∂Uk(c,p,Rd

k)

∂γl
k,n

→ ∞, ∀k.

Notice that T l
km,n can be interpreted as the marginal decrease in the utility obtained by the

kth clusterhead per unit increase in the transmit power of the mth clusterhead over the nth

subcarrier on the lth timeslot. Thus, T l
km,n is always non-negative. Similarly, εl

k,n represents

the sensitivity of utility obtained by the kth clusterhead per unit change in the received

SINR of the kth clusterhead over the nth subcarrier on the lth timeslot, and I l
k,n represents

the marginal decrease in the received SINR of the kth clusterhead per unit increase in the

received interference power level over the nth subcarrier on the lth timeslot. With the tax

interpretation of the KKT conditions, each clusterhead, therefore, essentially maximizes

the difference between its throughput obtained minus its lump-sum tax paid to the other

clusterheads in the mesh backbone due to the induced interference. Each clusterhead is to

optimize cl
m,n and pl

m,n such that its own payoff function is maximized. Notice that c and p

are the optimization variables. The proposed subcarrier allocation strategy is more suitable

and applicable than a traditional coloring approach to WMNs, mesh routers of which are

not evenly distributed. More importantly, with the tax information, subcarrier allocation

and hence frequency reuse can be carried out in a decentralized manner.

In this work, we only focus on the subcarrier allocation by fixing power allocation (i.e.,

uniform power distribution), though subcarrier allocation and power allocation should be

jointly considered for the sake of optimality. Thus, the criterion of subcarrier allocation can

be deduced as follows. For the mth clusterhead on the lth timeslot, choose n∗ such that

n∗ = arg max
n

{
Sl

m,n

(
cl
m,n

)}
(3.5)

and set cl
m,n∗ = 1. Note that an information exchange among clusterheads is triggered
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whenever there is any change in subcarrier allocation.

3.3.6 Complexity Analysis

Consider that, with message signaling among clusterheads, the clusterheads have complete

knowledge of their lump-sum tax. Since each clusterhead behaves individually in sequence,

the time complexity of the proposed subcarrier allocation is on the order of O(NL). Thus,

the time complexity of the proposed node clustering algorithm given in Section 3.3.4 is on

the order of O(MNLBmax). With the help of effective data structure (e.g., binary tree imple-

mentation [112]), the complexity can be further reduced to the order of O(MLBmax log2 N).

3.4 Efficiency Evaluation by Game Theory

In this section, we show that the subcarrier allocation solution obtained from our proposed

approach achieves efficient use of network resources. In game theory, efficient resource uti-

lization is determined by the concept of Pareto optimality5 [88]. Modeled by a round-robin

game, our proposed QoS-aware subcarrier allocation approach (or game) also attains a Nash

equilibrium6 (NE) [88] in the case where all available subcarriers are active and all the clusters

are heavily loaded.

5An action profile b∗ = (b∗1, b
∗
2, ..., b

∗
M ) is said to be Pareto optimal if and only if there exists no other

action profile b̃ such that for some m, Ym(b̃) > Ym(b∗) and Yn(b̃) ≥ Yn(b∗), for n 6= m, where Ym(·) is a

utility function of user m in the context of game theory. In words, an action profile (or resource allocation)

is Pareto optimal if there exists no other action profile that makes some user(s) better off without making

the other user(s) worse off.
6An action profile b∗ = (b∗1, b

∗
2, ..., b

∗
M ) attains a Nash equilibrium (NE) if no unilateral deviation in

strategy by any single user is profitable, i.e., Zm(b∗m, b∗−m) ≥ Zm(b̃m, b∗−m), ∀m, where b̃m is another strategy

other than b∗m of user m, b−m is an action profile of all users except for user m, and Zm(·) is a payoff function

of user m in the context of game theory. In words, an action profile (or resource allocation) attains an NE

if no player can do better by unilaterally changing its strategy.
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Proposition 1 Suppose all available subcarriers are chosen by the clusterheads at least once

on every timeslot (i.e.,
∑

m cl
m,n ≥ 1,∀n, l). The subcarrier allocation solution obtained from

our proposed approach is Pareto optimal.

The proposed node clustering algorithm ensures that all the available subcarriers are to

be selected at least once. Thus, from the perspective of game theory, the proposed QoS-

aware subcarrier allocation approach attains Pareto optimality, and hence the resources are

efficiently utilized.

Proposition 2 Suppose all available subcarriers are active. If all the clusters are heavily

loaded (i.e., 0 <
∑L

l

∑N
n cl

m,nrl
m,n −Rd

m < ε,∀m), frequency reuse is prohibited.

Proposition 3 Suppose all available subcarriers are active and all the clusters are heavily

loaded. Modeled by a round-robin game played by the clusterheads, the proposed subcarrier

allocation solution attains an NE.

Corollary 1 If an NE is attained, all available subcarriers are in use.

When all the subcarriers are in use and all the clusters are fully loaded, an NE is attained

(i.e., Proposition 3), leading to a stable clustered networking structure. However, under

the same aforesaid conditions, the notion of frequency reuse is discouraged due to zero

tolerance to any additional co-channel interference (i.e., Proposition 2), thereby reducing

system throughput. The implication is that, to foster frequency reuse and hence increase

system throughput, clusters should not be heavily loaded so as to allow certain interference

margin. Since throughput improvement is indispensable in a mesh backbone, frequency

reuse should be the first issue to be addressed in developing a resource allocation algorithm.

On the other hand, in order to procure a desired balance between QoS provisioning and

system throughput maximization, CAC should be in place, which limits the number of
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calls admitted into the system and the number of clustermembers affiliated to a cluster.

Our evaluation reinforces the fact that QoS provisioning and throughput maximization are

conflicting with each other [22]. More importantly, our study also reveals a crucial principle

that how to allocate resources to the wireless nodes in a decentralized fashion is critical

in determining the solution space of a performance tradeoff between QoS provisioning and

throughput maximization. For instance, a clusterhead should not select too many nodes

as its clustermembers; otherwise, the effectiveness of frequency reuse and hence the system

throughput can be reduced. Nonetheless, as long as all the subcarriers are active, our

proposed subcarrier allocation approach achieves Pareto optimality, making efficient use of

network resources.

3.5 Performance Evaluation

3.5.1 Simulation Environment

We consider a WMN with nodes randomly distributed over the network coverage area, with

a node density of 1 node per 1000m2. Parameters for performance evaluation are chosen

as follows: ϕ = 1, σ = 1, η ∼ N(0, 10−12W), Pmax
m = 1W, ∀m, and L = 4. The maximum

transmission rate of each subcarrier is 100kb/s. We adopt the path loss model suggested

in [44]:

PL = A + 10α log10

d

d0
+ s, d > d0 (3.6)

where A = 20 log10(4πd0/λ) with λ being the subcarrier wavelength in meters, α is the path

loss exponent with α = a− bhb + c/hb with hb being the height of an antenna in meters (i.e.,

10m ≤ hb ≤ 80m), and a, b, and c being constants dependent on the terrain category, d0

is the reference distance (e.g., 100m), and s is the shadow fading term capturing the effect

of shadowing, which follows a log-normal distribution [44]. In this research, we choose the
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terrain category A (i.e., hilly/moderate-to-heavy tree density) investigated in [44], where

λ = 0.1579m, a = 4.6, b = 0.0075m−1, c = 12.6m, hb = 10m, and σs = 10.6dB. We employ the

traffic models for voice, video, and data described in Section 2.2.2: Voice traffic is generated

according to a two-state ON-OFF model. In the ON state, a fixed-size packet arrives at a

constant rate, whereas in the OFF state, no packet is generated. The duration of an ON

period and that of an OFF period both follow an exponential distribution. For simplicity,

video traffic is characterized by a two-state ON-OFF model, where different incoming packets

have different packet sizes, generating a variable-rate traffic in the ON state [39]. Data

traffic is the background best-effort traffic and available anytime, which is assigned the

lowest priority and does not have any rate requirements. Data packets can be transmitted

whenever there are available resources. We consider that there are a voice source, a video

source, and a data source residing at every node. We use the MAC protocol described

in Section 2.3 for both intra-cluster and inter-cluster communications. The duration of a

timeslot is 5ms, and hence the duration of a frame is 5(2+L)ms. For intra-cluster MAC, each

clusterhead collects the transmission requests and traffic demands from its clustermembers

by polling them periodically in the control slot, and announces the resource allocation in

the subsequent beacon. The polling is done in every 100ms. Similarly, for inter-cluster

MAC, a clusterhead collects the transmission requests from its neighboring clusterhead(s)

in the control slot, and announces the transmission schedule in the subsequent beacon. The

timeslots and subcarriers allocated to a particular node are reserved for packet transmissions

of real-time traffic in the DATA slots until the next polling. Moreover, for real-time traffic

(i.e., voice and video), the higher the packet dropping rate that a traffic flow experiences, the

higher the priority of the packets associated with that flow. A clusterhead grants the requests

of those higher-priority packets first, facilitating QoS provisioning. Both the polling and the

beacon packet transmissions are assumed error-free. We also carry out an offline CAC, where

we consider that the maximum number of admitted voice calls and that of admitted video
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Table 3.2: Relationship of the number of wireless nodes and the average number of cluster-

heads

Number of wireless nodes 25 50 100 200 400

Average number of clusterheads 8.1 17.2 33.7 67.1 98.3

calls are 13 and 12, respectively. More simulation details for voice and video traffic can be

found in Chapter 4. Here, we focus on the impact of our proposed node clustering with

tax-based subcarrier allocation on the system performance. We perform the simulations for

10,000 runs and average the results, where each simulation run sustains 5,000 frames. The

performance measurements used in our simulations are 1) system throughput, 2) frequency

reuse ratio, and 3) packet delay.

3.5.2 QoS-Aware Node Clustering

We first study the performance of our proposed QoS-aware node clustering algorithm with

N = 1024 and Bmax = N/4. After discovering the neighbors, every node establishes an initial

shortest path to the gateway according to the condition given in (3.1). Given an established

initial path, each node can estimate the traffic load. The proposed node clustering algorithm

is then carried out. Figure 3.3 illustrates a simulation result for the cluster structure of a

WMN with 25 nodes. Since a clusterhead selects some of its 1-hop neighbors as its cluster-

members in this work, the WMN only consists of 1- and 2-clusters. The relationship of the

number of nodes and that of clusterheads is given in Table 3.2.

We then compare the system performance in terms of packet delay and throughput of

the proposed scheme for the initial path establishment (named proposed) with the scheme

for random shortest path establishment (named random) and the scheme for path establish-

ment that gives the maximum end-to-end rate among all possible paths (named max-rate).
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Figure 3.3: An illustration of a clustered WMN with 25 nodes.
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The delay-throughput performance comparison of the three schemes for Node A and Node

B (shown in Figure 3.3) is depicted in Figure 3.4. Notice that the same node clustering

algorithm with subcarrier allocation is employed for the three schemes. As seen, using the

max-rate scheme for path establishment, both voice packets at Node A and video packets at

Node B attain the largest end-to-end data rate (or throughput) at the cost of packet delay.

Although both the proposed and random schemes result in the smallest packet delays, the

proposed approach achieves higher end-to-end rates. We observe that the improvement of the

proposed approach over the random approach, however, is not substantial because routing

is not taken into consideration. The improvement is expected to be larger if node cluster-

ing, subcarrier allocation, and routing are jointly considered; addressing this issue is left for

further work, though. Nonetheless, the proposed condition for initial path establishment

results in a good tradeoff between the packet delay and the end-to-end rate. Other system

performance (e.g., packet dropping rates) in regards to intra-cluster resource allocation are

reported in Chapter 4 (and in [23]).

3.5.3 Tax-Based Subcarrier Allocation

Here, we evaluate the performance of the proposed tax-based subcarrier allocation in terms

of system throughput and frequency reuse ratio in a clustered WMN with N = 1024 and

Bmax = N/4. For comparison, we consider a baseline approach where there is no frequency

reuse and an approach using an interference conflict graph [46]. Notice that, for the approach

using an interference conflict graph, the adjacent links (or vertices) in an interference conflict

graph cannot use the same subcarrier(s). In the simulations, the same node clustering

algorithm and the same value of Bmax are applied to all these approaches. To further validate

our simulation results, an upper bound of system throughput performance is also plotted for

reference, which is obtained by an exhaustive search. Notice that this upper bound is the

maximum achievable system throughput achieved by the clusters without considering QoS
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Figure 3.4: Packet delays of the real-time traffic using the proposed path establishment

scheme, the random path establishment scheme, and the max-rate path establishment scheme

vs. the end-to-end rate for Node A and Node B (shown in Figure 3.3).
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Figure 3.5: System throughputs of the proposed approach, the conflict-graph approach, the

baseline approach, and the upper bound vs. the number of mesh routers (where N = 1024

and Bmax = N/4).

constraints (i.e., best-effort traffic only).

Effect of the number of mesh routers, M

Figure 3.5 shows the system throughput versus the number of mesh routers. The standard

deviations of the results are also plotted for reference. The system throughput curves for

all three approaches are very close when the number of mesh routers is small, which is

due to the fact that the network size is small and very few subcarriers can be reused in a
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small WMN. As the number of mesh routers increases (i.e., a larger WMN), our proposed

approach clearly achieves a higher system throughput than the other two approaches, thanks

to increased frequency reuse. The rationale of our proposed approach being superior to the

conflict-graph approach stems from the fact that the interference conflict graph merely yields

a condition that adjacent vertices cannot use the same subcarrier(s), thereby suppressing

the potential and favorable concurrent transmissions. In contrast, the tax-based subcarrier

allocation fosters frequency reuse to a greater extent. We also observe that, on average,

our proposed approach conduces to a higher frequency reuse ratio than the conflict-graph

approach (see Figure 3.6). Notice that the difference between the throughput obtained by the

tax-based approach and that by the conflict-graph approach becomes more substantial when

the number of subcarriers increases, as discussed in Section 3.5.3. Without frequency reuse,

the system throughput of the baseline approach is almost the same against the number of

mesh routers, for each subcarrier can only be allocated once, leading to the worst throughput

performance. The upper bounds for the system throughput obtained and frequency reuse

ratio are plotted for reference in Figure 3.5 and Figure 3.6, respectively. As observed, there

is an obvious performance gap between the system throughput obtained from the proposed

approach and the upper bound. The performance disparity is ascribed to the fact that QoS

provisioning and throughput improvement are conflicting with each other [22]. By taking

QoS provisioning into account, some of the resources are reserved for the real-time traffic

in the proposed approach, resulting in lower system throughput. On the other hand, our

results show that frequency reuse is crucial for increasing the system throughput. As such,

the proposed tax-based subcarrier allocation can better utilize the network resources, thereby

giving rise to a radio spectrum efficient WMN.
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Figure 3.6: Frequency reuse ratios of the proposed approach, the conflict-graph approach,

and the upper bound vs. the number of mesh routers (where N = 1024 and Bmax = N/4).
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Effect of the number of subcarriers, N

We consider the effect of the number of available subcarriers on the system performance

by fixing the number of mesh routers to be 100 and Bmax = N/4. Figure 3.7 shows the

system throughput of all approaches versus the number of subcarriers. Since the number of

subcarriers increases, the system throughput of all the approaches increases. As mentioned

previously, the tax-based approach performs the best due to the increased frequency reuse.

The upper bound of the system throughput is also plotted for reference. We also observe

that the frequency reuse ratio achieved by the proposed algorithm is more or less the same

with the number of subcarriers (i.e., at the level of 2.8). It shows that the frequency reuse

ratio of the proposed approach is almost independent of the number of subcarriers available

in the system.

Effect of Bmax

We investigate the system performance with different values of Bmax by setting N = 1024 and

the number of mesh routers to be 100. Figures 3.8 and 3.9 depict the frequency reuse ratio

and the system throughput versus the value of Bmax, respectively. Regarding the proposed

approach, when Bmax is small, each cluster gets only a handful of subcarriers. Hence, the

chance of reusing the subcarriers is smaller, resulting in a smaller frequency reuse ratio

and system throughput. When Bmax becomes larger, more subcarriers can be reused and

so the system throughput increases greatly. However, when Bmax reaches a certain value,

both the frequency reuse ratio and system throughput start to drop. The reason is that

too many subcarriers are allocated to a cluster, which causes some neighboring clusters to

choose other available subcarriers and hence reduces the effectiveness of frequency reuse. In

fact, our results are comparable to the differences between fixed channel allocation (FCA)

and dynamic channel allocation (DCA) in the context of cellular systems. Our proposed

subcarrier allocation behaves like FCA when Bmax is small and DCA when Bmax is large.
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Figure 3.7: System throughputs of the proposed approach, the conflict-graph approach, the

baseline approach, and the upper bound vs. the number of subcarriers (where the number

of mesh routers is 100 and Bmax = N/4).
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Figure 3.8: Frequency reuse ratios of the proposed approach, the conflict-graph approach,

and the upper bound vs. the value of Bmax (where the number of mesh routers is 100 and

N = 1024).
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Figure 3.9: System throughputs of the proposed approach, the conflict-graph approach, and

the baseline approach vs. the value of Bmax (where the number of mesh routers is 100 and

N = 1024).
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It is well-known that, in general, DCA exhibits superior performance compared to FCA

in the case of non-uniform traffic distribution and/or low traffic load [57]. However, the

performance of DCA degrades under heavy load conditions (e.g., large Bmax). Hybrid channel

allocation (HCA) is shown to be the best performance compromise [57]. In our work, the

traffic load is not evenly distributed and hence the system throughput improves when Bmax

increases. On the other hand, the traffic load in a cluster also increases with Bmax, as more

clustermembers can be selected. When the traffic load reaches a certain threshold, the system

throughput starts to decrease. Therefore, the value of Bmax should be chosen carefully in

order to achieve high system throughput. Concerning the system throughput obtained by

the conflict-graph approach, it first goes up sharply as more subcarriers can be reused. As

Bmax increases, however, the system throughput of the conflict-graph approach decreases,

although the frequency reuse ratio remains roughly the same from Bmax = 128 onward.

That decline is based on the (large) aggregate interference generated from the transmissions

outside the neighborhood. This phenomenon reasserts our argument mentioned in Section

3.2 that the resource allocation solution deduced by a conflict-graph approach can reduce

the system throughput in a large WMN. Thus, for the same frequency reuse ratio, in general,

the system throughput obtained by the conflict-graph approach is less than that obtained

by the proposed tax-based approach. An upper bound is also plotted for reference in Figure

3.8. Since more subcarriers can be chosen in a cluster, the curve goes up with the value of

Bmax, the idea of which is similar to the notion of multi-user diversity. On a different note,

we observe that, when Bmax is very small or very large, some clusters are “starved or almost

starved”, where no or very few subcarriers are allocated to those (lower priority) clusters.

The value of Bmax, therefore, should be carefully chosen to ensure that a clustered WMN

can operate efficiently.
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3.6 Discussion

To further enhance the system performance for WMNs, network-layer routing and MAC-

layer packet scheduling should be jointly taken into consideration. In the case of a single

gateway, routing is imperative to avoid traffic congestion at (and near) the gateway by

way of load balancing, plausibly achieving an improved performance. However, obtaining

optimal solutions for the joint problem of routing and MAC-layer resource allocation is, in

general, computationally expensive. As such, devising low-complexity resource allocation

strategies is needed. Another effective way to attain a desired traffic load distribution is

to deploy multiple gateways, leading to the issue of gateway deployment. With efficient

gateway deployment, co-channel interference can be reduced greatly and, therefore, system

capacity can be further increased. In practice, to lower the costs of gateway deployment,

the number of gateways deployed should be kept minimal but large enough to provide users

satisfactory (perceived) QoS. Further, the mobility of gateways can be employed to cater

to the variations of traffic loads and/or channel conditions. Under what conditions can the

mobility of gateways be beneficial remains an open research problem. On the other hand,

we consider that a clusterhead selects its 1-hop neighbors only in this work. To further

reduce the signalling overhead among clusters, we should allow clusterheads to choose any

of their nearby neighbors (e.g., 2-hop neighbors) so long as the QoS requirements of their

clustermembers can be met at the cost of packet delay. Attaining a desired balance between

complexity and system performance is important yet challenging. Addressing the aforesaid

research issues, however, is left for further work.

3.7 Chapter Summary

In this Chapter, we propose a novel resource allocation scheme for the problem of joint node

clustering and subcarrier allocation in WMNs with QoS assurance. The proposed node clus-
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tering algorithm is QoS-aware, and the proposed tax-based subcarrier allocation is shown

to effectively enhance frequency reuse and increase the system throughput. Our approach is

also shown to provide a good performance balance between packet delay and end-to-end data

rate for real-time traffic, leading to a viable candidate for practical implementation. The

proposed resource allocation solution is Pareto optimal and hence utilizes network resources

efficiently. In addition, our analysis reveals that how to allocate resources in a decentralized

fashion affects a performance balance between QoS provisioning and throughput maximiza-

tion. Simulation results show that our proposed approach outperforms a baseline approach

and a conflict-graph approach. Our findings also demonstrate that the value of Bmax should

be determined carefully in order to further enhance the system performance.
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Chapter 4

Joint Power-Subcarrier-Time

Resource Allocation with Effective

QoS Provisioning

4.1 Introduction

As mentioned in Chapter 1, joint power-subcarrier-time resource allocation is imperative

due to the necessity of packet scheduling for QoS provisioning, multi-channel communi-

cations, and opportunistic power allocation. With the help of clusterheads, collision-free

scheduling is feasible within a cluster, facilitating QoS provisioning and system throughput

improvement. After a set of subcarriers are allocated to a cluster according to our tax-based

subcarrier allocation proposed in Chapter 3, we focus on intra-cluster resource allocation in

this Chapter. In specific, we address the issues of power allocation, subcarrier allocation,

packet scheduling, and QoS support. The contributions and significance of this research

work are three-fold [21,23].
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• First, we study the problem of power allocation, subcarrier allocation, and packet

scheduling for WMNs. We prove that the joint power-frequency-time resource alloca-

tion problem is NP-hard. Plus, we propose three QoS-aware intra-cluster packet-level

resource allocation approaches, namely a Karush-Kuhn-Tucker (KKT)-driven, a ge-

netic algorithm (GA)-based approach, and a hybrid KKT-GA approach.

• Second, we compare our proposed approaches with several counterparts suggested in

the literature. Our results show that all the newly proposed approaches are demon-

strated effective in QoS provisioning. In specific, the GA-based approach outperforms

all the other approaches in terms of throughput, while the KKT-driven approach out-

performs its counterparts of the same time complexity. Our hybrid approach is shown

to achieve a desired balance between system performance and time complexity, result-

ing in a preferred candidate for practical implementation. We also analytically derive

the bounds for the throughputs obtained by real-time and non-real-time traffic, serving

as performance benchmarks.

• Third, our study shows that effective CAC not only can guarantee the QoS support

of admitted multimedia calls in the system, but also can sustain the throughput per-

formance. Besides, we observe that, in WMNs with background (bursty) data traffic,

admitting more multimedia calls can decrease (increase) the system throughput.

The remainder of this Chapter is organized as follows. Related work is given in Section

4.2. The problem formulation of joint power-frequency-time resource allocation is presented

in Section 4.3. Three resource allocation approaches are proposed in Section 4.4. Perfor-

mance evaluation is given in Section 4.5. A brief discussion is provided in Section 4.6. Finally,

a summary is drawn in Section 4.7. A summary of important symbols used in this Chapter

is given in Table 4.1 for easy reference.
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Table 4.1: Summary of important symbols used in this Chapter.

Symbol Definition

Um(Rm(c,p)) utility function of the mth link

Rm(c,p) actual (aggregate) transmission rate of the mth link over a frame

Rd
m instantaneous transmission rate demand of the mth link in the current frame

cl
m,n indicator of allocating the nth subcarrier to the mth link on the lth timeslot

pl
m,n transmit power over the nth subcarrier of the mth link’s transmitter on the lth timeslot

Gl
mk,n channel gain from the kth link’s transmitter to the mth link’s receiver over the nth

subcarrier on the lth timeslot

In interference power at the nth subcarrier

gl
mk,n effective channel gain, i.e., gl

mk,n = ϕGl
mk,n/(In + η)

η background noise power

ϕ BER measure

Pmax
m maximum power constraint of the mth link’s transmitter

M number of active links in a cluster

N number of subcarriers allocated to a cluster

L number of timeslots in a frame

T number of iterations

S population size

FFi fitness function of the ith individual

4.2 Related Work

The problem of subcarrier-bit-power allocation for OFDM systems has been researched ex-

tensively with respect to the physical layer [33,54,85,98,102,114,117]. Due to its computa-

tional hardness, the joint optimization problem is usually decoupled into several subprob-

lems [117]. In [117], the objective function is to maximize the total achievable rate. However,

with a Hungarian approach, the complexity is at least on the order of O(N3), where N is the

number of subcarriers. QoS demands and fairness constraints are taken into account in [54],

where heuristic schemes are proposed for convex optimization problems (e.g., the signal-to-

noise ratio (SNR) maximization problem). In [33], a heuristic resource allocation scheme is

proposed for the uplink OFDMA systems, taking fairness and time-varying fading into con-

sideration. In [102], a two-level resource allocation scheme for downlink OFDMA systems
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is proposed to achieve Nash bargaining fairness. A Lagrangian-based approach is employed

in [114] to solve the total transmit power minimization problem, but the high complexity of

the preceding algorithm impedes its practical implementation. In order to reduce the com-

putational complexity, KKT interpretations are popularly employed in designing resource

allocation algorithms (e.g., [85,98] for utility maximization in uplink OFDMA/WiMAX sys-

tems). In the previous work, packet scheduling, however, is not addressed properly. Packet-

level QoS provisioning is often neglected in the MAC layer. Thus, applying these existing

resource allocation schemes directly to the WMNs with heterogeneous (packet-level) QoS

requirements can be ineffective or inefficient. In addition, those schemes derived from the

theory of convex optimization may not be efficient or even applicable to non-convex opti-

mization problems.

In this Chapter, we devise three efficient yet effective strategies to solve the joint power-

subcarrier-time resource allocation problem for WMNs. Our proposed approaches are demon-

strated promising in packet-level QoS provisioning and system throughput improvement.

4.3 Joint Power-Subcarrier-Time Resource Allocation

In this section, we consider a WMN divided into a number of clusters (see Figure 2.1). In

a cluster, one node is selected as a clusterhead according to our proposed node clustering

algorithm discussed in Chapter 3. As mentioned in Section 2.1, time is partitioned into

frames. Each frame is further divided into a beacon slot, a control slot, and a number of

DATA slots. The beacon is used to provide timing and cluster information, and broadcast

scheduling decisions for the DATA slots. In the control slot, the clusterhead collects the

requests from its clustermembers, and announces the resource allocation in the subsequent

beacon.

There are various system constraints associated with the joint power-subcarrier-time
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resource allocation problem. The sum of the transmit power of each node on the allocated

subcarriers is bounded by a maximum power level:

pl
m,n ≥ 0,∀m,n,l (4.1)

N∑

n=1

pl
m,n = Pmax

m ,∀m,l (4.2)

where pl
m,n is the transmit power over the nth subcarrier of the mth link’s transmitter on

the lth timeslot and Pmax
m is the maximum power constraint of the mth link’s transmitter.

Concerning subcarrier allocation, we consider the case where each subcarrier can only be

allocated to one transmission link in a cluster (i.e., exclusive subcarrier allocation). In this

work, time sharing of subcarriers in a DATA slot is not considered. The constraints with

respect to subcarrier allocation can be formulated as follows:

M∑

m=1

cl
m,n = 1, ∀n,l (4.3)

cl
m,n ∈{0, 1},∀m,n,l (4.4)

where cl
m,n is the indicator of allocating the nth subcarrier to the mth link on the lth timeslot.

Different traffic types require different packet transmission rates. In our problem formulation,

we take the instantaneous rate requirements of different traffic types (e.g., voice, video, and

data) in the current frame, if any, into account:

Rm(c,p) ≥ Rd
m, ∀m (4.5)

where Rd
m is the instantaneous transmission rate demand of the mth link in the current

frame and Rm(c,p) =
∑L

l=1

∑N
n=1 cl

m,n log2

(
1 + gl

mm,npl
m,n

)
represents the actual aggregate

transmission rate of the mth link over a frame with c = [cl
m,n]M×N×L, p = [pl

m,n]M×N×L, and

gl
mk,n = ϕGmk,n/(In + η) with Gmk,n being the channel gain from the kth link’s transmitter to

the mth link’s receiver over the nth subcarrier, In the interference power at the nth subcarrier,

ϕ a BER measure, and η the background noise power. Notice that QoS provisioning is
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to be handled by MAC-layer packet scheduling (as discussed in Section 2.3). With the

above constraints, we employ the well-known utility maximization framework to abstract

the objective. The objective function can be generalized to optimize system throughput,

fairness (see the examples in Chapter 5), or tradeoffs among several system performance

metrics [22] (e.g., a tradeoff between throughput and fairness, to be discussed in Chapter 7).

Here, the objective function is chosen to maximize the system throughput.

Problem Formulation: Let M , N , and L denote the number of active links in a

cluster, the number of subcarriers available in a cluster, and the number of timeslots (i.e.,

DATA slots) in a frame, respectively. Consider the following intra-cluster resource allocation

optimization problem (ICRAOP)

max
c,p

{
M∑

m=1

Um(Rm(c,p))

}
(4.6)

subject to Rm(c,p) ≥ Rd
m, ∀m (4.7)

pl
m,n ≥ 0, ∀m,n,l (4.8)

N∑

n=1

pl
m,n = Pmax

m ,∀m,l (4.9)

M∑

m=1

cl
m,n = 1, ∀n,l (4.10)

cl
m,n ∈ {0, 1},∀m,n,l (4.11)

where Um(.) is the utility function of the mth link. By reducing the well-known NP-complete

number partitioning problem [34] to the ICRAOP, it can be proved that the ICRAOP is

NP-hard.

Proposition 4 The ICRAOP is an NP-hard problem.

63



4.4 Proposed Resource Allocation Approaches

To solve the ICRAOP, we propose three resource allocation approaches: 1) KKT-driven

resource allocation; 2) GA-based resource allocation; and 3) hybrid resource allocation.

4.4.1 KKT-Driven Resource Allocation

In general, solving the ICRAOP requires exponential time complexity [9]. To make the

problem more tractable, the most commonly used technique is to relax the integer constraints

(4.11) into

cl
m,n ≥ 0, ∀m,n, l. (4.12)

To investigate the (necessary) conditions for optimality of the solution, consider the following

KKT conditions of the relaxed problem.

− (
U ′

m(Rm(c,p)) + βm

)
log2

(
1 + gl

mm,npl
m,n

)
− αl

m,n + λl
n = 0, ∀m,n, l (4.13)

− (
U ′

m(Rm(c,p)) + βm

)
(

cl
m,n

gl
mm,n

1 + gl
mm,npl

m,n

)
− γl

m,n + µl
m = 0, ∀m,n, l (4.14)

Rm(c,p) ≥ Rd
m, ∀m (4.15)

M∑

m=1

cl
m,n = 1, ∀n, l (4.16)

N∑

n=1

pl
m,n = Pmax

m ,∀m, l (4.17)

βm

(
Rd

m −Rm(c,p)
)

= 0, ∀m (4.18)

γl
m,npl

m,n = 0, ∀m, n, l (4.19)

αl
m,ncl

m,n = 0, ∀m, n, l (4.20)

cl
m,n, pl

m,n, αl
m,n, γl

m,n ≥ 0, ∀m, n, l (4.21)

βm ≥ 0, ∀m (4.22)
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where βm, γl
m,n, µl

m, λl
n, and αl

m,n are the Lagrange multipliers for the constraints (4.7),

(4.8) (4.9), (4.10), and (4.12), respectively. Combining (4.13) and (4.20), the criterion of

subcarrier allocation can be deduced as follows. For each timeslot l and each subcarrier n,

choose m∗ such that

m∗ = arg max
m

{
U ′

m(Rm(c,p)) log2

(
1 + gl

mm,npl
m,n

)}
(4.23)

and set cl
m∗,n = 1. For a given subcarrier assignment, the optimal power allocation can be

obtained via utility-based water-filling [100]. However, the criteria of optimal subcarrier allo-

cation and optimal power allocation are coupled. To reduce the computational complexity,

our resource allocation first fixes the power allocation, invokes subcarrier allocation based

on the criterion given in (4.23), reallocates the subcarriers until all the system constraints

are met, and then performs utility-based water-filling for power allocation. The detailed

procedure is given below.

Step 1: For each link m, equally distribute the transmit power over all N subcarriers on

each timeslot l (i.e., pl
m,n = Pmax

m /N , ∀l).

Step 2: For each timeslot l and each subcarrier n, allocate the nth subcarrier according to

(4.23). Repeat until all subcarriers are allocated over all timeslots in the next frame.

Step 3: Since the initially obtained resource allocation solution may not satisfy all the

constraints in (4.7), subcarrier reallocation is needed. Subcarrier reallocation should

result in only a small decrease in the total utility while satisfying all the QoS con-

straints. Let Mu be the set of unsatisfied links. Consider the following cost function of

reallocating a subcarrier to the jth link instead of the originally assigned ith link

εj,n =
1

∆Ui(Ri(c,p))−∆Uj(Rj(c,p))
rl
j,n

Rd
j −Rj(c,p)

, ∀j ∈ Mu. (4.24)

The cost εj,n, a product of two terms, represents the likelihood of reallocating the nth

subcarrier to the jth link instead of the originally assigned ith link. The first term
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measures the decrease in the total utility for subcarrier swapping. The smaller the

change in the total utility, the larger the value of the first term so as to maintain the

objective function as large as possible. The second term indicates the tendency of

satisfying the QoS requirements of the jth link if the nth subcarrier is reallocated to it.

The larger the second term, the more likely the QoS requirement of the jth link can be

met. The cost function is essentially the combined effects of both terms. Therefore,

choose the subcarrier with the maximum cost, i.e., j∗ = arg maxj∈Mu εj,n. If the QoS

constraint (4.7) for the ith link is not violated, perform subcarrier swapping by setting

cl
j∗,n = 1 and cl

i,n = 0. Repeat this step until all the subcarriers and the timeslots have

been searched. The flowchart of the subcarrier swapping is depicted in Figure 4.1.

Step 4: For each timeslot l, perform utility-based water-filling for power allocation on each

link.

4.4.2 GA-Based Resource Allocation

GA-based methodology is commonly used as a search algorithm based on mechanics of

natural selection and natural genetics, aiming at near-optimal solutions [79]. A GA-based

resource allocation scheme starts with an initial population of individuals characterized by

chromosomes, and then improves the population through evolution. In each generation,

three operations are carried out one by one to yield a new population: 1) selection; 2)

crossover; 3) and mutation. In the selection process, a proportion of the existing population

is selected to breed a new generation. A selection operator determines better individuals of

the current generation stochastically. Those individuals who are not selected will vanish in

the next generation. A crossover operator is to generate new individuals from the ones chosen

by the selection operator. The crossover operation between two individuals is performed

by swapping some of their genes to produce two new individuals. A mutation operator

probabilistically changes some arbitrary gene(s) of a chromosome to a new value to form
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Figure 4.1: Subcarrier swapping.
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a new individual. The mutation operation helps increase the diversity of the population

by creating new individuals which may be quite different from the existing population.

Compared to a (sub)gradient method [9], GAs can give a better solution by avoiding the

local optimum(s) via crossover and/or mutation. One pitfall of GAs, however, is its relatively

high computational cost.

A chromosome length of MNL is chosen for our GA-based resource allocation scheme.

Each individual represents a joint power-frequency-time resource allocation solution. Each

chromosome is a string of elements with binary values representing a subcarrier allocation so-

lution over the time and the frequency domains. To form an initial population, all subcarriers

in a frame are allocated randomly to the links in such a way that every individual is a feasible

solution to the ICRAOP. A genetic representation of a set of feasible solutions to the ICRAOP

is depicted in Figure 4.2. The fitness function is chosen to be the objective function given

in (4.6). The fitness function of the ith individual is given by FFi =
∑M

m=1 Um(Rm(c,p)),∀i,
where c can be obtained by decoding the chromosome of the ith individual. Optimal power

allocation is employed in the fitness evaluation of an individual. Thus, the larger the fitness

value, the fitter the individual, and the better the solution to the ICRAOP. For the selection

operation, we consider a well-known roulette wheel selection operator [79], where an indi-

vidual is selected with a probability proportional to its fitness value. A pictorial illustration

of the roulette wheel selection process is shown in Figure 4.3. Due to its random nature,

the roulette wheel selection operator allows weaker individuals to survive and potentially

become stronger chromosomes (i.e., better solutions) during the course of evolution (i.e.,

crossover and mutation). Note that the population size is kept constant in every generation

so an individual in the existing population may be selected more than once. For the sake of

genetic stability, genes for crossover are chosen according to a uniform distribution, whereas

only one gene in a chromosome is randomly chosen for mutation. Any individual who vio-

lates any of the constraints in the ICRAOP will be eliminated in the next generation. The
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Figure 4.2: A genetic representation of a set of feasible solutions to the optimization problem.
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Individual 2

Individual 3: 
The weakest individual 
has the smallest share 
of the roulette wheel

Individual S

The wheel rotates

Individual 4

Selection 
point

Individual 1

The fittest individual 
has the largest share 
of the roulette wheel

Figure 4.3: A pictorial illustration of the roulette wheel selection process. (All the individuals

form a pie chart, where the size of a slice (i.e., the area where an individual occupies) is

proportional to the fitness value of an individual. In this example, the 4th individual is

selected. The roulette wheel selection operator keeps selecting the individuals by literally

spinning around the circle until the population size of the next generation is S.)
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flowchart of the proposed GA-based resource allocation scheme is shown in Figure 4.4. The

recommended crossover and mutation probabilities are 0.7 and 0.01, respectively [79]. Based

on our observations, the preferred value for the maximum number of iterations, T , and that

for the population size, S, are 25, 000 and 100, respectively.

4.4.3 Hybrid Resource Allocation: Combined-KKT-GA

Since the GA-based approach considers all three resource dimensions simultaneously, it can

plausibly achieve better system performance than the KKT-driven approach. However, in

practice, running the GA-based resource allocation algorithm with S = 100 and T = 25, 000 on

a low-cost off-the-shelf mesh router is not preferred due to its high computational complexity.

To strive for a desired balance between system performance and complexity, we propose a

hybrid scheme named Combined-KKT-GA by combining the merits of two aforementioned

approaches. By studying the performance comparison of the proposed KKT-driven scheme

and the proposed GA-based scheme with S = 100, we observe two main trends: 1) If the

GA-based scheme performs better than the KKT-driven one after a few iterations (e.g., 10

iterations), then the former one will give a better resource allocation solution eventually; 2) If

the GA-based scheme cannot prevail after a small number of iterations, it will be very likely

to take several thousands of iterations to win out. Since the KKT-driven resource allocation

solution will likely be locally optimal only, the rationale for the above observations is mainly

due to the quality of the initial population generated in the GA-based algorithm (i.e., the

initial set of the feasible solutions) and the structure of the feasible region of our optimization

problem (i.e., the solution space governed by the system constraints). If the initial population

is residing at a favorable neighborhood of the solution space where the path to reaching the

global optimum is “hassle-free”, the GA-based scheme can achieve a better solution in a few

iterations with ease. In contrast, if the initial population is residing at a disadvantageous

neighborhood of the solution space and/or the solution space contains many various local
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Figure 4.4: The flowchart of the proposed GA-based resource allocation scheme.
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optimums in between the global optimum and the starting point of search, the GA-based

scheme is expected to undergo lots of iterations before reaching the globally optimal point.

Since efficiency is one of the most important goals in resource allocation for future WMNs,

a hybrid resource allocation approach is proposed and outlined as follows.

Step 1: Obtain a resource allocation solution using the KKT-driven approach.

Step 2: Obtain a resource allocation solution using the GA-based approach with S = 100

and T = 10.

Step 3: Choose the better solution out of the above two solutions.

Therefore, on average, the performance of this hybrid approach, Combined-KKT-GA, is ex-

pected to be lower bounded and upper bounded by that of our KKT-driven scheme and that

of our GA-based scheme, respectively. Note that the proposed hybrid approach resembles

the notion of SoftMAC 1 [84]. In our case, the solution of the proposed Combined-KKT-GA

approach is highly contingent on the quality of the initially generated population in the

GA-based algorithm and the solution space of the optimization problem.

4.4.4 Complexity Analysis

Regarding the practicality of our proposed resource allocation algorithms, we study their

time complexities. The complexities of the proposed KKT-driven approach, the proposed

GA-based approach, and the Combined-KKT-GA approach are on the order of O(LMN),

O(TSLMN), and O(CLMN), respectively, where C ¿ TS. As such, our KKT-driven and

Combined-KKT-GA approaches are of low complexity, giving rise to viable candidates for

practical implementation in WMNs with low-cost off-the-shelf mesh nodes. In the presence

1SoftMAC selects the best MAC protocol from a protocol pool based on various system parameters such

as channel conditions, packet dropping, and packet delay.
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of powerful devices with strong computational power, our GA-based approach can also be

employed in practice.

4.5 Performance Evaluation

4.5.1 Simulation Environment

We consider a cluster with a number of wireless nodes randomly located in a 1km x 1km

coverage area. We assume that the routing is predetermined so that the transmission source

and destination pair of an incoming packet is known in advance. Simulation parameters

are chosen as follows: η ∼ N(0, 10−12W), In ∼ N(0, 10−10W), ∀n, Pmax
m = 10mW, ∀m,

Um(Rm(c,p)) = Rm(c,p), ∀m, N = 100, and L = 4. The maximum transmission rate of

each subcarrier is set to be 200kb/s. We adopt the channel model suggested in [44] (i.e.,

hilly/moderate-to-heavy tree density). We consider three types of traffic, namely voice,

video, and data described in Section 2.2.2. Voice traffic and video traffic are generated ac-

cording to a two-state ON-OFF model. For voice traffic, in the ON state, a fixed-size packet

arrives at a constant rate, whereas in the OFF state, no packet is generated. The duration

of an ON period and that of an OFF period both follow an exponential distribution. For

video traffic, different incoming packets in the ON state have different packet sizes, gener-

ating a variable-rate traffic [39]. The parameters of the voice and video traffic models are

summarized in Table 4.2. Here, we consider two data traffic models: 1) background data

traffic, where data packets are available anytime; and 2) bursty data traffic, where data

packet arrivals follow a Poisson process with mean rate 50 packets/second, where the packet

size follows a Weibull distribution (i.e., Weibull(2,2)). Data traffic is assigned the lowest

priority and does not have any rate requirements. To better utilize network resources, both

the data rate and the size of a packet are varied based on a wireless channel condition by

setting the transmission durations of all packets to be the same (i.e., the timeslots) [61]. To
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Table 4.2: Summary of simulation parameters.

Parameter Value

Voice traffic

mean ON period 1.00s

mean OFF period 1.35s

packet inter-arrival time 20ms

constant data rate 32kb/s

delay bound 20ms

packet-loss-rate requirement 1%

bit-error-rate (BER) requirement 10−3

Video traffic

mean ON period 1.47s

mean OFF period 1.92s

packet (frame) inter-arrival time 5ms

minimum data rate 256kb/s

delay bound 75ms

packet (frame)-loss-rate requirement 1%

bit-error-rate (BER) requirement 10−5

resemble mixed traffic types, we consider a voice source, a video source, and a data source

residing at every node. There are 1 beacon slot, 1 control slot, and 4 DATA slot(s) in a

frame. The duration of a timeslot is 5ms. The polling is done in every 100ms. Both the

polling and the beacon packet transmissions are assumed to be error-free. An offline CAC is

performed, and we noticed that the system can admit 13 voice calls and 12 video calls. For

medium access, we employ the packet-level QoS provisioning strategy given in Section 2.3.

We perform the simulations for 10,000 runs and average the results, where each simulation

run sustains 10,000 frames. The performance measurements used in our simulations are 1)

(system) throughput, 2) resource utilization, and 3) packet dropping rate.
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4.5.2 Simulation Results

We carry out extensive computer simulations to compare our three proposed approaches

with a random scheme (in [21]), the Shi’s KKT-driven scheme (in [98]), and the Gao’s

scheme (in [33]). In the random scheme, each node selects a number of subcarriers to meet

its current traffic demand. Subcarrier selection is random. Transmit power is uniformly

distributed over the selected subcarriers. If a subcarrier is chosen by more than one node,

we assume that a collision occurs, and the subcarrier is wasted and does not contribute to

the actual packet transmission rate. Resource reservation is not taken into account in this

random scheme. Since every node behaves independently, the complexity of this random

scheme is on the order of O(N). The Shi’s KKT-driven scheme is similar to our proposed

KKT-driven approach but with different subcarrier reallocation strategies. The former aims

at maximizing the system throughput (without considering QoS support), whereas the latter

focuses on QoS satisfaction of the admitted calls. The complexity of the Shi’s KKT-driven

scheme is on the order of O(LM2N). Although the Gao’s scheme makes use of optimal power

allocation, its subcarrier allocation is only suboptimal. The complexity of the Gao’s scheme

is the same as our proposed KKT-driven approach, which is on the order of O(LMN).

Here, we study the impact of the number of links on the system performance for all

six approaches. In our performance evaluation, we further consider two cases: 1) with

background data traffic; and 2) with bursty data traffic. We also analytically derive the

upper bound for the throughputs obtained by all the traffic for reference (see Appendix-

A.2).

Case 1: with Background Data Traffic

Figure 4.5 shows the throughput performance for background data traffic versus the num-

ber of links. The standard deviations of the results are also plotted for reference. Clearly,
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Figure 4.5: Comparison of the data throughput performance of the proposed approaches

(GA-based, KKT-driven, and Combined-KKT-GA), the Shi’s KKT-driven scheme, the Gao’s

scheme, and the random scheme vs. the number of links for background data traffic.
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the proposed GA-based approach outperforms the other five approaches. This result is

justifiable because our GA-based approach essentially takes all the three resource dimen-

sions (i.e., power, subcarrier, and time) into consideration simultaneously. As expected, the

throughput performance of Combined-KKT-GA is somewhat between that of the proposed

KKT-driven approach and that of the proposed GA-based approach. We observe that the

Shi’s KKT-driven approach is better than our proposed KKT-driven approach because of

its throughput-oriented subcarrier reallocation. Despite optimal power allocation in place,

the Gao’s scheme employs suboptimal subcarrier allocation and hence performs worse than

our KKT-driven approach. Notice that the time complexities of the Gao’s scheme and

our proposed KKT-driven one are on the same order. On the other hand, the proposed

Combined-KKT-GA approach achieves higher throughput than the Shi’s KKT-driven, the

Gao’s, and the random approaches. Since more network resources are reserved for the real-

time traffic with the number of links, the total throughputs of the background data traffic

in our proposed approaches drop. Due to the CAC in place, no more than 13 voice sources

and 12 video sources can be admitted into the system. Hence, from M = 15 onward, the

total throughputs level off. The slight fluctuation of the curves is partly because of the

random arrivals of voice and video packets. The upper bound for the throughput obtained

by the data traffic is also plotted for reference. For resource utilization, we observe that the

Combined-KKT-GA approach utilizes the resources better than the random scheme (which

has less than 10% efficiency), the Gao’s approach (about 45% from M = 15 onward), the pro-

posed KKT-driven approach (about 50% from M = 15 onward), and the Shi’s KKT-driven

approach (about 55% from M = 20 onward). In fact, the utilization achieved by the proposed

Combined-KKT-GA approach is close to that achieved by the GA-based approach. For the

Combined-KKT-GA algorithm, the resource utilization drops from about 95% to about 65%

when the number of links increases from M = 5 to 20, and the utilization stays around 60%

from M = 20 onward. On the other hand, the resource utilization achieved by the GA-based
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Figure 4.6: Comparison of the resource utilization of the three proposed approaches and the

random scheme vs. the number of links for background data traffic.
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Figure 4.7: Comparison of the voice packet dropping rates of the proposed approaches (GA-

based, KKT-driven, and Combined-KKT-GA), the Shi’s KKT-driven scheme, the Gao’s

scheme, and the random scheme vs. the number of links for background data traffic.

approach drops from 97% to 71% when the number of links increases from M = 5 to 15, and

then roughly stabilizes at about 65% from M = 15 onward. The resource utilization curves

are depicted in Figure 4.6. For presentation clarity, only the curves for the proposed KKT-

driven approach, the proposed GA-based approach, the proposed hybrid approach, and the

random approach are shown. Notice that the reduction in the utilization is mainly ascribed

to the bandwidth reservation for the real-time traffic. The simulation results confirm the

fact that QoS provisioning and resource utilization maximization are conflicting with each

other [22]. In Figure 4.7, the voice packet dropping rates are depicted. The packet dropping
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rates for voice traffic are capped in our Combined-KKT-GA (about 0.7%), our KKT-driven

(about 1%), and our GA-based (about 0.6%) approaches. From M = 15 onward, the packet

dropping rates are about 6% and 11% in the Shi’s KKT-driven approach and the Gao’s

approach, respectively. Suboptimal subcarrier allocation in the Gao’s approach leads to the

incapability of provisioning QoS effectively. On the other hand, in the Shi’s KKT-driven

approach, the subcarrier reallocation step aims at the system-wise throughput improvement

at the cost of link-wise (or call-wise) QoS satisfaction, resulting in poor QoS provisioning

performance. In the random scheme, the voice packet dropping rates increase as M increases.

After all, the Shi’s KKT-driven, the Gao’s, and the random approaches are not designed for

effective packet-level QoS provisioning and, therefore, they cannot provide the same level

of QoS assurance offered by our proposed approaches. We observe a similar trend for the

packet dropping rates for video traffic.

Case 2: with Bursty Data Traffic

Here, we study the case where data packet arrivals follow a Poisson process. Figure 4.8

shows the system throughput obtained in serving three traffic types versus the number of

links. The curve of data capacity defined by the maximum achievable system throughput

without QoS constraints is also plotted for reference. The trend of the system throughput

performance in all approaches except the random one increases with the number of links. As

anticipated, our GA-based scheme performs the best among all schemes. The performance

of the proposed Combined-KKT-GA approach is almost the average of that of the proposed

KKT-driven approach and that of the proposed GA-based approach. Due to the optimal

power and subcarrier allocation, we observe that our KKT-driven approach performs better

than the Gao’s approach. Notice that our KKT-driven approach attains almost the same

system throughput as the Shi’s KKT-driven one. This phenomenon stems from the fact

that the data traffic load is low and hence the effect of the throughput-sensitive subcarrier
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Figure 4.8: Comparison of the system throughput of the proposed approaches (GA-based,

KKT-driven, and Combined-KKT-GA), the Shi’s KKT-driven scheme, the Gao’s scheme,

the random scheme, and the data capacity vs. the number of links for bursty data traffic.
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reallocation step in the Shi’s approach is not substantial. In fact, there are two key factors

determining the trend of the curves, namely traffic load and resource reservation for the

real-time traffic. Since the network is not saturated, the higher the traffic load, the higher

the throughput. The curves go up when M increases from 5 to 15, as there is a higher traffic

load. From M = 15 onward, the influence of the resource reservation for QoS provisioning

becomes more significant. Thus, the increment of system throughputs is smaller. On the

other hand, the data capacity increases with the number of links because of the multi-

user diversity. It is noteworthy that, in Figure 4.8, there is an obvious performance gap

between the system throughputs obtained from all the approaches and the data capacity.

This gap is ascribed to the low traffic load and resource reservation. We observe that both

the system throughput and resource utilization for the proposed algorithms can be improved

when the traffic load increases. The upper bound for the system throughput obtained by

analysis is also plotted for comparison. In Figure 4.9, the resource utilization curves for our

KKT-driven approach, our GA-based approach, our Combined-KKT-GA approach, and the

random approach are depicted. For the dropping rates of the real-time traffic, we observe

that the results are similar to Figure 4.7. Thus, it can be concluded that the data traffic

model has little influence on the performance of the real-time traffic, for the data packets

are assigned the lowest priority.

Simulation results show that our three proposed approaches can effectively provision

packet-level QoS for real-time traffic and achieve satisfactory system throughput performance

under both bursty and background data traffic models. In particular, the novel hybrid re-

source allocation approach, Combined-KKT-GA, is of low computational complexity, leading

to a viable and preferred candidate for practical implementation. The characteristics of the

aforementioned resource allocation approaches are summarized in Table 4.3.
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random scheme vs. the number of links for bursty data traffic.
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Table 4.3: The characteristics of different resource allocation approaches.

Resource Allocation Approach Complexity Throughput Performance QoS Provisioning Practicality

Exhaustive Search O(MNL) Optimal Yes No

GA-based (proposed) O(TSLMN) Close to optimal* Yes Yes*

Combined-KKT-GA (proposed) O(CLMN)** Good Yes Yes

KKT-driven (proposed) O(LMN) Average Yes Yes

Shi’s KKT-driven [98] O(LM2N) Good No Yes

Gao’s [33] O(LMN) Average No Yes

Random [21] O(N) Poor No Yes

Note *: The results are contingent on the number of iterations used in the GA-based resource allocation scheme.

Note **: The value of C is far less than that of TS.

4.6 Discussion

Our simulation results given in Section 4.5 show that resource utilization is poor when the

traffic load is low (see Figure 4.9). However, recent studies show that the quantity of back-

ground data traffic has been skyrocketing, constituting a substantial portion of the total

traffic in WMNs [3]. In future broadband WMNs with abundant background data traffic,

resources are expected to be utilized more efficiently, whereby system throughput can be

improved. On the other hand, with limited network resources, throughput maximization

and QoS support are two conflicting goals, leading to a natural tradeoff. Thus, admitting

more multimedia calls can, in fact, bring down the system throughput (see Figure 4.5). In

WMNs supporting multimedia applications, radio resource allocation approaches should be

strategically devised to effectively guarantee the QoS of heterogeneous traffic yet meliorate

the system throughput. Thus, finding a desired performance balance between QoS support

and throughput improvement is undoubtedly imperative. Similarly, acquiring a desired bal-

ance between system-wise performance optimization and user-wise performance optimization

is also essential, as increasing system-wise performance would deteriorate user-wise perfor-
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mance, or vice versa.

4.7 Chapter Summary

In this Chapter, three QoS-aware packet-level resource allocation approaches, namely KKT-

driven, GA-based, and Combined-KKT-GA, are proposed for the joint power-subcarrier-

time intra-cluster resource allocation problem in WMNs. Simulation results demonstrate

that our GA-based approach performs the best in terms of throughput and packet dropping

rate at the expense of high computational complexity. On the other hand, the proposed

KKT-driven approach triumphs over its counterpart of the same time complexity. The

proposed Combined-KKT-GA approach works out a desired performance tradeoff between

computational complexity and system performance, giving rise to a preferred candidate for

practical implementation. Besides, our results confirm that QoS provisioning and resource

utilization are two conflicting performance metrics. Further, bounds for the throughputs

obtained by realtime and non-real-time traffic are derived analytically, serving as viable

performance benchmarks.
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Chapter 5

Performance Enhancement I:

Non-Altruistic Node Cooperation

5.1 Introduction

In WMNs, increasing throughput is the key to the success of providing an all-wireless en-

vironment. In previous Chapters, we have proposed novel and efficient resource allocation

approaches to provide a high-speed mesh backbone with QoS assurance. To further en-

hance the system performance, the notion of node cooperation can be employed. With the

unique characteristics of WMNs, however, a new node cooperative resource allocation strat-

egy tailored for QoS-sensitive WMNs with heterogeneous traffic is imperative. Here, in lieu

of designing a node cooperation protocol for WMNs, we assume that there is an efficient

cooperation protocol in place, and we study the impact of node cooperation and resource

allocation on the system performance. In specific, we focus on MAC-layer node cooperative

resource allocation in WMNs with QoS assurance and service differentiation. We consider

regenerative mesh nodes and non-altruistic node cooperation, meaning that there is no pure

relay in the system and all the nodes have their own data to transmit. Further, the node
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cooperation of interest is non-reciprocal or asymmetric, meaning that one node assists its

neighbor but does not necessarily receive help from that neighbor. We also consider priori-

tized node cooperation so as to realize the notion of service differentiation. The contributions

and significance of this research work are three-fold [20].

• First, we study the problem of non-altruistic node cooperative resource allocation for

WMNs with QoS support, taking subcarrier allocation, power allocation, partner se-

lection/allocation, service differentiation, and packet scheduling into account. Thanks

to the KKT interpretations, we propose two resource allocation approaches tailored

for the WMN of interest, namely a four-phase centralized approach and a two-phase

distributed approach. Both approaches are shown to be effective in providing QoS

assurance and service differentiation.

• Second, our proposed resource allocation solutions are Pareto optimal, making efficient

use of scarce network resources. Modeled by a round-robin game, the proposed ap-

proaches attain Nash Equilibria, facilitating network stability. Further, our approaches

are of low complexity, leading to viable candidates for practical implementation.

• Third, simulation results show that both proposed approaches are effective in packet-

level QoS provisioning and system performance enhancement over their non-cooperative

counterparts in terms of throughput, resource utilization, node cooperation gain, and

packet dropping rate. Our results demonstrate that the proposed non-altruistic node

cooperative approaches are less vulnerable to the changes in the system parameters

such as the accuracy of traffic load estimates. Further, our study reveals a critical

principle that whether node cooperation is beneficial to WMNs depends upon the

nature of node cooperation, (i.e., non-altruistic or altruistic), the mode of network

operation, (i.e., centralized control or distributed control), and the traffic pattern (i.e.,

bursty traffic or background traffic).
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Table 5.1: Summary of important symbols used in this Chapter.

Symbol Definition

Um(Rm (·) |Θ) utility function the mth node given Θ

Rm (·) achievable data rate of the mth node

Rd
m QoS demand of the mth node

Θ utility selector of the WMN of interest

cl
m,n indicator of allocating the nth subcarrier to the mth node on the lth timeslot, i.e., cl

m,n ∈ {0, 1}
pl

m,n transmit power over the nth subcarrier to the mth node on the lth timeslot

zmu indicator of node cooperation offered to the mth node by the uth node, i.e., zmu ∈ {0, 1}
amu power scaling factor of the transmit power of the uth node allocated for the mth node’s transmissions

Gl
mu,n channel gain from the uth node to the receiver of the mth node’s transmissions over the

nth subcarrier on the lth timeslot

gl
mu,n effective channel gain, i.e., ϕGl

mu,n/σ2
n

σ2
n aggregate noise-plus-co-channel interference power on the nth subcarrier

ϕ BER measure

Pmax
m maximum power constraint of the mth node

M number of mesh nodes

M1 set of RG nodes

M2 set of BE nodes

N number of subcarriers available

L number of timeslots (i.e., DATA slots) in a frame

N l
m set of subcarriers allocated to the mth node on the lth timeslot

The remainder of this Chapter is organized as follows. Related work is given in Section

5.2. Section 5.3 introduces the idea of non-altruistic node cooperation with regenerative

nodes. The problem of non-altruistic node cooperative resource allocation for WMNs with

QoS support is described in Section 5.4. Two proposed QoS-driven resource allocation

approaches with node cooperation are presented in Section 5.5. Efficiency evaluation by game

theory is given in Section 5.6. A brief discussion is provided in Section 5.7. Performance

evaluation is given in Section 5.8. Finally, a summary is drawn in Section 5.9. A summary

of important symbols used in this Chapter is given in Table 5.1 for easy reference.

5.2 Related Work

In the literature, there exists a rich body of research work on node cooperation [8,12,14–16,28,

40,41,43,48,56,63,64,72,81,87,94,109,110,120–122,124]. Besides information-theoretic stud-
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ies [28,40,63], most recent work on the topic of node cooperation aims at 1) distributed space-

time coding design and 2) resource allocation with relay selection. The former group focuses

on the design and performance evaluation of distributed space-time coding (e.g., [16,48,64]).

Spectral efficiency can be further improved by means of dirty paper coding applied at the

transmitters [56]. With appropriate detection techniques, an additional diversity order can

be attained in time-varying wireless channels [15]. However, most node cooperation strate-

gies based on distributed space-time coding conceive the existence of pure relay nodes, which

is not always feasible in practical WMNs. In addition, most of the above research work fo-

cuses on the performance measures in the physical layer, while resource allocation with

respect to the MAC layer is not addressed properly. The latter group aims at relay selection

and resource allocation. Partner matching algorithms based on graph theory are proposed

in [72,110], the objective of which is to optimize the energy efficiency; however, energy con-

sumption is not a concern in WMNs. In fact, relay selection and relay allocation are expected

to be relatively straightforward in altruistic node cooperative WMNs, for mesh routers are

stationary and channel state information can be known. To achieve fairness in an OFDM-

based system, a max-min cooperative subcarrier allocation approach is proposed in [94]. In

order for each node to have a fair share of channel capacity, a relay node selection scheme

with constant transmit power is suggested in [99]. On a different note, some work employs

the notion of game theory to derive node cooperation strategies and cooperative resource

allocation solutions (e.g., Nash bargaining approach [14,109,122]), where game-theoretic fair-

ness is achieved. Auction-based cooperative resource allocation algorithms are also proposed

to increase throughput and reduce outage probability [12,41,43,81]. The performance results

of the aforementioned approaches can be appealing; however, powerful central controllers are

mostly required to execute those preceding algorithms. In the case of austere suburban and

rural environments, distributed control is preferred, yet directly applying those approaches

to WMNs with decentralized control can be ineffective or inefficient.
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In the presence of multiple relays, it has been shown that selecting the (single) best

relay is sufficient to achieve the full diversity order and/or diversity-multiplexing tradeoff

of a cooperative system [8,124]. The implication is that the design of space-time coding

can be considerably simplified and the message overhead can be greatly reduced. However,

most of the work in the literature focuses on altruistic node cooperation (i.e., pure relays

exist) (e.g., [72,124]). Besides, many of the existing partner selection schemes consider only

measured (instantaneous) SNRs in choosing a partner (e.g., [8]). In the context of WMNs for

suburban/rural residential areas, all the mesh nodes mounted on the rooftops are expected

to have their own data to transmit. Non-altruistic node cooperation is, therefore, more

reasonable and realistic, where there is no pure relay in the system and all the nodes have

their own data to transmit. Due to the necessity of the split of transmit power (i.e., part

of the transmit power of a node is dedicated to transmitting its own data, while the rest

is dedicated to assisting other nodes), the measured SNRs should not be the sole decision

metric for partner selection and/or partner allocation. In fact, the availability of a potential

partner and its QoS requirements should also be taken into account. In the case of non-

altruistic node cooperation, the problem of node cooperative resource allocation becomes

convoluted, as the problems of partner selection/allocation, power allocation, subcarrier

allocation, service differentiation, and QoS provisioning are coupled. In [87,120], the problem

of partner selection for non-altruistic node cooperation is studied. Three partner selection

schemes with power control are proposed in [120] for balancing transmit power and system

performance, whereas two partner selection schemes are proposed in [87] so as to minimize

the average outage probability. However, MAC-layer service differentiation is not addressed,

for only a single class of traffic is considered in the aforementioned work. In [121], Zhang et

al. propose a simple two-step scheme for the system throughput maximization problem with

physical-layer QoS assurance. Without considering beneficial node cooperation, however,

system performance can be undermined. In addition, both packet scheduling and packet-
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level QoS support are not taken into consideration, plausibly elevating the packet dropping

rates for real-time traffic.

With no powerful central controllers, in this work, we propose two low-complexity QoS-

driven node cooperative resource allocation approaches tailored for WMNs with heteroge-

neous traffic. Our proposed approaches are demonstrated efficient yet effective in providing

QoS assurance and facilitating service differentiation for WMNs supporting multimedia ap-

plications.

5.3 Non-Altruistic Node Cooperation with Regenera-

tive Nodes

In this research work, two classes of traffic are considered, namely 1) rate-guaranteed (RG)

traffic (e.g., voice traffic) and 2) best-effort (BE) traffic (e.g., data traffic). In particular, the

RG traffic has a minimum data rate requirement and a delay bound requirement, whereas

the BE traffic has no QoS requirement. As regards aggregate traffic flows, a mesh node is

treated as an RG node if any of its incoming traffic flows belongs to the RG traffic.

Node cooperation is considered and triggered as long as it is feasible and beneficial for

system performance. In the presence of multiple available partners, we can prove that, with

arbitrary power allocation, choosing the (single) best partner is sufficient to achieve the

full diversity order (see Appendix-A.3.4). As such, a wireless node simply selects the one

with which the achievable throughput is maximized. Some node cooperation scenarios in

the WMN of interest are depicted in Figure 5.1. In our system model, Examples (a)-(c)

are plausible node cooperation scenarios where strong source-relay links exist. Example

(d), however, is less likely to happen because suburban/rural residential houses are sparsely

distributed, and the transmit power levels for the transmissions between mesh routers and
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Figure 5.1: Examples of node cooperation in WMNs.

mesh clients are expected to be low. Therefore, the source-relay links in Example (d) are

relatively weaker than the ones in Examples (a)-(c). Nonetheless, Example (d) can be

justified when the mesh routers and mesh clients are closely placed (e.g., in the WMNs for

metropolitan areas). It is noteworthy that Example (b) resembles downlink communications

in a cellular network where a mobile terminal located at the borders of two neighboring

cells is served by two corresponding base stations. Here, we focus on a node cooperation

scenario where clustermembers cooperatively transmit their packets to a clusterhead or a

clustermember in the same cluster (i.e., Figure 5.1(a)).
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R Direct transmissionAssisted transmission
Figure 5.2: Schematic representation of relay-assisted transmissions.

Consider a transmission scenario involving three wireless nodes, namely Node S, Node R,

and Node D. Node S is to transmit data to Node D, while Node R is viewed as a relay to help

Node S forward the data to Node D. A schematic representation is illustrated in Figure 5.2.

We employ the Cooperation Protocol I1 suggested in [82] as our node cooperation strategy

throughout this Chapter. In the first timeslot, Node S transmits a packet to both Node R

and Node D. In the second timeslot, Node R forwards the packet received from Node S to

Node D, while Node S transmits another packet to Node D. Notice that Node R can choose

the decode-and-forward (DF) mode or amplify-and-forward (AF) mode of cooperation in the

second timeslot. In this work, we consider the DF mode of cooperation (i.e., regenerative

mesh nodes). The outage performances for the DF mode of cooperation (and the AF mode

of cooperation) are presented in the Appendix-A.3. According to our analysis, if Node

R can perfectly decode the symbols transmitted from Node S, the channel capacity CDF

achieved by the DF mode with perfect decoding is given by CDF = 1
2 log2

(
(1 + γSD)2 + γRD

)
,

1Notice that, in this cooperation protocol, Node D receives two copies of the first packet and one copy of

the second packet in two timeslots. In traditional cooperative networks with nodes employing full transmit

power, the achievable throughput per timeslot due to cooperative transmissions can be higher than direct

transmissions, thanks to both spatial multiplexing gain and power gain.
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where γXY = EXY |hXY |2/σ2 with EXY (≥ 0) being the received average energy at Node

Y from Node X, X,Y ∈ {S,R, D}, hXY the Rayleigh fading coefficient for the X → Y link

modeled as an independent zero-mean complex Gaussian random variable with unit variance,

and σ2 the noise-plus-cochannel interference power level. In the case of non-altruistic node

cooperation, due to the necessity of splitting the transmit power, CDF is given by CDF =

1
2 log2

(
(1 + aSγSD)2 + aRγRD

)
, where aX is the scaling factor for the transmit power of Node

X, i.e., 0 ≤ aX ≤ 1. As shown in Appendix-A.3.3, we can prove that arbitrarily positive

power allocation has no impact on the diversity performance in the DF cooperation mode

with perfect decoding. We can further prove that, with m potential relays, choosing the single

best relay is sufficient to achieve the full diversity order in the DF cooperation mode with

perfect decoding and arbitrarily positive power allocation. It is noteworthy that the case of

aS = 1 corresponds to the scenario of altruistic node cooperation. Compared to the channel

capacity achieved by ordinary direct transmissions, denoted by Cd = log2(1 + γSD), we can

envision that, in a 3-node model, a non-altruistic cooperative transmission may not always

be advantageous over an ordinary direct transmission in terms of throughput. Therefore,

for the sake of overall system performance, node cooperation among mesh nodes should be

considered in a holistic manner.

Concerning packet-level node cooperation, after overhearing the packet transmissions

from Node S, Node R can verify the MAC-layer error correction code(s) of the received packet

(e.g., forward error correction (FEC) and cyclic redundancy check (CRC)) to determine

whether that packet is corrupted or not. If a packet is received successfully, Node R can

become one of Node S ’s potential partners, and node cooperative resource allocation can be

carried out hereafter whenever feasible and favorable. On the other hand, unlike symbol-

level cooperation where continuous symbol transmissions can be feasible, continuous packet

transmissions are less realistic. Thus, in this work, we consider that a potential packet-level

cooperation opportunity arises in every two timeslots.
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5.4 QoS-Driven Non-Altruistic Node Cooperative Re-

source Allocation

There are various system constraints associated with the non-altruistic node cooperative

resource allocation problem for WMNs. Let M , N , and L denote the number of mesh nodes,

the number of subcarriers available, and the number of timeslots (i.e., DATA slots) in a

frame, respectively. The sum of the (non-negative) transmit power of each mesh node on

the (allocated) subcarriers is bounded by a maximum power level:

N∑

n=1

pl
m,n ≤ Pmax

m , ∀m, l (5.1)

pl
m,n ≥ 0,∀m,n, l (5.2)

where pl
m,n is the transmit power of the mth node over the nth subcarrier on the lth timeslot

and Pmax
m is the maximum power constraint of the mth node. With the help of node clustering,

a number of subcarriers are allocated to each cluster. Here, we consider the case where each

subcarrier can only be allocated to one transmission link without cooperation or at most two

transmission links with node cooperation (i.e., a direct link and an assisted link) in a cluster.

If node cooperation is employed, both a source node and its partner transmit data over the

same subcarrier(s). In addition, as discussed in Section 5.3, since choosing the best partner

is sufficient in terms of outage performance, a node can have at most one partner at a time

on condition that the node cooperation is meritorious. The aforementioned constraints can
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be formulated as follows:

M∑

m=1

cl
m,n ≤





1, without cooperation

2, with cooperation

, ∀n, l (5.3)

M∑

m=1,m6=u

zmu ≤ 1, ∀u (5.4)

M∑

u=1,u 6=m

zmu ≤ 1, ∀m (5.5)

cl
u,n = cl

m,n, when zmu = 1, ∀m,u, n, l (5.6)

cl
m,n ∈ {0, 1}, ∀m,n, l (5.7)

zmu ∈ {0, 1}, ∀m,u (5.8)

where cl
m,n is an indicator of allocating the nth subcarrier to the mth node on the lth timeslot

and zmu is the indicator of node cooperation offered to the mth node by the uth node. Notice

that, in general, zyx 6= zxy, ∀x, y, as the node cooperation considered in this work is non-

reciprocal (i.e., asymmetric). For the sake of notational convenience, we set zmm = 1,∀m.

Provided that node cooperation is in place, the transmit power of a node is split into two

segments, one dedicated to its direct transmissions and the other to the assisted transmissions

for its partner:

M∑

m=1

zmuamu = 1, ∀u (5.9)

0 ≤ amu ≤ 1, ∀m,u (5.10)

where amu is the normalized portion of the total transmit power of the uth node for assisting

the mth node’s transmissions. Let M1 and M2 be the set of RG nodes and that of BE nodes,

respectively, i.e., M = |M1|+ |M2|. In our problem formulation, we take the minimum rate

requirements of the RG nodes in the current frame, if any, into account:

Rm (c,p,a, z) ≥ Rd
m, ∀m (5.11)
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where Rd
m is the (instantaneous) transmission rate demand of the mth node in the current

frame (i.e., Rd
m > 0, ∀m ∈M1 and Rd

m = 0, ∀m ∈M2) and Rm (c,p,a, z) is the achievable data

rate of the mth node over a frame, which can be computed by [64]

Rm (c,p,a, z) =
N∑

n=1

L∑

l=1

1
2
cl
m,n log2




(
1 + ammgl

mm,npl
m,n

)2
+

M∑

u=1,u 6=m

zmuamugl
mu,npl

u,n


 .

(5.12)

In (5.12), c =
[
cl
m,n

]
M×N×L

, p =
[
pl

m,n

]
M×N×L

, a = [amu]M×M , z = [zmu]M×M , and gl
mu,n =

ϕGl
mu,n/σ2

n, where ϕ is a BER measure, Gl
mu,n the channel gain from the uth node to the

receiver of the mth node’s transmissions over the nth subcarrier on the lth timeslot, and σ2
n

the aggregate noise-plus-cochannel interference power on the nth subcarrier. Notice that

constraint (5.6) is implicitly incorporated in (5.12). With the aforesaid system constraints,

different objective functions can be considered. Here, we employ the well-known utility

maximization framework to abstract our objective function. Let Um(Rm (c,p,a, z) |Θ) denote

the utility function of the mth node and Θ ∈ {1, 2} the utility selector. The objective function

is given by

M∑

m=1

Um(Rm (c,p,a, z))|Θ) =





∑M
m=1 Rm (c,p,a, z) , when Θ = 1

∑M
m=1−

[
− ln

(
Rm(c,p,a,z)

A

)]κ
, when Θ = 2

(5.13)

where A is a sufficiently large constant such that 0 < Rm/A < 1,∀m [59]. Thus, the objective

function is to maximize the system throughput when Θ = 1, to achieve proportional fairness

when Θ = 2 and κ = 1, and to achieve max-min fairness when Θ = 2 and κ →∞, respectively.

It can be shown that the utility function of a mesh node is an increasing function of its

achievable data rate.

Lemma 1 The utility function of the mth node is an increasing function of its achievable

data rate.
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In practice, the choice of Θ is contingent on the purpose of the networking application and/or

the prerogative of a system designer. In light of the fact that traffic demands vary over time,

we need to update our resource allocation solution from time to time. As such, we consider

that the node cooperation between a source node and its partner is committed merely for

an active resource allocation interval.

Problem Formulation: Consider the following non-altruistic node cooperative resource

allocation optimization problem (NCRAOP)

max
c,p,a,z

{
M∑

m=1

Um (Rm (c,p,a, z) |Θ)

}
(5.14)

subject to Rm (c,p,a, z) ≥ Rd
m, ∀m (5.15)

N∑

n=1

pl
m,n ≤ Pmax

m ,∀m,l (5.16)

M∑

m=1

cl
m,n ≤ 1, ∀n,l (5.17)

M∑

m=1,m6=u

zmu ≤ 1, ∀u (5.18)

M∑

u=1,u6=m

zmu ≤ 1,∀m (5.19)

M∑

m=1

zmuamu = 1, ∀u (5.20)

pl
m,n ≥ 0, ∀m,n,l (5.21)

amu ≥ 0, ∀m,u (5.22)

cl
m,n ∈ {0, 1},∀m,n,l (5.23)

zmu ∈ {0, 1}, ∀m,u (5.24)

zmm = 1, ∀m, (5.25)

where c,p,a, and z are the optimization variables. By reducing the well-known NP-complete

number partitioning problem to the NCRAOP, it can be proved that the NCRAOP is an
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NP-hard problem.

Proposition 5 The NCRAOP is an NP-hard problem.

5.5 Proposed Resource Allocation Approaches with Node

Cooperation

5.5.1 KKT Interpretations

In general, solving the NP-hard NCRAOP requires exponential time complexity [9]. To

design an efficient and effective resource allocation approach to solve the NCRAOP, we first

investigate the relationships among different optimization variables by means of the KKT

interpretations [9]. Relaxing the integer constraints (5.23) and (5.24) leads to

cl
m,n ≥ 0, ∀m,n,l (5.26)

and

zmu ≥ 0, ∀m,u (5.27)

respectively. Therefore, the Lagrangian of the NCRAOP is given by

L (c,p,a, z, ξ) = −
M∑

m=1

Um (Rm (c,p,a, z) |Θ) +
M∑

m=1

ξ(1)
m

(
Rd

m −Rm (c,p,a, z)
)

+
M∑

m=1

L∑

l=1

ξ(2)l

m

(
N∑

n=1

pl
m,n − Pmax

m

)
+

N∑

n=1

L∑

l=1

ξ(3)l

n

(
M∑

m=1

cl
m,n − 1

)

+
M∑

u=1

ξ(4)
u




M∑

m=1,m6=u

zmu − 1


 +

M∑

m=1

ξ(5)
m




M∑

u=1,u 6=m

zmu − 1




+
M∑

u=1

ξ(6)
u

(
M∑

m=1

zmuamu − 1

)
−

M∑

m=1

N∑

n=1

L∑

l=1

ξ(7)l

m,npl
m,n −

M∑

m=1

M∑

u=1

ξ(8)
muamu

−
M∑

m=1

N∑

n=1

L∑

l=1

ξ(9)l

m,ncl
m,n −

M∑

m=1

M∑

u=1

ξ(10)
muzmu +

M∑

m=1

ξ(11)
m (zmm − 1) (5.28)
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where ξ(1)
m, ξ(2)l

m, ξ(3)l
n, ξ(4)

u, ξ(5)
m, ξ(6)

u, ξ(7)l
m,n, ξ(8)

mu, ξ(9)l
m,n, ξ(10)

mu, and ξ(11)
m are the

Lagrange multipliers for the constraints (5.15), (5.16), (5.17), (5.18), (5.19), (5.20), (5.21),

(5.22), (5.23), (5.24), and (5.25), respectively. To investigate the (necessary) conditions for

optimality of the solution, given Θ, consider part of the KKT conditions of the relaxed

problem with respect to cl
m,n, zmu, and pl

m,n,

−
(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂cl

m,n

+ ξ(3)l

n = ξ(9)l

m,n, ∀m,n, l (5.29)

−
(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmu

+ ξ(4)
u + ξ(5)

m + ξ(6)
uamu = ξ(10)

mu,∀m,u, n, l (5.30)

−
M∑

u=1

(
U ′

u (Ru(·)|Θ) + ξ(1)
u

) ∂Ru(·)
∂pl

m,n

+ ξ(2)l

m = ξ(7)l

m,n, ∀m,n, l (5.31)

ξ(9)l

m,ncl
m,n = 0, ∀m,n,l (5.32)

ξ(10)
muzmu = 0, ∀m,u (5.33)

ξ(7)l

m,npl
m,n = 0, ∀m,n,l. (5.34)

Proposition 6 (Optimal Power Allocation) Let

f(pl
m,n) = ξ(2)l

m −
M∑

u=1

(
U ′

u (Ru (·) |Θ) + ξ(1)
u

) ∂Ru (·)
∂pl

m,n

,∀m,n,l. (5.35)

The optimal power allocation, denoted by p∗, for the NCRAOP is given by p∗lm,n = max{p̃l
m,n, 0}, ∀m,n,l,

where p̃l
m,n is the solution of the function f(p̃l

m,n) = 0.

Proposition 7 (Subcarrier Allocation Criterion) For the nth subcarrier and the lth

timeslot, the necessary condition for cl
m,n being positive is

m = arg max
m̃

{(
U ′

m̃ (Rm̃ (·) |Θ) + ξ(1)
m̃

) ∂Rm̃ (·)
∂cl

m̃,n

}
. (5.36)

Assuming Rm (c,p,a, z) 6= Rd
m (i.e., ξ(1)

m = 0), the subcarrier allocation criterion can be

further simplified as follows. For the nth subcarrier and the lth timeslot, choose m∗ such that

m∗ = arg max
m

{
U ′

m (Rm (·) |Θ)
∂Rm (·)
∂cl

m,n

}
(5.37)

and set cl
m∗,n = 1.
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Proposition 8 (Partner Selection Criterion) The necessary condition for zmu being

positive is

u = arg max
ũ 6=m

{
1

amũ

((
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmũ

− ξ(4)
ũ − ξ(5)

m

)}
. (5.38)

Assuming Rm (c,p,a, z) 6= Rd
m (i.e., ξ(1)

m = 0), and ignoring the constraints (5.18) and

(5.19) (i.e., ξ(4)
u = ξ(5)

m = 0), the partner selection criterion can be deduced as follows. For

the mth node, choose u∗ such that

u∗ = arg max
u6=m

{
U ′

m (Rm (·) |Θ)
amu

∂Rm (·)
∂zmu

}
(5.39)

and set zmu∗ = 1.

Corollary 2 (Partner Allocation Criterion) The necessary condition for zmu being

positive is

m = arg max
m̃6=u

{
1

am̃u

((
U ′

m̃ (Rm̃ (·) |Θ) + ξ(1)
m̃

) ∂Rm̃ (·)
∂zm̃u

− ξ(4)
u − ξ(5)

m̃

)}
. (5.40)

Assuming Rm (c,p,a, z) 6= Rd
m (i.e., ξ(1)

m = 0), and ignoring the constraints (5.18) and

(5.19) (i.e., ξ(4)
u = ξ(5)

m = 0), the partner allocation criterion can be deduced as follows. For

the uth node, choose m∗ such that

m∗ = arg max
m6=u

{
U ′

m (Rm (·) |Θ)
amu

∂Rm (·)
∂zmu

}
(5.41)

and set zm∗u = 1.

Notice that, in general, the results obtained from the partner selection criterion and that

from the partner allocation criterion are not equal. The partner selection criterion refers to

choosing the best relay for a particular source node, whereas the partner allocation criterion

refers to allocating a relay node to the best source node. In a nutshell, the partner selection

criterion is to maximize the node-wise utility (i.e., Um(Rm(·))), while the partner allocation

criterion is to maximize the network-wise utility (i.e.,
∑

m Um(Rm(·))).
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Proposition 9 (Power Allocation Criterion for Assisted Transmissions) For the

uth node, the sufficient condition for amu being positive is auj > 0 (and zuj = 1), ∃m, j.

Although a transmit power level for an advantageous cooperative transmission can be

deduced by Proposition 9, in the case of non-altruistic node cooperation, with centralized

control, the portion of transmit power used for assisted transmissions is usually governed by

the system designer for the sake of network-wise system performance.

5.5.2 Examples

To better understand the conceptual implications of our subcarrier allocation criterion and

partner selection criterion, we consider three different objective functions, namely 1) system

throughput maximization (i.e., Θ = 1), 2) proportional fairness (i.e., Θ = 2 and κ = 1), and

3) max-min fairness (i.e., Θ = 2 and κ →∞).

System Throughput Maximization (i.e., Θ = 1)

Um (Rm (·) |Θ) = Rm (·) and hence U ′
m (Rm (·) |Θ) = 1; therefore, the subcarrier allocation

criterion given in (5.37) and the partner selection criterion given in (5.39) become

m∗ = arg max
m

{
∂Rm (·)
∂cl

m,n

}
(5.42)

= arg max
m



log2




(
1 + ammgl

mm,npl
m,n

)2
+

M∑

u=1,u6=m

zmuamugl
mu,npl

u,n






 (5.43)

and

u∗ = arg max
u6=m

{
1

amu

∂Rm (·)
∂zmu

}
(5.44)

= arg max
u6=m

{
N∑

n=1

L∑

l=1

cl
m,ngl

mu,npl
u,n(

1 + ammgl
mm,npl

m,n

)2 +
∑

u6=m zmuamugl
mu,npl

u,n

}
(5.45)
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respectively. Thus, given the power allocation (i.e., a,p) and partner selection (i.e., z), the

condition (5.43) implies that the larger throughput the mth node can contribute over the nth

subcarrier on the lth timeslot, the better the nth subcarrier on the lth timeslot is assigned

to the mth node (i.e., cl
m,n = 1, ∃m,n,l). Likewise, given the power allocation and subcarrier

allocation (i.e., c,p,a), the condition (5.45) indicates that we should choose a partner who can

contribute the largest marginal increase in the achievable data rate. Therefore, both criteria

agree with respect to the notion of throughput maximization. Notice that, in the case of

non-cooperation (i.e., zmu = 0), the condition (5.43) reduces to the well-known subcarrier

allocation criterion for a throughput maximization problem (e.g., [21]).

Proportional Fairness (i.e., Θ = 2 and κ = 1)

Um (Rm (·) |Θ) = ln
(

Rm(·)
A

)
and hence U ′

m (Rm (·) |Θ) = 1/Rm (·); therefore, the conditions

(5.37) and (5.39) become

m∗ = arg max
m

{
1

Rm (·)
∂Rm (·)
∂cl

m,n

}
(5.46)

= arg max
m





1
Rm (·) log2




(
1 + ammgl

mm,npl
m,n

)2
+

M∑

u=1,u6=m

zmuamugl
mu,npl

u,n






 (5.47)

and

u∗ = arg max
u6=m

{
1

amuRm (·)
∂Rm (·)
∂zmu

}
(5.48)

= arg max
u6=m

{
1

Rm (·)
N∑

n=1

L∑

l=1

cl
m,ngl

mu,npl
u,n(

1 + ammgl
mm,npl

m,n

)2 +
∑

u6=m zmuamugl
mu,npl

u,n

}
, (5.49)

respectively. As seen, it is more likely for a mesh node to get an extra subcarrier and/or a

partner if its data rate obtained is small (i.e., small Rm(·)), whereas it is less likely to assign

an extra subcarrier or a partner to a node whose data rate obtained is already very high

(i.e., large Rm(·)). Thus, both criteria match with the notion of proportional fairness.
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Max-min Fairness (i.e., Θ = 2 and κ →∞)

Um (Rm (·) |Θ) = −
[
− ln

(
Rm(c,p,a,z)

A

)]κ
, and hence U ′

m (Rm (·) |Θ) = κ [− ln (Rm(·)/A)]κ−1 /Rm(·).
Since 0 < Rm(·)/A < 1, [− ln (Rm(·)/A)]κ−1 becomes a dominant term as κ → ∞. Hence, the

conditions (5.37) and (5.39) become

m∗ = arg min
m

Rm(·) (5.50)

and

u∗ = arg min
u6=m

Rm(·) (5.51)

respectively. From (5.50) and (5.51), we tend to assign subcarriers and partners to the nodes

which have minimal achievable data rates, realizing the notion of max-min fairness.

In the following subsections, we propose a centralized resource allocation approach and a

distributed resource allocation approach to solve the NCRAOP in Section 5.5.3 and Section

5.5.4, respectively.

5.5.3 Proposed Approach with Centralized Control

In order to obtain the global optimal solutions to the NCRAOP, subcarrier allocation, partner

selection/allocation, and power allocation should be jointly considered, which brings about

very high computational cost. To devise an efficient yet effective node cooperative resource

allocation strategy with centralized control, we propose a four-phase resource allocation

approach with QoS assurance and service differentiation: In Phase 1, we fix the power

allocation and then solve the NCRAOP without considering node cooperation; In Phase 2,

we perform water filling for power allocation to improve the system performance; In Phase 3,

we allow node cooperation, if feasible and favorable, so as to add an additional performance

gain to the system; In Phase 4, we perform water filling for power allocation again providing
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the solutions of subcarrier allocation and partner allocation, thereby further improving the

system performance. Note that, in this centralized approach, we consider that there is a

clusterhead which collects the traffic demands from its clustermembers and executes our

proposed centralized resource allocation.

Phase-1

With uniform power allocation and no node cooperation (i.e., zmu = 0 and amu = 0, ∀m 6= u),

the NCRAOP can be reduced to the following resource allocation optimization problem

max
c

{
M∑

m=1

Um (Rm (c) |Θ)

}
(5.52)

subject to Rm (c) ≥ Rd
m, ∀m (5.53)

M∑

m=1

cl
m,n ≤ 1, ∀n,l (5.54)

cl
m,n ∈ {0, 1},∀m,n,l (5.55)

and the subcarrier allocation criterion given in (5.36) is as follows. For the nth subcarrier and

the lth timeslot, choose m∗ such that m∗ = arg maxm

{(
U ′

m (Rm (c) |Θ) + ξ(1)
m

)
log2

(
1 + gl

mm,npl
m,n

)}
.

The variable ξ(1)
m is updated iteratively by ξ(1)

m = max
{

0, ξ(1)
m − s

(k)
m dm

}
, with s

(k)
m being

the step size at the kth iteration for the mth node and dm = Rm(c)−Rd
m. With CAC in place,

the approach terminates when all the subcarriers are allocated and all the rate requirements

are met (i.e., ξ(1)
m = 0,∀m), and the subcarrier allocation solution c∗ is obtained such that

∑M
m=1 c∗lm,n = 1, ∀n, l.

Phase-2

It is well known that, for fixed subcarrier allocation, system performance can be improved

by optimal power allocation, which can be carried out by means of utility-based water-

filling [101]. With the subcarrier allocation obtained in Phase 1, the NCRAOP without
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considering node cooperation becomes

max
p

{
M∑

m=1

Um (Rm (p) |Θ)

}
(5.56)

subject to Rm (p) ≥ Rd
m, ∀m (5.57)

N∑

n=1

pl
m,n ≤ Pmax

m , ∀m,l (5.58)

pl
m,n ≥ 0, ∀m,n,l. (5.59)

Proposition 10 With the subcarrier allocation solution, denoted by c̃, the optimal power

allocation solution, denoted by p∗, for the optimization problem given in (5.56)-(5.59) is

given

p∗lm,n = c̃l
m,n

[
U ′

m(Rm(p)|Θ) + ξ(1)
m

ξ(2)l
m

− 1
gl
mm,n

]+

,∀m,n,l (5.60)

where [x]+ = max{0, x}.

Let Rm(p̂) and Rm(p∗) be the achievable data rate obtained of the mth node with uniform

power allocation (i.e., p̂) and that with optimal power allocation (i.e., p∗), respectively. Since

Rm(p∗) ≥ Rm(p̂) [101], the QoS demands of the mesh nodes can still be met after transmit

power is allocated according to water filling. In a nutshell, Phase-2 resource allocation further

improves the Phase-1 resource allocation solutions by employing optimal power allocation,

conducing to improved system performance.

Phase-3

In this phase, we investigate the performance gain due to feasible and favorable node cooper-

ation. Notice that partner allocation is feasible in our centralized approach, for a clusterhead

can have complete knowledge on which mesh nodes can be the potential partners for a par-

ticular mesh node. On the contrary, applying the notion of partner selection to the WMNs
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with distributed control is more pragmatic because of the characteristics of asymmetric

non-altruistic node cooperation, to be discussed in Section 5.5.4. Nevertheless, with the sub-

carrier allocation solution obtained in Phase 1 and the power allocation solution obtained in

Phase 2, the NCRAOP becomes

max
a,z

{
M∑

m=1

Um (Rm (a, z) |Θ)

}
(5.61)

subject to Rm (a, z) ≥ Rd
m, ∀m (5.62)

M∑

m=1,m6=u

zmu ≤ 1, ∀u (5.63)

M∑

u=1,u6=m

zmu ≤ 1,∀m (5.64)

M∑

m=1

zmuamu = 1, ∀u (5.65)

amu ≥ 0,∀m,u (5.66)

zmu ∈ {0, 1}, ∀m,u (5.67)

zmm = 1, ∀m. (5.68)

Denote ρ (≥ 0) as a tunable system parameter to balance node cooperation and node non-

cooperation, i.e., amu = ρauu,∃m 6= u. In fact, ρ indicates the willingness of a node to assist

another mesh node’s transmissions, i.e., the smaller the value of ρ, the less eager is a node to

assist the mth node for some m. For some u, if
∑

m6=u zmu = 1, then amu = ρauu(> 0), ∃m 6= u;

otherwise, auu = 1 and amu = 0,∀m 6= u. On the other hand, in the case of non-altruistic node

cooperation, it is conceivable that the value of ρ should be upper bounded (e.g., ρ ≤ 0.5), as

all the mesh nodes have their own data to transmit. Suppose the uth node is to assist the mth

node, i.e., zmu = 1. Then, the transmit power of the uth node left for cooperation, denoted by

P left
u , is given by P left

u = Pmax
u − auu

∑N
n=1 pl

u,n, where pl
u,n is obtained from Phase-2. Let N l

m

be the set of subcarriers allocated to the mth node on the lth timeslot. If the transmit power

of the uth node dedicated to node cooperation is uniformly distributed over the subcarriers
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allocated to the mth node on the lth timeslot, then p̂l
u,n = Pmax

u /
∑

n∈N l
m

cl
m,n. Thus, the

portion of the transmit power of the uth node in assisting the mth node’s transmissions is

amu
∑

n∈N l
m

p̂l
u,n.

In the presence of different traffic classes, service differentiation is indispensable for ef-

fective QoS provisioning, where RG nodes are assigned higher priority over BE nodes. As

a consequence, node cooperation should also be prioritized. In particular, we consider that

only RG nodes can receive assistance from either BE nodes or other RG nodes. Here, we

further divide our Phase-3 resource allocation into two steps, namely 1) BE-assisting-RG

and 2) RG-assisting-RG.

Step 1: In the case of BE-assisting-RG, allow BE nodes to assist RG nodes whenever

favorable. Let A =
{

m | m ∈M1,
∑

j 6=m zmj = 0
}

and B =
{

u | u ∈M2,
∑

i6=u ziu = 0
}
.

Set A consists of the RG nodes which do not receive any assistance from any other

nodes, whereas set B consists of the BE nodes which do not offer any assistance to any

nodes. The partner allocation criterion is as follows. For the uth node, u ∈ B, choose

m∗ such that m∗ = arg maxm∈A
{

U ′m(Rm(a,z)|Θ)
amu

∂Rm(a,z)
∂zmu

}
. Then, check if this partner

allocation process can help enhance the total utilities. Let Rm(a, z) and Rm(ã, z̃) be

the achievable data rate obtained of the mth node without node cooperation and that

with node cooperation, respectively. We have

Rm∗(a, z) =
N∑

n=1

L∑

l=1

cl
m∗,n log2

(
1 + gl

m∗m∗,npl
m∗,n

)
(5.69)

Rm∗(ã, z̃) =
N∑

n=1

L∑

l=1

1
2
cl
m∗,n log2

((
1 + gl

m∗m∗,npl
m∗,n

)2
+ am∗ugl

m∗u,np̂l
u,n

)
> Rm∗(a, z)

(5.70)

Ru(a, z) =
N∑

n=1

L∑

l=1

cl
u,n log2

(
1 + gl

uu,npl
u,n

)
(5.71)

Ru(ã, z̃) =
N∑

n=1

L∑

l=1

cl
u,n log2

(
1 + auugl

uu,npl
u,n

)
< Ru(a, z). (5.72)
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Since Rd
u = 0, ∀u ∈M2, the solutions obtained by considering node cooperation are

also feasible to the NCRAOP. Set zm∗u = 1 and remove the m∗th node from A (i.e.,

A ← A− {m∗}) if the following condition is valid:

Um∗ (Rm∗(ã, z̃)|Θ) + Uu (Ru(ã, z̃)|Θ) > Um∗ (Rm∗(a, z)|Θ) + Uu (Ru(a, z)|Θ) . (5.73)

If (5.73) is satisfied, it means that assigning the uth node to the m∗th node as its

partner can increase the total utilities, thereby improving the network-wise system

performance. The uth node is removed from B (i.e., B ← B − {u}), and the process

repeats until A = {φ} or B = {φ}.

Step 2: In the case of RG-assisting-RG, allow an RG node to assist other RG nodes

whenever favorable. Partner allocation in this step becomes convoluted, for an RG

node decreases its achievable data rate and plausibly voids its own rate constraint

(given in (5.11)) when assisting other nodes. Let C =
{

m | m ∈M1,
∑

j 6=m zmj = 0
}

and D =
{

j | j ∈M1,
∑

i6=j zij = 0
}
. Set C consists of the RG nodes which do not re-

ceive any assistance from any other nodes, whereas set D consists of the RG nodes

which do not offer any assistance to any RG nodes. For j ∈ D, choose m∗ such that

m∗ = arg maxm∈C\{j}
{

U ′m(Rm(a,z)|Θ)
amj

∂Rm(a,z)
∂zmj

}
. Then, check if the new resource allocation

solutions are still feasible for the NCRAOP and can increase the total utilities. Let

(a, z) and (ã, z̃) denote the current node cooperative resource allocation solution and

the new node cooperative resource allocation solution, respectively. We have

Rm∗(a, z) =
N∑

n=1

L∑

l=1

cl
m∗,n log2

(
1 + am∗m∗gl

m∗m∗,npl
m∗,n

)
(5.74)

Rm∗(ã, z̃) =
N∑

n=1

L∑

l=1

1
2
cl
m∗,n log2

((
1 + am∗m∗gl

m∗m∗,npl
m∗,n

)2
+ am∗jg

l
m∗j,np̂l

j,n

)
> Rm∗(a, z)

(5.75)
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Rj(a, z) =
N∑

n=1

L∑

l=1

1
2
cl
j,n log2




(
1 + gl

jj,npl
j,n

)2
+

∑

i6=j

zjiajig
l
ji,np̂l

i,n


 (5.76)

Rj(ã, z̃) =
N∑

n=1

L∑

l=1

1
2
cl
j,n log2




(
1 + ajjg

l
jj,npl

j,n

)2
+

∑

i6=j

zjiajig
l
ji,np̂l

i,n


 < Rj(a, z). (5.77)

Set zm∗j = 1 and remove the m∗th node from C (i.e., C ← C −{m∗}) if the following two

conditions are valid:

Um∗ (Rm∗(ã, z̃)|Θ) + Uj (Rj(ã, z̃)|Θ) > Um∗ (Rm∗(a, z)|Θ) + Uj (Rj(a, z)|Θ) (5.78)

Rj(ã, z̃) ≥ Rd
j . (5.79)

Since Rd
j > 0, ∀j ∈M1, we have to ensure that the rate constraints for all the RG

nodes are not violated due to the aforesaid partner allocation (i.e., condition (5.79)).

Condition (5.78) refers to the case where allocating the jth node as a partner to the m∗th

node can increase the total utilities. The jth node is removed from D (i.e., D ← D−{j}),
and the process repeats until C = {φ} or D = {φ}.

With effective node cooperation, Phase-3 resource allocation improves the Phase-2 re-

source allocation solutions, thereby giving rise to higher total utilities.

Phase-4

The introduction of partner allocation (i.e., (a, z)) in Phase 3 changes the achievable rate

function. Thus, the power allocation solution obtained in Phase 2 is no longer optimal. With

the known solutions for subcarrier allocation and partner allocation, we carry out water filling

for power allocation again so as to further improve the system performance. Suppose the

uth node is to assist the mth node, i.e., zmu = 1. For the sake of optimality, water filling for

the uth node should be performed over both N l
u and N l

m; however, procuring the optimal

power allocation solutions requires a considerable number of recursive computations. Here,
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to balance the computational complexity and the system performance, we make use of water

filling for power allocation for the mth node over N l
m only, ∀m, l.

Lemma 2 With the subcarrier allocation solution and the partner allocation solution, de-

noted by c̃ and (ã, z̃), respectively, the power allocation solution obtained from water filling,

denoted by p∗, is given by

p∗lm,n = c̃l
m,n



−

(
2ξ(2)l

m −Υãl
mmgl

mm,n

)
+

√
Υ2(ãl

mm)2(gl
mm,n)2 − 4(ξ(2)l

m)2Γm

2ξ(2)l
mãl

mmgl
mm,n




+

, ∀m,n, l

(5.80)

where Υ = U ′
m(Rm(p)|Θ) + ξ(1)

m and Γm =
∑

u6=m z̃muãmugl
mu,np̂l

u,n.

With the aforementioned optimal power allocation, Phase-4 resource allocation further

enhances the Phase-3 resource allocation solution, leading to higher total utilities.

The flowchart of our proposed centralized approach is depicted in Figure 5.3.

5.5.4 Proposed Approach with Distributed Control

When clusterheads are not available, distributed node cooperative resource allocation is

essential. We consider that each mesh node can communicate with all other mesh nodes

in the same cluster. Here, we propose a two-phase distributed node cooperative resource

allocation approach with QoS support and service differentiation. We consider that an active

resource allocation interval consists of two phases, namely contention phase and transmission

phase. In the contention phase, the approach of Black-Burst jamming can be used for

subcarrier contention [18]. In the transmission phase, mesh nodes transmit their data with

the consideration of node cooperation, if feasible and favorable.
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Figure 5.3: Flowchart of the proposed four-phase centralized node cooperative resource

allocation approach.
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Contention Phase

A contention phase consists of a number of contention periods. For each contention period,

the Black-Burst (BB) methodology is used for the subcarrier contention to achieve service

differentiation [18]. Let E =
{
m | m ∈M1, Rm(·) < Rd

m

}
and F =

{
m | m ∈M1, Rm(·) ≥ Rd

m

}

⋃ {m | m ∈M2}. Set E consists of the RG nodes whose QoS demands are not satisfied,

whereas set F consists of both the BE nodes and the RG nodes whose QoS demands are

met. Each contention period is further divided into two mini-periods, where the first mini-

period is dedicated to the contention among the nodes in E, while the second mini-period is

dedicated to the contention among the nodes in F . Figure 5.4(a) depicts the dynamics of a

contention phase.

At the beginning of each contention period, every node is in a listening mode and waits

for a period of time before transmitting its BB signal. In the first mini-period, the waiting

time of an RG node in E is inversely proportional to its minimum required rate. Therefore,

the node with the highest minimum required rate sends its BB signal earlier than the other

RG nodes in E so as to win the contention. Other nodes which detect the BB signal remain

in the listening mode. An RG node becomes a winner for this contention if it senses an idle

channel after transmitting a BB signal. To ensure that each contention period results in only

one winner, we assume that the length of a BB signal sent from a node is proportional to

its network ID (e.g., MAC address). The winner of this contention period then selects the

best subcarriers according to the subcarrier allocation criterion given in (5.36) so as to meet

its QoS demand. Notice that uniform power allocation is employed when the subcarriers are

selected. After the subcarrier selection is finished, the winner transmits a BB signal over the

allocated subcarriers so that the other nodes in a listening mode can detect and record which

subcarriers have been chosen. Then, all the other RG nodes wait for the next contention

and this process repeats until all the RG nodes in E have selected their subcarriers. Since

we assume that CAC is in place, all the QoS requirements of the RG nodes in E can be met
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Figure 5.4: The phase structures of the proposed two-phase distributed node cooperative

resource allocation approach.
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at the end of this phase.

Subcarrier contention among the nodes in F (i.e., satisfied RG nodes and BE nodes)

occurs only if there is some unallocated subcarrier(s). If there is no BB detected in the first

mini-period, meaning that the subcarrier contention among the RG nodes in E is complete,

every node in F waits for a period of time in the second mini-period before sending out its

BB signal, where the waiting time is inversely proportional to its marginal utility increase

when choosing the best available subcarrier (i.e., ∂Um(Rm(·))
∂cl

m,n
). Thus, the larger the marginal

utility increases, the more likely that the node will be the winner. The winner then selects

the best subcarrier according to the subcarrier allocation criterion given in (5.36). The

process repeats until all the subcarriers are used. In fact, this contention phase can be

further optimized. For instance, unnecessary first mini-periods should be eliminated after

the contention among the unsatisfied RG nodes is finished; addressing this issue, however,

is beyond the scope of this research work. Similar to the centralized resource allocation

approach, after the subcarrier allocation is determined, each mesh node performs water

filling for power allocation independently to further increase both its utility and the system

performance.

Transmission Phase

A transmission phase consists of a number of frames, where each frame consists of L DATA

slots. Each DATA slot is further divided into two (identical) minislots. Figure 5.4(b) depicts

the frame structure used for a transmission phase. Figure 5.5 illustrates a typical (non-

altruistic) node cooperation scenario in the transmission phase. In Figure 5.5(a), the mth

node is transmitting data to its destination node (i.e., the dth node) in the first minislot.

The mth node’s transmission can be overheard by the uth node in the first minislot if the

uth node is in the listening mode. The uth node then checks if it can decode the mth node’s

transmissions successfully. If the uth node fails to decode the mth node’s transmissions, the
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uth node will not help relay the mth node’s data (see Figure 5.5(b)). On the other hand, if

the uth node can decode the mth node’s transmissions reliably, the uth node then becomes

the partner of the mth node if condition (5.73) is valid with the uth node being a BE node

or conditions (5.78) and (5.79) are valid with the uth node being an RG node (see Figure

5.5(c)). As a matter of fact, the mth node can have more than one partner at a time (e.g.,

the ith node and uth node in Figure 5.5(c)). In the presence of multiple potential partners,

we employ the partner selection scheme proposed in [96] to choose the best partner for the

mth node with respect to our partner selection criterion given in (5.38). We also assume that

a signal capture mechanism is in place so that a potential partner can only overhear the

strongest neighboring node’s transmission [113]. This node cooperation between a source

node and its partner sustains until the next active interval.

The flowchart of our proposed distributed approach is depicted in Figure 5.6.

5.5.5 Complexity Analysis

Here, we analyze the time complexities of our proposed node cooperative resource allocation

approaches. For the proposed centralized approach, the complexities of the Phase-1 resource

allocation, the Phase-2 resource allocation, the Phase-3 resource allocation, and the Phase-4

resource allocation are on the order of O(b′MNL), O(M maxm{|N l
m|}L), O(|M1||M2|+ |M1|2),

and O(M maxm{|N l
m|}L), respectively, where b′ is a constant. As a consequence, the time

complexity of the proposed four-phase centralized approach is O(bMNL + |M1|M), where

b is a constant. For the proposed two-phase distributed approach, since each mesh node

behaves independently, the complexity of resource allocation in the contention phase and

that of the transmission phase are on the order of O(kNL) and O(M), respectively, where

k is a constant. Thus, the time complexity of the proposed two-phase distributed approach

is O(kNL + M). With the help of effective data structure, (e.g., binary tree implementa-

tion [112]), the time complexities of our centralize approach and our distributed approach
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can be reduced to the order of O(bML log2 N + |M1|M) and O(kL log2 N + M), respectively.

It is noteworthy that the difference in time complexity between the two approaches stems

from different modes of network operation (i.e., centralized control or distributed control)

and different methodologies of resource allocation (i.e., partner allocation or partner selec-

tion). Consider a well-known Hungarian approach. Our subcarrier allocation problem can

be viewed as a transportation problem [9]. By using the Hungarian approach, the complexity

of subcarrier allocation is on the order of O(MN2L2). By the same token, the complexity of

partner allocation is on the order of O(|M1|M2). Therefore, the time complexity of a Hun-

garian approach is O(|M1|M2 +MN2L2). Despite a plausibly improved system performance,

applying a Hungarian approach can be inefficient in the WMNs without powerful centralized

controllers. In contrast, our proposed approaches are of low complexity and more suitable

for the WMNs with affordable off-the-shelf mesh nodes.

5.6 Efficiency Evaluation by Game Theory

In this section, we show that the partner allocation/selection solutions in our proposed node

cooperative resource allocation approaches achieve efficient use of network resources. In

game theory, efficient resource utilization is determined by the concept of Pareto optimality

[88]. Modeled by a round-robin game, the partner selection/allocation solutions attain Nash

equilibria (NE) [88].

5.6.1 Nash Equilibrium

Proposition 11 Modeled by a round-robin game played by the RG nodes with fixed subcar-

rier allocation and power allocation, the proposed partner selection solution in the distributed

resource allocation achieves an NE.

120



Proposition 12 Modeled by a round-robin game played by the potential partners with fixed

subcarrier allocation and power allocation, the partner allocation solution from the proposed

centralized approach achieves an NE.

An NE in the WMNs with distributed control is vital in providing network stability.

Signalling among nodes can be kept to a minimum, for there is no further message exchange

after resource allocation is completed. It is noteworthy that, in the centralized approach,

if the round-robin game is played by the source nodes instead of the potential partners, in

general, an NE cannot be achieved. The rationale is that partners are allocated rather than

selected in the centralized approach. Some RG node might have the tendency to change

its partner allocation solution so as to increase its achieved data rate and hence its own

utility. All in all, with centralized control, the round-robin game can be administered by a

clusterhead and hence played by the potential partners, whereby an NE can be attained.

5.6.2 Pareto Optimality

Proposition 13 With fixed subcarrier allocation and power allocation, the partner selection

solution from the proposed distributed approach is Pareto optimal.

Proposition 14 With fixed subcarrier allocation and power allocation, the partner allocation

solution from the proposed centralized resource allocation is Pareto optimal.

By Propositions 13 and 14, the partner allocation/selection solutions obtained from the

proposed approaches achieve the Pareto optimality, and hence the resources are efficiently

utilized.
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5.7 Discussion

Via the virtue of node cooperation, system performance can be enhanced. Nevertheless, ap-

plying the proposed QoS-driven node cooperative resource allocation approaches will plausi-

bly lead to a conservative CAC mechanism. Since the performance gain due to node cooper-

ation is not taken into account in the Phase-1 resource allocation in the centralized approach

or the contention phase in the distributed approach, the CAC capacity region of our system

is smaller than anticipated (i.e., the number of RG traffic flows that can be admitted in the

system is smaller than it should be). However, as discussed in Section 5.3, non-altruistic

node cooperation is not always beneficial to the system because the rate achieved by node

cooperative communications can be smaller than direct transmissions or mesh nodes can be

unavailable at times. Despite the shrinkage of the CAC capacity region, without knowing

whether or not node cooperation is helpful a priori, a conservative approach is a safe yet ef-

fective way to guarantee the QoS demands of the admitted traffic flows. Thus, the proposed

resource allocation approaches with node cooperation can be viable candidates to be applied

to QoS-aware WMNs with service differentiation.

It is worth mentioning that we perform optimal power allocation via water-filling on the

allocated subcarriers for each node twice in the centralized approach (i.e., in Phase 2 and in

Phase 4). In light of decoupling the NCRAOP, the Phase-2 resource allocation solutions have

a direct impact on the feasible region of the Phase-3 resource allocation problem. Therefore,

the rationale of performing optimal power allocation in Phase 2 is to procure the best possi-

ble feasible region for the partner allocation problem in Phase 3. Providing the solutions for

subcarrier allocation and partner allocation, we perform the second optimal power allocation

in Phase 4 to further optimize the system performance. Notice that optimal power allocation

is not necessary in the case where the transmit power of a mesh node is very large, as the

channel variations across the (allocated) subcarriers become insignificant. In other words,

the transmit power on each allocated subcarrier is more or less tantamount to the water level
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of interest. For the WMNs consisting of mesh nodes with very large transmit power, the

proposed QoS-driven centralized resource allocation approach with node cooperation can be

reduced to Phase 1 and Phase 3 only. Nevertheless, the proposed four-phase centralized re-

source allocation approach is imperative for our system model where mesh nodes only have

limited transmit power. On a different note, our proposed centralized approach allocates

subcarriers, transmit power, and partners in succession, leading to a compromised system

performance. In order to achieve (near-)optimal solutions, some common approaches such

as exhaustive search and GAs are usually required. In spite of jointly considering all the

resources simultaneously, these approaches do not scale well due to their high computational

costs (see Chapter 4). Besides, performing online computations in a timely fashion is hardly

feasible even in small-scale WMNs without any powerful central controller. Therefore, ap-

plying such computationally expensive approaches directly to our specific system model can

be ineffective in enhancing system performance or providing QoS assurance. On the other

hand, our proposed centralized approach is of low complexity and a good fit for our system

model under consideration in this research.

Concerning our proposed distributed node cooperative resource allocation approach, po-

tential partners engage in node cooperation independently so long as they can further improve

the system performance. In essence, a mesh node has no a priori knowledge of whether and

when a potential partner will help relay its information. As a result, as opposed to the

partner allocation, applying the notion of partner selection is more suitable to the WMNs

with distributed control at the cost of performance degradation. In addition, since the node

cooperation of interest is not symmetric, we refer to this type of node cooperation as relay-

initiated node cooperation. With no central controller, the underlying assumption for our

relay-initiated node cooperation is that every mesh node is cooperative rather than selfish.

Even though the partner selection solutions obtained from our proposed distributed approach

achieve an NE (see Proposition 11), selfish nodes might not participate in node cooperative
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transmissions in practice, thereby capping the system performance. Therefore, without any

proper coordination, the merit of node cooperation cannot be exploited. Devising an effec-

tive and efficient MAC mechanism with incentives and/or rebates for WMNs with selfish

nodes is vital; however, addressing this issue is beyond the scope of this research.

To cope with varying traffic load demands in the WMNs, we not only need to update

the resource allocation solutions from time to time, but we also need to adjust the number

of admitted traffic flows governed by CAC at times. In our specific system model, we

can envision that executing a CAC policy a couple of times a day would be sufficient.

For example, in typical suburban/rural residential areas, traffic patterns are expected to

be altered in the morning when people get to work, in the evening when people surf the

Internet and watch online streaming videos, and in the midnight when people run peer-

to-peer file sharing applications before going to bed [3,10,45]. In order for the WMNs to

function efficiently, our proposed node cooperative resource allocation needs to be adaptive,

catering to the variations of traffic loads. The impact of poor traffic estimates on the system

performance is to be evaluated in Section 5.8.

5.8 Performance Evaluation

5.8.1 Simulation Environment

Consider a cluster with a number of wireless mesh nodes randomly located in a 1km x 1km

coverage area. We adopt the path-loss model suggested in [44] (i.e., hilly/moderate-to-heavy

tree density). Consider an OFDM-based wireless environment with N available subcarriers.

The maximum transmission rate over each subcarrier is considered to be 200kb/s. We assume

that the routing is predetermined so that the transmission source and destination pair of an

incoming packet is known in advance. Other simulation parameters are chosen as follows:
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Pmax
m = 1W, σ2

n = 10−10W, N = 100, L = 4, ρ = 1/3, ϕ = 1, and Θ = 1. Since our resource

allocation solutions sustain for an active resource allocation interval, the duration of the first

frame (with 1 beacon slot, 1 control slot and L DATA slots) is 5(L + 2) ms and that of the

subsequent frames (with L DATA slots) is 5L ms in the proposed centralized approach, with

a 5ms DATA slot. We consider that the polling is done in every T ms, meaning that the

node cooperative resource allocation solution is updated every T ms. Here, both the polling

and the beacon packet transmissions are assumed to be error-free. For fair comparison, we

consider that the duration of an active interval in the proposed distributed approach is T ms,

where the first 10ms is dedicated to the contention phase while the remaining time period

is dedicated to the transmission phase. We perform the simulations for 10,000 runs and

average the results, where each simulation run sustains 5,000 frames.

Concerning the traffic models, the RG traffic is generated according to a two-state ON-

OFF model. In the ON state, a fixed-size packet arrives in every 20ms with rate demand

384kb/s, whereas in the OFF state, no packet is generated. We consider that the duration

of an ON period and that of an OFF period are independent, both follow an exponential

distribution, where the mean ON period and the mean OFF period are 1s and 1.2s, respec-

tively. The delay bound of RG traffic is assumed to be 5L ms. The required packet dropping

rate is less than 1%. On the other hand, the BE traffic does not have any QoS requirements.

BE packet arrivals follow a Poisson process with mean rate λ packets/second, where the

packet size follows a Weibull distribution (i.e., Weibull(2,2)). To mimic the mixed traffic

in a WMN, we assume that an RG node has one RG traffic flow and one BE flow, while a

BE node has one BE flow. Regarding packet-level QoS provisioning, we conceive that the

priority of RG traffic (packets) is related to the performance of their packet dropping rates.

In the centralized approach, after gathering the transmission requests in the control slot, a

clusterhead grants the requests of transmitting higher-priority packets first, facilitating QoS

provisioning. In the distributed approach, we consider that the RG node with the highest
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packet dropping rate transmits its BB signal earlier than the other nodes in the contention

phase. If two or more RG nodes have the same packet dropping rate, the node with the

highest minimum required rate will win the contention of interest. In other words, our QoS

provisioning strategy for the RG traffic hinges upon the packet dropping rate. To further

augment the effectiveness of QoS provisioning, the partners, timeslots, and subcarriers allo-

cated to or chosen by a particular mesh node are reserved for packet transmissions until the

next active resource allocation interval (e.g., next polling). The performance measurements

used in our simulations are 1) throughout, 2) resource utilization, 3) packet dropping rate,

and 4) node cooperation gain (NCG), where the NCG is defined the normalized throughput

gain due to beneficial non-altruistic node cooperation.

5.8.2 Simulation Results

We evaluate the system performance of the proposed node cooperative resource allocation

approaches versus M , T , |M1|, and λ in terms of throughput, resource utilization, packet

dropping rate, and node cooperation gain. The standard deviations of the results are also

plotted for reference. For performance comparison, we consider two baseline approaches

and an approach suggested in [121]: 1) a centralized baseline approach which is the same

as the proposed centralized approach without Phase-3 and Phase-4 resource allocation; 2)

a distributed baseline approach which is the same as the proposed distributed approach

without considering node cooperation in the transmission phase; and 3) the Zhang’s approach

proposed in [121] which first allocates the subcarriers with no QoS consideration to maximize

throughput and then re-allocates the subcarriers trying to satisfy the QoS demands of the

nodes without considering node cooperation. Note that the performance degradation due

to signalling overhead is not taken into account in evaluating the system performance. An
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upper bound2 for average throughput performance is also plotted for reference.

Effect of the number of mesh nodes, M

For |M2| = 2|M1|, T = 150ms, and λ = 50 packets/second, Figure 5.7 shows the throughput

performance versus the number of mesh nodes. We can see that the throughputs of all

considered approaches increase with M , since the system is not saturated. As expected, the

centralized approaches (i.e., the proposed four-phase centralized approach and the centralized

baseline approach) outperform their distributed counterparts (i.e., the proposed two-phase

distributed approach and the distributed baseline approach) due to the merit of the existence

of a clusterhead. However, the Zhang’s approach achieves the highest throughput among

all considered approaches, realizing the goal of throughput maximization. On a different

note, our proposed four-phase centralized (two-phase distributed) approach outperforms the

baseline centralized (distributed) approach, which stems from an additional performance

gain due to beneficial node cooperation. Due to beneficial node cooperation, the proposed

two-phase distributed approach achieves similar throughput performances as the centralized

baseline approach. The node cooperation gain (NCG) is given in Table 5.2. As anticipated,

the more the mesh nodes, the more the potential helpers and hence the higher the NCGs. In

general, the NCG obtained in our proposed centralized approach is higher than that obtained

in our proposed distributed approach. The rationale is mainly due to the partner allocation

employed in our proposed centralized approach yet the partner selection in our proposed

distributed approach. Another reason is that node cooperation in the proposed distributed

approach can only be triggered when some mesh nodes are idle in the first minislot, thereby

curbing some potential and favorable node cooperation opportunities. The NCG in our

proposed centralized approach is roughly leveled off from M = 30 onward, which is ascribed

2We analytically obtain an upper bound for average throughput performance under the assumptions of

no packet dropping for the RG traffic and perfect statistical traffic multiplexing.
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Figure 5.7: Comparison of the throughput performance of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the number of

mesh nodes (with |M2| = 2|M1|, T = 150ms, and λ = 50 packets/second).

128



Table 5.2: Relationship between the number of mesh nodes, M , and the node cooperation

gain (NCG) (i.e., normalized throughput gain due to node cooperation) for the proposed

approaches (with |M2| = 2|M1|, T = 150ms, and λ = 50 packets/second)

M 6 12 18 24 30 36 42 48

NCG for the proposed centralized approach (in %) 4.29 10.11 16.92 21.81 23.14 23.74 23.44 24.21

NCG for the proposed distributed approach (in %) 7.47 7.48 7.50 7.54 7.59 7.89 8.36 9.35

to the limited available resources (i.e., subcarriers). We expect that the NCG can be higher

with a larger value of N . We observe that, as the number of mesh nodes increases from 6 to

48, the resource utilization of the proposed four-phase centralized approach increases from

9% to 41%, that of the proposed two-phase distributed approach from 7% to 30%, that of

the centralized baseline approach from 8% to 31%, that of the distributed baseline approach

from 6% to 28%, and that of the Zhang’s approach from 10% to 44%, respectively. The low

resource utilization is due to low traffic load and resource reservation. We observe that the

resource utilization (and throughput) for our proposed approaches can be improved when

the traffic load increases. In Figure 5.8, the RG packet dropping rates are depicted. The

packet dropping rates for RG traffic in our proposed approaches and two baseline approaches

are well below 1% due to effective packet-level QoS provisioning. On the other hand, the

RG packet dropping rate of the Zhang’s approach increases and reaches 20% as M increases.

Figure 5.8 shows that the Zhang’s approach is ineffective in supporting the QoS requirements

of RG traffic at the packet level. Nonetheless, the Zhang’s approach aims at maximizing

the (network-wise) throughput in lieu of focusing on (node-wise) QoS satisfaction. The

results also assure the fact that provisioning QoS and increasing throughput are conflicting

performance measures [22].
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Figure 5.8: Comparison of the RG packet dropping rates of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the number of

mesh nodes (with |M2| = 2|M1|, T = 150ms, and λ = 50 packets/second).
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Figure 5.9: Comparison of the throughput performance of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the polling time

(with M = 30 mesh nodes, |M2| = 2|M1|, and λ = 50 packets/second).
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Table 5.3: Relationship between the value of T and the node cooperation gain (NCG) (with

M = 30 mesh nodes, |M2| = 2|M1|, and λ = 50 packets/second)

T (in ms) 20 50 150 300 1000

NCG for the proposed centralized approach (in %) 21.13 22.46 23.15 32.50 54.05

NCG for the proposed distributed approach (in %) 5.48 6.99 7.58 11.06 13.71

Effect of the polling time, T

For M = 30 mesh nodes, |M2| = 2|M1|, and λ = 50 packets/second, we study the impact

of the polling time (i.e., the length of an active resource allocation interval) on the sys-

tem performance measures. Figure 5.9 shows the throughput performance versus the value

of T . The throughputs obtained in all considered approaches decrease with the value of

T . The larger the value of T , the less accurate the traffic load estimate and hence the

weaker the throughput performance. In particular, even though our proposed distributed

approach maintains its NCG against T (see Table 5.3), its throughput drops significantly

from 3.0Mb/s to 1.9Mb/s. On the contrary, with the help of a clusterhead, not only does

our proposed centralized approach effectively sustain its throughput performance, but its

NCG also ramps up considerably from 21% to 54% when T increases (see Table 5.3). As a

result, the proposed four-phase centralized approach is shown to be less vulnerable to poor

traffic load estimates. As to the Zhang’s approach, however, its throughput obtained plum-

mets sharply as T increases. The decline is due to the absence of effective packet-level QoS

provisioning mechanism in place, and once the traffic load estimates are less accurate, the

system performance deteriorates dramatically. This phenomenon can also be explained in

Figure 5.10. Similar to Figure 5.8, the RG packet dropping rates of our proposed approaches

and two baseline approaches are capped by 1%. In contrast, the packet dropping rate of the

Zhang’s approach increases from 10% to 43%, resulting in the worst RG packet dropping rate

performance. In short, resource allocation approaches without considering packet-level QoS
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Figure 5.10: Comparison of the RG packet dropping rates of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the polling time

(with M = 30 mesh nodes, |M2| = 2|M1|, and λ = 50 packets/second).

provisioning are susceptible to the accuracy of traffic load estimates. For resource utilization,

we observe that the trends of all curves are similar to those in Figure 5.9.

On a different note, we expect to obtain a poorer system performance if channel conditions

change faster over time because the channel condition estimates become less accurate (e.g.,

Example (c) in Figure 5.1). To alleviate this problem, polling should be done more frequently

in the proposed centralized approach, whereas a transmission phase should be shorter in the

proposed distributed approach, whereby the estimates of the channel conditions (and the
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traffic load) can be more accurate. One pitfall, however, is the additional MAC overhead

introduced by extra beacon/control slots and contention phases in our centralized approach

and distributed approach, respectively. Thus, the system performance of WMNs highly

hinges on the value of T ; how to acquire the optimum value of T (i.e., optimal MAC) is

crucial but beyond the scope of this research study.

Effect of RG traffic, |M1|

For M = 30 mesh nodes, T = 150ms, and λ = 50 packets/second, we study the impact of

RG traffic (i.e., the value of |M1|) on the system performance measures. In Figure 5.11,

the throughput performance versus the value of |M1| is depicted. Since the network is

not saturated, in general, all the curves go up with the number of RG nodes, |M1|. From

|M1| = 20 onward, the throughputs of our proposed distributed approach and the distributed

baseline approach begin to level off, resulting from the effect of resource reservation for the

RG traffic. By the same token, the rates of the throughput increment in our proposed

centralized approach and the centralized baseline approach decrease from |M1| = 25 onward.

The throughput performance of the Zhang’s approach first rises from |M1| = 10 to 20 and then

declines afterwards. Similar to the previous discussions, as the number of RG nodes increases,

the Zhang’s approach fails to effectively provision packet-level QoS, thereby increasing its RG

packet dropping rate and decreasing its throughput. At |M1| = 30, the throughput obtained

by the Zhang’s approach is even lower than that by the proposed four-phase centralized

approach. The resource utilizations attained by all the approaches have the trends similar

to those in Figure 5.11. The NCGs of our two proposed approaches against |M1| are given

in Table 5.4. It can be noted that the values of the NCGs stay more or less the same against

|M1|. It shows that the node cooperation opportunities of both proposed approaches are

almost independent of the number of RG nodes (traffic flows) in the system. It is noteworthy

that, in Figure 5.11, there is an obvious performance gap between the throughputs obtained
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Figure 5.11: Comparison of the throughput performance of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the number of

RG nodes (with M = 30 mesh nodes, T = 150ms, and λ = 50 packets/second).
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Table 5.4: Relationship between the number of RG nodes, |M1|, and the node cooperation

gain (NCG) (where M = 30 mesh nodes, T = 150ms, and λ = 50 packets/second)

|M1| 10 15 20 25 30

NCG for our proposed centralized approach (in %) 23.15 22.69 23.36 20.78 20.65

NCG for our proposed distributed approach (in %) 7.58 7.24 7.64 7.73 8.63

from the considered approaches and the upper bound at a large |M1|. This gap is mainly

ascribed to the bandwidth reservation for RG traffic. Concerning the RG packet dropping

rates, the trends of the considered approaches are similar to the ones shown in Figure 5.10.

In a nutshell, with the virtue of node cooperation, our four-phase centralized approach can

achieve better system performance and provide more effective QoS provisioning than its

throughput-oriented counterpart when there is a large number of RG nodes in the network.

Effect of BE traffic, λ

For M = 30 mesh nodes, |M2| = 2|M1|, and T = 150ms, we study the impact of BE traffic

(i.e., the value of λ) on the system performance measures. Here, we consider two cases:

1) λ = 50 packets/second (i.e., bursty data traffic); and 2) λ → ∞ packets/second (i.e.,

background data traffic). Figure 5.12 shows the throughput performance for λ = 50 and

λ →∞. It is clear that the throughputs obtained in the presence of background data traffic

(i.e., λ → ∞) are higher than in the case of Poisson arrivals (i.e., λ = 50). The NCGs

of the proposed four-phase centralized approach and the proposed two-phase distributed

approach are given in Table 5.5. As seen, the NCGs obtained drop from 23.14% to 9.01%

in the proposed centralized approach and from 7.59% to 0% in the proposed distributed

approach, respectively, when the data traffic changes from bursty (i.e., λ = 50) to background

(i.e., λ → ∞). Concerning our proposed centralized approach, since the rate function is a

concave function and the throughput obtained by Phase-1 and Phase-2 resource allocation

136



Proposed centralized Proposed distributed Centralized baseline Distributed baseline Zhang’s
0

1

2

3

4

5

6

7

8

9

T
hr

ou
gh

pu
t (

M
b/

s)

 

 

λ = 50

λ → ∞

Figure 5.12: Comparison of the throughput performance of the proposed four-phase cen-

tralized approach, the proposed two-phase distributed approach, the centralized baseline

approach, the distributed baseline approach, and the Zhang’s approach vs. the value of λ

(with M = 30 mesh nodes, |M2| = 2|M1|, and T = 150ms).
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Table 5.5: Relationship between the value of λ and the node cooperation gain (NCG) (where

M = 30 mesh nodes, |M2| = 2|M1|, and T = 150ms)

λ 50 →∞
NCG for our proposed centralized approach (in %) 23.14 9.01

NCG for our proposed distributed approach (in %) 7.59 0

is already high in the case of λ →∞, the room for further throughput increment due to node

cooperation is relatively smaller than in the case of λ = 50. As a result, the performance

gain of the proposed four-phase centralized approach over the centralized baseline approach

is less substantial. On the other hand, it is notable that the NCG of our proposed distributed

approach vanishes in the case of λ → ∞, the rationale for which is that all the mesh nodes

are busy all the time and no mesh nodes are idle in the first minislot in the transmission

phase. Thus, there is no partner available, wiping out the effectiveness of node cooperation.

In other words, if a WMN with decentralized control is saturated (with background data

traffic), the benefits of non-altruistic node cooperation cannot be exploited. In a nutshell,

when designing and deploying an efficient and effective WMN in practice, we should take

notice of the nature of node cooperation (i.e., non-altruistic or altruistic), the traffic pattern

(i.e., bursty traffic or background traffic), and the mode of network operation (i.e., centralized

control or distributed control). As regards the packet dropping rate of the RG traffic, we

observe that the results are nearly the same as the ones shown in Figure 5.8. All in all, the

BE packets are assigned the lower priority and hence the change in the value of λ has almost

no influence on the packet dropping rate performance of RG traffic.

5.9 Chapter Summary

In this Chapter, we propose two non-altruistic node cooperative resource allocation ap-

proaches tailored for WMNs with QoS support and service differentiation. Both the pro-
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posed four-phase centralized approach and the proposed two-phase distributed approach are

shown to be effective in QoS provisioning for RG traffic and system performance melio-

ration. Simulation results demonstrate that our proposed approaches achieve satisfactory

system performance and are less susceptible to the inaccuracy of traffic load estimates. Our

study reveals a crucial design principle that whether or not node cooperation is useful de-

pends upon the nature of node cooperation, the traffic pattern, and the mode of network

operation. Both two proposed node cooperative resource allocation approaches are Pareto

optimal, utilizing meager network resources efficiently.
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Chapter 6

Performance Enhancement II:

Instinctive Channel Sensing for

Cognitive Radio

6.1 Introduction

Since many frequency bands in the radio spectrum are underutilized most of the time, shown

in recent studies [103], efficient resource utilization depends upon how effective secondary

users can utilize the temporarily available spectrum bands. As such, effective and efficient

channel exploitation is imperative for secondary users to seize available network resources

as efficiently and effectively as possible in cognitive radio networks (CRNs). On the other

hand, in typical multi-channel systems (e.g., OFDM-based networks), due to distinct fading

characteristics, a (secondary) user can experience different fading channel gains across differ-

ent frequency channels. In a multi-user environment, different users can experience different

channel conditions over the same channel(s). This phenomenon gives rise to the notion of

multi-user diversity [106]. With effective channel allocation, system performance can be
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improved, and fine-grain QoS can be guaranteed [24]. In the context of cognitive radio, the

difference in the channel gains and hence the maximum achievable rates of the channels can

help devise a more effective channel sensing strategy for secondary users, thereby plausibly

increasing resource utilization. In this Chapter, we study the problem of channel exploita-

tion for CRNs by taking the intrinsic nature of fading channels into consideration. The

contributions and significance of this research work are three-fold [19].

• First, we propose a simple channel sensing order for secondary users in CRNs, referred

to as instinctive channel sensing. By sensing the channels according to the descending

order of their achievable rates, we can prove the optimality of our proposed rule that

a secondary user should stop at the first sensed free channel. Provided that all the

channel availabilities are equal, we can further prove that the proposed instinctive

channel sensing is optimal in terms of throughput.

• Second, in a multi-secondary user scenario where our instinctive channel sensing is em-

ployed, we analytically derive an expression for the probability of packet transmission

collision, which is a function of primary-free probabilities, the number of channels, and

the number of secondary users. Our results show that the probability of collision de-

creases as the number of channels increases, the number of secondary users decreases,

and/or the values of primary-free probabilities decrease. Our results also demonstrate

that, as the number of secondary users increases, both the total throughput and re-

source utilization rise due to increased transmission opportunities and multi-user di-

versity. In addition, it is observed that resource utilization can be further improved

when the number of secondary users is close to the number of channels.

• Third, we compare our proposed channel exploitation approach with two other ap-

proaches, namely a random approach and the approach suggested in [51]. Simula-

tion results show that our proposed instinctive sensing achieves the best reward (i.e.,
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Table 6.1: Summary of important symbols used in this Chapter.

Symbol Definition

sk the kth channel to be sensed in a sensing sequence

ck effectiveness of data transmissions at the kth sensed channel

θsk
primary-free probability of the kth sensed channel

Rsk
achievable transmission rate of the kth sensed channel

λk instantaneous reward for a secondary user at the kth sensed channel

Λk+1 expected reward for a secondary user if skipping the kth sensed channel

τ time spent on channel sensing

T duration of a timeslot

N number of available channels in the CRN

M number of secondary users in the CRN

Pc probability of collision

throughput) performance, outperforming its counterparts. We also show that our sens-

ing approach can preserve its performance superiority over the other two approaches

no matter what the level of resource utilization in a CRN is (i.e., good or poor resource

utilization by primary users).

The remainder of this Chapter is organized as follows. Related work is given in Section

6.2. The cognitive radio network model is described in Section 6.3. The proposed channel

sensing with optimal stopping are presented in Section 6.4. Performance evaluation is given

in Section 6.5. A brief discussion is provided in Section 6.6. Finally, we summarize this

Chapter in Section 6.7. A summary of important symbols used in this Chapter is given in

Table 6.1 for easy reference.

6.2 Related Work

In the literature, the topic of channel exploitation has drawn a plethora of attention [50,51,

95,123]. In [51], a channel sensing order based on the channel availabilities (or primary-free
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probabilities) is proposed. The proposed sensing approach performs well only if the channel

availabilities are known to the secondary users. Without having channel availabilities in

advance, the channel sensing scheme is not optimal in terms of throughput. An optimal

stopping rule is suggested in [95] to achieve satisfactory gains in throughput in a conventional

(non-cognitive) wireless network. In [123], a Markov-based model is proposed to characterize

the channel availabilities of primary users. With complete knowledge of channel availabilities,

secondary users can opportunistically select and exploit the channels. In a system with a

large number of primary users, however, the availability of each channel is hardly predictable,

especially when traffic arrivals are bursty and resource reservation is considered for primary

users [23]. In [50], channel exploitation is studied from an MAC-layer perspective, where a

decentralized cognitive MAC protocol is proposed. Despite optimal stopping in place, the

intrinsic features of channel fading are not exploited, thereby leading to suboptimal system

performance. In this work, we devise a simple channel sensing order, by exploiting the

benefits of the intrinsic features of physical fading environments.

6.3 Cognitive Radio Network Model

Consider a synchronized CRN with M non-mobile secondary users and N available channels.

We assume that a secondary user and its target stationary destination are known. Time is

partitioned into slots of duration T . In each timeslot, each channel is either available (i.e.,

no primary activities) or busy (i.e., with primary activities). The availability of a channel

in each timeslot is independent of the status of other channels, and the availability of a

channel in a timeslot is independent of that in other timeslots. In each timeslot, a secondary

user senses the channels according to its sensing sequence. Denote (s1, s2, ..., sN ) as a sensing

sequence. Note that a sensing sequence is a permutation of the set (1, 2, ..., N). Denote τ as

the time needed for sensing a channel, where Nτ < T . Here, we assume that the sensing is

143



Slot duration, T

1 2 k

s1
s2

...

Sensing of the 
kth channel

sk .
.
.

.
.
.

sN

... N

Channel sensing

Data transmission

Figure 6.1: The slot structure and the channel sensing procedure for a secondary user.

perfect, and τ is sufficient to determine whether or not a channel is free of primary activities.

Figure 6.1 depicts the slot structure and channel sensing under consideration, with negligible

channel switching time. In Figure 6.1, a secondary user senses the first (k−1) channels busy

and stops at the kth sensed channel, which is the first free channel. Since the optimal stopping

criterion is satisfied at the kth sensed channel, to be discussed in Section 6.4, this secondary

user transmits its information over the kth sensed channel in the reminder of that timeslot.

The period of time spent on channel sensing and that on data transmissions are kτ and T−kτ ,

respectively. Notice that we consider a constant slot time with actual data transmission time

changing with k as in [95]. Denote ck as the effectiveness of data transmissions if a secondary
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user stops at the kth sensed channel, which is given by

ck = 1− kτ

T
. (6.1)

With non-mobile transmission pairs, the channel gains between source nodes and destination

nodes can be estimated accurately. On the other hand, a secondary user can transmit only

when there is no primary activity (i.e., no concurrent transmissions). As such, the achievable

transmission rate of a secondary user over each channel can be determined in advance. We

consider that each secondary user is equipped with one transceiver and, therefore, it can

only sense channels one at a time. A secondary user needs only one channel to transmit its

data.

6.4 Proposed Stopping Rule and Channel Exploitation

In CRNs, the gist of channel exploitation is to find and utilize a desired unoccupied channel

for secondary users as effective and efficient as possible. In fact, the problem of channel

exploitation can be viewed as a general stopping rule problem, the objective of which is

to stop at some channel that maximizes the (expected) reward for a secondary user. In

our work, since the number of available channels is finite, we can formulate our channel

exploitation problem as a finite-horizon stopping problem [32]. In the following subsections,

we first consider the stopping rule and channel exploitation for one secondary user. Then,

we extend our investigation to a two-secondary user case and a multi-secondary user case in

Section 6.4.2 and in Section 6.4.3, respectively.

6.4.1 Single-Secondary User Scenario (M = 1)

In this scenario, an active secondary user can transmit its own information as long as any

of the available channels is sensed free. Since the transmission rates of all the channels
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are known a priori, it is proposed that the secondary user senses the channels according to

the descending order of their achievable rates, referred to as instinctive sensing. Therefore,

for i < j, Rsi ≥ Rsj , ∀i, j, where Rsk
is the achievable transmission rate of the kth sensed

channel. If the sk
th channel is sensed free, a secondary user transmits its data at the rate

of Rsk
; otherwise, proceeds to sense the sk+1

th channel. To characterize the dynamics of our

instinctive channel sensing, we employ the notion of rewards in the context of stopping rule.

Denote λk as the instantaneous reward for a secondary user at the kth sensed channel. The

instantaneous reward at the kth sensed channel for 1 ≤ k < N can be written as

λk =





ckRsk
, sensed free with probability θsk

Λk+1, sensed busy with probability (1− θsk
)

(6.2)

and that for k = N as

λN =





cNRsN , sensed free with probability θsN

0, sensed busy with probability (1− θsN )

(6.3)

where θsk
(∈ [0, 1]) is the primary-free probability of the kth sensed channel and Λk+1 is

the expected reward if a secondary user skips the kth sensed channel and uses one of the

remaining (N − k) channels. The expected reward Λk is given by

Λk = E[λk] =





θsk
ckRsk

+ (1− θsk
)Λk+1, 1 ≤ k < N

θsN cNRsN , k = N

. (6.4)

Notice that ckRsk
represents the effective throughput obtained if a secondary user transmits

its data over the kth sensed channel, and Λ1 can be interpreted as the average throughput

obtained by a secondary user, and can be re-written as

Λ1 =
N∑

k=1

[
k∏

i=1

(
1− θsi−1

)
]

θsk
ckRsk

(6.5)

where we define θs0 = 0. Since our channel exploitation problem is a finite-horizon stopping

problem, the expected rewards {Λ1, Λ2, ...,ΛN} acquired at all the channels can be obtained,

and hence the stopping rule can be completely specified by {Λk}N
k=1.
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Proposed Stopping Rule – We propose that a secondary user should stop at the

first sensed free channel. With the proposed instinctive sensing order, we can prove that a

secondary user achieves the maximal (expected) reward by stopping at the first sensed free

channel and hence, our proposed stopping rule is optimal.

Proposition 15 (Instinctive Sensing) Provided that the channels are sensed according

to the descending order of their achievable transmission rates, a secondary user can achieve

the maximal reward by stopping at the first sensed free channel.

According to Proposition 15, our proposed stopping rule is optimal. On the condition

that all the θsk
’s are equal, we can further prove that our proposed instinctive channel sensing

order is optimal in terms of throughput (i.e., expected reward Λ1).

Proposition 16 Provided that θsi = θsj , ∀i, j, the proposed instinctive sensing is throughput-

optimal.

Proposition 16 shows the optimality of our instinctive sensing order on the condition

that the primary-free probabilities are all equal. In general, however, as {θsk
}N

k=1 may vary

with k, our proposed sensing order is not always optimal in terms of the expected reward Λ1

for a secondary user. Nevertheless, it is noteworthy that, in a system consisting of a large

number of primary users, if there is any imbalance in the channel availabilities, more (less)

primary users are likely to compete for the most (least) available channel(s), resembling the

notions of max-min fairness and solidarity [22]. Therefore, the condition that the primary-

free probabilities are equal can be realized in some cases, whereby the maximal throughput

can be attained by the proposed instinctive sensing.
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Figure 6.2: An illustration of the channel gains of two secondary users.

6.4.2 Two-Secondary User Scenario (M = 2)

Here, we extend our study to a two-secondary user scenario. We assume that the two (active)

secondary users in a CRN are non-mobile and placed at different locations, and are 1-hop

neighbors (i.e., no hidden terminal). Due to the random nature of multi-path propagation,

the channel gains of the available channels for secondary user 1 are plausibly different from

that for secondary user 2 (see Figure 6.2) [106]. As such, it is very unlikely for the two

secondary users to have the same instinctive channel sensing sequence. In a CRN without

any coordination between the secondary users, however, it is still possible that a particular

channel is sensed free by these two secondary users simultaneously, thereby leading to packet
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collisions. In our numerical analysis, for simplicity, we assume that the sensing sequences

of the two secondary users are independent and equally likely, and the order of a channel

is a uniform discrete random variable in [1, N ]. Denote s(m) =
(
s
(m)
1 , s

(m)
2 , ..., s

(m)
N

)
as the

sensing sequence of the mth secondary user, and S the set of all possible sensing sequences.

Similar to the single-secondary user scenario discussed in Section 6.4.1, if the kth channel in

an instinctive sensing sequence is sensed free (i.e., no primary or secondary activities), the

secondary user of interest transmits its information; otherwise, proceeds to sense the next

channel. Therefore, a collision occurs if the two secondary users transmit over the same

channel at the same time. Letting Pc|s(1) denote the conditional probability of collision given

s(1), we have

Pc|s(1)

= P (s(1)
1 sensed free, s(1)

1 = s
(2)
1 |s(1)) + P (s(1)

1 , s
(2)
1 sensed busy, s

(1)
2 = s

(2)
2 , s

(1)
2 sensed free|s(1))+

. . . + P (s(1)
1 , s

(2)
1 , ..., s

(1)
N−1, s

(2)
N−1 sensed busy, s

(1)
N = s

(2)
N , s

(1)
N sensed free|s(1)) (6.6)

=
N∑

k=1

1
N − k + 1

(
k∏

i=1

(
1− θ

s
(1)
i−1

))
·


 1(

N
k−1

) +
min(k,N−k+1)∑

j=2

(
k−1
k−j

)
(

N
k−1

)
∑

i1>k

∑

i2>i1

· · ·
∑

ij−1>ij−2

(
1− θ

s
(1)
i1

)(
1− θ

s
(1)
i2

)
· · ·

(
1− θ

s
(1)
ij−1

)
 θ

s
(1)
k

(6.7)

where θ
s
(1)
0

= 0 by definition. Thus, the average probability of collision for a secondary user,

denoted by Pc, is given by

Pc =
∑

z∈S
Pc|zP (s(1) = z) (6.8)

where P (s(1) = z) is the probability that the first secondary user employs the channel sensing

sequence z. In the case θ
s
(1)
k

= 1, ∀k > 0, (6.8) corresponds to the probability of collision in

conventional multi-channel MAC with two users employing random channel selection [18],

given by Pc = 1
N .
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In general, there is a positive correlation among neighboring channels. The rationale is

that, if a channel is of good (bad) quality, its neighboring channels will possibly be of good

(bad) quality as well. However, such a correlation diminishes as the number of channels

increases. On the other hand, the probability of collision is expected to decrease with the

number of available channels, for two secondary users will be less likely to sense the same

channel free at the same time.

6.4.3 Multi-Secondary User Scenario (M > 2)

In a CRN with M (> 2) secondary users, a collision occurs when at least two secondary

users transmit over the same channel at the same time. However, we envision that, at a

large N , the probability of collision that three or more secondary users transmit over the

same channel simultaneously is very low. Therefore, to simplify the derivation for Pc, we

consider the collisions due to two simultaneous transmissions over the same channel only.

Assuming that the sensing sequences are independent and equally likely, and the channels

are randomly placed in a channel sensing sequence, we obtain the conditional probability

of collision given s(1), which can be approximated by (M − 1)Pc|s(1) , where Pc|s(1) is given in

(6.7). Thus,

Pc ≈ (M − 1)
∑

z∈S
Pc|zP (s(1) = z). (6.9)

The probability of collision given in (6.9) should provide a good approximation when N is

relatively larger than M .
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6.5 Performance Evaluation

6.5.1 Simulation Environment

We consider secondary users randomly located in a 1km x 1km coverage area, and adopt

the channel model suggested in [44] (i.e., hilly/moderate-to-heavy tree density). Packets

are generated from a secondary user and sent to a destination located at the center of the

coverage area. The maximum transmission rate of each channel is 200kb/s. We consider

that the maximum power constraint of a secondary user is 1mW. The background noise is

assumed to be white Gaussian with zero mean and standard deviation 10−12W. Other system

parameters are chosen as follows: τ = 1µs and T = 5ms. In simulations, we use the Shannon

capacity equation [97] to calculate the achievable transmission rates of the channels. We

perform the simulations for 100,000 runs and average the results, where each simulation

run sustains 50,000 timeslots. The performance measurements used in our simulations are

1) reward (i.e., throughput), 2) channel utilization, 3) resource utilization, and 4) collision

probability.

6.5.2 Simulation and Numerical Results

We evaluate the system performance of the proposed instinctive channel sensing with op-

timal stopping versus the primary-free probability θ, the number of channels N , and the

number of secondary users M . We first study the performance in a single-secondary user

scenario against θ and N . To further demonstrate the merits of our channel exploitation ap-

proach, we consider two channel exploitation counterparts for comparison, namely a random

approach and an approach suggested in [51]. In the random approach, the sensing sequence

of a secondary user is a random permutation of the set (1, 2, ..., N), whereas in the Jiang’s

approach proposed in [51], a secondary user senses the channels according to the descending
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order of their primary-free probabilities. Next, we investigate the system performance of our

proposed instinctive channel sensing in a two-secondary user scenario and a multi-secondary

user scenario against N and M . In the simulations, we consider two cases for θ: 1) equal

θ, where θsk
= θ, ∀k and θ = H with H ∈ {0.001, 0.005, 0.01, 0.03, 0.1, 0.3, 0.6, 0.9, 1}; and 2)

unequal θ, where θ is uniformly distributed on [0,H].

Effect of primary-free probability, θ

For N = 512, we study the impact of the value of θ on the reward performance. Figure 6.3

depicts the simulation and numerical results for the reward performance versus the value

of θ. As anticipated, our simulation and numerical results agree with each other. Also, it

is clear that the rewards in both cases of equal θ and unequal θ increase with the value

of primary-free probability. However, it is worth mentioning that the rates of the reward

performance improvement in both equal θ and unequal θ cases decrease with θ. The rationale

for such a performance saturation is that, when the value of θ is small, a marginal increase in

θ can greatly increase the transmission opportunities of a secondary user. In addition, with

the increased primary-free probabilities, there are more free channels for a secondary user to

choose from, resembling the case of multi-user diversity. Therefore, the reward performance

increases sharply. At a large θ, however, a marginal increase in the value of θ only has a

minimal impact on the channel availabilities and the channel gain variations across those free

channels. Thus, the reward performance almost levels off from θ = 0.6 onward. The channel

utilization versus θ is shown in Figure 6.4. The trend of channel utilization is the same as

that of reward performance shown in Figure 6.3. As observed in Figure 6.4, our proposed

sensing approach can achieve almost 100% channel utilization at a large θ, making efficient

use of unoccupied channels. There is a performance gap between the curve with equal θ

and that with unequal θ. The performance difference is mainly due to the randomness of

primary-free probabilities in the case of unequal θ. In other words, on average, more (less)
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Figure 6.3: Reward performance of the proposed instinctive channel sensing in a single-

secondary user scenario vs. the value of θ (where N = 512).
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Figure 6.4: Channel utilization of the proposed instinctive channel sensing in a single-

secondary user scenario vs. the value of θ (where N = 512).
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channels are available in the case of equal (unequal) θ. On the other hand, for the same

mean value of θ, we observe that the channel utilization for equal θ and that for unequal θ

behave differently, depending on the mean value of θ. In Figure 6.4, at a small θ, the curve

for unequal θ outperforms that for equal θ. For example, at the mean value of 0.005, the

curve for the unequal θ attains 79%, whereas the curve for the equal θ attains only 75%. In

contrast, at a large θ, the curve for equal θ achieves a higher channel utilization than that

for unequal θ. For example, at the mean value of 0.3, the curves for the equal θ and unequal

θ attain 98% and 96%, respectively. These observations can be explained by our previous

discussion on the impact of increased transmission opportunities on the reward performance.

Effect of the number of channels, N

For θ = 0.3 and θ ∈ [0, 0.3], we study the impact of the number of available channels on the

reward performance shown in Figure 6.5. As seen, the curves for the reward performance

in both cases of equal θ and unequal θ rise with the value of N . Similar to the discussion

in Section 6.5.2, the reward increase is due to the fact that the more the available channels

in a CRN, the more the variations in the channel gains across the (free) channels, realizing

multi-user diversity. In Figure 6.6, the channel utilization is also plotted for reference. It

is observed that the channel utilization can be further improved at a larger N . We observe

that, in Figures 6.5 and 6.6, our simulation results and numerical results closely match,

validating our performance analysis.

Performance comparison

For N = 512, we compare our proposed instinctive channel sensing order with the random

sensing order and the Jiang’s sensing order. In the performance comparison, we further

consider two different settings for the CRN, namely good resource utilization by primary

users (e.g., θ = 0.005 and θ ∈ [0, 0.005]) and poor resource utilization by primary users
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Figure 6.5: Reward performance of the proposed instinctive channel sensing in a single-

secondary user scenario vs. the value of N (where θ = 0.3).
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Figure 6.6: Channel utilization of the proposed instinctive channel sensing in a single-

secondary user scenario vs. the value of N (where θ = 0.3).
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Figure 6.7: Comparison of the channel utilization of our proposed instinctive sensing ap-

proach, a random sensing approach, and the Jiang’s sensing approach vs. the value of θ

(where N = 512).

(e.g., θ = 0.9 and θ ∈ [0, 0.9]). Four observations can be made from the channel utilization

achieved by the sensing approaches shown in Figure 6.7: First, the channel utilization for

equal θ is generally better than that for unequal θ, as expected; Second, since the Jiang’s

approach is sensitive to the order of primary-free probabilities, it performs better than the

random approach in the cases of unequal θ. On the other hand, the random approach and

the Jiang’s approach attain almost the same channel utilization in the equal θ case. Note

that a secondary user employing the Jiang’s sensing order is to sense the channels according

to their primary-free probabilities. As such, if all the primary-free probabilities are equal,

the sensing sequence of a secondary user essentially becomes (s1, s2, ..., sN ) = (1, 2, ..., N).

Since the channel gains in our simulations are generated randomly, sensing the channels
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in a sequential manner is more or less the same as in a random manner. Nevertheless,

our proposed instinctive channel sensing achieves the highest channel utilization in all the

cases. The performance gains are due to the fact that our instinctive sensing order takes into

account the unique characteristics of the channels. By sensing the channels according to the

descending order of their achievable rates, a secondary user can take advantage of the channel

variations, whereby an improved performance can be acquired; Third, when the primary-free

probabilities are low (i.e., θ = 0.005 and θ ∈ [0, 0.005]), all three approaches achieve similar

channel utilization. The justification is that, since the number of free channels is very small

and the transmission opportunities for a secondary user are low, the channels sensed free in all

of the three approaches are more or less the same. Our proposed approach performs slightly

better than the others, as the benefits of channel variations can be exploited to a certain

extent; Fourth, since more channels are available for a secondary user in the CRN with poor

resource utilization by primary users (i.e., θ = 0.9 and θ ∈ [0, 0.9]), the channel utilization

achieved by a secondary user is higher than in the CRN with good resource utilization (i.e.,

θ = 0.005 and θ ∈ [0, 0.005]). With more free channels and hence more channel variations,

our proposed sensing order outperforms its two counterparts by at least 18%, leading to the

best candidate for channel exploitation in CRNs. Concerning the reward performance, we

observe that the trend for the three channel exploitation approaches is the same as that

shown in Figure 6.7.

Collision probability Pc in a two-secondary user case

Here, we evaluate the probability of collision (Pc) in a two-secondary user scenario, where

the two secondary users under consideration employ the same proposed instinctive sensing.

In the case of equal θ, we study the impacts of the values of θ and N on the probability of

collision. Both simulation and analytical results are given in Table 6.2. There are two main

trends: First, for the same value of θ, Pc generally deceases with N ; Second, for the same
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Table 6.2: Simulation and analytical results for the probability of collision, Pc, in a two-

secondary user scenario vs. the number of channels, N , for different values of θ.

N 2 4 16 32 128 256 512 1024

θ = 0.005
simulation 0.0055 0.0058 0.0046 0.0045 0.0034 0.0030 0.0016 0.0005

analytical 0.0050 0.0050 0.0048 0.0045 0.0033 0.0023 0.0013 0.0006

θ = 0.01
simulation 0.0103 0.0110 0.0100 0.0070 0.0045 0.0029 0.0012 0.0005

analytical 0.0100 0.0098 0.0091 0.0082 0.0046 0.0025 0.0011 0.0005

θ = 0.1
simulation 0.1092 0.1033 0.0439 0.0205 0.0049 0.0023 0.0012 0.0005

analytical 0.0950 0.0831 0.0408 0.0202 0.0043 0.0021 0.0010 0.0005

θ = 0.3
simulation 0.2603 0.1902 0.0404 0.0199 0.0059 0.0032 0.0014 0.0006

analytical 0.2550 0.1721 0.0410 0.0192 0.0046 0.0023 0.0012 0.0006

θ = 0.6
simulation 0.4212 0.2223 0.0480 0.0247 0.0069 0.0033 0.0015 0.0007

analytical 0.4200 0.2100 0.0459 0.0226 0.0056 0.0028 0.0014 0.0007

θ = 0.9
simulation 0.5033 0.2652 0.0588 0.0306 0.0082 0.0037 0.0020 0.0009

analytical 0.4950 0.2351 0.0572 0.0285 0.0071 0.0036 0.0018 0.0009

θ = 1
simulation 0.5061 0.2621 0.0672 0.0312 0.0076 0.0042 0.0021 0.0009

analytical 0.5000 0.2500 0.0625 0.0313 0.0078 0.0039 0.0020 0.0010

value of N , Pc generally increases with θ. The first observation can be explained as follows.

As the number of channels increases, the chances for the two secondary users to sense the

same channel free simultaneously decrease, thereby leading to a smaller Pc. Concerning the

second observation, on one hand, the transmission opportunities for both secondary users

increase with the value of θ. On the other hand, since the number of channels is fixed,

the increased transmission opportunities cause a higher probability of collision, for the two

secondary users are more likely to sense the same channel free at the same time. On a

different note, we observe that there is some discrepancy between the simulation results and

the analytical results, especially for a small N . As mentioned in Section 6.4.2, there is a

(positive) correlation among neighboring channels, and choosing which channel to be sensed

next generally depends on the previously sensed channels. This phenomenon exacerbates as
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the number of channels decreases. Therefore, the assumption that the order of a channel is

uniformly distributed in our numerical analysis might be void. Nonetheless, both simulation

and analytical results agree with each other at a large N . In practice, the number of available

channels is mostly large (e.g., 512 or more channels) and, therefore, our numerical analysis is

valid in typical OFDM-based networks. Further, we observe that the total reward obtained

in a two-secondary user scenario is higher than that in a single-secondary user scenario given

the same value of θ. Since the system is not saturated, a higher reward can be attained with

more secondary users in the system.

Collision probability and resource utilization in a multi-secondary user case

For the case of equal θ with θ = 0.9, we study the impact of the number of secondary users

M (> 2) on the probability of collision and resource utilization. In specific, we gauge the

system performance with different values of N and M . Numerical and simulation results

for the collision probability are depicted in Figure 6.8. As expected, the probability of

collision increases with M . We also notice that Pc rises more drastically with M when

N is small, compared to the case when N is large. This phenomenon is ascribed to the

elevated chances of simultaneous transmissions over the same sensed free channel(s) when

the number of channels is limited. Similar to the previous discussions, the probability of

collision increases as N decreases. We observe that there is some performance discrepancy

between our simulation and numerical results at a small N . In typical OFDM-based systems

with a large number of channels, however, our analytical results generally provide a good

approximation of the collision probability in a multi-secondary user scenario, validated by

the simulation results. We also notice that the trend of Pc versus M for a small θ is similar

to that shown in Figure 6.8. Due to less transmission opportunities, however, it is observed

that a lower Pc is achieved in the case of a smaller θ. Figure 6.9 depicts the total reward

(i.e, throughput) versus M . Clearly, the total reward increases with M . The rationale is
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(a) N = 16
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(b) N = 128
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(c) N = 512
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(d) N = 1024

Figure 6.8: Simulation and analytical results for collision probability, Pc, in a multi-secondary

user scenario vs. the number of secondary users, M , for different values of N (where θ = 0.9).
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Figure 6.9: Total reward performance of the proposed instinctive channel sensing vs. the

value of M (where θ = 0.9).
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Figure 6.10: Resource utilization of the proposed instinctive channel sensing vs. the value

of M (where θ = 0.9).

that, since the system is not saturated, the more the secondary users, the higher the total

reward. On the other hand, the rate of increment in the total reward increases with N due

to a lower Pc and increased transmission opportunities (and hence multi-user diversity). On

the contrary, the impact of N has the opposite effect on the resource utilization. Figure

6.10 shows the resource utilization versus M . As expected, the resource utilization increases

with M . However, given the value of M , the smaller the value of N , the higher the resource

utilization. In particular, when N = 16, the resource utilization increases from 15% to about

47% as M increases from 2 to 16, whereas when N = 1024, the resource utilization is less

than 5%. The difference in the resource utilization is due to the fact that a secondary
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user can transmit its data over a single channel only. Therefore, in a system with a large

number of channels (e.g., 512 channels), a small number of secondary users can utilize only a

small portion of temporarily unoccupied channels, even if our throughput-optimal instinctive

sensing order is employed. In contrast, when the number of channels is small (e.g., 16

channels), the resources can be better utilized by the same number of secondary users. The

implication is that resource utilization can be improved when M approaches N at the cost

of a high Pc. Therefore, given the number of available channels, how to procure a desired

number of secondary users such that the resource utilization and collision probability are

optimized is certainly of great importance; however, addressing this issue is left for further

work. On the other hand, if channel bundling is permitted (see Section 6.6), we observe that

both the total reward and resource utilization can be further improved.

6.6 Discussion

In practice, channel bundling can be employed so as to reduce signalling overhead and

facilitate efficient resource allocation. The idea is that, instead of allocating the channels

one by one, we group a set of channels, referred to as a channel bundle, and allocate them at

once, thereby reducing computational cost. In the context of CRNs, since all the channels

in the same bundle are either available or busy simultaneously, a secondary user can sense

each bundle of channels instead of each channel individually. For example, every 8 channels

can be grouped as a bundle, and the 4th channel can be viewed as its representative. As

such, with respect to our proposed instinctive sensing, a secondary user essentially senses

the channel bundles according to the descending order of the achievable rates of their 4th

channels. Therefore, if the 4th channel of a bundle is sensed free, a secondary user transmits

its information over the channels in that bundle, or proceeds to sense the 4th channel of

the next bundle otherwise. With the channel bundling in place, the system throughput can
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be increased, for more free channels can be utilized by each secondary user per timeslot.

In general, however, the best 4th channel is not tantamount to the best channel bundle.

For instance, some channel bundle can achieve the maximum total achievable rate among

the channel bundles, but the rate of its representative (e.g., 4th channel) may not be the

maximum among all the individual channels. As a result, in the presence of channel bundling,

the optimality of our proposed stopping rule and instinctive sensing can be void. All in all,

optimal channel bundling is strongly desired for the sake of system performance enhancement

and computational complexity reduction; addressing this issue, however, is left for further

work. On the other hand, node clustering can also facilitate channel sensing, since each

cluster is allocated a subset of the available channels (see Chapter 3). Instead of sensing all

the available channels, secondary users in clustered WMNs only need to sense the channels

allocated to their corresponding clusters. As such, since the number of channels to be sensed

by secondary users is smaller, the overhead due to channel sensing can be reduced, and

the system performance can be improved. In conventional CRNs, secondary users can only

transmit when there is free of primary activity; yet, such a traditional methodology can,

in fact, hinder network resources from being efficiently utilized. According to our research

findings in Chapter 5, the benefits of node cooperation can be exploited so as to further

improve the system performance of WMNs provided that the QoS demands of performance-

guaranteed nodes can be satisfied. By the same token, as long as the transmissions of

licensed primary users assisted by unlicensed secondary users are beneficial in terms of QoS

support and throughput increase, secondary users should be allowed to transmit their packets

together with primary users’ packet transmissions, thereby making better use of scarce radio

resources.
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6.7 Chapter Summary

In this Chapter, a simple instinctive channel sensing order with optimal stopping is proposed

for CRNs. Provided that the primary-free probability is the same for all the channels, we

prove that our proposed channel sensing order is throughput-optimal. In a single-secondary

user scenario, our proposed channel sensing approach is demonstrated promising, outper-

forming a random sensing approach and the approach suggested in [51] by at least 18%

in terms of channel utilization when the network resources are poorly utilized by primary

users. In the case of two secondary users in a CRN, our numerical and simulation results

show that, by employing the proposed instinctive sensing, the probability of collision gen-

erally decreases as the number of channels increases and/or the primary-free probabilities

decrease. In a CRN with multiple secondary users, our results show that the more the

secondary users, the higher the collision probability. On the other hand, as the number of

secondary users increases, the total reward increases. Our study also indicates that, when

the number of secondary users approaches the number of channels, resource utilization can

be further improved at the expense of a higher collision probability.
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Chapter 7

Balancing Throughput and Fairness

with QoS Assurance

7.1 Introduction

With limited network resources, throughput maximization, QoS provisioning, and fairness

assurance are conflicting goals [71], conducing to a natural tradeoff among these three per-

formance measures. For WMNs, in particular, balancing system throughput and fairness

with QoS assurance and high resource efficiency is of great interest. As such, a unified (opti-

mization) framework to effectively attain different degrees of performance tradeoff between

throughput and fairness with QoS support is strongly desired. In this research, from the

perspective of call-level resource allocation, we address the problem of balancing throughput

and fairness for WMNs with QoS assurance.

The contributions and significance of this research work are two-fold [22].

• First, we study the problem of balancing throughput and (weighted max-min) fairness

for interference-limited WMNs with QoS assurance. By introducing the notion of
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bargaining floor, we derive a unified optimization framework to bridge the problem of

throughput maximization and the problem of weighted max-min fairness.

• Second, with our proposed QoS-aware framework, an optimal relationship curve of sys-

tem throughput and fairness is obtained. In specific, different degrees of performance

tradeoff between system throughput and fairness can be attained, simply by adjusting

the value of the proposed bargaining floor. Our study shows that the tradeoff curve of

system throughput against fairness is concave in shape, meaning that a unit decrease

in system throughput leads to a larger marginal improvement in fairness performance.

Further, the resource allocation solutions from our proposed framework achieve Pareto

optimality, making efficient use of network resources.

The remainder of this Chapter is organized as follows. Related work is discussed in

Section 7.2. The optimization problem formulation is presented in Section 7.3. Efficiency of

the proposed resource allocation is addressed in Section 7.4. Numerical results are given in

Section 7.5. Practical implementation issues are discussed in Section 7.6. Finally, a summary

is drawn in Section 7.7. A summary of important symbols used in this Chapter is given in

Table 7.1 for easy reference.

7.2 Related Work

In the literature, utility optimization is a commonly used mathematical tool to measure sys-

tem performance subject to certain constraints (e.g., QoS requirements) [26,54,60,69], where

a utility function is described as a measure of user satisfaction. Proportional fairness can be

obtained by choosing suitable utility functions [60], and other performance measures such

as throughput can also be incorporated into this optimization formulation [54] (see (5.13)).

With different problem formulations (or utility functions), different optimal solutions can be
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Table 7.1: Summary of important symbols used in this Chapter.

Symbol Definition

Rd
m effective bandwidth of a call on the mth link

Rm(a) actual transmission rate of the mth link

Qm(a) utility function (i.e., extra throughput obtained) of the mth link, i.e., Qm(a) = Rm(a)−Rd
m

wm weighting factor of the mth link, i.e., wm > 0

Pm maximum transmit power level of the mth link’s transmitter

Gmk channel gain from the kth link’s transmitter to the mth link’s receiver

am power scaling factor of the mth link’s transmitter, i.e., am ∈ [0, 1]

γm signal-to-interference-plus-noise ratio (SINR) of the mth link

σ cross-correlation factor between any two signals, i.e., σ ∈ (0, 1]

η background noise power

M total number of active links in the network

J bargaining floor, i.e., J ∈ [0, J∗], where J∗ is the maximum value of J

D deviation of minm {wmQm(a)} from J∗, i.e., D = |J∗ −minm {wmQm(a)}|
U measure of system throughput, i.e., U ∈ [0, 1]

V measure of fairness, i.e., V ∈ [0, 1]

W shaped Jain’s fairness index, i.e., W ∈ [0, 1]

obtained. Pricing schemes [60] can be employed to achieve a tradeoff between throughput

and fairness, to a certain extent. However, the utility functions used in the preceding work

carry no or little physical meaning. How to find a meaningful utility function with an appro-

priate pricing scheme can be problematic. In addition, most of the current work assumes that

the utility functions can be separable in the dual problem [26,54,60,69], which is not always

feasible, especially for interference-limited systems (e.g., CDMA and ultra-wideband (UWB)

systems), meaning that directly applying existing approaches (e.g., [26]) generally results in

suboptimal solutions. In the interference-limited systems, we need to consider all the (user)

utility functions for the sake of optimality.

Ideal (weighted max-min) fairness can be obtained by generalized processor sharing

(GPS) [89,90] or its variants [70], where all nodes in a network share the total resources.
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With GPS, the weight of a node determines the amount of allocated resources. As such,

each node can have a fair share of network resources. However, the notion of a weight is

an abstract concept, and the question of how to relate QoS requirements to the weight ef-

fectively remains an open research problem. In GPS, even though all the weights or QoS

requirements are already satisfied, only (weighted max-min) fairness is considered, and its

throughput performance needs further investigation.

Although some research aims at the tradeoff between throughput and fairness in telecom-

munications networks, only heuristic schemes are proposed without any optimality consid-

eration [29,77,108]. Thus far, only limited relationship of system throughput and fairness

is addressed. Joint consideration of both performance metrics and hence a unified frame-

work attaining different degrees of performance tradeoff between them with QoS support are

strongly desired. Further, with scarce radio resources, efficient resource utilization is vital,

which can be verified by game theory [88]. All these aspects are addressed in this Chapter.

7.3 Balancing Throughput and Fairness

7.3.1 Interference-Limited Network Model

We consider a generic system model which is an interference-limited WMN. Let Rd
m denote

the effective bandwidth of a call on the mth link, which is the minimum rate required to

satisfy the QoS requirements and depends on source traffic characteristics [58,115]. Let

Rm(a) denote the actual transmission rate of the mth link where a = (a1, a2, ..., am, ..., aM )

and am is the power scaling factor of the mth link’s transmitter, i.e., am ∈ [0, 1], and M the

total number of active links in the network. For simplicity, the actual transmission rate of

the mth link is given by [97]

Rm(a) = log2 (1 + γm) (7.1)
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where γm is the SINR of the mth link. In (7.1),

γm =
GmmPmam

σ
∑

k 6=m GmkPkak + η
(7.2)

where Pm is a maximum transmit power level of the mth link’s transmitter, Gmk the channel

gain from the kth link’s transmitter to the mth link’s receiver, σ the cross-correlation factor

between any two signals, i.e., σ ∈ (0, 1], and η the background noise power.

In order to effectively balance system throughput and fairness, CAC is indispensable,

which can be contingent on our optimization framework (to be discussed in Section 7.3.2).

The call admission routine1 is invoked whenever a new call arrives. Each incoming new call is

admitted as long as there exists a feasible solution of the optimization problem, meaning that

the QoS requirements (i.e., in terms of effective bandwidth) of this new call and all other calls

in service can be satisfied. If there is no feasible solution of the optimization problem, the

new call is rejected due to insufficient resources available to meet its QoS requirements. In

other words, the criterion of call admission is tantamount to the feasibility of the solution of

our optimization framework. With the CAC in place, the QoS requirements of all admitted

calls can be guaranteed, and the operation of balancing throughput and fairness can be

carried out effectively.

Given that all the QoS requirements are met, the network performance can be further

improved for increasing system throughput and/or maintaining (weighted max-min) fair-

ness. In this research, the notion of weighted max-min fairness is employed as the fairness

performance of interest, which corresponds to the ideal fairness achieved by the GPS.

1Notice that routing is involved in the CAC. Particularly, the tasks of QoS routing include 1) route

discovery, 2) call admission control over each link, and 3) route repair. Therefore, which link a call is to

traverse along can be determined in advance [1].
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7.3.2 Optimization Problem Formulation

We first consider two optimization problem formulations, namely system throughput opti-

mization and weighted max-min fairness optimization. Next, we propose a generic optimiza-

tion problem formulation with the consideration of system throughput and fairness. For the

system throughput optimization, the optimization problem is given by

max
a

{
M∑

m=1

Rm(a)

}
(7.3)

subject to Rm(a) ≥ Rd
m, 0 ≤ am ≤ 1,∀m (7.4)

where a = (a1, a2, ..., am, ..., aM ) is the optimization variable. In fact, we can rewrite (7.3) as

max
a

{
M∑

m=1

(
Rm(a)−Rd

m

)}
(7.5)

as the optimality still maintains for a linear-shifted objective function [107]. The system

throughput optimization problem (STOP) can be rewritten as

max
a

{
M∑

m=1

Qm(a)

}
(7.6)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1, ∀m (7.7)

where Qm(a) = Rm(a)−Rd
m. The physical meaning of Qm(a) is the amount of extra resources

allocated to (i.e., excess throughput obtained by) the mth link. In fact, Qm(a) can be viewed

as the utility function of user m in the conventional utility maximization [54,60,69], as Qm(a)

of user m is: 1) increasing; 2) strictly concave; and 3) twice differentiable (i.e., continuous)

on am. The gist of (7.6) is to maximize the sum of all the utility functions. In the STOP,

however, the utility functions are not separable in the dual problem as Qm (a) only increases

with am but not over a. Consider the following (partial) dual problem [69]

min
λº0

D(λ) (7.8)
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where λ = (λ1, λ2, ..., λm, ..., λM ) is a set of Lagrange multipliers and

D(λ) = max
a

{∑
m

Qm(a) +
∑
m

λmQm(a)

}
. (7.9)

Suppose that the optimality still maintains when each (user) utility function, Qm(a), is

optimized separately. Intuitively, each user m will simply choose the maximum power scaling

factor, i.e., am = 1, ∀m. In most cases, due to the cross-interference (i.e., σ 6= 0), the overall

result will not contribute to the maximum value of (7.6). Optimizing user utility functions

separately does not always conduce to the maximal solution of the STOP, for, in general,

from (7.9), we have

D(λ) = max
a

{∑
m

Qm(a) +
∑
m

λmQm(a)

}
(7.10)

= max
a

{∑
m

(1 + λm) Qm(a)

}
(7.11)

6=
∑
m

max
am

{(1 + λm) Qm(a)} . (7.12)

Thus, the solution space (i.e., resource allocation) is not necessarily the same as those pro-

posed in the literature (e.g., [69]). Obtaining the optimal solution requires a joint consid-

eration of all user utility functions, meaning that the existing solutions suggested in the

literature cannot be directly applied.

For the weighted max-min fairness optimization problem (WMMFOP), the corresponding

formulation is given by [93]

max
a

{
min

m
{wmQm(a)}

}
(7.13)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1, ∀m (7.14)

where wm is a weighting factor of the mth link, i.e., wm > 0, which indicates the unwillingness

of obtaining extra allocated resources2, i.e., the smaller the value of wm, the more eager is

2Notice that the meaning of the weighting factor wm of our interest is different from that in GPS.
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the mth link to obtain more extra resources. The use of wm is necessary for effective and

efficient resource allocation in WMNs with heterogeneous traffic (e.g., voice, video, and data

traffic). For example, after its effective bandwidth requirement is satisfied, allocating extra

resources to voice traffic may be wasteful as the quality of signal reception is already good,

and hence this traffic should be assigned a large weighting factor. On the other hand, a

smaller weighting factor should be assigned to data traffic, as it demands more throughput.

With different weighting factors, different traffic classes can be differentiated, facilitating

per-class packet scheduling and hence QoS provisioning.

Proposition 17 The set of feasible weighted utilities (i.e., wmQm(a), ∀m) in the WMMFOP

has the solidarity property [93].

Here, we transform (7.13) into [107]

max
a

L (7.15)

subject to wmQm(a) ≥ L,∀m. (7.16)

Therefore, the WMMFOP can be rewritten as follows.

max
a

L (7.17)

subject to wmQm(a) ≥ L, 0 ≤ am ≤ 1,∀m. (7.18)

As we prove in Proposition 17, the WMMFOP possesses the solidarity property. As such,

at the optimal point, all wmQm(a), ∀m, are to be equal, and the maximum value of L for the

WMMFOP is unique [93]. Let J∗ and â denote the optimal solutions (i.e., maximal L and

optimal a) of the WMMFOP. If the constraints wmQm(a) ≥ J∗, ∀m, are added to the STOP,

the modified STOP becomes

max
a

{
M∑

m=1

Qm(a)

}
(7.19)

subject to wmQm(a) ≥ J∗, 0 ≤ am ≤ 1, ∀m. (7.20)
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Proposition 18 The optimal solution â obtained from the WMMFOP is also the optimal

solution for the modified STOP.

With the new constraint set, the solution a obtained from the modified STOP not only

achieves weighted max-min fairness, but also optimizes the system throughput. Therefore,

to bridge the system throughput and fairness performance measures together, we introduce a

parameter called bargaining floor, denoted by J , where J ∈ [0, J∗] with J∗ being the optimal

solution (i.e., the maximal value) of the WMMFOP. Motivated by Proposition 18, we propose

the following generic optimization problem (GOP)

max
a

{
M∑

m=1

Qm(a)

}
(7.21)

subject to wmQm(a) ≥ J, 0 ≤ am ≤ 1, ∀m. (7.22)

Clearly, the solutions of the GOP for maximal system throughput can be obtained when

J = 0 while that for maximal (weighted max-min) fairness when J = J∗, where J∗ can be

obtained from the WMMFOP. In this research, our focus is not to solve the GOP. Instead,

we treat the GOP as a unified framework for deducing the optimal relationship between

system throughput and fairness with QoS support. Let a∗ be the optimal solution obtained

from the GOP.

Proposition 19 The system throughput (i.e.,
∑M

m=1 Qm(a∗)) is a non-increasing function

of bargaining floor J.

Corollary 3 The minimum value of wmQm(a∗) (i.e., minm {wmQm(a∗)}) is a non-decreasing

function of J.

Theorem 1 The system throughput (i.e.,
∑M

m=1 Qm(a∗)) does not increase with J, but the

minimum value of wmQm(a∗) (i.e., minm {wmQm(a∗)}) does not decrease with J.
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Corollary 4 A relationship between the system throughput and weighted max-min fairness

performance can be achieved by solving the GOP with different values of J.

From the perspective of network design, since the network resources are limited, im-

proving fairness performance will reduce the system throughput, which matches with the

perspective of Corollary 4. With different values of J , a tradeoff curve of system throughput

and fairness can be obtained. Thus, the GOP should be solved with different values of J

iteratively. The iterative procedure to obtain the tradeoff curve is described below:

Step 1: Find J∗ by solving the WMMFOP;

Step 2: Set J = 0 and solve the GOP, whereby the obtained solution a corresponds to the

maximal throughput performance;

Step 3: Increase J by δJ and solve the GOP;

Step 4: Repeat Step 3 until J = J∗, which corresponds to the maximal fairness.

Through the above procedure, different sets of the optimal solution a, the corresponding

relationships of system throughput and fairness, and hence a desired tradeoff curve can be

attained by suitably selecting the value of J . Notice that, after the tradeoff curve is procured,

the choice of the J value is usually contingent upon the purpose of the application of interest

and/or the prerogative of the system designer. With the fixed value of J , the existence of

the optimal solution of the GOP (i.e., the desired tradeoff) is assured due to the CAC in

place, discussed in Section 7.3.1. Should the value of J be allowed to change on the fly

when the system is in use, a conservative approach can be employed: whenever a new call

arrives, we only check the feasibility condition on the solution of the WMMFOP (i.e., the

GOP with J = J∗). The new call is admitted if there exists a solution, or rejected otherwise.

Since the feasible region does not shrink and hence the solution obtained initially will not
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become infeasible when the value of J decreases, this approach prevents the ongoing calls in

service from being dropped. In spite of performance degradation, this conservative yet safe

approach is imperative for providing QoS assurance to new calls and ongoing calls already

admitted in the system.

7.4 Efficiency Evaluation by Game Theory

In this section, we show that our solutions obtained from the GOP given by (7.21)–(7.22)

achieve efficient use of resources. In game theory, efficient resource utilization is determined

by the concept of Pareto optimality [88].

Proposition 20 The optimal solution a of the GOP is Pareto optimal.

From the perspective of game theory, the resource allocation solutions procured from the

GOP are efficiently utilized. For the relationship between system throughput and fairness,

every point (i.e., resource allocation) on a tradeoff curve (to be discussed in Section 7.5) is

Pareto optimal, thereby making efficient use of scarce network resources.

7.5 Numerical Results

This section presents numerical results on: 1) system throughput and fairness performance

versus the value of J in the GOP; and 2) a relationship/tradeoff curve of system throughput

and fairness. In our numerical analysis, we solve the GOP by an exhaustive search with an

increment size of δa = 0.01. Suppose that there are I iterations in the iterative procedure

for the throughput and fairness tradeoff curve. Let ai be the optimal solution obtained from

the GOP in the ith iteration. The measure of system throughput in the ith iteration (i.e.,
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i ∈ I) is given by

U =

(∑M
m=1 Qm(ai)

)
−mini∈I

{∑M
m=1 Qm(ai)

}

maxi∈I

{∑M
m=1 Qm(ai)

}
−mini∈I

{∑M
m=1 Qm(ai)

} (7.23)

where U ∈ [0, 1], i.e., the larger the value of the system throughput, the larger the value

of U . Let Di = |J∗ −minm {wmQm(ai)}|, where J∗ is the solution of the WMMFOP and

Di represents the deviation of the minimum value of wmQm(ai) among all M links from J∗,

i.e., the larger the value of Di, the poorer the weighted max-min fairness performance. The

measure of weighted max-min fairness in the ith iteration is given by

V =
maxi∈I {Di} −Di

maxi∈I {Di} −mini∈I {Di} (7.24)

where V ∈ [0, 1], i.e., the larger the value of Di, the smaller the value of V . V indicates the

fairness performance of the worst link. In the literature, Jain’s fairness index [47] is widely

employed as a measure of network-wise fairness performance. Let JFIi be the Jain’s fairness

index in the ith iteration, where

JFIi =
(
∑

m wmQm(ai))
2

M
∑

m (wmQm(ai))
2 . (7.25)

The shaped Jain’s fairness index in the ith iteration is given by

W =
JFIi −mini∈I {JFIi}

maxi∈I {JFIi} −mini∈I {JFIi} (7.26)

where W ∈ [0, 1], i.e., the larger the value of Jain’s fairness index, the larger the value of W .

In this numerical analysis, we consider four active links in the network, i.e., M = 4. The

fading coefficient of a link is modeled as a complex Gaussian random variable with zero mean

and unit variance. The channel gain matrix G, i.e., G = [Gmk]M×M , used for the numerical

analysis is randomly generated and normalized, which is given below:

G =




0.2818 0.3299 0.2739 0.0350

0.2418 0.1761 0.5019 1.0000

0.1823 0.9345 0.2802 0.0068

0.2016 0.4150 0.4480 0.0400




. (7.27)
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Table 7.2: System parameters for the numerical analysis for the case of equal weighting

factors

Parameter Value

M 4

η 0.01

σ 0.1

Pm 1, ∀m
wm 1, ∀m(

Rd
1, ..., R

d
4

)
(2, 1, 0.5, 0.1)

J∗ 0.3290

Under the condition that the solution exists in the WMMFOP, we consider two cases: 1)

equal weighting factors; and 2) different weighting factors.

7.5.1 Equal Weighting Factors

The system parameters for the case of equal weighting factors are given in Table 7.2, where

J∗ is computed by solving the WMMFOP. We follow the iterative procedure described in

Section 7.3.2 and obtain the numerical results given in Table 7.3. First, we study the impact

of the value of J on the system throughput measure U and the fairness measure V . Figure

7.1 depicts system throughput performance versus fairness performance. As mentioned in

Section 7.3.2, a tradeoff curve is obtained by solving the GOP iteratively, starting at the

maximal system throughput and ending at the maximal fairness. As expected, in Figure

7.1, U decreases from the maximum value (i.e., U = 1) to the minimum value (i.e., U = 0)

with J , while V increases from the minimum value (i.e., V = 0) to the maximum value (i.e.,

V = 1) with J , which shows that increasing system throughput and maintaining fairness are

conflicting with each other. The shaped Jain’s fairness index is also plotted for comparison.

From the results shown in Table 7.3, the minimum weighted utility value, minm {wmQm(a)},
increases with J , as expected. It is worth mentioning that the fairness performance measure
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Figure 7.1: The system throughput measure and the fairness measures vs. the value of J

with equal weighting factors.
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Table 7.3: Numerical results for the case of equal weighting factors

J Q1(a) Q2(a) Q3(a) Q4(a)
∑

Qm(a) minm {wmQm(a)} U V W a = [a1, a2, a3, a4]

0 0.9115 0.0063 1.3134 0.0001 2.2313 0.0001 1.0000 0 0 [1.00, 0.46, 0.64, 0.14]

0.0219 0.8548 0.0230 1.2921 0.0236 2.1935 0.0230 0.9584 0.0696 0.0272 [1.00, 0.50, 0.66, 0.18]

0.0439 0.8716 0.0478 1.1874 0.0457 2.1525 0.0457 0.9131 0.1385 0.0892 [1.00, 0.52, 0.61, 0.21]

0.0658 0.8809 0.0674 1.0971 0.0672 2.1126 0.0672 0.8693 0.2041 0.1445 [1.00, 0.54, 0.57, 0.24]

0.0877 0.7930 0.0885 1.0959 0.0900 2.0674 0.0885 0.8194 0.2686 0.1792 [1.00, 0.60, 0.61, 0.29]

0.1097 0.8088 0.1097 0.9938 0.1117 2.0240 0.1097 0.7717 0.3331 0.2488 [1.00, 0.62, 0.56, 0.32]

0.1316 0.8997 0.1353 0.8077 0.1321 1.9748 0.1321 0.7175 0.4012 0.3198 [1.00, 0.61, 0.45, 0.33]

0.1535 0.8662 0.1553 0.7520 0.1541 1.9276 0.1541 0.6656 0.4682 0.3786 [1.00, 0.65, 0.44, 0.37]

0.1755 0.7390 0.1775 0.7835 0.1766 1.8766 0.1766 0.6093 0.5367 0.4544 [1.00, 0.74, 0.50, 0.44]

0.1974 0.8167 0.1986 0.6100 0.1983 1.8236 0.1983 0.5509 0.6025 0.5004 [1.00, 0.73, 0.40, 0.45]

0.2193 0.7079 0.2227 0.6189 0.2195 1.7690 0.2195 0.4908 0.6671 0.6038 [1.00, 0.82, 0.44, 0.52]

0.2413 0.6777 0.2417 0.5501 0.2425 1.7120 0.2417 0.4281 0.7345 0.6755 [1.00, 0.87, 0.42, 0.57]

0.2632 0.6693 0.2646 0.4535 0.2643 1.6517 0.2643 0.3616 0.8032 0.7262 [1.00, 0.91, 0.38, 0.61]

0.2851 0.6609 0.2864 0.3569 0.2858 1.5900 0.2858 0.2936 0.8685 0.7433 [1.00, 0.95, 0.34, 0.65]

0.3071 0.5515 0.3081 0.3187 0.3098 1.4881 0.3081 0.1815 0.9365 0.8596 [0.94, 1.00, 0.33, 0.70]

0.3290 0.3312 0.3292 0.3340 0.3290 1.3234 0.3290 0 1.0000 1.0000 [0.78, 1.00, 0.33, 0.71]

of V and that of W are different (i.e., V for the worst-link fairness performance while W for

the network-wise fairness performance); however, in the case of equal weighting factors, the

general trend of both curves agrees with each other. Thus, both fairness measures match

with the max-min fairness performance, as both V and W increase with minm {wmQm(a)},
in general. Consider the trend of each utility function. For every link, its utility value (i.e.,

Qm(a) of the mth link) against the value of J is given in Table 7.3. For a small J , the

links with smaller effective bandwidths usually obtain larger utility values (e.g., Q3(a)). It is

intuitive that those links with smaller effective bandwidths are more flexible to increase their

throughputs than other links with larger effective bandwidths. As J increases, the utility

values of those links with smaller effective bandwidths decrease for the sake of fairness.
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Figure 7.2: The relationship of system throughput and fairness with equal weighting factors.

However, with different channel gains, some link, say the mth link, with a small effective

bandwidth may be forced to use a small value of am so that only a small value of Qm(a)

is achieved, for example, Q4(a) in our example. From (7.27), G24 = 1.0, meaning that the

interference impact from the 4th link to the 2nd link is significant. In order to meet all the

effective bandwidth requirements, the 4th link can only use a small value of a4, which results

in a small value of Q4(a). Nonetheless, the utility values of all links converge to the same

value when J = J∗ (i.e., maximal fairness). Notice that the performance discrepancies in

Table 7.3 are merely due to the discrete exhaustive search used in the numerical analysis.

The desired tradeoff curve of system throughput and fairness performances is shown in

Figure 7.2. The curve is a bit concave in shape, meaning that in a nearly unfair situation
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Table 7.4: System parameters for the numerical analysis for the case of different weighting

factors

Parameter Value

M 4

η 0.01

σ 0.1

Pm 1, ∀m
(w1, ..., w4) (1, 2, 4, 8)(
Rd

1, ..., R
d
4

)
(2, 1, 0.5, 0.1)

J∗ 0.9249

(i.e., V ≈ 0), a unit decrease in system throughput gives a larger marginal improvement in

weighted max-min fairness performance. At a near-maximal fairness point (i.e., V ≈ 1), a

larger decrease of system throughput is required to further increase the fairness measure.

From this curve, different degrees of performance tradeoff between system throughput and

fairness can be acquired by suitably choosing the value of J . The shaped Jain’s fairness

index is also plotted for reference. This tradeoff curve is undoubtedly useful for effective

and efficient resource allocation. With application-specific constraints (such as fairness or

throughput requirements), a desired tradeoff point can be obtained from this relationship

curve and hence the corresponding resource allocation a can be deduced.

7.5.2 Different Weighting Factors

For the case of different weighting factors, the system parameters used for the numerical

analysis are given in Table 7.4, and the numerical results are given in Table 7.5. In Figure

7.3, the curve of the system throughput measure U and that of the fairness measure V with

different values of J are plotted, and the tradeoff curve of system throughput and fairness

performances is shown in Figure 7.4. For U and V , the trends of these two curves in Figure

7.3 and Figure 7.4 are more or less the same as those shown in Figure 7.1 and Figure 7.2,
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Figure 7.3: The system throughput measure and the fairness measures vs. the value of J

with different weighting factors.
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Table 7.5: Numerical results for the case of different weighting factors

J Q1(a) Q2(a) Q3(a) Q4(a)
∑

Qm(a) minm {wmQm(a)} U V W a = [a1, a2, a3, a4]

0 0.9115 0.0063 1.3134 0.0001 2.2313 0.0010 1.0000 0 0 [1.00, 0.46, 0.64, 0.14]

0.0617 0.9328 0.0313 1.2341 0.0089 2.2071 0.0625 0.9492 0.0666 0.0318 [1.00, 0.47, 0.60, 0.15]

0.1233 0.9285 0.0623 1.1746 0.0159 2.1813 0.1246 0.8952 0.1338 0.0610 [1.00, 0.49, 0.58, 0.16]

0.1850 0.8412 0.0941 1.1959 0.0232 2.1544 0.1853 0.8385 0.1994 0.0670 [1.00, 0.54, 0.63, 0.18]

0.2466 0.8522 0.1317 1.1082 0.0312 2.1233 0.2496 0.7733 0.2690 0.1117 [1.00, 0.56, 0.59, 0.19]

0.3083 0.8724 0.1553 1.0300 0.0401 2.0978 0.3106 0.7198 0.3351 0.1585 [1.00, 0.57, 0.55, 0.20]

0.3700 0.8759 0.1880 0.9567 0.0477 2.0683 0.3759 0.6579 0.4058 0.2096 [1.00, 0.59, 0.52, 0.21]

0.4316 0.8069 0.2199 0.9581 0.0546 2.0395 0.4364 0.5974 0.4713 0.2231 [1.00, 0.64, 0.55, 0.23]

0.4933 0.8754 0.2471 0.8272 0.0621 2.0118 0.4941 0.5394 0.5337 0.3208 [1.00, 0.63, 0.47, 0.23]

0.5550 0.8789 0.2786 0.7529 0.0698 1.9802 0.5573 0.4733 0.6021 0.3965 [1.00, 0.65, 0.44, 0.24]

0.6166 0.7774 0.3093 0.7837 0.0785 1.9489 0.6186 0.4076 0.6685 0.3887 [1.00, 0.72, 0.49, 0.27]

0.6783 0.7276 0.3426 0.7604 0.0856 1.9162 0.6844 0.3386 0.7397 0.4223 [1.00, 0.77, 0.50, 0.29]

0.7399 0.7910 0.3720 0.6265 0.0942 1.8837 0.7441 0.2708 0.8043 0.5729 [1.00, 0.76, 0.42, 0.29]

0.8016 0.8345 0.4045 0.5103 0.1004 1.8497 0.8035 0.1993 0.8686 0.7255 [1.00, 0.76, 0.36, 0.29]

0.8633 0.8969 0.4324 0.3678 0.1094 1.8065 0.8649 0.1086 0.9350 0.9124 [1.00, 0.75, 0.29, 0.29]

0.9249 0.9260 0.4625 0.2452 0.1211 1.7548 0.9249 0 1.0000 1.0000 [1.00, 0.76, 0.24, 0.30]

respectively. The curve of W , however, deviates more away from that of V in the case

of different weighting factors. In fact, using W in this case is less effective to accurately

indicate the improvement of weighted max-min fairness performance though the minimum

weighted utility value, minm {wmQm(a)}, increases with J , shown in Table 7.5. Nonetheless,

the Jain’s fairness index gauges network-wise fairness performance, instead of measuring the

worst-link fairness performance, even though the general trend of the curve roughly matches

the weighted max-min fairness performance. With different weighting factors, the allocation

solution a in the GOP is not the same as that with the equal weighting factor. As mentioned,

the smaller the value of wm, the more eager is the mth link to obtain more extra resources. At

the last row of Table 7.5, the value of Q1(a) is the largest while that of Q4(a) is the smallest,
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Figure 7.4: The relationship of system throughput and fairness with different weighting

factors.

187



as w1 < w2 < w3 < w4. Therefore, different traffic classes can be differentiated with different

weighting factors. As such, the use of wm is crucial for effective service differentiation and

QoS support in WMNs supporting heterogeneous traffic (e.g., voice, video, and data traffic).

7.6 Discussion

In this section, some issues on practical implementation are discussed. For WMNs with

centralized control, a central controller (such as a base station) essentially collects requests

from wireless nodes, makes decisions on call admission, and allocates resources to wireless

links. The global network information (i.e., network resources, QoS requirements of calls,

and channel conditions) are available at the central controller, thereby leading to an easier

practical implementation to obtain (near-)optimal resource allocation by solving the GOP. In

contrast, for WMNs with distributed control (without central coordination), acquiring global

network information by message exchanges is not desired, causing a considerable amount of

overhead. Thus, each node usually has its local network information only. As presented in

Chapter 3, node clustering is a viable approach, where the whole network is divided into

clusters. Within each cluster, a clusterhead merely deals with the network activity of its own

neighborhood [119]. Each clusterhead can run the GOP locally by treating the inter-cluster

interference as a portion of the intra-cluster interference.

Whether a resource allocation solution is optimal or suboptimal depends on the algorithm

design. Although our framework is universal in the sense that it can be applied to any

interference-limited system model, one drawback is that solving this optimization problem

is mostly computationally expensive. Some (suboptimal) algorithms with low complexity

are preferred for the sake of practical implementation. To tackle a non-trivial optimization

problem such as the GOP, two approaches are widely used:

1) Convex approximation – An original optimization problem is relaxed or approximated
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to a convex optimization problem. The optimal solution of the relaxed problem can be

achieved by classical methods such as gradient methods and interior-point methods [9].

In [26], it is proved that under a high SINR approximation, the objective function of the

GOP can be formulated to be a concave function (by verifying that the Hessian matrix

is negative definite) and, therefore, the GOP becomes a convex optimization problem.

A rich body of literature exists on the theory of convex optimization whereby fast,

simple, and robust practical algorithms can be devised (e.g., gradient-based iterations)

[9,26]; and

2) Interpreting KKT conditions – The necessary conditions for the optimal solution can

be verified the by KKT conditions. Optimal and/or heuristic algorithms can be de-

duced based on the interpretations of the KKT conditions [9,42]. To handle a large

amount of decision variables, data structure plays an important role in determining the

complexity. For instance, tree implementation together with sorting and/or searching

can facilitate to bring lower computational complexity to the algorithm [112].

In this Chapter, the goal is to develop a unified framework to balance throughput and

fairness. Nonetheless, the actual system performance with practical implementation needs

further investigation. Devising algorithms of low computational complexity is imperative;

addressing this issue, however, is left for further investigation.

7.7 Chapter Summary

In this Chapter, we propose a unified optimization framework for interference-limited WMNs,

whereby the optimal relationship curve of system throughput and fairness can be procured.

Different degrees of performance tradeoff between system throughput and fairness can be

attained, by suitably adjusting the value of our introduced bargaining floor. QoS support
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is assured with the help of the CAC based on the feasibility of the solution of the GOP.

Further, our resource allocation solutions achieve Pareto optimality, making efficient use of

network resources.
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Chapter 8

Conclusions and Further Research

8.1 Conclusions

The success of deploying WMNs to suburban and rural residential areas is highly contin-

gent on the effectiveness of how the network is managed and how the radio resources are

allocated. With the increasing demand of multimedia applications (e.g., voice, video, and

data services), QoS provisioning and fairness assurance are imperative in future broadband

wireless access. In this dissertation, we have proposed several novel and effective resource

allocation approaches for WMNs with QoS support and service differentiation. Our results

have showed that our proposed approaches are effective in packet-level QoS provisioning and

system performance improvement. Performance comparison has also been carried out to

demonstrate the merits of the proposed resource allocation approaches over their conven-

tional counterparts suggested in the literature. Further, our resource allocation strategies are

of low computational complexity, conducing to viable and preferred candidates for practical

implementation. The accomplishments in this dissertation are summarized as follows:

• In Chapter 3, we address the joint problem of node clustering and subcarrier allo-
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cation in order to foster frequency reuse and increase system capacity in WMNs for

suburban/rural residential areas. We propose a novel node clustering algorithm with

effective subcarrier allocation for WMNs. The proposed node clustering algorithm is

QoS-aware, and the subcarrier allocation is optimality-driven and can be performed in

a decentralized manner. Simulation results show that our novel tax-based subcarrier

allocation approach outperforms a conventional interference conflict-graph approach in

terms of frequency reuse ratio and system throughput. By carefully adjusting an up-

per bound of subcarriers allocated to each cluster, we can attain an improved system

performance. Further, the proposed resource allocation achieves Pareto optimality,

demonstrating efficient use of network resources. Our findings also reveal that how to

allocate resources in a decentralized fashion can affect the solution space of a perfor-

mance tradeoff between QoS provisioning and throughput maximization;

• In Chapter 4, we address the joint power-frequency-time resource allocation problem for

WMNs supporting high-speed multimedia applications. We propose three QoS-aware

resource allocation approaches, namely 1) a KKT-driven approach, 2) a GA-based ap-

proach, and 3) a hybrid KKT-GA approach. We compare our proposed approaches

with some existing resource allocation counterparts. It is shown that all of the pro-

posed approaches are effective in provisioning packet-level QoS and improving system

throughput. In particular, our proposed hybrid KKT-GA resource allocation approach

is demonstrated promising in achieving a desired balance between system performance

and computational complexity. Our findings reveal that QoS provisioning and through-

put maximization are two conflicting goals, where admitting more multimedia calls can

reduce the system throughput;

• To further enhance the system performance, in Chapter 5, we study the problem of non-

altruistic node cooperative resource allocation for WMNs with service differentiation.

We propose two low-complexity node cooperative resource allocation approaches, tak-

192



ing QoS support, subcarrier allocation, power allocation, partner selection/allocation,

and packet scheduling into account. Simulation results show that both proposed ap-

proaches are effective in packet-level QoS provisioning and system performance en-

hancement over their non-cooperative counterparts. Further, our study reveals a crit-

ical principle that whether node cooperation is beneficial depends upon the nature of

node cooperation, the mode of network operation, and the traffic pattern;

• In Chapter 6, by employing optimal stopping, we propose a simple channel sensing

order for secondary users in cognitive radio networks to alleviate the problem of low

resource utilization. By sensing the channels according to the descending order of their

achievable rates, we prove that a secondary user should stop at the first sensed free

channel. We can further prove that the proposed instinctive channel sensing order

is optimal in terms of throughput when the primary-free probabilities are equal. Be-

sides, the probability of collision in a multi-secondary user scenario with respect to the

proposed instinctive sensing is derived and further validated by extensive computer

simulations. Our results show that, when the number of secondary users approaches

the number of channels, resource utilization can be further improved at the cost of a

higher collision probability;

• With limited available radio resources, balancing system throughput and fairness for

WMNs with QoS support and high resource efficiency is vital. In Chapter 7, we

derive a unified optimization framework so as to procure the optimal relationship (i.e.,

tradeoff curve) of system throughput and fairness with QoS support. A relationship

curve between throughput and fairness can be obtained by solving the optimization

problem iteratively, whereby different degrees of performance tradeoff can be acquired.

Our numerical study indicates that the tradeoff curve of system throughput against

fairness is concave in shape, meaning that a unit decrease in system throughput leads

to a larger marginal improvement in fairness performance.
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8.2 Further Research

In this dissertation, we have addressed some key research issues related to resource manage-

ment tailored for WMNs. Not only our results demonstrate the effectiveness of our proposed

resource management approaches, but our studies also reveal other important research direc-

tions to further improving the system performance of WMNs. Despite its accomplishments,

this dissertation is only the necessary first step to understand the issues of radio resource

management for WMNs supporting heterogeneous traffic. More research problems need to

be addressed and solved before WMNs can be properly designed and successfully deployed

to suburban and rural residential areas in practice. Further research should address the

following challenging yet important research problems for WMNs:

• Gateway Deployment in WMNs – Employing multiple gateways (attached to the Inter-

net backbone) is one of the effective ways to alleviate the problem of traffic congestion

in WMNs [66]. With a single gateway only, traffic at and near the gateway is expected

to be heavy, posing the issue of a single-point-of-failure. In the presence of multiple

gateways, traffic load can be balanced more effectively and efficiently, thereby facili-

tating traffic routing, packet scheduling, and QoS provisioning. On the other hand,

with better traffic distribution, co-channel interference can be reduced to a greater

extent. Together with directional antennas, frequency reuse can be greatly fostered

and, therefore, system capacity can be further increased. However, how to deploy such

gateways in WMNs in order to achieve a desired system performance remains an open

research problem;

• Joint Routing and MAC-Layer Resource Allocation for WMNs – The issues of routing

and MAC-layer resource allocation are coupled, and studying these two issues sepa-

rately generally results in suboptimal system performance [18]. In WMNs supporting

heterogeneous traffic, route selection is necessary so as to guarantee delay and rate
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requirements of each incoming call and the ongoing sessions already admitted to the

system [17]. Recently, routing via network coding has been demonstrated promising in

terms of packet delivery rate [111]. Incorporating the notion of network coding when

designing a resource allocation scheme is certainly of great interest. However, obtain-

ing globally optimal solutions for the joint problem of (network coding-based) routing

and MAC-layer resource allocation usually requires exponential time complexity. Low-

complexity approaches for the joint network coding-based routing and packet-level

resource allocation problem with QoS assurance are strongly desired. Since end-to-end

QoS support and CAC are closely related, call-level resource allocation and packet-level

resource allocation should also be jointly considered;

• QoS Provisioning in Cognitive Radio Mesh Networks – In cognitive radio mesh net-

works (CRMNs), secondary users can access the spectrum only if there is no primary

activity. Therefore, resource reservation for secondary users is hardly feasible, as chan-

nel availabilities (or primary activities) vary from time to time. In CRMNs with broad-

band wireless access, we expect that multimedia applications are widely supported for

both licensed primary users and unlicensed secondary users. As a result, to effectively

support their QoS, soft bandwidth reservation for secondary users is indispensable.

In the presence of hidden terminals, effective MAC is also crucial so as to reduce the

probability of collision. How to design a simple yet low-temperature MAC protocol

tailored for CRMNs is an open research problem.
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Appendix A

Supplementary

A.1 Tax Interpretation of the KKT Conditions in Chap-

ter 3

Consider the following throughput maximization problem

max
c,p

{∑
m

∑
n

∑

l

cl
m,nrl

m,n

}
(A-1)

subject to pl
m,n ≥ 0,∀m,n, l (A-2)

∑
n

pl
m,n ≤ Pmax

m , ∀m, l (A-3)

cl
m,n ∈ {0, 1}, ∀m,n, l. (A-4)
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By relaxing the constraint (A-4), i.e., 0 ≤ cl
m,n ≤ 1, ∀m, n, l, consider part of the KKT

conditions of the relaxed problem with respect to pl
m,n

∂

∂pl
m,n

(
∑
m

∑
n

∑

l

cl
m,nrl

m,n) = µl
m − αl

m,n,∀m,n, l (A-5)

αl
m,npl

m,n = 0, ∀m,n, l (A-6)

µl
m

(∑
n

pl
m,n − Pmax

m

)
= 0, ∀m, l (A-7)

where αl
m,n(≥ 0) and µl

m(≥ 0) are the Lagrange multipliers for the constraints (A-2) and

(A-3), respectively. Condition (A-5) can be written as (A-8) and (A-9).

∂

∂pl
m,n

(
∑

n

∑

l

cl
m,nrl

m,n) +
∑

k 6=m

∂

∂pl
m,n

(
∑
n

∑

l

cl
k,nrl

k,n) = µl
m − αl

m,n, ∀m,n, l (A-8)

⇒ cl
m,n

∂rl
m,n

∂pl
m,n

+
∑

k 6=m

∂

∂pl
m,n

(
∑
n

∑

l

cl
k,nrl

k,n −Rd
k) = µl

m − αl
m,n, ∀m,n, l. (A-9)

Assuming
∑

n

∑
l c

l
k,nrl

k,n −Rd
k ≥ ε, condition (A-9) can be written as

cl
m,n

∂rl
m,n

∂pl
m,n

+
∑

k 6=m

∂

∂pl
m,n

(Uk(c,p, Rd
k)) = µl

m − αl
m,n, ∀m,n, l. (A-10)

Let T l
km,n = −∂Uk(c,p,Rd

k)

∂pl
m,n

. Viewing T l
km,n as tax paid by the mth clusterhead for generating

interference to the kth clusterhead over the nth subcarrier on the lth timeslot, condition (A-10)

is one of the (necessary) conditions for optimality for the relaxed problem. In other words,

each clusterhead optimizes its power allocation and subcarrier allocation to maximize its

payoff function, defined as

Sl
m,n

(
cl
m,n, pl

m,n

)
= cl

m,nrl
m,n − pl

m,n

M∑

k 6=m

T l
km,n, ∀m,n, l. (A-11)

As a result, for each subcarrier and each timeslot, each clusterhead is to maximize the differ-

ence between its throughput obtained minus its lump-sum tax paid to the other clusterheads

in the mesh backbone due to the induced interference.
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A.2 Upper Bound for Throughput in Chapter 4

Under the assumptions of no packet dropping for the real-time traffic and perfect statistical

traffic multiplexing, we derive the upper bound for the throughputs obtained for all the

traffic. Denote ρ1 and ρ2 as the voice activity factor and the video activity factor, respectively.

The upper bound for the throughput obtained for each of the traffic is given as follows.

• Throughput obtained for voice traffic, Tvoice:

Tvoice =
Nvoice∑

i=0

(
Nvoice

i

)
iρi

1(1− ρ1)Nvoice−i ×Rvoice × 5ms/20ms (A-12)

= ρ1NvoiceRvoice/4 (A-13)

where Nvoice and Rvoice are the number of voice sources in the system and the constant

data rate of voice traffic, respectively.

• Throughput obtained for video traffic, Tvideo :

Tvideo =
Nvideo∑

i=0

(
Nvideo

i

)
iρi

2(1− ρ2)Nvideo−i ×Rvideo × 5ms/5ms (A-14)

= ρ2NvideoRvideo (A-15)

where Nvideo and Rvideo are the number of video sources in the system and the mean

data rate of video traffic, respectively.

• Throughput obtained for background data traffic, Tdata1 :

Tdata1 =
∑
m

Rm − Tvoice − Tvideo (A-16)

where Rm is the achieved data rate for the mth link. Equation (A-16) can be served as

an upper bound for the throughput obtained by background data traffic.

• Throughput obtained for bursty data traffic, Tdata2 :

Tdata2 = λNdata

√
π (A-17)
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where λ and Ndata are the packet arrival rate and the number of data sources in the

system, (i.e., λ = 50 packets/second), respectively. Note that the mean of a Weibull

distribution (i.e., Weibull(u, k)) is uΓ(1 + 1/k), where Γ is the Gamma function, and

Γ(1 + 1/2) =
√

π/2.

A.3 Details on Non-Altruistic Node Cooperation

in Chapter 5

Consider a wireless network consisting of three nodes, namely Node S, Node R, and

Node D. All three nodes are equipped with a single antenna. Node S is to transmit data

to Node D, while Node R is viewed as a relay to help Node S forward the data to Node

D. We employ the Cooperation Protocol I suggested in [82] as our node cooperation

strategy. In the first symbol interval, Node S transmits a symbol to both Node R

and Node D. In the second symbol interval, Node R forwards the symbol received

from Node S to Node D, while Node S transmits another symbol to Node D. In this

work, we assume that Node D has complete knowledge of channel state information

(CSI). After receiving the symbols in the two intervals, Node D then employs the

maximum likelihood (ML) detection to decode the symbols originally transmitted from

Node S [104]. Notice that Node R can choose the decode-and-forward (DF) mode or

amplify-and-forward (AF) mode of cooperation in the second symbol interval. In this

work, although we consider the DF mode of cooperation (i.e., regenerative nodes),

we examine the outage performances of both the AF and DF modes for the sake of

completeness.

Let x1 and x2 be the first symbol and the second symbol transmitted by Node S,

respectively. We assume that the energy of a symbol is one and the mean of the value

of a symbol is zero, i.e., E[|xi|2] = 1 and E[xi] = 0, where i = 1, 2. Denote yD,1 as the
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signal received at Node D during the first symbol interval, yR,1 the signal received at

Node R during the first symbol interval, and yD,2 the signal received at Node D during

the second symbol interval.

A.3.1 AF Mode of Cooperation

Consider a frequency-flat slow Rayleigh fading environment where the carrier phase

distortion due to the fading channel can be estimated at the receiver and removed. For

the AF mode of cooperation, we have

yD,1 =
√

ESDhSDx1 + ηD,1 (A-18)

yR,1 =
√

ESRhSRx1 + ηR,1 (A-19)

yD,2 =
√

ESDhSDx2 +
√

ERDhRD
yR,1√

E[|yR,1|2]
+ ηD,2 (A-20)

where EXY (≥ 0) is the average energy of a symbol received at Node Y from Node X,

i.e., X, Y ∈ {S, R, D}, hXY is the Rayleigh fading coefficient for the X → Y link

modeled as an independent zero-mean complex Gaussian random variable with unit

variance, and ηD,1, ηR,1, and ηD,2 are independent zero-mean complex Gaussian random

variables with variance σ2/2 per dimension. Here, we make a reasonable assumption

that the fading channels are quasi-static over a period of two symbol intervals. Notice

that the introduction of a factor of
√

E[|yR,1|2] in (A-20) is to normalize the received

signal at Node R during the first symbol interval so that the average energy of a symbol

is one, where
√

E[|yR,1|2] = ESR + σ2. Thus, the received signals can be represented in

a matrix form given by

yAF = HAFx + QAF (A-21)

200



where x = [x1 x2], yAF = [yD,1 yD,2/w], QAF = [ηD,1 η̃/w], and HAF is the channel

matrix given by

HAF =




√
ESDhSD 0

1
w

√
γESRERD
γESR+1 hSRhRD

1
w

√
ESDhSD


 (A-22)

with γ = 1/σ2, η̃ = ηD,2 +
√

ERD
ESR+σ2 hRDηR,1, and w =

√
(ESR + ERD + σ2)/(ESR + σ2).

Notice that a factor of 1/w is multiplied to (A-20) to ensure the variance of the noise

to be the same as that of ηD,1 [82].

A.3.2 DF Mode of Cooperation

For the DF mode of cooperation, we have

yD,1 =
√

ESDhSDx1 + ηD,1 (A-23)

yR,1 =
√

ESRhSRx1 + ηR,1 (A-24)

yD,2 =
√

ESDhSDx2 +
√

ERDhRDx1 + ηD,2. (A-25)

In (A-25), we assume that Node R can decode the received symbol x1 successfully, yet

this assumption will be lifted when we perform the analysis of outage probability, to

be discussed in Section A.3.3. The received signals can be represented in a matrix form

given by

yDF = HDFx + QDF (A-26)

where yDF = [yD,1 yD,2], QDF = [ηD,1 ηD,2], and HDF is the channel matrix given by

HDF =



√

ESDhSD 0
√

ERDhRD

√
ESDhSD


 . (A-27)
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A.3.3 Outage Performance

Here, we study the outage probabilities of both the AF and DF modes of cooperation.

Let CAF , CDF , and Rtar be the channel capacity achieved by the AF mode, the channel

capacity achieved by the DF mode, and a target transmission rate, respectively. An

outage event occurs when the channel capacity is smaller than the target transmission

rate, e.g., CAF < Rtar.

The channel capacity achieved by the AF mode is given by

CAF =
1
2

log2 det (I2 + γHAFH∗
AF )

=
1
2

log2

(
(1 + γαSD)(1 +

1
w2

γαSD) +
1

w2

(
γ2

γESR + 1

)
αSRαRD

)
(A-28)

where αSR = ESR|hSR|2, αSD = ESD|hSD|2, and αRD = ERD|hRD|2. Notice that αSR,

αSD, and αRD are exponential random variables. On the other hand, assuming that

Node R can perfectly decode the symbols transmitted from Node S, the channel ca-

pacity achieved by the DF mode, denoted by C
D̃F

, is given by

C
D̃F

=
1
2

log2 det (I2 + γHDFH∗
DF )

=
1
2

log2

(
(1 + γαSD)2 + γαRD

)
. (A-29)

Proposition 21 In a three-node wireless network employing the cooperation protocol

of interest, the AF mode of cooperation achieves the diversity order of two; however,

the DF mode of cooperation can achieve the diversity order of two only if the decoding

at the relay is perfect.

Proof: Denote P out
AF (Rtar) as the outage probability of the AF cooperation mode at a
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target rate Rtar, which is given by

P out
AF (Rtar) = P (CAF < Rtar)

≤ P

(
1
2

log2

(
1 + εmin (αSD + αSRαRD)

)
< Rtar

)

= P

(
αSD + αSRαRD <

22Rtar − 1
εmin

)
(A-30)

where εmin = min
{(

1 + 1
w2

)
γ, 1

w2

(
γ2

γESR+1

)}
. Let δ = 22Rtar−1

εmin . Let λSR, λSD, and λRD

be the parameters of the exponential random variables αSR, αSD, and αRD, respectively.

Equation (A-30) becomes

∫ δ

0
P (αSRαRD < δ − x) λSDe−λSDxdx

≤
∫ δ

0
P

(
αSRαRD

αSR + αRD + 1
< δ − x

)
λSDe−λSDxdx

=δ2

∫ 1

0


P

(
αSRαRD

αSR+αRD+1 < δx′
)

δx′


x′λSDe−λSDδ(1−x′)dx′ (A-31)

where x′ = 1 − x/δ. Let h(δ) = δx′. As γ → ∞, δ → 0 and h(δ) → 0. Applying the

results obtained in [64], we have

lim
γ→∞

1
h(δ)

P

(
αSRαRD

αSR + αRD + 1
< h(δ)

)
= λSR + λRD.

Therefore, in a high SNR regime, (A-31) can be re-written as

δ2

∫ 1

0
(λSR + λRD) x′λSDdx′ =

λSD(λSR + λRD)
2

δ2.

Then, the outage probability of the AF cooperation mode at a target rate Rtar is

upper-bounded according to

P out
AF (Rtar) ≤ λSD(λSR + λRD)

2
δ2. (A-32)

From (A-32), it is clear that the diversity order of two can be attained in the AF

cooperation mode [104].
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For the case of the DF cooperation mode, denote P out
DF (Rtar) as the outage probability

at a target rate Rtar, given by

P out
DF (Rtar) = P (CDF < Rtar)

where [64]

CDF = min
{

1
2

log2 (1 + γαSR) , C
D̃F

}
. (A-33)

In (A-33), the first term refers to the maximum transmission rate at which Node R can

decode the symbols sent from Node S successfully, whereas the second term is given

by (A-29). Thus, the outage probability of the DF mode is given by

P out
DF (Rtar) = P (CDF < Rtar)

= P

(
min

{
αSR, 2αSD + αRD + γα2

SD

}
<

22Rtar − 1
γ

)

≤ P

(
min {αSR, 2αSD + αRD} <

22Rtar − 1
γ

)
. (A-34)

Let δ = 22Rtar−1
γ , we have

P out
DF (Rtar) ≤ P (αSR < δ) + P (αSR ≥ δ) P (2αSD + αRD < δ) .

As γ →∞, δ → 0. Applying the results obtained in [64], we have

lim
γ→∞

1
δ
P (αSR < δ) = λSR

lim
γ→∞P (αSR ≥ δ) = 1

lim
γ→∞

1
δ2

P (2αSD + αRD < δ) =
λSDλRD

4
. (A-35)

Thus, the outage probability of the DF cooperation mode at a target rate Rtar is

upper-bounded according to

P out
DF (Rtar) ≤ λSRδ +

λSDλRD

4
δ2. (A-36)
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From (A-36), the DF cooperation mode provides no diversity gain even in a high SNR

regime [104]. The rationale is that the diversity benefit vanishes due to the decoding

capability of Node R. However, given that the decoding is perfect at Node R, the

diversity order of two can be achieved in the DF cooperation mode. Denote P out
D̃F

(Rtar)

as the outage probability of the DF cooperation mode with perfect decoding at a target

rate Rtar. In a high SNR regime, we have

P out
D̃F

(Rtar) = P
(
C

D̃F
< Rtar

) ≤ λSDλRD

4
δ2.

¥

A.3.4 Relay Selection

In a large-scale wireless network, it is likely that a source node can exploit the notion

of selection diversity. With a number of potential relays, the source node can choose

the best node as its relay to assist its data transmissions.

Corollary 5 In a wireless network with m potential relays employing the cooperation

protocol of interest with relay selection, both the AF cooperation mode and DF cooper-

ation mode with perfect decoding achieves the full diversity order.

Proof: Following the similar steps shown in the proof of Proposition 21, we consider

the outage probability of the AF cooperation mode with relay selection at a target

rate Rtar, denoted by P out
AF,sel(Rtar). Denote EXRi as the average energy of a symbol

received at Node Ri from Node X, where i ∈ {1, 2, . . . m}, αSRi = ESRi |hSRi |2, and

αRiD = ERiD|hRiD|2. We have

P out
AF,sel(Rtar) = P

(
1
2

log2

(
(1 + γαSD)(1 +

γαSD

w2
) + max

i

{
αSRiαRiD

w2

(
γ2

γESRi + 1

)})
< Rtar

)

≤ P

(
αSD + max

i
{αSRiαRiD} <

22Rtar − 1
εmin

)
(A-37)
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where εmin = min
{(

1 + 1
w2

)
γ, mini

{
1

w2

(
γ2

γESRi
+1

)}}
. Let δ = 22Rtar−1

εmin . Let λSRi and

λRiD be the parameters of the exponential random variables αSRi and αRiD, respec-

tively. Inequality (A-37) becomes

P out
AF,sel(Rtar) ≤

∫ δ

0
P

(
αSRi max

i
{αRiD} < δ − x

)
λSDe−λSDxdx

=
∫ δ

0

m∏

i=1

P (αSRiαRiD < δ − x) λSDe−λSDxdx.

By Proposition 21, in a high SNR regime, we have

P out
AF,sel(Rtar) ≤ λSD

∏m
i=1 (λSRi + λRiD)

m + 1
δm+1.

Therefore, the full diversity order can be obtained with relay selection in the AF

cooperation mode.

The outage probability of the DF cooperation mode with perfect decoding and relay

selection at a target rate Rtar, denoted by P out
D̃F ,sel

(Rtar), is given by

P out
D̃F ,sel

(Rtar) = P

(
2γαSD + γ2α2

SD + max
i
{γαRiD} < 22Rtar − 1

)

≤ P

(
αSD + max

i
{αRiD} < δ

)

=
∫ δ

0
P

(
max

i
{αRiD} < δ − x

)
λSDe−λSDxdx

=
∫ δ

0

m∏

i=1

P (αRiD < δ − x) λSDe−λSDxdx

where δ = 22Rtar−1
γ . Thus, by Proposition 21, in a high SNR regime, we have

P out
D̃F ,sel

(Rtar) ≤ λSD
∏m

i λRiD

m + 1
δm+1.

With relay selection, the DF cooperation mode with perfect decoding achieves the full

diversity order. ¥
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A.3.5 Cooperation versus Non-Cooperation

Consider a non-altruistic cooperative wireless network consisting of a number of nodes,

including Node S, Node R, and Node D. Suppose Node D is a receiving node at the

time period of interest, and both Node S and Node R have their own data to transmit.

Here, we adopt the DF cooperation mode to illustrate the idea of whether and when

node cooperation is beneficial. According to the discussion given in Section A.3.2, the

DF cooperation mode should not be initiated unless the decoding at Node R is reliable.

Therefore, the DF cooperation mode is employed only if Node R can reliably decode

the symbols sent from Node S and vice versa. Assuming perfect decoding at Node R,

we have

yD,1 =
√

aSESDhSDx1 + ηD,1 + I (A-38)

yR,1 =
√

aSESRhSRx1 + ηR,1 + I (A-39)

yD,2 =
√

aSESDhSDx2 +
√

aRERDhRDx1 + ηD,2 + I (A-40)

where aX is the scaling factor for the transmit power of Node X, i.e., 0 ≤ aX ≤ 1 and

I is the co-channel interference (e.g., generated by the transmissions from other clus-

ters). With effective node clustering, the co-channel interference level can be strictly

bounded [24] (see Chapter 3), and we denote σ2 as the aggregate noise-plus-co-channel

interference power. Thus, (A-38) and (A-40) can be represented in the following matrix

form

yDF,p = HDF,px + QDF,p (A-41)

where yDF,p = [yD,1 yD,2], QDF,p = [ηD,1 + I ηD,2 + I], and HDF,p is the channel matrix

given by

HDF,p =



√

aSESDhSD 0
√

aRERDhRD

√
aSESDhSD


 . (A-42)
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Denote Cc as the channel capacity achieved by means of node cooperation from Node

S to Node D (with the help of Node R), which is given by

Cc =
1
2

log2 det
(
I2 +

1
σ2

HDF,pH∗
DF,p

)

=
1
2

log2

(
(1 + aSγSD)2 + aRγRD

)
(A-43)

where γSD = ESD|hSD|2/σ2 and γRD = ERD|hRD|2/σ2.

Corollary 6 Given perfect decoding at Node R, arbitrarily positive power allocation

has no impact on the diversity performance in the DF cooperation mode.

Proof: Similar to the proof of Proposition 21, we consider the outage probability

of the DF cooperation mode with arbitrarily positive power allocation, denoted by

P out
c (Rtar), where aS , aR > 0. We have

P out
c (Rtar) = P (Cc < Rtar)

= P
(
2aSγSD + a2

Sγ2
SD + aRγRD < 22Rtar − 1

)

≤ P
(
2aSγSD + aRγRD < 22Rtar − 1

)

≤ P (2αSD + αRD < δ)

where αSD = ESD|hSD|2, αRD = ERD|hRD|2, δ = 22Rtar−1
εmin , and εmin = min{aS

σ2 , aS
σ2 }. As

σ2 → 0, δ → 0. Therefore, by (A-35), we have

lim
δ→0

1
δ2

P out
c (Rtar) ≤ λSDλRD

4
.

¥

In fact, the results obtained in Corollary 6 can be extended to the case with relay

selection.

Corollary 7 Given perfect decoding at Node R, arbitrarily positive power allocation

has no impact on the diversity performance in the DF cooperation mode with relay

selection.
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Proof: It can be proved by following the same arguments given in the proof of Corol-

laries 5 and 6. ¥

Denote Cnc as the channel capacity achieved from Node S to Node D without node

cooperation (i.e., ordinary direct transmissions), which is given by

Cnc = log2 (1 + γSD) . (A-44)

In the case of non-altruistic node cooperation, power allocation is imperative as part

of the transmit power of a node is dedicated to transmitting their own data (i.e., direct

transmissions) and the rest of the transmit power is dedicated to relaying the data

from other nodes (i.e., assisted transmissions). The variables aS and aR in (A-43)

capture the power allocation. Here, we derive a sufficient condition for a cooperative

transmission being advantageous over an ordinary direct transmission, which is given

by

Cc ≥ Cnc

⇒ (1 + aSγSD)2 + aRγRD ≥ (1 + γSD)2

⇒ aS ≥ −1 +
√

(1 + γSD)2 − aRγRD

γSD
. (A-45)

Notice that in the case where relay selection is considered, R = arg maxRi {aRiγRiD}.
Consider γSD = γRD = γ̂ and aR = ρaS, where ρ ≥ 0. The sufficient condition for a

cooperative transmission being advantageous over an ordinary direct transmission is

given by

aS ≥ −(2 + ρ) +
√

(2 + ρ)2 + 4γ̂(γ̂ + 2)
2γ̂

. (A-46)

First, we consider the boundary case where aR = 0. Since aS has to be positive (i.e.,

aS > 0) for a feasible cooperative transmission, ρ = 0. When ρ = 0, from (A-46), aS ≥ 1;

however, since 0 ≤ aS ≤ 1, aS = 1. Thus, for the case of aS = 1 and aR > 0, the sufficient
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condition is (strictly) satisfied. In fact, this corresponds to the scenario of altruistic

node cooperation (e.g., with pure relays in IEEE 802.16j). On the other hand, given

the value of ρ, the value of aS is lower-bounded by (A-46) in order for node cooperative

transmissions to be beneficial. This scenario of interest corresponds to non-altruistic

node cooperation in wireless networks where every node has its own data to transmit

and only a portion of its transmit power can be dedicated to relaying data from other

neighboring nodes. In fact, the condition (A-45) refers to the cooperative transmissions

being beneficial to an individual node only. For the sake of overall system performance,

cooperation among nodes should be considered in a holistic manner, as discussed in

Chapter 5.

A.3.6 Numerical Results

In our numerical analysis, we compare the outage probabilities of non-altruistic coop-

erative transmissions and ordinary direct transmissions. Regarding non-altruistic node

cooperation with regenerative wireless nodes, the nodes that can successfully decode

some neighboring node’s transmissions become its potential relays. Here, if the rate

achieved by a source-relay link is larger than that by a cooperative transmission given

in (A-43), we assume that the relay of interest can reliably decode the source node’s

data and become one of its potential relays [64]. Figure A.1 depicts the outage prob-

abilities of cooperative transmissions using the DF cooperation mode and ordinary

direct transmissions. As observed in Figure A.1, without considering perfect decoding,

no diversity gain can be obtained even in the presence of multiple relays (i.e., Propo-

sition 21). On the other hand, given perfect decoding, node cooperative transmissions

with one relay achieve the diversity order of two (i.e., Corollary 6), while the ones with

three relays achieve the diversity order of four (i.e., Corollary 7). The details of this

supplementary chapter are reported in [25].
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Figure A.1: Outage probabilities of cooperative transmissions using the DF cooperation

mode and ordinary direct transmissions (where ESD = ERD, aS = 0.75, aR = 0.25, and

σ2 = 10−3W).
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Appendix B

Proofs of Propositions, Corollaries,

Lemmas, and Theorems

Proposition 1 Suppose all available subcarriers are chosen by the clusterheads at least once

on every timeslot (i.e.,
∑

m cl
m,n ≥ 1,∀n, l). The subcarrier allocation solution obtained from

our proposed approach is Pareto optimal.

Proof: Given the action profile or solution c∗ (i.e., subcarrier allocation) obtained from

(3.5), Um(c∗, Rd
m) is the utility acquired by the mth clusterhead. Consider another action

profile c̃. For some m, if Um(c̃, Rd
m) > Um(c∗, Rd

m), then Un(c̃, Rd
n) < Un(c∗, Rd

n) for some n,

as either c̃m º c∗m or c̃n ¹ c∗n or both. According to the definition of Pareto optimality, the

subcarrier allocation solution c∗ obtained from our proposed approach achieves the Pareto

optimality. ¥

Proposition 2 Suppose all available subcarriers are active. If all the clusters are heavily

loaded (i.e., 0 <
∑L

l

∑N
n cl

m,nrl
m,n −Rd

m < ε,∀m), frequency reuse is prohibited.

Proof: If 0 <
∑L

l

∑N
n cl

m,nrl
m,n − Rd

m < ε,∀m, εl
m,n → ∞,∀m,n, l, and hence T l

mj,n →
∞,∀j, m, n, l. According to the subcarrier allocation criterion given in (3.5), a subcarrier
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can be selected only once (i.e.,
∑

m cl
m,n = 1, ∀n, l). Therefore, frequency reuse is prohibited.

¥

Proposition 3 Suppose all available subcarriers are active and all the clusters are heavily

loaded. Modeled by a round-robin game played by the clusterheads, the proposed subcarrier

allocation solution attains an NE.

Proof: Rewrite the payoff function of the mth clusterhead over the nth subcarrier on the

lth timeslot as Sl
m,n(cl

m,n, cl−m,n), where cl−m,n = (cl
1,n, ..., cl

m−1,n, cl
m+1,n, ...cl

M,n). The proposed

subcarrier allocation approach can be modeled by a round-robin game, where clusterheads

(players) take turn to maximize their payoffs based on the subcarrier allocation criterion

given in (3.5). Under the conditions that all available subcarriers are active and all the

clusters are heavily loaded, all the clusterheads would have no intention to re-allocate the

subcarriers, for Sl
m,n(c∗lm,n, c∗l−m,n) ≥ Sl

m,n(cl
m,n, c∗l−m,n), ∀m,n, l, where c∗ is the currently

obtained subcarrier allocation solution and c is another solution. According to the definition

of an NE, the subcarrier allocation solution c∗ obtained from our proposed approach attains

an NE. ¥

Corollary 1 If an NE is attained, all available subcarriers are in use.

Proof: Suppose that there exists a subcarrier allocation solution c̃ at an NE, where not all

the subcarriers are in use, i.e.,
∑

m c̃l
m,n = 0, ∃n, l. We can always find another solution c∗

where c∗ ≥ c̃ such that Sl
m,n(c∗lm,n, c̃l−m,n) > Sl

m,n(c̃l
m,n, c̃l−m,n), ∃m,n, l, which contradicts to the

definition of an NE. Thus, no such solution c̃ exists at an NE, and all available subcarriers

are in use at an NE. ¥

Proposition 4 The ICRAOP is an NP-hard problem.
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Proof: We prove the NP-hardness by reducing the well-known NP-complete number par-

titioning problem (denoted by PARTITION1) [34] to the ICRAOP. We consider the special

case of the ICRAOP by fixing the power allocation and letting Mc = 2, rl
1,n = rl

2,n = rl
n, ∀n,

and Rd
1 = Rd

2 =
∑Nc

n=1

∑Lc
l=1

rl
n
2 . Thus, the “size” of the nth subcarrier at the lth timeslot is rl

n.

Since each subcarrier can only be allocated to one link at any timeslot (i.e., cl
1,n + cl

2,n = 1,

∀n, l), the solution to this special-case problem is exactly the same as that of the PARTITION

problem. In other words, the PARTITION problem can be polynomially transformed into

the special-case problem, and vice versa. Since the PARTITION problem is NP-complete,

the special-case problem is also NP-complete. Further, the above special-case problem can

be generalized by the ICRAOP. Thus, the ICRAOP is an NP-hard problem. ¥

Lemma 1 The utility function of the mth node, given in (5.13), is an increasing function

of its achievable data rate.

Proof: Without loss of generality, assume Rm(c̃, p̃, ã, z̃) > Rm(c,p,a, z), ∃m. Consider the

following two cases:

Case 1: For Θ = 1, since Rm(c̃, p̃, ã, z̃) > Rm(c,p,a, z), Um(Rm(c̃, p̃, ã, z̃)|Θ) = Rm(c̃, p̃, ã, z̃) >

Rm(c,p,a, z) = Um(Rm(c,p,a, z)|Θ);

Case 2: For Θ = 2, since Rm(c̃, p̃, ã, z̃) > Rm(c,p,a, z),

ln
(

Rm(c̃, p̃, ã, z̃)
A

)
> ln

(
Rm(c,p,a, z)

A

)
(B-1)

⇒
[
− ln

(
Rm(c̃, p̃, ã, z̃)

A

)]κ

<

[
− ln

(
Rm(c,p,a, z)

A

)]κ

, for κ > 0 (B-2)

⇒ Um(Rm(c̃, p̃, ã, z̃)|Θ) > Um(Rm(c,p,a, z)|Θ). (B-3)

1Any instance of PARTITION is a finite set Ω = {1, 2, . . . , N}, and a size s(n) ∈ Z+ for each n ∈ Ω. Any

yes-instance of PARTITION is a subset (i.e., partition) of Ω, N ′ ⊆ Ω such that
∑

n∈N ′ s(n) =
∑

n∈Ω−N ′ s(n)

[34].
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By combining the above two cases, the utility function of the mth node increases with its

achievable data rate. ¥

Proposition 5 The NCRAOP is an NP-hard problem.

Proof: We omit the proof as it is similar to the one for Proposition 4. ¥

Proposition 6 (Optimal Power Allocation) Let

f(pl
m,n) = ξ(2)l

m −
M∑

u=1

(
U ′

u (Ru (·) |Θ) + ξ(1)
u

) ∂Ru (·)
∂pl

m,n

,∀m,n,l. (B-4)

The optimal power allocation, denoted by p∗, for the NCRAOP is given by p∗lm,n = max{p̃l
m,n, 0}, ∀m,n,l,

where p̃l
m,n is the solution of the function f(p̃l

m,n) = 0.

Proof: We substitute ξ(7)l
m,n in (5.31) into (5.34), which leads to

pl
m,nf(pl

m,n) = 0, ∀m,n,l. (B-5)

Since ξ(7)l
m,n ≥ 0, f(pl

m,n) ≥ 0. Thus, p∗lm,n = 0 if f(pl
m,n) > 0 or p∗lm,n = p̃l

m,n if f(p̃l
m,n) = 0,

otherwise. The optimal power allocation for the NCRAOP is given by p∗lm,n = max{p̃l
m,n, 0}, ∀m,n,l.

¥

Proposition 7 (Subcarrier Allocation Criterion) For the nth subcarrier and the lth

timeslot, the necessary condition for cl
m,n being positive is

m = arg max
m̃

{(
U ′

m̃ (Rm̃ (·) |Θ) + ξ(1)
m̃

) ∂Rm̃ (·)
∂cl

m̃,n

}
. (B-6)

Proof: We substitute ξ(9)l
m,n in (5.29) into (5.32), which leads to

cl
m,n

(
ξ(3)l

n −
(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂cl

m,n

)
= 0, ∀m,n,l. (B-7)
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Since ξ(9)l
m,n ≥ 0,

ξ(3)l

n ≥
(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂cl

m,n

. (B-8)

Therefore, the necessary condition for cl
m,n being positive is

ξ(3)l

n =
(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂cl

m,n

. (B-9)

Notice that ξ(3)l
n can be interpreted as an upper bound of

(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm(·)
∂cl

m,n

which represents the (scaled) marginal increase in U ′
m (Rm (·) |Θ) when the nth subcarrier is

allocated to the mth node on the lth timeslot (i.e., cl
m,n = 1). Thus, the criterion of subcarrier

allocation can be given by

m = arg max
m̃

{(
U ′

m̃ (Rm̃ (·) |Θ) + ξ(1)
m̃

) ∂Rm̃ (·)
∂cl

m̃,n

}
. (B-10)

Assuming Rm (c,p,a, z) 6= Rd
m (i.e., ξ(1)

m = 0), the subcarrier allocation criterion can be

further simplified as follows. For the nth subcarrier and the lth timeslot, choose m∗ such that

m∗ = arg max
m

{
U ′

m (Rm (·) |Θ)
∂Rm (·)
∂cl

m,n

}
(B-11)

and set cl
m∗,n = 1. ¥

Proposition 8 (Partner Selection Criterion) The necessary condition for zmu being

positive is

u = arg max
ũ6=m

{
1

amũ

((
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmũ

− ξ(4)
ũ − ξ(5)

m

)}
. (B-12)

Proof: We substitute ξ(10)
mu in (5.30) into (5.33), which leads to

zmu

(
−

(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmu

+ ξ(4)
u + ξ(5)

m + ξ(6)
uamu

)
= 0, ∀m,u. (B-13)

Since ξ(10)
mu ≥ 0,

ξ(6)
uamu ≥

(
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmu

− ξ(4)
u − ξ(5)

m. (B-14)
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Therefore, the necessary condition for zmu being positive is

ξ(6)
u =

1
amu

((
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmu

− ξ(4)
u − ξ(5)

m

)
. (B-15)

Here, ξ(6)
u can be interpreted as an upper bound of 1

amu

((
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm(·)
∂zmũ

− ξ(4)
u − ξ(5)

m

)

which represents the (scaled) marginal increase in U ′
m (Rm (·) |Θ) when the uth node becomes

a partner of the mth node (i.e., zmu = 1). Thus, the criterion of partner selection can be

given by

u = arg max
ũ6=m

{
1

amũ

((
U ′

m (Rm (·) |Θ) + ξ(1)
m

) ∂Rm (·)
∂zmũ

− ξ(4)
ũ − ξ(5)

m

)}
. (B-16)

Assuming Rm (c,p,a, z) 6= Rd
m (i.e., ξ(1)

m = 0), and ignoring the constraints (5.18) and (5.19)

(i.e., ξ(4)
u = ξ(5)

m = 0), the partner selection criterion can be deduced as follows. For the

mth node, choose u∗ such that

u∗ = arg max
u6=m

{
U ′

m (Rm (·) |Θ)
amu

∂Rm (·)
∂zmu

}
(B-17)

and set zmu∗ = 1. ¥

Corollary 2 (Partner Allocation Criterion) The necessary condition for zmu being

positive is

m = arg max
m̃6=u

{
1

am̃u

((
U ′

m̃ (Rm̃ (·) |Θ) + ξ(1)
m̃

) ∂Rm̃ (·)
∂zm̃u

− ξ(4)
u − ξ(5)

m̃

)}
. (B-18)

Proof: The proof is the same as the one for Proposition 8. Assuming Rm (c,p,a, z) 6= Rd
m

(i.e., ξ(1)
m = 0), and ignoring the constraints (5.18) and (5.19) (i.e., ξ(4)

u = ξ(5)
m = 0), the

partner allocation criterion can be deduced as follows. For the uth node, choose m∗ such that

m∗ = arg max
m6=u

{
U ′

m (Rm (·) |Θ)
amu

∂Rm (·)
∂zmu

}
(B-19)

and set zm∗u = 1. ¥
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Proposition 9 (Power Allocation Criterion for Assisted Transmissions) For the

uth node, the sufficient condition for amu being positive is auj > 0 (and zuj = 1), ∃m, j.

Proof: Since the total transmit power of the uth node will be split into parts (i.e., auu > 0

and amu > 0) only if it becomes a partner of the mth node, for some m, it is trivial that

amu > 0 if zmu = 1; otherwise, amu = 0. Also, from (5.20), amu > 0 if auu < 1. Similar

to the discussion given in Appendix A.3.5, in order for a cooperative transmission being

advantageous over an ordinary direct transmission, the lower bound on auu can be given by

auu ≥ max
∀n,l




−1 +

√
(1 + gl

uu,npl
u,n)2 − zujaujgl

uj,npl
j,n

gl
uu,npl

u,n



 . (B-20)

Therefore, if amu > 0, ∃m, then auu < 1. In order for the condition (B-20) to be satisfied,

auj > 0 (and zuj = 1), ∃j. ¥

Proposition 10 With the subcarrier allocation solution, denoted by c̃, the optimal power

allocation solution, denoted by p∗, for the optimization problem given in (5.56)-(5.59) is

given

p∗lm,n = c̃l
m,n

[
U ′

m(Rm(p)|Θ) + ξ(1)
m

ξ(2)l
m

− 1
gl
mm,n

]+

,∀m,n,l (B-21)

where [x]+ = max{0, x}.

Proof: Since zmu = 0, ∀m6=u, the KKT condition with respect to pl
m,n given in (5.31) becomes

−
(
U ′

m (Rm(p)|Θ) + ξ(1)
m

) ∂Rm(p)
∂pl

m,n

+ ξ(2)l

m = ξ(7)l

m,n, ∀m,n, l. (B-22)

We substitute ξ(7)l
m,n in (B-22) into (5.34), which leads to

pl
m,n

(
ξ(2)l

m −
(
U ′

m (Rm(p)|Θ) + ξ(1)
m

) ∂Rm(p)
∂pl

m,n

)
= 0, ∀m,n,l. (B-23)
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If ξ(2)l
m >

(
U ′

m (Rm(p)|Θ) + ξ(1)
m

) ∂Rm(p)
∂pl

m,n
, then the condition (B-23) holds if pl

m,n = 0; other-

wise, pl
m,n = U ′m(Rm(c̃)|Θ)+ξ(1)

m

ξ(2)l
m

− 1
gl

mm,n
. Thus, the optimal power allocation solution is given

by

p∗lm,n = c̃l
m,n

[
νl

m − 1
gl
mm,n

]+

(B-24)

where νl
m = U ′m(Rm(c̃)|Θ)+ξ(1)

m

ξ(2)l
m

. Notice that νl
m is often referred to as the water level of the

mth node on the lth timeslot such that
∑N

n=1 p∗lm,n = Pmax
m . ¥

Lemma 2 With the subcarrier allocation solution and the partner allocation solution, de-

noted by c̃ and (ã, z̃), respectively, the power allocation solution obtained from water filling,

denoted by p∗, is given by

p∗lm,n = c̃l
m,n



−

(
2ξ(2)l

m −Υãl
mmgl

mm,n

)
+

√
Υ2(ãl

mm)2(gl
mm,n)2 − 4(ξ(2)l

m)2Γm

2ξ(2)l
mãl

mmgl
mm,n




+

, ∀m,n, l

(B-25)

where Υ = U ′
m(Rm(p)|Θ) + ξ(1)

m and Γm =
∑

u6=m z̃muãmugl
mu,np̂l

u,n.

Proof: We omit the proof as it is similar to the one for Proposition 10. ¥

Proposition 11 Modeled by a round-robin game played by the RG nodes with fixed subcar-

rier allocation and power allocation, the proposed partner selection solution in the distributed

resource allocation achieves an NE.

Proof: Rewrite the utility function of the mth node as Um(zm, z−m), where zm = [zmu]1×M

and z−m =
(
[zmu]1×M [z2u]1×M . . . [z(m−1)u]1×M [z(m+1)u]1×M . . . [zMu]1×M

)T
. Viewing Um(zm, z−m)

as the payoff function of the mth node, we model our distributed node cooperative resource

allocation approach as a round-robin game played by the RG nodes. In specific, with fixed

subcarrier allocation and power allocation, each RG node takes turn to maximize its own
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payoff function by choosing the best partner. Since each RG node selects the best part-

ner in the proposed distributed approach, the RG nodes would have no tendency to perform

partner re-selection, for Um(z∗m, z∗−m) ≥ Um(zm, z∗−m), ∀m, where z∗ is the solution currently

obtained from our proposed distributed approach and z is another solution. According to the

definition of an NE, the partner selection solution z∗ obtained from our proposed distributed

approach attains an NE. ¥

Proposition 12 Modeled by a round-robin game played by the potential partners with fixed

subcarrier allocation and power allocation, the partner allocation solution from the proposed

centralized approach achieves an NE.

Proof: Let Sj (z∗j , z∗−j) denote the payoff function of the jth node with the partner alloca-

tion solution z∗ obtained from our proposed centralized approach, where the payoff function

here indicates the utility gain when the jth node is chosen to be the partner of some source

node. With fixed subcarrier allocation and power allocation, we model the proposed cen-

tralized node cooperative resource allocation approach as a round-robin game played by the

potential partners. Each potential partner takes turn to maximize its own payoff function by

choosing the best source node to assist. If a partner cannot find a favorable source node to

assist (i.e., allocating this partner to any source node results in a negative payoff), that part-

ner is disqualified from the game. In our proposed centralized approach, a potential partner

is allocated to a source node such as the utility gain can be maximized. Once allocated,

therefore, the potential partners would have no intention to change their partner allocation

solutions, for Sj(z∗j , z∗−j) ≥ Sj(zj , z∗−j),∀j , where z∗ is the solution currently obtained from

our proposed centralized approach and z is another solution. According to the definition of

an NE, the partner allocation solution z∗ obtained from our proposed centralized approach

attains an NE. ¥
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Proposition 13 With fixed subcarrier allocation and power allocation, the partner selection

solution from the proposed distributed approach is Pareto optimal.

Proof: Given the partner selection solution z∗ obtained from the proposed distributed

approach, Um(z∗) is the utility function of the mth node. Let z̃ be another solution. Consider

the following two cases:

Case 1: For
∑

j 6=m z∗mj = 0 (i.e., the mth node does not have a partner), if Um(z̃) >

Um(z∗),∃m as z̃mu = 1, ∃u, then either Uu(z̃) < Uu(z∗) as
∑

i 6=u z∗iu = 0 or Ui(z̃) < Ui(z∗)

as z∗iu = 1, ∃i. If the uth node becomes the partner of the mth node (i.e., z̃mu = 1), the

utility achieved by the uth node will decrease due to the split of transmit power. On the

other hand, if the uth node has been selected by the ith node (i.e., z∗iu = 1), meaning

that the uth node is the best partner for the ith node in z∗, the utility achieved by the

ith node will decrease with a different partner selection solution (i.e., z̃ij = 1, ∃j 6=u or
∑

j 6=i z̃ij = 0);

Case 2: For z∗mj = 1,∃j (i.e., the mth node has a partner, the jth node), if Um(z̃) >

Um(z∗),∃m as z̃mu = 1, ∃u, it means that the uth node is the better partner for the mth

node than the jth node. Since the jth node is the best partner for the mth node in z∗

according to the notion of our partner selection criterion, the only possibility is z∗iu = 1

and z̃iu = 0, ∃i. Since the uth node is the best partner for the ith node in z∗, the utility

achieved by the ith node will decrease with a different partner selection solution, i.e.,

Ui(z̃) < Ui(z∗),∃i.

According to the definition of Pareto optimality, with fixed subcarrier allocation and

power allocation, the partner selection solution z∗ obtained from our proposed distributed

approach achieves the Pareto optimality. ¥
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Proposition 14 With fixed subcarrier allocation and power allocation, the partner allocation

solution from the proposed centralized resource allocation is Pareto optimal.

Proof: Denote Sj (z∗) as the utility function of the jth node. Denote z∗ be the partner

allocation solution obtained from the proposed centralized approach and z̃ another solution.

If Sj(z̃) > Sj(z∗), ∃j as z̃mj = 1, ∃m, then Su(z̃) < Su(z∗), ∃u, as z∗mu = 1 and z̃mu = 0. Since

the mth node is the best source node for the uth node to assist in z∗, changing the partner

allocation solution will decrease the utility gain of the uth node and therefore, Su(z̃) <

Su(z∗), ∃u. Notice that the case of z̃mj = 1 and
∑

u6=m z∗mu = 0, ∃m, is not possible because,

should the jth node be the partner of the mth node in z̃, the jth node can be the partner of the

mth node in z∗ based on the notion of our partner allocation criterion. Therefore, according

to the definition of Pareto optimality, with fixed subcarrier allocation and power allocation,

the partner allocation solution z∗ obtained from our proposed centralized approach achieves

the Pareto optimality. ¥

Proposition 15 Provided that the channels are sensed according to the descending order of

their achievable rates, a secondary user can achieve the maximal reward by stopping at the

first sensed free channel.

Proof: To prove Proposition 15 is equivalent to show Λ1 > Λ2 > ... > ΛN . We prove

Λ1 > Λ2 > ... > ΛN by (backward) mathematical induction.

For k = N − 1,

ΛN−1 = θsN−1cN−1RsN−1 + (1− θsN−1)ΛN (B-26)

= θsN−1(cN−1RsN−1 − ΛN ) + ΛN (B-27)

= θsN−1(cN−1RsN−1 − θsN cNRsN ) + ΛN (B-28)

> ΛN (∵ θsN ≤ 1, cN−1 > cN , and RsN−1 ≥ RsN ) (B-29)
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Therefore, the statement is true for k = N − 1.

Assuming that the statement is true for k = i, i.e., Λi > Λi+1 (and hence ciRsi > Λi+1).

For k = i− 1, we have

Λi−1 − Λi

= θsi−1(ci−1Rsi−1 − Λi) (B-30)

= θsi−1

[
ci−1Rsi−1 − (θsiciRsi + (1− θsi)Λi+1)

]
(B-31)

= θsi−1

(
ci−1Rsi−1 − θsiciRsi − (1− θsi)Λi+1

)
(B-32)

> θsi−1 (ciRsi − θsiciRsi − (1− θsi)Λi+1)

(∵ ci−1 > ci and Rsi−1 ≥ Rsi) (B-33)

= θsi−1(1− θsi)(ciRsi − Λi+1) (B-34)

> 0 (∵ by the assumption) (B-35)

Therefore, the statement is also true for k = i− 1.

By mathematical induction, the statement Λi > Λi+1 is true for 1 ≤ i < N and therefore,

Λ1 > Λ2 > ... > ΛN . Given that the channels are sensed according to the descending order of

their achievable rates, a secondary user can achieve the maximal reward by stopping at the

first sensed free channel. ¥

Proposition 16 Provided that θsi = θsj , ∀i, j, and the channels are sensed according to the

descending order of their achievable transmission rates, the proposed instinctive sensing is

optimal in terms of throughput (i.e., Λ1).

Proof: We prove this proposition by contradiction. Let (s̃1, ..., s̃i, ..., s̃j , ..., s̃N ) be the pro-

posed sensing order with the expected reward Λ̃1. Suppose there is another sensing order

(ŝ1, ..., ŝi, ..., ŝj , ..., ŝN ) with the expected reward Λ̂1, where s̃k = ŝk, ∀k 6= i, j, s̃i = ŝj, s̃j = ŝi,
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and Λ̂1 > Λ̃1. Let θsk
= θ, ∀k > 0. Here, consider

Λ̂1 − Λ̃1

=
N∑

k=1

[
k∏

m=1

(
1− θŝm−1

)
]

θŝk
ckRŝk

−
N∑

k=1

[
k∏

m=1

(
1− θs̃m−1

)
]

θs̃k
ckRs̃k

(B-36)

=

[
i∏

m=1

(1− θ)

]
θci (Rŝi −Rs̃i) +

[
j∏

m=1

(1− θ)

]
θcj

(
Rŝj −Rs̃j

)
(B-37)

= (1− θ)i θci

(
Rs̃j −Rs̃i

)
+ (1− θ)j θcj

(
Rs̃i −Rs̃j

)
(B-38)

= (1− θ)i θ
(
Rs̃i −Rs̃j

) (
(1− θ)j−i cj − ci

)
. (B-39)

Since Λ̂1 > Λ̃1, 0 ≤ θ ≤ 1, and ci > cj, Rs̃i < Rs̃j for i < j. However, it contradicts to our

proposed instinctive sensing that the channels are sensed according to the descending order of

their achievable transmission rates. Therefore, no such a sensing order (ŝ1, ..., ŝi, ..., ŝj , ..., ŝN )

with the expected reward Λ̂1 exists. In other words, the throughput or expected reward Λ̃1

procured according to the proposed instinctive sensing order is indeed maximal. Therefore,

our instinctive channel sensing achieves optimality in terms of throughput. ¥

Proposition 17 The set of feasible weighted utilities (i.e., wmQm(a), ∀m) in the WMMFOP

has the solidarity property [93].

Proof: Suppose that the feasible resource allocation solution is a∗. Without loss of gen-

erality, we assume that there exists an n value such that Qn(a∗) > 0 (i.e., a∗n > 0), where

n 6= m [93]. For a particular timeslot t, over which the mth and nth links are to be active,

given the resource allocation solution a∗, the values of their weighted utilities are to be

wmQm(a∗) and wnQn(a∗), respectively. Let lt denote the length of the timeslot t, i.e., lt > 0.

Similar to [93], it is possible to partition the slot into three minislots, namely t1, t2, and t3

with positive durations lt1 , lt2 , and lt3 , respectively, such that lt1 + lt2 + lt3 = lt. Note that the

choice of how to determine these values is arbitrary. During t1, the resource allocation a is

chosen to be the same as that in timeslot t. During t2, the same allocation solution is kept
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as in t1, except an = 0. During t3, we set an = 0, and am is adjusted until the interference

experienced by other active links is larger than that in the original timeslot t, if possible,

otherwise, we set am = 1.

In this new resource allocation, compared with the weighted utilities obtained in the

original resource allocation in timeslot t, all the links excluding the mth and nth links have

the same or higher weighted utilities in t1 and t2, respectively. In t3, their weighted utilities

can be higher, the same, or lower, depending on the value of am. Since the partitioning into

t1, t2, and t3 is entirely arbitrary, it is possible to choose their lengths lt1 , lt2 , and lt3 so that

there exist small εm (> 0) and εn (> 0) such that the weighted utility of the mth link increases

by at most εm and the weighted utility of the nth link decreases by at most εn, while the rest

of the active links have the same or higher weighted utilities.

Let wmQm(ã) and wnQn(ã) denote the newly obtained weighted utilities of the mth link

and the nth link, respectively. We can now acquire the following inequalities: wmQm(a∗) <

wmQm(ã) < wmQm(a∗) + εm and wnQn(a∗)− εn < wnQn(ã) < wnQn(a∗). Therefore, the value

of wmQm(a) can be increased by at most εm by decreasing the value of wnQn(a) by at most

εn. And,




...

wmQm(ã)
wnQn(ã)

...

wkQk(ã)
...




=




...

wmQm(a∗)

wnQn(a∗)
...

wkQk(a∗)
...




−




...

0

εn

...

0
...




+




...

εm

0
...

0
...




+
∑

k 6=m,n




...

0

0
...

εk

...




(B-40)

where εk > 0, ∀k 6= m,n. Since all wmQm(ã), ∀m, belong to the feasible set (i.e., Qm(ã) ≥ 0,

∀m), by the definition of solidarity [93], the set of feasible weighted utilities in the WMMFOP

has the solidarity property. ¥
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Proposition 18 The optimal solution â obtained from the WMMFOP is also the optimal

solution for the modified STOP.

Proof: Suppose that there exists another solution ã such that
∑M

m=1 Qm(ã) >
∑M

m=1 Qm(â).

It means that there exists some m such that wmQm(ã) > J∗ within the feasible region. In the

WMMFOP, if for some m, wmQm(ã) > J∗, J∗ can be increased by decreasing the value of ãm

or increasing the value of ãn or both, for n 6= m, within the feasible region until it reaches the

maximal value, say J̃ . However, it contradicts to the statement that J∗ is the maximal value

obtained from the WMMFOP. Therefore, no such a solution ã exists. The optimal solution

â obtained from the WMMFOP is also the optimal solution for the modified STOP. ¥

Proposition 19 The system throughput (i.e.,
∑M

m=1 Qm(a∗)) is a non-increasing function

of bargaining floor J.

Proof: When J increases (decreases), the feasible region of a in the GOP shrinks (expands).

For 0 ≤ J1 ≤ J2 ≤ J∗, let a∗1 and a∗2 denote the optimal solutions of the GOP with J1 and

J2, respectively. The feasible region of a of the GOP with J2 is only a subset of that with

J1. Thus,
∑M

m=1 Qm(a∗1) ≥ ∑M
m=1 Qm(a∗2) and hence the system throughput does not increase

with the value of J . ¥

Corollary 3 The minimum value of wmQm(a∗) (i.e., minm {wmQm(a∗)}) is a non-decreasing

function of J.

Proof: Let J∗ be the solution of WMMFOP and a∗1 be the optimal solution of the GOP

with J1, where 0 ≤ J1 ≤ J∗. For 0 ≤ J1 < J2 ≤ J∗, consider the following two cases:

Case 1: If the solution a∗1 is feasible for the GOP with J2, from Proposition 19, a∗1 is also

the optimal solution for the GOP with J2. Hence, the minimum value of wmQm(a∗) is

the same for the GOP with J1 and J2;
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Case 2: If the solution a∗1 is not feasible for the GOP with J2, it means that there exists

some m such that wmQm(a∗1) < J2 and hence minm {wmQm(a∗1)} < J2. Thus, a∗1 is an

infeasible solution for the GOP with J2. In addition, suppose that a∗2 is the optimal

solution for the GOP with J2, i.e., wmQm(a∗2) ≥ J2, ∀m. Hence, minm {wmQm(a∗2)} ≥
J2 > minm {wmQm(a∗1)}.

By combining the above two cases, minm {wmQm(a∗2)} ≥ minm {wmQm(a∗1)} and hence the

minimum value of wmQm(a∗) (i.e., minm {wmQm(a∗)}) does not decrease with the value of J .

¥

Theorem 1 The system throughput (i.e.,
∑M

m=1 Qm(a∗)) does not increase with J, but the

minimum value of wmQm(a∗) (i.e., minm {wmQm(a∗)}) does not decrease with J.

Proof: By Proposition 19 and Corollary 3, it is proved. ¥

Corollary 4 A relationship between the system throughput and weighted max-min fairness

performance can be achieved by solving the GOP with different values of J.

Proof: From Theorem 1, the solution obtained from the GOP with J = 0 corresponds to

the maximal system throughput, while the solution obtained from the GOP with J = J∗

corresponds to the maximal weighted max-min fairness performance. When J increases

from zero, the solution obtained from the GOP can refer to decreased system throughput

and increased fairness performance. Therefore, the performance tradeoff and hence a desired

relationship between the system throughput and weighted max-min fairness performance can

be achieved by solving the GOP with different values of J , i.e., J ∈ [0, J∗]. ¥

Proposition 20 The optimal solution a of the GOP is Pareto optimal.
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Proof: Given the action profile or optimal solution a∗ (i.e., resource allocation) obtained

from the GOP, denote Qm(a∗) or wmQm(a∗) as the utility function of the mth link. Consider

another action profile ã. For some m, if Qm(ã) > Qm(a∗), then Qn(ã) < Qn(a∗) for some n,

as either ãm > a∗m or ãn < a∗n or both. According to the definition of Pareto optimality, the

optimal solution a∗ obtained from the GOP is Pareto optimal. ¥
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Appendix C

List of Acronyms

AF amplify-and-forward

ATM asynchronous transfer mode

BER bit error rate

CAC call admission control

CBR constant-bit-rate

CDMA code division multiple access

CRN cognitive radio network

DCA dynamic channel allocation

DF decode-and-forward

DSL digital subscriber line

FCA fixed channel allocation

FIFO first-in-first-out
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GA genetic algorithm

GPS generalized processor sharing

HCA hybrid channel allocation

IPTV Internet Protocol Television

ISI inter-symbol interference

ITU International Telecommunications Union

KKT Karush-Kuhn-Tucker

MAC medium access control

MANET mobile ad hoc network

MIMO multiple-input-multiple-output

NE Nash equilibrium

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

PLR packet loss rate

QoS quality-of-service

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

UWB ultra-wideband

VoIP voice over IP
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WLAN wireless local area network

WMN wireless mesh network
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