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Abstract

Transportation is one of the sectors that directly touches the major challenges that

energy utilities are faced with, namely, the significant increase in energy demand

and environmental issues. In view of these concerns and the problems with the

supply of oil, the pursuit of alternative fuels for meeting the future energy demand

of the transport sector has gained much attention.

The future of transportation is believed to be based on electric drives in fuel cell

vehicles (FCVs) or plug-in electric vehicles (PEVs). There are compelling reasons

for this to happen: the efficiency of electric drive is at least three times greater

than that of combustion processes and these vehicles produce almost zero emis-

sions, which can help relieve many environmental concerns. The future of PEVs is

even more promising because of the availability of electricity infrastructure. Fur-

thermore, governments around the world are showing interest in this technology

by investing billions of dollars in battery technology and supportive incentive pro-

grams for the customers to buy these vehicles. In view of all these considerations,

power systems specialists must be prepared for the possible impacts of these new

types of loads on the system and plan for the optimal transition to these new types

of vehicles by considering the electricity grid constraints.

Electricity infrastructure is designed to meet the highest expected demand,

which only occurs a few hundred hours per year. For the remaining time, in par-

ticular during off-peak hours, the system is underutilized and could generate and

deliver a substantial amount of energy to other sectors such as transport by gener-

ating hydrogen for FCVs or charging the batteries in PEVs. This thesis investigates

the technical and economic feasibility of improving the utilization of electricity sys-

tem during off-peak hours through alternative-fuel vehicles (AFVs) and develops

optimization planning models for the transition to these types of vehicles. These

planning models are based on decomposing the region under study into different

zones, where the main power generation and electricity load centers are located,

and considering the major transmission corridors among them.
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An emission cost model of generation is first developed to account for the envi-

ronmental impacts of the extra load on the electricity grid due to the introduction

of AFVs. This is followed by developing a hydrogen transportation model and,

consequently, a comprehensive optimization model for transition to FCVs in the

context of an integrated electricity and hydrogen system. This model can deter-

mine the optimal size of the hydrogen production plants to be developed in different

zones in each year, optimal hydrogen transportation routes and ultimately bring

about hydrogen economy penetration. This model is also extended to account for

optimal transition to plug-in hybrid electric vehicles (PHEVs). Different aspects of

the proposed transition models are discussed on a developed 3-zone test system.

The practical application of the proposed models is demonstrated by applying

them to Ontario, Canada, with the purpose of finding the maximum potential

penetrations of AFVs into Ontario’s transport sector by 2025, without jeopardizing

the reliability of the grid or developing new infrastructure. Applying the models to

this real-case problem requires the development of models for Ontario’s transmission

network, generation capacity and base-load demand during the planning study.

Thus, a zone-based model for Ontario’s transmission network is developed relying on

major 500 and 230 kV transmission corridors. Also, based on Ontario’s Integrated

Power System Plan (IPSP) and a variety of information provided by the Ontario

Power Authority (OPA) and Ontario’s Independent Electricity System Operator

(IESO), a zonal pattern of base-load generation capacity is proposed.

The optimization models developed in this study involve many parameters that

must be estimated; however, estimation errors may substantially influence the opti-

mal solution. In order to resolve this problem, this thesis proposes the application

of robust optimization for planning the transition to AFVs. Thus, a comprehensive

sensitivity analysis using Monte Carlo simulation is performed to find the impact

of estimation errors in the parameters of the planning models; the results of this

study reveals the most influential parameters on the optimal solution. Having a

knowledge of the most affecting parameters, a new robust optimization approach is

applied to develop robust counterpart problems for planning models. These mod-
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els address the shortcoming of the classical robust optimization approach where

robustness is ensured at the cost of significantly losing optimality. The results of

the robust models demonstrate that with a reasonable trade-off between optimality

and conservatism, at least 170,000 FCVs or 900,000 PHEVs with 30 km all-electric

range (AER) can be supported by Ontario’s grid by 2025 without any additional

grid investments.
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Chapter 1

Introduction

1.1 Research Motivation

Currently, energy utilities are presented with the challenges of increased energy de-

mand and the need to immediately address environmental concerns such as climate

change. Due to population and economic growth, the global demand for energy is

expected to increase by 50% over the next 25 years [1, 2]. This significant demand

increase along with the dwindling supply of fossil fuels has raised concerns about

the environment and the security of the energy supply.

The transport sector is one of the largest and fastest growing contributors to

energy demand, urban air pollution and greenhouse gases; for example, in Canada,

the transport sector represents almost 35% of the total energy demand and is the

second highest source of greenhouse gas emissions [3, 4]. In view of these facts

and the challenges associated with the supply of oil, the issue of alternative fuels

for meeting the future energy demand of the transport sector has gained notable

attention.

Owing to the increased energy demand and environmental concerns, different

approaches such as distributed generation and demand-side management have been

proposed and are widely being put into practice (e.g., [5]–[8]). However, the optimal
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utilization of the existing energy infrastructure is an issue that also ought to be

properly addressed to deal with the major challenges that energy utilities are facing;

this is the main objective of this thesis. The electric grid, which is a strategic

asset, can be mentioned as an example. This infrastructure is designed to meet

the highest expected demand, which occurs only a few hundred hours per year, at

most about 5% of the time. For the remaining time, in particular during off-peak

hours, namely 11 pm to 7 am, the system is underutilized and could generate and

deliver a substantial amount of energy to other sectors such as transport without

jeopardizing the reliability of the system. This unutilized generation capacity can

be used efficiently in hydrogen production for use by fuel cell vehicles (FCVs) or for

charging the batteries in plug-in electric vehicles (PEVs), such as hybrid vehicles

(PHEVs) or battery-powered vehicles (BPVs), with zero or very low emissions in

populated areas; this is the main reason that FCVs and PEVs have received critical

attention in recent years.

The introduction of alternative-fuel vehicles (AFVs), such as FCVs and PEVs,

improves the utilization and efficiency of the existing electricity grids and also helps

for further development of renewable energy resources in the future. The environ-

mental benefits of renewable energy resources such as wind and solar are sometimes

overshadowed by their intermittent nature and their consequent low capacity fac-

tors; this makes the development of these resources a challenging task. However,

the storage capacities of hydrogen in FCVs and batteries in PEVs provide dispersed

storage capacity for the whole grid that could help address this intermittency issue.

In view of the challenges associated with the supply of oil and environmental

benefits of FCVs and PEVs as well as the technical advantages of electric drives,

such as efficiency, the future of transportation is believed to be greatly influenced by

these new types of vehicles. In particular, the future of PEVs is even more promising

because of the availability of the grid infrastructure. With these facts in mind,

the electric grid impacts of AFVs should be analyzed in detail, and appropriate

quantitative tools and planning models for a transition to these vehicles should be

developed in order to maximize their environmental benefits and to minimize their
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corresponding costs and negative impacts.

Motivated by the notion of efficient utilization of the existing infrastructure,

this thesis explores optimal potential penetrations of AFVs into the transport sec-

tor by considering the electricity grid constraints during off-peak periods. This

research is novel as the application of Mathematical programming approaches for

deriving optimal transition to AFVs with environmental constraints in both pop-

ulation areas and generation as well as electricity grid constraints, in particular of

the transmission system, has not yet been addressed in the literature.

The “big picture” of this research is shown in Figure 1.1, which represents the

main sub-models, required data, analytical engine and major results. The region

under study is first decomposed into different zones, where the main power genera-

tion and electricity load centers are located and where there are major transmission

corridors between them. Thereafter, appropriate models for the transmission sys-

tem and the procurement of generation capacities in each zone during the planning

study are developed. Environmental costs and credits are also considered in gener-

ation facilities and population areas, respectively, to account for the environmental

benefits of AFVs and possible environmental consequences of the extra generated

power , which may not be necessarily pollution free. As can be observed in Figure

1.1, the proposed optimization models involve so many parameters that their esti-

mation errors may substantially influence the optimal solution. In order to resolve

this problem, this thesis proposes the application of robust optimization approach

to deal with uncertainty.

1.2 Literature Review

1.2.1 Hydrogen Economy and FCVs

The hydrogen economy is defined as a future economy in which hydrogen is adopted

for mobile applications and electric grid load balancing [9]–[12]. However, the hy-

drogen economy that is considered in this study is based solely on electrolytic
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hydrogen production during off-peak periods for use of fuel cell vehicles (FCVs).

Therefore, grid impacts of electrolytic hydrogen production plants (HPPs) during

off-peak hours serving the hydrogen requirement of the transport sector is the main

concern of this research.

Economic assessment of electrolytic hydrogen production as a whole, indepen-

dent of the type of power source for the HPPs, is studied in [13] where electricity

prices and fuel taxes are shown to be the two dominant factors influencing the

competitive position of electrolytic hydrogen production. The cost of electrolytic

hydrogen production, particularly during off-peak periods, has been studied in [14],

considering different fluctuating and stable electricity markets. It is shown in [14]

that hydrogen production using off-peak electricity, where prices are sufficiently

low, can be of interest in those countries that have highly fluctuating electricity

spot markets. An economic evaluation of electrolytic hydrogen production during

off-peak hours for the real case of Ontario, Canada is also performed in this thesis

to demonstrate the feasibility of the idea, given the electricity prices in Ontario.

Solar or wind-based hydrogen production to meet the demands of FCVs has also

been studied in a number of papers, e.g., [15]–[18], where the main emphasis is on

the role of hydrogen in the transport sector to overcome the intermittency issues of

these resources. These studies typically rely on a single type of generation resource

and do not consider the mix of different available generation resources to support

a hydrogen economy. Although renewable energy resources such as wind and solar

can help to meet the requirement of a true hydrogen economy, neglecting the mix of

different generation resources, which have low shares of polluting resources, causes

power system planners to underestimate the grid potential for covering the hydrogen

requirement of FCVs.

Planning the transition to a hydrogen economy has been studied in various loca-

tions and reported in the literature [19]–[31]. Each of these plans consider particular

aspects of this issue, varying considerably from place to place due to different lo-

cal limitations and energy policies, and with inadequate attention to the electric

grid constraints. This thesis explores a different aspect of a hydrogen economy
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transition in the transport sector by developing an optimization planning model

that takes into account both electricity and hydrogen networks as one integrated

system. Considering the future development of both generation and transmission

systems within a planning horizon, this model determines the optimal size of HPPs

to be installed in different locations and the optimal hydrogen transportation routes

required to achieve optimal hydrogen economy penetrations during this planning

framework. Furthermore, based on the reported works (e.g., [21,25]), planning the

transition to a hydrogen economy is usually based on some estimates of hydrogen

economy penetrations at a fixed time in the future; however, the optimal values of

these penetrations are found in the proposed model via an optimization process.

These optimal values are influenced by the electric grid constraints as well as by

hydrogen transfer limits. Another novel aspect of the proposed planning model is

the application of a new robust optimization approach, which gives the possibility

of adjusting the trade-off between optimality and conservatism. Also, the proposed

procedure does not jeopardize the reliability of the system through stressing the

system at peak demand hours and does not require the development of new and

separate infrastructure to cover the electricity requirement of HPPs.

1.2.2 PHEVs

In view of the technical and environmental advantages of PHEVs, the possible

impacts on the grid as a result of the PHEV load should be analyzed in detail.

Although this is a new area of research, some studies regarding the grid impacts

of PHEVs have been reported in the literature. For example, in [32], both PHEV

charging and discharging are studied in six geographic regions in the U.S. to examine

the grid impacts for different PHEV penetration levels up to a maximum level of

50%. That paper disregards the environmental impacts as well as different types

of vehicles, and it assumes a unique average value for the energy requirements of

all PHEVs.

Based on different charging scenarios, the authors in [33] evaluate various PHEV-
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charging impacts on utility system operations within the Xcel Energy Colorado

service territory. Total load impacts, additional generation capacity requirements

and incremental generation costs for a large penetration of PHEVs are evaluated

under both controlled and uncontrolled charging conditions. Environmental issues

are also studied, evaluating different types of emissions and considering the time of

charging and the marginal power plant.

The author in [34] evaluates the impact of PHEVs on both generation supply

and emissions for the Virginia-Carolinas electric grid in 2018. This study assumes

different charging levels and timing (in early evening or at night) and, based on a

gradual ramp up of PHEV market share to 25% in 2018, finds the generation shares

according to different types of power plants. The analysis in [34] also extends to

all regions of the country, finding the marginal power plants in different regions for

varied charging patterns.

In [35], the percentage of U.S. light-duty vehicles that could potentially be

supplied by the U.S. electricity infrastructure without additional investments in

generation, transmission and distribution capacities is estimated in 2007; the impact

on overall emissions of criteria gases and GHGs is also studied. Concentrating on the

limit of today’s grid infrastructure to support a new transportation load, this paper

does not consider the growing demands for both electricity and transportation,

the need to upgrade of the electricity infrastructure over time, and the gradual

penetration of PHEVs.

Smart demand management of power systems integrated with PHEVs has been

studied in [36]. This study assumes independent customers whose plugs are not

controlled by a utility and therefore they are allowed to charge their PHEVs even

at peak times - a practice which may cause grid problems. A smart agent-based de-

mand management scheme is proposed based on nonlinear pricing to assure proper

distribution of the available energy to PHEV customers. The suggested approach

in [36] assumes a relatively small number of PHEV connections in one urban area

modelled as an energy hub, and it does not consider the integration of PHEVs into

large electricity systems.
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The issue of PHEV charging strategies and their impacts on generation ex-

pansion planning is studied in [37]; this study identifies the required generation

infrastructure for the future based on an assumed high penetration of PHEVs.

Given four PHEV load profiles including uniform charging, home-based charging,

off-peak charging and vehicle-to-grid (V2G) operation, the most economical electric

capacity expansions by fuel type are found, considering the emission limits.

It can be seen from the above review that an important requirement that has not

yet been addressed is the inclusion of transmission system constraints in the analysis

process. Furthermore, even at the generation level, the reported works try to either

derive the grid potential for supporting PHEVs at the present time or to find the

required generation capacity for supporting a target value of PHEVs penetration at

a specified future time. These studies do not consider the penetration of PHEVs as

a transitional process. Also, to the author’s knowledge, the Mathematical program-

ming approach, especially with the consideration of parameter uncertainty, has not

yet been used specifically to find the grid potential for supporting PHEVs. This

research presents the development of a new robust optimization model to find op-

timal potential penetrations of PHEVs into the transport sector during a planning

horizon, considering that these vehicles can only be charged from the grid in off-

peak hours. The proposed techniques, relying on present and planned generation

and transmission capacities, allow to determine how the electricity system can be

optimally exploited during base-load periods for charging the PHEVs.

1.3 Objectives

Based on the state-of-the-art research discussed above, the main objectives in this

thesis are the following:

1. Propose an optimization framework for planning the transition to a hydro-

gen economy in the context of an integrated electricity and hydrogen system

based on a proper model of generation emission costs in order to properly ac-
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count for the environmental consequences of AFVs, and a model for hydrogen

transportation between different zones of the region under study.

2. Propose a similar optimization framework for planning the transition to PHEVs

based on a similar generation emission cost model developed for the FCV

transition model.

3. Employ the proposed optimization planning models to the real-case of On-

tario, Canada based on a transmission system model for Ontario, a zonal

base-load demand model and a zonal pattern of base-load generation capac-

ity in Ontario.

4. Perform a sensitivity analysis using Monte Carlo simulation to determine

the most influential parameters of the proposed optimization models on the

optimal value.

5. Apply a robust optimization approach using the most influential uncertain

parameters to derive optimal potential penetrations of AFVs into Ontario’s

transport sector by 2025 that properly consider these uncertainties.

1.4 Thesis Outline

This thesis is organized into seven chapters and two appendixes as follows:

Chapter 2 presents a review of the main concepts and tools of interest in this

thesis. It describes the concepts of integrated energy systems and energy hubs as

well as the main specifications of the hydrogen economy, FCVs and PHEVs. Then,

a brief review of Mixed Integer Linear Programming (MILP) models is presented,

followed by a discussion of the issue of parameter uncertainty in optimization mod-

els, and a review of the classical approaches to deal with this uncertainty. This

chapter also reviews the application of a robust optimization approach to properly

consider uncertainty.
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Chapter 3 presents a novel optimization framework for planning the transition

to AFVs. First, environmental aspects of AFVs in both population areas and

generation sites are comprehensively discussed. A model for generation emission

costs is then developed, followed by a hydrogen transportation model between the

zones for optimal transition to FCVs. This model is then modified to study an

optimal transition to PHEVs. Finally, the proposed optimization planning models

are evaluated on a three-zone test system under a variety of scenarios.

Chapter 4 presents the models required for the application of the planning

models for a real-case problem in Ontario, Canada. These models include Ontario’s

transmission network, zonal pattern of base-load generation capacity and zonal

base-load demands during the planning study period. This chapter also discusses

the required data in both the electricity and the transport sectors of Ontario as well

as the relevant assumptions regarding the transition to both FCVs and PHEVs. An

economic assessment of the electrolytic hydrogen production in Ontario during off-

peak hours is also presented in this chapter.

Chapter 5 presents the results of the application of the proposed optimization

models to Ontario, Canada. In this chapter, optimal potential penetrations of both

FCVs and PHEVs into Ontario’s transport sector are determined for a variety of

scenarios.

Chapter 6 discusses the impact of parameter uncertainty on the optimal po-

tential penetration of AFVs into Ontario’s transport sector. It first identifies and

ranks the most influential uncertain parameters through a sensitivity analysis using

Monte Carlo simulations. These results are then used to develop robust optimiza-

tion models to study the optimal transition to AFVs in Ontario, Canada, properly

accounting for the most relevant uncertainties.

Chapter 7 summarizes the conclusions and main contributions of this thesis and

suggests directions for future research work. Finally, Appendixes A and B provides

additional data for the test systems.
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Chapter 2

Background Review

2.1 Introduction

This chapter presents a review of the concepts and tools on which the research

presented in this thesis is based. It first discusses the concepts of integrated energy

systems and energy hubs. Major components of the future transport sectors, i.e.,

hydrogen economy and FCVs as well as PHEVs, are discussed here, highlighting

their interactions with the electric grid. A review of MILP models is presented

and the issue of parameter uncertainty in optimization models and the classical

approaches to deal with this issue are reviewed. Finally the application of robust

optimization approach to properly consider uncertainty is discussed.

2.2 Integrated Energy Systems

Different energy sources and carriers, such as natural gas, electricity, heat and hy-

drogen, are tightly coupled due to the technical and economic interactions among

them. For example, a microturbine being fed from natural gas can produce elec-

tricity and heat simultaneously, and an electrolyzer being fed from the electricity

network can satisfy both hydrogen and heat demands. In view of these interactions,
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Figure 2.1: Configuration of a comprehensive energy hub.

different energy systems that have typically been planned independently, should be

investigated in the context of an integrated energy system. Such a concept pro-

vides an opportunity for adequate and coordinated planning and operation of these

systems. For example, congestion on a particular transmission path in one energy

system can be relieved by shifting part of the energy flow to another energy sys-

tem [38, 39]. However, more complex problems arise in this integrated approach,

because the planning and operation are now transferred to a larger scale system

with multiple interactions between various sub-systems.

One of the key concepts, which is established in the context of integrated energy

systems is the energy hub [40]–[42]. This concept facilitates the study the flow of

multiple energy carriers or energy sources and their interactions. An energy hub is

an interface between energy loads (e.g., electricity, heat, compressed air, and hy-

drogen demand for transportation) and primary energy sources and energy carriers

(e.g., electricity, natural gas, district heat, and hydrogen). The concept of a node

in an electrical system can be generalized or extended to an energy hub in an inte-
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Figure 2.2: Configuration of the energy hubs under study.

grated energy system. Figure 2.1 represents the configuration of a comprehensive

energy hub with multiple inputs and outputs and a variety of converters and storage

devices. Since the converters inside an energy hub exhibit different characteristics,

with particular costs associated with different energy sources and related energy

carriers, an optimal dispatch problem can be formulated for the hub and associ-

ated energy systems. The integrated energy system considered in this research is

composed of two energy carriers, i.e., electricity and hydrogen, with energy hubs as

shown in Figure 2.2.

2.3 Hydrogen Economy and Fuel Cell Vehicles

The concept of a hydrogen economy which was introduced in the early 1970s has

attracted a great deal of attention both in industry and academia. Hydrogen, as

an energy carrier, can link or interface multiple energy resources such as fossil

fuels, nuclear, and renewables for multiple end-uses; and hence leads to a hydrogen

economy. This concept is concerned with the economic aspects associated with the

production, distribution, and utilization of hydrogen in energy systems. In this

respect, important issues in the hydrogen economy are the costs of production,

storage, and delivery to customers of hydrogen as an energy carrier.

The introduction of the hydrogen economy concept originated from environ-
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mental concerns. Because of the ecological impacts, mainly smog and greenhouse

gas emissions in the transport sector, the ultimate goal is to find a zero emission

transportation fuel that can be derived from a wide range of primary energy re-

sources [44]–[47]. The existing technologies for hydrogen production includes the

steam reforming of natural gas, and electrolysis. Electrolysis can be based on the

electricity provided from coal-fired, biomass, or nuclear power plants, and renew-

able resources such as wind, hydro and solar PV [48]. It is preferable to generate

hydrogen from non-fossil energy resources (e.g., renewables and nuclear); if fossil

fuel resources are considered, then carbon sequestration should also be included in

the process, but this process can be costly [49,50].

There is much debate with regard to the hydrogen economy, with strong advo-

cates and opponents [51]–[59]. At the present state of technological development,

there are a variety of concerns, regarding the production, distribution, storage, and

use of hydrogen. However, many of these concerns should be addressed in the course

of time [60], as proper solutions are developed to solve the current challenges of hy-

drogen as a new energy carrier. By keeping these challenges in mind, the hydrogen

economy concept can be considered in the framework of integrated energy systems

for the following reasons:

1. Potential for Energy Storage

One physical characteristic of electricity is its lack of storage capacity, at

least in large quantities. Consequently, the grid must remain constantly en-

ergized with an instantaneous balance between the generated electricity and

variable demand. This is especially an issue for the incorporation of renew-

able energy sources such as wind and solar which are intermittent in nature.

Electrical energy storage can relieve this stringent balancing requirement.

There are a few alternatives for electrical energy storage, including pumped

hydro and compressed air energy storage in underground caverns, flywheels,

Superconducting Magnetic Energy Storage (SMES), super-capacitors, and

batteries [61, 62]. Hydrogen can be considered as a new alternative for elec-

tricity storage (e.g., [63,64]. Onboard use of hydrogen allows for zero emission
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fuel cell vehicles with extended range and rapid refueling. Hydrogen produc-

tion through the electrolysis process has around 60%-80% efficiency, which

means that a significant part of the electrical energy can be stored as hydro-

gen [44,58].

2. Decrease in Urban Air Pollution and Greenhouse Gas Emissions

If the hydrogen economy concept is properly applied, i.e., assuming non-fossil

resources for hydrogen production, it can significantly relieve many environ-

mental concerns. No NOx, SOx and CO2 emissions will be generated by fuel

cell vehicles in the urban airshed [48].

3. Diversification of Energy Production and Security of Supply

The economics of production, storage, and the utilization of hydrogen become

quite relevant in the context of competitive electricity markets, given the price

differences between peak and low price periods [65], and traditional generation

plants, which are most efficient when operating at rated load levels. Further-

more, for congestion problems in the electric transmission system during the

normal operation of a power grid, the use of hydrogen as an energy carrier to

increase the efficiency and reliability of the grid is certainly attractive. Under

these conditions, the availability of low-price electricity and unused genera-

tion capacity, the generation plant can be efficiently operated for hydrogen

production and storage that can later be used by fuel cell vehicles.

It should be noted that the hydrogen economy concept, which is applied in this

research, is concentrated on the application of hydrogen-related systems only in

the transport sector and not for power generation. Preliminary studies show that

electricity production by fuel cells in the grid level may not still be justifiable due

to higher efficiencies and lower costs of other energy pathways [63, 64, 66, 67]. In

fact, significant electricity price differences between off-peak and on-peak hours and

higher efficiencies and lower of fuel cells might make the power generation by fuel

cells for the grid economically viable.
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2.4 Plug-in Hybrid Electric Vehicles

Hybrid electric-vehicle (HEV) technology presents an option for significant reduc-

tions in gasoline consumption as well as smog precursor and GHG emissions. This is

achieved through the possibility of downsizing the combustion engine and the ability

to recover a substantial amount of the vehicle’s kinetic energy in the battery storage

system through regenerative braking [68]–[70]. However, EVs still suffer from their

dependence on a single hydrocarbon fuel source. The emerging PHEV is somewhat

similar to a conventional HEV but features a much larger onboard battery and a

plug-in charger; this helps it to achieve a large All-Electric-Range (AER) capability

for the a portion of a driving trip. The main advantage of PHEV technology is that

the vehicle is not completely dependent on a single fuel source; thus, it can travel

30 km or more on battery power alone, without running the internal combustion

engine. This allows the completion of daily trips on battery power alone and thus

substantially reduces gasoline consumption as well as cold-start emissions [70]–[73].

However, at the present state of technological development, there are still some con-

cerns regarding the viability of PHEVs; in particular, energy-storage costs, range,

and durability are the major challenges that must be overcome [74].

PHEV technology is a prime example of the integration of the transport sector

with power systems to improve the efficiency of both. In this case, the integration of

the energy demand for electrical power with the energy demand for transportation

fuel is of particular interest. Unutilized generation capacity during off-peak hours

as well as low electricity prices and demands in these time periods provide a unique

opportunity of supporting PHEVs using the electricity grid.

2.5 Mixed Integer Linear Programming Models

Mixed integer linear programming (MILP) is a powerful mathematical framework,

which involve both discrete and continuous decision variables in linear programming
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problems [75]. An MILP model can generally be represented as follows:

min c′x

s.t. Ax ≥ b,

l ≤ x ≤ u

xe integral, e = 1, ..., g, (2.1)

where the input data are the matrices c(n× 1), A(m× n), b(m× 1), l(n× 1) and

u(n × 1), and x is an n-vector of decision variables with g integer elements (1 ≤
g ≤ n). The ability of including binary or integer decision variables in the model

allows modeling a variety of real-world problems. In this research, such discrete

variables are used to model emission costs of generation, hydrogen transportation

and transmission losses.

The most common method for solving MILP problems is the branch-and-bound

method; more novel methods include branch-and-price and branch-and-cut meth-

ods [76]–[78]. These methods require solving a sequence of linear programming

relaxations of the MILP problem. In particular, the branch-and-cut method is a

combination of a cutting plane method with a branch-and-bound algorithm. In

the cutting plane method, additional constraints, called cutting planes, are added

to tighten the feasibility region. There are powerful software packages, such as

CPLEX [79], that can efficiently solve large MILP problems; this is the adopted

solver in this research, using the branch-and-cut method to solve the proposed

MILP problems.

Since MILPs are classified in the category of NP-hard problems [80, 81], com-

putational requirements can grow substantially as the number of integer variables

in the model increases; this is a major disadvantage of MILP problems. Therefore,

due to theoretical and practical limitations, there is a need to consider trade-off

between solution quality and computational time for large-size MILP problems. In

CPLEX, this is achieved by choosing an appropriate value for the parameter (di-

rective) mipgap which defines how close one is to the optimal solution (e.g., for
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mipgap equal to 0.01, CPLEX will stop as soon as it finds a solution within 1%

of optimality). There is also the possibility of changing the behavior of the MILP

problem and improve the performance of CPLEX by defining the values of some

other directives such as mipemphasis which directs the branch-and-cut algorithm

to focus on different balances of optimality and feasibility, or mipcuts which in-

creases the cut generation and tightens the feasibility region of the MILP that

CPLEX optimizes [79,82].

2.6 Data Uncertainty in Optimization Models

Optimization models often rely on some input parameters whose values are typ-

ically assumed to be definitely known. More precisely, a general mathematical

programming problem has the following form:

min f0(x,d0)

s.t. fe(x,de) ≥ 0,∀e ∈ E, (2.2)

where x is a vector of decision variables and d e, e ∈ E ∪ {0} is the input data

or parameter vector of the optimization model. Input parameters usually come

from measurement, tests, historical data and various assumptions; hence, they are

subject to uncertainty and estimation error. On the other hand, errors in estimating

input parameters may severely affect the obtained optimal solution and its actual

performance. Thus, as the data take values different than nominal or expected

ones, several constraints may be violated, and the optimal solution yielded by the

nominal data may no longer be optimal or even feasible. Therefore, due to the

impact of data uncertainty on the quality and feasibility of the optimization models,

methodologies should be adopted that appropriately deal with the uncertainty of

the parameters in the model [83,84].

Sensitivity analysis and stochastic programming are the classical approaches

for dealing with parameter uncertainty in optimization models [85]–[88]. Sensitiv-
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ity analyses such as Monte Carlo simulations [89], which are used in this work,

measure the sensitivity of a solution to stochastic changes in the input parameters;

however, it provides no mechanism by which this sensitivity can be controlled. In

this regard, it can be counted as a reactive approach to deal with uncertainty [86].

In the stochastic programming approach, it is assumed that the probability dis-

tributions of the uncertain input parameters are known or can be estimated with

reasonable accuracy. The goal in this approach is to find a solution that is feasible

for all (or almost all) possible instances of the data and to maximize the expecta-

tion of some function of the decisions and the random variables. For example, in

chance constrained stochastic programming models where the feasibility of a solu-

tion is expressed by chance constraints, a feasible solution is not required to satisfy

every outcome of the random parameters, but it is required to be feasible with

at least some specified probability [90]. Therefore, the corresponding stochastic

optimization problem to (2.2) can be expressed as follows:

min k

s.t. Pr(f0(x, d̃0) ≤ k) ≥ p0,

P r(fe(x, d̃e) ≥ 0) ≥ pe,∀e ∈ E, (2.3)

where d̃e, e ∈ E ∪ {0} are the random variables associated with the constraint e

and pe are the threshold probabilities given by the decision-maker.

There are inherent difficulties with the aforementioned approach. First, while

the optimal decision variables can be quite sensitive to the distributions of the ran-

dom parameters, it is difficult, in practice, to accurately estimate these distribu-

tions; therefore, the obtained solution can be considered as only an approximation.

Secondly, even if the distributions are known, it is still computationally difficult

to evaluate the chance constraints. Finally, the convexity of the model can be lost

due to the introduction of chance constraints which increases the complexity of the

original optimization model [91,92].
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2.7 Robust Optimization

In view of all the difficulties with sensitivity analysis and stochastic programming

approaches discussed in the previous section, one of the most attractive approaches

of the last decade to deal with parameter uncertainty in the optimization process has

been robust optimization [93,94]. The classic robust optimization method presents

an uncertainty-immunized solution, which remains feasible in all realizations of the

input data, and the value of the objective function at this solution is the guaranteed

value of the uncertain objective. The main tools in the classic robust optimization

framework are uncertainty sets and a robust counterpart problem. Thus, uncertainty

in the input data is described through uncertainty sets, which contain all or most

possible values that may be realized for the uncertain parameters. Also, a deter-

ministic problem, which is called a robust counterpart problem, is associated with

the uncertain problem [90]. Given the nonempty uncertainty sets Ue, the robust

optimization yields a solution that optimizes the worst-case performance when the

input data belong to the uncertainty sets. More specifically, robust optimization

solves the following problem:

min max f0(x,d0)

s.t. fe(x,de) ≥ 0,∀e ∈ E,∀de ∈ Ue, (2.4)

where for e ∈ E ∪ {0}, the set Ue is the uncertainty set of the parameter d e; it

is important to highlight that the uncertain parameters are not simultaneously in

constraints and objective function. Although this approach provides immuniza-

tion to parameter uncertainty, its results are perceived to be too conservative for

real applications, i.e., robustness is ensured at the cost of significantly losing op-

timality [84, 91]. To rectify this shortcoming of robust optimization, it has been

suggested in the literature (e.g., see [95]–[99]) to intelligently shrink the uncertainty

set. One of such techniques was proposed in [83], which is also applicable to discrete

optimization models [100]. The main feature of this formulation is that it does not

lead to nonlinear models; therefore, the tractability of the problem is not affected.
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Also, this approach offers full control on the degree of conservatism desired for any

constraint. This approach will be applied in this research to develop robust opti-

mization models for transition to AFVs and is briefly explained next [83,84,100].

Consider the following general linear programming model:

min c′x

s.t. ã′
ex ≥ be, ∀e

x ∈ X, (2.5)

where X includes all mixed integer feasible solutions, and uncertainty is assumed

without loss of generality to affect only the constraint coefficients ãe, since even

problems with uncertainty in the cost vector c and the right-hand side be can also

be reformulated so that all uncertainties are only reflected in ãe. It is assumed

that every element of the vector ãe, i.e., ãev, v ∈ [1, n] is subject to uncertainty

and belongs to a symmetrical interval [âev − ∆aev, âev + ∆aev], which is known by

the decision-maker. This interval is centered at the point forecast âev, while ∆aev

measures the precision of the estimate. The scaled deviation sev of parameter ãev

from its nominal value can then be defined as:

sev =
ãev − âev

∆aev

, (2.6)

which belongs to [-1,1]. The aggregate scaled deviation for constraint e,
∑n

v=1 |sev|,
which is more accurate than individual ones, can take any value between 0 and n;

however, it is unlikely that all of the coefficients ãev will change and consequently

the true value taken by
∑n

v=1 |sev| will belong to a much narrower range. This point

is expressed in mathematical terms as follows:

n∑

v=1

|sev| ≤ Γe,∀e. (2.7)

The parameter Γe ∈ [0, n] is called the budget of uncertainty of constraint e, and
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its role is to adjust the robustness against the level of conservatism of the solu-

tion. The value of this parameter reflects the attitude of the decision-maker toward

uncertainty. Thus, for Γe = 0, there is no “protection” against uncertainty, and

Γe = n yields a very conservative solution because it can be interpreted as all the

uncertain parameters’ taking their worst-case values at the same time. For any

values between 0 and n, the decision-maker makes a trade-off between the protec-

tion level of the constraint and the degree of conservatism of the solution. If Γe is

an integer, it can be interpreted as the maximum number of parameters that can

simultaneously deviate from their nominal values.

The uncertainty set U now becomes:

U = {(ãev) | ãev = âev + ∆aevsev,∀e, v, sev ∈ Se} , (2.8)

where:

Se =

{
se = [se1, se2, ..., sen] | |sev| ≤ 1,∀v,

n∑

v=1

|sev| ≤ Γe

}
. (2.9)

Now, a robust optimal solution can be obtained from the following counterpart

problem:

min c′x

s.t. â′
ex + min

se∈Se

n∑

v=1

∆aevxvsev ≥ be, ∀e,

x ∈ X. (2.10)

It is proved in Theorem 1 of [83] that (2.10) is equivalent to the following problem,

which is a linear programming model:

min c′x

s.t. â′
ex − Γepe −

∑

v∈Ve

qev ≥ be, ∀e ∈ E,
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pe + qev ≥ ∆aevrv, ∀e ∈ E ∧ v ∈ Ve,

− rv ≤ xv ≤ rv, ∀v ∈ V,

pe ≥ 0, ∀e ∈ E,

qev ≥ 0, ∀e ∈ E ∧ v ∈ Ve,

rv ≥ 0, ∀v ∈ V,

x ∈ X, (2.11)

where E is the set of indexes of constraints subject to uncertainty, V is the set

of indexes of total uncertain parameters and Ve is the set of indexes of uncertain

parameters in constraint e. Observe that this robust formulation requires the de-

termination of a budget of uncertainty Γe ∈ [0, |Ve|] for each constraint e subject

to uncertainty, as well as the definition of new decision variables pe, qev and rv.

It is probabilistically guaranteed that even if more than a definite number of

uncertain coefficients change, then the robust solution will, with high probability,

remain feasible. Thus, it is proved that for constraint e with n uncertain parameters

to be violated with probability of at most εe, it is sufficient to choose a budget of

uncertainty Γe at least equal to 1 + Φ−1 (1 − εe)
√

n, where Φ is the cumulative

distribution of a standard normal [83]. Alternatively, the violation probability of

constraint e at a given budget of uncertainty Γe can be calculated as 1−Φ
(

Γe−1√
n

)
.

2.8 Summary

This chapter introduces the concepts of integrated energy systems and energy hubs.

Interactions between the electricity grid and the transport sector are discussed

through the frameworks of the hydrogen economy, FCVs and PHEVs. This chapter

presents a review of MILP problems and also discusses the issue of data uncertainty

in optimization models and reviews the classical approaches suggested to address

this problem. Finally, the robust optimization approach, which is the method

adopted in this research to deal with the problem of data uncertainty, is presented.
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The concepts presented in this chapter are used throughout the thesis to study

and propose optimization planning models for the transition to AFVs.
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An Optimization Framework for

Transition to AFVs Considering

Electricity Grid Constraints

3.1 Introduction

This chapter presents a detailed optimization framework for planning the transi-

tion to AFVs, with particular attention to electricity grid constraints. The proposed

model is based on decomposing the region under study into different zones, where

the main power generation and electricity load centers are located, which are as-

sumed to be interconnected through major transmission corridors. Considering the

future development of both power generation and transmission capacities as well as

future changes to the transport sector, this model seeks to find the optimal levels

of the load, in the form of HPPs or PHEVs, that can be supported in each zone

during off-peak periods.

In Section 3.2, environmental issues associated with AFVs in both population

areas and generation facilities are discussed. This is followed by the development

of an emission cost model of generation in Section 3.3. Optimization models for
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the transition to AFVs are first developed for FCVs in Section 3.4, and then are

extended in Section 3.5 to accommodate PHEVs. In Section 3.6, a small 3-zone test

system is developed to analyze the performance of the proposed planning frame-

work.

3.2 Environmental Aspects of AFVs

Many attempts have been made thus far to assign a monetary value to the damage

caused by CO2 emission, which is commonly referred to as the social cost of carbon

(SCC). More precisely, it is an estimate of the economic value of the extra or

marginal impact caused by the emission of one more tonne of carbon (in the form

of CO2) at any point in time [101]. The SCC can also be interpreted as the marginal

benefit of reducing carbon emissions by one tonne [102]. Reported values in the

literature for the SCC come in an extremely wide range. As an example, the

probability function developed in [103] based on 100 estimates of the SCC from

28 published studies, displays a median of 14 USD/ton of carbon, a mean of 93

USD/ton and a 95th percentile estimate equal to 350 USD/ton. There are also other

estimates of the SCC running from less than 1 USD/ton to over 1500 USD/ton of

carbon [102]. It is discussed in [103] that much of the uncertainty in the estimates

of the SCC corresponds to the following two main assumptions: the discount rate

(by which the future costs are discounted back to the year of emission), and the

equity weights that are used to aggregate monetized impacts over countries.

Each gasoline or diesel-fuelled vehicle in a population area and fossil fuel plant

release CO2 to the atmosphere; hence, based on the SCC, the monetary value of the

damages to the environment caused by such vehicles or generation plants can be

estimated. Therefore, an environmental credit is assigned to each FCV or PHEV

that can be introduced to the transport sector in this study, whose value depends on

the SCC, the fuel economy of the LDV, which is supposed to be replaced by a PHEV

or FCV, and the known value of CO2 emission from burning gasoline (2.3 kg/litre).

An environmental cost is also assigned to each polluting generation plant, which is
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based on the SCC, the power generation level and the CO2 emission rates of the

plant. Disregarding this type of environmental cost may lead to overestimating the

environmental benefits of AFVs. Thus, in order to cover the energy requirement

of the FCVs or PHEVs’ charging demands, extra power must be generated by

generation facilities which may not necessarily be a renewable source of energy; as

a consequence, the CO2 emission in the generation side could increase. Therefore,

while adopting FCVs or PHEVs in the transport sector reduces the CO2 emission in

the population area where the vehicle is used, it may increase the CO2 emission from

power generation, depending on the share of fossil fuel in the marginal generation

mix.

Although high penetration of AFVs may not necessarily result in emission re-

ductions in all regions, it would help to shift the emission from millions of tailpipes

in highly populated areas to a limited number of central generation power plants,

thus facilitating more efficient control and management of CO2 emissions. For

example, studies show that PHEVs result in lower emissions compared to conven-

tional gasoline vehicles even for regions with high CO2 levels from electric genera-

tion [33,34,104]. It is also important to highlight that the environmental benefits of

AFVs are not limited to CO2 emission reductions. Urban air emissions and photo-

chemical smog are major issues in densely populated areas [105]; e.g., the estimated

number of deaths in Toronto from air pollution is 5,800 annually [106]. These issues

could be addressed by the introduction of AFVs into the transport sector. In view

of these considerations, the environmental and health damage caused by all emis-

sions such as CO2, volatile organic compound, particulate matters, NOx, SOx and

Hg, is much more significant in densely populated areas [107]. Therefore, different

values for the social cost of CO2 emissions in populated areas versus unpopulated

areas where most generation power plants are located are considered in this study,

to account for the emission impact associated with vehicles.

It should also be noted that assigning environmental costs and credits to pol-

luting generation plants and AFVs, respectively, is particularly justified due to the

fact that the optimization models to find the electricity grid potential to support
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Figure 3.1: Emission cost function of generation.

AFVs are formulated and solved from the viewpoint of the government, which is

responsible for the public health care; this is especially the case in Canada. The

damaging consequences of emissions caused by internal combustion engine (ICE)

vehicles or fossil fuel power plants directly increase the government costs to main-

tain a standard level of health care.

3.3 Emission Cost Model of Generation

Based on the discussions presented in the previous section, CO2 emission costs of

generation are considered in the optimization models for transition to both FCVs

and PHEVs. Figure 3.1 represents a typical emission cost function during off-peak

hours, when the contributing generation resources include nuclear, renewables, CHP

and coal plants. It is to be noted that the contribution of gas-fired generation is not

usually considered during off-peak hours. Also, the emission of nuclear plants, in

per unit of electricity ultimately produced, are considered very negligible compared

to the emission levels of coal and CHP plants [108,109].

The emission cost function represented in Figure 3.1 in zone i and year y during

the time period of τ , which corresponds to off-peak hours, can be expressed as

28



Chapter 3. An Optimization Framework for Transition to AFVs

follows:

ECiy=





0 : 0 ≤ P τ
giy

≤ Pgaiy
,

ERchpi

(
P τ

giy
− Pgaiy

)

×SCCO2g × h × 365 : Pgaiy
< P τ

giy
≤ Pgbiy

,
[
ERchpi

(
Pgbiy

−Pgaiy

)
+ERcoali

(
P τ

giy
−Pgbiy

)]

×SCCO2g × h × 365 : Pgbiy
< P τ

giy
≤ Pgiy

.

(3.1)

where:

P τ
giy

is the average generation power during the time period of τ in zone i and year

y (in MW);

Pgaiy
is the maximum capacity of non-polluting generation resources in zone i and

year y (in MW);

Pgbiy
is the maximum capacity of non-polluting plus CHP generation resources in

zone i and year y (in MW);

Pgiy
is the maximum available generation resources in zone i and year y (in MW);

ERchpi
and ERcoali are the emission rates of CHP and coal plants, respectively (in

ton/MWh);

SCCO2g is the social cost of CO2 emission of generation (in CAD/ton);

h is the number of off-peak hours.

In order to incorporate this cost function into the optimization model, three sets

of binary and continuous auxiliary variables corresponding to three segments of

the cost function in Figure 3.1 are defined. Thus, Kτ
1iy, Kτ

2iy and Kτ
3iy are binary

variables, which take the value of 1 if the average zonal generation power during the

time period τ are located in the first, second and third segments of the emission cost
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curve, respectively. Also, P τ
g1iy

, P τ
g2iy

and P τ
g3iy

are continuous auxiliary variables

for the average zonal generation power P τ
giy

in the time period τ corresponding to

each segment of emission cost curve, which are defined as follows:

P τ
giy

=





P τ
g1iy

: if K τ
1iy = 1,

P τ
g2iy

: if K τ
2iy = 1,

P τ
g3iy

: if K τ
3iy = 1.

(3.2)

Based on the defined sets of binary and continuous auxiliary variables, the incor-

poration of CO2 emission costs in the generation side requires the addition of the

following cost components into the objective function:

EC∗ =
∑

y

∑

i

{
ERchpi

[
Kτ

2iyP
τ
giy

− Kτ
2iyPgaiy

+ Kτ
3iy

(
Pgbiy

− Pgaiy

)]

+ERcoali

(
Kτ

3iyP
τ
giy

− Kτ
3iyPgbiy

)}
SCCO2g × h × 365 (3.3)

by adding the following constraints:

0 ≤ P τ
g1iy

≤ Kτ
1iyPgaiy

Kτ
2iy

(
Pgaiy

+ ǫa

)
≤ P τ

g2iy
≤ Kτ

2iy

(
Pgbiy

+ ǫa

)

Kτ
3iy

(
Pgbiy

+ ǫa + ǫb

)
≤ P τ

g3iy
≤ Kτ

3iy

(
Pgiy

+ ǫa + ǫb

)

Kτ
1iy + Kτ

2iy + Kτ
3iy ≤ 1

P τ
giy

= P τ
g1iy

+ P τ
g2iy

+ P τ
g3iy

∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ (3.4)

where Z, Y and Ψ are the sets of zones, planning years and time periods, respec-

tively. Also, ǫa and ǫa are extremely small positive numbers.

In order to remove non-linear terms in 3.3 to keep the model an MILP prob-

lem, i.e., Kτ
2iyP

τ
giy

and Kτ
3iyP

τ
giy

, they are replaced by new variables V τ
2iy and V τ

3iy,
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respectively, by adding the following constraints:

V τ
2iy ≥ P τ

giy
− Pgiy

(
1 − Kτ

2iy

)

V τ
3iy ≥ P τ

giy
− Pgiy

(
1 − Kτ

3iy

)

V τ
2iy ≥ Pg

iy
Kτ

2iy

V τ
3iy ≥ Pg

iy
Kτ

3iy

∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ (3.5)

where Pg
iy

are lower bounds of zonal generation power.

3.4 Optimization Model for Transition to FCVs

In this section, an optimization planning model is developed that takes into account

both electricity and hydrogen networks as one integrated system. It is assumed that

the hydrogen demand for transportation purposes in each zone would be fulfilled by

the operation of electrolytic HPPs during off-peak price time intervals. Therefore,

the purpose of the proposed optimization model is to determine the optimal size

of HPPs to be installed in different zones, as well as to find the optimal hydrogen

transportation routes to achieve optimal hydrogen economy penetrations for each

year of the planning horizon. This section begins with the development of a hydro-

gen transportation model, and then the MILP model formulation is described, by

starting with the objective function and followed by the description of the required

problem constraints.

3.4.1 Hydrogen Transportation Model

In an ideal case, each zone should be able to fulfill its own hydrogen requirement.

However, due to resource limitations in a couple of zones, power loss in transmission

networks, the assumed level of hydrogen economy penetration or some operational
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Figure 3.2: Demonstration of the proposed hydrogen transfer concept.

or placement constraints, there may be a need for hydrogen transfer between par-

ticular zones in certain years. Among the possible modes of hydrogen transfer,

i.e., compressed gas trucks, cryogenic tanker trucks and pipelines [110], the first

mode is considered at this stage mainly because of economic considerations and

greater availability of the required infrastructure in the near term compared to

other options.

A simple demonstration of the proposed hydrogen transfer concept is shown

in Figure 3.2, where both hydrogen import and export possibilities exist for each

zone. In general, the total installed HPP capacity in zone i, by year y (Phppiy) can

be partly utilized for covering the local hydrogen demand as well as the hydrogen

requirements of other zones. Hence, the total capacity of an HPP can be decom-

posed into multiple components, each of which covers a portion of the hydrogen

requirement of other zones. For example, the power component Psijy in Figure 3.2

can be interpreted as the contribution of zone i in total required power of HPPs in

zone j, which should be transferred to zone j by compressed gas trucks. Similarly,

other zones such as zone j can share the required power of HPPs in zone i based

on a power component Psjiy. Based on this, the required MW capacity of HPPs

for zone i by Year y (Phiy) which supplies the local hydrogen demand to achieve a

certain level of hydrogen economy penetration, can be expressed as follows:
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Phiy = Phppiy −
∑

j 6=i

Psijy +
∑

j 6=i

Psjiy ∀i, j ∈ Z ∧ y ∈ Y1 (3.6)

where Y1 is the set of planning years excluding the first year. Also, the total installed

HPP in zone i by year y is equal to the previously installed HPP by year y− 1 and

the newly installed HPP in year y (∆Phppiy), which is expressed as follows:

Phppiy = Phppiy−1 + ∆Phppiy ∀i ∈ Z ∧ y ∈ Y1 (3.7)

In general, local required MW capacity of HPPs in zone i and year y for a 100%

hydrogen economy penetration can be calculated as follows:

Chppiy =
10−3AM.HHV

24 × 365ηb
hpp.FEfcv.CFhpp

CfyNldviy ∀i ∈ Z ∧ y ∈ Y (3.8)

where:

AM is the annual mileage (in km).

HHV is the higher heating value of hydrogen (≃39.45 kWh/kg).

ηb
hpp is the base efficiency of HPPs at the beginning of the planning horizon.

FEfcv is the fuel economy of the fuel cell vehicles (in km/kg).

CFhpp is the average capacity factor of HPPs (in %).

Nldviy is the total number of light-duty vehicles in zone i and year y.

Cfy is the correction factor in year y, which considers the efficiency improvement

of the HPPs over the planning years and is calculated as follows:

Cfy =
ηb

hpp[
ηb

hpp +
∆ηhpp

PS
(y − y1)

] ∀y ∈ Y (3.9)
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where PS is the planning span, ∆ηhpp is the efficiency improvement of the HPPs

over the planning horizon, and y1 is the first year of the planning years.

Based on the definition of Chppiy, the local required MW capacity of HPP to

achieve a certain level of hydrogen economy penetration can then be expressed as

follows:

Phiy = FFiyµyChppiy ∀i ∈ Z ∧ y ∈ Y (3.10)

where:

µ̄y is the maximum possible hydrogen economy penetration in year y which is

fixed by the system planner based on an assumed transition curve. This

transition curve accounts for the time needed for the development of the

required infrastructure and specifies the maximum penetration levels that

can be realized in each year to achieve a certain penetration level by the end

of the planning horizon.

FFiy is the feasibility factor in zone i and year y which determines the percentage

of the penetration levels set by the transition curve that is achievable due to

electricity grid constraints.

Combining (3.8)-(3.10) with (3.6) results in the following equality constraints in

which penetration levels are reflected:

Phppiy −
∑

j 6=i

Psijy +
∑

j 6=i

Psjiy

− 10−3AM.HHV

24 × 365FEfcvCFhpp

[
ηb

hpp +
∆ηhpp

PS
(y − y1)

]NldviyµyFFiy = 0

∀i ∈ Z ∧ y ∈ Y1 (3.11)

As previously discussed and demonstrated in Figure 3.2, corresponding to each

power component Psijy (MW) there is a transferred hydrogen component THijy
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(ton/day); these variables can be coupled together by a linking factor LFy as follows:

THijy = LFyPsijy ∀(i, j) ∈ Z∗ ∧ y ∈ Y1 (3.12)

where Z∗ = {(i, j) : i, j ∈ Z, i 6= j} is the set of indexes of hydrogen transfer corri-

dors. This relation means that the Psijy (MW) component in zone i is capable of

producing LFyPsijy (ton/day) hydrogen to be transferred to zone j by compressed

gas trucks. In order to find LFy, one should note the HHV of hydrogen as well as

the efficiency and average capacity factor of HPPs; thus, considering the efficiency

improvement of HPPs over time, LFy can, in general, be expressed as follows:

LFy =
24CFhpp

HHV

[
ηb

hpp +
∆ηhpp

PS
(y − y1)

]
∀y ∈ Y1 (3.13)

Average daily transferred hydrogen between zones i and j in each year (THijy)

should be zero or lie between predefined lower and upper bounds. This requirement

can be implemented by defining new binary variables in the following constraint:

βijyTH ≤ THijy ≤ βijyTH ∀(i, j) ∈ Z∗ ∧ y ∈ Y1 (3.14)

where TH and TH are the lower and upper bounds of daily transferred hydrogen,

respectively, and βijy are binary variables which take the value of 1 if there is

transferred hydrogen between zones i and j in year y.

Depending on the values of transferred hydrogen, appropriate numbers of com-

pressed gas trucks including cabs and tube trailers must be purchased. This can

be realized by the following set of constraints:

Nijy ≥ THijy/CT ∀(i, j) ∈ Z∗ ∧ y ∈ Y1 (3.15)

NTy ≥
∑

(i,j)∈Z∗

Nijy ∀y ∈ Y1 (3.16)
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y∑

k=y1

PTk ≥ NTy ∀y ∈ Y1 (3.17)

y∑

k=y−LTcab+1

PCk = NTy ∀y ∈ {y1 + LTcab − 1, ..., H} (3.18)

y∑

k=y1

PCk = NTy ∀y ∈ {y1, ..., y1 + LTcab − 1} (3.19)

where:

CT is the maximum capacity of each compressed gas truck (in ton).

Nijy is the integer number of compressed gas trucks or tube trailers with the

capacity of CT needed for route (i, j) in year y.

NTy is the total number of compressed gas trucks or tube trailers with the capacity

of CT needed in year y.

PTk is the integer number of purchased compressed gas trucks or tube trailers

with the capacity of CT in year k.

PCk is the integer number of purchased cabs in year k.

LTcab is the lifetime of cabs.

y1 and H are the first and last years of the planning horizon.

Note that the trucks are represented here in two components, i.e., cabs and tube

trailers, given the difference in the operational lifetime between them.

The required number of compressed gas trucks is linked to the transferred hydro-

gen in route (i, j) in year y through the constraints (3.15). Constraints (3.16) state

that the total number of required trucks should not be less than the required trucks

in all the possible routes. The total number of purchased trucks (tube trailers) by

year y is related to the total number of required trucks in year y by constraints

(3.17). Constraints (3.18) and (3.19) state that the total number of purchased cabs
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in any time interval equal to the lifetime of the cab ending in year y should be equal

to the total number of trucks (tube trailers) needed in year y.

3.4.2 Objective Function

The model’s objective is to minimize the present value of the net electricity, emission

and hydrogen transportation costs. Thus, the objective function consists of elec-

tricity generation and imported/exported power cost/revenue components; emission

cost and credit components in generation facilities and population areas, respec-

tively; and the hydrogen transportation costs. Therefore, the objective function is

expressed as follows:

min
∑

y∈Y

1

(1 + DR)y−y1
(C1y − C2y + C3y + C4y) (3.20)

where DR is the percentage of discount rate used to represent all costs at present

value, and Ciy, i ∈ {1, ..., 4} are different cost and revenue components, which are

defined in the following sections.

Net Electricity Cost

C1y represents the net total electricity costs in year y. Since different time frames for

the operation of HPPs during weekdays and weekends are assumed, the electricity

cost and revenue components in C1y have two separate terms corresponding to

different time frames in weekdays and weekends as follows:

C1y =
∑

i∈Z

{
(P ω1

giy
πω1

y + P ω1
miy

πω1
my

− P ω1
xiy

πω1
xy

) × hwd × 261

+(P ω2
giy

πω2
y + P ω2

miy
πω2

my
− P ω2

xiy
πω2

xy
) × hwe × 104

}
(3.21)

where:
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hwd and hwe are the number of HPPs operation hours in weekdays and weekends,

respectively.

ω1 is an identifier of the time period corresponding to weekday hours.

ω2 is an identifier of the time period corresponding to weekend hours.

Pgiy
, Pmiy

and Pxiy
are zonal generation power, imported power and exported

power, respectively, in zone i, year y and during the time period ω1 or ω2 (in

MW).

πy, πmy
and πxy

are internal, import and export electricity prices, respectively (in

CAD/MWh).

Environmental Credit

C2y represents the environmental credits assigned to FCVs in year y and is stated

as:

C2y =
∑

i∈Z

{
FFiy.µ̄y.Nldviy.AM.SCCO2p.ECO2 × 10−3

∑

c∈V T

(
V Sc

FEgvcy

) }
(3.22)

where:

V T is the set of indexes corresponding to different types of light-duty vehicles.

SCCO2p is the social cost of CO2 emission in the population area (in CAD/ton).

ECO2 is the constant value of CO2 emissions from burning gasoline (≃ 2.3 kg/litre).

V Sc is the percent share of the vehicle of type c.

FEgvcy
is the fuel economy of the gasoline vehicle of type c in year y (in km/litre).
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Emission Cost of Generation

C3y represents the environmental costs of generation in year y, and similar to C1y,

has two terms corresponding to weekdays and weekends. Based on the Mathe-

matical formulation developed in Section 3.3, this cost component is expressed as

follows:

C3y =
∑

i∈Z

{{
ERchpi

[
V ω1

2iy
− Kω1

2iyPgaiy
+ Kω1

3iy

(
Pgbiy

− Pgaiy

)]

+ERcoali

(
V ω1

3iy
− Kω1

3iyPgbiy

) }
SCCO2g × hwd × 261

+
{

ERchpi

[
V ω2

2iy
− Kω2

2iyPgaiy
+ Kω2

3iy

(
Pgbiy

− Pgaiy

)]

+ERcoali

(
V ω2

3iy
− Kω2

3iyPgbiy

) }
SCCO2g × hwe × 104

}
(3.23)

Hydrogen Transportation Cost

C4y represents total hydrogen transportation costs, including the capital and oper-

ating costs of compressed gas trucks, which can be stated as follows:

C4y = PCy.CCcab(1 − Scaby
) + PTy.CCtube(1 − Stubey

) +
∑

(i,j)∈Z∗

2OCy.dij.Nijy × 365

(3.24)

where:

CCcab and CCtube are capital cost of cabs and tube trailers, respectively (in CAD).

PCy and PTy are integer numbers of purchased cabs and tube trailers, respectively,

in year y.

Scaby
and Stubey

are salvage values of cabs and tube trailers, respectively, in year

y.

OCy is the operation cost of compressed gas trucks (in CAD/km).
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dij is the approximate distance between zones i and j (in km).

Based on straight-line depreciation, the salvage values for cab and tube trailers in

(3.24) can be calculated as follows, as per the notation defined in Section 3.4.1:

Scaby
=





1

(1+DR)(H−y+1) (y + LTcab − H − 1) /LTcab : ∀y ≥ H − LTcab,

0 : else .

(3.25)

Stubey
=





1

(1+DR)(H−y+1) (y + LTtube − H − 1) /LTtube : ∀y ≥ H − LTtube,

0 : else .

(3.26)

3.4.3 Constraints

Transmission System

The transmission-system model in this study is appropriate for long-term planning

studies, which are mainly concerned about generation, transmission, and demand

of active power [111,112]. In these studies, reactive power and related voltage issues

are usually indirectly represented in the transmission-system constraints by further

limiting the amount of active power that can be transferred between relevant areas.

Hence, given the nature of the presented studies which only require an approximate

representation of the grid, a dc optimal power flow model that accounts for the

transmission system losses is adopted here [113]. This model is discussed in detail

next.

The power losses in line (i, j) of the electricity network can be approximately

calculated as:

Plossij
∼= gij(δi − δj)

2 (3.27)
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where gij is the conductance of the line between buses i and j and δ denotes the

corresponding bus-voltage angles. Following the method proposed in [114] with

some modifications, a linear approximation of power losses in year y and during the

time period of τ can be obtained using L piecewise linear blocks as follows:

δτ
ijy =

∣∣δτ
iy − δτ

jy

∣∣ (3.28)

δτ
ijy =

L∑

l=1

δτ
ijy(l) (3.29)

Plossτ
ijy = gijy

L∑

l=1

αijy(l)δ
τ
ijy(l) (3.30)

where αijy(l) and δτ
ijy(l) denote the slope and value of the lth block of voltage angle

during the time period of τ , respectively. Assuming that each angle block has a

constant maximum length ∆δy, the slope of the blocks of angles for all lines (i, j)

can be calculated as:

αijy(l) = (2l − 1)∆δy ∀(i, j) ∈ Ω ∧ y ∈ Y (3.31)

where Ω is the set of indexes of transmission lines. Consequently, each block of

voltage angle is bounded between zero and ∆δy, as follows:

0 ≤ δτ
ijy(l) ≤ ∆δy ∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ ∧ l ∈ L1 (3.32)

where L1 is the set of total voltage angle blocks; L1 = {1, ..., L}.

To linearize the absolute value in 3.28, the two new nonnegative variables δτ+
ijy

and δτ−
ijy are defined, together with the following constraints [115]:

δτ
ijy = δτ+

ijy + δτ−
ijy

δτ
iy − δτ

jy = δτ+
ijy − δτ−

ijy

δτ+
ijy ≥ 0, δτ−

ijy ≥ 0

∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ

(3.33)
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The following constraints are also needed to enforce the adjacency of the angle

blocks:

µτ
ijy(l).∆δy ≤ δτ

ijy(l) ∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ ∧ l ∈ L2 (3.34)

δτ
ijy(l) ≤ µτ

ijy(l − 1).∆δy ∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ ∧ l ∈ L3 (3.35)

µτ
ijy(l) ≤ µτ

ijy(l − 1) ∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ ∧ l ∈ L4 (3.36)

where µτ
ijy(l) is a binary variable which adopts the value of one if the value of the

lth angle block for the line (i, j) during the time period of τ is equal to its maximum

value ∆δy; L2={1, ..., L − 1}; L3={2, ..., L}; and L4={2, ..., L − 1}.

Considering the line-loss model just described, the net power injected at zone i

in year y and during the time period of τ can be represented as:

P τ
iy =

∑

(i,j)∈Ω

[
1

2
gijy

L∑

l=1

αijy(l)δ
τ
ijy(l) − bijy(δ

τ
iy − δτ

jy)

]
(3.37)

where bijy is the susceptance of the line (i, j) in year y. As a result, the zonal-

power-balance constraints can be generally formulated as follows:

P τ
giy

− P τ
liy

+ P τ
miy

− P τ
xiy

−
∑

(i,j)∈Ω

[
1

2
gijy

L∑

l=1

αijy(l)δ
τ
ijy(l) − bijy(δ

τ
iy − δτ

jy)

]
= 0 (3.38)

∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ

where Pl is the total base load in each zone and is comprised of the zonal electricity

demand (Pe) and the total installed HPPs as follows:

P τ
liy

− P τ
eiy

− Phppiy
= 0 ∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ (3.39)
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Transmission Capacity Constraints

Based on the transmission model discussed in the previous section, these constraints

are defined as follows:

−bijy(δ
τ
iy − δτ

jy) +
1

2
gijy

L∑

l=1

αijy(l)δ
τ
ijy(l) ≤ Pdijy

bijy(δ
τ
iy − δτ

jy) +
1

2
gijy

L∑

l=1

αijy(l)δ
τ
ijy(l) ≤ Prijy

∀(i, j) ∈ Ω ∧ y ∈ Y ∧ τ ∈ Ψ (3.40)

where Pdijy and Prijy are the maximum capacities of the transmission corridor

(i, j) in year y for direct and reverse power flows, respectively. These limits are

obtained based on thermal and stability considerations such as reactive-power and

related-voltage stability issues.

Zonal Power Generation Limits

Zonal power generation in each year is confined by minimum and maximum limits,

Pg
iy

and Pgiy, respectively. These limits are the minimum and maximum effective

generation capacities which are available in each zone during the planning years in

the time period of τ :

Pg
iy
≤ P τ

giy
≤ Pgiy

∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ (3.41)

The lower bounds Pg
iy

may be set based on the operational considerations of the

base-load generation resources in each zone.
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Zonal Import/Export Power Limits

These limits are stated as:

Pmiy
≤ Pm

τ
iy ≤ Pmiy

Pxiy
≤ Px

τ
iy ≤ Pxiy

∀i ∈ Z ∧ y ∈ Y ∧ τ ∈ Ψ

(3.42)

where Pmiy
and Pmiy are the lower and upper bounds of imported power, respec-

tively, and Pxiy
and Pxiy are exported power minimum and maximum limits, re-

spectively.

HPP Placement Constraints

These constraints are represented by:

0 ≤ Phppiy
≤ Phppiy

0 ≤ ∆Phppiy
≤ ∆Phppiy

∀i ∈ Z ∧ y ∈ Y1

(3.43)

where Phppiy
is the maximum size of HPPs, which is allowed to be installed in zone

i by year y, and ∆Phppiy
is the maximum annual development of HPPs in zone i.

Phppiy
is equal to zero for the first year of the planning horizon.

Hydrogen Transportation Constraints

As discussed in Section 3.4.1, hydrogen transportation constraints are expressed by

(3.7) and (3.11)–(3.19).

Generation Emission Constraints

Based on the model developed in Section 3.3, these constraints are expressed by

(3.4) and (3.5).
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Penetration Constraints

These constraints are defined as:

0 ≤ FFiy ≤ 1 ∀i ∈ Z ∧ y ∈ Y (3.44)

FFiyµy − FFiy−1µy−1 ≥ 0 ∀i ∈ Z ∧ y ∈ Y1 (3.45)

Constraints (3.44) state that the penetration levels in each year cannot exceed the

limits µy set by the assumed transition curve, and (3.45) enforce the increase of

the ultimate penetration levels over time, so that the total number of FCVs in the

transport sector in each year cannot be less than in previous year. Furthermore,

the following constraints should be considered in the model for a uniform hydrogen

economy penetration in all zones:

FFiy − FFjy = 0 ∀i, j ∈ Z ∧ y ∈ Y1 (3.46)

3.5 Optimization Model for Transition to PHEVs

Using almost the same methodology as used in Section 3.4, with some modifications,

an optimization model for transition to PHEVs is developed based on the following

considerations:

• Since there is no integrated energy system in this case, all the variables and

constraints corresponding to the hydrogen transportation model are elimi-

nated.

• The charging of batteries is assumed to take place during a similar time frame

in both weekdays and weekends. Therefore, all the parameters and variables

in the FCVs model, that were defined for different time frames are not needed

in this case.
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• Annual mileage of PHEVs and FCVs are interpreted differently in the objec-

tive function of the optimization models. In FCVs, the only fuel is hydrogen;

therefore, the total distance traveled in a year, which is solely based on hy-

drogen, is considered in the emission credit term of the objective function.

However, PHEVs run on both battery and gasoline, and only the electric

share of vehicle miles traveled deserve credit in the objective function.

In view of the above considerations, the objective function of the optimization

model for transition to PHEVs can be expressed as follows:

min
∑

y∈Y

1

(1 + DR)y−y1
(C1y − C2y + C3y)

C1y =
(
P ω

giy
πω

y + P ω
miy

πω
my

− P ω
xiy

πω
xy

)
× h × 365

C2y =
∑

i∈Z

{
FFiy.µ̄y.Nldviy.DT.SCCO2p.ECO2 × 0.365

∑

c∈V T

(
V Sc

FEgvcy

) }

C3y =
∑

i∈Z

{
ERchpi

[
V ω

2iy
− Kω

2iyPgaiy
+ Kω

3iy

(
Pgbiy

− Pgaiy

)]

+ ERcoali

(
V ω

3iy
− Kω

3iyPgbiy

)}
SCCO2g × h × 365 (3.47)

where:

C1y, C2y and C3y are the net total electricity costs, emission credits and emission

costs of generation, respectively, in year y.

h is the number of off-peak hours per day in which PHEVs charging takes place.

ω is an identifier kept to relate this model to the FCV transition model, even

though is not really needed here.

DT is the PHEVs’ daily trip running on battery, which is also referred to as

all-electric range (AER) in the literature (in km).
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The constraints of this optimization model are almost the same as the ones dis-

cussed in Section 3.4.3; however, hydrogen-transportation-related constraints are

disregarded, and all the parameters and variables defined for the two periods ω1

and ω2 are considered here only for one time period ω. Hence, the zonal-power-

balance constraints are represented as follows:

P ω
giy

− P ω
liy

+ P ω
miy

− P ω
xiy

−
∑

(i,j)∈Ω

[
1

2
gijy

L∑

l=1

αijy(l)δ
ω
ijy(l) − bijy(δ

ω
iy − δω

jy)

]
= 0 (3.48)

∀i ∈ Z ∧ y ∈ Y

where Pl is the total base load in each zone and is comprised of the zonal electricity

demand Pe and PHEVs charging power FFµPch as follows:

P ω
liy

− P ω
eiy

− FFiyµyPchiy = 0 ∀i ∈ Z ∧ y ∈ Y (3.49)

with Pchiy representing the total maximum PHEVs charging power in zone i and

year y.

3.6 Test System

In this section, a test system is developed to evaluate the performance and demon-

strate the capabilities of the proposed model for transition to FCVs in a planning

horizon from 2008 to 2025. This model is the more comprehensive one of the two

models due to its hydrogen transportation constraints and hence captures all the

properties of the proposed planning framework. Also, the small scale of this test

system allows one to better understand and interpret the results and evaluate the

impacts of different constraints.

As demonstrated in Figure 3.3, the test system is composed of three zones

interconnected by 500 kV transmission corridors and with the possibility of power
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Figure 3.3: 3-zone test system.

export to a neighboring jurisdiction in Zone 1. The approximate distances between

the zones are also reflected in this figure; the parameters, which are used to model

the electricity network are based on typical values of 500 kV networks, considering

these approximate distances. Further assumptions regarding both electricity and

transport sectors are discussed in the following sections.

3.6.1 Transport Sector

LDVs

The number of LDVs in Zones 1, 2 and 3 are assumed to be equal to 50,000, 900,000

and 550,000, respectively, with 1% annual rate of increase. These values are selected

in proportion of the corresponding zonal electricity demands. Also, the assumed

annual mileage of LDVs is 20,000 km.

Disregarding the different types of gasoline-fuelled LDVs, an average fuel econ-

omy of 10 km/litre is assumed for all these vehicles. However, in order not to

overestimate the environmental credit of FCVs, it is assumed that this average fuel

economy will be improved by 20% by the end of the planning horizon.
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Figure 3.4: Pattern of transition to FCVs in the transport sector.

Transition Pattern

Maximum penetrations of the hydrogen economy into the transport sectors of all

three zones (µ̄y) are assumed to be as shown in Figure 3.4. This curve specifies the

maximum possible hydrogen economy penetrations in each year with respect to the

ultimate K% penetration by the end of the planning horizon. Numerical values of

µ̄y in the model are calculated with K=100.

Hydrogen Demand

Based on 20,000 km annual mileage and 100 km/kg average fuel economy of the

different types of fuel cell light-duty vehicles [13, 21, 116], the average hydrogen

demand of a representative FCV is approximately calculated to be 0.55 kg/day.

This number yields the daily hydrogen demand in each zone, considering the number

of LDVs and hydrogen economy penetration levels to be realized each year following

the transition curve. In this way, the hydrogen demand of all the transport sectors

of the 3-zone system amounts to 965 ton/day in 2025 for a 100% FCV penetration.

Hydrogen Transportation

The maximum capacity of each compressed gas truck for the possible transfer of

hydrogen between zones is assumed to be equal to 0.4 ton. The lower bound of daily
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hydrogen transfer is assumed to be 25% of the maximum capacity of one truck, and

the upper bound of daily hydrogen transfer is fixed at 4 ton/day, i.e., at most 10

trucks can be assigned for daily hydrogen transfer along each route.

The investment costs of cabs and tube trailers for compressed gas trucks, for

the possible hydrogen transportation between the zones are assumed to be equal

to 100,000 and 240,000 CAD, respectively. Also, the operating cost of trucks is

assumed as 1 CAD/km, which increases by 2.5% per year during the planning

years. Lifetimes of cabs and tube trailers are also assumed to be 5 and 20 years,

respectively.

3.6.2 Electricity Sector

Transmission Capacity

Transmission capacities for corridors 1-2, 1-3 and 2-3 are assumed to be 2560, 1940

and 1560 MW, respectively. Also, there is a 2000 MW capacity improvement in

2012 for corridor 1-2 and a 500 MW capacity improvement in 2015 for corridor 1-3.

Generation Capacity

The development of generation capacity during the planning study is assumed to

be as shown in Figure 3.5; the MW values reflected in these figures are the effective

capacities contributing to the demand during off-peak hours, including the capacity

factors. Observe that Zone 1 is the main generation center of the whole system,

and Zone 3 is the most polluting zone in generation side because of coal and CHP

resources. The increase and decrease of nuclear power capacity in Zone 1 are due

to the development of new units and the refurbishment of old ones, respectively.

Also, retirement of coal-fired power plants in Zone 2 and partly in Zone 3 explains

the decrease of coal power capacity in these zones over the planning years.

CO2 emission rates of coal and CHP plants in Zones 2 and 3 are assumed to

be equal to 1 and 0.25 ton/MWh, respectively. Also, based on the discussions
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Figure 3.5: Generation capacity developments during the planning horizon.
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presented in Section 3.2, a social cost of emission of 35 CAD/ton is assumed for

the generation. However, in order to reflect the maximum potential of electricity

system to support FCVs, a sufficiently large value of the social cost of emissions

for populated areas is assumed; this issue is further discussed in Section 3.7.

Electricity Demand and Price

Average base-load electricity demands in Zones 1, 2 and 3 at the beginning of the

planning study are assumed to be equal to 100, 3000 and 1600 MW, respectively,

which will increase by 1% each year. It is also assumed that the average load levels

for 8 weekday hours and 14 weekend hours are the same; these time frames are the

assumed operation times of HPPs. Also, average electricity prices for 8 weekday

hours and 14 weekend hours are assumed to be equal to 30 CAD/MWh and 35

CAD/MWh, respectively, and the discount rate is fixed at 8%.

HPP Size

The zonal hydrogen demand during the planning period allows for the determi-

nation of the required capacity of the HPPs. For example, based on a HHV of

hydrogen, a 70% efficiency for the whole plant and 68 hours of operation per week,

including 8 and 14 hours of operation during weekdays and weekends, respectively,

the required size of the plant producing an average 1 ton/day of hydrogen is found

to be almost equal to 5.8 MW. However, this size reduces over time with the ef-

ficiency improvement in the plant. In general, the required MW size of HPPs in

different zones over the planning years were determined from (3.8) assuming a 15%

efficiency improvement of HPPs by 2025. Based on a 100% FCV penetration, this

results in a required size of 4,869 MW of HPPs for the whole system by 2025.
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Table 3.1: 3-zone model statistics

Number of continuous variables 7,877

Number of binary variables 6,758

Number of integer variables 161

Number of constraints 21,077

MIP gap (%) 0.05

CPU time (s) 30.531

3.7 Results and Discussion

The proposed model for the transition to FCVs was applied to the 3-zone test sys-

tem discussed in the previous section. The model was formulated using AMPL [117]

modeling language and solved with CPLEX [118], on an IBM eServer xSeries 460

with 8 Intel Xeon 2.8 GHz processors and 3 GB (effective) of RAM. The model

statistics are given in Table 3.1; the CPU time reflected in this table corresponds

to the non-uniform-penetration case with a 20 MW HPP placement constraint in

each zone. This section presents and discusses the results obtained in a variety of

scenarios for a non-uniform hydrogen economy penetration; discussion about the

uniform-penetration-case will be presented in Chapter 5, where the proposed tran-

sition models are applied to a real-case problem. It should also be mentioned that

after several simulations it was found that the maximum value of the penetration

levels in the optimal solution of the optimization model are achieved based on a

sufficiently large value of the social cost of emissions in populated areas. This is

expected with the structure of the objective function, where an increase of the pen-

etration levels increases the emission credits and electricity costs simultaneously.

Therefore in order to reflect the maximum electricity system potential to support

FCVs in the transport sector, the largest value reported in the literature considered

for social cost of emissions is selected for this parameter. No further improvements

to penetration levels would be achieved by selecting a value beyond this figure for

the social cost of emissions.
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Table 3.2: Optimal cost and revenue components (CAD) for non-uniform
hydrogen economy penetration with and without emission con-
straints (EC) for generation

Cost/Revenue without EC with EC

Power generation 7,558,880,057 6,250,947,498

Power export -1,347,592,694 -5,893,075

Hydrogen transportation 0 0

Emission credit in transport sector -2,357,501,142 -2,354,020,183

Emission cost of generation 1,974,115,673 1,363,385,792

Total 5,827,901,894 5,254,420,032

3.7.1 Impact of Emission Constraints for Generation

Optimal cost and revenue components within the whole planning horizon with and

without emission constraints for generation are shown in Table 3.2. It is to be

mentioned that without the consideration of emission constraints, no component

represents the CO2 cost in the objective function; the corresponding component in

Table 3.2 was calculated separately based on emission cost function (3.1) and is in-

cluded in this table for comparison purposes. he reduction of power generation costs

when emission constraints are considered is mainly due to limiting impact of these

constraints on the most polluting Zone 3, as can also be observed by considering

emission costs. Thus, more power is being supplied by Zone 1 which increases the

capacity utilization of transmission corridors 1-2 and 1-3 and ultimately leaves less

power in Zone 1 for export. Comparing the emission credit in the transport sector

with and without the emission constraints reveals that the total number of FCVs

within the entire transport sector is not significantly impacted by these constraints.

Optimal hydrogen economy penetration levels with and without emission con-

straints for generation are reflected in Figure 3.6. It is observed that the emission

constraints reduce the potential penetration level in the most polluting Zone 3;

this causes more penetrations in the more environmentally tolerant Zones 1 and 2.

The greater increase in the penetration level in Zone 2 compared to Zone 1, due
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Figure 3.6: Optimal non-uniform hydrogen economy penetration with and
without emission constraints of generation.

to emission constraints, can be explained by the fact that this zone has the largest

number of LDVs; as a consequence, higher FCV penetration in this zone leads to a

larger emission credit while generating low CO2 emissions since this zone has only

a 100 MW effective CHP capacity after 2015.

The potential number of FCVs in different zones that can be supported by

the electricity grid are also shown in Figure 3.6, highlighting the important years.

It is observed that although the total number of supportable FCVs in the whole

transport sector is only slightly impacted by the emission constraints (less than

0.1%), the number of FCVs in the most polluting zone decreases by 14,247, and in

the most populated zone it increases by 13,746.

The HPPs developed in different zones are also demonstrated in Table 3.3.

Observe that the total developed HPPs in all three zones by 2025 with the emission

constraints being considered is slightly reduced by almost 1 MW; however, almost
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Figure 3.7: Total number of FCVs in different zones with and without emis-
sion constraints of generation.
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Table 3.3: Optimal HPPs development in different zones with (+) and
without (-) emission constraints of generation

Zone 1 Zone 2 Zone 3

- + - + - +

2009 2.26 2.26 40.77 40.77 24.91 24.91
2010 1.97 1.97 35.48 35.48 21.68 21.68
2011 2.54 2.54 45.64 45.64 27.89 27.89
2009 3.42 3.42 61.61 61.61 37.65 37.65
2013 5.19 5.19 55.63 93.33 57.04 18.44
2014 0.02 0.02 0.25 0.29 0.18 0.14
2015 0.02 0.02 0.25 0.29 0.18 0.14
2016 0.02 0.02 0.25 0.28 0.17 0.13
2017 0.02 0.02 0.24 0.28 0.17 0.13
2018 0.02 0.02 0.24 0.28 0.17 0.13
2009 0.02 0.02 0.23 0.27 0.17 0.13
2020 0.01 0.01 0.23 0.27 0.16 0.13
2009 0.01 0.01 0.23 0.26 0.16 0.12
2022 0.01 0.01 0.22 0.26 0.16 0.12
2023 123.48 123.94 0.22 0.25 475.44 474.93
2024 0.12 0.13 0.22 0.25 0.58 0.54
2025 0.12 0.12 0.21 0.25 0.57 0.54

Total 139.24 139.70 241.93 280.07 647.29 607.76

40 MW in planned HPP development is shifted from the most polluting Zone 3 to

the more environmentally friendly Zones of 1 and 2. It is also to be mentioned that

although the number of light-duty vehicles in Zone 3 is considerably lower than

that of Zone 2, Zone 3 has the largest share in total developed HPPs; this is due

only to the availability of generation resources in Zone 3. It is also interesting to

note that the major HPPs development in all three zones happen before 2014 and

after 2023. This can be explained by means of the available generation capacity

in Zones 1, 2 and 3, which are at the lowest level between 2019-2022, 2015-2016,

and 2014, respectively. Also, Zone 2 with a significantly larger load level has the

lowest generation capacity; in particular, its capacity is at minimum levels after

2015 when its coal plant is phased out.
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3.7.2 Impact of Transmission Congestion

In this section, the capacity reinforcement of the transmission corridor 1-2 is as-

sumed to take place with a 5-year delay in 2017; the corresponding impacts are

investigated here, including emission constraints. The impact of transmission con-

gestion on zonal penetration levels can be studied in Figure 3.8. It is observed

that this 5-year delay significantly reduces the potential penetration level in Zone

2 within the overall planning horizon; this also has a limiting impact on the po-

tential penetration level in Zone 3 before 2017 when transmission reinforcement is

performed. This is expected since Zone 2 is the main load center with limited local

generation capacity and Zone 1 is its main power supplier through transmission

corridor 1-2; any limitation on the capacity of this corridor directly influences the

potential penetration level in Zone 2. Note that the limiting impact of transmission

congestion on the penetration level in Zone 2 results in higher penetration levels in

Zones 1 and 3, in particular, after 2017.

It should be emphasized that one of the reasons for the significant reduction in

the potential penetration level in Zone 2 when transmission corridor 1-2 is congested

corresponds to the 4 ton/day limit on hydrogen transfer between the zones. By

relaxing this constraint, higher potential penetration levels in Zone 2 are expected;

however, higher hydrogen transportation costs and/or lower penetration levels in

other zones in some years are inherent, as shown in Figure 3.9. The impact of

hydrogen transfer constraints can be studied further in Table 3.4 where optimal

cost and revenue components with and without the 4 ton/day hydrogen transfer

limit are demonstrated.

It is observed that without the hydrogen transfer limit, the hydrogen trans-

portation cost increases by almost ten-fold and power export revenue decreases by

22%. This is perceived to be due to increased development of HPPs in Zone 1

and consequently more hydrogen transfer from Zone 1 to other zones, leaving less

generation capacity in Zone 1 to export. This is illustrated in Tables 3.5-3.7 where

hydrogen transportation details as well as developed HPPs with and without hy-
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Figure 3.8: Optimal non-uniform hydrogen economy penetration with and
without congestion in transmission corridor 1-2 (emission con-
straints included).

Table 3.4: Optimal cost and revenue components for a congested transmis-
sion corridor 1-2, with and without hydrogen transfer limit for
non-uniform penetration of FCVs

Cost/Revenue without H2 transfer limit with H2 transfer limit

Power generation 6,585,465,296 6,542,223,271

Power export -354,948,121 -455,470,854

Hydrogen transportation 323,789,608 32,690,479

Emission credit in transport sector -2,397,833,346 -1,523,337,941

Emission cost of generation 1,728,906,632 1,681,342,400

Total 5,885,380,069 6,277,447,355
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Figure 3.9: Optimal non-uniform hydrogen economy penetration for a
congested transmission corridor 1-2, with and without the 4
ton/day hydrogen transfer limit.

drogen transfer limit can be compared; hydrogen export and import in Table 3.5 are

distinguished with positive and negative values, respectively. It is observed from

these tables that relaxing the hydrogen transfer constraints makes Zone 1 have the

largest share of total installed HPPs with all of them being developed before 2016,

and with significant hydrogen export to other zones during the planning years. This

is expected as this zone has the largest non-polluting generation capacity. It should

also be mentioned that relaxing the hydrogen transfer limit has negligible impact

on the total number of supportable FCVs in the whole transport sector; it reaches

373,327 with a 0.53% increase. However, the greater emission credit achieved with-

out a hydrogen transfer limit in Table 3.4 is justified by the larger number of FCVs

that can be supported in earlier years, in particular, before 2017 as demonstrated

in Figure 3.10.

Note that this study is aimed merely at finding the impact of hydrogen transfer
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Table 3.5: Hydrogen export and import in ton/day for a congested trans-
mission corridor 1-2 with (+) and without (-) hydrogen transfer
limit (emission constraints included)

Zone 1 Zone 2 Zone 3

- + - + - +

2009 11.42 7.58 -7.09 -3.74 -4.33 0.14(-3.98)

2010 21.55 7.66 -13.55(0.17) -3.78 -8.17 -3.88
2011 34.73 7.73 -21.57 -3.81 -13.17 -3.92
2012 52.75 7.81 -32.75 -3.85 -20 -3.96
2013 74.26 7.88 -43.94 -3.89 -30.32 -4
2014 74.97 7.93 -44.36 -3.93 -30.61 -4
2015 75.58 7.96 -44.78 -3.96 -30.80 -4
2016 76.29 8 -45.20 -4 -31.09 -4
2017 76.90 5.88 -45.55 -1.88 -31.36 -4
2018 77.53 3.92 -45.96 0 -31.56 -3.92
2009 78.15 3.94 -46.38 0 -31.77 -3.94
2020 78.77 3.96 -46.80 0 -31.97 -3.96
2021 79.40 3.98 -47.20 0 -32.20 -3.98
2022 80.02 4 -47.60 0 -32.42 -4
2023 58 0 0 0 -58 0
2024 58.37 0 0 0 -58.37 0
2025 58.80 0 0 0 -58.80 0
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Figure 3.10: Total number of FCVs with and without hydrogen transfer
limit (emission constraints included).
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Table 3.6: Required number of compressed gas trucks, and purchased tube
trailers (0.4 ton capacity) and cabs for a congested transmission
corridor 1-2 with (+) and without (-) hydrogen transfer limit
(emission constraints included)

Trucks Tube trailers Cabs

- + - + - +

2009 29 20 29 20 29 20
2010 55 20 26 0 26 0
2011 87 20 32 0 32 0
2012 132 20 45 0 45 0
2013 186 20 54 0 54 0
2014 188 20 2 0 31 20
2015 189 20 1 0 27 0
2016 191 20 2 0 34 0
2017 193 20 2 0 47 0
2018 195 20 2 0 56 0
2019 196 10 1 0 32 10
2020 197 10 1 0 28 0
2021 199 10 2 0 36 0
2022 201 10 2 0 49 0
2023 145 10 0 0 0 0
2024 146 0 0 0 33 0
2025 147 0 0 0 29 0

constraints on the electricity network as well as optimal hydrogen economy pen-

etration levels, HPP development and hydrogen transportation routes. However,

the significant amount of hydrogen exported from Zone 1, which is reflected in the

substantial number of compressed gas trucks required shown in Table 3.6, might be

operationally infeasible. Removing the hydrogen transfer limit also helps to relieve

stress on the electricity system with congestion in transmission corridor 1-2; it is

observed in Table 3.8 that total transmission losses within the whole planning hori-

zon are reduced by 7.5% if the hydrogen transfer constraint is relaxed. In this case,

stress on the electricity network is shifted to the transport sector by introducing

larger numbers of compressed gas trucks transferring hydrogen between the zones.
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Table 3.7: Optimal HPPs development in different zones for a congested
transmission corridor 1-2, with (+) and without (-) hydrogen
transfer limit (emission constraints included)

Zone 1 Zone 2 Zone 3

- + - + - +

2009 67.95 45.88 0 0 0 0
2010 59.13 2.02 0 0 0 0
2011 76.01 2.58 0 0 0.07 0
2012 102.68 3.47 0 0 0 0
2013 122.25 5.23 0 0 0 0
2014 7.46 6.89 0 0 0 0.19
2015 0.68 8.29 0 0 0.53 0.21
2016 0.45 10.62 0 0 0 0.2
2017 0 0 0.39 11.58 0.11 323.29
2018 0 0 0 10.14 0.43 0.94
2009 0 0 0 0.02 0.43 0.40
2020 0 0 0 0.02 0.42 0.39
2009 0 0 0.09 0.02 0.32 0.39
2022 0 0 0.09 0.02 0.32 0.38
2023 0 54.47 248.64 29.07 345.27 511.81
2024 0 0.13 0.22 0.05 0.98 0.75
2025 0 0.12 0.22 0.04 0.69 0.74

Total 436.61 139.70 249.66 50.97 349.57 839.69

3.7.3 Impact of Annual HPP Development

Considering the HPP placement constraints discussed in Section 3.4.3, a 20 MW

maximum limit on annual HPP development in each zone is considered in this sec-

tion. As shown in Figure 3.11 and Table 3.9, this constraint significantly influences

the potential penetration levels as well as the pattern of HPP development over

time. Observe in Figure 3.11 that a 20 MW limit on annual HPP development

reduces the ultimate penetrations in all three zones, the largest impact occurring

in Zone 3; however, there are somewhat increased penetration levels in Zones 1

and 3 between 2014 and 2022. Since Zone 2 has the largest number of LDVs,

the reduction of potential penetration levels in this zone within the planning years

translates into considerable reductions in the total number of supportable FCVs as
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Table 3.8: Total transmission losses during the planning horizon for the
congested transmission corridor 1-2, with and without hydrogen
transfer limit (emission constraints included)

Transmission loss [MWh]

without H2 with H2

transfer limit transfer limit

2008 346,528 346,528
2009 341,703 349,330
2010 330,256 350,564
2011 320,505 351,711
2012 317,427 363,364
2013 382,439 382,439
2014 382,095 382,095
2015 369,047 369,047
2016 370,598 370,598
2017 651,895 743,751
2018 654,558 758,710
2019 368,303 427,443
2020 373,181 428,865
2021 379,621 425,856
2022 384,106 431,013
2023 534,027 565,290
2024 531,731 566,589
2025 532,737 571,580

Total 7,570,757 8,184,773

well as emission credits in transport sector. The overall impact of this constraint

is the reduction of total developed HPPs and the number of supportable FCVs in

the overall transport sector by 40.61%. This annual HPP development constraint

causes a substantial amount of hydrogen tranportation between the zones at a total

cost of 30,952,067 CAD and Zones 1 and 3 being the main exporter and importer,

respectively.

It is observed in Table 3.9 that the total HPPs developed in all three zones are

reduced when the 20 MW annual limit is in place; this justifies the reduction of

ultimate FCV penetration in all the zones by 2025. Also, major developments of

HPPs in Zones 1 and 3 happen in 2023; however, the 20 MW annual limit causes 60
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Figure 3.11: Optimal non-uniform hydrogen economy penetration with
and without a 20 MW limit on annual HPP development.

MW be developed in both zones after 2023 and the remainder would be developed

in previous years, in particular, before 2017. This explains the increase of FCV

penetration levels in these zones before 2022. It is interesting to note that more

than 475 MW HPPs, planned to be developed in Zone 3 after 2023, is reduced to

only 60 MW when the 20 MW annual limit is considered; this justifies the significant

reduction of hydrogen economy penetration in Zone 3 after 2023 despite the fact

that maximum possible hydrogen import from Zone 1, i.e., 4 ton/day also occurs

in 2023.
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Table 3.9: Optimal HPPs development in different zones with (+) and
without (-) a 20 MW limit on annual HPP development (emis-
sion constraints included)

Zone 1 Zone 2 Zone 3

- + - + - +

2009 2.26 20 40.77 20 24.91 20
2010 1.97 20 35.48 20 21.68 20
2011 2.54 11.99 45.64 20 27.89 20
2012 3.42 3.04 61.61 20 37.65 20
2013 5.19 4.81 93.33 20 18.44 20
2014 0.02 6.65 0.29 20 0.14 20
2015 0.02 8.08 0.29 20 0.14 20
2016 0.02 1.75 0.28 20 0.13 20
2017 0.02 0 0.28 11.03 0.13 18.84
2018 0.02 0 0.28 2.32 0.13 0.13
2009 0.02 0 0.27 0.17 0.13 0.25
2020 0.01 0 0.27 0.17 0.13 0.24
2009 0.01 0 0.26 0.16 0.12 0.24
2022 0.01 0 0.26 0.16 0.12 0.24
2023 123.94 20 0.25 20 474.93 20
2024 0.13 20 0.25 20 0.54 20
2025 0.12 20 0.25 20 0.54 20

Total 139.70 136.32 280.07 234.01 607.76 239.94

3.8 Summary

This chapter presents a novel mixed-integer linear optimization framework for plan-

ning the transition to AFVs with particular attention to electricity grid constraints

in transmission and generation levels. This optimization framework is based on

zonal representation of the region under study, with main power generation and

electricity load centers. It also takes into consideration the environmental issues

in both population areas and generation power plants. The solution of the pro-

posed optimization framework yields optimal potential penetrations of AFVs into

the transport sector during the planning study. Also, the optimization model for

a transition to FCVs finds the optimal size of HPPs to be developed in each zone

over time as well as the optimal hydrogen export/import and transportation routes
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to achieve optimal hydrogen economy penetrations during the planning horizon.

A 3-zone test system is developed to demonstrate the capabilities of the proposed

optimization framework. Optimal potential penetration of FCVs into transport

sector is studied on this test system through a variety of scenarios. The results

show how environmental issues as well as operational considerations such as annual

HPP development or hydrogen transfer limits can influence the penetration levels.

The findings of this chapter demonstrate that the proposed optimization planning

framework can be effectively used to study and plan for the transition to AFVs in

realistic systems with a zonal structure.
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Chapter 4

Ontario’s Electricity System and

Transport Sector Models

4.1 Introduction

In Chapter 3, comprehensive optimization planning models for the transition to

AFVs were presented, and their capabilities were demonstrated on a 3-zone test

system. The objective in this thesis is then to apply these models to study the

real-case problem of Ontario, Canada; however, an adequate model of Ontario’s

electricity system should first be developed. Therefore, this chapter concentrates

on presenting the different models used in this thesis for the Ontario-based studies,

including the transmission network, power generation development, base-load elec-

tricity demand as well as power import/export assumptions, which are all common

for studying the transition to both FCVs and PHEVs. Furthermore, additional

assumptions related to both electricity and transport sectors which are required for

planning the transition to AFVs are also discussed; thus, two patterns of the transi-

tion to AFVs are considered, and their advantages and disadvantages are discussed

from the viewpoints of Ontario’s available base-load generation capacity and the

speed of infrastructure development. This is followed by an analysis of the required
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Table 4.1: Estimated transmission corridor enhancements for simplified
grid model.

Year Corridor Current MW Planned MW

2012 Bruce-SW 2560 4560

2012 SW-Toronto 3212 5212

2013 NE-NW 350 550

2015 Bruce-West 1940 2440

2017 Toronto-Essa 2000 2500

2017 Essa-NE 1900 2400

data for each zone of Ontario’s transport sector during the planning horizon. Fi-

nally, electricity demand and price issues in Ontario and the assumptions made for

the operation of HPPs and the charging of PHEVs are discussed.

4.2 Transmission Network Model

Ontario’s Independent Electricity System Operator (IESO) represents the Ontario

network with ten zones [119]. This same representation is used in this study to

develop the 10-bus simplified model of Ontario’s network, as shown in Figure 4.1,

which considers the main grid load and generation centers and transmission cor-

ridors. This model is mostly the 500 kV network, with a 230 kV interconnection

between North East (NE) and North West (NW). Hence, the parameters used

to model this network are based on typical values of 230 and 500 kV networks,

considering the approximate distances between zones, and transmission capaci-

ties, as per general information provided by the IESO [119] and line loading limits

in per unit of surge impedance loading (SIL) [120]. Based on the existing and

planned projects provided by the Ontario Power Authority (OPA) [121, 122], the

transmission-capacity enhancements presented in Table 4.1 are assumed for the

simplified model used in this study.
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Figure 4.1: Simplified model of Ontario’s grid.

4.3 Generation Development Model

Based on the Ontario IPSP and a variety of information provided by the OPA

and the IESO, a zonal pattern of generation capacity between 2008 and 2025 con-

tributing to base-load energy in Ontario was developed [123]–[129]. The proposed

model specifies the total effective generation capacity which is available in each

zone to supply the base-load. The mix of base-load generation resources in Ontario

considered in this model includes nuclear, wind, hydro (only those units with lim-

ited dispatch capability and small scale units less than 10 MW), Combined Heat

and Power (CHP), Conservation and Demand Management (CDM), and coal. It

is important to mention that the contribution of gas-fired generation to base-load

energy has been disregarded in this study, based on the Ontario government’s 2006
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Supply Mix Directive indicating that natural gas should only be used at peak-load

times and in high-efficiency and high-value applications [121]. The details of the

generation model are provided in the following sections.

4.3.1 Nuclear

The present installed nuclear capacity in Ontario, located in the Bruce and Toronto

zones, is 14000 MW, with 11365 MW in operation, 1500 MW under refurbishment

(Bruce A, Units 1 & 2), 1057 MW already refurbished (Pickering A, Units 1 & 4),

and about 1100 MW on long-term lay up (Pickering A, Units 2 & 3). Also, the

present operating capacity includes 4720 MW in the Bruce zone (Bruce A: 1540

MW, Bruce B: 3180 MW) and 6645 MW in Toronto zone (Pickering A: 1057 MW,

Pickering B: 2064 MW, and Darlington: 3524 MW) [123]–[125].

According to the 20-year energy plan set by the Ontario government, nuclear

energy capacity should be maintained for base-load operation up to its current

level of 14000 MW [121]; this will require that existing nuclear plants be refurbished

and/or new plants be built to maintain this capacity. The nuclear power generation

pattern in Ontario up to 2025 depicted in Figure 4.2 was developed based on the

following facts, figures, and assumptions [123,125]:

• Bruce A (Units 1 & 2) refurbishment is assumed to be completed by 2010.

This should basically increase Bruce A capacity to 3040 MW, and as a conse-

quence total nuclear power generation capacity in the Bruce zone will increase

to 6220 MW by 2010. However, refurbishment work on Units 3 & 4 is as-

sumed to start in 2010 and be completed in 2013, which limits the total

nuclear capacity of the Bruce zone to 4720 MW until 2013.

• Bruce B refurbishment is assumed to take place in 2018-19 (2 units in 2018

and 2 units in 2019) and will be complete in 2023-24.

• At least half of the capacity of Pickering A (Units 2 & 3) in the Toronto zone

is economically unfeasible for refurbishment.
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• Pickering B refurbishment is assumed to commence in 2014-15 (2 units in

2014 and 2 units in 2015). This refurbishment is assumed to be completed

by 2019-20.

• For the new projected nuclear plant development, the following scenarios have

been assumed:

Scenario 1: 1500 MW new nuclear power will be available in the Toronto zone

in 2018. This assumed capacity is somewhat less than the capacity of two

Darlington units in this zone.

Scenario 2: 1500 MW new nuclear power will be available in the Bruce zone

in 2018. This assumed capacity is equal to two Bruce A units. It is to be

mentioned that, although the capacity of nuclear units in Bruce and Darling-

ton are not the same, the assumed similar development of nuclear capacity in

Bruce and Toronto zones in 2018 is merely for comparison purposes.

4.3.2 Wind

The share of wind power to meet the renewable target in 2025 (15700 MW) is 4685

MW. This includes 395 MW of existing wind power in 2007, 1251 MW of committed

wind power that will be in service by 2010, and 3039 MW of small and large wind

projects which are planned to be in service between 2011-2025 [125]–[127]. As of

2007, total capacity of the existing and signed wind projects was 1312 MW [127]–

[129], distributed in SW, Bruce, East, NE, and West with shares of 48%, 15%, 15%,

14%, and 8%, respectively. Since the wind capacity in Ontario in 2008 is 472 MW

including 189 MW in NE, 99 MW in West, 108 MW in SW, and 76 MW in Bruce,

there is still 1174 MW of committed wind capacity to be developed by 2010. It

is assumed here that this capacity will be developed in the same 5 zones between

2008 and 2010 with the same share of capacity development as in 2007.

The priority of wind power development is through small wind projects (1148

MW), which are planned to be in service at a uniform pace over the period from
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(a) Scenario 1: New nuclear units in the Toronto zone.
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(b) Scenario 2: New nuclear units in the Bruce zone.

Figure 4.2: Nuclear power capacity in Ontario contributing to base-load
energy.

2011 to 2020 in almost all the zones except Ottawa. The remainder of the wind

power target will be made up of large wind projects (1891 MW) which are planned

to be developed in 6 zones including Bruce, NE, East, West, Essa, and SW with

shares of 37%, 27%, 14%, 9%, 8% and 5%, respectively. Although the development

of large wind projects will also start in 2011 (in West and SW), almost 46% of the

projects will come into service after 2015 [127]. Finally, the wind power share of

different zones between 2011 and 2025 was extracted from [124]–[129], resulting in

wind power distribution for the planning study depicted in Figure 4.3, assuming

an average wind power capacity factor of 30% for base-load energy service [125,

130,131]. Observe that the share of wind power by 2025 in southern zones (mainly
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Figure 4.3: Effective wind power capacity in Ontario contributing to base-
load energy.

Bruce, SW and West), NE, and NW are 78%, 20% and 2%, respectively.

It should also be mentioned that the wind-power capacity is likely to increase

further due to the Feed-in Tariff (FIT) program associated with the recent Green

Enery and Green Economy Act (GEGEA) [132, 133]. However, this has not been

considered in the wind-power capacity values derived in this study.

4.3.3 Hydro

Currently, there are 7788 MW of hydroelectric capacity in Ontario, of which 3161

MW is provided by run-of-the-river facilities located in the Niagara and East zones

that contribute to base-load energy, each with the total capacity of 2116 and 1045

MW, respectively [124,125]. The share of hydroelectric capacity in the target value

of renewables in 2025 (15700 MW) is almost 10700 MW, meaning that almost

2912 MW of hydropower is planned to be developed between 2008-2025 [122,127].

Most of the potential hydroelectric sites in Ontario are located in northern zones, in

particular, in the NE; thus, the share of developed hydroelectric by 2025 in southern,

NW, and NE zones are 5.08%, 10.17% and 84.75%, respectively [122,127,129]. Most

of these planned hydroelectric generations are plants with large storage capacities

that have high dispatch flexibility and hence capable of serving peak demand. In

this respect, the hydroelectric facilities which are planned to be developed by 2025
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Figure 4.4: Effective hydroelectric capacity in Ontario contributing to
base-load energy.

will have a relatively low impact on meeting Ontario’s base-load energy requirement;

since this study is particularly concerned with base-load time intervals, only the

capacity of these plants serving base-load are taken into account here.

All the existing run-of-the-river hydroelectric plants (in Niagara and East zones)

plus the 25 MW run-of-the-river unit which is planned to be in service by 2012 in NE

are considered here to contribute to base load energy with a 78% capacity factor.

Existing and planned small-scale hydro units (10 MW or less in size) that are

not run-of-the-river facilities are also assumed to contribute to base-load energy,

but with an average capacity factor of 50% [125, 126, 128]. The zonal base-load

hydroelectric available power in Ontario during the planning period is illustrated

in Figure 4.4.

4.3.4 Combined Heat and Power (CHP)

There are currently 7 new CHP projects with a total capacity of 414 MW under

development across Ontario [134]. The projects, which have been planned to be in

service by the end of 2008, include 12 MW in SW, 11.5 MW in West, and 7.3 MW

in Toronto. Also, 2 projects including 84 MW in West and 63 MW in NE, as well as

a 236 MW plant in Niagara will be in service by 2009 and 2010, respectively. Since

the OPA has been directed by the Ontario Ministry of Energy to procure 1000 MW
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Figure 4.5: Effective CHP capacity in Ontario contributing to base-load
energy.

CHP generation [125, 126, 134], there are 586 MW of CHP plants expected to be

developed in the future. The OPA has targeted 2013 as the completion date for the

planned CHP resources in Ontario [125]. In this study, the planned CHP capacity

(586 MW) is equally split between the existing CHP zones, i.e., all the zones except

for Bruce, Essa and NW.

It should also be mentioned that there are some CHP facilities in Ontario such

as the 140 MW cogeneration plant in the East [124,125], which are under long-term

Non-Utility Generation (NUG) power purchase agreements with the Ontario Elec-

tricity Financial Corporation. To be conservative, these CHP-NUG facilities have

not been considered in the mix of base-load capacity, based on the fact that their

contracts will expire over the 2012-2018 period and because there are uncertainties

regarding their operation during base-load periods, since some of these facilities

are not available due to contract limitations and are uneconomic for supplying

base-load energy [125]. Based on all these considerations, the assumed zonal CHP

capacity in Ontario during the planning period is depicted in Figure 4.5.

4.3.5 Conservation and Demand Management (CDM)

CDM programs are basically energy saving programs and incentives such as building

retrofitting or the use of smart meters to implement time-of-use electricity pricing
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Figure 4.6: CDM released capacity in Ontario contributing to base-load
energy.

to encourage customers to manage their electricity consumption. These programs

are expected to result in a reduction on demand, and in [121] are considered as

a supply resource, giving them the same importance and priority as generation

resources such as nuclear, renewables or gas-fired plants. According to the OPA,

CDM programs have the potential to offset the expected growth in demand over

the next 15 years; therefore, CDM programs are considered here, and as per [121]

are assumed to be independent of demand growth.

Based on the Ontario IPSP, the target values for peak-load reduction are 1350

MW by 2010 and another 3600 MW by 2025 [121]; however, the effective capacity

released by CDM during base-load time intervals is less than these target values.

Thus, both committed (2008–2010) and planned (2010–2025) target values for base-

load CDM capacity released are, as per [125], 550 MW and 2587 MW by 2010 and

2025, respectively. In this study, the share of each zone from the released capacity

target values is considered to be proportional to the ratio of its base-load demand

with respect to the total base-load demand. Furthermore, it is assumed that only

75% of the planned conservation is to be achieved in practice. The CDM values

used here are shown in Figure 4.6.
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4.3.6 Coal

Currently, there are 4 coal plants operating in Ontario with a total capacity of

6285 MW [124]. These plants, which are located in West (1948 MW), SW (3820

MW), and NW (517 MW), are planned to be phased out by the end of 2014 [121].

The loss of coal-based generation is planned to be made up by renewables, gas

fired generation, conservation programs, and imports. Because of the impact of

these plants on voltage control and reliability issues, some transmission upgrades,

especially in NW and SW zones are to be done before the full retirement of these

coal plants.

The assumed retirement process of coal plants in this study is as follows [122,125,

135]: All the coal plants will retain their full capacities by the end of 2010. One coal

plant (211 MW) in NW will be completely retired in 2011, and the capacity of the

rest will be reduced by 20%, reaching 5000 MW by the end of 2011. For the purpose

of system reliability, all the remaining capacities in NW, West, and SW will remain,

but will be reduced by 40% during 2012-2014, and finally be completely phased out

thereafter. Coal plants in Ontario are neither “base load” nor “peaking” plants

and are typically considered in the category of “intermediate load” plants [124]. In

this study, the contribution of coal plants to base-load energy is considered with

a capacity factor of 50%, which is a typical value in the base-load system studies

performed by the OPA [125,126]. The zonal coal power capacity in Ontario during

the planning period is depicted in Figure 4.7. Observe that the zero contribution

of coal plants to the total base-load energy in Ontario after 2014 helps to meet the

requirements of a true hydrogen economy and sustainable transportation based on

FCVs and PHEVs.

4.3.7 Total Effective Generation Capacity in Ontario

Considering the previously discussed base load resources in Ontario, total effective

generation capacity (Pgiy
) which is available in each zone during 2008-2025 is cal-

culated. The corresponding results for both scenarios are illustrated in Figure 4.8.
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Figure 4.7: Effective coal power capacity in Ontario contributing to base-
load energy.

These figures highlight the dominant contribution of both the Toronto and Bruce

zones in supplying the base-load requirements of Ontario. Furthermore, observe

that the total effective capacities under both scenarios are at their lowest levels

from 2016-2021; this is mainly due to coal plants retirements and both Bruce B

and Pickering B refurbishments. Also, the availability of the capacity of different

generation resources allows to determine Pgaiy
and Pgbiy

, which are needed for the

generation cost model discussed in Chapter 3.

4.3.8 Environmental Aspects of Generation Resources in

Ontario

Fossil-fuel-based resources considered in the mix of Ontario’s base-load generation

in this study include coal and CHP plants. Considering that coal plants in Ontario

are planned to be phased out by the end of 2014, the maximum contributions of

coal plants to the total base-load energy in Ontario has been determined in this

study to be 17% in 2008–2010, 14% in 2011, 9% in 2012–2014, and none after 2014;

thus, the contribution of coal plants to CO2 emissions is not very significant in the

proposed model for the study period. Natural-gas-fuelled power plants also emit

CO2 but at a substantially lower rate per unit of output energy as compared to

coal plants, and CHP plants emit an even lower amount of CO2 due to their high
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(a) Scenario 1: New nuclear units in the Toronto zone.
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(b) Scenario 2: New nuclear units in the Bruce zone.

Figure 4.8: Total effective generation capacity in Ontario contributing to
base-load energy.

efficiencies [136]–[138]. In view of all these considerations, the introduction of FCVs

and PHEVs into Ontario’s transport sector during the planning horizon does not

significantly add to the environmental footprint on the generation side. However,

since the emission cost of generation is included in the model, CO2 emission rates

of coal and CHP plants in Ontario should be determined. As per [139] and in 2007

base, the average CO2 emission rates of coal plants in the West and SW zones are

calculated as 0.9553 and 0.9881 ton/MWh, respectively. Moreover, two different

emission rates of 1.1536 and 1.1966 ton/MWh are found for the two coal plants

located in the NW zone. For simplicity, an average figure of 1.1751 ton/MWh is

used for the coal plants in this zone. Also, according to [140,141], an approximate
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Table 4.2: Estimated percent of zonal annual peak-demand growth rates in
Ontario.

Zone Bruce West SW Niagara Toronto East Ottawa Essa NE NW

Annual growth rate [%] 0.78 1.14 1.28 0.41 0.77 0.71 1.42 1.17 -0.33 0.10

CO2 emission rate of 0.25 ton/MWh is assumed for the CHP plants in Ontario. All

these emission rates are considered to be constant during the planning years.

4.4 Base-load Electricity Demand Model

To find the base-load demand of the different zones of Ontario on the various years

of the planning horizon, zonal base-load demand growth rates need to be determined

based on the available data, which are the zonal peak-demand forecasts from 2007

to 2015 [142], and the average base-load demand in 2007 [143]. The average values

of annual peak-demand growth rates shown in Table 4.2 were readily calculated

from [142]; it is assumed here that these values are reasonably valid for the whole

planning horizon. As per [125, 126], the average base and peak-load values in

Ontario from 2007 to 2025 will increase by 21% and 24%, respectively. On average,

these load increases translate into 1.11% and 1.26% of base and peak-load annual

growth rates respectively for all of Ontario. If the ratio of base-load growth rate to

peak-load growth rate is assumed to be constant for all the zones, then it is possible

to decompose the base-load growth rate of the whole Ontario into different zones

as explained next:

It is assumed that the base-load demand in Ontario in Year y is equal to Pey
,

which is expressed as follows:

Pey
=

∑

i

Peiy
(4.1)

Considering the annual base-load demand growth rates λi, results in the following
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base-load demand in Year y + 1:

Pey+1 =
∑

i

λiPeiy
(4.2)

The ratio of base-load growth rate λi to peak-load growth rate γi is assumed to be

constant for all the zones:

σ =
λi

γi

(4.3)

Hence, (4.2) can be stated as:

Pey+1 =
∑

i

σγiPeiy
= σ

∑

i

γiPeiy
(4.4)

On the other hand, if λ is assumed to be the annual base-load growth rate of

Ontario’s total zones, then the following relation holds:

Pey+1 = λ
∑

i

Peiy
(4.5)

From (4.4) and (4.5), σ can be found as follows:

σ =
λ

∑
i Peiy∑

i γiPeiy

(4.6)

Finally, from (4.3) and (4.6), the zonal annual growth rates of base-load demand

can be calculated as follows:

λi = λ

(
γi

∑
i Peiy∑

i γiPeiy

)
(4.7)

The zonal annual growth rates obtained from (4.7), along with the Ontario’s average

base-load demand in 2007 [143], were used to obtain the annual expected base load

in different zones of Ontario during the planning years.

Comparing the total effective generation capacity in Ontario with the expected
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base load shows that there is a capacity deficit to supply base-load power from 2016

to 2021. This is mainly due to the retirement of coal plants and refurbishments of

both Bruce B and Pickering B nuclear units. The possible supply alternatives for

covering this power deficit include power imports from neighboring grids, contribu-

tions from further conservation, renewable and CHP resources in excess of planned

levels, and contributions from intermediate-load resources such as combined-cycle

gas turbines [125]. Since there are strong tie lines with New York and Michigan

and an Ontario–Quebec HVDC interconnection is scheduled to be operational by

2010 [127], the base-load deficit is assumed here to be mainly supplied by power

imports, as discussed in more detail in the next section.

4.5 Power Imports/Exports

As demonstrated in Figure 4.1, power import and export possibilities exist in 6 of

Ontario’s zones including West, Niagara, East, Ottawa, NE and NW. In general,

there is a 4,000 MW import capability in Ontario from Manitoba, Quebec, Michi-

gan, New York and Minnesota, and an additional 1,000-1,250 MW from Quebec

is being developed [119, 144]. There is an import capability in the East zone both

from New York and Quebec. For the NW, there is also a possibility of import

both from Manitoba and Minnestota. No limitation on power export is considered

in this study, however, a maximum of 750 MW of power imports from New York

and Quebec between 2015-2022 is assumed for both the Ottawa and East zones.

Moreover, a maximum of 500 MW of imports in both NE and NW are assumed

during the same period. Also, a maximum of 300 MW of imported power in NW

is assumed in other years within the planning period. These assumptions are con-

sistent with the operational import limits reflected in [144]; however, an upgrade

of the import capability in NE is also assumed in this study. If no upgrade on

the import capability of NE occurs by 2015, the assumed import power for this

zone from 2015-2022 in excess of the import limit is assumed to be covered by local

dispatchable hydro units.
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4.6 AFV Transition Assumptions

4.6.1 Transition Pattern

The transition to AFVs in Ontario for the study years is assumed to be as shown

in Figure 4.9, where K = 100 represents a 100% AFV penetration into the trans-

port sector. These curves specify the maximum level of AFV penetrations to be

realized each year (µ̄y), as discussed in Chapter 3. Transition 1 shown in Figure 4.9

assumes a sluggish penetration of AFVs, particularly from 2009 to 2015, with a

faster slope thereafter to reach the target value in 2025. Sluggish penetration in

the first years provides sufficient time for the development of required AFV in-

frastructure, technology, and market acceptance. However, the major part of AFV

penetration would occur in the time period of 2015–2022 when Ontario’s network is

short of base-load capacity. Transition 2 assumes a fast penetration of AFV during

the time periods of 2009–2015 and 2022–2025, with a relatively limited penetration

between 2015 and 2022. This transition is appealing as it considers the scarcity of

base-load resources between 2015 and 2022; however, it requires a fast development

of AFV infrastructure, with about 45% of the 2025 target level of penetration being

realized before 2015.

4.6.2 Light-duty Vehicles

Light-duty vehicles are referred to as vehicles with a gross weight below 4.5 tonnes.

According to the Canadian Vehicle Survey [145], in a 2005 base, the light-duty

vehicle fleet consists of passenger vehicles with a 58% share and light trucks, in-

cluding sport utility vehicles (SUVs), vans, and pickup trucks with 8%, 16%, and

18% shares, respectively. These shares were considered to be valid for Ontario.

Therefore, the passenger vehicles were classified into six types of light-duty vehi-

cles, i.e., compact and midsize sedan (each with 29% share), midsize and full-size

SUVs (each with 4% share), vans (16% share), and pickup trucks (18% share).
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Figure 4.9: Assumed AFVs transitions in Ontario.

As per [69], the approximate fuel economy of these LDVs were calculated. Thus,

the fuel economy of compact sedan, mid-size sedan and mid-size SUV were de-

termined as 16.02, 12.28 and 9.43 km/litre, respectively. Also, full-size SUVs,

vans and pickup trucks are approximately assigned a similar fuel economy of 7.73

km/litre. Based on these figures, the average fuel economy of a representative

gasoline-powered LDV is found to be equal to 11.52 km/litre at the beginning of

the planning horizon. Furthermore, in order to not overestimate the environmen-

tal credits of FCVs and PHEVs, it is assumed that these fuel economies are 20%

improved by the end of the planning horizon.

In order to find Ontario’s grid potential for producing hydrogen by HPPs to

be used by FCVs or charging the PHEVs, it is first necessary to determine the

number of light-duty vehicles during the planning period, which in turn requires

the zonal population levels during this period. Therefore, the population of cities

and towns of more than 10,000 inhabitants were used to find the population of

each zone, considering the geographical location of the zones. The population of

each zone was then scaled up such that the sum of zonal populations would equal
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the 12,861,940 population estimate for Ontario on January 1, 2008 as per [146].

The annual base-load growth rate for each zone was approximately used to find the

zonal population in the study period. The total projected population of Ontario in

2025 estimated in this way (15,663,374) is very similar to what is reported in [147],

confirming the adequacy of the assumptions used in this study.

According to 2005 statistics [145], the per capita number of vehicles in Canada

ranged from slightly more than 0.1 in Nunavut to 0.85 in Yukon, with a national

average of 0.58. The corresponding figure for Ontario, having 6,727,791 vehicles in

2005 was 0.55. This value was considered to be valid during the planning horizon

in this study.

4.6.3 Transition to FCVs

Hydrogen Generation

The hydrogen economy, which is considered in this study, is solely based on elec-

trolytic hydrogen production during off-peak hours for transportation purposes.

In this work, the operation time of HPPs is impacted by technical considerations

as well as by the electricity prices and load levels on the electricity network as

discussed in detail below:

• Technical considerations : If the plant is switched on (i.e., from a stand-by

state), it has to continue operating for a couple of hours, since extended

interruptions of current cause damage to the plant due to the shifts of tem-

perature and pressure. For the same reason, both start-up and shut-down of

the plant require some time because abrupt changes of operational conditions

are not permitted [148].

• Electricity price and demand : According to Ontario’s IESO, on-peak hours

are defined as hours 8 to 23 Monday to Friday with the total of 5× 16 hours

per week; Hour 8 is 7:00-8:00 and Hour 23 is 22:00-23:00. All remaining
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Table 4.3: Average zonal electricity demand of Ontario in different time
frames for 2007 [MW]

Average electricity demand [MW]

Time period Bruce West SW Niagara Toronto East Ottawa Essa NE NW Total

Weekdays 23:00-7:00 71.02 1667.65 2982.16 593.62 5038.52 943.34 1097.99 805.83 1353.97 634.05 15188.15
(8 hours)

Weekends 23:00-11:00 70.49 1578.90 2857.13 552.70 4853.44 938.63 1126.93 820.19 1364.76 629.01 14792.17
(12 hours)

Weekends 23:00-13:00 71.63 1615.37 2915.64 558.82 4995.19 961.15 1156.18 845.11 1375.36 630.44 15124.88
(14 hours)

Weekends 23:00-15:00 72.32 1641.87 2955.29 563.45 5094.71 977.63 1173.75 859.99 1382.06 629.65 15350.72
(16 hours)

Weekends 23:00-17:00 72.95 1665.23 2992.27 568.52 5175.67 993.10 1193.65 874.71 1388.09 628.10 15552.29
(18 hours)

Weekends 23:00-19:00 73.56 1687.07 3030.35 573.60 5254.37 1007.99 1216.93 892.35 1392.99 627.63 15756.84
(20 hours)

Weekends 23:00-21:00 73.95 1703.47 3057.89 577.08 5312.00 1017.58 1232.03 904.62 1397.85 629.62 15906.07
(22 hours)

Weekends 23:00-23:00 73.93 1706.89 3061.19 576.71 5324.42 1018.22 1231.40 905.08 1399.20 631.82 15928.84
(24 hours)

hours as well as holidays are defined as off-peak. This gives an indication of

the operation time periods when the HPPs could take advantage of the low

electricity price and demand in the system for both economic and reliability

considerations. Therefore, it is assumed here that the operating time for

HPPs is 8 hours (23:00-7:00) during weekdays, and for the weekends, different

operation times ranging from 12 to 24 hours were investigated. Based on

the data provided in [143], average electricity demand as well as the Hourly

Ontario Energy Price (HOEP) for the different time frames considered were

calculated and are illustrated in Tables 4.3 and 4.4. It should be noted that

for all the demands and prices calculated for the weekdays, the first hour

is set to be the last hour of Sundays, i.e., 23:00-24:00. Likewise, for all the

demands and prices calculated for the weekends, the first hour is considered

to be the last hour of Fridays.

Although more hours of operation during the weekends increase the capacity factor

of the HPPs, observe in Tables 4.3 and 4.4 that electricity prices and, in particular,

the average zonal demands increase, which in turn limits the possibility of adding

extra load in the form of HPPs. Moreover, further hours of operation do not
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Table 4.4: Hourly Ontario energy price

Average HOEP [CAD/MWh]

Time period 2003 2004 2005 2006 2007 2008

Weekdays 23:00-7:00 38.51 36.31 47.50 33.40 33.18 31.72
(8 hours)

Weekends 23:00-11:00 39.07 36.74 48.14 33.57 32.73 31.35
(12 hours)

Weekends 23:00-13:00 42.34 39.02 51.43 36.02 35.17 34.91
(14 hours)

Weekends 23:00-15:00 43.40 40.10 53.46 37.16 36.41 37.03
(16 hours)

Weekends 23:00-17:00 44.10 40.81 54.91 37.81 37.52 38.68
(18 hours)

Weekends 23:00-19:00 45.49 42.28 57.10 38.86 38.92 40.28
(20 hours)

Weekends 23:00-21:00 46.96 43.27 58.54 39.97 39.90 41.47
(22 hours)

Weekends 23:00-23:00 47.00 43.30 58.33 40.03 39.77 41.26
(24 hours)

necessarily bring about significant economic advantages as discussed in detail next.

To further investigate the economic impact of operating hours during the week-

ends, a literature survey was performed regarding the investment costs for differ-

ent components of a hydrogen production unit, considering size and economies of

scale [14,63,64,116], [149]–[160]. A 300 kW hydrogen production unit is selected in

this study; this is the installed power of a unit including a rectifier, electrolyzer and

compressor with an overall efficiency of 70%. Based on HHV of hydrogen (39.45

kWh/kg), the hydrogen production rate of this unit is found to be equal to 5.32

kg/h (59.31 Nm3/h). As per [161], the energy requirement of a multi-stage com-

pressor for the compression of hydrogen up to 400 bar is equal to almost 9% of

its HHV. Based on the maximum flow rate of 5.32 kg/h, the maximum demand-

ing power of the multi-stage compressor is found to be equal to almost 19 kW;

this tranlates to almost 3.5 kW per kg/h hydrogen flow at high pressure. Conse-

quently, the maximum installed power of the electrolyzer will be equal to 281 kW.

The assumed investment cost of an electrolyzer is 65,000 CAD per kg/h hydro-

gen including electrolyzer stack, gas and water conditioning, power electronics and

control systems. Hydrogen storage at 400 bar is sized to hold the average one-day
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Table 4.5: Minimum acceptable hydrogen prices for different operating
time frames

Operating hours during weekdays 8 8 8 8 8 8 8

Operating hours during weekends 12 14 16 18 20 22 24

Minimum hydrogen selling price [CAD/kg] 6.58 6.40 6.22 6.07 5.93 5.81 5.66

hydrogen production and its investment cost is assumed to be 600 CAD/kg. Total

investment cost of hydrogen storage is found based on the assumed operation hours

during weekdays and weekends. The investment cost of multi-stage compressor is

assumed to be 2,500 CAD/kW or alternatively 8,876 CAD per kg/h of hydrogen.

Also, 10% of the total initial investment for the whole unit is assumed to cover the

average annual operation and maintenance costs; these costs include labour, insur-

ance, property tax, licensing, maintenance and repair [13, 159]. These figures are

used next to determin the minimum prices for selling hydrogen from an electrolytic

process, which are justified through an economic analysis.

Note that Table 4.4 shows a general decline in off-peak electricity prices; how-

ever, considering the expected price increase during 2016-2021 due to relatively

limited base-load generation capacity, the average HOEP in 2008 both on week-

days and weekends have been taken as the expected electricity prices during the

lifetime of the plant. Based on these electricity prices and typical discount rates

of 8% and a plant lifetime of 20 years (because of low capacity factor), and disre-

garding the income tax as well as any government support program, the minimum

hydrogen selling prices to justify the investment were found for each of the operat-

ing time frames considered. The results of these analyses are reflected in Table 4.5.

The calculated prices are the minimum hydrogen selling prices that make the net

present value (NPV) greater than zero, yielding an 8% internal rate of return (IRR)

and a profitability index (PI) greater than unity. Observe in Table 4.5 that each

additional 2 hours of operation during the weekends reduces the hydrogen price by

almost 0.15 CAD, and the maximum price reduction that can be achieved based

on 12 extra hours of operation is only 0.92 CAD. Hence, even if there is no limit
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on the load level in the system, a few more hours of operation during the weekends

will not be of significant economic importance.

With regard to typical gasoline and electricity prices in Ontario, this analysis

also demonstrates the feasibility of hydrogen production during off-peak hours for

Ontario’s transport sector, considering the typical fuel economies of ICEs and FCVs.

Thus, the minimum hydrogen selling price obtained based on 8 and 14 hours of

HPP operation during weekdays and weekends, respectively, can be approximately

compared to a gasoline price of 1 CAD/litre, assuming the fuel economies of FCVs

and ICEs to be 100 km/kg and 11.5 km/litre, respectively, and the cost of hydrogen

delivery and dispensing to be 2.5 CAD/kg [110]. This analysis does not factor in any

government support; furthermore, no credit is given for the environmental benefit

of producing hydrogen through electrolysis versus other more polluting mechanisms

such as steam reforming of natural gas.

Notice in Table 4.3 that the 14-hour average demand on weekends (from 23:00-

13:00) is closest to the 8-hour average demand on weekdays. Consequently, and

based on the aforementioned economic analysis, these 14 hours were selected as

the operation time of the hydrogen production plants during the weekends. Thus,

along with the 8 hours of operation during the weekdays, a total operation of 68

hours per week are assumed, which yields close to a 40% capacity factor for the

hydrogen production plants.

Hydrogen Demand

Based on the average hydrogen demand of a representative FCV (0.55 kg/day), the

transition pattern, and the number of LDVs discussed in Section 4.6.2, hydrogen

demand can be determined in different zones of Ontario for the planning years.

Zonal hydrogen demand for a 1% hydrogen economy penetration by 2025 and fol-

lowing Transition Pattern 1 in Figure 4.9 is depicted in Figure 4.10. Observe in this

figure that the total hydrogen demand in Ontario by 2025 will be equal to almost

47 ton/day, of which Toronto, SW and West would be the greatest consumers with
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Figure 4.10: Zonal hydrogen demand of fuel cell vehicles for 1% hydrogen
economy realization based on Transition Curve 1 in Figure
4.9.

almost a 46%, 17%, and 9% share of the hydrogen demand, respectively.

The zonal hydrogen demand during the planning period allows determining the

required capacity of the HPPs, as discussed in Chapter 3. Figure 4.11 illustrates

the zonal capacity of HPPs which would need to be developed over time to establish

a 1% FCV penetration across Ontario by 2025, assuming a 10% efficiency improve-

ment of the plants by 2025 and following Transition Pattern 1. Observe that almost

250 MW of power is needed by 2025 for a 1% ultimate FCV penetration, with a

minimum share in the Bruce zone with less than 540 kW and a maximum share in

Toronto with more than 115 MW.

Hydrogen Transportation Costs

The cost of hydrogen transportation based on compressed gas trucks is composed

of operation and investment cost components. The investment costs correspond to

truck cabs and compressed gas tube trailers, and the operation costs include diesel

costs and driver wages, as well as insurance, licensing, maintenance, and repair

costs [110, 159,162]. The corresponding parameters for 2008 which are assumed in

this study are illustrated in Table 4.6. Based on the data provided in this table,

the operation costs of a compressed gas truck amount to 1.1212 CAD/km for 2008.
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Figure 4.11: Zonal required capacity of electrolytic hydrogen production
plants for 1% hydrogen economy realization based on Transi-
tion Curve 1 in Figure 4.9.

Table 4.6: Hydrogen transportation cost parameters

Maximum capacity of compressed gas trucks [ton] 0.4

Cab capital cost [CAD] 100,000

Tube trailers capital cost for the maximum capacity of 0.4 ton [CAD] 240,000

Diesel cost [CAD/km] 0.4212

Insurance, licensing, maintenance and repair costs [CAD/km] 0.4

Driver wage [CAD/km] 0.3

Cab lifetime [year] 5

Tube trailers lifetime [year] 20

Based on typical inflation rates in Ontario, it is assumed that this operation costs

will increase at 2.5% per year for the following years up to 2025. Finally, assuming

that truck cab prices will probably rise due to inflation, but tube trailer prices will

likely decrease since nowadays these prices could be considered high, it is assumed

that the total investment costs for both combined could be considered to remain

approximately constant during the planning years (the uncertainty regarding these

investment costs will be investigated in Chapter 6). Also, a maximum limit of 4

ton/day for hydrogen transfer in each route is assumed.
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4.6.4 Transition to PHEVs

Charging Demand

PHEV charging is assumed to take place during off-peak hours from 23:00-7:00 in

both weekdays and weekends. Moreover, in order to evaluate the PHEVs charging

demands on Ontario’s grid, the following assumptions are also made:

• A 30-km all-electric average daily trip (referred to as PHEV30km hereinafter

and is approximately equivalent to the PHEV20 reference often found in the

literature). This covers at least 60% of the average-daily-trip range per LDV

in Ontario [145]; in other words, the electric share of vehicle miles traveled

is 60%, and the rest is driven by gasoline. This assumption has to do with

the time required to charge the PHEV during off-peak hours as explained in

more detail below.

• A 70% maximum allowable depth of discharge. Due to life-cycle considera-

tions [74,163,164], at most 70% of the battery’s energy is assumed to be used

in charge depleting mode.

• A 1.4-kW connection power level (120 V/15 A). This is the capacity of the

plug to which the battery is connected and is based on the assumption that

little change will take place in the standard Ontario household infrastructure.

Note that the continuous rating of a plug circuit is less than its peak capacity

[32,34].

• An 85% charging efficiency [165].

It should be pointed out that this study is mainly concerned with generation and

transmission-system issues and does not consider distribution-system issues. Nev-

ertheless, keeping in mind that only off-peak demand and base-load generation

conditions during the time period of 23:00 to 7:00 are considered, the total demand

levels should not be close to on-peak conditions; consequently, technical problems
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Table 4.7: Charging requirements for different types of PHEV30km

Vehicle type Specific Required Required Total Min.

energy useable battery energy charging

requirement energy size demand time

[kWh/km] [kWh] [kWh] [kWh] [hour]

Compact sedan 0.16 4.8 6.86 5.65 4.03

Mid-size sedan 0.19 5.7 8.14 6.71 4.79

Mid-size SUV 0.24 7.2 10.29 8.47 6.05

Full-size SUV 0.29 8.7 12.43 10.24 7.13

Van 0.29 8.7 12.43 10.24 7.13

Pickup truck 0.29 8.7 12.43 10.24 7.13

such as overloading of distribution feeders and transformers or potential unbalanced

conditions is not expected to be a major concern. However, further investigation

of this issue is one of the directions for future work.

Based on the previous assumptions and the required specific energy [69, 164,

166], the battery-charging requirements for different types of PHEV30km vehicles

shown in Table 4.7 were calculated; full-size SUVs, vans, and pickup trucks are

approximately assigned the same energy requirements. Observe that the charging

times fit in the assumed 8 h (23:00–7:00) off-peak time periods. It should also

be pointed out that a wide variety of PHEV vehicle types and technologies are

expected to be introduced; the classifications used in this study simply assume

representative vehicle types.

An average hourly power consumption for each type of vehicle was considered

in this study from 23:00 to 7:00, assuming that the charger system’s controller is

capable of providing a smooth charging current and consequently make a uniform

charging demand during the whole time period. Based on these averages, total

power requirements of PHEV30km vehicles were calculated for the different zones

and years of the planning period based on a 100% penetration level by 2025; these

results are used to define the zonal-demand constraints in the optimization model

developed in Chapter 3. As demonstrated in Figure 4.12, this methodology yields

approximately 84 MW of power requirement for a 1% penetration of PHEVs into

94



Chapter 4. Ontario’s electricity and transport sectors models

0

10

20

30

40

50

60

70

80

90

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

P
H

E
V

 c
h

a
rg

in
g

 d
e

m
a

n
d

 [
M

W
]

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

Figure 4.12: Zonal demanding power of PHEVs for a 1% penetration level
based on Transition Curve 1 in Figure 4.9.

Ontario’s transport sector by 2025. Alternatively, 8.4 GW of power will be needed

for a 100% PHEV penetration by 2025, i.e., about 26% for the estimated peak

demand in that year. It should also be mentioned that, in Figure 4.12, the pre-

sumption is that the maximum possible penetration levels determined by Transition

Curve 1 in Figure 4.9 are realized in each year.

Electricity Demand and Price Considerations

In the FCV transition model, the extra load on the system which is imposed by

HPPs is constant and uniform during off-peak hours; however, this uniformity of

the load cannot be ensured in the PHEV transition model. As discussed in the

previous section, it is assumed that the charger’s controller can provide a smooth

charging current and make a uniform charging demand during off-peak hours. This

simplifying assumption, which may not hold in practice at a large scale, may lead to

slightly higher PHEV penetration levels. In order to address this issue, the PHEV

transition model utilizes the larger winter base-load demands for generating the

base-load data during the planning study, as per Figure 4.13, which shows that

larger base-load demands occur during the winter season in almost all zones of

Ontario except Bruce and Niagara.
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Figure 4.13: Average demands by season during the time period of 23:00
to 7:00 based on 2007 data. Similar patterns can be observed
for other years.

Table 4.8: Hourly Ontario energy price

Average HOEP [CAD/MWh]

Time period 2003 2004 2005 2006 2007 2008

Winter (Dec-Feb) 50.78 38.60 41.71 49.23 34.86 34.14

Spring (Mar-May) 44.04 32.70 44.82 32.47 32.45 30.97

Summer (Jun-Aug) 25.90 29.06 42.44 32.11 27.06 22.89

Fall (Sep-Nov) 34.04 37.78 46.97 29.05 30.67 32.21

Whole year (Jan-Dec) 37.63 35.25 46.06 32.51 31.95 30.09

Table 4.8 shows the calculated average electricity prices in Ontario during the

time period of 23:00-7:00 for the whole year as well as in different seasons. Observe

that the winter prices have decreased from 49.23 CAD/MWh in 2006 to 34.14

CAD/MWh in 2008. However, similar to the assumption for FCV transition model,

the average electricity price in 2008 is deemed as the expected electricity price for

all of the planning period. The impact of price uncertainty will be discussed in

Chapter 6.
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4.7 Summary

In this chapter, appropriate models of Ontario’s electricity system and transport

sector are developed; these models are required for the application of the pro-

posed optimization models for planning the optimal transition to AFVs in Ontario,

Canada. The developed transmission network model is based on major 230 and 500

kV transmission corridors and their possible capacity improvements within a plan-

ning horizon starting in 2008 and ending in 2025. The developed model of base-load

generation capacity considers the mix of nuclear, wind, hydro, CHP, CDM and coal

resources, and specifies the total effective generation capacity which is available in

each zone during the planning study to supply base load. The proposed method-

ology to decompose the annual growth rate of base-load demand of Ontario as a

whole into different zones makes it possible to develop zonal base-load demand data

during the planning horizon.

This chapter also discusses the issue of power exports and imports in Ontario,

proposes transition patterns and develops required data for Ontario’s transport

sector. Further assumptions regarding the operation of HPPs and charging of

PHEVs, in view of Ontario’s electricity demand and price are also discussed. An

economic assessment of electrolytic hydrogen production in Ontario during off-peak

hours is also presented to explore the feasibility of this idea, considering the typical

off-peak electricity prices in Ontario as well as the fuel economies of gasoline and

fuel cell vehicles.
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Chapter 5

Optimal Transition to AFVs in

Ontario

5.1 Introduction

This chapter aims to derive the optimal potential penetrations of AFVs into On-

tario’s transport sector by 2025 based on the optimization planning framework and

Ontario’s electricity system and transport sector models presented in Chapters 3

and 4, respectively. From these models, Ontario’s maximum grid potential for sup-

porting both FCVs and PHEVs are discussed based on the existing and planned

Ontario’s electric grid, without any additional investment on this infrastructure to

specifically accommodate these vehicles in the transport sector. Potential pene-

tration levels and total number of AFVs are determined under both uniform and

non-uniform penetration assumptions, considering a variety of scenarios and con-

straints such as the location of new nuclear units, transition patterns, emission

costs of generation, and HPP placement and hydrogen transportation limits.
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Table 5.1: FCV transition model statistics

Number of continuous variables 30,576

Number of binary variables 24,224

Number of integer variables 1,673

Number of constraints 85,012

MIP gap (%) 0.5

CPU time (s) 36.155

5.2 Results and Discussion for FCV Transition

Model

The proposed model for the transition to FCVs introduced in Chapter 3 along with

the models and data discussed in Chapter 4 was formulated using the AMPL mod-

eling language [117], and solved with CPLEX [118] on an IBM eServer xSeries 460

with 8 Intel Xeon 2.8 GHz processors and 3 GB (effective) of RAM. The model

statistics are given in Table 5.1; the CPU time reflected in this table corresponds

to the case when penetration is uniform and the new nuclear units are developed

in Toronto zone. This section presents and discusses the results for the FCV tran-

sition model for both uniform and non-uniform penetrations of these vehicles into

Ontario’s transport sector. Based on the discussion regarding the social cost of

emissions presented in Section 3.7 and selecting a sufficiently large value of the

social cost of emissions in populated areas, the penetration levels reported in this

section represent Ontario’s maximum grid potential for supporting FCVs.

5.2.1 Non-uniform FCVs Penetration

Impact of Transition Pattern

Optimal potential FCV penetration levels in different zones of Ontario based on

Transition Pattern 1 and neglecting the emission constraints for generation are

depicted in Figure 5.1. It is observed that Bruce, SW and Niagara are the zones
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most amenable to a hydrogen economy; however, given the electricity prices as

well as social costs of CO2 emission in the population area, the FCV penetration in

Niagara is significantly influenced by the location of the new nuclear units. Also, due

to the retirement of coal plant in NW and limited base-load resources in this zone,

NW is the least susceptible zone to a hydrogen economy. It is also interesting to

note that except for Bruce, SW and Niagara (with new nuclear units in the Toronto

zone), the improvement in FCV penetrations after 2013 is negligible. Observe that

the development of new nuclear units in Bruce instead of Toronto results in lower

penetration levels in almost all of the Ontario’s zones except Bruce and SW. Also,

the total number of supportable FCVs in the entire province by 2025 with new

nuclear units in the Toronto and Bruce zones are determined to equal to 684,731

and 263,516, respectively. This shows that the development of new nuclear units in

Toronto provides a better opportunity for FCV penetration in Ontario as a whole.

Furthermore, with the new nuclear units in Toronto, there is no need for hydrogen

transportation between the zones to achieve the FCV penetration levels shown in

Figure 5.1; whereas with new nuclear units in Bruce, hydrogen must be transported

from Bruce to all zones except NW as well as in the route West-SW during the

whole planning horizon with a total cost of 330,258,499 CAD.

The results of a similar study with the consideration of Transition Pattern 2 are

depicted in Figure 5.2. Comparing Figures 5.1 and 5.2 shows that similar patterns

of FCV penetrations in different zones of Ontario are obtained despite different

transition curves. However, it is worth noting that based on Transition Pattern 2,

the FCV penetrations in SW and Essa are influenced less by the location of new

nuclear units in Ontario, while the FCV penetration in Toronto, which has the

largest number of LDVs, is substantially impacted by this factor. Also in this case,

the development of new nuclear units in Bruce requires hydrogen transportation

from Bruce to all zones except NW as well as in the route Ottawa-SW during the

whole planning horizon with a total cost of 319,543,212 CAD.

In order to better illustrate the impact of transition curves, potential FCV pen-

etrations in individual zones of Ontario with different assumptions for the location
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Figure 5.1: Optimal non-uniform hydrogen economy penetration based on
Transition Pattern 1. 101
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of new nuclear units are depicted in Figures 5.3 and 5.4. In general, Transition

Pattern 2 is found to be more supportive of a hydrogen economy in Ontario than

Transition Pattern 1. With the new nuclear units in the Toronto zone, the total

number of supportable FCVs by 2025 based on Transition Pattern 2 is found to

be equal to 686,261, which is slightly more than that obtained with Transition 1

(684,731). As can be observed in Figure 5.3, this is mainly due to higher pene-

tration levels in the Toronto and West zones, which are the first and third largest

populated zones in Ontario, respectively. The advantage of Transition 2 over 1

becomes even more conspicuous with the new nuclear units to be developed in the

Bruce zone; in this case, the total number of supportable FCVs by 2025 based on

Transition Pattern 2 is determined to equal 297,179, which is 12.77% more than

that obtained based on Transition Pattern 1 (263,516). This can be explained by

higher penetration levels in SW and in particular West zones; it is observed in

Figure 5.4 that the final penetration levels in the West zone based on Transition

Patterns 1 and 2 are almost 19% and 29%, respectively. Due to the previously dis-

cussed advantages of Transition Pattern 2 and of the development of new nuclear

units in the Toronto zone, the studies in the following two sections will be based

on these two assumptions.

Impact of Emission Constraints for Generation

The emission constraints for generation have almost no impact on the total number

of supportable FCVs by 2025 (which is equal to 686,261); however, Table 5.2 shows

that the CO2 cost of generation is reduced by almost 51% when emission constraints

are in place. This is related mainly to the reduction of power generation in SW,

which has the largest share of coal plants until 2014, as well as Niagara, West

and NE, which have the largest shares of CHP plants. This also justifies the zero

revenue for power exports from West and Niagara.

Since emission constraints for generation cause changes in power dispatches

within the system, it is expected that the size or pattern of HPP developments in

different zones will also be impacted by these constraints. This expectation is con-
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Figure 5.3: Optimal non-uniform FCV penetration with the new nuclear
units in the Toronto zone.
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Figure 5.4: Optimal non-uniform FCV penetration with the new nuclear
units in the Bruce zone.
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Table 5.2: Optimal cost and revenue components (CAD) for non-uniform
FCV penetration without and with emission constraints (EC)
for generation

Cost/Revenue without EC with EC

Power generation 20,675,399,537 19,813,019,950

Power export -873,136,546 0

Power import 1,279,465,922 1,288,009,105

Hydrogen transportation 0 0

Emission credit in transport sector -6,004,203,393 -5,995,869,810

Emission cost of generation 1,911,597,561 929,113,192

Total 16,989,123,081 16,034,272,437

firmed by considering Table 5.3 where HPPs developed in different zones with and

without the emission constraints are shown. Although the total developed HPPs

in all of Ontario remains almost constant, the development of HPPs in the south

and southwestern zones are impacted by these constraints, which result in changes

in the potential FCV penetrations in these zones. It is also observed in Table 5.4

that final hydrogen economy penetrations by 2025 in almost all zones having high

shares of CHP plants are reduced when emission constraints are considered.

Impact of HPP Placement Constraints

From a practical point of view, a maximum of 20 MW annual HPP development

in each zone is considered in this section. Thus, based on Transition 2, a hydrogen

economy of almost 7.3% can be realized in each zone by the end of 2010. However,

due to very large number of LDVs in the Toronto zone (almost 3,400,000 LDVs

in 2009 base), the realization of this hydrogen economy requires the development

of almost 792 MW of HPPs, which is the capacity of almost 345 of the largest

available HPPs [167]. Completing this many HPPs is really infeasible by the end

of 2010.

The final number of supportable FCVs in all of Ontario is found to be scarcely

affected by this constraint (672,322 compared to 686,587); however, the pattern of
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Table 5.3: Optimal HPP development in different zones of Ontario for non-
uniform FCV penetrations without (-) and with (+) emission
constraints for generation

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

- + - + - + - + - + - + - + - + - + - +

2009 0.65 0.65 26.05 26.05 45.69 45.69 10.62 10.62 140.5 140.5 12.61 12.61 22.77 22.77 19.22 19.22 13.97 13.97 0.2 0.18

2010 3.01 3.01 31.20 121.2 0.49 0.49 48.81 48.81 649.5 603.6 22.06 0.04 0.29 0.29 0.18 0.18 27.91 0 0 0

2011 0.02 1.31 0.52 1.34 0.50 0.50 0 0 3.28 3.09 0.11 0.04 0.29 0.29 0.18 0.18 0 0 0 0

2012 0.02 0.02 0.53 1.35 0.51 0.51 0 0 3.32 3.13 0.12 0.04 0.3 0.3 0.19 0.19 0 0 0 0

2013 0.02 0.02 0.53 1.37 0.51 0.51 0 0 3.36 3.17 0.12 0.04 0.3 0.3 0.19 0.19 0 0 0 0

2014 0.02 0.02 0.54 1.39 0.52 0.52 0 0 3.40 3.20 0.12 0.04 0.31 0.31 0.19 0.19 0 0 0 0

2015 0.02 0.02 0.55 1.4 0.53 0.53 0 0 3.44 3.24 0.12 0.04 0.31 0.31 0.19 0.19 0 0 0 0

2016 0.02 0.02 0.55 1.42 0.54 0.54 0 0 3.48 3.28 0.12 0.04 0.32 0.32 0.19 0.19 0 0 0 0

2017 0.02 0.02 0.56 1.44 0.54 0.54 0 0 3.52 3.32 0.12 0.05 0.32 0.32 0.20 0.20 0 0 0 0

2018 0.02 0.02 0.57 1.46 0.55 0.55 0 0 3.56 3.36 0.13 0.05 0.33 0.33 0.20 0.20 0 0 0 0

2019 0.02 0.02 0.57 1.48 0.56 0.56 0 0 3.60 3.40 0.13 0.05 0.33 0.33 0.20 0.20 0 0 0 0

2020 25.04 23.71 236.3 7.03 0.57 27.43 376.2 386.2 3.65 197.8 0.13 0.05 0.34 0.34 0.21 0.21 0 0 0 0

2021 0.13 0.13 2.80 1.57 0.57 0.87 0 0 3.69 4.34 0.13 0.05 0.34 0.34 0.21 0.21 0 0 0 0

2022 0.13 0.13 2.84 1.59 0.58 0.88 0 0 3.73 4.39 0.13 0.05 0.35 0.35 0.21 0.21 0 0 0 0

2023 0.13 0.13 2.87 1.61 0.59 0.9 0 0 3.77 4.44 0.13 0.05 0.35 0.35 0.21 0.21 0 0 0 0

2024 17.29 14.47 2.91 27.48 0.6 0.91 168.58 147.01 3.81 4.49 0.13 0.05 0.36 0.36 0.22 0.22 0 0 0 0

2025 0.22 0.2 2.95 1.89 0.61 0.92 0 0 3.85 4.54 0.14 0.05 0.36 0.36 0.22 0.22 0 0 0 0

Total 46.75 43.93 312.8 201 54.45 82.85 604.2 592.7 843.4 993.3 36.55 13.34 27.97 27.97 22.41 22.41 41.88 13.97 0.2 0.18

Table 5.4: Final FCV penetration levels in different zones of Ontario with-
out and with emission constraints for generation

Zone Bruce West SW Niagara Toronto East Ottawa Essa NE NW

without EC 86.89 13.47 1.3 74.48 7.28 3.56 1.3 1.3 4.59 0.09

with EC 81.64 8.65 1.98 73.06 8.58 1.3 1.3 1.3 1.53 0
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FCV penetrations are substantially influenced. Thus, as represented in Figure 5.5,

a 20 MW HPP placement constraint reduces the FCV penetration in the zones of

Toronto and in Niagara (after 2020) zones while increasing the penetration levels in

the other zones. Moreover, this constraint makes the hydrogen economy penetrate

more evenly with almost no abrupt changes over time in different Ontario zones;

this seems to be more harmonious with building and operating considerations.

The pattern of HPP development with and without a 20 MW placement con-

straint is also demonstrated in Table 5.5. Observe that the substantial developments

of HPPs occur only in the Niagara and Toronto zones; thus, in Niagara, there are

386 and 147 MW HPP development in 2020 and 2024, respectively, and in Toronto,

there are 604 and 198 MW HPP development in 2010 and 2020, respectively. With

a 20 MW HPP placement constraint, such significant HPP developments cannot

happen. This reduces the total HPP capacities developed in these two zones which

results in lower FCV penetrations, as previously reflected in Figure 5.5. Reduc-

tion of the ultimate developed HPPs in the Toronto and Niagara zones provides

the opportunity for further HPP development in other zones with the eastern and

northern zones having the largest relative change in HPP developments. However,

HPP placement constraints cause hydrogen transportation to take place between

particular zones. As demonstrated in Figure 5.6, a 20 MW placement constraint

makes Bruce as the main hydrogen exporter in Ontario and SW and Toronto as the

main hydrogen importers, with the total transportation cost of 58,930,703 CAD

during the entire planning cycle. This figure illustrates an integrated hydrogen and

electricity system, with the zones acting as energy hubs.

The final number of FCVs by 2025 in different zones of Ontario is also depicted in

Figure 5.7. Observe that the differences between the number of FCVs in different

zones except for Bruce and NW are not significant; this is due to the 20 MW

placement constraint, which reduces the discrepancies between the capacity of HPPs

ultimately developed in these zones.
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Figure 5.5: Optimal FCV penetrations in different zones of Ontario with-
out and with a 20 MW HPP placement constraints (emission
constraints included)
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Figure 5.6: Optimal hydrogen transportation routes and total transferred
hydrogen during the entire planning horizon with a 20 MW
HPP placement constraint (emission constraints included).
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Table 5.5: Optimal HPP development in different zones of Ontario for non-
uniform FCV penetrations without (-) and with (+) a 20 MW
placement constraint (emission constraints included)

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

- + - + - + - + - + - + - + - + - + - +

2009 0.65 19.11 26.05 20 45.69 20 10.62 19.85 140.5 20 12.61 17.23 22.77 20 19.22 19.22 13.97 18.59 0.18 0.55

2010 3.01 18.96 121.2 20 0.49 20 48.81 20 603.6 20 0.04 20 0.29 20 0.18 20 0 20 0 0

2011 1.31 8.40 1.34 20 0.50 20 0 20 3.09 20 0.04 20 0.29 20 0.18 20 0 20 0 0

2012 0.02 0 1.35 20 0.51 20 0 20 3.13 20 0.04 20 0.30 20 0.19 20 0 20 0 0

2013 0.02 0 1.37 20 0.51 20 0 20 3.17 20 0.04 20 0.30 20 0.19 20 0 20 0 0

2014 0.02 0 1.39 20 0.52 20 0 20 3.2 20 0.04 17.55 0.31 1.28 0.19 20 0 20 0 0

2015 0.02 0 1.40 20 0.53 20 0 20 3.24 20 0.04 0.28 0.31 1.3 0.19 20 0 11.73 0 0

2016 0.02 0 1.42 1.29 0.54 1.86 0 1.39 3.28 1.17 0.04 0 0.32 1.32 0.19 1.33 0 0 0 0

2017 0.02 0 1.44 1.31 0.54 1.89 0 0 3.32 0.99 0.05 0 0.32 1.34 0.20 1.35 0 0 0 0

2018 0.02 0 1.46 1.33 0.55 2.59 0 0 3.36 0 0.05 0 0.33 1.36 0.20 1.37 0 0 0 0

2019 0.02 0 1.48 1.34 0.56 1.64 0 0 3.40 0 0.05 0 0.33 1.38 0.20 1.39 0 0 0 0

2020 23.71 20 7.03 20 27.43 20 386.2 20 197.8 20 0.05 20 0.34 20 0.21 20 0 20 0 9.95

2021 0.13 8.13 1.57 20 0.87 20 0 20 4.34 20 0.05 20 0.34 20 0.21 20 0 20 0 0

2022 0.13 1.63 1.59 20 0.88 20 0 20 4.39 20 0.05 20 0.35 1.93 0.21 20 0 20 0 0

2023 0.13 0 1.61 20 0.90 20 0 20 4.44 20 0.05 0.31 0.35 1.96 0.21 20 0 20 0 0

2024 14.47 0 27.48 20 0.91 20 147 20 4.49 20 0.05 0 0.36 1.99 0.22 20 0 20 0 2.09

2025 0.2 0.78 1.89 20 0.92 20 0 20 4.54 15.29 0.05 0 0.36 2.03 0.22 2.41 0 0 0 0

Total 43.93 77.01 201 265.3 82.85 267.99 592.7 261.2 993.3 257.5 13.34 175.4 27.97 156 22.41 247.1 13.97 230.3 0.18 12.59

0

10

20

30

40

50

60

70

80

90

100

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

T
o

ta
l n

u
m

b
e

r 
o

f 
F
C

V
s 

[T
h

o
u

sa
n

d
s]

Figure 5.7: Final number of FCVs based on a non-uniform penetration
assumption with the consideration of 20 MW placement and
emission constraints.
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5.2.2 Uniform FCVs Penetration

Impact of Transition Pattern

Optimal FCV penetration levels disregarding the emission constraints and based

on different transition patterns and locations for the new nuclear units are depicted

in Figure 5.8. Observe in this figure that for a uniform FCV penetration, the

type of transition has a negligible impact on the results. Also, similar to the non-

uniform penetration study, development of the new nuclear units in the Toronto

zone provides a larger FCV penetration in the whole province. Moreover, even the

realization of a 1.44% uniform FCV penetration based on the new nuclear units in

Bruce requires significant hydrogen transportation between the zones. Thus, total

hydrogen transportation costs with the new nuclear units in Toronto and Bruce are

found to equal 42,381,547 and 619,012,158 CAD, respectively.

The total number of FCVs by 2025 with the new nuclear units in Toronto and

Bruce, are 650,760 and 123,946, respectively. It is interesting to note that with the

new nuclear units in Bruce, the total number of FCVs, which is obtained based on

a uniform penetration assumption is almost half of that obtained based on non-

uniform penetration assumption (123,946 vs. 263,516). This can be explained with

the help of electricity and hydrogen constraints. Thus, due to electricity grid limita-

tions, achieving a uniform FCV penetration across all of Ontario requires relatively

more hydrogen transportation than that needed for non-uniform penetrations; how-

ever, this transportation is restricted by the 4 ton/day limit on hydrogen transfer

between any two individual zones. Consequently, a lower number of FCVs is ex-

pected.

It should be noted that with the new nuclear units being developed in Toronto,

the total number of FCVs is reduced by only 5% compared to the non-uniform case

(684,731 vs. 650,760). This is justified by the proximity of generation and major

load centers in Ontario in this case. From the results represented in Figure 5.8,

one could conclude that the development of new nuclear units in the Toronto zone

together with Transition Pattern 2 for a uniform hydrogen economy penetration is
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(b) New nuclear units in Bruce zone.

Figure 5.8: Optimal uniform FCV penetration in Ontario based on differ-
ent transition patterns and location of the new nuclear units.

a superior option; this conclusion is similar to what was observed for non-uniform

penetration. The studies in the following two sections will be based on these as-

sumptions.

Impact of Emission Constraints for Generation

It was observed in Section 5.2.1 that for a non-uniform FCV penetration, the size

and pattern of HPPs developments in the south and southwestern zones of Ontario

are influenced by the emission constraints for generation. However, it is expected

that for a uniform FCV penetration, where the rate of load level increases are the

same across all zones, the corresponding impact should be comparatively lower.

This expectation is verified by considering the results shown in Table 5.6. It is

observed that the size of HPPs in Bruce, i.e., the most environmentally-friendly zone

of Ontario, is the most influenced by the emission constraints for generation. Also,
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Table 5.6: Optimal HPP development in different zones of Ontario for a
uniform FCV penetration without (-) and with (+) emission
constraints for generation

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

- + - + - + - + - + - + - + - + - + - +

2009 5.27 10.18 25.47 26.05 46.26 43.08 8.31 8.31 145.1 140.5 8 8 22.77 22.77 19.22 21.53 14.67 14.67 0 0

2010 0.50 0 65.34 63.72 127.6 113.6 27.38 25.63 377.5 371.1 0.65 2.06 57.40 55.99 48.24 54.96 31.94 31.30 0 0

2011 0 0 0.94 5.21 0 6.77 0 2.23 0 7.03 29.98 28.49 3.46 4.88 2.69 0 0 0.64 0 0

2012 0 0 2.64 0.86 0 3.61 0 0 0 0 1.17 0.01 1.07 1.07 0.66 0 0 0 0.57 0.57

2013 0 0 0.11 0.92 0 0 0 0 0 0 0 0 1.11 1.12 0.69 0 0 0 4.64 4.65

2014 0.56 0 0.90 0.89 0 1.25 0 0 0 0 0 0 1.10 1.10 0.68 0 0 0 3.07 3.07

2015 0.46 0 2.32 0.90 0 2.34 0 0.21 0 0 1.83 1.85 1.12 1.12 0.69 0 0 0 0 0

2016 0 0 1.17 0.91 1.64 3.74 0 0 0 0 1.86 0.73 1.13 1.13 0.70 0 0 0 0 0

2017 0 0 0.92 0.92 1.93 1.96 0 0.25 0.07 0 1.83 2.33 1.15 1.15 0.71 0 0 0 0 0

2018 0 0 0.94 0.93 1.96 1.98 0 0 1.76 1.54 0.17 1.09 1.17 1.17 0.72 0 0 0 0 0

2019 1.27 0 0.77 0.95 0 2.01 0.89 0 1.80 1.78 0.17 0.89 1.19 1.19 0.73 0 0 0 0 0

2020 0 0 54.37 55.75 104.5 100 19.18 19.11 288.1 290 22.72 22.90 51.11 51.04 41.38 41.87 24 23.97 0.91 0.90

2021 0 0 3.11 1.48 1.79 3.16 0 0 1.42 1.41 0 0 1.88 1.87 1.14 1.41 1.42 1.42 0 0

2022 0 0 1.43 1.50 3.54 3.20 0 0 2.89 2.88 0 0 1.90 1.90 1.15 1.43 0 0 0 0

2023 0 0 0 1.52 5.04 3.24 0 0 2.94 2.93 0 0 1.93 1.93 1.17 1.45 0 0 0 0

2024 15.16 30.04 16.37 16.54 10.08 15.43 4.65 5.27 71.44 65.02 6.72 9.01 14.17 15.80 10.99 10.71 1.13 1.84 3.24 3.40

2025 4.14 8.27 1.69 2.05 0 0.13 0 0.12 3.06 1.58 0 0 2.15 2.50 1.30 1.57 0 0 0 0

Total 27.35 48.50 178.5 181.1 304.3 305.4 60.41 61.13 896 885.7 75.10 77.36 165.8 167.8 132.9 134.9 73.16 73.85 12.43 12.59

the optimal cost and revenue components in Table 5.7 demonstrate the impacts

of these constraints, which particularly result in lower total emission costs and

power export revenues in West and Niagara which have the highest shares of CHP

plants in Ontario. Larger hydrogen transportation costs, which are obtained when

emission constraints are included, mainly correspond to further development of

HPPs in Bruce directly increasing the level of hydrogen export from this zone.

Comparing the emission credit in the transport sector results illustrates that the

ultimate uniform FCV penetration and total number of FCVs is not substantially

impacted by emission constraints.
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Table 5.7: Optimal cost and revenue components (CAD) for a uniform FCV
penetration without and with emission constraints (EC) for gen-
eration

Cost/Revenue without EC with EC

Power generation 20,674,626,820 19,805,013,754

Power export -894,355,800 -1,866,518

Power import 1,286,738,017 1,288,070,601

Hydrogen transportation 72,236,670 73,082,980

Emission credit in transport sector -5,914,859,740 -5,911,545,066

Emission cost of generation 1,907,640,285 927,363,677

Total 17,132,026,252 16,180,119,428

Impact of HPP Placement Constraints

Similar to the non-uniform penetration study, a maximum 20 MW annual HPP

development in each zone is also considered here. Optimal FCV penetrations with

and without this constraint are depicted in Figure 5.9. It is observed that the 20

MW HPP placement constraint substantially reduces FCV penetrations; moreover,

similar to the non-uniform penetration study, it helps the hydrogen economy pene-

trate more evenly over time. Table 5.8 demonstrates the optimal size of HPPs to be

developed in different zones of Ontario to achieve the FCV penetrations shown in

Figure 5.9. Observe that the total capacity of HPPs developed by 2025 in all zones

are reduced and their total development in all of Ontario is diminished by almost

44%. It is interesting to note that this placement constraint has the largest impact

on HPP development in the Toronto zone; this constraint seems to be the main

reason for the decline of uniform FCV penetration in Ontario as a whole. Thus,

the Toronto zone is not allowed to develop more than 340 MW HPPs by 2025 which

is realized by a constant 20 MW development in each year. It would be expected

that the deficit of local HPPs in this zone would be partly compensated by further

hydrogen imports from other zones; however, total compenstaion is not feasible as

the hydrogen transfer is also constrained by a 4 ton/day limit.

Optimal hydrogen transfer routes and total transferred hydrogen during the
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Figure 5.9: Optimal uniform FCV penetration in Ontario without and with
a 20 MW HPP placement constraint (emission constraints in-
cluded).

whole planning period without and with a 20 MW HPP placement constraint are

shown in Figures 5.10 and 5.11, respectively. It is observed that the inclusion of the

HPP placement constraint causes the transportation of large volumes of hydrogen

in Ontario, in particular in the routes ending at Toronto. Optimal cost and revenue

components reflected in Table 5.9 show that total hydrogen transportation costs

increases by more than five-fold when a HPP placement constraint is considered.

Also, comparing the power generation costs in Table 5.9 reveals that there is still

unutilized generation capacity in Ontario when the HPP placement constraint is

included. However, congestion in hydrogen transportation routes due to a 4 ton/day

transfer limit precludes further development of HPPs. It is also interesting to note

in Figures 5.10 and 5.11 that similar to the non-uniform penetration study, Bruce

has the capability of being the main hydrogen exporter in Ontario. The total

number of FCVs in this case is also represented in Figure 5.12. Although a 20 MW

placement constraint reduces the significant discrepancies between the developed

HPPs in different zones, the uniform penetration assumption results in substantially

larger numbers of FCVs in the Toronto zone, which has the largest transport sector

in Ontario. Furthermore, the total number of FCVs in this case is almost 56% of the

one obtained based on non-uniform penetration assumption. Based on the realistic

and practical assumptions made in this section, no more than 378,362 FCVs can

be introduced into Ontario’s transport sector by 2025.
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Table 5.8: Optimal HPP developments in different zones of Ontario for a
uniform hydrogen economy penetration without (-) and with (+)
a 20 MW placement constraint (emission constraints included)

Bruce West SW Niagara Toronto East Ottawa Essa NE NW

- + - + - + - + - + - + - + - + - + - +

2009 10.18 20 26.05 20 43.08 20 8.31 20 140.5 20 8 20 22.77 20 21.53 20 14.67 20 0 0.56

2010 0 11.90 63.72 20 113.6 20 25.63 19.56 371.1 20 2.06 17.85 55.99 20 54.96 20 31.30 19.92 0 0

2011 0 0 5.21 20 6.77 20 2.23 10.54 7.03 20 28.49 4.78 4.88 19.29 0 13.40 0.64 8.36 0 0

2012 0 0 0.86 17.38 3.61 19.30 0 0 0 20 0.01 2.84 1.07 5.72 0 4.66 0 1.12 0.57 0

2013 0 0 0.92 0.43 0 19.80 0 0 0 20 0 2.16 1.12 4.55 0 3.66 0 1.71 4.65 2.99

2014 0 0 0.89 3.72 1.25 7.99 0 0.03 0 20 0 1.55 1.10 3.48 0 2.74 0 1.23 3.07 0.35

2015 0 0 0.90 3.77 2.34 8.10 0.21 0 0 20 1.85 1.55 1.12 3.54 0 2.78 0 0.19 0 1.34

2016 0 0 0.91 3.81 3.74 8.19 0 0 0 20 0.73 1.55 1.13 3.61 0 2.81 0 1.49 0 0

2017 0 0 0.92 3.85 1.96 8.28 0.25 0 0 20 2.33 1.55 1.15 3.67 0 2.84 0 1.44 0 0

2018 0 0 0.93 2.24 1.98 8.85 0 1.16 1.54 20 1.09 1.55 1.17 3.73 0 2.87 0 1.39 0 0

2019 0 0 0.95 3.94 2.01 7.33 0 1.11 1.78 20 0.89 1.54 1.19 3.80 0 2.91 0 0.41 0 0.94

2020 0 0 55.75 5.61 100 5.81 19.11 1.10 290 20 22.90 1.54 51.04 3.86 41.87 2.94 23.97 1.31 0.90 0

2021 0 0 1.48 2.40 3.16 9.16 0 1.09 1.41 20 0 1.54 1.87 3.93 1.41 2.97 1.42 1.26 0 0

2022 0 0 1.50 4.06 3.20 7.64 0 1.08 2.88 20 0 1.54 1.90 4 1.43 3.01 0 0.62 0 0.6

2023 0 0 1.52 5.70 3.24 6.14 0 1.07 2.93 20 0 1.54 1.93 4.06 1.45 3.04 0 1.18 0 0

2024 30.04 0 16.54 4.14 15.43 7.85 5.27 1.06 65.02 20 9.01 1.54 15.80 4.13 10.71 3.07 1.84 0.85 3.40 0.29

2025 8.27 0 2.05 4.18 0.13 7.95 0.12 1.05 1.58 20 0 1.54 2.50 4.20 1.57 3.11 0 0.81 0 0.29

Total 48.50 31.90 181.1 125.2 305.4 192.4 61.13 58.83 885.7 340 77.36 66.16 167.8 115.6 134.9 96.80 73.85 63.29 12.59 7.35

Table 5.9: Optimal cost and revenue components (CAD) for a uniform hy-
drogen economy penetration without and with a 20 MW place-
ment constraint (PC)

Cost/Revenue without PC with PC

Power generation 19,805,013,754 19,252,364,918

Power export -1,866,518 -4,684,055

Power import 1,288,070,601 1,287,596,262

Hydrogen transportation 73,082,980 380,071,018

Emission credit in transport sector -5,911,545,066 -3,282,644,537

Emission cost of generation 927,363,677 670,027,214

Total 16,180,119,428 18,302,730,820
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Figure 5.10: Optimal hydrogen transportation for the whole planning hori-
zon based on a uniform hydrogen economy penetration (emis-
sion constraints included).
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Figure 5.11: Optimal hydrogen transportation for the whole planning hori-
zon based on a uniform hydrogen economy penetration includ-
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Figure 5.12: Total number of FCVs based on a uniform penetration as-
sumption considering 20 MW placement and emission con-
straints.

Table 5.10: PHEV transition model statistics

Number of continuous variables 21,684

Number of binary variables 19,993

Number of constraints 62,448

MIP gap (%) 0.02

CPU time (s) 172.292

5.3 Results and Discussion for PHEV Transition

Model

The model proposed in Chapter 3 for the transition to PHEVs along with the

data discussed in the previous chapter was formulated using the AMPL modeling

language [117], and solved with CPLEX [118], on an IBM eServer xSeries 460

with 8 Intel Xeon 2.8 GHz processors and 3 GB (effective) of RAM. The model

statistics are given in Table 5.10; the CPU time reflected in this table corresponds

to the case when penetration is uniform and the new nuclear units are developed

in the Toronto zone. This section presents and discusses the results for the PHEV

transition model considering both uniform and non-uniform penetrations of these

vehicles into Ontario’s transport sector. The penetration levels reported in this

section represent Ontario’s maximum grid potential for supporting PHEVs.
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5.3.1 Non-uniform PHEVs Penetration

Impact of Transition Pattern

The total number of PHEVs based on Transition Patterns 1 and 2 were found

to equal 1,037,081 and 1,036,558, respectively. Hence, for a non-uniform PHEV

penetration, the type of assumed transition pattern has practically no impact on the

total number of supportable PHEVs by the electricity grid in Ontario. However, as

observed in Figure 5.13, Transition Pattern 1 facilitates further adoption of PHEVs

in the SW, NW and eastern zones, while Transition Pattern 2 provides a better

opportunity for penetration of PHEVs into the NE and in particular Toronto’s

transport sector, which has the largest number of LDVs in Ontario. Similar to

FCVs related studies, Bruce and Niagara show the largest PHEV penetration in

terms of their percentage of LDVs.

Impact of Emission Constraints for Generation

In Ontario, emission constraints for generation were also found to be of practi-

cally no influence on the total number of PHEVs, since the numbers obtained were

1,037,320 and 1,036,555 based on Transition Patterns 1 and 2, respectively. How-

ever, optimal cost and revenue components are substantially impacted by these

constraints as demonstrated in Table 5.11, where it is shown that power generation

is reduced due to the emission constraints; this in turn reduces the total emission

cost of generation by almost 27% and hinders power export from the West and

Niagara zones.

The minimal impact of emission constraints for generation is also demonstrated

in Figure 5.14, where the total number of PHEVs in individual zones of Ontario

without and with the consideration of emission constraints and based on different

transition patterns are illustrated. Observe in this figure that only the total number

of PHEVs in the West and Toronto zones are slightly impacted by the emission

constraints based on Transition Pattern 1. Also, in terms of the number of PHEVs
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Figure 5.13: Optimal non-uniform PHEV penetration.
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Table 5.11: Optimal cost and revenue components (CAD) for a non-
uniform PHEV penetration without and with emission con-
straints (EC) for generation based on Transition Pattern 1

Cost/Revenue without EC with EC

Power generation 17,135,825,318 17,030,351,992

Power export -123,378,869 -1,012,978

Power import 1,096,923,471 1,096,923,471

Emission credit in transport sector -3,378,790,998 -3,377,231,320

Emission cost of generation 1,285,171,092 932,847,929

Total 16,015,750,014 15,681,879,094

and based on a non-uniform penetration assumption, Ontario’s electricity grid has

the greatest capability to support PHEVs in the West, Niagara and Toronto zones.

5.3.2 Uniform PHEVs Penetration

Impact of Transition Pattern

Optimal uniform PHEV penetration into Ontario’s transport sector based on dif-

ferent transition patterns and without the consideration of emission constraints are

depicted in Figure 5.15, where Transition Pattern 2 represents an extremely mi-

nor advantage in the year 2020. The total number of supportable PHEVs by 2025

based on both transition patterns are found to equal 912,106; this shows almost

a 12% reduction compared to the non-uniform penetration scenario, which can be

explained by the increased level of transmission losses. Observe that until 2019 no

more than a 3.12% uniform PHEV penetration can be supported by Ontario’s grid.

It is important to mention that if the feasibility factor FFiy is set the same for

all zones (disregarding zone index i), transition curve is scaled down for all zones

to keep feasibility; this makes the penetrations of AFVs in different zones follow a

similar pattern, but it might underestimate the grid potential for supporting AFVs

in the transport sector [168].
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(b) with emission constraints for generation.

Figure 5.14: Total number of PHEVs in different zones of Ontario for a
non-uniform penetration.
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Figure 5.15: Optimal uniform PHEVs penetration into Ontario’s transport
sector.
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Table 5.12: Optimal cost and revenue components (CAD) for a uniform
PHEV penetration without and with emission constraints (EC)
for generation for Transition Pattern 2

Cost/Revenue without EC with EC

Power generation 17,251,370,517 17,028,836,437

Power export -244,130,997 0

Power import 1,096,923,471 1,096,923,471

Emission credit in transport sector -3,317,132,123 -3,317,132,123

Emission cost of generation 1,426,569,483 931,936,287

Total 16,213,600,351 15,740,564,072

Impact of Emission Constraints for Generation

For a uniform PHEV penetration, emission constraints have no impact on the

number of supportable PHEVs in each individual year during the whole planning

horizon, since the penetration levels in this case are exactly the same as the ones

depicted in Figure 5.15. However, different cost and revenue components are sub-

ject to change. For example, optimal cost and revenue components for PHEV

penetration based on Transition Pattern 2, with and without emission constraints

for generation are demonstrated in Table 5.12. Observe that in this case, there is

no power exports, and the emission cost of generation is significantly reduced by

almost 35%.

Figure 5.16 demonstrates the total number of PHEVs supported by Ontario’s

electricity grid in individual zones of Ontario based on a uniform penetration as-

sumption. As was mentioned earlier, the type of transition pattern and the inclusion

of emission constraints for generation do not influence these results. Observe in Fig-

ure 5.16 that in terms of the number of PHEVs, Ontario’s maximum grid potential

is particularly reflected in the Toronto and SW zones.
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Figure 5.16: Total number of PHEVs in different zones of Ontario for a
uniform penetration.

5.4 Summary

This chapter presented and discussed the application of the proposed optimization

models for the transition to AFVs to the real case of Ontario, Canada with a

planning horizon starting in 2008 and ending in 2025. Maximum Ontario’s grid

potential for supporting both FCVs and PHEVs were determined under uniform

and non-uniform penetration assumptions. The impacts of different constraints

and assumptions such as the location of the new nuclear units, transition patterns,

the emission cost of generation, and HPP placement and hydrogen transportation

limits were also analyzed in detail.
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Chapter 6

Optimal Transition to AFVs

under Uncertainty

6.1 Introduction

In Chapter 3, comprehensive optimization models were developed for planning the

transition to AFVs. Chapter 5 demonstrated the application of these models in

Ontario, Canada to determine the maximum grid potential for supporting AFVs

in Ontario’s transport sector based on the data set and assumptions discussed in

Chapter 4. These optimization planning models involve many parameters that must

be estimated; however, estimation errors may significantly influence the optimal

solution. Therefore, these errors must be taken into account during the optimization

process when looking for an optimal solution. One of the approaches in considering

these uncertainties during the optimization process is robust optimization, which

has received notable attention recently. This chapter proposes the application of

robust optimization to deal with parameter uncertainty in planning the transition

to AFVs, using the real-case example of Ontario.

In order to identify the influential uncertain parameters, a sensitivity analysis

using Monte Carlo simulation is performed first. Once the influential parameters
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are determined, the robust optimization approach proposed in [83] is applied to

develop robust solutions for the transition to AFVs. A significant advantage of the

robust optimization approach used here is that it allows decision makers to adjust

the trade-off between optimality and conservatism.

6.2 Sensitivity Analysis

To develop optimal solutions for the optimization models and data discussed in

Chapters 3 and 4, one needs to estimate the values of several parameters by relying

on historical data and/or making some assumptions. The estimated parameter

values, however, may be different from the true values; this disparity might be due

to data limitations, biased data, unrealistic assumptions, numerical errors in the

estimation process or the nonstationary nature of the data. A common approach

to investigate the impact of estimation errors on the optimal solution and the

corresponding optimal value is to represent the errors as perturbations to the data

in order to perform a sensitivity analysis on the optimal solution [169].

6.2.1 Proposed Methodology

In this section, a sensitivity analysis using Monte Carlo simulation is carried out

to find the impact of estimation errors in the parameters of the models developed

in Chapter 3. More precisely, given a parameter A in an optimization problem, M

perturbations ∆A are generated to represent the estimation errors in the parameter

A. It is assumed that the perturbations have independent normal distributions, i.e.,

∆A = ρεA, (6.1)

where parameter ρ ∈ (0, 1] indicates the size of the relative perturbation and ε is

a random parameter, which is assumed to follow a normal distribution with zero

mean and unit standard deviation. Throughout this chapter, ρ and M are fixed
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at 10% and 1000, respectively; these values were chosen considering a “reasonable”

perturbation level of 10%, and 1000 perturbations since satisfactory results are

obtained from Monte Carlo simulations for this number. Increasing the number

of Monte Carlo simulations beyond 1000 does not yield any significant changes to

the final solutions. It is also assumed that only one parameter of the optimization

model is perturbed at a time while all other parameters remain at their nominal or

expected values.

In this sensitivity analysis, the following three quantities are considered and

distinguished [170,171]:

1. True optimal value: It is the value of the objective function (OF ) using an

unperturbed parameter A at the optimal solution obtained from the unper-

turbed parameter A; this is denoted by OFA (XA).

2. Actual optimal value: It is the value of the objective function using an un-

perturbed parameter A at the optimal solution obtained from the perturbed

parameter A + ∆A; this is denoted by OFA (XA+∆A).

3. Estimated optimal value: It is the value of the objective function using a per-

turbed parameter A+∆A at the optimal solution obtained from the perturbed

parameter A + ∆A; this is denoted by OFA+∆A (XA+∆A).

In practice, unperturbed or true values of the parameters are unknown to the deci-

sion maker at the time of planning; therefore, an optimal solution is obtained from

the perturbed or estimated parameters A + ∆A, which are the only available data.

During the simulation process, some typical values of the parameters are chosen

to represent true values; these assumed true values A are then used to generate

perturbations ∆A and to obtain A + ∆A, which represent the estimated value of

the parameters. An optimal solution is then found at the estimated parameters,

denoted by XA+∆A. This optimal solution along with the true value of the pa-

rameter A, is used to calculate the actual optimal value OFA (XA+∆A). This actual

optimal value determines the performance of the decision made using the estimated
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data which is the quantity of interest. Note that the estimated optimal value, i.e.,

OFA+∆A (XA+∆A) might underestimate or overestimate the objective function value

and, therefore, is not useful for planning studies.

It is worth mentioning that typical methods used in the literature for sensitivity

analysis are valid for small perturbations, allowing to approximately determine the

estimated optimal value [172, 173]. However, these methods would not be appro-

priate here to obtain the actual optimal value given the larger range of parameter

variation considered here.

In order to quantitatively compare the sensitivity of the optimal value to per-

turbations of different parameters, the following Average Deviation Index (ADI)

measure is proposed:

ADI =
1

M

M∑

m=1

|OFA (XA+∆Am
) − OFA (XA)| , (6.2)

where OFA (XA+∆Am
) is the actual optimal value in simulation m. Calculated ADI

values for different parameters in each optimization model are ranked to identify

the most influential parameters, which are used later in developing the robust coun-

terpart optimization models. The detailed implementation of this method for the

previously developed optimization models in Chapter 3 is presented next.

6.2.2 Sensitivity Analysis of the FCV Transition Model

In performing a sensitivity analysis using Monte Carlo simulation of the optimiza-

tion model for the transition to hydrogen economy, the following assumptions are

made:

• Number of parameters: In total, 23 single or group parameters are considered

which cover the most relevant parameters involved in this optimization model.

• Type of penetration and transition: In order to impose a more limiting condi-

tion on the electricity grid and the hydrogen transportation network, a uni-
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form penetration of FCVs in different zones following the second transition

curve is assumed as discussed in Chapter 4 .

• Hydrogen-related constraints: To include more realistic construction and op-

erational limits, a 20 MW HPP placement constraint as well as a 4 ton/day

limit for transporting hydrogen in each route are in place for all the simula-

tions.

• Emission constraints for generation: These are disregarded here because they

make the optimization problem much harder to solve, which is certainly an

issue when thousands of simulations are required in Monte Carlo simulation

approach.

• Social cost of emissions : In Chapter 3, the target was to achieve the max-

imum potential penetration level of AFVs; therefore, the largest reported

value for the social cost of emission was used for assigning credit to AFVs in

population areas. On the other hand, the value of this parameter, i.e., 125

CAD/ton, considered in this section was chosen as per the following consid-

eration: It should be noted that with regard to typical electricity prices in

Ontario, emission costs lower than 125 CAD/ton substantially reduces the

potential penetration levels, as shown in Table 6.1. Typical values used for

this parameter in the literature for CO2 emissions are less than 100 CAD/ton;

however, the higher 125 CAD/ton value was chosen due to the fact that the

environmental benefits of AFVs are not merely limited to the reduction of

CO2 emissions.

It is also important to highlight that those parameters whose estimation er-

rors are not expected to be larger than 10% are included in the list of uncer-

tain parameters for performing sensitivity analysis or developing the robust

models. Since the reported values of the social cost of emissions vary in an

extremely wide range and are really unknown in practice, as there is cur-

rently no mechansim to precisely price emissions, this parameter is treated

here differently from other uncertain parameters; therefore emission costs are
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Table 6.1: Optimal uniform FCV penetration for different values of emis-
sion costs

Emission cost [CAD/ton] 10 50 75 100 110 125 150 175 200 250 300 400 500 700

FCV penetration [%] 0 0 0 0.06 2.90 2.95 3.02 3.29 3.38 3.79 4.13 4.41 4.43 4.43

not placed in the same category of the other uncertain parameters analyzed

in this study.

For this sensitivity analysis, AMPL [117] with a CPLEX [79] solver were used

to perform the Monte Carlo simulations and determine the true and actual optimal

values; other computational tasks were performed using MATLAB [174]. Also, in

order to achieve a high degree of precision, optimality gap was fixed at 0.02% for all

the simulations. The results of this analysis for the parameters with non-zero ADIs

are depicted in Figures 6.1-6.20; these figures illustrate how the actual optimal

value varies with respect to the assumed perturbations in different parameters.

The calculated ADI values, together with the ranking of the parameters, are also

reflected in Table 6.2. Based on the presented results, annual mileage and fuel

economy of fuel cell vehicles are found to be the most influential parameters in this

sensitivity analysis. However, hydrogen transfer related parameters have no impact

on the optimal solution. This result is expected, since with the chosen value of the

social cost of CO2 emission, hydrogen economy penetration levels are relatively low,

which, in turn, requires less hydrogen to be transported between the zones. Also,

internal electricity prices in Ontario as well as import and export electricity prices

are found to have an average-to-high impact on the optimal solution. Based on

these observations and as shown in Table 6.2, all the involved parameters in the

optimization model for the transition to hydrogen economy can be classified into

three categories based on their relative impact on the optimal solution.

As highlighted in the list of assumptions for the sensitivity analysis, an average

10% deviation for all the parameters is considered. However, given the limitations

of the robust optimization technique used here, uncertain parameters such as an-
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nual mileage and fuel economy of FCVs which simultaneously appear in multiple

constraints and the objective function cannot be handeled by this methodology,

hence, to be conservative, the worst-case values of these parameters were used for

the robust optimization studies. The most-appealing decision variable in the pro-

posed optimization models for transition to AFVs is the feasibility factor (FFiy),

since it translates into penetration levels (µ̄yFFiy) or total number of AFVs by

the end of the planning horizon. To determine the worst-case values for these two

parameters, an analysis of their effect on total number of AFVs was performed,

as shown in Figures 6.21 and 6.22. From these results, the worst-case value for

fuel economy of FCVs is 90% of its nominal or expected value, while the worst-case

value of the annual mileage corresponds to 110% of its nominal value. Observe that

the other uncertain parameters are basically electricity prices and fuel economy of

GVs which only appear on the objective function and can then be studied using

the robust optimization method.

6.2.3 Sensitivity Analysis of the PHEV Transition Model

Sensitivity analyses of the optimization model for transition to PHEVs were per-

formed using similar assumptions as employed for the FCV transition model. How-

ever, as there are no hydrogen-related parameters and differentiation between week-

days and weekends, 19 sets of parameters were considered in the analysis.

It was observed that the pattern of changes in the actual optimal value with

respect to changes in different parameters are very similar to the ones illustrated in

Figures 6.3-6.20 for the FCV model. The results of the sensitivity analysis are illus-

trated in Table 6.3; observe in Table 6.3 that all the parameters in the optimization

model for transition to PHEVs are classified into two categories considering their

corresponding ADI values and ranking. Based on the discussion in Section 6.2.2

regarding the limitations of the adopted robust optimization approach to handle

uncertain parameters, which simultaneously appear in multiple constraints, only

electricity prices in the first category are considered here for developing the robust
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Figure 6.1: Actual optimal value with respect to perturbations in annual
mileage.
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Figure 6.2: Actual optimal value with respect to perturbations in fuel econ-
omy of FCVs.

134



Chapter 6. Optimal Transition to AFVs under Uncertainty

8 9 10 11 12 13 14 15 16 17
1.971

1.972

1.973

1.974

1.975

1.976

1.977

1.978

1.979
x 10

10

Average fuel economy of gasoline vehicles [km/litre]

O
pt

im
al

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e 
fu

nc
tio

n 
[$

C
A

D
]

Figure 6.3: Actual optimal value with respect to perturbations in average
fuel economy of GVs.
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Figure 6.4: Actual optimal value with respect to perturbations in efficiency
improvement of HPPs.
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Figure 6.5: Actual optimal value with respect to perturbations in HOEP
on weekdays.
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Figure 6.6: Actual optimal value with respect to perturbations in HOEP
on weekends.
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Figure 6.7: Actual optimal value with respect to perturbations in the price
of export power on weekdays.
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Figure 6.8: Actual optimal value with respect to perturbations in the price
of export power on weekends.
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Figure 6.9: Actual optimal value with respect to perturbations in the price
of import power on weekdays.
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Figure 6.10: Actual optimal value with respect to perturbations in the
price of import power on weekends.
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Figure 6.11: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the Bruce zone.
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Figure 6.12: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the West zone.
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Figure 6.13: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the SW zone.
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Figure 6.14: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the Niagara zone.
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Figure 6.15: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the Toronto zone.
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Figure 6.16: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the East zone.
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Figure 6.17: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the Ottawa zone.
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Figure 6.18: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the Essa zone.
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Figure 6.19: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the NE zone.
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Figure 6.20: Actual optimal value with respect to perturbations in annual
growth rate of LVDs in the NW zone.
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Table 6.2: Average deviation index of the FCV transition model for differ-
ent uncertain parameters.

Rank Uncertain parameter ADI [CAD]

1 Annual mileage 3.4605e+007

2 Fuel economy of FCVs 3.3263e+007

3 HOEP on weekdays 5.7007e+006

4 Price of export power on weekdays 5.5155e+006

5 HOEP on weekends 4.7217e+006

6 Price of export power on weekends 4.5095e+006

7 Price of import power on weekdays 4.0228e+006

8 Price of import power on weekends 3.2643e+006

9 Average fuel economy of GVs 2.7609e+006

10 Annual growth rate of LDVs in Toronto 2.0736e+006

11 Efficiency improvement of HPPs 1.8587e+006

12 Annual growth rate of LDVs in SW 7.7110e+005

13 Annual growth rate of LDVs in Ottawa 4.5828e+005

14 Annual growth rate of LDVs in West 3.7876e+005

15 Annual growth rate of LDVs in Essa 3.2004e+005

16 Annual growth rate of LDVs in East 2.1949e+005

17 Annual growth rate of LDVs in NE 1.6075e+005

18 Annual growth rate of LDVs in Niagara 4.8479e+004

19 Annual growth rate of LDVs in Bruce 5.9460e+003

20 Annual growth rate of LDVs in NW 3.7698e+003

21 Average operating cost of hydrogen transfer 0

22 Capital cost of tube trailer 0

23 Capital cost of cab 0
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Figure 6.21: Total number of FCVs with respect to annual mileage.
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Figure 6.22: Total number of FCVs with respect to fuel economy of fuel
cell vehicles.
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Table 6.3: Average deviation index of the PHEV transition model for dif-
ferent uncertain parameters.

Rank Uncertain parameter ADI [CAD]

1 Price of export power 5.0598e+006

2 HOEP 5.0523e+006

3 Annual growth rate of LDVs in Toronto 3.3158e+006

4 Price of import power 2.4700e+006

5 Annual growth rate of LDVs in SW 2.2047e+006

6 Annual growth rate of LDVs in Ottawa 1.4607e+006

7 Annual growth rate of LDVs in West 1.0384e+006

8 Annual growth rate of LDVs in Essa 8.6978e+005

9 Annual growth rate of LDVs in East 3.2441e+005

10 Annual growth rate of LDVs in NE 1.4591e+005

11 Annual growth rate of LDVs in Niagara 1.4146e+005

12 Annual growth rate of LDVs in Bruce 1.4817e+004

13 Annual growth rate of LDVs in NW 1.1417e+004

14 Average fuel economy of GVs (compact sedan) 0

15 Average fuel economy of GVs (mid-size sedan) 0

16 Average fuel economy of GVs (mid-size SUV) 0

17 Average fuel economy of GVs (full-size SUV) 0

18 Average fuel economy of GVs (van) 0

19 Average fuel economy of GVs (pick-up truck 0

counterpart problem for the PHEV transition model. This assumption can be fur-

ther justified based on the fact that, in practice, electricity prices are subject to

more fluctuations and their forecasting is significantly more challenging compared

to other parameters such as annual growth rates of LDVs.

6.3 Robust Optimization Models

This section presents the robust optimization models for the transition to AFVs

which are robust with respect to uncertainty in the parameters identified in previous
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section. These models are based on the method discussed in Chapter 2 which is

capable of adjusting the degree of conservatism. These robust models are developed

separately for the transition to FCVs and PHEVs, as discussed in the following

sections.

6.3.1 Robust Model for the Transition to FCVs

The optimization problem for the transition to FCVs which was developed and

discussed in Chapter 3 can be generally represented as:

min c′x

s.t. Ax ≥ b,

x ∈ X, (6.3)

where X includes all mixed integer solutions and the cost vector c is subject to

uncertainty. In order to comply with the robust optimization method, which was

discussed in Chapter 2, this problem can be represented as follows, where all the

uncertain parameters are in the constraints:

min W

s.t. W − c′x ≥ 0,

Ax ≥ b,

x ∈ X. (6.4)

For the three sets of electricity prices (internal, import, and export), two time

periods (ω1 and ω2), one set of fuel economy values for GVs and a planning span

of 18 years, problem (6.4) presents 126 uncertain parameters as follows:

0.9π̂τ
y ≤ π̃τ

y ≤ 1.1π̂τ
y , ∆πτ

y = 0.1π̂τ
y , ∀y ∈ Y ∧ τ ∈ Ψ (6.5)

0.9π̂τ
my

≤ π̃τ
my

≤ 1.1π̂τ
my

, ∆πτ
my

= 0.1π̂τ
my

, ∀y ∈ Y ∧ τ ∈ Ψ (6.6)
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0.9π̂τ
xy

≤ π̃τ
xy

≤ 1.1π̂τ
xy

, ∆πτ
xy

= 0.1π̂τ
xy

, ∀y ∈ Y ∧ τ ∈ Ψ (6.7)

0.9F̂Egvy ≤ F̃Egvy ≤ 1.1F̂Egvy, ∆FEgvy = 0.1F̂Egvy, ∀y ∈ Y (6.8)

where .̂ and ∆. are used to represent nominal values and deviation magnitudes,

respectively. Note that in the FCV transition model, disregarding the different

types of LDVs, it is assumed that the FCV is replaced by a representative gasoline-

powered vehicle with an average fuel economy of FEgvy as discussed in Section

4.6.2. By defining EFgvy = 1/FEgvy, constraints in (6.8) can be represented as

follows:

1

1.1F̂Egvy

≤ ẼFgvy ≤ 1

0.9F̂Egvy

, ∆EFgvy ≃ 0.1

F̂Egvy

, ∀y ∈ Y (6.9)

so that (3.22) is linear with regard to this parameter.

In order to develop the robust counterpart problem of (6.4) based on the method

discussed in Chapter 2, the following additional variables should be defined:

pe ≥ 0,∀e ∈ E,

qev ≥ 0,∀e ∈ E ∧ v ∈ Ve,

rv ≥ 0,∀v ∈ V, (6.10)

where E = {1} and V1 = V = {1, ..., 126} as all the 126 uncertain parameters are

in a single constraint. Therefore, the following constraints should be added to the

optimization model for the transition to FCVs in Chapter 3:

W −
∑

y∈Y

1

(1 + DR)y−y1

{∑

i∈Z

{
(P ω1

giy
π̂ω1

y + P ω1
miy

π̂ω1
my

− P ω1
xiy

π̂ω1
xy

) × 8 × 261

+ (P ω2
giy

π̂ω2
y + P ω2

miy
π̂ω2

my
− P ω2

xiy
π̂ω2

xy
) × 14 × 104

− FFiy.µ̄y.Nldviy.AM.SCCO2p.Eco2 × 10−3/F̂Egvy

+





ERchpi

[
V ω1

2iy
− Kω1

2iy
Pgaiy + Kω1

3iy
(Pgbiy − Pgaiy)

]

+ERcoali(V
ω1
3iy

− Kω1
3iy

Pgbiy)



SCCO2g × 8 × 261
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+





ERchpi

[
V ω2

2iy
− Kω2

2iy
Pgaiy + Kω2

3iy
(Pgbiy − Pgaiy)

]

+ERcoali(V
ω2
3iy

− Kω2
3iy

Pgbiy)



SCCO2g × 14 × 104

}

+ PCy.CCcab(1 − Scaby) + PTy.CCtube(1 − Stubey) +
∑

(i,j)∈Z∗

2OCy.dij.Nijy × 365

}

− Γ1p1 −
∑

v∈V

q1v ≥ 0 (6.11)

p1 + q1v ≥ ∆a1vrv, ∀v ∈ V = V1 = {1, ..., 126} , (6.12)

where the deviations of the uncertain parameters are determined to be as follows:

∆a1v =





8×261
(1+DR)v−1 ∆πω1

y1+v−1 : ∀v ∈ {1, ..., 18},

14×104
(1+DR)v−19 ∆πω2

y1+v−19 : ∀v ∈ {19, ..., 36},

8×261
(1+DR)v−37 ∆πω1

my1+v−37
: ∀v ∈ {37, ..., 54},

14×104
(1+DR)v−55 ∆πω2

my1+v−55
: ∀v ∈ {55, ..., 72},

8×261
(1+DR)v−73 ∆πω1

xy1+v−73
: ∀v ∈ {73, ..., 90},

14×104
(1+DR)v−91 ∆πω2

xy1+v−91
: ∀v ∈ {91, ..., 108},

µ̄y1+v−109.AM.SCCO2
p.ECO2

×10−3

(1+DR)v−109 ∆EFgvy1+v−109 : ∀v ∈ {109, ..., 126}.

−rv ≤
∑

i∈Z

P ω1
gi,y1+v−1

≤ rv, ∀v ∈ {1, ..., 18} (6.13)

−rv ≤
∑

i∈Z

P ω2
gi,y1+v−19

≤ rv, ∀v ∈ {19, ..., 36} (6.14)

−rv ≤
∑

i∈Z

P ω1
mi,y1+v−37

≤ rv, ∀v ∈ {37, ..., 54} (6.15)
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−rv ≤
∑

i∈Z

P ω2
mi,y1+v−55

≤ rv, ∀v ∈ {55, ..., 72} (6.16)

−rv ≤
∑

i∈Z

P ω1
xi,y1+v−73

≤ rv, ∀v ∈ {73, ..., 90} (6.17)

−rv ≤
∑

i∈Z

P ω2
xi,y1+v−91

≤ rv, ∀v ∈ {91, ..., 108} (6.18)

−rv ≤
∑

i∈Z

(Nldvi,y1+v−109.FFi,y1+v−109) ≤ rv, ∀v ∈ {109, ..., 126} (6.19)

6.3.2 Robust Model for Transition to PHEVs

Based on the discussions in Section 6.2.3, the robustness of the PHEV transition

model is investigated here with respect to perturbations in electricity prices. As

HOEP, export and import electricity prices are defined for each individual year

of the planning span, there are in total 54 parameters whose uncertainties can

significantly influence the optimal value. These parameters can be expressed as

follows:

0.9π̂ω
y ≤ π̃ω

y ≤ 1.1π̂ω
y , ∆πω

y = 0.1π̂ω
y , ∀y ∈ Y (6.20)

0.9π̂ω
my

≤ π̃ω
my

≤ 1.1π̂ω
my

, ∆πω
my

= 0.1π̂ω
my

, ∀y ∈ Y (6.21)

0.9π̂ω
xy

≤ π̃ω
xy

≤ 1.1π̂ω
xy

, ∆πω
xy

= 0.1π̂ω
xy

, ∀y ∈ Y (6.22)

In this case, based on (6.4), the following constraints should be added to those of

the PHEV transition model in Chapter 3:

W −
∑

y∈Y

1

(1 + DR)y−y1

{∑

i∈Z

{
(P ω

giy
π̂ω

y + P ω
miy

π̂ω
my

− P ω
xiy

π̂ω
xy

) × 8 × 365

− FFiy.µ̄y.Nldviy.DT.SCCO2p.Eco2 × 0.365
∑

c∈V T

(
V Sc

FEgvcy

)

+





ERchpi

[
V ω

2iy
− Kω

2iy
Pgaiy + Kω

3iy
(Pgbiy − Pgaiy)

]

+ERcoali(V
ω
3iy

− Kω
3iy

Pgbiy)



SCCO2g × 8 × 365

} }
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− Γ1p1 −
∑

v∈V

q1v ≥ 0 (6.23)

p1 + q1v ≥ ∆a1vrv, ∀v ∈ V = V1 = {1, ..., 54} , (6.24)

where the deviations of the uncertain parameters are determined to be as follows:

∆a1v =





8×365
(1+DR)v−1 ∆πω

y1+v−1 : ∀v ∈ {1, ..., 18},

8×365
(1+DR)v−19 ∆πω

my1+v−19
: ∀v ∈ {19, ..., 36},

8×365
(1+DR)v−37 ∆πω

xy1+v−37
: ∀v ∈ {37, ..., 54}.

− rv ≤
∑

i∈Z

P ω
gi,y1+v−1

≤ rv, ∀v ∈ {1, ..., 18} (6.25)

− rv ≤
∑

i∈Z

P ω
mi,y1+v−19

≤ rv, ∀v ∈ {19, ..., 36} (6.26)

− rv ≤
∑

i∈Z

P ω
xi,y1+v−37

≤ rv, ∀v ∈ {37, ..., 54} (6.27)

6.3.3 Robust Optimization Results and Discussion

The robust models developed for the transition to both FCVs and PHEVs were

formulated using AMPL [117] modeling language and solved with CPLEX [79]

with 0.02% optimality gap, on an IBM eServer xSeries 460 with 8 Intel Xeon 2.8

GHz processors and 3 GB (effective) of RAM. This section presents and discusses

numerical results, which are obtained using the same assumptions made for the

sensitivity analysis in Section 6.2. For the assumed social cost of emissions of 125

CAD/ton in the population area, the corresponding emission cost of generation is

10 CAD/ton; this value is used in the emission constraints for generation in the

models. Note that in this case there is no need to neglect emission constraints

for generation due to computational restrictions as in the case of Monte Carlo

simulation analysis. This allows to analyze the effect of emission constraints for
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generation in the robust optimization results, as shown next.

Robust Results for Transition to FCVs

The performance of the robust solution as a function of the protection level (Γ)

is illustrated in Figure 6.23, which demonstrates how optimality is affected as the

budget of uncertainty or protection level of the constraint with uncertain parame-

ters increases. The trade-off between optimality and robustness is also illustrated

in Figure 6.24; observe that lower losses of optimality correspond to higher prob-

abilities of constraint violation, as expected. Note that by allowing an 8% loss of

optimality, it is possible to make the probability of constraint violation less than

1% when emission constraints for generation are considered. It is also interesting

to note that the impact of emission constraints for generation becomes more con-

spicuous for lower violation probabilities. Hence, for a certain low level of violation

probability (e.g., less than 5%), the loss of optimality is lower if emission constraints

for generation are considered.

Samples of the objective function values and the probability bounds of constraint

violation are presented in Table 6.4. Observe that under zero (Γ = 0) and under

full protection (Γ = 126) of the constraint with uncertain parameters, the optimal

value is increased by 0.21% and 10.42%, respectively; hence reducing the chance of

constraint violation to zero can be realized at the cost of losing 10.21% optimality.

If the decision maker accepts a maximum of 4.53% chance of constraint violation,

the budget of uncertainty must be at least 20, i.e., it is sufficient to protect the

constraint against only 16% of the uncertain parameters taking their worst-case

values at the same time.

It is interesting to note that even setting the budget of uncertainty at Γ = 20,

i.e., assuming 20 out of 126 uncertain parameters take their worst-case values at

the same time, results in a significantly low value of violation probability (4.53%)

or a high probability of constraint protection against uncertainty (95.47%). In this

case, the optimal value is increased by 6.98% but there is very little effect on the
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Figure 6.23: Impact of the budget of uncertainty Γ on the optimal value
of the robust FCV transition model.
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Figure 6.24: Relative change in optimal value of the robust FCV transition
model with respect to the probability bound of constraint
violation.
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Table 6.4: Sample results of deterministic and robust FCV transition mod-
els disregarding emission constraints for generation. (DM: de-
terministic model; RM: robust model.)

Γ Violation probability Optimal value Change Uniform penetration # of FCVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 19,711,182,690 0 2.95 253,799

RM 0 53.55 19,752,896,295 0.21 2.41 207,654

RM 10 21.13 20,560,656,476 4.31 2.41 207,654

RM 20 4.53 21,087,436,480 6.98 2.41 207,654

RM 30 0.49 21,462,267,255 8.88 2.39 205,776

RM 40 0.03 21,669,378,711 9.93 1.22 104,948

RM 50 6.3484e-004 21,731,799,724 10.25 1.22 104,948

RM 60 7.3556e-006 21,753,277,418 10.36 0.76 65,649

RM 70 3.9479e-008 21,763,392,764 10.41 0.30 25,899

RM 126 0 21,766,013,701 10.42 0 0

Table 6.5: Sample results of deterministic and robust FCV transition mod-
els including emission constraints for generation.

Γ Violation probability Optimal value Change Uniform penetration # of FCVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 19,898,614,370 0 2.95 253,799

RM 0 53.55 19,939,908,389 0.21 2.05 176,795

RM 10 21.13 20,746,054,029 4.26 2.05 176,795

RM 20 4.53 21,269,710,333 6.89 2.05 176,795

RM 30 0.49 21,641,324,147 8.76 1.21 104,155

RM 40 0.03 21,844,474,815 9.78 0 0

RM 50 6.3484e-004 21,906,895,830 10.09 0 0

RM 60 7.3556e-006 21,928,751,579 10.20 0 0

RM 70 3.9479e-008 21,937,865,105 10.25 0 0

RM 126 0 21,938,722,324 10.25 0 0

FCV penetration level and the corresponding number of FCVs, since it results in

uniform FCV penetration of 2.39%, and an optimal number of FCVs by the end of

the planning horizon in all of Ontario of 207,654.

Table 6.5 presents similar results for the case of considering emission constraints
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for generation. Observe that setting the budget of uncertainty at Γ=20 results in a

reasonable trade-off between optimality and conservatism, since it does not affect

significantly the optimal penetration level and the corresponding number of FCVs,

while the constraint with uncertain parameters is protected with the probability of

95.47% at the cost of losing 6.89% of optimality. In this case, the optimal uniform

FCV penetration and the optimal number of FCVs by 2025 in all of Ontario will

be equal to 2.05% and 176,795, respectively. These figures represent almost 50%

of the Ontario’s maximum grid potential as obtained and discussed in Chapter 5,

reflecting the effect of uncertainty.

It should also be noted that for an extremely large number of uncertain pa-

rameters, the theoretical violation probability for Γ=0 must be equal to 50%; the

slightly higher values in the first rows of Tables 6.4 and 6.5 are due to relatively

limited number of uncertain parameters.

Robust Results for Transition to PHEVs

Robust optimization results for the transition to PHEVs are illustrated in Fig-

ures 6.25 and 6.26. Observe in Figure 6.25 that increasing the protection level

above Γ = 30 has negligible impact on loss of optimality, showing that almost 56%

of the uncertain parameters in the PHEV transition model are highly influential on

the optimal solution. Based on Figure 6.26, it can be concluded that the PHEV

model compared to the FCV model is more susceptible to the loss of optimality

for a certain level of violation probability. In other words, if the constraint is to be

protected against uncertainty with a certain probability, the decision maker should

accept more losses of optimality for the PHEV model.

Sample results of the PHEV robust model are reflected in Tables 6.6 and 6.7.

Observe that, in spite of the loss of optimality with the increase of the budget of

uncertainty, uniform PHEV penetration and, consequently, total number of PHEVs

by 2025 is not impacted by the constraint protection level.

It is interesting to investigate whether the uniform PHEV penetrations remain
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Figure 6.25: Impact of the budget of uncertainty Γ on the optimal value
of the robust PHEVs transition model.

10
−2

10
−1

10
0

10
1

10
2

0

2

4

6

8

10

12

Violation probability [%]

R
el

at
iv

e 
pe

rc
en

ta
ge

 c
ha

ng
e 

in
 o

bj
ec

tiv
e 

fu
nc

tio
n

 

 

without emission constraints for generation

with emission constraints for generation

Figure 6.26: Relative change in optimal value of the robust PHEV transi-
tion model with respect to the probability bound of constraint
violation.
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Table 6.6: Sample results of deterministic and robust PHEV transition
models disregarding emission constraints for generation. (DM:
deterministic model; RM: robust model.)

Γ Violation probability Optimal value Change Uniform penetration # of PHEVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 17,221,538,686 0 10.59 912,106

RM 0 55.41 17,221,538,686 0 10.59 912,106

RM 5 29.31 17,937,023,950 4.15 10.59 912,106

RM 10 11.03 18,415,602,507 6.93 10.59 912,106

RM 14 3.84 18,687,421,196 8.51 10.59 912,106

RM 24 0.09 18,995,591,558 10.30 10.59 912,106

RM 34 3.5490e-004 19,030,056,581 10.51 10.59 912,106

RM 54 2.7489e-0011 19,033,322,863 10.52 10.59 912,106

Table 6.7: Sample results of deterministic and robust PHEV transition
models including emission constraints for generation.

Γ Violation probability Optimal value Change Uniform penetration # of PHEVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 17,504,918,805 0 10.59 912,106

RM 0 55.41 17,504,918,805 0 10.59 912,106

RM 5 29.31 18,218,390,702 4.08 10.59 912,106

RM 10 11.03 18,699,206,394 6.82 10.59 912,106

RM 14 3.84 18,971,100,492 8.38 10.59 912,106

RM 24 0.09 19,279,362,145 10.14 10.59 912,106

RM 34 3.5490e-004 19,314,768,622 10.34 10.59 912,106

RM 54 2.7489e-0011 19,316,448,570 10.35 10.59 912,106

157



Chapter 6. Optimal Transition to AFVs under Uncertainty

independent of the budget of uncertainty for lower emission costs or not. In order

to do so, further robust analysis was performed using different values of the social

cost of emissions in the population area. These studies reveal that the independence

of the uniform PHEV penetration from the budget of uncertainty holds for even

relatively large deviations (about 50%) of the social cost of emissions with regard

to the initially assumed 125 CAD/ton. However, larger than 50% reductions of the

social cost of emissions causes the budget of uncertainty to greatly influence the

uniform PHEV penetration. This is demonstrated in Tables 6.8 and 6.9, where the

robust results are found based on a social cost of emission equal to 50 CAD/ton.

In this case, by accepting almost a 96% protection level of the constraints against

uncertainty and 8% loss of optimality, at least 1.55% uniform PHEV penetration

can be obtained at the social cost of emission of 50 CAD/ton and 10 CAD/ton in

population areas and generation facilities, respectively; this translates into at least

133,548 PHEVs that can be introduced into Ontario’s transport sector by 2025.

6.4 Summary

In this chapter, the application of a robust optimization approach for planning

the transition to AFVs was proposed. A comprehensive sensitivity analysis using

Monte Carlo simulation was performed for the optimization models for transition to

FCVs and PHEVs in Ontario, Canada. Based on the proposed Average Deviation

Index (ADI), different parameters in each model were ranked with respect to their

impact on actual optimal values. The high-ranking parameters were then used to

develop the robust counterpart models. The main advantage of these robust models

is that the policy makers can choose the level of risk and establish a balance between

optimality and conservatism/risk.

The findings of this chapter demonstrate that with a reasonable trade-off be-

tween optimality and conservatism/risk, more than 170,000 FCVs or 900,000 PHEVs

can be supported by the Ontario’s grid by 2025 at the social cost of CO2 emissions

equal to 125 CAD/ton and 10 CAD/ton in population areas and generation facili-
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Table 6.8: Sample results of deterministic and robust PHEV transition
models with SCCO2p=50 CAD/ton, disregarding emission con-
straints for generation. (DM: deterministic model; RM: robust
model.)

Γ Violation probability Optimal value Change Uniform penetration # of PHEVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 17,749,875,901 0 9.91 853,397

RM 0 55.41 17,749,875,901 0 9.91 853,397

RM 5 29.31 18,462,420,204 4.01 9.91 853,397

RM 10 11.03 18,942,348,114 6.72 9.91 853,397

RM 14 3.84 19,213,595,806 8.25 9.61 827,938

RM 24 0.09 19,513,035,695 9.93 0.68 58,284

RM 34 3.5490e-004 19,548,443,500 10.13 0.68 58,284

RM 54 2.7489e-0011 19,550,124,730 10.14 0.68 58,284

Table 6.9: Sample results of deterministic and robust PHEV transition
models with SCCO2p=50 CAD/ton, including emission con-
straints for generation.

Γ Violation probability Optimal value Change Uniform penetration # of PHEVs

[-] [%] [CAD] [%] [%] by 2025

DM - - 18,024,967,839 0 7.93 682,994

RM 0 55.41 18,024,967,839 0 7.93 682,994

RM 5 29.31 18,732,050,321 3.92 7.93 682,994

RM 10 11.03 19,208,575,792 6.57 7.93 682,994

RM 14 3.84 19,475,404,857 8.05 1.55 133,548

RM 24 0.09 19,772,818,146 9.70 0 0

RM 34 3.5490e-004 19,808,225,951 9.89 0 0

RM 54 2.7489e-0011 19,809,907,181 9.90 0 0
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ties, respectively. The robust results obtained for the FCV model is almost 50% of

Ontario’s maximum grid potential, as obtained and discussed in Chapter 5. How-

ever, based on the PHEV robust model, the total number of PHEVs is found to

be insensitive to the level of conservatism/risk. Sufficiently low values of the social

cost of CO2 emissions, e.g., 50 CAD/ton, make the PHEV model sensitive to the

level of conservatism/risk and substantially limits the number of PHEVs.
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Conclusions

7.1 Summary

This thesis has concentrated on the analysis of electricity and transport sectors

within a single integrated framework and presents the capabilities of this integrated

approach to realize an environmentally and economically sustainable transport sec-

tor based on AFVs. Comprehensive optimization planning models for the transition

to FCVs and PHEVs were developed to determine the optimal electricity grid po-

tential to support these types of AFVs in the transport sector within a planning

horizon. A simple 3-zone test system was developed to better understand and inter-

pret the results, to assess the impact of different constraints and, consequently, to

evaluate different aspects of the proposed models. These models were then applied

to the real case of Ontario, Canada for a planning horizon from 2008 to 2025. The

relevant components of Ontario’s electricity system and transport sector were prop-

erly modelled, including the transmission network, the zonal pattern of base-load

generation capacity, and the resulting zonal base-load demand based on data for

Ontario’s transport sector.

The issue of parameter uncertainty was also incorporated into the models. Thus,

a methodology based on Monte Carlo simulation was used to identify the most
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influential parameters on the optimal solution. Using these uncertain parameters,

a robust optimization approach that provides the possibility of making a trade-off

between optimality and conservatism was finally applied to derive robust solutions

for the transition to AFVs.

The following summarizes the main content and conclusions of this thesis:

• Chapter 3 presented a novel MILP optimization framework for planning the

transition to AFVs considering relevant electricity grid constraints in gener-

ation and transmission levels. This optimization framework, which is based

on zonal representation of the region under study considering the main power

generation and load centers, allows to determine the optimal potential pen-

etration of AFVs into the transport sector for each zone for the planning

horizon. For the FCV transition model, this was achieved by finding the opti-

mal size and location of HPPs as well as the optimal hydrogen production and

hydrogen transportation routes. In order to better understand and interpret

the results and evaluate the impact of different constraints, a small 3-zone test

system was developed to study the transition to FCVs. The results of this

study showed how the environmental issues as well as operational limitations,

such as maximum annual development of HPPs or congestion in electricity or

hydrogen networks, can influence the optimal FCV penetration levels.

• Chapter 4 studied the application of the proposed optimization framework

to the real of Ontario, Canada. This was accomplished by first developing

appropriate models and data for Ontario’s electricity system and transport

sector for a 2008-2025 planning horizon. Thus, a model of Ontario’s transmis-

sion network was developed by representing the main transmission corridors

and their possible capacity improvements. Furthermore, a zonal pattern of

base-load generation capacity was developed to specify the total effective gen-

eration capacity available in each zone to supply base load. Also, the required

base-load demand data, was obtained by decomposing the annual growth rate

of base-load demand in the whole of Ontario into different zones. This chapter
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discussed as well power exports and imports in Ontario, transition patterns,

and further assumptions made regarding the operation of HPPs and charging

of PHEVs in view of Ontario’s electricity demand and price. An economic

analysis of electrolytic hydrogen production in Ontario during off-peak hours

was also presented.

• Chapter 5 presented and discussed the application of the proposed optimiza-

tion framework to Ontario, Canada under a variety of scenarios. This chap-

ter studied Ontario’s maximum grid potential for supporting both FCVs and

PHEVs under uniform and non-uniform penetration assumptions. Different

constraints and limitations, such as the location of the new nuclear units,

transition patterns, the emission costs of generation, and HPP placement and

hydrogen transportation limits were shown to influence the number of AFVs

within the Ontario’s transport sector by 2025. The following are the main

conclusions that can be derived from the studies performed in this chapter:

– The proposed Transition Pattern 2, which considers the scarcity of base-

load resources in Ontario from 2015-2022, was found to be more sup-

portive of both FCVs and PHEVs penetrations than Transition Pattern

1. However, this transition pattern necessitates the rapid development

of required infrastructure in the early years.

– In general, development of new nuclear units in the Toronto zone yielded

higher penetration levels of both FCVs and PHEVs. Having the new

nuclear units developed in the Bruce zone yielded significant hydrogen

export from this zone and larger transmission losses for the FCV and

PHEV transition models, respectively. However, the studies performed

demonstrate the capability of the Bruce zone to act as the main hydrogen

exporter in Ontario.

– Considering emission constraints for generation influences the patterns

of power dispatches and exports in the system and consequently AFV

penetration levels in different zones. However, the maximum number of
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AFVs in all of Ontario, which was determined based on a sufficiently

large value of the social cost of emissions is shown to be almost immune

to these constraints under both uniform and non-uniform penetration

assumptions.

– Based on the non-uniform penetration assumption, HPP placement con-

straints are shown to impact the patterns of HPP development and FCV

penetrations in different zones of Ontario. However, the maximum num-

ber of FCVs in the whole of Ontario is scarcely impacted.

– Uniform FCV penetration levels are shown to be substantially affected

by HPP placement constraints. This result is mainly related to the

reduction of HPP developments in the Toronto zone, requiring large

hydrogen transportation, especially in routes ending at Toronto.

– The maximum number of PHEVs that can be supported by Ontario’s

grid by 2025 under the uniform penetration assumption was found to be

less than that obtained based on non-uniform penetration assumption.

This disparity is due to increased level of transmission losses.

– Based on realistic and practical assumptions, it was found that almost

378,000 FCVs or 912,000 PHEVs (almost 4.4% and 10.6% of Ontario’s

vehicles fleet, respectively) can be introduced into Ontario’s transport

sector by 2025, neglecting the issue of parameter uncertainty. These

values reflect Ontario’s maximum grid potential to support AFVs.

• Chapter 6 addressed the issue of parameter uncertainty and proposed the

application of robust optimization for planning the transition to AFVs. Thus,

a sensitivity analysis using Monte Carlo simulation was carried out to find

the impact of estimation errors in the parameters of the models developed in

Chapter 3. In order to quantitatively compare the sensitivity of the optimal

value to perturbations in different parameters, a measure labeled Average

Deviation Index (ADI) was proposed and calculated for different parameters

of each optimization model. Ranking of the ADI values revealed the most
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influential uncertain parameters, which were then used for developing the

robust counterpart problems of the optimization models. The main advantage

of these robust models is that they allow decision makers to adjust the trade-

off between optimality and conservatism/risk. The following conclusions are

derived from the analyses performed in this chapter, for chosen values of

the social costs of emissions for population areas and generation facilities,

respectively:

– In general, electricity prices are found to be among the most influential

parameters on the optimal value in both FCV and PHEV transition

models.

– The robust FCV transition model is influenced by the emission con-

straints for generation. This impact is even more conspicuous for high

probability levels of constraint protection against uncertainty.

– With a reasonable trade-off between optimality and conservatism/risk,

more than 176,000 FCVs (almost 2% of Ontario’s vehicles fleet) can be

supported by Ontario’s grid by 2025.

– It was found that the PHEV transition model is more susceptible to loss

of optimality for a certain level of violation probability, compared to the

FCV transition model.

– The robust PHEV transition model was shown not to be influenced by

the emission constraints for generation. Moreover, decreasing the con-

straints violation probability, despite increasing the loss of optimality,

had no impact on the total number of PHEVs by 2025 which is almost

912,000 (10.6% of Ontario’s vehicles fleet).

– Based on sufficiently low values of the social cost of emissions in popula-

tion areas, the PHEV transition model was shown to become sensitive to

both emission constraints for generation and constraints violation prob-

ability.
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7.2 Contributions

The following are the main contributions of the research presented in this

thesis:

1. A comprehensive zone-based optimization framework for planning the

transition to a hydrogen economy to support FCVs in the transport sec-

tor has been developed. This model, which requires the development of

an adequate sub-model for hydrogen transportation between the zones,

determines the optimal grid potential to accommodate FCVs during a

planning horizon. This is achieved through finding the optimal size and

location of HPPs as well as optimal hydrogen transportation routes.

2. The planning model developed for the transition to a hydrogen economy

has been extended to derive optimal penetrations of PHEVs into the

transport sector.

3. Environmental costs/credits associated with adding extra load in the

system for both population areas and generation facilities have been in-

corporated in the proposed transition models. This is accomplished by

developing an emission cost model that penalizes the objective function

depending on the value of zonal generation and the social cost of emis-

sions in generation power plants, and assigning social credits for AFVs

which cut emissions in population areas.

4. The proposed optimization planning models have been applied to the

real case of Ontario, Canada, where optimal penetration levels of AFVs

are derived for a variety of scenarios for a 2008-2025 planning horizon.

This is accomplished by first developing appropriate models for Ontario’s

electricity system and transport sector.

5. A methodology based on Monte Carlo simulation has been proposed and

implemented to study the issue of parameter uncertainty in the devel-

oped optimization planning models, and to derive the most influential

parameter uncertainties based on their impacts on the optimal value.
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6. A robust optimization approach has been applied to develop robust coun-

terpart problems of the planning models, and consequently derive robust

optimal penetration levels of AFVs into the transport sector, with ap-

plication to Ontario.

Parts of the proposed models and corresponding results presented in this

thesis have been published in a number of journals and conference proceedings

[66,67,105,168,175].

7.3 Future Work

Based on the work reported in this thesis, future research may be pursued in

the following directions:

1. In this thesis, a fixed value for the daily drive was assumed in the FCV

transition model. This value is based on average figures in the real case

of Ontario, Canada; however, driving behaviors may change in different

jurisdictions and may be different on weekdays and weekends. Therefore,

the impact of drive cycle behavior could be investigated.

2. The target in this thesis was to find the optimal potential penetrations of

AFVs into the transport sector without any additional grid investment.

However, the problem can be looked at the other way around; thus,

a stochastic optimization model could be developed to determine the

optimal required capacity of the different types of generation resources

based on uncertain penetrations of AFVs into the market. Such a model

could provide valuable inputs for policy makers and system planners in

the electricity sector, so that the existing plans could be modified based

on the economic benefits accrued due to the introduction of these AFVs

into the system.

3. In this thesis, impact assessment of PHEVs is performed at the transmis-

sion level. This study could be extended to account for the constraints of
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distribution systems which is a more challenging task. Thus, due to the

spatial and temporal diversity of these vehicles, different feeders may ex-

perience different levels of PHEV adoption. Consequently, the problem

is stochastic in nature and hence requires adequate analysis tools.

4. The integration of PHEVs into the transport sector would be facilitated

under a smart grid framework, where there are interactive communi-

cations between the utilities and their customers. How the proposed

PHEVs transition model can be reformulated in this framework, and

how the optimal penetration levels can be influenced need to be exam-

ined.

5. Finding the optimal penetrations of PHEVs with the consideration of

the vehicle-to-grid (V2G) operation and uncontrolled charging is another

area for future research.

168



Appendices

169



Appendix A

3-zone System Data

This appendix provides additional data for the 3-zone test system shown in

Figure 3.3. Table A.1 represents the data of the transmission system in 2008,

which change during the planning horizon as per the discussion in Section

3.6.2, and Table A.2 shows the data for the zonal effective generation capacity

including the capacity factors.
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Table A.1: Transmission data for 3-zone test system

From To Rij X ij Pdij Prijy

Zone i Zone j [p.u.] [p.u.] [MW] [MW]

1 2 .001904 .0221 2560 9999

1 3 .003024 .0351 1940 9999

2 3 .002352 .0273 1560 1560

Table A.2: Zonal effective generation capacity contributing to base-load
demand (MW)

Nuclear

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Zone 1 3000 3000 3000 3000 3000 4500 4500 4500 4500 4500 4500 3000 3000 3000 3000 3750 3750 3750

Zone 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zone 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wind

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Zone 1 20 70 75 75 75 145 210 225 300 310 350 365 375 375 375 375 375 375

Zone 2 35 110 200 235 240 240 250 260 260 260 265 270 275 275 275 275 275 275

Zone 3 30 30 60 95 115 120 125 135 140 150 165 180 180 180 180 180 180 180

Hydro

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Zone 1 0 0 0 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6

Zone 2 15 15 15 30 50 60 60 65 65 72 72 72 78 81 81 81 89 89

Zone 3 5 5 5 10 15 20 25 40 50 50 50 50 55 55 55 55 55 55

CHP

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Zone 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zone 2 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100

Zone 3 10 100 100 100 100 180 180 180 180 180 280 280 280 280 280 280 280 280

Coal

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Zone 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zone 2 1000 1000 1000 750 500 500 500 0 0 0 0 0 0 0 0 0 0 0

Zone 3 2000 2000 2000 2000 2000 1750 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
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10-zone Ontario’s System Data

This appendix provides additional data for the 10-zone simplified model of

Ontario’s electricity system depicted in Figure 4.1. Table B.1 shows the data

for the transmission system at the beginning of the planning horizon, which

change with the reinforcement of the grid based on the assumptions illustrated

in Table 4.1, while Tables B.2-B.8 illustrate the data for the zonal effective

generation capacity including the capacity factors.
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Table B.1: Transmission data for 10-zone Ontario’s system

From To Rij X ij Pdij Prijy

Zone i Zone j [p.u.] [p.u.] [MW] [MW]

1 2 .003024 .0351 1940 9999

1 3 .001904 .0221 2560 9999

2 3 .002352 .0273 1560 1560

3 4 .002352 .0273 9999 1750

3 5 .002352 .0273 3212 9999

3 8 .003584 .0416 2488 9999

5 6 .003808 .0442 9999 9999

5 8 .002352 .0273 2000 1000

6 7 .00112 .013 1900 9999

8 9 .004032 .0468 1900 1400

9 10 .051985 .50737 350 325

Table B.2: Nuclear power capacity contributing to base-load demand
(Scenario 1) (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 4720 4720 4720 4720 4720 6220 6220 6220 6220 6220 4720 3220 3220 3220 3220 4720 6220 6220

Toronto 6645 6645 6645 6645 6645 6645 5615 4580 3699 3699 5199 6229 7259 7259 8140 8140 7259 7259

Table B.3: Nuclear power capacity contributing to base-load demand
(Scenario 2) (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 4720 4720 4720 4720 4720 6220 6220 6220 6220 6220 6220 4720 4720 4720 4720 6220 7720 7720

Toronto 6645 6645 6645 6645 6645 6645 5615 4580 3699 3699 3699 4729 5759 5759 6640 6640 5759 5759

Table B.4: Effective coal power capacity contributing to base-load demand
(MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

West 974 974 974 792.5 475.5 475.5 475.5 0 0 0 0 0 0 0 0 0 0 0

SW 1910 1910 1910 1554.5 932.5 932.5 932.5 0 0 0 0 0 0 0 0 0 0 0

NW 258.5 258.5 258.5 153 92 92 92 0 0 0 0 0 0 0 0 0 0 0
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Table B.5: Effective wind power capacity contributing to base-load demand (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 22.8 66.68 75.63 75.63 75.63 143.58 211.83 223 299 310 354.3 365.6 376 376 376 376 376 376

West 29.7 30.4 57.9 94.9 112.4 119.4 126.5 133.5 140.5 147.5 165.9 173 180 180 180 180 180 180

SW 32.4 109.8 201.5 235.9 240.3 244.8 249.2 253.7 258.1 262.5 267 271.4 275.9 275.9 275.9 275.9 275.9 275.9

Niagara 0 0 0 0.7 1.3 2 2.6 3.3 4 4.6 5.3 5.9 6.6 6.6 6.6 6.6 6.6 6.6

Toronto 0 0 0 0.7 1.4 2.1 2.8 3.5 4.1 4.8 5.5 6.2 6.9 6.9 6.9 6.9 6.9 6.9

East 0 30 52.8 56.6 60.5 64.3 148.2 152 155.8 159.6 163.4 167.2 171 171 171 171 171 171

Ottawa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Essa 0 0 0 3.8 7.5 56.3 60 63.8 67.5 71.3 75 78.8 82.5 82.5 82.5 82.5 82.5 82.5

NE 56.7 56.7 106 109.6 113.3 116.9 120.5 124.2 127.8 131.4 135.1 198.7 292.3 292.3 292.3 292.3 292.3 292.3

NW 0 0 0 1.4 2.9 4.3 5.8 7.2 8.6 10.1 11.5 13 14.4 14.4 14.4 14.4 14.4 14.4

Table B.6: Effective hydro power capacity contributing to base-load demand (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

West 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Niagara 1651 1654 1659 1668 1670 1674 1677 1680 1682 1685 1685 1685 1685 1685 1685 1685 1685 1685

Toronto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

East 815.1 818.1 818.1 821.1 821.6 821.6 821.6 824.1 824.1 824.1 824.1 824.1 824.1 824.1 824.1 824.1 824.1 824.1

Ottawa 1 1 1 4.5 10 10 10 12 12 12 12 12 12 12 12 12 12 12

Essa 0 0 0 0 4 4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

NE 16.4 16.4 21.4 27.9 51.4 57.4 58.4 64.4 65.4 72.4 72.4 72.4 77.4 80.9 80.9 80.9 88.4 88.4

NW 5 7 8 9.5 16.5 22 26 38.5 46.5 46.5 50 50 54.5 54.5 54.5 54.5 54.5 54.5
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Table B.7: CHP capacity contributing to base-load demand (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

West 11.5 95.5 95.5 95.5 95.5 179 179 179 179 179 179 179 179 179 179 179 179 179

SW 12 12 12 12 12 96 96 96 96 96 96 96 96 96 96 96 96 96

Niagara 0 0 236 236 236 319 319 319 319 319 319 319 319 319 319 319 319 319

Toronto 7.3 7.3 7.3 7.3 7.3 91 91 91 91 91 91 91 91 91 91 91 91 91

East 0 0 0 0 0 84 84 84 84 84 84 84 84 84 84 84 84 84

Ottawa 0 0 0 0 0 84 84 84 84 84 84 84 84 84 84 84 84 84

Essa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NE 0 63 63 63 63 147 147 147 147 147 147 147 147 147 147 147 147 147

NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.8: CDM released capacity contributing to base-load demand (MW)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Bruce 1.7 2.4 3.6 4.2 4.7 5.3 5.9 6.5 6.9 7.3 7.7 8 8.3 8.6 8.9 9.1 9.3 9.5

West 41.1 56.2 84.8 99.3 113.8 128.5 143.3 158 168.4 178.8 189.4 199.4 208.5 216.1 223.4 230.6 238.1 244

SW 73.7 100.9 152.4 178.8 205.3 232.2 259.4 286.5 305.9 325.4 345.1 364 381.3 395.8 410.1 424 438.5 450

Niagara 14.5 19.6 29.3 34 38.6 43.2 47.7 52.1 55 57.8 60.6 63.2 65.5 67.2 68.8 70.3 71.9 73

Toronto 123.6 168.2 252.5 294.2 335.5 377.1 418.5 459.2 487 514.6 542.2 568 591.1 609.6 627.4 644.4 662 675

East 23.1 31.4 47.1 54.9 62.6 70.2 77.9 85.4 90.5 95.5 100.6 105.3 109.5 112.8 116 119 122.1 124.5

Ottawa 27.2 37.3 56.4 66.3 76.3 86.5 96.8 107.1 114.5 122.1 129.7 137.1 143.9 149.6 155.3 160.9 166.7 171.4

Essa 19.9 27.2 41 48.1 55.1 62.2 69.4 76.6 81.6 86.7 91.8 96.7 101.2 104.9 108.5 112.1 115.7 118.6

NE 32.7 43.9 64.9 74.6 83.8 92.8 101.6 109.8 114.8 119.5 124.1 128.2 131.4 133.6 135.5 137.2 138.9 139.5

NW 15.4 20.8 30.9 35.7 40.4 45 49.5 53.9 56.6 59.3 61.9 64.3 66.3 67.8 69.2 70.4 71.7 72.5
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