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ABSTRACT 
 

 
Ammonia removal is an important problem that Canadian municipalities are encountering 

in their wastewater treatment systems due to ammonia’s adverse environmental effects 

and its increasingly stringent discharge standards.  

 

Nitrogen compounds are generally removed from wastewater by a combination of 

nitrification and denitrification. In full nitrification, ammonia is first biologically oxidized 

to nitrite, which is then oxidized to nitrate by nitrite-oxidizing bacteria. In denitrification, 

the resulting nitrate has to be first reduced to nitrite in order to be converted to nitrous 

oxide, then nitric oxide, and finally to nitrogen gas. Since, nitrite is an intermediary 

compound in both nitrification and denitrification, it may be more efficient to produce a 

partial nitrification up to nitrite and then denitrification starting from this nitrite.  

 

In this research, EnviroPro Designer was used to simulate, optimize and compare process 

models for both full nitrification and partial nitrification.  The Full System model 

simulates the traditional full nitrification followed by denitrification. Partial System-1 

model simulates the partial nitrification process followed by denitrification directly from 

nitrite. Partial System-1 significantly reduced the ammonia and domestic waste 

concentrations in the effluent while achieving 1.5 times faster denitrification rates and 

utilizing 33% less oxygen. Partial System-1 was further optimized to develop a novel 

nitrogen removal process, Partial System-3, which incorporated an additional third anoxic 

stage while the aerobic stage in sludge treatment was removed.  Partial System-3 

successfully reduced the ammonia and nitrite concentrations in the effluent to values well 

within the current guidelines while consuming 50% less oxygen than the Full System, 

which reflected favorably on utility savings.  It also showed 2 times faster denitrification 

rates, and displayed superior domestic waste consumption. Furthermore, the capital and 

operational costs were less than other nitrogen removal systems investigated in this 

thesis. The novel Partial System-3 appears to be the best option for removal of nitrogen 

from medium to high strength wastewater, and further experimental research is required 

to confirm the kinetic and yield constants assumed in the simulations.  
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Chapter 1 

 Introduction 
The removal of ammonia is an important problem in modern wastewater treatment 

systems due to adverse environmental effects and its increasingly stringent discharge 

standards.  

 

The biological full nitrification–denitrification is the most common wastewater procedure 

to convert ammonia into nitrogen.  This treatment is based on natural nitrogen cycle 

transformations. As with any natural biological treatment, it uses the same tools as nature 

to transform the pollutants. The only difference is that these reactions are being carried 

out in bioreactors under favorable conditions to optimize the transformation reactions. 

Full Nitrification-Denitrification process takes place in two steps.  During the first step, 

that is full nitrification, ammonia is aerobically oxidized to nitrite and then to nitrate by 

the action of autotrophic microorganisms which obtain their energy from these reactions 

therefore, in full nitrification, dissolved oxygen is required. The second step is de-

nitrification, which is an anoxic process.  This process is performed by heterotrophic 

microorganisms which reduce the nitrate obtained in the first step to gaseous nitrogen.  

These microorganisms use nitrite and nitrate as final electron acceptors. Although oxygen 

is not required in this process, however, organic matter (electron donor) is required 

during denitrification.  Hence, the operational costs of the biological nitrogen removal 

process are to a great extent related to the oxygen and organic matter requirements 

associated with the treatment.  

 

Currently, many Wastewater Treatment Plants implement Full Nitrification.  Some new 

processes and operational strategies have come up in order to reduce the costs.  One of 

the new technologies being proposed these days is Partial Nitrification in which a partial 

nitrification is produced up to nitrite and then the process of denitrification starts from 

this nitrite. The results obtained from the experimental data suggest that Partial 

Nitrification consumes lower amounts of oxygen and organic matter, reducing the cost of 
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the treatment. It has also been suggested to be a more efficient system in performance 

than Full Nitrification.  

 

1.1 - Scope of the Research 
 

This work focuses on comparing the currently implemented technology of Full 

Nitrification to the proposed technology of Partial Nitrification, using process models. 

This research examines the effects of parameters like pH, Dissolved Oxygen and 

Temperature to evaluate the optimal values. Based on the values obtained from literature, 

models for both Full Nitrification and Partial Nitrification, along with the respective 

Denitrification, are designed to compare the effect on Ammonia removal as nitrogen gas.  

 

EnviroPro Designer is being used for the modeling of these processes. EnviroPro 

Designer is an environmental process simulator from Intelligen Inc that is used to 

develop, assess and optimize environmentally beneficial technologies. A superset of 

EnviroPro Designer, SuperPro Designer is also available to extend the modeling of 

pollution control processes to include chemical and biochemical manufacturing 

operations. The software is also able to provide capital and operating cost estimates, 

which can be useful for process comparisons. 

 

Essentially, this thesis is comprised of two parts. The first part consists of a summary of 

all the experimental data derived from a literature review, which is used to investigate 

why Partial Nitrification is potentially a better system. The second part involves process 

modeling by EnviroPro Designer for several ammonia removal alternatives, and 

describes the findings of modeling work and experience using EnviroPro Designer.  

 

The modeling of ammonia removal processes can be further divided into the following 

phases:  
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• In the first phase, we develop two models, Full System and Partial System-1. Full 

System implements Full Nitrification with Denitrification from nitrate and                

Partial System-1 implements the basic Partial Nitrification with Denitrification from 

nitrite.  

• In the second phase, Full System and Partial System-1 are analyzed and compared. 

An evaluation of the most efficient system with respect to design effectiveness and 

cost efficiency is performed. This is done by analyzing the simulation results of the 

effluent and generating following reports from the modeling software: 

o Stream and Material Balance 

o Economical Evaluation 

 

• In third phase, Partial System-1 is further optimized to Partial System-2 and Partial 

System-3 in an attempt to achieve a novel nitrogen removal treatment. 

 

• In the fourth phase, a sensitivity analysis is conducted on Partial System-3 to 

determine the most significant factors. 

 

This work compares Full nitrification and Partial nitrification with their respective 

denitrification. Therefore, it sheds light on the limitation and complexities involved in 

both nitrification and denitrification processes in each technology.   

 

Since this work does not include laboratory experiments, available values for kinetic 

parameters have been taken from literature. Where experimental data was not available, 

an approximation has been employed, based on reasonable analogies.  Later on, a 

sensitivity analysis has been to done to test the effect of the chosen value.  

 

Furthermore, this thesis focuses on steady state, macro scale models. A steady state 

model is good for design, constant estimation and supporting alternate design processes 

or scenarios.  This thesis does not incorporate dynamics involved in the processes 

because many of the kinetic parameters involved are not well known. Since the approach 
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taken in this thesis is based on the practical implementation, therefore a steady state 

model was considered a more feasible and appropriate option.   

 

1.2 - Why Ammonia? 
 
According to the National Pollutant Release Inventory 1996, ammonia was ranked first in 

terms of amounts released to the Canadian environment. Municipal, industrial, 

agricultural and natural processes commonly contribute to emissions of ammonia in the 

environment. Natural sources of ammonia include the decomposition or breakdown of 

organic waste matter, gas exchange with the atmosphere, forest fires, animal waste, 

human breath, the discharge of ammonia by biota, and nitrogen fixation processes.  

 

It is estimated that industrial releases have contributed 5,970 metric tons per year of 

ammonia. Emissions and effluents from a wide variety of industrial plants such as iron 

and steel mills, fertilizer plants, oil refineries, and meat processing plants are identified as 

the point sources of ammonia. Other significant point sources of ammonia include the 

manufacturing of explosives and the use of explosives in mining and construction. The 

largest non-industrial point sources are sewage treatment plants as per Environment 

Canada 1999. 

 

According to Environment Canada in 1992, the major anthropogenic source of ammonia 

entering the Canadian environment is accidental ammonia spills. It was further 

emphasized that an ammonia spill can occur during the production, processing, storage, 

application, or disposal stage of the chemical’s life cycle. Ammonia has been ranked as 

the top priority on the Environment Canada 1990 Canadian Chemical Spill Priority List. 

In addition, ammonia has also been recognized as a priority substance by the Major 

Industrial Accidents Council of Canada (MIACC).  

 

Agricultural, residential, municipal, and atmospheric releases are identified to be non-

point sources of ammonia. Major agricultural sources include areas with intensive 
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farming, accidental releases or spills of ammonia-rich fertilizer, and the decomposition of 

livestock wastes [68, 69].  

 

Municipal wastewater treatment plants remain the most significant sources of ammonia 

released to aquatic ecosystems across Canada. The total quantity of ammonia being 

annually released by municipal wastewater treatment plants has been estimated to be 

approximately 62,000 tonnes [67].  

 

Ammonia sources in residential and municipal sectors include the use and disposal of 

cleansing agents that contain ammonia, improper disposal or accidental spills of ammonia 

products, and urban runoff [69, 70]. Combustion processes increase the atmospheric 

concentrations of ammonia. These involve the burning of municipal waste, emissions 

from sewage treatment plants, domestic heating, the decay of vegetation, and the 

production and use of chemical fertilizers. Mobile sources of ammonia to the atmosphere 

arise from all forms of transportation [70].  

 

Ammonia in mammals, including humans, is converted to carbamoyl phosphate by the 

enzyme carbamoyl phosphate synthetase, and then enters the urea cycle to be either 

incorporated into amino acids or excreted in the urine. This mechanism prevents the 

build-up of ammonia in the bloodstream. Therefore, the toxicity of ammonia solutions is 

usually not of any consequence for mammals including humans.  However, fish and 

amphibians lack this mechanism, as they can usually eliminate ammonia from their 

bodies by direct excretion, consequently, making ammonia highly toxic to aquatic life at 

even dilute concentrations [66]. This is the reason why ammonia is considered dangerous 

for aquatic life. Hence, keeping in view the vast sources of ammonia releases in the 

environment and its toxic properties, it is determined that the terrestrial plants and aquatic 

organisms are at a potential risk. As per Canadian Environmental Protection Act, 1999, 

(CEPA 1999) ammonia in wastewater effluent was determined to be toxic and harmful to 

a wide variety of fish, and other aquatic life. Mostly, freshwater organisms are at risk 

from ammonia released in the aquatic environment. Rainbow trout, freshwater scud, 
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walleye, mountain whitefish and fingernail clams are some of the most sensitive species 

[5]. 

 

1.3 -Target Market 
 

The marketing prospects of Partial Nitrification technology are very bright. This research 

is focused on obtaining improvement of the currently implemented Full Nitrification 

technology. Any improvement in the current technology will subsequently make it a 

better commodity.  

 

1.3.1 - Applications in Waste Water Treatment Plants 
 

Growing decline in water quality, water scarcity, and infrastructure challenges around the 

globe are a major source of concern. Subsequently, this drives a high demand for 

patented technologies that can treat virtually any water source providing industrial, 

agricultural and potable water, while decreasing dependence on fresh water sources. The 

merger of major North American manufacturers of wastewater treatment plants with 

small and medium-sized companies is a testimony to the fact that wastewater treatment is 

the fastest growing sector.  The most significant example is the GE acquisition of 

ZENON Environmental Inc., a Canadian based global leader in advanced membranes for 

water purification, wastewater treatment and water reuse, in June 2006.  GE purchased 

ZENON in an all cash transaction valued at approximately US $689 million or Cdn $763 

million.  

 

Application of Partial Nitrification in wastewater treatment plants is significant. It can be 

utilized in the capacities described in the following sections: 
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1.3.1.1 - Municipal Waste Water 
 

Typically, 40-50% of the total nitrogen in a municipal wastewater treatment plant is 

found as ammonia in the centrate or filtrate streams.  The technology of biological 

Nitrification-denitrification treatment is heavily used in Municipal Wastewater Treatment 

Plants.  Hence, any advancement in this technology with has a beneficial effect in 

municipal wastewater treatment.  

 

1.3.1.2 - Industrial Waste Water 
 

Many industrial applications use ammonia in their chemical processes therefore, 

ammonia is can be found as contaminate in the industrial wastewater discharge.  The 

following industries use ammonia in their manufacturing processes [4]. 

 

• Anhydrous ammonia is used as a refrigerant in industrial, closed-circuit refrigeration 

systems.  

• Pulp and Paper industry also use ammonia in production of ammonia-based sulfite.  

• Phosphate ores use ammonia as a modifying reagent in the froth flotation. 

• Ammonia is used in various household cleaning products such liquid window 

cleaners, liquid all-purpose cleaners and household ammonia. 

• Ammonia is also used to manufacture surfactants in detergents used for liquid 

dishwashing formulations.  

• Semiconductor industry uses high purity ammonia in gallium nitride manufacturing 

processes to provide high brightness blue and white LED’s(light emitting diodes), in 

high performance optoelectronics (such as LCD and flat panel displays) and in high 

power electronic devices (such as lasers and laser diodes). 

• Ammonia is used to scrub sulfur oxide (SOx) and nitrogen oxides (NOx) from 

industrial and electrical power plant gases.  

• Uranium concentrate salt is precipitated prior to drying and calcification by using 

ammonia. 
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• Rubber Industry utilizes ammonia for stabilization of natural and synthetic latex to 

prevent coagulation during transportation and storage. 

• By pharmaceutical Industry in order to adjust pH in solvent extraction reactions. 

• In food and beverage industry as a source of nitrogen for growth of yeast and 

microorganisms. 

• To control pH in yeast production. 

• As a curing agent in production of leather.  

• As slime and mold preventive in tanning liquor [4]. 

 

1.3.2 - Effect in Aquaculture facilities 
 

High density, semi-closed or closed aquaculture facilities (for example, aquariums) often 

implement biofiltration for water purification. An increase in fish density causes potential 

problems of ammonia toxicity and sludge build-up. Therefore, aquaculture systems 

incorporate biofilters designed to assist the growth of nitrifying bacteria which oxidize 

ammonia to nitrite and then to nitrate. One of the disadvantages of ammonia removal by 

Full nitrification is the increase in nitrate concentration. High nitrate concentration is not 

only toxic to aquatic life but discharge of nitrate rich effluent is prohibited in many 

countries due to environmental and public health considerations. In Partial nitrification, 

the ammonia is only oxidized until nitrite hence, inhibiting nitrate accumulation in 

aquatic tanks. In addition, it has been experimentally found that the amount of sludge 

generated is considerably less than in Full Nitrification. The technology of Partial 

nitrification can positively impact aquaculture systems around the world and hence has 

generated a lot of interest in this sector [3]. 

 

Although, nitrite is more toxic than nitrate, denitrification from nitrite has been found to 

be 1.5 to 2 times faster than denitrification from nitrate [12]. Therefore, conversion into 

nitrogen gas would be much more effective and efficient when done with nitrite instead 

of nitrate. Furthermore, nitrite oxidizers require more oxygen than ammonia oxidizers, 

therefore in instances where the dissolved oxygen concentration is low (as there is a 
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competition for dissolved oxygen by other aquatic organisms present in the aquaculture 

unit), nitrite accumulation is present even when a Full nitrification-denitrification (Full 

System) is in place. It is therefore, better to implement Partial nitrification-denitrification 

process (or Partial System), possibly a simultaneous ammonia oxidation and 

denitrification from nitrite process. Microorganisms such as Paracoccus, acting both as 

autotrophs and heterotrophs, can be incorporated in such a treatment system.  

 

1.4 - EnviroPro Modeling 
 

EnviroPro Designer has been used to design the Full and Partial nitrification models with 

their respective denitrification processes. EnviroPro Designer is a subset of SuperPro 

Designer, a simulation software package from Intelligen Inc,  2326 Morse Avenue - 

Scotch Plains, NJ 07076 – USA.  

 

EnviroPro Designer is an extensive environmental simulator and design tool that can be 

used to model various steps of modern wastewater treatment plant. The most important 

advantage of EnviroPro Designer is that it understands the complex composition of 

wastewater enabling it to express components of wastewater in traditional environmental 

language (TSS, BOD, COD) that makes it a perfect tool to model and evaluate the 

municipal wastewater treatment plants. This software package is also equipped to deal 

with plants expansions and modifications in order to accommodate increased throughput 

or changing regulations. It is a competent tool for accomplishing economical evaluations. 

It estimates comprehensive capital and operating costs of treatment plants. It also 

incorporates estimation and justification of processing fee of not only existing processes 

but also predicts the cost and impact of additional treatment steps that may be needed in 

the future. All in all, EnviroPro Designer has proved to be an efficient design tool for 

engineers. It gives them the approximate predicted behavior of the real world and assists 

them to estimate a technology before its implementation.  
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1.5 - Contribution to Research 
 

This thesis expands on the previous experimental studies done on Full and Partial 

nitrifications by applying it to Municipal Treatment Plant operations through simulation 

modeling. It assesses the practicability of the new and innovative technology of Partial 

nitrification and determines whether it is feasible to replace the existing technology of 

Full Nitrification.   

 

Additionally, this work does a parallel comparison of the both the Full and Partial 

nitrifications together with their respective denitrification processes. Therefore, it also 

studies impact of each nitrification process on its subsequent denitrification, hence the 

feasibility and limitations associated with each denitrification process and the resulting 

conversion at the end of each of the whole nitrogen removal technology, thus, giving a 

more extensive evaluation. Furthermore, this thesis incorporates optimization of Partial 

Treatment process to develop a modified nitrogen removal treatment for medium to high 

strength wastewater.  

 

In addition, this thesis can be used as a valuable guideline on the modeling and retrofit 

design of a municipal wastewater treatment using EnviroPro Designer, and it provides a 

benchmark for future studies.  
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Chapter 2 

 Literature Review 
 

2.1 - Wastewater Treatment Technologies 
 

Municipal wastewater treatment is the process of removing contaminants from 

wastewater discharged by residences, businesses and industries. Municipal wastewater is 

a blend of physical, chemical and biological contaminants. It consists of 99.94 percent 

water while only 0.06 percent is dissolved and suspended solid material. The sewage’s 

cloudy demeanor is due to the suspended particles. The range of suspended particles in an 

untreated sewage is from 100 to 350 mg/l. The strength of wastewater is measured by 

biochemical oxygen demand, or BOD5, which measures the amount of oxygen required 

by microorganisms to decompose sewage over a five-day period. The BOD5 of an 

untreated sewage ranges from 100 mg/l to 300 mg/l. Pathogens or disease-causing 

organisms are also present in sewage. Coliform bacteria are considered a sign of disease-

causing organisms. Nutrients such as ammonia and phosphorus, minerals, and metals are 

found in sewage. Untreated sewage may contain 12 to 50 mg/l of ammonia and 6 to 20 

mg/l of phosphorus. Therefore, municipal wastewater treatment systems use physical, 

chemical, and biological processes to remove the physical, chemical and biological 

contaminants [6]. 

 

Water treatment is a very important ecosystem service. Wastewater treatment uses 

microorganisms to decompose organic matter in sewage. If too much untreated sewage or 

other organic matter is added to a lake or stream, not only will it result in low dissolved 

oxygen levels, insufficient to support sensitive species of fish and other aquatic life, but 

ammonia and other nutrients at elevated concentrations are extremely toxic to aquatic 

life. Wastewater treatment systems are designed to digest much of the organic matter 

before the wastewater is released to avoid causing damage to the ecosystem.  
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As previously discussed, in addition to domestic wastewater, many industries handling 

protein-rich materials or other nitrogen compounds generate effluents with very high 

loads of ammonia. This makes ammonia a prevalent problem in the Industrial, 

Agricultural and Municipal wastewaters. The undesirable amount of ammonia in 

wastewater discharge requires continuing research in order to resolve the issue 

effectively.  This thesis specifically investigates wastewater treatment technologies with 

respect to nitrogen removal [8]. 

 

2.1.1 - Full Nitrification  
 

Nitrogen is one of the principal nutrients found in the wastewater, in a variety of 

chemical forms including ammonia. Nitrogen containing effluents can seriously damage 

a water resource and its associated ecosystem. Several physical, chemical and biological 

processes has been designed and studied for the removal of nitrogen. Our environment 

encompasses nitrogen in many forms. It can enter water resources as a consequence of 

either natural or human generated sources. The total nitrogen concentration of an 

untreated sewage flowing into municipal wastewater treatment plant is in the range of 20 

to 85 mg/L. Furthermore, domestic sewage contains 60 percent of the nitrogen in the 

form of ammonia nitrogen, 40 percent of the nitrogen in the form of organic nitrogen and 

additionally, small quantities of nitrates [9]. 

 

Nitrogen conversion processes are essential for most wastewater treatment processes. The 

level of nitrogen in treated domestic wastewater depends upon the treatment method 

employed.  Solid removal and cell synthesis are utilized in order to lower the nitrogen 

levels.  It is very important that proper treatment is implemented to lower nitrogen levels 

otherwise most ammonia nitrogen passes through the system and is discharged in effluent 

of the facility. The presence of ammonia nitrogen in a wastewater plant’s effluent is 

potentially toxic to aquatic life, causes additional oxygen demand, pose public health 

risks and decreased sustainability for reuse.  
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Municipal wastewater treatment plants presently incorporate Full Nitrification in 

combination with Denitrification as the effective method for converting ammonia into 

nitrogen gas. This biological nitrogen removal method is based on the natural nitrogen 

cycle transformation. Microorganisms, particularly bacteria, play a significant role in 

these nitrogen transformations. These microbial-mediated processes tend to occur much 

faster than geological processes. However, rates of these reactions are affected by 

environmental factors that influence microbial activity, such as temperature, moisture, 

and resource availability [7]. 

 

Full Nitrification involves complete aerobic oxidation of reduced nitrogen compound 

with the assistance of generally autotrophic or mixotrophic microorganisms. The 

microbes that carry out this reaction gain energy from it. It is generally accepted that 

instead of ammonium (NH4
+), ammonia (NH3) is used as substrate. The growth of the 

microbes is therefore affected by the ammonia/ammonium ratio. Full Nitrification 

requires the presence of oxygen, so nitrification can happen only in oxygen-rich 

environments like aerated, circulating or flowing waters and the very surface layers of 

soils and sediments. Therefore, oxygen is a very significant factor to be considered in 

Full Nitrification. Hence, in wastewater treatment plants, oxygen demand contributes to 

high operational costs [8, 10, 12, 15, 16] due to the need to compress air for injection into 

the bottom of aeration basins to supply the required oxygen. 

 

Full Nitrification for nitrogen removal is a significant aspect of current wastewater 

treatment technology. Full nitrification in activated sludge includes a large number of 

nitrogen compounds, a multitude of reactions and slow growth of bacteria involved in the 

process, making Full Nitrification a complex process. Despite a century long study of 

microbes involved in Nitrification, it is not uncommon to receive conflicting and 

speculative reports in studies of nitrogen conversion.  The first reports on microbial 

oxidation of ammonium were published as early as the end of the nineteenth century. 

Basic concepts of Nitrification were already established in the beginning of this century 

[17]. 

 

 13



Full Nitrification has been found to be a two-step process. It essentially is comprised of 

ammonia being oxidized through nitrite to nitrate. A number of various types of nitrifying 

bacteria have been identified for each step of ammonia oxidation and nitrite oxidation. It 

is interesting to note that a specific group of bacteria oxidizes either ammonia or nitrite. 

No single group of microbial organisms was found to exist in nature, which can directly 

oxidize ammonia to nitrate, consequently making microorganism communities an 

important factor to consider in Full Nitrification as it divides the process in two steps 

[17]. 

The following is the breakdown of the two steps involved in Full Nitrification: 

 

2.1.1.1 - Nitritation 
 

First ammonia-oxidizing bacteria (AOB) oxidizes the ammonia into nitrite. Generally in 

activated sludge, the dominant ammonia-oxidizing group of bacteria is Nitrosomanas 

europaea [17]. 

  

The oxidation of NH3 to NO2
- by AOB is again a two-step process that progresses 

through hydroxylamine. In the first reaction, ammonia monooxygenase (AMO) catalyzes 

the oxidation of NH3 to NH2OH. In the second reaction, hydroxylamine oxidoreductase 

(HAO) catalyzes the oxidation of NH2OH to NO2
-.  

 

The  reactions discussed can be described as follows: 

 

Reaction 1: 
 

 2H+ + NH3 + 2e + O2  =>  NH2OH + H2O 

 

Reaction 2: 
 

NH2OH + H2O => HNO2 + 4H+ + 4e- 
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The electron input of the first reaction is compensated by two of the electrons produced 

in the second reaction. The remaining two electrons generated in the second reaction 

produce a proton motive force by passing through an electron transport chain to the 

terminal oxidase, which can be represented by the following reaction: 

 

2H+ + 0.5O2 + 2e- => H2O 

The sum of the reactions gives the final Nitritation.  

 

2NH3 + 3O2 => 2HNO2 + H2O       [12] 

 

2.1.1.2 - Nitratation 
 

The nitrite obtained from the nitritation is the intermediate product, which is further 

oxidized by nitrite-oxidizing bacteria (NOB) into nitrate. Nitrobacter agilis are mostly 

attributed to the oxidation of nitrite to nitrate [17]. 

 

The nitrite oxidation process is described in the following reaction: 

 

NO2
- + 0.5O2 => NO3

- 
   

In the natural environment, nitrite oxidation occurs more rapidly than ammonia oxidation 

possibly due to the low minimum substrate concentration capable of supporting steady-

state biomass and a relatively high substrate-utilization rate of nitrite oxidizers. Hence, 

nitrite rarely builds-up in nature. Furthermore, nitrite oxidizers have higher affinity of 

oxygen as compared to ammonia oxidizers [12, 27]. 
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2.1.2 - Denitrification after Full Nitrification 

 
In the denitrification process after Full Nitrification, the oxidation of organic substrates in 

wastewater treatment uses the nitrate as the electron acceptor instead of oxygen. This 

process is done in the absence of Dissolved Oxygen or under limited Dissolved Oxygen 

concentrations the nitrate reductase enzyme is induced in the electron transport 

respiratory chain and helps to transfer hydrogen and electrons to nitrate as the terminal 

electron acceptor. The nitrate is reduced first to nitrite, then to nitric oxide, to nitrous 

oxide and finally to nitrogen gas. This is given as follows [52]: 

 

NO3 -  NO2 -  NO  N2O  N2 

 

Denitrification is achieved by heterotrophic bacteria. The common genre of  

heterotrophic organisms include Achromobacter, Acinetobacter, Agrobacterium, 

Alcaligenes, Arthrobacter, Bacillus, Chromobacterium, Corynebacterium, 

Flavobacterium, Hypomicrobium, Moraxella, Neisseria, Propionibacterium, 

Pseudomonas, Rhizobium, Rhodopseudomonas, Spirillum and Vibrio [53]. Additionally, 

[54] includes Halobacterium and Methanomonas. Pseudomonas is considered to be the 

most common denitrifier that consumes a wide range of organic compounds such as 

methanol, carbohydrates, organic acids, alcohols, benzoates and other aromatic 

compounds [53]. Most of these bacteria have the ability to use oxygen, nitrate and nitrite 

[52]. 

 

The heterotrophic organisms consume organic carbon source. Typically in biological 

nitrogen removal process, the electron donor is biodegradable soluble Chemical Oxygen 

Demand (bsCOD) in raw sewage, bsCOD in generated in the process of endogenous 

decay and exogenous sources such as methanol or acetate [40, 52]. Reaction 

stoichiometry for different electron donors is given below. The term C10H19O3N in each 

reaction represents the biodegradable organic matter in wastewater [51]. 
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Wastewater: 
 

C10H19O3N + 10NO3
-  5N2 + 10CO2 + H2O + NH3 + 10H- 

 

Methanol: 
 

5CH3OH + 6NO3
-  3N2 + 5CO2 + 7H2O + 6OH- 

 
Acetate: 

 
5CH3COOH + 8NO3

-  4N2 + 10CO2 + H2O + 8OH- 

 

[52] 

 

2.1.3 - Partial Nitrification  
 
Oxygen and organic matter requirements involved in the processes of nitrification and 

denitrification within the nitrogen removal treatment contribute to the operational costs of 

the biological treatment. Engineers have designed new processes and operational 

strategies in order to decrease the costs involved.  

 

Partial nitrification is one such strategy that is based on the accumulation of nitrite, which 

is the intermediary compound in both nitrification and denitrification. In this treatment, 

ammonia is just partially oxidized to nitrite and the nitrite thus obtained is then denitrified 

to nitrogen gas [26-31].  This eliminates the extra steps of oxidation to nitrate followed 

by reduction back to nitrite, found in the standard nitrification/denitrification designs. 
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Reaction  

 
NH3 + + 0.75O2 => 0.5NH3 + + 0.5NO2 - + 0.5H2O + 0.5H+ 

                                   (50% Partial Nitrification) 

 

 No single group of bacteria can carry out both Nitritation and Nitratation.  Nitrosomonas 

(ammonia oxidizers) bacteria oxidized ammonia to nitrite whereas Nitrobacter (nitrite 

oxidizers) oxidized the nitrite to nitrate. In nature, nitrite is rarely accumulated possibly, 

because due to a low value of minimum substrate concentration capable of supporting 

steady-state biomass and a relatively high value of substrate utilization rate of nitrite 

oxidizers [12, 27]. Furthermore, nitrite oxidizers have higher affinity for oxygen as 

compared to ammonia oxidizers. Therefore, if we somehow inhibit nitrite oxidation 

without retarding ammonia oxidation, we would be able to achieve nitrite accumulation. 

One convenient way of doing that is by inhibiting nitrite oxidizers. Various research 

studies have been conducted on free ammonia concentration, dissolved oxygen, pH and 

temperature to find the effect of these parameters on nitrite oxidizers. It was found that by 

controlling these parameters, it would be possible to accumulate nitrite.  

Oxygen saturation coefficients of Monod kinetics for Nitritation and Nitratation are 

found to be 0.3 mg/L and 1.1 mg/L respectively [10-12]. Therefore, Nitrite accumulation 

can be achieved by controlling a low concentration of Dissolved Oxygen throughout the 

treatment process. Consequently, it was found that approximately 25% lower oxygen and 

about 40% lower electron donors are required in Partial Nitrification technology which 

can proved to be beneficial with respect to operational costs [12, 32].  

 

The effect of concentration of free ammonia on inhibition of nitrite oxidation was also 

studied by some research work and it has been found that certain concentration of free 

ammonia does inhibited nitrite oxidation [30, 32, 33, 34]. A high concentration of free 

ammonia retarded nitrite oxidation in the beginning, however, with time the nitrite 

oxidizing bacteria adapted to this high concentration of free ammonia [35, 36]. Thus, the 

free ammonia concentration should be gradually increased. Furthermore, studies 

suggested that an excessively high concentration of free ammonia would inhibit ammonia 

 18



oxidation causing treatment to fail [34]. Increase in Total ammonia concentration 

increases the free ammonia concentration. Although some studies show that in the case of 

high ammonia content in the influent, the high nitrite concentration inhibited the 

nitrification biomass [12]. Therefore, Partial Nitrification can be suitable for nitrogen rich 

high to medium strength wastewaters.  

 

Additionally, some studies infer that the intermediate of ammonia oxidation, free 

hydroxylamine (NH2OH), may play an important role in inhibition of nitrite oxidation. 

[37, 38].  

 

Other significant parameters affecting the nitrite oxidation are pH and temperature. These 

affect the concentration of free ammonia by involving in the ionization of ammonia. 

Solid retention time was also found to affect nitrite oxidation [39]. 

 

2.1.4 -  Denitrification with Partial Nitrification   
 
In the denitrification process after Partial Nitrification, nitrite can be directly used as the 

electron acceptor by the organic substrates in wastewater treatment. This process is also 

done in the absence of Dissolved Oxygen or under limited Dissolved Oxygen 

concentrations. The nitrite reductase enzyme is induced in the electron transport 

respiratory chain and helps to transfer hydrogen and electrons to nitrite as the terminal 

electron acceptor. Here, one step is omitted and the nitrite is reduced first to nitric oxide, 

to nitrous oxide and finally to nitrogen gas. 
 

NO2 -  NO  N2O  N2 
 
 

 

As previously discussed, most heterotrophic organisms have the ability to use either, 

nitrate or nitrite in order to carry out denitrification. Therefore, in case of Partial 
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nitrification, nitrite can be directly used. Experimental studies have shown that as 

compared to nitrates, the denitrification rates are 1.5 to 2 times faster in case of nitrite 

[12, 32]. 

 

2.1.5 - Parameters Affecting Partial Nitrification   
 

Ammonia is almost always converted to nitrate in nature due to a low value of minimum 

substrate concentration capable of supporting steady-state biomass and a relatively high 

value of substrate utilization rate of nitrite oxidizers [12, 27]. If certain parameters are 

controlled then it is possible to accomplish Partial Nitrification to nitrite only. 

Experimental research undertakings have been conducted to not only study the critical 

parameters but also their optimal values that will achieve the maximum results.  

 
2.1.5.1 - Effect of pH on Undissociated Ammonia 

Concentration   
 

The value of pH is one of the most important parameters to affect Partial Nitrification. 

High concentration of undissociated ammonia has been considered to cause of nitrite 

accumulation. Alkaline pH has been known to increase the undissociated ammonia 

concentration, consequently, causing nitrite accumulation. The effect of pH on 

undissociated ammonia was investigated [12]. The Dissolved Oxygen was fixed at a 

concentration of 1.5 mg/L.  The pH values 6.5, 7.5, 8.5 and 9.5 were tested. 

Undissociated Ammonia was calculated using the equation given below [34]: 
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The Fig. 2.1.5.1 below shows a plot that depicts the variation of undissociated ammonia 

concentration in mg/L with respect to time in minutes. It is evident from this plot that as 

pH was increased, the undissociated ammonia concentration increased, and the rate was 

relatively fast compared to the timescales in wastewater treatment plants. 
 
 

Fig. 2.1.5.1 : Effect of pH on undissociated Ammonia [12] 
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2.1.5.2 - Effect of pH on Ammonium Oxidation Rate (ka )  
 

The effect of pH on ammonium oxidation rate (ka) was studied when the dissolved 

oxygen concentration was kept fixed at 1.5 mg/L [12]. The maximum ammonium 

oxidation rate (ka) was evaluated by means of Linear Regression Method in Fig. 2.1.5.2. 

Ammonia oxidation followed a zero-order equation as in all the cases the correlation 

coefficient value was high (R2 > 0.99). 

 

As shown in Fig. 2.1.5.2, the ammonium oxidation rate increased when the pH was 

increased from 6.5 to 7.5. However, ammonium oxidation rate decreased when the pH 

was further increased from 7.5 to 8.5. This maybe due to the fact that as the pH was 

increased, the undissociated ammonia concentration increased to a concentration that 

inhibited ammonia oxidation. Ammonium oxidation rate was significantly decreased 

when the pH was further increased from 8.5 to 9.5, showing meaningful retardation of 

ammonia oxidation. Hence, from the results we can say that pH = 7.5, gives an ideal 

concentration of undissociated free ammonia that will not retard ammonia oxidation 

while an attempt is being made to inhibit nitrite oxidation by adjusting the pH of 

wastewater to a slightly alkaline value. Alkaline pH has been found to increase 

concentration of undissociated ammonia, which in turn inhibits nitrite oxidation [12]. 
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Fig. 2.1.5.2 : Effect of pH on Ammonium Oxidation Rate (ka) [12] 
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2.1.5.3 - Effect of pH on Ammonia Oxidation Rate at different 

DO   
 

Fig. 2.1.5.3 shows the effect of pH on ammonia oxidation rate when the dissolved oxygen 

(DO) was varied. As it can be shown by Fig. 2.1.5.3 below that the maximum ammonia 

oxidation was achieved when the pH value was near to 8 and dissolved oxygen (DO) was 

1.5 mg/L. The pH value is consistent with the result obtained in case of undissociated 

ammonia concentration. Therefore, from Figure 2.1.5.3 we can conclude that at DO = 1.5 

mg/L and pH = 7.5 to 8, will give us the conditions most likely to accomplish maximum 

ammonia oxidation.  
 
 

Fig. 2.1.5.3 : Effect of pH on Ammonia Oxidation Rate at different DO 

concentrations [12] 
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2.1.5.4  - Effect of pH on Nitrite Accumulation   
  

From Fig. 2.1.5.1 and Fig. 2.1.5.4, it is evident that there is a correlation between 

ammonia oxidation and nitrite accumulation. As can be seen by the Fig. 2.1.5.1                   

when the pH was 7.5 and 8.5, the ammonia concentration was almost depleted after 80 

minutes. Fig. 2.1.5.4 reveals that the nitrite accumulation is high in the corresponding 

time frame. In experiments conducted in [12], between 100 to 120 minutes, the ammonia-

nitrogen decreased 2.27 mg/L, whereas the nitrite-nitrogen increased 2.14 mg/L, 

suggesting that the ammonia oxidized is being converted to nitrite which in turn, is being 

accumulated and not further oxidized to nitrate. 

 

The plot also shows that the maximum nitrite accumulation was achieved when the value 

of pH= 7.5 followed by pH= 8.5. The minimum amount of nitrite accumulation was seen 

in case of pH= 9.5 which is consistent with the explanation that at high pH, the 

undissociated ammonia concentration is high resulting in retardation of ammonia 

oxidation. However, complete retardation is not occurring as can be seen by low 

concentration of nitrite accumulation present in the system.   

  

Other research studies also revealed interesting observations. One research paper [41] 

showed that it is possible to achieve nitrite accumulation by controlling pH to a high 

value. However, another study [13] indicated that when the pH was controlled below 

6.45, inhibition of nitrification process occurred.  When the pH was kept at 9.05, the 

nitrification was inhibited with no nitrite accumulation. No significant influence of pH on 

nitrite accumulation was observed when the pH was maintained between 7.85 and 8.95. 

This study observed temporal nitrite accumulation after the pH value was changed. 

However, due to biomass adaption after sufficient time no nitrite accumulation was 

accomplished at the end of pH value experiment. This indicates that pH alone cannot be 

considered a key parameter in order to accumulate nitrite on long-term basis.  
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Fig. 2.1.5.4 : Effect of pH on Nitrite Accumulation [12] 
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2.1.5.5 - Effect of DO on Ammonia Oxidation Rate  
 

Dissolved oxygen is considered to be very important operational parameter in order to 

achieve Partial Nitrification. The nitrite oxidizers have low affinity of for oxygen and 

oxygen saturation coefficients of Monod kinetics for Nitritation and Nitratation are found 

to be 0.3 mg/L and 1.1 mg/L, respectively [10-12]. Therefore, it has been thought that for 

Partial Nitrification, a low concentration of dissolved oxygen should be maintained.  

 

Oxygen is a co-substrate in nitrification reaction, along with ammonia. Therefore, its 

concentration influences the reaction rate of both ammonia and nitrite oxidation in dual-

limitation manner [33, 35, 42]. 

 

The effect of dissolved oxygen was studied by keeping the pH fixed at 7.5 and varying 

the concentration of DO, at levels of 0.5 mg/L, 1.5 mg/L and 2.5 mg/L [12].  

 

Fig 2.1.5.5 shows that when DO was increased from 0.5 mg/L to 1.5 mg/L the specific 

ammonia oxidation rate increased. The reason for which is that increase in DO will 

increase the metabolic activity of ammonia oxidizers. However, when it was increased 

from 1.5 mg/L to 2.5 mg/L, the value of ka decreased a little. Since the oxygen saturation 

constant for Monod kinetics for ammonia oxidizers lies in the range of 0.3 to 0.5 mgO2/ L 

[28, 38, 47], therefore, when the DO is increased to 2.5 mg/L, it is possible that the nitrite 

oxidizers began competing for the oxygen, reducing the ammonia oxidation rate.  

 

Research [13] studying the impact of consecutive changes in DO value on nitrification 

reaction also concluded that DO did not influence nitrite accumulation at concentration 

value in the range of 5.7 mg/L to 2.7 mg/L. Some nitrite accumulation was observed at 

DO = 1.7 mg/L. At DO = 1.4 mg/L and 0.7 mg/L, nitrite accumulation increased while 

showing same ammonia consumption, showing a definite correlation between ammonia 

being consumed to be converted into nitrite.  
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Fig. 2.1.5.5 : Effect of DO on Ammonia oxidation rate (ka) [12] 
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2.1.5.6 - Effect of DO on Ammonia Oxidation Rate at various 

pH   
  

The effect of varying dissolved oxygen concentration on nitrite accumulation in 

conjunction with differing pH value was also investigated in order to study the behavior. 

The behavior of nitrification was observed for the DO concentration of 0.5, 1.5 and 2.5 

mg/L for the pH values of 6.5, 7.5, 8.5 and 9.5 each.  

 

As depicted by Fig 2.1.5.6 and Table 2.1.5.8 [12], when the DO was increased from 0.5 

to 1.5 mg/L for the pH value of 6.5, the ammonia oxidation rate increased 80%. For the 

pH value of 7.5, an increase in DO from 0.5 to 1.5 mg/L showed an increase of 50% in 

ammonia oxidation. For the pH value of 8.5, ammonia oxidation rate increased 15% and 

finally, when the pH was set to 9.5 the ammonia oxidation rate increased about 5%. 

Hence the impact of DO for pH 6.5 and 7.5 was very significant. This seems to show that 

although pH=6.5 is considered unfavorable for biomass  (ammonia oxidizers and nitrite 

oxidizers), increase in DO, increases the activity of ammonia oxidizers (AOB) rather than 

Nitrite Oxidizers (NOB) as NOB have more affinity for oxygen, hence there is a 

significant increase in ammonia oxidation due to lack of competition from NOB.  

 

On the other hand, the value pH=7.5 and the DO=1.5 mg/L is considered favorable for 

AOB and unfavorable for NOB because high pH value increases free ammonia content to 

a value that is good to inhibit NOB without inhibiting AOB. Also, NOB requires higher 

concentration of DO to thrive therefore DO=1.5 mg/L is insufficient for NOB. Hence, 

there is a marked increase in ammonia oxidation by AOB as there is not much 

competition for resources from NOB. 

 

When the DO was increased from 1.5 to 2.5 mg/L, a different trend was found. For the 

pH values of 6.5 and 9.5, the specific ammonia oxidation rate remained almost 

unchanged. This is in accordance with the findings of others [13] that proposed that 

nitrification is inhibited with no nitrite accumulation at pH below 6.45 and above 8.95. 

However, for pH 7.5 and 8.5, the specific ammonia oxidation rate increased from 15% to 
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18%. This shows that the higher concentration of DO is favorable for NOB and there is a 

competition for oxygen between AOB and NOB. Therefore, the ammonia oxidation 

increases but not to the extent as in case of DO=1.5 mg/L which is the ideal DO for AOB 

but inadequate for NOB. 

 

 From Fig. 2.1.6.6, we can see that the best results for ammonia oxidation rate are 

achieved when the pH was set at 7.5 and DO concentration was maintained at 1.5 mg/L 

 
 

Fig. 2.1.5.6 : Effect of DO on Ammonia oxidation at various pH [12] 
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2.1.5.7 - Effect of Temperature on Ammonia Oxidation Rate   
  

The influence of temperature on the maximum specific ammonia oxidation rate was also 

studied [12]. For that purpose, the other operational parameters (pH and DO) were 

controlled at their optimal values. The DO was maintained at 1.5 mg/L and pH was fixed 

at 7.5. 

 

As can be seen from Fig 2.1.5.7 below, raising temperature from 12oC to 30oC, increased 

the ka 4.5 times. This observation is in agreement with the conclusion derived in one 

paper [26], where increasing the temperature by 10oC over the range of 5 to 30oC, 

increases the rate of nitrification by two or three times.  
 
 
 

Fig. 2.1.5.7 : Effect of Temperature on Ammonia oxidation rate [12] 
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2.1.5.8 - Optimal Values of Operational Parameters  

 
A detailed study based on the experimental research has revealed that ammonia oxidation 

and nitrite accumulation resulting in Partial Nitrification is sensitive to operational 

conditions like dissolved oxygen, pH, temperature and free ammonia concentration.  

 

Dissolved oxygen is considered the most important factor in achieving Partial 

nitrification. Ammonia oxidation into nitrite and nitrite oxidation into nitrate are caused 

by a group of two different microorganisms namely, Ammonia Oxidizing Bacteria 

(AOB) and Nitrite Oxidizing Bacteria (NOB). No, single group of microorganism can 

achieve both these steps. Therefore, it is possible to accomplish just ammonia oxidation 

to accumulate nitrite by inhibiting NOB. Oxygen Saturation coefficient of Minod kinetics 

for AOB is 0.3 mg O2 / L, whereas, it is 1.1 mg O2/L for NOB [45]. Hence, AOB require 

less amount of dissolved oxygen to thrive when compared to NOB, which require a larger 

concentration of DO. It was found the DO concentration controlled at 1.5 mg/L was 

sufficient to encourage growth of AOB and thus, achieve ammonia oxidation. However, 

this DO concentration was inadequate for NOB to thrive therefore, restricting oxidation 

of nitrite into nitrate, resulting in nitrite accumulation.  

 

The value of pH was also considered to influence ammonia oxidation and nitrite 

accumulation but only in conjunction with DO. It is widely believed that higher pH 

causes higher undissociated ammonia concentration that in turn retards growth of NOB. 

On the other hand, too high a concentration of undissociated ammonia will result in 

inhibiting AOB and causing process failure. However, various experimental works, 

studying the affect of pH on ammonia oxidation and nitrite accumulation concluded that 

pH alone gave inconsistent results.  However, a pH value of 7.5 along with a DO 

concentration of 1.5 mg/L was considered highly favorable in order to accomplish Partial 

Nitrification. Maintaining this value of pH is not difficult in wastewaters as the pH of 

municipal wastewater is commonly in that range. Temperature was also found to 
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influence ammonia oxidation and nitrite accumulation. A temperature of 30oC was 

considered to achieve maximum ammonia oxidation and nitrite accumulation.  

 

Table.2.1.5.8 summarizes the effect of operational parameters, such as DO, pH and 

temperature reported in literature [12]. It can be seen that maximum ammonia oxidation 

and nitrite accumulation was achieved when the DO was controlled at 1.5 mg/L, pH was 

kept 7.5 and a temperature of 30oC was maintained. 

 

Table 2.1.5.8 :Effect of DO, pH and undissociated Ammonia at 300C on Ammonia 

Oxidation and Nitrite Accumulation [12] 

pH T  DO  

 

Undissociated

Ammonia 

Ka 

 

kn 

 

ka/kn 

 oC (mg/L) (mg/L) (10-3 mg NH4 + -

N  

(mg VSS h)-1) 

(10-3 mg NH4 + -N 

 (mg VSS h)-1) 
 

       

6.5 30 0.5 0.22 29.2 27.1 1.077 

    1.5 0.23 52.9 44.4 1.16 

    2.5 0.23 51.7 47.5 1.09 

       

7.5 30 0.5 2.15 76 90.3 0.841 

    1.5 2.22 115.1 125.8 0.915 

    2.5 2.20 111 114.3 0.97 

       

8.5 30 0.5 20.52 81.1 73.1 1.109 

    1.5 20.46 92.2 96.6 0.954 

    2.5 20.65 79.2 83.1 0.953 

       

9.5 30 0.5 74.32 11.4 11 1.036 

    1.5 73.66 15.8 13.9 1.137 

    2.5 73.68 16.3 14.9 1.094 



2.2 Wastewater Treatment Retrofit Designs 
2.2.1 - Ludzack-Ettinger Process 

 

Fig. 2.2.1 : Municipal Wastewater Treatment – Ludzack-Ettinger Process 
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Ludzack-Ettinger is a basic process used for nitrogen removal in small systems. It is 

comprised of a two-step nitrification and denitrification process. Nitrification in the 

Ludzack Ettinger process is carried out in an aerobic zone whereas, Denitrification is 

achieved in anoxic zone. In this design, the anoxic zone is placed ahead of aerobic zone, 

which allows the denitrification zone to receive the required organic material from the 

wastewater plant’s influent. This organic material is used to carry out the process of 

denitrification. The anoxic stage is then followed by an aerobic zone where ammonia is 

being converted to Nitrate. The nitrate formed in aerobic zone is returned to anoxic zone 

by return activated sludge (RAS). Once in the anoxic zone, the oxygen in nitrate (NO3) or 

nitrite (NO2) is used by the heterotrophic bacteria to metabolize the organic matter in the 

wastewater. Since this method relies on RAS to receive nitrate, therefore denitrification is 

limited by RAS recycle ratio. Recently, increased RAS recycle rates have been 

implemented in this process to prevent rising sludge in the secondary clarifiers due to gas 

bubbles from denitrification [55].  
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 2.2.2 - Bardenpho Process 
 

Fig. 2.2.2 : Municipal Wastewater Treatment – Bardenpho Process 
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The Four-step Bardenpho process is most commonly used for Nitrogen Removal. In this 

method, an anoxic zone also carries-out denitrification whereas an aerobic zone performs 

nitrification. However, the Bardenpho process implements pre-anoxic and post-anoxic 

zones for a more complete denitrification. The size of post-anoxic zone may be similar or 

larger than pre-anoxic zone. First, partial denitrification takes place in the pre-anoxic 

zone which is followed by an aerobic zone, where nitrification takes place and ammonia 

is oxidized into Nitrate or Nitrite. After the aerobic zone there is another anoxic zone 

called the post-anoxic zone. The Nitrate which was produced in aerobic zone is fed to the 

post-anoxic zone, where it is reduced to nitrogen gas. After the post-anoxic zone the flow 

is sent for clarification but before entering the clarifier, it is passed through a re-aeration 

zone to strip nitrogen gas from the flow in order to prevent the clarifier from becoming 

oxygen depleted. It is considered a more efficient and comprehensive method for 

nitrogen removal [55].  
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2.3 - EnviroPro Designer 
 

For over four decades, computer-aided process design tools have been successfully used 

for process analysis, evaluation and optimization. It is imperative that similar computer 

aided process designs be applied to analyze and resolve the complex issues of 

environmental processes.   

 

Biological wastewater is a combination of mixed microbial population, soluble and 

suspended organic and inorganic compounds. It is therefore, difficult to predict the 

properties of its components by using standard thermodynamics and transport phenomena 

principles. This makes modeling of biological wastewater treatment extremely 

challenging.  Furthermore, most of the modeling work has been focused on kinetic 

studies based on lumped environmental stream properties (e.g. BOD, COD, TSS) as 

opposed to biodegradability of individual chemicals present in a multi-component 

mixture. Insufficient work has been done on VOC volatilization, sorption of heavy metals 

on the sludge, contribution towards effluent toxicity, etc.  Additionally, most pollutants 

are present in very low concentrations and consequently, require accurate material 

balances that can predict trace contaminant levels.  

 

EnviroPro Designer, a subset of SuperPro Designer from Intelligen Inc., is an 

environmental process simulator which has been designed to enhance the productivity of 

engineers and scientists engaged in the design, development and assessment of integrated 

waste recycling, treatment, and disposal processes. It is specifically targeted to carry out 

material balances on components and analyze the issues related to the hazardous 

chemical (e.g., heavy metals, VOCs) in integrated environmental processes.   

 

This thesis has used EnviroPro Designer in order compare the Full nitrification and 

Partial nitrification processes along with their respective denitrification process as 

implemented on real life municipal wastewater treatment plant. EnviroPro Designer can 
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be a very useful tool for the macro scale evaluations of ammonia removal processes and 

provide insightful conclusions about the practicability of Partial nitrification.  

The following key features of EnviroPro Designer were helpful in its selection for this 

research [1]:  

• Intuitive graphical user interface 

• Complete simulation facilities including mass and energy balances as well as 

equipment sizing. 

• Model for over 40 unit operations used in the environmental and process 

industries. 

• Comprehensive process economics. 

• Characterization of waste stream. 

• Prediction of fate of chemical components. 

• Extensive databases of process equipment, chemical components, and 

construction materials.  

• Batch operations process scheduling. 

• Compatibility with variety of graphics, spreadsheet and word processing 

packages.  

• Rigorous VOC emission calculations from the different treatment units. 

• Advanced hypertext on-line help facility. 

 

The general structure of EnviroPro Designer is comprised of the graphical user interface, 

the process simulation module and the economic evaluation module.  

 

Flowsheets consist of unit operations, material streams and chemical components, and 

examples of flowsheets were shown in Fig. 2.2.1 & Fig. 2.2.2. A flowsheet can have any 

number of these objects.  The flowsheet is created by selecting equipment from the “Unit 

Operations” menu, and material streams are then drawn to connect these units. All the 

input and output information are entered and displayed through dialog windows.  

 

The process simulation module is used to develop and analyze integrated flowsheets for 

waste recycling, treatment and disposal processes.  
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A unit operation is represented by a picture on the flowsheet, and each unit operation has 

a model describing its performance. The main function of the unit operation model is to 

carry out the material and energy balance around that particular process step. Outlet 

stream variables are based on the inlet stream variables and operating specifications 

entered during initialization of unit operations through unit specific dialog windows.  

Sequential modular approach is used to estimate material balances. Recycle streams can 

be included to solve the unit operations that are part of the recycle loop, iteratively until 

the flowsheet calculations converge.  

 

Streams are displayed as polylines on the screen and represent the material flow from one 

unit operation to another. A stream object stores specific information of the components. 

These include mass and mole flowrate, weight or mole percentage, stream name and 

other properties like temperature, pressure, density, etc. 

 

Flow and Composition of material in streams are characterized by chemical components. 

The reason that make EnviroPro Designer ideal to model biological wastewater treatment 

is its ability to distinguish between conventional components that can be described with 

thermodynamics models and non-conventional constituents such as biomass, which 

cannot be satisfactorily modeled with currently available thermodynamic models. In 

addition, this designer is linked to a database module that provides access to 

thermodynamic, environmental (contributions to COD, BOD, TSS, etc) and regulatory 

properties (e.g. SARA title III) for about four hundred chemicals. The user can also 

contribute to this database [1, 2]. 
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Summary 
 
The literature shows that the removal of ammonia is an important problem that the 

Canadian municipalities are encountering in their wastewater treatment systems due to 

ammonia’s adverse environmental effects and its increasingly stringent discharge 

standards. The treatment of ammonia using a combination of full nitrification and 

denitrification is an established process, used in a variety of wastewater treatment plants 

with varying configurations.  In full nitrification, ammonia is first oxidized into nitrite by 

ammonia-oxidizing bacteria. The nitrite is then further oxidized to nitrate by nitrite-

oxidizing bacteria. However, in denitritification processes, the nitrate thus obtained from 

a full nitrification process has to be first converted to nitrite in order to be converted to 

nitrous oxide and nitric oxide and finally to nitrogen gas.  This treatment process involves 

steep operational costs mostly due to high amounts of oxygen and organic matter 

required for the biological nitrogen removal process. Furthermore, it is very challenging 

to dispose of the large magnitude of sludge generated at the end of the treatment in an 

environmentally friendly manner.   

 

More recently, the concept of partial nitrification until nitrite only and then followed by 

denitrification has been shown to be potentially useful and more efficient. Partial 

nitrification avoids the production of nitrate which is then just reduced back to nitrite in 

the traditional full nitrification treatment.  Some optimal operating conditions have been 

identified for this process.  It remains to be quantified how this process design would 

compare in capital and operating costs compared to traditional processes.  Modeling work 

done in this thesis attempts to make such comparisons. Furthermore, optimization of this 

technology to develop a novel nitrogen removal treatment process has also been 

undertaken in this thesis. 
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Chapter 3 

EnviroPro Model Development   
 

In this thesis, EnviroPro Designer has been used to analyze, evaluate and optimize 

wastewater treatment plant with respect to Full and Partial Nitrification technologies. The 

flow sheet incorporated in EnviroPro Designer effectively depicts the processes required 

to convert ammonia into nitrogen gas in municipal wastewater treatment plant. It 

determines the feasibility of Partial Nitrification with its respective denitrification and 

compares it with the existing technology of Full Nitrification by performing rigorous 

mass and energy balances and predicting the treatability and fate of ammonia for each 

possible technology.  The amount of remainder sludge at the end of the each treatment is 

also investigated as its disposal is an important issue in wastewater treatment 

engineering. Furthermore, it has given a comprehensive breakdown of materials and 

streams utilized in each technology, giving valuable information about the amount of 

oxygen consumed by each method of treatment. Additionally, it performed economic 

evaluations to estimate the capital and operating costs of each treatment process in the 

given wastewater treatment system and hence, display a side by side comparison of both 

the technologies to determine the superior technology.  

 

Essentially this thesis incorporates designs of Full System model representing full 

nitrification with respective denitrification from nitrate (NO3) and the basic Partial 

System-1 model that describes the partial nitrification with its respective denitrification 

from nitrite (NO2). The parameters and design specifications for both the models are 

taken from the experimental research studies conducted in this area.  

 

The basic Partial System-1 model is also optimized to Partial System-2 and Partial 

System-3 in order to achieve better results. The optimized versions, Partial System-2 and 

Partial System-3 follow the same design principles as implemented by the basic Partial 

System-1 with exception of certain operational changes. 
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 Chapter 3 describes the design of Partial System-1 model based on the general partial 

nitrification technology. Section 4.2 of Chapter 4 discusses the operational changes 

implemented in Partial System-2 and Partial System-3 in an attempt to improve the 

partial nitrification treatment process.  

 

3.1 -  General Overview 
 

The modeling and retrofit design of municipal wastewater treatment plant incorporated in 

this thesis represents a four staged Bardenpho process for nitrogen removal. The 

Bardenpho process has been selected because it has been known to do a better job in 

terms of NO3-N removal as well as in terms of overall nitrogen removal, and it is a 

relatively common design for nitrogen removal. Furthermore, since this thesis 

investigates partial nitrification therefore, nitrite concentration at the end of the treatment 

is a concern. Hence, it is considered best to incorporate Bardenpho process with two 

anoxic stages rather than Ludzack-Ettinger process with only one anoxic process. This 

existing treatment plant is designed to handle an average flow of 8 MGD. 

 

The EnviroPro Designer flow sheet (Figure 3.2) shows the two anoxic and two aerobic 

stages as separate process units. In reality, all four stages are accommodated by four 

initial tanks. More specifically, one of the four tanks, (25% of total volume) is composed 

of the first anoxic stage, two other tanks (50% of total volume) the first aerobic stage, 

80% of the fourth tank (or 20% of the total volume) is the second anoxic zone and the 

remaining 20% of the fourth tank (or 5% of the total volume) is the second aerobic stage.  

The flow sheet also indicates a Clarifying stage. There is a Sludge Oxidation and Sludge 

thickening process stages implemented as well.  A belt filter press has also been included 

in the design.  It should be noted that a single icon on the flow sheet may represent 

multiple identical units operating in parallel.  

 

Since the objective is to study the behavior of nitrification and denitrification when 

conducted with respect to nitrate and nitrite independently, therefore, it is assumed that 
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plant’s influent contains negligible traces of nitrate and nitrite (i.e. the nitrogen is all in 

the ammonia and organic forms). The first anoxic stage is incorporated in order to 

convert any nitrate or nitrite being recycled in the respective treatment.  It is also assumed 

that the wastewater has medium ammonia content of approximately 21 mg/L.  Domestic 

waste accounts for the microbial population utilized for the treatment process. This 

domestic waste accounts for both autotrophic and heterotrophic bacterial population for 

respective Nitrification and Denitrification processes. The amount of domestic waste 

concentration in the plant’s influent is approximately 157 mg/L (BOD5 = 295 mg/L).  

Domestic waste is the biodegradable carbonaceous matter that provides the carbon source 

for the growth of microorganisms in both Nitrification and Denitrification processes. The 

oxygen requirement is fulfilled by aeration provided in each of the aerobic stages.  An 

explanation for each stream and operation is provided in the following sections. 

 

 

 

 

 

 



3.2 - Flowsheet of Wastewater Treatment Plant 
Fig. 3.2: Flowsheet for Bardenpho Process utilized for the Wastewater Treatment Plant 
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Influent (S-101): 

Influent (S-101) represents municipal wastewater coming into the treatment plant. 

Instream consists of medium strength ammonia and sludge. The details of influent’s 

composition are given in Section 3.3.3. 

 

Grit Chamber (GBX – 101): 

The Grit chamber separates the fixed suspended solids in the influent by slowing the flow 

of the stream. Fixed suspended solids include sand, silt and other non-biodegradable 

matter. This process removes 20% of the solids and grit.  

 

Anoxic Stage (ANX - 101): 

This anoxic stage situated in the beginning of the treatment converts the nitrate or nitrite 

being recycled in the treatment by S-116 into nitrogen gas. This stage utilizes 

heterotrophic bacteria to do the conversion. Carbon dioxide is also being emitted from 

this stage in addition to nitrogen gas.  

 

Aerobic Stage (AB - 102): 

The aerobic stage converts ammonia into nitrate or nitrite depending upon the 

nitrification level required (full or partial). The air is being supplied that makes up the 

oxygen requirement for this aerobic process. Oxygen, nitrogen and carbon dioxide are 

being emitted from the stage. 

 

Flow Splitting (FSP - 101): 

The flow is then split into halves. Fifty percent of the flow is recycled to AXR 101 while 

the remaining fifty percent goes to AXR 102. See Fig. 3.2. Splitting is done to recycle the  

wastewater in order maintain the biomass concentration.  Otherwise, biomass will be 

needed to be grown all over again.  

 

Anoxic Stage (AXR - 102): 

The nitrate or nitrite thus obtained from the aerobic stage AB 102 is then denitrified into 

nitrogen gas in this stage in the heterotrophic microorganisms.  
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Aerobic Stage (AB - 101): 

The remaining unconverted ammonia is then sent to AB 101 in order to be oxidized to 

nitrate or nitrite. 

 

Clarification Stage (CL -101): 

This process clarifies the stream of 98% of fixed suspended solids and the 

microorganisms X-VSS-h, X-VSS-n and X-VSS-i in the stream. After clarification 

process in the wastewater is then goes to liquid effluent. Stream S-120 takes the 

remaining influent to Flow splitter.  

 

Liquid Effluent: 

It makes up the effluent from the first stage of treatment from the plant after clarification 

done in CL 101. This effluent is discharged in the aquatic environment. This thesis is 

focused on the Liquid Effluent. The concentration of components obtained by the 

treatment are analyzed and compared with the permissible values provided by Canadian 

Water Quality for the protection of aquatic life [24, 66]. 

 

Flow Splitting (FS - 102): 

Given the flow from CL 101, ninety five percent is then sent for recycling back to the 

first stage to ANX 101. The remaining is sent to the second stage of the treatment. 

 

Aerobic Stage (AB - 103): 

It oxidizes the remaining ammonia into nitrate or nitrite from the five percent of the flow 

coming from CL 101. 

 

Sludge Thickening Stage: 

In this stage the sludge is dewatered to be thickened. The amount of fixed suspended 

solids, X-VSS-h, X-VSS-n and X-VSS-i removed are 99.5 %. The stream S-129 coming 

out of the thickening stage is recycled back to stage one treatment to ANX 101. The 

stream S-128 goes to flow splitter. 
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Flow Splitting (FSP - 104): 

It splits the flow. The 10% goes to the belt Filtration via S-131 whereas, the 90% goes for 

the second stage of treatment to AB 103. 

 

Belt Filtration (BF - 101): 

Belt filtration BF 101 is vacuum filter. The water is entering BF 101 from S-132 to wash 

the filtrate. Stream S-133 takes the wastewater back for recycling in ANX 101 while the 

remaining goes out of the treatment plant as sludge effluent. 

 
Sludge Effluent 

Sludge effluent represents the Sludge obtained after the treatment. This sludge is then 

further treated and disposed off. This thesis does not analyze the sludge with respect to 

regulated guidelines.  
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3.3 - Component Variables 
 

The models designed in this thesis consist of following component variables that have 

been either imported from EnviroPro Designer’s database or user defined as given in 

Table 3.3.  

 

Table 3.3 : Component Variables of Model Designs 

 

 ALL 
COMPONENTS 

VARIABLES 

USER 
DEFINED 

(mg/L) 

 
EXPLANATION 

    
1 Ammonia No Dissolved NH3/NH4 (not NH3-N) 
    
2 Carbon Dioxide No Dissolved CO2  (in the form of HCO3 or H2CO3) 
    
3 DomWaste Yes Domestic Waste - (bio-degradable) 
    
4 FSS Yes Fixed Suspended Solids (non-biodegradable) 
    
5 NO3  Yes Nitrate as used in Full Nitrification 
    
6 NO2  Yes Nitrite as used in Partial Nitrification  
    
7 Oxygen No Diffused through aeration 
    
8 TDS Yes Total Dissolved Solids  (non-biodegradable) 
    
9 X-VSS-h Yes Active Heterotrophic biomass used in 

Denitrification 
    

10 X-VSS-n Yes Active Nitrifiers Autotrophic biomass  
    

11 X-VSS-i Yes Inert biomass represents Biomass Decay 
    

12 Water No Total water 
    

13 Nitrogen No End Product in Denitrification 
 

 49



3.3.1 - Register/Edit Pure Components 
 

All the component variables given in Table 3.1 appear in both Full and Partial Systems 

design models as reactants, products, influents and effluent of the wastewater treatment 

plants. Any component variables used in the model must be first defined in the special 

section of the model.  EnviroPro Designer incorporates the user-friendly interface of 

Register/Edit Pure Components to enter these components.  The components can only be 

initialized at this interface in order to be used anywhere in the model for performing any 

material or energy balance, simulating instreams, effluents or emissions. The EnviroPro 

Designer consists of a vast databank of around four hundred chemicals. The databank 

also provides their thermodynamics, environmental and regulatory properties. The 

components included in the design can either be imported from the databank provided or 

can also be user defined. The properties of both the component variable imported from 

the databank as well as user-defined variable can be changed if desired. The state of each 

component (solid, liquid or gaseous) is specified for appropriate calculation of emissions 

and effluent components. It is also important to indicate whether a component is Biomass 

in order for EnviroPro Designer to calculate the sludge residence time. Unless biomass is 

indicated at this interface, the EnviroPro Designer does not calculate sludge residence 

time of unit operation. Furthermore, it also fails to provide a drop down menu of 

available biomass components in reaction kinetics of the unit operation. 
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3.3.2 - Edit Stock Mixture 
 

A stock mixture is simply a mixture of pure components with a given composition (in 

mass or molar percentage), which EnviroPro-Designer keeps in its own stock mixture 

databank. Pre-existing stock mixture can be selected through Edit Stock Mixture 

interface. It is also possible to register an entirely new stock mixture. Air is the stock 

mixture in the model designs created for this thesis. Air defined through this interface is 

then included in the Aerobic BioOxidation stage. Oxygen for aerobic oxidation is 

retrieved through this air. The remaining oxygen is emitted. The dissolved oxygen 

concentration and air requirements are however provided in the Aerobic Operation Unit.  
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3.3.3 - Stream Input 
 

Input stream composition and temperature and pressure are supplied through this 

interface. The flow rate of each component is also entered here.  On the basis of provided 

information, EnviroPro Designer calculates the concentration and mass composition.  

This interface also displays the state of each component in the input stream as provided in 

the Register/Edit Pure Components.  

 

The input streams for both the design scenarios are the same. Since we want to study the 

how Nitrite and Nitrate affects nitrification and denitrification independently, therefore, 

for simplicity, it has been assumed that no or negligible traces of nitrate and nitrite are 

present in the influent. It is also considered that the plant influent has medium strength of 

ammonia. The Components making up the plant’s influent with the initial concentration 

are given as follows in Table 3.3.3. [18, 56]. 

 

Table 3.3.3 Influent Components 

INFLUENT 
COMPONENTS 

INITIAL 
CONC 
(mg/L) 

  
Ammonia 21 

  
Carbon Dioxide 51 

  
DomWaste 157 

  
FSS 60 

  
TDS 306 

  
X-VSS-h 53 

  
X-VSS-n 3 

  
X-VSS-i 51 

  
Water 999,772 

 52



3.4 - Environmental Properties of Domestic Waste 
 

Domestic waste is organic, soluble, biodegradable material that consists of microbial 

populations and other material. It also serves as the substrate for the bacterial population 

to conduct Nitrification and Denitrification.  Some of the environmental properties of 

Domestic Waste are given below in Table 3.4 [18]. 

 

Table 3.4 : Environmental Properties of Domestic Waste 

 Property Value Units 
   

COD 2.00 g O2/g 
   

ThOD 2.00 g O2/g 
   

BODu /COD 1.00 g/g 
   

BOD5 / BODu 0.68 g/g 
   

TOC 0.6 g C/g 
   

TP 0.00 g P/g 
   

TKN 0.07 g N/g 
   

NH3-N 0.00 g N/g 
   

NO3-N 0.00 g N/g 
 

 

The environmental properties in Table 3.4 can be displayed by selecting the DomWaste 

Component in Register/Edit Components and selecting the properties option. Although 

values for these types of properties are already present in component databank for many 

components, however, these properties can be updated if required. Furthermore, 

whenever a new component is added, the environmental properties of that component 

should be included as these properties along with the composition of streams are used to 

calculate the lumped environmental stream properties (BOD, COD, TKN, TSS, etc). 
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3.5 - Environmental Reaction Kinetics 
 

In EnviroPro Designer, the kinetics of Environmental Reactions is described as follows: 

 

Equation (1): 
 

Rate          =       k                    ×   { S-Term}          ×   {O-Term}       ×   {B -Term}  

mg/L – h             rate  

                        Constant                   Substrate Term         Other Term          Biomass  Term   

                           

                             

                                               

3.5.1 - Rate  Constant (k) 
 
A specific rate constant (k) of the reaction can be indicated here. Instead, to better fit the 

experimental data of biodegradation reaction, rate constant can also be  calculated as a 

function of temperature by using the Arrhenius equation or a modified Arrhenius 

equation. 

 

 

3.5.2  - S - Term 
 

The S – Term represents a biodegradation reaction being carried out. Through the S-term 

the user selects the appropriate Substrate’s kinetic expression (e.g., Monod, Haldane, 

Grau, First Order, None). It also identifies the Substrate being utilized in that particular 

reaction. The value of the Half Saturation Constant (Ks) of the reaction (for Monod and 

Haldane kinetics) is also specified in this section. 
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3.5.3 - O - Term 
 
This term is used to define a second substrate (e.g., Oxygen in our case). It specify the 

impact of the concentration of other component on the reaction. This is helpful in 

defining aerobic oxidation reactions such as nitrification where oxygen plays an 

important role in determining whether full or partial nitrification will take place. The 

kinetic expression and Half Saturation constant also needs to be given for this second 

substrate. 

 

3.5.4 - B - Term 
 
The B-Term indicates the Biomass component (if any) that affects the kinetics of a 

reaction. It provides a drop down menu which displays all the components defined as 

Biomass in Register/Edit Pure Components. Various types of biomass (e.g., heterotrophic 

biomass, nitrifiers or autotrophic biomass) used in different reactions can be identified 

and tracked through this term. Hence, the use of appropriate type of biomass to catalyze a 

certain reaction is enabled through this term.   
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3.6 - Common Reactions of Full System & the 

Basic Partial System-1 
 

The models of Full System and Partial System-1 for nitrogen removal involve a set of 

environmental reactions. The user has to specify the particular reaction or reactions being 

carried out by the unit operations that are depicted on flow sheet.  There is a model for 

each unit operation that defines its performance. The specifications regarding each unit 

operation are provided and the stoichiometry of each reaction is also indicated by the 

user. EnviroPro Designer on the basis of subroutines used to model the unit operation and 

the variables provided at the inlet calculates the results achieved by that operation and 

simulate them at the outlet stream of that operation.  

 

This thesis consists of some environmental reactions occurring in aerobic stage operation 

that is the same for both the Full and Partial systems of nitrogen removal. The 

calculations and parameters of these common reactions are discussed in detail in this 

section. The specifications thus obtained for each reaction are then briefly mentioned in 

each system in tabulated form.   

 

3.6.1 - DomWaste Degradation Reaction  
 

This reaction represents the degradation of Domestic waste present in the municipal 

wastewater to produce heterotrophic biomass or X-VSS-h. The Domestic waste 

represents the carbonaceous matter and acts as the substrate for the bacterial growth.  

This reaction is included in each aerobic stage implemented in both Full Nitrification and 

Partial Nitrification and forms the starting point for other biological reactions being 

carried out in each system.  
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3.6.1.1 - Reaction 
 

This reaction is described as follows [18].  

 
 
DomWaste +   NH3   +   O2         X-VSS-h   +   H2O   +   CO2 
        1g              0.1g      1.4g     0.8g             0.8g      0.9g 
 

 

The stoichiometry of this reaction, and many others, is on a mass basis, since there is no 

accurate way to characterize the molar mass of many surrogate parameters such as 

DomWaste. 

 

3.6.1.2 - Yield Coefficient 
 

Yield coefficients can be derived from the above reaction stoichiometry to give: 

 

Y = 0.8 mg vss / mg DomWaste 

 

From Table 3.4,  

1 mg of DomWaste = 2 × 0.68  

                                = 1.36 mg BOD5  

Therefore, yield coefficient Y becomes; 

Y = 0.8/1.36  

Y = 0.588 mg vss / mg BOD5 
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3.6.1.3 - Kinetics of the Reaction 
 

In domestic waste degradation the Substrate-Term follows the Monod Kinetics in the 

Equation (1) mentioned in Section 3.5.  The O-term (second substrate) in this particular 

reaction has been neglected, whereas the B-term (biomass) follows first order kinetics 

and the biomass component used is heterotrophic bacteria.  

 

3.6.1.4 - Rate Constant 
 

k = 2.61 BOD5 / (mg vss –d)  [18] 

k = 0.109 mg BOD5 / (mg vss –h) 

k = 0.109 / 1.36    (since 1 mg of DomWaste = 1.36 mg BOD5 from Table 3.4) 

 

k = 0.08 mg DomWaste / mg vss – h  

 

The above rate constant is assumed to be kmax, applicable at To= 20oC 

This value can be adjusted according to temperature variations by assuming a value of  

θ = 1.04 [18]. 

 

And using the following expression: 

 

k= kmax θ T-T
0 

 

3.6.1.5 - Half Saturation Constant 
 

The half Saturation constant is used in the S-term, following Monod’s kinetics.  

 

Ks = 6.8 mg BOD5 /L  [18] 

Ks = 6.8 / 1.36 

Ks = 5 mg DomWaste / L 

 58



3.6.2  - Heterotrophic Biomass (X-VSS-h) Decay 

Reaction 
 
The decay of biomass (i.e. loss of activity) in any biological reaction is a common 

phenomenon that needs to be accommodated in the system design to realistically simulate 

the process occurring in real world. X-VSS-h Decay reaction has been created to 

represent the heterotrophic biomass decay occurring in both Full and Partial Systems.  

 

3.6.2.1 - Reaction 
 

The reaction with its mass based stoichiometry can be described as follows [18]: 

 

X-VSS-h   +  O2            NH3   +   CO2     +   H2O     +    X-VSS-i 

  1.05 g          1.15 g            0.1 g         1.45 g       0.45 g          0.20 g 

             

 

3.6.2.2 - Kinetics of the Decay Reaction 
 

In heterotrophic biomass decay, the Substrate-Term follows first order kinetics in the 

Equation (1) mentioned in Section 3.5. The O-term and B-term in this particular reaction 

has been neglected.  
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3.6.2.3 - Rate Constant 
 

The decay constant for heterotrophic biomass is well documented in literature.  The value 

of the decay constant (kdmax = 0.002 h-1 at 200C) in both Full and Partial systems are the 

same as only one type of bacteria is involved, and it has been taken from [57]. The value 

of k with respect to the temperature is then calculated by the following expression: 

 

k= kmax θ T-T
0 

 

The value of theta has been taken from [58]. All the values are tabulated in Section 3.7.2. 

 

3.6.3 - Autotrophic Biomass (X-VSS-n)  Decay Reaction 
 
The decay of autotrophic biomass used for nitrifying have also been accommodated in 

both Full and Partial systems of nitrogen removal as X-VSS-n. In Full Nitrification       

X-VSS-n represents Nitrosomonas and Nitrobacter whereas, in Partial Nitrification, X-

VSS-n represents Nitrosomonas only. In both the cases, the reaction has been included in 

the aerobic stages.     

 

3.6.3.1 - Reaction 
 
The reaction with its mass based stoichiometry can be described as follows [18]: 

 

X-VSS-n   +  O2            NH3   +   CO2     +   H2O     +    X-VSS-i 

  1.05 g          1.15 g            0.1 g         1.45 g       0.45 g          0.20 g 

             
Here, X-VSS-i represents the dead or inactive autotrophic biomass.  

 

 

 60



3.6.3.2 - Kinetics of the Reaction 
 
In autotrophic biomass Decay, the Substrate-Term follows first order kinetics in 

Equation (1) mentioned in Section 3.5, where the substrate is autotrophic bacteria. The 

O-term in this particular reaction is neglected whereas, B-term is also neglected.  

 

3.6.2.3 - Rate Constant 
 
The decay constant for autotrophic biomass is also well established in literature.  [60] 

gives the value of decay constant for overall Nitrosomonas and Nitrobacter cultures as kd 

= 0.002 h-1,.which applies to Full Nitrification. However, due to unavailability of decay 

constants for Nitrosomonas bacteria alone, the same value has been assumed for Partial 

Systems. These values have been tabulated in Section 3.7.2.4, and this value is subjected 

to a sensitivity analysis as part of the results.  
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3.7 – Full System For Nitrogen Removal 
                       

The model for the Full System for nitrogen removal essentially implements an aerobic 

stage that achieve Full Nitrification of the ammonia into nitrate and an Anoxic stage that 

carries out denitrification from nitrate into nitrogen gas.   

 

In this thesis, it is assumed that the ideal conditions exist where ammonia converts 

completely into nitrate due to rapid oxidation of nitrite and therefore, there is no 

significant nitrite accumulation. Similarly, all the denitrification being accomplished is 

from nitrate only.   

 

Table 3.7 lists the general specifications implemented throughout the model for the Full 

system of Nitrogen removal. 
 

Table 3.7 : Operational Parameters of Full System of Nitrogen Removal 

Property  Value Unit Reference 
     

Pressure P 1.013 bar [18] 
     

Room 
Temperature 

To 20  0C  

     
Set Temperature T 15   0C [18] 

     
pH pH 7.2  [59] 
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 3.7.1 - Aerobic Oxidation Stage 
 

Aerobic oxidation comprises a set of reactions that represents the process of ammonia 

being oxidized into nitrate with the help of autotrophic microorganisms. Since it is an 

aerobic reaction therefore, this process occurs in the presence of oxygen. This stage 

includes production and growth of the microbial population that includes autotrophic and 

heterotrophic microorganism, as they require oxygen to grow. This stage also 

accommodates reaction that represents decay of these microorganisms as well. 

 

The following operating conditions are implemented throughout the reactions involved in 

this stage.  
 

Table 3.7.1: Operating Conditions for Aerobic Oxidation 

 Components Value Unit Reference 
     
1 Dissolved Oxygen 2 mg/L [62] 
     
2 Aeration 

Requirement 
0.010 m3 air m3  

( liq/min) 
[63] 

 
 

Reactions are described in following sections. 
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3.7.1.1- DomWaste Degradation Reaction 
 

The DomWaste Degradation reaction represents the growth of heterotrophic 

microorganisms to be utilized in the denitrification process in the Full System of nitrogen 

removal, which was explained in detail in Section 3.6.1 

 
Table 3.7.1.1.A - General Specifications for Domestic Waste Degradation in         

Full System 

1 Substrate DomWaste Domestic Waste
    
2 Product 

Biomass 
X-VSS-h Heterotrophic  

 
Table 3.7.1.1.B - Kinetic Parameter for Domestic Waste Degradation in Full System 

 Parameter  Value Unit Reference 
      
1 Half Saturation 

Constant 
Ks 5  mg/l As calculated in 3.6.15 

      
2 Rate of substrate 

utilization @ 20 0C 
kmax  

 
0.08  h-1  

As calculated in 3.6.14 
      
3 Theta θ 1.04  [58] 
      
4 Rate of substrate 

utilization @ 15 0C 
k  0.065761 h-1 Calculated by EnviroPro 

(See section 3.6.14) 
 

      
5 Yield Y 0.8 mg vss /  

mg 
DomWaste 

As calculated in Section 
3.6.12 
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3.7.1.2 - Full Nitrification Reaction 

 
The design of full nitrification in wastewater treatment requires that the sludge age in the 

bioreactor be considerably more than the minimal growth time of the nitrifying bacteria. 

For that reason, the volume of the nitrifying bioreactor is kept relatively larger to 

generate low loading rates.  One consequence is that a large size of bioreactors 

contributes to high capital costs [14]. This reaction also includes the growth of nitrifying 

bacteria. 

 
 
3.7.1.2.1 - Reaction 
 
NH3      +   O2              +   CO2             X-Vss-n  +  H2O          +   NO3 
(7.5 g)       (29.46 g)        (2.19 g)             (1.12 g)        (11.29 g)         (26.74 g) 
 
 

 

3.7.1.2.2 - Yield Coefficient 
  
Yield Coefficient for Full nitrification has been taken from the table provided in [60]. 
 
Y = 0.2 mg VSS/ (18/14) mg NH4 

 
    = 0.155 mg VSS/ mg NH4 

 
    = 0.155 mg VSS/ (17/18) mg NH3 

 
  

Y = 0.15 mg VSS/ mg NH3 
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3.7.1.2.3 - Kinetics of the Reaction 
 

In Full Nitrification, the Substrate-Term follows Monod’s kinetics in the Equation (1) 

mentioned in Section 3.5, where the substrate is ammonia.  The O-term in this particular 

reaction is with respect to oxygen and follows Monod’s kinetics, whereas the B-term 

follows first order kinetics and the biomass component used is autotrophic bacteria (X-

VSS-n), which represents both Nitrosomonas and Nitrobacter.  

 

3.7.1.2.4 - Rate Constant 

 
Calculating growth rate of overall microorganisms ( µ’m ) under the stated 
conditions of T, pH and DO: 
 
From [60], 
                          µm  overall for Nitrosomonas & Nitrobacter = 1 day-1 
 
             
From [61],  
 
            µ’m =  µm   *    e 0.098(T-15)  *     DO/ Ko +DO            *        [1 – 0.833(7.2 – pH)] 
                               

             Temperature                  Dissolved Oxygen                                   pH 
                                          correction  factor              correction factor                             correction factor 
                               
                   =  (1) * (1) * 2/(1.3+2) * (1)          
 
          µ’m    = 0.606 day-1   
            
          µ’m    = 0.025 h-1 
 
 
Calculating Rate of substrate utilization @ 15 0C: 
 
From [61],  

k =  µ’m    / Y 
 

               =  0.025/0.2 
 
k = 0.12  h-1 
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3.7.1.2.5 - Half Saturation Constant 
 

Both the S-Term and O-term follow Monod’s kinetics in this reaction, therefore there are 

two half saturation constants used. The half Saturation constant for the S-Term (Ks) is 

taking into account the overall reaction of Nitrosomonas and Nitrobacter. The half 

Saturation constant for the O-Term (Ko) considers the oxygen behavior. Both Ks and Ko 

are well documented. Ks = 1.4 mg/L {0.2 – 5.0 mg NH4 – N, mg/l}[60] and Ko=1.3 

mg/L [61]. 
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3.7.1.2.6 -  Parameters 
Table 3.7.1.2.6.A : General Specifications for Full Nitrification Reaction 

1 Substrate Ammonia Dissolved NH3 or NH4  but not NH3-N 
    
2 Product 

Biomass 
X-VSS-n Nitrosomonas & Nitrobacter 

    
3 End Product Nitrate  

 
 

Table 3.7.1.2.6.B - Kinetic Parameters for Full Nitrification Reaction 

 Parameter  Value Unit Reference 
      
1 Half Saturation 

Constant 
Ks 1.4 mg/L [60] 

 
      
2 Half Saturation 

Constant for DO 
Ko 1.3 mg/L [61] 

      
3 Yield Y 0.15 mg VSS/ mg NH3 [60] 
      
4 Max. Specific 

growth rate  
 

µm 1.0 day-1  [60] 

      
5 Growth rate under 

the specific 
conditions of 

Temperature, DO, 
pH 

µ’m 0.025 h-1 Calculated in section 
3.7.1.2.3 

      
6 Rate of substrate 

utilization @ 15 0C 
k  0.12 h-1 Calculated in section 

3.7.1.2.3 
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3.7.1.3 - Heterotrophic Biomass (X-VSS-h) Decay Reaction 
 

X-VSS-h Decay reaction represents the decay of the heterotrophic microbial population 

being used in denitrification. All the parameters chosen for this process are taken with 

respect to heterotrophic bacteria.  Calculations done in order to design this reaction are 

explained in detail in Section 3.6.2 

 
Table 3.7.1.3.A : General Specification for Heterotrophic Biomass Decay in           

Full System 

1 Substrate X-VSS-h Heterotrophic Bacteria
    
2 Product 

Biomass 
X-VSS-i Dead Heterotrophic Bacteria 

 

 
Table 3.7.1.3.B -Kinetic Parameter for Heterotrophic Biomass Decay in Full System 

 Parameter  Value Unit Reference 
      
1 Decay Constant for 

Heterotrophic 
Biomass @ 20 0C 

kmax  
 

0.002 h-1 [57] 

      
2 Theta θ 1.04  [58] 
      
3 Decay Constant for 

Heterotrophic 
Biomass @ 15 0C 

k  0.001644 h-1 Calculated by EnviroPro as 
shown in 3.6.14 
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3.7.1.4 - Autotrophic Biomass (X-VSS-n)Decay Reaction 
 

X-VSS-n Decay reaction depicts the decay of autotrophic bacteria used in the full 

nitrification process. In Full nitrification, X-VSS-n represents both Nitrosomonas and 

Nitrobacter and X-VSS-i represents dead Nitrosomonas and Nitrobacter. In selecting the 

parameters therefore, the overall behavior of combined Nitrosomonas and Nitrobacter is 

taken in view. The calculations done for this reaction are explained in detail in Section 

3.6.3.  

 
Table 3.7.1.4.A -General Specification for Autotrophic Biomass in Full System 

1 Substrate X-VSS-n Autotrophic Bacteria 
    
2 Product Biomass X-VSS-i Dead Autotrophic Bacteria 
 

 
Table 3.7.1.4.B -Kinetic Parameter for Autotrophic Biomass in Full System 

 Parameter  Value Unit Reference 
      
1 Decay Constant for 

Overall 
Nitrosomonas and 

Nitrobacter @      
200C 

kmax  
 

0.002 h-1 [57] 

      
2 Theta θ 1.04  [64] 
      
3 Decay Constant for 

Overall 
Nitrosomonas and 

Nitrobacter @      
150C 

k  0.001644 h-1  
As calculated in 3.6.14 
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 3.7.2 - Anoxic Stage 

 
The anoxic stage in this model is comprised of the denitrification reaction since it is an 

anoxic reaction therefore, this process occurs in the absence of oxygen. The growth and 

death of the microbial population has already been accommodated in the reactions 

included in aerobic stage. 
    

3.7.2.1 - Denitrification Reaction 
 

The denitrification reaction represents the process of nitrate (NO3) being first reduced to 

nitrite (NO2), then to nitric oxide (NO) and nitrous oxide (N2O) and finally into  nitrogen 

gas (N2) with the help of heterotrophic microorganisms. The heterotrophic bacteria 

require carbon as electron donor in order to perform denitrification. In these designs 

domestic waste in the municipal wastewater provides sufficient source of carbon for this 

reaction. 

 

3.7.2.1.1 - Reaction: 
 
The mass of each component can be evaluated by the stoichiometry of the reaction. This 

reaction is taken based on the Yield coefficient derived in the next section.  

 
DomWaste  +  NO3              CO2       +   N2           +   H2O          +    X-Vss-h 
(34.6 g)            (108 g)    (48 g)         (17 g)            (61.4 g)           (16.2 g)   
                 
             (142.6 g )         (142.6 g ) 
   
 
3.7.2.1.2 - Yield Coefficient 
 

Yield Coefficient of heterotrophic bacteria has been taken from [57]. 

Y=0.4 to 0.9 g VSS/g NO3-N 

Y= 0.7 × (14/62) 
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Y=0.15 g VSS / g NO3 

This value is also reported in other literature [21].  

 

The domestic waste yield has been taken as 0.32 g Domestic waste  / g NO3 as indicated 

by [52]. 

 

3.7.2.1.3 -  Kinetics of the Reaction 

 

In denitrification from nitrate, the Substrate-Term follows Monod’s kinetics in Equation 

(1) mentioned in Section 3.5, where now the substrate is nitrate (NO3). The O-term is 

neglected because it is an anoxic reaction, while the B-term follows first order kinetics 

and the biomass component used is heterotrophic bacteria.  

 

3.7.2.1.4 - Rate Constant 

 

The value of kmax has been taken as 0.05 h-1 from [22] which also falls in the range 

mentioned by [18].  

 

The k value adjusted according to the temperature is then calculated by EnviroPro 

Designer by:  k= kmax θ T-T
0  

 

3.7.2.1.5 - Half Saturation Constant 

 

The half Saturation constant for denitrification from nitrate is estimated as follows: 

 
From [57], 

 

Ks for denitrification = 0.1 NO3 – N, mg/l  

                                   = 0.1 * 62/ 14 

                                   = 0.44 NO3 mg/L 
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3.7.2.1.6 - Parameters 
 

Table 3.7.2.1.6.A – General Specification for Denitrification in Full System 

1 Substrate NO3 
   
2 Biomass Product X-VSS-h 
   
3 End Product N2 

 

 

Table 3.7.2.1.6.B - Kinetic Parameters for Denitrification in Full System 

 Parameter  Value Unit Reference 
      
1 Half Saturation 

Constant 
Ks 0.440  

 
mg NO3 /L As Calculated above 

      
2 Rate of substrate 

utilization @ 200C 
kmax 0.05 

 
h-1 [18] 

[22]  
1.29 day-1 

      
3 Temperature 

Coefficient 
θ 1.16  [65] 

      
4 Rate of substrate 

utilization @ 150C 
k 0.02381 h-1  

Calculated by EnviroPro 
      
5 Yield  Y 0.15 

 
g VSS/g NO3 [21, 57] 
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3.8 - The Basic Partial System-1 For Nitrogen 

Removal  
 

The model for the basic Partial System-1 for nitrogen removal involves an aerobic stage 

that achieves Partial Nitrification of the ammonia to nitrite and an Anoxic stage that 

performs denitrification from nitrite to nitrogen gas.   

 

Parameters such as Temperature, pH and Dissolved Oxygen concluded to be significant 

for Partial System (as discussed in Chapter 2) are implemented strictly throughout the 

process design and it is assumed that almost all ammonia is converted into nitrite. 

   

The plant’s influent is considered to contain no significant traces of nitrate, to study the 

independent affect of nitrite on the nitrification and denitrification.  Hence, it is assumed 

that all the denitrification being accomplished is from nitrite only.   

 

The general specifications of Partial System-1 of nitrogen removal are given below: 
 

Table 3.8 : General Specification for Partial  System-1 of Nitrogen Removal 

Property  Value Unit Reference 
     

Pressure P 1.013 bar [18] 
     

Room 
Temperature 

To 20  0C  

     
Set Temperature T 30  0C [12] 

     
PH pH 7.2  [57] 
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3.8.1 - Aerobic Oxidation Stage 
 
The aerobic oxidation reaction occurs in the presence of oxygen and comprises of set of 

reactions that represents the process of ammonia being oxidized into nitrite with the help 

of autotrophic Nitrosomonas bacteria only. It is an important design requirement that the 

growth of the Nitrobacter population of autotrophic bacteria present in the wastewater be 

suppressed in order to prevent oxidation of nitrite into nitrate. This is done by controlling 

the Dissolved Oxygen content to 1.5 mg/L, as Nitrobacter requires higher dissolved 

oxygen content to thrive.  In this thesis, the Dissolved Oxygen is controlled by 

controlling aeration requirements. Hence, reducing the aeration requirement in case of 

Partial System-1 also reduces the Dissolved Oxygen content.  

 

The aerobic oxidation stage of the Partial System-1 also accommodates production and 

growth of the microbial population that includes both Nitrobacter bacteria and 

heterotrophic microorganism, as they require oxygen to grow. This stage includes 

reactions that represent decay of these microorganisms as well. 

 

The following operating conditions are implemented throughout the reactions involved in 

this stage of the basic Partial System-1. 
 

 

Table 3.8.1: Operating Conditions of Aerobic Oxidation for Partial System-1 

 Components Value Unit Reference 
     
1 Dissolved Oxygen 1.5 mg/L [12] 
     
2 Aeration 

Requirement 
0.0070 m3 liq/min [14]  

 
                                 

 

 

 75



 3.8.1.1 - DomWaste Degradation 
 

There is a reaction to depict DomWaste Degradation in Partial System-1 as well. This 

reaction represents the growth of heterotrophic microorganisms to be utilized in the 

denitrification process.  A detailed explanation is given in Section 3.6.1. 

 

Table 3.8.1.1.A : General Specifications of Domestic Degradation for                

Partial System-1 

1 Substrate DomWaste Domestic Waste
    
2 Product 

Biomass 
X-VSS-h Heterotrophic  

 

 
Table 3.8.1.1.B - Kinetic Parameter of Domestic Degradation for Partial System-1 

 Parameter  Value Unit Reference 
      
1 Half Saturation 

Constant 
Ks 5  mg/L As calculated in 3.6.15 

      
2 Rate of substrate 

utilization @ 20 0C 
kmax  

 
0.08  h-1  

As calculated in 3.6.14 
      
3 Temperature 

Coefficient 
θ 1.04   

[58] 
      
4 Rate of substrate 

utilization @ 300C 
k  0.118365 h-1  

As calculated in 3.6.14 
 

      
5 Yield Y 0.8 mg vss /  

mg DomWaste 
 

As calculated in 
Section 3.6.12 
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3.8.1.2 - Partial Nitrification Reaction 

 
Initially, the loading rates or the size of the bioreactor is kept same in the Partial 

Nitrification design. The size is then changed to observe the effect on ammonia 

conversion. Changing the size of the bioreactor will decrease the capital cost. In this 

reaction, ammonia is oxidized to nitrite by Nitrosomonas bacteria only. For this purpose, 

the dissolved oxygen level is kept to 1.5 mg/L to inhibit growth of Nitrobacter and 

therefore, discourage nitrite oxidation. Although, nitrite oxidation is not inhibited 

completely, however, it is assumed that the nitrate being formed is negligible when 

compared to being nitrite accumulated. This reaction also accounts for the growth of 

Nitrosomonas bacteria. 

 

3.8.1.2.1 - Reaction 

 
The process reaction is given by: 
 
NH3    +   O2              +   CO2             X-Vss-n  +  H2O          +   NO2 
(7.5 g)      (22.97 g)        (1.76 g)             (0.91 g)      (11.4 g)         (19.92 g) 
 
                ( 32.23 g)                                           (32.23 g) 
 
 

3.8.1.2.2 - Yield Coefficient 
 

Yield coefficient of Nitrosomonas is 0.04 to 0.13 g VSS/ g NH3 – N [20]. 

 

Y = 0.1 g VSS/ g NH3 - N 

Y = 0.1 g VSS/ (17/14) g NH3  

Y =  0.12  g VSS/ g NH3 

 

The yield coefficient is taken into consideration when evaluating the reaction for Partial 

Nitrification. 
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3.8.1.2.3 - Kinetics of Reaction 

 
In Partial Nitrification, the Substrate-Term follows Monod’s kinetics in Equation (1) 

mentioned in Section 3.5, where the substrate is Ammonia. The O-term in this particular 

reaction is with respect to oxygen and it follows Monod’s kinetics, whereas the B-term 

follows first order kinetics and the biomass component used is autotrophic bacteria (X-

VSS-n) which represents only Nitrosomonas.  

       
3.8.1.2.4 - Rate Constant 
 
The rate constant for partial nitrification can be calculated as follows: 

 
 

Calculating growth rate of overall microorganisms ( µ’m ) under the stated 

conditions of T, pH and DO: 

From [61], 

 

            µ’m =  µm   *    e 0.098(T-15)  *     DO/ Ko +DO            *        [1 – 0.833(7.2 – pH)] 
                               

             Temperature                  Dissolved Oxygen                                   pH 
                                          correction  factor              correction factor                             correction factor 
                               
 
             =  (0.7) *          e 0.098(30-15)      * 1.5/(0.3+1.5) * (1) 
 

   µ’m    = 2.537 day-1   
            
                             µ’m    = 0.106 h-1 
 
 
Calculating Rate of substrate utilization @ 30 0C: 
 

From [61], 
 

k =  µ’m    / Y 
 

               =  0.106/0.12 
 
           k = 0.88  h-1 
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3.8.1.2.5 - Half Saturation Constant 
 

In Partial nitrification, the reaction S-Term and O-term are following Monod’s kinetics, 

and therefore two half saturation constants (Ks and Ko) are required with respect to each 

term. The half saturation constant of the S-Term (Ks) takes into account only the 

behavior of Nitrosomonas while the half saturation constant for the O-Term (Ko) 

considers the oxygen behavior. Both Ks and Ko are well documented in literature.          

Ks = 0.6 mg/L {0.2 – 2.0 mg NH4 – N, mg/L}[60] and Ko=0.3 mg/L [12]. 
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3.8.1.2.6 – Parameters 
 

Table 3.8.1.2.6.A – General Specifications for Partial Nitrification Reaction: 

1 Substrate Ammonia 
   
2 Product Biomass X-VSS-n  (Nitrosomonas ) 
   
3 End Product NO2 

 

 

Table 3.8.1.2.6.B : Kinetic Parameters for Partial Nitrification Reaction: 

 Parameter  Value Unit Reference 
      
1 Half Saturation 

constant  
Ks  
 

0.6  
 

NH4 – N mg/L [60] 

      
2 Half Saturation 

Constant for DO  
Ko 0.3  mg/L [12] 

      
3 Yield Coefficient Y 0.12 g VSS/ g NH3 [20] 

      
4 Max. Specific 

growth rate   
µm 0.7 day-1 [60] 

(Nitrosomonas) 
      
5 Growth rate 

under the specific 
conditions of 
Temperature, 
DO, pH 

µ’m 0.106 h-1 As calculated  in 
Section 3.8.1.2.4 

      
6 Rate of substrate 

utilization  
k 
 

0.88 h-1 As calculated  in 
Section 3.8.1.2.4 
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3.8.1.3 - Heterotrophic Biomass (X-VSS-h) Decay Reaction 

 
The X-VSS-h Decay reaction represents the decay of the heterotrophic microbial 

population being used in denitrification. All the parameters chosen for this process are 

taken with respect to heterotrophic bacteria. Calculations done in order to design this 

reaction are explained in detail in Section 3.6.2. 

 

 
Table 3.8.1.3.A – General Specifications for Heterotrophic Decay in                  

Partial System-1 

1 Substrate X-VSS-h Heterotrophic Bacteria
    
2 Product 

Biomass 
X-VSS-i Dead Heterotrophic Bacteria 

 
Table 3.8.1.3.B - Kinetic Parameter for Heterotrophic Decay in Partial System-1 

 Parameter  Value Unit Reference 
      
1 Decay Constant for 

Heterotrophic 
Biomass @ 20 0C 

kmax  
 

0.002 h-1 [57] 

      
2 Theta θ 1.04  [58] 
      
3 Decay Constant for 

Heterotrophic 
Biomass @ 30 0C 

k  0.002959 h-1 Calculated by EnviroPro as 
shown in 3.6.14 
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3.8.1.4 - Autotrophic Biomass (X-VSS-n) Decay Reaction 
 

In the Partial System-1, the X-VSS-n decay reaction depicts the decay of Nitrosomonas 

bacteria used to oxidize ammonia into nitrite. The calculations done for this reaction are 

explained in detail in Section 3.6.3.  

 
Table 3.8.1.4.A : General Specifications for Autotrophic Biomass in                   

Partial System-1 

1 Substrate X-VSS-n Nitrosomonas Bacteria 
    
2 Product Biomass X-VSS-I Dead Nitrosomonas  Bacteria 
 

 
Table 3.8.1.4.B: Kinetic Parameter for Autotrophic Biomass in                          

Partial System-1 

 Parameter  Value Unit Reference 
      
1 Decay Constant for 

Nitrosomonas @ 
20 0C 

kmax  
 

0.002 h-1 [57] 

      
2 Theta θ 1.04  [64] 
      
3 Decay Constant for 

Nitrosomonas @ 
15 0C 

k  0.002959 h-1  
As calculated by EnviroPro 
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 3.8.2 - Anoxic Stage 
 

The anoxic stage in the Partial System-1 model includes the denitrification reaction only.  

Since it is an anoxic reaction, this process occurs in the absence of oxygen. The growth 

and death of the microbial population has already been accommodated in the reactions 

included in Aerobic stage. 
 

 3.8.2.1 - Denitrification 
 

Denitrification reaction in the Partial System-1 model represents the process of nitrate 

(NO2) being reduced to nitric oxide (NO) and nitrous oxide (N2O) and finally into 

nitrogen gas (N2) with the help of heterotrophic microorganism. The heterotrophic 

bacteria require carbon as electron donor in order to perform denitrification. In these 

designs domestic waste in the municipal wastewater provides sufficient source of carbon 

for this reaction. 

 
3.8.2.1.1 - Reaction 
 

This reaction is based on the Yield Coefficient calculated below 

 

DomWaste  +  NO2              CO2       +   N2           +   H2O          +    X-Vss-h 
(34.6 g)            (108 g)    (46 g)         (16.3 g)        (58.7 g)           (21.6 g)   
 
           ( 142.6  g)                        (142.6 g) 
       
 

3.8.2.1.2 - Yield Coefficient 

 
Yield coefficient has been taken from literature as 0.2 g VSS/g NO2 [21]. 

Due to unavailability of yield coefficient for domestic waste, it has been assumed to be 

0.32 g domestic waste/g NO2, which is same as the value taken in case of Full System. It 
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is recommended that experimental work should be conducted to evaluate the domestic 

waste yield for Partial System. 

 

3.8.2.1.3 - Kinetics of Reaction 

 
The Partial System-1 implements denitrification from nitrite, and the Substrate-Term 

follows Monod’s kinetics in Equation (1) as mentioned in Section 3.5, where the 

substrate is nitrate (NO2). The O-term is neglected because it is an anoxic reaction, while 

the B-term follows first order kinetics and the biomass component used is heterotrophic 

bacteria.  

 

3.8.2.1.4 – Rate Constant 

 
The kmax has been taken from [22] as kmax = 0.89 day-1 or 0.037 h-1 and converted with 

respect to temperature by EnviroPro Designer. By the following expression: 

k= kmax θ T-T
0 

 

3.8.2.1.5 – Half Saturation Constant 

 
Research papers [21] & [23] give values of half saturation constants for both Full and 

Partial Systems. The Ks range of values of Full System in both the papers deviated 

greatly from the already established range of values documented by Metcalf & Eddy for 

municipal wastewater. Therefore, the Ks values of Partial System-1 deduced from these 

research papers were considered to be incomparable and were not implemented. It can be 

seen from [21] & [23] that there is not a lot of difference between the values of Ks 

obtained from Full and Partial systems therefore, due to unavailability of Ks values for 

Partial System-1 from authentic sources, the same value as in the Full System has been 

taken. Later sensitivity analysis has been done to determine the significance of this 

parameter and documented in Section 4.3 of Chapter 4.  

 

 84



3.8.2.1.6 - Parameters 

 
Table 3.8.2.1.6.A – General Specifications for Denitrification in Partial System-1         

1 Substrate NO2 
   
2 Biomass  X-VSS-h 
   
3 End Product N2 

 
Table 3.8.2.1.6.B - Kinetics of Reaction for Denitrification in Partial System-1 

 Parameter  Value Units Reference 
      
1 Half Saturation 

Constant 
Ks 

 
0.44 

 
mg/L See Section 

3.8.2.1.5 
      
2 Rate of substrate 

utilization @ 
200C 

kmax 
 

 
0.037 

h-1 [22] 
 
 

      
3 Temperature 

Coefficient 
θ 1.16   

      
4 Rate of substrate 

utilization @ 
300C 

k 0.162939 h-1 Calculated by 
EnviroPro 
Designer 

      
5 Yield Y 0.2 

 
g VSS/ g NO2 [21] 
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Chapter 4 

 Comparison of Models 
 

Over the years, a number of experimental research studies have been conducted to 

explore the feasibility of partial nitrification. The studies done on lab-scale and pilot-

scale reactors have shown that it is possible to achieve partial nitrification by selectively 

reducing the nitrite oxidizing bacteria by means of controlling certain critical parameters 

such as dissolved oxygen, temperature and pH. These research studies have also affirmed 

the advantages of partial nitrification in conjunction with the respective denitrification. It 

has been found experimentally, that the Partial System required approximately a 25% 

lower aeration requirement. It was also observed that the denitrification rates from nitrites 

were 1.5 to 2 times faster [12]. 

 

In the Chapter 3, EnviroPro Designer flowsheeting and the parameters for various 

process designs were described, and this has been used to implement the experimental 

findings for municipal wastewater treatment plant design. Two design models were 

developed. The Full System model reflected the traditional technology of full nitrification 

with its respective denitrification, whereas the Partial System-1 model incorporated basic 

partial nitrification with its respective denitrification process.  

 

 Partial System-1 showed extremely superior results with respect to ammonia and 

domestic waste concentrations after the treatment. This made it possible for us to 

optimize the Partial System-1 for improved results. Hence, the basic Partial System-1 was 

further optimized as Partial System-2 and Partial System-3 to determine the best case 

scenario. Partial System-2 and Partial System-3 follow the same design principles as the 

basic Partial System-1 described in Chapter 3 except for certain operational changes 

carried out in the design to reflect improved results. 
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Chapter 4 consists of three parts. In the first part, a parallel comparison between the 

simulation results of Full System and Partial System-1 was performed and discussed in 

depth. The second part describes and discusses the optimized versions Partial System-2 

and Partial System-3. Part 3 of this chapter incorporates a sensitivity analysis for the 

unavailable kinetic parameters for Partial System. The values of these parameters are not 

studied in literature as most of the research done on partial nitrification has been focused 

on factors like dissolved oxygen, temperature, pH and initial free ammonia concentration. 

In such a case where the value of parameters for the Partial System were missing in 

literature, the same values as those taken for the Full System have been selected to draw 

initial results. Sensitivity analysis is then performed to compare the initial results against 

the current values obtained to check for any significant changes in the overall 

conclusions. The sensitivity analysis is also done with respect to temperature. For Partial 

System, the temperature is set to be 30oC. In some wastewater treatment plants it is not 

practical to control this temperature therefore Partial System is tested for 15oC. For 

sensitivity analysis conducted on Partial System, Partial System-3 model has been chosen 

as it was found to be the best design achieved by this thesis. 

 

 

 

 

 

 

 

 

 

 87



4.1 - Simulation Results Discussion 
 

This section analyzes the simulation results obtained for both the Full System and Partial 

System-1 of Nitrogen Removal, using EnviroPro Designer. The Partial System-1 model 

is shown to give better results than the Full System model in order to remove nitrogen 

from the municipal wastewater treatment plant, and therefore, it supports the 

experimental claims that this technology is more efficient. 

 

The Partial System-1 model designed with the help of EnviroPro Designer, shows several 

advantages over the Full System model. The most important aspect was a significant 

reduction in aeration requirement due to the lower dissolved oxygen level utilized in the 

Partial System-1. This consequently means lesser utility charges for the Partial Treatment 

process, especially for the air compression required to provide aeration. The simulation 

results show that the concentration of ammonia left in the effluent is also significantly 

lower in the Partial System-1 as compared to the Full System. Domestic waste 

consumption was also found to be much more effective in Partial System-1. The 

simulation results show that almost all the domestic waste is depleted in the Partial 

System-1. Hence, the amount of the surplus sludge remaining at the end of the treatment 

is reduced. Denitrification rates are also shown to be much faster.  Details for these 

parameters are given in the following sub-sections. 

 

4.1.1 - Liquid Effluent Comparison 
 

An analysis of the Liquid Effluent simulation results obtained by EnviroPro Designer was 

done for both Full System and Partial System-1. This thesis is focused on the analysis 

Liquid Effluent as this effluent is discharged in the aquatic environment.  The 

concentrations of components found in Liquid Effluent were compared against the 

permissible concentrations regulated for aquatic environment. 
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It was found that the Partial System-1 was more successful in reducing the concentration 

of the influent’s components. The concentrations are tabulated in Table 4.1.1.A and Table 

4.1.1.B given at the end of this section. The Liquid Effluents of both the treatments are 

analyzed with respect to following components.   

 

4.1.1.1- Ammonia 
 

The municipal wastewater influent was assumed to contain a moderate concentration of 

ammonia. The initial concentration of ammonia (21 mg/L) was reduced to 0.2 mg/L after 

treatment with Full System in liquid effluent. However, the basic Partial System-1 was 

able to reduce the ammonia content to 0.0056 mg/L in the liquid effluent. Please refer to 

Table 4.2.2.1.A. The equipment volumes employed for both the systems were 

approximately the same in the case of AB-101. AB-102 in case of Partial System-1 was 

slightly bigger (0.04%) than in Full System. The volume of AB-103 in Partial System-1 

was 12% less than the one in Full System. AXR-101 was approximately 32% lesser and 

AXR-102 was 33% lesser in the Partial System-1 as compared to the Full System. Refer 

to Fig. 4.2.2.A, Table 4.2.1.1.B and Table 4.2.1.2. The aeration requirement was also 

30% less in Partial System-1. Hence, the concentration of ammonia in Liquid Effluent 

was 97% lesser in the Partial System-1 as compared to Full System’s Liquid Effluent. 

See Table 4.2.1.1.A and Table 4.2.2.1.A. 

 

This gives us an opportunity to optimize the basic Partial System-1 to incur savings in 

capital and operational cost. The basic Partial System-1 was optimized twice in an effort 

to achieve improved results. Details about the Partial System-2 and Partial System-3 are 

given in Section 4.2.  
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4.1.1.2 - Carbon Dioxide 
 

Carbon Dioxide existed in the influent as dissolved CO2 in the form of HCO3 or H2CO3. 

The influent’s concentration of CO2 in the liquid form was 51 mg/L. In addition, the 

stages AXR-101, AB-102, AB-101 and AXR-102 (see Figure 4.2.2.A) all generated and 

consumed CO2 to conduct the various reactions. These reactions are also releasing CO2                                             

in gaseous form. The remaining dissolved CO2 in liquid effluent also varied in the Full 

System and Partial System-1. Simulation results showed that the dissolved CO2 

concentration in Full System to be 0.180 mg/L, whereas, a concentration of 0.0930 mg/L 

was evaluated for Partial System-1. The concentration in Liquid Effluent of Partial 

System-1 showed a 48% decrease in the dissolved CO2 as compared to Full System. See 

Table 4.1.1.A and Table 4.1.1.B. 

 

4.1.1.3 - Domestic Waste 
 

The domestic waste is also one of the most important factors that affirmed Partial 

System-1 effectiveness over Full System. EnviroPro Designer simulation results 

demonstrated that the Full treatment was able to reduce the domestic waste concentration 

from 157 mg/L to 0.64 mg/L. Partial treatment was found to reduce the concentration to 

0.017 mg/L. Refer to Table 4.2.2.1.A. This can prove to be very beneficial as it will 

significantly contribute in reducing the surplus sludge at the end of the treatment. This 

also suggests that for the same amount of domestic waste, lesser number of treatment 

operations will be required in partial System as compared to Full System. Since domestic 

waste is biodegradable therefore, it causes oxygen depletion in the water. Hence, 

maximum consumption of domestic waste is desired by the engineers in municipal 

wastewater treatments.   
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4.1.1.3 - Fixed Suspended Solids 
 

In case of Fixed Suspended Solids (FSS) both the systems reduced the initial 

concentration of 60 mg/L to final liquid effluent concentration of approximately 14.5 

mg/L. See Table 4.1.1.A and Table 4.1.1.B. 

 

4.1.1.4 - Nitrate And Nitrite 
 

The Full System of nitrogen removal produces nitrate in the liquid effluent as opposed to 

nitrite which is being accumulated in Partial System-1. To study the affect of nitrate and 

nitrite on nitrogen removal process, it is already assumed that the plant’s influent contains 

negligible traces of nitrate and nitrite in Full System and Partial System-1, respectively. 

All the nitrate concentration in the liquid effluent of the Full System is due to the full 

nitrification of ammonia to nitrate being done in aerobic stages. All the concentration of 

nitrite in the liquid effluent of Partial System-1 is because of the partial nitrification of 

ammonia to nitrite, caused by controlling the dissolved oxygen and temperature. 

EnviroPro Designer evaluated the nitrate concentration to be 1.01 mg/L in the Full 

Liquid’s effluent. There are currently no national guidelines for the nitrate for the 

protection of aquatic life [24]. Liquid effluent of Partial System-1 demonstrated the 

nitrite concentration to be 0.30 mg/L. Refer to Table 4.2.2.1.A. This is a cause of concern 

because nitrite is toxic and therefore strict regulations are implemented to control the 

nitrite concentration in aquatic life. Canadian Water Quality Guidelines for the protection 

of aquatic life for nitrite are regulated at 60 micro-g/L [24]. 
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4.1.1.5 - Total Dissolved Solids (TDS) 
 
There is no difference in the concentration of TDS in Liquid Effluent and plant’s influent, 

since the removal of TDS has not been incorporated in either of the treatment processes.  

This result is to be expected since TDS is primarily related to dissolved salts, which are 

not significantly affected by organic or nitrogen oxidation.  See Table 4.1.1.A and Table 

4.1.1.B 
 

4.1.1.6 - Microorganisms (Heterotrophic, Autotrophic and 

dead) 
 

Initially, 53 mg/L of heterotrophic, 3 mg/L of autotrophic and 51 mg/L of dead 

microorganisms have been set for a typical municipal wastewater influent for both Full 

System and Partial System-1 [18]. The various stages implemented in both the Full and 

Partial systems involve growth and death of this microbial population. The difference 

between both the systems with respect to microbial population was found to be 

negligible. The Liquid Effluent of Full System show the concentration of heterotrophic 

bacteria to be 50 mg/L, autotrophic bacteria to be 2.3 mg/L and dead microbial 

population to be 16 mg/L. In case of Partial System-1, it is 49 mg/L for heterotrophic, 2 

mg/L for autotrophic and 16 mg/L for dead microbial population. See Table 4.1.1.A and 

Table 4.1.1.B 
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Table 4.1.1.A : Component Concentration in Liquid Effluent of Full System 

Component Flow Rate 
(kg/h) 

Mass Comp 
(%) 

Concentration 
(mg/L) 

    
Ammonia 0.37 0.0000 0.195 

    
Carbon Dioxide 0.33 0.0000 0.175 

    
Domestic Waste 1.22 0.0001 0.643 

    
Fixed Suspended Solids 27.63 0.0015 14.575 

    
Nitrate 1.92 0.0001 1.012 

    
Total Dissolved Solids 579.51 0.0306 305.754 

    
Water 1891475.99 99.9609 997957.943 

    
Heterotrophic  Bacteria 94.97 0.0050 50.108 

    
Autotrophic Bacteria 4.30 0.0002 2.269 

    
Dead Microorganisms 30.09 0.0016 15.878 
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Table 4.1.1.B : Component Concentration in Liquid Effluent of Partial System-1 

Component Flow Rate 
(kg/h) 

Mass Comp 
(%) 

Concentration 
(mg/L) 

    
Ammonia 0.01 0.0000 0.0056 

    
Carbon Dioxide 0.18 0.0000 0.0933 

    
Domestic Waste 0.03 0.0000 0.0171 

    
Fixed Suspended Solids 27.63 0.0015 14.4949 

    
Nitrite 0.64 0.0000 0.3375 

    
Total Dissolved Solids 579.54 0.0306 304.0802 

    
Water 1891597.54 99.9611 992503.1989 

    
Heterotrophic  Bacteria 92.78 0.0049 48.6822 

    
Autotrophic Bacteria 3.87 0.0002 2.0300 

    
Dead Microorganisms 30.78 0.0016 16.1516 

 



4.1.2 - Sludge Effluent Comparison 
 

 This thesis is more focused on the Liquid Effluent being discharged into the aquatic 

environment and has studied wastewater treatment plant with respect to the rules and 

regulation implemented for aquatic environment.  

 

The analysis of simulation results obtained from Sludge Effluent has been discussed in 

detail below. It can be deduced that the Partial System-1 is the more efficient one of the 

two technologies because the concentration achieved in case of ammonia and domestic 

waste were far lower than those achieved in Full System. The values of concentration of 

components achieved are tabulated in Table 4.1.2.A and Table 4.1.2.B given at the end of 

this section. The sludge effluent was analyzed as follows: 

 

4.1.2.1 - Ammonia 
 

The concentration of ammonia was already very low in the liquid effluent of the Partial 

System, and therefore the volume of aerobic stage AB-103 was reduced to 12% in Partial 

System-1 as compared to Full System leading to reduction in capital costs.  Also, the 

sludge residence time was 146 hours as compared to 159 hours in Full System, making it 

a faster process. Refer to Table 4.2.1.1.B and Table 4.2.1.2.  

 

 The ammonia concentration in Partial System-1 was 0.0078 mg/L whereas in Full 

System was 0.076 mg/L. Hence, the ammonia concentration achieved after the sludge 

treatment in Partial System-1 was approximately 90% lesser than the concentration 

achieved in the Full System. Please see Table 4.2.2.1.B 
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4.1.2.2 - Carbon Dioxide 
 

The sludge effluent also showed better concentration of liquid CO2 in Full System as 

compared to Partial System-1. Partial System-1 showed a concentration of 28 mg/L 

whereas, Full System indicates a concentration of 18.7 mg/L of liquid CO2. The Partial 

System-1 shows a 33% increase when compared with Full System. See Table 4.1.2.A and 

Table 4.1.2.B. 

 

4.1.2.3 - Domestic Waste 
 

The domestic waste was found to be almost depleted by the end of both Full System and 

Partial System-1. In case of Full System it is 0.000053 mg/L and in Partial System-1, it is 

0.000007 mg/L. These values are negligible.   See Table 4.2.2.1.B. 

 

4.1.2.4 - Fixed Suspended Solids 
 

The amount of Fixed Suspended solids were slightly greater in the sludge effluent 

obtained from the Partial System-1, but the difference of 6% is considered negligible. See 

Table 4.1.2.A and Table 4.1.2.B. 

 

4.1.2.5 - Nitrate or Nitrite 
 

The concentration of nitrate achieved in Sludge Effluent of Full System is approximately 

313 mg/L. The concentration of nitrite remaining in sludge effluent of Partial System-1 is 

found to be 334 mg/L. Refer to Table 4.2.2.1.B. 
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4.1.2.6 - Total Dissolved Solids 
 

Partial System-1 showed a slightly lower concentration of total dissolved solids as 

compared to Full System. The negligible difference of 1% in the concentration of total 

dissolved solids was detected. See Table 4.1.2.A and Table 4.1.2.B. 

 

4.1.2.7 - Microorganisms (Heterotrophic, Autotrophic and 

dead) 
 

In the plant’s influent the initial concentration of heterotrophic (53 mg/L), autotrophic (3 

mg/L) and dead microorganisms (51 mg/L) went through process of growth and cessation 

through out the different stages being performed in the various treatment processes 

included in both the Full System and Partial System-1. The Sludge Effluent of both Full 

System and Partial System-1 showed similar concentrations of heterotrophic, autotrophic 

and dead microorganism [18]. See Table 4.1.2.A and Table 4.1.2.B. 
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Table 4.1.2.A :  Component Concentration in Sludge Effluent of Full System 

Component Flow Rate 
(kg/h) 

Mass Comp 
(%) 

Concentration 
(mg/L) 

    
Ammonia 0.0002 0.0000 0.0764660 

    
Carbon Dioxide 0.0404 0.0019 18.713246 

    
Domestic Waste 0.0000 0.0000 0.000053 

    
Fixed Suspended Solids 64.4627 2.9913 29870.600504 

    
Nitrate 0.6754 0.0313 312.975516 

    
Total Dissolved Solids 0.4895 0.0227 226.853004 

    
Water 1830.5702 84.9441 848245.767800 

    
Heterotrophic  Bacteria 177.3134 8.2279 82163.094512 

    
Autotrophic Bacteria 2.7967 0.1298 1295.915004 

    
Dead Microorganisms 78.6818 3.6511 36459.399290 
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Table 4.1.2.B :  Component Concentration in Sludge Effluent of Partial System-1 

Component Flow Rate 
(kg/h) 

Mass Comp 
(%) 

Concentration 
(mg/L) 

    
Ammonia 0.00002 0.0000 0.007760 

    
Carbon Dioxide 0.05685 0.0028 27.892333 

    
Domestic Waste 0.0000 0.0000 0.000007 

    
Fixed Suspended Solids 64.49655 3.1818 31644.215058 

    
Nitrite 0.68088 0.0336 334.064442 

    
Total Dissolved Solids 0.45640 0.0225 223.927659 

    
Water 1721.81267 84.9411 844780.216199 

    
Heterotrophic  Bacteria 153.28912 7.5621 75208.888541 

    
Autotrophic Bacteria 2.32446 0.1147 1140.457546 

    
Dead Microorganisms 83.94990 4.1414 41188.693278 



4.1.3 - Environmental Properties Comparison 
 

EnviroPro Designer can also calculate the environmental properties of the effluent stream 

in comparison with the influent stream. This comparison gives us valuable information 

about the percentage removal of a particular environmental property included in all the 

soluble and suspended compounds in the municipal wastewater. Therefore, a parallel 

comparison between environmental properties of influent and effluent of Full and Partial 

Systems can give useful insight into the efficiency and feasibility of the Partial System-1 

when compared against the Full System.  

 

The Partial System-1 implements a 30% reduction in aeration requirements, reducing 

utilities charges. There is also a reduction in the volume of aerobic and anoxic stages that 

favorably affected the capital costs. Furthermore, it gives more desirable concentration of 

ammonia and domestic waste in its effluents. In addition to all these advantages, it was 

found that Partial System-1 managed to show a similar or slightly better percentage 

removal of environmental properties as compared to Full System. The most important 

aspect of this comparison is that in the Partial System-1, almost all the nitrogen existing 

as ammonia is retrieved. Also, nitrogen existing as nitrate in Full System is 0.23 mg/L 

whereas the nitrogen remaining in the effluent of Partial System-1 as nitrite is about 0.08 

mg/L. There seems to be a slight increase in TDS concentration in the effluent of Full 

System. This is due to the calculation error. The comparisons are tabulated in Table 

4.1.3.A and Table 4.1.3.B which is given below:  
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Table 4.1.3.A: Comparison of Environmental Properties in Full System 

Property Influent 
(mg/L) 

Effluent 
(mg/L) 

Removal 
(%) 

    
BOD5 297.62 49.65 83 

    
COD 540.01 91.61 83 

    
TSS 167.73 82.83 51 

    
TDS 305.92 306.767 0 

    
TKN 41.22 8.39 80 

    
NH3-N 17.30 0.16 99 

    
NO3-N 0.000 0.23  

 
 

Table 4.1.3.B: Comparison of Environmental Properties in Partial System-1 

Property Influent 
(mg/L) 

Effluent 
(mg/L) 

Removal 
(%) 

    
BOD5 295.98 47.81 84 

    
COD 573.04 87.90 85 

    
TSS 166.81 81.36 51 

    
TDS 304.24 304.08 0.05 

    
TKN 40.99 8.03 80 

    
NH3-N 17.21 0.004 99.9 

    
NO2-N 0.000 0.08  
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4.1.4 – Aeration Requirement 
 

The experimental studies suggested that the aeration requirement was reduced to 

approximately 25% in Partial System-1 as compared to Full System [12, 14]. 

 

In case of EnviroPro Designer, the aeration requirement for the Full System was fixed at 

0.010 m3 air per (m3 liq/min) according to values for aeration rate provided in the 

literature to maintain aerobic conditions [63]. Aeration requirement was reduced to 30% 

for Partial System-1 and thus, was set at 0.007 m3 air per (m3 liq/min). See Table 

4.2.1.1.A. 

 

The report for Stream and Material balance for Full System, Report 4.1.A (Appendix A) 

showed the oxygen utilized was 9.1 × 106 kg/yr. The report for Stream and Material 

balance for the Partial System-1 showed the oxygen utilized was 6.1 × 106 kg/yr while 

reducing the ammonia concentration in liquid effluent to 0.0056 mg/L in Partial System-1 

as opposed to 0.20 mg/L in Full System. Also, refer to Table 4.2.3 

 

Furthermore, ammonia concentration in Sludge Effluent was reduced to 0.0078 mg/L in 

Partial System-1 as opposed to 0.076 mg/L in Full System.  

 

This indicates that every year approximately 33% less oxygen was utilized by the Partial 

System-1 to reduce 97% more ammonia in Liquid effluent and approximately 90% lesser 

ammonia in sludge effluent as compared to Full System. The kg Oxygen / kg Ammonia 

removed in Full System is 29.1. The kg Oxygen / kg Ammonia removed in Partial 

System-1 is 19.4. See Table 4.2.3. 

 

This 33% reduction in oxygen usage will reflects positively on utilities savings in the 

case of Partial System. However, the nitrite concentration achieved in the liquid effluent 

of Partial System-1 was found to be approximately 0.34 mg/L (see Table 4.2.2.1.A ) 

which is a cause of concern as Canadian Water Quality Guidelines for the protection of 

aquatic life for nitrite are regulated at 60 µ g/L or 0.06 mg/L. In Section 4.2, Partial 
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System-3, an optimized version of basic Partial System-1, has been designed to tackle 

this problem. 

 

4.1.5  - Denitrification Rates 

 
The experimental research studies suggested that the denitrification rates are 1.5 to 2 

times faster from nitrite than with nitrate [12, 14]. 

 

The simulation results evaluated by EnviroPro Designer seem to support this claim. For 

Full System, the sludge residence time calculated in anoxic stage, AXR-101 and AXR-

102 were found to be approximately 11.4 hours and 9 hours.  For Partial System, the 

sludge residence time for AXR-101 and AXR-102 were calculated to be approximately 

7.7 and 6 hours respectively, indicating a 1.5 times faster denitrification rate.  Refer to 

Fig 4.2.2.A and Table 4.2.1.2. 

 

4.1.6 - Capital Cost 
 

The capital cost evaluated by EnviroPro Designer in case of Full System through Report 

4.2.A (Appendix A) is $108,171, 000. Report 4.2.B (Appendix A) presents the capital 

cost involved in Partial System-1 that is calculated to be $ 105,075,000. There is 

approximately a 3% reduction in the capital cost of the Partial System-1. Also see Table 

4.2.3.  
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4.2 - Optimization of Partial System-1 
 
Partial System-1 showed superior results with respect to ammonia and domestic waste 

concentrations in the liquid effluent. The dissolved oxygen used in the basic Partial 

System-1 was 33% less than Full System. This gave us the opportunity to optimize the 

Partial System-1 to reflect savings in aeration cost. Furthermore, the nitrite concentration 

found in the Liquid Effluent of Partial System-1 was a cause of concern. Therefore, 

Partial System-1 was further optimized as Partial System-2 and Partial System-3 for 

improved results.  

 

4.2.1 - Partial System-2 
 

Dissolved oxygen concentration of 1.5 mg/L due to aeration requirement of 0.007 m3 air 

/ m3 (liq/min) in Partial System-1 was found to reduce 97% more ammonia as compared 

to Full System. In Partial System-2, the aeration requirement was further decreased to 

0.005 m3 air per (m3 liq/min) in order to incur savings in utility costs. This aeration 

requirement is 50% less than amount set in the Full System. The dissolved oxygen 

concentration is thus expected to be approximately 1 mg/L. See Table 4.2.1.1 A. 

 

The simulation results showed the ammonia concentration to be 8.1 mg/L and nitrite 

concentration to be 10.78 mg/L in the liquid effluent. See Table 4.2.2.1 A. The Partial 

System-2 showed a significant rise in both ammonia and nitrite concentrations which are 

outside the guidelines provided by Canadian Water Quality for the protection of aquatic 

life [24, 66]. Therefore, aeration of 0.005 m3 air per (m3 liq/min) is not enough to 

maintain required aerobic condition. Hence, the ammonia and nitrite concentrations 

obtained at the end of the treatment do not fall within the desired criteria.  
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Report 4.3.A (Appendix A) shows the amount of oxygen and utilized and amount of 

ammonia removed during this process. Report 4.3.B shows the capital and operational 

costs involved in this method.  

 

4.2.2 - Partial System-3 
 
One of the biggest limitations of the basic Partial System-1 is that the nitrite 

concentration achieved at the end of the treatment falls outside the permissible range 

implemented by Canadian Water Quality for the protection of aquatic life for Nitrite and 

Nitrate [24]. Refer to Table 4.2.2.1.A, we can see from the simulation results that 

ammonia concentration achieved in Liquid Effluent by Partial System-3 is sufficiently 

decreased to 0.0052 mg/L. This ammonia concentration is 97% lower than that achieved 

in Full System and lies well within the permissible range provided by the Canadian Water 

Quality for the protection of aquatic life for Ammonia [66]. Therefore, it is insignificant 

to further decrease this ammonia concentration of 0.0052 mg/L in the sludge treatment. 

See Table 4.2.2. A third aerobic stage, AB-103 (see Figure 4.2.2.A) is therefore 

considered to be expendable in the sludge treatment. Removing AB-103 will result in 

lower oxygen consumption and reflect positively on utility charges associated with it. 

Instead, an additional anoxic stage would contribute effectively towards reducing the 

undesirable nitrite concentration in the liquid effluent found in Partial System-1. See 

Table 4.2.2.1.A. 

 

The design of Partial System-1 and Partial System-2 implemented two aerobic stages 

AB-102 and AB-101 for partial nitrification and two anoxic stages AXR-101 and AXR-

102 for denitrification from nitrite in the Primary Treatment, which results in Liquid 

Effluent. Both the Partial System-1 and Partial System-2 included an aerobic stage AB-

103 in the Secondary Treatment employed for the treatment of sludge. See Figure 

4.2.2.A. The design of Partial System-3 involves two aerobic stages AB-102 and AB-101 

for partial nitrification and three anoxic stages AXR-101, AXR102 and AXR-103 for 
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denitrification from nitrite. No aerobic stage has been incorporated in the Secondary 

Treatment to treat sludge. See Figure 4.2.2.B. 

 

As expected, the Partial System-3 showed superior results than all of the nitrogen 

removal treatment process examined in this research. The ammonia concentration 

achieved in the Liquid Effluent was 0.0052 mg/L which is still 97% lower than that of 

Full System. The nitrite concentration was reduced to 0.00121 mg/L or 1.2 micro-g/L) 

which is now significantly lower than 60 micro-g/L value provided by Canadian Water 

Quality for the protection of aquatic life for Nitrite and Nitrate [24]. Refer to Table 

4.2.2.1 A.  

 

Partial System-3 consumed 4.4 × 106 kg of oxygen per year, which is approximately 50% 

less than Full System. Additionally, the kg Oxygen /kg Ammonia removed ratio for 

Partial System-3 is 13.9 as opposed to 29.1 obtained in Full System and 19.4 obtained in 

Partial System-2. See Table 4.2.3 and Report 4.4.A.  This reflects positively on utility 

savings.  

 

Additionally, Partial System-3 displayed 2 times faster denitrification rates.  

 

Furthermore, the capital cost is $ 93,101,000 and operating cost is $ 21,217,000. Both 

theses costs are the least among the values obtained from all the treatment models tested 

in this research. See Table 4.2.3 and Report 4.4.B 

 

Hence, Partial System-3 presents the best-case scenario for the nitrogen removal from 

medium to high strength municipal wastewater treatment.  

 

This research is the first one to have designed a Partial System model by using EnviroPro 

Designer. No previous study has designed Partial System simulation model by using 

EnviroPro Designer. Therefore, there are no existing results available for comparison 

with the results obtained by this thesis. However, this research can be considered as a 

bench mark for any future study.  



Fig. 4.2.2.A: Flowsheet For Bardenpho Process applied in  Full System, Partial System-1 and Partial System-2 
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Fig 4.2.2.B : Flowsheet for Partial System-3 
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Comparison of Design Specifications 
 

Table 4.2.1.1.A: Comparison of Parameters for 
Aerobic Oxidation System 

 
System Dissolved 

Oxygen 
(mg/L) 

Temp 
 

0C 

Aeration 
Requirement 

m3 Air per (m3 
Liq/min) 

    
Full System 2.00  15 0.010 

    
Partial System-1 1.5 30 0.007 

    
Partial System-2 1.0 30 0.005 

    
Partial System-3 1.5 30 0.007 

 
 

Table 4.2.1.1.B : Comparisons of Volumes and Sludge Residence Times for       
Aerobic Stages  

 
 Liquid Effluent Sludge Effluent 
 
 
 

 
Name 

Sludge 
Residence 

Time  
 (h) 

Volume 
 
 

(L) 

 
Name 

Sludge 
Residence 

Time  
 (h) 

Volume 
 
 

(L) 
       

Full 
System 

AB-102 23.16 4263223 AB-103 159.00 2125000 
AB-101 2.898 532852    

       
Partial 

System-1 
AB-102 23.18 4264944 AB-103 146.12 1864726 
AB-101 2.897 532852    

       
Partial 

System-2 
AB-102 23.17 4240215 AB-103 146.02 1837079 
AB-101 2.914 532852    

       
Partial 

System-3 
AB-102 32.642 4272202 N/A   
AB-101 4.072 532852    
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Table 4.2.1.2 : Comparison of Volumes and Sludge Residence Times for             
Anoxic Stages: 

 
System Name Sludge 

Residence 
Time 
(h) 

Volume 
(L) 

    
Full System AXR-101 11.36 2125000 

AXR-102 9.14 1682182 
    

Partial  
System-1 

AXR-101 7.696 1439466 
AXR-102 6.1 1119596 

    
Partial  

System-2 
AXR-101 7.696 1431118 
AXR-102 6.1 1113072 

    
Partial  

System-3 
AXR-101 5.4 1441913 
AXR-102 4.3 1121503 
AXR-103 4.3 1121494 
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Comparison of Components’ Concentration 
 
 

Table 4.2.2.1.A : Comparison of Components’ Concentration in Liquid Effluent 
 

Components Full 
System 

Concentration 
(mg/L) 

Partial  
System-1 

Concentration 
(mg/L) 

Partial  
System-2 

Concentration 
(mg/L) 

Partial 
System-3 

Concentration 
(mg/L) 

Ammonia 0.20 0.0056 8.1 0.0052 
Domestic 

Waste 
0.64 0.017 0.25 0.0000 

Nitrate 1.01 N/A N/A N/A 
Nitrite N/A 0.34 10.78  

0.00121 
(or 1.21 μ-g/L) 

 
 

Table 4.2.2.1.B : Comparison of Components’ Concentration in Sludge Effluent 
 

Components Full 
System 

Concentration 
(mg/L) 

Partial   
System-1 

Concentration 
(mg/L) 

Partial  
System-2 

Concentration 
(mg/L) 

Partial 
Nitrification-3 
Concentration 

(mg/L) 
     

Ammonia 0.076 0.0078 0.0106 0.0039 
     

Domestic 
Waste 

0.000053 0.000007 0.000013 0.0000 

     
Nitrate 313 N/A N/A N/A 

     
Nitrite N/A 334.06 354.32 0.00091 

(0.91 µg/L) 
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Table 4.2.3 : Comparison Economics Generated by Reports (Appendix A) 
 

Components Full 
System 

Air req =0.010 
m3 air  

(m3 liq/min) 

Partial 
System-1 

Air req = 0.007
m3 air  

(m3 liq/min) 

Partial  
System-2 

Air req = 0.005 
m3 air  

(m3 liq/min) 

Partial 
System-3 

Air req = 0.007 
m3 air 

(m3 liq/min) 
     

Oxygen  
 (kg/yr) 

1 

 
9,130,053 

 
    6,146,846 

 
4,352,297 

 
4,390,288 

     
Ammonia 
Removed 

(kg/yr) 
2 

 
313,865 

 
316,715 

 
163,308 

 
316,721 

     
Oxygen  

per  
Ammonia 
Removed 

 
29.1  

 
19.4 

 
26.7 

 
13.9 

     
Total Capital 
Investment 

($) 
3 

 
108,171, 000 

 
105,075,000 

 
104,916,000 

 
93,101,000 

     
Operating Cost 

($/yr) 
( aeration costs 

are not included) 
4 

 
23,940, 000 

 
23,369,000 

 
23,339,000 

 
21,217,000 

 
1 – Oxygen in kg/yr is calculated for Full System by Report 4.1 A, for Partial System -1  

       by Report 4.2 A, for Partial System-2 by Report 4.3 A and for  Partial System-3 by  

       Report 4.4 A. Reports are found in Appendix A 

 

2 – Ammonia Removed in kg/yr is calculated for Full System by Report 4.1 A, for Partial 

       System -1 by Report 4.2 A, for Partial System-2 by Report 4.3 A and for Partial  

       System-3 by Report 4.4 A. Reports are found in Appendix A 

 

3 – Total Capital Investment is calculated for Full System by Report 4.1 B, for Partial  

       System -1 by Report 4.2 B, for Partial System-2 by Report 4.3 B and for Partial  

       System-3 by Report 4.4 B. Reports are found in Appendix A 

 

4 – Operating Cost is calculated for Full System by Report 4.1 B, for Partial System -1 by  

      Report 4.2 B, for Partial System-2 by Report 4.3 B and for Partial System-3 by Report  

      4.4 B. Reports are found in Appendix A 
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4.3 - Sensitivity Analysis 
 

The numerous experimental studies have been performed to study the behavior of Partial 

nitrification. The majority of the work has revolved around the effects of dissolved 

oxygen, temperature, pH and ammonia concentration. These parameters are considered 

the most critical factors in order to restrain the nitrification of ammonia to nitrite only. 

Many laboratory research studies have emphasized these to be the most important 

parameters to affect the process of nitrification.  The appropriate values of these 

parameters required to incur Partial nitrification are well established in the literature. 

There are some kinetic parameters associated with the Partial nitrification that have been 

overlooked as they are believed to have negligible effect on the process.  For simplicity, 

the same values as in the Full System have been taken for these parameters in the Partial 

System-1. Later on, a sensitivity analysis was conducted on the best design achieved, 

Partial System-3, in order to see the magnitude of the effect of these parameters on the 

behavior of partial nitrification. These parameters and their sensitivity analysis are as 

follows: 

 

4.3.1 - Decay Constant of Nitrosomonas in Partial 

System-3 
 

The decay constant of overall Nitrosomonas and Nitrobacter bacteria to cause Full 

Nitrification is well known through out the literature. The table in [60] gives the value of 

Overall Nitrosomonas and Nitrobacter decay to be kd = 0.002 h-1. This value was 

implemented for the Full System model, used by EnviroPro Designer. It has been 

mentioned in literature [59] that Full Nitrification is controlled by the oxidation of 

ammonia to nitrite because the growth rate of Nitrobacter is considerably greater than 

Nitrosomonas. Therefore, due to unavailability of decay constant of only Nitrosomonas 

bacteria to induce Partial nitrification, we have used the same value in our Partial 

System-1, Partial System-2 and Partial System-3 as provided for overall reaction by [60]. 
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A sensitivity analysis was conducted for this parameter. The value of kd was first halved 

from 0.002 h-1 to 0.001 h-1. The analysis of Liquid Effluent is summarized in Table 

4.3.1.A and that of Sludge Effluent is summarized in Table 4.3.1.B. Both the tables are 

given at the end of this section. 

 

As we can see from Table 4.3.1.A and Table 4.3.1.B, when the decay constant for 

Nitrosomonas was halved to kd= 0.001 h-1, the concentration of ammonia in Liquid and 

Sludge Effluents was decreased to approximately 56%. The concentration of domestic 

waste remained the same and the concentration of nitrite decreased 50% in Liquid 

Effluent and 59% in Sludge Effluent.   Since the concentrations are being decreased 

therefore, halving the value of kd did not affect the conclusion of this thesis. 

 

When the kd was doubled, kd=0.004 h-1, the ammonia concentration increased 45% in 

both Liquid and Sludge Effluents. The concentration of domestic waste remained the 

same and nitrite concentration increased 40% in Liquid Effluent and 35% in Sludge 

Effluent. However, the values obtained are significantly lower than those accomplished 

by Full System therefore, this increase does not affect the conclusion of this thesis. See 

Table 4.3.1.A and Table 4.3.1.B. 

 

Hence, taking the same kd value as in case of Overall Nitrosomoas and Nitrobacter given 

for Full System for just Nitrosomonas for Partial System-3, did not affect conclusion of 

this thesis. See Table 4.3.1.A. 
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Table 4.3.1.A : The Effect of Decay Constant kd on Liquid Effluent 

Components Full System Partial System-3 

@ 

kd = 0.002 h-1 

@ 

kd = 0.002 h-1

@ 

kd=0.001 h-1 

@ 

kd=0.004 h-1 

     

Ammonia  

(mg/L) 

 

0.20 

 

0.0052 

 

0.0023 

 

0.0095 

     

Domestic Waste 

(mg/L) 

 

0.64 

 

0.000 

 

0.0000 

 

0.0000 

     

Nitrite 

(mg/L) 

 
N/A 

 
0.00121 

 

 

0.0006 

 

0.002 

 

Table 4.3.1.B : The Effect of kd on Sludge Effluent 

Components Full System Partial System-3 

@ 

kd = 0.002 h-1 

@ 

kd = 0.002 h-1

@ 

kd=0.001 h-1 

@ 

kd=0.004 h-1 

     

Ammonia  

(mg/L) 

 

0.076 

 

0.0039 

 

0.0017 

 

0.0071 

     

Domestic Waste 

(mg/L) 

 

0.000053 

 

0.00091 

 

0.0000 

 

0.0000 

     

Nitrite 

(mg/L) 

 
N/A 

 
0.00098 

 

 

0.0004 

 

0.0015 
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4.3.2 - Half Saturation Constant (Ks) of Denitrification 

in Partial System-3 
 
Insufficient research and experimental studies were available to obtain a definitive value 

for the half saturation constant (Ks) of the denitrification process for the Partial 

nitrification process. Some literature [21, 23] reviewed, studied, analyzed and compared 

the phenomenon of denitrification performed with nitrate and nitrite in groundwater using 

a fluidized bed reactor. In one research study [21], the half saturation constant (Ks) value 

obtained in case of denitrification from nitrate was found to be Ks= 3.59 NO3 mg/L 

which is abnormal and inconsistent with the already established range of values available 

in the literature. The most reliable range is considered 0.266 to 0.886 NO3 mg/L with a 

typical value of 0.44 NO3 mg/L [57]. Hence, the Ks value achieved in the parallel 

experiments for denitrification performed from nitrite that was found to be 4.1 NO2 

mg/L, was also rejected.  However, it can be observed from these experiments that there 

is not much difference between the two values of Ks of denitrification for Full and Partial 

System for experiments performed under similar conditions. Hence, the Ks value for 

denitrification from nitrite was also set to be 0.44 mg/L in the Partial System-1, Partial 

System-2 and Partial System-3 models.  

 

A sensitivity analysis was also carried out for the Ks parameter of denitrification in the 

Partial System-3 and the results were analyzed for both Liquid and Sludge Effluents.  

 

The analysis of Liquid and Sludge streams with respect to ammonia, domestic waste and 

nitrite is given below.  The simulation results obtained for Liquid and Sludge Effluents 

are summarized in Table 4.3.2.A and Table 4.3.2.B respectively.   

 

The Ks value was first halved to Ks = 0.22 mg/L. The ammonia concentration remained 

approximately the same in Liquid and Sludge Effluents.  On doubling the Ks value to Ks 

= 0.88 mg/L, the ammonia concentration remained the same as well. This was expected 
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as the parameter for denitrification should mostly affect the anoxic reaction of the 

process. Please refer to Table 4.3.2.A and Table 4.3.2.B. 

 

Similarly, in case of domestic waste, halving and doubling the Ks for denitrification did 

not change the concentration of domestic waste in the Liquid and Sludge Effluents. The 

domestic waste completely depleted in AXR-103 (see Fig. 4.2.2.B) in both the cases.  

 

Halving the Ks for denitrification, the nitrite concentration decreased 52% in Liquid 

Effluent and 14% in Sludge Effluent. On doubling the Ks value, the nitrite concentration 

in the Liquid Effluent increased to a value of 2.6 micro-g/L, indicating 53% increase. In 

Sludge Effluent, the concentration of nitrite increased to 1 micro-g/L, indicating increase 

of 9%. This increase can be neglected as the value 2.6 micro-g/L obtained is well within 

the guidelines provided by Canadian Water Quality for the protection of aquatic life [24].  

 

The changes in nitrite concentration in the Partial System-3 due to doubling and halving 

the value of Ks are negligible and fail to deter the end conclusion regarding the 

comparison between the Full and Partial System-3 therefore, we conclude that the value 

of Ks of denitrification taken in Partial System-3 is sufficient to make a reasonable 

interpretation of the behavior and comparison of Full and Partial System models for 

nitrogen removal. 
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Table 4.3.2.A : The Effect of Ks of Denitrification on Liquid Effluent 

Components Full System Partial System-3 

@ 

Ks = 0.44 

(mg/L) 

@ 

Ks = 0.44 

(mg/L) 

@ 

Ks=0.22 

(mg/L) 

@ 

Ks=0.88 

(mg/L) 

     

Ammonia  

(mg/L) 

 

0.20 

 

0.0052 

 

0.0053 

 

0.0052 

     

Domestic Waste 

(mg/L) 

 

0.64 

 

0.000 

 

0.000 

 

0.000 

     

Nitrite 

(mg/L) 

 
N/A 

 
0.00121 

 

 

0.00058 

 

0.0026 

 

 

Table 4.3.2.B : The Effect of Ks of Denitrification on Sludge Effluent 

Components Full System Partial System-3 

@ 

Ks = 0.44 

(mg/L) 

@ 

Ks = 0.44 

(mg/L) 

@ 

Ks=0.22 

(mg/L) 

@ 

Ks=0.88 

(mg/L) 

     

Ammonia  

(mg/L) 

 

0.076 

 

0.0039 

 

0.0039 

 

0.0039 

     

Domestic Waste 

(mg/L) 

 

0.000053 

 

0.000 

 

0.000 

 

0.000 

     

Nitrite 

(mg/L) 

 
N/A 

 
0.00091 

 

 

0.00078 

 

0.001 
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4.3.3 - Effect of Temperature in Partial System-3 
 

From the literature review of experimental research studies on partial nitrification, we 

found that a temperature of 30oC was recommended in order to successfully inhibit nitrite 

oxidation without retarding ammonia oxidation [12]. Therefore, in the designs of Partial 

System-1, Partial System-2 and Partial System-3 models, the temperature was regulated 

at 30oC through out the treatment.  

 

In many of the wastewater treatment plants, this temperature would not be a challenge to 

maintain. Hence, a sensitivity analysis was also carried out to see whether there will be a 

significant difference in the results if the temperature was set to 15oC which is the 

temperature maintained in Full System.  

 

The Liquid Effluent was analyzed and the simulation results achieved are summarized in 

Table 4.3.3.A which is given at the end of the section. 

 

When the temperature of Partial System-3 was set to 15oC, the ammonia concentration 

was completely depleted in the unit AB-101 (see Fig.4.2.2B). Hence, the Liquid Effluent 

also shows the ammonia concentration to be depleted.  

 

The domestic waste concentration increased to 0.86 mg/L in the Liquid Effluent, while it 

was found to be completely depleted when the temperature was 30oC.  This concentration 

of domestic waste is higher than the concentration achieved in Full System. On 

examining the simulation input and results of AXR-103, it was found that no anoxic 

reaction took place in AXR-103 because the nitrite was depleted after AB-101. See 

Fig.4.2.2.B. 

 

The nitrite concentration in Liquid Effluent was completely depleted. The nitrite 

concentration entering the second anoxic stage, AXR-102 (see Fig.4.2.2.B) was 6.8 mg/L 

and leaving AXR-102 was 0.41 mg/L. The nitrite concentration entering the second 

aerobic stage, AB-101 (see Fig.4.2.2.B) was 0.41 mg/L and was completely depleted 
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after treatment in AB-101. This is odd as ammonia oxidation to nitrite should be taking 

place in AB-101 therefore, nitrite concentration should be increasing at the end of AB-

101. On close examination of simulations of AB-101, it was found that the ammonia 

concentration entering AB-101 was 0.031 mg/L and depleted after treatment in AB-101. 

Therefore, some reaction with ammonia is taking place in AB-101. It is possible that 

ammonia is being oxidized to nitrate instead of nitrite in AB-101 and consequently 

shown as depleted after AB-101. Although, the first aerobic stage, AB-102 shows an 

increase in nitrite concentration while ammonia’s concentration decreased indicating that 

nitrite accumulation at a low temperature of 15oC. Experimental studies have indicated 

that increased temperature of about 30oC is required for partial nitrification as this 

temperature increases the concentration of undissociated ammonia causing inhibition of 

nitrite-oxidizing microorganisms resulting in nitrite accumulation [12].  A possible 

explanation is that in the beginning of the treatment when the concentration of 

undissociated ammonia is high, it is possible to accumulate nitrite (thus, causing partial 

nitrification) in the first aerobic stage AB-102 (see Fig.4.2.2.B) by controlling dissolved 

oxygen and pH. However, as the treatment proceeds and ammonia concentration 

depletes, nitrite-oxidizing microorganisms are no longer inhibited in the second aerobic 

stage AB-101 (see Fig.4.2.2.B) and begin oxidizing nitrite to nitrate.  

 

Therefore, we have come to a conclusion that Partial System may not work effectively at 

a temperature of 150C and will give inconsistent results when the concentration of 

ammonia is medium strength. A more detailed analysis of temperature effects may be 

required to understand the mechanisms, both using simulation and experimental work. 
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Table 4.3.3.A : The Effect of Temperature on Liquid Effluent 

Components Full System Partial System-3 

@ 

T = 15 o C 

@ 

T = 30 o C 

@ 

T = 15 o C 

    

Ammonia 

(mg/L) 

 

0.20 

 

0.0052 

 

0.00 

    

Domestic Waste 

(mg/L) 

 

0.64 

 

0.000 

 

0.86 

    

Nitrite 

(mg/L) 

 
N/A 

 
0.00121 

 

 

0.00 

 

 

Table 4.3.3.B : The Effect of Temperature on Sludge Effluent 

Components Full System Partial System-3 

@ 

T = 15 o C 

@ 

T = 30 o C 

@ 

T = 15 o C 

    

Ammonia  

(mg/L) 

 
0.076 

 
0.0039 

 

0.00 

    

Domestic Waste 

(mg/L) 

 
0.000053 

 
0.0000 

 

0.65 

    

Nitrite 

(mg/L) 

 
N/A 

 
0.00091 

 

 

0.00 
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Chapter 5 
 

Limitations, Conclusion and 
Recommendations 

 
5.1 - Limitations and Challenges 
 

The Partial System technology appears to be an efficient and effective method to remove 

ammonia from the wastewater but it comes with some challenges. The implementation of 

a Partial System technology is possible only if certain parameters and conditions are 

strictly maintained through out the wastewater treatment plant. These parameters are as 

follows: 

 

5.1.1 - Dissolved Oxygen 
 

The most significant and challenging aspect of Partial nitrification is maintaining a rigid 

dissolved oxygen concentration of 1.5 mg/L. Nitrobacter bacteria thrive in dissolved 

oxygen higher than 1.5 mg/L. When the population of Nitrobacter bacteria is left 

unrestricted, they will begin oxidizing nitrite into nitrate preventing nitrite accumulation 

and causing full nitrification. Dissolved oxygen concentrations less than 1.5 mg/L will 

not be enough to maintain aerobic conditions for Nitrosomonas bacteria to oxidize 

ammonia into nitrite and hence the ammonia removal system will fail entirely.  

 
5.1.2 – Undissociated Ammonia 
 
It has been found in experimental studies [12, 25] that the high concentration of 

undissociated ammonia (0.1 to 10 mg/L) successfully inhibited nitrite oxidation at first to 

accumulate nitrite. However, a gradual increase in undissociated ammonia concentration 
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is required for two reasons. First, it was found that with time, the nitrite oxidizing 

bacteria was able to adapt to even higher undissociated ammonia concentration of 22 mg 

NH3-N/L. Secondly, some experimental studies suggested that in case of very high 

undissociated ammonia concentration, there is a very high nitrite accumulation that may 

inhibit the biomass involved in the treatment process.  It is found that the initial 

concentration of undissociated ammonia above 10-150 mg/L can inhibit ammonia 

oxidation and therefore cause process failure. 

 

Since undissociated ammonia concentration rises with increased total ammonia 

concentration in the wastewater, Partial nitrification can only be implemented for 

treatment of wastewater with a high ammonium concentration or low C/N ratio. 

 

5.1.3 -Temperature 
 
Temperature of the wastewater needs to be maintained to 300C through out the treatment 

process in order to accomplish Partial nitrification.  This is because temperature affects 

the formation of undissociated ammonia by changing the ionization rate of ammonia. 

This can become a problem to maintain in winter. 

 
 
5.1.4 - pH 
 
The pH value of the wastewater to be treated by Partial technology should be established 

between 7 – 7.5. The value of pH also affects the formation of undissociated ammonia by 

involving in the ionization of ammonia.  

 

5.15 - High Nitrite Concentration   
 

Another limitation of Partial System is that concentration of nitrite in the municipal 

wastewater treatment plant’s effluent. Nitrite at high concentration is very toxic. Care 
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should be taken in order to ensure that the nitrite concentration is managed well within 

the guidelines provided by Canadian Water Quality Guidelines for the protection of 

aquatic life [24].  

 

Also, another concern with this respect has been suggested by some studies. It was found 

that high ammonia concentration caused consequently high nitrite concentration. High 

nitrite concentration in the stream of wastewater inhibited the biomass used for 

nitrification causing process failure [12]. 

   

 

5.2 - Conclusion 
 

Ammonia is the highest ranked pollutant released to Canadian environment [71] and 

especially, ammonia dissolved in wastewater effluents was found to be toxic to the 

aquatic life (Canadian Environmental Protection Act, 1999, CEPA 1999). Since the 

municipal wastewater treatment plants are the major source of ammonia released to 

Canadian aquatic ecosystem therefore, it is imperative that the ammonia concentration be 

reduced from the effluents of municipal treatment plants.  

 

Presently, Full nitrification technology is being implemented in municipal wastewater 

treatment plants. A Full System involves oxidation of ammonia to nitrite by 

Nitrosomonas bacteria and then further oxidation of nitrite to nitrate with the help of 

Nitrobacter bacteria in an aerobic process. The nitrate thus obtained, undergoes a 

denitrification treatment which is an anoxic process conducted with the help of 

heterotrophic bacteria. In denitrification, the nitrate is first denitrified back to nitrite and 

then further reduced to gaseous form of N such as, nitric oxide, nitrous oxide and finally 

dinitrogen gas which is released in the atmosphere. This technology however, 

incorporates high costs pertaining to high oxygen requirements in aerobic process. 

Additionally, in denitrification involves an extra step of reducing nitrate to nitrite. These 

factors make it an expensive treatment.   
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For few years, scientists have been working on many new operational strategies in order 

to improve the efficiency of the ammonia removal treatment and reduce the costs of the 

treatment. Partial nitrification is one such technology which has shown promising results 

in research studies. In Partial nitrification technology, the ammonia is oxidized until 

nitrite only by Nitrosomonas bacteria. This can be done by inhibiting the nitrite oxidizers, 

(Nitrobacter bacteria) to accumulate nitrite. The nitrite thus obtained can then be 

denitrified to dinitrogen gas. Nitrobacter (nitrite oxidizers) require larger amount of 

oxygen to survive as compared to Nitrosomonas (ammonia oxidizers). Based on this 

knowledge, it was found experimentally that Partial nitrification is possible at a lab-scale, 

provided dissolved oxygen is strictly limited to 1.5 mg/L. Any increase in dissolved 

oxygen will cause the Nitrobacter to flourish which subsequently will begin oxidizing 

nitrite into nitrate, preventing nitrite accumulation.  Furthermore, Partial System can only 

be implemented in a wastewater influent with a medium to high total ammonia content as 

high free ammonia concentration inhibits nitrite oxidizers. Additionally, maintaining a 

temperature of 300C and pH of 7 to 7.5 in the wastewater is equally important to inhibit 

Nitrobacter as it helps in maintaining desired free ammonia concentration. The 

experimental results proclaimed Partial technology to be a more efficient technology. The 

technology required a 25% lower oxygen consumption and 40% lower electron donors. 

The denitrification rates in Partial Systems were 1.5-2 times faster than in Full System.  

 

In order to apply the experimental results to a design case, two models Full System and 

Partial System-1, were developed to represent Full nitrification and Partial nitrification 

technologies respectively. Both the models also included their respective denitrification 

processes in order to evaluate the overall effect on the nitrogen removal process. Both the 

plants were considered to accommodate the nitrogen removal treatment of 8 MGD of 

municipal wastewater.   The influent was assumed to be a typical medium strength 

municipal wastewater. Initial properties of the municipal wastewater influent were set to 

be similar in both the models. It was also assumed that there are no or negligible traces of 

nitrate and nitrite in the plants’ influent. The treatment procedure, conditions and 

parameters were selected on the basis of established research literature.  
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The simulation results of the Full System model and Partial System-1 models were 

analyzed to draw comparisons. It was found that the Partial System-1 did reduce the 

ammonia concentration in the effluent significantly as compared to Full System. The 

ammonia concentration was 97% lesser in the Partial System-1 when compared to Full 

System. This is an enormous difference and therefore, gives us the option to optimize the 

plants operations to reflect reduction in equipment and utility costs. Although, Partial 

System-1 prove to be very effective in reducing the ammonia concentration in the 

effluent however, the nitrite concentration achieved at the end of the treatment was 0.34 

mg/L. Nitrite is considered toxic and therefore is regulated to a concentration of 0.06 

mg/L in the aquatic environment by Canadian Water Quality for the protection of aquatic 

life for Nitrite and Nitrate [24]. Thus, the concentration of 0.34 mg/L was a source of 

concern. 

 

The significant decrease in dissolved oxygen requirements as suggested by the 

experimental research was also verified by EnviroPro Designer. The reports generated by 

EnviroPro suggested a 33% decrease in oxygen consumption when the Partial System-1 

was implemented. The reduction in oxygen requirement suggests a substantial amount of 

utilities savings for Partial System-1. 

 

The denitrification process was also found to be the more effective and efficient in case 

of Partial System-1.  Experiments studies observed the denitrification rates to be 1.5-2 

times faster in case Partial System-1. This experimental evidence was also confirmed by 

the simulation results obtained by EnviroPro Designer which showed the denitrification 

rates of Partial System-1 to be 1.5 faster.  

 

Furthermore, many research studies implied better domestic waste consumption by 

Partial System-1 which in turn would positively affect the amount of surplus sludge at the 

end of the treatment. The Partial System-1 model demonstrated significantly lower 

concentration of biodegradable domestic waste. Biodegradable organics in the effluents 

discharged in the aquatic ecosystem competes for oxygen which adversely affects the 

aquatic life. Additionally, amount of domestic waste add to the surplus sludge remaining 
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at the end of treatment, the disposal of which becomes a problem. In many cases, the 

surplus sludge can only be disposed off by incineration or landfill. These methods pose a 

threat to the environment. Therefore, this low complete utilization of domestic waste in 

Partial System-1 makes it a more efficient system for the municipal wastewater 

treatment.   

 

The capital costs associated with Full System and Partial System-1 does indicate Partial 

System-1 to be more economical of two. However, a 3% reduction as evaluated by 

EnviroPro Designer is not a significant number as proposed by the research literature.   

 

The ammonia concentration in Partial System-1 is significantly low therefore, that made 

it possible for us to optimize the design to incur positive results with respect to 

economics. Furthermore, concern for high nitrite concentration in the effluent after the 

treatment required an effective solution to lower this concentration according to the 

permissible values. Hence, the basic Partial System-1 was optimized as Partial System-2 

and Partial System-3 in an attempt to incur better results.  

 

Partial System-2 implemented halved the air requirement of Full System. The aeration 

requirement was set to be 0.005 m3 air/ m3 (liq/min) (representing DO =1 mg/L) as 

opposed to 0.010 m3 air/ m3 (liq/min) (representing DO=1.5 mg/L). This did not give 

desirable results as both the concentration of ammonia and nitrite in the Liquid Effluent 

surpassed the permissible concentrations provided by Canadian Water Quality for the 

protection of aquatic life [24,66]. This result confirmed the claim of experimental 

research that the DO of 1.0 mg/L is not sufficient to carry out effective partial 

nitrification and its subsequent denitrification [12].  

 

Partial System-3 was designed to tackle the high nitrite concentration in the effluent 

while implementing measures to lower the oxygen requirements. In Partial System-3, an 

additional anoxic stage was added. The aerobic stage included in sludge treatment was 

considered expendable and thus was removed. This novel design, provided superior 

results. It managed to save 50% of oxygen utilized per year for the treatment when 
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compared to Full System. The oxygen in kg per ammonia removed ratio was 13.9 in 

Partial System-3 as opposed to 19.4 in case of Partial System-1 and 29.1 in case of Full 

System. Furthermore, it reduced the nitrite concentration to a mere 0.0012 mg/L when the 

permissible value is 0.06 mg/L [24]. Additionally, denitrification rates were 2 times faster 

in Partial System-3. The capital cost was reduced to 14%. The domestic waste was also 

found to be completely depleted. This shows that for the same domestic concentration 

Partial System-3 would require lesser number of treatment stages as compared to Full 

System. Hence, this research put forwards Partial System-3 as the most effective and 

efficient design to reduce medium to high ammonia concentration in wastewater.  

 

Hence, in order to achieve Partial System, it is important that ammonia content in the 

wastewater should be from medium to high strength (20 to 50 mg/L). This treatment is 

not feasible for wastewater with a low ammonia concentration. Furthermore, the pH of 

the wastewater should be in the range of 7 to 7.5. This is manageable as the pH of a 

typical municipal wastewater falls in this range. Additionally, maintaining a temperature 

of 300C through out the treatment is also important in order establish Partial System. It is 

possible to maintain this temperature uniformly by implementing an effective cooling and 

heating system and thorough mixing system through out the operation process.  The most 

important and challenging parameter is concentration of dissolved oxygen which should 

be precisely and uniformly maintained to a concentration of 1.5 mg/L. If the 

concentration of dissolved oxygen is allowed to be more than 1.5 mg/L, Nitrobacter 

bacteria will oxidize the nitrite into nitrate preventing nitrite accumulation and hence, full 

nitrification will commence. If dissolved oxygen is less than 1.5 mg/L, Nitrosomonas 

would be unable to oxidize ammonia into nitrite, also hindering nitrite accumulation as 

shown by Partial System-2. In this thesis the DO is depicted by controlling the aeration 

requirement.  In order to reflect a DO concentration of 2 mg/L in Full Nitrification, the 

aeration requirement was set to 0.010 m3 air/ m3 (liq/min) [63]. Hence, it can be inferred 

that Partial System-3 would be applicable to municipal wastewater treatment plant 

treating a medium to high treatment plants where it can maintain a dissolved oxygen to 

1.5 mg/L by aeration requirement of 0.007 m3 air/ m3 (liq/min).   
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In the light of literature review, further confirmed by simulation results evaluated by 

EnviroPro Designers, we can conclude that Partial System is definitely a more efficient 

technology than Full System. Especially, Partial System-3 showed extremely effective 

results.  It significantly reduces ammonia concentration, amount of domestic waste in the 

effluent and nitrite concentration while substantially reduced oxygen consumption. It 

shows better capital costs. It will be practical and beneficial to implement Partial System-

3 in municipal wastewater treatment plants handling wastewater with medium to high 

ammonia concentration and a pH of 7 to 7.2.  
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5.3 - Recommendations 
 

In order to improve the credibility and productivity of the Partial System, following 

measures are recommended: 

 

It is recommended that experimental work should be carried out in order to find the 

Decay Constant of Nitrosomonas and Half Saturation Constant of Denitrification from 

nitrite. Although a sensitivity analysis conducted to find the overall significance of these 

kinetic parameters suggested that the conclusions of the thesis are not significantly 

affected by these parameters, it will be helpful to have accurate kinetic parameters for 

Partial System to derive authentic results and for any future development.  

 

In this thesis, dissolved oxygen is set by controlling the aeration requirement. EnviroPro 

Designer also provides for the dissolved oxygen to be controlled by defining a specific 

value for it. In future, this approach can be taken to define the aerobic conditions and 

observe and deviations from the conclusion of this thesis.    

 

It would be useful to explore additional process configurations for other influent 

ammonia levels i.e. the optimal sequencing of aerobic and anoxic reactors might be 

different, depending on the concentration.  

 

For the future research, it would be beneficial to demonstrate the minimum temperature 

required to be maintained through out the treatment in order to meet the Canadian Water 

Quality guidelines for the protection of aquatic life. 

 

Modeling of fixed film reactors where the partial nitrification might be controlled within 

the depth of the biofilm is also recommended for future studies. 
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In DomWaste Degradation Reaction (Section 3.6.1), the yield, Y=0.8 mg vss / mg 

DomWaste taken from [18]. A high yield of 0.8 from domestic waste seems unrealistic as 

the theoretical yield of biomass from pure glucose is about 0.5 g biomass/ g glucose. It is 

possible that the yield, Y=0.8 mg vss / mg DomWaste assumed in [18], considers the 

capture of colloidal waste. It is best that in future studies, the yield from domestic waste 

should be investigated for more accurate results. 

 

Due to unavailability of yield for domestic waste in denitrification from NO2 (Section 

3.8.2.1.1), the domestic waste yield of 0.32 g domestic waste/ g NO2 has been assumed 

which is same as the one taken in denitrification from NO3. Experimental work needs to 

be done in order to evaluate an accurate value.   
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APPENDIX A 
REPORT 4.1.A –  STREAM & MATERIAL BALANCE FOR 

FULL SYSTEM 
Materials & Streams Report 

for Thesis - Full System – Bardenpho 
 

1.OVERALL PROCESS DATA 
 

 
 
2.2 BULK MATERIALS (ENTIRE PROCESS) 

 
2.3 BULK MATERIALS (PER SECTION) 

 
 
 
 
 
2.4 BULK MATERIALS (PER MATERIAL) 

 140



 

 

 141



 
 
 
2.5 BULK MATERIALS (kg/h): SECTION TOTALS 

 
2.6 BULK MATERIALS (kg/yr): SECTION TOTALS 
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3. STREAM DETAILS 

 

 
 
 
 
 
 
 

 143
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4. OVERALL COMPONENT BALANCE (kg/yr) 
 

 
 
 
5. EQUIPMENT CONTENTS 
 
This section will be skipped (overall process is continuous) 
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REPORT 4.1.B - ECONOMIC EVALUATION FOR FULL 
SYSTEM 

 
Economic Evaluation Report 

for Thesis - Full System – Bardenpho 
 
 

1.EXECUTIVE SUMMARY (2009 prices) 
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2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST 
(2009 prices) 
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3. FIXED CAPITAL ESTIMATE SUMMARY (2009 prices in $) 
 

 
 
 
4. LABOR COST - PROCESS SUMMARY 
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5. MATERIALS COST - PROCESS SUMMARY  
 

THE COST OF ALL MATERIALS IS ZERO. PLEASE CHECK THE MATERIAL BALANCES 
AND THE PURCHASING COST OF RAW MATERIALS. 

 
 
6. VARIOUS CONSUMABLES COST (2009 prices) - PROCESS 
SUMMARY 
 
THE CONSUMABLES COST IS ZERO 
 
 
7. WASTE TREATMENT/DISPOSAL COST (2009 prices) - 
PROCESS SUMMARY 
 
THE TOTAL WASTE TREATMENT/DISPOSAL COST IS ZERO.  
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REPORT 4.2.A – STREAM & MATERIAL BALANCE 

FOR PARTIAL SYSTEM-1 
 

Materials & Streams Report 
for Thesis - Partial System (1)- Bardenpho 

 
1.OVERALL PROCESS DATA 
 

 
 
2.1 STARTING MATERIAL REQUIREMENTS 
 

 
 
Sin = Section Starting Material, Aout = Section Active Product 
 
2.2 BULK MATERIALS (ENTIRE PROCESS) 
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2.3 BULK MATERIALS (PER SECTION) 
 

 
 
 
2.4 BULK MATERIALS (PER MATERIAL) 
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2.5 BULK MATERIALS (kg/h): SECTION TOTALS  
 

 
2.6 BULK MATERIALS (kg/yr): SECTION TOTALS 
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3. STREAM DETAILS 
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4. OVERALL COMPONENT BALANCE (kg/yr) 

 
 
 
 
5. EQUIPMENT CONTENTS 
 
This section will be skipped (overall process is continuous). 
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REPORT 4.2.B - ECONOMIC EVALUATION FOR 
PARTIAL SYSTEM-1 

 
Economic Evaluation Report 

for Thesis - Partial System (1)- Bardenpho 
 

1.EXECUTIVE SUMMARY (2009 prices) 
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2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST 
(2009 prices) 
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3. FIXED CAPITAL ESTIMATE SUMMARY (2009 prices in $) 
 

 
 
 
4. LABOR COST - PROCESS SUMMARY 
 

 
 
5. MATERIALS COST - PROCESS SUMMARY 
 
THE COST OF ALL MATERIALS IS ZERO. PLEASE CHECK THE MATERIAL BALANCES 
AND THE PURCHASING COST OF RAW MATERIALS. 
 
6. VARIOUS CONSUMABLES COST (2009 prices) - PROCESS 
SUMMARY 
 
THE CONSUMABLES ARE ZERO. 
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7. WASTE TREATMENT/DISPOSAL COST (2009 prices) - 
PROCESS SUMMARY 
 
THE TOTAL WASTE TREATMENT/DISPOSAL COST IS ZERO. 
 
8. UTILITIES COST (2009 prices) - PROCESS SUMMARY 
 

 
9. ANNUAL OPERATING COST (2009 prices) - PROCESS 
SUMMARY 
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REPORT 4.3.A – STREAM & MATERIAL BALANCE 
FOR PARTIAL SYSTEM-2 

 
 

Materials & Streams Report 
for Thesis - Partial System (2)- Bardenpho 

 
 
1.OVERALL PROCESS DATA 
 
 

 
 
2.1 STARTING MATERIAL REQUIREMENTS 
 

 
 
Sin = Section Starting Material, Aout = Section Active Product 
 
2.2 BULK MATERIALS (ENTIRE PROCESS) 
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2.3 BULK MATERIALS (PER SECTION) 
 

 
 
 
2.4 BULK MATERIALS (PER MATERIAL) 
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2.5 BULK MATERIALS (kg/h): SECTION TOTALS 
 

 
 
2.6 BULK MATERIALS (kg/yr): SECTION TOTALS 
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3. STREAM DETAILS 
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4. OVERALL COMPONENT BALANCE (kg/yr) 
 

 
 
5. EQUIPMENT CONTENTS 
 
This section will be skipped (overall process is continuous). 
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REPORT 4.3.B – ECONOMIC EVALUATION FOR 
PARTIAL SYSTEM-2 

 
Economic Evaluation Report 

for Thesis - Partial System (2)- Bardenpho 
 

1. EXECUTIVE SUMMARY (2009 prices) 
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2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST (2009 
prices)  
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3. FIXED CAPITAL ESTIMATE SUMMARY (2009 prices in $) 
 

 
 
 
4. LABOR COST - PROCESS SUMMARY 
 

 
 
5. MATERIALS COST - PROCESS SUMMARY 
 
THE COST OF ALL MATERIALS IS ZERO. PLEASE CHECK THE MATERIAL BALANCES 
AND THE PURCHASING COST OF RAW MATERIALS. 
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6. VARIOUS CONSUMABLES COST (2009 prices) - PROCESS 
SUMMARY 
 
THE CONSUMABLES COST IS ZERO. 
 
 
7. WASTE TREATMENT/DISPOSAL COST (2009 prices) - 
PROCESS SUMMARY 
 
THE TOTAL WASTE TREATMENT/DISPOSAL COST IS ZERO. 
 
 
8. UTILITIES COST (2009 prices) - PROCESS SUMMARY 

 
 
9. ANNUAL OPERATING COST (2009 prices) - PROCESS 
SUMMARY 
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REPORT 4.4.A – STREAM & MATERIAL BALANCE FOR 
PARTIAL SYSTEM-3 

 
Materials & Streams Report 
for Thesis - Partial System (3)  

 
1. OVERALL PROCESS DATA 

 
 
2.1 STARTING MATERIAL REQUIREMENTS 
 

 
 
Sin = Section Starting Material, Aout = Section Active Product 
 
 
2.2 BULK MATERIALS (ENTIRE PROCESS) 
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2.3 BULK MATERIALS (PER SECTION) 
 

 
 
 
2.4 BULK MATERIALS (PER MATERIAL)  
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2.5 BULK MATERIALS (kg/h): SECTION TOTALS 

 
2.6 BULK MATERIALS (kg/yr): SECTION TOTALS 
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3.STREAM DETAILS 
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4. OVERALL COMPONENT BALANCE (kg/yr) 
 

 
 
 
5. EQUIPMENT CONTENTS 
 
THIS SECTION WILL BE SKIPPED (OVERALL PROCESS IS CONTINUOUS). 
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REPORT 4.4.B – ECONOMIC EVALUATION FOR 
PARTIAL SYSTEM-3 

 
 

Economic Evaluation Report 
for Thesis - Partial System (3)  

 
1. EXECUTIVE SUMMARY (2009 prices) 
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2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST (2009 
prices) 
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3. FIXED CAPITAL ESTIMATE SUMMARY (2009 prices in $) 

 
 
 
4. LABOR COST - PROCESS SUMMARY 
 

 
 
 
5.MATERIALS COST - PROCESS SUMMARY 

 
THE COST OF ALL MATERIALS IS ZERO. PLEASE CHECK THE MATERIAL BALANCES 
AND THE PURCHASING COST OF RAW MATERIALS.  

 
 
 
 
 
 

 189



6. VARIOUS CONSUMABLES COST (2009 prices) - PROCESS 
SUMMARY 
THE CONSUMABLES COST IS ZERO. 
 
7. WASTE TREATMENT/DISPOSAL COST (2009 prices) - 
PROCESS SUMMARY 
THE TOTAL WASTE TREATMENT/DISPOSAL COST IS ZERO. 
 
8. UTILITIES COST (2009 prices) - PROCESS SUMMARY 

 
 
9. ANNUAL OPERATING COST (2009 prices) - PROCESS 
SUMMARY 
 

 
 
 
 
 
 

 190


	Table of Contents................................…...................................................….................................................v
	List of Reports

	Full
	            Canadian Council of Ministers of the Environment, 2000
	               G.Ciudad, O.Rubilar, P.Munoz, G.Ruiz, R. Chamy, C.Vergara, D.Jeison
	       Pg 543 -548
	      Volume 9, Issue 2, March 2003 , pages 527 – 548


