
OpenBSD Hardware Sensors:

Environmental Monitoring and Fan Control

by

Constantine A. Murenin

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

© Constantine A. Murenin 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Con!antine A. Murenin

iii

Abstract
This thesis discusses the motivation, origin, history, design guidelines, API, the de!

vice drivers and userland utilities of the hardware sensors framework available in

OpenBSD. The framework spans multiple utilities in the base system and the ports

tree, is utilised by over 75 drivers, and is considered to be a distinctive and ready!to!

use feature that sets OpenBSD apart from many other operating systems, and in its

root is inseparable from the OpenBSD experience.

The present framework, however, is missing the functionality that would allow the

user to interface with the fan!controlling part of the hardware monitors. We there!

fore discuss the topic of fan control and introduce sysctl!based interfacing with the

fan!controlling capabilities of microprocessor system hardware monitors. The dis!

cussed prototype implementation reduces the noise and power!consumption charac!

teristics in fans of personal computers, especially of those PCs that are designed

from o"!the!shelf components. We further argue that our prototype is easier, more

intuitive and robust compared to solutions available elsewhere.

Date: 2010!05!21.# Permanent ID of this document: ab71498b6b1a60"817b29d56997a418.

v

Acknowledgements
I would like to thank my supervisor, Professor Raouf Boutaba, for his guidance and

support in my study at the University of Waterloo. I would also like to thank my

readers, Associate Professor Richard Trefler and Associate Professor Martin Karsten,

for their encouragement and comments. Special thanks goes to my friends and col!

leagues that have made my experience at the university a time to miss and remem!

ber.

vii

To my family.

ix

Table of Contents

1. Introduction! 1

1.1. Motivation! 1

1.2. Design decisions! 4

2. Framework API! 6

2.1. Adding sensors in attach"#! 8

2.2. Sensor task re$esh procedure! 9

3. Sensor Tools! 11

3.1. sysctl hw.sensors! 11

3.2. sensorsd! 12

4. Sensor Drivers! 14

5. I%C Sensors and Bus Scan! 20

5.1. Open Firmware and I%C! 20

5.2. I%C bus scan through i2c_scan.c! 21

5.3. I%C drivers! 22

5.4. I%C register dumps! 22

5.5. I%C sandboxing for driver development! 23

6. Evolution of the Framework! 26

6.1. Framework timeline! 26

xi

6.2. Evolution of drivers! 28

7. Related Frameworks! 30

7.1. NetBSD envsys / sysmon! 30

7.2. FreeBSD general sysctl tree! 34

7.3. lm_sensors! 35

8. Port to FreeBSD / DragonFly BSD! 36

8.1. Summer of Code 2007! 36

8.2. Sensors $amework in DragonFly! 37

8.3. Sensors $amework in FreeBSD CVS! 37

9. Availability! 39

10. Introduction and Motivation for Fan Control! 40

11. Related Work on Fan Control! 42

11.1. Interfacing $om the BIOS! 42

11.2. ACPI! 43

11.3. SpeedFan on Windows! 45

11.4. lm_sensors on Linux! 46

12. Hardware Monitoring Chips! 47

12.1. Shortcomings with general&purpose fan&control so'ware! 48

13. OpenBSD sysctl hw.sensors Fan&Control! 49

13.1. New upvalue field and new flags! 49

xii

13.2. Sensor types! 51

13.3. Dynamic sensor descriptions! 52

13.4. The lm"4# driver! 52

14. Demonstration! 54

15. Conclusion! 57

16. Future Projects! 58

16.1. Hardware support! 58

16.2. Port sensor&detect.pl $om lm_sensors! 58

16.3. Port i2c_scan.c to other BSDs! 58

16.4. Further improve sensorsd! 59

16.5. Interfacing for fan&speed contro(ing! 59

16.6. Possible race conditions between user so'ware and the BIOS! 60

16.7. Fan&contro(ing through sensorsd! 60

References! 63

xiii

1. Introduction
In the first part of the thesis, we start by investigating the matter of what hardware

monitoring sensors represent, how common is it for them to appear in general!

purpose computer hardware that has been available on the market in the last decade

or so, and what benefits can be gained by having a unified, simple and straightfor!

ward interface for getting data out of these sensors.

In the second part of this work, we investigate the possibilities of controlling the

speed of the fans for purposes of reduced acoustics and power!consumption, and dis!

cuss the prototype that implements said functionalities.

1.1. Motivation
Although it may come as a surprise to some users, the majority of personal comput!

ers that have been available on the market in the last decade have an integrated

hardware monitoring circuitry, the main purpose of which is delivering a plethora of

functionalities regarding temperature management and environmental conditions.

For example, many Super I/O chips that can be found on popular motherboards con!

tain a logical device known as Microprocessor System Hardware Monitor. $lm.4%

$it.4% $viasio.4% $nsclpcsio.4% $fins.4% $schsio.4% These hardware monitors can be in!

terfaced through I&C/SMBus or ISA/LPC, or both, and provide information regard!

ing the rotational speed of cpu and system fans, temperature readings from internal

and external sensors, as well as the voltage that is supplied to the motherboard by

the power supply unit. As a matter of fact, these hardware monitors can also allow

one to control the voltage that is given to the fans that are connected to the moth!

erboard, and have a closed!loop circuitry that, once programmed, can vary the volt!

age, and thus the speed, of certain fans based on the changes in sensory data.

Another trend that has been particularly common in the recent years is the availabil!

ity of defined interfaces for software!based temperature readout from individual

components of personal computers, such as the CPU, or the add!on cards, such as

1

those implementing the 802.11 wireless functionality or 10 Gigabit Ethernet. Popu!

lar examples include recent Intel Xeon and Core series of processors 'as well as

budget models that are marketed under di"erent brands($admtemp.4% $cpu.4%; all

AMD64 processors from AMD 'Families 0Fh, 10h, 11h($kate.4% $km.4%; Intel WiFi

Link 4965/5100/5300 wireless network devices $iwn.4%.

When it comes to high!end server and workstation equipment, then there are even

more possibilities for additional sensors, from Intelligent Platform Management In!

terface 'IPMI($ipmi.4% and Dell Embedded Server Management $esm.4% to SCSI

Accessed Fault!Tolerant Enclosure $safte.4% and SCSI Enclosure Services $ses.4%.

$Gwynne.Open06%

Certain brand!name laptops feature additional opportunities for hardware monitor!

ing, too. These can include IBM/Lenovo ThinkPad Active Protection System $aps.4%

and Apple Sudden Motion Sensor $asms.4%, which provide information regarding ac!

celeration in a 2! and 3!D plane, respectively. Newer laptops with Advanced Configu!

ration and Power Interface 'ACPI($acpi.4 et al% may additionally provide informa!

tion regarding the thermal zones $acpitz.4% and battery status $acpibat.4%, as well as a

boolean state of whether the power supply is currently connected $acpiac.4%.

Some vendors, moreover, include custom ACPI devices in the Di"erentiated System

Description Tables 'DSDTs(that specify ACPI methods and operation regions for

enquiring certain environmental information from the underlying hardware. Exam!

ples feature IBM/Lenovo ThinkPad laptops with IBM0068 ACPI device

$acpithinkpad.4%, ASUSTeK desktop motherboards that are advertised with features

such as AI Booster through the underlying ATK0110 ACPI device $aibs.4% and ABIT

uGuru.

Another variant of sensor data that has been found necessary for system administra!

tors to be aware of is that of the status of logical disc drives from the utilisation of

the Redundant Array of Inexpensive Discs 'RAID(technology. $esm.4% $ami.4%

2

$ciss.4% $mfi.4% $arc.4% $softraid.4% $cac.4% $mpi.4% $ips.4% This includes information

regarding which logical drives may be a"ected by what kinds of problems 'e.g. a state

of ‘online’, ‘degraded’, ‘failed’ etc(. $Gwynne.Open06%

The latest type of sensors that was introduced in OpenBSD is the timedelta type,

which provides data regarding the o"set of the local clock versus some kind of a

much more reliable timesource 'e.g. a GPS source $nmea.4% or a low!frequency radio

receiver $udcf.4% $mbg.4% $umbg.4% $gpiodcf.4%(. The ntpd'8(daemon uses these

timedelta sensors to correct the local clock, with the aim of ensuring that they are as

close to zero as possible 'i.e. the local clock within the OS is as close as possible to

that of some trusted external time source(. $Balmer.Asia07% $Balmer.Euro07%

As a summary, it has been found that all of these sensor!like data 'see Table I for the

complete list(can be aggregated in a single and straightforward interface, which we

describe in the following sections. Needless to say, the monitoring of many of these

Type Unit

Temperature K

Fan speed RPM

Voltage V DC, V AC

Resistance)

Power W

Current A

Power capacity W/h, A/h

Indicator boolean

Raw number integer

Percentage *

Illuminance lx

Logical disc drive enumeration

Local clock o"set s

Table I. List of sensor types.

3

environmental sensors can predict and diagnose system failure. $Gwynne.Open06%

We argue that OpenBSD’s interface is easier to use and is more e"ective than com!

parable interfaces in other systems, since it requires no manual configuration on the

part of the user or system administrator 'unlike most competing solutions(.

$deRaadt.zdnet06% Granted, due to the fact that no manual configuration is re!

quired, and little user!visible options are available for such configuration, the frame!

work may not fit everyone’s needs; however, when one has dozens of distinct ma!

chines across the network, one starts appreciating the fact that the framework is so

easy to use, and that, for the most part, it comes preconfigured right from the time

of the first boot of one’s copy of OpenBSD.

Since many modern operating systems still lack unified hardware monitoring frame!

works, our presentation of the framework developed in OpenBSD will be helpful for

any future endeavours regarding the design and development of any comparable

framework and the kinds of devices and features it has to support, and which

framework features may be considered optional.

1.2. Design decisions

Following the standard OpenBSD philosophy regarding operating system features,

the framework has been designed with the goal of being simple, secure and usable by

default, right out!of!the!box. $deRaadt.priv06% We should note that in many cases

overengineering would not have been useful anyhow, since many devices have in!

complete specifications, and supporting too many extended features at the price of a

bloated kernel is judged as not being a positive approach.

To illustrate this example of lacking or incomplete documentation, consider how

voltage sensors work. When reading a value from one of the popular hardware

monitoring chips 'like those from Winbond or ITE Tech(, the sensed value repre!

sents a voltage in range between 0 and around 2 or 4 V. I.e. some resistors must be

in place between a 12 V power line and the sensor input on the chip. Subsequently,

4

the read value is scaled based on the resistor factors 'see Table II for the illustration(,

where the resistor recommendations are expected to have been supplied by the chip

manufacturer to the motherboard manufacturer, where the latter must have adhered

to such recommendations when building their products.

In practice, it has been noted that such recommendations may sometimes be missing

or contradict each other from much of Winbond documentation, whereas at other

times, the motherboard manufacturer might have decided to go with some microsav!

ing by not following certain parts of the recommendation. In turn, all of this results

in situations where it is not at all clear what voltage sensor monitors which power

line and whether the readings can be trusted; in a sense, voltage doesn’t scale, so to

speak; thus we have to do the best with what we have. $Murenin.IEEE07%

In essence, design decisions included keeping the framework simple, secure and us!

able, with minimal user!configuration and sane default settings, since the framework

is enabled by default on all installations and must be useful, reliable and stable out!

of!the!box.

Table II. Voltage example for Winbond W83627HF.

Function Maths Result

original reading 0xcb 203

sensor voltage 203 * 16 mV 3,24 V

scale for +5 V 3,24 V * 1,68 5,44 V

scale for +12 V 3,24 V * 3,80 12,31 V

5

2. Framework API
The API of the framework with relevant datastructures is defined in

/sys/sys/sensors.h. The framework was originally introduced in 2003 and first ap!

peared in OpenBSD 3.4, but was redesigned on several occasions afterwards. As of

this writing 'March 2010(, the userland API has been stabilised in 2006 and has been

stable since OpenBSD 4.1, whereas the kernel API and the overall ABI has su"ered

some minor changes in 2007 with OpenBSD 4.2. Since then, many new and interest!

ing drivers and userland tools have been introduced, but the underlying framework

itself has remained stable. This section describes this latest revision of the frame!

work $Murenin.IEEE07% in some detail; details on what major changes were made in

2006 are available in an article in The OpenBSD Journal $Murenin.TOJ06%.

The sysctl mechanism is used as a transport layer between the kernel and the user!

land. $sysctl.3% $sysctl.8% This has an advantage of making the interface rather famil!

iar to many end users, as well as programmers, due to the wide familiarity with sysctl

amongst BSD users.

Two main datastructures are used: struct sensordev and struct sensor. The former holds

some information about the sensor device as a whole 'relevant MIB element in the

sysctl tree, the unix name of the device, the most number of sensors of each type and

the actual total number of sensors(, whereas the latter holds the information about

each individual sensor.

Each sensor may include an optional 31!character description, an optional time when

the value of the sensor was last changed, the actual value of the sensor, the type of

struct sensordev {
 int num;
 char xname[16];
 int maxnumt[SENSOR_MAX_TYPES];
 int sensors_count;
};

6

the sensor, an ordinal sensor number within sensors of this type on this device, an

optional sensor status and a field for some sensor flags.

Sensor description field should be used wisely: there is absolutely no need to dupli!

cate sensor type in sensor description, nor is there any need to duplicate num) in the

description; thus descriptions like “Fan1”, “Local Temperature 1” and “Local Tem!

perature 2” should be avoided if at all possible, and an empty string “”, “Local” and

“Local”, respectively, should be used in their place.

Sensor state is optional, and should only be

used by those drivers that are actually able to

query significant amount of state information

from the hardware to have the ability to mean!

ingfully change the state from one to another.

The default state value is UNSPEC, which signifies that the state information will

never be updated, and thus can be safely ignored by userland utilities such as sysctl'8(

and systat'1(in order to avoid providing the user with meaningless information. For

example, the majority of the I&C and Super I/O hardware monitors should not popu!

late the state field, since they have not much certainty in the validity of the readings

they acquire. On the other hand, if the driver does know the state of its sensors 'for

example, as is the case with IPMI $ipmi.4% or ATK0110 $aibs.4%(, then those states

may be one of OK, WARN, CRIT or UNKNOWN.

struct sensor {
 char desc[32];
 struct timeval tv;
 int64_t value;
 enum sensor_type type;
 enum sensor_status status;
 int numt;
 int flags;
};

enum sensor_status {
 SENSOR_S_UNSPEC,
 SENSOR_S_OK,
 SENSOR_S_WARN,
 SENSOR_S_CRIT,
 SENSOR_S_UNKNOWN
};

7

For the list of sensor types, please refer to Table I, or the source code definitions in

/sys/sys/sensors.h.

Since OpenBSD 4.2, the sensor and sensordev datastructures were renamed to ksensor

and ksensordev in the kernel, and some irrelevant bookkeeping fields were removed

from the userland sensor and sensordev structures; for simplicity, we may continue to

refer to these structures from the userland perspective of sensor and sensordev, even if

the kernel structures are the ones being discussed.

2.1. Adding sensors in attach!"

Writing drivers that utilise the framework is very straightforward. In the attach

procedure of the driver, the first step that can be taken is the initialisation of the

xnam* field of struct sensordev. Subsequently, each member of the struct sensor array

should have its typ* field initialised 'the only field that requires explicit initialisa!

tion(, and sensor_attach"# should be called 'which will set the num) field appropriately,

amongst some other bookkeeping(.

Subsequently, sensor_task_register"# can be used to register the periodic update task.

8

The final action that the driver must perform to make its whole tree of sensors avail!

able system!wide is the call to sensordev_insta("#. The driver may abort at any time

before calling sensordev_insta("#, but once the call is made, a sensordev_deinsta("# must

be called before the driver can safely detach itself or cancel the attach procedure due

to some other error.

2.2. Sensor task refresh procedure

In the refresh procedure of a minimal driver, all that needs to be done is the +alu*

field of each sensor to be updated.

void
drv_attach(struct device *parent,
 struct device *self, void *aux)
{
 ...

 strlcpy(sc->sc_sensordev.xname,
 sc->sc_dev.dv_xname,
 sizeof(sc->sc_sensordev.xname));

 for (i = 0; i < n; i++) {
 sc->sc_sensors[i].type =
 SENSOR_TEMP;
 sensor_attach(&sc->sc_sensordev,
 &sc->sc_sensors[i]);
 }

 if (sensor_task_register(sc,
 drv_refresh, 5) == NULL) {
 printf(": unable to register "
 "update task\n");
 return;
 }

 sensordev_install(&sc->sc_sensordev);

 printf("\n");
}

9

Of course, those drivers that keep state or use other fields of the sensor structure

must update them, too 'presumably, during each update cycle(.

Our minimal examples are intended to be illustrative of the main ideas behind the

framework, where the drivers are not required to update any fields which they do not

specifically use, therefore, simplifying the logic of the driver code and the overall

complexity of the system 'it is in fact known that in general the driver code amounts

for around 70* of the kernel code in an operating system, moreover, the driver code

is known to have error rates up to 7 times higher than the rest of the kernel $Tanen!

baum06% $Chou01%(.

void
drv_refresh(void *arg)
{
 struct drv_softc *sc = arg;
 struct ksensor *s = sc->sc_sensors;
 ...

 for (i = 0; i < n; i++)
 s[i].value = ...;
}

10

3. Sensor Tools
The sensors framework spans multiple user interfaces in OpenBSD. These include

sysctl'3(HW_SENSORS for C/C++ programmes; sysctl'8(hw.sensors for instanta!

neous readings or usage from shell scripts; systat'1(sensors view for semi!realtime

sensor monitoring; sensorsd'8(for filling in the log files with relevant changes in

sensor data, as well as user!configured alerts; ntpd'8(, which, e"ectively, acts as a

timedelta minimiser; and snmpd'8(, the SNMP daemon. Some interesting tools are

available in the ports tree, too; these include sysutils/symon for remote monitoring,

and sysutils/gkrellm for some GUI monitoring.

3.1. sysctl hw.sensors
The following is a sample output from running `sysctl hw.sensors ̀on an AMD Phe!

nom X4 9850 box, where one can see the sensor trees from two drivers, km'4(, the

embedded temperature sensor in the CPU, and it'4(, the Hardware Monitor from

ITE Tech’s Super I/O chip.

The first part of each line 'before the equal sign, “=”(represents the sysctl MIB for

the sensor in question, whereas the second part of each line represents the decoding

of the struct sensor datastructure by sysctl'8(.

hw.sensors.km0.temp0=50.50 degC
hw.sensors.it0.temp0=32.00 degC
hw.sensors.it0.temp1=45.00 degC
hw.sensors.it0.temp2=92.00 degC
hw.sensors.it0.fan0=2528 RPM
hw.sensors.it0.volt0=1.34 VDC (VCORE_A)
hw.sensors.it0.volt1=1.92 VDC (VCORE_B)
hw.sensors.it0.volt2=3.42 VDC (+3.3V)
hw.sensors.it0.volt3=5.21 VDC (+5V)
hw.sensors.it0.volt4=12.54 VDC (+12V)
hw.sensors.it0.volt5=1.62 VDC (-5V)
hw.sensors.it0.volt6=4.01 VDC (-12V)
hw.sensors.it0.volt7=5.75 VDC (+5VSB)
hw.sensors.it0.volt8=3.23 VDC (VBAT)

11

The following is an example of running `sysctl hw.sensors.aibs0` on a system with

Asus Striker Extreme motherboard. The motherboard’s ACPI DSDT includes an

ASOC ATK0110 device, which provides not only the ability to gather sensor input,

but also describes what each sensor is specifically used for, as well as supplying the

information regarding the applicable range or ranges of alert values for each sensor.

The ATK0110 device is supported by the aibs'4(driver, which automatically popu!

lates the sensor description and sensor state fields of each sensor.

For more details regarding the possible output of sysctl'8(, see the relevant source

code in src/sbin/sysctl/.

3.2. sensorsd

The sensorsd'8(sensor monitoring daemon allows the user to monitor all sensors and

send alerts if certain states of the sensors change. $deRaadt.zdnet06%

Since c2k7 'the general OpenBSD hackathon in 2007(and OpenBSD 4.2, sensorsd

can automatically monitor and report the changes in sensor states on those sensors

that keep their state 'for example, as is the case with IPMI, ESM, ACPI ATK0110

hw.sensors.aibs0.temp0=31.00 degC (CPU Temperature), OK
hw.sensors.aibs0.temp1=43.00 degC (MB Temperature), OK
hw.sensors.aibs0.fan0=2490 RPM (CPU FAN Speed), OK
hw.sensors.aibs0.fan1=0 RPM (CHASSIS FAN Speed), WARNING
hw.sensors.aibs0.fan2=0 RPM (OPT1 FAN Speed), WARNING
hw.sensors.aibs0.fan3=0 RPM (OPT2 FAN Speed), WARNING
hw.sensors.aibs0.fan4=0 RPM (OPT3 FAN Speed), WARNING
hw.sensors.aibs0.fan5=0 RPM (OPT4 FAN Speed), WARNING
hw.sensors.aibs0.fan6=0 RPM (OPT5 FAN Speed), WARNING
hw.sensors.aibs0.fan7=0 RPM (PWR FAN Speed), WARNING
hw.sensors.aibs0.volt0=1.26 VDC (Vcore Voltage), OK
hw.sensors.aibs0.volt1=3.25 VDC (+3.3 Voltage), OK
hw.sensors.aibs0.volt2=4.95 VDC (+5.0 Voltage), OK
hw.sensors.aibs0.volt3=11.78 VDC (+12.0 Voltage), OK
hw.sensors.aibs0.volt4=1.23 VDC (1.2VHT Voltage), OK
hw.sensors.aibs0.volt5=1.50 VDC (SB CORE Voltage), OK
hw.sensors.aibs0.volt6=1.25 VDC (CPU VTT Voltage), OK
hw.sensors.aibs0.volt7=0.93 VDC (DDR2 TERM Voltage), OK
hw.sensors.aibs0.volt8=1.23 VDC (NB CORE Voltage), OK
hw.sensors.aibs0.volt9=1.87 VDC (MEMORY Voltage), OK

12

and the driv* and timedelta type of sensors(. $Biancuzzi.42% Moreover, for any sensor,

no matter whether its driver keeps its state or not, the monitoring of manually

specified upper and lower boundaries can be performed. When any monitored sen!

sor state changes, the change is logged with syslog'3(and a command, if specified, is

executed. For more details, see the source code and documentation of

src/usr.sbin/sensorsd/.

We would like to point out an interesting observation in regards to the temperature

monitoring that may often be overlooked + it is generally assumed that only the up!

per temperature limits are of any interest to the users, whereas in reality, monitoring

of the lower limit may also be of value in certain hostile environments, where the at!

tacker may cool the memory modules down with liquid nitrogen, and subsequently

remove the modules from the system to gain unauthorised access to the data they

will continue to contain. $Halderman.Lest% Therefore, regardless of whether the

driver automatically keeps the state of its sensors, we advise the users to consider the

manual monitoring of the lower limit of any temperature sensor they deem impor!

tant. This monitoring of the lower limit of all temperature sensors from any driver

can be easily accomplished with a sensorsd.conf rule similar to “temp:low=18C”.

13

4. Sensor Drivers
In this section, we provide an overview of the kernel device drivers that utilise the

framework. For the most part, the statistics in this section are based on the source

code, as opposed to the binaries of the actual kernels for i386/amd64/macppc/

sparc64 etc. However, since the majority of the drivers are actually enabled in most

GENERIC kernels in OpenBSD, we deem that such a comparison is still appropri!

ate and reasonable.

In general, the drivers can be roughly divided into the following categories: Super I/

O hardware monitors, I&C/SMBus sensors, embedded temperature sensors, SCSI

enclosures and IPMI, ACPI sensors, as well as RAID logical drive status sensors and

misc
17

acpi
5drive

9

timedelta
8

Super I/O
7

i&c
29

Chart I. Number of sensor device drivers in OpenBSD 4.6
by primary category.

14

time o"set sensors. The I&C drivers, by far, form the majority, as is evidenced from

Chart I. Note that in this chart some drivers have been placed into the general mis!

cellaneous category for simplicity, which include IPMI and various other embedded

sensors. Moreover, the above grouping is not strictly unambiguous + some I&C de!

vices, for example, may actually be part of a Super I/O solution 'which would not

make much di"erence from the perspective of a software developer, so we deem our

grouping to be reasonable where the Super I/O category does not include any I&C!

only devices(.

OpenBSD 4.6 'July / October 2009(contains 75 drivers that expose sensors using the

sensors framework. Chart II represents sensor type popularity based on the number

of drivers that are using each type 'nonexclusively(. Note that the temperature sen!

sor type is by far the most popular 'used by 50 out of the 75 drivers(, with the fan and

temp
fan
volt

acvolt
resistance

power
current

watthour
amphour
indicator

raw
percent

illuminance
drive

timedelta 8
9

1
7
8
8

1
1
2

0
0
0

25
26

50

Chart II. Sensor type popularity in OpenBSD 4.6
based on the number of drivers using each type.

15

voltage sensors having nearly a draw for the next most popular type 'used by 26 and

25 out of the 75 drivers, respectively(.

Since OpenBSD 3.8 '2005(, the sensors framework has had a notion of sensor status,

defined by enum sensor_status, which can be one of UNSPEC, OK, WARN, CRIT or

UNKNOWN. It is optional for the drivers to specify the status of each sensor, and

specification is intended and recommended only in cases where the drivers are spe!

cifically aware of such status 'please refer to the section describing the framework

API for more details(. If the driver does not specifically identify the status of the

sensor 'which is intended to be the case in the drivers of simple sensor devices that

have no information regarding the bounds or appropriate limits of their specific

sensing application(, then the driver should leave the status field of the sensor datas!

tructure alone 'of course, that is because the datastructure should be zeroed before

first use, which is done automatically by the autoconf'9(or malloc'9(with the

M_ZERO flag, leaving the status field at the UNSPEC value of the enumeration(.

Chart III represents the status popularity with the drivers in OpenBSD 4.6, where

the implicit UNSPEC popularity is computed by subtracting the total number of

unique drivers that specify some sensor state + 24, from the total number of sensor

drivers in OpenBSD 4.6 + 75.

'implicit(UNSPEC

'explicit(UNSPEC

OK

WARN

CRIT

UNKNOWN 21

23

22

24

2

51

Chart III. Sensor status popularity in OpenBSD 4.6
based on the number of drivers specifying each status.

16

We are satisfied to note that the drivers appear to adhere to the design principles of

the framework, since the popularity between di"erent states is roughly the same

'apart from the anticipated variance of the implicit and explicit UNSPEC, of course(.

From these numbers we can also see that only 1/3rd of the drivers utilise sensor status,

with 2/3rds having no use of it, which for visual purposes is summarised in the follow!

ing pie chart + Chart IV.

It is noteworthy to mention that there are currently no I&C drivers that utilise sen!

sor status. Chart V provides information on sensor type popularity between the

drivers that have a notion of sensor status, and Chart VI includes a comparison of

type popularity based on the presence or absence of support for sensor status 'essen!

tially summarising Charts II and V(. 'For consistency and verification purposes, we

No sensor status
51

Sensor status
24

Chart IV. Number of sensor device drivers in OpenBSD 4.6
providing and not providing the sensor status.

17

have populated the ‘no status’ counts of type popularity based on the source!code

analysis, even though it could have been determined from the other two fields alone.(

It is apparent from Chart VI that the temperature, fan and voltage sensors, which

are the most popular sensor types amongst the set of all drivers, do not usually carry

any information regarding the status of their sensors. It is also clear that the design

of certain sensors, like driv* and timedelta, always presumes the inclusion of the

status information.

temp
fan
volt

acvolt
resistance

power
current

watthour
amphour
indicator

raw
percent

illuminance
drive

timedelta 8
9

0
6

2
4

1
1
1

0
0
0

3
2

7

Chart V. Sensor type popularity in OpenBSD 4.6 based on the number of
drivers with status suppor! using each type.

18

#

All drivers Drivers with status support Drivers with no status

temp

fan

volt

acvolt

resistance

power

current

watthour

amphour

indicator

raw

percent

illuminance

drive

timedelta
0

0

1

1

6

4

0

0

1

0

0

0

22

24

43

8

9

0

6

2

4

1

1

1

0

0

0

3

2

7

8

9

1

7

8

8

1

1

2

0

0

0

25

26

50

Chart VI. Sensor type popularity in OpenBSD 4.6 based on the number of
drivers using each type, itemised by status support.

19

5. I#C Sensors and Bus Scan
In this section, we describe how OpenBSD goes about detecting various sensors on

the I&C bus.

For a general!purpose operating system, the I&C bus poses a significant problem as it

does not have a standard method of detecting what devices appear at which ad!

dresses. 'Su,ce it to say that some automatic enumeration has been introduced in

SMBus 2.0 specification $Intel.SMBus20%, named SMBus Address Resolution Proto!

col 'ARP(; however, hardware/silicon support for SMBus 2.0 and ARP is still quite

rare in this day 'ten years after the publication(, thereby, software support is not

deemed warranted yet.(Most devices on the I&C bus have at most 256 registers from

which information can be read, or to which some data can be written, and various

manufacturers use di"erent registers to place the identification information regard!

ing their chips. Moreover, in many cases this identification information could very

easily be rather limited and not terribly unique, making conflicts of all kinds possi!

ble. 'In some cases, there may not be any identification information at all, making it

impossible to have automatic support of certain chips on generic hardware.(In ad!

dition, the bus is rather slow, and accessing the same registers multiple times may

take a significant amount of time if all the drivers would individually probe the chips

at all possible addresses and would be enabled at the same time.

5.1. Open Firmware and I#C
The problem with a lacking discovery mechanism is alleviated on the Open Firm!

ware architectures + macppc and sparc64 in OpenBSD + where the operating sys!

tem can query Open Firmware properties such that it then knows exactly which

chips are to be found at which I&C addresses on which I&C bus. In turn, the match"#

procedure of each individual sensor driver then does no probing other than a simple

comparison of ASCII strings + the string with the name of the chip as supplied by

20

the bus to the strings that the driver supports. For example, on macppc such a string

could be “adt7467” $adt.4% or “ds1775” $lmtemp.4%.

5.2. I#C bus scan through i2c_scan.c

Those architectures that do not have Open Firmware, but still support I&C 'i386,

amd64, alpha, armish, socppc(, have a scanning mechanism that is implemented in

/sys/dev/i2c/i2c_scan.c. The idea is to be able to enable as many I&C sensor drivers as

possible without any adverse e"ects on the stability and reliability of the boot proc!

ess. This is accomplished in several ways.

The scanning algorithms run through all I&C addresses that are known to contain

certain interesting sensors, and a di"erent scanning function is used for those ad!

dresses containing EEPROM chips 'like those implementing Serial Presence Detect

'SPD(functionality that provides information about the memory modules

$spdmem.4%(. During much of the scanning procedure, the value from each register

is ever read from each I&C address at most once 'being cached for subsequent reads

during the scanning procedure(. Certain registers at certain addresses, however, are

banned from ever being read from the hardware during the scanning procedure, if it

is known that accessing such registers could cause unintended results. For example,

the logic never tries reading the 0xfc register from chips that may resemble Maxim

1617 in some way, as reading such register may cause some problematic behaviour on

some hardware.

The result of a successful i2c_scan.c iteration over each individual I&C address is a

string describing the chip, similarly to the one provided by the Open Firmware on

the Open Firmware architectures. An example of such a string could be “w83793g”

$wbng.4%. Since the I&C slave interface between the Open Firmware!based I&C dis!

covery and i2c_scan.c!based discovery is the same, the same sensor drivers can be

used across all architectures without any losses of the more trustable information

regarding identification of the chips that the Open Firmware architectures provide.

21

Misidentification or even improper probing of the chips can be fatal + it is well

known that some versions of the lm_sensors package from the Linux land have

“bricked” many ThinkPads due to improper probing of the I&C bus, where the con!

tents of some EEPROM chip would be wiped out during the lm_sensors probing

procedure. $lm_sensors.ThinkPad% It is noteworthy to mention that the real cause

with such “bricking” is believed to have been the chips that do not fully adhere to

the I&C standard; however, it is hardly a good excuse if one’s laptop is dead after

running some part of the lm_sensors package on GNU/Linux. Therefore, on

OpenBSD a great care has been taken to avoid any such incidents at its root; and

with the probing procedure being enabled by default in all GENERIC kernels on all

architectures that require it, there is a su,cient empirical proof that such care has

been entirely adequate.

5.3. I#C drivers

In a nutshell, all I&C sensor drivers in OpenBSD match exclusively based on strings

provided by either Open Firmware or i2c_scan.c, and both of the scanning mecha!

nisms are enabled by default on those architectures that they support, meaning that

in the vast majority of times there is absolutely no need for the user to do any kind

of juggling to find about which chips are located at which addresses and are sup!

ported by which drivers 'an unfortunate approach that is taken by NetBSD, for ex!

ample(. To rephrase, all supported I&C sensor drivers are enabled in the GENERIC

kernels on OpenBSD and automatically work out of the box on all supported archi!

tectures.

5.4. I#C register dumps
As explained earlier, the i2c_scan.c probing is run automatically 'during the kernel

boot time(on all systems that have no other I&C discovery mechanism. When it en!

counters a chip with an unknown signature, or with a known signature, but that is

still unclaimed by any driver, then it dumps the whole register set of the chip into

22

the “dmesg”, the system message bu"er $dmesg.8%. 'In order to avoid redundant data

in dmesg, the most often occurring register value is reduced from the dump before

the dump is printed into the dmesg.(

It is a standard and longtime practice in OpenBSD to ask users to voluntarily send in

their dmesgs to dmesg@openbsd.org archive, which is a private archive accessible

only by OpenBSD developers. $deRaadt.misc98% This practice ensures that

OpenBSD developers will always have confirmations that OpenBSD continues run!

ning on various hardware that the users possess. Because all necessary information

regarding unsupported I&C sensor chips is already conveniently located in the dmesg

by default, it makes it very easy for the user to cooperate and provide such informa!

tion to the developers by simply sending the dmesg 'and, preferably, the output of

`sysctl hw.sensors`, too(to dmesg@openbsd.org. This allows OpenBSD developers

to ensure that both old and new hardware is always properly supported, and perform

quality assurance regarding the stability of such support, as well as account for the

variations of the hardware.

5.5. I#C sandboxing for driver development

It is relatively easy to implement a sandbox environment in which new I&C drivers

could be tested against the I&C register dumps from dmesgs. The reason for this is

that many hardware sensor device drivers only do reads from these registers + in

other words, they usually do not do any ,rites. 'Lack of unconditional writes is usu!

ally done on purpose, since on general purpose hardware there is no definite cer!

tainty that the driver is actually talking to a sensor chip, as opposed to some EE!

PROM device, so nothing should be written to the registers of the chip unless such

writes are absolutely necessary. $deRaadt.priv06%(Therefore, a full selection of regis!

ter values can be used to simulate the I&C bus read operations in the userland and to

test much of the functionality of the driver without even booting a new kernel or

having the required hardware available at one’s disposal. $Murenin.TOJ07.wbng%

23

To do such simulation, we implement several small functions and copy some other

functions from the kernel. First, we parse the register values from the dump and fill

in a 256!array of uint8_) type. Then we allocate a so'c of the size as defined by the

struct cfattach of the driver we are trying to sandbox 'e.g. ,bng_ca.ca_devsiz*(. Next,

we define a local struct i2c_attach_args datastructure, allocate its ia_tag field of size

sizeof"struct i2c_contro(er#, and set ia_tag’s ic_acquire_bus and ic_release_bus fields to

some dummy functions that do not do anything other than returning a 0 and noth!

ing respectively. Implementation of the iic_exec"# emulation is equally straightfor!

ward, where the read operation is based on the contents of the pre!populated

unit8_) array of 256 elements, whereas the write operation returns a permanent error.

The next step is ensuring that the kern_sensors.c is adapted to the userland. For

this, several of its functions must be adjusted. Apart from removing splhigh"# and

splx"# calls and some extra #includ*s, the sensor_task_register"# routine has to be reim!

plemented. All the sensor_task_register"# routine needs to do is call the refresh func!

tion of the driver once, and do nothing more. We would also like to be able to see

the sensor readings as updated by the sandboxed driver, and for this, a print_sensor"#

function can be copied from the userland sysctl'8(utility, changing the type of its

only parameter from struct sensor to struct ksensor.

After all of this preparatory work is done, all we have to do is call the ca_attach func!

tion of the struct cfattach datastructure with the preallocated so'c and struct i2c_a)&

tach_args 'e.g. do a ,bng_ca.ca_attach"NULL, so'c, &ia# call(, and go through the

linked list of all sensors on the relevant sensor device to print the readings with

print_sensor"#. All files must be compiled with “!D_KERNEL !I/usr/src/sys/”.

In the described procedure, the file of any I&C sensor driver that meets the criteria

of not doing any unconditional writes to any registers can be taken directly from the

kernel to the sandbox environment without requiring any modifications of the

24

driver’s code. All that needs to be modified is the reference to the appropriate struc)

cfattach variable in our sandbox ',bng_ca in the example(.

Having such a sandbox environment streamlines I&C driver development and initial

testing. The wbng'4(and andl'4(represent the two drivers that have been developed

in the said sandbox and that were originally tested against several I&C dumps from

the dmesg@openbsd.org archive. $Murenin.TOJ07.wbng%

25

6. Evolution of the Framework
The first revision of OpenBSD’s sysctl!based hardware sensors framework has origi!

nally been brought to OpenBSD in 2003 by Alexander Yurchenko "grange# to ac!

commodate some hardware monitoring drivers that he was porting from NetBSD.

$grange.priv05% In this section, we describe how the framework has evolved and

what were the major milestones in the development.

6.1. Framework timeline

During 1999/2000, envsys'4(and sysmon'4(interfaces have been introduced in

NetBSD, along with the lm'4(and viaenv'4(hardware monitoring sensor drivers. A

utility called envstat'8(is used to query /dev/sysmon for various sensor readings.

From 2000 until 2007, the documentation of NetBSD’s envsys'4(interface has been

suggesting that the entire API should be replaced by a sysctl'8(interface, should one

be developed. 'This comment has since been removed with the introduction of the

envsys 2 API on 2007!07!01.(

On 2003!04!25, the lm'4(and viaenv'4(drivers have been ported from NetBSD and

committed to OpenBSD by Alexander Yurchenko "grange#; however, instead of port!

ing the envsys'4(API from NetBSD, a much simpler and more straightforward API

has been devised and developed based on the sysctl interfacing. The sysctl address!

ing has been made very simple + any sensor from any sensor device would have a

global ordinal number, and would be accessible by `sysctl hw.sensors.N`, where N

would be such global ordinal number.

During some periods of 2004 and 2005, various general and shared parts of the

framework have been improved in several ways by many people, mostly Alexander

Yurchenko "grange#, David Gwynne "dlg#, Mark Kettenis "kettenis# and Theo de Raadt

"deraadt#. For example, David Gwynne has introduced optional sensor states before

OpenBSD 3.8, and then the sensor_task_register"# routine before OpenBSD 3.9.

$Gwynne.Open06% Theo de Raadt has implemented a large part of the i2c_scan.c

26

logic and a big deal of related I&C drivers during December 2005 and January 2006

before OpenBSD 3.9. $deRaadt.zdnet06% Various other individuals have made great

contributions on the driver front; for a full list of their names, please see the related

OpenBSD sourcecode and CVS revision history.

On 2006!12!23, Theo de Raadt has committed the patches provided by Constantine

A. Murenin that converted the 44 device drivers 'i.e. all the drivers that were using

the sensors framework at that time(and multiple userland applications from the

simplistic one!level “hw.sensors.<N>” style of addressing to the more evolved and

flexible two!level “hw.sensors.<xname>.<type><numt>” style of addressing 'e.g.

hw.sensors.11 became hw.sensors.lm0.temp2 after the change(. The new style of address!

ing brought up several benefits, from unbloating the kernel by removing certain re!

dundant information from the drivers 'like the “Temp1” strings in sensor description

which used to be required for some identification purposes(to making it easier to

use the sensors API in both shell scripts and C/C++ programmes 'since the address!

ing became more stable and predictable across heterogeneous machines(.

$Murenin.IEEE07% $Murenin.TOJ06% The userland API of the framework has been

stable since this patch and OpenBSD 4.1.

In 2007, two final changes have been made to the ABI of the framework and the

kernel sensor_task_register"9# API. The first change by Theo de Raadt separated the

datastructures used by the kernel and the userland, so that certain internal informa!

tion used for bookkeeping 'i.e. the linked lists(would not be released into the user!

land. The second change was made by David Gwynne regarding the sensor_tas- API.

Outside of the OpenBSD realm, a project for porting the framework to FreeBSD has

been suggested, proposed, approved and funded for Google Summer of Code 2007.

The project has been successfully completed and the final patch has been released on

2007!09!13. The results of the work have been committed into both DragonFly BSD

27

and FreeBSD shortly thereafter. $Murenin.GSoC07.sum% For more details, please

refer to a separate section in this paper.

6.2. Evolution of drivers

The sensors framework has originally been introduced with OpenBSD 3.4 '2003(and

only had 3 drivers that were using the functionality provided by the framework +

lm'4(, it'4(and viaenv'4(. Chart VII represents how the number of drivers that ex!

pose sensors to the framework has been growing over the years since the original in!

troduction of the framework, where OpenBSD 4.6 'July / October 2009(has 75 driv!

ers using the framework. One can notice a significant spike in the number of drivers

around OpenBSD 3.9, where the i2c_scan.c functionality was developed and 19,5 new

I&C sensor device drivers have been introduced 'the 0,5 refers to the lm'4(attach!

ment at iic'4(($deRaadt.zdnet06%.

3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6

75
72

68

61

51
46

42

33

9
5543

Chart VII. Number of drivers using the sensors $amework
$om OpenBSD 3.4 to 4.6.

28

The counts regarding the number of drivers using the framework have been gener!

ated by counting the number of files that do a sensordev_insta("# call, a call that links

the individual sensor tree of each invocation of the driver with the global sysctl tree.

For OpenBSD versions prior to 4.1 'i.e. OpenBSD 3.9 and 4.0(, the number of files

with the sensor_add"# call was counted; for OpenBSD versions prior to 3.9 'i.e.

OpenBSD 3.5 to 3.8(, the number of files with the SENSOR_ADD"# macro invoca!

tion was counted; for OpenBSD versions prior to 3.5 'i.e. OpenBSD 3.4(, the number

of driver files with the reference to the sensors_head variable was counted. These

changes in the API are summarised in Table III.

OpenBSD Exposing sensors

3.4

3.5 to 3.8

3.9 and 4.0

4.1 and up

extern struct sensors_head sensors;

SLIST_INSERT_HEAD'&sensors, (;

SENSOR_ADD'(;

sensor_add'(;

sensordev_install'(;

Table III. Evolution of the sensor API
$om OpenBSD 3.4 to 4.6.

29

7. Related Frameworks
OpenBSD’s hardware sensors framework compares favourably with the competition

in the areas of simplicity, hardware support and ease of use right out of the box.

As a relatively recent example of unique hardware support, OpenBSD 4.4 'Novem!

ber 2008(was the first release of any operating system to support the integrated

temperature sensors in AMD Family 10h processors 'right out of the box, of course(.

$km.4% Another noteworthy leadership of OpenBSD 4.4 is in the support of the

JEDEC JC!42.4 SO!DIMM temperature sensors, which are still unsupported by

many competing products to this day. $deRaadt.jedec08% $sdtemp.4% $Biancuzzi.44%

In this section, we discuss alternative solutions to the OpenBSD’s sysctl hardware

sensors framework. For practical comparison and external reference, we have also

developed a driver, aibs'4(, from scratch, supporting ATK0110 ACPI hardware moni!

tor that is available in most recent desktop motherboards from ASUSTeK, and we

have ported this driver to all the four open!source BSD systems 'OpenBSD, Drag!

onFly BSD, NetBSD and FreeBSD(, such as to provide a hands!on example of the

best characteristics of each system from the point of view of hardware monitoring.

As of this writing, the aibs'4(driver has already been fully integrated and readily

available in OpenBSD, DragonFly BSD and NetBSD.

7.1. NetBSD envsys / sysmon

In general, many NetBSD and OpenBSD drivers have been cross!ported as far as the

sensors framework is concerned. The NetBSD API is more complicated than the

one in OpenBSD, which was specifically true before some simplification was brought

with NetBSD’s envsys 2 on 2007!07!01.

On NetBSD, the majority of sensor drivers are disabled by default. There is also no

automated I&C scanning procedure 'the user is expected to know exactly which sen!

30

sor devices they have at which addresses before the drivers can be enabled(. Many

I&C drivers that are present in OpenBSD are still missing from NetBSD.

The total number of drivers in the last release of NetBSD as of December 2009,

NetBSD 5.0.1, calculated by the number of calls to the sysmon_envsys_register"# func!

tion from unique drivers 'ug'4(is counted only once(, is only 31, versus 75 as the re!

spective count in the latest version of OpenBSD + OpenBSD 4.6. Much of the dif!

ference in the number of drivers is due to the stagnated I&C scene on NetBSD,

which only has 5,5 I&C sensor drivers, whereas OpenBSD has 29,5 I&C sensor drivers

'the 0,5 refers to the lm'4(driver, which can be attached on both isa'4(and iic'4(

busses(. 'Attentive readers may find this comparison to be somewhat superficial,

since some drivers may support more sensors than others; however, the general idea

that NetBSD supports considerably fewer I&C sensor chips still stands even after a

closer examination of the drivers.(

In July 2007, a new proplib'3(!based version of the envsys'4(framework was intro!

duced, called envsys 2, which has later been adjusted the same year. NetBSD’s sys&

mon_envsys_sensor_attach"# API introduced in 2007!11 appears to be paying a tribute

to the OpenBSD’s sensor_attach"# API that has been available in OpenBSD for about

a year prior. Prior to envsys 2 introduction in July 2007, NetBSD’s API did not sup!

port detachable sensors. On OpenBSD, detachable sensors have been supported

since January 2006.

In June 2009, extended support for sensor limits was introduced in the development

version of NetBSD + NetBSD 5.99.13, whereby the drivers could optionally export

limits 'critmax, critmin, warnmax, warnmin(from each individual sensor into the

sysmon_envsys'9(framework, such that the kernel framework could then automati!

cally monitor the limits and generate events when the limits are crossed. The said

introduction also featured the possibility for the user to modify the limits used by

the underlying hardware 'whereby the driver would write the user!specified limits

31

directly into the hardware(, such that the hardware could then automatically alert

the driver when the limits are triggered, so that the driver could in turn change the

status field in the kernel datastructure containing the sensor without anything in the

kernel actually doing the limit comparisons 'thereby intendedly reducing the load on

the system(. In December 2009, as a part of our aibs'4(porting from OpenBSD /

DragonFly BSD to NetBSD, it was, however, discovered that the relevant

src/sys/dev/sysmon/sysmon_envsys_events.c code from June 2009 was not tested

adequately, and the advertised functionalities did not work as intended.

$Murenin.techkern09%

Sensor types are roughly the same between NetBSD and OpenBSD. Sensors of the

driv* type from OpenBSD’s bio'4(!based device drivers $Gwynne.Open06% were

committed to NetBSD on 2007!05!01. No timedelta sensors have been ported to

NetBSD as of December 2009. Chart VIII provides a graphical summary between

STEMP
SFANRPM

SVOLTS_AC
SVOLTS_DC

SOMHS
SWATTS

SAMPS
SWATTHOUR

SAMPHOUR
INDICATOR

INTEGER
DRIVE

BATTERY_CAPACITY
BATTERY_CHARGE 3

1
4

3
6

3
1

3
1

0
14

0
10

23

Chart VIII. Sensor unit popularity in NetBSD 5.0.1
based on the number of drivers using each envsys unit.

32

the popularity of sensor types in NetBSD 5.0.1 out of a total of 31 drivers; a trend

similar to the one in OpenBSD is apparent + temperature sensors are by far the

most popular, with voltage and fan sensors being in the second most popular cate!

gory, much ahead of all the sensors of all other types.

It is evidenced from Chart IX that the sensor states are used di"erently in NetBSD

than they are in OpenBSD: essentially, a state of OK is missing in NetBSD, since

every driver is required to initialise the state of any valid sensor to SVALID 'and all

drivers promptly do(, but the SVALID state makes no distinction between a sensor

that has defined limits and is within those limits and a sensor that does not have any

limit monitoring whatsoever. 'On OpenBSD, sensor invalidation is accomplished

with a sensor flag SENSOR_FINVALID, and the status field is used exclusively for

the limit!based status monitoring alone.(

In theory, NetBSD’s sysmon_envsys'9(kernel framework has considerably more fea!

tures than OpenBSD’s sensors.h, including things such as kernel events and driver!

initiated and user!modifiable limits that are supported on the kernel level.

OpenBSD does support the limits on the driver level, but there is no way for the

user to see what the driver limits are 'only the resulting state is exported by the driv!

ers(; however, although the user cannot amend the limits on the kernel level in

OpenBSD, user limits can always be specified in addition to the 'automatic(driver

SVALID = 10
SINVALID

SCRITICAL
SCRITUNDER

SCRITOVER
SWARNUNDER

SWARNOVER 2
2

4
3

7
20

31

Chart IX. Sensor state popularity in NetBSD 5.0.1
based on the number of drivers specifying each state.

33

limits in sensorsd.conf, and then both the driver and the user limits could be moni!

tored in the userland by means of sensorsd'8(. In practice, through the porting of

the aibs'4(driver from the OpenBSD hardware sensors framework to NetBSD’s

sysmon_envsys'9(, we have discovered firsthand that many features in NetBSD’s

sysmon_envsys'9(are quite ambiguous, unnecessarily complicated and even ques!

tionable, where the meaning and the reasoning behind the naming, introduction or

staying of, for example, certain flags or incomplete functionality, is unclear. It is gen!

erally agreed within the relevant NetBSD community that the NetBSD’s sys!

mon_envsys'9(framework indeed needs another redesign or an overhaul.

7.2. FreeBSD general sysctl tree

The last release of FreeBSD as of February 2010 + FreeBSD 8.0-RELEASE + does

not have a sensors framework per se, however, several drivers exist that nonetheless

export sensor!like data into the general sysctl tree. These drivers include, but are not

limited to, acpi_thermal'4(, acpi_ibm'4(, acpi_aiboost'4(, ad7418'4(, coretemp'4(,

amdtemp'4(and possibly others.

Most of these FreeBSD drivers do not adhere to any specific namespace by which

they make the sensors available, the only exception being the temperature sensors

and only in some select few drivers, where the temperatures could specifically be

marked with an “IK” 'Integer Kelvin(oid_fm) modifier and are encoded through the

ACPI Kelvin notation 'where 0 ! is represented by the integer value of 2732, and

the readings are automatically converted back to ! by sysctl'8((. Even then it would

appear that not even all the drivers use the “IK” notation for their temperature sen!

sors, where several drivers instead provide regular typeless integers that are read di!

rectly o" of hardware. These integers sometimes may not even correspond to any

existing convention regarding applicable units + for example, acpi_aiboost'4(essen!

tially provides the unitless integers that represent temperatures on the deci!

Centigrade scale 'e.g. a unitless integer of 430 would mean 43.0 !(. In other words,

34

non!temperature sensors are always encoded as simple plain integers without any

specific units associated with them, and temperature sensors are not necessarily unit!

bound either.

For additional details regarding the sensor development on FreeBSD, please refer to

a separate section in this paper describing the port of the OpenBSD hardware sen!

sors framework to FreeBSD.

7.3. lm_sensors
The lm_sensors package in GNU/Linux requires significant amount of configuration

by the end!user, and is much more di,cult to get right compared to the OpenBSD’s

sysctl hardware sensors framework, which works right out of the box.

$deRaadt.zdnet06%

However, lm_sensors does provide additional functionality that is still missing from

OpenBSD, namely, the ability to do extensive configuration and customisation of

certain chips as well as the monitoring environment. Interfacing with some fan!

controlling functionality is provided in some drivers, as well as the ability to modify

fan divisor bits $Murenin.IEEE07%. That is, if the user has the patience and time to

figure it all out.

35

8. Port to FreeBSD / DragonFly BSD
Outside of the OpenBSD realm, a project for porting the framework to FreeBSD has

been suggested on the FreeBSD’s mailing lists $Theile.arch07% and then added to the

o,cial “ideas” page $FreeBSD.ideas% in early 2007. Based on the suggestion, an ap!

plication was submitted by Constantine A. Murenin for Google Summer of Code

2007 funding to port over the framework to FreeBSD. The proposal

$Murenin.GSoC07.prop% has been voted up by the FreeBSD committers to be ap!

proved for a funding slot, and was subsequently funded by Google.

8.1. Summer of Code 2007

During Google Summer of Code 2007, all relevant parts of the framework that were

expected to be ported from OpenBSD to FreeBSD have been ported successfully.

This included the sensors API and all relevant documentation, and appropriate parts

of the userland applications sysctl'8(and systat'1(. 'The sensorsd'8(sensor monitor!

ing daemon did not require any modifications to its C code for it to be ported, since

the userland API was made compatible between OpenBSD and the FreeBSD port;

however, some glue integration code was, of course, developed and submitted in the

final patch.(In addition to the base components of the sensors framework itself,

two sensor drivers have been ported that support the hardware monitoring modules

of the most popular Super I/O solutions: lm'4(, supporting many Winbond chips,

and it'4(, supporting many ITE Tech chips. Moreover, FreeBSD’s coretemp'4(driver

has been converted to use the new framework, too. $Murenin.FQSR07%

On 2007!09!13, a complete final patch that combined all the little parts of the

framework has been publicly announced and released, together with a bullet list of

all the items that were included in the said patch. $Murenin.GSoC07.fin% However,

the FreeBSD HEAD tree was still frozen during that time due to the upcoming RE!

LENG_7 branching.

36

8.2. Sensors framework in DragonFly

On 2007!09!25, Hasso Tepper posted a message to DragonFly’s submit@ mailing list

$Tepper.submit07%, and contacted Constantine with a thank!you note regarding the

port, mentioning that, with small adaptations, the work will be soon committed into

DragonFly BSD $Tepper.priv07%.

On 2007!10!02, the framework and the three ported drivers have been committed

into DragonFly BSD 1.11 $Murenin.GSoC07.sum%, and so far have been part of mul!

tiple DragonFly BSD releases.

8.3. Sensors framework in FreeBSD CVS

Shortly after the DragonFly BSD commit, the patchset with the framework was ap!

proved by re@FreeBSD.org 'FreeBSD’s Release Engineering team(to be committed

into CVS HEAD once the RELENG_7 branching is done and the freeze is over.

On 2007!10!14 'the same week when the branching was done and the freeze was

lifted(, the framework has been committed into FreeBSD 8.0!CURRENT by Alex!

ander Leidinger. The commit has generated a lot of attention in the FreeBSD com!

munity, as some people were very happy to finally be able to use the framework right

out of the tree, yet others were unhappy with certain architectural decisions that

were much more appropriate to the OpenBSD architecture and philosophy than to

the one of FreeBSD.

On the same day as the commit was made, Poul!Henning Kamp voiced his objec!

tions to the architecture of the framework, for the framework having too much

OpenBSD feel into it. A very heated discussion arose, where many people tried voic!

ing their opinion about whether the framework should or should not stay in

FreeBSD 'see FreeBSD archives of the cvs&src@ and arch@ mailing lists around the

time for complete discussion threads(. Poul!Henning has requested for the frame!

work to be backed out; it was then backed out a day later.

37

Technically, a separate sensors framework is less needed in FreeBSD as opposed to

OpenBSD, since FreeBSD has “sysctl internal magic” since 1995 that dynamically

manages every node in the sysctl tree. In OpenBSD, on the other hand, the majority

of the nodes in the sysctl tree are still statically defined at compile time, using pre!

processor defines for MIB integers and arrays of strings for textual representation of

such MIB elements. In NetBSD, the sysctl auto!discovery and dynamic registration

of nodes were introduced only in December 2003, whereas the envsys framework has

been available for several years prior. In general, however, the sensors framework

provides more restricted namespace for devices to export sensor!like data, whereas

nodes in the sysctl tree are often rather arbitrary. $phk.arch07% This is precisely the

reason why a separate sensor framework is valuable nonetheless, since it allows one

to have many sensor!like values from di"erent components under a single and pre!

dictable tree.

It is important to note, however, that the summer of code project was in fact done to

PHK’s satisfaction; he was unsatisfied merely with the fact that the framework did

not solve the niche in the FreeBSD!way. $phk.gsocgood07% Poul!Henning Kamp

emphasised that he does not want the framework to be available in FreeBSD such

that the space is left clear, and someone might design a framework more suitable for

FreeBSD in the long term. However, since the framework in question was based on

a framework that has been available in NetBSD since as early as 1999, and FreeBSD

is still missing any such framework, it remains unclear if such a framework will ever

be developed for FreeBSD. $Murenin.Login08%

We trust that this manuscript provides enough interesting information regarding the

overall picture of the sensor drivers on various BSD systems that these issues could

be revisited at a later time, and perhaps a new design of the framework could be en!

visioned specifically for FreeBSD, ensuring that the pitfalls taken by OpenBSD and

NetBSD are not repeated, and FreeBSD architectural decisions and FreeBSD’s New!

bus device framework are given a higher consideration from the ground up.

38

9. Availability
All described OpenBSD source code, apart from the userland I&C sandboxing envi!

ronment, is publicly available in the OpenBSD CVS repository and in the o,cial re!

leases. The final patch for FreeBSD is available in FreeBSD’s perforce repository.

The history of the FreeBSD commit is available in the FreeBSD CVS and SVN re!

positories, as is the complete patch of the framework itself. DragonFly BSD code is

available in the DragonFly CVS and GIT repositories and is part of the o,cial re!

leases.

39

10. Introduction and Motivation for Fan Control
Power consumption and heat dissipation are gaining widespread attention in many

sectors where personal computers are deployed. The process of transferring the heat

away from the system is usually accomplished with the help of some combination of

fans. However, fans themselves are known to significantly contribute to the total

power consumption of the system, and also pose an additional problem of emitting a

persistent background noise, which, in turn, is believed to increase the stress levels

of those who are exposed to the noise for prolonged periods of time and decrease

the motivation of the workforce $Evans.stress%.

Brand!name system integrators have often been solving the problem of balancing the

noise and thermal characteristics by carefully choosing the fans that are used to cool

the system down, together with employing some proprietary fan!controlling logic

that automatically adjusts the speed of the fans as needed, in order to achieve the

lowest possible noise levels without compromising the thermal zone requirements of

the system.

However, smaller integrators, whether individual users or companies assembling per!

sonal computers from o"!the!shelf components, have to play it safe, and oftentimes

have to install excessive fans, even if such fans are not strictly necessary for main!

taining reliable operation of the computer, due to uncertainties regarding the power

consumption of individual components that are used to assemble the system. In es!

sence, this results in unnecessary noise, whereas the opposite approach of putting

fewer than necessary fans may result in overheating problems when the computa!

tional capabilities of the system are fully utilised for an extended time period. For!

tunately, not everything is lost, and many o"!the!shelf motherboards feature an inte!

grated hardware monitoring silicon chip that could also allow the user to control the

voltages that are supplied to the fans, thus allowing the user to have more control

over the environmental characteristics inside of their PC.

40

Opponents of fan control may cite various reasons against decreasing fan!speed and

increasing the operating temperature of the system. A commonly cited negative fac!

tor from such a group is the decrease in the product life span of certain components,

especially and most importantly Hard Disc Drives 'HDDs(. An observation that

was perhaps relevant in the past is now often disputed + a recent study published by

Google Inc. suggests that temperature and activity levels are much less correlated

with drive failures than previously reported. $Google.FAST07% As for other compo!

nents of the system, most of them are rarely considered as critical and irreplaceable

as the HDDs, and most often they are specifically designed and advertised to oper!

ate in rather extreme temperature conditions anyway. Proponents and practitioners

of quiet computing can also easily provide the empirical proof that their systems, if

configured for technically!reasonable upper!level temperatures, can run stable and

reliable for a number of years to come.

In this part of the thesis, we outline some features and problems with these hard!

ware monitoring chips and with their use in the commonly available hardware as it

relates to fan control, and we discuss the interfacing options that allow the user to

conveniently communicate and enforce their thermal policies.

41

11. Related Work on Fan Control
In this section, we provide an overview of some related works that allow the user to
specify thermal characteristics of their system.

11.1. Interfacing from the BIOS
Although popular o"!the!shelf motherboards have been physically supporting at

least some fan!controlling features for a considerably long time now, it has not been

until recently that these boards have been bundled with BIOSes that allow any kind

of interfacing with the fan!controlling characteristics of the hardware monitoring

chips.

Although most modern BIOSes that are included with the new motherboards do

allow the user to monitor the temperature, fan and voltage characteristics of the

board through the hardware monitoring chip, it is still not universally common to

find boards that feature adequate level of fan!controlling interfacing from within the

BIOS menus: some boards do not have any configurable options at all, whereas oth!

ers simply have an On / O" switch regarding some brand!name ‘Quiet Fan’ feature

from the manufacturer of the motherboard.

As a specific example, consider a relatively popular Mini!ITX board that is sold un!

der the Intel brand: Intel D201GLY2. $Intel.D201GLY2% Our sample board has

been purchased from newegg.com in December 2007 and originally came with the

0122 BIOS revision dated 2007!08!22. As far as the hardware monitoring and fan

controlling goes, the original BIOS only had the ‘Hardware Monitoring’ menu selec!

tion in its Advanced System Setup tab, with no options for fan control. However,

from the release notes that accompany later BIOSes, we could see that ‘System Fan

Control’ option has been introduced in a new ‘Advanced’ ! ‘Fan Control Configura!

tion’ menu of the 0129 BIOS revision from 2007!10!08. In order to test the new op!

tion, we have updated the BIOS of this board to the very latest revision numbered

0149 and dated 2008!12!16. After updating the BIOS and going into the ‘Advanced’

42

! ‘Fan Control Configuration’ menu, we have been rather disappointed to find out

that the ‘System Fan Control’ is the only option that has now been implemented,

and the only parameters it can have is ‘Enabled’ or ‘Disabled’. For illustration pur!

poses, please refer to Figure I. In further sections, we show that the hardware moni!

toring chip itself has many more fan!controlling options that may be of specific and

reasonable interest to the user.

Figure I. A sample screenshot of the options that have been provided in the BIOS revision 0149
dated 2008&12&16 of the Intel D201GLY2 board, which was one of the boards we have used i.

testing our prototype.

11.2. ACPI
ACPI was introduced with the intention of providing a unified interface for various

hardware discovery and power management functions. $Watanabe.ACPI%

$Intel.ACPI% However, the reality of modern implementations shows that fan con!

43

trolling is not one of the functions that is universally provided by ACPI, at least not

on the common desktop and server o"!the!shelf motherboards.

Laptops, on the other hand, may sometimes feature more useful details regarding

environmental characteristics in their ACPI Di"erentiated System Description Ta!

bles. This may include the ACPI Thermal Zones 'the concept of which is not spe!

cifically unique to laptops, but in practice is much less likely to be present in the

desktop boards(. Thermal zones may optionally have a number of Active Cooling

objects, which define temperature thresholds at which Fan Devices are engaged.

Each Fan Device, in this sense, may be a separate physical device, or may represent a

logical setting of a varying speed on a single fan 'or a set of fans(. In practice, how!

ever, most of this functionality is still not implemented in the ACPI tables of avail!

able hardware; moreover, it is not even clear if such functionality may be found use!

ful for general!purpose o"!the!shelf motherboards, where the creator of the ACPI

DSDT 'in other words, the motherboard manufacturer(may not possibly be aware

of the thermal characteristics and active cooling requirements of a custom!build box.

For this reason, we would leave further discussion regarding ACPI Thermal Man!

agement for a future discourse.

It should be noted, however, that some brand!name laptops and motherboards do

have interesting information in their ACPI DSDT that may relate to the topic of fan

control. Notable examples of such systems include IBM/Lenovo ThinkPads, ASUS!

TeK motherboards with the AI Booster / ATK0110 feature and ABIT motherboards

with the ABIT uGuru feature. Let us briefly describe the better known features that

are provided through these DSDTs.

Out of our interest to environmental monitoring and fan control, ThinkPads provide

multiple temperature sensors 'as many as 16 in total(, one fan RPM sensor and one

fan!speed control setting. The speed control setting could be set to ‘automatic’, ‘dis!

engaged’ 'meaning, no control is done and fan is run at 100*(and the ‘manual’

44

mode. In the manual mode, the setting can be varied between 0 and 7, where values

above zero seem to guarantee that the fan actually runs $thinkwiki%, meaning that

ThinkPads are, essentially, fool!proof, unlike the manual duty cycle mode in chips of

custom!build systems from the o"!the!shelf components, which are unlikely to make

the fans run under less than 40* of the duty cycle 'i.e. under 5 V(.

ASUSTeK’s ACPI ASOC ATK0110 virtual device provides the fan!controlling set!

tings that are similar or identical to those outlined in the BIOS. Currently, there is

no open!source implementation that supports the fan!controlling features of the de!

vice, so the fan!control interfacing has to be done through the BIOS. In general, al!

though the settings on some of these boards may usually be adequate for many or

even most users, they are still rather limited compared to the settings that individual

hardware monitoring silicon chips can provide.

However, the task of exploring in great detail the fan controlling interfaces related

specifically to ACPI we leave for future work, noting that our current work should

provide a solid ground for any further fan controlling enhancements even in drivers

other than those that we specifically mention. As we discussed above, currently

ACPI does not provide enough fan!controlling capabilities for it to be interesting in

our study anyways.

11.3. SpeedFan on Windows
SpeedFan is a closed!source utility for the Microsoft Windows family of operating

systems that allows interested users to monitor several environmental characteristics

of their personal computers. The utility provides a GUI, supports many families of

hardware monitoring chipsets, and has an interface for controlling the duty cycle of

the fans.

For our purposes, however, the utility has a fundamental flaw, in that it provides no

interfacing for the automatic in!chip fan controlling modes. This means that what!

45

ever policy the user specifies in the utility, can be preserved only whilst the utility is

still running, and if something happens either to the utility or the operating system,

then the thermal characteristics of the system can no longer be predicted or main!

tained.

11.4. lm_sensors on Linux

The lm_sensors package is the most popular hardware monitoring package for the

Linux kernel, supporting a variety of di"erent hardware monitoring chips. However,

the package is known to be di,cult to configure even for otherwise experienced sys!

tem administrators, and to our knowledge is not available on any BSD platform.

46

12. Hardware Monitoring Chips
In this section, we overview some of the basics regarding the hardware part of the

fan control, as well as provide an outline of some interesting functionalities that

popular hardware monitoring chips implement.

First, consider the fans themselves. Fans in the desktop computers are usually rated

for 12 volts, although most would still run at 7 volts, where few would run when volt!

age is lower than 5 volts. Often, fans require higher voltage in order to start, as op!

posed to the voltage that would ensure that they continue running. It has also been

observed that fans require higher voltage when their temperature is low, compared

to the same fan when it is warm. If not accounted properly, this could have negative

e"ects on system stability when, for example, the system is cold!started with a

physically limiting fan!controlling solution, such as Zalman Fan Mate 2, set to the

lowest voltage which, although su,cient for continued operation, may not be su,!

cient for a cold start, resulting in the fan making the clicking noises without actually

ever spinning, causing a violation of the thermal characteristics of the box.

Our prototype implementation is concentrated on the Winbond Super I/O Hard!

ware Monitors, which account for the bulk majority of the sensor chips that are

available in popular motherboards; we thus describe some functionality that is avail!

able in the said chips. Our initial patch implements support for the following three

families of Winbond Super I/O chips: W83627HF, W83627THF / 37HF and

W83627EHF / DHG.

Many of the hardware monitoring chips feature not only the manual mode, where

the duty cycle of the fans could be changed directly, but also multiple types of auto!

matic cruise modes. In the case of Winbond, the automatic modes may include

Thermal Cruise and Fan Speed Cruise, where the chip, once programmed with the

set target temperature or target fan speed, internally determines what duty cycle the

fans should be running at in order to satisfy the set cruising requirements.

47

For simplicity reasons, we have only implemented the manual mode and the thermal

cruise mode in our initial prototype implementation. This is also partly due to the

fact that the usefulness of the Fan Speed Cruise mode is somewhat questionable, as

fans vary between each other, but within each fan it is not very likely that the speed

will significantly alternate when the same voltage is given.

12.1. Shortcomings with general$purpose fan$control software

There is one problem that remains unavoidable with any general!purpose fan!

controlling software: although many motherboards are in fact wired to do fan con!

trol, even if such features are not specifically advertised in motherboards’ documen!

tation or are available in the BIOS menus, some cheaper boards that do feature

chips that support fan controlling simply do not have the chips wired appropriately

with the fan connector headers, such that any attempts to control the speed of the

fans from within the hardware monitoring chip may not be successful.

To save costs yet allow the user to still perform some fan control, some boards often

feature such wiring that all the fan headers are wired and controlled through a single

pin and setting of the fan!controlling chip, even if the chip itself does o"er individ!

ual pins and controlling settings for more than a single fan.

Unfortunately, there is no known general approach that can reliably detect these

situations in due course and with reasonably simple and straightforward logic, so the

task of determining the exact peculiarities in supported fan!control functionalities

of a mainboard in question are left for the end!user to establish on their own.

48

13. OpenBSD sysctl hw.sensors Fan$Control
In this section, we briefly describe the general notions of the OpenBSD’s sysctl

hardware sensors framework, and then provide some suggestions on how it can be

altered such as to provide interfacing to the fan!controlling functionalities of the

hardware monitoring chips.

The underlying mechanism that is used to transport the datastructures of the hard!

ware sensors framework in OpenBSD is the sysctl interface. Currently, the frame!

work is implemented in such a way that it allows only the drivers to export the data

into the sysctl tree, but not get any feedback back from the user. However, the

changes that the framework requires in order to support the functionality of passing

modified sensor values back from the userland to the kernel are rather minimal, as

we explore in the following paragraphs.

One of the ways to accomplish the required functionality is to allow the userland to

simply pass the modified sensor data for those sensors which the drivers specifically

identify as modifiable. To avoid overengineering, we can also make an assumption

that only an integer value should have the possibility of being modified and passed

back to the driver, as opposed to the whole sensor structure. With these assump!

tions, the required modifications for the framework are very straightforward and

minimal, as one could see from the patch that we have released for OpenBSD and

DragonFly BSD. $Murenin.tech09% $Murenin.fanctl10% The changes in the frame!

work were made to /sys/sys/sensors.h, /sys/kern/kern_sysctl.c 'only for OpenBSD(,

/sys/kern/kern_sensors.c 'only for DragonFly BSD(and sbin/sysctl/sysctl.c, and we briefly

describe the changes below.

13.1. New upvalu" field and new flags

The /sys/sys/sensors.h, which is the header file with the definitions of the structures

required for the framework, hereby sees the introduction of the upvalu* field inside

49

of the struct ksensor structure, as well as two new flags, SENSOR_FCONTROLLABLE

and SENSOR_FNEWVALUE.

Note that we have introduced the new upvalu* field only into the kernel version of

the sensor structure + it was deemed unnecessary to introduce the field for the us!

erland version of the structure, since upvalu* is only intended as the input for the

drivers, and then after it is consumed by the driver, the value that the user has set

would not be something that the user should be interested in monitoring. The pri!

mary reason for allowing such a discrepancy between the kernel’s struct ksensor and

userland’s struct sensor is that, unless omitted from the userland, the introduction of a

new field will cause sizeof"struct sensor# to grow, and would thus break the ABI, where

the existing C/C++ sysctl"3# applications that are trying to get the struct sensor struc!

ture would not allocate large enough bu"ers for the sysctl"3# to copy out the structure

from the kernel to the userland, returning an $ENOMEM% error message instead.

The contro(abl* flag, when set by the driver, signifies that the sensor is a read/write

sensor. After a new value is provided by the user, it is stored in the upvalu* field, and

the newvalu* flag is set, which then remains set until the driver’s periodic refresh

procedure, which loops through all the sensors making any necessary updates, con!

sumes the sensor’s upvalu* and clears the flag.

It deserves mentioning that the way we have designed our fan controlling prototype

is such that the driver never modifies any fan!controlling settings inside the chips

unless the user explicitly requests any such changes. This has several benefits, one of

which is that users should not feel intimidated that the mere fact of applying the

patch and rebooting the system is going to do any damage to their system. In fact,

there may be situations where the user might simply want to check on the policies

the motherboard manufacturer has preloaded the chips with, and as our patch not

only allows one to modify the existing fan!controlling behaviour, but also to monitor

50

the currently applicable settings, or, at the very least, the duty cycle settings that the

fans are experiencing, the user does indeed has such an option.

13.2. Sensor types

The next design decision that we discuss is that of sensor types. Now that the drivers

could declare that certain sensors could have an upvalu* field that could be modified

and passed back into the driver, the question regarding sensor types comes to mind.

On the one hand, any new sensor type would break the ABI and, possibly, API of

existing utilities, whereas if the existing sensor types are reused, the interfacing may

seem to look a bit too generic and somewhat less user!friendly.

For example, if we reuse the temp type to specify target temperatures, then those tar!

get temperature setting sensors would have to be numbered in the same namespace

as those sensors that report actual temperature readings, e.g. temp0 may be the ac!

tual temperature sensor, whereas temp3 would be the 'corresponding or not(read/

write target temperature setting sensor.

One problem that we have found with the approach of reusing the existing sensor

types is that not all types appear to be represented in the current version of sensors.h.

For example, one of the settings that we might want the user to be able to modify is

the stop, step!down and step!up time, expressed in seconds, and although there is a

sensor type timedelta, expressed as a time fraction, it appears that the current use ex!

clusively suggests that the value of such timedelta sensors should show the di"erence

between the local wall clock and the wall clock of some external and more accurate

timesource. $Balmer.Asia07% $Balmer.Euro07% Therefore, one must be careful in re!

use of such sensor types, as it may inadvertently confuse tools like ntpd, creating a

situation where it could be using such a sensor to adjust the drift of the local clock

for very unintended results.

51

Although introducing new sensor types is very straightforward 'a matter of defining

each type in two places inside the /sys/sys/sensors.h, supporting the printout in sysctl,

sensorsd, systat etc, and changing the respective sensors in the drivers to the new

type(, the approach that we have taken thus far in our prototype implementation is

to delay any such introduction, allowing us to make an interesting observation that

we have managed to implement the fan!controlling interfacing via sysctl hw.sensors

tree without breaking neither the existing API nor even the ABI, with the new func!

tionality introduced exclusively on top, but not in place of, any parts of the existing

framework.

13.3. Dynamic sensor descriptions
Settings for certain writable sensors may sometimes be rather complicated; for ex!

ample, the duty cycle of fans may be controlled through several ways, including one

manual and several automatic modes. In order to show these settings, we have con!

veniently used the description field of relevant sensors, where, depending on the

data in certain registers, we would update the string describing an individual sensor

with the information regarding some complex settings of the said sensor.

13.4. The lm!4" driver

In our prototype, we have implemented fan!controlling support for several chips

that are otherwise supported by OpenBSD’s lm'4(driver. A brief description of our

implementation is outlined below.

First, as already mentioned, the driver does not modify the fan!controlling behaviour

unless the user specifically requests such modifications via the sysctl interfacing.

Then, we tried to make the interfacing as intuitive as possible. For example, when

the user modifies the duty cycle of the fans directly through the percen) type sensors,

the respective fan control settings automatically switch into the manual mode; same

52

happens when the user tries to change the target temperature of a given fan!

controlling pin + the fan goes into the thermal cruise mode.

Table IV provides an example summary of what sensors were newly added to lm"4#,

although the exact sensors di"er with each supported family. In the example below,

it is seen that the chips themselves 'in this particular family(can independently con!

trol 4 fans 'which is not to say that the motherboard manufacturer has necessarily

wired everything to make such independent control possible(. Note that all of these

new sensors are both readable and writable.

Sensor Usage

percent.0,1,2,3/ summary and duty cycle

temp.3,4,5,6/ target temperature

temp.7,8,9,10/ temperature tolerance

percent.4,5,6,7/ start!up duty cycle

percent.8,9,10,11/ stop duty cycle

indicator.0,1,2,3/ PWM/DC switch

Table IV. Newly added sensors for the W83627EHF / DHG family.

53

14. Demonstration
We hereby demonstrate some of the functionalities of our prototype, together with

the relevant commentary.

Below is the output from a W83627DHG chip on an Intel D201GLY2 box with one

small system fan. Values that are not applicable to the current operational mode are

automatically marked as ‘unknown’ in sysctl.

% dmesg | fgrep W83627DHG
wbsio0 at isa0 port 0x4e/2: W83627DHG rev 0x25
lm1 at wbsio0 port 0x290/8: W83627DHG

% sysctl hw.sensors
hw.sensors.cpu0.temp0=58.00 degC
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp1=51.00 degC (CPU)
hw.sensors.lm1.temp2=14.50 degC (Aux)
hw.sensors.lm1.temp3=38.00 degC (Sys Target)
hw.sensors.lm1.temp4=unknown (CPU Target)
hw.sensors.lm1.temp5=unknown (Aux Target)
hw.sensors.lm1.temp6=unknown (CPU Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.temp8=unknown (CPU Tolerance)
hw.sensors.lm1.temp9=unknown (Aux Tolerance)
hw.sensors.lm1.temp10=unknown (CPU Tolerance)
hw.sensors.lm1.fan0=1854 RPM (Sys)
hw.sensors.lm1.volt0=1.34 VDC (VCore)
hw.sensors.lm1.volt1=12.20 VDC (+12V)
hw.sensors.lm1.volt2=3.33 VDC (+3.3V)
hw.sensors.lm1.volt3=3.33 VDC (+3.3V)
hw.sensors.lm1.volt4=-3.95 VDC (-12V)
hw.sensors.lm1.volt5=0.11 VDC
hw.sensors.lm1.volt6=1.62 VDC
hw.sensors.lm1.volt7=3.28 VDC (3.3VSB)
hw.sensors.lm1.volt8=0.03 VDC (VBAT)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.indicator1=Off (CPU Fan PWM/DC: PWM)
hw.sensors.lm1.indicator2=Off (Aux Fan PWM/DC: PWM)
hw.sensors.lm1.indicator3=On (CPU Fan PWM/DC: DC)
hw.sensors.lm1.percent0=100.00% (Sys Fan PWM Thermal), OK
hw.sensors.lm1.percent1=100.00% (CPU Fan PWM Manual), OK
hw.sensors.lm1.percent2=100.00% (Aux Fan PWM Manual), OK
hw.sensors.lm1.percent3=100.00% (CPU Fan DC SmartIII), OK
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent5=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent6=unknown (Aux Fan Start-up Value)

54

hw.sensors.lm1.percent7=unknown (CPU Fan Start-up Value)
hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL
hw.sensors.lm1.percent9=unknown (CPU Fan Stop Value)
hw.sensors.lm1.percent10=unknown (Aux Fan Stop Value)
hw.sensors.lm1.percent11=unknown (CPU Fan Stop Value)

We alter the target temperature value of the Thermal Cruise mode, and note that

the percent0 value is going down.

% sudo sysctl hw.sensors.lm1.temp3=50
hw.sensors.lm1.temp3=38.00 degC {updating} (Sys Target)

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=50.00 degC (Sys Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.fan0=1739 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=29.41% (Sys Fan PWM Thermal), CRITICAL
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent8=29.41% (Sys Fan Stop Value), CRITICAL

Our D201GLY2 board is deemed abnormal, because the fan does not stop much un!

til the duty cycle is almost zero. 'Or, perhaps, the issue lies with the fan of the en!

closure where the board resides.(So the result is likely to be entirely di"erent on a

di"erent board; the status field indicates the likelihood that the fan is not going to

run on a given duty cycle.

% sudo sysctl hw.sensors.lm1.percent8=10
hw.sensors.lm1.percent8=29.41% {updating} (Sys Fan Stop Value), CRITICAL

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=50.00 degC (Sys Target)
hw.sensors.lm1.temp7=2.00 degC (Sys Tolerance)
hw.sensors.lm1.fan0=1240 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=9.80% (Sys Fan PWM Thermal), CRITICAL
hw.sensors.lm1.percent4=0.39% (Sys Fan Start-up Value), CRITICAL
hw.sensors.lm1.percent8=9.80% (Sys Fan Stop Value), CRITICAL

55

Now we go into the Manual mode. Note that the description of the percent0 sensor

changes to indicate that the Manual mode becomes active, and that the value goes

gradually towards the desired value over some period of time.

% sudo sysctl hw.sensors.lm1.percent0=6
hw.sensors.lm1.percent0=9.80% {updating} (Sys Fan PWM Thermal), CRITICAL

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=unknown (Sys Target)
hw.sensors.lm1.temp7=unknown (Sys Tolerance)
hw.sensors.lm1.fan0=1240 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=9.80% (Sys Fan PWM Manual), CRITICAL
hw.sensors.lm1.percent4=unknown (Sys Fan Start-up Value)
hw.sensors.lm1.percent8=unknown (Sys Fan Stop Value)

% sysctl hw.sensors | fgrep Sys
hw.sensors.lm1.temp0=45.00 degC (Sys)
hw.sensors.lm1.temp3=unknown (Sys Target)
hw.sensors.lm1.temp7=unknown (Sys Tolerance)
hw.sensors.lm1.fan0=781 RPM (Sys)
hw.sensors.lm1.indicator0=Off (Sys Fan PWM/DC: PWM)
hw.sensors.lm1.percent0=5.88% (Sys Fan PWM Manual), CRITICAL
hw.sensors.lm1.percent4=unknown (Sys Fan Start-up Value)
hw.sensors.lm1.percent8=unknown (Sys Fan Stop Value)

We would like to emphasise that the driver only implements reading and writing to

the registers of the chip, e.g. the Thermal Cruise mode is still performed by the chip

itself. Fan Cruise mode and the Smart Fan III modes are not supported, although

one can still monitor their e"ects via the percent.0,1,2,3/ sensors.

56

15. Conclusion
In this thesis, we described OpenBSD’s sysctl hardware sensors framework and its

accompanying feature set. We surveyed the origin of the framework and the history

of its development and evolution, and provided an overview of the drivers that are

utilising the API.

We showed that the framework is very relevant and pervasive in OpenBSD, has been

ported and committed into FreeBSD and DragonFly BSD, and remains popular and

in high demand.

Certain driver code of the framework is cross!shared between NetBSD, OpenBSD,

DragonFly BSD and FreeBSD. The userland interface of the framework is compati!

ble between OpenBSD, DragonFly BSD and patched/backdated FreeBSD.

We also described some hardware monitoring and fan!controlling functionalities of

modern chips and provided a prototype for OpenBSD and DragonFly BSD that al!

lows users to conveniently interface with the fan!controlling functionalities of the

commonly available hardware.

57

16. Future Projects
Several future projects remain possible in regards to the sensors framework and fan

control. In this section, we identify some of them. Some of these identified projects

may be of immediate interest to the actual users of the described systems, whereas

others may be of more interest to the researchers of the subject.

16.1. Hardware support

The most obvious project, as a whole, is improving hardware support and writing

more device drivers for unsupported sensor chips. Although OpenBSD has many

more sensor drivers than does NetBSD, some NetBSD drivers for less popular hard!

ware do not yet have OpenBSD equivalences. Volunteers are needed to port and test

any drivers that are missing from OpenBSD, but are available in NetBSD, or which

are missing from both systems.

Many sensor drivers could also be ported from OpenBSD to DragonFly BSD.

16.2. Port sensor$detect.pl from lm_sensors
The GNU/Linux lm_sensors package has a script called sensor&detect.pl, which scans

relevant busses and tries finding the sensors that are hiding on any such busses. It

might be a worthwhile project to provide some wrapper utilities for the script, such

that the script could be used on OpenBSD or other BSD platforms to identify which

'previously unknown(sensor devices are available in the hardware, such that any

missing drivers could be written or cross!ported.

16.3. Port i2c_scan.c to other BSDs

Another possible project includes the porting of the i2c_scan.c functionality to other

BSD systems, most interestingly the FreeBSD / DragonFly BSD APIs. This would

allow a huge number of I&C drivers to be cross!ported 'as well as for all unsupported

58

I&C devices to be promptly identified in the future(, once the i2c_scan.c porting it!

self is accomplished.

16.4. Further improve sensorsd

The sensorsd'8(sensor monitoring daemon has been greatly improved since its in!

troduction, but it is still not as flexible as some comparable utilities are, as far as ex!

tended functionality and the configuration language are concerned. It would be an

interesting project to design a configuration language for sensorsd similar to the one

used in OpenBSD’s Packet Filter firewall rulesets. Additional monitoring features

may also be introduced to sensorsd, such that it would be possible to detect more

anomalies on those sensors whose drivers are not keeping up their state, or where

such state might still require additional attention from the user.

16.5. Interfacing for fan$speed controlling

Fan!speed controlling was discussed as a part of this thesis, and a prototype has been

provided, however, further research is possible in several distinct directions.

In general, as we have shown, OpenBSD’s sensors framework requires very little

amount of modification to provide an interface for the ability to conveniently pass

values from sysctl'8(back into the driver, such that the driver, in turn, could pass

such values down to the chip, for the chip to modify the voltage of some fan headers

in a certain predetermined fashion.

However, di"erent generations of chips have di"erent logic regarding fan control;

many chips of recent generations have multiple temperature levels at which di"erent

fan speeds could be sought; certain temperature sensors could be specified to a"ect

decisions regarding the speed of certain fans etc. Concerns for simplicity extinction

are amplified by the fact that the majority of motherboards are miswired as far as

hardware monitoring datasheets are concerned, since many modern hardware moni!

toring chips oftentimes provide way much more functionality in regards to fan con!

59

trolling than the motherboard manufacturer is usually interested in supporting and

advertising in its products for its endusers. Therefore, a complete, flexible and

round patch for supporting fan controlling functionality might be a long way from

OpenBSD’s philosophy of being a system where a great deal of e"ort is paid towards

the simplicity and generality of its feature set.

Due to these reasons, it is unclear if any general!purpose fan!controlling prototype

will ever be integrated into the main release of the OpenBSD system, so some fur!

ther research is warranted.

16.6. Possible race conditions between user software and the
BIOS
It has also been speculated that user!initiated intervention with the fan!controlling

functionality of the chip may cause undesirable consequences to the stability of the

system as a result of certain conflicts with the system management code of the

BIOS. Although the concern has some grounds, in our experience no undesirable

interactions were found as of yet in regards to the matter. Future work may examine

assembly code and, perhaps, specifications of various hardware components to de!

termine if the concerns have some more valid grounds.

Motherboard manufacturers may wish to provide fan!controlling specifications

through custom ACPI devices, whereby the specifications would be more definitive

and less likely to harm the stability and design of the system, at the same time ensur!

ing that each BIOS contains the relevant information of which pins of the chip are

actually utilised in the design of the motherboard.

16.7. Fan$controlling through sensorsd

Future work may also be done in regards to a simplified language for specifying vari!

ous relationships for fan control, and the language may feature fallbacks for the

60

sensorsd hardware monitoring daemon for those chips that cannot do the monitor!

ing loop by themselves.

61

References
$Andrews.KernelTrap08% Jeremy Andrews. “BSDCan 2008: Hardware Sensors Framework”.
KernelTrap. 7 June 2008.
http://kerneltrap.org/OpenBSD/BSDCan_2008_Hardware_Sensors_Framework

$Balmer.Asia07% Marc Balmer. “Support for Radio Clocks in OpenBSD”. In: AsiaBSDCon
2007 Proceedings. 8-11 March 2007, Tokyo, Japan.
http://www.openbsd.org/papers/radio!clocks!asiabsdcon07.pdf

$Balmer.Euro07% Marc Balmer. “Supporting Radio Clocks in OpenBSD”. On: EuroBSDCon
2007. 12-15 September 2007, Copenhagen, Denmark. Slides:
http://www.openbsd.org/papers/eurobsdcon07/mbalmer!radio_clocks.pdf

$Biancuzzi.42% Federico Biancuzzi. “Pu"y’s Marathon: What’s New in OpenBSD 4.2”.
O’Reilly ONLamp. 01 November 2007. http://onlamp.com/lpt/a/7155

$Biancuzzi.44% Federico Biancuzzi. “Source Wars - Return of the Pu"y: What's New in
OpenBSD 4.4”. O’Reilly Community. 3 November 2008.
http://broadcast.oreilly.com/2008/11/source!wars!!!return!of!the!pu.html

$Chou01% Andy Chou et al. “An empirical study of operating systems errors”. In: Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles. 21-24 October 2001,
Ban", Alberta, Canada. ACM SOSP 2001, pp. 73-88. doi:10.1145/502034.502042

$deRaadt.misc98% Theo de Raadt. “See: dmesglog works”. misc@openbsd.org mailing list. 12
November 1998. http://marc.info/?l=openbsd!misc&m=91090366422103&w=2

$deRaadt.priv06% Theo de Raadt. Private emails. 2006.

$deRaadt.zdnet06% Ingrid Marson. “OpenBSD 3.9 adds sensor framework”. ZDNet UK. 24
March 2006, London, UK. http://news.zdnet.co.uk/software/,,39259254,.htm

$deRaadt.jedec08% Theo de Raadt. “New sensor driver, sdtemp'4(”. misc@openbsd.org mail!
ing list. 12 April 2008. http://marc.info/?l=openbsd!misc&m=120804067607451&w=2

$Evans.stress% Gary W. Evans and Dana Johnson. “Stress and Open!O,ce Noise”. Journal of
Applied Psychology, vol. 85, no. 5, pp. 779-783. October 2000. doi:10.1037/0021!9010.85.5.779

$FreeBSD.ideas% +. “The FreeBSD list of projects and ideas for volunteers”. FreeBSD.
http://www.freebsd.org/projects/ideas/

$Google.FAST07% Eduardo Pinheiro, Wolf!Dietrich Weber and Luiz Andre Barroso. “Failure
Trends in a Large Disk Drive Population”. Proceedings of the 5th USENIX Conference on
File and Storage Technologies 'FAST’07(. February 2007, San Jose, CA, USA.
http://labs.google.com/papers/disk_failures.pdf

63

$Halderman.Lest% J. Alex Halderman et al. “Lest We Remember: Cold Boot Attacks on En!
cryption Keys”. 17th USENIX Security Symposium 'USENIX Security '08(. July 2008, San
Jose, CA, USA. http://citp.princeton.edu/memory/

$Intel.ACPI% +. “Advanced Configuration and Power Interface”. Hewlett!Packard, Intel,
Microsoft, Phoenix and Toshiba. http://www.acpi.info/

$Intel.acpica% +. “ACPI Component Architecture”. Intel. http://www.acpica.org/

$Intel.D201GLY2% +. “Intel® Desktop Board D201GLY2 / D201GLY2A”. Intel.
http://www.intel.com/products/motherboard/D201GLY2/configs.htm

$Intel.SMBus20% +. “System Management Bus 'SMBus(Specification, Version 2.0”. Intel et
al. 3 August 2000. http://smbus.org/specs/smbus20.pdf

$grange.priv05% Alexander Yurchenko. Private emails. June 2005.

$Gwynne.Open06% David Gwynne and Marco Peereboom. “Bio and Sensors in OpenBSD”.
On: OpenCon 20060- The OpenBSD Conference. 2-3 December 2006, Venice, Italy.
Slides: http://www.openbsd.org/papers/opencon06!bio.pdf

$lm_sensors.ThinkPad% +. “README.thinkpad”. lm_sensors. 2001/2004.
http://www.lm!sensors.org/browser/lm!sensors/trunk/README.thinkpad?rev=5132

$Murenin.UKUUG06% Constantine A. Murenin. “Hardware temperature monitoring device
drivers for OpenBSD”. In: UKUUG Spring Conference and Tutorials: Conference Proceed!
ings. 21-23 March 2006, Durham, UK.

$Murenin.BSc06% Constantine A. Murenin, B. Sc. 'Hons(Final Year Project Main Report:
“Microprocessor system hardware monitors. Interfacing on OpenBSD with sysctl'8(.” Fac!
ulty of Computing Sciences and Engineering, De Montfort University, Leicester, UK, May
2006.

$Murenin.TOJ06% Constantine A. Murenin. “New two!level sensor API”. The OpenBSD
Journal. 30 December 2006. http://undeadly.org/cgi?action=article&sid=20061230235005

$Murenin.IEEE07% Constantine A. Murenin. “Generalised Interfacing with Microprocessor
System Hardware Monitors”. In: Proceedings of 2007 IEEE International Conference on
Networking, Sensing and Control. 15-17 April 2007, London, United Kingdom. IEEE
ICNSC 2007, pp. 901+906. doi:10.1109/ICNSC.2007.372901

$Murenin.GSoC07.prop% Constantine A. Murenin. “Unified Hardware Monitoring Interface
for FreeBSD. 'Port OpenBSD’s sysctl Hardware Sensors Framework(”. 6 April 2007.
http://mojo.ru/us/GSoC2007.FreeBSD.cnst!sensors.proposal.html

64

$Murenin.GSoC07.fin% Constantine A. Murenin. “GSoC2007:
cnst!sensors.2007!09!13.patch”. freebsd!hackers@freebsd.org mailing list. 13 September
2007. http://lists.freebsd.org/pipermail/freebsd!hackers/2007!September/021722.html

$Murenin.FQSR07% Constantine A. Murenin, Shteryana Shopova. “Porting OpenBSD’s
sysctl Hardware Sensors Framework to FreeBSD”. FreeBSD Quarterly Status Report, July to
October 2007. http://www.freebsd.org/news/status/report!2007!07!2007!10.html

$Murenin.GSoC07.sum% Constantine A. Murenin. “GSoC2007/cnst!sensors”. FreeBSD. 14
October 2007. http://wiki.freebsd.org/GSoC2007/cnst!sensors

$Murenin.TOJ07.wbng% Constantine A. Murenin. “Developer blog: cnst@: wbng'4(and how
it was written”. The OpenBSD Journal. 29 October 2007.
http://undeadly.org/cgi?action=article&sid=20071029080000

$Murenin.Can08% Constantine A. Murenin. “OpenBSD Hardware Sensors Framework”. On:
BSDCan 2008 - The BSD Conference, Invited Talks track. 14-17 May 2008, Ottawa, On!
tario, Canada. Abstract: http://www.bsdcan.org/2008/schedule/events/63.en.html Slides:
http://www.openbsd.org/papers/bsdcan08!sensors.pdf

$Murenin.Login08% Constantine A. Murenin. “OpenBSD Hardware Sensors Framework”,
“X.Org”, “BSD licensed C++ compiler”. In: Conference Reports, BSDCan: The BSD Confer!
ence. USENIX ;login:, August 2008, Volume 33, Number 4, pp. 113-114.
http://www.usenix.org/publications/login/2008!08/index.html

$Murenin.Euro08% Constantine A. Murenin. “OpenBSD Hardware Sensors Framework”. On:
EuroBSDCon 2008 - The 7th European BSD Conference. 16-19 October 2008, Strasbourg,
France. Slides: http://www.openbsd.org/papers/eurobsdcon2008!sensors.pdf

$Murenin.Asia09% Constantine A. Murenin and Raouf Boutaba. “OpenBSD Hardware Sen!
sors Framework”. In: AsiaBSDCon 2009 Proceedings. 12-15 March 2009, Tokyo University
of Science, Tokyo, Japan.
Paper: http://www.openbsd.org/papers/asiabsdcon2009!sensors!paper.pdf
Video: http://www.youtube.com/watch?v=TwcWU626TzI

$Murenin.tech09% Constantine A. Murenin. “sysctl hw.sensors lm'4(fan!controlling
prototype/hack”. tech@openbsd.org mailing list. 8 May 2009.
http://sensors.cnst.su/fanctl/tech@openbsd.org.2009!05!08.fanctl.patch.eml

$Murenin.Can09% Constantine A. Murenin. “Quiet Computing with BSD”. On: BSDCan
2009 - The BSD Conference, Hacking Talks track. 6-9 May 2009, Ottawa, Ontario, Canada.
Abstract: http://www.bsdcan.org/2009/schedule/events/119.en.html
Slides: http://sensors.cnst.su/fanctl/BSDCan2009.cnst!fanctl.slides.pdf
Prototype: http://sensors.cnst.su/fanctl/tech@openbsd.org.2009!05!08.fanctl.patch.eml

65

$Murenin.techkern09% Constantine A. Murenin. “Re: aibs'4(: ASUSTeK AI Booster 'ACPI
ATK0110(hardware monitor with limit support”. tech!kern@netbsd.org mailing list. 31 De!
cember 2009. http://mail!index.netbsd.org/tech!kern/2009/12/31/msg006778.html

$Murenin.fanctl10% Constantine A. Murenin. “$PATCH% fanctl: AsiaBSDCon 2010 Dragon!
Fly sysctl hw.sensors lm'4(fan control similar to BSDCan 2009 OpenBSD”. 12 March 2010.
http://sensors.cnst.su/fanctl/AsiaBSDCon2010.cnst!fanctl.dfly.patch

$Murenin.Asia10% Constantine A. Murenin and Raouf Boutaba. “Quiet Computing with
BSD”. In: AsiaBSDCon 2010 Proceedings. 11-14 March 2010, Tokyo University of Science,
Tokyo, Japan.
Paper: http://sensors.cnst.su/fanctl/AsiaBSDCon2010.cnst!fanctl.paper.pdf
Website: http://sensors.cnst.su/fanctl/

$phk.arch07% Poul!Henning Kamp. “Please think architecture...”. freebsd!arch@freebsd.org
mailing list. 29 August 2007.
http://lists.freebsd.org/pipermail/freebsd!arch/2007!August/006763.html

$phk.gsocgood07% Poul!Henning Kamp. “Re: cvs commit: src/etc Makefile sensorsd.conf ...”.
cvs!src@freebsd.org mailing list. 14 October 2007.
http://lists.freebsd.org/pipermail/cvs!src/2007!October/082407.html

$Tanenbaum06% Andrew S. Tanenbaum, Jorrit N. Herder and Herbert Bos. “Can We Make
Operating Systems Reliable and Secure?”. IEEE Computer, vol. 39, no. 5, pp. 44-51. May
2006. doi:10.1109/MC.2006.156

$Tepper.submit07% Hasso Tepper. “Hardware sensors framework and some drivers using it”.
submit@dragonflybsd.org mailing list. 25 September 2007.
http://leaf.dragonflybsd.org/mailarchive/submit/2007!09/msg00020.html

$Tepper.priv07% Hasso Tepper. Private email. 25 September 2007.

$Theile.arch07% Volker Theile, Alexander Leidinger, LI Xin, Bruno Ducrot. “Any plans to
implement OpenBSD sensor framework into FreeBSD?”. freebsd!arch@freebsd.org mailing
list. January 2007. http://lists.freebsd.org/pipermail/freebsd!arch/2007!January/006048.html

$thinkwiki% +. “How to control fan speed”. ThinkWiki.
http://www.thinkwiki.org/wiki/How_to_control_fan_speed

$Watanabe.ACPI% Takanori Watanabe. “ACPI implementation on FreeBSD”. 2002 USENIX
Annual Technical Conference, FREENIX Track. 10-15 June 2002, Monterey, CA, USA.

66

http://sensors.cnst.su/fanctl/
http://sensors.cnst.su/fanctl/

