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ABSTRACT 

 

 Sarcolipin (SLN), a small molecular weight, hydrophobic protein found in skeletal 

muscle, is a known regulator of sarco(endo)plasmic reticulum Ca
2+

 ATPase (SERCA) pumps.  

Earlier in vitro reconstitution experiments have shown that SLN uncouples ATP hydrolysis 

from Ca
2+

 transport by the SERCA pumps and increases the amount of heat released per mol of 

ATP hydrolyzed by inducing an increased rate of “slippage” during the reaction cycle of 

SERCA pumps.  In order to determine whether SLN causes slippage of SERCA activity by 

uncoupling ATP hydrolysis from Ca
2+

 transport under more physiological conditions, 

comparisons were made between skeletal muscle Ca
2+

 ATPase activity and Ca
2+

 uptake in 

homogenates from soleus muscle of wild-type (WT) and Sln-null (KO) mice under conditions 

in which a Ca
2+

 gradient was preserved across the sarcoplasmic reticulum (SR) vesicles.  Ca
2+

 

ATPase activity, measured in the absence of the Ca
2+

 ionophore, A23187, was 15-25% lower 

in KO muscles, compared with WT, consistent with the proposal that SLN increases “slippage” 

and reduces the extent of back-inhibition of the Ca
2+

 ATPase. Ca
2+

 uptake, measured in 

homogenates without oxalate, was not different (p>0.05) in SR vesicles from WT and KO 

mice, indicating that the calculated Ca
2+

 transport efficiency (coupling ratio) in KO mice was 

increased by about 20% (P<0.04).  The basal oxygen consumption (VO2) of soleus muscles 

isolated from WT and KO mice and the contribution of energy utilized by SERCA was also 

compared.  Surprisingly, basal VO2 was not lower in the soleus of  KO mice, but the 

contribution of energy utilized by SERCA pumps was about 7% lower (P<0.0001). It was also 

found that uncoupling protein 3 (UCP-3) was expressed at a higher (P<0.03) concentration in 

soleus muscle of KO compared to WT. Thus UCP-3 could, potentially, provide compensation, 

resulting in higher basal VO2 in KO mice than expected.  These data show that at physiological 
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SLN:SERCA ratios, SLN uncouples ATP hydrolysis from SR Ca
2+

 uptake in skeletal muscle, 

resulting in a lower contribution of Ca
2+

 handling to basal VO2.  Thus, SLN is a key regulator 

of both ATP utilization in Ca
2+ 

handling and of overall energy metabolism in skeletal muscle.  

 To further examine the role of SLN in adaptive thermogenesis, obesity and glucose 

intolerance, KO and WT mice were placed on a high fat diet (HFD; 42% of kcal derived from 

fat) for an eight week period.  Whole body metabolism, weight gain, glucose tolerance and 

insulin tolerance were measured before and after the HFD.  Fat pads, liver, pancreas, hindlimb 

muscles and plasma samples were collected from standard chow fed control and HFD WT and 

KO mice.  KO mice gained more weight (P<0.05) and became more obese (P<0.05) than WT 

mice after consuming the HFD.  The comprehensive laboratory animal monitoring system 

(CLAMS) revealed no differences in whole body metabolic rate (ml O2/kg/hr) between KO and 

WT mice pre diet; however, daily metabolic rate was lower (P<0.05) in KO mice compared 

with WT mice after the HFD which may explain the increased obesity in KO mice.  Western 

blotting analyses revealed SLN protein content to be 3.8 fold higher (P<0.05) in WT soleus 

post HFD compared to control.  Phospholamban (PLN), a homologue of SLN, was found to be 

2.1 fold higher (P<0.05) in brown adipose tissue (BAT) in both WT and KO mice post HFD.  

Protein contents of other Ca
2+

 handling proteins (SERCA1a, SERCA2a, PLN and 

calsequestrin) within fast (white gastrocnemius) and slow (soleus) twitch muscle were not 

different between KO and WT mice following the HFD.  Collectively, these results suggest 

that PLN and SLN could play a role in adaptive diet-induced thermogenesis. On the other 

hand, compared with chow fed control mice, the metabolic cost of Ca
2+

 handling in soleus 

muscle was significantly reduced post HFD in both WT and KO mice, although to a greater 

extent (P<0.05) in KO mice than WT mice. Moreover, there were no differences in resting 
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energy expenditure of soleus muscles between WT and KO mice following the HFD.  These 

observations can be accounted for by diet-induced increases in sympathetic nervous system 

activity in KO mice and other adaptive responses leading to increased energy expenditure of 

soleus in both WT and KO mice.  Therefore, differences in whole body metabolic rate and 

obesity between high fat fed WT and KO mice do not appear to be due to adaptive 

thermogenesis mechanisms in skeletal muscle involving SLN. Interestingly, soleus and EDL 

muscle weights increased proportionately to body weight in high fat fed WT mice but not KO 

mice.  Therefore, lower lean body tissue mass may explain the lower whole body metabolic 

rate and increased susceptibility to obesity in KO mice compared with WT mice.  With 

increased obesity, KO mice became extremely glucose intolerant (P<0.05) post HFD compared 

to WT mice who also demonstrated glucose intolerance (P<0.05) compared to the pre-HFD 

values.  Surprisingly, the insulin tolerance test responses were not different between KO and 

WT mice post HFD suggesting that KO mice did not develop greater whole body insulin 

resistance despite being more obese than WT mice.  Blood serum analysis showed that non-

esterified fatty acids (NEFA) and LDL cholesterol levels were also increased more (P<0.05) in 

KO mice compared to the WT mice post HFD.  Overall, it is concluded that SLNs impact on 

Ca
2+

 handling influences not only ATP consumption by SERCA pumps in resting soleus 

muscle via uncoupling of ATP hydrolysis from SR Ca
2+

 uptake but also blunts the negative 

effect of high fat feeding by increasing resistance to diet-induced obesity and glucose 

intolerance in mice through mechanisms which are currently unidentified. 

. 
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CHAPTER I 

 

INTRODUCTION, REVIEW OF THE LITERATURE AND STATEMENT OF THE 
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INTRODUCTION 

 Sarcolipin (SLN), a small molecular weight proteolipid found embedded in the 

sarcoplasmic reticulum (SR) of skeletal muscle, is a known modulator of sarco(endo)plasmic 

reticulum Ca
2+

ATPase (SERCA) function (MacLennan et al.,2003; MacLennan and Kranias, 

2003; Odermatt et al., 1998; Asahi et al., 2002; Asahi et al., 2003).  Through its effects on 

SERCA activity, SLN is a key modulator of Ca
2+

 transient amplitude and kinetics and muscle 

relaxation in vivo (Tupling et al., 2002; Babu et al., 2005; 2006; 2007a; Ottenheijm et al., 

2008).   SLN may also play an important role in thermogenesis through the uncoupling of Ca
2+

 

uptake from ATP hydrolysis by the SERCA pumps, thereby generating heat.  This has been 

demonstrated previously in vitro, where the presence of SLN in reconstituted membrane 

vesicles containing SERCA resulted in uncoupled ATP hydrolysis (Smith et al., 2002) and  

increases in the amount of heat released per mol of ATP hydrolyzed (Mall et al., 2006).  This 

suggests that alterations of SLN levels within skeletal muscle will influence SERCA efficiency 

and ultimately metabolism.  The studies in the current thesis will examine the physiological 

role of SLN in skeletal muscle and whole body metabolism through the use of a Sln-null 

transgenic mouse model.  Secondly, susceptibility to diet-induced obesity and glucose 

intolerance will be investigated in the Sln-null mouse model. 

 

Ca
2+

 signaling and excitation-contraction coupling 

 Calcium is essential for living organisms, playing a pivotal role in cell physiology 

where its movement between cellular compartments (i.e. endoplasmic reticulum to cytoplasm) 

serves as a signal for various cellular processes.  Intracellular Ca
2+

 is involved in signal 

transduction pathways in a variety of tissues including neurotransmitter release from neurons, 
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insulin release from β-cells in the pancreas and in reproduction (Vander et al., 1990; Henquin, 

2009).  Extracellular Ca
2+

 is important in maintaining potential difference across excitable cell 

membranes as well as bone formation (Vander et al., 1990).  Ca
2+

 is a dominant signaling and 

regulatory molecule in skeletal muscle which is important not only for excitation-contraction 

coupling but it also plays a significant role in energy expenditure, second messenger signaling, 

activation of transcription factors and apoptosis (Berchtold et al., 2000).  In all muscle cells, 

the SR is the major organelle responsible for regulating the concentration of intracellular free 

Ca
2+

 ([Ca
2+

]f). 

Excitation-contraction coupling and relaxation in skeletal muscle consists of a series of 

inter-related processes involving the 3 major energy consuming processes.  Stimulation of the 

motor end plate by the chemical transmitter, acetylcholine, results in depolarization (influx of 

Na
+
 through voltage gated ion channels) that spreads along the sarcolemma and down into the 

transverse-tubules (t-tubules).   Membrane repolarization is rapid due to opening of the K
+
 

channels and the efflux of K
+
 out of the cell.  Propagation of the resulting action potential into 

the t-tubules activates the voltage sensitive dihydropyrodine receptors (DHPRs) found in the t-

tubules causing them to undergo conformational changes which ultimately triggers the opening 

of the ryanodine receptors (RyRs) in the SR.  The ensuing Ca
2+

 efflux out of the SR binds to 

troponin C, removing the inhibitory actions of tropomyosin on actin and allows for the 

activation of actomyosin ATPase and formation of strong binding cross bridges, ultimately 

leading to muscle contraction and force production.  Termination of the action potential and 

accompanying closure of RYR, together with the activation of SERCA pumps due to elevated 

[Ca
2+

]f results in the removal of cytosolic Ca
2+

 back into the SR and relaxation of the muscle.  

Restoration of Na
+
 and K

+
 gradients must follow each action potential to protect membrane 
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excitability.  This is accomplished by the Na
+
/K

+
 ATPase pumps which uses the energy from 

the hydrolysis of 1 ATP to transport 3 Na
+
 out of the cell and 2 K

+
 into the cell. 

 In resting muscle, [Ca
2+

]f  is regulated predominately by the activity of the SERCA 

pumps.  SERCA pumps are 95-110-kDa integral membrane proteins consisting of 10 trans-

membrane helices (M1-M10) and three cytoplasmic domains (actuator, nucleotide binding and 

phosphorylation; Toyoshima et al., 2000; Figure 1.1).  These highly conserved P-type ATPase 

pumps are found in all tissues and are responsible for Ca
2+

 regulation.  In rodents and humans, 

SERCA pumps are encoded by three different genes (ATP2A1-3) giving rise to three major 

isoforms, SERCA1, SERCA2 and SERCA3 (Lytton et al., 1992; Wu and Lyttton, 1993). The 

two predominant SERCA isoforms found in adult skeletal muscle are SERCA1a and 

SERCA2a which are highly conserved with 84% of the amino acid sequence being identical.  

The SERCA1a isoform consists of 1001 amino acids and is expressed predominately in adult 

fast twitch skeletal muscle whereas SERCA2a is made up of 997 amino acids and is highly 

expressed in heart and slow twitch skeletal muscle (Wu and Lytton, 1993).  Fast and slow 

twitch skeletal muscles are also known to have different SR Ca
2+

 leak rates and SERCA 

coupling ratios (Ca
2+

 transported per ATP hydrolyzed), which translates into differences in 

SERCA pump efficiency and heat production/energy utilization (Reis et al., 2002 Reis et al., 

2001; Murphy et al., 2009).    Specifically, fast twitch muscles have a higher density of 

SERCA pumps and lower [Ca
2+

]f within the SR due to a higher volume of  SR and 

concentration of calsequestrin (CSQ) when compared to slow twitch muscle (Murphy et al., 

2009).  The high density of SERCA pumps likely accounts for the higher Ca
2+

 leak rates found 

in fast twitch muscle as the SERCA pumps themselves appear to be the major pathway for 

leakage of Ca
2+

 out of the SR (Inesi and deMeis, 1989; Murphy et al., 2009).  The higher rate 
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of Ca
2+

 leak from the SR in fast twitch muscle could account for the lower coupling ratio and 

hence greater heat production in fast muscle compared to slow muscle (Reis et al., 2002), due 

to increased ATP hydrolysis by SERCA pumps. 

 

Coupling ratio and reaction cycle  

Expanding upon the previous definition, the SERCA coupling ratio refers to the amount 

of Ca
2+

 transported into the lumen of the SR from the cytoplasm per ATP hydrolyzed.  A 

coupling ratio of 2 Ca
2+

:1 ATP is considered to be optimal as it corresponds to the 

stoichiometry of two Ca
2+

 binding sites and one ATP binding site on each Ca
2+

 pump subunit 

(Smith et al., 2002; Inesi et al., 1978; de Meis, 2001a; MacLennan et al., 1997; Toyoshima and 

Inesi, 2004).  With the recent improvement in resolution of the SERCA crystal structure in 

different conformations as determined by X-ray crystallography, detailed mechanisms for Ca
2+

 

transport into the SR can be inferred (Toyoshima and Inesi, 2004; Toyoshima et al., 2000; 

Toyoshima et al., 2003; Toyoshima and Nomura, 2004).  Assuming optimal stoichiometry, the 

reaction cycle of SERCA would proceed as shown in Figure 1.2 (reactions 1 – 6).  The cycle 

begins with 2 Ca
2+

 ions from the cytoplasm binding with high affinity to the Ca
2+ 

binding 

pocket formed by four (M4, M5, M6 and M8) of the 10 transmembrane helices found in the 

transmembrane domain in the E1 conformation of the Ca
2+

-ATPase pump (Lee, 2002).  ATP 

then binds to the nucleotide binding domain and is hydrolyzed, forming a high energy 

phospho-protein intermediate (reactions 1 – 2).  Upon the phosphorylation of SERCA, 

conformational change in the cytoplasmic/transmembrane domain occurs via alterations in the  

stalk domain so the 2 Ca
2
 
+
 binding sites change to a state of low Ca

2+
 binding affinity and face 

the lumen, causing the Ca
2+

 ions to be released into the lumen of the SR (reactions 3 – 4).  
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Figure 1.1: Ribbon schematic showing the crystal structure of rabbit skeletal muscle 

SERCA1a.   Colours change gradually from the amino terminus (blue) to the carboxy terminus 

(red). Two purple spheres (circled) in E1Ca
2+

 represent bound Ca
2+

. The cytoplasmic portion is 

composed of three interacting domains: the nucleotide binding domain, phosphorylation 

domain and the actuator domain.  SERCA pumps also possess a transmembrane domain 

consisting of 10 helical transmembrane segments, including the 2 Ca
2+ 

binding sites, which are 

link to the cytoplasmic domains via the stalk domain.  Adapted from Toyoshima and Nomura 

2004, originally published by Toyoshima et al., 2000.   
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Figure 1.2: Schematic of the partial reactions of the catalytic and transport cycle of the SR 

Ca
2+

 pump showing coupled Ca
2+

 transport reactions (1-6 forward) in the absence of a Ca
2+ 

gradient. Under these leaky conditions, reaction 4 is irreversible forcing the sequence to flow 

forward to reaction 6.  The sequence includes two distinct enzyme conformations, E1 and E2.  

(Figure redrawn from Inesi, 1985; de Meis and Vianna, 1979) 

 

 

 

Dephosphorylation then allows for the recycling of SERCA from the E2 conformation back to 

the E1 conformation (reactions 5 – 6). 

Under physiological conditions where a Ca
2+

 gradient across the SR membrane is 

present, due to high lumenal [Ca
2+

] within the SR (millimolar; Rasmussen, 1986), the coupling 

ratio of 2 Ca
2+

 transported for every ATP hydrolyzed is greatly diminished.  Previous in vitro 

studies with rabbit fast and slow twitch hindlimb muscle SR vesicles showed that the coupling 

ratio of Ca
2+

 transported/ATP hydrolyzed varies between 0.3 and 0.6 for fast twitch, and up to 

1.0 for slow twitch muscle, in the presence of a Ca
2+

 gradient (de Meis, 2001b; Reis et al., 

2001; McWhirter et al., 1987; Reis et al., 2002).  A number of experimental procedures and 

conditions including altered ADP/ATP ratio, [Ca
2+

]f, hyperthyroidism and sarcolipin also cause 

E1 

2Ca2+ 

E1Ca2 E1Ca2~ P 

ATP ADP 

E2Ca2~ P E2~ P 

2Ca2+ 

E2 

Cytosol 

Lumen 

HOH Pi 

(1) 

(4) 

(3) 

(2) 

(6) 

(5) 
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a reduction in the SERCA coupling ratio through changes in the reaction cycle of the Ca
2+

 

pump (Smith et al., 2002; Mall et al., 2006; Reis et al., 2002; Inesi and de Meis , 1989; de 

Meis, 1998; de Meis 2000; Arruda et al., 2003).   

A reduction in the coupling ratio of SERCA pumps (i.e. <2 Ca
2+

:1 ATP) can  arise from 

three potential sources.  The first is through passive Ca
2+

 efflux by the Ca
2+

 pump which occurs 

when a high Ca
2+ 

concentration in the lumen of the SR promotes the binding of Ca
2+

 to the E2 

conformation of the enzyme prior to conversion back to E1 which is called uncoupled Ca
2+ 

efflux or passive leak (Mall et al., 2006; Inesi and de Meis, 1989; Berman, 2001; de Meis, 

2001a; reactions 7 – 9 in Figure 1.3).  Secondly, a high Ca
2+

 concentration in the lumen of the 

SR will slow down the forward conformational reaction between E1Ca2~P and E2Ca2~P 

(reaction 3 in Figure 1.3), increasing the number of Ca
2+

ATPase pumps found in the E1Ca2~P 

conformation and promoting cleavage of Pi prior to Ca
2+

 translocation (i.e. uncoupled ATPase 

activity) (Yu and Inesi, 1995; Bermen, 2001; de Meis, 2001a; reaction 10 in Figure 1.3).  

Lastly, the premature release of the  Ca
2+

 ions to the cytoplasmic side of the SR rather than to 

the lumenal side during the conformational change between E1Ca2~P and E2Ca2~P (reaction 3 

in Figure 1.3) is called slippage (Smith et al., 2002; Mall et al., 2006; Berman, 2001; reaction 

11 in Figure 1.3).  Slippage is believed to result from a decrease in Ca
2+

 affinity of the E1Ca2~P 

state as a consequence of high lumenal Ca
2+

 and/or the presence of SERCA regulatory proteins 

such as SLN and phospholamban (PLN), which physically interact with helices M2, M4, M6 

and M9 of the transmembrane domain of the Ca
2+ 

ATPase pumps (Morita et al., 2008; 

Bhupathy et al., 2007; Odermatt et al., 1998).  Two of these helices (M4 and M6) make up part 

of the Ca
2+ 

binding pocket, so the physical presence of SLN or PLN in this area could alter 

Ca
2+

 binding affinity,
 
thereby resulting in the early release of Ca

2+ 
back into the cytosol.  
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Although these three reactions of uncoupled ATP hydrolysis are different, the net result is that 

a higher fraction of the total chemical energy derived from ATP hydrolysis is converted into 

heat as opposed to osmotic energy (ie. Ca
2+

 transported into the SR) (Mall et al., 2006; Reis et 

al., 2002; de Meis, 1998; de Meis 2000; de Meis , 2002).  

 

 

 

 

Figure 1.3. Schematic of the partial reactions of the catalytic and transport cycle of the SR 

Ca
2+

 pump showing coupled Ca
2+

 transport reactions (1-6 forward), passive leak reactions (7-

9), uncoupled ATPase activity (reaction 10) and slippage (reaction 11). (Figure redrawn from  

de Meis, 2001 and Mall et al., 2006) 
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SERCA Regulatory proteins: SLN and PLN 

SERCA pump activity is highly regulated through gene transcription and by protein-

protein interactions with small hydrophobic regulatory proteins, namely SLN and PLN 

(Vangheluwe et al., 2005a).  In the heart, SERCA2a associates with PLN, a 52 amino acid 

transmembrane protein, resulting in a lower apparent Ca
2+ 

affinity for the PLN-SERCA2a 

complex (Simmerman and Jones,1998).  The inhibited complex can be disrupted by 

phosphorylation of PLN or elevation of cytosolic Ca
2+

, leading to the reversal of SERCA2a 

inhibition (Simmerman and Jones,1998).  SLN, a 31 amino acid protein, shows significant 

sequence identity and gene structure to PLN (Wawrzynow et al., 1992; Odermatt et al., 1997) 

and, like PLN, is an effective inhibitor of SERCA molecules (Odermatt et al., 1998; Asahi et 

al., 2002; Asahi et al., 2003).  Sequencing of SLN revealed a 7-residue hydrophilic N-terminal 

domain, a 19-residue hydrophobic trans-membrane α-helical domain and a 5-residue 

hydrophilic C-terminal domain (Wawrzynow et al., 1992; MacLennan et al., 2002).  It was 

originally identified as a proteolipid that co-purified with SERCA1a in rabbit fast twitch 

skeletal muscle (MacLennan et al., 1972; 1974).  Subsequently, SLN was found to be highly 

expressed in both human and rabbit fast twitch skeletal muscle and to a lesser extent in slow 

twitch and cardiac muscle based on mRNA levels (Odermatt et al., 1997).  Recently, SLN-

specific antibodies have been developed and used to determine the tissue-specific distribution 

pattern of SLN protein expression in different species (Vangheluwe et al., 2005a; Babu et al., 

2007b).  In small mammals (i.e. mouse and rat) it was found that SLN was highly expressed in 

tongue, diaphragm, soleus and atria but not ventricle whereas in large mammals (i.e. rabbit and 

dog) SLN was abundant in all skeletal muscles examined and atria but not ventricle.  PLN is a 

well characterized regulator of the SR Ca
2+

 pumps in cardiac muscle (Simmerman and 
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Jones,1998) and is a major modulator of cardiac contractility, which became clear through 

functional analysis of Pln-null (Luo, 1994) and over-expression of superinhibitory monomeric 

and pentameric PLN mutant hearts (Zhai et al., 2000; Zvaritch et al., 2000).  Overexpression of 

PLN decreases the apparent Ca
2+

 affinity of SERCA2a, negatively influences the kinetics of 

the Ca
2+

 transient and hence contractility resulting in impaired ventricular systolic function in 

vivo (Kadambi et al., 1996).  Accordingly, PLN ablation increases left ventricular contractility 

and systolic function (Luo et al., 1994).   

The physiological role of SLN is less understood.   SLN was originally co-purified with 

SERCA over thirty years ago, however only recently has the function of this proteolipid been 

investigated in cardiac muscle and to a much lesser degree in skeletal muscle.  Work by both 

the MacLennan (Gramolini et al., 2006) and Periasamy (Babu et al., 2005) groups has shown 

that overexpression of SLN in cardiac muscle causes a decreased Ca
2+

 affinity of SERCA 

pumps and reduces Ca
2+

 trasnsient amplitude and kinetics resulting in decreased myocyte 

contractility.  The role of SLN in cardiac physiology was recently investigated in knockout 

mice (Babu et al., 2007a), which established SLN as a key regulator of SERCA2a in the atria. 

Importantly ablation of SLN enhances SR Ca
2+

 transport and atrial contractility (Babu et al., 

2007a). 

In skeletal muscle, Tupling et al. (2002) assessed the physiological function of SLN, 

using intramuscular injection and electro-transfer of plasmid cDNA to over-express NF-SLN 

(SLN tagged N-terminally with a FLAG epitope) in rat soleus.  It was found that NF-SLN 

reduced maximal Ca
2+

 transport activity in post-nuclear homogenates by 31% and reduced 

maximal tetanic force and rates of contraction and relaxation (Tupling et al., 2002).  It has 

since been shown that slowing of SR Ca
2+

 uptake and speed of relaxation in both slow and fast 
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twitch skeletal muscle from nebulin knockout mice is associated with profound up-regulation 

of SLN protein (>20-fold) (Ottenheijm et al., 2008).  Most recently, Tupling et al. (2008) 

examined the effects of SLN ablation on SERCA function in skeletal muscle and skeletal 

muscle contractility.  They found increased oxalate-dependent Ca
2+

 uptake activity in the 

soleus and mixed gastrocnemius but not in EDL of Sln-null mice compared with wild type 

which was accompanied by faster rates of relaxation of soleus muscle in the Sln-null mice 

(Figure 1.4A; Tupling et al., 2008).  Repeated tetanic stimulation of the soleus muscle revealed 

an increase in relaxation rate at the last tetanus (10
th

) in wild type (WT) mice but not in the Sln-

null mice suggesting that the inhibitory effect of SLN is relieved upon repeated tetanic 

stimulation (Figure 1.4B).  This is supported by recent evidence showing phosphorylation of 

threonine-5 on the cytosolic tail of SLN by Ca
2+

/calmodulin dependent protein kinase II 

(CAMKII) is a key mechanism in the regulation of SLN in cardiac myocytes (Bhupathy et al., 

2009).  Thus, SLN has been established as a key modulator of SERCA pump function and 

skeletal muscle relaxation in vivo; however, conceptually it is unclear how expression of a 

SERCA pump inhibitor might be beneficial for skeletal muscle contractile performance which 

led us to question the physiological role of SLN in skeletal muscle. 

Reconstitution experiments in artificial membranes have shown that SLN uncouples 

ATP hydrolysis from Ca
2+

 transport by the SR Ca
2+

 pump (Smith et al., 2002) and increases the 

amount of heat released per mol of ATP hydrolyzed (Mall et al., 2006).  A potential 

explanation for these results could be that SLN causes an increased rate of slippage on the Ca
2+

 

pumps (Figure 1.3, reaction 11; Smith et al., 2002; Mall et al., 2006) thereby decreasing the 

fraction of energy released during ATP hydrolysis that is converted into osmotic energy (Ca
2+

 

transport) and increasing the amount of heat released (de Meis, 2001b; de Meis, 2002).  It has 
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been suggested that SLN could have an important role in thermogenesis (Smith et al., 2002; 

Mall et al., 2006), ultimately affecting cellular energy balance and metabolic rate.  In these 

reconstitution experiments, SLN was shown to have no effect on Ca
2+

 ATPase activity even 

with un-physiologically high SLN concentrations (Smith et al., 2002; Mall et al., 2006); 

however, SLN did decrease Ca
2+

 uptake into reconstituted vesicles at a molar ratio of 

SLN:SERCA as low as 2:1 (Smith et al., 2002). This data suggests that alterations in transport 

efficiency/coupling ratio through genetic manipulation (SLN-knockout) of mice could 

significantly influence the energy cost of Ca
2+ 

handling in skeletal muscle and therefore whole 

body metabolism.  Specifically, Sln-null mice should have increased Ca
2+

 pumping efficiency 

(i.e. less ATP required to achieve a given Ca
2+

 transport rate), a lower whole body metabolic 

rate and increased susceptibility to obesity and type II diabetes.              
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Figure 1.4 (A) Relaxation rates (-dF/dT) from force frequency experiments on isolated soleus 

muscles from wild type and Sln-null mice.  * significant, p<0.05 versus wild type (B) Soleus 

muscles from wild type and Sln-null mice were electrically stimulated repeatedly using a 

protocol consisting of 350-ms trains at 70 Hz once every 1 s for a total of 10 contractions and 

comparisons were made between the 1
st
 and 10

th
 contractions for –dF/dt.  * Significant, p<0.05 

versus 1
st
 contraction. # Significant, p<0.05 versus wild type. Taken from Tupling et al., 2008. 
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Obesity and adaptive thermogenesis 

 The incidence of obesity in the western industrial world has risen dramatically over the 

past 30 years and it is believed that it will continue to rise in future decades (Laaksonen et al., 

2004).  Prevalence data, show that since 1985 the number of Canadians with extreme obesity 

(body mass index (BMI) > 35 kg/m
2
) has increased by more than 500% (Katzmarzyk and 

Mason, 2006). Obesity is considered a primary risk factor  associated with many other life 

threatening diseases such as cardiovascular disease, hypertension and type II diabetes 

(Kopelman, 2000; Calle et al., 1999; Must et al., 1999).   Obesity results from a chronic 

imbalance between energy intake (i.e. feeding) and energy expenditure (i.e. metabolic rate).   

 Adaptive thermogenesis is a mechanism involved in regulating energy expenditure and 

hence energy balance by increasing heat production during prolonged periods of excess energy 

intake (i.e. high fat diet; Levine et al., 1999) or cold exposure (Lowell and Spiegelman, 2000).   

This is believed to occur predominately in the mitochondria of brown adipose tissue (BAT) 

and skeletal muscle through the uncoupling of protons from the electron transport chain by 

membrane bound uncoupling proteins (UCPs), resulting in the conversion of osmotic energy 

into heat (Lowell and Spiegelman, 2000).  BAT is highly innervated by the sympathetic 

nervous system and can be rapidly activated through β-adrenergic-receptor stimulation due to 

cold exposure and diet (i.e. elevated leptin levels; Haynes et al., 1997).  Chronic high fat 

feeding increases white adipose tissue mass which in turn releases a greater quantity of leptin 

into the plasma thereby activating the sympathetic nervous system ultimately resulting in BAT 

activation as well as elevating uncoupling protein 1 (UCP-1) mRNA and protein levels in small 

rodents (Cusin et al., 1998; Cannon and Nedergard, 2003).   
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 In humans and other large mammals, which possess only a small quantity of BAT, 

other mechanisms for adaptive thermogenesis are needed for regulating energy metabolism.  

Uncoupling protein 3 (UCP-3), a homologue of UCP-1, is found predominately in skeletal 

muscle and has uncoupling activity similar to UCP-1, making it a potential key player in 

adaptive thermogenesis in skeletal muscle.  However studies have demonstrated a lack of 

response of UCP-3 mRNA to cold exposure in humans (Schrauwen et al., 2002) as well as 

rodents (Lin et al., 1998).  Other potential functions for UCP-3 that have recently emerged 

include mitochondrial lipid export (Schrauwen et al., 2006), maintenance of glucose 

homeostasis (Clapham et al., 2000) and decreasing generation of mitochondrial reactive 

oxygen species (Echtay et al., 2003).  Independent of UCP-3 function the resultant transport of 

protons into the mitochondrial matrix consequently results in the production of heat, thereby 

increasing skeletal muscle metabolism and potentially affecting metabolic rate (Schrauwen and 

Hesselink, 2004).  Another potential site for adaptive thermogenesis in skeletal muscle would 

be futile ion (i.e. Ca
2+

, Na
+
, K

+
) cycling giving rise to elevated energy expenditure and heat 

production (Lowell and Spiegelman, 2000). 

Ca
2+ 

handling in skeletal muscle has previously been calculated to make up approx-

imately 5% of the basal metabolic rate in skeletal muscle (Clausen et al., 1991) rising up to 20-

50% during periods of muscular exertion  (i.e. exercise) (Clausen et al., 1991; Homsher,1987; 

Szentesi et al., 2001).  Based on these values, Ca
2+

 handling in skeletal muscle, and more 

specifically, SERCA pump activity, would account for 7-15% of total daily energy 

expenditure.  However, with the use of calorimetric measurements, Chinet et al. (1992) found 

that up to 24% of heat produced by resting mouse soleus muscle could be attributed to SERCA 

activity.  These results were confirmed in similar experiments on mouse soleus and EDL 
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muscles which showed that 18 – 22% of resting energy expenditure in both muscles is related 

to SR Ca
2+

 uptake (Dulloo et al., 1994).  More recently, resting muscle oxygen consumption of 

isolated soleus and EDL was measured polaragraphically at 30 ºC using the TIOX tissue bath 

system, where it was discovered through the use of cyclopiazonic acid (CPA), a highly specific 

SERCA inhibitor (Goeger & Riley, 1989; Seidler et al., 1989), that Ca
2+

 cycling in muscle 

contributes approximately 50% of basal metabolism in both fast and slow twitch skeletal 

muscle (Norris et al., 2010).  This data would suggest that previous estimates on the cost of 

Ca
2+ 

handling have been largely underestimated.  In agreement, Zhang et al. (2006) estimated 

the energetic cost of Ca
2+

 handling in fast twitch (EDL) skeletal muscle during sub-maximal 

contraction to be approximately 80% of total energy expenditure.  Even with the more 

conservative estimate of 30-40% of the energy cost associated with muscle contraction coming 

from ATPase activity of SERCA pumps (for review see Barclay et al., 2007), the SR Ca
2+

 

pumps would account for approximately 25% of the total daily energy expenditure.   

If chronic excess caloric intake (i.e. through high fat feeding) results in altered Ca
2+

 

handling in skeletal muscle such that the energy requirements for Ca
2+

 handling are increased 

under basal conditions and/or during exercise, then it could be concluded that diet-induced 

(adaptive) thermogenesis at least partly involves adaptations in skeletal muscle Ca
2+

 handling. 

Given that SLN appears to be an important regulator of SERCA pump energetics through its 

effects on the coupling ratio of SERCA pumps (Smith et al., 2002; Mall et al., 2006), diet-

induced increases in SLN expression could provide a potential mechanism for adaptive 

thermogenesis, but this has yet to be investigated. 

The ability to influence the metabolic cost of Ca
2+

 handling in skeletal muscle and BAT 

through genetic manipulation could represent a potential treatment for obesity and its 
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complications. The use of genetic manipulation to alter metabolism has been previously 

demonstrated in other transgenic mouse models, specifically by overexpressing the 

mitochondrial uncoupling proteins (UCPs) in skeletal muscle and BAT resulting in an increase 

in metabolic rate and resistance to genetic and diet-induced obesity in mice (Li et al., 2000; 

Kopecky et al., 1995; Clapham et al., 2000; Son et al., 2004).  Currently, it is understood that 

the UCPs and the SERCA  pumps in skeletal muscle are two major systems involved in non-

shivering thermogenesis (Block, 1994; de Meis, 2001b) and could potentially have important 

implications in adaptive thermogenesis (Lowell and Spiegelman, 2000).  Therefore targeting 

SERCA and Ca
2+

 handling as a potential site in skeletal muscle and BAT to promote energy 

“wasting” or inefficient metabolism, while maintaining functional capacity would provide a 

novel approach in the prevention and/or treatment of obesity.  Therefore, mice with varying 

levels of SLN expression in skeletal muscle and potentially in BAT are ideal for studying the 

effects of altered Ca
2+

 pump efficiency on metabolic rate and susceptibility to obesity. 
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STATEMENT OF THE PROBLEM: 

 

 The primary objectives for this thesis are: 1) to investigate the role of SLN in skeletal 

muscle and its influence on SR Ca
2+

 transport efficiency, resting skeletal muscle metabolic rate 

and resting whole body metabolic rate in mice; 2) to examine the effects of SLN ablation on 

diet-induced thermogenesis and susceptibility to diet-induced obesity and glucose intolerance. 

 

Study 1: 

Transgenic Sln-null (KO) mice were used in order to examine the effects of SLN on 

Ca
2+ 

transport efficiency and skeletal muscle and whole body metabolism.   

The primary objectives for study 1 were: 

1. To determine the expression pattern of SLN in cardiac and different skeletal muscles as 

well as in BAT. 

2. To determine whether SLN ablation results in compensatory changes in the expression of 

major Ca
2+ 

regulatory proteins and/or UCP-3 in skeletal muscle.  

3. The determine if SLN reduces the coupling ratio (Ca
2+

 uptake/Ca
2+

-ATPase activity) of 

SERCA pumps in both fast (EDL) and slow (soleus) twitch skeletal muscle. 

4. To examine the effects of SLN ablation on basal metabolism and the contribution of 

SERCA pumps to basal metabolism in isolated soleus muscles. 

5. To examine the effects of SLN ablation on basal, sub-maximal and maximal whole body 

energy expenditure.  
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Study 1 Hypotheses 

 The specific hypotheses are:  

1. SLN will be expressed abundantly in atrium, diaphragm, soleus and BAT whereas little to 

no SLN will be found in ventricle, EDL or other fast twitch skeletal muscles. 

2. SLN ablation will not result in compensatory changes in the expression of any of the major 

Ca
2+ 

regulatory proteins or UCP-3 in skeletal muscle or BAT. 

3. The coupling ratio of SERCA pumps (Ca
2+

 transported in to the lumen of the SR per ATP 

hydrolyzed) in skeletal muscle homogenates will be higher in KO than wild type (WT) 

mice. 

4. Resting metabolic rate (VO2) of isolated soleus muscles from KO mice will be lower 

compared with WT mice due to lower energy consumption by SERCA pumps in KO mice. 

5. Whole body metabolic rate at rest and during sub-maximal treadmill exercise, but not 

VO2max, will be lower in KO mice compared with WT mice. 

 

 

 

STUDY 2 

To investigate the role of SLN in adaptive thermogenesis and on susceptibility to diet-

induced obesity, KO and WT mice were placed on a high fat diet for 8 weeks (HFD; 42% of 

kcal derived from fat).    

The primary objectives for study 2 were: 

1. To determine whether KO mice are more susceptible to diet-induced obesity and glucose 

intolerance than WT mice. 
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2. To determine if SLN plays a role in adaptive thermogenesis by examining the effects of 

the HFD on: a) SLN expression in skeletal muscle, b) energy consumption by SERCA 

pumps and total energy expenditure in resting skeletal muscle and c) resting whole body 

energy expenditure in both WT and KO mice. 

3. To determine whether the HFD results in compensatory changes in other major Ca
2+ 

regulatory proteins and/or UCP-3 in either skeletal muscles or BAT in KO and WT mice. 

 

Study 2 Hypotheses 

 The specific hypotheses are:  

1. KO mice fed a HFD will gain more weight, become more obese as indicated by a higher 

adiposity index, become more glucose and insulin intolerant and display greater 

hyperglycemia, hyperinsulinemia and dyslipidemia compared to WT mice. 

2. Relative whole body metabolic rate will be lower in both KO and WT mice following the 

HFD; however, WT mice will have a higher metabolic rate compared to KO mice. 

3. Basal VO2 of isolated soleus muscles from both KO and WT mice will be higher following 

the HFD; however, soleus muscles from WT mice will display a higher metabolic rate 

compared to soleus muscles from KO mice.  

4. The % contribution of SERCA pump activity to basal metabolism in isolated soleus 

muscles will increase in response to the HFD in WT mice but not in KO mice. 

5. There will be no compensatory changes in the expression of any of the major Ca
2+ 

regulatory proteins or in UCP-3 in either skeletal muscle or BAT in response to the HFD 

in either KO or WT mice. 
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CHAPTER II 

 

 

 

EFFECTS OF SARCOLIPIN ABLATION ON CALCUIM HANDLING AND 

SKELETAL MUSCLE AND WHOLE BODY METABOLISM 
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OVERVIEW 

 Earlier in vitro reconstitution experiments have shown that sarcolipin (SLN) uncouples 

ATP hydrolysis from Ca
2+

 transport by the sarco(endo)plasmic reticulum Ca
2+

 ATPase 

(SERCA) and increases the amount of heat released per mol of ATP hydrolyzed by inducing an 

increased rate of  “slippage” during the reaction cycle of SERCA pumps.  In this study, we 

compared skeletal muscle Ca
2+

 ATPase activity and Ca
2+

 uptake in homogenates from fast 

(extensor digitorum longus; EDL) and slow (soleus) twitch muscle of wild-type (WT) and Sln-

null (KO) mice under conditions in which a Ca
2+

 gradient was preserved across the 

sarcoplasmic reticulum (SR) vesicles in order to determine whether SLN causes slippage of 

SERCA activity by uncoupling ATP hydrolysis from Ca
2+

 transport under more physiological 

conditions.  Western blotting analysis revealed SLN to be present in soleus muscle and to a 

much lesser extent in the EDL of WT mice.  SLN protein expression in WT mice was also 

abundant in atrium, diaphragm, red gastrocnemius and tibialis anterior and was absent from 

ventricle, white gastrocnemius, quadriceps and brown adipose tissue (BAT).  SERCA activity 

measured without ionophore A23187 (presence of a Ca
2+

 gradient) was ~15-25% lower 

(P<0.05) in soleus muscle of KO mice compared with WT which is consistent with the idea 

that SLN increases “slippage” and thus reduces the extent of back-inhibition on the SERCA 

pumps.  Ca
2+

 uptake, measured in homogenates of soleus and EDL in the presence of a Ca
2+

 

gradient was not different (p>0.05) in SR vesicles from WT and KO mice, indicating that the 

calculated Ca
2+

 transport efficiency (Ca
2+

uptake/Ca
2+

-ATPase activity) in the presence of a 

Ca
2+

 gradient in the soleus was higher by 19% (P<0.04) in KO mice, while there were no 

differences between KO and WT mice for EDL.  Resting, sub-maximal and maximal whole 

body metabolic rates, as well as basal oxygen consumption (VO2) of isolated soleus muscle 
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and the contribution of energy utilized by SERCA under basal conditions were also assessed in 

both WT and KO mice.   Resting, sub-maximal and maximal whole body metabolic rate, food 

consumption and cage activity levels were not different between KO and WT mice. Similarly, 

basal VO2 was not lower in the isolated soleus of KO mice, but the contribution of energy 

utilized by SERCA pumps was  6.8% lower (P<0.0003) in the KO mice soleus. It was also 

found that uncoupling protein 3 (UCP-3) was expressed at a higher (P<0.03) concentration in 

soleus muscle of KO compared to WT mice. Thus UCP-3 could, potentially, provide 

compensation, resulting in higher basal VO2 in KO mice than expected.  These data show that 

at a physiological SLN:SERCA ratio, SLN uncouples ATP hydrolysis from SR Ca
2+

 uptake in 

skeletal muscle resulting in a lower contribution of Ca
2+

 handling to basal VO2.  Therefore it is 

construed that SLN is a key regulator of ATP utilization in Ca
2+ 

handling and hence energy 

metabolism in skeletal muscle. 
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INTRODUCTION 

 Muscle contraction and relaxation are energy-dependent processes that are regulated by 

Ca
2+

.  In all muscle cells, the sarcoplasmic reticulum (SR) is the major organelle responsible 

for the regulation of intracellular free calcium ([Ca
2+

]f).  Under basal conditions in skeletal 

muscle, the sarco(endo)plasmic reticulum Ca
2+

-ATPase (SERCA) pumps are responsible for 

maintaining a >10
4
-fold Ca

2+
 concentration gradient across the SR membrane and for keeping 

[Ca
2+

]f below 100 nM (Toyoshima, 2008)).  In working muscle, SERCA pumps must rapidly 

pump large Ca
2+

 loads from the cytoplasm into the lumen of the SR, thereby inducing muscle 

relaxation and restoring SR Ca
2+

 stores that are utilized in the next contraction cycle.  SERCA 

pumps require energy in the form of ATP to pump Ca
2+

 from the cytosol into the SR.  It is well 

established that the ATPase activity of SERCA pumps contributes 30-40% of the energy cost 

associated with muscle contraction (for review see Barclay et al., 2007).  It was recently 

established that ATP consumption by SERCA pumps is responsible for ~50% of the resting 

metabolic rate in both mouse fast (extensor digitorum longus; EDL) and slow twitch (soleus) 

skeletal muscles (Norris et al., 2010). 

Under optimized states, SERCA pumps transport 2 mol of Ca
2+

 across the SR 

membrane by hydrolysis of 1 mol of ATP (see forward reactions 1 – 6, Fig. 1.2) (Inesi et al., 

1978; de Meis, 2001a; Smith et al., 2002).  However, a number of experimental procedures and 

conditions have been shown to lead to partial uncoupling of Ca
2+

 transport from ATP 

hydrolysis through changes in the reaction cycle of the SERCA pump (Smith et al., 2002; Mall 

et al., 2006; Reis et al., 2002; Inesi and de Meis, 1989; de Meis, 1998; de Meis 2000; Arruda et 

al., 2003).  For example, passive Ca
2+

 efflux by the pump occurs when a high Ca
2+

 

concentration in the lumen of the SR promotes binding of Ca
2+

 to the E2 form of the enzyme, 
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leading to its conversion back to E1 (reactions 7 – 9, Fig. 1.3) (Mall et al., 2006; Inesi and de 

Meis, 1989; Berman, 2001; de Meis, 2001a).  A high Ca
2+

 concentration in the lumen of the SR 

can also increase the steady state level of E1Ca2~P, which promotes cleavage of Pi prior to 

Ca
2+

 translocation (i.e. uncoupled ATPase activity) (reaction 10, Fig. 1.3) (Yu and Inesi, 1995; 

Bermen, 2001; de Meis, 2001a).  Finally, slippage is a process that is defined by the reaction 

whereby E1Ca2~P releases 1-2 Ca
2+

 ions to the cytoplasmic side of the membrane rather than to 

the lumenal side (reaction 11, Fig. 1.3) (Smith et al., 2002; Mall et al., 2006; Berman, 2001).  

Although the reactions of uncoupled ATP hydrolysis vary, the net result is the same: ultimately 

most of the energy derived from ATP hydrolysis is converted into heat (Mall et al., 2006; Reis 

et al., 2002; de Meis, 1998; de Meis 2000; de Meis , 2002). 

Sarcolipin (SLN) is a 31 amino acid protein that regulates the activity of SERCA 

pumps in skeletal muscle (MacLennan et al., 2003).  In vitro reconstitution experiments in SR 

vesicles by the Lee and East group have demonstrated that SLN not only uncouples ATP 

hydrolysis from Ca
2+

 transport by the SR Ca
2+

 pump (Smith et al., 2002) but also increases the 

amount of heat released per mol of ATP hydrolyzed (Mall et al., 2006).  It was proposed that 

SLN induces an increased rate of slippage by the Ca
2+

 pump (Figure 1.3, reaction 11), thereby 

decreasing the fraction of energy released during ATP hydrolysis that is converted into osmotic 

energy (Ca
2+

 transported into the SR) and hence increasing the amount of heat released (de 

Meis, 2001; de Meis, 2002).  These authors have suggested that SLN could have an important 

role in thermogenesis (Smith et al., 2002; Mall et al., 2006), which would ultimately affect 

cellular energy expenditure and metabolic rate but this has not been examined in systems more 

closely approximating the in vivo state.   
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 In this study, a Sln-null (KO) mouse model was employed to characterize the metabolic 

function of SLN.  Because SLN has been shown to uncouple Ca
2+

 transport from ATP 

hydrolysis by the SR Ca
2+

 pumps, it was postulated that the soleus muscle from KO mice 

would have a higher coupling ratio (Ca
2+

 transported into lumen per ATP hydrolyzed) 

compared with littermate wild type (WT) mice.  It was further hypothesized that isolated soleus 

from KO mice would have a lower basal oxygen consumption (VO2) resulting in lower basal 

whole body metabolism when compared to WT mice.  Spectrophotometric and 

spectrofluorometeric assays were utilized to determine Ca
2+

 dependent Ca
2+

-ATPase activity 

and Ca
2+

uptake in the presence of  a Ca
2+

 gradient, respectively, allowing for the assessment of 

the SERCA coupling ratio under more physiological conditions.  Polaragraphic measurements 

of VO2 from isolated soleus muscle at 30 ºC using the TIOX tissue bath system and 

measurements of basal metabolism by the Comprehensive Lab Animal Monitoring System 

(CLAMS) were also used to investigate these hypotheses. 

 

METHODS 

Sln-null (KO) mice 

 Transgenic mice, Sln-null, donated by Dr. Muthu Periasamy, Ohio State University, 

were utilized to establish a continuous breeding colony at the University of Waterloo.  

Breeding of the heterozygous Sln-null mice produced wild type (+/+; WT), heterozygous (+/-) 

and homozygous (-/-; KO) mice.  At 3-4 weeks of age all mice were ear notched and tagged.  

Genotyping was then performed on the DNA extracted from ear notches using a pureLink 

Genomic DNA mini kit (Invitrogen, Carlsbad, CA).  RT-PCR was then performed to amplify 

the DNA of interest.  Briefly, approximately 50 ng of DNA was added to a Taq DNA 
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polymerase mix (Fermentas, Canada) containing 3mM MgCl2, 200 µM dNTP, 0.625 units of 

Taq DNA polymerase and 0.4 µM each of the appropriate 5’ and 3’ primers for both WT and 

SLN-null (SLN-WT, forward, 5’-TGT CCT CAT CAC CGT TCT CCT-3’and reverse 5’-GCT 

GGA GCA TCT TGG CTA ATC-3’; SLN-null, Forward, 5’- GTG GCC AGA GCT TTC 

CAA TA-3’and reverse 5’-CAA AAC CAA ATT AAG GGC CA-3’).  Samples were placed in 

a thermal cycler (MJ MINI, Bio-Rad, Canada) and denatured for 3 min at 94°C followed by 30 

cycles of denaturation for 30 sec at 94°C, annealing for 30 sec at 54°C, and extension for 60 

sec at 72°C, followed by a final extension at 72°C for 7 min. The amplified products were then 

separated on a 1% agrose gel containing 0.01% ethidium bromide (BioShop, Canada) and 

identified using a bio-imaging system and densitometric analysis performed using the 

GeneSnap software (Syngene, Frederick, MD). 

 Once the animals had been genotyped, the WT and KO mice were separated into 

individual cages.  Animals were housed in an environmentally controlled room with a standard 

12:12 light/dark cycle and allowed access to food (Tekland 22/5 Rodent Diet, Harland-

Tekland, Madison, WI) and water ad libitum. The study was approved by the Animal Care 

Committee at the University of Waterloo and all procedures were performed in accordance 

with the Canadian Council on Animal Care. 

 

Muscle homogenate 

 Cardiac muscle (ventricle and atrium) and skeletal muscle (soleus, EDL, quadriceps, 

tibialis anterior, diaphragm, red and white gastrocnemius) and brown adipose tissue (BAT) 

from three WT mice were diluted 10:1 (vol/wt) in ice cold PMSF buffer (250mM sucrose, 5 

mM HEPES, 10mM NaN3 and 0.2 mM phenylmethanesulfonyl fluoride, pH 7.5)  and 
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homogenized using a hand held polytron homogenizer and frozen immediately in liquid 

nitrogen and stored at –80 °C (Tupling et al., 2001; Tupling and Green, 2002; Tupling et al., 

2004).  These homogenates were used to examine the tissue distribution of endogenous SLN 

using Western blotting analysis. This experiment was repeated on 2 separate occasions with 

equivalent results.   

 A total of 15 WT and 15 KO mice were sacrificed and the soleus and EDL from 3 

animals were pooled (n=5) and homogenized in PMSF buffer as previously described.  These 

homogenates were then used for assessment of SR Ca
2+

-ATPase activity and Ca
2+

 uptake and 

for Western blotting analysis. BAT and white gastrocnemius were also excised and 

homogenized in PMSF buffer from these WT and KO mice to determine SR protein (SLN, 

SERCA1a, SERCA2a, PLN and calsequestrin (CSQ)) content using Western blotting analysis.  

Total protein concentration of the homogenates was measured by the method of Lowry, as 

modified by Schacterle and Pollock (Schacterle & Pollock, 1973).  

 

SDS-PAGE and Western blotting  

 Endogenous SLN content was detected in cardiac tissue (ventricle and atrium), skeletal 

muscles (soleus, EDL, quadriceps, tibalis anterior, diaphragm, red and white gastrocnemius) 

and BAT to determine SLN distribution in WT mice.  Skeletal muscle (soleus and white 

gastrocnemius) and BAT homogenates were also used to determine the relative expression and 

protein content of endogenous SLN, SERCA1a, SERCA2a, PLN, UCP-3 and CSQ.  Sodium 

dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was initially performed on 

samples to separate proteins of interest by size (Laemmli, 1970).  Equal quantities of protein 

were loaded in each well.  Due to the large discrepancy in size between the proteins to be 
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measured, different densities and types of gels were utilized (8% polyacrylamide gels [Mini-

PROTEAN II, Bio-Rad, Canada] for SERCA1a, SERCA2a, CSQ and UCP-3; 14% and16% 

Tricine gel [Sigma-Aldrich] for PLN and SLN, respectively).  After separation, proteins were 

transferred to a polyvinylidene difluoride membrane (PVDF membrane, Bio-Rad, Canada) 

using a semi dry transfer unit at 23mV for 45 min (Trans-Blot Cell, Bio-Rad, Canada).  
 
After 

blocking with 5% skim milk in Tris-buffered saline (pH 7.5) for 1 hour at room temperature, 

the membranes were incubated
 
with the primary anti-rabbit CSQ antibody (1:5,000), anti-rabbit 

PLN antibody (1:3,000), anti-rabbit UCP-3 antibody (1:1,000), anti-mouse SERCA2a antibody 

(1:4,000; Affinity Bioreagents), anti-rabbit SLN antibody (1:3,000; Babu et al., 2007), and 

anti-mouse SERCA1a antibody (1:20,000; A52 gift from Dr. MacLennan) and anti-mouse α-

actin antibody (1:5000; Sigma-Aldrich) which was used as a loading control in BAT.  After 

washing in Tris-buffered saline 0.1% Tween, the membranes were then treated for 1 hour with 

the appropriate horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA).  Lastly, the membranes were washed 

again and the signals were detected with an enhanced chemiluminescence kit (Amersham 

Pharmacia Biotech, Piscataway, NJ) using a bio-imaging system and densitometric analysis 

performed using the GeneSnap software (Syngene, Frederick, MD). 

 

Ca
2+

 dependent Ca
2+

-ATPase Activity 

 Homogenates (n=5) from the pooled soleus and EDL of WT and KO mice were used to 

determine Ca
2+

 dependent Ca
2+

-ATPase activity using a spectrophotometric assay developed 

by Simonides & Van Hardeveld (1990) and modified by our laboratory to accommodate a 96-

well plate reader (SPECTRAmax Plus; Molecular Devices, Toronto, ON; Duhamel et al., 
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2007).  Briefly, reaction buffer (200 mM KCl, 20 mM HEPES (pH 7.0), 15 mM MgCl2, 1 mM 

EGTA, 10 mM NaN3, 5 mM ATP and 10 mM PEP) containing 18 U/mL of both LDH and PK, 

as well as homogenate were added to test tubes containing 15 different concentrations of Ca
2+

,
 

ranging between 7.6 and 4.7 pCa units in the presence and absence of ionophore A23187 (4.2 

µM).  In the absence of the ionophore, Ca
2+

 accumulates inside the SR vesicle and causes 

back-inhibition of SERCA pumps, which is more relevant to the physiological system found in 

skeletal muscle. Aliquots (100 µl) were then transferred in duplicate to a clear bottom 96-well 

plate (Costar, Corning Incorporated, NY), where 0.3 mM NADH was added to start the 

reaction.  The plate was read at a wavelength of 340 nm for 30 min at 37°C.  The different 

concentrations of Ca
2+

 in the wells were used to determine the maximal enzyme activity 

(Vmax) and pCa50, which is defined as the [Ca
2+

]f
  
required to achieve 50% of Vmax.  Lastly, 

cyclopiazonic acid (CPA; 40 µM), a highly specific SERCA inhibitor (Seidler et al., 1989), 

was used to determine background activity which was subtracted from the total Ca
2+

-ATPase 

activity measured in muscle homogenate. 

 All data were then plotted against the negative logarithm of [Ca
2+

]f (pCa) using basic 

statistatical software (GraphPad Prism
TM

 version 4) to determine Vmax and pCa50.  pCa50 was 

determined by non-linear regression curve fitting using the sigmoidal dose response equation 

(Equation 2.1), 

  Y= Ybot + (Ytop- Ybot) /(1+
10(LogCa

50
-x) 

* nH)       Equation 2.1 

where Ybot is the bottom of the plateau, Ytop is the top of the plateau, Log Ca50 is the logarithm 

of pCa50 and nH is the hill coefficient. pCa50 was determined using only activity values between 

20 and 80 % of maximal activity. 
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 The accurate measurement of [Ca
2+

]f  used for the ATPase activity assay was measured 

using the Ca
2+ 

fluorophore, indo-1 on a spectrofluorometric plate reader (SPECTRAmax 

Gemini XS; Molecular Devices, Toronto, ON) as previously described (Duhamel et al., 2007).  

The 15 [Ca
2+

]f  concentrations ranging from 7.6 to 4.7 pCa units and all other components 

found in the above assay cocktail were added with the addition of indo-1 (1.5 µM); note 

however that NADH was not added, as it has extremely fluorescent properties which can 

interfere with the Indo-1 signal.  In addition, two other Ca
2+

 concentrations were required for 

Ca
2+

 measurement, a zero Ca
2+

 and a max Ca
2+

 concentration (1mM).  These were then added 

into a black 96 well plate (Costar, Corning Incorporated, NY) in duplicate and read on a 

spectrofluorometric plate reader (SPECTRAmax Gemini XS; Molecular Devices, Toronto, 

ON) after a 15min incubation period at 37 °C.  This assay is based on the difference in the 

maximal emission wavelength between Ca
2+ 

bound indo-1 (F) and Ca
2+

 free indo-1 (G) 

complexes which have emission wavelengths of 405 and 485 nm upon excitation with a 355 

nm wavelength, respectively.  The ratio (R) of bound (F) to free (G) indo-1 complexes is used 

to calculate [Ca
2+

]f with the following equation (Grynkiewicz et al., 1985): 

  [Ca
2+

]f ==Kd * (GmaxGmin) * (R-Rmin)/(Rmax-R)  Equation 2.2 

where Kd is the equilibrium constant for the interaction between Ca
2+

 and indo-1, Rmin is the 

minimum value of R with zero Ca
2+

, Gmax is the maximum value of G with zero Ca
2+

, Rmax is 

the maximum value of R at max Ca
2+

 (1mM) and Gmin is the minimum value of G at max Ca
2+

 

(1mM).  The Kd value of the indo-1 Ca
2+

 dye complex is 250 for muscle homogenates 

(Grynkiewicz et al., 1985).  
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Ca
2+

 uptake measurement 

 Homogenates (n=5) from the pooled soleus and EDL of WT and KO mice were used to 

determine Ca
2+

  uptake using the Ca
2+

 fluorophore, indo-1 as has been described in detail 

previously (O’Brien et al., 1991; Tupling and Green, 2002).  Fluorescence signals produced by 

Indo-1 were collected on a dual emission wavelength spectrofluorometer (Ratiomaster
TM

 

system, Photon Technology International, Birmingham, NJ).  As described above, [Ca
2+

]f  

measurements are based on the difference in Ca
2+ 

bound Indo-1 (F) and Ca
2+

 free Indo-1 (G) 

complexes which have emission wavelengths of 405 and 485 nm upon excitation with a 355 

nm wavelength, respectively.  

 Two ml of  reaction buffer (200 mM KCl, 20 mM HEPES, 10mM NaN3, 5 µM TPEN 

and 15mM MgCl2, pH 7.0 at 37 °C) were added to a four sided cuvette and mixed 1.5 µM  

Indo-1.  CaCl2 (3µl) was then added to achieve an initial [Ca
2+

]f  between 3 and 3.5 µM.  Prior 

to the addition homogenate (approx. 500µg protein), data collection was initiated using Felix 

software (Photon Technology International, Birmingham, NJ), after which ATP (5mM) was 

added to initiate Ca
2+

 uptake. Each sample was run in duplicate.  Measurements of Ca
2+

 uptake 

rates in soleus and EDL homogenates were made without the Ca
2+

 precipitating anion, oxalate. 

In the absence of the oxalate, Ca
2+

 accumulates inside the SR vesicle and causes back-

inhibition of SERCA pumps, which is more relevant to the physiological system found in 

skeletal muscle. 

 The decrease in [Ca
2+

]f  with Ca
2+

 uptake increases G and decreases F causing the F to 

G ratio (R) to decrease.  As previously mentioned using equation 2.2, ionized Ca
2+

 

concentration was calculated using the Felix software (Photon Technology International, 

Birmingham, NJ).  The generated curve ([Ca
2+

]f versus time) was smooth over 21 points using 
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the Savitsky-Golay algorithm.  Linear regression was then performed on values ranging 

±100nM at [Ca
2+

]f of 500 nM and 1500 nM and the rate of Ca
2+

 uptake determined by 

differentiating the linear fit curve and expressed as µmoles•g protein
-1

• min
-1

.   To determine 

the role of SLN on the Ca
2+ 

transport efficiency of the SERCA pumps, the Ca
2+

 uptake and 

SERCA activity rates were assessed in the presence of a Ca
2+

 gradient (i.e. without oxalate and 

without ionophore) at pCa 7.0 and the coupling ratio (Ca
2+

 uptake/SERCA activity) was 

calculated. 

 

Serum collection and catecholamine measurements  

 All mice were fasted for 4 hrs prior to being anaesthetized using 0.65mg of somnitol 

per kg body weight.  Blood (approx. 700µl) was collected from the left ventricle and spun 

down at 5000g for 8 min; resulting serum was then collected and stored at -80°C until analysis.  

Catecholamines, epinephrine (E) and norepinephrine (NE) were determined using high-

performance liquid chromatography and electrochemical detection as described by Weicher et 

al. (1984) and modified by Green et al. (1991). 

 

Indirect calorimetry of whole-body basal metabolic rate 

 A total of 30 sexually mature (4-6 months old) WT and KO mice were acclimated to 

single housed clear mesh bottom cages for a period of one week prior to being placed in a 12-

chamber CLAMS (Oxymax series; Columbus Instruments, Columbus,
 
OH).  During this period 

the mice were also fed powdered rat chow (Tekland 22/5 Rodent Diet, Harland-Tekland, 

Madison, WI) in a feeding apparatus similar to that found within the CLAMS.  The CLAMS is 

an open circuit indirect calorimeter with a positive air flow of 0.5 l/min, allowing for the 
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sampling of air within the individual chambers.  The air samples are pumped through a drier 

assembly before being analyzed by the oxygen and carbon dioxide sensors which were 

calibrated by highly purified gas prior to the experiment.   The percent O2 and CO2 gas levels 

of the animal chambers (20 cm x 10 cm x 
12.5 cm) are measured periodically between 

reference readings of room air and are used to compute the O2 consumption (VO2) of the 

animal.  The daily metabolic rate of each mouse, within the 12 cages was measured 

individually every 26 minutes.  In addition to metabolic rate, this system is equipped with a 

feed scale for monitoring mass of food consumed and X and Z activity sensors for monitoring 

ambulatory activity counts (when 2 adjacent X axis beams are broken in succession), rearing 

activity and total activity.   

 A total of 5 different groups of 6 WT and KO mice were monitored simultaneously on 

four separate occasions.  The first trail was routinely discarded as individual data were variable 

and VO2 values were considerably higher than subsequent trials.  Mice were allowed a 24 hour 

acclimation period in the metabolic chamber prior to data collection after which data were 

collected at 26-min intervals
 
over a 24 hour period under a controlled environmental 

temperature
 
(23°C). During these studies, mice had ad libitum access to

 
standard powdered 

mouse chow (Tekland 22/5 Rodent Diet, Harland-Tekland, Madison, WI) and water.  O2 

consumption was averaged over a 24h period as well as divided into sleeping metabolic rate 

(readings with a total activity count ≤ 4) and resting (awake) metabolic rate, allowing for a 

better estimate of the O2 cost associated with the activity counts.  The respiratory exchange 

ratio (RER) was also calculated (VCO2/VO2) and reported as a 24h average (total), sleeping 

and awake.  The simultaneous measure of food consumption, total activity and the metabolic 

rate were utilized to make accurate assessments of basal metabolism between WT and KO 
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mice.  Of the 30 mice used in each group, 2WT and 2KO mice could not be used as their data 

were very erratic resulting in either loss of weight or hyper-activity during all of the final three 

trials.   

 

Measurements of whole body O2 consumption during treadmill exercise 

 A total of 12 sexually mature (4-6 months old) WT and KO mice were assessed for 

sub-maximal and maximal aerobic capacity (VO2max) during forced exercise, by running them 

on an enclosed motorized treadmill using an open-flow respirometry system (Oxymax series; 

Columbus Instruments, Columbus,
 
OH).  This was performed at room temperature (23°C) 

using a positive pressure, flow-through respirometry system as described above to calculate the 

rate of oxygen consumption (VO2).  Mice were acclimated prior to the actual assessment by 

placing them in the enclosed treadmill on three separate occasions and having them walk/run at 

a low speed (8m/min).  For both sub-maximal and maximal aerobic capacity measurements, 

mice were placed in the enclosed treadmill for 30 min prior to testing.  Sub-maximal tests were 

performed at 3 different speeds for ten minutes using the open flow system, with a flow rate of 

0.8 L/min and sampling every 30 sec.  The mice exercised at a running speed of 8m/min for 10 

min followed by 10 min at 16m/min and a further 10 min at 24 m/min. On a separate occasion 

VO2max was determined using a slightly modified version of a standardized protocol (Rezende 

et al., 2006).  Briefly, after the 30 min acclimation period, mice were run at 7 m/min for 90 sec, 

allowing for 3 air samples, the speed was then increased by 3m/min for 90 sec.  This was 

repeated until a plateau in VO2 was reached or the mouse is incapable of continuing.  
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Oxygen consumption in isolated intact mouse skeletal muscles 

 Measurements of oxygen consumption in resting intact soleus muscles were performed 

as previously described by Norris et al., (2010).  A total of 22 KO and 21 WT mice were 

anesthetized using 65 mg/kg sodium pentobarbital and the soleus muscles were carefully 

removed from both hind limbs with tendons intact.   Care was taken not to damage the muscles 

and to excise as much tendon as possible as they were needed to tie the muscle to the 

apparatus.  Isolated soleus muscles were mounted in the TIOX tissue bath system (Figure 2.1; 

Hugo Sachs Electronik-Harvard Apparatus, Germany) for the measurement of resting muscle 

oxygen consumption (VO2).  The TIOX tissue bath system consists of a moveable platform 

which supports the muscle and a force transducer (F30 type 372) for measuring contractile 

force.  A movable jacketed tissue chamber that is fitted with a temperature probe and a Clarke 

type PO2 electrode (model 1302) is also mounted onto the platform.  The jacketed reservoir is 

connected to a thermocirculator to maintain constant chamber temperatures. Two platinum 

parallel plate electrodes are located on both sides of the muscle for stimulation protocols 

enabling simultaneous measurement of force production and oxygen consumption.  All 

components of the TIOX system are connected and controlled by individual PLUGSYS-

modules and the data acquired from the individual modules is compiled, filtered, displayed and 

stored by the HSE-HA ACAD data acquisition software (Hugo Sachs Electronik-Harvard 

Apparatus, Germany). 

 Using 4/0 surgical silk, the isolated muscle was mounted onto a fixed lower hook 

attached to the platform and a top hook which passes through a hole in the lid of the platform 

and connects to the external force transducer.  After mounting the muscle, the tissue chamber 

was closed to the atmosphere by gently raising it to the platform and tightly sealing it with 
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bolts and wing nuts to fasten the chamber in place.  The system was made air tight by closing 

off the hole in the lid of the platform using grease (baysilone paste, GE Bayer Silicones).  The 

chamber was then filled with Ringer solution (121mM NaCl, 5mM KCl, 0.5mM MgCl2, 

0.4mM NaH2PO4, 24mM NaHCO3, 5.5mM glucose and 0.1mM EDTA, pH 7.3), which was 

pre-heated to 30ºC and aerated with 95% oxygen and 5% carbon dioxide, through a port on the 

bottom of the bath until it overflowed out of the ventilation cap in the lid of the platform which 

was then sealed.  For each experiment, care was taken to ensure that there were no bubbles 

within the chamber once it was filled with Ringer solution and closed off to the atmosphere as 

bubbles will increase the rate of oxygen leak out of the solution.  The contents of the chamber 

were constantly stirred with a magnetic bar and stirrer located directly under the oxygen 

electrode to ensure consistent oxygen concentration throughout the solution.  The muscle 

length was adjusted to achieve optimal length (lo) for force production and then the muscle was 

given 10 minutes to equilibrate inside the chamber prior to initiating data collection. 

 PO2 measurements were recorded every 4 seconds for a duration of 30min for each of 3 

separate experimental trials at 30ºC designed to quantify resting muscle VO2 and SERCA 

pump energetics.  The PO2 in the bath (~620 mmHg) should enable adequate diffusive oxygen 

supply to support resting muscle metabolism of mouse soleus (Barclay et al., 2005); however, 

to prevent the formation of hypoxic cores in the muscle, all experiments were terminated 

before the PO2 of the Ringer solution fell below 580 mmHg.  First, the decrease in PO2 of the 

Ringer solution was recorded in the presence of a resting muscle at lo for 30 minutes.  

Secondly, the muscle was lengthened until sarcomere overlap (approx. 1.4 lo) was eliminated 

and no force could be detected during a single twitch.  The bath was then emptied and refilled 

with fresh Ringer solution and the PO2 was recorded for 30 minutes.  Lastly, to calculate the 
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contribution of SERCA to basal metabolism, with the muscle still pre-stretched, the bath was 

emptied and refilled with fresh Ringer solution and 10µM CPA was added with a Hamilton 

syringe through the vent in the lid of the platform and PO2 was recorded for 30 minutes.  10µM 

of CPA was found to be the concentration which was optimal for inhibiting SERCA without 

having a toxic effect on the muscle (Norris et al., 2010).  As in the Norris et al., (2010) study, 

after the initial rest trial, the isolated muscles were stretched until the actin/myosin overlap was 

completely eliminated, where VO2 was not different than the rest trial alone.  This would 

remove the contribution of myosin ATPase to VO2 as well as eliminate creeping in force upon 

addition of CPA in the following trial (Barclay, 1996; Barclay et al., 2008).  

Following this final 30 minute period, the muscle was returned to its optimal length and a 

single twitch was applied to ensure continued viability following CPA exposure.  The muscle 

was then detached from the hook, blotted and the tendons were carefully removed with a 

scalpel blade.  The soleus muscle was then weighted, frozen in liquid nitrogen and stored at -

80°C until analysis.  
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Figure 2.1. Schematic diagram of TIOX tissue bath system (Hugo Sachs Elektronik - Harvard 

Apparatus). 
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Calculation of muscle VO2 

 The muscle VO2 was calculated by multiplying the measured drop in partial pressure 

of oxygen (PO2) with time by the solubility of oxygen in Ringer’s solution at 30ºC and the 

chamber volume (12.7 ml).  The solubility of oxygen at 30ºC was calculated to be 0.001203 

M/atm using the following equation: 

         
 

  

 
 
 

 
 

 

  
 
     Equations 2.3    

where kH is the solubility constant of O2 at experimental temperature, kHo is the solubility 

constant of O2 in pure water at standard temperature of 25ºC (0.0013 M/atm), ∆H is the 

enthalpy to dissolve O2 (gas) in water (11.7 kJ/mol), R is the gas constant (0.008312 

kJ/mol/K), T is the experimental temperature (30ºC or 303.15 K) and To is standard 

temperature (25ºC or 298.15 K). 

 In reality, the TIOX system is not completely closed to the atmosphere resulting in leak 

of oxygen out of the solution.  Therefore, in order to account for the oxygen leak, blank trials 

were done at the beginning and at the end of daily data collection.  A blank trial measures the 

rate of oxygen loss from the oxygenated Ringers solution in an empty chamber (i.e. no 

muscle).  The rate of oxygen loss in the blank trial is then subtracted from the oxygen loss in 

the presence of the muscle to give the muscle VO2.  A sample PO2 tracing of a leak, rest, and 

CPA trial is depicted in Figure 2.2.  Muscle VO2 was expressed relative to muscle wet weight 

(µl O2 per g muscle • sec
-1

). 
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Figure 2.2. Representative raw tracing of PO2 decline in soleus muscle over a 30 min period at 

30°C from the TIOX tissue bath system.  Leak represents a trial with no muscle in the bath. 

Rest corresponds to the decrease in PO2 in the presence of a soleus muscle. 10 µM CPA 

represents a trial with the soleus muscle and 10µM of CPA present in the bath. Taken from 

Norris et al., 2010. 
 

 

Statistical analysis  

 One-way ANOVA was used to test for differences between KO and WT mice for  

CLAMS data, VO2max,  Vmax and pCa50 of Ca
2+

 ATPase activity, Ca
2+

 uptake, coupling ratio, 

TIOX data and Western blotting data.  A two-way ANOVA with repeated measure was used to 

detect differences between KO and WT mice for submaximal VO2 and Ca
2+

-dependent Ca
2+

 

ATPase activity.  The significance level was set at 0.05, and
 
when appropriate, a Newman-

Keuls post hoc test was used to compare
 
specific means. Values are means ± SE. 
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RESULTS 

 

Endogenous SLN protein content in cardiac, hindlimb and respiratory muscles and BAT

 SLN protein levels from cardiac muscles, selected mouse hindlimb muscles, diaphragm 

and BAT in WT mice were measured using Western blot analysis (Figure 2.3) using a SLN-

specific antibody (Babu et al., 2007b).  For these analyses, cardiac muscle was analyzed 

separately as atrial and ventricular tissue to show that SLN is expressed in the atrium, but not 

in the ventricle in WT mice which is in agreement with previous findings (Babu et al., 2007b). 

Gastrocnemius muscle was fractionated into red and white portions to show that SLN is 

expressed in red, but not in white gastrocnemius in WT mice.  Comparisons between skeletal 

muscles from WT mice show that SLN is expressed at relatively high levels in the diaphragm, 

at medium levels in soleus, red gastrocnemius and tibialis anterior, at low levels in EDL, and 

not at all in white gastrocnemius, quadriceps and BAT.   

  

 

Figure 2.3. Representative Western blot of SLN protein distribution in cardiac and skeletal 

muscle of wild type (WT) mice. A 16% tricine gel was used to resolve total homogenates from 

WT mice. Representative Western blot of SR protein in soleus muscle.  EDL, extensor 

digitorum longus; BAT, brown adipose tissue. 
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Sln–null transgenic mice.   

 KO mice have already been partially characterized (Babu et al., 2007a), but the effects 

of SLN ablation on skeletal muscle and whole body metabolism have not been explored in this 

model.  RT-PCR genotyping for the SLN targeting construct and the WT allele is shown in 

Figure 2.4A.  Comparisons between WT and KO mice confirmed the absence of SLN protein 

in skeletal and cardiac muscles of KO mice (Figure 2.4B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Characterization of Sln-null (KO) mice. (A) RT-PCR genotyping for the SLN 

targeting construct and the WT allele. (B) Western blotting analyses of SLN in different 

skeletal and cardiac muscles from WT and KO littermate mice. A 16% tricine gel was used to 

resolve total homogenates from both WT and KO mice. Equal quantities of protein were 

loaded in each well. TA, tibialis anterior; EDL, extensor digitorum longus; RG, red 

gastrocnemius; WG, white gastrocnemius. 
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Quantification of SR proteins in wild type and Sln-null mice.  

  To examine potential compensatory changes in the levels of the major Ca
2+

 regulatory 

proteins in the SR associated with this KO model, semiquantitative Western blotting was 

performed to determine the relative levels of expression of SERCA1a, SERCA2a, CSQ and 

PLN in both WT and KO skeletal muscles (soleus, Figure 2.5; white gastrocnemius, Figure 

2.6A) and BAT (Figure 2.6B).  A comparison of the expression levels of SERCA1a, SERCA2a 

and PLN in WT and KO mice shows that the loss of SLN induced no compensatory changes in 

the expression of SERCA1a, SERCA2a, CSQ or PLN in any of the tissues examined.  In 

agreement, Babu et al. (2007a) also found no differences in these Ca
2+ 

handling proteins in 

atria and ventricle from this SLN ablation mouse model.  This would suggest any alterations 

seen in Ca
2+

 handling and potentially muscle metabolism would be a direct result of SLN 

ablation.         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Western blot analysis of SR Ca
2+

 regulatory proteins in soleus muscle from wild 

type (WT) and Sln-null (KO) mouse. CSQ was used as a loading control. The loading control 

sample from only one of the membranes is shown. Different SDS-PAGE gel concentrations 

(8% for SERCA1a, SERCA2a and CSQ, 15% for PLB) were used to resolve total homogenates 

from both WT and KO mice. Equal quantity of protein was loaded in each well. PLB, 
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phospholamban; CSQ, calsequestrin. Representative Western blot of SR protein in soleus 

muscle.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Western blot analysis of SR Ca
2+

 regulatory proteins in (A) white gastrocnemius 

muscle and (B) Brown adipose tissue from wild type (WT) and Sln-null (KO) mouse. CSQ and 

β-actin were used as a loading control respectively. The loading control sample from only one 

of the membranes is shown. Different SDS-PAGE gel concentrations (8% for SERCA1a, 

SERCA2a, CSQ and β-actin, 15% for PLB) were used to resolve total homogenates from both 

WT and KO mice. Equal quantity of protein was loaded in each well. PLB, phospholamban; 

CSQ, calsequestrin. Representative Western blot of SR protein in soleus muscle.    
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Ca
2+

-dependent SR Ca
2+

-ATPase activity. 

 

 Measurements of Ca
2+

-ATPase activity in soleus and EDL homogenates were made 

with and without the Ca
2+

 ionophore A23187.  In the presence of the ionophore, there is no 

Ca
2+

 gradient across the SR membrane.  In the absence of the ionophore, Ca
2+

 accumulates 

inside the SR vesicle and causes back-inhibition of SERCA pumps, which is more relevant to 

the physiological system found in skeletal muscle.  When assessed in the absence of a Ca
2+

 

gradient, there was an increase in the apparent affinity of SERCA for Ca
2+

 in the soleus muscle 

of KO mice compared to WT (Figure 2.7A), as indicated by a significant decrease in the pCa50 

(Table 2.1) and a corresponding leftward shift in plots of the Ca
2+

 dependence of Ca
2+

-ATPase 

activity (Figure 2.7A).  These effects of SLN ablation on Ca
2+

-ATPase activity measured with 

ionophore in soleus were not observed in the EDL muscle (Figure 2.7B; Table 2.1). Maximal 

SR Ca
2+ 

ATPase activity in the absence of a Ca
2+

 gradient was not different between the WT 

and KO mice in the soleus or EDL muscle (Table 2.1).  

 In the presence of a Ca
2+

gradient (without ionophore A23187) Ca
2+

dependent Ca
2+

-

ATPase in soleus homogenate showed no difference in maximal activity between KO and WT 

mice (36.0±2.4 µmol per g protein•min
-1

 for KO versus 39.8±2.9 µmol per g protein•min
-1

 for 

WT).  Maximal Ca
2+ 

ATPase activity in the EDL muscle was also not different between WT 

and KO mice (143.5±15.7 µmol per g protein•min
-1

 for KO versus 186.2±21.9 µmol per g 

protein•min
-1

 for WT).  Repeated ANOVA analyses of the Ca
2+

 ATPase activity revealed a 

rightward shift and lower (P<0.05) average activity at any given [Ca
2+

] in the soleus muscle of 

KO mice compared with WT mice (Figure 2.8A).  Analyses preformed on EDL muscle 

showed a similar trend but the differences between KO and WT mice were not significant  
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(P=0.074) (Figure 2.8B).  Taken together these data are consistent with the proposal that SLN, 

by inducing slippage of SERCA pumps, reduces the extent of back-inhibition of Ca
2+

 ATPase 

activity. 

 

 

 

Table 2.1. SERCA activity in the absence of a Ca
2+

 gradient.              

         Muscle     genotype       Vmax      pCa50  ∆Kca                        

 
                                 pCa 

         Soleus  WT  201.2±12.0    6.85 ± 0.01             -- 
 

                    KO  208.7±16.9   6.95 ± 0.03*         0.10  

  

          EDL  WT  1052.7±48.6  6.71 ± 0.02           --  

           KO    964.6±20.7   6.73 ± 0.01         0.02  

 

Homogenates from wild type (WT) and Sln-null (KO) mouse hindlimb muscles and were 

analyzed for Ca
2+

-ATPase activity over Ca
2+

 concentrations ranging from pCa 7.4 to pCa 5.5. 

Vmax is the maximal SR Ca
2+

ATPase activity expressed as µmol per g pro•min
-1

.  pCa50 is the 

negative logarithm of the Ca
2+

 concentration required to attain the half-maximal Ca
2+

-ATPase 

activity rate. * Significantly different (P<0.05) than WT.  Data are mean ± SE (n=5). 
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Figure 2.7. Ca
2+

 dependent Ca
2+

-ATPase activity was assessed in soleus (A) and EDL (B) 

muscle homogenates from wild type (WT) and Sln-null (KO) mice, over Ca
2+

 concentrations 

ranging from pCa -7.4 to pCa -5.0 in the absence of a Ca
2+

 gradient (with ionophore A23187). 

Values are means ± SE (n=5). 
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Figure 2.8. Ca
2+

 dependent Ca
2+

-ATPase activity was assessed in soleus (A) and EDL (B) 

muscle homogenates from wild type (WT) and Sln-null (KO) mice, over Ca
2+

 concentrations 

anging from pCa -7.4 to pCa -5.0 in the presence of a Ca
2+

gradient (without ionophore 

A23187). Main effect (P<0.05) of SLN in soleus muscle WT >KO (P<0.05). Values are means 

± SE (n=5). 
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The apparent coupling ratio of Ca
2+

 transport into the SR per ATP hydrolyzed.   

 

 Measurements of Ca
2+

 uptake rates in soleus and EDL homogenates were made without 

the Ca
2+

 precipitating anion, oxalate.  In the absence of oxalate, Ca
2+

 accumulates inside the SR 

vesicle and causes back-inhibition of SERCA pumps, which is more relevant to the 

physiological system found in skeletal muscle.  The Ca
2+ 

transport efficiency of the SERCA 

pumps in skeletal muscle was assessed by calculating the stoichiometry (apparent coupling 

ratio) of SERCA pumps (Ca
2+

 uptake/Ca
2+

-ATPase activity) in the absence of oxalate and 

ionophore at a pCa of 7.0.  Ca
2+ 

uptake in soleus homogenate was not different between KO 

and WT mice (Figure 2.9A); however, Ca
2+

 ATPase activity was significantly lower (P<0.01) 

in the KO mice compared with WT mice (Figure 2.9B).  This resulted in a higher (P<0.05) 

calculated coupling ratio in KO mice suggesting a more efficient Ca
2+

 pumping system, at least 

at low [Ca
2+

] (pCa 7.0) and in the presence of a Ca
2+ 

gradient across the SR membrane (Figure 

2.9C).  In EDL, there were no significant differences between KO and WT mice in Ca
2+

 uptake 

(Figure 2.10A), Ca
2+

 ATPase activity (Figure 2.10B) or the calculated apparent coupling ratio 

(Figure 2.10C).  The higher coupling ratios (P<0.0001) found in the soleus homogenate 

compared to the EDL in both WT and KO mice is in agreement with previous studies showing 

slow twitch muscle vesicles to be more efficient than fast twitch muscle vesicles by a factor of 

3 to 4.5-fold in the presence of a Ca
2+ 

gradient
 
(Reis et al., 2002).  
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Figure 2.9. Average values in soleus muscle homogenates for Ca
2+

 handling in the presence of 

a Ca
2+

 gradient at pCa 7.0 from wild type (WT) and Sln-null (KO) mice. (A) Ca
2+

 uptake 

without oxalate; (B) Ca2+-ATPase activity without Ionophore A23187;(C) Apparent coupling 

ratio (Ca2+ uptake / Ca2+-ATPase activity). * Significantly different (P<0.05) than WT. Data 

are mean ± SE (n=5). 
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Figure 2.10. Average values in EDL muscle homogenates for Ca
2+

 handling in the presence of 

a Ca
2+

 gradient at pCa 7.0 from wild type (WT) and Sln-null (KO) mice. (A) Ca
2+

 uptake 

without oxalate; (B) Ca2+-ATPase activity without Ionophore A23187;(C) Apparent coupling 

ratio (Ca2+ uptake / Ca2+-ATPase activity). Data are mean ± SE (n=5). 
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Measurement of VO2 and SERCA contribution to VO2 in isolated soleus muscle.   

 The increased efficiency of SERCA pumps observed in soleus muscle homogenate 

from KO mice suggests that less energy is required by SERCA pumps to accomplish a given 

amount of SR Ca
2+

 uptake in soleus muscles from KO mice, compared with WT.  Furthermore, 

since SERCA pumps contribute ~50% to resting metabolic rate in mouse soleus (Norris et al., 

2010), it was proposed that resting soleus VO2 would be lower in KO mice, compared with 

WT.  However, resting VO2 (µl O2 per g muscle • sec
-1

) of isolated intact soleus muscles at 

30ºC was not significantly different between WT and KO mice (Figure 2.11A).  Similar to the 

Norris et al., study (2010), there were no differences between the rest trial (lo) and the stretch 

trial (~1.4 lo) for either the KO mice (0.427 ± 0.015 µl O2 per g muscle • sec
-1

 for rest versus 

0.425 ± 0.015 µl O2 per g muscle • sec
-1

for stretch trial) or the WT mice (0.428 ± 0.017 µl O2 

per g muscle • sec
-1

 for rest versus 0.428 ± 0.017 µl O2 per g muscle • sec
-1

 for stretch trial).  

 In order to quantify the specific contribution of SERCA pump activity to resting 

metabolic rate, the change in muscle VO2 following the addition of cyclopiazonic acid (CPA, 

10 µM), a highly specific inhibitor of SERCA pump activity (Goeger and Riley, 1989; Seidler 

et al., 1989), was measured.  Muscle VO2 in both WT and KO soleus was significantly reduced 

following CPA treatment but the relative decrease was significantly greater in WT (Figure 

2.11A).  As a result, the relative contribution of SERCA pumps to resting VO2 in soleus is 

lower in KO (~42.7%) compared with WT (~49.5%) mice (Fig. 2.11B).  Assuming a caloric 

expenditure equivalent of 5 kcal per litre of O2 consumed, then the calculated rate of ATP 

consumption by SERCA pumps in resting soleus is 125.7 ± 6.0 nmoles per g muscle • sec
-1

 in 

KO compared with 144.9 ± 5.8 nmoles per g muscle • sec
-1

 in WT. 
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Figure 2.11. Basal oxygen consumption (VO2) of isolated soleus muscle from wild type (WT) 

and Sln-null (KO) mice in the presence and absence of CPA. (A) Basal VO2; (B) Contribution 

of SERCA to basal VO2. Basal VO2 showed a main effect (P<0.0001) of CPA with Rest>CPA. 

* Significantly different (P<0.05) than WT. Values are means±SE (n=20). 

 



56 

 

Semiquantitative Western blotting analysis of UCP-3 protein content.  

 To account for the fact that resting VO2 in KO soleus is unchanged despite less energy 

utilization by SERCA pumps compared with WT, it was reasoned that SLN ablation must 

result in compensatory adaptation(s) that involve one or more other energy consuming 

processes in muscle.  Mitochondrial uncoupling protein 3 (UCP-3), which reduces the proton 

gradient across the inner mitochondrial membrane, has been shown to increase energy 

expenditure (Clapham et al., 2000; Schrauwen et al., 2002).  Therefore, it was hypothesized 

that UCP-3 might be increased in KO soleus.  As hypothesized, expression levels of UCP-3 in 

soleus were significantly higher (34%) in KO versus WT mice (Figure 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Uncoupling protein-3 (UCP-3) content in soleus from wild type (WT) and Sln-

null (KO) mice. (A) Representative Western blot of UCP3 at 32 kD. (B) Optical density 

(arbitrary units) of UCP3 band for WT and KO mice. * Significantly different (P<0.05) than 

WT. Values are means ± SE (n=6). 
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Measurement of whole body metabolism  

 Total body weight was similar between WT (33.15±0.87g; n=28) and KO 

(31.94±0.98g; n=28) mice.  To determine whether ablation of SLN caused alterations in whole 

body metabolism, mice were housed in metabolic cages for 3 days.  Consistent with the effects 

of SLN ablation on resting soleus VO2 and total body weight, no significant differences in 

whole body metabolic rate, food intake, cage activity or RER were observed between WT and 

KO mice (Table 2.2).  However, dual beam movement tended to be higher (p<0.09) in WT 

mice compared with KO mice. 

 

Table 2.2. Basal metabolic CLAMS measurements for wild type (WT) and Sln-null (KO) mice 

          WT         KO  

Weight (g)     33.2±0.9   31.9±1.0 

Waking VO2 (ml O2/kg/hr)   3065±72.3   3029±56.8 

Sleeping VO2 (ml O2/kg/hr)   2470±44.3   2489±50.8 

Total daily VO2 (ml O2/kg/hr)  2865±60.1   2853±50.0 

Food Intake  (grams)    5.17±0.12   4.90±0.12 

Total Activity      10777±509   10211±462 

Dual Beam Activity    3001±201   2598±127 

Daily VO2 (ml O2/Hr)    97.95±1.93   95.34±2.15 

Waking RER     1.014±0.0061   1.006±0.0035 

Sleeping RER     0.993±0.0099   0.977±0.0063 

Total RER     1.012±0.0064   1.003±0.0036 

Values are means ± SE  (n=28).  RER, respiratory exchange ratio. 
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Sub-maximal and maximal VO2 during treadmill exercise 

 The maximal VO2 measured during progressive treadmill exercise was not different 

(P>0.05) between WT and KO mice (5025±119 ml O2 /kg/hr for WT versus 5095±127 ml 

O2/kg/hr for KO).  VO2 measured in the treadmill at rest was also not different between WT 

and KO mice (3765±92 ml O2/kg/hr for WT versus 3762±168 ml O2/kg/hr for KO, Figure 

2.13).    There were no significant differences (P<0.05) in VO2 between WT and KO mice 

measured during sub-maximal treadmill exercise at either 8, 16 or 24 m/min (Figure 2.13); 

however there was a main effect (P<0.0001) of speed on submaximal VO2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. Submaximal VO2 from wild type (WT) and Sln-null (KO) mice. Main effect 

(P<0.0001) of speed with 0 (rest) < 8 m/min < 16 and 24 m/min. Values are means ± SE 

(n=12). 
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Plasma catecholamines  

 Concentrations of plasma catecholamines were also measured for an index of altered 

sympathetic activity, which might also contribute to the maintenance of thermogenesis in KO 

mice. However no differences (P>0.05) were found between KO and WT mice for either NE 

(2.94 ± 0.486 ng/ml for KO mice versus 2.70 ± 0.65 ng/ml for WT mice) or E (1.35 ± 0.4 

ng/ml for KO mice versus 1.91 ± 0.28 ng/ml for WT mice).  

 

  



60 

 

DISCUSSION 

 It is well established that protein-protein interactions between SLN and either 

SERCA1a or SERCA2a lowers the apparent affinity of the SERCAs for Ca
2+

 (Odermatt et al., 

1998; Asahi et al., 2002).  It has been demonstrated that the rate of relaxation of force for both 

cardiac myocytes (Asahi et al., 2004; Gramolini et al., 2006; Babu et al., 2005; Babu et al., 

2006) and slow twitch skeletal muscle (Tupling et al., 2002) that overexpress SLN is slower, 

thus demonstrating that Ca
2+

 removal by the SR limits the rate of muscle relaxation in vivo.  

Although these studies show that increases in SLN expression can result in altered or impaired 

function, it is also important to determine the effects of loss of SLN on muscle function, given 

the likelihood that endogenous SLN protein levels are optimal for physiological function.  

Recently, Babu et al. (2007a) generated a Sln-null mouse line and demonstrated that SLN acts 

as a major regulator of SERCA2a, mediating the -adrenergic responses in atria, but not in 

ventricles.  Analyses of skeletal muscle function have demonstrated increased SR Ca
2+

 uptake 

and faster rates of muscle relaxation in the soleus of Sln-null mice (Tupling et al. 2008).  Thus, 

it is well established that SLN is a key modulator of SERCA pump function and skeletal 

muscle relaxation in vivo; however, conceptually it is unclear how expression of a SERCA 

pump inhibitor might be beneficial for skeletal muscle contractile performance.  Therefore, the 

physiological role of SLN in skeletal muscle is still uncertain. 

 In this study, analyses of the physiological function of SLN were expanded to 

investigate the metabolic functions of SLN in skeletal muscle using Sln-null mice.  To test the 

hypothesis that SLN causes slippage on the Ca
2+

 pump thereby uncoupling ATP hydrolysis 

from Ca
2+

 transport in vivo, SERCA activity and Ca
2+

 uptake were assessed in selected skeletal 

muscles: the EDL, which is known to express low levels of endogenous SLN (Ottenheijm et 
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al., 2008), and the soleus, which is known to express relatively high levels of SLN (Babu et al., 

2007b; Ottenheijm et al., 2008).  To determine whether SLN might contribute to thermogenesis 

in skeletal muscle, the basal oxygen consumption (VO2) of soleus muscles isolated from WT 

and KO mice and the contribution of energy utilized by SERCA was also compared.   

Recently, SLN antibodies have been generated in two laboratories (Vangheluwe et al., 

2005a; Babu et al., 2007b) and used to examine the level of SLN expression in mouse heart, 

diaphragm, quadriceps, soleus and EDL.  Results using both antibodies are consistent with 

respect to cardiac muscle. SLN is expressed abundantly in atria, but is low in ventricle; these 

findings were confirmed in the present study (Figure 2.3 and 2.4).  With respect to skeletal 

muscles, the two antibodies gave slightly different results: SLN was found to be highly 

expressed in diaphragm and soleus and weakly detectable in EDL using an antibody directed 

against the 100% conserved C-terminus of SLN (Babu et al., 2007b; Ottenheijm et al., 2008), 

but was undetectable in either soleus or EDL using an antibody directed against the variable N 

terminus of SLN (Vangheluwe et al., 2005a).  It is likely that the antibody directed against the 

highly conserved C-terminus is the more sensitive and, therefore, the more reliable antibody.  

In this study, measurements of the relative levels of expression of SLN in various mouse 

skeletal muscles were repeated using the antibody directed against the C terminus of SLN 

(Babu et al., 2007b).  It was found that SLN was expressed abundantly in diaphragm, soleus 

and red gastrocnemius, to a lesser extent in both tibialis anterior and EDL and was absent from 

white gastrocnemius and quadriceps (Figure 2.3 and 2.4).  Compared with soleus, SLN levels 

were 1.8- and 3.8-fold lower in tibialis anterior and EDL, respectively. 

Ca
2+

-dependent Ca
2+

-ATPase activity was measured in the absence (with ionophore 

A23187) of a Ca
2+

 gradient in both soleus and EDL muscle homogenates.  As expected, in the 
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absence of a gradient, an increased affinity of SERCA for Ca
2+

 was observed in soleus as 

demonstrated by a leftward shift in the Ca
2+

 activity-pCa curves, with no change in Vmax 

(Table 2.1, Figure 2.7A).  By contrast, no changes in SERCA Ca
2+

 affinity or Vmax were 

detectable with the loss of SLN in EDL, as measured in crude homogenates prepared from 

EDL (Table 2.1; Figure 2.7B).  The different results in soleus and EDL can be explained by 

differences in endogenous SLN expression between these muscles.  

Ca
2+

-dependent Ca
2+

-ATPase activity and Ca
2+ 

uptake were also measured in the 

presence (without ionophore A23187 and without oxalate) of a Ca
2+

 gradient in both soleus 

and EDL muscle homogenates. In the absence of both the ionophore and precipitating anions, 

Ca
2+

 accumulates inside the SR vesicle and causes back-inhibition of SERCA pumps, which is 

more relevant to the physiological system found in skeletal muscle (Inesi and de Meis, 1989).  

Ca
2+ 

uptake measured in homogenates at a pCa of 7.0 was not different between WT and KO 

mice in either the soleus (Figure 2.9A) or the EDL (Figure 2.10A); however, Ca
2+

 ATPase 

activity was significantly lower in soleus (Figure 2.8A and 2.9B) and tended to be lower in 

EDL (Figure 2.8B and 2.10B) homogenates from KO mice compared with WT mice. As a 

result, the calculated coupling ratio in the soleus was 36% higher in KO mice compared with 

WT (Figure 2.9C) suggesting a more efficient Ca
2+

 pumping system in KO mice, at least at low 

[Ca
2+

] (pCa 7.0) and in the presence of a Ca
2+ 

gradient across the SR membrane. This is the 

first study to show that at a physiological SLN:SERCA pump ratio, SLN reduces the 

stoichiometry of SERCA pumps in skeletal muscle. These findings are in agreement with 

earlier in vitro studies, in which the reconstitution of SLN with Ca
2+

-ATPase from skeletal 

muscle SR in sealed vesicles resulted in a lower Ca
2+

 uptake for the same rate of ATP 

hydrolysis and greater heat production per mol ATP hydrolyzed (Smith et al., 2002; Mall et al., 
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2006).  Those studies led to the proposal that SLN increases the rate of slippage of the Ca
2+

-

ATPase (reaction 11 in Figure 1.3).  Although the increased coupling ratio (33%) measured in 

EDL homogenates from KO animals was not statistically significant, this finding suggests that 

even relatively small quantities of SLN in EDL can cause slippage and thereby decrease back 

inhibition on ATPase activity. 

 Slippage, an inherent property of P-type pumps, induces an uncoupled catalytic cycle 

which results in continuously variable coupling ratios from theoretical values down to zero 

(Berman, 2001).  In the absence of precipitating anions, factors that increase slippage should 

cause sealed SR vesicles to fill more slowly with Ca
2+

 and reduce the extent of back-inhibition 

of SERCA pump activity.  The Ca
2+

 uptake and Ca
2+

-ATPase activity results in this study can 

be explained by SLN causing increased slippage and reducing back-inhibition of Ca
2+

 pumps 

in WT compared with KO SR.  First, in the absence of a Ca
2+

 gradient across the SR 

membrane where slippage should be minimal and back-inhibition of pump activity negligible 

(Yu and Inesi, 1995), ablation of SLN increases Ca
2+

 uptake (in the presence of oxalate) 

(Tupling et al., 2008) and Ca
2+

-ATPase activity (in the presence of Ca
2+

 ionophore A23187) in 

soleus homogenates at low [Ca
2+

].  These results are consistent with the well known ability of 

SLN to act as an inhibitor of SERCA pumps (Odermatt et al., 1998; Asahi et al., 2002).  

However, in the absence of oxalate, slippage is increased (Yu and Inesi, 1995), but to a greater 

extent in WT compared with KO, which would decrease the initial rate of Ca
2+

 uptake resulting 

in less back-inhibition of SERCA pumps in WT compared with KO.  Therefore, the similar 

Ca
2+

 uptake rates between WT and KO when measured without oxalate and the increased Ca
2+

-

ATPase activity in WT compared with KO when measured without Ca
2+

 ionophore reflects the 
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balance between differences in SLN inhibitory effects on SERCA function, rates of slippage 

and back-inhibition of SERCA activity between WT and KO. 

 Based on findings obtained with isolated SR vesicles, slippage likely occurs to a 

significant extent under physiological conditions in skeletal muscle fibers (Sumbilla et al., 

2002).  As would be expected with a lower rate of slippage and a higher coupling ratio, the rate 

of ATP consumption by SERCA pumps in resting soleus was found to be lower in KO mice 

than WT mice (125.7 ± 6.0 nmol ATP per g muscle•sec
-1

 for KO mice versus 144.9 ± 5.8 nmol 

ATP per g muscle•sec
-1

 for WT mice).  Furthermore, the relative contribution of SERCA pump 

activity to whole muscle energy expenditure in soleus was ~6.8% lower in KO mice than WT 

mice (Figure 2.11B).  These results obtained in WT mice are consistent with results from an 

earlier study using C57BL/6 mice (Norris et al., 2010).  Importantly, Western blot analyses of 

soleus homogenates from KO and WT mice revealed that loss of SLN induced no 

compensatory changes in the expression of SERCA1a, SERCA2a, PLN or CSQ, SR proteins 

which are known to influence SR Ca
2+

 content, Ca
2+

 leak and the coupling ratio of SERCA 

pumps (Reis et al., 2002; de Meis et al., 2005; Murphy et al., 2009).  Therefore, the lower 

absolute and relative energy consumption by SERCA pumps in KO versus WT soleus is most 

likely due to a direct effect of SLN ablation on slippage of the SERCA pumps. 

It has already been established that SERCA pumps play an important role in 

thermogenesis (Block, 1994; de Meis, 2001b).  These data from the present study strongly 

suggest that SLN is a novel regulator of the thermogenic function of SERCA pumps in skeletal 

muscle.  Therefore, the findings that resting soleus and whole body VO2 were not different 

between WT and KO mice were unexpected.  After blocking SERCA pump activity with CPA, 

muscle VO2 was significantly higher in KO compared with WT soleus (Figure 11A), indicating 
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that the contribution of one or more non-SERCA mediators of resting skeletal muscle 

metabolism is increased in KO soleus.  The increase in UCP-3 content in KO soleus could 

potentially account for the increase in SERCA-independent VO2 in those muscles.  Although 

controversial, there are several lines of evidence showing that UCP-3 is an uncoupler of 

oxidative phosphorylation in skeletal muscle and increases energy expenditure under various 

conditions (Rousset et al., 2004; Krauss et al., 2005; Brand and Esteves, 2005).  Other 

experimental perturbations which have demonstrated increases in UCP-3 protein and mRNA 

content include high fat diets and acute cold exposure, both resulting in an increased metabolic 

rate and heat production (reviewed by Schrauwen and Hesselink, 2002).  Therefore, it is 

proposed that an adaptive increase in UCP-3 expression compensates for the absence of SLN 

which provides further support for the view that SLN is important for the regulation of 

thermogenesis. 

  There could also be other compensatory adaptations in skeletal muscle and/or other 

metabolically active organs such as BAT that could account for the increase in non-SERCA 

dependent skeletal muscle and whole body energy expenditure in KO mice.  NE and E are two 

key hormones in the regulation of thermogenesis and metabolism (Webber and Macdonald, 

2000); elevated levels would suggest potential compensation for the lack of SLN resulting in 

higher VO2 in both isolated muscle and whole body.  Plasma catecholamine concentrations 

however were not different between WT and KO mice suggesting that adrenergic activity was 

not altered in KO mice.  Furthermore, SLN protein was not detected in BAT and there were no 

effects of SLN ablation on the expression of other Ca
2+

 regulatory proteins (Figure 2.6B) in 

BAT.  However, the potential involvement of other cellular processes such as protein turnover, 

ion cycling or substrate cycling, in contributing to the increase in SERCA-independent VO2 in 
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KO soleus, cannot be ruled out.  Given the similarities in body weights and whole body energy 

expenditure between KO and WT mice, it was to be expected that food intake, RER and total 

cage activity were also similar between KO and WT mice. 

During exercise, skeletal muscle metabolism accounts for up to 90% of the increased 

whole body metabolic rate above resting metabolism (Rolfe and Brown, 1997).  Recently, 

Zhang et al. (2006) demonstrated that SERCA pumps might consume 80% of the energy used 

by skeletal muscle during sub-maximal contractions.  Therefore, it was hypothesized that 

differences in metabolism between KO and WT mice would be greater during exercise than 

during rest.  Interestingly, during sub-maximal exercise at the lower running speeds (8 and 16 

m/min) VO2 was approximately 4-5% higher in WT mice compared with KO mice, accounting 

for 175 and 229 ml O2 per Kg •hr
-1

 respectively, but this was not significant due to the high 

variability found between mice.  These differences were not seen at the higher running speeds 

(25m/min and VO2 max), potentially due to a higher degree of phosphorylation and 

dissociation of SLN from SERCA via activation of Ca
2+

/calmodulin-dependent protein kinase 

(CAMKII) (Bhupathy et al., 2009).  The higher (P<0.005) resting VO2 values found with the 

treadmill system is believed to be due to a greater stress response, as mice were only 

acclimated for 30 min in the treadmill as opposed to 24 hrs in the CLAMS. 

In the heart, SLN regulates SERCA2a activity and plays a significant role in controlling 

the rate of atrial relaxation and atrial contractility through β-adrenergic signalling (Babu et al., 

2007a).  It is also clear that SLN is an inhibitor of skeletal muscle Ca
2+

 pumps causing slowed 

relaxation rates of skeletal muscle and that inhibitory function of SLN is relieved in response to 

repeated muscle contractions (Tupling et al., 2008) possibly due to (CAMKII) signalling and 

phosphorylation of SLN at Thr
5
 (Bhupathy et al., 2009). However, unlike the heart, 
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conceptually it is unclear how this might be beneficial for skeletal muscle contractile 

performance which raised the question of the physiological role of SLN in skeletal muscle 

forming the basis of this study.  It is proposed that the primary physiological function of SLN 

in skeletal muscle is regulation of thermogenesis.  In quiescent skeletal muscle, where 

cytosolic [Ca
2+

] is low and SR lumenal [Ca
2+

] is high, SLN would be dephosphorylated and 

bound to SERCAs causing an increased rate of slippage and heat production by SERCAs.  In 

working skeletal muscle, SLN inhibitory function must be removed so that SERCAs can be 

activated maximally to pump Ca
2+

 from the cytoplasm into the SR both rapidly and efficiently. 

Therefore, the design of this thermogenic system in skeletal muscle involving SLN enables 

SERCA pumps to contribute significantly to thermogenesis in resting skeletal muscle without 

compromising their Ca
2+

 pumping function in working skeletal muscle.  Further supporting this 

notion, large mammals which possess relatively little BAT, which is the major thermogenic 

organ in small mammals, have significantly higher levels of SLN in all muscles that have been 

examined to date (Babu et al., 2007b).  Of note, comparisons between wild type and Pln-null 

mice have shown that PLN, like SLN, also decreases the Ca
2+

:ATP coupling ratio of SERCA 

pumps, specifically at low [Ca
2+

]f (Frank et al., 2000). The role of PLN in skeletal muscle 

thermogenesis remains to be evaluated.  

 In summary, using Sln-null mice it was shown that SLN reduces the coupling ratio of 

SERCA pumps thereby increasing the amount of energy consumed by SERCA pumps in 

resting skeletal muscle without altering muscle VO2.  An increase in UCP-3 content in soleus 

was observed in KO mice and this is proposed to act as a compensatory mechanism for 

maintenance of resting metabolic rate.  These data strongly suggest that the primary 

physiological function of SLN in skeletal muscle is to regulate thermogenesis by SERCA 
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pumps.  Thus, SLN represents a potential control point for energy balance regulation and a 

potential target for metabolic alterations to oppose obesity and other metabolic disorders. 
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CHAPTER III 

 

 

 

EFFECTS OF SARCOLIPIN ABLATION ON SUSCEPTIBILITY TO OBESITY AND 

INSULIN RESISTENCE  
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OVERVIEW 

 Physiological levels of sarcolipin (SLN) uncouple ATP hydrolysis from sarcoplasmic 

reticulum (SR) Ca
2+

 uptake in skeletal muscle resulting in a lower contribution of Ca
2+

 

handling to basal metabolism (VO2).   Through the use of transgenic Sln-null (KO) mice, SLN 

was determined to be a key regulator of ATP utilization by sarco(endo)plasmic reticulum Ca
2+

-

ATPase (SERCA) pumps and hence energy metabolism in skeletal muscle.  To investigate the 

hypotheses that SLN ablation will increase susceptibility to diet-induced obesity and insulin 

resistance, KO mice and their wild type (WT) littermates were placed on a “Western” style 

high fat diet (HFD; 42% of kcal derived from fat with 0.2% cholesterol) for a period of 8 

weeks.  Whole body metabolic rate (mlO2/kg/hr), weight gain (g), whole body glucose 

tolerance and insulin tolerance  were measured before and after the HFD.  Following the HFD, 

fat pads, skeletal muscles, pancreas, liver and plasma samples were also collected from WT 

and KO mice for biochemical analyses.  For comparison, at matched time points, tissues and 

blood were also collected from littermates that were fed a standard chow diet (control).  Intact 

soleus muscles were isolated from some animals and were used to determine basal VO2 and 

relative (%) contribution of Ca
2+ 

handling to basal VO2 via the TIOX system.  The 

comprehensive laboratory animal monitoring system (CLAMS) revealed no differences in 

whole body metabolic rate, food intake, respiratory exchange ratio (RER) or activity levels 

between KO and WT mice pre HFD; however, KO mice had a lower (P<0.05) metabolic rate 

than WT mice post HFD.  Interestingly, RER was also lower (P<0.01) in KO mice compared 

with WT mice post HFD indicating a greater reliance on fat oxidation.  KO mice gained more 

(P<0.05) weight over the 8 week HFD period and had a higher (P<0.02) adiposity index and 

epididymal/inguinal fat pad weight post HFD compared to WT mice.  Not surprisingly, KO 
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mice also became extremely glucose intolerant (P<0.03) post HFD compared to WT mice who 

also demonstrated glucose intolerance (P<0.001) compared to the pre diet values.  

Unexpectedly, neither WT nor KO mice were insulin resistant following the HFD based on 

similar IT responses compared with pre diet values.  Compared with control mice, both KO 

and WT mice displayed elevated serum glucose levels (P<0.001), insulin levels (P<0.001), and 

had elevated (P<0.001) leptin and cholesterol (LDL and HDL) levels post HFD.  Planned 

comparisons further revealed elevated (P<0.05) non-esterified fatty acids (NEFA) and LDL 

levels in the KO mice compared to the WT mice post HFD.  Plasma norepinephrine (NE) and 

epinephrine (E) levels were also higher (P<0.01) in KO mice compared with WT mice 

following the HFD and compared with control KO and WT mice.  Western blotting analysis 

revealed SLN protein content to be 3.8 fold higher (P<0.05) in soleus of WT mice post HFD 

compared to control WT mice and phospholamban (PLN), a homologue of SLN, was found to 

be 2.1 fold higher (P<0.05) in brown adipose tissue (BAT) in both WT and KO mice post 

HFD.  These adaptive increases in SLN and PLN expression following the HFD suggest that 

PLN, SLN and hence Ca
2+

 handling may play a role in adaptive thermogenesis.  Soleus UCP-3 

expression was significantly (P<0.03) higher in control KO mice compared to the other three 

groups.  The basal VO2 of isolated soleus muscle was higher (P<0.006) post HFD in both WT 

and KO mice; however, compared with control mice, the metabolic cost of Ca
2+

 handling was 

lower (P<0.001) post HFD in both WT and KO mice.  The relative contribution of SERCA 

pump activity to resting soleus VO2 was 14.4 % lower in KO mice (P<0.001) than WT mice 

post HFD; this was significantly (P<0.01) greater than the 8.9% difference found between KO 

and WT control mice.  The decrease (P<0.0001) in the % contribution of SERCA to basal VO2 

in both KO and WT mice post HFD reveals the complexity of this model and the many 
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adaptations which occur in skeletal muscle with a HFD.  Moreover, even with a 3.8 fold 

increase in SLN content there were no differences in resting energy expenditure of soleus 

muscles between WT and KO mice following the HFD.  These results can be accounted for by 

diet-induced increases in catecholamines, NE and E, found in KO mice as well as other 

adaptive responses leading to increased energy expenditure of soleus in both high fat fed WT 

and KO mice.  Therefore, differences in whole body energy expenditure and obesity between 

WT and KO mice following a HFD do not seem to be associated with SLN effects on 

thermogenesis in skeletal muscle.  Interestingly, soleus and EDL muscle weights (expressed as 

% body weight) were decreased (P<0.04) in high fat fed KO mice but not WT mice, compared 

with control.  Therefore, lower lean body tissue mass may explain the lower whole body 

metabolic rate and increased susceptibility to obesity in KO mice compared with WT mice.  It 

is concluded that SLN increases resistance to diet-induced obesity and glucose intolerance in 

mice through mechanisms that are independent from thermogenic adaptations and in skeletal 

muscle.. 
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INTRODUCTION 

  

 Obesity is the accumulation of excess adipose tissue as a result of a chronic energy 

imbalance with energy (food) intake being greater than energy expenditure.  Due to its 

cumulative nature, obesity can occur with a very small imbalance in the energy equation (3.1) 

over an extended period of time.  In 2004, approximately 6.8 million Canadian adults between 

the ages of 20 to 64 years were overweight, and an additional 4.5 million were obese (Statistics 

Canada, 2004).  Over the past decades, obesity has become a worldwide problem with an 

estimated 315 million people being obese (James, 2004).  Obesity is often associated with 

insulin resistance and hypertension all of which form the major symptoms of metabolic 

syndrome leaving individuals more susceptible to cardiovascular disease and diabetes (Kahn, 

2008).  It is important to understand the molecular pathways and physiological systems 

underlying the regulation of energy balance if we are to develop successful prevention and/or 

treatment strategies for obesity and its co-morbidities which would have a significant impact 

on the health of an ever growing population segment. 

 The first law of thermodynamics dictates energy balance in mammals, which can be 

expressed as this simple equation: 

 Energy intake  =  energy expenditure + energy storage                         (3.1) 

Excess food (energy) intake will be converted to and stored as lipids, as they are more energy 

efficient and easier to store than carbohydrates or proteins.  However, this equation (3.1) is 

over simplified in assuming: 1) caloric absorption in the gut is 100% efficient; 2) the body’s 

response to altered energy intake or expenditure is static.  Energy expenditure can be broken 

down into 4 major components: (1) obligatory metabolism, cellular and organ functions for 

basal maintenance; (2) physical activity (voluntary and involuntary); (3) thermic effect of food, 
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cost of digestion; and (4) adaptive thermogenesis, the body’s response to positive energy 

balance (Rosen and Spiegelman, 2006).         

 Adaptive thermogenesis refers to increased metabolism/heat production in response to 

alterations in environmental temperature or more relevantly to dietary intake.  This function is 

believed to protect mammals from cold exposure as well as maintaining homeostasis in energy 

balance with altered dietary intake (Lowell and Spiegelman, 2000).  Increasing dietary intake 

has been repeatedly shown to increase metabolic rate due to the thermic effect of food but 

more importantly through adaptive thermogenesis as well (for review see Cannon and 

Nedergaard, 2000).  In support of these effects of dietary intake on adaptive thermogenesis and 

metabolism, the inverse, a decrease in metabolic rate, has also been demonstrated by the 

implementation of a starvation diet in pigs, rats and humans (Chwalibog et al., 2005; 

Goldsmith et al., 2010).  Adaptive thermogenesis has been predominately ascribed to 

uncoupling protein 1 (UCP-1) found in brown adipose tissue (BAT) where high mitochondrial 

density and UCP-1 content are activated with elevated levels of plasma catecholamines 

(norepinephrine (NE) and epinephrine (E)) during periods of high energy intake and cold 

exposure (Matthias et al., 2000). 

 It has been demonstrated repeatedly that altering energy intake in humans by as little as 

10% in either direction results in changes in basal metabolism and energy expenditure to offset 

the altered dietary intake (Goldsmith et al., 2010; Leibel et al., 1995; Rosenbaum et al., 2003). 

Larger mammals, including humans, have relatively little BAT in the adult stage of the life 

cycle suggesting that other mechanisms may be responsible for the adjusted metabolism that 

occurs with altered energy intake.  It has been speculated that skeletal muscle may play an 

integral part in adaptive thermogenesis as it is a highly metabolically active tissue contributing 
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up to 40% of body weight and 20-30% of daily energy expenditure (Zurlo et al., 1990; Rolfe 

and Brown, 1997). 

 Currently, there are several possible mechanisms proposed to be involved in energy 

“wasting” during periods of high caloric intake in skeletal muscle.  UCP-3 in skeletal muscle 

was originally thought to have a similar adaptive thermogenic function as its homologue, UCP-

1, as consumption of a high fat diet resulted in increased UCP-3 mRNA and protein content in 

skeletal muscle of mice (Kontani et al., 2005; Gong et al., 1999) and UCP-3 mRNA in humans 

(Schrauwen et al., 2001).  However, there are currently many conflicting ideas as to the exact 

function of UCP-3 in skeletal muscle.  Counter-intuitive to its function in adaptive 

thermogenesis, UCP-3 mRNA expression has been found to increase in both rats (Boss et al., 

1998) and humans (Millet et al, 1997) following starvation.  As well, studies have shown 

decreases in UCP-3 mRNA and/or no change in UCP-3 protein content following prolonged 

cold exposure (Boss et al., 1998; Lin et al., 1998; Schrauwen et al., 2002).  Other potential 

mechanisms for adaptive thermogenesis in skeletal muscle include a futile fatty acid 

synthesis/oxidation cycle (Solinas et al., 2004), increased protein degradation/synthesis (Rolfe 

and Brown,1997), protein and metabolite dephosphorylation/phosphorylation and lastly ion 

(Na
+
, K

+
 and Ca

2+
) leak (Lowell and Spiegelman, 2000). 

 Ca
2+

 cycling in skeletal muscle has recently received growing attention in its 

contribution to both resting and sub-maximal metabolism.  Zhang et al. (2006) found that 

sarco(endo)plasmic reticulum Ca
2+

 ATPase (SERCA) pumps consume approximately 80% of 

the ATP hydrolyzed in rat extensor digitorum longus (EDL) during sub-maximal contractions.  

More recently, Norris et al. (2010) demonstrated that maintaining the Ca
2+

 gradient between 

the lumen of the sarco-plasmic reticulum (SR) and the cytosol in both mouse fast (EDL) and 
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slow (soleus) twitch skeletal muscle constituted 50% of the energy utilized during resting 

metabolism (Norris et al., 2010).  These two studies suggest that Ca
2+

 handling in muscle has 

been highly underestimated in its contribution to muscle metabolism and, consequently, whole 

body metabolism considering values that have been published previously (Rolfe and Brown, 

1997; Chinet et al., 1992; Hasselbach and Oetliker; 1983).  Two other examples highlighting 

the role of Ca
2+

 handling in skeletal muscle in thermogenesis are: 1) malignant hyperthermia, a 

genetic disorder resulting in excessive Ca
2+

 release from the ryanodine receptor (RYR) during 

periods of stress that results in increased heat production due to activation of both myosin 

ATPase and SR Ca
2+

 ATPase (Denborough, 1998); and 2) the heater organ of deep diving fish, 

which is comprised of specialized muscle cells containing no contractile proteins and an 

extensive SR membrane network (Morrisette et al., 2003).  Therefore, decreasing the efficiency 

of the SERCA pumps and increasing the cost of transporting a given amount of Ca
2+ 

into the 

SR may be a potential mechanism by which adaptive thermogenesis occurs in skeletal muscle, 

especially in larger mammals which possess minimal BAT. 

 Reconstitution experiments have shown that SLN uncouples ATP hydrolysis from Ca
2+

 

transport by SERCA pumps (Smith et al., 2002) and increases the amount of heat released per 

mol of ATP hydrolyzed (Mall et al., 2006).  These results could be explained by SLN causing 

an increased rate of slippage of the SERCA pump (Figure 1.3, reaction 11; Mall et al., 2006) 

which would decrease the fraction of energy released during ATP hydrolysis that is converted 

into work and increase the amount of heat released (de Meis, 2001b; de Meis, 2002).  The 

greater levels of heat produced at higher SLN:SERCA ratios found in the reconstitution 

experiments (Mall et al., 2006) demonstrate the potential for  increased SLN expression 

contributing to adaptive thermogenesis in vivo.  Importantly, analyses of skeletal muscles from 
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Sln-null (KO) mice (presented in Chapter II), have now established that at a physiological 

SLN:SERCA pump ratio, SLN reduces the stoichiometry of SERCA pumps in skeletal muscle 

in vivo by ~36%.  As would be expected with a higher coupling ratio, the rate of ATP 

consumption by SERCA pumps in resting soleus muscle is also significantly lower in KO mice 

than wild type (WT) mice.  Thus, SLN appears to be a novel regulator of the thermogenic 

function of SERCA pumps in skeletal muscle.  Although, SLN ablation does not reduce resting 

skeletal muscle or whole body metabolic rate and does not cause obesity in chow fed mice, it is 

possible that KO mice could be more susceptible to obesity and related complications (i.e. 

glucose intolerance) in response to high fat feeding if SLN expression in skeletal muscle from 

WT mice is induced by high fat feeding resulting in increased skeletal muscle and whole body 

energy expenditure compared to KO mice.  In order to investigate these hypotheses, WT and 

KO mice were fed ad libitum, either a high-fat diet (HFD) with 42% kcal derived from fat 

(product 8728CM, Harlan Teklad) for 8 weeks, or were maintained on a standard chow diet 

(product 8728CM, Harlan Teklad).  The Comprehensive Lab Animal Monitoring System 

(CLAMS) was used to monitor whole body metabolic rate (mlO2/kg/hr), food intake (g) and 

activity level of WT and KO mice pre and post HFD.  Weight gain, whole body glucose 

tolerance (GT) and insulin tolerance (IT) were also measured in WT and KO mice before and 

after the 8 wk HFD.  Fat pads, skeletal muscles and plasma samples from chow fed control and 

post HFD mice were collected for biochemical analyses.  Lastly, polaragraphic measurements 

of oxygen consumption (VO2) from isolated soleus muscle at 30 ºC using the TIOX tissue bath 

system were also used to determine basal VO2 and % contribution of Ca
2+ 

handling to basal 

VO2 . 
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METHODS 

Transgenic mice colony 

 Transgenic mice, Sln-null, donated by Dr. Muthu Periasamy, Ohio State University, 

were utilized to establish a continuous breeding colony at the University of Waterloo.  

Breeding of the heterozygous Sln-null mice produced wild type (+/+; WT), heterozygous (+/-) 

and homozygous (-/-; KO) mice.  At 3-4 weeks of age all mice were ear notched and tagged.  

Genotyping was performed as previously described in Chapter 2. 

 Once the animals had been genotyped, the WT and KO mice were separated into 

individual cages.  Animals were housed in an environmentally controlled room with a standard 

12:12 light/dark cycle and allowed access to food (Tekland 22/5 Rodent Diet, Harland-

Tekland, Madison, WI) and water ad libitum. The study was approved by the Animal Care 

Committee at the University of Waterloo and all procedures were performed in accordance 

with the Canadian Council on Animal Care. 

 

Experimental design and high fat diet 

 A total of 32 sexually mature (~4-5 months) male KO mice and an equal number of 

WT littermates were further divided into a HFD group (n=20 KO and WT) while the remaining 

mice were used as a standard chow fed control group (n=12 KO and WT).  Mice in the HFD 

group were fed a high-fat diet containing 42% of its kcal derived from fat with 0.2% 

cholesterol (product TD 88137, Harlan Teklad, Madison, WI; product sheet in Appendix A) ad 

libitum for a period of 8 weeks.  Mice in the control group were fed  standard rodent chow 

(Teklad 22/5 Rodent Diet, Harland-Teklad, Madison, WI; product sheet found in Appendix B) 

ad libitum for the duration of the study.  Animal body weights were monitored weekly in WT 
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and KO mice on the HFD for a period of 8 wks.  The time-line of the measurements made 

during the experiment can be found in Appendix C. 

 

Indirect calorimetry of whole-body basal metabolic rate 

 Whole body metabolic rate, food consumption, RER and cage activity were measured 

before and after the HFD, in WT and KO mice, using a 12-chamber Comprehensive Lab 

Animal Monitoring System (CLAMS) (Oxymax series; Columbus Instruments, Columbus,
 

OH) as previously described in chapter 2.  Each mouse was acclimated to single housed clear 

mesh bottom cages for a period of one week prior to initiating pre-diet CLAMS trials.  

Following 3 separate pre-diet CLAMS trials, which were performed over a period of 3 weeks, 

mice in the HFD group started consuming the high fat diet.  The first CLAMS trail was 

routinely discarded as individual data were variable and VO2 values were considerably higher 

than proceeding trials.  Following the 8 week diet period, CLAMS measurements were 

repeated during 3 separate trials. In total, 3 WT and 4 KO mice could not be used as their 

CLAMS data were very erratic resulting in either loss of weight or hyper-activity during all of 

the final three trials.  These 7 mice were not used for any other analyses. 

 

Glucose tolerance tests 

  Glucose tolerance tests (GTT) were performed after an overnight fast, pre and post 

HFD, in WT (n=16) and KO (n=14) mice.  A total of 5 – 10 l of blood was drawn from the 

tail and assayed for glucose using a blood glucose meter (Accu-Chek Aviva, Roche 

Diagnostics) at 0, 30, 60 and 120 min following an intraperitoneal injection of 10% D-glucose 

at a dose of 1 g / kg body weight (Li et al., 2000).  
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Insulin tolerance tests 

 Insulin tolerance tests (ITT) were performed after a 4 hour fast, pre and post HFD, in 

WT (n=10) and KO (n=10) mice.  A total of 5 – 10 l of blood was drawn from the tail and 

assayed for glucose using a blood glucose meter (Accu-Chek Aviva, Roche Diagnostics) at 0, 

30, 60 and 120 min following an intraperitoneal injection of insulin (Humulin, Eli Lilly, 

Toronto, ON) at a dose of 0.75 U / kg body weight (Li et al., 2000). 

 

Tissue and serum collection  

 All mice (post HFD and control) were fasted for 4 hrs prior to being anaesthetized 

using 0.65mg of somnitol per kg body weight.  Blood was collected from the left ventricle (700 

µl) and spun down at 5000g for 8 min.  The resulting serum was collected and stored at -80°C 

until analysis.  Soleus, EDL and white portions of the gastrocnemius muscles, along with BAT 

were excised from the mice, cleaned of extraneous and connective tissues, weighed and then 

stored at -80°C for Western blotting analyses.  The liver and epididymal/inguinal and 

retroperitoneal fat pads were also removed and weighed. 

 

Adiposity index 

 Adiposity was determined from the weights of the epididymal/inguinal and 

retroperitoneal fat pad and calculated as an adiposity index defined as 100 x (sum of fat pad 

weights) / body weight (Taylor and Phillips, 1996).  
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Serum parameters 

 Serum concentrations of glucose, insulin, leptin, non-esterified fatty acids (NEFA), 

cholesterol (HDL, LDL, total) and triacylglycerols (TAGs) were measured in WT and KO 

mice post HFD and in the standard chow fed control group.  Glucose was measured using a 

blood glucose meter (Accu-Chek Aviva, Roche Diagnostics); insulin concentrations were 

determined by radioimmuno-assay techniques (COAT-A-COUNT, Siemens, Malvern, PA); an 

enzyme-immunoassay was used for leptin (EIA, ALPCO Diagnostics, Salem, NH); and assay 

kits were used for triacylglycerols (TG SL-ASSAY, Genzyme Diagnostics, Charlottetown, 

PE), cholesterol (Total serum cholesterol/HDL-ADVANCE  ASSAY, Diagnostic Chemicals 

Limited, Charlottetown, PE) and NEFA (NEFA C, WAKO Chemicals GmbH, Neuss, 

Germany).  Catecholamines, NE and E, were determined using high-performance liquid 

chromatography and electrochemical detection as described by Weicher et al. (1984) and 

modified by Green et al. (1991). 

 

Muscle homogenate and Western blotting analysis 

 Soleus muscles from WT and KO mice, from chow fed control and HFD groups, were 

diluted 10:1 (vol/wt) in ice cold PMSF buffer and homogenized as previously described in 

chapter 2 for Western blotting analysis. BAT and white gastrocnemius muscle from WT and 

KO mice, from control and HFD groups, were also homogenized in PMSF buffer to determine 

SR protein (SLN, SERCA1a, SERCA2a, PLN and calsequestrin (CSQ)) content using Western 

blotting analysis.  Total protein concentration of the homogenates was measured by the method 

of Lowry, as modified by Schacterle and Pollock (Schacterle & Pollock, 1973).  
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Oxygen consumption of isolated intact mouse soleus muscles  

 A total of 11 KO and 11 WT mice from both chow fed control and post HFD groups 

were anesthetized using 65 mg/kg sodium pentobarbital and the soleus muscles were carefully 

removed from both hind limbs with tendons intact.   The isolated soleus muscle was mounted 

in the TIOX tissue bath system (Figure 2.1; Hugo Sachs Electronik-Harvard Apparatus, 

Germany) for the measurement of resting muscle oxygen consumption (VO2) and contribution 

of Ca
2+

 handling to basal metabolic rate as previously described in Chapter 2.   

 

Statistical analyses  

 Two-way ANOVAs were used to test for differences between KO and WT mice in both 

control and HFD groups for physical and serum parameters and TIOX data.  A two-way 

ANOVA with repeated measures was used to detect differences in CLAMS data between KO 

and WT mice at pre and post time points for the HFD group.  Three-way ANOVAs with 

repeated measures were used to test for differences between the means for glucose and insulin 

tolerance test data of KO and WT mice at pre and post time points for different times (0, 30, 60 

and 120 min) for HFD group.  Planned comparisons were also utilized to examine the 

independent effects of SLN on CLAMS data, physical and serum parameters using student’s t-

test.  The significance level was set at 0.05, and
 
when appropriate, a Newman-Keuls post hoc 

test was used to compare
 
specific means. Values are means ± SE. 
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RESULTS 

 

Body weight  

 At the time of sacrifice, HFD mice (46.7 ± 1.2 g for WT versus 47.9 ± 1.5 g for KO) 

weighed significantly (P<0.001) more than the standard chow fed control mice (37.0 ± 1.2 g 

for WT versus 35.3 ± 1.4 g for KO).  The changes in body weight that occurred over the 8 

week HFD period for WT and KO mice are plotted in Figure 3.1.  Both WT and KO mice that 

were fed the HFD for 8 weeks gained (P<0.0001) weight with KO mice gaining more (P<0.05) 

than WT mice over the last 6 weeks (13.36±0.86 g for WT versus 16.02±0.92 g for KO).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Average weight gain of wild type (WT) and Sln-null (KO) mice during an 8 wk 

HFD.  * Significantly different (P<0.05) from WT mice. Values are means ± SE (n=17, KO; 

n=16, WT). 
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Anthropometric parameters 

 The HFD resulted in larger fat pads and higher adiposity index in both WT and KO 

mice as shown by the main effect (P<0.0001) of diet on epididymal/inguinal fat, retroperitoneal 

fat, BAT and adiposity index (Figure 3.2).  Closer examination of the different fat pads and 

adiposity index post HFD reveal interactions with higher epididymal/inguinal fat pad weight 

(Figure 3.2A) (P<0.02) and adiposity index (Figure 3.2D) (P<0.005) in KO mice compared to 

WT mice.  There were also trends for higher retroperitoneal fat pad (P<0.09) (Figure 3.2 B) 

and BAT (P<0.09) (Figure 3.2C) weights in KO mice compared with WT mice post HFD. 

 Soleus weights showed interesting trends (P<0.06), being heavier in HFD compared to 

chow fed control mice and heavier in WT mice (P<0.08) than KO mice (Figure 3.3A). There 

 were no effects of diet or genotype on EDL muscle weights (Figure 3.3B).  However, both 

soleus and EDL make up a smaller (P<0.0006) percentage of body weight in HFD mice 

compared with chow fed control mice (Figure 3.3 C and D).  For the soleus, an interaction was 

found, with WT soleus making up a greater (P<0.04) percentage of body weight than KO 

soleus post HFD.  EDL did not show an interaction but planned comparisons revealed WT 

EDL to make up a greater (P<0.05) proportion of body weight than KO EDL post HFD.  Liver 

weights were not different between WT and KO mice either in the control (1.50±0.08 g for WT 

versus 1.34±0.05 g for KO) or HFD (2.92±0.3 g for WT versus 2.75±0.4 g for KO) groups; 

however a main effect (P<0.0001) was seen with HFD livers being heavier than chow fed 

control. 
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Fgure 3.2. Fat pad weights, brown adipose tissue (BAT) weight and adiposity index for chow fed control and HFD, wild type (WT) 

and Sln-null (KO) mice.  (A) epididymal and inguinal fat pad weight; (B) retroperitoneal fat pad weight; (C) BAT weight;(D) 

adiposity index.  All showed a main effect (P<0.0001) of diet with HFD>control. * Significantly different (P<0.05) than WT. Values 

are means±SE (n=11 for WT control; n=12 for KO control; n=17 for WT HFD and n=16 for KO HFD).  
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Fgure 3.3. Skeletal muscle (soleus and EDL) weights for chow fed control and HFD, wild type (WT) and Sln-null (KO) mice.  (A) 

Soleus weight; (B) EDL weight; (C) soleus % body weight; (D) EDL % body weight.  Soleus and EDL % body weight showed a main 

effect (P<0.0006) of diet with HFD<control. * Significantly different (P<0.05) than WT. Values are means±SE (n=11 for WT control; 

n=12 for KO control; n=17 for WT HFD and n=16 for KO HFD).
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CLAMS measurements  

 All CLAMS data for WT and KO mice pre and post HFD are found in Table 3.1.  All 

three relative VO2 measurements demonstrated a main effect (P< 0.0001) of time with post 

values being less than pre diet values.  Planned comparisons revealed that post waking and 

total daily VO2 were higher (P<0.05) in WT mice compared to KO mice.  Unlike relative VO2, 

absolute daily VO2 was higher post HFD compared with pre diet but only a main effect 

(P<0.0001) was observed with no differences between KO and WT mice.  Food intake (g) also 

demonstrated a main effect (P<0.0001) of time with post HFD intake being lower than pre diet, 

and there was a tendency for higher (P<0.08) food intake at post HFD in WT mice compared 

with KO mice.  The smaller quantity (g) of high fat food eaten by both WT and KO mice post 

HFD was calculated to have the same amount of metabolizable energy as the standard rodent 

chow eaten during pre CLAMS measurement (3.11 kcal/g for standard chow versus 4.5 kcal/g 

for the HFD).  The tendency for lower food intake by KO mice compared to WT post diet 

could potential be explained by alterations in food consumption during the later stage of the 

HFD in KO mice as a consequence of elevated fatty acid oxidation and serum NEFA levels 

both which are known to diminish appetite (Scharrer, 1999; Friedman and Halaas, 1998).  

There were  no differences in either total or dual beam activity counts between KO and WT 

mice either pre or post HFD.  A main effect (P<0.0001) of time was also found for all three 

respiratory exchange ratio (RER) values with pre values being higher than post HFD values.  

Planned comparisons revealed that both total and waking RER post HFD were higher 

(P<0.008) in WT mice compared with KO mice, with a similar trend (P<0.056) observed for 

sleeping RER.  
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Table 3.1. Basal metabolic CLAMS measurements from wild type (WT) and Sln-null (KO) mice at pre and post HFD. 

 

               PRE                POST 

          WT        KO      WT       KO 

 

Body Weight (g)    33.3±0.9  31.8±0.8  46.7±1.2*  47.9±1.5*  

Waking VO2 (ml O2/kg/hr)   3237±84  3147±63  2894±97*  2708±61*# 

Sleeping VO2 (ml O2/kg/hr)   2552±60  2597±58  2358±59*  2254±65* 

Total daily VO2 (ml O2/kg/hr)  3000±71  2965±52  2708±71*  2553±57*# 

Food Intake (grams)    5.09±0.16  4.76±0.17  3.65±0.17*  3.21±0.17* 

Total Activity      11327±745  10670±623  10150±822  8984±563 

Dual Beam Activity    3262±302  2723±146  3253±393  2674±255 

Daily VO2 (ml O2/Hr)    96.4±2.81  92.1±2.4  121.6±3.39*  119.7±3.3* 

Waking RER     1.020±0.008  1.009±0.004  0.915±0.01*  0.892±0.007*# 

Sleeping RER     0.999±0.014  0.979±0.008  0.895±0.011*  0.871±0.011* 

Total RER     1.016±0.007  1.006±0.004  0.913±0.009*  0.889±0.007*# 

 
Main effect of time (Pre > Post) for Body Weight (P<0.0001), Waking, Sleeping and Total VO2 (P<0.0001),  Food Intake (P<0.0001), 

Total Activity (P<0.007), and Waking, Sleeping and Total RER (P<0.0001). Main effect of time (Pre < Post) for Daily VO2 

(P<0.0001).   * Significantly different (P<0.05) from Pre.  # Significantly different (P<0.05) than WT.  VO2, oxygen consumption; 

RER, respiratory exchange ratio. Values are means ± SE  (n=17 for WT and n=16 for KO).
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Western blotting analysis 

 Semiquantitative Western blotting was used to examine potential compensatory 

changes in levels of the major Ca
2+

 regulatory proteins in the SR of the soleus and white 

gastrocnemius muscles and BAT, in response to the HFD in both KO and WT mice.  UCP-3 

content was also assessed in soleus muscle.  There were no effects of diet on the expression 

levels of SERCA1a, SERCA2a, CSQ or PLN in the soleus muscle and there were no 

differences between KO and WT mice in either group (Figure 3.4).  Comparisons between 

HFD and control chow fed mice show that SLN in the soleus muscle of WT mice was elevated 

(P<0.02) by 379% in response to the HFD (Figure 3.4).  The white gastrocnemius also showed 

no differences in SERCA1a, CSQ and PLN between any of the 4 groups; SERCA2a and SLN 

were not detectable (Figure 3.5A).  In BAT, no differences in SERCA1a were found between 

any of the groups; SERCA2a and SLN were also not detectable.  Of interest, PLN content in 

BAT of WT and KO mice was 213.5% higher (P<0.003) in the HFD group than the chow fed 

control group (Figure 3.5B).  UCP-3 content in soleus was not different (P>0.05) between 

control and HFD WT mice; however control KO mice had significantly higher (P<0.025) 

UCP-3 content compared to HFD KO mice (Figure 3.6).   
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Figure 3.4.  Representative Western blot analysis of SR Ca
2+

 regulatory proteins in soleus 

muscle from chow fed control and HFD, wild type (WT) and Sln-null (KO) mice. CSQ was 

used as a loading control. The loading control sample from only one of the membranes is 

shown. Different SDS-PAGE gel concentrations (8% for SERCA1a, SERCA2a and CSQ, 15% 

for PLN or 16% tricine gel for SLN) were used to resolve total homogenates from both WT 

and KO mice. Equal quantity of protein was loaded in each well. PLN, phospholamban; CSQ, 

calsequestrin.  
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Figure 3.5. Representative Western blot analysis of SR Ca
2+

 regulatory proteins in white 

gastrocnemius muscle and brown adipose tissue (BAT) from chow fed control and HFD, wild 

type (WT) and Sln-null (KO) mice. (A) White gastrocnemius; (B) BAT. CSQ and β-actin were 

used as a loading control respectively. The loading control sample from only one of the 

membranes is shown. Different SDS-PAGE gel concentrations (8% for SERCA1a, SERCA2a 

and CSQ, 15% for PLN or 16% tricine gel for SLN) were used to resolve total homogenates 

from both WT and KO mice. Equal quantity of protein was loaded in each well. PLN, 

phospholamban; CSQ, calsequestrin.  
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Figure 3.6. Uncoupling protein-3 (UCP-3) content in soleus from chow fed control and HFD, 

wild type (WT) and Sln-null (KO) mice. Optical density (arbitrary units) of UCP-3 bands for 

WT and KO mice. * Significantly different (P<0.05) than all other values. Values are means ± 

SE (n=6). 

 

 

Glucose and insulin tolerance tests 

 

 GTT were performed on WT and KO mice pre and post HFD (Figure 3.7).  There were 

large differences between pre and post diet responses with the glucose values being lower 

(P<0.0001) at all time points during pre diet tests compared with post diet tests in both WT and 

KO mice (Figure 3.7).  In addition, a significant interaction (P<0.03) was found showing 

greater glucose intolerance (higher glucose levels) post HFD in KO mice compared with WT 

mice.  Main effects were also found for genotype (P<0.02), with WT mice having lower blood 

glucose concentrations than KO mice, and for time (P<0.0001), where glucose was lowest at 0 

min, followed by 120 min, 60 min and 30 min.  

 ITT were also performed on WT and KO mice pre and post HFD (Figure 3.8).  There 

was a main effect (P<0.0001) of diet with higher glucose levels observed post HFD in both WT 
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and KO mice (Figure 3.8).  There was also a main effect (P<0.0001) of time where glucose 

levels were found to be highest at 0 min, followed by 120 min and 60 min, which was not 

different than 30 min.  There were no differences between WT and KO mice at any time point 

either pre or post HFD. 

 

Blood parameters 

 Fasted serum glucose and insulin levels demonstrated a main effect (P<0.001) of HFD 

with chow fed control values being lower than HFD (Figure 3.9).  Planned comparisons 

showed that insulin levels tended (P<0.08) to be higher in the KO mice compared to WT mice 

post HFD (Figure 3.9B).  NEFA levels after a 4 hr fast tended (P<0.07) to show an interaction 

and further planned comparisons revealed higher (P<0.03) NEFA levels in KO mice compared 

to WT mice post HFD (Figure 3.10A).  There were no effects of HFD or genotype on serum 

TAGs (WT,       59 ± 7.4 mg/dl for control versus 49.7 ± 6.1 mg/dl for HFD; KO, 61.4 ± 4.9 

mg/dl for control versus 50.9 ± 5.8 mg/dl for HFD).  As expected, there was a main effect 

(P<0.0001) of HFD on leptin levels, with higher levels found in the HFD group compared with 

chow fed control; however, there were no differences between WT and KO mice (Figure 

3.10B).  Plasma NE and E levels were elevated (P<0.01) post HFD but only in the KO mice 

and there were no differences between WT and KO mice in the chow fed control group (Figure 

3.11).  Total serum cholesterol and its two major components, low density lipoproteins (LDL) 

and high density lipoproteins (HDL), all demonstrated a main effect (P<0.0001) of diet with 

higher levels in HFD compared to chow fed control mice (Figure 3.12).  Planned comparisons  
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revealed higher (P<0.05) levels of LDL in KO mice compared to WT mice post HFD (Figure 

3.12A).  Total cholesterol also tended (P<0.07) to be higher in KO mice compared to WT mice 

post HFD (Figure 3.12C).       
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Figure 3.7. Glucose tolerance responses for wild type (WT) and Sln-null (KO) mice pre and post 8 week HFD.  Main effect 

(P<0.0001) of time, 0 <120<60<30; main effect (P<0.0001) of HFD, Pre< Post; main effect (P<0.02) of SLN, KO>WT.  

* Significantly different (P<0.05) from Pre.  # Significantly different (P<0.05) than WT.  Values are means ± SE. (n=16 for WT;  

n=14 for KO). 



96 

 

 

Figure 3.8. Insulin tolerance responses for wild type (WT) and Sln-null (KO) mice pre and post 8 week HFD.  Main effect 

 (P<0.0001) of time, 0 >120>60+30; main effect (P<0.0001) of HFD, Pre< Post. Values are means±SE. (n=10).
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Figure 3.9.  Serum glucose and insulin levels post 4 hr fast for chow fed control and HFD, 

wild type (WT) and Sln-null (KO) mice. (A) Serum glucose; (B) Serum insulin. Glucose and 

insulin levels showed a main effect (P<0.001) of diet with HFD>control. Values are means±SE 

(n=6 for WT control; n=6 for KO control; n=11 for WT HFD and n=11 for KO HFD).  
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Figure 3.10. Serum NEFA and leptin levels post 4 hr fast for chow fed control and HFD, wild 

type (WT) and Sln-null (KO) mice.  (A) Serum non-esterified fatty acid (NEFA); (B) Serum 

leptin. Leptin levels showed a main effect (P<0.0001) of diet with HFD>control. * 

Significantly different (P<0.05) than WT. Values are means±SE (n=6 for WT control; n=6 for 

KO control; n=11 for WT HFD and n=11 for KO HFD).   
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Figure 3.11. Serum norepinephrine (NE) and epinephrine (E) levels post 4 hr fast for chow fed 

control and HFD, wild type (WT) and Sln-null (KO) mice.  (A) Serum NE; (B) Serum E.  

* Significantly different (P<0.01) than all other values. Values are means±SE. (n=10 for WT 

control; n=10 for KO control; n=10 for WT HFD and n=10 for KO HFD). 
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Figure 3.12. Serum LDL, HDL and total cholesterol levels post 4 hr fast for chow fed control 

and HFD, wild type (WT) and Sln-null (KO) mice.  (A) Serum LDL; (B) Serum HDL; (C) 

Serum total cholesterol. All levels showed a main effect (P<0.0001) of diet with HFD>control.   

* Significantly different (P<0.05) than WT. Values are means±SE (n=6 for WT control; n=6 

for KO control; n=11 for WT HFD and n=11 for KO HFD).  
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Measurement of VO2 and SERCA contribution to VO2 in isolated soleus muscle.   

 In agreement, with Chapter 2, isolated soleus muscles from both WT and KO mice of 

the chow fed control group had the same resting VO2 (Figure 3.13A, left panel).  Surprisingly, 

this was also true for mice in the HFD group where there were no differences in resting VO2 

between WT and KO mice (Figure 3.13A, right panel).  There was a main effect (P<0.006) of 

diet with higher soleus VO2 in HFD mice compared with control.  The addition of 10 µM CPA 

was used to determine the % contribution of SERCA activity to resting muscle VO2 (Figure 

3.12B). There were main effects (P<0.0001) of diet and genotype (P<0.0001) with SERCA 

activity from HFD and KO mice contributing a smaller percentage of VO2.  Planned 

comparisons showed that the difference between WT and KO mice with respect to the percent 

contribution of SERCA activity to resting muscle VO2 was larger in HFD mice compared with 

control mice.  
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Figure 3.13. Basal oxygen consumption (VO2) of isolated soleus muscle of chow fed control 

and HFD, wild type (WT) and Sln-null (KO) mice. (A) Basal VO2; (B) Contribution of SERCA 

to basal VO2. Basal VO2 showed a main effect (P<0.006) of diet with HFD>Control.  % 

contribution of SERCA showed a main effect (P<0.0001) of diet with HFD<control and a main 

effect (P<0.0001) of SLN with KO<WT. * Significantly different (P<0.05) than WT.  

alues are means±SE (n=11 for control; n=11 for HFD).  
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DISCUSSION 

 

 This study produced many novel and exciting findings.  First, SLN protein content in 

soleus muscle was highly up-regulated in WT mice and PLN content was also up-regulated in 

BAT of both KO and WT mice following 8 weeks of high fat feeding, demonstrating for the 

first time that proteins in skeletal muscle (SLN) and BAT (PLN), other than UCP-1 or UCP-3, 

may play a role in adaptive thermogenesis.  Secondly, the relative contribution of SERCA 

activity to soleus resting metabolic rate was higher in WT mice than KO mice and, consistent 

with diet-induced increases in soleus SLN content, this was found to be significantly enhanced 

by high fat feeding.  Third, WT mice were more resistant against diet-induced obesity and 

glucose intolerance than KO mice likely due to differences in whole body daily metabolic rate, 

which was higher in WT mice than KO mice following the HFD.  Lastly, non-esterified fatty 

acids (NEFA), low density lipoproteins (LDL), norepinephrine (NE) and epinephrine (E) were 

all found to be higher in KO mice post HFD which could increase chronic disease risk.  

 The high fat feeding model is associated with a chronic net positive energy balance 

where energy intake is greater than energy expenditure resulting in elevated lipid deposits in 

the fat depots/pads with the ultimate outcome being obesity and associated complications 

(glucose intolerance and high blood pressure) (for review see Buettner et al., 2007).  This has 

been demonstrated in a variety of species with varying types and different amounts of fat 

administered to the diet (for review see West and York, 1998).  The HFD (TD 88137; Harlan 

Teklad, Madison, WI) used in this study is regarded as a “Western Diet” containing 0.2% 

cholesterol and a high portion of fat (42% of kcal derived from fat), the majority (~60%) of 

which consisted of  saturated fats (see Appendix B), which are known to be associated with 

obesity and related complications (Li et al., 2000).   
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In this study, it was hypothesized that ablation of SLN would result in blunted adaptive 

thermogenesis and increased susceptibility to diet-induced obesity and glucose intolerance in 

mice.  The body weights of the WT and KO mice were not different pre or post HFD; however, 

as hypothesized, the KO mice gained 20% more weight over the 8 week period, demonstrating 

a higher rate of weight gain from the second week into the HFD until the end of the dietary 

period (Figure 3.1).  The average weight gains observed with 8 weeks of high fat feeding in 

WT and KO mice are in accordance with other studies using similar high fat diets (Li et al., 

2000; Collins et al., 2004).  Consistent with data presented in Chapter 2, there were no 

differences in body weight between WT (37.0±1.2g) and KO (35.3±1.4g) mice that were fed a 

standard chow rodent diet 22/5 (86540; Harlan Teklad, Madison, WI) and used as controls in 

this study.  The body weights of the control mice were also similar to the pre HFD body 

weights. 

 Increased deposit of TAGs into the fat depots is a hallmark of progressive obesity 

(West and York, 1998) and can be seen in this study with approximately 1.5-3 fold higher fat 

pad weights in both WT and KO mice post HFD compared to the chow fed control mice 

(Figure 3.2).  Liver weights were also significantly greater post HFD in both WT and KO mice 

as would be expected, due to greater deposit of lipids during the dietary period (Kontani et al., 

2005; DeLanny and West, 2000), but there were no differences between WT and KO mice.  As 

hypothesized, KO mice had a greater quantity of epididymal/inguinal fat compared to WT 

mice post HFD.  Similarly, retroperitoneal fat and BAT weights were also higher (16% and 

18%, respectively) in KO mice post HFD but the differences between KO and WT were not 

statistically significant.  Nevertheless, the calculated adiposity index was significantly higher in 

KO mice, demonstrating a higher degree of obesity in these mice when compared to WT mice.  
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These data clearly demonstrate higher storage of fats in KO mice due to a greater positive 

energy balance in these mice compared with WT mice, which is safe to conclude based on the 

observed differences in weight gain.  Not surprisingly, there were no differences in fat pad 

weights or adiposity index between WT and KO control mice (Figure 3.2), since body weights, 

food intake and energy expenditure (CLAMS data from Chapter 2) were also not different 

between these mice. 

CLAMS experiments revealed that the differences in energy balance between KO and 

WT mice that were fed a HFD, which ultimately resulted in greater weight gain and adiposity 

in KO mice, were due to lower average whole body daily energy expenditure in KO mice than 

WT mice.  Importantly, there were no differences in food intake or cage activity (movement) 

between WT and KO mice pre or post HFD.   In fact, energy intake tended (P<0.08) to be 

lower in KO mice than WT mice post HFD.  The lower relative waking and total daily VO2 

(mlO2/kg/hr) observed in KO mice post HFD compared to WT mice, which was not observed 

in control mice (see Chapter 2), supports the hypothesis that diet-induced adaptive 

thermogenesis would be blunted in KO mice compared with WT mice, a secondary hypothesis 

that was related to the primary hypothesis that high fat feeding would result in increased SLN 

expression and increased energy expenditure in WT skeletal muscle.  However, although SLN 

content in soleus from WT mice was increased 3.8-fold following the HFD (Figure 3.4), which 

suggests that SLN is an important component of adaptive thermogenesis, energy expenditure in 

resting soleus from WT mice following the HFD was not higher compared with KO.  

Therefore, it appears that differences in whole body metabolic rate and obesity observed 

between WT and KO mice following the HFD are not likely related to adaptive thermogenesis 

mechanisms in skeletal muscle involving SLN. 
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Unexpectedly, the contribution of SERCA pump activity to resting metabolism was 

significantly lower in isolated soleus from both WT and KO mice that were fed the HFD 

compared with controls.  Even though SLN content was approximately 3.8 fold higher in 

soleus from high fat fed WT mice, ATP consumption by SERCA pumps was actually lower 

compared with chow fed WT mice (HFD, 110.3±15.5 nmol ATP per g muscle • sec
-1

 versus 

control, 140.3±8.12 nmol ATP per g muscle • sec
-1

).  This finding is completely paradoxical 

given that SLN was shown to decrease the coupling ratio of SERCA pumps and increase the 

ATP consumption by SERCA pumps in resting soleus muscle of chow fed mice (see Chapter 

2). However, if there were no increases in SLN expression in WT soleus in response to the 

HFD, then the decrease in energy consumption by SERCA pumps would have been even 

greater as was seen in KO mice (HFD, 65.2±12.9 nmol ATP per g muscle • sec
-1

 versus 

control, 123.5±9.7 nmol ATP per g muscle • sec
-1

).   

Basically 2 main factors could account for the reduction in ATP turnover rate by 

SERCA pumps in resting muscle that was observed in both WT and KO mice following the 

HFD: 1) reduced rate of Ca
2+

 leakage out of the SR and/or 2) increased stoichiometry of Ca
2+

 

uptake by SERCA pumps (i.e. Ca
2+

/ATP ratio).  Considering that there were no differences in 

the expression of SERCA isoforms or PLN between WT or KO mice that were fed a HFD and 

that SLN was increased in soleus from WT mice that were fed a HFD, it could be concluded 

that the SERCA pump coupling ratio in soleus was likely unaltered in KO mice and decreased 

in WT mice in response to the HFD.  Therefore, to account for the reductions in ATP turnover 

rates by SERCA pumps in high fat fed mice, Ca
2+

 leakage out of the SR must have been 

reduced in both WT and KO mice following the HFD.  The HFD contained a significant 

amount of cholesterol and was composed of predominately saturated fatty acids (approx. 60%) 
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which has been shown to alter phospholipid composition of skeletal muscle membranes and 

more specifically increase the percent of saturated fatty acids found in the phospholipids of 

membranes (Janovska et al., 2010).  An alteration in the phospholipid membrane composition 

of the SR, namely increases in saturated fatty acids and cholesterol, has been shown to lower 

the membrane fluidity and hence reduce the rate of Ca
2+

 leak from the SR/ER (Vangheluwe et 

al., 2005b). 

 Despite lower energy consumption by SERCA pumps in resting soleus, basal metabolic 

rate was increased by 23% (P<0.08) in WT mice and 33% (P<0.03) in KO mice that were fed a 

high fat diet.  This clearly indicates that other adaptive thermogenic mechanisms were 

upregulated in soleus from both WT and KO mice post HFD, with these contributing 

significantly more in KO mice as energy consumption by SERCA pumps was lower in these 

mice.  UCP-3 expression was found to be higher in soleus of KO mice (See Chapter 2) and has 

been demonstrated to possess similar adaptive thermogenic function as its homologue UCP-1 

(Kontani et al., 2005; Gong et al., 1999).  Surprisingly, UCP-3 content in soleus muscle was 

not different between control and HFD WT mice, and was actually lower in the KO mice post 

HFD compared to chow fed control KO mice (Figure3.6). A similar response has been 

demonstrated previously, where UCP-3 content in BAT of UCP-1 null mice was lower 

following consumption of a HFD (42% Kcal from fat) (Kontani et al., 2005).  The elevated 

levels of NEFA found in KO mice post HFD would be expected to accumulate in peripheral 

non-adipose tissues such as liver and skeletal muscle resulting in increased intracellular TAGs 

and accompanying lipid signalling molecules, such as long chain acyl CoAs, diacylglycerols 

(DAGs) and ceramides (for review see Muoio and Newgard, 2009; Bonen et al., 2006).  Yang 

et al. (2009) found that ceramides directly induce elevated expression of suppressor of cytokine 
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signalling-3 (SOC-3) in adipose tissue, which inhibits UCP-3 gene transcription.  A decrease in 

UCP-3 transcription could potentially explain the lower UCP-3 protein expression found in KO 

mice following HFD compared to control KO values.  

  Potentially, an increase in substrate cycling between de novo lipogenesis and lipid 

oxidation could account for the non-SERCA dependent increases in resting VO2 that were 

observed following the HFD in both WT and KO mice. The higher fatty acid oxidation in both 

WT and KO mice post diet as demonstrated by the lower RER values (Table 3.1) accompanied 

with the higher serum leptin levels (Figure 3.10), which has been shown to induce 

thermogenesis through substrate cycle (Solinas et al., 2004), support this possibility (Dullo et. 

al., 2004; Summermatter et al., 2008).  In addition, the more pronounced decrease in waking 

and total RER of KO mice compared to WT mice suggest an even greater dependence on fatty 

acid oxidation as a fuel source, which has been shown to decrease appetite and hence food 

intake (Scharrer, 1999) as well as enhance thermogenesis, both leading to enhanced resistance 

to obesity (for review see Biddinger et al., 2006). 

 NE and E are both markers of sympathetic nervous system (SNS) activity and it is well 

established that increased SNS activity augments energy metabolism and thermogenesis 

(Maickel et al., 1967; Cannon and Nedergrad, 2003).  The catecholamine (NE and E) levels in 

WT mice post HFD were not different from the chow fed control group which is consistent 

with previous work by Chan et al., (2005) and Chen and Li (2005) who also did not see an 

increase in plasma NE or E in rats after a 7 week HFD.  However, NE and E were found to be 

2.2-2.4 fold higher in HFD KO mice compared to both WT and KO control mice (Figure 

3.11A and B).   Hindlimb perfusion experiments in rats (Shiota and masumi, 1988) and 

Muscovy duckling (Marmonier et al., 1997) have both demonstrated NE to stimulate skeletal 
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muscle VO2 potentially through increased activity of the Na
+
-K

+
 ATPase (Clausen, 1986; 

Shiota and Masumi, 1988).  It has also been postulated that catecholamines may augment the 

fat lipolysis/de novo synthesis futile cycle through AMPK activation in skeletal muscle (Dulloo 

et al., 2004).  The elevated levels of serum catecholamines are also known to activate Gs-

coupled receptors in adipocytes, stimulating adenylyl cyclase which gives rise to elevated 

cyclic AMP, ultimately activating hormone sensitive lipase resulting in elevated levels of 

serum NEFA (For review see Amhadian et al., 2007).  The elevated SNS activation witnessed 

in KO mice would explain the higher NEFA plasma levels and the elevated fatty acid oxidation 

(lower RER) seen in KO mice post HFD.   Therefore the higher catecholamine levels found in 

KO mice post HFD could partly account for the similar basal muscle VO2 between WT and 

KO mice post HFD even though ATP consumption by SERCA pumps was lower in KO mice. 

 Since skeletal muscle basal metabolism is not different and therefore cannot account for 

the differences seen in whole body daily energy expenditure and susceptibility to diet-induced 

obesity and glucose intolerance between WT and KO mice, other potential factors must be 

considered.  Interestingly, soleus and EDL weights both tended to be lower (Soleus, P<0.08; 

EDL, P<0.1) in KO mice post HFD which became significant when muscle weights were 

expressed as a % of body weight (Figure 3.3C and D).  Taken with the adiposity data (Figure 

3.2), it is clear that the greater weight gain in KO mice was associated with greater fat deposits 

and not an increase in lean body mass.  More importantly, this lower proportion of skeletal 

muscle may explain the lower whole body metabolic rate in KO mice post HFD, as skeletal 

muscle is a highly metabolically active tissue and has been shown to make up a considerable 

portion of daily energy expenditure (Zurlo et al., 1990; Rolfe and Brown, 1997).   The lower 

skeletal muscle weights (% of body weight) post HFD in the KO mice could be due to lower 
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cytosolic [Ca
2+

]f in KO mice compared to WT mice given that SLN increases slippage of 

SERCA pumps, potentially causing increased cytosolic [Ca
2+

]f in WT muscle.  Ca
2+ 

 is  a 

potent signalling molecule in skeletal muscle that activates Ca
2+

/calmodulin-dependent kinases 

(CAMKs) and the Ca
2+

-dependent phosphatase (i.e. calcineurin) which are both implicated in 

the activation of transcription factors involved in skeletal muscle hypertrophic growth, 

development and regeneration (for reviews see Chin, 2005 and Mallinson et al., 2009). 

 The greater differences between WT and KO mice found in waking compared to 

sleeping whole body metabolism post HFD in addition to the greater (5%; not significant) VO2 

measured during low running speeds in WT mice (See Chapter 2) suggest that the elevated 

level of SLN found in the WT mice post diet could have a greater effect on skeletal muscle 

energy expenditure during sub-maximal contractions.  This is one reason not to dismiss the 

importance of SLN in adaptive thermogenesis as a potential mechanism underlying the 

increased resistance to obesity in WT mice.  The cost of ATP utilization by SERCA pumps in 

isolated soleus subjected to sub-maximal electrical stimulation in WT and KO mice following 

the HFD may provide some important insight into the lower basal metabolic rate found in KO 

mice post diet.  

The influence of SLN on energy expenditure of other metabolically active organs 

including the brain, liver and kidney (Rolfe and Brown, 1997) and their contribution to whole 

body energy expenditure can not be ignored given that measurable quantities of  mRNA have 

been detected in these organs (European Molecular Biology Laboratory-European 

Bioinformatics Institute EMBL-EBI, 2010).  The role of UCP-1 in BAT should also not be 

dismissed as it is a powerful thermogenic agent that has been demonstrated to be implicated in 

adaptive thermogenesis (Lowell and Spiegelman, 2000).  UCP-1 protein was not measured in 
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this study, however, for the first time to the author’s knowledge, another protein other than 

UCPs was shown to be elevated in BAT as a consequence of high fat feeding.  PLN was found 

to be 2.1 fold higher in BAT of both WT and KO mice post HFD (Figure 3.5B) suggesting that 

PLN may be involved in adaptive thermogenesis in BAT.  PLN, a homologue of SLN, has the 

similar capacity to uncouple Ca
2+

 transport from ATP hydrolysis in SERCA (Frank et al., 

2000). The elevated SLN content in skeletal muscle and PLN in BAT following a HFD 

demonstrates that modulation of Ca
2+

 handling is important to energy expenditure and could 

potentially play a role adaptive thermogenesis in BAT and skeletal muscle.  This notion is 

supported by the finding of Ukropec et al., (2006) who found elevated PLN levels in white 

adipose tissue as well as SERCA2a following cold exposure in UCP-1 null transgenic mice.  

Further supporting this notion is the previously stated thermogenic effects of Ca
2+

 handling 

seen in malignant hyperthermia (Denborough, 1998) and in the heater organ of deep sea fish 

(Morrisette et al., 2003). 

Regardless of the precise mechanisms underlying the lower total whole body metabolic 

rate in KO mice, the fact still remains that KO mice become more obese and glucose intolerant 

compared to littermate WT mice when placed on a HFD.  Glucose tolerance responses in WT 

and KO mice were not different pre HFD.  Both WT and KO mice demonstrated glucose 

intolerance following the HFD; however, as hypothesized, KO mice showed a greater severity 

of glucose intolerance than the WT mice post HFD (Figure 3.7).  These results are in 

agreement with a previous high fat feeding study which also demonstrated glucose intolerance 

following a HFD using the same ‘western’ diet (TD 88137) as in the present study (Li et al., 

2000).  These data suggest impaired glucose uptake by skeletal muscle and hence insulin 

resistance, both of which are conditions seen in the pre-stage of type 2 diabetes (Petersen and 
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Shulman, 2002; Bonen et al., 2006).  Accordingly, fasted serum glucose and insulin values 

were elevated post HFD in both WT and KO mice (Figure 3.9) which has been repeatedly 

demonstrated in other HFD studies (Ste Marrie et al., 2005; Kus et al., 2008; Janovska et al., 

2010).  Serum insulin levels were 48% higher in the KO mice compared to WT post HFD but 

did not show significance (P<0.08), insinuating greater insulin resistance in skeletal muscle of 

the KO mice.   

Insulin tolerance tests (ITT) were performed to assess the effects of the HFD on whole 

body insulin sensitivity in KO and WT mice.  Surprisingly, there were no differences between 

KO and WT mice in ITT responses either pre or post HFD; however, pre diet values were 

lower in both WT and KO mice than post HFD as would be expected with elevated glucose 

levels associated with obesity (Figure 3.8) (Shanik et al., 2008). This is not the first study to 

find dissociation between GTT and ITT responses in mice fed a HFD (Hojman et al., 2009).  

Another study by Bruning (1998) found normal ITT response in transgenic mice lacking 

(>95% reduction) muscle insulin receptors; however, upon further examination using the 

hyperinsulinemic-euglycemic clamp technique, these mice showed severe insulin resistance.  

The ITT does not provide precise estimates of insulin sensitivity or tissue specific glucose 

disposal and compensatory homeostatic mechanisms may have also confounded the current 

results (Muniyappa et al., 2008).  A better approach to measuring insulin sensitivity is the 

hyperinsulinemic-euglycemic clamp technique which is considered the “gold standard” (Kim, 

2009; Muniyappa et al., 2008); however, these tests could not be performed at our facility due 

to lack of infrastructure and expertise.  Pancreatic dysfunction, specifically failure of β-cells, is 

another possible explanation for the greater whole body glucose intolerance observed in high 

fat fed KO mice given that Ca
2+

 cycling is known to be intimately involved in the insulin 
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secretion process (Henquin, 2009) and that SLN mRNA has been found in high quantities in 

the pancreas (European Molecular Biology Laboratory-European Bioinformatics Institute 

EMBL-EBI, 2010).  Accordingly, KO mice may be more susceptible to diet-induced “β-cell 

failure” which could contribute to the development of glucose intolerance in high fat fed KO 

mice.  Further assessment of peripheral insulin sensitivity and insulin secretion from pancreas 

in KO and WT mice before and after consuming a HFD would provide critical information on 

the role of SLN in diet-induced glucose intolerance. 

  The greater glucose intolerance found in KO mice post HFD (Figure 3.7B) 

accompanied with higher NEFA (Figure 3.10A) and insulin levels (P<0.08; Figure 3.9B) in the 

fasted serum samples would suggest a greater impairment in glucose uptake by skeletal muscle 

as a result of impaired insulin signalling and decreased translocation of glucose transporter, 

GLUT 4.  It has been shown that acute intralipid-heparin infusion in humans induces skeletal 

muscle insulin resistance through inhibition of GLUT 4 translocation (Boden et al., 1994; 

Roden et al., 1996; Dresner et al., 1999).  As previously stated, elevated levels of NEFA found 

in KO mice post HFD would be expected to result in increased intracellular TAGs, DAGs, 

ceramides and long chain acyl CoAs (for review see Muoio and Newgard, 2009; Bonen et al., 

2006).  The accumulation of DAGs within skeletal muscle has been shown to activate protein 

kinase C (PKC) thereby blunting tyrosine phosphorylation of insulin receptor substrate (IRS)-1 

thus decreasing the activation of phosphatidylinositol (PI)-3 kinase (Griffin et al., 1999; Moro 

et al., 2009); while ceramides have been shown to inhibit the activation of Akt, downstream of 

PI-3-kinase (Chavez et al., 2003).  Both of these actions ultimately lead to a decrease in GLUT 

4 translocation and glucose transport into skeletal muscle and liver, the primary glucose depots 

(Okada et al., 1994; Hegarty et al., 2003).   
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Other potential mechanisms which may explain the greater glucose intolerance found in 

KO mice compared to WT mice post HFD include:  1) lower levels of adiponectin, an insulin 

sensitizing agent (Dyck et al., 2006) associated with greater obesity (Arita et al., 1999) and/or  

2) greater inflammation of adipose tissue associated with hypertrophy of adipocytes resulting 

in elevated levels of circulating TNF-α and other cytokines (Guilherme et al., 2008).  The 

greater adiposity index found in KO mice following HFD would suggest that both of these 

mechanisms may be implicated in the greater glucose intolerance, as both of these mechanism 

have been shown to decrease glucose uptake (for reviews see Dyck et al., 2006 and Guilherme 

et al., 2008).    

   The greater susceptibility to diet-induced obesity and glucose intolerance found in the 

KO mice make it an interesting model for examining type 2 diabetes.  The accompanying 

higher fasted serum NEFA and LDL level (38% and 24% respectively) found in KO mice post 

HFD compared to WT mice (Figure 3.10A and 3.12A) place the KO mice at greater risk of 

coronary heart disease.  Moreover, the chronically elevated catecholamine levels found in KO 

mice following the HFD, results in over-stimulation of the SNS which increases the risk of 

hypertension (for review see Reaven et al., 1996).  The data from the present study indicate 

that the Sln-null transgenic mice may be a novel model for examining metabolic syndrome as it 

possesses many of the pathophysiological symptoms found with this disease (Kennedy et al., 

2010) 

 One of the major limitations of this study was the inability to continuously monitor the 

mice on the CLAMS throughout the entire high fat dietary period. This would have allowed for 

a more in-depth examination of food consumption (i.e. energy intake) and energy expenditure 

during the early portion of the study.  More importantly, early metabolic measures may have 
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revealed greater differences between WT and KO mice as the upregulation of SLN in skeletal 

muscle may have preceded adaptations in other thermogenic processes. This is another reason 

why the importance of SLN in adaptive thermogenesis and increasing resistance to obesity 

should not be discounted.  Future studies should examine the time course of these adaptive 

thermogenic processes by employing shorter high fat dietary periods.  

  In summary Sln-null (KO) mice gained more weight and became more obese 

potentially due to the lower daily energy expenditure found in KO mice compared to WT mice 

after consuming the HFD.  Western blotting analyses revealed SLN protein content to be 3.8 

fold higher in WT soleus post HFD and PLN to be 2.1 fold higher in BAT of both WT and KO 

mice post HFD.  Collectively, these results suggest that PLN and SLN may play a role in 

adaptive diet-induced thermogenesis.  On the other hand, compared with chow fed control 

mice, the metabolic cost of Ca
2+

 handling in soleus muscle was significantly reduced post HFD 

in both WT and KO mice, although to a greater extent in KO mice than WT mice.  Moreover, 

there were no differences in resting energy expenditure of soleus muscles between WT and KO 

mice following the HFD.  Therefore, differences in whole body metabolic rate and obesity 

between WT and KO mice post HFD do not appear to be due to adaptive thermogenic 

mechanisms in resting skeletal muscle involving SLN.  Lower percent of lean body mass in 

KO mice post diet as implied by the lower EDL and soleus weights (% body weight) may 

explain the lower metabolic rate and associated obesity found in KO mice.  Overall, it can be 

concluded that SLN increases resistance to diet-induced obesity and glucose intolerance in 

mice but the precise mechanisms involved remain to be determined. 
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DISCUSSION 

 

 The primary objectives of the research in this thesis were to first determine if 

physiological levels of sarcolipin (SLN) results in “slippage” of the sarco(endo)plasmic 

reticulum Ca
2+

 ATPase (SERCA) pumps in skeletal muscle in vivo through the use of a Sln-

null (KO) mouse model.  Specifically, it was hypothesized that the efficiency (Ca
2+

 transported 

into lumen per ATP hydrolyzed) of the SERCA pumps measured in skeletal muscle 

homogenates from wild type (WT) mice, under conditions in which a Ca
2+

 gradient was 

preserved across the SR vesicles, would be lower compared with KO mice.  A secondary aim 

was to examine the hypotheses that a decrease in SERCA pump efficiency would result in 

greater energy utilization at rest by isolated soleus muscle and increased whole body 

metabolism.  Lastly, WT and KO mice were fed ad libitum a “Western” style high-fat diet 

(HFD) with 42% of kcal derived from fat and 0.2% cholesterol (product 8728CM, Harlan 

Teklad) for 8 weeks, to examine the involvement of SLN and Ca
2+

 handling in adaptive 

thermogenesis and diet-induced obesity and associated health complications (i.e. glucose 

intolerance).  Even if SLN ablation did not reduce resting skeletal muscle or whole body 

metabolic rate in chow fed mice, it was postulated that KO mice could be more susceptible to 

diet-induced obesity and glucose intolerance in response to high fat feeding if SLN expression 

in skeletal muscle from WT mice is induced by high fat feeding resulting in increased skeletal 

muscle and whole body energy expenditure compared to KO mice.  

 SLN was found predominately in highly oxidative skeletal muscles (ie. soleus, red 

gastrocnemius and diaphragm) which are known to be highly active during waking hours.  The 

lack of SLN protein in brown adipose tissue (BAT) was somewhat surprising as SLN mRNA is 

fairly abundant in BAT (unpublished data, European Molecular Biology Laboratory-European 
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Bioinformatics Institute EMBL-EBI, 2010).  The research focus of the thesis was to examine 

the metabolic function of SLN in skeletal muscle and more specifically soleus muscle as it 

contains a relatively high amount of SLN protein and could be isolated to measure basal 

metabolism.  The major differences between WT and KO mice observed in this thesis appear 

to be due to ablation of SLN specifically, since there were no compensatory adaptations in 

other major SR proteins involved in Ca
2+ 

handling, specifically SERCA1a,
 
SERCA2a, 

calsequestrin and phospholamban (PLN), as a result of SLN ablation.  Consistent with these 

results, Babu et al. (2007a) also found SLN ablation to have no effect on other Ca
2+

 handling 

proteins in the ventricle and atria of Sln-null mice.     

 The uncoupling of Ca
2+ 

uptake from ATP hydrolysis has been demonstrated in 

membranes reconstituted with SLN and SERCAs at ratios as low as 2:1, potentially due to 

increased rates of “slippage” (Mall et al., 2006; Smith et al., 2002).  The decrease in efficiency 

of the SERCA
 
pumps results in the production of heat as dictated by the first law of 

thermodynamics which is believed to be a mechanism of maintaining thermal homeostasis 

within skeletal muscle.  SLN is deemed to invoke “slippage” by decreasing the affinity of the 

SERCA pumps for Ca
2+

; as it directly binds with SERCA pumps at two of the four 

transmembrane helixes making up the Ca
2+

 binding sites (Morita et al., 2008; Bhupathy et al., 

2007; Odermatt et al., 1998).  This is supported by measurements of Ca
2+

 dependent Ca
2+

-

ATPase activity in the absence of a Ca
2+

 gradient, where the pCa50 for SERCA activity in 

soleus homogenates of WT mice was lower compared to KO mice demonstrating that more 

Ca
2+

 was needed to reach 50% of Vmax in WT mice.  This was not observed in the EDL, as 

SLN protein content is much lower in EDL and has a much smaller effect in the absence of a 

Ca
2+

 gradient. 
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 This is the first study to show that at a physiological SLN:SERCA pump ratio and in 

the presence of a Ca
2+

 gradient across the SR, SLN reduces the stoichiometry of SERCA 

pumps in skeletal muscle at low [Ca
2+

].  The presence of a gradient allows one to examine the 

Ca
2+

 pumps under more physiologically relevant conditions.  In skeletal muscle there is a 

1:10,000 Ca
2+ 

gradient across the SR membrane (Rasmussen, 1986 ) and back inhibition is an 

important factor affecting SERCA activity, Ca
2+

 uptake and Ca
2+

 leak (Inesi and de Meis, 

1989).  In the presence of a Ca
2+

 gradient, the coupling ratio (Ca
2+

 uptake / Ca
2+

-ATPase 

activity) was higher in soleus homogenates and tended (P<0.08) to be higher in EDL 

homogenates from KO mice.  This demonstrates the potent effect of back inhibition on SERCA 

activity as even the low levels of SLN found in EDL muscle have a tendency to make a 

difference in the presence of a Ca
2+

 gradient which must be considered when interpreting data 

from the present and previous studies. 

 Once it was established that the Ca
2+ 

ATPase coupling ratio was higher in soleus 

homogenates from KO mice, the hypotheses that the basal metabolism (VO2) of isolated soleus 

muscles and whole body metabolism (basal, sub-maximal and maximal) would be lower in KO 

mice compared with WT mice were examined.  These hypotheses were not supported based on 

the findings that there were no differences in resting soleus VO2 or whole body VO2, measured 

at rest or during sub-maximal or maximal treadmill exercise, between KO and WT mice.  

However, when % contribution of Ca
2+

 handling to basal metabolism was determined using 

CPA, energy requirements by SERCA pumps were significantly lower (6.8%) in the KO soleus 

compared to WT, clearly demonstrating the potential influence of SLN as a regulator of energy 

metabolism in skeletal muscle.  The lack of difference in VO2 suggests other energy 

consuming processes in the muscle were compensating for the lack of SLN potentially to 
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maintain muscle temperature.  Western blotting analysis revealed higher (34%) mitochondrial 

uncoupling   protein 3 (UCP-3) content in soleus from the KO mice compared to WT mice.  It 

is proposed that an adaptive increase in UCP-3 expression compensates for the absence of SLN 

which provides further support for the view that SLN is important for the regulation of 

thermogenesis.  However it should be note that other adaptations may have also been a factor 

in elevating basal metabolism of the isolated soleus muscles in the KO mice.  

 Phenotypic differences in transgenic mouse models often become more apparent when 

mice are examined under more extreme conditions that challenge the homeostasis of a number 

of physiological systems (i.e. HFD, cold exposure, aging, etc).  For example, the ablation of 

UCP-1 protein in mice results in little or no phenotypic differences between KO and WT 

littermates if mice are fed a standard chow diet; however, these same mice are considerably 

more susceptible to diet-induced obesity when placed on a HFD (41.9% kcal derived from fat; 

Kontani et al., 2005). Similar results have also been found with UCP-3 knockout mice (Vidal-

Puig et al., 2000).  Therefore, to further investigate the function of SLN in skeletal muscle, its 

role in adaptive thermogenesis and its implications on diet-induced obesity, WT and KO mice 

were placed on a HFD (42% kcal derived from fat) for an 8 wk period.  As was hypothesized, 

KO mice displayed lower whole body basal metabolic rates when compared to WT littermates 

post HFD.  In accordance with the energy balance equation (3.1), this led to greater energy 

storage which was demonstrated by the greater weight gain over the 8 wk period, higher 

epididymal/inguinal fat pad weights and a higher adiposity index in the KO mice post HFD.  

Surprisingly, KO mice also tended (P<0.08) to have a lower caloric intake post diet which 

potentially could be explained by decreases in food consumption during the later stage of the 

HFD due to the observed increased fatty acid oxidation and NEFA levels in KO mice, both of 
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which are known to diminish appetite (Scharrer, 1999; Friedman and Halaas, 1998).  

Unfortunately, food consumption was not measured during the 8 wk dietary period and, 

therefore, the latter possibility could not be addressed; future studies should examine this 

possibility through continuous food monitoring during the dietary period. 

 The higher adiposity index found in KO mice was accompanied by a greater glucose 

intolerance compared to WT mice post HFD who also demonstrated glucose intolerance 

compared to pre HFD values; however, whole body insulin resistance was not observed in 

either WT or KO mice, at least when assessed by the insulin tolerance test (ITT).  The ITT is 

often criticized as it does not provide precise estimates of insulin sensitivity or tissue specific 

glucose disposal and compensatory homeostatic mechanisms may also confound results 

(Muniyappa et al., 2008).  A better procedure to use for assessment of whole body insulin 

sensitivity would have been the hyperinsulinemic-euglycemic clamp technique as it allows for 

a more direct assessment of insulin sensitivity for a given tissue, limits compensatory 

homeostatic mechanisms and is considered the “gold standard” (Kim, 2009; Muniyappa et al., 

2008).  The elevated fasted glucose and insulin levels accompanied with greater glucose 

intolerance found in both KO and WT mice post HFD support this idea of greater insulin 

resistance and suggest that the mice were in the pre-stage of type 2 diabetes.  The greater 

dyslipidemia (elevated serum NEFA levels) and insulin levels (48%; P<0.08) observed in KO 

mice accompanied with greater glucose intolerance post HFD compared to WT mice suggest a 

greater metabolic disturbance and susceptibility to diet-induced obesity and diabetes.  

 It was hypothesized that KO mice may be more susceptible to diet-induced obesity and 

glucose intolerance if SLN expression in skeletal muscle from WT mice is induced by high fat 

feeding and if, as a result of increased SLN expression, skeletal muscle and whole body energy 
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expenditure were also increased in WT mice compared with KO mice.  In agreement with the 

first postulate, Western blotting analysis revealed a 3.8 fold increase in SLN content of soleus 

muscle in WT mice following the HFD.  Interestingly, there was also a 2.1 fold increase in 

PLN levels in BAT in both WT and KO mice induced by the HFD.  To the author’s 

knowledge, this is the first study to show a diet-induced increase in the content of proteins 

(SLN and PLN), other than mitochondrial uncoupling proteins, that have been shown to 

uncouple energy consuming processes in muscle (Mall et al., 2006; Frank et al., 2000),  a 

response which could serve as a potential mechanism for maintaining energy homeostasis.  The 

large increase in SLN protein content of skeletal muscle and PLN in BAT post HFD in WT 

mice suggests that futile Ca
2+

 cycling in both BAT and skeletal muscle may be enhanced in 

response to a HFD, which could provide a novel mechanistic basis for adaptive thermogenesis.   

 Surprisingly, despite increased SLN expression in WT soleus post HFD and in contrast 

to what was hypothesized, there were no differences in resting VO2 of isolated soleus muscles 

between KO and WT mice post HFD.  This would suggest that other adaptive thermogenic 

mechanisms are activated to a greater extent in KO muscle compared with WT muscle in 

response to the HFD.  Elevated serum levels of norepinephrine (NE) and epinephrine (E) found 

in KO mice post HFD, are known to enhance skeletal muscle VO2 (Shiota and Masumi, 1988; 

Marmonier et al., 1997) potentially through increased ion leak resulting in a Na
+
/K

+
 futile cycle 

(Clausen, 1986; Shiota and Masumi, 1988).  Other potential adaptive compensatory 

mechanisms in skeletal muscle which may have been responsible for maintaining VO2, 

particularly in KO mice, include a fat lipolysis/de novo synthesis futile cycle (Summermatter et 

al., 2008), increased protein degradation/synthesis (Rolfe and Brown,1997) and protein and 

metabolite dephosphorylation- phosphorylation (Lowell and Spiegelman, 2000).  These energy 
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“wasting” processes were not investigated in this thesis and remain to be examined in future 

HFD studies with this transgenic KO mouse model. 

Another surprising finding was that the energy expenditure of SERCA pumps 

contributed significantly less to the basal metabolic rate of isolated soleus muscle from both 

WT and KO mice post HFD.   It is possible that the SR membrane lipid composition was 

altered by the HFD (i.e. increased saturated fatty acids and cholesterol content) resulting in 

significantly lower Ca
2+

 leak from the SR (Vangheluwe et al., 2005b).  However, the relative 

contribution of SERCA pumps to basal metabolism was reduced to a much greater extent in 

KO mice compared to WT mice post HFD which is consistent with the effects of SLN on the 

SERCA pump coupling ratio.. Therefore, the higher SLN content found in soleus muscle of 

WT mice post HFD may be viewed as a compensatory mechanism to increase energy 

expenditure by SERCA pumps in order to help maintain energy homeostasis within the muscle. 

 Finally, it was also hypothesized that whole body metabolic rate would be higher in 

WT mice than KO mice following the HFD, specifically because it was assumed that SLN 

expression and energy expenditure of skeletal muscle would be increased in WT mice 

following the HFD. Given that basal VO2 of isolated soleus muscles was not different between 

WT and KO mice following the HFD, it is somewhat surprising that whole body metabolism 

was in fact lower in KO mice than WT mice post HFD.  The significantly lower weights of 

soleus and EDL muscle when expressed as % body weight found in KO mice post HFD could 

potentially account for the lower total whole body metabolism as skeletal muscle is a highly 

metabolically active tissue which contributes significantly (~20-30%) to whole body energy 

expenditure (Rolfe and Brown, 1997; Zurlo et al., 1990).  Another possibility worth examining 

is that the energy expenditure in contracting muscle from WT mice may be elevated compared 
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with KO post HFD due to the higher SLN expression in WT muscle.  The greater difference in 

waking compared to sleeping whole body metabolism found between WT and KO mice post 

HFD and the greater (5%; not significant) VO2 measured during low running speeds in WT 

mice support this possibility.  Lastly, a shorter period of high fat feeding should be investigated 

as earlier metabolic CLAMS measures may reveal greater differences between WT and KO 

mice as the upregulation of SLN in skeletal muscle may have preceded adaptations in other 

thermogenic processes.   

 The many physiological adaptations that occur with high fat feeding make this model 

extremely complex and can often confound results, leading to misinterpretation of data and 

inaccurate conclusions.  The examination of acute SLN overexpression through tetracycline 

induced transcription would limit confounding and compensatory adaptations allowing for a 

better understanding of the role of SLN in energy expenditure and adaptive thermogenesis in 

skeletal muscle.  Future studies using an SLN overexpression mouse model may be able to 

determine the optimal level of SLN protein in skeletal muscle where the functional capacity of 

the muscle is maintained and Ca
2+

pumping efficiency is decreased, presenting interesting 

implications for genetic therapy in the treatment of obesity.    

 Taken together, these studies are the first to demonstrate that SLN increases energy 

expenditure by SERCA pumps in isolated skeletal muscle in both standard chow fed and high 

fat fed mice.  However, due to other thermogenic adaptations in standard chow fed mice (i.e. 

elevated UCP-3 protein content) and high fat fed mice (i.e. elevated NE and E), SLN ablation 

did not cause a reduction in the absolute VO2 of skeletal muscle or whole body VO2.  

Therefore, the metabolic and adiposity differences found between WT and KO mice post HFD 

do not appear to be due to adaptive thermogenesis mechanisms in skeletal muscle involving 
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SLN.  However, SLN does increase resistance to diet-induced obesity and glucose intolerance 

in mice through mechanisms which are currently unidentified.        
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CONCLUSION 

 

 The results obtained from the major studies completed for this thesis, reveal for the first 

time that SLN is a key regulator of both ATP utilization in Ca
2+ 

handling and of overall energy 

metabolism in skeletal muscle.  The first study demonstrates that at a physiological 

SLN:SERCA ratio, SLN uncouples ATP hydrolysis from SR Ca
2+

 uptake in skeletal muscle 

resulting in a lower contribution of Ca
2+

 handling to basal muscle VO2.  However, KO mice 

fed standard rodent chow did not demonstrate lower isolated soleus resting VO2  or resting 

whole body metabolism, even though homogenates from soleus of KO mice where more 

efficient in Ca
2+

 handling.   Elevated expression of UCP-3 protein found in the soleus muscle 

of KO mice could, potentially, provide compensation, resulting in higher basal VO2 in KO 

mice than expected.  These data support the view that the primary physiological function of 

SLN in skeletal muscle is regulation of thermogenesis. 

 When placed on a “Westernized” HFD (42% of kcal derived from fat with 0.2% 

cholesterol) for a period of 8 weeks, KO mice were found to have a lower whole body 

metabolic rate resulting in greater weight gain, adiposity index and glucose intolerance 

compared with WT mice.  The 3.8 fold increase in SLN protein found in soleus muscle from 

WT mice placed on a HFD and the lower ATP consumption by SERCA in isolated soleus of 

KO mice post diet compared to WT mice suggests that SLN may also play an important role in 

adaptive thermogenesis.  However, even though whole body metabolic rate was higher in WT 

mice than KO mice following the HFD, induction of SLN expression by high fat feeding in 

WT soleus did not translate into increased energy expenditure in soleus compared to KO mice 

owing to greater adaptive thermogenesis through other mechanisms in KO muscle. 

Collectively, these results suggest that SLN may exert effects on other cellular processes 
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independent of thermogenesis, that imparts resistance against diet-induced obesity and glucose 

intolerance. Overall, this work has revealed that the KO mouse represents a novel model of 

obesity and type II diabetes which could provide new insights into the mechanisms linking 

obesity with insulin resistance. 
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FUTURE DIRECTIONS 

 

 These studies are the first to demonstrate several key components in defining the 

function of SLN as an important regulatory protein involved in a futile Ca
2+

 cycle where Ca
2+

 

is prematurely released into the cytoplasm from SERCA resulting in greater hydrolysis of ATP 

for a given amount of Ca
2+

 taken into the SR.  This protein has been shown under 

physiological conditions to alter the cost of Ca
2+

 handling in resting muscle and to reduce 

susceptibility to diet-induced obesity and potentially the accompanying complications 

associated with metabolic syndrome (ie. type 2 diabetes and hypertension).  However, due to 

the novelty of the Sln-null mouse model used for the studies in this thesis with regard to 

adaptive thermogenesis, energy utilization by SERCA and susceptibility to diet-induced 

obesity, there are still many questions of interest which remain to be examined. 

 The significantly lower weights of soleus and EDL muscle when expressed as % body 

weight found in KO mice post HFD could potentially account for the lower total whole body 

metabolism seen in KO mice post HFD, as skeletal muscle has been shown to make up a 

considerable portion of daily energy expenditure (Zurlo et al., 1990; Rolfe and Brown, 1997). 

Since cytosolic [Ca
2+

] is known to be a potent signalling molecule involved in skeletal muscle 

hypertrophic growth, development and regeneration (for reviews see Chin, 2005 and Mallinson 

et al., 2009), future studies should examine the effects of a HFD on cell growth signalling 

pathways and determine whether intracellular free Ca
2+

 concentration is altered in skeletal 

muscle of KO mice.  The accurate determination of lean body mass in WT and KO post HFD 

by dual energy X-ray absorptiometry (DXA) should also be a high priority for future studies.    

 The higher (5%; not significant) sub-maximal VO2 found in WT mice compared to KO 

during the lower running speeds (8 and 16 m/min) should also be exploited via running wheels 
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to explain and potentially exacerbate the differences witnessed in waking whole body 

metabolism in WT and KO mice.  As the greatest differences in metabolic rates were seen 

during the waking periods post HFD, the incorporation of free access to running wheels during 

the high fat dietary period should result in significantly greater metabolism in the WT mice and 

hence even lower susceptibility to obesity compared to KO mice.    

 The greater severity of glucose intolerance accompanied with elevated levels of NEFA 

and potentially (P<0.08) insulin found in the fasted serum of KO mice post HFD suggests 

diminished GLUT 4 translocation potentially as a result of elevated intramuscular 

triacylglycerols (TAGs) and accompanying lipid metabolites (diacylglycerols (DAGs) and 

ceramides).  To confirm this as the potential mechanism, future studies should examine 

intramuscular TAGs, DAGs and ceramides as well as the insulin signalling pathways 

responsible for the translocation/activation of GLUT4.  Further investigation of leptin levels 

(as the sample number in this study was limited) and adipokines particularly adiponectin may 

have merit as both of these have been implicated in the pathophysiology of diet-induced 

obesity as well as glucose and fat oxidation.  Lastly, inflammatory response in these mice post 

HFD may provide further insight into the greater glucose intolerance witnessed in KO mice as 

greater fat deposition has been associated with increase in cytokine and TNF-α release from 

macrophages in white adipose tissue which have been shown to decrease glucose uptake in 

skeletal muscle (for review see Guilherme et al., 2008). 

 The chronically elevated levels of serum NE and E found in the KO mice post HFD 

would suggest that these mice may also be more susceptible to hypertension as previous 

studies have demonstrated the sympathetic nervous system to be highly implicated in 

vasoconstriction and hypertension (for review see Reaven et al., 1996).  Studying the 
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vasoconstrictive properties of vessels in peripheral tissue and their relation to the potential 

development of hypertension in this Sln-null mouse model placed on a HFD may provide 

important mechanistic information on the development of hypertension, as well as provide a 

new model for examining metabolic syndrome and its potential prevention.   

 The data presented in this thesis demonstrates an elevated susceptibility of KO mice to 

diet-induced obesity suggesting that an important function of SLN and more importantly Ca
2+

 

handling efficiency is in energy homeostasis of skeletal muscle and whole body metabolism.  

One avenue of interest to be examined is the overexpression of SLN in skeletal muscle and  its 

influence on metabolic rate and more importantly diet-induced obesity and accompanying 

complication; however care must be taken not to alter functional capacity of the skeletal 

muscles at the cost of an elevated metabolic rate.  Further work to systematically increase SLN 

protein levels in skeletal muscles to optimal levels without altering muscle function still 

remains to be examined as this may have very important clinical implications. 

  PLN and other substances (fluoride, capsaicin, fatty acids/cholesterol) have also been 

previously found to alter Ca
2+

 uptake, Ca
2+

 ATPase activity and Ca
2+

 leak out of the SR, all of 

which could influence the efficiency or coupling ratio of SERCA/Ca
2+

 handling (Frank et al., 

2000; Hawkins et al., 1994; Mahmmoud, 2008; Vangheluwe et al., 2005b).   As Ca
2+

 handling 

efficiency has been shown to be important in skeletal muscle metabolism and more specifically 

whole body metabolism, working with PLN and these other substances may provide other 

avenues for decreasing SERCA efficiency and increasing metabolic rate under conditions of 

high fat feeding without altering muscle function.  This may be of particular benefit to larger 

mammals which have relatively little or no BAT to induce adaptive thermogenesis during 

periods of elevated energy intake.  The large relative presence of BAT in mice may have 
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lessened the impact of SLN on adaptive thermogenesis in these studies, which could be 

substantially much greater in larger mammals possessing higher concentrations of SLN in 

skeletal muscle (Babu et al., 2007b).      

 Another interesting aspect revealed in the second study was the lower RER values and 

higher fasted serum NEFA values found in the KO mice following post HFD implying higher 

reliance on fatty acid oxidation by skeletal muscle.  Examination of fibre type distribution, 

metabolic pathways through enzymatic analysis and fuel utilization pre and post HFD will help 

to further characterize this mouse model and potentially clarify some of the results found in 

these studies.  Due to the novelty of this mouse model (Babu et al., 2007a), further work is 

clearly needed to determine the role of SLN and Ca
2+

 cycling on other processes within 

skeletal muscle and whole body metabolism.     

   .  
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