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Abstract

We address problems that arise in many areas of information technology. In particular, our work
considers how to effectively represent semantic constraints commonly used in object-relational
database systems and then develops efficient algorithms to reason about such constraints. We
expand data dependencies that are commonly used by relational models and combine them with
constraints arising in object-relational models to form a theory that allows one to reason about
both kinds of constraints. We then present procedures that can efficiently reason in such a theory.
The procedures can be used to help solve problems relating to both object-relational and
relational databases. A fundamental reason that we are able to derive such procedures relates to
the variety of uniqueness constraints incorporated into the theory, which strictly generalize the
notions of keys and functional dependencies that are inherent parts of relational and
object-relational models.

We investigate the interaction between such constraints and other data dependencies,
including inheritance, typing and equational constraints. In addition, the problem is explored in
the context of description logics (DLs), which are a family of knowledge representation schemas
that have found myriad applications in information systems technology. From this perspective,
we introduce a new fd concept constructor for capturing uniqueness constraints within the DL
framework, show how various DL dialects that include this new constructor can be used to
address problems in information technology and present efficient decision procedures for
subsumption checking in these dialects.

Among other contributions, we further analyze our procedures with respect to their
generality, incremental abilities, and other characteristics.
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Chapter 1

Introduction

1.1 General Picture

Over the past three decades, the need to provide the ability to conveniently capture, manipulate
and query data by application programs has led to the development of a pervasive database
technology based primarily on an underlying relational model [Cod70]. However, two problems
remain as the complexity and performance requirements of these programs have grown. There
continues to be an increasing demand for richer models that provide additional flexibility for
describing and manipulating data, and for underlying query engines capable of more efficient
processing of data that can in turn be encoded with a more diverse collection of data structures.

Indeed, there are several ways that the relational model has been extended to address the
first of these problems. So-called object-relational models, that combine the advantages of
object-oriented and relational models, are probably the most important example of these. There
are at least two basic reasons for the emergence of object-relational models: (a) a richer structural
capability that combines the notions of “relation” and “domain” into a more general notion of
“class”, that allows for relating classes in terms of an inheritance taxonomy, and that recognizes
the fundamental notion of object identity; and (b) the development of object-oriented languages
by the programming language community that have undergone further adaptation and
enhancement in the context of data persistence. Some issues that are resolved by object-relational
models include: (a) the necessity of introducing extra properties to serve as surrogate identifiers
for “objects” in tables, and (b) the need for indirect references to capture relationships between

objects.

A major direction in addressing the second problem consists of capturing and reasoning
about data dependencies. This has proven to be an important capability in information systems
technology, with many applications in database design, data integration, query optimization, plan
generation, and so on. Historically, data dependencies have been captured by means of
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constraints. Relational databases, in particular, have a long history of using functional [Cod72]
and inclusion dependencies [Fag81) in query optimization and in relational schema synthesis and
evaluation. However, while typing and inheritance constraints in object-relational databases
(ORDBs) appear to be sufficient manifestations of inclusion dependencies in practical
applications, the incorporation of functional dependencies or more general kinds of uniqueness
constraints is still far from its potential. This is exactly the problem addressed in this thesis.

This work can also be viewed in the context of description logics (DLs) which are a
family of knowledge representation schemas that have found myriad applications in information
systems technology [Bor95]. The applications derive from using DLs as a formal means of
capturing such artifacts as database schema, views and queries. DLs have their foundations in the
field of antificial intelligence, and have been studied for a long time in that context. However,
only recently have they been recognized as valuable tools in capturing database constraints.

While a number of DLs have now been explored in the context of databases, very few
dialects have considered language constructs that can capture even the notion of a key. Notably,
however, a concept constructor for functional dependencies has been introduced in a DL called
Classic/FD [BW97]. This thesis constitutes a more thorough exploration of this constructor and
its interaction with other “foundational” constructors relating, for example, to the
above-mentioned facility of ORDBs for expressing typing and inheritance constraints. Thus, on
one side, we contribute to the integration of DLs with databases, and on the other, we use the
benefits provided by the clear and concise semantics of DLs to study uniqueness constraints in
the object-relational context.

1.2 Motivation

To illustrate the utility of uniqueness constraints in an ORDB environment, consider the problem
of duplicate elimination in query optimization. In its simplest form, the distinct keyword can be
safely removed from queries of the form

select distinct x A, xA, ..., x A, ...!
fromCr, ...

if attributes A, through A, are known to uniquely determine objects in the class (or concept) C.
With the identity function, Id, one can employ the notation used in [Wed89] to capture such a
constraint by writing

' We assume that the reader is familiar with the SQL/OQL syntax that we use throughout the thesis for our
query examples.
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C({Ay, A, ..., A} — {1d)}).

This form of uniqueness constraint in an ORDB corresponds to the notion of a key constraint in
the relational model. However, unlike the relational model, attribute values of objects in the
ORDB model are also objects, possibly with their own values. This gives rise to so-called path
functions that “navigate” through a number of objects and their attributes. For now, one can think
of a path function as a sequence of attributes separated by dots. For example, “Boss.Name.Last”
could be a path function representing last names of bosses of objects in an EMPLOYEE class. If
path functions can be used in place of attributes, uniqueness constraints become more expressive
[Wed92]. For example, path functions enable one to capture and reason about such common

sense facts as “no student can be enrolled in two different courses that meet at the same time”
[BW94].

For some path functions Pf; through Pf;, a key constraint of the form

C({Pfi, Pfa, ..., Pfi} — {Id})

justifies removing the distinct keyword from queries of the form

select distinct x.Pf,, x.Pf;, ..., x.Pf;, ...
fromCyx, ...

Intuitively, the constraint expresses the fact that there are no two distinct objects in C that “agree”
on the values of the path functions Pf; through Pf;; that is, it is nor the case that the same object is
obtained by navigating through the path function Pf; starting from any two objects, for all
I < i<k Thus, for example, the distinct keyword can be safely removed from

select distinct e.Name.Last, e.Name.First
from EMPLOYEEp, ...

if it is true that no two employees have the same first and last names; that is if the constraint
EMPLOYEE({Name.Last, Name.First} — {Id}).

is true.

More generally, the constraint

C({Rflv H.Iv ceoy Rfk} - {Rfm, seey Hm})
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expresses the fact that if any pair of (not necessarily distinct) objects in C agree on the path
functions Pf through Pf;, they must then also agree on the path functions Pfi.. through Pf,,. Such
constraints were first defined in [Wed89), and are called path functional dependencies (PFDs). A
PFD of the form above enables one to remove the distinct keyword from a more general family
of queries with the form

select distinct x.Pfi.1, x.Pfess, ..., X.Pf, ...
fromCrx, ...
where x.Pf, = Param, and ... and x.Pf; = Param,

since there can be at most one result for such queries. In addition, the PFD can also help in
obtaining efficient access plans for queries that have the structure

select distinct x.Pf,, x.Pf, ..., x.Pf,
fromCrx, ...

Indeed, one needs only to ensure that values x.Pf; through x.Pf; are distinct, since otherwise, the
uniqueness constraint would imply that all m values are the same.

Our examples have so far involved uniqueness constraints that are symmetric in the sense
that the constraints apply to pairs of objects occurring in a common class. This thesis also
considers more general asymmetric uniqueness constraints that apply to pairs of objects from
possibly distinct classes. These constraints allow one to capture such facts as “if an employee and
a person have the same social security number, they must be the same person” for a company that
ensures the statement holds for its employee data but not necessarily for other customer or client
data. As will become evident in Chapters 3 and S, asymmetric uniqueness constraints naturally
arise in our framework due to our decision to express constraints in a manner consistent with the
idea of concept construction that is fundamental in description logics. In fact, asymmetric
uniqueness constraints nicely abstract inter-relational functional dependencies [GM91], as well
as a form of coupled functional dependencies [CK85)] and union Junctional dependencies [CV83]
in the relational model.

In addition to their use in reasoning about duplicate elimination [Wed92], there are many
other problems in query optimization and in semantic query optimization [HZ80, Kin81] that
benefit from an ability to reason about uniqueness constraints:

® Determining minimal covers of selection and join conditions [ASU79};

® The automatic insertion of “cut” operators [DW89, Men85, MW91, Wed92];
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¢ Order optimization [SSM96]; and
* Enabling the use of so-called path indices (BW97, Wed92].

In addition, there are a number of applications in schema design and evaluation [Ber76, BDB79,
TF82]. (Later on, we present an application of our work to a probiem in schema evaluation; in
particular, we present an efficient algorithm for diagnosing a kind of object normal form
originally proposed in [Bis89].)

In addition to typing, inheritance and uniqueness constraints, ORDBs also benefit from
so-called equational constraints. Among their applications, such constraints allow one to capture
selection and join conditions occurring inside queries, and are natural representations of
restrictions occurring in view definitions [BBM89, BW94, BIN94, BW97].

Overall, this work attempts to combine all four kinds of constraints into the common
framework of description logics, and to present efficient procedures to reason about their

Interaction.

DLs have helped to address many problems in the area of information systems [Bor95).
Among their advantages are a clear and concise semantics and their intuitive capacity for
constructing descriptions of sets of objects that commonly occur. Another advantage is a growing
body of algorithmic results that relate to the problem of deducing so-called subsumption
relationships between descriptions. For example, the existence of efficient subsumption
algorithms has enabled Classic, a DL dialect, to be used for “industrial grade” applications
[WWB93]. Among many other applications, DLs have been used for database schema design
[BS92], for merging multiple information sources [LSKS95], as an abstraction of queries [BGN89]
and in query optimization [BJN94].

In this thesis, we use DLs as the framework in which we consider typing, inheritance,
equational and uniqueness constraints. Our main objective is to develop efficient procedures for
determining logical consequence; that is, determining whether a given collection of constraints
logically implies another. (We shall refer to the underlying class of problems as logical
implication problems in the remainder of the thesis.) If indeed this can be resolved efficiently,
optimizations that involve such constraints (such as “distinct keyword elimination” outlined
above) become practical. In addition, since we use (almost) the same DL to represent schema,
query, and view definition languages, such procedures can also be employed to decide relatively
general query containment problems; that is, in view of a given database schema, to determine if
all results of one query must also be returned by another. This in turn suggests a number of
additional applications: automatic classification (or taxonomic reasoning), multiple query
evaluation, common subexpression analysis and information integration [BS92, MG93, BJN94].
Other researchers have considered the advantages of combining data definition languages
(DDLs) and data manipulation languages (DMLs) as well [BGN89, BBM89). ([Bor95] provides
a more general survey of applications of DLs in databases.)
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Note that the DL languages used in this thesis are more limited in their expressiveness
than common database query languages such as SQL (a property shared by all tractable DL
languages). However, we can still use DLs to reason about the parts of the queries that they can
capture [BIN94], a strategy that appears to not “spoil” the utility of DL subsumption algorithms
{Bor9s].

Finally, although we have given a broad survey of applications for our work, further
examples will be presented throughout the remainder of the thesis that will provide additional
motivation for our results. As we go along, our definitions of new constructs and, more generally,
our discussion of the material in depth enables us to present more detailed examples and to
outline applications of this research with greater precision.

1.3 Contributions

Recall from our motivating comments that PFDs have the form

CUPf. Pfa, ... Pi} > (Pl ..., Pfa])

for some class, or concept, C and path functions Pf; (1 € i < m). The case of a relational
Junctional dependency (or relational uniqueness constraint) is obtained when each Pf;
corresponds to a single attribute. There are efficient procedures to solve the PFD logical
implication problem when every path function on the right-hand-side of the arrow is a *prefix” of
some path function on the left-hand-side of the arrow. Such constraints are called key path
Sfunctional dependencies [TW94].

This thesis presents two procedures that allow a more general class of functional
dependencies in the database schema. The first procedure solves the logical implication problem
in which a schema may consist of typing constraints, inheritance constraints and a variety of PFD
constraints that satisfy a regularity condition. We refer to instances of the latter as symmetric
regular uniqueness constraints; such constraints satisfy a syntactic condition that every path
function on the right-hand-side of the arrow, possibly missing the last attribute, is a “prefix” of
some path function on the left-hand-side of the arrow, and are a strict generalization of both
relational and key path functional dependencies.

Moreover, we show that this class of uniqueness constraints is “boundary” in the sense
that if one allows a functional dependency on the right-hand-side to differ from a prefix of a
functional dependency on the left-hand-side by more than one attribute, the resulting logical
implication problem becomes equivalent to the more general problem in which a schema may
contain arbitrary PFDs. (While the complexity of this problem remains open at this time, it is
known that chase-like procedures analogous to the ones presented in this work can require
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exponential time.) Finally, we present proofs of soundness as well as completeness of the
procedure, and show that it terminates and runs in time corresponding to the product of the size of
schema and the size of subsumption question (i.e. the size of deduced constraint).

Our second procedure generalizes the first in a number of ways. First, it allows
asymmetric uniqueness constraints in the schema. Second, it works with so-called extended
Sfunctional dependencies that allow one to reason about uniqueness constraints on views and
queries. And third, the procedure allows equational constraints to also occur in the schema. We
show that this procedure is sound and complete, and that it also terminates, but that runtime
complexity involves an additional factor over the complexity of our first procedure that roughly
corresponds to the size of subsumption question.

Another contribution of this work relates to the integration of description logics and
object-relational databases. In particular, we consider the procedures developed in this work and
the underlying DL languages to be important contributions to the existing computational theory in
description logics. They are among the first of their kind that are able to efficiently accommodate
the kinds of uniqueness constraints that occur in virtually every object-relational model and that
are of considerable relevance to a large variety of problems in query optimization, view
integration and so on.

Also note that, apart from the integration of DLs and ORDBs, the languages presented in
this thesis contribute to the study of the important tradeoff between expressiveness and
tractability of DL languages, an issue considered in [LB87] and further explored by many
researchers. This work also illustrates some advantages of the DL framework: an ability to choose
appropriate language constructors according to the requirements of the anticipated application,
and an ability to introduce new constructors (such as our constructor for uniqueness constraints)
to address requirements the application may have that would otherwise necessitate the use of less
efficient constructors. In particular, [Bor95, BW97] show how uniqueness constraints can indeed
be captured by using existing constructors; however, the presence of these constructors in a DL
language would cause logical implication problems to “fall off the computational cliff”.

Some other contributions of our work are as follows.

e Both implication problems are solved in the presence of cyclic schemas. (Generally, cyclic
schemas are known to greatly increase the difficulty of reasoning about subsumption.)

® Our procedures are incremental in the sense that they can reuse earlier computations when
applied to a sequence of similar logical implication problems (a circumstance that we will see
often occurs in practice).

e The thesis extends the work on a graphical analogue of descriptions, called description
graphs, that were first introduced in [BP94].

e We consider a number of ways of mapping a set of constraints that constitute, for example, a
database schema to an equivalent set of constraints satisfying desirable syntactic properties.
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In particular, we present mappings that simplify a collection of constraints by factoring the
use of conjunction, by “normalizing” attribute descriptions, and by simplifying typing
constraints. (We believe such mappings and our approach to verifying their correctness can
be of use to other procedures that must reason about similar DL languages.)

Finally, note that while this work is presented in the context of ORDBs that deal with
complex objects, it is also applicable to the relational model which can clearly be regarded as a
special case of object-relational models (e.g. by treating tuples as objects, tables as classes, etc.).
Moreover, constraints considered in the thesis include generalizations of most of the constraints
that are considered foundational in the relational world. In fact, a number of motivating examples
presented later in the thesis are described in the context of the relational model to both underline
the above statement and to provide a good illustration of the use of this work in a setting familiar
to the relational database community.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 gives an overview of relevant literature. It
first considers the research that explores uniqueness, typing and equational constraints in both
relational and object-relational models, and then examines research in description logics and
other areas. The chapter illustrates how our work fits into the general picture and provides
sufficient references for further exploration of the presented areas by the interested reader.

Chapter 3 introduces notation used throughout the rest of the thesis and formally defines
the problem of logical implication. It first introduces the essential concepts that underlie
description logics, and then defines a core grammar for DL expressions, or descriptions, that is
adopted in later chapters. The standard model theory for descriptions is presented, and the use of
descriptions themselves for capturing database schemas is illustrated. Then, we review some
properties of path functions, and introduce the notion of a description graph (the computational
artifact manipulated by our procedures).

Chapter 4 presents the first of our decision procedures. Recall that the procedure solves a
logical implication problem in which a schema may consist of typing constraints, inheritance
constraints and a variety of PFD constraints that satisfy a regularity condition. Definitions
specific to Chapter 4 are first introduced, followed by the first of our above-mentioned mappings
for “normalizing™ an input set of constraints in preparation for use by the procedure. The
procedure is then defined and its properties analyzed. Following this, we consider the generality
of regular uniqueness constraints. This chapter also presents a number of examples that serve
two purposes: they motivate the results of the chapter, and they help a reader to obtain a more
thorough appreciation for what can be accomplished by using the procedure.
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Chapter 5 considers our second, more general but slower procedure. Analogously to
Chapter 4, relevant definitions are first introduced, followed by the second of our mappings for
“normalizing” constraints. Next, we present the second of our decision procedures, including a
thorough analysis of its computational properties. Recall that this procedure solves a more general
class of logical implication problems. Finally, we discuss the incremental capabilities inherent in
both procedures. Again, as in Chapter 4, a number of examples are included to motivate the
procedures, and to help with their appreciation.

Finally, Chapter 6 summarizes the main results of the thesis and explores a2 number of
possible extensions of our procedures. It concludes with considerations of future research
directions.



Chapter 2

Related Work

We begin with a review of work on so-called semantic reasoning that considers constraints in
relational and ORDB models. We then give an overview of work in the area of description logics,
and its applications to problems in information technology. The final section is a brief overview
of other related work on functional constraints.

2.1 Semantic Reasoning

2.1.1 Constraints in the Relational Model

There has been a large variety of constraints that have been proposed for capturing data
dependencies for the relational model. Perhaps one of the most expressive classes of such
constraints, called algebraic dependencies, were first introduced in [YP82]. An algebraic
dependency is a pair of algebraic queries, and holds for a given database when the first query
returns a subset of the second. Such constraints have a close resemblance to so-called
subsumption constraints in DLs (introduced in the next section), and are able to capture the two
most important classes of relational constraints: relational functional dependencies (FDs) (first
introduced in [Cod72)), and inclusion dependencies (INDs) [Fag81].

An FD has the form

R: Alv seoy AI’I - Amh ecey Ak
where R is a relation name and each A; is an attribute defined on R. For example, one can express

the fact that “in an EMPLOYEE relation, an employee age is functionally determined by an
employee name” by the FD

10
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EMPLOYEE: Name — Age,

where Name and Age are attributes defined on EMPLOYEE.

An inclusion dependency (IND) has the form
R[Alv ey Ak] g S[Blv ooy Bk]’

where R and § are (not necessarily distinct) relation names and each A; (resp. B)) is an attribute
defined on R (resp. S). The constraint is satisfied by relations R and S if and only if, for any tuple
(row) r in R, there is a tuple s in S such that the value of A; in r is the same as the value of B; in s.
for 1 <i<k. In the special case that k = 1, the inclusion dependency is called a unary inclusion
dependency (UIND). For example, the (unary) inclusion dependencies

DEPARTMENT[Head-Of] S MANAGER[Man-ID], and
MANAGER[Man-ID] € EMPLOYEE[Emp-ID]

express the facts that “heads of departments are managers”, and that “every manager is an
employee”, respectively. The former UIND is an example of a so-called foreign key constraint,
perhaps the most common type of INDs used in relational databases. The latter UIND is an
example of a particular kind of referential integrity constraint that represents inheritance.

A number of results have been discovered about the behavior of FDs and INDs in the
relational model. A linear time decision procedure for the FD implication problem is presented in
[BB79]. It answers the question of whether an FD holds for a relation that satisfies a number of
other (not necessarily distinct) FDs. The procedure is essentially an efficient implementation of
the axiomatization of FDs in [Arm74]. An extension of FDs called inter-relational functional
dependencies (that can be captured using asymmetric uniqueness constraints introduced in this
thesis) has a cubic decision procedure [GM91].

While there is also a polynomial (and even linear) decision procedure for the UIND
implication problem, the (general) IND implication problem is PSPACE-complete [CFP82,
CFP84]. Because of this, researchers have tried to come up with other useful subclasses of INDs.
For example, ryped and acyclic INDs have been considered. An IND is typed if the sequences of
attribute names on the right- and the left-hand-sides of the constraint are the same; that is, a typed
IND has the form

R[A, ..., Add ES[AL ..., A,

where R and § are relation names and A; (1 <i < k) are attribute names. On the other hand, a ser of
IND:s is acyclic if, informally, no tuple in a relation puts any restriction on any other tuple in the
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relation (possibly via a combination of the INDs). It has been established that, while the
implication problem for typed INDs can be solved in polynomial time [CV83], the implication
problem for acyclic INDs is NP-complete [CK86].

Combinations of FDs and INDs generally complicate things. The implication problem for
FDs and typed INDs turns out to be undecidable [CK85]. The problem is decidable in exponential
time when we combine FDs with acyclic INDs [CK86], and it is NP-hard for acyclic and typed
INDs together with FDs [CK86]. The good news, however, is that the implication problem for
FDs and UIND:s is decidable in linear time when infinite databases are allowed and in cubic time
when only finite databases are allowed [KCV83, CKV90]. Moreover, the result is “boundary” in
the sense that allowing even two attributes instead of one inside INDs (i.e. allowing binary INDs)
makes both infinite and finite implication problems undecidable [Mit83].

In general, if only finite databases are allowed, an implication problem is referred to as
the finite logical implication problem. Otherwise, it is called the infinite (or general) implication
problem, or simply the implication problem. For many (decidable) implication problems, such as
IND or FD implication problems, finite and infinite implication problems coincide. However, it is
not the case for implication problems that combine FDs and INDs [CFP82, CFP84]. Moreover, it
is also shown in [CFP82, CFP84] that there is no k-ary complete axiomatization (i.e. every rule
has at most k antecedents) for both finite and infinite logical implication problems with FDs and
INDs combined. The authors show that the same results hold when INDs are restricted to UINDs
in the case of the finite implication problem. (There is, however, a binary axiomatization for the
infinite implication problem for FDs and UINDs [KCV83].) Non-existence of a k-ary complete
axiomatization for finite and infinite problems is also shown for the case when FDs, INDs, and
so-called repeating dependencies (RDs) are allowed. RDs, as well as the generalized types of
INDs in [Mit83], were essentially one of the first attempts to express equational constraints in the
relational model. Also note that [Mit83] presented a (non-k-ary) complete axiomatization for the
general implication problem for FDs and INDs. However, no complete, recursively enumerable
axiomatization exists for the finite problem.

Thus, much of this earlier work suggests that there is an inherent difficulty with finite
implication problems as well as infinite implication problems for the sets of constraints that even
“slightly” extend the set of FDs and UINDs. Our work deals exclusively with the infinite
implication problem and considers extensions of the above set in the object-relational
environment. An overview of some recent results on functional and other dependencies in the
object-relational models is presented below.
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2.1.2 Constraints in Object-Relational Models

In ORDBs, UINDs are essentially replaced by inheritance and typing constraints, while
an ability to express equational constraints in ORDBs then allows one to capture general INDs.
Moreover, the natural extension of attributes in the relational model to path functions in
object-relational models leads to path functional dependencies (PFDs), a strict generalization of
functional dependencies.

PFDs were first introduced in [Wed89, Wed92]. The papers consider databases to be
directed labeled graphs with nodes denoting objects in a database and edges denoting their
atribute values. They show that allowing path functions inside functional dependencies increases
the expressiveness of the constraints. They also present an axiomatization for the general PFD
implication problem and give an exponential time decision procedure for what we call simple key
PFDs that have Id on the right-hand-side of the dependency (recall that key PFDs only require
the right-hand-side to be a “prefix” of a functional dependency on the left-hand-side). The author
also presents some evidence that a chase-like procedure to solve an arbitrary PFD implication
problem would take at least exponential time. Finally, a limited form of inheritance constraints
are also considered in conjunction with PFDs.

[TW94] further explores PFDs, establishing that finite and general implication problems
for PFDs are distinct. It also shows that the general implication problem is decidable for arbitrary
PFDs and presents a polynomial time procedure for the key PFD general implication problem.

Around the same time, the interaction between PFDs and equational constraints is
considered in [BW94]. The authors introduce so-called path equation constraints (PEs) that have
the form

C(Pfi = Pf),

where C is a class and Pf; and Pf; are path functions. Informally, the constraint is satisfied by a
database if and only if for every object o in class C, path functions Pf, and Pf; “lead” from o to
the same object.

A finite axiomatization for the arbitrary equational and PFD implication problem is
presented in [BW94]. The implication problem for PEs alone is shown to be undecidable;
however, a polynomial time decision procedure is presented for the case when PE constraints
satisfy a special stratification condition (which intuitively limits the “depth” of equational
constraints) and when all PFDs are simple key PFDs.

[Bom96] further develops the work in [BW94], presenting a decision procedure for a
constraint theory that also includes inheritance, set-valued properties in typing constraints, and an
extension of simple key PFDs to key PFDs.
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2.2 Description Logics

Description logics are a class of knowledge representation languages that are used to build and
reason about sets of individual objects that have the same properties. Such sets are usually called
concepts, descriptions, or concept descriptions, and are built out of other descriptions that specify
the characteristics of the objects in the concept. DLs also capture relationships between objects,
and as pointed out in [Bor95], functional relationships are often considered between objects (in
particular, when DLs are applied to DBs). Such relationships are called attributes. On the other
hand, more general set-valued relationships are called roles. To illustrate, consider the following
description.

(and STUDENT
(all Emergency-Contact STUDENT)
(same-as Office (comp Emergency-Contact Office))

The description is composed out of a number of “terms”, or member descriptions, using the
top-level conjunction constructor and. STUDENT is a primitive concept term describing some
“basic” set of objects in a domain. (all Emergency-Contact STUDENT) is a value restriction
description, also known as type restriction or universal quantification description, that intuitively
represents everyone who listed a student as their emergency contact. Finally, the “same-as” part,
called equality restriction, describes everyone who listed their officemate as the emergency
contact. Note that it uses artribute composition (the comp constructor) for combining artributes,
in this case Emergency-Contact and Office, rather than concept descriptions. Therefore, the top-
level description represents “all students who listed other students that are their officemates as the

emergency contact”.

In general, description logics examine various languages composed of different concept
and role/attribute constructors such as those presented above, and study the interaction among
them. Other concept constructors that have been explored in the literature are able to capture:

* disjunction of concepts (or);
® negation of primitive or arbitrary concepts (not);

® unqualified existential quantification on roles that asserts that there is a role filler for an
object (some);

® qualified existential quantification on roles that asserts that there is a role filler that also
belongs to a given concept (in this case, some has an additional argument to specify the
concept);
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¢ two concepts that denote all objects in the domain (called THING) or the empty set (called
NOTHING);

* number restrictions on the number of role fillers (at-least and at-most); and
® enumeration of objects (one-of).

In addition to the above-mentioned role or attribute composition (comp), some other role
constructors that are explored in the literature include:

e role intersection (androle);

® inverse of a role (inverse);

* anidentity attribute that “points” to the identity of the object (Id); and
® restriction of roles to point to specific concepts (restrict).

By far the most important and studied relationship between descriptions is subsumption,
which is the DL term for the subset relationship. Much of the research in the DL community
explores what we call the subsumption question (or subsumption problem) of whether one
description is subsumed by another in a given DL language. Conversely, the phrase subsumption
constraint is used to denote an assertion that one description is subsumed by another. (Such
constraints are further discussed in Subsection 2.2.2 when we introduce the notion of a
terminology.)

2.2.1 Expressiveness vs. Tractability

A fundamental tradeoff between expressiveness and tractability of description logics is
recognized in [BL84, LB87]. Generally, the more expressive the language is, the more difficult it
becomes to reason with that language. As an example, {BL84, LB87] consider two languages
called FL and FL". The first consists of and, all, and (unqualified) some concept constructors,
and the restrict role constructor. The second has the same concept constructors but no role
constructors. The authors show that while the problem of answering subsumption questions is
quadratic in FL", it is intractable for the FL language. In fact, FL™ has become a very influential
language due to its polynomial behavior and has been a subset of almost all subsequent DL
languages.

Unfortunately, a number of more expressive languages turned out to be intractable. The
addition of a “restricted” disjunction constructor, or addition of the (full) negation to FL™ leads to
intractability [LS91, DLN91]. [Neb88] reveals the intractability of the DL languages used in the
BACK and KANDOR systems. In particular, the paper shows that while extending FL™ either
with number restrictions on roles (i.e. adding at-least and at-most constructors) or with role
conjunction (androle) does not cause problems, but that adding both makes the subsumption
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problem intractable. More generally, the paper establishes that extending FL™ with number
restrictions and “the possibility to express that there are a certain number of role-fillers of a
certain concept” causes the subsumption problem to be co-NP-hard [Neb88].

[Sch89] shows that the DL language used in a system called KL-ONE, as well as its
sublanguage (ALR) is undecidable due to the presence of roles inside equality restrictions. In
addition to the same-as constructor, ALR is defined to only have and and all concept
constructors, and the paper also allows role composition inside equality restrictions. A DL ALR’
is also shown to be undecidable even though it restricts all roles, with the possible exception of
the first, to be attributes on either the left- or right-hand-side of an equality restriction.

[BGNB89] presents the CANDIDE system. As noted in [BBM89], however, the DL used
in CANDIDE is intractable due to the arguments presented in [Neb88]. Nevertheless, we mention
[BGN89] as one of the (earlier) examples of work that considers applications of a DL language in
a database environment. The paper is also one of the first to make a strong argument for the
“unification” of data manipulation and data definition languages. It recognizes that merging the
two languages produces a uniform view of the data, query and view objects, and allows the
database schema to be automatically used for query processing. The paper also introduces defined
classes (or views).

Further work in the same direction is presented in [BBM89]. The authors introduce the
CLASSIC DL that incorporates the following constructors: and, all, at-least, at-most, same-as
with attributes, one-of and some others.? [BBM89] also presents a number of advantages of DLs
such as CLASSIC in database management, including:

e capturing data schema and updates (as well as automatic propagation of some consequences
of updates);

* representing incomplete knowledge by capturing some properties of an individual;
* an ability to handle partial answers to queries;

e integrity checking;

¢ automatic classification of concepts and objects;

e flexible use of defined concepts; and

e integration of DDL and DML.

Also introduced is a valuable notion of a test concept constructor which is essentially considered
as a primitive concept for the purposes of the subsumption but allows a smooth integration of the
DL reasoning systems into the environments where not all of the data dependencies can be
captured by a given DL. Unfortunately, while the authors hoped for a polynomial time
subsumption algorithm, [LS91] found the language to be intractable due to the enumeration

2 Equality restriction and type restriction constraints are called co-reference and role-value constraints
respectively in the paper.
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constructor. As a result, the semantics of this constructor is modified in [BP94], and it is then
proven that the subsumption problem in CLASSIC becomes polynomial.

More specifically, [BP94] first considers a subset of CLASSIC, called Basic CLASSIC,
with intersection, typing constraints, number restrictions on roles, and equational constraints on
attribute composition. A polynomial time decision procedure for the subsumption problem in
Basic CLASSIC is presented along with the notion of description graphs. Description graphs,
which are extensively used in our work as well, are also discussed separately as an important tool
to solve the subsumption problem. Next, the addition of the enumeration concept with special
semantics and other concepts of CLASSIC are discussed.

Additional “positive” results are obtained by [DLN91]. The authors consider two
description languages, PL; and PL,, that have polynomial time procedures for their subsumption
questions. Both PL, and PL, add inverse roles to FL". Furthermore, PL; adds number restrictions
and the negation of primitive concepts, whereas PL, adds role conjunction and role composition
constructors. However, the paper also shows that further extensions of these languages with a
number of constructors considered in the paper would lead to intractability.

The notion of defined concepts, or views, considered by [BGN89, BBM89] is carefully
studied in a series of papers on so-called taxonomic reasoning, which is the problem of automatic
classification of the newly defined concepts inside a concept hierarchy (that can represent, for
example, a database schema). For instance, [BS92] explores the problem of such classification
along with maintaining minimality (eliminating redundancy) and consistency (eliminating
contradictory concepts) of the conceptual schema. (Similarly, [BL89] proposes a model that
maintains consistency and minimality in the Entity-Relationship model.) In particular, {BS92]
chose the concept definition language (FL') that contains and, all, a rather restricted form of the
not constructor (specifically, atom negation to capture disjointedness of concepts), NOTHING,
and number restrictions. The paper allows acyclic view definitions and presents a quadratic time
algorithm for the corresponding subsumption problem. In addition, a subsumption algorithm is
also given for FL";,, which is FL* augmented with inverse roles. (As examples of works that
studied taxonomic reasoning problem using notation which is more closely related to the standard
notation of the first order predicate calculus (FOPC) consider [DD89, MG93].)

To further improve expressiveness of DLs without losing tractability, [LS91] considers
the idea of allowing a more general language for one of the descriptions being compared. In
particular, if one considers the problem of whether a description D, subsumes a description D,,
one might consider allowing the language in which the subsumer (D) is expressed to be more
general than the language that expresses the subsumee (D). As a motivating example, the authors
prove that the pair of languages AL and (the more general) QL have a polynomial time decision
procedure for the subsumption problem. The AL language is the extension of FL~ with negation of
primitive concepts, whereas the QL language extends AL with role conjunction, qualified
existential quantification on roles and enumeration. The result is contrasted with the fact that the
subsumption question for a pair of QL language concepts is NP-hard.
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In addition, the paper considers the general use of DL languages for both capturing data
in so-called knowledge bases and for expressing queries on the knowledge base, and it studies the
following question: given a number of assertions about objects in a knowledge base and their
connections via roles, does a certain object belong to a description. When AL is then used as a
schema language and a subsumer is expressed in QL, it is again shown that the question can be
answered in polynomial time.

In general, the problem of determining whether a set of assertions logically implies
another assertion is a natural generalization of the subsumption question to the systems that also
contain so-called rerminologies that are the DL counterpart for the database schema as discussed
in the next two subsections.

2.2.2 Terminologies and the Logical Implication Problem

A terminology is simply a collection of subsumption constraints. In the presence of a
terminology, the subsumption question is naturally generalized to the logical implication problem
of whether a terminology logically implies a subsumption constraint; or in other words, whether
any world (or a database instance in the database environment) that satisfies constraints in a
terminology also satisfies a subsumption constraint. (Sometimes we refer to this subsumption
constraint as the posed or stated question.)

In general, the addition of a terminology converts the subsumption question into a
potentially more complicated logical implication problem. To recognize this potential for an
increase in complexity, consider a cyclic terminology in which a concept “depends” on itself
[(BDN94]. In this case, the corresponding logical implication problem cannot be replaced by a
subsumption question obtained by simply “macro expanding” nested terminology. (In fact,
terminologies are often cyclic in practice, and as we will see later, the presence of the new fd
constructor would make cyclic terminologies even more widespread.) The fact that the
subsumption problem is generally easier than the logical implication problem under the same
conditions (such as the same DL language), makes it not surprising that the query language, i.e.
the language in which the posed question is expressed, can be (and is often) made more
expressive than the schema language, i.e. the language in which the terminology constraints are
expressed, without “falling off the computational cliff’. From the practical perspective, this
situation is favorable since one would want to ar least extract the information which is stored in
the database.

Note how seemingly opposite proposals are suggested in the literature. On the one hand,
some authors argue for the unification of the DML and DDL [BGN89, BBMS89]; and on the other
hand, the separation of the DDL, DML, subsumee and subsumer languages is argued to provide
better expressiveness without losing tractability [LS91, BDN94]. Our approach in that of the
“golden mean” where we combine the positive sides of the two proposals. On the one hand, our
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languages for the proposed terminologies and stated questions are similar enough to provide a
uniform view of the data, query and view objects, and to automatically use the database schema
constraints for query processing. (One way this is illustrated in some of our examples is by the
trick of abstracting a query as an increment to a terminology.) On the other hand, our schema
language is in fact less expressive than our view definition and subsumee languages (in
Chapter 5) that are in turn less expressive than the subsumer language.

Constraints in a terminology often have the form of a primitive concept being subsumed
by a description. These constraints capture necessary conditions that objects must satisfy to
belong to the concept. Other constraints that represent both necessary and sufficient conditions
are called concept definitions. Based on practical applications, [BDN94] recognized the important
distinctions between the two and considered the advantages of dividing a terminology into a
schema that contains a set of constraints of the first type and a set of constraints (called views) of
the second type. The paper makes a strong argument about improved conceptual clarity under the
suggested model and considers some examples of its computational benefits. Semantics of the
terminological cycles is also clarified, and it is shown that cycles are less “harmful” in terms of
added complexity in the schema than in the view definition part of the terminology. Our thesis
uses exactly this model to capture database schemas and views’. We allow cycles in our schemas
but disallow them in views. Moreover, just as suggested in the paper, our schema language is not
as expressive as our view definition language which also allows equational constraints.

The division of a terminology into a schema and views is exploited, for example, in
[BIN94]. The authors define a schema language (SL) to capture schemas and a query language
(QL)* to capture views and queries. The query language QL consists of the concept constructors
and, same-as, THING, singleton set constructor, and existential quantification over a path; and
role constructors inverse, restrict, comp, and Id. (Note that no typing constraints (all) are
allowed since they would lead to intractability even with empty schema.) The schema language
SL only contains (concept) constructors all, a single-valued restriction of a role (i.e. specifying
that a role is an attribute), and the unqualified existential quantification (some). The logical
implication problem is then shown to be polynomially decidable. The authors also observe that
the addition of either a limited form of negation or disjunction to QL leads to intractability of the
logical implication problem. The same is true of the addition of the disjunction of only primitive
concepts to SL.

[GL95] is another example of work that considers the logical implication problem. In this
case, the authors present a very expressive DL, called CATS, that in particular works with
domains that contain tuples and sets rather than just objects. (The logical implication problem for
CATS is shown to be EXPTIME-complete.) The importance of this paper for us is that it is one of
the first papers to study an influence of some form of functional dependencies in DLs. In

? The view part is empty in the DL considered in Chapter 4. Chapter 5, on the other hand, studies views as

well.
* Not to be confused with the QL language in [LS91].
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particular, the paper considers a concept constructor that essentially captures simple keys
(right-hand-side is Id) with attributes on the left-hand-side. The same kind of FDs are considered
in [CGL95]. There, the authors propose an extended object-oriented model, called CVL, which is
designed to express most other object-oriented models. The paper makes a strong case for
capturing more of the application semantics at the schema level. Our work, in turn, achieves that
by enhancing the kinds of uniqueness constraints one can capture.

A study of logical implication problems that contrasts the influences of acyclic and cyclic
schemas is presented in [Cal96]. (Only terminologies without view definitions are considered.)
The paper shows that cycles in schemas “greatly increase the complexity of reasoning”. In
particular, it considers FL™ and AL family of languages, and among those, only FL™ turns out to
have polynomial time complexity in the presence of cyclic schemas.

2.2.3 Description Logics in Databases

The ORDB notions of a relation or class is clearly analogous to the DL notion of a concept.
Moreover, just as the logical implication problem is the most important problem in DLs that
contain terminologies, “deciding implication problems is a central computational task both in
database schema design and query processing” [CK86, CKV90]. Therefore, it is not surprising
that many researchers have found that ORDBs can benefit from DL research and, as we have
already seen, a number of results that apply DL research to problems in ORDBs have been
reported [BGN89, BBM89, DD89, BS92, BP94, BDN94, BIN94, GL95, CGL95].

An excellent general survey of applications of DLs in the database area is presented in
[Bor95]. The author considers a variety of works that argue for representing various semantic
data models and DB schemas by relatively limited (but tractable) DLs. The author also discusses
a number of advantages of using DLs in DBs including capturing additional data semantics,
verifying schema consistency, reducing redundancy in schema representation, improved type
checking, and dynamic view handling (or taxonomic reasoning). In addition, the paper considers
research on applications of DLs in federated databases as a “richly expressive medium” for
capturing semantics of multiple co-operative information systems; that is, the use of DLs for
schema integration. Other uses of DLs on essentially all aspects of a database system are
discussed: utilization of DLs as view definition, constraint and query languages, and so on.
Advantages of using DLs in environments where users do not know the exact structure of the data
or not sure what query to formulate (such as in data mining) are also considered. In particular, the
benefits provided by DLs in multiple query evaluation, iterative query refinement, generalization
of queries to provide answers when the original answer is empty, and dealing with materialized
views are discussed. Benefits of DLs relating to maintaining and reasoning about incomplete
information are also presented (such benefits become especially clear when compared to the use
of null values in databases for similar purposes). The advantage of employing DLs for another



CHAPTER 2. RELATED WORK 21

traditionally difficult database problem of view updates is discussed as well. Further benefits of
DLs presented in the paper include their ability to solve problems in configuration management
and to return descriptive answers when query output would be too lengthy otherwise (or when a
user is not completely familiar with the schemna). Finally, the paper also gives a strong argument
for the notation used in DLs by showing that the DL notation is much more succinct and easier to
reason about than first order predicate calculus (FOPC) for the kinds of expressions considered
by DLs.

Finally, [BW97] provides a good framework (adopted in our work) for studying FDs in
DLs. However, FDs presented in the paper are defined only to deal with path functions that are
single attributes or Id, and no proofs are available for the claims made in the paper. In addition to
solving the above problems in Chapter 5, we also “fix” a number of other problems found in the

paper.

In comparison to many of the works above, our work only deals with attributes that are
total functions (its extension to roles is discussed in Chapter 6). Therefore, unqualified existential
quantification (some constructor) is not needed or considered in our framework. On the other
hand, we deal with the new fd constructor (in both terminology and posed questions) and study
its interaction with other constructors of FL™ as well as non-trivial equational (same-as) and role
composition (comp) constructors that are very useful in ORDBs. By “non-trivial” we mean that
these constructors are known to add complexity to other languages. For example, adding role
composition to PL, raises the complexity of the subsumption problem from polynomial time to
NP-hard [DLN91].

2.3 Other Related Work

There is a number of other papers that study the types of constraints considered in this thesis with
some variations. For example, [AM86] explores so-called intersection and union extended
generalization constraints which are extensions of typing constraints that include conjunction and
disjunction of “entity types” (classes). In a similar manner, typing constraints that involve path
functions [WC90] (or more generally, set valued “path descriptions™) are extended in [IN93) to
typing constraints on disjunction of classes. [BWW98] considers various path constraints in
object models that could be considered as various forms of equational constraints.

Also, a number of recent works on extending functional dependencies can be considered
as another indication of the significance of the FD theory. There is a renewed interest in FDs as
means of capturing and reasoning about data semantics in advanced models. For example,
[HD99] presents sound and complete axiomatization of nested functional dependencies which are
defined for nested relational model. Another recent paper [Wij99] studies temporal functional
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dependencies on complex objects in temporal databases and contains an overview of other recent
works in the area. Temporal functional dependency theory is an alternative extension of FD
theory which is orthogonal to ours, and the two theories could possibly be combined into a
temporal PFD theory.

Finally, the work on so-called congruence closure algorithms [NO77, NO80, DST80] is
also related to our own work, in particular to the kind of graph modifications that we perform
when dealing with FD constraints inside description graphs.



Chapter 3

Definitions

3.1 Descriptions and their Semantics

All description logics usually deal with at least two kinds of descriptions: concept descriptions D
that denote subsets of some domain A, and artribute descriptions Pf’ that denote functions over
A. In general, such descriptions are “constructed” from primitive concepts C,, C,;, ... and
primitive artributes A,, A,, ... using concept and attribute constructors. Note that the term
“concept” is used in DLs as a preferred synonym for the term “class” or “relation” in ORDBs. For
example, the concept description

(and PERSON
(all Name STRING)
(all Enum NUMBER)
(fd PROFESSOR Name Enum)
(fd PROFESSOR Enum Id))

uses primitive concepts PERSON, PROFESSOR, NUMBER, and STRING, primitive attributes
Name and Enum, concept constructors and, all and fd, and attribute constructor Id to capture the
set of “all people with distinct integer employee numbers and distinct names that are strings of
characters”. This example illustrates part of what can be expressed in the DL languages we
consider in this thesis. Later on, we formally define subsumption constraints that allow us to then
associate a primitive concept PROFESSOR with this description.

The occurrences of PERSON, all and fd in this example would correspond to inheritance,
typing and various key constraints, respectively, in a hypothetical “class™ definition for an
ORDB. In particular, the two fd constructors illustrate how one might capture the notions of

5 While Pf stands for “path function”, it will become clear later why we use the term “attribute description”
in this context,
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candidate and primary key constraints. Thus, this example begins to demonstrate how description
logics can be used to capture a database schema. The concept and attribute constructors in this
example are shared by almost all dialects of DLs except for the fd concept constructor. (This
constructor is peculiar to a recent extension of CLASSIC, called Classic/FD, that is proposed in
[BW97].)

Formally, the following grammar presents the descriptions that we are interested in:

D :x=C (primitive concept)
IV (view name)
| (all Pf D) (attribute value restriction)
| (fd C Pfs Pf) (functional dependency)
| (and D D Ds) (description intersection)
| (same-as Pf Pf) (equational restriction)
Pf := A (primitive attribute)
| Id (identity)
| (comp Pf Pf) (attribute composition)
Pfs == € | PfsPf (attribute description sequence)
Ds =€ {1 DsD (concept description sequence)

Note that the grammar would be a subset of the Classic/FD DL grammar if we allowed only
primitive attributes and Id instead of arbitrary attribute descriptions inside the fd descriptions.

Semantically, given an underlying domain A, an interpretation I = (A, ) first assigns a
(not necessarily distinct) subset of A to each primitive concept and view, and a subset of A x A
encoding a total function® over A to each primitive attribute. (We assume that the set of distinct
primitive attributes is recursively enumerable.) The interpretation of the constructed concept and
attribute descriptions is then defined by the following rules.

e @IPFD)'={xe AIPfix)e D'}

e (ACPHi . PLP)={xeAlVye C:[PAR'W) =PAR'O) A ... A PLID) = Pf,'o0] -
Pf'(x) = Prly) } (m20)

e (and D, D,...D.)'=D/'n ...nD,'(m=22)

e (same-as Pf, P)' = { xe Al PA'(x) = PA'(x) }

e Id'={(xx)lxeA}

* (comp Pfi PR)'={ (x,y)Ixe AAPRPR') =y )

® DL languages are somewhat divided over the issue of whether or not attribute descriptions should denote
partial or total functions. We follow [BP94] in opting for the latter case in order to avoid complications that
would otherwise arise relating the semantics of some of our constructors [BDN94).
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We are now ready to introduce constraints in DLs. Given a primitive concept C and a
description D, an interpretation I is said to satisfy the subsumption constraint C < D, or constraint
C < D is satisfied by an interpretation I, if and only if C' is a subset of D". Thus, for example, to
express the fact that “all objects of concept PROFESSOR are also objects of concept PERSON
(inheritance), and have an employee number attribute Enum with its value from a concept
NUMBER (typing)”, one would use the subsumption constraint

PROFESSOR < (and PERSON (all Enum NUMBER)).

Every interpretation that satisfies this must then satisfy the corresponding inheritance and typing
constraints. Note that the above does nor imply a stronger assertion that every person with an
employee number is a professor: the constraint expresses only some necessary conditions for an
object to be a professor. This one-sided characteristic allows one to concentrate on particular
properties of a concept one at a time. For example, given the above constraint, both constraints

PROFESSOR < PERSON and PROFESSOR < (all Enum NUMBER)

hold. In case of defined concepts, or views, however, one would want to capture both necessary
and sufficient conditions. Then a view definition V = D should be used. Formally, given a view
name V and a description D, an interpretation I is said to satisfy the constraint V=D, or V=D is
satisfied by L, if and only if V' has exactly the same members as D'.

3.2 Terminology

A database schema can now be characterized in terms of a terminology. Following [BDN94]), we
define a terminology T as a sequence of subsumption constraints (C; <D, ..., Ci<D,) and a
sequence of view definitions (V, =D/, Vo,=D), ..., V,.=D,’)’, where k20 and m>0. An
interpretation I satisfies a terminology T if and only if it satisfies every constraint in T, that is, if I
satisfies every subsumption constraint and every view definition. Thus, interpretation I represents
a database of objects (from the domain A) that are grouped into a concept hierarchy based on their
membership in C,' and that satisfy the appropriate typing, inheritance, uniqueness and equational
constraints set by the database schema represented by 7. On top of that, view definitions in T
determine the sets of all objects in A that satisfy the appropriate constraints imposed by the
right-hand-sides of the view definitions.

As in [BW97], we assume that every terminology satisfies the following conditions:

7 We assume that V,, V,, ..., V,, are the only view names occurring inside the terminology. In other words,
there are no “undefined” views.
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PROFESSOR < (and PERSON DEPARTMENT < (and
(all Name STRING) (all Name STRING)
(all Enum NUMBER) (fd DEPARTMENT Name Id))
(all Boss PROFESSOR)
(all Dept DEPARTMENT)
(fd PROFESSOR Name Enum)
(fd PROFESSOR Enum Id))

Figure 3.1: The UNIV terminology.

(@) Vi#Vjifi#j,and C;# V,forall i and j.

(b) D; is a description satisfying the grammar above except that the same-as constructor
cannot occur in D; for 1 £ <k.

(c) VicannotoccurinD;for 1 <j<kand1<i<m.

(d) Views are non-recursive: V;cannot occur in D/ for 1 Si<mand i <j < m.

To illustrate how a terminology can be used to capture a database schema, consider a part
of a hypothetical administrative database schema in Figure 3.1 that presents what we shall refer to
as the UNIV terminology. The terminology contains two subsumption constraints that expand on
our earlier example concept of a professor. Observe that the typing and inheritance constraints
occurring in the figure can be captured by both object-relational and relational models. In the
latter case, for example, one can use a unary inclusion dependency (foreign key constraint) to
capture the restriction on the Dept attribute for the corresponding table of professors. (Note that
we allow recursive schemas; in this case, boss of a professor is a professor.)

3.3 On Views

Since views are non-recursive (recall restriction (d) above on terminologies), it becomes possible
to unfold an arbitrary description by repeatedly substituting view names with their respective
definitions. An unfolded view description Vi, of a view V relative to some terminology T
containing a view definition of V is a description obtained from V by exhaustively substituting all
view names, starting with V, with their corresponding (right-hand-side) descriptions in the view
definitions in T. More generally, an unfolded description Dy, of a description D relative to some
terminology T is defined as a description obtained from D by substituting all view names in D
with their unfolded view descriptions. (The particular choice of terminology T will usually be
understood from context.)

For example, consider a terminology T that contains the view definitions
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Vl = Dlv
Vz = Dz, aﬂd
Vi=(and V; (all A V})),

where V; are view names, D; are descriptions that do not contain any view names and A is an
attribute. Then, the unfolded view description Vj,; is (and D, (all A D))), and the unfolded
description (and V, V3), is (and D, (and D (all A D).

A straightforward consequence of our definitions is that unfolding a description does not
change its interpretation. More formally, for any interpretation I that satisfies a terminology T,
V'= V,, for any view Vin T, and more generally, D' = Dy;' for any description D that may only
contain view names defined in 7.

3.4 On Path Functions

To simplify our presentation, we define a “normalized form” for an arbitrary attribute description.
In particular, we refer to any attribute description generated by the grammar

Pf ::=1Id (identity)
| (comp A Pf) (attribute composition)

as a path function. Such attribute descriptions always have the form
(comp A, (comp A; ... (comp A, Id) ...))°

for some k > 0 and primitive attributes A, thought A,.

Table 3.1 defines three rewrite rules that can be exhaustively applied to an arbitrary
attribute description to obtain a path function. Note that this mapping preserves interpretations of
attribute descriptions, a fact that we formally express and prove later on when we outline more
general mappings that simplify terminologies. Thus, while it is easier and more intuitive to
express examples using attribute descriptions, our procedures will assume that such descriptions
are first mapped to equivalent path functions.

® Unless specified otherwise, A and B (possibly with subscripts, superscripts, and/or prime symbols) will
denote primitive attributes in the rest of this work.
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1. Replace “(comp Id Pf)” by “Pf".
2. Replace “(comp PfA)” by “(comp Pf (comp A 1d))”".
3. Replace “(comp (comp Pf; Pf;) Pf;)” by “(comp Pf, (comp Pf; Pf3))".

Table 3.1: Normalizing attribute descriptions.

The length of a path function Pf, written Len(Pf), is defined as the number of occurrences
of the comp constructor inside Pf. In particular, if Len(Pf) is 0, then Pfis Id. The composition of
an attribute description Pf; with an attribute description Pf;, denoted PfioPfs, is defined as the
path function resulting from an exhaustive application of the rules in Table 3.1 to
“(comp Pf, Pf2)”. Note that Pf o Id therefore denotes the path function equivalent to an attribute
description Pf.

Finally, the following claim establishes a number of useful properties of attribute
descriptions and the composition operator.

Claim 3.1 Let A and B (possibly with subscripts) denote primitive attributes, Pf (possibly with
subscripts) denote attribute descriptions, and D denote a description. Then the following
properties hold for any interpretation 1.

(1) Let Ay, Ay, ..., Ax (k 2 0) be all primitive antributes of Pf; textually appearing in Pf, in that

order, and let By, By, ..., B, (m 2 0) be all primitive attributes of Pf, textually appearing in
Pf> in that order. Then,

PfioPf, = (comp A, (comp A; ... (comp A, (comp B, (comp B; ... (comp B, Id) ...))...)).
(2) The composition operator, o , is associative.
(3) PficldoPfyoldo ... oldoPf; = PfioPfio ... oPf; forany k2 1.
@) (Pfiokfro .. oPf)' = {(x.y) Ixe AAPRIC... PR\PA'®) ... ) =y} forany k2 1.

(5) If PR' = Pfy, then replacing Pf, by Pf; in any description D does not modify D".
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Proof.

Property (1). Note that none of the three rewrite rules in Table 3.1 modifies the textual order of
the attributes or removes or adds primitive attributes. Also, by the propositions that we present in
the later chapters and their proofs in the Appendices A and B, the result of the exhaustive
application of those rules produces an attribute description that satisfies the grammar for path
functions. Thus, if m=k=0, the only possible result of applying the rewrite rules to
(comp Pf; Pfy) is Id. On the other hand, note that the composition constructor in “(comp Pf, Pf>)”
also does not change the textual order of attributes or adds or deletes any primitive attributes.
Therefore, if m or k is greater than 0, the result of applying the rules to (comp Pf, Pf,) must be

(comp A, (comp A; ... (comp A, (comp B, (comp B, ... (comp B, Id) ... ))) ... )).
Property (2). Consider some attribute descriptions Pf;, Pf; and Pfs, and let A,, A, ..., A, be all
primitive attributes of Pf; textually appearing in Pf, in that order; let A,", A, ..., A/ be all
primitive attributes of Pf; textually appearing in Pf: in that order; and finally, let A,”, A,”, ..., A,,”

be all primitive attributes of Pf; textually appearing in Pf; in that order. First assume that k, l and
m are greater than 0. Then, by property (1), Pf,o Pf> must be

(comp A; (comp A; ... (comp A, (comp A,’ (comp Ay’ ... (comp A/ Id) ...))) ...)),
Pf>0 Pf; must be

(comp A’ (comp A’ ... (comp A, (comp A,” (comp A,” ... (compA,”1Id) ... )))...)),

and finally, both (Pfio Pf;)o Pf; and Pf,o(Pf20 Pfs) must be

(comp A, ... (comp A, (comp A/’ ... (comp A/ (comp A\” ... (comp A,”" Id)...))...))...).

By completely analogous arguments, the equality of (PfioPf2)oPf; and Pfio(Pfao Pf;) can
be established for cases when some of &, /, or m are 0.

Note that this property implies that we do nor have to use the parentheses to indicate the
order of applications of the composition operator.

Property (3). This property is a straightforward consequence of property (1) since both
FficldoPfyoldo ... oldoPf; and PfioPfo ... oPf; have the same order of the same primitive
attributes, and thus, would be (textually) equal.
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Property (4). The proof is by induction on k. For the base case of k = 1, the property is trivially
satisfied. Now, assume that the property holds for all k < ! for some / > 1 and consider k = [ + L.
Since (comp Pf; PR)' = {(x, y) I x € A A PAPA'(X) = y}, and since by the proofs in the
Appendices A and B, application of the rewrite rules of Table 3.1 does not change the
interpretation of the attribute descriptions,

(PfioPf2)' = (comp Pf, Pf)' = {(x.y) Ixe A A PR(PR'()) = y).

Thus, (PfioPfie ... oPfu))' = {(x, y) | x € A A Pfi(PfioPfio ... oPf) (x)) = y}. Using the
inductive assumption now, we conclude that

(PfioPfe ... oPfu))' = ((x, y) Ix € AA PRt ... PRYPR'W) ... ) = y).

Property (5). This property is a straightforward consequence of the definition of the interpretation
function.

One of the consequences of Claim 3.1 is that an arbitrary path function
(comp A, (comp A- ... (comp A, Id) ... ))

can be also expressed by A;0A4,0...0A,.

3.5 Logical Implication

Recall that one of our main concerns in this work is an efficient way of solving the logical
implication problem; that is, whether a number of constraints imply another constraint. Thus, for
a given terminology, we would like to deduce whether a particular constraint “follows” from it.
While the terminology must meet the requirements stated above, we wish to generalize the notion
of the constraint that we can ask about to the form D, < D; where both D, and D, are arbitrary
descriptions. Like our earlier definitions, constraint D, <D, is said to be satisfied by an
interpretation I if and only if D," is a subset of D,".

In order to finally complete the formal characterization of the logical implication
problem, we define the logical implication itself: a terminology T logically implies a constraint
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D, < D, written T &= D, < D,, if and only if for any possible interpretation I that satisfies T, I also
satisfies D, < D,°.

Recall from Chapter 2 that most of the research that considers efficient decision
procedures which solve logical implication problems with uniqueness constraints in the context of
models with complex objects require all such constraints to be “key dependencies”. In terms of
our DL language described in the beginning of the chapter, such constraints would have the form

C<(fd C Pf, ... Pf, Pf)

where Pf is a “prefix” of some path function Pf; (1 < i < k). Our procedure in Chapter 4 extends
such constraints and allows Pf to be either a prefix of Pf; or a prefix composed with another
attribute.

More formally, consider an fd description D = (fd C Pf ... Pf Pf) for some concept C,
path functions Pf; through Pf; and Pf. We call D regular if there exists a path function Pf; for
some 1 <i<k such that Pf;=A,0A;0...0A,0ld (for some m > 0 and primitive attributes A,
through A,), and Pf either has the form A0Az0...0A,0ld or A|0Az0...0A,0A for some 0 <t <m
and a primitive attribute A. Note that regular descriptions can be used to express not only key but
also relational functional dependencies.

Consider a subsumption constraint of the form
Ci<(fd C, Pf, ... Pf, Pf).

If C, and C, are the same concepts, the constraint is called a symmetric uniqueness
constraint. Otherwise, it is called an asymmerric uniqueness constraint. Further, if the
right-hand-side of the constraint is a regular fd description, the constraint is called a regular

uniqueness constraint.

Procedure in Chapter 4 allows only symmetric regular uniqueness constraints to occur in
a terminology and considers a logical implication problem with posed question that can be an
arbitrary symmetric uniqueness constraint. Chapter S also discusses terminologies that only
contain regular fd descriptions. However, it explores a more general logical implication problem
of whether a terminology logically implies a constraint D, < D,, where all fd descriptions inside
D, are also regular. On the other hand, fd descriptions allowed inside D, are not necessarily
regular and are further generalized to what we call extended Jd descriptions. Such descriptions
have the form

(fd D Pf, ... Pfu Pf)

? Again, we assume that there are no “undefined” views, i.e. D; and D do not contain any view names that
are not defined in T
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for some description D that in turn must satisfy our grammar presented above. (Note that D
cannot contain extended fd descriptions inside.) As one might expect, interpretation of the
extended fd description is defined as follows:

o ((dDPfi..PHRPf) ={xe AlVye D" [PA'(X) = PA'D) A ... A PRIX) = PLIO)] —
Pf'x) = Pf'y) }.

In particular, these more general descriptions allow us to reason about uniqueness
constraints on views. They further allow us to “ask” about uniqueness constraints that hold on
queries that are captured as views.

3.6 Description Graphs

The procedures presented in this work use description graphs to solve their respective logical
implication problems. A description graph G = (N, E, Refs) is a triple that consists of a set N of
nodes, a bag E of directed edges labeled with either primitive attribute names or Id, and a set Refs
of references to nodes. There are a variety of labels that can be attached to each node, each
containing a set of descriptions. (Unless stated otherwise, whenever we add new nodes to a graph,
we assume that these labels are initially empty.)

Elements in E are written (n;, A, n,) where n, and n. are nodes and A is either Id or a
primitive attribute name. In the former case, we sometimes refer to the edge as an “Id edge”, and
in the latter case, we say it is a “non-Id edge”. Intuitively, nodes of the graph correspond to
hypothetical or prototypical objects, while edges correspond to their attribute values.

Each element of the Refs set is a pair that binds a name of a reference to some node in N.
One of the references will be named dn which will be the main “entrance point” into the graph (it
corresponds to the distinguished node of the graph in [BP94)).

Finally, when a reference points to a node (i.e. the reference is bound to the node in the
Refs set), we use the reference name interchangeably with the node itself. For example, we might
denote an edge with (dn, A, n) or talk about “node dn™ as shorthand for the “node referenced by
dn”. We also assume (unless stated otherwise) that the same subscripts and superscripts apply to
reference names that are used for the Refs component of the graph. For example, by default,
Refs,’ contains the distinguished node reference dn,’.



Chapter 4

Reasoning with Symmetric Uniqueness Constraints

4.1 Problem Definition

In this chapter, we present a solution of the logical implication problem for terminologies when
all fd constructors inside a terminology are part of symmetric regular uniqueness constraints
(defined in Section 3.5) and the posed question is an arbitrary symmetric uniqueness constraint.
In other words, the chapter solves what we call the membership problem' for ORDB functional
constraint theory; that is, the problem of determining whether a given functional dependency is
logically implied by an ORDB database schema. Note that, using the notation in [Wed89], this is
essentially the membership problem for PFDs with a single right-hand-side component:

CUPfi, ..., Pfa} = (P )).

(It is well known that the restriction of having a single right-hand-side component does not
reduce the expressiveness of functional dependency constraints.)

By definition of what constitutes a symmetric uniqueness constraint, a view name cannot
occur in a posed question. This in tumn implies that the view definitions occurring in a
terminology will not be relevant to the logical implication problem that we consider. Thus, we
assume (without loss of generality) that an argument terminology contains subsumption
constraints only. It is then a straightforward consequence that all descriptions that do occur in the
terminology or posed question can be generated by the following subset of our description
grammar.

'® The term “membership problem” was used by [BB79] to describe the same implication problem in the
relational model where database schemas were assumed to consist of a collection of relational functional
dependencies.

33
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D x=C (primitive concept)
| (all PfD) (artribute value restriction)
| (fd C Pfs Pf) (functional dependency)
| (and D D Ds) (concept intersection)
Pf == A (primitive attribute)
| Id (identity)
| (comp Pf Pf) (attribute composition)
Pfs ::= ¢ | Pfs Pf (attribute description sequence)
Ds ==¢ 1 DsD (concept description sequence)

Note in particular that the production relating to same-as (in addition to views) is now absent
since, again by our definitions, occurrences of same-as are only possible in view definitions.

4.2 Mapping to Atomic Terminologies

We now present the first of our mappings that were mentioned in Section 1.3. The role of the
mapping is to simplify an input terminology by breaking up its constraints into a number of what
we call atomic subsumption constraints that constitute a new aromic terminology. Formally, we
define an atomic terminology as any terminology T’ than can be obtained from an arbitrary
terminology 7 by an exhaustive application of the rewrite rules in Table 4.1. We denote this
circumstance by writing Atomic(T, T").

One consequence of Proposition 4.1 below is that descriptions in an atomic terminology
have the property that they can be generated from the following simplified grammar.

D :=C (primitive concept)
I (all AC) (attribute value restriction)
I (fd C Pfs Pf) (functioral dependency)
Pf :=Id (identity)
| (comp A Pf) (attribute composition)
Pfs = ¢ | Pfs Pf (attribute description sequence)

Another consequence is that this alternative simpler grammar does not reduce the
expressiveness of a terminology in any fundamental way; for any terminology T, there exists a
terminology T, for which Atomic(T,, T>) holds and that preserves logical consequence. Thus,
although our examples will continue to be based on the more general grammar in Section 4.1, our
procedure will assume (without loss of generality) that argument terminologies are atomic.



CHAPTER 4. REASONING WITH SYMMETRIC UNIQUENESS CONSTRAINTS

Replace
Replace
Replace
Replace
Replace
Replace

N hAE N -

Replace

“C<(allld D)" by “C<D".
“Cy < (all (comp Pf, Pf,) D)" by “C, < (all Pf; C>)" and “C; < (all Pf; D)".
“Cy<(all A (all PfD))” by “C; < (allA C3)" and “C, < (all PFD)"."
“Ci<(all A (fd C; Pfs Pf))" by “C; <(all A Cy)” and “C.< (fd C; Pfs Pf)"."
“C<(@llA(and D; ... D))" by “C<@lADy)",...“C<(@lADY)"."
“C<(and Dy ... DY” by “C<D,", ...,“C<Dy"."

“Ci < (fd C; Pfs; A Pfs;)” by “C; < (fd C; Pfs, (comp A Id) Pfs,)".

("where C, denotes a new primitive concept not occurring in the given terminology and k = 2.)

(a) (rewrites for subsumption constraints)

8. Replace “(comp Id Pf)” by “Pf".
9. Replace “(comp PfA)” by “(comp Pf (comp A Id))".
10. Replace “(comp (comp Pf; Pf) Pf;)” by “(comp Pf, (comp Pf: Pfy))".

(b) (rewrites for antribute descriptions)

Table 4.1: Atomic simplification of terminology.

35

Proposition 4.1 Ler T, denote an arbitrary terminology, and C < D a subsumption constraint free
of any occurrence of a primitive concept not occurring in T,. Then an exhaustive application of
the rewrite rules in Table 4.1 terminates and obtains a terminology T that satisfies the simplified
grammar and such that Ty = C < D ifand only if T> = C < D.

Proof. (See Appendix A).

For example, the formulation of the UNIV terminology in Figure 4.1 is obtained by the
rewrites in Table 4.1 applied to the formulation of the UNIV terminology in Figure 3.1 in
Chapter 3. Note, in particular, that all fd concept constructors now occur within symmetric
uniqueness constraints, and therefore, solution to the membership problem considered in this
chapter is applicable to the formulation of the UNIV terminology in Figure 4.1.

4.3 Further Applications

There are many ways in which an efficient means of deducing symmetric uniqueness constraints
is very useful in query optimization. For example, to revisit a class of applications relating to the
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PROFESSOR < PERSON

PROFESSOR < (all Name STRING)

PROFESSOR < (all Enum NUMBER)

PROFESSOR < (all Boss PROFESSOR)

PROFESSOR < (all Dept DEPARTMENT)

PROFESSOR < (fd PROFESSOR (comp Name Id)
(comp Enum Id))

PROFESSOR < (fd PROFESSOR (comp Enum Id) Id)

DEPARTMENT < (all Name STRING)
DEPARTMENT < (fd DEPARTMENT (comp Name Id) Id)

Figure 4.1: The atomic UNIV terminology.

distinct keyword, consider two formulations in OQL of a request for all distinct names of
professors assigned to a department with a given name:

select distinct P.Name as Name from PROFESSOR as P
where P.Dept.Name = Param

select P.Name as Name
from DEPARTMENT as D, PROFESSOR as P
where D.Name = Param and P.Dept = D

The first formulation expresses the request more clearly, while the second has two performance
advantages over the first. First, it allows the possibility of using any DEPARTMENT index to
“bind” D prior to any PROFESSOR index to “bind” P; and second, it avoids the use of the
distinct keyword in the select clause. The translation of the former to a version of the latter in
which the distinct keyword has nor been removed is straightforward. A query optimizer can then
deduce that the distinct keyword is unnecessary by first augmenting the UNIV terminology with
the following additional subsumption constraints for a new class Q.

Q < (all P PROFESSOR)
Q < (all D DEPARTMENT)

Q < (fd Q (comp D Name) Param)
Q < (fd Q (comp P Dept) D)

The new class serves as an abstraction of the result of the second query; the two all constraints
correspond to the from clause, and the two fd constraints correspond to the where clause (both
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are straightforward consequences of its two conditions). In other words, one can think of Q as the
concept containing all the results of the query such that every object in Q defines a binding for a
professor P, the name of the professor P.Name, a department D and the query parameter Param.
The optimizer then proceeds to check that each of the following is a logical consequence of the
modified UNIV terminology.

Q < (fd Q (comp P Name) P)
Q < (fd Q (comp P Name) D)
Q < (fd Q (comp P Name) Param)

If this is true, then the number of objects in Q must be the same as the number of distinct
professor names defined by those objects in Q. The optimizer can then safely proceed to remove
the distinct keyword.

Note that all fd concept constructors occur within symmetric uniqueness constraints in
this application, and that the three immediately above differ only in their right-hand-side. This
latter observation suggests an important way in which an algorithm for reasoning about such
constraints should be incremental: subsequent checks for constraint membership that differ only
in the right-hand-side should run very efficiently. To enable similar use for another query, it
should also be possible to revise a terminology without incurring large “reformatting” costs.

Next, to review how an efficient means of deducing symmetric uniqueness constraints
can be useful in schema evaluation, consider the diagnosis of an object normal form proposed by
Biskup [Bis89]. His notion of strong object normal form requires a relation schema to satisfy two
conditions: first, that the schema has a unique minimal key; and second, that the schema is in
Boyce-Codd normal form (BCNF). (A relation schema is in weak object normal form when it
satisfies the latter condition only; that is, if and only if it is in BCNF.)

Now consider the primitive PROFESSOR concept of the UNTV terminology to be an
understanding in description logic of a PROFESSOR relation with attributes Name, Enum, Boss
and Dept. We can confirm that PROFESSOR is not in strong object normal form by asking the
following sequence of questions that focus on the particular requirement of having a unique
minimal key."!

UNIV = PROFESSOR < (fd PROFESSOR Name Enum Boss Dept Id)
UNIV = PROFESSOR < (fd PROFESSOR Name Enum Boss Id)
UNIV = PROFESSOR < (fd PROFESSOR Name Enum Id)

UNIV = PROFESSOR < (fd PROFESSOR Name Id)

UNIV = PROFESSOR < (fd PROFESSOR Id)

"' A general procedure that uses our algorithm to diagnose strong object normal form is presented later in
Section 4.7.
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(Since only the last question is not true, we have that attribute Name is a minimal key.)
UNIV = PROFESSOR < (fd PROFESSOR Enum Boss Dept Id)

(Since this is true, we have that Name is not a unique minimal key, and the result follows.)

Again note that all fd concept constructors occur within symmetric uniqueness
constraints in this application. However, in this case, the only problem parameters that remain
fixed are the terminology and the choice of primitive concept. It would therefore be desirable for
a membership problem algorithm to be incremental relative to these two parameters as well; that
is, subsequent checks for fd constraint membership problems should run more efficiently if they
only differ in their left and right-hand-sides. This is particularly true if one were to proceed to
check if PROFESSOR is in BCNF (and, therefore, in at least weak object normal form) since
diagnosing BCNF is likely to require a much larger number of checks for fd constraint
membership.

4.4 Acceptor Trees and Procedure Prop

Our overall approach to having the flexibility needed for these applications is similar to the
standard algorithm for the fd membership test; we define a data structure, a variation of a
description graph, that “grows” according to a given terminology, a primitive concept and a
left-hand-side. Adding a further subsumption constraint to the terminology or a path function to
the left-hand-side simply causes further growth.

In this chapter, we use description graphs that are trees and are treated as finite state
automatons that accepr precisely the set of right-hand-side path functions. We call such
description graphs acceptor trees. Thus, an acceptor tree obtained by the “growing process™ for a
given terminology 7, a primitive concept C and a collection of attribute descriptions
{Ph, ..., Pfu} will accept an attribute description Pf precisely when

T=C<(fdCPf, ... P, Pf).

Formally, an acceptor tree G is a tree (N, E, n) consisting of a set of nodes N, a set of
directed edges E, and distinguished node n € N (not necessarily the root of the tree). Each node n’
in N has two labels: (1) a finite set Cls(n’) of concept descriptions, and (2) a finite set Pfs(n”) of
path functions. The root node is denoted Root(G). Also, each edge is labeled with a primitive
attribute A, and as we discussed before, we write (n1, A, ny) to denote an edge from n, to n,
labeled A.
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Intuitively, nodes of an acceptor tree represent some objects in an interpretation domain,
and every Cls label contains concept names to which objects represented by the corresponding
node must belong. Edges and their labels represent attributes of the objects. Finally, Pfs labels of
the nodes are used to identify a set of attribute descriptions on which any two objects represented
by the root node must agree. All of the constrains captured by an acceptor tree are derived froma
given terminology and a posed question.

Note that in general, acceptor trees are description graphs with a few restrictions. First,
acceptor trees are in fact trees with a set of edges rather than arbitrary (description) graphs with a
bag of edges. Secondly, acceptor trees do not contain Id edges; and finally, while we could use
the Refs set to store the reference to the distinguished node, it is not necessary since acceptor trees
do not use other references. Thus, for the purposes of this chapter, it is sufficient and more
convenient to use the distinguished node by itself as the third component of the graph rather than
a reference to it.

We say that G (= (N, E, n)) accepts attribute description Pf if and only if either of the
following conditions hold:

* Pfs(n) contains a “prefix” of Pf (i.e. there exists Pf’ € Pfs(n) and Pf” such that Pfold is the
same as Pf'oPf”), or

® Pfold has the form “(comp A Pf")” and there exists {n, A, n") € E such that the acceptor tree
(N, E, n") accepts Pf".

For example, consider the following acceptor tree G with distinguished node n.

Cls: {PROFESSOR}
Pfs: @

Name Boss

Cls: {STRING} Cls: {PROFESSOR}
Pfs: S Pfs: {Id}

G accepts attribute descriptions Boss, Boss © Name, and in general any other attribute description
that starts with Boss. However, note from our definitions that G does not accept Name, despite
the existence of both the edge labeled Name and the node to which it points. The reason to allow
this relates to the need to remember deductions that will be relevant to subsequent fd membership
problems that differ only in the left or right-hand-side (as illustrated by the example applications
outlined above). In particular, note that G does say (in the sense formally characterized in
Lemma 4.3 below) that a professor must have a name that must be a string. It will turn out that,
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by first resetting all Pfs labels to be empty sets, G can be reused to search for the existence of
other functional constraints satisfied by professors.

Let C, {Pfi, ..., Pf.} and T denote a primitive concept, a set of attribute descriptions and
a terminology, respectively. Then the initial acceptor tree Init(C, {Pf,, ..., Pf}) (= N, E, n)) is
the acceptor tree with a single node ({n}, @, n) where Cls(n) and Pfs(n) are initialized to {C} and
{FPfield, ..., Pfnold}, respectively. The propagation of an acceptor tree G (= (N, E, n)) relative
to T (what we have earlier referred to as a “growing process” or a “propagation procedure™),
written Prop(G, T), transforms G by an exhaustive application of the following rewrite rules.

P1. (composition) If there exist n, € N and Pf; (= “(comp A Pfy)") € Pfs(n,), then remove
Pfi from Pfs(n,). If Id ¢ Pfs(n,) then:
(a) Find n; € N such that {n,, A, n,) € E. If no such node exists then add a new node
nz with both its Cls and Pfs labels initialized to &, and add (n,, A, n,) to E.
(b) Add Pf to Pfs(n.).

P2. (inheritance) If there exist n, € N and “C, < C," € T such that C y € Cls(ny) and
C; € Cls(ny), then add Cs to Cls(n;).

P3. (nyping) If there exist {n,, A, n,) € Eand “C, < (all A C;)" € T such that C, € Cls(n,)
and C: & Cls(ny), then add C; to Cls(na).

P4. (uniqueness) If there exist n, € N, C, € Cls(n,) and “Ci<(®dC.Pfy ... P[P €T
such that:
(@) (symmetry) C, = C,,
(b) (regularity) there exist 4 < i < m and path functions Pf;, Pf, and Pf; such that
Pfi = PfioPf;, Pf= PficPf;and Len(Pf;) < 1,
(c) (N, E, n) accepts Pf, for all 4 <j <m, and
(d) (M, E, n;) does nor accept P,
then add Pf to Pfs(n,).

(The following rule is optional; it can be added to simplify implementation, and has very little
impact on our analytic results.)

P5. (simplification) If there exists n; € N with at least one child and such that
Id € Pfs(n;), then remove all other nodes reachable from n, along with their incident

arcs.

Observe that every transformation obtains a tree when provided with a tree as input. This can be
seen in the example of computing Prop in Figure 4.2 below. The example presents the sequence
of changes made to the acceptor tree G = Initf(PROFESSOR, {Name}) relative to
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Cls: {PROFESSOR}
Pfs: {(comp Name 1d)}

(a) InitPROFESSOR, {Name}).

Cls: {PROFESSOR} Cls: {PROFESSOR}
Pfs: O Pfs: O
Name

Name
Cls: {STRING}
Pfs: {Id}

(b) By composition. (d) By composition.

Cls: {PROFESSOR}

Cls: {PROFESSOR}
Pfs: {(comp Enum Id))

Cls: {STRING}
Pfs: {1d)

Cls: {(NUMBER}
Pfs: {Id}

(c) By typing and uniqueness. (e) By typing and uniqueness.

Cls: {PROFESSOR]
Pfs: {1d)

(f) By simplification.

Figure 4.2: Evaluating Prop(Init(PROFESSOR, {Name}), UNIV).
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terminology UNIV, i.e. the set of subsumption constraints appearing in Figure 4.1. Note that the
final state of G is an acceptor tree with distinguished node Rootr{G) that accepts any attribute
description Pf. And therefore, by the results of the next section, it will follow that

UNIV = PROFESSOR < (fd PROFESSOR Name Pf).

Two observations on the rule of uniqueness are in order. First, condition 4(a) ensures that
the propagation of an acceptor tree is unaffected by asymmetric uniqueness constraints (which are
beyond the scope of this chapter). And second, condition 4(b) is needed to ensure that Prop
terminates. For an example of a case in which Prop would not terminate if condition 4(b) were
absent, consider the following terminology T,

{C<@llAC), C<(fd C B (comp A B))},

and the effect of a call of the form Prop(init(C, {B}), T). Here, the acceptor tree grows
indefinitely. Indeed, the condition reflects the result of our best efforts to find the most general
class of symmetric uniqueness constraints for which termination of Prop is ensured.

4.5 Analysis

Before we present the main results of our analysis of the propagation procedure, we introduce
some additional concepts and notation that will be needed in the upcoming proofs. Let G
(=(N, E, n)) denote an acceptor tree and n; an arbitrary node in G. The root path function of n, in
G, denoted RootPfin,, G), is recursively defined as follows: Id if n, = Root(G); and
RootPfin,, G) o A, where (n,, A, n,) € E, otherwise. Informally, RootPf(n,, G) is the path function
that consists of the primitive attributes labeling the sequence of edges from the root of G to n,.
Now let {Pf;, ..., Pfn} denote a set of path functions, T a terminology and PA(T) the set of all
primitive  attributes occurring in T. We define Prefix({ Pfs, ..., Pf,,}) and
Boundary({Pf;, ..., Pfn}, T) as the respective sets of path functions:

{Pficld |3 Pf; and 3 <i < m: PfoPf, = Pf}; and
Prefix({Pfs. ... Pfal) U {Pfio A| Pfi € Prefix({Pf;, ..., Pfa}) AA € PA(T)}.

It is a straightforward consequence of our definitions that for any regular symmetric uniqueness
constraint that occurs in a terminology T, Pf € Boundary({Pf; , ..., Pf,}, T). Another
consequence of the definitions is that a uniqueness constraint occurring in a terminology T is
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symmetric and regular if and only if it satisfies conditions (a) and (b) of the rule of uniqueness of
procedure Prop.

4.5.1 Termination

We begin the analysis of our procedure by first establishing that the procedure always terminates:

Theorem 4.1 (termination) Let G and T denote an arbitrary finite acceptor tree, i.e. an acceptor
tree with finite number of nodes and edges, and an atomic terminology, respectively. Then
Prop(G, T) terminates.

The proof of the theorem will rely on the following additional definitions and
observations. Given an acceptor tree G (= (N, E, n)) and an atomic terminology T, we define
acceptor tree prefix and boundary, written ATPrefix(G) and ATBoundary(G, T), as the respective
sets:

Prefix({ PfioPf213 n" € N: Pf, = RootPRn’, G) A Pf> € Pfs(n’) U {Id}}): and
Boundary({ PfioPf> |13 n" € N: Pf; = RootPfin’, G) A Pf, € Pfs(n’) U {Id} }, T).

Observation 4.1 G will have a finite number of nodes if and only if ATBoundary(G, T) is finite
(independent of choice of terminology T). This follows from the fact that the latter contains
RoofPfin’, G) o Id for every node n’ in G, that Pfs(n’) is finite, and that the number of primitive
attributes in 7T is also finite.

Observation 4.2 During an invocation of Prop, only rule P4 (uniqueness) can add a path
Junction to ATBoundary(G, T).

Lemma 4.1 Let Gy (= (N, E, n)) denote an arbitrary finite acceptor tree, T denote an atomic
terminology, and [G,, G, ... ) denote a sequence of acceptor trees obtained by a sequence of
applications of rewrite rules defined by Prop(Go, T). Then, for any i 20,

ATBoundary(G;, T) S ATBoundary(Go, T).

Proof. We need to show that RootPAn’, G;) o Pf is in ATBoundary(G,, T), for every i 20, n’
occurring in G;, and Pf € Pfs(n’) U {Id}, which we prove by contradiction.
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Let i denote the smallest integer such that G; (= (N, E,, n)) contains the first node n, with
Pf € Pfs(n;) U {Id} such that RootPfin,, G)) o Pf ¢ ATBoundary(G,, T). Clearly i > 0, and by
Observation 4.2, it follows that the i-th update must have been an application of rule P4 in which
Pf was added to Pfs(n). Thus, there exists a constraint “C < (fd C Pfs ... Pla PA)"inTwith C e
Cls(n,;) such that:

(a) there exist 4 < j < m and path functions Pf;, Pf, and Pf; such that Pf; = PfioPf,,
Pf= PfioPf;and Len(Pf)) < 1,

(b) { Nit, Eir, ny) accepts Pfi, ford <k <m, and
(€) {Nuy, Eiy, ny) does nor accept Pf.

Conditions (a) and (b) imply that there exist path functions Pf’, Pf” and Pf’” such that:

(d) Pf’OH”OH”’= m= Pﬁom, and
(e) there exists a node n, € N, reachable from n; such that RootPf(n;, G;,) is the same as
RootPf(n,, Gi,) o Pf’, and Pf” € Pfs(n,).

By choice of i and condition (e), we have that
RootPf(n;, Gi.)) o Pf”e ATBoundary(G,, T),

and therefore, by condition (e) again, RootPfin,, G.;) o Pf" o Pf” € ATBoundary(Go, T). But
then, conditions (c) and (d) imply that Pf; € Prefix({ Pf'oPf”}) — {Pf'oPf”}, and therefore, that
RootPfin, Gi,) o Pf, € ATPrefix(Go). Thus, since Len(Pf;) < 1 and Pf = Pf,oPf;, it follows that
RootPfin, Gi.\) o Pf € ATBoundary(G,, T). Finally, since the i-th update does not modify any
ancestors of ni, RootPfin,, G..) = RootPfn,, G), and therefore, RootPfin,, G)o Pf €
ATBoundary(Gy, T }—contrary to assumptions.

Proof of termination. To prove termination, note that Observation 4.1 above and the fact that we
have started with a finite acceptor tree imply that ATBoundary(Go, T) is finite. Therefore, by
Lemma 4.1, ATBoundary(G;, T) is also finite, and Observation 4.1 again implies that G; is finite.
Moreover, by definition of ATBoundary(G, T), the number of nodes in G; cannot exceed the
cardinality of ATBoundary(G, T) which in turn is not greater than the cardinality of
ATBoundary(Go, T).

Next consider what happens when we disallow any application of rule P5. Observe that
rules P2, P3 and P4 can “fire” at most a finite number of times since (1) the number of nodes is
bounded by the cardinality of ATBoundary(G,, T), (2) no node is ever removed by an application
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of rules other than rule P5, and (3) each rule may apply at most once to a given combination of a
node and a subsumption constraint in T. Therefore, the total number k of comp constructors
installed by rule P4 in the Pfs labels of nodes is finite, and this in turn ensures that rule P1 can fire
at most a finite number of times (since each application decrements k). Thus, the sequence S of
applications of rules P1 through P4 is finite.

Now consider the introduction of an application of rule PS on some node n in S at
position j. Clearly, no application of rule P4 occurs after position j in S on node n (condition (d)
of rule P4 cannot be satisfied), and no application of rule P1 after position j in S will result in the
addition of a new child of n. Since any application of any rule after position j on a descendent of
n must be removed from S, since rule PS5 itself cannot reapply to node n, and since the application
of rule PS does not make preconditions of other rules true, the resulting sequence must remain
finite and the theorem follows.

(]
4.5.2 Soundness
The following theorem establishes soundness of the procedure.
Theorem 4.2 (soundness) Let C, {Pf,, ..., Pf,} and T denote an arbitrary primitive concept, a set

of attribute descriptions and an atomic terminology, respectively. Then
T=C<(fdCPf, ... Pf, Pf)
if Prop(Init(C, {Pfi, ..., Pf,)}), T) accepts Pf.

To prove this theorem, we start by introducing a number of inference axioms in the
following lemma.

Lemma 4.2 For any terminology T, primitive concepts C and C; (1 < i < 3), non-negative
integers m and k, and attribute descriptions Pf, Pf’, Pf, and Pf 7 foranyj21:

(1) TEC<(d CPfi ... Pfn Pf), for | <j<m;
(2) TEC<(all Id C);

3) fTEC <@ PfC)and T= C; < Cs, then T= C; < (all PFC;);

) IfT= Ci < (all Pf, C2) and T &= C; < (all Pf; Cy), then T = C, < (all PfoPf, Cy);
(S) TEC<WdCPfi... PfuPY), then T=C < (fd C Pf; ... Pfo PfoPf?);
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6) IfTi=C, < (all Pf Cy) and T = C; < (fd C: Pf; ... Pf,, Pf.
thenT= C, < (fd C, PfoPf, ... PfoPf, PfoPf’);

(D UT=EC<(EdCPf... P Pf) for1< j< m,andTe=C<(fd C Pf ... Pf,) Pf),
thenT= C < (fd C Pf, ... P Pf).

Proof.

Properties (1) and (2). The properties follow directly from definition of interpretation of the fd
and all constructors.

Property (3). Consider an interpretation I that satisfies T and an object x in C;". Then, by the first
assumption of the property, Pf'(x) € C.'. However, since the second assumption implies that

Gl c Gy, Pf'(x) e G;". Thus, every object in C,' is also in (all RfC;)'.

Property (4). Again, consider an interpretation I that satisfies 7 and an object x in C,". Then, by
the first assumption of the property, Pfi'(x) € C', which in turn implies that PAYPf'(x)) € Cs' by
the second assumption. Therefore, by property (4) of Claim 3.1, (PfioPf)'(x) € C5' for any object

X in C[l.

Property (5). The property follows directly from definition of interpretation of the fd constructor,
from property (4) of Claim 3.1, and from the fact that interpretation of any path function Pf’ is a
total function.

Property (6). Proof is by contradiction. Let us assume that there is an interpretation I that satisfies
T, and there exist two objects x; and x; in C,', such that (PfoPf)(x)) = (PfoPf)'(x2) for 1 <i < m,
and (PfoPf")'(x1) # (PfoPf")'(x,). Thus, by property (4) of Claim 3.1, PF{Pf'(x)) = PEAPfi(xs))
for 1 <i<m, and Pf "(Pf ") = Pf "(Pf 1(x2)). Therefore, if we let y, denote Pf'(x.) and y, Pf'(xz).
Pf\>n) = Pfl(y2) for 1 <i<m, and Pf'on) = Pf (y2). By the first assumption of the property, both
y1 and y; belong to C,'. Then, however, restrictions on » and y; above contradict the second
assumption of the property.

Property (7). Consider an arbitrary interpretation I that satisfies T, and any two objects x; and x,
in C' such that Pf(x,) = Pf(x,) for 1 <i < k. Then, the first assumption of the property implies
that Pff’(x)) = Pf/"(x;) for 1 <j <m, which in turn implies that Pf'(x;) = Pfi(x;) by the second
assumption of the property.
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The following lemma introduces an invariant preserved by the Prop procedure and is
essentially the backbone of the proof of soundness that follows the lemma.

Lemma 4.3 Let C, {Pf,, ..., Pf.} and T denote an arbitrary primitive concept, a set of attribute
descriptions and an atomic terminology, respectively. Also, let Gy (= (No, Eo, n)) denote the initial

acceptor tree Init(C, (Pf, ..., Pfn}) and G, ..., Gy a (necessarily finite) sequence of acceptor
trees (= (N;, E, n), 1 <i < k) obtained by a sequence of applications of rewrite rules defined by
Prop(Gq, T'). Then, forall 0 <i <k:

(1) foralln"e N;, and Pfe Pfs(n): T= C < (fd C Pf, ... Pfn RootPf(n’, G)) o Pf);

(2) foralln’e N;, and C’ € Cls(n’): T= C < (all RootPf(n’, G;)) C"); and

(3) forall n" € (N; " N.\): RootPRn’, G..,) = RootPRn’, G)).

Proof. Property (3) can be verified by a simple inspection of the rules comprising our Prop
procedure. We prove properties (1) and (2) by induction on i.

For the base case, G, consists of a single node n with labels CIs(n) and Pfs(n) initialized
to {C} and {Pficld, ..., Pf,old}, respectively. (2) is therefore an immediate consequence of
Lemma 4.2(2). Lemma 4.2(1) implies

T C<(fdCPf, ... Pf, Pf)

for 1 <j < m, and since RootPfin, Go) o Pf; = Pf; o Id, (1) must also hold.

Now assume the lemma holds for all i < / < k, and consider each of the five possible rules
that might have obtained G,. (The rules themselves are reproduced for convenience.)

Pl. (composition) If there exist n, € N and Pf; (= “(comp A Pf;)”) € Pfs(n)), then
remove Fj, from Pfs(m). If Id € Pfs(n,) then:

(@) Find n; € N such that {n,, A, n;) € E. If no such node exists then add a new
node n; with both its Cls and Pfs labels initialized to &, and add (n, A, n)10E.

(b) Add Pf; to Pfs(n,).

Observe that no primitive concept is added to any Cls label by the rule of composition.
Thus, (2) must hold for G; by the inductive assumption and (3). Also, by the inductive
assumption,

T C<(fdCPf, ... Pf, RootPfin,, G.))o (comp A Pfy)).

And since the rule ensures RootPf(n,, G)) = RootPf(n,, G;) o A and by (3) we have



CHAPTER 4. REASONING WITH SYMMETRIC UNIQUENESS CONSTRAINTS 48

RootPf(n;, Gi)o A = RootPfin,, G..;) 0 A,
it follows that
Te=C<(fd C Pf; ... Pf, RootPf(n,, G))o Pfy).
Thus, property (1) must also hold for G,.

P2. (inheritance) If there exist n; € N and “Ci < C;” € T such that C; € Cls(n,) and
C; & Cls(n;), then add C, to Cls(m,).

Since Pfs labels remain unchanged, (1) must hold for G, by the inductive assumption and
property (3). Also, by the inductive assumption,

T = C < (all RootPf(n,, G..,) Cy);

and by (3), the precondition that “C, < C,” € T and Lemma 4.2(3), it follows that
T = C < (all RootPfin,, G) C,).

Thus, property (2) must also hold for G,.

P3. (ryping) If there exist (n;, A, n;) € E and “C; < (all A C,)” € T such that C, € Cls(m;)
and C; & Cls(n;), then add C; to Cls(n,).

(A similar line of argument to the previous case applies by substituting a reference to
Lemma 4.2(4) in place of Lemma 4.2(3).)

P4. (uniqueness) If there exist n, € N, C, € Cls(m;) and “C, < (fd C; PR ...PWPf ) e
T such that:'?

@) (symmetry) C, = C,,
(b) (regularity) there exist 4 < i < h and path functions Pf;’, P:’ and Pfy’ such that
Pfi = Pfi’oPfy’, Pf* = Pfy’oPfy’ and Len(Pfy") < 1,

' Note that notation is adjusted so that path functions inside the rule do not conflict with path functions
inside the statement of the lemma.
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(© (N, E, m)accepts Pf/, for all 4 <j < h, and
(d) {N, E, n,) does not accept Pf’,
then add Pf’ to Pfs(n,).

Since no primitive concept is added to any Cls label by the rule of uniqueness,
property (2) must hold for G; by the inductive assumption and property (3). From condition (b),
condition (c), property (3) and definition of acceptance, there must exist nodes n; and path
functions Pf;7*", Pf,"*' and Pf;“", for each 4 <j < h, such that

Pf}'=Rf}Pam°P_ﬂMl°mm’. (l)
RootPfin;, G)) = RootPfin,, G;) o Pf"**, and (PA)
Pf;"*! occurs inside label Pfs(n;). 3

The inductive assumption, together with (2) and (3), implies that
T= C<(fd C Pf, ... Pf. RootPfin,, G)) o Pf;"™o Pf;'ab<!y
must hold for each 4 <j < h. And then from (1) and Lemma 4.2(5), we have that
T=C<(fdC Pf, ... Pf,, RootPRn,, G)) o Pf)), foreach4 <j < h. @)
Now consider that C, € Cls(n,) together with properties (2) and (3) imply that
T = C < (all RootPfin,, G) C)).
Then Lemma 4.2(6) and the fact that C, < (fd C, Pfy’ ... Pfy" Pf") occurs in T imply
T= C < (fd C RootPfin,, G)) o Pfy ... RootPfn,, G) o Py’ RootPfin,, G)o Pf’), (5
and finally
T C<(fdC Pfi ... Pfn RootPfin,, G) o Pf’)

follows from (4), (5) and Lemma 4.2(7). Thus, (1) continues to hold following the addition of the
path function Pf’ to Pfs(n,).
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P5. If there exists n; € N with at least one child and such that Id € Pfs(n;), then remove
all other nodes reachable from n, along with their incident arcs.

Since there is no modification to any Cls or Pfs labels, both (1) and (2) must continue to
hold on G,.

Proof of soundness. To prove soundness, let now G denote the acceptor tree computed by

Prop(Init(C, {Pf,, ..., Pf,}), T),

and let Pf denote an attribute description accepted by G. Then G must contain a node n and there
must exist path functions Pf” and Pf” such that Pfo Id = RootPfn, G) o Pf’ o Pf” and such that
Pf’ occurs in Pfs(n). Thus, condition (1) of Lemma 4.3 and Lemma 4.2(5) imply

T=C<(fdCPf, ... P, Pfold),
and since (left-hand-side)' = (right-hand-side)" for every rewrite rule occurring in Table 4.1(b)

and every interpretation I, it then follows that Pf' = (Pf o Id)' for every interpretation [, and
therefore, that

TE= C < (fd CPf, ... Pf, Pf).

]
4.5.3 Completeness
Next, completeness of our procedure is established in the following theorem.
Theorem 4.3 (completeness) Let C, {Pf,, ..., Pfx} and T denote an arbitrary primitive concept, a

set of attribute descriptions and an atomic terminology, respectively. Then, if all uniqueness

constraints occurring in T are symmetric and regular,

Prop(Init(C, {Pfy, ..., Pfu}), T) accepts Pr
fTkE C<(fdC Pf, ... Pf, PY).

Proofs of completeness for the procedures presented in this and the next chapters are analogous.
However, since our second procedure is more complicated and can potentially produce cyclic
graphs, we present a detailed proof of completeness in the next chapter. On the other hand, while
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the proof presented here contains most of the necessary details, it does appeal to intuition on a
couple of occasions (for example, by not exactly defining the notion of the path in the graph in
the proofs of assertions 7 and 8) in order to simplify the presentation and to allow one to follow
the general line of argument more easily. Thus, this proof also serves as a guideline for the more
difficult proof in Subsection 5.6.3, and at the same time, the details that are left out here can be
easily extracted from the next chapter.

Proof of completeness. The overall strategy is to assume that

Prop(Init(C, {Pf,, ..., Pf}), T)

does not accept Pf, and then to construct an interpretation that satisfies T and does not satisfy
constraint “C < (fd C Pf, ... Pf,, Pf)". Our construction starts from the output of procedure
Prop(Init(C, {Pf,, ..., Pf,}), T), and considers a “merge” of two identical copies of the resulting
tree. The roots of the two trees will represent two objects violating the subsumption constraint,
while the rest of the structure will provide the remaining details for an interpretation. After the
above-mentioned merge “joins” all isomorphic nodes that have Id in their Pfs labels, we extend
the resulting (description) graph with additional “missing” nodes and edges to represent the
attribute values of all the objects in the graph to ensure that the constructed interpretation of every
attribute is a total function. Finally, the desired interpretation I is obtained by: (1) viewing the set
of all nodes as the domain A, (2) the interpretation of a concept C as the set of all nodes with C
occurring in their Cls labels, and (3) the interpretation of an attribute A as the set of pairs of nodes
connected by an edge labeled A.

To obtain I, we first construct an infinite sequence Sp of (finite) description graphs that
starts with acceptor trees

G.z = lnit(C, {m, ceey Pf,.}) = <N.2, E.z, dll) and
G.. = Prop(G.,, T) =(N., E,, dn)"®

(we assume that this invocation of Prop includes the simplification rule). Note that assuming
m 2 1 (the case when m = 0 will be discussed at the end of the proof), and due to the composition
rule, G, contains at least one node with Id inside its Pfs label. Therefore, G.; must contain more
than one node, since otherwise, the only node in the tree, i.e. its root, would contain Id inside its
Pfs label, and thus, the tree would accept any attribute description contrary to the assumption that
it does not accept Pf. Moreover, due to the simplification rule, only leaves of G., contain Id in
their Pfs label. Finally, due to the composition and simplification rules, these nodes do not
contain any other attribute descriptions in their Pfs label, and all other nodes in the graph have
empty Pfs labels.

'3 Note that neither of the steps of our construction will change the distinguished node.
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Next, a copy of tree G, is constructed, say G.\"=(N./’, E/’, dn"), and the following merge
of the two trees obtains G, = (Ny, E,, dn):

CSo. Initialize Ny with N, U N.)’, E, with E, U E;’, and the distinguished node with dn.
Next, for all n, € N, and n,” € N.;’ such that RootPfn,, G.;) = RootPf(n)’, G.\") and
Id is in the Pfs label of both nodes, and for an edge (n’, A, n\) € E./’, remove the
edge from Eo, add {n’, A, n,) to E,, and remove node n;” from N,.

Note that there must exist a parent for a node n,” that contains Id in its Pfs label; or in
other words, the edge (n’, A, n,") always exists in the above rule, since otherwise, n,” would be the
root node of G.,". Then however, G.,°, and therefore, G.;, would accept any attribute description,
including Pf, contrary to the assumption.

It follows that G, consists of exactly three non-empty parts. Part 1 contains all nodes (and
their outgoing edges if any) that are in N.; and that do not have Id in their Pfs labels; part 2
contains all nodes (and their outgoing edges) that are in V.’ and that do not have Id in their Pfs
labels; and part 3 contains all nodes that are in N.; and that have Id in their Pfs labels. Moreover,
since Id only appears in the Pfs labels of the leaves of G.;, part 3 only contains leaf nodes.
Finally, due to the structure of G., that we outlined above, nodes in parts 1 and 2 have empty Pfs
labels, while nodes in part 3 only contain Id in their Pfs labels. Graph G, is illustrated in Figure
4.3(a) at the end of the proof.

The idea of the construction that follows is to add “missing” attributes to G, in a way that
eventually ensures that the interpretation of each primitive attribute is a total function. Since
nodes in the graphs will be the objects in A, and edges will define the interpretation of attributes,
each node must have an (outgoing) edge for every attribute in at least one graph. Generally
however, we cannot create arbitrary new edges between nodes that already exist in the graph
since that might lead to violations of fd constraints in 7. Thus, for every node n; and every
primitive attribute A, we create a new node n, and an edge (m), A, ny) unless it already exists;
deduce the concept(s) that n, must “belong” to; and proceed by creating nodes and edges
outgoing from n. All three parts of G, grow with this process.

More formally, let Sp = [G., G.i, Gy, G, ..., G; = Ni, E;, dn), ... ] denote the infinite
sequence of description graphs constructed as follows. G.,, G.,, and G, are constructed as defined
above. Next, at step i (i 2 1), we add a number of nodes and edges to graph G, and invoke
procedure Prop (without the simplification rule) on the resulting graph to obtain G;. (Even though
we defined Prop as a procedure that works on acceptor trees, for the purposes of this proof, we
also allow it to work on arbitrary description graphs containing appropriate labels for nodes and
edges.) Let N/’ (resp. E/) denote the set of new nodes (resp. edges) that we add at step i. We will
show in Assertion 1 that procedure Prop does not add or remove any nodes or edges to or from
the resulting graph, and therefore, that N; =N, U N/ and E; = E.,UE;/
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Let Spa = [Ay, A3, ... ] denote a sequence of all primitive attributes'*. Since we are going
to add a countably infinite number of nodes with countably infinite number of outgoing edges, we
use a “triangular” construction to keep the graph resulting at each step finite. Thus, we define step
i (i 2 1) of the construction, denoted by CS;, as follows:

CSi. Foralln, € N, and Aje Sps (1 <j<i): if there is no n; in N., such that (n,, A;, n,) is
in E;,, add a new node n, to N/ and edge (n,, Aj, ny) to E/. G; is defined as
Prop(<N'-l v Ni’v Ei'l U Ei,v dn)v T)-

Finally, we define the interpretation I as follows:

L] A= No ) U Ni';
i2l
e C'={neAal3G (2 0) such that n € N; and C € Cls(n) inside G;} for any primitive concept
C; and

o A'={(m, n) 13 G; (i 20) such that n,, ny € N; and (n,, A, ny) € E;} for any primitive
attribute A.

In order to distinguish different invocations of Prop procedure during the construction
process, we use a subscript to denote the step at which the procedure is executed. Thus, Prop;
(6 21) is the procedure invocation at step i. In addition, we denote invocation of Prop that

constructed graph G., as Prop,.

Let us now make a number of assertions (and present their proofs) about the nature of this
construction and the resulting interpretation I.

Assertion 1. Rules of composition and uniqueness are never applied during an execution of Prop;
foranyi>1.

Let us assume that the statement is not true, and j is the number of the first step when
either uniqueness or composition rule is applied. Also, let G’ = (N’, E’, dn) denote the graph
right before the rule “fires” for the first time. Since all nodes that are added by CS; (i 2 1) have
empty Pfs labels, and the only rules that are applied to G, to obtain G’ are the rules of inheritance
and typing, the only modifications to the nodes and edges of G, are the additions of nodes and
edges by the CS; (1< i <) steps; and the only nodes that have non-empty Pfs labels are the ones
that have {Id} as their Pfs labels (i.e. the leaf nodes “merged” during the construction of Gp).
Therefore, the rule that fires next is not the rule of composition. In addition, it follows that the

' Recall that our assumnption that the set of primitive attributes is recursively enumerable ensures that such
a sequence exits.
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node to which the rule of uniqueness applies, say n,, belongs to G, (since all new nodes that are
added by CS; (1 <i < j) do not have descendents with Id in their Pfs labels). However,
independently of whether n, belongs to G_; or G./’, since (a) the structure of those graphs remains
unchanged by the construction steps CS; (1 <i < J) and by the applications of rules of typing and
inheritance; (b) the Cls sets of nodes in G, are also not modified due to the exhaustive firing of
rules of inheritance and typing during the construction of G.i; and (c) no additional incoming
edges for the nodes in N, are created during the CS; (¢ 2 1) steps, the conditions for firing the rule
of uniqueness (on n, or its isomorphic node if n, is in G./") would be satisfied in the graph G.,.
However, due to the exhaustive applications of the rules of uniqueness during the construction of
G., the rule would have been fired. Therefore, condition (d) of the rule would no longer be
satisfiable, which implies that it is also not satisfiable in graph G’. Thus, the rule of uniqueness
cannot fire. Contradiction.

Note that termination of steps 1 through j above (as well as finiteness of the graphs G,
through G°) is guaranteed by the facts that G, is finite, and there is at most a finite number of
applications of inheritance and typing rules to a finite number of nodes and edges that are added
at each step. At the same time, the assertion itself then guarantees the finiteness of every graph G;
since it establishes that rules of inheritance and typing are the only ones that apply at every step
CS;(iz1.

In addition, as we mentioned before, this assertion implies that N; = N; U N/ and
E;=E;. U E/V i21 since rules of inheritance and typing do not modify nodes and edges in a

graph.

Assertion 2. No step i for i 2 | adds/removes any primitive concepts to/ffrom Cls sets of nodes in
N,‘.].

This assertion is a consequence of the facts that every construction step just adds new
nodes and edges outgoing from already existing nodes, and by Assertion 1, only rules of
inheritance and typing can be applied during the execution of Prop;. First, note that neither of the
rules can remove a primitive concept from a Cls set of a node. In addition, note that invocation of
Prop;.; must have exhaustively explored all applicable rules (if i = 1, the rules must have been
exhaustively applied during the construction of G.;, and therefore, no rule is applicable in the
graph Go). Thus, the only rules that might be applicable during the invocation of Prop; are rules
of typing that add new concept names to the Cls sets of the newly created children (in N;). After
that, neither of the inheritance or typing rules that apply to nodes in N; can possibly affect the
Cls sets of other nodes. Therefore, Prop; cannot possibly add new primitive concepts to a Cls set
of a node in N.,.

In particular, this assertion implies that if i is the smallest non-negative integer such that a
node n is in N;, n € C' for our constructed interpretation I if and only if C € Cls(n) in G..
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Assertion 3. For every node n, € A, and every A; € Spa, there is at least one node n> € A such
that (n,, ny) € AL,

Indeed, let j be the smallest non-negative number such that G;j contains n; (such j exists
since n; € A). If there is an edge (n,, A, ny) in E; for some node n, in Nj, (n;, n) must be in A by
the definition of I. Otherwise, a new node n, and edge (n;, A;, ny) are created by construction step
max(i, j + 1), and thus again, (n;, n,) must be in A".

Assertion 4. For every node n, € A, and every A; € Spa, there is at most one node n, € A such
that (ny, ny) € A"

The statement follows from the facts that G, is a tree; no construction step or an
application of a rule adds a new edge if there already exists an edge with the same label and
outgoing from the same node; and no edge is ever removed or modified during the construction
steps CS; foralli 2 1.

Assertion S. L is a valid interpretation.

This assertion is a straightforward consequence of Assertions 3 and 4 since they ensure
that primitive attributes are total functions on A.

In order to keep the numbering of the assertions in the proofs of completeness in this
chapter and in the next chapter analogous, we skip the assertion number 6 since the analog of the
assertion 6 in the next chapter would be a trivial statement in this proof.

Assertion 7. The distinguished node of G, is in C', and 1 satisfies T.

The first part of the assertion follows directly from Assertion 2, since C is in the Cls set
of the distinguished node of G, and remains there throughout the construction process
(distinguished node remains unchanged as well).

Next, consider the second part of the assertion. There are three kinds of constraints in T
@ Ci<GCy

() Ci<(allA C,); and
(¢) aregular uniqueness constraint Cy < (fd C, Pf,’ ... P Pf").
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Let us assume that I does not satisfy a constraint of kind (a). Then, there must exist a node n such
that n is in C,' and not in C5'. Therefore, by Assertion 2 and definition of I, there must exist the
smallest non-negative integer i such that graph G; contains n, C, is in Cls(n), and C; is not in
Cls(n). Then, however, Prop; would have added C; to Cls(n), and therefore, by Assertion 2 (or by
construction of G if i = 0), n must also belong to (o contrary to the assumption.

Next, let us assume that I does not satisfy a constraint of the form (b). Then, there must
exist two nodes n and n’ such that # is in C,', (n, n’) is in A, and n’ is not in C;'. Therefore, by
Assertions 2 and 5 and definition of I, there must exist the smallest non-negative integer i such
that graph G; contains nodes n and n’ and edge (n, A, n"), C, is in Cls(n), and C; is not in Cls(n’).
Then, however, Prop; would have added C, to Cls(n"), and therefore, by Assertion 2 (or by
construction of G, if i = 0), n” must belong to C,', contrary to the assumption.

Finally, let us assume that I does not satisfy a constraint of the form (c). Then, there must
exist nodes n, n’, n,, ..., ni, n,, and n..,” such that

(1) nand n’ are in G,
(2) Pf/(n) = Pf/'(n") (=n,) for 1<i<k; and
(3) Pf’'(n) (= niy) and PFY(n") (= niy’) are distinct.

Therefore, by Assertions 2 and 5 and definition of I, there must exist the smallest non-negative
integer j such that graph G; contains nodes n, n’, n,, ..., n,, Nk, and n.,’, contains a path p;
(resp. p;") from node n (resp. n’) to node n; that passes through the edges labeled with attributes of
the path function Pf{ (for all 1 <i <k), and where C, is in Cls(n) and in Cls(n"). However, since
by our construction (and Assertion 1), the only nodes that have more than one parent are the
nodes in the part 3 of graph Go, n and n’ must belong to the union of parts 1 and 2 of G,.
Moreover, for every path function Pf/ (1 < < k), there must exist its prefix Pf’” such that there is
a path that leads from node n (and n’) to a node (say n;") in part 3 of G, and that passes through
edges with labels corresponding to the attributes of Pf” (see Figure 4.3(b)).

Note that n and n” must be distinct nodes, since otherwise, they would “agree” on the path
function Pf’, i.e. ny and n.” would have to be the same. Without loss of generality, let us
assume that n is in part 1 of Gy, i.e. n € N.;. Then, our construction of G, implies that n’ must
belong to N.;” and be isomorphic to n. It follows that G, contains a node n with C in its Cls label.
Moreover, (N.,, E.;, n) accepts Pf; for 1 <i < k. Therefore, Prop, would ensure that (N., E., n)
also accepts Pf’. Then, due to the rules of composition and simplification, there would also exist a
path in G that (a) starts from node n; (b) ends at a node with Id in its Pfs label; and (c) passes
through edges with labels corresponding to the attributes of a prefix of the path function Pf.
Therefore, due to our construction of Gg, nodes n and n° would have to also agree on a prefix of
the path function Pf’, contrary to condition (3) above.
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Assertion 8. The distinguished node of G, is not in (fd C Pf, ... Pf, Pf)".

First, note that by the discussion following the definition of the construction step CSo,
neither dn nor dn’ (the root of G.,") contains Id in its Pfs label, and therefore, neither of the nodes
is removed by the step CS,. Furthermore, since the Pfs label of the distinguished node dn contains
path functions Pf; (1 <i<m) in G,, by the rule of composition and by construction of G, dn and
dn’ agree on the paths in G, that pass though edges with labels corresponding to the attributes of
some prefixes of the path functions Pf; (for all 1<i< m). Therefore, by definition of the
interpretation I, Pf(dn) = Pfidn") (1<i<m). In addition, both nodes contain C in their Cls
labels, and therefore, both belong to C.

On the other hand, since G.; does not accept the path function Pf, nodes dn and dn’ do not
agree on a path in G, that passes through edges with labels corresponding to the attribute names
in any prefix of Pf. Moreover, since our construction steps CS; for i 2 1 cannot add any nodes
with more than one parent, by the definition of I, Pf'(dn) = Pf'(dn’). Therefore, the statement of
the assertion follows.

Therefore, by Assertions S, 7 and 8, we constructed an interpretation I that satisfies T and
contains a node (dn) that is in C' but noz in (fd C Pf, ... Pf,, Pf)". In other words, I satisfies T and
does nor satisfy constraint C < (fd C Pf, ... Pf,, Pf).

Two final notes are in order. First, the result of the theorem also holds if we consider the
invocation of Prop, (that constructed G.;) without the simplification rule. The only change would
involve merging descendents of nodes that have Id in their Pfs labels. (This can be done along the
lines of the Merge procedure presented in the next chapter.) The descendents would form a forest
of trees, and would just slightly complicate the proof. The proof of completeness in the next
chapter deals with much more serious complications that includes the one above.

Second, in the case when m = 0, our procedure (always) returns false; and indeed, since
we require the terminology to contain regular uniqueness constraints, none of the uniqueness
constraints in the terminology has the form “C < (fd C Pf)”, and therefore, none of such
constraints can be deduced. To formally show this, one just needs to apply the construction
presented above to the case when m is indeed 0. Then, G, becomes two unconnected trees with C
in the Cls labels of the roots. Just like the arguments in the case when m > 1, it can be shown that
the interpretation constructed from the two trees would satisfy terminology 7, but at the same
time, would clearly violate the constraint “C < (fd C Pr)”.
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Figure 4.3: Construction of the interpretation I in the proof of completeness
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4.5.4 Runtime Complexity

Finally, we consider the runtime complexity of the procedure.

Let G, denote Init(C, {Pf,, ..., Pf;}), for some primitive concept C and a set of attribute
descriptions (Pfy, ..., Pf;}, and let G denote Prop(Go, T), for some terminology T. A
straightforward consequence of Lemma 4.1 is that the total number of nodes created during the
computation of G will not exceed the size of ATBoundary(G,, T), which is in tumn O(m - k),
where m (resp. k) is the encoding length of {Pf;, ..., Pf;} (resp. T). Since each constraint in T will
apply at most once to each node, a very loose polynomial bound on the time to compute G is
therefore O(m? - k*). This allows O(m - &%) time for each “iteration” of Prop to successfully fire a
rule (O(m - k) time to loop through all nodes and O(k) time to check all constraints for each node),
together with the possibility that O(k) constraints eventually fire on each node—bounds that
would be clearly satisfied by a direct translation of the Prop procedure. However, a
straightforward indexing of constraints based on their left-hand-side primitive concepts together
with a simple optimization that prunes any uniqueness constraints indexed by nodes with Id
occurring in the Pfs label will yield a tighter O(m? - £*) bound on the time to compute G.

Indeed, consider a procedure that performs two major steps. At its first step, the
procedure would “expand” the paths corresponding to the path functions Pf; through Pf; and
propagate the applicable typing and inheritance constraints. This would take O(m - k) time since
O(m) nodes are created and it takes O(k) time to apply all typing and inheritance constraints for
each node. Next, since the rule of uniqueness does not fire on the nodes that have Id in their Pfs
label due to condition (d), P4 can only be applied to O(m) nodes; i.e. P4 does not apply to nodes
created after the first step. Indeed, since all path functions contain Id in the end, the regularity
condition of the uniqueness constraints and the rule of composition ensure that the Pfs labels of
all nodes added during the second step contain Id, and that any node added during the second step
has a node created during the first step as its parent. It follows that P4 does not apply to the nodes
added during the second step. Furthermore, since at most O(k) uniqueness constraints can fire on
each node, the second step would consist of O(m - k) iterations that are based on the applications
of the rule P4. During each iteration, the procedure would check for applicability of the
uniqueness constraints until it finds an applicable one and fires it. This takes O(m - k) time since
the procedure goes over O(m) nodes and takes O(k) time to check for applicability of all
uniqueness constraints on that node. In addition, it takes O(k) time to propagate all typing and
inheritance constraints and to fire them on the new node created due to the application of the
uniqueness constraint. Therefore, the total runtime of the procedure is the sum of the O(m - k)
component for the first step, and the O(m - k (m - k + k)) component for the second step which
produces the O(m?* - £*) bound.

Further, it is even possible to carefully index a terminology and refine our propagation
procedure in such a way that the total effort expended on each node is O(k) instead of our original
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allowance of O(m - &°) time. This yields an even better O(m - £*) bound on the time to compute
G. An event driven implementation achieves this by making nodes “wait” for the acceptance of
the appropriate path functions in order to apply a uniqueness constraint. For each node and a
possibly applicable uniqueness constraint, the procedure keeps track of the progress made at
“expanding” the path functions inside the constraint by capturing them as paths inside the
acceptor tree. Once all path functions inside the constraint are expanded and accepted by the tree,
the uniqueness constraint fires, possibly producing new nodes that allow other path functions to
be accepted.

In particular, an implementation would begin by creating the root of the acceptor tree by
procedure Init(C, {Pf,, ..., Pf;}) and (recursively) adding all primitive concepts that subsume C in
O(k) time. The set of concepts in the Cls label allows the procedure to deduce the uniqueness
constraints that might apply to the root, and for each such uniqueness constraint, the root starts
waiting for the necessary edges to be added, and more generally, for the path functions on the
“left-hand-side” of the uniqueness constraint to get accepted. Then, the procedure “expands” the
path functions Pf; (1 < i <) using the composition rule.

With addition of each new edge (n,, A, n,) and after initializing the Pfs label of n,, the
implementation updates the progress made on expanding path functions inside uniqueness
constraints for the nodes that were waiting for the addition of the edge labeled A and outgoing
from the node n,. The progress is updated either by making the nodes wait for the addition of the
next corresponding outgoing edges from n, or by accepting the path function if Pfs(n,) is {Id}. If
all path functions of a uniqueness constraint turn out to be accepted, the corresponding firing of
rule P4 is added to a job queue that contains rules that are still to be fired. Next, all applicable
typing constraints for node n,, i.e. the constraints of the form C, < (all A C>) where C, € Clis(n,),
are propagated down the edge and initialize the Cis label of node n, (with concepts such as C,).
Further, the inheritance constraints (of the form C, < Cs) are recursively applied to all the
concepts inside Cls(ny). Finally, if Pfs(n,) does not contain Id, n; starts waiting for acceptance of
the path functions in any uniqueness constraint that can apply to ny; for example, uniqueness
constraints on concepts C and Cs.

After Pf, through Pf; are expanded in the way described above, the jobs from the job
queue start adding new edges (if the rules are still applicable). These newly added edges are
processed in the same way, and the procedure stops when the Jjob queue becomes empty.

Note that such an implementation that does not attempt to apply inheritance and typing
constraints to the ancestors after some work is done on the descendents is possible since there are
no cycles in the acceptor trees and applicability of each inheritance and typing constraint does not
depend on the descendent nodes. This also means that the set of possibly applicable uniqueness
constraints that are chosen based on the concept names inside the Cls label of a node does not
change after we “process” the Cls label for the first time. More elaborate implementation with
more extensive use of the job queues will be required and described in the next chapter, where the
graph can contain cycles.
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To estimate the runtime, note that with appropriate indexing of typing constraints in a
terminology and with the concept hierarchy that supports efficient “depth-first” traversal, the time
required to propagate all typing constraints from a parent node to its child and the time to add all
concepts that subsume an initial set of concepts in the child node is O(k). Therefore, since there
are O(m - k) nodes in the acceptor tree, the total time spent on processing of inheritance and
typing constraints is O(m - k*). Next, note that the time spent on processing of a uniqueness
constraint for a given node is O(¢) where ¢ is the length of the encoding of the constraint. Indeed,
for every attribute A in every path function (except for the right-hand-side path function), we
spend O(1) time to “follow” the corresponding edge {(n,, A, n2), determine if Id is in Pfs(n,), and
possibly make it wait on addition of the next edge. On the other hand, for every attribute of the
right-hand-side path function, we either follow an already existing edge with the corresponding
label or create a new edge which also takes O(1) time. Therefore, since the total size of encoding
of all uniqueness constraints is O(k), and since there are O(m) nodes to which uniqueness
constraints apply, the total time spent on processing of uniqueness constraints is O(m - k). It
follows that the total runtime complexity of Prop is O(m - &*).

Observe that our analysis of runtime assumes efficient constant time implementations of
such operations as

e adding a concept tc a Cls label,

e determining whether a given concept is in a Cls label,

e adding a node,

¢ adding an edge between two nodes, and

e checking for existence of an outgoing edge with a given label from a given node.

A technique for such an efficient implementation is described in the appendix of [BW94)]. (Note
that while the appendix describes a simple array implementation for the last three operations, the
first two operations can be implemented in the same way as the last two.)

The following list of 3 - k + 3 subsumption constraints is a pattern for a terminology that
demonstrates that the implementation suggested above obtains the best runtime complexity for
our Prop procedure.

C< @lAC)
C<@lBC)
C<G(G lsi<k
C < @lB; C), i<k
C < (fdCBB), i<k

C < (fdC(comp A B)) ... (comp A By) B).
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In particular, consider an acceptor tree G obtained by the evaluation of
Prop(Init(C, {(comp A™ B)}), T),

where A” denotes an attribute description consisting of m copies of the primitive attribute A. It is
not difficult to see that the number of nodes occurring in G is &(m - k), and that the inheritance
rule will apply to each of these nodes ©(k) times.

While &(m - &%) is a tight bound on the runtime complexity of the procedure, we can still
improve the (production) system with two small modifications of rules P2 and P3. An important
observation is that we cannot deduce anything about an ancestor based on the typing information
in the descendent nodes. Indeed, typing constraints only “propagate” downward, inheritance
constraints only operate within a node, and uniqueness constraints only depend on the typing
information of the node that they apply to. Therefore, it is not necessary to deduce any typing
information about the leaf nodes in order to solve a membership problem. Thus, consider the
following modifications of the rules P2 and P3 (the parts that have been added are underlined):

P2 (inheritance) If there exist n, € N and “C, < Cy” € T such that C, € Cls(n;),
C: € Cls(n,), and Id & Pfs(n)), then add C, to Cls(n,).

P3'.(nping) If there exist (n;, A, n;) € E and “C; < (all A C.)” € T such that
Ci € Cls(ny), C> € Cls(ny), and Id € Pfs(n,), then add Cs to Cls(n,).

With these modifications, our implementation above needs to be slightly modified to make sure
that no typing information is propagated to the leaf nodes. Then, since the number of non-leaf
nodes is only O(m), the total time spent on processing of the inheritance and typing constraints
decreases to O(m - k). Therefore, overall, the modified Prop procedure, denoted Prop’, runs in
O(m - k) time!

Observe that if all uniqueness constraints inside terminology and the posted question are
restricted to a generalization of relational symmetric uniqueness constraints that allows path
functions to be either primitive attributes or Id, all nodes in the acceptor tree, except possibly for
the root, have to be leaves. Therefore, just as in the case of the relational FD theory, the runtime
of the procedure becomes O(m + k) (even with our generalization of the relational uniqueness
constraints and inheritance).

Also observe that termination and soundness of Prop” directly follow from termination
and soundness of Prop since we apply the rules in the same manner but decrease the number of
applications of the rules. On the other hand, the proof of completeness has to be augmented with
additional argument that formally applies the above observation. In particular, in addition to
applying Prop’ at each construction step, we need to propagate typing information to the leaf
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nodes during the construction of G,. Then, we can still prove that all constraints in the
terminology are satisfied by the constructed interpretation, while the roots of G, and G/ violate

the uniqueness constraint in the posed question.

Note that the original procedure represents the essence of our production system, while
we consider the introduced modifications as more of an implementation issue. Analogous
refinement of the procedures in the next chapter will emphasize this point. In fact, it is relatively
hard to formally modify the rules of the procedures introduced there to capture the improvement.
In addition, while the modified procedure is more efficient, we use the original version to
simplify our subsequent analysis. For example, we use the original Prop to simplify the
discussions about multiple applications of the procedure to a series of similar questions in
Subsection 5.7.2, or extending the procedure to enable it to answer typing questions in
Subsection 6.2.1. While the discussions of such properties also apply to the modified procedure,
one would need to keep in mind that there are actually two types of nodes—let us call them
processed and unprocessed. Processed nodes are the ones about which the typing information was
deduced from their parents, while the unprocessed nodes are leaves about which no typing
information was deduced. Then, whenever one uses an acceptor tree for some deductions that
involve an unprocessed node, all appropriate typing information from the parent of such a node
has to be “expanded” to make the node processed. In other words, rules P2 and P3 have to be
exhaustively applied to the incoming edge of the unprocessed node.

Finally, it should be noted that in practice, the number of constraints applicable to any
given primitive concept is usually very small in comparison to the total size of a terminology.
Therefore, the O(k) component of O(m - k) is in fact a rather lose bound on the real cost of the
work performed on each node.

4.6 Generality

Recall from our comments in Chapters 1 and 2 that existing procedures for deciding the PFD
membership problem assume that any PFD in a database schema is a key PFD. In terms of our
Prop procedure, this corresponds to a more constrained condition (b) in our rule of uniqueness in
which the upper bound on the length of Pf; becomes 0 (which therefore implies that Pf; = Id). A
natural question to ask is what happens when the condition is slightly relaxed; that is, what
happens when one allows the upper bound on the length of Pf; to be 2 instead of the current value
of 1 studied in this chapter. (And let us call a uniqueness constraint that satisfies this relaxed
condition nearly regular.) Interestingly, the following shows that this slight generalization is
really a complete generalization; or in other words, allowing nearly regular uniqueness
constraints inside a terminology is equivalent to allowing arbitrary uniqueness constraints with
their last path function independent of the other ones.
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Proposition 4.2 Let T, denote an arbitrary atomic terminology and C < D a subsumption
constraint free of any occurrence of a primitive attribute not occurring in T\. Then an application

of the following rewrite rule to each constraint in T,

Replace “C < (fd C Pfs BioByo...0B,)", where k > 2, by the set of constraints

“C < (fd C Pfs B\oE,)",
“C<(fd C B\oE, B,oB;oE;)",

“C< (fd CB| °Bg°...°Bk.z°Ek.| Bl °Bz°...°B¢)“,

where E, , E;, ..., Ei are primitive attributes not occurring in the given terminology.

obtains a T> in which all symmetric uniqueness constraints are nearly regular and for which
T)=C<D ifandonlyif T, = C < D.

Note that while it is still an open problem whether the membership problem with
arbitrary uniqueness constraints inside terminology is polynomially decidable, [Wed92] presents
some evidence that a chase-like decision procedure for such a problem would take at least
exponential time. Thus, overall, our regularity condition (b) of the rule of uniqueness in
procedure Prop appears to be as general as possible for chase-like decision procedures.

4.7 On Schema Analysis: Diagnosing Object Normal Form

This section presents one possible application of procedure Prop in schema analysis. In
particular, we present a polynomial time algorithm that determines whether a database schema is
in (strong) object normal form (ONF) as defined in [Bis89]. Although diagnosing BCNF can
require exponential time, the addition of a unique minimal key constraint by Biskup makes it
possible to check for ONF in polynomial time; and the ability of our Prop procedure to reason
about regular constraints, and not just key PFDs, allows us to employ it to efficiently diagnose
ONF.

Biskup considers a (relational) database schema as a sequence ((R;, F), ..., (Rn, F,))
where R; are distinct relations and F; are sets of FDs with all their attributes in the corresponding
R:. Without loss of generality, we assume that R; has attributes Ay, ..., A and

E= {X| —)A|l, ceey Xg—-)A,'}

where X; are sets of attributes.
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A database schema is said to be in ONF if and only if it is in BCNF and every relation
schema has a unique minimal key [Bis89]. In our discussion, however, we consider the problem
of determining whether a schema is in ONF in terms of our DL. Thus, we will consider a
terminology T with a set of constraints of the form

C:<(and
(all A; VALUE)

(all A, VALUE)
(dC; X, Al’)ls

(fd C; X, A)
(fd C: A, ... A, Id)),

where VALUE is an arbitrary concept for allowed values of attributes, and relations are
considered as concepts with the appropriate number of attributes and the appropriate
fd constraints directly derived from the F-sets. Also note that we use Id as an equivalent of a key
in the relational model.

A concept C; is then said to be in BCNF if for every FD C; < (fd C; X A) implied by T, if
all attributes in X U {A} are attributes of C;and A ¢ X, then X is a key of C;. Also note that a key
of a concept C; is now defined as a set X of attributes of C; such that T = Ci<(fd C; X Id). With
this straightforward translation of a database schema into a terminology in our DL, we can now
present an algorithm to determine whether such a terminology is in ONF; that is, if every concept
in T is in BCNF and has a unique minimal key.

The search space for our algorithm is a tree defined as follows. Given a finite set of
primitive attributes {A,, ..., A}, each node in the tree has a label arr (for “attributes™) that
contains a permutation of a non-empty subset of these attributes. The root contains sequence
(Ay, ..., A,) for an arbitrary permutation of the attributes. Every node with & (k > 1) attributes in
the label has k children nodes where the label of the i-th node is obtained by removing the i-th
attribute from the label of the parent. The leaves have a single attribute in their labels. The
general form for such a tree is illustrated in Figure 4.4 below.

The algorithm explores the search space by traversing the nodes of the tree top-down in the
following manner: if T &= C < (fd C art_value Id), where att_value is the sequence of attributes in
the att label of the current node, then go to the first child of the current node (or output the current
node if it is a leaf); otherwise, go to the right sibling of the current node and if

' For convenience, given a set of attributes X = {A;, ..., A,}, we write fd C X A) to denote
(fd CA, ... A, A). The same applies when we use more than one set name inside an fd constraint.
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art: (A, Ay, ..., A)

art: (A, As, ..., An)
: art: (Aa, ..., Ap)

att: (Alv g An‘l)

Figure 4.4: The tree used for the algorithm that determines whether a concept C with primitive
attributes A, through A, is in ONF.

there are no right siblings, stop and output the parent of the current node as the result of the
traversal. Note thatsince T =C<(fd C A A,... A, Id) is always true by our construction of 7,
there will always be a parent to return when the traversal stops due to non-existence of a right
sibling. Also note that the problem of whether or not T = C < (fd C art_value Id) is efficiently
solved by our Prop procedure.

Suppose a node with label (A/’, A2, ..., A)) is returned, and let us denote the set with
these attributes by arr_resulr; that is, att_result = (A, Ay, ..., A/’}. Then, by the traversal
algorithm, att_result is a key of C and there is no subset of art_result that is a key. Thus,
art_result is a minimal key. The algorithm now checks (1) whether art_result is the unique
minimal key and, if yes, (2) whether C is in BCNF. If the answer to question (2) is also “yes”
then C is in ONF; in any other case it is not in ONF.

To answer question (1), the algorithm uses our Prop procedure to check whether T = C <
(fdCA ... A .. ALY A LA L ALA) forall 1 i < LI at least one, say j-th, of these
FD:s is logically implied by T, then art_result is not the unique minimal key, since there is another
key ( possible_key = {A,, ..., A, ..., Ait's ..., Apt’s ..., Al ..., A,} ) which is not a superset or
subset of the arr_result. (Note that possible_key cannot be a subset of afr_result, since otherwise,
atr_result would contain all n attributes, and therefore, the node containing the attributes of
possible_key in its label would be already checked during the traversal and diagnosed as not
being a key.) On the other hand, if none of the FDs are logically implied by T, then arr_result is
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the unique minimal key. Indeed, if there were another minimal key not containing an A/ as one of
its attributes for some 1 < </, then its superset ({A1, ..., A/, ... Aits o Apts L AL LA
would be a key as well, contrary to the assumption that

T C<(fd CAl ...A|' . A,'.l' .es Aj.]l ... A[’ ... A Aj').

If art_result is the unique minimal key, the algorithm proceeds to answer question (2). It
follows directly from the definition of BCNF that C is in BCNF if and only if any FD that is
logically implied by T that has the following form:

C<(UdCXYA),

where 1 <j<n, X S art_result, Y N att_result =, and if A;je XU Y, TE=C< fdCXYId).

Therefore, to answer question (2), the algorithm checks whether T = C < (fd C Z; ; Id) for
all 1 i</ 1 <j<n, where Z; is the set of all attributes of C except for A" and A;. (The checks
are again conducted by our Prop procedure.) If at least one of the FDs is logically implied by T,
then C is not in BCNF, since the X subset of Z;; does not contain A/, and therefore, Z; jis not a
key of C (recall that {A/’, A, ..., A/} is the unique minimal key of C) contrary to our assumption
that 7 = C < (fd C Z;; Id). On the other hand, if none of the FDs are logically implied by T, then
C is in BCNF. Indeed, if there were an FD (fd C X Y A) such that A; ¢ X U Y and
T # C < (fd C X Y Id), then there would exist an i (1 €i<]) suchthat A € X. But then, T would
logically imply C < (fd C Z;; Id) contrary to our assumption.

Thus, the above algorithm solves the problem of deciding whether a database schema is
in ONF in polynomial time. Note also that since our Prop procedure deals with a more general
object-relational environment, we can easily extend the allowed database schema to the
object-relational case with minor modifications to the algorithm and the proofs above. First, we
can replace VALUE in all constraints by other concepts in 7. In particular, we can ailow
recursive schemas (unlike the relational model in Biskup). Secondly, since Prop allows
constraints of the form C; < C, in T, we can have inheritance constraints in the terminology.
Finally, we can also allow arbitrary regular fd constraints in T in place of just relational
functional dependencies of the form C < (fd C A, ... A, A).



Chapter 5

On General Logical Implication Problems

5.1 Problem Definition

This section adds further details to the general problem definition stated in Chapter 3. We begin
by reviewing the kinds of descriptions that will be relevant in this chapter. We then revisit the
notion of a terminology and introduce an example that will be used throughout the chapter to
further motivate our results. Finally, we consider some applications of the general logical
implication problem in semantic query optimization. In particular, we provide further motivation
for extended fd descriptions that derives from their ability to pose questions about views that are
abstractions of conjunctive queries, and for allowing asymmetric uniqueness constraints in
terminologies.

5.1.1 Descriptions

In this chapter, we present procedures that solve the general logical implication problem defined
in Chapter 3. However, there are a few additional notes that we need to make about this general
formulation.

First note that the problem we address generalizes the membership problem discussed in
the previous chapter in a number of ways. We allow a terminology (as well as a posed question)
to contain asymmetric fd constraints in addition to the previously considered symmetric
uniqueness constraints which restrict two objects from the same class to agree on the appropriate
path functions. More general asymmetric uniqueness constraints can be employed to ensure that a
pair of objects from possibly distinct classes agree on the path functions. These constraints allow
one to capture such facts as “professors do not share offices with any other university
employees”.

68
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We also allow a terminology to have view definitions, and for any such view definition to
contain any number of occurrences of the same-as concept constructor. Consequently, it now
becomes possible to specify view definitions that fully capture equational restrictions occurring
inside conjunctive queries expressed in object-relational query languages.

More formally, this chapter considers descriptions that are generated from the grammar
presented in Chapter 3 (appropriately adjusted to include a production for extended fd
descriptions) and repeated here for convenience.

D :x==C (primitive concept)
v (view name)
| (all Pf D) (attribute value restriction)
| (fd D Pfs Pf) (functional dependency)
! (and D D Ds) (description intersection)
| (same-as Pf Pf) (equational restriction)
Pf = A (primitive attribute)
| Id (identity)
| (comp Pf Pf) (attribute composition)
Pfs == € | Pfs Pf (attribute description sequence)
Ds ==¢ 1 DsD (concept description sequence)

5.1.2 An Example Terminology

Consider a part of an administrative database schema graph shown in Figure 5.1(a). (The example
is derived from a real-world case.) Note that the typing and inheritance constraints suggested by
the graph can be easily captured by both object-relational and relational models. In the latter
model, for example, one would use foreign key constraints to capture the typing restriction on the
Boss attribute.

In addition to the restrictions depicted in the figure, the company is structured in such a
way that Dnum is a key of the DEPARTMENT concept. Furthermore, “Members of Scientific
Staff” (MSS) work for various departments (with such numbers as 7HO1, 7H02, etc.) and report
to their department (“D-level”) managers with each department having exactly one D-level
manager and some number of MSSs. D-level managers in turn report to so-called C-level
managers with unique department numbers such as 7H0O. Thus, each manager is assigned a
unique department number (i.e. Dnum is a candidate key of the MANAGER concept), and, in
addition, C-level managers have department numbers that are distinct from the department
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Dnum

EMPLOYEE 4)‘ NUMBER
Boss i T Dnum
MANAGER DEPARTMENT

C-MANAGER [«€—— D-MANAGER €—— MSS
Boss Boss

(a) Diagram of a schema. Thick and thin arrows depict inheritance and typing constraints
respectively.

EMPLOYEE < (and (all Boss MANAGER)
(all Dnum NUMBER))

MANAGER < (and EMPLOYEE
(fd MANAGER Dnum Id))

MSS < (and EMPLOYEE
(all Boss D-MANAGER))

D-MANAGER < (and MANAGER
(all Boss C-MANAGER)

C-MANAGER < (and MANAGER
(fd EMPLOYEE Dnum Id))

DEPARTMENT < (and (all Dnum NUMBER)
(fd DEPARTMENT Dnum Id))

(b) The COMPANY terminology.

Figure 5.1: Example of a terminology representing a schema.

numbers of other employees. Note that, although this latter constraint cannot be captured by
standard relational and object-relational models, the constraint can be captured in terms of an
asymmetric uniqueness constraint. This is illustrated in Figure 5.1(b) that gives a formulation of
the administrative database in terms of a COMPANY terminology consisting of six subsumption
constraints. Also note that the COMPANY terminology is recursive. For example, the boss of a
manager is also a manager.
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5.1.3 Applications in Query Optimization

Recall from our comments in Chapter 3 that, for a general logical implication problem of the
form T = D, < D,, description D; can contain extended fd descriptions of the form

(fd D Pf, ... Pfn Pf).

Such descriptions allow us to reason about uniqueness constraints on views and queries. We
demonstrate why this is desirable with the following example which further motivates our work
as a whole.

Consider the COMPANY terminology presented in Figure 5.1(b) and a request for “all
pairs of employees and D-level managers that are in the same existing department”. Either of the
following two OQL queries expresses this request (note that if an employee is not assigned to a
department, their department number will not be a number of an existing department).

Q1: select e, dm
from EMPLOYEE e, D-MANAGER dm
where e. Dnum = dm.Dnum
and exists (select *
from DEPARTMENT d
where d.Dnum = e.Dnum)

Q2: select distinct e, dm
from EMPLOYEE e, D-MANAGER dm, DEPARTMENT d
where e.Dnum = dm.Dnum
and d.Dnum =e.Dnum

An optimizer that processes Q1 might wish to explore the possibility of absorbing the existential
query into the top-level select-from-where clause and rewrite the query into the following form.

Q3: select e, dm
from EMPLOYEE e, D-MANAGER dm, DEPARTMENT d
where e.Dnum = dm.Dnum
and d.Dnum =e.Dnum

The optimizer can also rewrite query Q2 into query Q3 by removing the distinct keyword. Now,
in order to determine if either of these optimizations is possible, the optimizer must check if two
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distinct query results can have the same bindings for variables “e” and “dm”, but differ in their
binding for variable “d”.

In order to perform the check, the optimizer can use our results by proceeding as follows.
First, query Q3 is abstracted as a subsumption constraint

Q < (and (all e EMPLOYEE)
(all dm D-MANAGER)
(all d DEPARTMENT)
(fd QedmdId))

together with a view definition

QView = (and Q
(same-as (comp e Dnum) (comp dm Dnum))
(same-as (comp d Dnum) (comp e Dnum)))

which are then added to the COMPANY terminology to form an expanded COMPANY’
terminology. Thus, we abstract the result of evaluating a query as a set of objects in the
denotation of a “query result view” QView, and introduce attributes for QView objects that
abstract the query variables. Also observe that capturing the query as a view definition rather than
a subsumption constraint allows us to employ the same-as concept constructor to capture a given
query’s join conditions.

The second and final step is to then determine if the COMPANY’ terminology logically
implies the following constraint.

QView < (fd QView e dm d)

To do this efficiently, the optimizer can use the procedures presented in this chapter.

Thus, the example illustrates that an ability to efficiently reason about uniqueness
constraints on views is important and demonstrates the need for extended fd descriptions.

Now consider a variation in the example queries. In particular, let Q1’ (resp. Q2°) denote
Q1 (resp. Q2) but with D-MANAGER replaced by C-MANAGER. In other words, let QI’ and
Q2’ denote requests for “all pairs of employees and C-leve! managers that are in the same existing
department”.
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QI’: select e, cm
from EMPLOYEE e, C-MANAGER cm
where e.Dnum = cm.Dnum
and exists (select *
from DEPARTMENT d
where d.Dnum = e.Dnum)

Q2’: select distinct e, cm
from EMPLOYEE e, C-MANAGER cm, DEPARTMENT d
where e.Dnum = cm.Dnum
and d.Dnum=e.Dnum

While the previous optimization of removing the existential quantification (resp. the distinct
keyword) still applies in this case, an additional optimization is also possible. In particular, the
asymmetric uniqueness constraint

C-MANAGER < (fd EMPLOYEE Dnum Id)

“embedded” in the COMPANY terminology together with the procedures developed in this
chapter allow us to efficiently deduce the subsumption constraint

QView’ < (same-as e cm)
where QView’ is an abstraction of the query defined as follows.

Q’ < (and (all e EMPLOYEE)
(all cm C-MANAGER)
(all d DEPARTMENT)
(fd Q' e cm Id))

QView’ = (and Q’
(same-as (comp e Dnum) (comp cm Dnum))
(same-as (comp d Dnum) (comp e Dnum)))

This deduction would allow a query optimizer to select an access plan in which an assignment is
used to bind “e” instead of performing an index scan. In effect, the deduction enables the
optimizer to rewrite either Q1’ or Q2’ as follows.



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 74

select (EMPLOYEE) cm as e, cm
from C-MANAGER cm, DEPARTMENT d
where cm.Dnum = d.Dnum

5.2 Mapping to Molecular Terminologies

Analogously to Chapter 4, we simplify terminology before we apply procedures developed in this
chapter. In this case however, in addition to simplifying descriptions inside constraints, we
combine them instead of breaking them up as in Chapter 4. Thus, we call the mapping presented
here Molecular. Formally, we define a molecular terminology as any terminology 7’ than can be
obtained from an arbitrary terminology T by an exhaustive application of the rewrite rule in Table
5.1(a) followed by an exhaustive application of the rewrite rules in Table 5.1(b) and ©) o
descriptions inside the resulting constraints. We denote this circumstance by writing
Molecularn(T, T").

One consequence of Proposition 5.1 below is that descriptions in a molecular
terminology have the property that they can be generated from the following simplified

grammar'®.
D :x=C (primitive concepr)
v (view name)
| (all AD) (artribute value restriction)
| (fd D Pfs Pf) (functional dependency)
| (and D D Ds) (description intersection)
| (same-as Pf Pf) (equational restriction)
Pf ::=1Id (identity)
| (comp A Pf) (attribute composition)
Pfs ::= € | Pfs Pf (attribute description sequence)
Ds = €1 DsD (concept description sequence)

In addition, no two subsumption constraints in a molecular terminology have the same
left-hand-sides.

Another consequence is that this alternative simpler grammar does not reduce the
expressiveness of a terminology in any fundamental way; for any terminology T, there exists a
terminology T for which Molecular(T,, T>) holds and that preserves logical consequence. Thus,
although our examples will continue to be based on the more general grammar presented in
Subsection 5.1.1, our procedures will assume (without loss of generality) that argument
terminologies are molecular.

' Note that simplified grammar in this chapter is distinct from the simplified grammar in the previous one.
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1.

R

Replace

Replace
Replace
Replace
Replace
Replace

Replace
Replace
Replace

“C< D" and “C < D,” by “C < (and D, D-)".

(a) (combining constraints)

“(all Id D)” by “D”.

“(all (comp Pf, Pf.) D)" by “(all Pf; (all Pf; D))".

“(fd D Pfs, A Pfs;)” by “(fd D Pfs, (comp A 1d) Pfs,)”.
“(same-as A Pf)" by “(same-as (comp A Id) Pf)".
“(same-as PfA)” by “(same-as Pf(comp A Id))".

(b) (rewrites for concepr descriptions)
u(comp ld Pf)n by “H"-

“(comp PfA)” by “(comp Pf (comp A Id))".
“(comp (comp Pf, Pf;) P;)” by “(comp Pf; (comp Pf; Pf3))".

(c) (rewrites for attribute descriptions)

75

FPf, Pf;, Pf; and Pf; are arbitrary path functions; D, D, and D, are descriptions; and A is a primitive

attribute.

Table 5.1: Molecular simplification of terminology.

Proposition 5.1 Ler T, denote a terminology and D, < D, a subsumption constraint. Then an

exhaustive application of the rewrite rule in Table 5.1(a) to constraints in terminology T,

Jollowed by exhaustive application of the rewrite rules in Table 5.1(b) and (c) to constraints

inside the resulting terminology and to constraint D\ < D, terminates and obtains a terminology
T> and a constraint D, < D’ respectively that can be generated Jfrom the simplified grammar and

for which Ty = Dy <D, if and only if T, &= D, <D,, and TI'= D, <D, i and only if

T & D\ < DY In addition, no two constraints in T, have the same left-hand-side.

Proof. (See Appendix B).

5.3 Inference Axioms

The following lemma introduces a number of inference axioms that will be used in the later
proofs in this chapter.
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Lemma 5.1 Let Pf, Pf; and Pf/ denote attribute descriptions, C denote a primitive concept, and D
and D; denote descriptions for any j 2 1. Then, for any terminology T, the following properties
hold:
(1) If T = D < (same-as Pf, Pfs), then T = D < (same-as Pf> Pf)).
(2) If T = D < (same-as Pf, Pf;) and T = D < (same-as Pf; Pf;), then T = D < (same-as Pf, Pf;).
(3) If T = Dy < (same-as Pf;, Pfy) and T = D, < (all PfioPfy D), then T = D, < (all Pf,oPf; D).
(#) If T = D < (same-as Pf; Pfy), then for any astribute description Pf,
T = D < (same-as Pf,oPf Pf;oPf).

5 If

(@) T=D<(all PA O,

(b) T=D<(all P’ (fd C Pf, Pf; ... Pf,, Pf)), and

(©) T = D < (same-as Pf,’oPf, Pf,’oPf) forall 1 <i<m,

then T &= D < (same-as Pf,"oPf Pfy’o Pf).
(6) If T = D < (same-as PfoPf, PfoPf,), then T = D < (all Pf (same-as Pfi Pf)).

(7) T = D, <(all PfioPf, D)) ifand only if T = D, < (all Pf, (all PX, D,)).

(8) T=D, < (allld D») ifand only if T = D, < D,.

Proof.

Property (1). The property follows directly from definition of interpretation of the same-as
constructor and from the fact that equality is commutative.

Property (2). This property is also a straightforward consequence of definition of interpretation of
the same-as constructor and of the fact that equality is transitive.

Property (3). Since T &= D, < (all PfioPf; D5), for any interpretation I that satisfies T and any
object x € D', (PfioPf;)'(x) € D;". Thus, by property (4) of Claim 3.1, Pf(Pf'x)) € D, Next,
since T Dy <(same-as Pfy Pf), Pfi'x)=PHi(x). Therefore, PH'(PR'x)e D).  or
(Pf20Pf3)'(x) € D,'. Thus, T = D, < (all Pfy0 Pf; D).
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Note that property (1) also allows us to establish that if T &= D, < (same-as Pf, Pf)) and
T = D, < (all Pf,0Pf; D), then T = D, < (all Pf,oPf; D,).

Property (4). Consider an interpretation I that satisfies T and an object x in D'. Then, by the
assumption of the property, Pf;'(x) = Pf,'(x), and thus, PF(Pf'(x)) = PF(Pf,)(x)). Therefore, by
property (4) of Claim 3.1, (PfioPf)'(x) = (Pfo PH)'(x). Thus, TE= D < (same-as Pf,o0Pf Pf-oPf).

Property (5). Proof is by contradiction. Let us assume that there is an interpretation I that satisfies
T such that (a), (b), and (c) are true while T does not logically imply constraint
D < (same-as Pf,"oPf Pfy’o Pf). Then, there must exist an object

xe D' a)
such that, by (a), (b), (c) and (1),
y=Pf'(x) e C', Q)
w = Pfi"'(x) e (fd C Pf, Pf ... Pf, Pf)", €))
PRUPA() = PRI(PR' (). for 1 <i<m @)

and (Pf,"oPf)'(x) # (Pfyo Pf)'(x). However, (2), (3), and (4) imply that

Pfiow) = PRIG) for 1 Si<m. )
Then, by (2), 3), (5) and definition of (fd C Pf; Pf. ... Pf, Pf)', Pfiw) = Pf'(y). Therefore,
PFI(PA™(x)) = PF(Pf"(x)). Thus, by property (4) of Claim 3.1, (PfyoP)'(x) = (PfyoP)'(x)

contrary to the assumption.

Property (6). Since for any interpretation I that satisfies T and any object x € D",
x € (same-as PfoPf, PfoPf)',

by property (4) of Claim 3.1, PR'(Pf'(x)) = (PfoPf)'(x) = (PfoPf)'(x) = PAY(Pf'(x)). Therefore,
Pf'(x) € (same-as Pf; Pf;)! which in turn implies that x € (all Pf (same-as Pf; Pf;))".

Property (7). Consider an arbitrary interpretation I that satisfies T and an object x in D'. Then, by
property (4) of Claim 3.1, (PfioPf;)'(x) € D, if and only if PAL(P£'(x)) € D,. In other words,
x € (all PfioPf, D,)" if and only if x € (all Pf, (all Pf; D»)".

Property (8). For an arbitrary interpretation I that satisfies T,
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(@ IldDy)'={xe Alld'(x) =D,'} =D,".

Therefore, an object x in D,' is in (all Id D,)" if and only if it is in D,".

Additional useful properties that can be derived from the inference axioms are introduced
in the following lemma.

Lemma 5.2 For any artribute descriptions Pf,, Pf:, Pf;, and Pfi, a description D, and a
terminology T the following properties hold:

(1) If T = D <(same-as Pf; Pf;) and T = D < (same-as PfioPf; Pf,), then
T = D < (same-as Pf;o Pf; Pfy).

(2) If T = D <(same-as Pf; Pf:) and T = D < (same-as Pf; PfioPfy), then
T = D < (same-as Pf; PfioPf,).

(3) If T = D <(same-as Pf, Pf;) and T = D < (same-as Pf;oPf; Pf.), then
T = D < (same-as Pf,oPf; Pry).

(4) If T = D < (same-as Pf; Pf;) and T &= D < (same-as Pf; PfroPfy), then

T = D < (same-as Pf; PfioPf,).

Proof. We will only consider the proof of property (1) since properties (2) through (4) can be
proven analogously. Since T &= D < (same-as Pf, Pf,), by property (4) of Lemma 5.1,

T = D < (same-as Pf,c Pf; Pf,oPfy).

Thus, by property (1) of Lemma 5.1, T = D < (same-as Pfy0Pf; PfioPf;). Combining this with
the assumption that T = D < (same-as PfioPf; Pf,) and applying property (2) of Lemma 5.1 lets
us conclude that T = D < (same-as Pf,oPf; Pf,).
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5.4 Description Graphs and Paths

In this chapter, we consider description graphs with the following node labels: a finite set a(n, G)
of descriptions and a finite set fired(n, G)"" of primitive concept names and view names (we write
o(n) and fired(n) when G is understood). Also, in addition to the distinguished node reference,
dn, in the Refs set, procedures of this chapter use another reference, named fdcn for “functional
dependency check node”, that will be used to check if a functional dependency is satisfied. Other
references are defined as they become necessary.

Given a description graph G = (N, E, Refs), let us define a path from node n, to node n, as
a sequence of nodes and edge labels (n,, A, ny, A, ..., Aw,. n) where k2 1, ny, n, ..., n, are
nodes in N and A,, A, ..., Ay, are edge labels such that edges {(n;, A, ny), {(nz, Az, n3), ...,
N1, A, ni) are in E. Then, we define the length of the path as k — 1. Thus, paths of length 0
consist of a single node (e.g. (n)), and paths of length 1 are edges. We say a path (n,, A;, n,, As,
-+++ Ak, Ne) goes or passes through nodes n; for 1 < i < k and edges (i, Ait, n)) for2<i < k. We
also say that a path is a loop if it has the same first and last nodes, and a simple loop if it is a loop
and no other nodes in the path equal the ones at its ends. (Note that any loop [ that starts and ends
with a node n can be broken into a number of simple loops /i, ..., [, that start and end with node n
by just going through the nodes in / successively and completing a new loop /; every time one
comes across n.) In addition, we sometimes omit nodes and/or edges in a path when they are not
important or known. Thus, for example, (n,, A,, A, ..., A1) denotes a path that starts at n, and
goes through edges labeled Ay, A,, ..., Ac,.

Next, we define composition of paths and sub-paths. Given two paths p, = (n;, A,, n,,
Az, ...y Ay, ng and p;y = (g, Ay, Nioy, Asay, ..., Ap.1, ny), the concarenation or composition of paths

p1 and p», denoted p, o p,, is the path's

o (n, A, ny Az .., Am, Ny if 1 <k <m;

o (m,A,Lny A, .. AL nifl <k=m;

o (m,A,nyAy ..., Apy, 0y if 1l =k <m:; and
o (npifl=k=m.

Note that composition is only defined for paths that are artachable, i.e. the last node of the first
path has to be the same as the first node of the second path. Thus, when we talk about path
concatenation, it is implicit that the paths must be appropriately attachable. It is easy to see that,
as with attribute descriptions, the concatenation operator o for paths is associative, and therefore,
we do not need parentheses to indicate the order of applications of path composition. Finally, we

17 Set fired is used as a technical device to avoid “firing” the same constraint in 7 more than once on a
given node.

'8 Note overloading of the o operator which we find intuitive. We will back up this intuition by Claim 5.1.
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define a path p; to be a sub-path of a path p, if and only if py = p; o p3 o p, for some paths p, and
ps. If p2is of length O, we call sub-path p; a head of p,, whereas if ps is of length 0, we say that p;
is a tail of p,.

Let us now define a mapping of paths to path functions: given a path p = (n,, A,, n,,
Az, ... Ar, ny), function ¥(p) maps p to path function

e Aj0A.0 ... 0A, ifk>1,0r
¢ Id otherwise (i.e. if p = {n,)).
Note that by property (3) of Claim 3.1, Yp) =Ai0As0 ... oA 0ld forany k2> 1.

Claim 5.1 Y(p\op>) = Y(p1)oY(p>) for any attachable paths py and p; in any description graph G.

Proof. Without loss of generality, let p; = (n,;, A, ns, Ao, ..., Ac1, ng) and p; = (m, Ay Npay,
Atety <o Aty Nm) (1 < k < m). Then, by definitions of Y function and o operators for paths and
attribute descriptions, by property (3) of Claim 3.1, and associativity of o operator for attribute
descriptions,

e Ifl<k<m,
Ypiop2) = Y, Ay, na, A, ..., Ao, Nm)) = Aj°A30 ... 0A,, =
(410420 ... 0Ac1) © (AeAw© .. 0An1) = Y(PI)OY(P2).

e Ifl<k=m,
Y(P1op2) = Y((m, Ay, na, Ay, <., Arg, ni)) = Aj0As0 ... 0Ap; =
(A10Az0 ... 0Ay,) o (Id) = Y(p\)oY(po).

o Ifl=k<m,
Y(pi1op2) = Y(ni, Ay, na, Ay, ..., A, 1Y) =A,0450 ... oA, =
(Id) o (A;1°Az0 ... 0Ag) = Y(p1)oY(pa).

o Ifl=k=m,
Ypiop) =y{n))=Ild=Id o Id = Y(p1)oY(pa).

Note that ClaimS.1 implies that given an interpretation I and a description graph G,
YP10p2)' = (Yp1) o Y(P))' = ¥(p2)'ov(p1)" for any attachable paths p, and p, in G.

Next, we say a node n; is directly reachable from a node n,, ny is a parent of ny, or ny is a
child of n, in a description graph G = (N, E, Refs) if there exists an edge (n,, A, ny) € E for some
A that is either a primitive attribute or Id. On the other hand, we say that n; is reachable from n,
if there exists any path p from n, to n; in G. Finally, we say that n; is a descendant of ny, or n, is
an ancestor of n; if n; is reachable and distinct from n,.
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In this chapter, we sometimes need to refer to reachability only through non-Id edges.
We therefore define additional pa- notions as follows (“pa” stands for “primitive attribute™). A
node n: is pa-directly reachable from a node n,, n, is a pa-parent of n, or n, is a pa-child of n, in
G = (N, E, Refs) if there exists an edge (n;,A,n) € E for some primitive attribute A.
Additionally, we say that n, is pa-reachable from n, if there exists a path p from n, to n; in G that
only passes through edges labeled by primitive attributes. Finally, we say that n, is a
pa-descendant of ny, or n, is a pa-ancestor of n, if n, is pa-reachable and distinct from n,.

Let us now define two auxiliary procedures that work on description graphs.

By Reachableg(n,, Pf, n;) we denote a function that tells us whether a node n, is
pa-reachable from node n, in G via a path with corresponding path function Pf. Formally, if
Pf=A;0A50 ... 0A;old for some k =0 and primitive attributes A,, ..., A;, Reachables(n,, Pf, n) is
true if and only if

e k=0(.e. Pf=Id)and n, = n,; or

® k=1 and there is an edge {n;, A,, n,) in E; or

® k22 and there exist k - 1 nodes n,’, ..., n,.;”in N, and k edges (n;, A1, n\"), {(n)", A2, ns", ...,
(ne2’s At Neat ), (M’ Ag, 1) in E.

As a straightforward consequence of definitions of paths, function Y. and procedure
Reachable, it follows that if Reachablec(n,, Pf, n>) is true, then there exists a path p from n; to n,
in G such that Y(p) = Pf.

Similarly, by Createg(n,, Pf, n,) we denote a procedure that creates a path with
corresponding path function Pf from a node n, to a node n; in G. Formally, if
Pf=A0A;0 ... 0A,0ld for some k 2 0 and primitive attributes A;, ...y Ay, then

e ifk=0(i.e. Pf=1d), Createg(n,, Pf, n;) adds {(n;, Id, n,) to E;

e if k=1, Creates(n,, Pf, n;) adds {n,, A,, n,) to E; and

* if k 22, Createg(n,, Pf, n;) adds k — 1 new nodes n/’, ..., n.,’ to N, and k new edges
(1, Ar, i), (nd, Az, m), o, (ks Acs et (e’ A, no) to E.

Again, as a straightforward consequence of our definitions, it follows that after
Createg(n,, Pf, n,) is done, there exists a path p from n, to n; in G such that Y(p) = Pf.

For convenience, we omit the subscript when we refer to procedures Reachable and
Create if graph G is understood from the context.

Given a description D, the initial description graph, Init(D), is defined as ({n}, O,
{{(dn, n)}) with a(n) = {D} and fired(n) = @. For example, a graphical representation of
Inir(QView) is depicted as follows:
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a: {QView)
fired: @

5.5 Procedures

This section presents our algorithms in the form of procedures that manipulate description graphs
and that can be used to solve logical implication problems. We also discuss a number of their

properties.

5.5.1 Procedure Merge

Procedure Merge(G) for a description graph G = (N, E, Refs) transforms G by an exhaustive
application of the following rewrite rules.

MI1. If there exists an edge (n,, Id, n,) in E where n, # n,, then merge nodes n, and n; as
follows:
(a) change a(n;) to a(n,) U a(ny), and fired(n;) to fired(n;) U fired(n,),
(b) modify all edges touching n; to touch n; instead;
(c) V (r, n:) € Refs, replace (r, n,) by {r, n,) in Refs; and
(d) remove n; from N.

M2. If there exists an edge (n, Id, n) in E then remove it.

M3. If there exist edges {n,, A, n,) and (n,, A, n;) in E for a primitive attribute A, then: if
n; = n3, then remove the second edge from E; otherwise, add edge (n,, Id, n3) to E if
such an edge does not exist already.

Claim 5.2 Let Go = (N, Eo, Refso) denote a finite description graph, i.e. a graph with finite set Ny
and bag Eo, and let [G,, Ga, ...] (where G; = (N, E;, Refs))) denote a sequence of description
graphs obtained by a sequence of applications of rewrite rules defined by Merge(Go). Then,
Merge(Go) terminates, and the resulting graph, Gy = (Ni, E:, Refsy), satisfies the Sollowing
properties:

(@) there are no 1d edges in G;

(b) no node in N; has two outgoing edges with the same label; and
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(c) if(refi, A, refs) € E, for any references ref, and ref, in Refso and a primitive artribute
A. then (ref, A, ref>) € E,.

Proof. Let IN]l denote number of nodes, and IE! number of edges in the graph G;. Consider
partitioning of edges in E; into three groups: E;', edges of the form (n, Id, n); E?, edges of the
form {n,, Id, n.). where n, # n; and E?, edges of the form (n,, A, n2) for some nodes n, n,, n, and
a primitive attribute A. Let IE,"l, IE?, and IE”| denote sizes of E!\E? and E} respectively.

Now, to prove termination, consider the following weight function of the graph G;:

(INof* + IEql) + 3 - (INol® + IEql) - (NI + 1) + IEN + IE} —IEA,

First, note that no rule in Merge adds nodes. Therefore, since (1) only rule M3 adds new
edges, (2) M3 adds an edge (n,, Id, n,) only if such an edge does not already exist, and (3) no rule
in Merge removes an edge (n;, Id, n,) for distinct nodes n; and n., the maximum number of edges
that can ever be added does not exceed INoP. It follows that IE] < INGF + IEol which implies that
(NG + lEol) — IEA20. Therefore, the weight function is non-negative. Next, observe that every
rule in Merge decreases the weight function as follows:

* Rule M1 decreases IV;| by one, and since it does not modify the number of edges, even if all
edges move from group E; to groups E;' and E?, the constant 3 - ((Ng? + IEl) would still be
larger than the change in IE;'I + IE’l ~ IE? part that cannot exceed 2 - (INg? + IEy).

e Rule M2 decreases IE;'| by one.
* If n, = n; in rule M3, IE?| is decreased by one. Otherwise, IEl is increased by one.

Therefore, since the weight function is finite, decreases after each step of Merge and must
be non-negative, the procedure must terminate.

Now we can assume that Merge(G,) terminates after k steps for some k 2 0. Part (a) of the
claim follows directly from the rules M1 and M2, since if there was an edge (n,, Id, n,) € E,, then
either M1 or M2 would still be applicable contrary to assumption that G; is the last graph
produced by Merge. Similarly, part (b) of the claim follows directly from the rule M3 and
part (a): since there are no Id edges, if there was a node in N; with two outgoing edges with the
same label, M3 would still be applicable after step .

To prove part (c), note that A is a primitive attribute, and therefore, (refi, A, ref;) cannot
be removed by M2. If the edge is removed by M3 at some step i, exactly the same edge must
already exist in E;. Finally, if the edge is modified by M1, node(s) n, is(are) replaced by node(s)
n, in the edge. However, step (c) of M1 ensures that all references pointing to n, are modified to
point to n;, and therefore, edge (ref|, A, refs) must still exist after M1 is applied.
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If a finite description graph satisfies properties (a) and (b) of the Claim 5.2, we call it a
well-formed description graph. Note that property (b) implies that the second component is
actually a set rather than a bag of edges in a well-formed description graph. One of the important
uses of procedure Merge inside other procedures presented in the chapter is to transform a
modified description graph into a well-formed one. Note that no rule of procedure Merge is
applicable to a well-formed graph.

5.5.2 Procedure Exp

As in Chapter 4, we restrict fd descriptions inside any terminology to be regular. In addition, if
we are considering a problem of whether a terminology logically implies a constraint D, < D,, we
assume that all fd descriptions inside D, are also regular. (On the other hand, fd descriptions
inside D; can be extended and not necessarily regular.) The regularity condition is essential for
the termination of the following key procedure.

Expansion of a description graph G = (N, E, Refs) over a molecular terminology T,
written Exp(G, T), transforms G by an exhaustive application of the following rewrite rules.

E1. If there exists a node n with a(n) = {D,, ..., D,, (and Dy, ... Dy)} in N, then change
a(n) to {D], ceey Dk, Dk“, ceey Dm}.

E2_If there exist nodes n, with a(n) = {D,, ..., D, (all A D)} and n; in N, and an edge
(ni, A, ny) in E then:
(a) remove (all A D) from a(n,); and
(b) add D to a(n,).

E3. If there exists a node n, with a(n;) = {D,, ..., D, (all A D)}, there is no edge
(ni, A, ny) in E for any node n; in N, and Dy,; contains a same-as constructor
anywhere inside it then:

(a) add a new node n, to N and a new edge {n,, A, n,) to E;
(b) remove (all A D) from a(n;); and
(c) add D to a(n,).

E4. If there exists a node n with a(n) = {D,, ..., D, (same-as Pfy P£5)} in N then:
(a) remove (same-as Pf; Pf,) from a(n);
(b) add a new node n" to N;
(c) execute Create(n, Pf;, n’) and Create(n, Pfs, n); and
(d) invoke Merge(G).
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ES. If there exist nodes n; with a(ny) = {D,, ..., Dy, (fd C Pf, ... Pf, Pf)} and n, (distinct

from n;) in N, such that

(1) (fd C Pf; ... Pf,, Pf) is regular;

(2) Ce any;

(3) for every Pf;, 1 <i < m, there is a prefix Pf; of Pf; and a node n; in N such that
Reachable(n,, Pf;, n) and Reachable(n,, Pf’, n;) are true; and

(4) there is no prefix Pf” of Pfand a node n in N such that Reachable(n,, Pf’, n) and
Reachable(n,, Pf’, n) are true;

then

(a) addanewnode nto N;

(b) execute Create(n,, Pf, n) and Create(n,, Pf, n); and

(c) invoke Merge(G).

EG6. If there exists a node n in N, and a constraint C < D in T such that C € a(n) and
C & fired(n), then add D to a(n) and C to fired(n).

E7. If there exists a node n in N, and a view definition V=D in T such that V e o(n) and
V & fired(n), then add D to a(n) and V to fired(n).

For simplicity, we omit the second parameter of Exp when the terminology is understood
from the context.

Claim 5.3 Let Gy = (N, Eo, Refso) denote a well-formed description graph, and let [G,, G,, ...]
(where G; = (N, E;, Refs;)) denote a sequence of description graphs obtained by a sequence of
applications of rewrite rules El through E7 defined by Exp(G,). Then, every G, is also
well-formed for all i 2 0.

Proof. Since procedure Merge is invoked as the last step of rules E4 and ES, Claim 5.2 ensures
that the graph is well-formed after E4 and ES are applied. The graph is also well-formed after
rules El, E2, E6, and E7 are applied since they do not modify nodes and edges in the graph.
Finally, the graph is well-formed after E3 is applied since it only creates one new non-Id edge
such that no other edge outgoing from the same node has the same label.

Our next claim establishes some useful properties about a graph resulting after a finite
sequence of applications of rewrite rules defined by procedures Merge and Exp as well as of the
following additional rules:
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Al. Given a description graph G = (N, E, Refs), a node n € N, and an attribute description
A which is either a primitive attribute or Id,
(a) add a new node n’ to N; and
(b) add a new edge (n, A, n") to E.

A2. Given a description graph G = (N, E, Refs), add a new node n to N.

A3. Given a description graph G = (N, E, Refs), nodes n, and n, in N, and an attribute
description A which is either a primitive attribute or Id, add a new edge (n,, A, n») to
E.

Claim 5.4 Ler Gy = (No, Eo, Refso) denote a finite description graph. Then, the following
properties hold for any graph G = (N, E, Refs) that results from applying any number of rewrite
rules from the set R = {M1, M2, M3, El, E2, E3, E4, ES, E6, E7, Al} ro Go:
(a) Change of a reference in set Refs neither affects applicability of rules from set R, nor
their effect on nodes, edges, o sets or other references in set Refs;
(b) if Go = Init(D,) for some description D,, there is a path from dn to every node in N;
and
(c) if(refi, A, ref2) € E, for any references ref, and ref; in Refso and a primitive attribute
A, then (ref\, A, ref;) € E even if R is extended to include rules A2 and A3.

Proof. Part (a) follows from the fact that neither conditions of applicability of rules from set R,
nor the modifications to the nodes, edges, a sets or other references in set Refs by the rules in R

depend on a value of any of the bindings in Refs.

Next, consider part (b). Procedure Reachable does not change the graph. On the other
hand, procedure Create and rule Al only create new nodes that are reachable from already
reachable nodes. Thus, in order to prove part (b), it suffices to show that no rules in Merge or Exp
create an “unreachable” node. However, rules El, E2, E6, and E7 only modify a sets; rule E3
creates only nodes that are reachable from other nodes; and rules E4 and ES also create only
nodes that are reachable from already reachable nodes before invoking Merge procedure. Thus, it
is sufficient just to consider procedure Merge.

By definition of M1, for any path p from dn to some node n before M1 is applied, there is
a path p” from dn to n (assuming n is not removed by M1) after M1 applies. Path p’ is exactly the
same as p except for every occurrence of node n, is replaced by n;. Thus, Ml preserves
property (b). M2 also preserves the property since one can remove edge (n, Id, n) from any path
without “invalidating” the path. Finally, M3 preserves property (b) as well, since it either
removes an edge that has a duplicate in E, or adds an edge that connects two already existing
nodes. Therefore, since the only node in G, is reachable from itself (by path {dno)), G must satisfy

property (b).
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a: {QView, Q,
(fd Qe dmd Id)}

a: {D-MANAGER,
MANAGER,

(all Boss C-MANAGER),
EMPLOYEE,

(fd MANAGER Dnum Id)
(all Boss MANAGER)}

o: {DEPARTMENT,
(fd DEPARTMENT Dnum Id)}

a: {EMPLOYEE,
(all Boss MANAGER)}

Dnum

Figure 5.2: The graph resulting after invocation of Exp(Init(QView), COMPANY .

Part (c) of the claim follows directly from part (c) of Claim 5.2 and from the fact that
none of the rules E1 through E7 or Al through A3 changes references in the Refs set or removes
any edges, except possibly inside invocations of procedure Merge.

Note that part (a) of Claim 5.4 allows us to use extra references to nodes in our proofs
knowing that they will not affect applications of the rules.

As an example of an application of procedure Exp, consider the call to
Exp(Init(QView), COMPANY"). The graph resulting after the call is presented in Figure 5.2.
Note that the graph does not show the fired sets for brevity and uses dashed arrows to show
references to nodes (in this case, the dn reference). Each node contains exactly the same concepts
and view names in its fired set as the ones that are in its o set since otherwise rule E6 or E7

would still be applicable.
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5.5.3 Procedure Subsumes

Given a description D, a description graph G = (N, E, Refs) and a terminology T,
Subsumes(D, (N, E, Refs), T) returns true if and only if any of the following cases returns true.

S1.

S2.

S3.

S4.

SS.

If D is a primitive concept name, then return true if and only if D occurs in a(dn).

If D has the form (and D, ... D,), return true if and only if
Subsumes(D,, {N, E, Refs), T) is true for every 1 €i<m.

If D has the form (all A D), modify G as follows:

(a) add a new node n to NV;

(b) add a new edge (dn, A, n) to E;

(c) change reference dn to point to the node n but remember the current
distinguished node: construct a set Refs” to be the same as Refs except for the old
dn binding (dn, n") for some node n’ replaced by (dn, n) and for the additional
binding (dn’, n") for some new reference dn’ not occurring in set Refs;

(d) invoke Merge(G); and

(e) invoke Exp({N, E, Refs"), T).

After a call to Subsumes(D’, (N, E, Refs"), T ) and then restoring the distinguished

node binding dn to (dn, dn"), return the result of the recursive call.

If D has the form (same-as Pf, Pf;), modify G as follows:

(a) add two new nodes n; and n; to V;

(b) execute Create(dn, Pf,, n,), and Create(dn, Pf, ny);

(c) invoke Merge(G); and

(d) invoke Exp({N, E, Refs), T).

Return true if and only if there exists a node n in N, such that Reachable(dn, Pf,, n)
and Reachable(dn, Pf,, n) are true.

If D has the form (fd D" Pf, ... Pf, Pf) for some description D, modify a copy
G. = (N, E., Refs.) of G as follows:

(a) add a new node ny with a(ng) = {D’} to N_;

(b) add {fdcn,, no) to Refs.;

(c) add m new nodes n,, ..., n. (With empty « sets) to N_;

(d) execute Create(no, Pf;, n)), and Create(dn,, Pf, n;) for every 1 €i<m;

(e) invoke Merge(G,.); and

(f) invoke Exp({N,, E., Refs.), T).

Return true if and only if there exists a prefix Pf’ of Pf and a node n in N, such that
Reachable(dn., Pf’, n) and Reachable(fdcn,., Pf’, n) are true.
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S6. If D is a view name V with view definition V= D’ in T, then if V occurs in a(dn)
return true; otherwise, return true if and only if Subsumes(D’, (N, E, Refs), T) is true.

Note that as discussed before, we allow extended fd descriptions inside the parameter
description D. Also note that the fd descriptions in D do not have to be regular.

As an example, consider the call to
Subsumes((fd QView e dm d), Exp(Init(QView)), COMPANY").

As a result of the call, a copy of the graph Exp(Init(QView)) is constructed and an additional node
referenced by fdcn. with “QView” in its « set is added along with two pairs of edges labeled “e”
and “dm”. Next, after the invocation of Merge in part (e) of step S5, procedure Exp “‘expands” the
“QView” description and, at some point, might obtain a result depicted in Figure 5.3. Then, after
the merges shown in the figure by the two dashed lines are complete, the graph becomes the same
as the one presented in Figure 5.2 (except for the additional fdcn, reference pointing at the same
node as dn.). Therefore, the appropriate check at the end of step S5 returns true. As our further
analysis shows, this result confirms that QView < (fd QView e dm d) is indeed logically implied
by the COMPANY"’ terminology.

Note that while our examples have been using path functions of only lengths one and
zero for simplicity, the procedures are general enough to work with path functions of arbitrary
length (unless the path functions violate the regularity condition of the fd descriptions in a
terminology). For example, the procedures would work with such constraints as

MSS < (fd MSS (comp Boss Dnum) Boss)
and
MSS < (fd MSS (comp Boss Dnum) Dnum)

that require any pair of MSS with the same department number of their bosses to have the same
boss and the same department number respectively.

5.6 Analytic results

In this section, we will establish the main results about our procedures in this chapter. We first
show that procedures Exp and Subsumes terminate. Then, we consider a problem of whether a
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a: {D-MANAGER,
MANAGER,
EMPLOYEE}

a: {DEPARTMENT)

Dnum

o: {DEPARTMENT}

Figure 5.3: Execution of Subsumes((fd QView e dm d), Exp(Initf(QView)), COMPANY"). Nodes

that are connected by the dashed lines are merged. Only concepts and view names are shown
inside « sets.

terminology T logically implies a constraint D, < D, for any descriptions D, and D- that satisfy
the conditions we outlined above. We claim that the problem can be solved by invoking
procedure

Subsumes(D,, Exp(Init(D,), T), T)
and prove that our solution is sound and complete. Finally, we establish a bound on the running
time of our procedures.
5.6.1 Termination
The most difficult part in proving that Subsumes(D,, Exp(Init(D,), T), T) terminates is

establishing termination of the Exp procedure. In order to do that, we first prove an auxiliary
claim about procedure Merge.
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Claim 5.5 Let Go = (No, Eo, Refso) denote a finite description graph, i.e. a graph with finite set N,
and finite bag Eo, and let [G,, G, ..., Gi] (where G; = (Ni, E, Refs))) denote a sequence of
description graphs obtained by a sequence of applications of rewrite rules defined by Merge(Go).
Then:
(@) for every 0 < j <i <k, if ref; and ref> point to the same node in Refs;, ref\ and ref,
point to the same node in Refs; as well;
(b) for every 0 <j <i <k, if (refi, A, refs) € E; for any references ref, and ref; in Refs,
and a primitive attribute A, then (ref,, A, refs) € E;;
(c) for every 0 i<k, if(ref\, Id, refs) € E; for some references ref, and ref; in Refs;, ref
and ref; point to the same node in Refs;; and
(d) for every 0 < i <k, if (ref\, A, ref2) € E; and (ref,, A, refs) € E; Jor some references
ref\, refs, and ref; in Refs; and a primitive attribute A, then ref; and ref; point to the
same node in Refs,.

Proof. Part (a) follows from the facts that rules M2 and M3 of Merge do not touch any references,
while M1 moves all references that point to a node that is being removed to another node.

Since A is not “Id” in part (b), M2 does not affect edge (ref;, A, refy) in any way. If the
edge is modified by step (b) of M1, step (c) of M1 ensures that the references ref, and ref> are
modified accordingly. Finally, the edge is removed by M3 only if a duplicate edge exists in the
graph. Therefore, part (b) of the claim must hold.

Analogously to the proof of part (b), we can show that the edge (refi, Id, ref>) in part (c)
must exist in all graphs G; (i <j < k) until the references start pointing to the same node, since if
they point to distinct nodes, M2 is not applicable; M1 changes edges according to changes to the
references to corresponding nodes; and M3 does not modify Id edges. However, Merge cannot
finish until it removes all Id edges from the graph (by part (a) of Claim 5.2). Therefore, there
must be a point when rule M1 merges nodes referenced by ref; and refs. After M1 is applied ref,
and ref; continue to reference the same node by part (a) of Claim 5.5.

Finally, part (d) follows from part (b) of Claim 5.2, the fact that by part (b) of Claim 5.5,
both edges (refi, A, ref>) and (ref,, A, ref;) must exist in Gjforalli <j <k, and the fact that edges
would be different if ref; and ref; pointed to different nodes.

Now we establish the termination of procedure Exp.
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Lemma 5.3 Ler Gy = (No, Eo, Refso) denote a description graph that satisfies the following
properties:

(@) Gy is finite; i.e. it has finite set Ny and finite bag Eo;

(b) there is no Id edges in E,; and

(¢) no node in Ny has two outgoing edges with the same label.
Then, for any terminology T, Exp(Go, T) terminates.

% -..] (where G; = (N,, E, Refs;)) of description graphs
obtained by a sequence of applications of rewrite rules defined by Exp(Go). To prove the lemma,
we are going to show that the sequence must be finite.

Proof. Consider any sequence seqo = [G,, G-

Note that G; must be a finite graph since G, is finite, G; was obtained only by a finite
number of applications of rules E1 through E7, and application of each rule adds at most a finite
number of nodes, edges and/or descriptions to the a and fired sets.

Our general plan is as follows. We first show that the number of applications of rules E7
and E4 must be finite. We then deduce that the number of applications of rule E3 must be also
finite. That leaves only rule ES as a possible source of new nodes in the graph. Then, we show
that a certain boundary property is preserved by rule ES, and that ES can only “fire” on a finite
number of pairs of nodes in a graph that satisfies the boundary property. After proving that rule
ES5 can also fire only a finite number of times, we finish the proof by verifying that rules E1, E2,
and E6 can also be applied only a finite number of times.

First, let Descs(G) denote union of « sets of all nodes in a description graph G. Clearly,
rewrite rules E1 to ES do not introduce new occurrences of view names or same-as constructor to
Descs(G). Neither does rule E6 since, by definition of terminology, constraints of the form C < D
in T cannot contain view names or same-as constructor inside D. Therefore, only rule E7 can
introduce new occurrences of view names and same-as constructor. Further note that when rule
E7 is applied to an occurrence of a view name, say V, it cannot be ever applied to that occurrence
of V again due to the addition of V to the fired set (note that even when a node with a set
containing V gets merged, both a and fired sets still include V after the merge). Moreover, the
non-recursive property of views guarantees that a new occurrence of V will never be introduced
by an application of rule E7 to V or any occurrence of a view name that was produced as a result
of “expanding” V (after one or more expansions by rule E7). Therefore, after E7 applies to an
occurrence of a view name V, it never applies to it again, and it never produces V in another
description again. Since the number of view definitions in terminology is finite, and the number
of occurrences of view names in Descs(Gy) is finite, it follows that rule E7 can “fire” at most a
finite number of times.

Moreover, since each application of E7 adds at most a finite number of occurrences of the
same-as constructor to a finite number of occurrences of the same-as constructor in Descs(Gy),
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the total number of occurrences of the same-as constructor that are ever added and exist in the
graph (without subtracting the ones that get removed) is finite.

On the other hand, each application of rule E4 decreases the number of occurrences of the
same-as constructor in Descs(G). Therefore, E4 can also be applied only a finite number of times.
Thus, there must exist some graph G\’ = {N/’, EY’, Refs,") = G; in seqo such that rules E7 and E4
are not applied to any graph G; in seqq for all j > i. Therefore, we can now concentrate on the part
of the seqo that starts with G,” and does not use rules E7 and E4 to obtain further graphs in the
sequence. Let us denote this “tail” of the sequence by seqy, i.e. seq, = [G)" =(N/', E\’, Refs\), ...].

Since each application of rule E3 in seq, decreases a finite number of concept
constructors of a description containing an occurrence of a same-as constructor or a view name in
Gy, and rules El, E2, E3, ES and E6 do not increase the number of concept constructors
containing the description, E3 can only be applied a finite number of times to a description with a
given occurrence of a same-as constructor or a view name. However, since rules E4 and E7 are
not applied in seq;, and since no new occurrences of the same-as constructor or view names can
be introduced to Descs(G) by other rules, there must exist some graph Gy" = (N,’, E’, Refs;) = G;
in seq, such that rules E3, E4 and E7 are nor applied to any graph G; in seq; for all j>i.
Therefore, we can now concentrate on the part of the seq, that starts with G5’ and does not use
rules E3, E4 and E7 to obtain further graphs in the sequence. Let us denote this “tail” of the
sequence by seqs, i.e. seq; =[Gy’ = (N, E’, Refsy), ... ].

Since rules E3 and E4 are not applied in seq», only rule ES can produce new nodes in the
graph or, in general, modify nodes and edges in the graph. However, since nodes can be
“merged” by procedure Merge in step (c) of ES, we use references to keep track of nodes in the
graph. Thus, let us assume that every node in G’ has a reference pointing to it in Refs,” set, and
every time we create new nodes (by ES), we create new references in the Refs set pointing to
those nodes.

We now partition Refs set of a graph G in seq; into two subsets R,y and R,..: we say a
reference ref is in R,y if there is a reference ref’ in Refs,” that points to the same node as ref:
otherwise, ref is in R Essentially, R, is a set of references that point to “old” nodes in Ny
possibly merged with other nodes, whereas R,... is a set of references to “new” nodes added by
applications of rule ES and that did not get merged with old nodes. Note that by definition, every
node n is either referenced only by references from R, or only by references from R.ev. In the
first case, we say that n relates to R,,; and in the second case, we say that n relates to R,... Since
we create a reference with every new node and the reference moves from a node only if the node
is removed by M1, every node must be pointed to by at least one reference, and therefore, every
node either relates to R,y or R,
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Let us now show that any graph G in seq, satisfies so-called boundary property, which
states that no node n that relates to R,.. has any pa-children (i.e. outgoing non-Id edges). A
structure enforced by the boundary property is depicted in Figure 5.4(a) at the end of the proof.

Since only rule ES modifies nodes and edges in the graph, in order to prove that the
boundary property is preserved, it is sufficient to consider only applications of rule ES in seq..

The boundary property trivially holds in G, since every reference in Refs,” is in R,y.
Assume now that the property holds for some graph G = (V, E, Refs) in seq, and, without loss of
generality, consider an application of rule E5 to some nodes n; and ny in N for description
D=(d CPf, ... Pf,, Pf) in aset of one of those nodes. Additionally, let us assume that
Pf=(comp A, (comp A, ... (comp A, Id) ... )) for some k£ = 0 and primitive attributes A, ..., A,.
Since description D must be regular by property (1) of ES5, there must exist a Pf; (1 <i < m) that
has the form (comp A, (comp A, ... (comp A, Pf”) ... )) for some path function Pf”. In
addition, by condition (3) of ES, there must exist a node n in N and a prefix Pf,,.q. of Pf; such that
Reachable(n,, Pfyrepir, n) and Reachable(n,, Pforeic, n) are true. In other words, there must exist
paths p; and p, from n, and n,, respectively, to n such that YP1) = Y(P2) = Plorefis-

Therefore, there are three possible cases relating Pfand Pz,

i) Pr=1d;

(i1) length of Pf is greater than O and Pforeic = (comp A, ... (comp A/ Id) ...)) for
some l <I<k-~1;or

(1ii) length of Pf is greater than 0 and Pforesic = (comp A, ... (comp Ay, Pf’) ...)) for
some prefix Pf’ of Pf”.

Note that the length of Pf,.s cannot be O, since n; and n, must be distinct nodes.
Moreover, n; and n, must relate to R,;,. Indeed, since they are distinct, and paths p, and p, consist
of non-Id edges that end at the same node, both n, and n, must have pa-children. However, since
G satisfies the boundary property, neither n; nor n. can relate to Ruew.-

Before we proceed with proving that the boundary property is preserved by cases (i) to
(iii), let us also note that Id edges that can be removed by M2 do not affect applications of rules
M1 and M3. Therefore, such Id edges can be removed at any time during an execution of Merge
without changing nodes, other edges or references in the graph, and thus, without affecting the
modifications produced by a sequence of applications of rules M1 and M3. Thus, while
considering a sequence of steps during an invocation of Merge procedure we can disregard such
edges and applications of rule M2.

Now, consider case (i). ES adds a new node n’ to N (with corresponding new reference
ref’), and edges (n,, Id, n’) and (n,, Id, n’) to E. Since the only added node does not have any
pa-children, the boundary property is preserved at this point. Next, consider the invocation of
procedure Merge. Since removal of a duplicate edge or addition of an Id edge by M3 and removal
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of an Id edge by M2 cannot violate the boundary property that only considers non-Id edges, it is
sufficient to consider merges by M1. There are three possible cases: both nodes that are merged
relate to R,u; one of the nodes relates to R,,; and the other relates to R,...; and both nodes relate to
Rrew- In the first two cases, the node resulting after application of M1 relates to R, by our
definitions of R,; and R,.. sets. Moreover, all pa-ancestors of both nodes remain in R,,.
Similarly, in the third case, all pa-ancestors of the nodes remain in R,u. However, the node
resulting after application of M1 remains in R,... and does not have any pa-children since neither
of the nodes have pa-children before M1 is applied. Therefore, applications of the rules of Merge
preserve the boundary property.

It follows that, the boundary property is preserved by case (i). It is also preserved by case
(1i) since condition (4) of ES ensures that the rule does not “fire” in this case, and therefore, the
graph is not modified.

Finally, consider case (iii). Without loss of generality, let us assume that p, = (n;, A,,
refy, As, ..., refii, Ay, refe’) © psand ps = (ny, A, refy”, A, ..., refi”, Aw, ref”) o p, for some
paths ps and p; such that y(ps) = Y(ps) = Pf’. Also, assume that part (a) of ES added new node n’
(with reference r’) and that Create(n,, Pf, r’) created path (n;, Ay, ry’, Ay, ..., 1/, Ai, n°), whereas
Create(n, Pf, r) created path (ny, A;, r)", A, ..., n”, As n’) for some references r/ and r;”
(2 =i < k). An example structure of such a graph is depicted in Figure 5.4(b). Note that if ref,’ and
ref,’”’ pointed to the same node, i.e. if paths p, and P2 “merged” before those nodes, ES would not
“fire” due to condition (4).

Next, consider what happens during the invocation of Merge procedure. It follows from
Claim 5.3 that G is a well-formed graph, and therefore, rules of Merge are not applicable to any
part of G itself, and can only either merge nodes referenced by ref,” and r;’ or refy” and r;”. After
refy’ is merged with r,’ (resp. ref,”” with r,”), refy” has to be merged with ry’ (resp. ref;” with r;”).
This process continues until every node ref; is merged with node r/’ (resp. ref”” with r,”) for
2 <i < k. By constructions of nodes referenced by r/ and r;/” (2 < i < k) and by definition of the
Merge procedure, the net result of the merges so far are Jjust additional references r;” and r;”
pointing to nodes that already existed in G, additional Id edges (to be removed by M2), and edges
(refi, A, n*) and (ref,”, As, n’). As noted above, ref,’ and ref” point to distinct nodes since ES
would not fire otherwise. Therefore, both ref,” and ref,” as well as their pa-ancestors including
ref/ and ref” (2 <i < k- 1) must be in R, since they have a common pa-descendent. Thus, when
these nodes are merged with r;” and r;”” (2 <i < k), the nodes that result from the merges relate to
R,u. It follows that the only new node at this point that relates to R,.. is n’. Moreover, since other
nodes, edges and references remain the same, both pa-parents of n’ relate to R4, and therefore,
the graph satisfies the boundary property. Finally, using the argument presented in case (i) that
establishes that every rule of Merge preserves the boundary property, we can conclude that the
graph resulting after the application of Merge in step (c) of ES in case (iii) satisfies the boundary

property.
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It follows that in general, application of rule ES preserves the boundary property of the
graph; and therefore, every graph in seq, must satisfy it. This implies, however, that ES can only
be applied to nodes that are referenced by references in Refs,". Indeed, since a node that relates to
Rnc does not have any pa-children, it cannot “agree” on a path with a distinct node (as required
by part (3) of ES).

Let us now show that given any references ref; and refs, and a description
D = (fd C Pf; ... Pfn Pf), ES can be applied to the pair (ref, ref>) at most once for the description
D; in other words, ES cannot “fire” more than once given nodes referenced by refi and ref; and a
particular fd description D in a(ref;).

There are two cases: Pf = Id, or Pf= (comp A, (comp A: ... (comp A; Id) ... )) for some
k > 0 and primitive attributes Ay, ..., Ax. In the first case, application of the rule ES produces a
new node n and two edges (ref;, Id, n) and (ref;, Id, n). By part (c) of Claim 5.5, after Merge is
done, refi and ref; point to the same node, and therefore, they would never again point to distinct
nodes. Thus, ES cannot be applied to those references again.

In the second case, when Pf = (comp A, (comp A, ... (comp A.Id) ... )) for some k> 0,
part (c) of Claim 5.2, part (c) of Claim 5.4, and the fact that parts (a) and (b) of ES do nor change
nodes, edges and references that already exist in the graph imply that after ES is applied, there
will always exist paths that start at ref, and ref;, have edges labeled A, ..., A, and end at the
same node. Therefore, condition (4) of E5 prevents it from “firing” again for the description D.

We can conclude now that since Refs,” has a finite number of references; rule ES is
applicable only to nodes that are referenced by references in Refs,’; T has finite number of
fd descriptions inside its constraints; and ES can “fire” at most once for a given (ordered) pair of
references and an fd description, the rewrite rule ES can be applied only a finite number of times
to a graph. Therefore, there must exist a graph G;’ = (N3, E5’, Refs;") = G; in seq, such that rule
ES is not applied to any graph G; in seq; for all j 2 i. Thus, we can now concentrate on the part of
the seq, that starts with G;” and does not use rules E3, E4, ES, and E7 to obtain further graphs in
the sequence. Let us denote this “tail” of the sequence by segq;, i.e. seq; = [GY’, ...].

Since rules El, E2 and E6 do not modify nodes and edges in the graph, the structure of
the graph stays the same in seqs. However, since rule E6 can be applied at most once to a node for
a particular constraint C < D in T (addition of C to the fired set of a node n the first time the
constraint is applied to n prevents it from “firing” again), and since T has a finite number of
constraints, rule E6 can be applicable only a finite number of times in seg;. Thus, there must exist
a graph G4’ = (N4, EJ, Refss’) = G; in seqs such that rule E6 is not applied to any graph G; in seq;
for all j 2 i. Therefore, we can now concentrate on the part of seq; that starts with G,” and does
not use rules E3, E4, ES, E6, and E7 to obtain further graphs in the sequence. Let us denote this
“tail” of the sequence by seq, i.e. seqs =[G/, ...].
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nodes that relate to R,

odes that relate

to R,

Pa

(b) A graph structure for case (iii). Dashed lines show some nodes that are to be merged and
dashed arrows show some references.

Figure 5.4: Graph structures in the proof of termination.
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Since Descs(G4") contains a finite number of and and all constructors, and since every
time rule E1 or E2 is applied, the number of and or all constructors is decreased by I; El and E2
can fire at most a finite number of times. Therefore, seq,, and thus sego, must be finite.

Next, termination of Subsumes follows and is stated in the following theorem.

Theorem 5.1 (termination) Let G = (N, E, Refs) denote a finite description graph; i.e. a graph
with finite set N and finite bag E. Then, Subsumes(D, G, T) terminates for any description D and
terminology T, and the possibly modified description graph remains finite.

Proof. First, note that applications of rules M1 to M3, El to E7 and all other steps during
invocation of Subsumes add/remove at most a finite number of nodes and edges to/from the graph
and descriptions to/from the node labels and take a finite amount of time for all necessary checks
to be performed. Therefore, in order to show termination of Merge, Exp, or any part of Subsumes,
it is sufficient to show that they execute at most a finite number of steps.

We first consider applications of steps of Subsumes that do not make any recursive calls:
S1, S4 and S5. S1 trivially takes a finite amount of time and does not modify the graph. Further,
S4 (resp. S5) trivially takes a finite amount of time to execute parts (a) and (b) (resp. (a) through
(d)). Moreover, the graph remains finite. Thus, by Claim 5.2, invoking Merge in part (c) (resp.
(e)) terminates and obtains a graph that satisfies conditions (b) and (c) of Lemma 5.3. In addition,
the obtained graph is finite by the reasoning above. Therefore, by Lemma 5.3, invoking procedure
Exp at part (d) (resp. (f)) terminates, and thus, obtains a finite graph as well (in case of SS, both
the original graph and the modified copy of the graph are finite).

Analogously to S4 and S5, following a trivially terminating sequence of parts (a) through
(c), invocations of Merge and Exp in step S3 terminate and obtain a finite graph. Additionally,
steps S2 and S6 trivially take at most a finite amount of time before making recursive calls (if any
in case of $6). Therefore, to prove termination, it is sufficient to show that S2, S3, and S6 make at
most a finite number of recursive calls since each recursive call passes a finite description and
steps S1, S4 and S5 terminate for any description (that applies to them).

Steps S2 and S3 “break up” a description in a finite amount of time and recursively call
Subsumes passing descriptions with at least one concept constructor less as a parameter. Step S6,
on the other hand, either trivially executes in a finite amount of time if the view name is found in
the a set, or recursively calls Subsumes passing description that corresponds to the view in its
view definition. However, by the non-recursive property of views, and since only step S6 can
consider new view names, each occurrence of a view name can be “unfolded” by only a finite
number of applications of S6. Indeed, since terminology is finite and substituting view names by
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the corresponding descriptions can never produce an original view name, each occurrence of a
view name can produce at most a finite number of such substitutions. In other words, for an
occurrence of a view V, applications of S6 can produce at most the number of constructors in Vi
Therefore, S6 can be applied at most a finite number of times and produce at most a finite number
of concept constructors. As we noted above, however, each application of S2 and S3 decreases
the number of concept constructors “considered” by Subsumes, and therefore, they can be applied
at most a finite number of times as well.

5.6.2 Soundness

Next we prove soundness of our procedures. We show that whenever
Subsumes(D,, Exp(Init(D)), T), T)
returns true for any terminology T, and descriptions D, and D,,

TE D|<Dz.

We start by proving the following lemma that establishes preservation of an important
invariant by rewrite rules defined in procedures Merge and Exp and by rule Al.

Lemma 5.4 Let Gy = (No, Eo, Refso) = Init(D,) for some description D,. Then, given a terminology
T, the following properties hold for any graph G that results from applying any number of rewrite
rules from the set R = {M1, M2, M3, E1, E2, E3, E4, ES, E6, E7, Al} to Go:
(1) If there exists a path p = {dn, A\, n,, Ay, ny, ..., Am nn) in the
description graph G such that D € o(n,,), then T = D, < (all Y(p) D).
(Ufm=0,TeED <(@IdD),orT= D <D)
(2) If there exist paths p, = (dn, A, n’, Ay, ny, ..., Ax, n) (k 2 0) and
p2= {dn, B\, ny”, B, ny”, ..., By, 0,y (m 2 0) in G such thar
Ilk' = n,,,". thenT &= D| < (same-as ?(Pl) sz)).

Proof. First, we prove that the properties are satisfied by the graph Init(D;). Then, we show that
the properties are preserved by every rewrite rule in R.

By definition of Init(D,), the only way D could be in the ¢ set of ng, the only node
created by /Init, is if D, = D; but then, T = D, < D = (all Id D) (m = 0). Since no other nodes are
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created by /nit and no other descriptions are placed into a(n,), property (1) holds for the graph
Init(D). Property (2) is trivially satisfied as the only path that exists in /nit(D,) is {(dn).

For each rewrite rule, let G, = (N}, E,, Refs;) denote the graph before the rule is applied,
and let G, = (N2, E;, Refs;) denote the graph after the rule is applied. We assume that
properties (1) and (2) of the lemma are satisfied by G, and prove that they must also be then
satisfied by Gs. (The rules themselves are reproduced for convenience.)

First, consider rules of the Merge procedure. In the proof, we will call two nodes n; and
n: in a graph G = (N, E, Refs) equivalent if either n, = n, or {m1, Id, n;) € E. Note that if there
exist paths p, and p, from dn, to equivalent nodes in G, property (2) of the lemma, properties (3)
and (5) of Claim 3.1, and Claim 5.1 imply that T = D, < (same-as Y1) Y(p2)) since we can add
an Id edge to one of the paths to “meet” the other if they do not already agree on the last node.
This feature of the equivalent nodes will be referred to as the equivalent nodes property.

M1. If there exists an edge (n,, Id, n,) in E where n, # n., then merge nodes n; and n; as follows:

(a) change a(n,) to a(ny) U a(n,), and fired(n,) to fired(ny) U fired(n,);
(b) modify all edges touching n; to touch n; instead:;
(c) YV (r, ny) € Refs, replace (r, n,) by {r, n;) in Refs; and

(d) remove n, from N.

To prove that M1 preserves property (1), consider an arbitrary path p’ in G, that starts at
dn; and a description D inside o set of the node at the end of p’. To show that T= D, <
(all Y(p") D), let us first find an “equivalent” path p” in G, such that Tk D, <
(same-as Y(p") Y(p")), p” starts at dn;, and p’ and p” end at the same node. If p’ does not go
through n;, p” that equals to p satisfies the conditions above as p’ must also exist in G,. Any path
from dn;, that does go through n; in G; can in general pass through n; more than once, and
therefore, has the form

P =poop\‘opyo... OPm Pmat”
where m 20, p/” for 1 <i < m are simple loops of length greater than O that start and end at node

ni; po’ starts at dn,, ends at n, and does not have n, among its other nodes; and p,,,,’ starts at n,
and does not have n; among its other nodes.

First, let us consider the case when py’ has length greater than 0. Since po’ does not pass
through n, until the last node, all of the edges in po’ must exist in G, except possibly for the last
one. However, the edge that formed the last edge of po’ would either point to n; or n; in G,, and
can be attached to the other edges in py’ to form a path p in G, that would go through the edges
with the same sequence of labels as inside po”. Therefore, by definition of Y,

Yo = ¥p). @



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 101

Since both n, and n;, are equivalent to n,, by property (2) of the assumption and by the equivalent
nodes property,

T = D, < (same-as Y(p,") Y(p)) 2)

for some path po” from dn, to n, in G, (such path po” must exist by Claim 5.4). Therefore, by (1),
(2), and property (1) of Lemma 5.1,

T = D, < (same-as Y(po') Y(po™)). QA

In case when length of po’ is 0, po” = {n,) and dn, is either n, or n,. If dn; is n,, then we
can set po” to (n;) and (3) remains satisfied. If dn, = n., then set po” to some path from n, to n,
(which  must exist by ClaimS4). Then, since m and n, are equivalent,
T = D, < (same-as Id ¥(py")) by property (2) of the assumption and by the equivalent nodes
property. Therefore, (3) still holds in this case as ¥(po") = Id. Thus, in both cases of dn; being n,
or n,, we constructed po” from dn; to n, in G, that satisfies (3).

Next, consider a simple 100p pioop” = (ny, Ay, 1y, ..., n, A, ny) in G, with length greater
than 0. Since every edge (n/, A;, n;.,") for 2 < j < k- 1 does not touch n,, the same edge also exists
in E;. Now let (n", A), ny") be the edge in E, that formed the edge (n,;, A1, ny") in E>, and let
(ni’, Ai, n”") be the edge in E, that formed the edge (n/’, Aw, n;) in E,. Note that even though n” and
n” could be different, each must be either n; or n,. Thus, by constructions in rule M1, the

following path pj,,”” must exist in G;:

® Py =(m, A ny, ..., n, A, ) if n”’ = ny; and
. ’
®  Puop =(n, Id, ny Ay, ny, .., 0, A, n”™) if n° = n,.

Since piop” and pio,,” pass through the sequence of equivalently labeled edges (modulo an
additional Id edge), by definition of y, Claim 5.1 and property (3) of Claim 3.1, YPuop™) =
Y(Proop')- Also, since prqp” starts with node n,, it is attachable to path p,”; and thus, by property (2)

of the assumption and by the equivalent nodes property, T &= D, < (same-as YPo"”°Pioop”) YP0)).
Therefore, for every 1 <i <m, there exists a path p;”” in G, such that

1P = ¥(p"), and @
T = D, < (same-as Y(po'op;) Y(po™)). &)

(4), (8) and Claim 5.1 imply that

T = D, < (same-as Y(po")oY(p)) Y(po™")) for1 <i<m. ©)
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Therefore, (3), (6), and Lemma 5.2 imply that
T = D, < (same-as Y(py")oY(p,) Y(po)) for 1 <i<m.
Further, the following implications can be deduced:

T = D, < (same-as Y(py")oY(p~") Y(Po")),
T = D, < (same-as Y(py" )oY(P»") Y(Po)),
T = D, < (same-as Y(po")oY(Pm.1)oY(Pn") Y(P:)),
T = D, < (same-as Y(po” )oY(Pm.i")oY(Pn") ¥Po)),

T = D < (same-as Y(po')oY(p1)°...oY(p.") Y(Po)),
T = D, < (same-as Y(po'op,’op;°...op,") Y(po)). and finally,

T = D, < (same-as Y(po'op,"op;’o...op.") Y(po')). D
Thus, by property (4) of Lemma 5.1 and by Claim 5.1,

T = D, < (same-as Y(po'©p1’°p:’°...0Pm 0P mei”) Y(Po' )oY (Prmsr)). ®&)

Now consider pn..”. First, assume that the length of p,.,” is greater than 0. Then, since
Pmet’ ={my, A, 1) © puy’ (for some node n.") does not go through node n, in G, after the first
node, p.;’ must exist in G,. Let {(n’, A, ny") be the edge in E, that originated the edge (n,, A, n;") in
E>. Note that n” must either be n; or n, by constructions in M1. Therefore, the following path

exists in G;:

b pnwl” = (nh A, nz’) ° Puu‘l' if n” = n,; and
b pm#l” = <nlv Idy na, Ao n2’> o Pmil’ if n’ =n;.

Since pm+1” and pn.1” pass through the sequence of equivalently labeled edges (modulo an
additional Id edge), by definition of y, Claim 5.1 and property (3) of Claim 3.1,

Y(Pml”) = Kpml') (2)

Also, note that pp,1” and pa.:” end at the same node. In case when length of p,...’ is 0, let
Pmii” = pmat’ = (m). Clearly, (9) holds in this case as well and pn.” and pn,,” end at the same
node again.
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Observe now that by “construction” of pm;” from p..’, they both start at n, and end at
the same node. Therefore, by property (1) of the assumption,

T = D, < (all (po""°pme1”) D) a0

if pmsi” and p...i” end at any node other than n;, since a sets of nodes do not change except for
node n,. However, in the case when p,.,” and pmel” end at ny, (10) is still satisfied, since either
D € o(n;, G,) in which case (10) holds by assumption, or D € a(n,, G,) in which case (10) holds
due to property (3) of Claim 3.1, Claim 5.1, and the fact that by assumption,

TE Dl < (all ‘Y(pol'opmxuo('!h [d, nz)) D).

Let p” now denote the path py”op,.,”. Then, (8), (9) and Claim 5.1 imply that
T = D, < (same-as Y(p") Y(p")). an

Finally, (10), (11) and properties (1) and (3) of Lemma 5.1 imply that T = D, < (all Y(p") D).
Therefore. M1 preserves property (1) of the lemma.

Let us now consider property (2). If a path in G, does not go through n,, exactly the same
path exists in G;. On the other hand, if we have a path in G- from dn, to n, that passes through
node n;, we can find an “equivalent” path from dn, to n,, in G; in the way presented in the proof

of property (1) above. Thus, for both paths p, and p, (from the statement of property (2)) in G,,
there must exist paths p;” and p,’ in G, that start at dn, and such that

T = D, < (same-as Y(p;) Y(p;)) and T &= D, < (same-as ¥P2) Y(p)). 12

Since p, and p;” end at the same node, p, and p,’ end at the same node, and P and p, end at the
same node, p,” and p,” must also end at the same node. Therefore, by property (2) of the
assumption,

T = D, < (same-as Y(p,") Y(p2)). as)

Then, however, by (12), (13) and Lemma 5.2, T = D, < (same-as Y1) ¥Y(p2)). Therefore, M1
preserves property (2) of the lemma as well.
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M2. If there exists an edge {n, Id, n) in E then remove it.

This case trivially satisfies properties (1) and (2) since except for removal of some paths
in the graph, nothing else changes.

M3. If there exist edges (n;, A, n;) and {(n,, A, n3) in E for a primitive attribute A, then: if n, = n,,
then remove the second edge from E: otherwise, add edge {(n, Id, n;) to E if such an edge
does not exist already.

In this case, either some paths from dn to a node are removed if n; = n3, or an Id edge is
added otherwise. In the first case, properties (1) and (2) are trivially preserved since (just as in
M2) except for removal of some paths, nothing else changes. Therefore, it is sufficient to consider
the case when n; # n; and edge (n,, Id, n;) is added.

To prove that M3 preserves property (1), consider an arbitrary path p’ in G, that starts at
dn; and a description D inside a set of the node at the end of p’. Our goal is then to prove that
T = D, < (all Y(p") D). If p’ does not pass though (n., Id, n) edge in G, exactly the same path
exists in G, and therefore property (1) remains satisfied. On the other hand, if p’ does go through
edge (n,, Id, n3) in G, it can in general pass through the edge more than once, and therefore, has

the form
p' = Po'°P1'°P2'°- . -°Pm’°Pm+l'

where m 20, p/” for 1 <i < m are loops of length greater than O that start with edge (n,, Id, n;) and
do not pass though (n,, Id, n;) afterwards, p,’ starts at dn,, ends at n, and does not pass through
(ny, Id, n3), and pp,,” starts with edge (n, Id, n;) and does not pass though (n,, Id, ns) afterwards.

Since po” does not pass through (n,, Id, n3), po” must also exist in G,. Let po” be some
path from dn, to n; in G, (such path must exist by Claim 5.4). Then, by property (2) of the

assumption,

T = D, < (same-as Y(po) Y(po”o(n,, A, ny))). as

By definition of Y and Claim 5.1,

T = D, < (same-as Y(po"'o(n,, A, n)) Y(po”’o{ny, A, n3))). as)
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Next, consider a 100p proo,” = (n2, 14, n3, Ay, ny’, ..., ney’, Ai, n2) in Ga. Since every edge
after the first one is not (nz, Id, n3), the same edge exists in E,. Therefore, path pio,,” = (n3, Ay,
ny', ..., ngy’, Ag, na) exists in G. By definition of y, Claim 5.1 and property (3) of Claim 3.1,
Y Proop) = Y(Proop”")-

Also, since py,,,” starts at node n3, it is attachable to path py”o(n;, A, n;); and thus, by
property (2) of the assumption, T &= D, < (same-as Y(po” <(n,, A, n3)°Puepy’) Y(po”olny, A, na)).
Therefore, for every 1 <i < m, there exists a path p;” in G, such that

Y(Pi') = Y(P:”)' and (1_6)
T = D, < (same-as Y(po" o(n,, A, ns)op;”) Y(po”o{ny, A, n))). an

Then, (15), (16), (17), Lemma 5.2, and Claim 5.1 imply that
T = Dy < (same-as Y(po”'o{n), A, n2))oY(p;") Yo" o(n,, A, n2))) for 1 Si<m. (18)
Therefore, the following implications can be deduced from (14). (18), Lemma 5.2, and Claim 5.1:

TE Dl < (Sa'ne-as 'Y(PO"°<"h Av "2))°7(Pm') Y(POH°<"h A’ n‘l)))y
T = D, < (same-as Y(po"'o(n,, A, 12))0Y(Pm1)oY(Pm’) Y(po~ on1, A, n2))),

T = D, < (same-as Y(po"o(ny, A, n2))oY(p1)o...0¥(pn") Y(po~ olny, A, na))).
T = D, < (same-as Y(po)oY(p1")o...o¥(pn") Y(po' o(n;, A, n2))), and finally,

T = D, < (same-as Y(po'op,’op;’c...op,") Y(po” o{n,, A, noy)). a9
Thus, by property (4) of Lemma 5.1 and by Claim 5.1,

T = D, < (same-as Y(po'op1'0p,’0...0pp 0 pmet’) Y(po” o(ny, A, n2))0Y(Pmat’))- (20)

Now consider p,.,,’. Recall that it has to have the form (n2, Id, n3) o p,;, where no edges
i pui are (ny, Id, n3). Therefore, path pm.1” = p,; must exist in G,. Note that by construction of
Pme1”’, by definition of y, by property (3) of Claim 3.1 and by Claim 5.1,

YPme1”) = YPmet)- @n

Also, note that pm.1” and pm.1” end at the same node. Observe now that by construction of
Pm+”, it starts at n3. Therefore, by property (1) of the assumption,



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 106

T = D, < (all Y(po”o(n, A, n3)opn..") D), 22

since a sets of nodes do not change. Let p” now denote the path po”o{n, A, n3)opn.”. By (21),
definition of ¥ and Claim 5.1, Y(p”) = Y(po”o(m, A, n:))oY(Pmsi"). Then, considering (20), it
follows that

T &= D, < (same-as Y(p") Y(p)). 23)

Finally, (22), (23) and properties (1) and (3) of Lemma 5.1 imply that T = D; < (all Y(p") D).
Therefore, M3 preserves property (1) of the lemma.

Let us now consider property (2). If a path in G does not go through edge (n,, Id, n;),

exactly the same path exists in G;. On the other hand, if we have a path in G, from dn, to n,, that
passes through edge (n;, Id, n;), we can find an “equivalent” path from dn, to n,, in G, in the way

presented in the proof of property (1) above. Thus, for both paths p; and p, (from the statement of
property (2)) in G, there must exist paths p,” and p,” in G, that start at dn, and such that

T = D, < (same-as Y(p;) Y(p1")) and T = D, < (same-as Y(p,) Y(p2)). 24)

Since p, and p,” end at the same node; p, and p,’ end at the same node; and p1 and p; end at the
same node; p,” and p,” must also end at the same node. Therefore, by property (2) of the

assumption,
T = D, < (same-as Y(p,) ¥(p2)). 25)

Then, however, by (24), (25) and Lemma 5.2, T = D, < (same-as Y1) Y(P2))- Therefore, M3
preserves property (2) of the lemma as well.

Note that in the rest of the rules that we consider, distinguished node is the same in G,
and G»; and therefore, we denote dn, and dn, just by dn.

El. If there exists a node n with a(n) = {D,, ..., D;, (and Dy,, ... D,)} in N, then change a(n) to
{Dlv ey Db DkOIr aeey Dﬂl}'

This rule preserves property (2) since no paths are changed by El. Property (1) is
satisfied for all nodes except possibly n, since neither paths to those nodes nor their o sets are
changed. By assumption, for any path p from dn to n (p exists in G, if and only if it exists in G,),
T = D, < (all Y(p) (and Dy, ... D,)). Therefore, for any interpretation I that satisfies T and for
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any object x € D, y(p)'(x) e D! fork+1<i<m. Also, by assumption, T = D, < (all Y(p) D)) for
1<j<k. Thus, T=D,<(ally(p) D)for1 <i<m.

E2. If there exist nodes n; with a(n) = {D,, .... D, (all A D)} and n; in N, and an edge {(n,, A, n2)
in E then:

(a) remove (all A D) from a(n;); and
(b) add D to au(n,).

This rule also preserves property (2) since no paths are changed. Property (1) is satisfied
for all nodes except possibly n., since all paths remain the same, and a set of any of those nodes
does not obtain any new description. Node n;, on the other hand, has a new description D in its
« set. Consider a path p from dn to n; in G, (which must exist by Claim 5.4). Since G, has the

same paths, p must also exist in G,;. Then, by assumption,
T &= D, < (all v(p) (all A D)).

Therefore, for any interpretation I that satisfies T and for any object x € D', A'(y(p)'(x)) € D"
However, since p ends at n;, p is attachable to (n,, A, n;) (in both G, and G,). Thus, by
property (4) of Claim 3.1 and by Claim 5.1, y(po{n,, A, n))'(x) € D".

Finally, since any path p’ from dn to n» in G, agrees with path po(n,, A, n,) on the last
node (n.), by property (2) of the assumption, ¥(p)'(x) € D' Therefore, T = D, < (all Y@p") D).
Property (1) remains satisfied for all other descriptions in n, since they are also present in
a(na, G,) and no paths are changed by E2.

E3. If there exists a node n; with a(m) = {D,, ..., D,, (all A D)}, there is no edge (n,, A, ny) in E
for any node n; in N, and Dy, contains a same-as constructor anywhere inside it then:

(a) add a new node n; to N and a new edge (n,, A, n3) to E;
(b) remove (all A D) from a(n,); and
(c) add D to a(n,).

First, consider property (2). Since N, = N} U {n;} and E; = E, U {{(n;, A, ny)}, no new
paths are added that would end at a node in N,, and thus, property (2) remains satisfied for any
pair of paths that end at any node in N,. Consider now any paths p; and p; from dn to n, in G,.
Since n; is only directly reachable by the added edge (n,, A, n), there must exist paths p,” and p,”
(in both G, and G,) such that p; = p,” o (n;, A, ny) and p, = p;" o {m,, A, n,). Since paths p,” and p,’
are from dn to node n;, by property (2) of the assumption, T = D, < (same-as ¥(p;") ¥(p2)).
Therefore, by definition of Yy, Claim 5.1 and property (4) of Lemma$5.1, TE=E D, <

(same-as Y(p;) Y(p2))-
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Now consider property (1). It is satisfied for all nodes except possibly n,, since all paths
to those nodes remain the same, and a set of any of those nodes does not obtain any new
description. Node n,, on the other hand, is new and only has description D in its a set. Consider a
path p from dn to n, in G, and G.. Then, by assumption,

T = D, < (all ¥(p) (all A D)).

Therefore, for any interpretation I that satisfies T and for any object x € D', A'vp)'x) € D"
However, since p ends at n,, p is attachable to (n,, A, n,) in Gs. Thus, by property (4) of Claim 3.1
and Claim 5.1, y(po(n,, A, n2))'(x) € D".

Finally, since any path p’ from dn to n, in G, agrees with path po(n,, A, n.) on the last
node (n,), by the fact that property (2) is preserved, T = D, < (same-as Y(poln, A, n2)) Y(p")), and
thus, Y(p")'(x) € D". Therefore, T = D, < (all p") D).

E4. If there exists a node n with a(n) = {D,, ..., D, (same-as Pfi P£)} in N then:
(a) remove (same-as Pf, Pf,) from a(n);
(b) add anew node n’ to N:
(c) execute Create(n, Pf,, n’) and Create(n, Pf;, n’); and
(d) invoke Merge(G).

Note that Merge, and thus step (d) of rule E4, preserves properties (1) and (2) of the
lemma as was proven above. Therefore, it is sufficient to show that properties (1) and (2) are
preserved just for steps (a), (b) and (c), i.e. G; in this case is the graph obtained after step (c) is
executed and before step (d) invokes Merge.

Property (1) remains satisfied since for any node n, in N, all paths that end at n; remain
the same, o(n,, G2) € a(n,, G)), and every added node has empty a set.

Since no edge that would end at a node in N, is added, all paths that end at a node in N,
continue to satisfy property (2). Further, without loss of generality, let us assume that

* Ff has the form (comp A, (comp A, ... (comp A, Id) ... ), k>0:

® Pf; has the form (comp B, (comp B, ... (comp B, 1d) ... N.m20;

* if k22, Create(n, Pfi, n’) adds k - 1 new nodes ny’, ..., n,,” and k new edges (n, A, n,"),
(', As, nd), ..., (2’ Arts mia”), (e, A, ).

* ifm22, Create(n, Pf;, n’) adds m - 1 new nodes n,”, ..., n,.,” and m new edges (n, B;, n,""),
(1", Bz, ny"), ..., (Mm2”"s Bty Amt”), {mt”’s By 1),
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Now, consider two paths p; and p; in G, that go fromdn to n;” for some 1 <i<k— 1. By
construction in procedure Create and step E4, n; is only directly reachable from n;,” (by edge
(nit’y Ay n)) for every 2 Sj < k- 1; ny” is only directly reachable from n by (n, Ay, n;"); and for
any node n;” (1 <!/ <k~ 1), only nodes n/ (I <j < k- 1) and n’ are reachable from n; (recall that n’
is a new node that does not have any outgoing arcs). Thus, both paths p; and p» must go through
edges (n, Ay, ny"), (n\’, Aa, ny), ..., {n.t’, A, n;’), and the paths pass through this sequence of edges
only once (in the end), since if the edge labeled A;,; is followed, the path cannot come back to
node ~/. In addition, the paths cannot use any edges added by Creare(n, Pf;, n) since if any of
those edges is in a path, the path cannot reach n; afterwards. Thus, only nodes in N; can be used
in the paths p, and p, before they reach n,’. Therefore, there must exist paths p,” and p,” in G, (and
G>) such that p; = p\"op,,; and p; = py’op,.y, where puy = (n, A, ny', ..., A, n/). Note that pi’ and
p:’ must end at the same node (n) and thus, by property (2) of the assumption, T k&= D, <
(same-as Y(p\") ¥(p:"). Therefore, by property (4) of Lemma 5.1 and by ClaimS5.1,

T = D, < (same-as Y(p,) Y(p2)).

The proof that property (2) is also satisfied for any two paths from dn to n;/”” for some
1 £i<m-1is completely analogous.

Finally, consider two paths p; and p, that go from dn to n’ in G,. If they both use the edge
(n, Ay, n") (or {n, B, n,")), the proof that the property (2) is satisfied for the two paths is
completely analogous to the proof presented above for the paths ending at a node n;”. (In this case,
the fact that n” cannot be somewhere in the middle of a path follows right away from the fact that
there is no outgoing edges from node n’.) Thus, it is sufficient to consider the case when
P = pyopui’ and p2 = pyopui”, where pai’ =(n, Ay, ny', ..., Ay, n), and pi” = (n, By, ny”, ..., B,
n’). The proof that such paths p,” and p,’ exist in both G, and G, is again analogous to the proof of
their existence for paths ending at n;’. Note that by construction, and from definition of Y,

'Y(Pzail') = Pf; and Y(Pmil") = Pf,. 26)

By properties (1) and (2) of the assumption,

T = D, < (same-as Y(p,") ¥(p2")), and 4))
T = D, < (all Y(p\") (same-as Pf, Pf,)). (28)

(27) and (28) imply that for any interpretation I that satisfies T and for any object x € D',
Y2)'(x) € (same-as Pf; Pf)', or PR'(v(p1)' () = PA'(1(p1")'(x)). Therefore, by (26), Claim 5.1
and property (4) of Claim 3.1, Y(p;"op.i)(x) = P opui’)'(x), or o' = ¥(p2)'(x). Therefore,
T = D, < (same-as Y(p;) ¥(p2))-
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Finally, note that the proof for cases when k and/or m are either O or 1 is essentially the
same, except that the part that discusses nodes n;” and/or n;”” should be skipped since Create just

adds an edge and no new nodes.

ES. If there exist nodes n; with a(m;) = (D, ..., Dy, (fd C Pf; ... Pf,, Pf)} and n- (distinct from n,)
in MV, such that

(1) ([d C Pf; ... Pf,, Pf)is regular;
(2) Ce any);

(3) for every Pf,, 1 <i < m, there is a prefix Pf’ of Pf, and a node n,’ in N such that
Reachable(n,, Pf’, n,") and Reachable(n,, Pf;, n/) are true; and

(4) there is no prefix Pf’ of Pf and a node n in N such that Reachable(n;, Pf’, n) and
Reachable(n,, Pf’, n) are true;

then

(a) addanewnodento N;

(b) execute Create(n,, Pf, n) and Create(n, Pf, n); and
(¢) invoke Merge(G).

Note that Merge, and thus step (c) of rule ES, preserves properties (1) and (2) of the
lemma as was proven above. Therefore, it is sufficient to show that properties (1) and (2) are
preserved just for steps (a) and (b), i.e. G in this case is the graph obtained after step (b) is
executed and before step (c) invokes Merge.

Property (1) remains satisfied since for any node n’ in N, all paths that end at n’ remain
the same, a(n’, G)) = a(n’, G), and every added node has empty o set.

Since no edge that would end at a node in N, is added, all paths that end at a node in N,
continue to satisfy property (2). Further, without loss of generality, let us assume that

¢ Pfhas the form (comp A; (comp A, ... (comp A, Id) ... )), k=0;

o if k22, Create(n,, Pf, n) adds k — 1 new nodes ny’, ..., n,;” and k new edges {n;, A, n,"),
(ny', Az, 1Y), ..., (2’ Akt e, (ks A, ).

e if k 22, Create(n,, Pf, n) adds k — 1 new nodes n,”, ..., n..;” and k new edges (n,, A;, n,""),
(n1”, Az, 12", ..., (e, Aty Mead™), (nia”, Aw, ).

The proof that property (2) is satisfied for any two paths from dn to n;/ (resp. from dn to
n;””) for some 1<i < k - 1 is completely analogous to the part of the proof for rule E4 that
discusses paths from dn to n;” (resp. from dn to n;”").

Finally, consider two paths p, and p, that go from dn to n in G,. If they both use edge
{ny, Ay, n\) (resp. (na, A;, ny")), the proof that property (2) is satisfied for the two paths is
completely analogous to the part of the proof for rule E4 that discusses paths from dn to n’ that go
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through the edge {n, A;, n\) (tesp. (n, B;, n,”)). Thus, it is sufficient to consider the case when
path p, goes though edge (n,, A,, ;") and path p; goes through edge (n,, A, n,”). By Claim 5.4
and by the construction, there must exist paths p," (from dn to n;) and p,” (from dn to n,) in G,
and G such that p, = p\"op,,;" and p, = py’op,.;”", where Puit = {ny, Ay, ny's ..., nt’, A, n) and
Puai”” = {n2, A, m”, .... net”, Ay, n). (The proof that such paths p,” and p,’ exist in both G, and G,
is again completely analogous to the proof of existence of paths p;” and p,’ in the proof for rule
E4.) Note that by construction and from definition of ¥y,

YPuwil) = Y Puai'?) = Pf. 29

By properties (1) and (2) of the assumption,

T= D, < (all Y(pi") (fd C Pf; ... Pfn. Pf)), and (30)
T'= Dy < all y(p2") O). (€2))

By condition (3) of ES, for every Pf,, 1 <i < m, there are path functions Pf; and Pf” and a node n;
in N, such that

Pﬁl ° H;'" - }7;‘, and (_3—2)
Reachable(n,, Pf’, n;) and Reachable(n,, Pf’, n;) are true. Thus, by definition of Reachable, for
every 1 <i < m, there must exist paths p’ from n, to n; and p” from n» to n; in G, such that their
edge labels “correspond” to Pf". Therefore, by definition of v, Y(p") = Y(p"’) = Pf’. However, since
paths p,"op” and p,’op” go from dn to n; in G, by property (2) of the assumption,

T = D, < (same-as Y(p;"op") Y(p2"op”)).

which in wrn implies T &= D; < (same-as Y(p,)oY(p")o Pf” Y(p;)oY(p)oPf’) by Claim 5.1 and
property (4) of Lemma 5.1. Therefore, considering (32),

T = D, < (same-as Y(p,)oPf; Y(py)oPf), forevery 1 <i<m. 33)
Therefore, from (30), (31), (33) and property (S) of Lemma 5.1,
T = D, < (same-as Y(p,")o Pf Y(p2)o Pf). 34)

Thus, by (34), (29), and Claim 5.1, T &= D, < (same-as Y1) Y(p2)).
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Finally, note that the proof for cases when & is either O or 1 is the same, except that the
part that discusses nodes n;” and/or n;”” should be skipped since Create just adds an edge and no

new nodes.

E6. If there exists a node n in N, and a constraint C < D in T such that C € an)and C & fired(n),
then add D to a(n) and C to fired(n).

By the same reasoning as presented in the proof of the case of rule El, property (2)
remains satisfied for all paths, and property (1) is satisfied by all paths, nodes and their
descriptions, except possibly for description D in a(n, G>). Given a path p from dn to n in G, and
G-, by property (1) of the assumption, T &= D, < (all Y(p) C). Therefore, for any interpretation I
that satisfies T and for any object x € D,', 'y(p)'(x) € C' butsinceC<De 7T, y(p)'(x) e D' Thus,
T = D, < (all Y(p) D).

E7. If there exists a node n in N, and a view definition V=D in T such that V € a(n) and
V & fired(n), then add D to a(n) and V to fired(n).

The proof is analogous to the proof of the case of rule E6.

Al. Given a description graph G = (N, E, Refs), anode n € N, and an attribute description A which
is either a primitive attribute or Id,

(a) add anew node n’ to N and
(b) add anew edge (n, A, n)to E.

First, observe that N; =N, U {n’} and E; = E; U {¢(n, A, n")}. Property (1) is satisfied in
this case for any node n”” in N, since no new edge is added to E; that ends at n”, and since
o(n”, G2) = a(n”, G,). On the other hand, property (1) is also satisfied for any path that ends at n’
since a(n’, Gy) = .

Again, because no new paths are added that would end at a node in N,, property (2)
remains satisfied for any pair of paths that end at any node in N,. Consider now any two paths p,
and p; from dn to n’ in G.. Since a path can get to n’ only by the added edge (n, A, n’), there must
exist paths p\” and p;” (in both G, and G;) such that p, = p,’ o (n, A, n’) and p; = p;’ o (n, A, n").
Since paths p,” and p,” are from dn to node n, by property (2) of the assumption, T &= D, <
(same-as Y(p\") Y(pz)). Therefore, by Claim 5.1, and property (4) of Lemma S. 1, TED <
(same-as Y(p1) Y(p2)).
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Next, we verify that our solution is sound when D; does not contain any and constructors
or view names; that is, when D, has one of the forms

(a) (allAl (3“ As ... (allAt C) .es )),
(b) (all A, (all A; ... (all A, (same-as Pf, Pf>)) ... )), or
(c) @llA, (all A, ... (Al A, (fd C Pf; ... Pfn PY)) ...)).

First, we use Lemma 5.4 to establish soundness for the first two cases above in Lemma 5.5.

Lemma 5.5 Let G = (N, E, Refs) denote a graph obtained by a number of applications of rewrite
rules from the set R = {M1, M2, M3, E1, E2, E3, E4, ES, E6, E7, Al} to graph G, = Init(D,) for
some description D, and a terminology T, and let D, be a description

@llA; (@l A; ... @l A C) ... )) or (all A, (all A, ... (all A, (same-as Pf, Pfy)) ...))

for some k 2 0, where C is a primitive concept, A; is a primitive attribute for all 1 < i <k, and Pf,
and Pf, are path functions. Then, if Subsumes(D., G, T) returns true, D\ <D, is a logical

consequence of T.

Proof. Intuitively, we note that Subsumes constructs a chain of new nodes n;, n,, ..., n, that form
a path (dn, Ay, ni, A, n, ..., As, i), where dn is the initial distinguished node. This construction
as well as constructions in rule S4 are specific cases of applications of rewrite rule Al. The only
construction that does not fit into the set of rules R = {M1, M2, M3, El, E2, E3, E4, ES, E6, E7,
Al} is the modification of set Refs in S3. However, it does not influence applicability of rules or
the results of rule applications by part (a) of Claim 5.4. Therefore, the proof follows from
Lemma 5.4. Since Merge might remove some of the new nodes, we use references instead of
nodes in the formal proof. Part (c) of Claim 5.4 allows us to establish that paths between
references (except for reference dn that gets modified by S3) do not change even though nodes
that are referenced could be merged. A more formal proof is as follows.

By definitions of procedure Subsumes and rule Al, given a description D of the form
(all A D’), a call to procedure Subsumes(D, G, T ) essentially applies rule Al, creates a new
reference dn’, modifies reference dn in the Refs set, invokes procedures Merge and Exp, and
makes the recursive call. Therefore, since procedure Subsumes(D, G, T) does not make recursive
calls when D is a primitive concept C or description (same-as Pf; Pf;), Subsumes(D,, G, T )
executes step S3 exactly k times and then either executes S1 or S4 depending on the form of D,.

First, consider the case of k > 0. For the purposes of the proof, consider creating
additional references refo, ref, ref,, ..., refi to the node referenced by original dn and to the newly
created nodes. Thus, the first application of S3 creates a reference ref, to the node referenced by
dn in G and a reference ref; that references the new node (n,). Therefore, edge (refs, A, ref) is in
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E. After that, any i-th (2 <i < k) call to Subsumes adds a new node n; to N and a new binding
(refi, ni) to Refs. Note that dn is modified to reference node n; during this step. Therefore, by
part (c) of Claim 5.4, and since modification of dn or creation of new references by part (c) of S3
does not change other references, after k steps, we have a graph with path {ref,, A,, ref,, A, refs,
ooy Ag, refy) init.

If k£ =0, no new nodes are created and Subsumes just executes step S1 or S4.

Since S3 of Subsumes returns true only if the recursive call does, the top level call returns
true only if the last call does. Note that besides the change of the set Refs by S3, all other steps
executed during an invocation of Subsumes are just applications of the rules from set R. However,
since by part (a) of Claim 5.4, modifications of the Refs set do not influence any other graph
modifications, Lemma 5.4 would apply to the resulting graph if dn did not change and would still
be pointing to the node referenced by refs.

Consider the case when D, = (all A, (all A, ... @ll A, C) ... )). In the last call to
Subsumes, dn = ref; and procedure returns true only if C € a(dn). Therefore, if dn was not
modified by S3 and remained the same as ref,, we would have a sequence of applications of
rewrite rules from set R to graph /nir(D,) that results in a graph with path p = (refo, A\, refi, As,
refr, ..., Ay, ref) and C € a(ref,) for some k > 0. Thus, by property (1) of Lemma 5.4,
T = D, < (all Y(p) C). However, by definition of function Y. Y(P) = A1°Az0...0A,0ld. Therefore,
by properties (7) and (8) of Lemma 5.1,

TED <(all A, (allA; ... (all A, C) ...)).

Next consider the case when D, = (all A, (all A; ... (all A, (same-as Pf; Pf3)) ...)). If the
last call to Subsumes returns true, it follows that there exists a node n in N, such that
Reachable(dn, Pf,, n) and Reachable(dn, Pfs, n) are true where dn = refi. Thus, there exist paths
p1 and p- from ref, to n such that Y(p,) = Pf; and y(p.) = Pf.

Note that constructions in S4 are just applications of rule Al. Therefore, Lemma 5.4
applies to this case as well: if dn was not modified by S3 and remained the same as ref;, we
would have a sequence of applications of rewrite rules from set R to graph Init(D,) that results in
a graph with paths (dn, A\, refi, Az, refy, ..., As, refi) o p; and (dn, A,, refi, Az, refs, ..., As,
refy) © p,. Therefore, by Lemma 5.4,

T = D, < (same-as Y((dn, A,, ref\, A,, refs, ..., Ay, refe) o Py
K(dn’ Alv "efl, AZ: 74.2. ooy Ab refk) ° PZ)).

or by Claim 5.1,

T = D, < (same-as PfoY(p;) Pfoy(p2)),
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where Pf = Y((dn, A, refi, Az, refa, ..., Ax, refi)) = A10Azo...0Aold. Therefore, by property (6) of
Lemma 5.1, T = D, < (all Pf(same-as Y(p,) Y(p2))), or

T = D, < (all A|0A,0...0A,0c]1d (same-as Pf; Pf5)),

which in turn implies T &= D, < (all A, (all A, ... (all A, (same-as Pf, Pf>)) ... )) by properties (7)
and (8) of Lemma 5.1.

Next, in order to establish soundness for the case when D, has the form
@A (@ltA;...@IA.(fd CPf, ... Pfn P))...)),

we first prove an auxiliary Lemma 5.6 that allows us to use Lemma 5.5 in the proof of this case.

Lemma 5.6 For any terminology T, descriptions D, and D,, and path functions Pf,, ..., Pf,, Pf.
and Pf’ (wherem=1),

T = D, <(all Pf’ (fd D, Pf, ... Pf.. P))

if and only if, for new attributes P and Q (that do not occur in T, Dy, D,, or paths Pf,, ..., Pf., Pf,
and Pf"),

T = (and (all P D,) (all Q D))
(same-as PoPfy QoPf oPf))

(same-as Po Pf,, QoPf’oPf,))
< (same-as PoPf QoPf’oPf).

Proof of if-part. We first prove the if-part of the lemma by contradiction. Let us assume that
(1) for any interpretation J = (A, -? ) that satisfies T and any object o in A, if

o € (and (all P D,) (all @ D))
(same-as PoPf, QoPf’oPf))

(same-as PoPf,, QoPf’oPf.)),
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then 0 € (same-as PoPf QoPf’oPf)’; and

(2) there exists an interpretation I = (A, ') that satisfies T for which there is an object x € A such
that x € Di'and x & (all Pf’ (fd D, Pf, ... Pf, Pf))".

By definition of the interpretation function, (2) implies that Pf'(x) ¢ (fd D, P ...
Pf.. Pf)', which in turn implies that there is an object y € A such that y € D), PRYPf'(x) =
PA'O). -, PLNPF()) = PFY5), and PFI(PF(x)) = BF'(G).

Consider an interpretation J that is exactly the same as I except possibly for
interpretations of attributes P and Q. The only restriction on the interpretations of P and Q is that
there is an object o in A (not necessarily distinct from x or y) such that P’(0) = y and Q') = x.
Clearly, interpretation J can be easily constructed from I and it would continue to satisfy T as
well as any implications derived from T, since P and Q are attributes that do not occur in 7.

By our assumptions and constructions, o @l PD,) ando e (all Q D). In addition,
since PAAPf'(x)) = PAYy) for 1 < i < m, PRAPF(x)) = Pfl(y), and thus, PF(PF*(Q (o)) =
Pf(P'(0)). Therefore, by property (4) of Claim 3.1, o € (same-as PoPf, QoPf’oPf) for
1<i<m.

It follows that

o € (and (all P D) (all Q D))
(same-as PoPf; QoPf’oPf)

(same-as PoPf,, QoPf’oPf,))!,
and thus, by part (1) of the assumption above, o € (same-as PoPf QoPf’oPf)'. Therefore,
PA(PF(Q'(0))) = PF(P'(0)), which in turn implies that PF/(Pf(x)) = PF(y). However, this

contradicts our statement above that PF(PF'(x)) = PFi(y) (since Pf and Pf’ do not contain
attributes P and Q, their I and J interpretations must the same for all objects in A).

Proof of only-if-part. We prove the onl y-if-part also by contradiction. Let us assume that
(1) for any interpretation I = (A’, -*) that satisfies T and an object x € A’,
if x& D,'then x € (all P’ (fd D, Pf, ... Pf,, Pf))"; and

(2) there exists a terminology J = (A, +? ) that satisfies 7 and an object o in A, such that
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o € (and (all P D,) (all Q D))
(same-as PoPf, QoPf’oPf;)

(same-as PoPf,, QoPf’oPf,))’,

and o € (same-as PoPf QoPf’oPf) .

Let x = 0*(0) and y = P!(0). Then, by part (2) of the assumption, x € D)}, y € D,’, and
(PoPf) (0) = (QoPf o P (o) for 1 <i < m. Thus, by property (4) of Claim 3.1, P (Pf*(Q*(0))) =
Pf’(P*(0)), which in turn implies that PfY(Pf"(x)) = Pf}(y) for 1 <i < m. Additionally, (PoPf)’(0)
must be different from (Qo Pf*o Pf)!(0), and thus, PFY(Pf”(x)) = Pfi(y).

Since J satisfies T, it is a valid instance of interpretation that must also satisfy part (1) of
the assumption. Therefore, since x € D/, x € (all Pf’ (fd D; Pf, ... Pf,, Pf))’, and thus, by
definition of the interpretation function, Pf’(x) € (fd D- Pf, ... P, Pf)’. Since y € Dy, and
PR(Pf(x)) = PfA(y) for 1 <i < m, by definition of interpretation function, Pf*(Pf”(x)) must be
the same object as Pf?(y) which contradicts our statement above that Pf’(Pf"'(x)) % PA(y).

Lemma 5.7 Let G = (N, E, Refs) denote a graph obtained by a number of applications of rewrite
rules from the set R = {M1, M2, M3, El, E2, E3, E4, ES, E6, E7, Al} 10 graph Gq = Init(D,) for
some description D\ and a terminology T, and let D be a description

(@l A, (@allA, ... @l A (fd D Pf, ... Pf, PF)) ...))

forsomek>20and m21, where D is a description, A; is a primitive attribute forall1 <i<k, and
Pf and Pf; (1 < j < m) are path functions. Then, if Subsumes(D-, G, T) returns true, D, <D is a

logical consequence of T.

Proof. Intuitively, the lemma is a consequence of Lemmas 5.4 and 5.6. We first consider
sequences of applications of rewrite rules in construction of a graph (G;) that results after the
application of step SS of Subsumes. Then, we use these sequences to construct an almost the same
graph (G starting with an initial graph for an equivalent problem, T &= D; < D,, that is defined
by Lemma 5.6. Since Subsumes returns true, there must exist paths from nodes dn. and fdcn. that
“agree” on a node in G and that have edge labels corresponding to a prefix of Pf. We use these
paths in G’ to prove that the equivalent problem must follow by Lemma 5.4, which in turn
implies that T must logically imply D, <D, if Subsumes(D,, G, T) returns true. Let us now
proceed with a more formal proof.
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Let rewrite rules E4 and E5 without their last parts that invoke procedure Merge be
denoted by EA4suon and ESguon respectively. Then, any application of rule E4 [ES5] to a description
graph consists of an application of rule E4 o [ES;snon] followed by a sequence of applications of
rules M1, M2 and M3. Since our proofs of Claim 5.4 and Lemma 5.4 for rules E4 and ES5
essentially consider Edgon and ESh« separately from the rules of Merge, Claim 5.4 and
Lemma 5.4 still hold if set R is generalized to have E4,.,, and E5,. instead of E4 and ES.
Therefore, if we apply a sequence of rewrite rules from the set R” = {M1, M2, M3, El, E2, E3,
Edon, ESsons E6, E7, Al} to a graph Init(D,), properties (1) and (2) of Lemma 5.4 hold on the
resulting graph.

Consider how the initial graph /Init(D,), denoted by G,, is modified. First, we apply a
sequence, denoted by seq;, of rewrite rules from R’ to get the new graph G. Then, Subsumes
recursively executes step S3 (if £ = 1) and constructs a chain of new nodes n,, n,, ..., n; that form
a path (dn, A, ny, Ay, n,, ..., Ay, ni), where dn is the initial distinguished node. Just as in the proof
of Lemma 5.5, we consider references refy, ref,, ..., ref; to nodes dn, n,, n,, ..., n, respectively.
Thus, path (ref;, Ay, refi, Aa, refs, ..., Ay, refi) is constructed by the applications of rule S3. The
graph obtained so far is denoted by G, and depicted in Figure 5.5(a). (Remark: Some nodes ref;
can actually reside “outside” of the boundary of G. This depends on which nodes are actually
“merged in” by the Merge procedure. Our proof, however, does not depend on the distinction
between the nodes that are “outside” and those that are “inside”.)

Next, step S5 of Subsumes is applied. Let seq. denote the sequence of applications of
rules from the set {M1, M2, M3, El, E2, E3, E4,,,n. ESaon, E6, E7} that are executed during the
applications of rule S3 and by parts (a) through (d) of S5 of Subsumes, and let G; denote the
graph obtained after part (d) of S5 is applied. G; is graphically depicted in Figure 5.5(b). Note
that seq. neither includes construction of new nodes and edges nor the modifications to the Refs
set by the steps of procedure Subsumes. Such modifications of the Refs set do not affect
applicability of other rules or their effect by part (a) of Claim 5.4. However, seq, does include all
other modifications to the graph by procedures Merge and Exp invoked during executions of step
S3. Finally, let seq; denote the sequence of rule applications by parts (e) and (f) of S5, and let G,
denote the resulting graph.

Note that Subsumes returns true in step S3 if and only if the recursive call to Subsumes
returns true. Therefore, the top level Subsumes returns true only if step SS returns true. Since
lemma assumes that Subsumes(D-», G, T ) returns true, there must exist a prefix Pf’ of Pfand a
node n in G4 such that Reachable(dn., Pf’, n) and Reachable(fdcn., Pf’, n) are true. Thus, there
exists a path p, from dn. to n and a path p, from fdcn. to n in G, such that Y(p,) = Y(p2) = Pf".
However, since dn,. is the same as ref; when SS is executed, by Claim 5.1, there must exist a path
ps3 from refo to n such that Y(p;) = A;0Aj0...0A0Pf’.

Let us denote description
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(and (all P D) all Q D))
(same-as PoPf, QoPfy.p.0Pf1)

(same-as PoPf,, QoPf,..0Pfn))

by Ds, and description (same-as PoPf QoPf,,.oPf) by D, where P and Q are some new
attributes and Pfyrec = Aj°A20...0A0ld. Then, by Lemma 5.6 and properties (7) and (8) of
Lemma 5.1, TE D;<D,ifandonly if T = D; < D,.

We now present a sequence of applications of rewrite rules from R’ that starts with
G\” = Inix(D;) graph and ends with a graph which has G; as its sub-graph. Just as in the proof of
Lemma 5.5, since some nodes could be removed when merged with other nodes, we use
references to denote the nodes of interest. By part (a) of Claim 5.4, these references do not affect
modifications to nodes, edges, a sets or other references in the graph.

By definition of procedure /nit, G\’ consists of a single node, for which we create a new
reference r, with a(r) = {D;} (i.e. dn of G,’ references the same node as r at this point). First, we
apply rule El to node r. The rule “expands” the and description into the set consisting of the
descriptions inside D;. Then, we apply rules E4,,. to all same-as descriptions in a(r) (recall that
m 2 1). In particular, this constructs m edges that start at r and are labeled with Q and m edges
that start at r and are labeled with P. We can merge these into two edges (r, Q, «) and {r, P, v) by
rules M1 and M3, where u and v are two new references to the corresponding nodes. In the same
manner, we also merge all edges along the path that starts at node u and has labels from Pf,,.;,
(we first merge all edges labeled A, that start at u, then we merge edges labeled A,, etc.). Let ref;’,
---, refy’ denote references to new nodes produced along the path. In other words, the graph now
contains path (u, Ay, refi’, A, refy, ..., Ai, refi).

Next, we apply rules E2 to descriptions (all P D) and (all Q D)) in r. As a result,
description D moves into a(v) and description D; moves into a(u). The resulting graph, G-, is
presented in Figure 5.6(a). Note that node u is now the same as the graph Initr(D,). Thus, we can
now apply sequence seq, to node u to produce G as a sub-graph.

Then, we merge nodes along the path (u, A, ref\’, A, refy, ..., As, refy?) with the rest of
the graph if possible, and apply the rules from seq; to the resulting graph (note that we do not
need to perform any constructions that were completed during the applications of steps S3 and S5
in the construction of G; since all necessary nodes and edges already exist). Clearly, the resulting
graph, G5’ (depicted in Figure 5.6(b)), will be isomorphically the same as graph G; except for a
“hat” consisting of node r and edges (r, Q, «) and (r, P, v). Moreover, the isomorphism maps
node ref, to node u and node fdcn, to v. Therefore, we can now apply the rules in the sequence
seqs to obtain graph G,’ that would be isomorphically the same as graph G, except for the “hat”.
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Figure 5.5: Some steps in the first construction of the proof of Lemma 5.7.



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 121

//,"/ “\\ path W\llh edge labels corresponding to Pf,
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Figure 5.6: Some steps in the second construction of the proof of Lemma 5.7.
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Since, as noted above, there exists a path p; from refy to n and a path p, from fdcn to n in
G, such that Y(p3) = Pf,,.;.0Pf’ and Y(p,) = Pf’, there must exist a path p;’ from u to n’ and a path
p2’ from v to n” for some node n’ in G;’ such that y(p;) = Pfores:oPf’ and Y(p2") = Pf’. Therefore,
by Claim 5.1, there exist paths py’ and ps’ from r to n’ in G’ such that YPs") = QoPfyrsoPf’ and
Y(ps) = PoPf’. Thus, by Lemma 54, T = D; < (same-as PoPf’ QoPf,,.noPf”). Then, by
definition of a prefix of a path function and property (4) of Lemma S.1, T = D; < D,, and
therefore, T = D, < D,.

At this point, we can prove soundness for the general case by induction on the number of
view substitutions necessary to obtain D, from D and the number of occurrences of the and
constructor inside Dyp,;. Lemmas 5.5 and 5.7 serve as the base case for such an induction.

Theorem 5.2 (soundness) Let G = {N, E, Refs) = Exp(Init(D,), T) for some description D, and a
terminology T. Then, if Subsumes(D-, G, T) returns true for some description D,, then D, < D is

a logical consequence of T.

Proof. We present a proof of the more general statement of the theorem where G is allowed to be
an arbitrary graph obtained by a number of applications of rewrite rules from the set R = {M1,
M2, M3, El, E2, E3, E4, ES, E6, E7, Al} to graph Go = Init(D,;) for some description D, and a
terminology T.

The proof that follows is an induction on the and-size of D, denoted IID-ll, which we
define here as the sum of the number of view substitutions necessary to obtain D,,; from D, and
the number of and concept constructors occurring in Dsy,,. First, note that Lemmas 5.5 and 5.7
prove the generalized statement of the theorem for the base case of the induction, i.e. when Dl
is 0, or when D, has one of the forms

@llA (@llA;... @A O)..)),
(all A, (all A; ... (all A, (same-as Pf; Pfy)) ... )), or
@llA, (all A, ... (all A, (fd C Pf, ... Pf,, Pf)) ...)).

Next, assume that the statement holds for an arbitrary parameter description of Subsumes with
and-size no greater than m for some m 20, and then, consider a particular description D, with
ILD,ll = m + 1. Since ID,ll 2 1, D, has one of the forms

(@) (allA, (allA; ... (all A, (and Dy’ Dy’ ... D)) ...)), or
(b) @A, (allA;...(all A V) ...))
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for some k20, t > 2, primitive attributes A;, descriptions D;’, and a view name V.

First, consider case (a). If k > 0, the call to Subsumes(D», G, T) creates a path p =
(dno, Ay, ny, Az, nz ..., As, n) from the original distinguished node dn, to some (possibly new)
node n in G by k applications of step S3. Without loss of generality, let us assume Subsumes
recursively *“explores” descriptions D\’, D', ..., D, in that order. Then, by step S2, the procedure
returns true only if Subsumes(D;, G*, T) returns true for a modified graph G for 1 i <t.

First, consider the recursive call with parameter description D;". Note that a call to
Subsumes((all A, (all A, ... (all A, D)) ... )), G, T) would modify the graph exactly the same
way, and therefore, would also return true. Since li(all A, (all A, ... (all A, D)) ... ))ll is no more
than m however, it follows from the inductive assumption that

TeED <@NA, (allA- ... (all A, Dl') o))

Next, assume that recursive calls to Subsumes with parameter descriptions D,” through
D, returned true and consider the recursive call Subsumes(D;/, G’, T) for some 2 <i < t.
Observe that steps S1, S2, S5 and S6 do not modify the graph (S5 only modifies a copy of the
graph), and all modifications by steps S3 and S4 are essentially applications of rules from set R,
except for the modifications of the set Refs by S3. These modifications (i) do not affect
applicability and the results of firing of rules by part (a) of Claim 5.4, and (ii) make dn point to n;
right before Subsumes(D/, G’, T) is invoked. In addition, since both S3 and S4 invoke Merge and
Exp in the end, and since we are considering the case when k > 0, G’ must be a result of an
application of Exp procedure and must be well-formed.

Now consider what would happen if we invoked
Subsumes((all A, (all A, ... @l A, D)) ... ), G”, T)

where G” is a graph obtained from /nit(D,) by the same sequence of applications of rules from
set R that obtained graph G’. By part (a) of Claim 5.4, the only difference between G’ and G” is
the new references in Refs created by S3 and the fact that reference dn in G” still points to node
dng instead of node n;. The first thing Subsumes would do is execute step S3 and create an edge
(dno, Ay, ny’) for some new node n;". Therefore, since G’ and G” are well-formed, the only thing
that Merge can do in part (d) of S3, is to merge node n,” with n,, and therefore, again obtain the
same graph as G” (except for the new dn’ reference created by S3 and reference dn pointing to
the node resulting after merge of n; and n,"). Moreover, since G’ is a result of an application of
Exp procedure and by part (a) of Claim 5.4, invocation of Exp in step (e) of S3 cannot execute
any steps on the resulting graph.
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The same argument applies to the rest of k— 1 executions of step S3 that follow. Every
step j (2 <j < k) just creates a new edge labeled A; and ending at a new node n; that is merged
with already existing edge (n;., A;, n;) of path p. Thus, the total effect of the k executions of step
S3 is the same graph as G including reference dn pointing to the result of merge of nodes n, and
n;’ (with the exception of some new references). Therefore, the results of the steps of Subsumes

that follow are the same as the results of the recursive call
Subsumes(D/, G’, T),
which in turn implies that since Subsumes(D;’, G’, T) returns true, so does
Subsumes((all A, (all A, ... (all A. D)) ...)), G”, T).

However, since the parameter description of the above call has the and-size of at most m, and
since G was obtained as a number of applications of rules from set R to Init(D,), it follows by

the inductive assumption that
TED <(all A, (allA; ... (@l A, D)) ... ).

Therefore, T = D, < (all A; (all A, ... (all A, D) ... )) for I <i <1t It follows that for any
interpretation I that satisfies T and any object x € D,",

xe (allA; (allA; ... (allA. D) ... ) for 1 i<t or
by definition of the interpretation function,

AC... AJA'W)) ...)e DM for1 i<t
Therefore, A:'( ... (A2'A/'(x))) ... ) e (and D)’ Dy’ ... D))", or

x€ (allA; @l A; ... (all A, (and D)’ D, ... D)) ... ).

Thus, T = D, < (all A, (all A, ... (all A, (and D" Dy’ ... D)) ... )~

If k = 0, the proof is analogous except for the fact that no new path is constructed by step
S3, and therefore, G is exactly the same as G’ since set Refs is only modified inside recursive
calls to S3. In other words, even if there are any invocations of S3 during explorations of D,’
through D..)’, restoring of reference dn by S3 make sure that recursive call Subsumes(D;, G’, T)

still has reference dn pointing to dn,.
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Next, consider case (b), or when D, has the form @l A @lA, ... @l A, V) ...)) for
some view name V with corresponding view definition V = D in T. Just as in case @), if k> 0,
Subsumes(D,, G, T) creates a path p = (dno, A;, ni, Ay, n: ..., A, n) from the original
distinguished node dno to some (possibly new) node n; in G by step S3. Then, there are two
possible cases: (i) Subsumes returns true because V e o(ng, G), or (ii) the recursive call to

Subsumes(D, G, T) returns true.
Case (i) is completely analogous to the case when D, has the form
(@llA; (allA, ... (@llA. C) ...))
for some primitive concept C: if set Refs was not modified by S3 and dn remained the same as
dng, we would have a sequence of applications of the rewrite rules from set R to the graph Init(D,)
that results in a graph with path p and where V € a(n,). Thus, by property (1) of Lemma 5.4,

T = D, < (all (p) V). However, by definition of function Y. Y(P) = A|0A;0...0A,cld. Therefore,
by properties (7) and (8) of Lemma 5.1,

TED <@lA, (allA, ... @llA, V) ... )).

Next, consider case (ii). Note that by definition of Subsumes, and step S6 in particular,

invocation of
Subsumes((all A (all A, ... (all A, D) ...)), G, T)
would perform exactly the same actions on G as
Subsumes((all A, (all A, ... (all A, V) ...)), G, ),
except for the execution of step S6 that does not modify G or affect the result of the procedure. It

follows that the former invocation would also return true. However, the and-size of the
description in that invocation is no greater than m, and therefore, by the inductive assumption,

TE D| < (allA. (all Az . (all A D) .ee )).
Therefore, for any interpretation I that satisfies T and an object x in D;,
Al AaAalmy ... e D

Since I satisfies T, however, it follows that V' = D', and thus, A'( ... (4,%4,'(x))) ... ) e V' or
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xe (allA, (allA, ... @l A, V) ... )L

Therefore, T = Dy < (all A, (all A; ... (all A, V) ... ).

If k = 0, the proof is again analogous except for the fact that no new path is constructed
by step S3.

5.6.3 Completeness

Our completeness result is stated in the following theorem.

Theorem 5.3 (completeness) Let G = (N, E, Refs) = Exp(Init(D,), T) for some description D, and
a terminology T. Then, if D, < D, is a logical consequence of T for some description D,

Subsumes(D-, G, T) returns true.

Proof. The proof is by contrapositive. We assume that Subsumes(D,, G, T) returns false and then
show that there exists an interpretation I that satisfies T and does not satisfy constraint Dy < D,.
To obtain I, we first construct an infinite sequence Sp of (finite) description graphs that starts with
graphs G.; = Init(D,), G.; = Exp(Init(D,), T), and the graph G, “accountable” for the false result
of Subsumes(D,, G, T). Then, we use nodes of the graphs in Sp to define A, and their « sets to
define the interpretations of primitive concepts over A. In addition, we use edges in the graphs to
define interpretations of primitive attributes. We show that this sequence of graphs can be used to
produce the desired interpretation I.

As in the proof of completeness in Chapter 4, the idea of the construction is to add
“missing” attributes to the graph originally responsible for the false result of Subsumes(D.,, G, T)
in a way that eventually ensures that the interpretation of each primitive attribute is a total
function. Nodes in the graphs will be the objects in A, and edges will determine the interpretation
of attributes. Thus, each node must have an edge for every attribute in at least one graph. Recall,
however, that creation of arbitrary new edges between nodes that already exist in the graph might
violate uniqueness constraints in 7. Thus, for every pair of a node n; and a primitive attribute A,
we create a new node n; and an edge (n,, A, n,) unless such an edge already exists; determine the
class(es) that n, must belong to; and then proceed by creating new edges outgoing from n;.

More formally, let Sp = [G.,, G.i, Go, Gy, ..., Gi = (N;, E;, Refs;), ... ] denote the infinite
sequence of finite description graphs constructed as follows. Let G.=/Init(D,) and
G., = Exp(Init(D,), T). Now consider what happens during a call to Subsumes(D,, G.,, T) that
returns false. Note that steps S3 and S4 of Subsumes modify the graph, whereas the modifications
of step S5 do not affect the graph since they are applied to a copy of the graph. Also, note that
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Subsumes recursively calls itself only when it deals with either and constructors, all constructors,
or view names. In all three cases, it returns false if and only if at least one recursive call returns
false. Therefore, there must be a recursive call with parameter description being either a primitive
concept, a same-as or an fd description that returns false. In other words, some recursive call to
Subsumes must return false either at step S1, S4, or S5. Consider the first time when Subsumes
returns false. If this happens during step S1 or S4, we define G, to be the (modified) graph that is
obtained right after Subsumes returns false. In the negative result is returned by step S$S, we define
Go to be the (modified) copy of the graph that is obtained right after Subsumes returns false.

Next, we define the rest of the sequence Sp. We obtain G; (i 2 1) by adding a number of
nodes and edges to graph G, and then invoking procedure Exp on the resulting graph at step i.
As in the proof of completeness in Chapter 4, let N/ (resp. E;) denote the set of new nodes
(resp. edges) that we add at step i. We will show in Assertion 1 that procedure Exp does not add
or remove any nodes or edges to or from the resulting graph, and therefore that N; = N;; U N/ and
Ei=E., UE/

Again, analogously to the proof of completeness in Chapter 4, given a sequence
Sea =[Ay, Az, ... ] of all primitive attributes'®, we are going to add a countably infinite number of
nodes with countably infinite number of outgoing edges. We use a “triangular” construction to
keep the graph resulting at each step finite. Thus, we define step i (i > 1) of the construction,
denoted by CS,, as follows:

CS.. Forall ny € Ni; and A; € Sps (1 £j <i): if there is no n in Ny, such that {n;, Aj, ny)is
in E.;, add a new node n, to N/ and edge (n,, A; n.) to E/. G; is defined as
Exp({Ni, UN/, E., UE/, Refs..), T).

Finally, we define the interpretation I as follows:

e A=NyU U N/;
i21
e C'={neAl3G: (2 0) such that n € N; and C € a(n, G)} for any primitive concept C; and
o A'= {(n, n) | 3 G; (¢ 2 0) such that ny, n; € N; and (m, A, ny) € E;} for any primitive
attribute A.

In addition, for every view definition V;= D, (1 <j < m) in T, we define V,-l (in the order
of increasing j) as all those elements of A that are in D,-'. Such definition is possible due to the
non-recursive property of views that ensures that D; does not contain any V; for i > j.

' Recall that our assumption that the set of primitive attributes is recursively enumerable ensures that such
a sequence exits.
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Note that since rules of Exp (resp. steps of Subsumes) either do not violate properties of a
well-formed graph or invoke Merge (resp. Merge and Exp) in the end, they produce a
well-formed graph given one as input. (The graph remains finite since each rule makes at most a
finite number of modifications to nodes, edges, and descriptions inside a sets.)

In addition, since graph G., = Init(D)) Jjust consists of one node, it is in fact well-formed.
Therefore, by the discussion above, graphs G., and G, must be also well-formed. It follows that
we do not have to call Merge during the steps of construction of G; (i 2 1) to ensure that G:is
well-formed. Indeed, our construction step only adds a finite number of non-Id edges outgoing
from nodes that do not have other outgoing edges with the same label. Therefore, this addition of
new edges as well as the invocation of Exp that follows preserve the properties of a well-formed
graph. (Considering the facts that (a) G, is finite by Theorem 5.1, (b) there is a finite number of
attributes in sequence [A,, ..., A}, and (c) each of the rules El through E7 and M1 through M3
modifies at most a finite number of nodes/edges/descriptions in the graph, every G; is finite.)

Next, in order to distinguish different invocations of Exp procedure during the
construction of G; (i 2 1), we use a subscript to denote the step at which the procedure is
executed. Thus, Exp; (i 2 1) denotes the invocation of Exp procedure at step i. Since G, is a result
of an application of Exp, steps S1, S2, and S6 of Subsumes do not modify the graph, while steps
S3, S4 and S5 invoke Exp in the end, G, is also a result of an invocation of the procedure Exp.
We denote that invocation by Expo.

Let us now make a number of assertions (and present their proofs) about the process of
construction and the resulting interpretation I.

Assertion 1. £3, E4, and ES are never applied during the execution of Exp;forany i 2> 1.

Let us first show that any description D that contains same-as constructor(s) inside its
unfolded form Dy,; must be eliminated by Exp, (if it still exists by the time Exp is called) and no
such descriptions can be added afterwards. Observe that for every view name V in an a set of a
node in Gy, V must be also in fired set of that node since otherwise rule E7 would still be
applicable after Expo terminates. It follows that if a same-as constructor is inside Vi) for some
view name V inside an « set, it must also be inside Dy, for some description D added by
corresponding application(s) of rule E7. Therefore, if a same-as constructor is inside an unfolded
description Dy, for some description D in an « set of a node in Gy, there are three possible cases:
D is a same-as description, D is an and description, or D is an all description. However, in the
first case, rule E4 would still be applicable to Gy; in the second case, E1 would still be applicable;
and in the third case, either E2 or E3 would be applicable. Moreover, no step during our
construction process can possibly add a description D with the same-as constructor inside Dy,
(recall that E6 cannot add such descriptions due to the restrictions on the constraints inside T, and
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E7 cannot “extract” such descriptions since all of them would be eliminated by Exp, by reasoning
above).

It follows that a description D with the same-as constructor inside Dy, never occurs
inside an a set of a node in G; for i = 0, which in tum implies that rules E3 and E4 are not
applicable during the execution of Exp; V i > 1.

Let us now show that ES is also not applied during any invocation of Exp; (i 2 1). Indeed,
assume the opposite, and let i (i > 1) be the first step at which ES “fires” for the first time and let
G’ =(N", E’, Refs") be the graph right before ES “fires” for the first time. Note that since rules
E3 and E4 are not applied as we showed above, besides the nodes and edges added by
construction step(s) before invocation(s) of Exp, ES is the only rule that can add new nodes and
edges. Thus, G’ can differ from G;.; only by nodes and edges added before the invocation of Exp
during step { and by « sets that could be changed by applications of rules El, E2, E6 and E7
during the invocation of Exp; prior to firing rule ES for the first time. Moreover, G’ must have the
same nodes and edges as Gy in addition to nodes and edges added by a number of construction
steps that form non-overlapping “trees” in following sense. Let N,4.; denote the set of nodes
added to Gy by the construction step(s) 1 through i, i.e.

Naddtd = U Nj'-

izjzl

Then, by our construction and the fact that nodes and edges added during the construction steps 1
through i — 1 are not modified, N’ = Np U N,g.a, every node in N4+ has exactly one parent and
all its descendents, if any, are also in Nag.s. A graph satisfying this tree property is illustrated in
Figure 5.7.

Without loss of generality, let us assume that rule ES is applied to distinct nodes n; and n,
in N’ for a description (fd C Pf, ... Pf,, Pf) in n,. There are three possible cases: (i) n, and n, are
both in Ng; (ii) one of n; and n; is in Ny and the other is in N,z.s; and (iii) both n, and n, are in
Nageq. Let us prove that all three cases lead to contradiction.

First, consider case (i). We first show that the same rule ES must have fired during the
invocation of Exp,. Indeed, condition (1) of ES is satisfied independently of the construction
process. If condition (2) and the fact that (fd C Pf, ... Pf,, Pf) is in a(n,) are true in G’, they must
be also true in Gy since no step j (j 2 1) of the construction process can add a description to an
a set of a node in N, only by using rules El, E2, E6, and E7 in Exp; (tree property ensures that
there is no edge from a node in N}’ to a node in N;,). In addition, since only rules E1, E2, E6 and
E7 can be applied during the steps 1 < j < i, Exp; do not change nodes and edges of the graphs.
Therefore, condition (4) is satisfied by G * only if it is true in G,. Finally, condition (3) is also
satisfied by G “ only if it is satisfied by G, since the tree property ensures that no two paths from
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Figure 5.7: An i-th step in construction of the graph in the proof of completeness.

nodes in N can go to the same node in N4 without having a prefix that goes to the same node
in Np (or intuitively, if two nodes in N, “agree” on a path in G’, they must also agree on a prefix
of that path in Gp). Indeed, tails of such two paths that go from nodes in N, to a node in Nadded
would have to be the same, since every node in N,4.4 has at most one parent. Therefore, the paths
must have heads of the same length that go to the same node in N, which, in turn, does not have
any ascendants in N,a4.4, and thus, both heads must exist in G, as well. Therefore, Expy would not
terminate without applying ES rewrite rule first. This application, however, would create paths p,
and p: from nodes n, and n; to the same node such that y(p,) = y(p,) = Pf. Existence of such paths
would then violate the fact that condition (4) is satisfied by G,.

Cases (ii) and (iii) cannot occur either, since by the tree property, a path p starting from a
node in Ngg.s would only pass through nodes in N,4... However, since each node in Noadea has
only one parent, there can only be one node from which a path of the same length as p can
originate. Thus, nodes n; and n, cannot be distinct.

Therefore, rule ES cannot be applied during any step i (i 2 1) in the construction of Sp.

As we mentioned before, this Assertion implies, in particular, that N; = N;; U N/ and
E;=E. U E/V i21since rules El, E2, E6 and E7 do not modify nodes and edges in a graph.
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Assertion 2. No step i for i 2 1 adds/removes any primitive concepts or fd descriptions to/from o

sets of nodes in N,.

This Assertion is a consequence of the facts that every construction step just adds new
nodes and edges outgoing from already existing nodes, and by Assertion 1, only rules El, E2, E6
and E7 can be applied during the execution of Exp;. First, note that neither of the four rules El,
E2, E6 and E7 can remove a primitive concept or an fd description from an o set of a node. In
addition, note that invocation of Exp procedure that created G, must have exhaustively explored
all applicable rules. Therefore, no a set of a node n in G;; can contain an and description, an
(all A D) description if there is an edge outgoing from n and labeled A, a primitive concept C such
that there is a constraint C < D in T which has not “fired” and added C into the fired(n) set, or a
view name V such that there is a view definition V = D in T which has not “fired” and added V
into the fired(n) set. Thus, the only rules that might be applicable during the invocation of Exp;
are E2 rules that remove (all A D) descriptions from a sets of nodes in N;.,, and add descriptions
(D) to « sets of their newly created children in N;. After that, neither of the rules E1, E2, E6 or
E7 that apply to the nodes in N/ can possibly affect o sets of other nodes. Therefore, Exp; cannot
possibly add new primitive concepts or fd descriptions (as well as any other descriptions) to an o

set of a node in N,,,.

In particular, this Assertion implies that if i is the smallest non-negative integer such that
anode n is in N, steps i + 1, i + 2, etc. do nor change the set of primitive concepts in the a set of
n; or in other words, n € C' for our constructed interpretation I if and only if C € a(n, G).

Assertion 3. For every node n, € A, and every A; € Spa, there is at least one node n, € A such
that (n,, n>) € Al

Indeed, let j be the smallest non-negative number such that G; contains n; (such j exists
since n; € A). If there is an edge {n,, A;, n2) in E; for some node n;, in N;, (ny, n;) must be in Al by
the definition of I. Otherwise, a new node n; and edge (n,, A;, n,) are created by construction step

max(i, j + 1), and thus, (n;, n2) must be in A"

Assertion 4. For every node n, € A, and every A; € Spa, there is at most one node n, € A such
that (ny, ny) € A"

By Assertion 3, there must be a smallest non-negative integer j such that G; contains node
n; and an edge {n, A;, n;) for some node n, in N;. Therefore, it is sufficient to show that (i) G;
contains at most one edge labeled A; and outgoing from n,, and (ii) no G;, (k 2 1) contains any
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other edges labeled A; and outgoing from n,. However, (i) follows from the facts that G, is a
result of an application of Exp procedure to a well-formed graph, and the graph remains
well-formed after each step of the construction process. On the other hand, (ii) follows from
Assertion 1 and definition of the construction process since they ensure that edge (n,, A;, n,) is
never modified by any step j + k and no new edge with label A, is ever added to node n;.

Assertion 5. I is a valid interpretation.

This Assertion is a straightforward consequence of Assertions 3 and 4 since they ensure
that primitive attributes are total functions on A.

Note that proofs of Assertions 1 through S would apply to an arbitrary construction
process that started with any well-formed graph G.; and not necessarily /nir(D;). This fact will be
used in the proofs of assertions that follow.

Consider an arbitrary well-formed graph G.; and the process of construction of graph G,
(as described above) which is based on the invocation of Subsumes(D,, Exp(G.;, T), T) that
returns false. When the rules of Merge, Exp and steps of Subsumes are applied to G.;, new
“intermediate” graphs are obtained such that the last intermediate graph is Go. The following
Assertion establishes that if a description D is ever added to an « set of a node of either an
intermediate graph or graph G; (i 2 0), the “corresponding” node n in A must be in D'. In other
words, if a description D is ever added to an « set of a node during the construction of G, or by
the construction step CS; (i 2 1), the object of A that corresponds to the node (i.e. either the node
itself or a result of its merges with other nodes) must be in D'.

Assertion 6. Consider the process of construction of graph G starting from an arbitrary
well-formed description graph G, as described above. Also, consider an arbitrary intermediate
graph G = (N, E, Refs), a reference (ref,, n,) in the Refs set and a node n in Go = (No, Es, Refso)
such that {ref, n) € Refso and ref, is not dn. Then, if D e a(n,, G) for some description D,
n € D'. In addition, if D € a(n, G.) for some i 20, n € D".

Note that we use references instead of nodes in the statement of the Assertion when we
deal with the intermediate graph since its nodes are not necessarily in A; however, the property
still holds for the corresponding nodes that might be a result of merge(s) of the original nodes
with some other nodes. In addition, we prove the property only for references that are notr dn
since dn is modified by S3, and thus we “lose” the node for which the property holds. Finally,
without loss of generality, by part (a) of Claim 5.4, we assume in the rest of the proof that every
node in G, is pointed to by some reference (distinct from dn) in the set Refs, and whenever we
add a new node to the graph, we also a new reference to that node.



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 133

Our plan is to first prove the Assertion for the cases when D has one of the forms

(a) C (for a primitive concept C),
(b) (same-as Pf; Pf>), or
(c) (dC Pf;... Pf,, PY).

Then, using the fact that for any description D, there is a finite number of view
substitutions to obtain Dy, from D, we show that the Assertion holds for an arbitrary description
D by induction on the number of substitutions necessary to obtain Dy,; plus the number of concept
constructors in Dy,;.

Let us first consider case (a) for the part of the Assertion that deals with an intermediate
graph G, i.e. when o(ref,, G), or a(n;, G), contains a primitive concept C. The only way node n,
can disappear is in a step M1 of Merge procedure. However, if this happens, concept C would
“move” to the new node along with the reference ref;,. Additionally, no rule or step applied during
our process removes primitive concepts from the a set of any node. Therefore, if (ref;, n) € Refso,
C € a(n, Go), and thus, by Assertions 1 and 2 and definition of I, n € C'. In addition, Assertions 1
and 2 and the definition of I imply that if C € a(n, G)) for some i 20, n e C.

In case (b), it follows from the proof of Assertion 1 that no a set of any node in G; (for all
i 2 0) can contain a description with the same-as constructor inside its unfolded form. Therefore,
it is sufficient to consider case (b) for the part of the Assertion that deals with an intermediate
graph G, i.e., when a(ref;, G), or a(n,, G), contains D = (same-as Pf, Pf3). As in case (a), D
moves with the reference to the node whenever the node is merged by M1. Therefore, the only
other rule that deals with description D is E4. Moreover, rule E4 has to be applied to the
description during an invocation of Exp procedure. (Note that unless D is removed by an
application of E4 before Expo is invoked, Expq has to apply E4.) When E4 is applied, it creates
two paths, say p, and p,, that start at ref, end at the same node (say referenced by ref), and such
that Y(pi) = Pf; and Y(p2) = Pfa. It follows from part (c) of Claim 5.4, however, that paths p; and p;
starting at ref; and ending at ref are “preserved” by all other rules and constructions that are
applied to the graph, and thus, both paths would exist in G,. Therefore, by our construction of the
interpretation I, since the edges are “translated” into interpretations of the attributes, node n
referenced by ref; in Refso must belong to D' = (same-as Pf, Pf>)".

Next, consider case (c) for the part of the Assertion that deals with an intermediate graph
G, i.e. when a(refi, G), or a(n;, G), contains D = (fd C Pf, ... Pf,, Pf). Just as in case (a), we can
show that description D must be in the a set of the node (n) referenced by ref, in Go. By
Assertion 2, the fd description would stay in a(n) during the rest of the construction process.

Let us now assume that n € D', or in other words, that there is a node n; € C' such that
Pf(n) = Pf(n) for 1 < j < m, whereas Pf'(n) # Pf'(n,). Then, considering Assertions 1 and 2, it
follows that there must exist a graph G; (I 2 r), and nodes ny, ny’, ..., Ny’ Npmet’ Nmez’, such that
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(D) n,ny,ny, ..., Ny, Rpey’, Nmes’ arein Ny;

@) C e a(n,, Gy);

(ii1) for every 1 < j < m, Reachable(n, Pf, n;") and Reachable(n,, Pf;, n)’) are true;
(iv) Reachable(n, Pf, n,.,") and Reachable(n, Pf, n,,.>) are true; and

(v) nis distinct from n,, and n,,.,’ is distinct from n,.,".

These conditions, however, are contradictory since Exp; would make sure that rule ES would be
applied if (i) through (v) were satisfied and that application of E5S would violate (iv) and (v)
afterwards.

If n e G, for some i 2 0, and (fd C Pf, ... Pf,, Pf) € a(n, G), we can use the same
argument to deduce that ES would be applied whenever there was a node that could possibly
violate the fd constraint. (Note that Assertion 1 implies that new nodes are added carefully by
CS;, i 2 1, and do not violate any fd constraints.) Thus, we would again conclude that n must be in

D'

To formulate the inductive hypothesis, let us define the size of D, denoted DI, as the
number of necessary view substitutions to obtain Dy, from D plus the number of concept
constructors in Dy;. Next, we make the inductive assumption that the Assertion holds for any
description D of size no greater than m for some m > 1. (Note that cases (a) through (c) are the

base case for the induction.)

For the inductive step, consider a description D with size m + 1. Since m + 1 22, D has to
have one of the following forms:

(d) (all B D",
(e) (and D," Dy ... D)) for some =2, or
(f) Vfor some view definition V=Dyin T.

First, consider case (d) for the part of the Assertion that deals with an intermediate graph
G, i.e. when a(refi, G), or a(n;, G), contains D = (all B D"). Just as in case (a), we can show that
the description D must be in the a set of the node referenced by ref; until either rule E2 or E3
apply to the description. Note that since no nodes are merged at step i for all i > | by Assertion 1,
refy will always point to the same node (n) after Gy, is constructed. It follows then from
Assertion 3 that an edge labeled B and outgoing from ref,, say (ref,, B, ref), is going to be added
at some point, and procedure Exp will apply after that. Therefore, either E2 or E3 must fire on the
description D. Both rules remove D from the node referenced by ref, and add D’ to the a set of
the node referenced by ref;. Since D'l < m, however, by our inductive assumption, node
referenced by ref; is in D’'. Then, by definition of I and the fact that (ref1. B, ref,) gets preserved
by part (c) of Claim 5.4, it follows that n must be in (all B D")".
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Proof for the part of the Assertion that deals with graphs G; (for > 0) is analogous and in
fact easier since by Assertion 1, one does not have to worry about keeping track of nodes by
references and can reason directly about nodes.

Next, consider case (e) for the part of the Assertion that deals with an intermediate graph
G, i.e. when a(refi, G), or a(n,, G), contains D = (and D," Dy’ ... D,) for some t = 2. As before,
we note that D must be in the a set of the node referenced by ref; until rule E1 applies to the
description. (E1 does apply to D since it is the only rule applicable to an and description and
there is always a chance for E1 to “fire” inside Expy if it does not apply before.) When E1 fires
however, it inserts descriptions D;” (1 <i <r) into the node referenced by ref;, and therefore, since
the size of each Dy’ is no greater than m, by our inductive assumption, n € D, (1 <i < 1), which in
turn implies that n € (and D" Dy’ ... D))",

As with case (d), proof for the part of the Assertion that deals with graphs G; (for i > 0) is
analogous. In this case, however, the fact that E1 fires is guaranteed by invocation of Exp; at the
end of each CS§; step.

Finally, consider case (f) for the part of the Assertion that deals with an intermediate
graph G, i.e. when a(ref;, G), or a(n,, G), contains D = V for some view definition V= Dy in T.
Similarly to the reasoning above, we note that V is never removed from the « set of the node
referenced by ref, and that rule E7 must apply to the description. (E7 does apply to V since it is
the only rule applicable to the description and there is always a chance for E7 to “fire” inside an
invocation of Exp.) When E7 fires, it adds Dy to the a set of the node referenced by ref;, and
therefore, since the size of Dy is no greater than m, by our inductive assumption, n € D', and
thus,ne V'

As before, proof for the part of the Assertion that deals with graphs G: (for i = 0) is
analogous.

Now, to complete the proof of completeness we are going to prove that I satisfies T,
whereas there is a node in G, that is in D," but is not in D,'. The node we are interested in is the
distinguished node of G.. Subsumes, however, may change the dn reference to that node in
step S3. Therefore, in order to keep a reference to the “original” distinguished node, we assume
without loss of generality (by part (a) of Claim 5.4 and the fact that applicability as well as results
of steps of Subsumes do not depend on a reference that is not dn), that there is an additional
reference dn, to the distinguished node of G.,.
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Assertion 7. The node referenced by dno in G, is in Dy, and 1 satisfies T.

The first part of the Assertion follows directly from Assertion 6, since D, € a(dng, G.»),
and thus, the node referenced by dn, in Refs, must be in D,'. (Note that Init(D,) is a well-formed
graph since it only contains one node.)

The second part also follows from Assertion 6. Indeed, let us assume to the contrary that
there is a constraint C<D € Tandanode n € A suchthatn € C'and n € D". By our definition of
L, it follows that there must exist a graph G;, where i is the smallest non-negative integer such that
n € G;. Assertion 2 implies that C is in o(n, G)). Then, however, Exp; (or possibly an earlier
invocation of Exp if i = 0) would apply rule E6 to node n and constraint C < D since this is the
only way for C to be added to fired(n), and until C is in fired(n), rule E6 is applicable. Thus, D
must have been added to a(n). By Assertion 6, however, it follows that n € D', contrary to the
assumption. Therefore, I satisfies every subsumption constraint C < D in T. The fact that I
satisfies every view definition V = D in T directly follows from the definition of V' that consists
of all nodes that are in D".

Assertion 8. The node referenced by dny in G, is not in D,

To prove the Assertion, let us make a small generalization of the construction process as
in Assertion 6 and consider an arbitrary well-formed description graph G.; instead of /nit(D,).
Also, let us assume that dno is a reference in Refs., that points to the same node as dn,
Subsumes(Ds, G.,, T) returns false where G, = Exp(G.,, T), and graphs Gy, G, etc. and the
interpretation I are constructed in the same way as described by our construction process. Clearly,
to prove Assertion 8, it is sufficient to show that the node referenced by dny in G, is not in D' for
this more general construction process.

We prove this more general assertion by induction on the number of steps executed by
Subsumes(D-, G.;, T). For the base case, we consider invocations of Subsumes that (return false
and) execute only one step, and therefore, do not make any recursive calls. Therefore, D, must
have one of the forms (a) C, (b) (same-as Pf; Pfy), or (c) (fd D Pf, ... Pf, Pf). (Note that D,
cannot be a view name since S6 only returns true if it does not make a recursive call.)

In case (a), since Subsumes returns false by step S1, C is not in a(dn,). Therefore, by
Assertion 2, the node referenced by dn, in G, is not in C'.

In case (b), Subsumes executes S4. Thus, G, contains paths p; and p, that start at dny and
where y(p)) = Pfi and Y(p;) = Pf,. Since Subsumes returns false and considering part (c) of
Claim 5.4, the two paths do nor end at the same node in Gy, and by Assertion 1, the paths stay the
same. Thus, by our construction of I, dny is not in (same-as Pf, Pf;)".
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Next, consider case (c). Subsumes adds a new node referenced by fdcn, and adds D to
a(fdcn). For every 1 < j <m, S5 creates some paths p; and p;” from dn, and fdcn respectively to
some new node, say, referenced by ref;. Then, it invokes Merge and Exp. Since Subsumes returns
false, there are no two paths p’ and p” in G, that start at dno and fdcn, respectively, end at the
same node, and such that ¥(p") = Y(p”") (= Pf") and Pf’ is some prefix of Pf. Since our construction
of Sp only adds trees of nodes under already existing nodes, and since by Assertion 1, no nodes
are merged after they are added, it follows that there will never be such paths p” and p”. On the
other hand, nodes referenced by dno and fdcn will always “agree” on paths Pf,, ..., Pfn by part (c)
of Claim 5.4. Therefore, since node referenced by fdcn is in D' by Assertion 6, node referenced
by dny is not in (fd C Pf, ... Pf,, Pf)".

Next, for inductive hypothesis, let us assume that if Subsumes(D,, G.,. T) executes p
steps for some description D, and returns false, dny is not in D' for any p < m for some m2= 1.
Consider what happens when an invocation of Subsumes(D,, G.;, T) returns false after executing
m + 1 steps. Since Subsumes executes at least 2 steps (m + 1 = 2), it makes at least one recursive
call. It follows that D, has one of the forms (d) (all B D) for some primitive attribute B and a
description D, (e) (and Dy’ Dy’ ... D,) for some ¢ 2 2 and descriptions D (1 €£i <), or (f) V for
some view name V with corresponding view definition V=D in T.

In case (d), Subsumes executes S3 which adds a new edge labeled B and calls procedures
Merge and Exp. We obtain a graph with path (dno, B, n) for some node n. Note that as was
discussed above, after invocation of Merge by part (d) of S3, the graph remains well-formed.
Therefore, we can consider it as G.,, and the graph resulting after invocation of Exp procedure (by
part (e) of S3) as G.;. In addition, considering that the recursive call to Subsumes passes n as the
new distinguished node and returns false, and since the recursive call to Subsumes executes at
most m steps, if we consider a reference ref to n as dny inside the recursive call, we can use the
inductive assumption to conclude that the node referenced by ref in G, is not in D". It follows
however, that dny is not in (all B D)' since (dno, B, ref) exists in G by part (c) of Claim 5 4.

In case (e), Subsumes applies S2. Since one of the recursive calls to S1, S4 or SS returns
false, we can assume without loss of generality that D; is the description such that S1, S4 or S5
returns false inside the recursive call to Subsumes that passes D/ as the parameter description. In
other words, Gy is obtained somewhere inside the call to Subsumes(D;, G, T) where G is the
graph obtained from G., by previous steps of Subsumes. Since steps S1, S2, and S6 do not modify
the graph, steps S2, S3, and S4 call Merge and then Exp in the end, and by Claim 5.2, it follows
that G is a result of an application of Exp to some well-formed graph G.. In addition, note that
although reference dn might be changed by step S3 in the recursive calls to Subsumes preceding
the invocation of Subsumes(D/, G, T), S3 makes sure that dn is restored, and thus points to the
same node as dno when the recursive call is made. Therefore, considering G, as G.,, graph G as
G.,, and taking into account the fact that Subsumes(D;, G, T) executes at most m steps, we can
use the inductive assumption to conclude that dny is nor in D;'. Therefore, dng cannot be in
(and D’ ... D/ ... D,")" either.
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Finally, consider case (f). Subsumes applies step S6, and since Subsumes returns false, it
must make a recursive call to Subsumes(D, G.;, T) that executes m steps. Therefore, using our
inductive assumption, we conclude that dno is not in D', and thus not in V"

Therefore, by Assertions 5, 7 and 8, we constructed an interpretation I that satisfies T and
contains a node that is in D,' but nor in D,". In other words, I satisfies T and does not satisfy
constraint D, < D,.

5.6.4 Runtime complexity

Consider a problem of determining whether a constraint “D, < D,” is logically implied by a
terminology 7. Let m denote the encoding length of the problem; that is, the sum of the encoding
lengths of descriptions D(,;and Dag,;, and k denote the encoding length of T. Our procedures
solve the problem by first constructing graph G = Exp(lnit(D;), T) and then invoking procedure
Subsumes(D;, G, T). We start the analysis by estimating the time complexity of procedure Exp
without counting the time spent on the invocations of procedure Merge. Next, we estimate the
total “cost” of all invocations of Merge, and conclude the analysis by evaluating the time spent by
Subsumes.

First, consider an implementation of Exp that consists of two phases: the first removes all
same-as constructors from the unfolded descriptions of all a sets by applying rules E1, E2, E3,
E4 and E7; and the second starts with the first application of either rule E5 or E6. This is well
defined since no rule of Exp introduces new same-as constructors inside the (unfolded versions
of) descriptions in the « sets, and one can remove all same-as constructors by applying rules E1
through E4 and E7 first. Indeed, if a same-as constructor is nested inside an (unfolded version
of a) description in an « set, either rule E1, E2, E3 or E7 will be applicable and will reduce the
level of nesting, whereas rule E4 will remove an occurrence of same-as when it is unnested.
Moreover, implementation of this way of eliminating occurrences of same-as is straightforward
by means of a recursive procedure that starts at the distinguished node of the graph and
recursively applies rules El through E3 and E7 to all descriptions containing an occurrence of
same-as inside their unfolded forms, and then applying E4 at the base case of the recursion.

Let Go denote /nir(D,), and G, denote a graph obtained by the first phase. It is not hard to
see that the number of nodes, edges, and combined sizes of « sets of G, are O(m). Indeed, graph
transformations only consist of (a) removing some and descriptions by El, (b) turning some
all descriptions into edges with corresponding labels by E2 and E3, and (c) removing all
same-as descriptions (by E4) while creating paths with edge labels corresponding to the primitive
attributes inside the eliminated same-as descriptions. Thus, the number of created edges does not
exceed the number of occurrences of primitive attributes in Dy, and a sets of nodes only contain
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“components” of D,y without repetition. In addition, since the graph remains connected, the
number of nodes does not exceed the number of edges by more than one.

Note that the above analysis does not take invocations of Merge by E4 into account.
Therefore, even without merging nodes and edges inside Merge, there would be O(m) edges and
nodes in the graph. In addition, our recursive procedure for obtaining G, takes O(1) time to find
an applicable rule. Moreover, the total cost of all applications of rules E1 through E4 and E7
(without counting the time spent on invocations of Merge by EA4) is O(m) since D, can be
broken up into at most O(m) “pieces”. Therefore, the total time to obtain G, is O(m) if we do not
count the time spent on Merge.

Now consider what happens during the second phase. Exp proceeds to exhaustively apply
rules El, E2, ES, E6, and E7 to obtain graph G; = G = Exp(Init(D,), T'). (Rules E3 and E4 are no
longer applicable since no descriptions that contain same-as constructors inside their unfolded
versions are in or can be introduced to G;.) As was shown in the proof of termination, G,, G, and
all intermediate graphs that are produced during the second phase satisfy the boundary property
(with the structure depicted in Figure 5.4(a)) where nodes that relate to R are essentially nodes
of G, (possibly merged with other nodes), whereas nodes that relate to R, are all other nodes. In
addition, the proof establishes that new nodes and edges can only be produced by applications of
rule ES.

Next, to obtain a bound on the complexity of the second phase, consider an event driven
implementation of Exp. In the following description, procedure keeps track of possible future
applications of rule ES before all conditions for such applications are satisfied. Using an efficient
way of obtaining all nodes that contain a given concept name in their a set, procedure Exp would
start “waiting” for ES to fire whenever an fd description

D = (fd C Pf, ... Pf, Pf)

is added to a node (n;). Similarly, using an efficient way of obtaining all nodes that contain
fd descriptions with a given concept name in their « sets, the procedure would start “waiting” for
ES to fire whenever a concept C is added to an a set of a node (n2) different from a node n, with
D in its o set. Thus, whenever a situation arises with some nodes m with D € a(n;) and n, with
C € a(ny), the procedure would create a record (n;, n,, Pf, ..., Pfi, Pf) and check for paths with
edge labels corresponding to every Pf; starting at nodes n;, and n,. For every node n,” (resp. ny’) in
a path that starts at node n, (resp. n;) and has edge labels corresponding to a prefix of Pf; for
which there exists a corresponding path starting at node 7, (resp. n;), the procedure would make
the node n,” (resp. ny") “wait” for a match (i.e. a merge) with the corresponding node n,’
(resp. ny"). In addition, if no “corresponding” node exists for a node along one of the paths, the
last node at the end of the other path is set to wait for an addition of the next appropriate edge
along the path. When the edge is added, the two nodes start waiting for a match as well as for the
next edge along one (or both) path(s) if there are more edges in Pf.. Next, when at least one of the
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matches occurs, i.e. two same-length prefixes of the paths matched, Pf; is set to be “satisfied” in
the record. Finally, when all Pf; are satisfied, ES can fire by adding paths with labels
corresponding to Pf, starting at n; and n, and ending at the same node.

With this implementation, a check for a possible application of an fd constraint on any
particular pair of nodes as well as “firing” the constraint will take at most O(¢) time, where ¢ is the
size of its encoding. Now observe that there are two kinds of fd constraints: those introduced by
the terminology and those occurring in description D y,. Since (a) by the proof of termination,
rule ES can only be applied to nodes that relate to R,.; (b) there are at most O(m) such nodes; and
(c) the sum of the encoding lengths of the fd descriptions inside terminology that can cause rule
ES to fire on a pair of nodes is O(k), it takes O(m” - k) time to process applications of rule ES that
use fd descriptions introduced by the terminology. Conversely, each fd description inside Dyy,; is
added to at most one  set in the graph. Therefore, it can cause at most O(m) firings of rule ES.
However, the sum of lengths of fd descriptions inside D,,; does not exceed O(m). It follows that
the total cost to process fd descriptions that come from Dy, is O(m?), which in turn implies that
the time to check for an applicability of all fd constraints as well as to fire them is O(m* - k).

We can also use the event driven approach to efficiently implement firing of rules E1, E2,
E6 and E7. Whenever an all description is added to a node, the node starts “waiting” for the
appropriate edge to be added. On the other hand, when a concept name, a view name, or an
and description are added to an « set, rule E6, E7, or EI respectively, is ready to fire and can be

directly added to a job queue.

Thus, Exp can employ a job queue to contain all rules that are ready to fire. As a job gets
processed, new rules become available for firing and other rules make progress in satisfying their
conditions. The procedure ends when no more rules can fire.

With such an implementation, the checks for possible applications of rules El, E2, E6
and E7 as well as firing them will require O(¢) time for any given node, where ¢ is the size of the
encoding of the appropriate part of the description.

Note that by the boundary property introduced in the proof of termination, the number of
edges and nodes in the graph after each application of a rule of Exp does not exceed
O(m - (m + k)), since there are O(m) edges and nodes in R, and each of the nodes can have at
most O(m + k) outgoing edges labeled with an attribute name—there are O(k) attributes in
terminology and O(m) attributes in D,. Moreover, none of the rules of Exp can add more than
O(m + k) new edges and nodes to the graph. Therefore, the total number of edges and nodes in the
graph never exceeds O(m - (m + k)). Thus, since each node can introduce a number of
descriptions by rules E6 and E7 with total encoding size of O(k), the total cost of firing rules E1,
E2, E6 and E7 is O(m - k - (m + k)). (Note that O(m - k - (m + k)) also covers relatively negligible
O(m) time taken by applications of rules E1 and E2 that are “caused” by description D,.) It
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follows that the total time to compute Exp(lnir(D,), T) is O(m* - k + m - K¥*) without considering
the overhead of the Merge procedure.

Now, consider the total cost of this overhead. To begin, note that the rules of Merge are
applicable if and only if (1) there are Id edges in the graph, and/or (2) there are two edges
outgoing from the same node and labeled with the same label. Also, note that procedure Exp
invokes Merge in every rule that could possibly make conditions (1) and/or (2) satisfied.
Moreover, observe that the only way an application of a rule of Merge can “cause” further
applications is by merging two distinct nodes that obtain a node with a number of outgoing edges
with the same labels. These facts allow an efficient implementation of Merge by employing a job
queue specifically for procedure Merge with each element of the queue containing either an Id
edge or a node and its two outgoing edges with the same label. An element is added to the queue
whenever a new Id edge or a non-Id edge satisfying condition (2) is added to the graph by rules
of Exp. Merge then removes a job from the queue, merges the appropriate nodes, and adds new
jobs to the queue that are “induced” by the performed merge.

In the following analysis of Merge, we assume an efficient constant time implementation
of such operations on the graph as

e addition of a node,

e addition of an outgoing edge from a node,

® checking for existence of an outgoing edge with a given label from a given node, and
e finding a list of all outgoing edges given a node.

An example implementation of such efficient operations is presented in the appendix of [BW94].
(The difference in our case is that in the encoding of a node that relates to R, the third array C in
that implementation now contains a pointer to a lisr of nodes instead of just one node since we
allow multiple outgoing edges with the same label inside procedure Merge. Conversely, the
structure of the node that relates to R, does not have to have any space for outgoing edges.)

Observe that each merge of two nodes involves combining their incoming edges as well
as searching for the duplicates among the labels of the outgoing edges (to find the “induced”
merges) and also merging the outgoing edges. First, observe that merging (the sets of) incoming
edges can be implemented by a fast disjoint-set union algorithm (for example, Algorithm 4.3
presented in [AHU74]). Such an algorithm takes O(z - invA(r)) time for ¢ merges (limited by the
number of nodes in the graph) and accesses to the edges, where invA(r) is the inverse Ackerman
function (it can be considered as constant in practice). Since we account for the costs of accessing
the edges elsewhere and can add the extra constant component there, the total cost of merging the
incoming edges by the invocations of the Merge procedure can be evaluated as the maximum
number of nodes, i.e. O(m - (m + k)).
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Next, consider searching for duplicates among the labels of the outgoing edges from
some nodes n; and n, that are being merged (let us denote the node resulting from this merge by
n). In order to efficiently implement the search (as well as the merge of the outgoing edges), we
keep track of the number of outgoing edges for every node and then look through every outgoing
edge of the node that has the smaller number of the outgoing edges (say n;) and check (in
constant time) if there is an edge with the same label, say A, outgoing from the other node (n.). If
such an edge exists, we combine the lists of nodes that are reachable from n, and n;, through edges
labeled A and add a job to the queue that will merge an (arbitrary) node in the list of nodes that
are reachable from n, through an edge labeled A with an arbitrary node in the list of nodes that are
reachable from n, through an edge labeled A. Otherwise, we Just “transfer” all outgoing edges
labeled A from node n; to node n.

Now, consider the time complexity of this algorithm. The structure of the graph is such
that only O(m) nodes have any outgoing edges (i.e. the nodes that relate to R,u). For every merge
with both nodes containing outgoing edges and for every edge label out of O(m + k) edge labels,
at most one new job queue is added, since every merge decreases the number of distinct nodes in
Row by 1. Therefore, there will be at most O(m - (m + &)) Jjobs added to the queue. Thus, the total
cost of all invocations of procedure Merge, except for the “search for duplicates” part, is
O(@m - (m + k)). Indeed, all the work that is done for every job takes O(1) time plus the time it
takes to merge the incoming edges and the time to search for more jobs to add to the queue (as
well as the time to merge outgoing edges which is already accounted for inside the search time,
since we combine outgoing edges during the searches). The first two components add up to
O(m - (m + k)) as shown above.

Next, since only nodes that relate to R, have outgoing edges, only merges that involve
nodes from R,y would incur any cost for the “search for duplicates™ part. Moreover, since each
such merge decreases the number of nodes in R, there would be at most O(m) merges that have
to search for duplicates. Thus, the total cost of searching for duplicate edge labels requires
O(m - (m + k)) time since we spend constant time for at most O(m + k) labels for each merge. It
follows that the combined cost of all invocations of the procedure Merge is O(m - (m + k)).
Therefore, the total cost of a call to Exp(lnit(D,), T) remains O(m*> - k+ m - ).

The following example shows that our procedure Exp can in fact reach the bounds of
o(m?- k) for firing rule E5 and O(m - &%) for firing rules E1, E2, E6, and E7 in the worst case.
Consider a terminology T with constraint
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C < (and C; (forall1 < i< k)
@lAC)
@l BC)
@@ll B; C) (foralll < i< k)
(fd C B B) (forall1 < i< k)

(fd C (comp A B)) ... (comp A B)) B))
and a problem D, < D, for an arbitrary description D,, where D, is
(and C (same-as B, A".B B, A™B))

with B, A™.B denoting the attribute description (comp B; (comp A (comp A ... (comp A B) ... )))
of length m + 2 (i.e. with m occurrences of attribute A). It is not difficult to see that the number of
nodes occurring in Exp(Init(D,), T) is ©(m - k) since for each of the m pairs of nodes of the same
“depth” from the distinguished node and with incoming edges labeled A, the procedure creates k
new nodes with incoming edges labeled B, through B;. Moreover, the procedure must insert ©(k)
concept names into each of the ©(m - k) nodes.

In addition, since there are ©(m) nodes in R,;; with C in their o sets, our implementation
would create a record for each pair of these nodes and each of the Q(k) fd descriptions in the
terminology. Therefore, the implementation would take Q(m*- &) time for processing the
fd constraints. Thus, the total time Exp would take is Q(m*- k + m - ©).

Let us now consider the runtime complexity of procedure Subsumes. First, note that
invocations of Merge inside S3, S4, and S5 can efficiently integrate added paths with already
existing paths of the graph. Therefore, they only take O(r) time, where ¢ is the length of the paths
added by the parts that precede the invocations of Merge. Since there are at most O(m) new nodes
added by those parts of the steps S3, S4, and S5, all invocations of Merge take O(m) time.

The running time of S2 consists of the sum of the runtimes of the recursive calls plus
O(1) time. Since there are at most O(m) and constructors in Dy, the total time spent on S2 is
O(m) not counting the time spent on the recursive calls.

The runtime complexity of an execution of S1 is at most O(m + k) since (1) S1 simply
looks for a specific concept name inside an a set and (2) there are at most O(m + k) concept
names that can be introduced by T and D,(,;. An execution of step S6 takes O(k) time for the same
reasons as S1 (and considering that no new view names can be introduced by D) plus the time
for the recursive call if necessary. It follows that without the recursive calls, steps S1 and S6 take
O(m - (m + k)) time total since there are at most O(m) concepts and view names inside D).

Next, consider the time spent on the execution of steps S3 and S4 not counting the
invocations of Merge in parts (d) and (c) respectively. First, note that by similar analysis to the
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proof of assertion 1 in the proof on completeness, rules E3, E4 and ES are never applied during
the invocation of Exp inside the execution of rules S3 and S4. It follows that steps S3 and S4 add
at most O(m) new edges and nodes. Therefore, the total number of edges and nodes in the graph
is still limited by O(m - (m + k)), and we can use the discussion of the runtime complexity of
applications of rules E1, E2, E6 and E7 by procedure Exp to conclude that the total time spent on
executions of rules S3 and S4 is O(m* - k + m - &%).

Finally, consider the time spent during an execution of step S5 without the time spent by
the invocation of Merge in part (e). First, note that making a copy of the graph can be efficiently
implemented, for example, by using additional lists of nodes, edges, and descriptions inside node
labels that should be removed after SS is done. Next, note that parts (a) through (e) take O(r) time
where 1 is the size of the encoding of the fd constraint. Additionally, analysis of the runtime
complexity of the invocation of procedure Exp in part (f) is analogous to the anaiysis of the
runtime to compute Exp(/nit(D;), T). The only difference is that nodes that relate to R4 are now
introduced in three different ways: one group of size O(m) are nodes that relate to R,y in
Exp(Init(Dy), T); the second group is O(m) nodes added by steps S3 and S4, and nodes added in
parts (a) through (d) of the step SS (possibly merged with other nodes in the graph by part (e));
and finally, the third group is O(m) nodes created by the expansion of the description D,. (Recall
that D; is placed inside @ set of the node referenced by fdcn, by the first phase of procedure Exp
invoked in part (f) of S5.) Therefore, the boundary property is satisfied for the resulting graph,
there are O(/m) nodes that relate to R,., and the argument analogous to the one presented for the
analysis of the runtime complexity of procedure Exp implies that an execution of step S5 takes
O(m* - k + m - k?) time. (This bound also includes a check for dn, and fden_ 10 agree on a prefix of
Pf which takes O(m) time.)

Ultimately, therefore, we have the following:

1. O(m) time toral for step S2.

2. O(m - (m + k)) time total for steps S1 and S6.

3. O(m*-k + m - k) time total for steps S3 and S4 including the O(m) time spent by procedure
Merge.

4. O(m*-k + m - k) time for each execution of step S5 including the O(m) time spent by
procedure Merge in part (e).

Thus, letting f denote the number of occurrences of the fd constructor in D-y,;, the total runtime
complexity of Subsumes(D, Exp(Init(Dy), T), T) is O(f - (m* - k+ m - K?)).

Similarly to Chapter 4, we can further improve the runtime complexity by observing that
we cannot deduce anything about an ancestor based on the typing information in the descendent
nodes that do not have outgoing edges; that is, based on descriptions inside o sets of such
descendents. Therefore, it is not necessary to deduce any typing information about nodes that



CHAPTER 5. ON GENERAL LOGICAL IMPLICATION PROBLEMS 145

relate to R, in order to deduce anything about nodes that relate to R,.. One of the ways to
capture these modifications inside the Merge, Exp, and Subsumes procedures is to add an extra
label to nodes which would denote whether the node relates to R,;; or R,.., and then make the
rules of the procedures to take the new label into account. For example, rule E4 would only create
nodes that relate to R,,;, whereas rule ES would create nodes that relate to R... but could later turn
into nodes that relate to R,, by the rules of Merge. However, since these modifications are more
of an implementation issue rather than an essential part of the algorithm, we will not attempt to
further introduce them into the production system. Instead, we expect implementation not to
apply rule E2 during the second phase of Exp to any edge (n;, A, n,) if n, is in Ry.. Then, if steps
S3, 54, parts (a) through (d) of step SS, or the first phase of an invocation of Exp in part (f) of
step S5 create any paths that pass through nodes that relate to R,... (thus, essentially making them
relate to R,y for the purposes of the following Exp procedure), the implementation would
propagate typing information from the parents of such nodes and expand it according to the
applicable rules of Exp.

It follows however, that since the number of nodes that relate to R4 is only O(m), the
total time spent on processing the rules E1, E2, E6 and E7 inside Exp would decrease to O(m - k).
Therefore, the total runtime complexity of Exp becomes O(m® - k). Moreover, by the same
reasoning, the total runtime complexity of Subsumes becomes only O(f - m* - k).

Note that as in Chapter 4, termination and soundness of the modified procedures directly
follow from termination and soundness of the original procedures since we apply the rules in the
same manner but only decrease the number of applications of the rules. On the other hand, the
proof of completeness would have to be augmented with additional argument that formally
applies the above observation. In particular, in addition to applying the modified Exp and
Subsumes procedures during the construction steps of the proof, we need to propagate typing
information to all nodes during the construction of G,. Then, we can still prove that all constraints
in the terminology are satisfied by the constructed interpretation, while node dn, violates the
subsumption constraint in the posed question.

Finally, note that in practice, the number of constraints applicable to any given primitive
concept is usually very small in comparison to the total size of a terminology. Therefore, the O(k)
component of O(f - m® - k) is in fact a rather lose bound on the real cost of the work performed.
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5.7 Integration

5.7.1 Inter Procedure Reuse

So far we presented an efficient procedure to solve membership problems in Chapter 4 and less
efficient procedures to solve more general logical implication problems in this chapter. One of the
features of these two solutions is that we can integrate them to solve a series of problems using
the more efficient Prop procedure for the membership problems and using the Exp and Subsumes
procedures for the remainder. In particular, work performed by Prop to solve a membership
problem can be reused by the procedures in this chapter to solve similar logical implication
problems.

Note that both Prop and Exp procedures perform essentially the same work at
“expanding” typing information in the description graphs. In other words, all deductions that
Prop makes about concept names inside labels of nodes as well as its “propagation” of other
constructors would also be performed by the Exp procedure. In particular, consider an application
of the Prop procedure to an initial acceptor tree with concept C in the Cls label of the root.
Procedures Exp/Subsumes can then reuse the information embedded inside the resulting acceptor
tree by copying the tree under any node n of a description graph if a(n) contains C. Clearly, such
reuse is possible if the terminology for the membership problem is essentially a subset of the
terminology for the more general logical implication problem that reuses the acceptor tree.

Thus, to combine the procedures, one would maintain both an acceptor tree for
membership problems and a description graph for more general logical implication problems.
Then, each question either modifies the acceptor tree or the description graph depending on
whether it can be classified as a membership problem. In addition, the acceptor tree is reused
inside the description graph if the corresponding membership and logical implication problems
are related in the right way (for example, in the way described above).

This kind of inter procedure reuse is facilitated by the incremental nature of our
procedures discussed below.

5.7.2 Intra Procedure Reuse

In Chapter 4, we motivated and started to discuss the incremental requirement for procedures that
solve logical implication problems. This subsection shows how our procedures can be used
incrementally; that is, in a way that will reuse descriptions graphs resulting after our procedures
solve one problem in order to solve the next.
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First, consider two consecutive problems in a series of logical implication problems of
the form:

T=D,<(@d D, Pf, ... P, Pf)and T’ = D’ < (fd D;’ Pfi’ ... P Pf").

If the two problems above satisfy all appropriate requirements to be membership problems, we
can reuse the acceptor tree obtained by the Prop procedure that solves the first problem to solve
the second problem in a number of cases. First, if only Pf and Pf’ are different, exactly the same
acceptor tree can be used to solve both problems. Next, if T is the same as T, D, is the same as
Dy’, and for every Pf; in the first problem there is a Pf; in the second problem which is a prefix of
Pf;, we can reuse the tree by (a) adding the rest of the path functions to the root of the tree,
(b) inserting “Id” into the Pfs labels of nodes that correspond to the appropriate Pf; prefixes, and
(c) invoking Prop on the resulting graph. If in addition, D,’ is subsumed by D, we could still
reuse the acceptor tree by adding “new” constraints in D,” to the root of the tree and then
propagating them. Finally, if in addition to the possible differences above, T’ contains all of the
constraints in 7 augmented with some new ones, we can apply new constraints on the appropriate
nodes of the tree without redoing the work for the “common” terminology constraints that were
already explored by the Prop procedure when it was solving the first problem.

Prop can be also reused when it is not the case that for every Pf; in the first problem there
is a Pff in the second problem which is a prefix of Pf. If terminologies and concept names in the
membership problems are related in the ways described above, we could reuse the acceptor tree
by (a) resetting all Pfs labels of nodes to empty sets, (b) reinitializing the Pfs label of the root with
path functions Pf/, and (c) invoking Prop on the resulting tree. Differences in terminologies and

concept names would be accounted for as before.

Exp/Subsumes procedures are also incremental in cases analogous to those discussed
above. If the two logical implication problems only differ in the last path function, exactly the
same description graph can be used to solve both problems. Reuse of the graph is also possible if
T is the same as T’, D, is the same as D,’, D, is the same as D-’, and for every Pf; in the first
problem there is a Pf; in the second problem which is a prefix of Pf.. In this case, we can reuse
the description graph obtained by solution to the first problem by (a) making dn and fdcn agree on
paths that correspond to the additional path functions, (b) merging nodes that correspond to the
appropriate Pf; prefixes, and (c) invoking Exp and Subsumes procedures to obtain the new graph.
We would then check for dn and fdcn to agree on paths that correspond to Pf’. Moreover, reuse is
also possible if D, “contains” description D,” and D; contains description D;’, or more generally,
if D" < D, and D;’ < D,. We would then only have to add “new” constraints in D,” and D, to dn
and fdcn respectively (followed by expansion of those constraints by the rules of Exp/Subsumes).
Finally, if in addition to the possible differences above, T’ contains all of the constraints in T
augmented with some new ones, we again start with description graph resulting from solving the
first problem and make the additional constraints in T~ fire on the appropriate nodes.
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The need to be able to efficiently reason about a series of problems that differ in the ways
that we discussed above is demonstrated, for instance, by examples in Sections 4.3.

Next, consider logical implication problems that do not contain fd constructors on the
right-hand-side of posed questions; let us call them non-fd problems. In other words, non-fd
problems have the form T &= D, < D, where D, only contains and. all, and same-as concept
constructors. Such problems do not “invalidate” any part of the description graph and can reuse
the description graph resulting after solving one problem to solve the next one. On the other hand,
processing of fd constructors by step S5 of Subsumes may cause some nodes to get merged that
would not get merged otherwise, and may also cause some descriptions to be added to a node that
would not be there in general. This is exactly the reason why we create a copy of the graph at step
S5 and only work with that copy. Thus, non-fd problems can reuse the state of the graph before it
is used to solve a problem that contains an fd constructor on the right-hand-side of the posed
question (let us call such problems fd problems).

In practice, instead of creating a copy of the graph, one might use two versions of nodes
and edges in the graph. For example, version 1 could indicate that a particular edge or a node has
been processed by step S5. Therefore, it should nor be considered as part of the graph for next
non-fd problem. On the other hand, if next fd problem relates to the previous fd problem in one
of the ways that we discussed above, such an edge or a node could be reused.



Chapter 6
Conclusion

The first section of this chapter summarizes the main results of the thesis. We then explore a
number of ways in which the expressiveness of our languages can be enhanced, in many cases
without compromising efficiency. Finally, we discuss some directions for future work.

6.1 Summary

This thesis addresses problems that arise in many areas of information technology. In particular,
our work considers effective representations of semantic constraints commonly used in
object-relational database systems and examines efficient algorithms to reason about such
constraints. We expand data dependencies that are commonly used by relational models and
combine them with constraints arising in object-relational models to form a theory that allows one
to reason about both kinds of constraints. We also present procedures that can efficiently reason
in such a theory. The procedures can be used to help solve problems relating to both
object-relational and relational databases. A fundamental reason that we are able to derive such
procedures relates to the variety of uniqueness constraints incorporated into the theory, which
strictly generalize the notions of keys and functional dependencies that are inherent parts of
relational and object-relational models.

We investigate the interaction between such constraints and other data dependencies,
including inheritance, typing and equational constraints. In addition, the problem is explored in
the context of description logics, which are a family of knowledge representation schemas that
have found myriad applications in information systems technology. From this perspective, we
capture uniqueness constraints inside the DL framework by introducing an fd concept constructor
that is more expressive than other related constructors in earlier works [GL9S, CGL9S, BW97].
We then show how various DL dialects that include this constructor can be used to address

149
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problems in information technology and present efficient decision procedures for subsumption
checking in these dialects.

Among other contributions (listed in Chapter 1), our procedures are further analyzed with
respect to their generality and incremental abilities. In addition, their possible extensions are
considered in the next section.

We now present a detailed overview of the main problems solved by our procedures in
preceding chapters. The logical implication problem of Chapter 4 has the form

T=C<(fd CPf, ... Pf, Pf),

where m 2 0, C is a primitive concept name, Pf, through Pf, and Pf are arbitrary attribute
descriptions, and T is a set of constraints of the form C < D, where D satisfies the following
grammar:

D :x=C (primitive concept)
I (all Pf D) (artribute value restriction)
i (fd C Pfs Pf) (functional dependency)
| (and D D Ds) (concept intersection)
Pf := A (primitive attribute)
| Id (identity)
| (comp Pf Pf) (attribute composition)
Pfs ::= € | Pfs Pf (attribute description sequence)
Ds = €1 DsD (concept description sequence)

Moreover, all uniqueness constraints resulting after terminology simplification must be
symmetric and regular. The chapter presents a very efficient (sound and complete) algorithm
which runs in time corresponding to the product of the encoding length of the terminology and
the posed question.

An additional factor of roughly the encoding length of posed question allows one to use a
more general algorithm presented in Chapter S. The problem considered there has the form

TE D, < D,.

Terminology T now consists of two parts—a set of subsumption constraints and a set of
non-recursive view definitions. Each subsumption constraint has the form C < D where D
satisfies the same grammar as above with the exception that uniqueness constraints can be
asymmetric. Every view definition has the form V = Dy where Dy satisfies the grammar above in
addition to allowing view names and equational restrictions:
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Dv :=C (primitive concept)
| (all Pf Dy) (attribute value restriction)
| (fd C Pfs Pf) (functional dependency)
| (and Dy Dv Ds) (concept intersection)
IV (view name)
| (same-as Pf Pf) (equational restriction)
Pf == A (primitive attribute)
I'Id (identiry)
| (comp Pf Pf) (attribute composition)
Pfs == € | Pfs Pf (attribute description sequence)
Ds == ¢ | DsDy (concept description sequence)

Next, D, satisfies the same grammar as the one for the view definition descriptions Dy. Finally,
description D, satisfies the grammar of Dy in addition to extended fd descriptions:

D, ::= (fd Dy Pfs Pf) (extended fd description)

( + grammar of Dy where every Dy is replaced by D)

This fd description does not have to be regular and Dy satisfies the grammar of Dy.

6.2 Extensions

The following subsections describe some possible extensions of our work. We consider potential
problems arising with some extensions, thus illustrating the need for some of the restrictions that
we have imposed on the logical implication problems that were considered. A guideline on how
to (efficiently) incorporate most of the extensions with our procedures is included.

6.2.1 Procedure Accepts

Our procedure in Chapter 4 can be extended to solve arbitrary problems of the form T = C < D,
where the right-hand-side of the posed question satisfies the grammar of terminology constraints.
The extension is analogous to the way such problems are solved in Chapter 5. More specifically,
this can be achieved by an additional procedure, say Accepts, which deals with generalized
problems analogously to the way procedure Subsumes does this in Chapter 5.

Since Chapter 4 only deals with symmetric uniqueness constraints, any fd constructor
inside D must have C as its concept name and cannot be “buried” inside an all description (but
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only inside and descriptions). In other words, if the constraint is decomposed by the rules in
Table 4.1, all resulting uniqueness constraints must be symmetric. Then, each of such constraints
forms a membership problem that can be solved as described in Chapter 4. Therefore,
analogously to Subsumes, procedure Accepts would recursively call itself to deal with and and all
constructors, and in the “simple” base case, when the description passed to Acceprs is just a
primitive concept C’, the procedure would check for the presence of C’ in the Cls label of the
passed distinguished node. In the “involved” base case, when D is an fd description, Accepts
would empty all Pfs labels, initialize the Pfs label of the root with the appropriate path functions,
fire procedure Prop, and finally, check for acceptance of the last path function in D. Note the
importance of the incremental nature of the procedure here: we can reuse typing information that
is already deduced to solve further problems about uniqueness constraints that differ in their path
functions. (In some cases, such as those described in Subsection 5.7.2, we can reuse other work as
well.)

Formally, the addition of procedure Accepts would require an extension to the proofs
presented in Chapter 4 in the direction of the proofs in Chapter 5. Note that the new proof of
soundness would now also use property (2) of Lemma 4.3, construction would remain the same in
the proof of completeness, and the essential notion of ATBoundary would still be the central part
in the proof of termination.

6.2.2 THING

Concept constructor THING denotes all objects in the domain, i.e. THING'=A for any
interpretation I (= (A, ). Therefore, THING naturally represents the top of a class hierarchy,
which sometimes is also referred to as class OBJECT. In addition, we allow THING to appear
anywhere inside terminology or posed question where primitive concept can appear.

There are two ways in which our procedures can be modified in order to reason about
THING, and both ways only slightly distinguish THING from a primitive concept name.

The first way is just to add THING to every Cls (resp. o) label of every node created in a
description graph. This in turn fires all terminology constraints with THING on their
left-hand-side on every node.

The second way, on the other hand, preserves node creation, and uses mechanisms
already built into the procedures to *“spread” THING to all nodes. Therefore, it allows our
procedures to consider THING just as a primitive concept name at a cost of some
“preprocessing”. First, for every concept C and every attribute A occurring in a terminology 7, we
add constraints



CHAPTER 6. CONCLUSION 153

C < THING, and
C < (all A THING)

to T. These constraints, along with propagation of the typing information by our procedures,
ensure that THING is inside the Cls (resp. o) label of every node in the description graph that is
reachable from a node with non-empty Cis (resp. o) label.” Such changes are sufficient in case of
Prop/Accept procedures since they consider only description graphs that are trees, and since
posed questions processed by these procedures have a primitive concept on the left-hand-side. On
the other hand, questions solved by Exp/Subsumes procedures have to be slightly modified to
ensure that every node has THING inside its a set. In particular, every posed question of the form
D, < D, should be modified into (and THING D,) < D', where every description D’ of every fd
description inside D’ is changed to (and THING D).

Note that the equivalence of the original and modified questions as well as the fact that
every constraint added to the terminology is satisfied by any interpretation follows directly from
the definition of the interpretation function. In addition, proofs of soundness do not change
significantly. In fact, the same invariants should be used and only slight extensions are needed to
account for THING constructor. Proofs of termination would also remain almost unchanged since
procedures would consider THING as any primitive concept name. Finally, the proofs of
completeness also do not change much. One Jjust has to formally show that every node in the
constructed description graphs is reachable from a node with a concept name inside it (dn and dn’
nodes in case of Prop/Accepts; and dn and fdcn nodes in case of Prop/Subsumes). Then, it would
follow that every object in the constructed interpretation I is in fact in THING'.

6.2.3 Concept Conjunction

Another way to extend our procedures is to allow concept conjunction, i.e. descriptions of the
form (and C, ... Cy) for k 2 1, on the left-hand-sides of terminology subsumption constraints. For
example, a set of constraints

{TA < STUDENT, TA < TEACHER, (and STUDENT TEACHER) <TA}

allows us to capture the fact that “teaching assistants are the only students that are also teachers.”

Our procedures can be relatively easily extended to deal with such constraints by looking
for concepts C; through C; inside a Cls (or @) label of a node rather than Jjust one concept name

before applying the appropriate rule. For example, rule P3 of Prop,

*® Note though that for efficiency reasons, we do not have to propagate THING or any concept name to leaf
nodes as discussed in the descriptions of the suggested efficient implementations.



CHAPTER 6. CONCLUSION 154

(ryping) If there exist (n;, A, n,) € E and “C, < (all A C,)” € T such that C, € Cls(n;) and
C: € Cls(ny), then add C; to Cls(n,),

would be replaced by

(ryping) If there exist (n,, A, n;) € E and “(and C, ... C) < (all A C)" € T such that
Cie Cls(m)foralll <i<kandC’e Cls(ny), then add C’ to Cls(n,).>

Similarly, we can extend our procedures to deal with fd descriptions that contain concept
conjunction instead of a single concept inside. (We allow such descriptions on the
right-hand-sides of terminology constraints, including view definitions in Chapter 5, on the
right-hand-side of the posed question and, in case of Chapter 5, on the left-hand-side of the posed
question.) Then, for example, rule ES of Exp,

If there exist nodes n, with a(n;) = {D\, ....D,, (ld C Pf; ... Pfn Pf)} and n, (distinct
from n;) in N, such that

(1) ([d C Pfy ... Pf,, Pf)is regular;

2) C e a(ny);

would be replaced by

If there exist nodes n, with a(n;) = {D,, ..., Dy, ((d(and C, ... C) Pf, ... Pf,, Pf)} and n,
(distinct from n,) in N, such that

(1) fd(and C, ... C) Pf, ... Pf, Pf) is regular;
) Ceamy)foralll €i<l;

Note that a constraint of the form (and C; ... Co<(fd@ndC/ ...C)) P, ... Pf, Pr)?
would be considered symmetric (for the purposes of procedures in Chapter 4) if and only if k = /,
both and descriptions contain only distinct concept names?, and for every 1 <i <k, there exists
1 <j < I'such that C; and C; denote the same primitive concept name.

*! Note that for simplicity, we presume that every constraint C < D is converted to (and C) < D before the
procedures are applied. Also note that set fired now contains concept conjunctions in addition to primitive
concept names and view names.
2 Analogously to introduction of concept conjunction on the left-hand-side of constraints, we presume that
every description (fd C Pf; ... Pf,, Pf) is converted to (fd (and C) Pf, ... Pf,, Pf) before the procedures are
applied.

This condition can be ensured by a step of primitive concept duplicate elimination from these (and other)
and descriptions during the terminology simplification phase.
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It should be also mentioned that proofs of termination, soundness and completeness
would have to be only slightly modified by noting at appropnate places that for any positive
integer & and any interpretation I, an object belongs to (and C; ... Co)' if and only if it belongs to
Ciforall 1 <i<k.

Finally, as discussed in the previous subsection, we can also allow THING inside the
conjunctions without significant modifications.

6.2.4 Equational Restrictions in Terminology Constraints

For the procedures in Chapter 3, the left-hand-sides of terminology subsumption constraints can
be further extended to allow equational restrictions, i.e. descriptions of the form (same-as Pf, Pf,)
for some path functions Pf, and Pf;. For example, such a constraint

(and PROFESSOR (same-as Salary (comp Dept HighestSalary))) < CHAIRMAN

allows us to capture the fact that “all professors with highest salaries in their departments are
chairmen.”

To deal with terminology constraints that have left-hand-side of the form
(and C, ... C; (same-as Pf, sz))z",

in addition to checking whether concept names C; are in the « label of a node n before applying
the constraint to n, our procedures have to ensure that there exist two paths outgoing from n with
edge labels corresponding to (some prefixes of) Pf; and Pf; that agree on the last node.

More formally, let us define a notion of a suffix of a path function Pf as any path function
FPfis such that there exists a path function Pf,,, for which Pf = Pforer© Pfus. Pfuy is called a
common suffix of two path functions if it is a suffix of both. Firally, Pfeu is the greatest common
suffix of two_path functions Pf; and Pf,, denoted GCF(Pf,, Pfy), if no other common suffix
exceeds it in length. (It is not hard to establish that the greatest common suffix of any two path
functions always exists and there is only one such suffix.)

Consider a common suffix Pf of path functions Pf; and Pf;, and let Pf, = Pf’ o Pf and
Pf, = Pfy" o Pf. Clearly, due to the functionality of the attributes, (same-as Pf’ PfY) implies
(same-as Pf; Pf;). This observation suggests that to process description (same-as Pfi Pf;) on the
left-hand-side of a constraint, the procedure should check if there exist two paths with edge labels

* Note that k can be O in this case. Then, the left-hand-side would just have the form (same-as Pf, Pf).
Also note that while we omit the discussion of this, we could substitute THING for any of the C;’s.
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corresponding to the prefixes of Pf; and Pf; such that the “remainder” of those path functions
form a common suffix (starting with GCS(Pf,, Pf5)).

For more details, let Pf,” and Pf,"” be such path functions that Pfi = PR” o GCS(Pf,, Pfy)
and Pf; = Pfy”” o GCS(Pf,, Pf>). Then, the procedure would start at a node to which the constraint
is possibly to be applied (after checking for the presence of necessary concept names inside the
@ set), and would follow the paths with edge labels corresponding to Pf,” and Pf,”. If at least one
of these paths stops before reaching the last node, i.e. one of the edges with a needed label was
not created, the constraint is not applicable (yet). If both paths end at the same node, the
constraint can be applied. Otherwise, when both paths reach their destinations that are distinct
nodes, we move one edge further along the paths (and along the greatest common suffix) and
check if we end up at the same node. The process of moving along the paths continues until we
either do not find a necessary edge, two paths agree on an appropriate node, or when we reach the
ends of the paths. (Note that our event driven approach would also work here if we make the
nodes wait either for the corresponding “next” nodes along the path to be added or for an
agreement with the appropriate nodes along the other path. This would only require a total of
O(1) work for every edge in the path functions.)

Thus, rule E6 of Exp,

If there exists a node n in N, and a constraint C < D in T such that C € a(n) and
C € fired(n), then add D to a(n) and C to fired(n),

would now be replaced by the following two rules:

If there exists a node n in N, and a constraint (@and C,...C)<Din T (k= 1) such that
Cie a(n) for all 1<i<k and (and C; ... Cy) € fired(n), then add D to o(n) and
(and C; ... C) to fired(n),”

and

If there exist nodes n and n’ in N, a constraint (and C, ... C; (same-as Pf, P))<Din T
(k 2 0), prefixes Pf,” and Pfy’ of Pf, and Pf, respectively, and a common suffix Pfosof Pf,
and Pf; such that

(1) Cie a(n) forall 1 <i<k;

(2) Pfi=Pfy’ o Pfoyand Pf, = Pfy’ o Pty

¥ As before, note that for simplicity, we presume that every constraint C < D is converted to (and ) <D
before the procedures are applied. Also note that set fired should be extended again to allow descriptions of
the form (and C, ... C, (same-as Pf; Pf;)).
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(3) Reachable(n, Pf\’, n’) and Reachable(n, Pfy, n’) are true; and
(4) (and C, ... C; (same-as Pf, Pf))) & fired(n);
then add D to a(n) and (and C; ... C; (same-as Pf\ Pf)) to fired(n).

Proceeding analogously to the previous subsection, we can further extend our procedures
in Chapter S to deal with extended fd descriptions that contain conjunctions of concepts and
equational restrictions®®. (We allow such descriptions on the right-hand-sides of terminology
constraints, including view definitions, and on both sides of the posed question.) For example, to
express the fact that “each department chairman teaches at most one course,” one could use the

constraint

(and COURSE
(same-as TaughtBy (comp TaughtBy (comp Dept Chairman)))) <
(fd (and COURSE
(same-as TaughtBy (comp TaughtBy (comp Dept Chairman))))
TaughtBy Id).

(The constraint states that if any two courses taught by a department chairman have the same
instructor, they must be the same course.)

Finally, going one step further, it is easy to see that the left-hand-sides of the constraints
and the extended fd descriptions can in fact deal with any description satisfying the following

grammar:
D ::=C (primitive concept)
| THING (all objects in the domain)
| (and D Ds) (description intersection)
| (same-as Pf Pf) (equational restriction)

where Ds and Pf are a sequence of descriptions and an attribute description respectively with
grammars provided in Section 6.1. In other words, we can allow an arbitrary number of the
equational restrictions and an arbitrary nesting of the and constructors (which can be easily
“unnested™).

* Note that rule E3 of Exp has to be modified not 10 account for such occurrences of the same-as
constructor inside an extended fd description.
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6.2.5 Roles

Our procedures can be further extended to deal with roles and corresponding typing restrictions;
i.e. to deal with descriptions of the form (all R D) for some role R and description D. (Recall that
roles are set-valued properties of objects; i.e. interpretation of a role is a subset of A x A for a
domain A.) As in the case of fd descriptions extended with concept conjunction, we allow role
typing restrictions on the right-hand-sides of terminology constraints, including view definitions
in Chapter 5, on the right-hand-side of the posed question and, in case of Chapter 5, on the
left-hand-side of the posed question.

Note that due to complicated interaction of roles with same-as constructor (as was
mentioned in Chapter 2) and with fd constructor, we have to disallow any occurrence of a role
inside same-as and fd descriptions. To illustrate such “non-standard™ interaction, note for
example that constraints

C] < (all R| Cz) and
Cz<(fd Cz R2 Aj)

do not imply the constraint
Ci<(fd C, (comp R, R,) (comp R, Aj))

where R; and R; are roles (contrast this with inference axiom 6 in Lemma 4.2). An example
interpretation I proving the above claim is represented in the following figure:

Analogously to the proofs of completeness, the nodes in the graph are the domain of I and labeled
edges correspond to role/attribute interpretations?. With this interpretation, we have two distinct
nodes in C,' whose interpretations of (comp R, R;) are the same (singleton) set, while the

*” Note that only “important” nodes and edges are shown. Totality of As, if we want it to be an attribute,
would require additional edges and nodes that could be added, for example, along the same lines as in the
proofs of completeness.
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interpretations of (comp R, As) are distinct sets (one is actually a proper subset of the other). At
the same time, both of the originally given constraints are satisfied by L

With above restrictions, our procedures can “process” (all R D) descﬁptions as if R were
an attribute. It is not hard to see (in particular, from the arguments similar to the ones made in the
complexity proofs) that since no same-as or fd description includes a role name, the description
graph essentially becomes a high-level rree where nodes are connected only by edges labeled
with role names, and each node is a description graph that contains only edges labeled with
attribute names, i.e. exactly the description graphs studied in earlier chapters. (This kind of
description graph is in fact discussed in (BP94].)

Note that addition of either (at-most R m), m > 1, or (at-least R k), k > 0, would involve
a little extra processing that would adjust the upper or lower number restriction based on newly
discovered constraints that apply to an edge labeled R. Moreover, allowing number restrictions of
the form (at-most R 0) makes the reasoning just a bit harder, since the procedures have to make
sure that for any question asked about something “below” role R, the affirmative answer is
returned.

On the other hand, addition of both kinds of number restrictions would make the
procedures exponential. Indeed, allowing both kinds of the constructors creates the possibility of
incoherent descriptions, i.e. descriptions that necessarily do not contain any objects. (Note that
such descriptions are subsumed by NOTHING which in turn is subsumed by any description.)
Incoherent descriptions arise from constraints that force the lower limit on the number of role
fillers for some occurrence of a role to exceed the corresponding upper limit. Since an incoherent
description is subsumed by any other description, the procedures have to make sure that they
discover all incoherent nodes [BP94] that essentially “correspond” to incoherent descriptions.
However, this requires exploration of all chains of attributes and roles (with at least 1 role filler)
that might lead to a role which “causes” an incoherence, since such incoherence would be
propagated back to the original node. While we can make this process terminate when we reach
nodes that only contain descriptions that were already explored for incoherence or are in the
process of being explored, it certainly does not look like the procedure can be made to run in less
than exponential time in the worst case.

Finally, it should be noted that the addition of constructor NOTHING and/or negation of
primitive concepts runs into the same difficulties.

6.2.6 Extending Uniqueness Constraints

As was mentioned in Section 4.6, nearly regular uniqueness constraints turn out to be as
expressive as the general uniqueness constraints that are likely to have only exponential decision
procedures. Here, we consider another possible extension of the regular uniqueness constraints.
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As with other relational functional dependencies, consider the natural generalization of
coupled functional dependencies [CK8S) and union Junctional dependencies [CV83] to use path
functions instead of attributes. Even though some forms of this generalization can be captured by
our asymmetric uniqueness constraints, extending our regular uniqueness constraints to fully
capture such generalization would lead to an undecidable problem. Indeed, if we Jjust consider the
extension of symmetric regular constraints, and allow two objects to agree on different path
functions, the extended constraints would have the form

C <(fd C(Pf P\ ... (P PR)) (Pf Ef7),

where (Pf; Pf) are pairs of path functions on which a pair of objects in C have to agree. In other
words, the constraint is satisfied by an interpretation I if and only if for any two objects o; and o,
in C', if Pfo,) = PfN(oy) for 1 <i <k, then Pf'(0,) = Pf"(0,). An extension of our regularity
condition would then require an existence of 1 <i < k such that Pf (resp. Pf’), possibly without its
last attribute, is a prefix of Pf; (resp. Pf.).

Then however, constraint C < (fd C (B,oB, B,oB>) (B,oB>» A)) is equivalent to the
constraint C < (same-as B;oB, A) for any concept C and attributes A, B, and B,. It is not hard to
show (see [BW97]) that constraints of the form C < (same-as B;oB; A) are as expressive as
arbitrary constraints of the form C < (same-as Pf, Pf) for any path functions Pf; and Pf,.
However, it is well known that the problem of logical implication with arbitrary equational
constraints is undecidable (e.g. see [BW94]).

6.2.7 Summary of Extensions

Here, we summarize how the problems in Chapters 4 and 5 would be modified in the presence of
the “efficient” extensions discussed in the previous subsections.

Procedures in Chapter 4 would now deal with logical implication problem of the form
T=D’< D" where T is a set of constraints of the form D, < Dignr. Diesr satisfies the following

grammar:
Dig == C (primitive concept)
| THING (all objects in the domain)
I (and Dig Dsis) (description intersection)

Dses = € | DSies Dien (concept description sequence)
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Dign, satisfies the following grammar:

Digne == C (primitive concepr)
| THING (all objects in the domain)
I (all Pd Dyigp) (antribute value restriction)
| (fd Dyy.igx Pfs Pf) (functional dependency)
| (and Dyigh Diigne Ds) (concept intersection)
Pf == A (primitive attribute)
| Id (identity)
| (comp Pf Pf) (anzribute composition)
Pd = A (primitive attribute)
I R (primitive role)
I Id (identity)
| (comp Pd Pd) (role composition)
Degrigne ::= C (primitive concept)
| THING (all objects in the domain)
I (and Dy ign DsS¢arigh) (description intersection)
Pfs =€ | PfsPf (attribute description sequence)
Ds = € | Ds Dgn (concept description sequence)
Dsgacighh == € | Dsy-rig Dra.righe (concept description sequence)

All uniqueness constraints still have to be symmetric and regular. Finally, D’ satisfies the
grammar of Dies, and D ” satisfies the grammar of Diigne with exception that the fd descriptions do
not have to be regular.

Next, consider the logical implication problem of Chapter 5. It now has the form
T = Dy’ < Dy, where subsumption constraints in T have the form D,y < D,;,s" and non-recursive
view definitions have the form V = D,’. The grammar of D, extends the grammar of Dy with
the following description:

Dy’ 1= (same-as Pf Pf) (equational restriction)

( + grammar of Dy where every Dy is replaced by Dig")

The grammar of D,  extends the grammar of Drigne with addition of equational restrictions to
descriptions inside the extended fd descriptions:

Digrigne ::= (same-as Pf Pf) (equational restriction)

( + grammar of Dy.ig above)

Note that uniqueness constrains in T are no longer required to be symmetric.
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Next, Dy" must satisfy the grammar of Dyign” in addition to equational restriction and other

view names:

Dy:=V (view name)
| (same-as Pf Pf) (equational restriction)

(+ grammar of Dz, where every Dy, is replaced by Dy”)

Finally, D," satisfies the grammar of Dy’, and description D’ satisfies the grammar of Dy’ in
addition to extended fd descriptions:

D,’ ::= (fd D¢y’ Pfs Pf) (extended fd description)

(+ grammar of Dv” where every Dy’ is replaced by D,")

This fd description is no longer required to be regular, and Dy, satisfies the grammar of Dy’".

6.3 Research Directions

Many of the underlying ideas have been incorporated into parts of the DEMO? system that
perform query optimization [Cha97). In that case, a variation of description graphs, called
existential graphs, is used, and all inferences are based on a resource bounded graphical analogue
of unit resolution. In this context, one of the contributions of our work is to the understanding of
the underlying computational properties of the system—determining, for example, the limits of
resource bounding that ensure complete reasoning for patterns of “graphical” constraints.

A study of how our procedures can be further incorporated into a practical database
system and further exploration of the interaction of the underlying algorithms with other
constructors (possibly with constraints that cannot be captured in a resulting theory) merit
additional work. In general, although there is already a great deal of evidence for this, we believe
further work is still needed to improve our understanding of the benefits of semantic query
optimization in “industrial strength” IT applications. Conversely, work on exploring the possible
efficacy of new (not currently existing) DL concept constructors is also needed.

Another important direction for future work is to consider how our procedures can be
adapted to incorporate other kinds of DL concept and attribute constructors in ways that preserve
tractability. Indeed, the previous section begins to explore this for a number of such extensions.

8 “DEMO"” stands for Design Environment for Main Memory Object-Oriented databases. The DEMO
system is under development at the University of Waterloo in collaboration with Nortel Networks Ltd. It
explores how to adopt database technology to enable it to be used to manage control data for embedded

control programs.
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The addition of two cases not yet considered, however, seem desirable: some capacity for
reasoning about (necessarily restricted forms of) disjunction, and some ability to include
equational restrictions on the right-hand-sides of subsumption constraints in terminologies.



Appendix A

Simplifying Terminology for the Membership Problem

We prove Proposition 4.1 that relates to a mapping presented in Chapter 4 for constructing
so-called atomic terminologies. We begin by reviewing the proposition, starting with the relevant
grammars and rewrite rules.

General grammar:

(1) D:=C

) i (all PED)

3 | (fd C Pfs Pf)

“) | (and D D Ds)

5) Pf:=A

(6) i1d

) | (comp Pf Pf)

@8 Pfs:=¢

) | Pfs Pf

(10) Ds:=¢

an IDs D
Simplified grammar:

(1 D:=C

) I(all A C)

3 | (fd C Pfs Pf)

6) Pf:=Id

™ [ (comp A Pf)

8) Pfs:=¢

“) | Pfs Pf

164
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Rule number Replace By
1 C <(allld D) C <D
2° C: <(all (comp Pf, P) D) | C, <(all Pf; C5) and C; < (all Pf; D)
3" C) < (all A (all Pf D)) Ci<(allACy)) and C; < (all PfD)
4’ C, < (all A (fd C; Pfs Pf)) Ci<(@llAC) and C,<(fd C; Pfs Pf)

5° C <(allA (and D, ... D)) C<@lAD),..Cc(allAD)
6 C <(and D, ... D) C<D,,...C<D;

7 Ci < (fd C; Pfs, A Pfs,) C, < (fd C; Pfs, (comp A Id) Pfs,)
8 (comp Id Pf) Pf

9 (comp PfA) (comp Pf (comp A Id))

10 (comp (comp Pf, Pf;) Pf;) | (comp Pf; (comp Pf; Pf,))

(" where C, denotes a new primitive concept not occurring in the given terminology and k > 2.)

Table A.1: Atomic simplification of terminology in Chapter 4 (revisited).

Let us call the general grammar G, and the simplified grammar G;. Also, we say a
subsumption constraint C < D is generated by a grammar (G, or Gy) if, after replacing every
primitive concept name in D by C and every primitive attribute name in D by A, D can be
generated by the grammar. We say a terminology is generated by a grammar if every
subsumption constraint in the terminology is generated by the grammar. Finally, for any rewrite
rule in Table A.1, we call the string to be replaced the left-hand-side of the rule, and the string(s)
that the left-hand-side is replaced with the right-hand-side(s) of the rule.

Proposition 4.1 (revisited) Let T, denote an arbitrary terminology generated by grammar G,,
and C < D a subsumption constraint free of any occurrence of a primitive concept not occurring
in T\. Then an exhaustive application of the rewrite rules in Table A. 1 terminates and obtains a
terminology T, that can be generated from the grammar G for which T, = C < D if and only if
I,=C<D.

Proof. The proof of the proposition consists of three parts: termination, translation, and
equivalence. In other words, we have to prove that the process of exhaustive rule application
terminates; that a terminology T generated by G, is transformed into a terminology 7 that can be
generated by G;; and that 7, = C< Difandonly if T; = C < D.

Part 1: Proof of termination. To prove that an exhaustive application of the rewrite
rules in Table A.1 terminates, we will assign costs to path functions, descriptions, subsumption
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constraints and terminologies. Let us consider a function, Cost[], that “charges” the following
amounts for the expressions generated by G,>:

Cost[C] = 0;

Cost[(all PfD)] =1 + Cost[Pf] + 2 - Cost[D];

Cost((fd C Pfs Pf)] = 3 + Cost[Pfs] + Cost[Pf] + Cost,[Pfl;
Cost[(and D, D, Ds)} =1 + Cost[D\] + 1 + Cost[D,] + Cost[Ds];
Cost[A] = 0;

Cosi(Id] = I;

Cost[(comp Pf, Pf})] =2+ 4 - Cost[Pfi] + Cost[Pf;] + Cost,[Pf2];
Cost[Pfs Pf] = Cost[Pfs] + Cost[Pf] + Cost,[Pf];

Coste] = 0;

Cost[Ds D] = Cost[Ds] + 1 + Cost[D];

where Cost,[Pf] is 10 if Pf is a primitive attribute A, and O otherwise. For any subsumption
constraint C < D, we define its cost as Cost[D], and for any terminology, we define its cost as
sum of all costs of the constraints in the terminology. It is not hard to see that for any constraint
generated by G,, its cost is non-negative (since it is computed as a number of additions and
multiplications of non-negative numbers). Therefore, for any terminology, its cost is also
non-negative (as well as finite since we add and multiply a finite number of non-negative

numbers).

Also note that after applying any rule in Table A.1 to a constraint generated by grammar
G, the resulting constraint(s) can also be generated by G,. This fact follows from the observation
that the right-hand-sides of the rules can be generated from the grammar assuming their
components (such as D, Dy, D, A, Pf, Pfs, Pf,, Pf, C, etc.) can. However, since right-hand-sides
only use components of the left-hand-sides (with the exception of primitive concept C, that can
be generated from G, by the first production), and since left-hand-sides can be generated from G,
by assumption, so can the resulting subsumption constraint(s). Therefore, to prove that the
process of exhaustive rule application to a terminology (generated by G,) terminates, it is
sufficient to show that an application of any rewrite rule to a constraint decreases the (finite,
integer and non-negative) cost of the terminology.

Further note that the first seven rewrite rules deal with rewriting concept descriptions
while the last three rules rewrite attribute descriptions. Since attribute descriptions do not contain
concept descriptions, and since the cost of every inner concept description is always added to the
total cost of the outer (concept) description by our cost function definition, it is sufficient to show

* Note that by C (A), we mean any symbol in D that is replaced by C (A) before its derivation from G,. We
use ifalic symbols here in place of bold non-terminals to indicate strings generated from the corresponding
non-terminals, and we use subscripts to distinguish between different strings generated from the same
non-terminal.
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that the cost of the right-hand-side of each of the seven rules is less than the cost of the
corresponding left-hand-side.

On the other hand, note that the cost of an inner attribute description is either added (and
possibly modified by a constant positive factor) to the cost of the outer description by itself or
with the addition of the special cost. However, both left- and right-hand-sides of rewrite rules 9
and 10 as well as any attribute description that contains them have special costs of 0. It follows
that in order to prove that an application of any of these rules decreases the total cost of the
terminology, it is also sufficient to show that the cost of the right-hand-side of the rule is less than
the cost of the corresponding left-hand-side.

Now consider rule 8. An attribute description Pf’ that might contain the left-hand-side of
the rule, (comp Id Pf), computes its cost using a product of a positive constant factor and either
the cost of the left-hand-side of the rule by itself or in addition to its special cost. However, since
Pf’ and any “higher-level” descriptions containing Pf” have special costs of 0, it is sufficient to
show that the cost of the right-hand-side, Cost[Pf], of rule 8 is less than the cost of the
left-hand-side, Cost[(comp Id Pf)], as well as that the cost of the right-hand-side plus its special
cost, Cost,[Pf], is less than the cost of the left-hand-side plus its special cost
Cost,,[(comp Id Pf)].

The following shows the sufficient differences of the costs of the right- and
left-hand-sides of the rewrite rules. All of the equalities follow directly from the definitions of
costs.

(1) Cost[C < (all Id D)] — Cost[C < D] = Cost[(all Id D)] - Cost[D] =
2+ 2 Cost[D] - Cost[D] > 0;

(2) Cost[C\ < (all (comp Pf; Pf,) D)] — Cost[C; < (all Pf, C2)] - Cost[C, < (all P D)] =
1 +(2+ 4 Cosi[Pf,] + Cost[Pf) + Cost,[Pf]) + 2 - Cost[D] -
(1 + Cost[Pfi]) — (1 + Cost[Pf] + 2 - Cost[D)) =
1 + 3 - Cost[Pfi] + Cost,[Pf;] > 0;

(3) Cost[C, < (all A (all PfD))] - Cost[C; < (all A C))] - Cost[C, < (all PFD)] =
1 + Cost[A] +2 - (1 + Cost[Pf] + 2 - Cost[D)) -
(1 + Cost[A]) = (1 + Cost[Pf] + 2 - Cost[D]) =
1 + Cost[Pf] + 2 - Cost[D] > 0;

(4) Cost[C, < (all A (fd C; Pfs Pf))] — Cost[C, < (all A C2)] - Cost[C, < (fd C; Pfs Pf)] =
I + Cost[A] + 2 - (3 + Cost[Pfs] + Cost[Pf] + Cost,[Pf]) -
(1 + Cost[A]) - (3 + Cost[Pfs) + Cost[Pf] + Cost,[Pf]) =
3 + Cost[Pfs] + Cost[Pf] + Cost,[Pf] > 0;



APPENDIX A. SIMPIFYING TERMINOLOGY FOR THE MEMBERSHIP PROBLEM 168

(5) Cost[C < (all A (and D, ... Dy))] - Cost[C < (all A D)) - ... =Cost[C < (@l A D)l =
1+2-(k+ Cost[Dy] + ... + Cost[D;]) ~ (1 +2 - Cost[Dy]) — ... -
(1+2-Cost[D) =1 +k>0;

(6) Cost[C <(and D, ... DY) - Cost[C < D,] - ... — Cost[C < Dy =
k+ Cost[D\] + ... + Cost[Dy] - Cost[D\) - ... — Cost[Di] =k > 0;

(7) Cost[C, < (fd C; Pfs| A Pfsy)] - Cost[C, < (fd C; Pfs, (comp A 1Id) Pfs,)] =
3 + Cost[Pfs,] + 10 + Cost[Pfs;] - (3 + Cost[Pfs\] + (2 + 1) + Cost[Pfs3]) =
7>0;

(8) Cost{(comp Id Pf)] — Cost[Pf] =2 + 4 - 1 + Cost[Pf] + Cost,,[Pf] — Cost[Pf] =
6 + Cost,,[Pf] > 0;

Cost[(comp Id Pf)] + Cost,,[(comp Id Pf)] — Cost[Pf] - Cost,,[Pf] =
2+ 4 -1+ Cost[Pf] + Costy,[Pf] + 0 — Cost[Pf] - Cost,[Pf]1=6> 0;

(9) Cost[(comp Pf A)] - Cost[(comp Pf (comp A Id))] =
2+4-Cost[Pf1+10-(2+4-Cost[Pl+ R+ 1))=7>0;

(10) Cost[(comp (comp Pf, Pf>) Pf3)] — Cost[(comp Pf, (comp Pf, Pfy))] =
2+4-(2+4-Cost[Pfi] + Cost[Pf] + Costy[Pf2)) + Cost[Pfi] + Costy,[Pf] -
(2 + 4 - Cost[Ph] + (2 + 4 - Cost[Pf;) + Cost[Pf;] + Cost[Pfi])) =
10 + 16 - Cost[Pfi] + 4 - Cost[Pf>] + 4 - Costy,[Pf)) + Cost[Pfs) + Cost,[Pf] —
(4 +4 - Cost[Pfi] + 4 - Cost[Pf,] + Cost[Pfi] + Cost,[Pf3]) =
6 + 12 - Cost[Pf;] + 4 - Cost,[Pf;] > 0.

Part 2: Proof of translation. Next, we prove that after an exhaustive application of the
rules from Table A.1 to a terminology T, generated by G,, one obtains a terminology 7> that can
be generated by G,.

As pointed out in the proof of termination, if the left-hand-side of a rule can be generated
by G,, so can the right-hand-side(s); therefore, 7> can be generated from G;. Let us assume T>
cannot be generated from G;. Then, by our definitions, there must be a constraint C < D in 7>
such that, after replacing every concept name in D by C and every primitive attribute name in D
by A, D cannot be generated from G; (and can be generated from G,).

Let us consider the process of generating D from G,. The first production used for this
generation must be one of the four productions for D. However, for all four cases, we would
obtain a contradiction as follows.



APPENDIX A. SIMPIFYING TERMINOLOGY FOR THE MEMBERSHIP PROBLEM 169

Production 1. D ::= C production also exists in G, (production 1°), and therefore, we
would be able to generate D from G;. Contradiction.

Production 2. (all Pf D). In this case, we should be able to generate D from (all A C).
Indeed, if Pf did nor generate A, it would have to generate either (comp Pf Pf), in which case
rewrite rule 2 in Table A.1 would still be applicable contrary to our assumption that all rules were
already exhaustively applied; or Id, in which case rule 1 would still be applicable.

Now that we know that Pf generates A, let us show that only C can be generated from D.
We cannot generate (all Pf D) from D, since rule 3 in Table A.1 would be applicable.
Analogously, we cannot generate (fd C Pfs Pf) because of rule 4, or (and D D Ds) because of
rule 5. Therefore, D must have the form (all A C). However, we can generate such D from G; by
production 2’. Contradiction.

Production 3. (fd C Pfs Pf). Note that G, has the same production (3"), and G, and G,
have the same productions for Pfs. Therefore, we must have a Pf that cannot be generated from
G: (since all other non-terminal symbols can be generated by G:). Let us consider a string Pf
generated from such Pf.

Ff cannot be Id as G, would be able to generate it with production 6”. Pf cannot be an
attribute A either, since a rewrite rule 7 in Table A.]1 would be applicable. The only other choice
we have for Pfis production 7 of G,. Thus, Pf has the form (comp Pf; Pf,)*.

Note that for any (comp Pf; Pf:) expression, Pf; cannot generate Id (by production 6 of
G,) since rewrite rule 8 would be applicable. Analogously, Pf, cannot generate (comp Pf; Pf,)
(by production 7 of G,) since the rule 10 would be applicable. Therefore, Pf, must generate A (by
production 5 of G,).

Since, as we just showed, any (comp Pf; Pf;) can only generate (comp A Pf;), Pf can
only have the form (comp A (comp A ... (comp A Pfg,y))) where Py is either Id or A. Indeed,
for any (comp Pf, Pf;), Pf; can only be either (comp A Pfs;) which Jjust adds another level of
nesting, or Id or A which is Pfgay.

Now, note that Pfya, cannot be A since rewrite rule 9 would be applicable. Therefore, our
Pf must have the form (comp A (comp A ... (comp A Id))), but this expression can be generated
from G, by productions 6’ and 7°. Contradiction.

Production 4. (and D D Ds). In this case, rule 6 in Table A.1 would still be applicable.
Contradiction.

Part 3: Proof of equivalence. Suppose we obtained a terminology T’ after exhaustively
applying transformations in Table A.1toa terminology 7. We have to prove that T = E < F if and
only if T” = E < F for any subsumption constraint £ < F.

*® We use subscripts in (comp Pf; Pf3) in order to distinguish between different Pf non-terminals.
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Consider the process of applying rules from Table A.1. It is sufficient to prove that for
every step of the process (which we know terminates), when a terminology T, is rewritten into a
terminology T after applying just one rule from Table A.1, T, = E < F if and onlyif T, =E<F
for any subsumption constraint £ < F.

We are going to use the following three methods to prove that an application of arule to a
constraint of a terminology produces an “equivalent” terminology.

Method 1. Consider a subsumption constraint S, in T, and let us denote the rest of the
constraints by Teon: (i.6. Ty = {8;} U Topns)- Also, consider a ser S, of the constraints that are
produced by some rule applied to S, (i.e. T2 = S, U T.ons)).

To prove that T, = E<F if T, = E<F for any subsumption constraint E < F, it is
sufficient to prove that {S,} = S- (i.e. terminology {S,} &= S, for any S € S,). Indeed, we can
conclude that if 75 = E < F then

TI = {Sl} U Tcorm = S2U T¢0m=Tz = E<l'..3l

The method can be also applied in the reverse direction: to prove thatthat T, = E< F
only if T> = E < F for any subsumption constraint E < F, it is sufficient to prove that S; &= S,
since if T} = E < F then

T2=SIU Tcmm= {Sl} U Tcon.tr=Tl F=E<F-3I

Method 2. If a rule replaces a constraint G < H by a constraint G < H ’, then it is sufficient
to prove that H' = H" for any interpretation I. Indeed, directly from definitions of subsumption
and logical implication, H'= H" imply that (G<H)} = G< H’ and (G< H’} = G < H: and
therefore, by Method 1, T, = E < F if and only if T; = E < F for any constraint E < F.

In addition, since interpretation of a description only depends on the interpretations of its
components, if a rule replaces a component of a description by another component with the same
interpretation, the interpretation of the whole description will be unchanged. Thus, it is sufficient
to prove the equality of the interpretations of only the components that changed.

Method 3. This method is essentially a proof by contradiction. Proving that T, = E < F if
T; = E < F for any constraint E < F means verifying that any interpretation I that satisfies every

*! Directly from the definition of logical implication, it follows that if a terminology T, logically implies
every subsumption constraint of terminology T>, and if T; &= S for some subsumption constraint S, then
T, =8.
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member of 7, also satisfies constraint E < F given that any interpretation J that satisfies every
member of T also satisfies E < F. Then we would assume that this is nor true and uncover a
contradiction. In other words, we would assume that there is a constraint £ < F such that

(a) any interpretation J that satisfies every member of T also satisfies E < F:
(b) there is an interpretation I that satisfies every member of T; and
(c) I does nor satisfy E < F.

Using the methods above, we can now prove the equivalence for every rule in Table A.1:

Rule 1: Replace C < (all Id D) by C < D.

By Method 2, and from the definitions of the interpretation function,

(@l ldD)' = {xe Alxe D'} =D".

Rule 2: Replace C, < (all (comp Pf; Pfy) D) by C; < (all Pf; Cy) and C < (all Pf> D).
Part@Q): T R E<FifT,EE<F VE<F.

By Method 3, assume that there is a constraint E < F such that

(i) any interpretation J that satisfies every member of T also satisfies E < F:
(ii) there is an interpretation I that satisfies every member of T); and
(iii) I does nor satisfy E < F.

Let us consider an interpretation J that is the same as the interpretation I for all concepts and
attributes of T; and with interpretation of C, being

C.' =(all P, D).

Since, by the assumption of the proposition and by condition of the rule 2, C, is a new
concept that does not appear anywhere in E or F, J does not satisfy E < F. On the other hand,
since J is the same as I except for C;, it satisfies all the constraints in T, It also satisfies

C, < (all Pf; D)

by definition of C;’. (Note that (all Pf; D) = (all Pf; D)’ since C, is a new concept not occurring
in Pf> or D, and thus, interpretations of Pf; and D remain unchanged by the construction of J.)

Again, since C; is a new concept, J continues to satisfy
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Ci <(all (comp Pf, Pf;) D).
Finally, J also satisfies
Ci <(all P, Cy),

since otherwise, there would be an object o; in C,? such that 0: = Pf|’(o|) g C,’. However, since J
satisfies C; < (all (comp Pf; Pf;) D), we know that Pf’(Pfi*(0)) € D', ie. P’ (02) € D*; and
since C>’ = (all Pf; D)l = (all P D)". we know that 0, € C,’ which leads to contradiction.

Therefore, we found an interpretation J, which satisfies every member of T, but does not
satisfy E < F. This contradicts to (i).

Part b): T\ = E<Fonlyif ,=E<F VE<F.
By Method 1, it suffices to show that

{Ci < @ll Pf, Cy), C: < (all P/, D)} = C, < (all (comp Pf, Pf;) D).
By definitions of interpretation, we have

C'<c {xe AlPF'(x) e Gy}, and
C'c{ye AlPF'y)e D'} VL

Therefore,

Cl'cS{xe AIP'We (ye AIPL'(y) e DY)} = {xe Al PAY(PR'x)) e D'} =
{x € Al(comp Pf, Pf,)'(x) € D'} = (all (comp Pf, Pf;) D)' VL

Rules 3 and 4: Both rules 3 and 4 are instances of the following more general rule: Replace C, <
(all A D) by C, < (all A C,) and C; < D. Therefore, it is sufficient to prove the equivalence for this

more general rule.
Part(a): 1 = E<FifT,FE<F VE<F.

By Method 3, assume that there is a constraint E < F such that

(i) any interpretation J that satisfies every member of T also satisfies E < F s
(ii) there is an interpretation I that satisfies every member of T;; and
(iii) I does not satisfy E < F.
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Let us consider an interpretation J that is the same as the interpretation I for all the concepts and
attributes of T and with interpretation of C being

Cz" = Dl.

Since, by the assumption of the proposition and by condition of the rules 3 and 4, C, is a
new concept that does not appear anywhere in E or F, J does not satisfy E < F. On the other hand,
since J is the same as I except for C5’, it satisfies all the constraints in T .ons- It also satisfies

C2<D

by definition of C,’. (Note that D' = D! since C, is a new concept not occurring in D, and thus,
interpretation of D remains unchanged by the construction of J.)

Again, since C, is a new concept, J continues to satisfy
Cl < (all A D).

Finally, J also satisfies C, < (all A C3) since C;’ = D' = D’, and thus, (all A C»)’ = (all A D).

Therefore, we found an interpretation J, which satisfies every member of 7, but does not
satisfy E < F. This contradicts to (i).

Partb): T' = E<Fonlyif T, =EE<F VE<F.

By Method 1, it suffices to show that
{Ci<(@llA Cy), C,<D} =C,<(all A D).
By definitions of interpretation, we have
G'c{xe AlA' e Cl},and &' D' VL

Therefore, C,' S {xe AlA'(x)e D'} =@ AD) VL

Rule 5: Replace C< (allA (and D, ... D)) by C <(all A D)), ..., C < (all A D,).
By Method 1, it suffices to prove that
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{C<(@llA@ndD,...D))} = {C<@llAD), ... C<(allA Dy }and
{C<@lAD),..,C<@IAD)} = {C<(allA(and D, ... D)) }.

Both statements follow directly from the fact that by definitions of interpretation and
subsumption, for any interpretation I, I satisfies C < @llA(and D, ... D)), i.e.

C'c@llA@ndD, .. Dy ={xeAlAweD'n..N D/},
if and only if I satisfies constraints C < (all A D)) through C < (all A D), i.e.
C'c@lAD)'={xe AlA'x) e D'},
C'c (allA D,)' ;.{x € AlAYx) e D).

Rule 6: Replace C <(and D, ... Dy) byC <D, ...,C<D,.

By Method 1, it suffices to prove that

{C<(@mdD,..D)})={C <D, ...,C <D} and
{C <Dy, ...,.C<Di} ={C<(and D, ... Dy)).

Both statements follow directly from the fact that by definitions of interpretation and
subsumption, for any interpretation I, I satisfies C < (and D; ... Dy, i.e.

C'c@dD,..D)'=D,"'n..N D
if and only if I satisfies constraints C < D, through C < D,, i.e.

c'epn’ ... .CccD!

Rule 7: Replace C, < (fd C; Pfs, A Pfs;) by C, < (fd C; Pfs, (comp A Id) Pfs,).
By Method 2, since the only component that changed is A replaced by (comp A Id), it
suffices to show that A' = (comp A Id)". However, by definitions,

(compAId)'={(r,y)Ixe AandId\A'(x)) =y } = { (x,y) Ixe Aand A'x) = y} =AL

Rule 8: Replace (comp Id Pf) by Pf.

By Method 2, it is sufficient to show that (comp Id Pf)' = Pf'. Indeed,
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(compId P)'= {(x,y)Ixe Aand PF'Id'(x)) =y } = { (x,y) Ixe Aand Pflx)=y }.
However, since by definition, for any x € A, PfY(x) = y where (x, y) € Pf,

PF'l={(x,y)lxe Aand Pflx) =y ).

Rule 9: Replace (comp PfA) by (comp Pf (comp A Id)).

By Method 2, it is sufficient to show that (comp Pf A)! = (comp Pf (comp A Id))".
Indeed,

(comp PfA)' = {(r,y)Ixe Aand A(Pf'(x)) =y } ={ (x.y) Ix€ Aand Id'A' P =y} =
{ (@ y)lxe Aand (comp A Id)'(Pf'(x)) = y } = (comp Pf (comp A Id))".

Rule 10: Replace (comp (comp Pf; Pf,) Pf3) by (comp Pf; (comp Pf; Pfy)).
By Method 2, it is sufficient to show that

(comp (comp Pf, Pf,) Pf3)' = (comp Pf; (comp Pf; Pf,))",
and indeed,

(comp (comp Pf, Pf)) Pf;)' = { (x,y) | x & Aand Pf;'((comp Pf, PR)'(x)) =y } =
{(x,y)Ixe Aand PARYPLYPAR'W)) =y }, and

(comp Pfi (comp Pf; Pf))' = { (x.y) |x € Aand (comp P, Pf;)'(Pfilx)) =y } =
{(x,y)Ixe Aand PAYPL'(PR' X)) =y ).



Appendix B

Simplifying Terminology for the General Logical Implication
Problem

We prove Proposition 5.1 that relates to a mapping presented in Chapter 5 for constructing
so-called molecular terminologies. As in Appendix A, we begin by reviewing the proposition,
starting with the relevant grammars and rewrite rules.

General grammar:

1) D:=CIV

) 1 (all PED)

3) 1 (fad D Pfs Pf)

(€)) | (and D D Ds)

)] | (same-as Pf Pf)

6 Pf:=A

€)) I Id

®) | (comp Pf Pf)

) Pfs:=¢

(10) | Pfs Pf

(I11) Ds:=¢

(12) IDsD
Simplified grammar:

(1) D:=CIiV

) lall AD)

3) I (fd D Pfs Pf)

4" | (and D D Ds)

) | (same-as Pf Pf)

©) Pr:=Id

) | (comp A Pf)

176



APPENDIX B. SIMPLIFYING TERMINOLOGY FOR THE GENERAL LOGICAL 177
IMPLICATION PROBLEM

Rule number Replace By
1 C<Dyand C< D, C < (and D, D5)
2 (all 1d D) D
3 (all (comp Pf, Pf,) D) (all Pf, (all Pf; D))
4 (fd D Pfs, A Pfs») (fd D Pfs, (comp A Id) Pfs,)
5 (same-as A Pf) (same-as (comp A Id) Pf)
6 (same-as PfA) (same-as Pf (comp A Id))
7 (comp Id Pf) Pf
8 {comp PfA) (comp Pf (comp A Id))
9 (comp (comp Pf; Pf;) Pf3) (comp Pf, (comp Pf; Pfy))

Table B.1: Molecular simplification of terminology in Chapter § (revisited).

(8) Pfs:=¢
9" | Pfs Pf

(10) Ds:=¢
(11" IDsD

Let us call the general grammar G, and the simplified grammar G,. We say a description
D is generated by a grammar (G, or G,) if, after replacing every primitive concept name in D by
C, every view name by V, and every primitive attribute name by A, the resulting description can
be generated by the grammar. We say a constraint D, < D; (or D, =D») is generated by a
grammar if both D, and D, are generated by the grammar. Finally, we say a terminology is
generated by a grammar if every constraint in the terminology is generated by the grammar.

In addition, for every rewrite rule in Table B.1, we call the string to be replaced the
lefi-hand-side of the rule, and the string that the left-hand-side is replaced with the
right-hand-side of the rule.

Proposition 5.1 (revisited) Let T, denote a terminology and D, < D, a subsumption constraint.
Then an exhaustive application of the rewrite rule 1 in Table B. 1 to constraints in terminology T,
followed by exhaustive application of the rewrite rules 2 through 9 in Table B.1 to constraints
inside the resulting terminology and to constraint D; < D, terminates and obtains a terminology
T, and a constraint Dy’ < Dy’ respectively that can be generated Jfrom the simplified grammar and
for which T\'= D, <D, if and only if T, &= D, < D,, and I'= D, <D; if and only if
T, = D\’ < Dy. In addition, no two constraints in T, have the same left-hand-side.

Proof. First, consider an exhaustive application of the rewrite rule 1 to a terminology T,. Since
every application of the rule decrements a (finite) number of constraints in the terminology, the
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process of exhaustive application of the rule terminates and obtains some terminology 73"
Moreover, at the end of the process, no two constraints in 7;” have the same primitive concept on
the left-hand-side, since otherwise, rule 1 would still be applicable. This property is also
preserved by applications of other rewrite rules, since they only rewrite descriptions inside
constraints and do not create any new constraints. Finally, 7, and T\’ have the same
consequences, since analogously to Method 1 described in the equivalence part of the proof in
Appendix A,

{C<(and D, D»)} = {C< D,, C< D,} and {C <D\, C<D,} = {C <(and D, D»)}.

Finally, note that T, can still be generated by G,. Therefore, it is sufficient to show that
the following modified proposition that concentrates on the second exhaustive application process
holds:

Proposition B.1 Let T, denote a terminology and D, < D, a subsumption constraint. Then an
exhaustive application of the rewrite rules 2 through 9 in Table B.1 to constraints inside the
terminology Ty and to constraint D, < D, terminates and obtains a terminology T, and a
constraint D\ < Dy’ respectively that can be generated from the simplified grammar and for
which Ty = Dy < Dsyifand only if T> &= D, < D,, and T, &= D, < D; ifand only if T, = D\’ < D,".

As in Appendix A, the proof of the proposition consists of three parts: termination, translation,
and equivalence. In other words, we prove that the process of exhaustive rule application
terminates; that every description generated by G, is transformed into a description that can be
generated by Gz; and that Ty &= D, < D, if and only if T; = D, < D;,and T\ = D, < D; if and only
if Ty = D)/ <Dy

Part 1: Proof of termination. To prove that an exhaustive application of the rewrite
rules 2 through 9 in Table B.1 terminates, we assign finite non-negative costs to attribute and
concept descriptions. Then, we show that application of any of the rules 2 through 9 to a
description decreases the cost of the description, and therefore, there is at most a finite number of
times that the rules can be applied to a description. Termination then is a trivial consequence of
the facts that the rules are applied to descriptions inside the constraints independently, and the
number of descriptions in a terminology is finite.

Let us consider a function, Cost[], that “charges” the following amounts for the
expressions generated by non-terminals of G

*? Note that by C, V, and A we mean any symbol in D that is replaced by C, V, and A respectively before its
derivation from G,. We use other italic symbols here in place of the bold non-terminals to indicate strings
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Cost[C] = 0; Cost[V] = O;

Cost[(all PfD)] = 1 + Cost[Pf] + Cost[D];

Cost[(fd D Pfs Pf)] =3 + Cost[D) + Cost[Pfs] + Cost[Pf] + Cost,[Pf];
Cost{(and D, D, Ds)] = 1 + Cost[D;] + Cost[Ds] + Cost[Ds];
Cost[(same-as Pf; Pf;)] = | + Cost[Pf;] + Cost,[Pfi] + Cost[Pf3] + Cost,[Pf];
Cost[A] =0;

Cost[Id] = 1;

Cost[(comp Pf, Pf,)) =2 + 4 - Cost[Pf;] + Cost[Pf;] + Cost[Pf2);
Cost[Pfs Pf] = Cost[Pfs] + Cost[Pf] + Costy,[Pf];

Cost[e] =0;

Cost{Ds D) = Cost[Ds] + Cost[DY;

where Costg,[Pf] is 10 if Pfis a primitive attribute A, and O otherwise. It is not hard to see that for
any description generated by G,, its cost is finite and non-negative (as it is computed as a finite
number of additions and multiplications of non-negative numbers).

Also note that after applying any of the rules 2 through 9 in Table B.1 to a description
generated by grammar G,, the resulting description can also be generated by Gy. This fact follows
from the observation that the right-hand-sides of the rules can be generated from the grammar
assuming their components (such as D, A, Pf, Pfs\, Pfs,, Pfi, and Pf) can. However, since
right-hand-sides only use components of the ieft-hand-sides, and since left-hand-sides can be
generated from G, by assumption, so can the resulting description. Therefore, to prove that the
process of the exhaustive rule application to a description (generated by G,) terminates, it is
sufficient to show that an application of any of the rewrite rules 2 through 9 to any description
decreases its (finite, integer and non-negative) cost.

Next, note that rewrite rules 2 through 6 deal with rewriting concept descriptions, while
the last three rules rewrite attribute descriptions. Since attribute descriptions do not contain
concept descriptions, and since the cost of every inner concept description is always added to the
total cost of the outer (concept) description by our cost function definition, it is sufficient to show
that the cost of the right-hand-side of each of the rules 2 through 6 is less than the cost of the
corresponding left-hand-side.

On the other hand, note that the cost of an inner attribute description is either added (and
possibly modified by a constant positive factor) to the cost of the outer description by itself or
with addition of the special cost. However, both left- and right-hand-sides of rewrite rules 8 and 9
as well as any attribute description containing them have special costs of 0. It follows that in
order to prove that an application of any of these rules decreases the total cost of a description, it

generated from the corresponding non-terminals, and we use subscripts to distinguish between different
strings generated from the same non-terminal.
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is also sufficient to show that the cost of the right-hand-side of the rule is less than the cost of the
corresponding left-hand-side.

Consider rule 7 now. An attribute description Pf” that might contain the left-hand-side of
the rule, (comp Id Pf), computes its cost using a product of a positive constant factor and either
the cost of the left-hand-side of the rule by itself or in addition to its special cost. However, since
Pf’ and any “higher-level” descriptions containing Pf’ have special costs of 0, it is sufficient to
show that the cost of the right-hand-side, Cost[Pf], of rule 7 is less than the cost of the
left-hand-side, Cost[(comp Id Pf)], as well as that the cost of the right-hand-side plus its special
cost, Cost,[Pf], is less than the cost of the left-hand-side plus its special cost

Cost,,[(comp Id Pf)].

The following shows the sufficient differences of the costs of the right- and
left-hand-sides of the rewrite rules 2 through 9. All of the equalities follow directly from the
definitions of costs.

(2) Cost[(all Id D)] - Cost[D] = 2 + Cost[D] - Cost[D] > 0;

(3) Cost{(all (comp Pf; Pf) D)] - Cost[(all Pf; (all Pf, D))] =
1 + (2 +4 - Cost[Pfi] + Cost[Pf,] + Cost,,[Pf2)) + Cost[D] -
(1 + Cost[Pfi] + (1 + Cost[Pf>] + Cost[D})) =
1 + 3 - Cost[Pf,] + Cost,,[Pf:] > 0;

(4) Cost[(fd D Pfs, A Pfs,)] - Cosi[(fd D Pfs, (comp A Id) Pfs.)] =
3 + Cost[D] + Cost[Pfs\] + 10 + Cost[Pfs,) —
(3 + Cost[D] + Cost{Pfs;] + 2 + 1) + Cost[Pfs;]) =7 > 0;

(5) Cost[(same-as A Pf)] - Cost[(same-as (comp A 1Id) Pf)) =
1 + 10 + Cost[Pf] + Cost,[Pf1-(1 + 2+ 1) + Cost[Pf] + Cost[Pf]) =
7>0;

(6) Cost[(same-as Pf A)] - Cost[(same-as Pf(comp A Id))] =
1 + Cost[Pf] + Cost,[Pf] + 10— (1 + Cost[Pf] + Cost,[Pf1+ (2 + 1)) =
7>0;

(7) Cost[(comp Id Pf)) - Cost[Pf]1=2+4-1+ Cost[Pf] + Cost,[Pf] ~ Cost[Pf] =
6 + Cost,,[Pf] > 0;

Cost[(comp Id Pf)] + Cost,,[(comp Id Pf)] - Cost[Pf] - Cost,,[Pf] =
2+4- 1+ Cost[Pf] + Cost,[Pf] +0 - Cost[Pf] — Costo[Pf]1 =6 > 0;
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(8) Cost[(comp Pf A)] - Cost[(comp Pf (comp A Id))] =
2+4-Cost[Pf1+10-Q+4-Cost[Pf]+ 2+ 1))=7>0;

(9) Cost[(comp (comp Pf, Pf>) Pf3)] — Cost{(comp Pf; (comp Pf; Pf;))] =
2+4-(2+4- Cost[Pf1] + Cost[Pf3] + Cost,[Pf2)) + Cost[Pf3] + Cost,,[Pf3] -
(2 +4- Cost[Pfi] + (2 + 4 - Cost[Pf;] + Cost[Pf;] + Costy[Pf3])) =
10 + 16 - Cost[Pfi] + 4 - Cost[Pf>] + 4 - Cost,[Pf2] + Cost[Pf3] + Cost,[Pfs] -
(4 +4 - Cost[Pfi] + 4 - Cost[Pfy] + Cost[Pfs] + Cost,[Pf3]) =
6 + 12 - Cost[Pfi] + 4 - Cost,,[Pf:] > 0.

Part 2: Proof of translation. Next, we prove that after an exhaustive application of the
rules 2 through 9 in Table B.1 to a description D generated by G,, one obtains a description D’

that can be generated by G,.

As pointed out in the proof of termination, if left-hand-side of a rewrite rule can be
generated by G, so can the right-hand-side; therefore, D’ can be generated from G,. Thus,

consider the following inductive proof on the number of productions 1 through S applied during
the generation of D’ by G,. (Validity of the induction is based on the fact that rewrite rules 2
through 9 in Table B.1 apply to and modify a concept description independently of whether it is
inside of other descriptions.) At every step, we assume that D’ cannot be derived from G; and
obtain a contradiction. In the base case, D’ must be generated from G, either by production 1 or 5.

Production 1. Production D ::= C | V also exists in G; (production 1°), and therefore, we
would be able to generate D’ from G,. Contradiction.

Production 5. Production D := (same-as Pf Pf) also exists in G, (production 5.
Therefore, we must have an attribute description Pf generated from some Pf that cannot be
generated by G;.

FPf cannot be Id as G; would be able to generate it with production 6’. Pf cannot be an
attribute A either since a rewrite rule S or 6 in Table B.1 would be applicable. The only other
choice we have for Pfis production 8 of G,. Thus, Pf has the form (comp Pf; Pf,)>.

Note that for any (comp Pf; Pf;) expression, Pf; cannot generate Id (by production 7 of
G)) since rewrite rule 7 would be applicable. Analogously, Pf; cannot generate (comp Pf1; Pf,)
(by production 8 of G,) since the rule 9 would be applicable. Therefore, Pf; must generate A (by
production 6 of G,).

Since, as we just showed, any (comp Pf; Pf;) can only generate (comp A Pfy), Pf can
only have the form (comp A (comp A ... (comp A Pf..))) where Pfga is either Id or A. Indeed,

*} We use subscripts in (comp Pf; Pf;) in order to distinguish between different Pf non-terminals.
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for any (comp Pfy Pf;), Pf; can only be either (comp A Pf;) which just adds another level of
nesting, or Id or A which is Pfgey,.

Next, note that Pfg.. cannot be A since rewrite rule 8 would be applicable. Therefore, our
FPf must have the form (comp A (comp A ... (comp A Id))), but this expression can be generated
from G; by productions 6” and 7°. Contradiction.

For the inductive step, let us assume that any description obtained by an exhaustive
application of the rewrite rules 2 through 9 in Table B.1 that can be generated by G; by a
sequence of at most k (k 2 1) productions 1 through 5 can be also generated from G,;. Let us also
assume that there is a description D’ obtained by an exhaustive application of the rewrite rules 2
through 9 in Table B.1 that (a) can be generated by G, by k+ 1 applications of productions 1|
through 5; and (b) cannot be generated by G.,. Since k + 1 = 2, the first production applied during
the generation of D’ from G, is either 2, 3, or 4. However, a contradiction can then be obtained in
all three cases as follows.

Production 2. (all Pf D). In this case, we should be able to generate D’ from (all A D).
Indeed, if Pf did nor generate A, it would have to generate either (comp Pf Pf), in which case
rewrite rule 3 in Table B.1 would still be applicable contrary to our assumption that all rules were
already exhaustively applied; or Id, in which case rule 2 would still be applicable. By inductive
assumption however, since it takes no more than k productions 1 through S to generate D by G,, it
can also be generated by G;. Contradiction.

Production 3. (fd D Pfs Pf). Note that G, has the same production (3°), and G, and G,
have the same productions for Pfs non-terminal. Therefore, we must have an attribute description
Pf generated from some Pf that cannot be generated by G: (recall that by induction, D can be
generated by G;, since generation of description D from G, uses at most k productions 1 through
5).

Pf cannot be Id as G, would be able to generate it with production 6’. Pf cannot be an
attribute A either, since the rewrite rule 4 in Table B.1 would be applicable. The only other choice
we have for Pfis production 8 of G,. Thus, Pf has the form (comp Pf; P1,).

Then however, a contradiction can be obtained in exactly the same way as it was done
when we discussed the (base) case of production 5.

Production 4. (and D D Ds). In this case, the description can be generated by G, by
production 4" and due to the fact that all of the “inner” descriptions are derived by G; with no

more than k productions 1 through 5. Contradiction.
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Part 3: Proof of equivalence. Suppose we obtained a terminology T’ (resp. constraint
E’, either of the form D," < Dy’ or D, = Dy’) after exhaustively applying rewrite rules 2 through 9
in Table B.1 to a terminology T (resp. some constraint E, either of the form D, <D, or D, =D»).
We will prove that T = Eifand only if T’ &= E, and T &= E if and onlyif TE=E’.

Consider an application of one of the rules 2 through 9 in Table B.1 to some description
D, which replaces a description H inside it with a description F to obtain the new top-level
description D;. By the compositional nature of the definition of the interpretation function (i.e. by
the fact that interpretation of a description directly depends only on the interpretation of its
“parts”), it follows that if F* = B for any interpretation I, then D,' = D, for any interpretation I.

Moreover, if D' = D' for any interpretation I, given a terminology T with constraint S of
the form C < D, a terminology T’ with constraint S’ of the form C < D; in place of S, and some

constraint $”, T = S” if and only if T* = S”. Indeed, by definitions of satisfiability and logical
implication, T logically implies every constraint in 7* and vice versa. Therefore, if a terminology

T (resp. T*) logically implies every constraint of terminology T’ (resp. T), and if T'=S”
(resp. T = S”) for some constraint S”, then T &= S~ (resp. T = §").

Completely analogous reasoning applies if S (resp. S*) has the form C = D (resp. C =D").

In addition, if we consider an application of one of the rules 2 through 9 in Table B.1 to
S that obtains a constraint S such that both left- and right-hand-sides of S and S’ have the
same interpretation for an arbitrary interpretation I, the reasoning analogous to the argument
above allows us to deduce that for any terminology 7, T &= S” if and only if T = S’”. (Consider a
terminology containing only constraint $” or S".)

It follows that in order to prove the equivalence, it is sufficient to show that for every rule
2 through 9 in Table B.1 that replaces its left-hand-side H with the right-hand-side F, H' = F* for
an arbitrary interpretation I.

Rule 2: Replace (all Id D) by D.

@ldD)={xe Alxe D'} =D".

Rule 3: Replace (all (comp Pf; Pf;) D) by (all Pf; (all Pf, D)).

(all (comp Pf, Pf;) D)'={ xe Al PR'PR'(x)) e D'} =
{ xe AIPA'(x) € (all P, D)} = (all P, (all Pf; D))".

Rules 4, 5, 6 and 8: A is replaced by (comp A Id).

(compAId)'={(x,y)Ixe Aand Id"A'(x)) =y } =
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{(xy)Ixe AandA'(x) =y } = A"
Rule 7: Replace (comp Id Pf) by Pf.

(comp Id Pf)' = { (x,y)lxe Aand PfId'(x) =y } =
{(x,y)Ixe Aand Pfi(x) =y } = PF".

Rule 9: Replace (comp (comp Pf, Pf.) Pf;) by (comp Pf, (comp Pf; Pf)).
(comp (comp Pf, Pf;) Pf)' = (comp Pf; (comp Pf; Pf3))' since

(comp (comp Pf, Pf) Pf;)' = { (x, y) | x & A and Pf((comp Pf, PR)'(0)) =y } =
{ (v, y)Ixe Aand PAR'(PHL'(PA'(x)) =y }, and

(comp Pfi (comp Pf; Pfy))' = { (x, y) I.x € Aand (comp Pf, PRY(Pf(x) =y } =
{ (x,y)Ixe Aand PR PA'PR' ) =y ).
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