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Abstract

The active surveillance of public and private sites is increasingly becoming a very im-

portant and critical issue. It is therefore, imperative to develop mobile surveillance systems

to protect these sites. Modern surveillance systems encompass spatially distributed mobile

and static sensors in order to provide effective monitoring of persistent and transient objects

and events in a given Area Of Interest (AOI). Mobile sensors have emerged as a solution to

overcome the limitations of the static sensors. Mobile sensors are capable of sensing, pro-

cessing, moving and communicating with other nodes. They can sample the environment

at different locations, exchange information with other nodes, and collaboratively accom-

plish the required mission. Mobile surveillance systems incorporate self-organized networks

of mobile sensing nodes of different modalities, data and information fusion nodes, acting

nodes and control nodes. These self-organized nodes can collaboratively and continuously

sense within the volume of interest, as well as physically manipulate and interact with

it. These surveillance systems provide systematic observation of an AOI that includes the

timely detection, localization, recognition and identification of objects and events, their

relationships, activities, and plans, in order to determine whether they are behaving nor-

mally, or whether there is any deviation from their expected behavior. To achieve this

complete situation awareness, the system starts by collecting the relevant data in order to

identify situation entities and their relationships. Then the system performs a relational

analysis of object-events, followed by intent estimation and consequence prediction.

The realization of the potential of mobile surveillance requires the solution of differ-

ent challenging problems such as task allocation, mobile sensor deployment, multisensor

management, cooperative object detection and tracking, decentralized data fusion, and

interoperability and accessibility of system nodes.

This thesis proposes a market-based framework that can be used to handle different

problems of mobile surveillance systems. Task allocation and cooperative target-tracking
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are studied using the proposed framework as two challenging problems of mobile surveil-

lance systems. These challenges are addressed individually and collectively.

Although a great number of task allocation approaches have been reported in the

literature, many aspects have to date been given only sparse attention. Examples of

these aspects are complex task allocation and constrained task allocation. The developed

surveillance framework in this thesis addresses complex task allocation that uses task tree

structure. Hierarchical and centralized complex task allocation algorithms are presented

to allocate a set of complex tasks to a mobile sensor team.

Besides complex task allocation, the cooperative target tracking problem is also tackled

in this thesis. The proposed cooperative tracking approach is inspired by market-based eco-

nomic systems. In the proposed framework, mobile sensors are self-interested agents with

the primary goal of maximizing individuals’ profits. The presented methodology inherits

the flexibility of markets in allowing cooperation and competition to emerge opportunis-

tically among the agents. These agents implement an Extended Kohonen Maps-based

algorithm for target tracking. Two versions of the Extended Kohonen Maps are proposed:

supervised, and unsupervised. A hybrid clustering technique is used to decrease the number

of active trackers during tracking, and thus save energy.
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Chapter 1

Introduction

1.1 Motivations and Objectives

Many autonomous tasks require sensory data to be collected from sensors that are able to

sample the environment at different locations, exchange the information with other nodes,

and collaboratively accomplish the required mission. This type of sensors is called mobile

sensors. The coordination and control of multiple mobile sensors provides an opportunity

to improve the quality and robustness of the collected data, as compared to a single sensor

and/or static system [4]. In other words, well-designed interactions between the mobile

sensors can ensure good performances and produce collective intelligence at the group level.

Multisensor systems have been the focus of multiple research efforts in the last few decades.

This can be seen in many applications such as space and underwater exploration [5, 6],

search and rescue [7, 8], surveillance and reconnaissance [9, 10].

In the last few years, major terrorist attacks such those of September 11, 2001 have led

to an active research focused on surveillance. One of the hot topics is how to automate

surveillance tasks based on mobile and fixed sensors platforms [11]. Many benefits can

be anticipated from the use of multisensor systems in surveillance applications, such as
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decreasing task completion time, and increasing mission reliability. Advanced surveillance

systems include a vast array of cooperative (static and mobile) sensors with varying sensing

modalities that can sense continuously the volume of interest [12]. These sensors are

dynamically used based on the current and future states of the environment. The main

goal of the surveillance system is to adjust the sensing conditions for improved visibility,

and thereby improve performance [13]. In such setting, surveillance is a complex problem

posing many challenging problems.

Generally, monitoring of public and private sites is the main application of multisensor

surveillance systems. Surveillance operation includes the timely detection, localization,

recognition and identification of objects and events, their relationships, activities, and

plans, in a given Volume of Interest (VOI) [14]. There are many factors that increase

the complexity of surveillance operations such as high tempo, high density in certain

environments- like school campuses and shopping malls- and collateral damage in applica-

tion with dense activity such as in military operations [15]. The primary objectives of the

surveillance systems are to provide the information that makes the system able to under-

stand and predict the actions and the interactions of the observed objects in order to carry

out different tasks. Examples of these tasks would include target search, identification,

and tracking.

This thesis presents a market-based framework for mobile surveillance systems. The

goal is to develop a framework that efficiently distributes tasks among the mobile sensor

team to achieve the surveillance mission. Such a framework will support the operation of

the mobile sensors so that they can collaboratively perform tasks such as detecting and

tracking moving targets. In order to maximize the effectiveness of the mobile sensor team

collaborating as a group, the action of every mobile sensor should consider the contribution

of its teammates towards the mission objectives. How to accomplish this is a complex

problem, which is currently an active area of research [5, 16–19].
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This thesis addresses the problem defined by the following question:

How can a system composed of multiple mobile sensors be distributed in a given en-

vironment and how can functionality be configured, utilized and coordinated in order to

efficiently accomplish the surveillance mission.

This problem requires tackling some of the challenging problems of mobile surveillance

that are still open. These problems include, but are not limited to, task allocation, mobile

sensor deployment, multisensor management, cooperative object detection and tracking,

decentralized data fusion, and interoperability and accessibility of system nodes. This the-

sis tackles two of these problems: task allocation, and cooperative detection and tracking.

The surveillance problem addressed in this thesis can be cast as one of finding a mech-

anism that accepts representations of robot states and abilities and outputs a desirable

team behavior.

The problem of task allocation in mobile surveillance systems addresses the question of

finding the task-to-sensor assignments that optimize global cost or utility objectives [20, 21].

This can be divided into two sub-problems. First, how a set of tasks is assigned to a set

of mobile sensors. Second, how the behavior of the sensor team is coordinated in order to

achieve the cooperative tasks efficiently and reliably. A great number of task allocation

approaches have been reported in the literature. This is mainly seen in surveillance, recon-

naissance, and search and rescue applications [7–10]. However, many aspects have to date

been given little attention. Examples of these aspects are complex task allocation, and

constrained task allocation. Complex tasks are those tasks which can be decomposed into

different subtasks. Working with a complex task is guaranteed to produce a more efficient

solution for the task allocation problem [19]. Thus, complex task allocation is considered

in this thesis as a part of the design of the mobile surveillance framework.

The recent interest in surveillance in public, military, and commercial scenarios is

increasing the need to autonomously observe the movements of targets navigating in a

3



bounded area of interest. The target-tracking problem is concerned with estimating the

state of a target or targets in some areas of interest based on some measurements from

the stationary sensors, in most of the cases. However, using stationary sensors has many

constraints which force the use of multiple mobile sensors dynamically moving over time

especially in surveillance applications. Examples for these constraints are the lack of prior

information about the area of interest, and large areas to be observed that economics pro-

hibit the placement of a large number of static sensors. Thus, target detection and tracking

is also tackled in this thesis using mobile sensors in the design of the mobile surveillance

framework.

Our approach to solving the surveillance problem is inspired by market-based economic

systems. Market mechanisms create an environment within which individual self-interested

agents are given incentives to lead them to achieve a good system-wide solution [22]. These

market mechanisms are continually gaining considerable attention and popularity due to

several desirable properties [18]. The most desirable property of the market mechanisms is

efficiency. Using market mechanisms gives the opportunity to focus on performance goals

while letting the market algorithms innovate to achieve these goals at lowest cost [22].

1.2 Contributions

This section highlights the major contributions to this research activity to research ar-

eas of task allocation, target tracking, and mobile surveillance systems as illustrated in

Fig. 1.1. Detailed description of the proposed framework components are provided in the

next chapters as shown in Fig. 1.1. The major contributions in this thesis are summarized

as follows:
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Figure 1.1: Market-based framework for mobile surveillance systems

1. A market-based mobile surveillance framework is presented which will tackle various

issues that have not been investigated collectively in the past. These include; task

allocation problem, target search and detection, and target tracking. The benefits

and challenges of each issue are assessed. The proposed framework is applied to

indoor and outdoor environments

2. A complex task allocation approach is proposed for incorporation into the design the

mobile surveillance framework. This approach uses a tree structure as a representa-

tion of tasks to be allocated. This provides the surveillance framework the ability to

allocate the tasks to the mobile sensor team at different levels of abstraction. Two

types of task tree are developed; a pure AND tree, and AND/OR tree. Centralized
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and hierarchical dynamic and fixed tree task allocation algorithms are developed to

solve the multisensor task allocation problem.

3. An Extended Kohonen neural network for the purpose of target tracking is devel-

oped. Two types of networks are proposed: supervised learning, and unsupervised

learning networks. An energy-efficient methodology to coordinate the behaviour of

the sensor team during tracking is presented. The core concept of this methodology

is the introduction of target clustering before tracking so as to reduce the number

of mobile sensors needed to track the moving targets. A hybrid subtractive – K-

means clustering technique is used for this purpose. Also, a market-based algorithm

is developed as a coordination methodology between sensor team during tracking.

1.3 Thesis Statement

This thesis asserts that the use of market-based techniques in the mobile surveillance

systems enables efficient and robust task allocation and cooperative target tracking.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 gives a global overview over mobile surveillance systems. For that, the

challenging problems, the organizational paradigms, and the problem solving strategies

that are observed in the design of multi-sensor surveillance are introduced in brief.

Chapter 3 discusses in details the market-based approach describing different types

of auctions focusing on combinatorial auctions. The knowledge given in this chapter helps

to understand the different aspects of market-based approaches.
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Chapter 4 presents a market-based approach to solve the multi-sensor task allocation

problem in mobile surveillance systems. Centralized and hierarchical algorithms with fixed

and dynamic trees have been examined, focusing on complex tasks.

Chapter 5 presents a detailed description of the developed methodology for tracking

multiple objects to be incorporated into the proposed mobile surveillance framework. The

Extended Kohonen Map is proposed for single target tracking and multi-target tracking.

Chapter 6 gives the experimental setups, experimental results, and discussion.

Chapter 7 summarizes this work with conclusions and future directions. It also lists

the publications originated from the research work in this thesis.
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Chapter 2

Mobile Surveillance Systems

The main purpose of this chapter is to give a global overview of mobile surveillance systems.

It is divided into six major sections. Section 2.1 gives an introduction to multi-sensor

systems, and their applications. A brief discussion of the mobile surveillance systems

and their operations is given in sections 2.2 & 2.3. A brief discussion of the challenging

problems of mobile surveillance, as seen in the literature, is presented in section 2.4. This

is followed by the organizational paradigms that are observed in the design of mobile

surveillance systems in 2.5. The problem solving strategies are presented in section 2.6.

Finally, important conclusions are drawn in section 2.7.

2.1 Introduction

Monitoring of public places is increasingly becoming very critical, especially after the World

Trade Center, and Pentagon attacks in September 2001 [23]. This increased the need

to create and deploy intelligent and automated surveillance systems [24]. This can be

accomplished using either standard surveillance systems or advanced surveillance systems,

depending on the complexity of the monitoring process. Standard surveillance systems
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are good in situations where it is only required to detect and track people moving in

the observed scene. Advanced surveillance systems fit best in applications that require

understanding of complex human behavior, or detection and recognition of faces. These

advanced systems are based on multiple sensors (cameras, laser, infrared, thermal, radar,

etc.).

Surveillance operations include the timely detection, localization, recognition and iden-

tification of objects and events, their relationships, activities, and plans, in a given Volume

of Interest (VOI) [14]. In application domains such as security or defense, this process

is referred to as picture compilation. The aim of this is to generate a representation of

the area under surveillance (e.g., a port) based on data and information from a variety

of sources. The compiled picture essentially displays information about red objects (ad-

versary, non-cooperative), blue objects (own and friendly), white objects (neutral, usually

cooperative), and environmental conditions. The following are a few factors that further

define the complexity of surveillance operations [25]:

• High tempo: The limited time available to understand the impact of the events

on the mission at hand, and to react to them. High tempo imposes the requirement

that critical (potentially red) objects be detected as early as possible so as to provide

more reaction time to the human decision makers.

• High density: Certain environments, such as school campuses, shopping centers,

airports, etc., exhibit significant congestion with dense activity (e.g., commercial,

educational and recreational traffic), as compared to open uncrowed environments.

High density necessitates increased effort on the part of the system to gain and

maintain situation awareness, thus distracting it from focusing on critical objects.

• Collateral damage: In critical applications, collateral damage also imposes a

non-uniform environment that cannot be pictured as a confrontation between blue

9



(friendly) objects and red (enemy or undesirable) objects. Blue and red, as well as

neutral (white), objects are interspersed and overlapping, presenting a highly com-

plex challenge with respect to discerning one type of object from another. This

situation increases the risk of undesirable effects, e.g., casualties.

Automated surveillance systems provide a promising solution for these challenges.

The need of automated surveillance systems in public places, airports, commercial, law

enforcement, and military applications has been greatly increased in the last few decades.

Conducting surveillance in these applications requires using the team concept with a con-

siderable number of resources. Automated monitoring in the surveillance systems addresses

the real time observation of people and vehicles within a busy environment, thus leading to

a complete description of their actions and interactions [26]. These actions and interactions

can be classified as follows [27]:

• Object class: such as people, and vehicles

• Object action: such as appearing, moving, stopped, and disappearing

• Object interaction: such as close, moving away, moving toward

Surveillance systems have been seen in many applications. These applications include

but not are restricted to:

1. Public Security: The main goal of these applications is to ensure security for

citizens. This will be done by providing efficient, user-friendly, highly automated

surveillance of crowded areas such as airports, shopping malls, and railways [15, 28].

2. Public Health Surveillance: Public health surveillance provides information needed

to guide interventions. For example, if the objective is to prevent the spread of epi-

demics of acute infectious diseases, managers need to intervene quickly to stop the
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spread of this disease. Therefore, they need a surveillance system that provides rapid

early warning information from clinics and laboratories.

3. Health care: Visual surveillance can be employed to help handicapped persons and

to monitor the activities of elderly people [23].

4. Military Applications: As the governments are trying to increase the agility and

versatility of their weapon systems, they need to adopt intelligent surveillance systems

that are able to get information in order to support the weapon systems and the

operating methods against enemies and/or other threats [29]. Such systems are

intended to detect, locate and track moving targets, which include humans, trucks,

tanks, etc.

It is unrealistic to monitor several areas by one sensor, or to track a moving object for

a long period of time. So using multisensor in the surveillance system is a must.

2.2 Multisensor Surveillance

Multisensor systems have become an active research area and are highly prominent in

several new application areas in the recent years. These applications include but are not

limited to space and underwater exploration [5, 6], search and rescue [7, 8], surveillance and

reconnaissance [9, 10], etc. Many benefits can be anticipated from the use of multisensor

systems such as resolving complexity by decomposing the complex task into simple tasks,

decreasing task completion time, and increasing mission reliability. Thus having only one

mobile sensor may work as a bottleneck for the whole system, especially in critical times.

In surveillance systems, there is an increasing need for more accurate and reliable

sensors as they are continuously applied to new, more complex and demanding tasks. A

sensor network is one of the frameworks that have been proposed recently [30] to improve
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the capabilities of a sensing system. Such a network, consists of multiple similar and/or

dissimilar sensors that work in tandem to perform a common surveillance mission. There

are three general types of sensors that can be used in multisensor systems [13]:

1. Complementary sensors: which are able to perceive different features using dif-

ferent sensors devices. These features can be combined to produce more detailed

information than would be available from any single sensor.

2. Cooperative sensors: which are able to provide information that can’t be derived

from only one sensor.

3. Competitive sensors: which perceive the same measurements from the environ-

ment in order to reduce uncertainty of the observed data and thus, increase the

accuracy of the surveillance system.

Figure 2.1: Multisensor surveillance system [3]
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Monitoring of public and private sites is increasingly becoming a very important issue in

the past few years [23]. In order to achieve that, a multi-sensor surveillance system should

be developed. Multi-sensor surveillance systems consist of different types of sensors such

as cameras, laser finders, and radars, which can be installed on fixed or mobile devices [31].

Using multi-sensors gives the surveillance system the ability to augment the capabilities

of single sensor in many aspects [23]. The primary aims of these surveillance systems are

to provide the required information that makes the system able to understand and predict

the actions and the interactions of the observed objects in order to carry out different

tasks (search, scanning, identification, and tracking) [32, 33]. An example of such systems

is shown in Fig. 2.1 [3]. Each mobile sensor is equipped with basic motor, sensory and

communication modules that make its design simple. Well-designed interactions between

these simple sensors can ensure complex performances and produce collective intelligence

at the group level. One of the potential applications of multisensor system is surveillance.

Advanced surveillance systems include a vast array of cooperative (static and mobile)

sensors with varying sensing modalities that can continuously sense the volume of interest

[34].

.

2.3 Mobile Surveillance Systems

Effective monitoring of persistent and transient objects and events is a key to the effective

protection of any Area Of Interest (AOI). Surveillance is the systematic observation of AOI

by visual, audio or other means. This systematic observation includes the timely detec-

tion, localization, recognition and identification of objects and events, their relationships,

activities, and plans, in a given AOI in order to determine whether they are behaving nor-

mally, or if there is any deviation from their expected behavior. To achieve this complete
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situation awareness, the system starts by collecting the relevant data in order to identify

situation entities and their relationships. Then the system performs a relational analysis

of object-events followed by intent estimation and consequence prediction [35] .

Mobile surveillance systems incorporate self-organized networks of mobile sensing nodes,

data and information fusion nodes, acting nodes and control nodes. These self-organized

nodes can sense collaboratively and continuously AOIs and physically manipulate and in-

teract with them. The sensing nodes represent a set of spatially distributed mobile sensors

of different modalities that can sense collaboratively and continuously an AOI. These nodes

include but are not limited to vision systems, sonar/infrared/laser range finders, micro-

phone arrays or RFIDs mounted on mobile bases in order to overcome the limitations of

the static sensors. Mobile sensing nodes are capable of sensing, processing, moving and

communicating with other nodes. They can sample the environment at different locations,

exchange the information with other nodes, and collaboratively achieve the required mis-

sion. Fusion nodes combine information from the sensing nodes about the targets and

events in order to determine whether they are behaving normally or if there is any devi-

ation from their expected behavior. Actuation may be a direct physical action upon the

process, such as moving a camera to keep track of an agile target; or a physical making of

an electrical circuit, which in turn has a direct effect upon the process. An example would

be an actuator (relay) that activates an alarm, a fire extinguisher or hard-kill/soft-kill

weapons. Control nodes manage sensing, fusion and acting nodes to provide timely detec-

tion, localization, recognition and identification of targets and events, their relationships,

activities, and plans, in a given AOI.
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2.4 Challenging Problems of Mobile Surveillance Sys-

tems

In this section, the challenges that face the design of mobile surveillance systems will be

discussed. Four important challenges will be studied: situation awareness, sensor manage-

ment, task allocation, and cooperative target detection and tracking.

2.4.1 Situation Awareness

SA(situation awareness) is defined as the system’s ability to remain aware of everything

that is happening and at the same time to integrate that sense of awareness into what it is

running at the moment [36]. Having complete, accurate and up-to-the date SA is essential

where technological and situational complexity overwhelming the human decision-maker

is a concern [37, 38]. When people are required to make critical choices sometimes at a

fast pace the vast majority of errors that occur are a direct result of failures in situation

awareness. In the operation of complex systems, the result can be a catastrophic airplane

crash, emergency response teams flounder, and critical commercial systems falter all at a

great cost in lives and money [39].

The three-level model of situational awareness was developed by Endsley [38] to un-

derstand aviation tasks, such as piloting aircraft and air traffic control. In these types of

tasks, people are required to keep up-to-date with a dynamically changing environment.

Endsleys model is arranged into three hierarchical levels of situational assessment [38], each

stage being a necessary precursor to the next level. This model illustrates three steps for

situation awareness formation as shown in Fig. 2.2:

• Perception: The first step in achieving SA. This level is used to perceive the status,

attributes, and dynamics of relevant elements in the environment. In other words,
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this stage involves the processes of monitoring, detection, and recognition. This will

lead to an awareness of multiple situational elements (objects, events, people, envi-

ronmental factors), and their current states (locations, conditions, modes, actions).

• Comprehension: This level may follow on from the perception of the elements and

their current states. The perceived data can be integrated to produce an understand-

ing of these elements. Comprehension is essential to understand the significance of

the elements, and to gain a picture of what is going on in the surveillance system.

• Projection: The highest level of SA, which involves the ability to project the future

actions of the elements in the environment. This can be achieved through knowledge

of the status and dynamics of the elements (perception), and comprehension of the

situation, and then extrapolating this information forward in time to determine the

future states of the surveillance system.

2.4.2 Sensor Management

In mobile surveillance systems, distributed sensing resources can provide cooperatively

complete, accurate, and timely information about the presence and activity of all objects

or events within the area of interest when properly managed. Sensor management (SM)

is defined as the process that plans and controls the use of a set of sensors in a manner

that synergistically improves the process of data fusion and ultimately that of perception

and understanding. In [40], SM is the process that deals with various problems, including

allocation, coordination, and scheduling. A more generic statement of the SM will be to

allocate, coordinate, and schedule the sensor usage to accomplish a specific and often dy-

namic mission. Allocation is concerned with the selection of the most suitable sensor(s) for

each task. Coordination focuses on the efficient use of sensors by managing the interaction

among the sensors in order to minimize conflicts and maximize synergy. In other words,
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SM must determine which sensor is most important for the mission and thereby prevents

the others sensors from operating, or otherwise set up a schedule to allow one sensor to

operate for a period of time, and then some other sensors for another period. The coor-

dination may also consist in having different sensors work together to acquire information

on a common object/event [41]. This, for instance, consists of dynamically tasking some

sensors to fill the coverage gaps of other sensors. Finally, scheduling is the designation

of time segments for specific tasks or activities, the nature of which is defined during the

allocation or coordination tasks.

The ultimate goal of the SM is to optimize the overall performance of the multi-sensor
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system [42]. This goal is based on predefined system goals and priorities. These goals

and priorities are defined by the user requirement. Examples for that are: to maintain

good track quality at a predefined sector, and to identify or provide more observations on

an unknown high threat target. SM seeks to answer the following questions [43]: which

sensor or sensors, which task, how to control the sensors, and when to start. The role and

function of SM can be best understood if structured into different levels based on their

functionality [42]:

• Level 1: This level involves individual control of each sensor, such as direction,

pointing, change in frequency, power level, etc.

• Level 2. This level focuses more on the sensor tasks and different modes of the sensor

with respect to the operational needs. This stage needs algorithms to prioritize the

tasks, and to determine when and how a mode should be activated. Thus sensor

task scheduling, sensors cueing (sensor handoff, target acquisition by another sensor

aiding), and sensor modes are implemented at this level.

• Level 3. This is the highest level in SM, where dynamic sensor placement, and

effective/optimal sensor mix should be addressed.

2.4.3 Task Allocation

One of the fundamental issues that arises in mobile surveillance systems is how to assign

a set of tasks to a set of mobile sensors to effectively perform a given system level task.

This tasks-sensors assignment is called task allocation process. This process may need

to be continuously adjusted to adapt for the changes in the environment and/or group

performance. This makes dynamic task allocation one of the essential challenges for mobile

surveillance systems. For a group of mobile sensors to effectively perform a system level

task, the mobile sensors will coordinate to distribute the tasks amongst themselves in a
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way that enables them to accomplish their mission efficiently and reliably [16, 44]. Thus

task allocation is a twofold problem. First it addresses how to assign a set of tasks to a

set of mobile sensors. Second it considers how to coordinate the behavior of the sensors

team in order to do the cooperative tasks efficiently. The past decade has witnessed a

growing emphasis in research topics highlighting task allocation [20, 45–48]. Established

techniques can be leveraged to help tackle task allocation aspects. Although numerous

techniques exist for these aspects [20, 45, 46], they exhibit high degrees of complexity

which makes the task allocation problem a significantly NP class problem.

The Task allocation problem is an exciting problem and it can be considered in many

areas of the daily life. This thesis will focus on the mobile surveillance application as one of

the rich domains that presents task allocation challenges. The research efforts in this area

have revealed that accomplishing the subtasks in order to do the surveillance level task

is not easy. Adding to this difficulty, the mobile sensors that are assigned these subtasks

need to be coordinated to achieve the surveillance mission efficiently. An example of a

surveillance problem is as follows:

A team of mobile sensors has been dispatched to aid in the task of scanning different

areas of interest looking for dangerous targets. These areas of interest can be viewed from

multiple vantage points for a more accurate assessment of the situation. A coalition of

mobile sensors may be formed in order to share scanning of some areas. Also, some areas

are completely scanned by only one mobile sensor. When the sensor discovers that an

area may contain some targets, a task is defined which requires tracking these targets. A

sensor or a coalition of sensors may be needed to perform the tracking mission. Sometimes

some sensors need assistance for what they are doing: for example, a team member can

help to track some targets, which cannot be continuously tracked by other sensors. The

difficulty of these tasks provides some of the basis why this research is important. This

thesis discusses in details this problem and proposes a market-based solution as shown in
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section 4.3.

2.4.4 Cooperative Target Detection and Tracking

The recent interest in surveillance in public, military, and commercial scenarios is increasing

the need to autonomously observe the movements of targets navigating in a bounded area

of interest. Thus assigning one or more mobile sensors to follow and approach a target

from multiple directions and angles to obtain images will improve the knowledge about

the target. This may allow improved target detection, and identification. Generally, the

combined coverage capabilities of the available sensors will be insufficient to cover the

entire terrain of interest, which force the use of multiple sensors dynamically moving over

time.

The problem of target tracking is to estimate the state of a target based on some mea-

surements from sensors. The estimation process may contain some uncertainties for several

reasons such as noise measurement, unauthenticated measurement origin, and unknown

target movement. The performance of a tracking system can be improved by exploiting

multiple sensors [49], however, this requires the coordination of movement strategies for

cooperative target tracking. The uncertainty of the estimation of target position can be

reduced by combining measurements from multiple sensors [50]. In this case, the movement

strategy of each sensor is to minimize the redundant measurement uncertainty. An exam-

ple of this is when the horizontal and vertical uncertainty of a single sensor measurement is

different; two sensors can minimize the total estimation. The target tracking problem can

be studied from different points of view [51], such as the number of trackers, the number

of targets, the mobility of trackers, and the type of cooperation between trackers.

The target tracking problem can be mainly divided into two categories: non-ccoperative

target tracking, and cooperative target tracking. In the non-cooperative target tracking

problem, there is no cooperation among the trackers, even when there are multiple trackers
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involved in a system, whereas in the cooperative target tracking system, single or multiple

targets are tracked by multiple trackers cooperatively. In this case, the effect of cooperation

can be maximized by designing a suitable coordination strategy. This coordination strategy

modifies the behavior of the tracker either directly or by other trackers. Although the

target tracking problem has been investigated thoroughly, most research in this area has

focused on the development of a non-cooperative tracking algorithms. However, in security

or surveillance applications, it is often more important to carefully coordinate multiple

sensors in order to cover a large structured environment. Motivated by this, this thesis

will focus on the development of an energy-efficient target tracking algorithm which is able

to accomplish the tracking mission cooperatively by coordinating the mobile sensors to be

incorporated into the mobile surveillance framework.

2.5 Organizational Paradigms of Mobile Surveillance

Systems

As mentioned previously, mobile surveillance systems encompass a set of spatially dis-

tributed mobile sensing nodes or agents. These agents must be governed by a well-defined

organizational paradigm that determines the roles, relationships, and structures [52]. It has

been repeatedly shown that the organization of a system can have significant impact on its

short and long-term performance [53]. Generally speaking, there is no single paradigm that

is suitable for all applications. Some paradigms are more suitable for some applications

and less suitable for other applications. In this section, different organizational paradigms

of the multi-agent systems are introduced. The merits and demerits of each paradigm will

be presented in brief.
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2.5.1 Centralized Architecture

The basic structure of centralized system is shown in Fig. 2.3. In this type of systems,

each agent maintains a connection to one central agent. Thus, the separate agents send all

the information they have to the central agent, which in turn processes this information

and sends the appropriate commands to these agents to control their operations. The

advantages of this type include the reduction of duplication of effort, resources, and increaed

savings of cost and time [54]. Although the centralized systems are widely implemented

in the literature [55], there are many disadvantages that restrict the use of this paradigm

in many applications. The lack of robustness is one of the most important disadvantages

of the centralized system. In other words, if the central agent fails, the whole system will

fail. Also, the system scalability is restricted because all the agents are connected to the

central agent.

Agent-1
Central 

Agent

Agent-2

Agent-3

Agent-4

Figure 2.3: Centralized architecture

In [56], a centralized surveillance system is presented. This surveillance system is mainly

developed to track targets in some areas of interest. For that, two stages are proposed. The
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first stage is the optimization of a network of agents containing ultrasonic sensors within

a pre-specified coverage area. In the second stage, the mobile sensors are activated based

on need according to the tracking requirement of the moving object. The mobile sensors

have the capability to communicate with a centralized server to report on target location

and direction. Another example for centralized systems can be found in [57]. The authors

in this work proposed a surveillance system that utilizes data fusion from multiple types

of sensors. This surveillance system is designed for monitoring an indoor environment.

2.5.2 Decentralized Architecture

Decentralization is the process of dispersing the administrative tasks and authorities be-

tween the agents of the multi-agent system [54]. A possible configuration of the decen-

tralized systems is shown in Fig. 2.4. In this type of configuration, all the agents in the

system are connected to each other. Thus, each agent is communicating its information

with the other agents. Each agent can work on its own without major consideration of

the other agents. Also, sometimes an agent of the decentralized system needs to exchange

information with other agents in order to achieve its mission efficiently in tandem with

other agents. The main advantage of the distributed system is its robustness. In other

words, if one of the agents fails, the other agents are still working on their own and/or

cooperatively with others. The robustness of the distributed systems gives this type of

systems the capacity to add other agents. This means that scalability is no longer an issue

in decentralized systems.
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Figure 2.4: Decentralized architecture

An example of a decentralized surveillance systems can be found in [58]. In this work,

a multisensor surveillance system is proposed. The proposed system achieves a high degree

of survivability by employing a decentralized sensing architecture. The main goal of this

work is to track people and robots as they move around a factory room. Also, in [59],

an agent-based negotiable game theoretic approach for decentralized sensor management

is presented. Sensor assignment occurs locally, and thus there is no central node of failure.

This approach provides a means of developing a fully decentralized architecture for tracking

and surveillance systems that eliminates computational bottlenecks

2.5.3 Hierarchical Architecture

In this type of systems, the agents are arranged in a hierarchical tree structure. An example

of a hierarchical systems is shown in Fig. 2.5. A hierarchy can link agents either directly or

indirectly [52]. Commands, tasks and goals to be achieved flow down from central agents to

subordinate agents, whereas sensations and command results flow up from subordinate to
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central agents. Most of the multi-sensor applications require the decomposition of the tasks

into many tasks, which makes a hierarchical structure a good choice for these applications.

Agent 2-1

Agent 4-1 Agent 4-2 Agent 4-3Agent 3-1 Agent 3-2

Agent 1-1

Central agent 

Sub-central 

agent 4

Sub-central 

agent 2

Sub-central 

agent 1

Sub-central 

agent 3

Figure 2.5: Hierarchical architecture

Generally, hierarchical architecture has been used to solve surveillance system problems

such as target tracking, and sensor management. In [60], a scalable hierarchical multiple

target tracking algorithm is proposed. The task of tracking is done hierarchically by forming

a tracking group around a supernode, and later combining tracks from different supernodes.

Also, in [61], a hierarchical sensor management scheme is proposed to safeguard the data

packet passing on the sensor network under different types of attacks. The proposed

scheme also contains group communication policies, group membership requirements and

an algorithm for generating a distributed group key for secure communication.
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2.5.4 Holonic Architecture

From the multi-agent systems (MASs) point of view, holonic systems are composed of self-

reliant agents that are capable of achieving a specified flexible behavior. More specifically,

a holon can be thought of as a special type of agent that is characteristically autonomous,

cooperative and recursive [62]. An example of such a system is shown in Fig. 2.6 [52].

Each group (circle) in this system has a character derived but distinct from the members

of the group. At the same time, this group contributes to the properties of one or more

groups above it. The structure of these groups is a basic unit of organization that can be

seen throughout the system as a whole. In this context, the holonic systems are suitable

to simulate and model complex systems without multiple granularities [63].

Central agent 1 

Agent 2-1 Agent 2-2Agent 1-1 Agent 1-2

Agent 3-2Agent 3-1

Agent 5-2Agent 5-1Agent 4-2Agent 4-1

Sub-central 

agent 2
Sub-central 

agent 1

Sub-central 

agent  5

Central agent 2 

Sub-central 

agent 3

Sub-central 

agent 4 

Figure 2.6: Holonic systems
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In [64], a conceptual design for sensor management in military settings using holonic

control is presented. The main role of holonic control in this work is to improve tactile

sensor management for military surveillance operations. Also, a holonic multi agent ap-

proach is presented in [65] for solving the coverage problem while monitoring some areas

of interest. In this holonic approach, a group of sensors can behave like one atomic entity,

therefore the patrol of sensors can be built using the holonic concept.

The pros and cons of the aforementioned organizational paradigms can be summarized

in table 2.1:

2.6 Problem Solving Strategies

As explained previously, designing a framework for mobile surveillance systems is very

difficult because of the different challenges and the difficulties the design should pass with.

In this section, some of the most important problem solving strategies that can be used to

design a framework for mobile surveillance systems will be briefly discussed.

2.6.1 Information-theoretic Approach

The main concept of information theory is that of entropy [66]. The information-theoretic

entropy concept has arisen from the long-standing lack of a solid basis for the understanding

of randomness [67]. Entropy is a measure of the uncertainty associated with a random

variable. In this context, the term by itself usually refers to the Shannon entropy [66],

which quantifies the information contained in a message, usually in units such as bits in

the sense of an expected value. Equivalently, the Shannon entropy is a measure of the

average information content one is missing when the value of the random variable is not

known.
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Generally speaking, an information-theoretic approach allows the formulation of a rig-

orous mathematical model to describe large scale systems. This occurs particularly in sit-

uations where uncertainty is prevalent, and where the system at hand is decentralized [68].

Many tools are provided by an information theoretic approach, such as Bayesian analysis,

data fusion and decentralized decision making. Several information-theoretic approaches

have been implemented to consider surveillance systems problems. An example of this

can be found in [69], in which an information-theoretic approach is utilized to measure

detection or estimation performance. The primary problems of interest in this proposed

approach are multiple object tracking and identification, sensor network management, and

multifunction radar control.

2.6.2 Control-theoretic Approach

The control theory is the branch of engineering and mathematics that deals with dynamic

systems. The most famous representation of dynamic systems using control theory is

state space. State space is a mathematical model of a physical system as a set of input,

output and state variables related by first-order differential equations. The state variables

are the smallest possible subset of system variables that can represent the entire state of

the system at any given time. The state space representation provides a convenient and

compact way to model and analyze systems with multiple inputs and outputs. To abstract

from the number of inputs, outputs and states, the variables are expressed as vectors and

the differential and algebraic equations are written in matrix form. Laplace transforms

are used to encode all the information about a control system. The use of the state space

representation is not limited to systems with linear components and zero initial conditions.

The most general state-space representation of a linear system with h inputs, q outputs
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and n1 state variables is written in the following form:

˙X(t) = AsX(t) +BsU(t)

Y (t) = CsX(t) +DsU(t)
(2.1)

where X(t), U(t), and Y (t) are the state, input, and output variables matrices whereas

As, Bs, Cs, and Ds are the state, input, output, and feedforward matrices.

Some of the surveillance systems problems have been solved using control-theoretic

approaches. In [70], a decision theoretic approach is proposed for dynamic sensor selection.

The proposed approach is used to allocate the available surveillance cameras to some urban

areas. The main goal is to monitor these areas to localize and track people in these areas.

Also, in [71], a hybrid control approach is proposed for cooperative target tracking. This

control approach is used to steer mobile vehicles to a region near the target with a certain

orientation condition, and then coordinate their motion to cooperatively capture the target

through an enclosing circular motion around the target.

2.6.3 Optimization Approaches

Optimization theory is the study of the minima and maxima values of an objective function.

In other words, determining the most profitable or least disadvantageous choice out of a

set of alternatives for that function [72]. The set of alternatives is restricted by several

constraints on the values of a number of variables and the objective function locates the

optimum in the remaining set. The objective function is the mathematical expression that

combines some variables to express a system goal. Topics in optimization theory range

from conditions for the existence of unique minima and maxima values to methods for

finding these values.

Many optimization approaches have been used to solve surveillance systems problems.

In [73], an approach that is based upon genetic algorithms is used for accurately locating
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and identifying groups of targets engaged in a common activity. The long-term goal of this

approach is to develop an understanding of how to define a group and then to understand

the inter-relationships between the various characteristics that describe a group. This

has been used as an objective to design a military surveillance system. Also, in [74], an

algorithm based on ant colony optimization is used for solving sensor management problem.

The interest in solving the sensor management problem comes from its widespread use in

multisensor surveillance systems.

2.6.4 Market-based Approach

Market-based approaches are those which inherit the behavior of auctions. Auctions are the

economic activities that exist in many places in everyday situations, in several forms. An

auction provides a mechanism to allocate a set of goods to a set of bidders based on their

bids. Auctions may be categorized into two main categories; single item auctions [75],

and combinatorial auctions [19]. In single item auctioning (sometimes called sequential

auctioning), the items are auctioned one at a time and the auctioneer always allocates that

item to the highest bidder. But if the bidders are interested in a combination of items,

then it is very difficult for the bidders to submit bids, because they do not know what

items they will receive in a later auction. In combinatorial auctions, multiple goods are

auctioned simultaneously. This type of auctioning helps to overcome the inefficiencies in

allocation due to related uncertainties [76]. In other words, the value of an item that a

bidder wins depends greatly on the winning of other items.

Many market-based algorithms have been proposed for several application domains.

These problems include but are not restricted to sensor management [77], task alloca-

tion [16], and job scheduling [78]. These market-based approaches are continuously gain-

ing considerable attention and popularity because of several desirable properties [22]. The

most desirable property of the market based approaches is efficiency. Auctions are able
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to produce an efficient solution for many objective functions. Furthermore, market-based

approaches are robust to several types of failures because of their usual independency of a

central agent. The efficiency and robustness of the market-based approaches make them

good prospects to be scalable. Thus, market-based approaches are still able to produce

efficient solutions, even when the agents’ size and/or inputs increase. However, market

approaches do have some disadvantages [18]. Negotiation protocols, which are the main

theme of the market-based approaches can complicate the design of the market architec-

ture, and increase communication requirements. Chapter 3 discusses this approach in more

detail.

2.7 Conclusion

In this chapter, a review of mobile surveillance systems has been given. Five important

sections have been studied. In section 2.1, an introduction to multisensor systems and their

applications has been presented. A brief discussion of mobile surveillance systems and their

operations has been given in sections 2.2 & 2.3. The challenging problems of multisensor

surveillance as seen in the literature have been introduced in section 2.4. This has been

followed by a brief discussion of the organizational paradigms of multisensor surveillance

systems in section 2.5. Problem solving strategies have been presented in section 2.6. Some

conclusions can be drawn from this chapter:

1. The first is that the design of mobile surveillance systems is challenging. These types

of systems can be studied from different points of view, such as challenging problems,

organizational paradigms, and problem solving strategies.

2. It also seems that most of the current body of research in the field of mobile surveil-

lance systems focuses on tackling these systems across various issues with several
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techniques, but without investigating how to integrate these issues into a unified

surveillance system framework.
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Chapter 3

Market-based Approach

Market-based approaches have received significant attention and are growing very fast in

the last few decades, especially in multiagent domains [17, 19, 21, 79, 80]. Motivated by this

great attention, a market-based framework for mobile surveillance systems is presented in

this thesis. As explained in the remaining chapters of this thesis, the proposed framework

deals with two main problems of mobile surveillance systems: namely, complex task allo-

cation and cooperative target detection and tracking. Both problems have been handled

using market-based approaches. This chapter serves as a vehicle to understand different

aspects of market-based approaches. The chapter discusses in details the market-based

approach, describing different types of auctions focusing on combinatorial auctions. It also

highlights the pros and cons of the market-based approach.

3.1 Introduction

Market-based task allocation is an economically-inspired approach that provides a way to

coordinate the activities of a number of competitive agents. The approach imitates the

auction process of buying and selling services through bidding [81]. Sellers or auctioneers
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are responsible for processing the bids sent by buyers or bidders, and for determining the

winning bidder.

In a market-based approach, an economy is nothing more than cooperation between

populations of agents to produce a global output [82]. Thus, agents coordinate with each

other to produce an aggregate set of goods or tasks. The market-based mechanisms are

descriptive, which is different from the theoretic mechanisms, which are normative. These

mechanisms use the agents’ outcomes to determine which strategies will be followed to do

the required tasks efficiently. In other words, the agents make deals among themselves in

order to achieve the requested mission more efficiently than they could do with original

distribution of the resources and tasks.

A market-based approach is suitable when a system consists of multiple self-interested

mobile agents. Each agent possesses private information that is relevant to solving a

system-wide problem, without the need for a global view. In this case the allocation process

is similar to a sealed first-price auction where bidders submit one bid in a concealed fashion.

A buyer’s sealed offer is a function of a buyer’s reservation value, a price beyond which the

buyer would be better off without the transaction. The bidder with the highest price wins

and pays that price [75]. The following section provides more details about the auctioning

process, which is the core of market-based approach.

3.2 Auctions

An auction is a process of buying and selling goods or services by offering them up for bid,

taking bids, and then selling the item to the highest bidder. Auctions are widely used in real

life, in consumer, corporate, and government settings. This makes auctions very important

to consider when tackling many applications. More fundamentally, auctions provide a

general theoretical framework for understanding resource allocation among self-interested
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agents [83]. Generally, any protocol that allows agents to indicate their interest in one or

more resources or tasks is considered an auction. Thus, auctions can be considered in many

applications that might not even use money as the basis of payments as normally thought.

Also, auctions provide a way to compress the information in the form of bids [84], which

increases the efficiency in terms of both the amount of computation and communication.

The following section describes different types of auctions.

3.3 Types of Auctions

Auctions play an important and recurring role in this thesis, since the simplified form of

buyer-seller interaction they embody is closely related to several issues in our proposed

framework. Both problems investigated in this thesis, task allocation and target tracking,

address cases where multiple buyers and sellers are interacting. In this chapter, different

types of simple auctions, and how they promote different kinds of behavior among agents

are mentioned. The case of an agent auctioning one item to a set of agents is considered.

Combinatorial auctions are also considered, in which the system agents are allowed to bid

on bundle of items or goods. An underlying assumption made through the majority of this

thesis is that each agent has a specific utility which determines its ability to handle the

auctioned task. The auctioning mechanism is run to look for a better utility for the whole

system.

3.3.1 Single-good Auctions

Since auctions are simply mechanisms for allocating goods, there are various types of

auction that can achieve this goal. In the simplest familiar type of auctions, there is one

good for sale, one seller, and multiple buyers. Each buyer has his own valuation for the

good, and wishes to purchase it at the lowest possible price. These types of auctions are
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called single-sided auctions, as there are multiple single-sided agents on only one side of the

auction. Thus, the main goal is to design a protocol for this auction that satisfies certain

desirable global criteria, such as the expected revenue of the seller. It is not surprising

that the literature on this topic is vast. Fig. 3.1 shows a classification taxonomy for the

different types of auctions as proposed by Reck [85].

Closed Auction

Single‐ good Auctions

Public bidsPrivate bids

Japanese Auction

Dutch Auction

yes

descending

no

English Auction

ascending

Form of bids

Sequence Rules

Sequence

Figure 3.1: Auction taxonomy

As shown in Fig. 3.1, auctions are classified based on the form of bids, the sequencing

rules and the ordering mechanism, and the mode of transaction occurrence. In this section

a brief idea about these types of auctions is presented.

• English auctions: This type of auction is also called ascending-bid auctions [86]. It

is perhaps the most well known type of auctions. In other words, when people speak

of auctions, they usually mean this type. The auctioneer sets a starting price for the

good or the service he has. Each buyer then announces a bid for this good or service.

The buyers then increase their bids until one buyer wins this good or service after

the auction closes. The rules for when the auction closes vary. In some instances, the
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auction closes after a specific period of time, in others it closes when no new bids are

made for a period of time. The winner must purchase the announced good or service

after the auction ends.

• Japanese auctions: These are simply a special form of English auction [83]. It has

an ascending bid feature, as English auction. In other words, the agents have the

option to increase their bids if they are interested in buying the announced good or

service. It differs from the English auction in that each agent must choose whether

or not he is willing to continue to bid or drop out the auction. The auctioneer calls

out successively increasing prices in a regular fashion with the same restriction. Any

agent who chooses to drop out of the auction can’t reenter the auction. The auction

ends when there is only one agent left.

• Dutch auctions: In a Dutch auction, the auctioneer starts at a very high price and

then proceeds to announce successively lower prices in a regular fashion at specific

time intervals. Thus, it is also called a descending bid-auction. The current price is

displayed on a screen seen by all agents. The auction process continues until the first

moment an agent signals the auctioneer by pressing a buzzer to stop the clock. The

winning agent must then purchase the good for the displayed price.

• Sealed-bid or closed auctions: The aforementioned types of auctions are con-

sidered as open-bid auctions, as the buying agents announce their bids in public.

However in the sealed-bid auction family [87], each agent submits a sealed bid to

the auctioneer for the announced good. This sealed bid is not accessible to other

agents. The agent with the highest bid must purchase the good. If the auction type

is first price sealed bid, the winner agent pays a price, which is equal to their own

bid, whereas in a second price sealed bid auction, the winner pays a price equal to

the second highest bid. The second price sealed bid auction is also known as Vichrey

auction.
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Generally speaking, any framework structure for negotiation is considered to be an

auction. Each negotiation structure has some bidding and clearing rules. These rules

depend completely on the type of auction used.

3.3.2 Combinatorial Auctions

In this type of auctions, the agents are allowed to place bids on combinations (bundles) of

items rather than bidding on each item separately. This is done under the constraint that

one bundle can be allocated to no more than one agent. In the combinatorial auctions, the

bidders’ valuation for the bundle item is not the sum of their valuations. Combinatorial

auctions are extensively studied by economists [87]. In many systems, the problem is

that there is a set of tasks or jobs that needs to be distributed among the agents but the

agents have complex preferences over the set of tasks. An example for that is a workflow

application in which there are a set of workflows, each composed of a set of web services,

and there are a number of agents responsible for completing these services [86]. These

services must be performed by certain deadlines. Each agent can perform a subset of the

services but each agent has different costs. The agent costs might depend on the agent’s

type, its current load, and the services it has performed before, etc. The goal is to allocate

the workflows to agents so that the total number of completed workflows is maximized.

Recently, combinatorial auctions have been employed in many applications such as

truckload transportation, bus routes, and industrial procurement, and airport arrival and

departure slots, task allocation, as well as for allocating radio spectrum for wireless com-

munications services [87]. All of the aforementioned single good auctions can be used as

combinatorial auctions, but with auctioning a bundle of items instead of a single item.
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3.3.2.1 Winner Determination Strategy

This subsection discusses winner determination algorithms for combinatorial auctions. As-

sume that the auctioneer has a set of items, M = 1; 2; ...;m1, to sell, and the buyers submit

a set of bundle bids, B = {B1;B2; ...;Bn}. A bundle bid can be defined as Bj = {Sej; pj},

where Sej ∈ M is a set of items and pj > 0 is a price. From the point of view of the auc-

tioneer, the ultimate goal of its winner determination strategy is to find the optimal bids

that maximize its revenue. For single-good auction mechanisms, the winner determination

is a computationally simple task. However, the winner determination in the combinatorial

auctions is a computationally hard task [88], as the auction setting allows complex bids

such as bundle bids.

A. Search Formulation

In order to search for the best bids that increase the revenue of the auctioneer (winner

determination problem), the submitted bids are structured in the form of a tree. After

constructing the bids tree, standard search algorithms can be used to solve the winner

determination problem. Two types of the search trees are explained in brief.

• Search on items: In this type of search [86, 89], the goal is to solve the winner

determination problem using AI-search algorithms over all possible allocations. To do

that, the submitted bids are organized in the form of a search tree. A path from the

root to any leaf of the conducted tree corresponds to a set of bids, with a constraint

that no two bids share an item. In other words, each path in the search tree consists

of a sequence of disjoint bids. Before constructing the search tree, the received bids

are listed. For each bid, the items are shown but the price is not. The first level of

the tree is the root, and any other level is considered as the child of the root. The

first step in constructing the tree starts from the top by drawing all the children that

have item 1 in them. All bids that do not include items that are already used on the

path are included on each node of the tree as the children of the current node. The
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order of the bids on a path does not affect the branching factor of the tree [89]. An

example of this search tree is shown in Fig. 3.2.
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Figure 3.2: Search on items

The auctioneer’s possibility of keeping items can be implemented by placing dummy

bids of price zero on those items that received no 1-item bids [90]. This may happen

when the auctioneer finds that its revenue will increase if some items are kept.

• Search on bids: Another form of the search trees is search on bids tree [86, 89].

Each node in this tree is a bid submitted by a bidder. Reaching any edge of the tree

represents whether that particular bid is accepted as a solution or not. The children

of a bid in this tree are the world where that bid is accepted (IN), and the world

where that bid is rejected (OUT). An example of this search tree is shown in Fig. 3.3

The black boxes in Fig. 3.3 indicate search paths that denote a complete set of bids.

In other words, no more bids can be added because they contain items already sold.

This type of search tree is considered to be a faster winner determination algorithm

than the previous search on items type. The reason for this is that the bid order can
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Figure 3.3: Search on bids

be optimized. Another advantage of this search tree over the search on items tree is

that the addition of dummy singleton bids is not needed.

B. Search Strategy

In the previous subsection, two types of search trees are discussed. Different search algo-

rithms such as depth first search (DFS), breadth first search (BFS), branch and bound,

A* and iterative deepening A* (IDA*) [86] can be used to search theses trees. In this

subsection, two search techniques are discussed: BFS, and DFS. These search techniques

have been used in this thesis as explained in the next chapter.

• Depth First Search (DFS): Depth first search is mainly proposed in many appli-

cations for traversing trees and graphs [83]. In this type of search, a random node

is selected as a starting node to begin the search process. As illustrated in Fig. 3.4,

the algorithm proceeds to the unvisited children of this node in a one-by-one fashion
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until reaching the end of the path. The search process then backtracks to do the

same with another node until scanning the whole tree or graph.
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Figure 3.4: Depth first search

The main advantage of DFS is that only the nodes on one search path need to be

kept in memory at any one time [89]. Another advantage of this algorithm is that

a solution can exist at any time during the search process, and the quality of the

solution improves until reaching the best solution at the end of the search process [89].

The main disadvantage of DFS is that it may get stuck exploring a long blind branch

of the tree while there is a solution path of only one or two steps.

• Breadth First Search (BFS): Breadth first search is another way of traversing

trees and graphs [83]. As illustrated in Fig. 3.5, the algorithm starts from the root of

the tree or graph and then proceeds to the neighboring nodes in one to one fashion.

The adjacency list of each node is scanned at most once. Thus the BFS algorithm
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examines the whole tree without considering the goal solution until it finds it.
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Figure 3.5: Breadth first search

The main advantage of the BFS algorithm is that it always finds the shortest path first

or at least, the solution that has the least number of steps. BFS is very systematic and is

guaranteed to find the solution if it is exists [83]. On the other hand, BFS may use more

memory but will always find the shortest path first or at least, the solution that has the

least number of steps.

C. Bidding Languages

As explained above, the agents can communicate their bids to the auctioneer. In combi-

natorial auctions, a bundle of items are available to the bidders to buy. The bidders must

specify a valuation for every number of items in these types of auction. Bidders would be

provided with some bidding languages that would allow them to convey their bids more

compactly [83]. Bidding languages basically try to efficiently model different patterns for
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bids. The usefulness of a bidding language depends on the sorts of underlying valuations

that bidders will commonly want to express. Examples for that are:

• OR-bids: In this case, agents can place multiple atomic bids for non-overlapping

sets of items. They would be happy to accept any number of the bids they submit.

Assuming an agent is placing bids on items AB, B, and C. The bidder will be willing

to win AB OR ABC OR B OR BC OR C. The OR-bids bidding language doesn’t

add any computational burden on the bidder, but it has two main disadvantages.

First, it is not always clear to the bidder what combinations of items he may win.

Second, the bidder can’t express substitutes like A or B but not both.

• XOR-bids: The agent can place multiple bids for sets of items and is willing to win

any one of the bids, but not more than one combination of bids [86]. XOR-bids take

the form of a series of atomic bids joined together by an exclusive-OR operation.

If for example a bidder wants any combination of A, B, and C. This bidder must

bid explicitly on each combination: ABC AB AC BC A B C. The main advantage

of the XOR-bids bidding language is that all possible combinations of bids can be

represented. For example, the bidder can use it to place a bid that says they are

willing to pay $5 for item 1 or $5 for item 2 or $7 for both but want to buy at

most one of them. It is also simple for a bidder to understand which combination of

items he may win. The main problem in this bidding language is that the number of

bids must be limited. Another practical problem with XOR bids is that most of the

winner determination algorithms are designed to work with OR bids [86].

3.4 The Pros and Cons of Market-based Approaches

The decision to use auctions in this thesis comes from the existence of several desirable

properties of auction approaches [18, 22]. These advantages can be summarized as follows:
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• Efficiency: One of the greatest strengths of market approaches is their ability to

utilize the local information and preferences of their participants to arrive at an

efficient solution given limited resources [91]. Market-based approaches have elements

that are centralized and distributed [91]. Thus they can produce efficient solutions

by capturing the respective strengths of both distributed and centralized approaches.

It has been shown in [91–93] that efficient solutions can be produced by market

approaches with respect to a variety of team objective functions. As will be explained

later in this thesis, our proposed framework contains these two types of elements.

• Robustness: Fully centralized approaches employ a single agent to coordinate the

entire team in a multiagent system. They may suffer from a single point of failure,

and have high communication demands. Market-based approaches do not require a

central coordinator agent and therefore there is no common-mode failure point or

vulnerability in the system [17, 19, 80]. These approaches can be made robust to

several types of malfunctions, including complete or partial failures of agents [22].

• Scalability: As mentioned before, the computational and communication require-

ments of market-based approaches are usually manageable, and do not prohibit these

systems from providing efficient solutions because they are not fully centralized sys-

tems. Thus, as the size of the inputs in the system increases, these approaches

can still provide an efficient solution [22]. Market-based approaches can scale well

in applications where the team mission can be decomposed into tasks that can be

independently carried out by small sub-teams [91].

• Online input: Market-based approaches are able to seamlessly incorporate the in-

troduction of new tasks [94]. Market-based approaches can often incorporate online

tasks by auctioning new tasks as they are introduced to the system or generated by

the agents themselves [91].
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• Uncertainty: Market-based systems are able to operate in unknown and dynamic

environments by allowing team members to adapt cost estimates over time, and

reallocate tasks when appropriate [95].

Although market-based approaches have many advantages, they are not without their

disadvantages. Perhaps the biggest drawback of market-based approaches is the lack of

formalization in designing appropriate cost and revenue functions to capture design re-

quirements [91]. Also, negotiation protocols, developing appropriate cost functions, and

introducing relevant penalty schemes can complicate the design of the market approach [18].

In domains where fully centralized approaches are feasible, market-based approaches can

be more complex to implement, and can produce poorer solutions [91]. Also, when fully

distributed approaches suffice, market-approaches can be unnecessarily complex in design

and can require excessive communication and computation [91]. Finally, incorporating

contract breaches with appropriate penalties, developing more sophisticated methods for

cooperative handling of partial malfunctions and repairs, and evaluating response speed

and robustness to a variety of failures are still challenges needing to be tackled by re-

searchers [91].

3.5 Concluding Remarks

In this chapter, the market-based approach was discussed. This approach imitates the

auction process of buying and selling services through bidding and can provide an efficient

way to coordinate the activities of a number of competitive agents. The auction process

and different types of auctions have been highlighted in this chapter, focusing on combi-

natorial auctions. A number of key theoretical, practical, and computational insights of

combinatorial auctions are explained in brief. The pros and cons of the market approaches

have also been discussed.
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Chapter 4

Task Allocation in Mobile

Surveillance Systems

The problem of task allocation in mobile surveillance systems is a twofold one. First it

addresses how to assign a set of tasks to a set of mobile sensors. Second it considers how to

coordinate the behavior of the sensor team in order to do the cooperative tasks efficiently.

This problem is usually studied as Multi-Robot Task Allocation (MRTA) problem [46]. In

spite of the great number of MRTA algorithms reported in the literature, important aspects

have, to date been given little attention. These aspects include but are not restricted to

allocation of complex tasks, dynamic task allocation, and constrained task allocation. In

this thesis, we are trying to address these aspects by giving a unified framework to study

this problem in a formal manner. The thesis discusses centralized and hierarchical dynamic

and fixed tree task allocation approaches to solve the MRTA problem

The remainder of the chapter is organized as follows. The related work is presented in

section 4.1. Section 4.2 introduces the task allocation problem’s definition and formulation.

Section 4.3 discusses the different components of the proposed market-based approach. The

conclusion and future work are summarized in section 4.5.
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4.1 Related Work

MRTA approaches can be classified based on problem description, task allocation category,

the planning method, the organizational paradigm used, and problem solving techniques. A

framework for studying MRTA problem is introduced in [96]. According to this framework,

the multi-robot task allocation problem can be seen as an instance of an optimal assignment

problem (OAP) [97]. This can be defined in the following way: given n robots, and a

m single robot tasks, assign robots to tasks so as to achieve maximum overall profit.

Because the problem of task allocation is a dynamic decision problem that varies in time

with phenomena including environmental changes, this static assignment problem should

be solved iteratively over time [96]. Thus, dynamic task allocation is a class of task

allocation in which the assignment of robots to sub-tasks is a dynamic process and may

need to be continuously adjusted in response to changes in the task environment or group

performance [20].

A formal analysis and taxonomy of multi-robot task allocation is also introduced in [98].

The authors in this survey paper tried to provide a particular taxonomy for studying

MRTA, based on organizational theory from several fields, including operations research,

economics, scheduling, network flows, and combinatorial optimization. Also, complete

analyses and description for single-task (ST), multi-task (MT) robots, single robot (SR),

multi-robot (MR) tasks, instantaneous assignment (IA) and time-extended assignment

(TA) are provided. ST means that each robot is capable of executing at most one task

at a time, while MT means that some robots can execute multiple tasks simultaneously.

Similarly, SR means that each task requires exactly one robot to achieve it, while MR

means that some tasks can require multiple robots. In IA approaches [46, 99, 100] the

available information concerning the robots, the tasks, and the environment permits only an

instantaneous allocation of tasks to robots (i.e., task independence is a strong assumption).

These approaches are sometimes used in order to avoid the need for highly computationally
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scheduling algorithms. At the other extreme is continuous task allocation or time extended

assignment (TA) approaches [18, 19, 101] where more information is available, such as the

set of all tasks that will need to be assigned. Because robots have to reason about the

dependencies between tasks, TA is more demanding from a planning perspective. The work

presented here can be categorized as single robot task- single task robot- instantaneous

assignment task allocation (ST-SR-IA).

Existing task allocation techniques can be categorized to: (1) Allocation of simple

tasks, (2) Allocation of complex tasks. Simple tasks are tasks that can be accomplished

in a straightforward manner [18, 46, 99–102] while complex tasks are the tasks that have

several possible ways of implementation [19, 103, 104]. When dealing with complex tasks,

the structure and semantics of the tasks can be exploited to produce more efficient team

plans by giving individual robots the ability to come up with new ways to perform a task,

or by allowing multiple robots (”mobile sensors” henceforth) to cooperate by sharing the

subcomponents of a task, or both [19]. Motivated by the sparse attention given to formal

modeling, and analysis of complex task allocation, complex tasks that can be decomposed

into different subtasks is one of focuses of this thesis.

From the perspective of planning, there are two common approaches to the task allo-

cation problem: decompose-then-allocate and allocate-then-decompose. In the first tech-

nique, the complex mission is decomposed to simple subtasks and then these subtasks are

allocated to the team members based on their capability and availability to complete the

subtasks as required [105, 106]. In this type of techniques, the cost of the final plan cannot

be fully considered, because the task decomposition is done without knowing to whom

tasks will be allocated. Another disadvantage of this type is inflexibility to changes in

the designed plan. So, the plan designed by the central agent cannot be rectified even if

it is found costly. On the other side, in the allocate-then-decompose approach [46], the

complex tasks are allocated to mobile sensors, and then each mobile sensor decomposes the
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awarded tasks locally. The main disadvantage of this approach is the allocation of all tasks

to only one mobile sensor and thus, the preferred task decomposition is purely dependent

on the plan of that mobile sensor, which increases the possibility of reaching a suboptimal

solution. It may be more beneficial to allocate tasks to more than one mobile sensor in

order to consider different plans for the required task. While the decompose-then-allocate

and the allocate-then-decompose methods may be capable of finding feasible plans, there

are drawbacks to both approaches. Motivated by these drawbacks, Zlot and Scentz pro-

posed in [19] a market-based task allocation approach to allocate complex tasks among a

robot team. They proposed a solution concept that unifies the decompose-then-allocate

and allocate-then-decompose stages by not decoupling the solution into separate allocation

and decomposition phases.

Another line of comparison between task allocation approaches is the classification

according to team organization: centralized and hierarchical approaches. In centralized

approaches, a single agent is employed to coordinate the entire mobile sensor team. The-

oretically, this agent gathers all relevant information from the team members, does plan-

ning for the entire team, and broadcasts commands in order to allocate tasks to robots.

Practically, fully centralized approaches can be computationally intractable, brittle, and

unresponsive to change. Thus, for applications where teams are small and the environ-

ment is static or global state information is easily available, centralized approaches are the

best-suited solution. Not surprisingly, many MRTA architectures implement some form

of this approach [55, 100, 107–109]. On the other hand, in hierarchical task allocation

approaches, mobile sensors rely solely on local knowledge. Such approaches have many

advantages over centralized approaches, such as flexibility, robustness, and low communi-

cation demands. However, because a good local solution may not sum to a good global

solution, hierarchical approaches can produce highly suboptimal solutions. Fully hierar-

chical schemes are best suited in applications where large teams carry out relatively simple

tasks without efficiency restriction. In order to gain the advantages of both schemes, many
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market-based approaches have been proposed [17, 21, 80]. Thus having centralized and

hierarchical elements can help in accomplishing task allocation mission.

This chapter presents a market-based approach to complex task allocation for multisen-

sor surveillance systems. Both centralized and hierarchical allocations are investigated as

winner determination strategies for different levels of allocation and for static and dynamic

search tree structures. Details of the proposed approach are presented in the next sections.

4.2 Complex Task Allocation

This section provides problem definition for both simple and complex task allocations and

formulation for only the complex task allocation.

4.2.1 Problem Definition

DEFINITION 1: Simple Task Allocation

Given a set of mobile sensors S each looking for one task, and a set of tasks T each requires

one sensor, the simple task allocation can be defined by a function A : T → S, mapping

each task to a mobile sensor in order to be executed.

DEFINITION 2: Complex Task Allocation

Given a set of mobile sensors S, and a set of tasks T , let G ⊂ T be a group or a bundle

of tasks that is decomposable into other tasks Md ∈ G. The complex task allocation can

be defined by a function Bf : Md → S, mapping each subtask to a mobile sensor to be

responsible for completing it.

For both simple and complex task allocation, the goal is to assign sensors to tasks so as

to maximize overall expected performance, taking into account the priorities of the tasks

and the skill ratings of the sensors. Appropriate functions are needed to map possible task

52



outcomes into revenue values and to map possible schemes for performing the task into

cost values. The goal is to assign tasks to sensorss such that the overall profit (the excess

of revenue over cost) is maximized. Generally, mobile sensors receive revenue and incur

costs for accomplishing a specific team-task. A mobile sensor can also receive revenue from

another sensor in exchange for goods or services. The price dictates the payment amount

for the good or service. A common approach is to bid for a good or service in order to

arrive at a mutually acceptable price [18].

4.2.2 Problem Formulation

The problem of task allocation can be formulated in many ways. Given our surveillance

application domain, it can be formulated as follows:

1. AOI: two dimensional, bounded area of interest.

2. S: a team of mobile sensors si, i = 1, 2, ...n . It is assumed that each sensor carries

sensors (such as cameras, sonar and laser range finders)

3. T : a set of tasks tj, j = 1, 2, ...nt.

4. U : a set of sensors utilities, uij is the utility of sensor i to execute task j.

For a single sensor task, the problem is to find the optimal allocation of sensors to

tasks, which will be a set of sensor and task pairs [45]:

(s1, t1), (s2, t2), ......(sk, tk) for1 ≤ k ≥ m (4.1)

For the general case, the problem is to find the optimal allocation of a set of tasks to

a subset of sensors, which will be responsible for accomplishing it [19]:
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Af : T → S (4.2)

Each mobile sensor s ∈ S can express its ability to execute a task t ∈ T , or a bundle

of tasks G ⊆ T through bids bs(t) or bs(G). The cost of a bundle of tasks can be simply

computed as the sum of costs of the individual tasks:

bs(G) =

f∑

k=1

bs(tk) {tk ∈ G} (4.3)

where f is the number of tasks of the bundle G . The group’s assignment determines

the bundle G ⊆ T of tasks that each mobile sensor s ∈ S receives. These bundles can be

characterized as follows:

β =
{

(G1, G2, ....Gw)|Gk1 ∩Gk2 = ϕ,
⋃

Gw = T
}

(4.4)

The global objective function can vary depending on the requirements of the system

or the preferences of the designer. The most common global objective is to minimize the

sum of the team member costs, which can be described mathematically as follows:

C(A) =
n∑

s=1

bs(Gs) (4.5)

where C(A) is the total required cost for executing the allocation A, and Gs is the bundle

of tasks that is won by sensor s.

Though the mobile sensor team members may have well-defined cost or utility functions,

these functions still rely on having accurate models of the world state and may require

computationally expensive operations. When there are multiple goal locations like in

surveillance application, determining the cost to perform even one task can require solving

multiple path planning problems. Thus an instance of the traveling salesman problem
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(TSP) [110, 111] might be used. In the theory of computational complexity, the decision

version of TSP belongs to the class of NP -complete problems. Thus, it is assumed that

there is no optimal algorithm for solving traveling salesman problems. In this work, a

shortest sequence planning algorithm (SSP) [112] is used in order to find the minimum

cost path for each mobile sensor given the tasks’ locations. In this algorithm, an agent is

tasked with visiting a set of points with the goal of finding out in which order it should

visit these points so as to minimum traveling distance without going back to its original

place, thus accomplishing the required tasks with near optimal system performance.

4.3 Proposed Market-based Approach

Market-based approaches have received significant attention and are growing very rapidly

in the last few decades, especially in multi-agent domains [17, 19, 21, 79, 80]. These

approaches are considered to be hybrid approaches that combine the centralized and dis-

tributed strategies (i.e., market-based approaches have elements that are centralized and

distributed). Motivated by this regular attention, a market-based approach for dynamic

task allocation for multisensor surveillance systems is presented in this chapter.

4.3.1 Single-shot and Combinatorial Auctioning

So far, researchers have studied single-item auctions at which items are auctioned off one

at a time [113]. However, if there are strong synergies between the items of the bidders,

highly suboptimal team solutions can result from single-item auctions [84]. Two items are

said to exhibit positive or negative synergy for a bidder if the combined bid of this bidder

on these two items is larger or smaller than the sum of its individual bids on each item

separately.
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An example of that is shown in Fig. 4.1. There is positive synergy between AOI-1 and

station AOI-2 for the mobile sensor S1 because they are close to each other. The mobile

sensor S1 can reach AOI-2 with a short distance (5 m) after it has reached AOI-1 (5 m). So,

the sum of the single bids of S1 on AOI-1 and AOI-2 (12=5+7) is more than the combined

bid of S1 on both areas (10=5+5). On the other hand, there is a negative synergy between

AOI-3 and AOI-1 for S1 because they are on opposite sides of the S1, and hence the mobile

sensor S1 can therefore reach either one of the areas only with a long travel distance after

it has reached the other one.

S1

AOI‐3

AOI‐2

AOI‐1

7

5

7
5

4

Figure 4.1: Single-shot and combinatorial auctioning

Generally speaking, combinatorial auctions attempt to overcome the disadvantages of

single-item auctions by allowing bidders to bid on bundles of items [19, 84]. If a bidder

wins a bundle, they win all the items in that bundle.
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4.3.2 Auction Design

The task allocation approach proposed in this thesis imitates the auction process of buying

and selling services through bidding. Sellers or auctioneers are responsible for processing

the bids sent by buyers or bidders, and for determining the winning bidder. In this sub-

section, a brief idea about how to design the auction process will be based on maximizing

a utility function.

4.3.2.1 Utility Function

Utility is the quality or state of being useful. For the task allocation problem, utility is a

satisfaction (value of profit) derived by a mobile sensor s from accomplishing a task t.

Given a mobile sensor s and a task t, if s is capable of executing t, the utility a mobile

sensor s from accomplishing a task t can be defined [19] on some standardized scale as:

ust = ps(t)− ds(t) (4.6)

Where ps(t) is the total payment it receives after executing the task t, and ds(t) is the

total distance it travels to reach the task. The priorities of tasks to be executed should

be taken into account while designing the task allocation framework. Our objective is to

find the optimal assignment of tasks T to sensors S in order to minimize cost and thus

maximize the overall utility. Consequently, system performance is ideally optimized. Thus,

the goal is to assign sensors to tasks so as to maximize the cost, as we assume that there

is no payement received after executing the task.

4.3.2.2 Search Tree

Most of task allocation approaches have treated tasks as atomic units [18, 46, 99, 101],

thus allowing only static descriptions for each task, and so the only degree of freedom is
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determining to which sensor the task will be assigned. While this description is fine in case

of simple tasks, it is not with complex tasks. Given the bid submitted, searching over all

possible allocations can be used as a winner determination strategy. In this case, a search

tree can be used as a better description for the tasks. In this tree, mobile sensor team

members are permitted to bid on nodes representing varying levels of task abstraction,

thereby enabling hierarchical planning, task allocation, and optimization among the team

members.

In our work, the complex tasks to be allocated are structured as an ordered tree. In a

set theory, a tree is defined to be a set E and a relation F where F ⊆ E such that:

• F is a partial-ordering of E.

• For any e ∈ E ,{ r ∈ E — rFe} is well-ordering.

The nodes (elements of the tree) that are immediately greater than a node are called its

children, while the node that is immediately less is its parent (if it exists). Any node less

is an ancestor and any node greater is a descendant. A node with no ancestors is a root.

The partial ordering represents distance from the root, and the well-ordering requirement

prohibits any loops or splits below a node (that is, each node has at most one parent, and

therefore at most one grand-parent, and so on). In other words, if rFe then there is exactly

one kFe such that rFk and there is nothing between r and k. Perhaps the best way to

illustrate the mechanics of the task tree is through a simple example. Fig. 4.2 shows a

surveillance scenario, which represents a shopping mall in the city of Waterloo, Ontario,

Canada. The mission is to monitor a set of areas of interest (AOIs) such Zellers, Old Navy,

the Bay, Zehrs, Winners and Sports Check. For the small areas like (Old Navy, Winners

and Sports Check), only one or two vantage points are enough to achieve the monitoring

task, while three points are required to cover the large areas like (Zellers, the Bay, and

Zehrs).
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Figure 4.2: Surveillance scenario

The AND/OR task tree is constructed by decomposing the surveillance mission as a

complex task into two subtasks (scan large areas and scan small areas) as illustrated in

Fig. 4.3. Accomplishing the requested mission requires achieving scans of both large and

small areas. In other words, these two subtasks are related to each other by the logical

operator AND, which means that both tasks are required to be executed. The subtask

(Scan large areas) is in turn decomposed to other simpler tasks such as Scan AOI-1, AOI-5

and AOI-6. The simple tasks can be executed by one of two plans, which contain the most

primitive tasks. For example, to scan AOI-1, Plan-1 or Plan-2 can be chosen. These two

alternative covering plans which are related to each other by the logical operator OR are

computed based on the minimum traveling distance and the second minimum traveling

distance. Plan-1 contains a list of primitive tasks (Goto V13, Goto V12, Goto V11) that
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must be executed sequentially. Similarly, Plan-2 contains the same primitive task, but

with different order.

Scan Large Areas

Surveillance Mission

Scan AOI‐1 Scan AOI‐5 Scan AOI‐4Scan AOI‐3Scan AOI‐2Scan AOI‐6

Scan Small Areas

Plan 1 Plan 2

Go to 

V13

Go to 

V12

Go to 

V11

Go to 

V12

Go to 

V13

Go to 

V11

... ...

Figure 4.3: AND/OR task tree

This decomposition is done initially by an operator or by the selected initial auctioneer.

Once the task tree is constructed and the decomposition is complete, the auctioneer holds

a task tree auction, distributing tasks among the team and allowing other robots to use

their own plans when appropriate. The auctions then proceed in rounds in which each

mobile sensor holds a task tree auction (if it has any tasks) in a round-robin fashion.

Other logical operators like XOR, and NAND can also be used. The XOR operator

can be used in order to implement the surveillance of sensitive areas (a sensitive area

must be surveyed exclusively by the assigned sensor), while NAND can be used to prevent

redundancy (i.e., each area of interest is surveyed by only one sensor).
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4.3.3 Allocation Levels

From the perspective of planning, there are different allocation levels for complex tasks.

In this subsection, these allocation levels are discussed in detail.

4.3.3.1 Point-Level Allocation

The complex mission is decomposed to simple subtasks and then these subtasks are al-

located to the team member based on their capability and availability to complete the

subtasks as required [105, 106]. In this type of techniques, the cost of the final plan cannot

be fully considered because the task decomposition is done without knowing to whom tasks

will be allocated. Another disadvantage is inflexibility to changes in the designed plan. So,

the plan designed by the central agent cannot be rectified even if it is found costly. This

is also called the decompose-then-allocate approach [104].

As shown in Fig. 4.4, the mission is initially decomposed by the auctioneer into a set

of surveillance points. All auctions are only for tasks in this set of goal points. In other

words, there is no notion of abstract tasks, and no further decomposition occurs. Each

winner puts the awarded subtask into its schedule to be considered for execution.

4.3.3.2 Area-Level Allocation

In this type of allocation techniques, the situation is different. The complex tasks are

allocated to one mobile sensor, which in turn decomposes the awarded tasks locally. This

is also called allocate-then-decompose approach [45]. One disadvantage of this approach is

that it may be beneficial to allocate subcomponents of these tasks to more than one sensor.

As shown in Fig. 4.5, the mission is allocated to one of the sensors (auctioneer), which in

turn will be responsible for decomposing it to a set of surveillance areas. All auctions are

only for tasks in this set of goal areas. In other words, there is no notion of single tasks; no
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Figure 4.4: Decompose-then-allocate approach

further decomposition occurs. Each winner puts the awarded subtask area into its schedule

to be considered for execution. The auctioneer finds itself the best to execute area 3, while

it awards area 1 to mobile sensor 2, and area 2 to mobile sensor 1.

4.3.3.3 Mission-Level Allocation

In this type of allocation, the auction is for the whole mission and so it is considered as

a single-shot type of auctioning. Thus the entire mission is awarded to only one sensor,

which can decompose the mission to subtasks as shown in Fig. 4.6. The decomposition

is considered only for execution, not for reallocating the subtasks. This can be called a

higher-level allocate-then-decompose [19]. The main disadvantage of this approach is the

allocation of all tasks to only one sensor and thus, the preferred task decomposition is

purely dependent on the plan of that sensor, which increases the possibility of using a

suboptimal solution. It may be more beneficial to allocate tasks to more than one sensor
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Figure 4.5: Allocate-then-decompose approach

in order to consider different plans for the required task.

4.3.4 Winner Determination Strategies

The winner determination strategy addresses how to optimally find the set of bids that

maximize the bidder’s revenue. In a combinatorial auction, winner determination is an

NP -hard problem [114], as searching for all possible allocations of items to mobile sensors

is computationally intractable, and no approach will work in polynomial time.

Winner determination strategy is highly affected by the type of description of tasks to

be allocated. As mentioned previously, the complex tasks to be allocated are represented as

an ordered tree. Breadth and depth first search algorithms are used to find the task alloca-

tion solution from this task tree structure. Two organizational paradigms, namely, central-

ized and hierarchical allocation, are used during the allocation process. These paradigms
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Figure 4.6: Higher-level allocate-then-decompose approach

determine the roles, relationships, and structures which govern the auction process.

4.3.4.1 Centralized Allocation

In this type of auctioning, an auctioneer holds a series of auctions to allocate the surveil-

lance tasks to the mobile sensors in order to maximize the system utility. An example of

this is shown in Fig. 4.7. The auctioneer holds auctions in rounds to allocate the tasks it

has to the mobile sensors S1, S2, S3, and S4, if it finds that the system utility will increase.

4.3.4.2 Hierarchical Allocation

As shown in Fig. 4.8, the tasks are allocated initially to the mobile sensors S1, S2, S3, and

S4 via a central auctioneer. Each mobile sensor can hold auctions in rounds for the tasks

it wins in the initial auction.
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Figure 4.7: Centralized auctioning

4.4 Fixed and Dynamic Tree Allocation

The key to effective task allocation for multi-sensor systems is to iterate the assignment,

in order to deal with changes in the tasks, the sensors, and the environment [80]. For

that, an iterated market-based complex task allocation approach is developed to allocate

tasks to the sensor team members through contract negotiation. A manager sensor can

offer tasks to other sensors, which may submit bids based on their ability to perform the

tasks. Centralized and hierarchical auction mechanisms are developed for complex task

allocation. Using fixed and dynamic tree are explained in the following subsections.
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Figure 4.8: Hierarchical auctioning

4.4.1 Fixed Tree Task Allocation

Consider a team of mobile sensors assembled to perform a particular task. Consider further,

that each mobile sensor is capable of executing one task at once, and each task can be

accomplished by one sensor. The task information is continuously available to the mobile

sensors team. Thus, the proposed approach in this case can be framed as iterated instances

of ST-SR-IA (Single-Task Single-Robot Instantaneous-Assignment). The goal of the team

is to perform the task efficiently while minimizing costs. This can be done by modeling

each mobile sensor as self-interested agent which aims to minimize its individual cost and

so maximize the whole team’s performance by following a greedy algorithm. Each mobile

sensor is either cooperating with other members of the team to achieve an outcome greater

than that possible by each member alone, or competing with other members to perform the

required task at the lowest possible cost, thus eliminating waste and inefficiency. A system

such as this can be widely-used in the economy, and so many desirable characteristics from

the market mechanisms might be used.

In the market-based task allocation approaches [18, 19, 96], the mission task to be
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executed is awarded to one of the sensors, which is called the operator or the auctioneer.

This auctioneer is responsible for providing a plan to the other team members for executing

this mission task. The proposed plan by the auctioneer is implemented in the form of a

task tree. Each mobile sensor maintains several lists of trees it has agreed to handle. The

constructed task tree will have abstracted nodes (have children) and primitive nodes (no

children). The proposed algorithm allows the auctioneer to sell any primitive node through

iterated single-shot auctions. Also, combinatorial-auctions are adopted by selling some

bundles of tasks or abstracted nodes. Our algorithm begins by auctioning the abstracted

nodes in the constructed tree from the top to the bottom of the tree. Selling the topmost

abstracted or apex node in the tree means that one sensor will be responsible for executing

the whole mission task. This is of course if its execution cost is less than the execution

cost of the auctioneer. If after auctioning all the abstracted nodes, there are still nodes in

the auctioneer tree. It tries to sell them by running auctions on the level of the primitive

nodes, if it is profitable for it to do so. The winner of any auction will insert the node

it wins into its task tree and thus be responsible for completing it either by executing it

itself, or by selling the whole task or part of it to other teammates.

Generally, the breadth first search is a graph search algorithm that begins at the root

node and explores all the neighboring nodes. Then, for each of these neighboring nodes,

the search algorithm explores their unexplored neighbor nodes, and so on, until it finds the

goal solution. In this thesis, a top-down BF search is used to decide the order of selling

the tree nodes. In other words, the proposed BF fixed tree algorithms starts by selling the

abstract nodes and then selling the single tasks at the lower levels which were not sold while

selling the abstract nodes. From the perespective of bidding language, as explained above,

only AND bidding language means that the current auctioneer will have only one plan for

each area it has, whereas for the AND/OR bidding language, the current auctioneer will

have some abstract areas that must to be surveyed (AND) with two alternative plans for

each area, and only one will be sold. The details of the centralized proposed breadth first
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(BF) fixed tree allocation for only AND and for AND/OR bidding languages are shown in

algorithms 1 and 2 respectively.
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Algorithm 1: CenBFFixedTree1Plan(T, Aucid, Ns, Na) Centralized

Breadth First Fixed Tree (Only AND)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost:the cost of executing the tree T

1 begin
2 Compute the task tree T using SSP (shortest sequence planning) algorithm; the

number of abstract nodes is N ;
3 Initialization: Aucid←− T ; mark the whole tree as won by Aucid;
4 for i = 1 to N do
5 Compute cost1(T ); the traveling cost of the tree T before auctionning ;
6 for j = 1 to Ns do
7 while j 6= Aucid do
8 Compute bj(i) =

∑
bj(h) {h ∈ i}; the bid of sensor j on node i ;

9 Find bestsensor1; the ID of mobile sensor which has the best bid on node i.
This is done using SSP algorithm ;

10 Tbestsensor1 ←− Tbestsensor1 + i;
11 TAucid ←− TAucid − i;
12 Compute cost2(T ); using SSP algorithm ;
13 if cost2(T ) > cost1(T ) then
14 Tbestsensor1 ←− Tbestsensor1 − i;
15 TAucid ←− TAucid + i;

16 if ∃ set t ⊂ TAucid then
17 for c = 1 to t do
18 Compute cost3(T ); the traveling cost of the tree T before auctionning the

single nodes;
19 for o = 1 to Ns do
20 while o 6= Aucid do
21 Compute bo(c); the bid of sensor o on node c ;

22 Find bestsensor2; the ID of mobile sensor which has the best bid on node
c. This is done using SSP algorithm ;

23 Tbestsensor2 ←− tbestsensor2 + c;
24 TAucid ←− TAucid − c;
25 Compute cost4(T ); the traveling cost of the tree T after auctionning;
26 if cost4(T ) > cost3(T ) then
27 Tbestsensor2 ←− Tbestsensor2 − c;
28 TAucid ←− TAucid + c;

29 Totalcost←− cost(T );
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Algorithm 1:

Algorithm 2: CenBFFixedTree2Plans(T, Aucid, Ns, Na) Centralized

Breadth First Fixed Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFFixedTree1Plan(T1, Aucid, Ns, Number);
5 Compute cost(T1); the traveling cost of the tree T1 ;

6 Compute the second best tree T2 using SSP path planning algorithm;
7 Initialization: Aucid←− T2; mark the whole tree as won by Aucid;
8 CenBFFixedTree1Plan(T2, Aucid, Ns, Number);
9 Compute cost(T2); the traveling cost of the tree T2 ;

10 if cost(T2) > cost(T1) then
11 T ←− T1;
12 else
13 T ←− T2;

14 Totalcost←− cost(T );

In the context of a fixed task tree allocation, a set of constraints dictates that the whole

auction mechanism is based only on one task tree, which can be proposed by the operator

or the auctioneer. The proposed algorithms allow using only one auctioneer from the start

to the end of auctioning, and so are considered as a centralized task allocation as shown

in algorithms 1, and 2 . It also allows changing the auctioneer during auctioning while

considering only the plan of the original operator. In this case, the proposed mechanism

can be seen as a hierarchal task allocation mechanism. Algorithms 3, and 4 show BF hier-

archical fixed tree allocation for only AND and for AND/OR bidding languages. Another

constraint which is considered in all proposed algorithms dictates that at most one node

can be sold to each bidder per auction. This is because upon awarding one node to a
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bidder the bid prices on other nodes become invalid due to the fact that bid prices are

conditioned on the current commitments of each participant.

1

Algorithm 1:

Algorithm 2:

Algorithm 3: HBFFixedTree1Plan(T, Aucid, Ns, Na) Hierarichical Breadth

First Fixed Tree (Only AND)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFFixedTree1Plan(T, Aucid, Ns, Number);
5 for i = 1 to Ns do
6 CenBFFixedTree1Plan(T, i, Ns, Number);

7 Totalcost←− cost(T );
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Algorithm 1:

Algorithm 2:

Algorithm 3:

Algorithm 4: HBFFixedTree2Plans(T, Aucid, Ns, Na) Hierarichical

Breadth First Fixed Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFFixedTree1Plan(T1, Aucid, Ns, Number);
5 for i = 1 to Ns do
6 CenBFFixedTree1Plan(T1, i, Ns, Number);

7 Compute cost(T1); the traveling cost of the tree T1 ;

8 Compute the best task tree T2 using SSP path planning algorithm;
9 Initialization: Aucid←− T2; mark the whole tree as won by Aucid ;

10 CenBFFixedTree1Plan(T2, Aucid, Ns, Number);
11 for i = 1 to Ns do
12 CenBFFixedTree1Plan(T2, i, Ns, Number);

13 Compute cost(T2); the traveling cost of the tree T2 ;
14 if cost(T2) > cost(T1) then
15 T ←− T1;
16 else
17 T ←− T2;

18 Totalcost←− cost(T );

On the other hand, a depth first (DF) search is an algorithm for traversing or searching

a tree, or a graph, starting at a selected node and exploring as far as possible along

each branch before doing the same with neighboring nodes. The proposed task allocation

mechanism uses DF search as an alternative way to decide the order of selling the tree

nodes. Thus, the proposed DF fixed tree algorithms tries to find what is the best way

to sell the tree nodes, either by bidding the single tasks of each abstract node separately,

or by bidding the abstract node as a bundle of single tasks. The details of the proposed

centralized DF fixed tree allocation for only AND and for AND/OR bidding languages are

shown in algorithms 5 and 6 respectively, whereas the hierarchical DF fixed tree allocation

for AND/OR bidding languages is shown in algorithm 7.
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Algorithm 5: CenDFFixedTree1Plan (T, T2, T3, Aucid, Ns, Na) Centralized

Depth First Fixed Tree (Only AND)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost:the cost of executing the tree T

1 begin
2 Compute the task tree T using SSP path planning algorithm; the number of

abstract nodes is N ;
3 Initialization: Aucid←− T ; mark the whole tree as won by Aucid;
4 for i = 1 to N do
5 Compute cost1(T ); the traveling cost of the tree T before auctionning ;
6 Copy(T, T1); copy the tree T in T1;
7 Find Nc = Children(i); the number of children of node i;
8 for c = 1 to Nc do
9 for j = 1 to Ns do

10 while j 6= Aucid do
11 Compute bj(c); the bid of robot j on node k ;

12 Find bestsensor1; the ID of the sensor which has the best bid on node c.
This is done using SSP algorithm ;

13 Tbestsensor1 ←− Tbestsensor1 + c;

14 TAucid ←− TAucid − i;
15 Compute cost2(T ); the traveling cost of the tree T after auctionning ;
16 Copy(T, T2); hold this solution ; Compute cost2(T ); the traveling cost of the

tree T after auctionning ;
17 Copy(T1, T ); retrieve the old tree;
18 for j = 1 to Ns do
19 while j 6= Aucid do
20 Compute bj(i) =

∑
bj(M) {M ∈ i}; the bid of sensor j on node i ;

21 Find bestsensor2; the ID of the sensor which has the best bid on node i. This
is done using SSP algorithm ;

22 Tbestsensor2 ←− Tbestsensor2 + i;
23 TAucid ←− TAucid − i;
24 Copy(T, T3); hold this solution;
25 Compute cost3(T ); the traveling cost of the tree T after auctionning ;

26 mincost = min(cost1(T ), cost2(T ), cost2(T ));
27 if mincost = cost1(T ) then
28 Copy(T1, T ); retrieve the first solution;

29 if mincost = cost2(T ) then
30 Copy(T2, T ); retrieve the second solution;

31 if mincost = cost3(T ) then
32 Copy(T3, T ); retrieve the third solution;

33 Totalcost←− cost(T )
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Algorithm 6: CenDFFixedTree2Plans (T, T5, T6, Aucid, Ns, Na) Central-

ized Depth First Fixed Tree (AND/OR)

Data: Na: = number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost:the cost of executing the tree T

1 begin
2 Find the best task tree T5 using SSP path planning algorithm; the number of

abstract nodes is N ;
3 Find the second best task tree T6;
4 Initialization: Aucid←− T5; mark the whole tree as won by Aucid;
5 Compute cost1(T5); the traveling cost of the tree T5 before auctionning ;
6 CenDFFixedTree1Plan (T5, T1, T2, Aucid, Ns, Na);
7 Compute cost2(T1);
8 Compute cost3(T2);
9 Initialization: Aucid←− T6; mark the whole tree as won by Aucid;

10 CenDFFixedTree1Plan (T6, T3, T4, Aucid, Ns, Na);
11 Compute cost4(T3);
12 Compute cost5(T4);
13 mincost = min(cost1(T5), cost2(T1), cost3(T2), cost4(T3), cost5(T4));
14 if mincost = cost1(T5) then
15 Copy(T5, T ); get the final solution;

16 if mincost = cost2(T1) then
17 Copy(T1, T );

18 if mincost = cost3(T2) then
19 Copy(T2, T );

20 if mincost = cost4(T3) then
21 Copy(T3, T );

22 if mincost = cost5(T4) then
23 Copy(T4, T );

24 Totalcost←− cost(T )
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Algorithm 7: HDFFixedTree2Plans (T, Aucid, Ns, Na) Hierarichical Depth

First Fixed Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Compute the second best task tree T2 using SSP path planning algorithm;
4 CenDFFixedTree2Plans(T, T1, T2, Aucid, Ns, Na); find the initial solution;
5 Copy(T, T5); hold this solution;
6 for i to Ns do
7 CenDFFixedTree1Plan (T, T3, T4, Aucid, Ns, Na);

8 Totalcost←− cost(T );

4.4.2 Dynamic Tree Task Allocation

The proposed fixed task tree allocation described in the previous section could be seen as

an instance of the decompose-then-allocate approach. The main drawback of this approach

is that the cost of the final plan cannot be fully considered because the complex task is

decomposed by the auctioneer without knowledge of the eventual task allocation. Also,

backtracking is not allowed in this approach, and so any costly mistakes in the auctioneer

decompositions cannot be rectified. Generally, the allocate-then-decompose method tries to

avoid the drawbacks of the decompose-then-allocate method. However, there are still some

disadvantages. Motivated by the drawbacks of both methods, a dynamic tree allocation is

proposed in this thesis to allow backtracking in order to recover the bad plans made by

the auctioneers. The proposed dynamic tree mechanism allows auctioning on all levels of

abstraction of the mission task implemented by the task tree from the top to the bottom.

Each mobile sensor evaluates its ability to execute the required task based on its plan, not

on the plan of the auctioneer. The proposed dynamic tree allocation algorithms are either
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executed by allowing only one auctioneer (centralized allocation), or by allowing different

auctioneers (hierarchical allocation).

The details of proposed centralized BF dynamic tree allocation for only AND and for

AND/OR bidding languages are shown in algorithms 8 and 9 respectively, whereas, the

hierarchical DF dynamic tree allocation for only AND and for AND/OR bidding languages

are shown in algorithms 10, and 11. Also, the details of the hierarichical DF dynamic tree

allocation for AND/OR is shown in algorithm 12.

76



2

Algorithm 7:

Algorithm 8: CenBFDynamicTree1Plan (T, Aucid, Ns, Na) Centralized

Breadth First Dynamic Tree (Only AND)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the task tree T using SSP path planning algorithm; the number of

abstract nodes is N ;
3 Initialization: Aucid←− T ; mark the whole tree as won by Aucid;
4 for i = 1 to N do
5 ∀i (abstract node), find the area index A(i);
6 Compute cost1(T ); the traveling cost of the tree T before auctionning ;
7 for j = 1 to Ns do
8 while j 6= Aucid do
9 Compute Pj(A(i)); the plan of mobile sensor j for area A(i);

10 Find bestsensor1; the ID of the sensor which has the best plan on node i. This
is done using SSP algorithm ;

11 Tbestsensor1 ←− Tbestsensor1 + Pbestsensor1(A(i));
12 TAucid ←− TAucid − i;
13 Compute cost2(T ); the traveling cost of the tree T after auctionning ;
14 if cost2(T ) > cost1(T ) then
15 Tbestsensor1 ←− Tbestsensor1 − Pbestsensor1(A(i));
16 TAucid ←− TAucid + i;

17 if ∃ set t ⊂ TAucid then
18 for c = 1 to t do
19 Compute cost3(T ); the traveling cost of the tree T before auctionning the

single nodes;
20 for o = 1 to Nr do
21 while o 6= Aucid do
22 Compute bo(c); the bid of the sensor o on node c ;

23 Find bestsensor2; the ID of the sensor which has the best bid on node c.
This is done using SSP algorithm ;

24 Tbestsensor2 ←− tbestsensor2 + c;
25 TAucid ←− TAucid − c;
26 Compute cost4(T ); the traveling cost of the tree T after auctionning ;
27 if cost4(T ) > cost3(T ) then
28 Tbestsensor2 ←− Tbestsensor2 − c;
29 TAucid ←− TAucid + c;

30 Totalcost←− cost(T )
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Algorithm 7:

Algorithm 8:

Algorithm 9: CenBFDynamicTree2Plans (T, Aucid, Ns, Na) Centralized

Breadth First Dynaamic Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFDynamicTree1Plan(T1, Aucid, Ns, Number);
5 Compute cost(T1); the traveling cost of the tree T1 ;

6 Compute the second best tree T2 using SSP path planning algorithm;
7 Initialization: Aucid←− T2; mark the whole tree as won by Aucid;
8 CenBFDynamicTree1Plan(T2, Aucid, Ns, Number);
9 Compute cost(T2); the traveling cost of the tree T2 ;

10 if cost(T2) > cost(T1) then
11 T ←− T1;
12 else
13 T ←− T2;

14 Totalcost←− cost(T );
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Algorithm 7:

Algorithm 8:

Algorithm 9:

Algorithm 10: HBFDynamicTree1Plan(T, Aucid, Ns, Na) Hierarichical

Breadth First Dynamic Tree (Only AND)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFDynamicTree1Plan(T, Aucid, Ns, Number);
5 for i = 1 to Ns do
6 CenBFDynamicTree1Plan(T, i, Ns, Number);

7 Totalcost←− cost(T );
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Algorithm 7:

Algorithm 8:

Algorithm 9:

Algorithm 10:

Algorithm 11: HBFDynamicTree2Plans (T, Aucid, Ns, Na) Hierarichical

Breadth First Dynamic Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Initialization: Aucid←− T1; mark the whole tree as won by Aucid ;
4 CenBFDynamicTree1Plan(T1, Aucid, Ns, Number);
5 for i = 1 to Ns do
6 CenBFDynamicTree1Plan(T1, i, Ns, Number);

7 Compute cost(T1); the traveling cost of the tree T1 ;

8 Compute the best task tree T2 using SSP path planning algorithm;
9 Initialization: Aucid←− T2; mark the whole tree as won by Aucid ;

10 CenBFDynamicTree1Plan(T2, Aucid, Ns, Number);
11 for i = 1 to Ns do
12 CenBFDynamicTree1Plan(T2, i, Ns, Number);

13 Find cost(T2); the traveling cost of the tree T2 ;
14 if cost(T2) > cost(T1) then
15 T ←− T1;
16 else
17 T ←− T2;

18 Totalcost←− cost(T );
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Algorithm 7:

Algorithm 8:

Algorithm 9:

Algorithm 10:

Algorithm 11:

Algorithm 12: HDFDynamicTree2Plans (T, Aucid, Ns, Na) Hierarichical

Depth First Dynamic Tree (AND/OR)

Data: Na: number of areas;
Ns: number of mobile sensors;
Aucid: the ID of the auctioneer

Result: A : S ←− T ; the allocation of the task tree T to the set of mobile sensors S;
Totalcost: the cost of executing the tree T

1 begin
2 Compute the best task tree T1 using SSP path planning algorithm;
3 Compute the second best task tree T2 using SSP path planning algorithm;
4 CenDFFixedTree2Plans(T, T1, T2, Aucid, Ns, Na); find the intial solution;
5 Copy(T, T3); hold this solution;
6 for i = 1 to Ns do
7 Find T1(i); find the second best tree for each robot;
8 CenDFFixedTree2Plans (T, T3, T2(i), Aucid, Ns, Na); find the final solution;

9 Totalcost←− cost(T );

4.5 Conclusion

In this chapter, a market-based approach has been presented to solve the multisensor task

allocation problem in mobile surveillance systems. Centralized and hierarchical algorithms

with fixed and dynamic trees have been examined focusing on complex tasks, i.e., the

tasks that can be decomposed into subtasks. Both breadth first, and depth first search

mechanisms have been used for deciding the order of bidding. As shown in chapter 6, the

results of the conducted experiments show that hierarchical dynamic tree task allocation

outperforms other existing techniques, especially in complex surveillance operations where

a large number of mobile sensors is used to scan a large number of areas.

81



Chapter 5

Target Detection and Tracking

The main objective of this chapter is to give a detailed description of the developed method-

ology for tracking multiple objects, which will be incorporated into the proposed mobile

surveillance framework. It is divided into five major sections. Section 5.1 gives a brief

introduction to the target tracking problem and its description. Section 5.2 gives a de-

tailed investigation of the target tracking problem from different dimensions. The state of

the proposed work is determined in each dimension. The most recent related work, along

with a brief discussion of the important problems that are observed in the design of a

target tracking mobile sensor network, are given in section 5.3. The target tracking prob-

lem statement and formulation are introduced in sections 5.4, and 5.5 respectively. This

is followed in section 5.6 by presenting the proposed target tracking approach. Finally,

important conclusions are drawn in section 5.7.

5.1 Introduction

Recognizing the motion of objects navigating in a bounded area of interest is an essential

task in a number of applications, such as security, surveillance, and reconnaissance. An
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important research issue that arises in these applications is target tracking: estimating

the state of a target, based on some measurements from some static sensors, to maintain

this target in view. Many factors make fixed sensor placement in advance inadequate for

surveillance and security applications. These factors include the lack of prior information

about the area of interest. Also, large areas of interest need a huge number of fixed sensors

to accomplish the target-tracking mission.

Mobile sensors can be very effective in overcoming the disadvantages of fixed sen-

sors [115]. The movement ability of the mobile sensors gives them the ability to achieve

more thorough coverage of the area of interest than the combined coverage capabilities

of these sensors. Although mobile sesors are good options for surveillance and security

applications, there are also several challenges. First, there must be a coordination mecha-

nism among the sensor team to coordinate the sensing operations. Without coordination,

performance of the mobile sensors team is expected to be significantly degraded. Second,

the mobile sensor must be deployed in the environment in such a way as to achieve full

coverage of the environment, to do the required tasks with minimum energy consumption,

and thus to minimize the cost of sensor deployment.

This chapter focuses on the development of an energy efficient target tracking method-

ology which is able to accomplish the tracking mission cooperatively. This is done by

coordinating the mobile sensors using a market-based approach. The proposed target

tracking methodology will be incorporated into the mobile surveillance framework.

5.2 A Classification Taxonomy of Current Target Track-

ing Approaches

Recently, various research groups have studied the target tracking problem from different

perspectives. In [51], a taxonomy that classifies research in the field of target tracking
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according to the various problem definitions and evaluation criteria is presented. Accord-

ing to this taxonomy, the target tracking problem can be classified along a number of

dimensions as follows:

5.2.1 The Number of Trackers versus the Number of Targets

The first classification axis for target tracking problem is the number of trackers, which

can be divided into ‘single’ or ‘multiple’ based on whether cooperation among trackers is

planned or not. In this thesis, any tracking technique without cooperation between trackers

is considered a single tracker problem. The second axis is the number of targets, which

affects the complexity of the problem. A tracking problem can be classified according to

the combination of these two axes as:

Single Tracker Single Target (STST) The simplest form of this category is tracking

of a single target by a single tracker. For the tracking system to perform properly, the

most likely measured target location should be used to update the target’s state estimator.

This is generally known as the data association problem. The probability of the given

measurement being correct is a distance function between the predicted state of the target

and the measured state. A Probabilistic Data Association(PDA) filter is proposed in [116]

to achieve successful tracking in cluttered environments. Also, the Kalman filter [117], and

the particle filter [118] have been used to track a single moving target.

Single Tracker Multiple Targets (STMT) In this category, multiple targets are

tracked by a single tracker. Multiple Hypothesis Tracking (MMT) , and joint probabilistic

data association (JPDA) are the most well-known techniques in this category. A multiple

hypothesis tracking algorithm is applied successfully for tracking multiple targets in [119].

Also, a decoupling joint probabilistic data association (DJPDA)algorithm is presented in

[120] for multiple target tracking. This is done by decoupling the JPDA algorithm into

separate probabilistic data association (PDA) algorithms.
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Multiple Trackers Single Target (MTST) The main idea in this category is to track

a single target with multiple trackers in order to improve the accuracy of target estimation.

In other words, the measurements from several trackers are combined to decrease the

measurement uncertainty [121]. This is very useful in some applications that require

high accuracy such as ballistic missile defense, satellite defense, and air traffic control

systems. A virtual Target Tracking (VTT) algorithm that can be applied to mobile satellite

communication networks is proposed in [122].

Multiple Trackers Multiple Targets (MTMT) A lot of research in this category

has been developed to track multiple targets with multiple trackers [49, 123]. The main

focus of this category is to coordinate multiple trackers in order to track multiple targets

efficiently and reliably.

In this thesis, a solution for the MTMT problem when trackers are mobile sensors is

introduced. This focuses on the case when the number of targets is bigger than the number

of trackers, which means that the cooperation between the trackers is indispensable.

5.2.2 Tracker Mobility

The tracking problem can be classified based on the number of degrees of possible tracker

motions, such as stationary, pan/tilt/zoom, planar, and unrestricted.

Stationary: Most work in this category focuses on reliable perception because there

is no motion control. Single or multiple stationary cameras are used as stationary trackers

in [124].

Pan/Tilt: The use of autonomous pan-tilt cameras as opposed to static cameras can

dramatically enhance the range and effectiveness of surveillance systems [125]

Planar: The tracker motion is planar. The design and implementation of an algorithm

for landing a helicopter autonomously on a moving target using a mounted camera is a
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good example of this class [126]

Unrestricted: In this category, there is no restriction on the tracker motion. A good

example of this is a camera mounted on a mobile sensor [49, 123].

The target tracking algorithms described in this thesis fall on the forth category.

5.2.3 Environment Complexity

The environment complexity is another factor to consider while tackling the target tracking

problem. According to this, the environment complexity can be divided to:

Outdoor environment: In this type of environments, the main focus of the target

tracking algorithms is on interactions between targets and trackers [49, 127].

Indoor environment: An example of this category is public places, such as airports.

In this category, the tracking system should have the ability to use a path planning algo-

rithm to track the targets in these envrionments [128].

The cooperative tracking algorithms presented in this thesis as part of the developed

mobile surveillance framework are implemented in both outdoor and indoor environments.

5.2.4 Type of Cooperation

Cooperation between trackers is essential in MTST and MTMT problems to improve track-

ing performance. There are two different reasons for this cooperation:

Uncertainty reduction: Measurements from multiple trackers are combined to in-

crease the accuracy of tracking (i.e., reduce the uncertainty). The measurement uncertainty

due to clutters and missed detections in wireless sensor networks is addressed in [129] to

track a single target.
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Target allocation: The performance of tracking systems can be improved by allocat-

ing each group of targets to a single tracker in the best position. This type of cooperation

is challenging, and has been addressed by many people [49, 123].

In this thesis, an energy efficient control algorithm for mobile sensors is developed to

track moving targets according to the distribution of the targets in an environment. The

proposed algorithm is an example of the second type of cooperation.

5.2.5 Coordination of Multiple Trackers

In the case of tracking multiple targets using multiple trackers, the effect of cooperation

can be maximized by designing a suitable coordination strategy [51]. This coordination

strategy modifies the behavior of the tracker either directly or by other trackers:

Explicit: The behavior of the tracker can be modified by other trackers using explicit

communication [130]. An example of this; a tracker can stop another tracker from tracking

a specific target if it thinks it is most suitable for the tracking system to exchange roles.

Implicit: Based on their best knowledge acquired from exchanging information or

observing others, the trackers make their own decisions independently [131].

In this thesis, the mobile sensors share tracking information by broadcasting them.

Each sensor does the tracking task independently but the target assignment is done by

another senosr in the tracking system as will be seen later. Also, cueing and handoff for

the exit targets is implemented through direct communication. These characteristics of

the proposed framework put the work in this thesis under both categories.

5.2.6 Evaluation Criteria

In order to design tracking algorithms to be incorporated into the design of the multisensor

surveillance framework, there should be an evaluation criterion to evaluate the framework
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performance. Out of many evaluation criteria, the following have been found important

while designing our framework:

Tracking accuracy: Tracking accuracy is the most popular evaluation criterion taken

into account in the literature, especially when tracking a single target.

Travel distance: The travel distance is one of the evaluation criteria that should be

taken into account for evaluation of the tracking system. This occurs when the tracker is

a mobile sensor.

Energy consumption: Since energy is the most limited resource in the tracking

system, the designed tracking algorithm should be energy efficient to conserve this resource

as much as possible. In [132], energy consumption is taken into account in transmitting

and receiving messages for cooperation.

Speed of convergence: When tracking targets, speed of convergence is an interesting

evaluation criterion. This occurs when the tracker is a mobile sensor.

In this thesis, the purpose of the single target tracking algorithm is to track positions

of a moving target using a camera and laser rangefinder, so that the tracking accuracy

and speed of convergence are used to evaluate the performance of the algorithm. On the

other hand, in multi-target tracking, the goal is to keep tracking the moving targets with

a minimum number of mobile sensors, so the energy consumption and travel distance are

used to evaluate the performance of the algorithm.

5.3 Related Work

One of the fundamental issues that arise in a mobile sensor network is coverage. Cov-

erage can be maximized by determining the optimal placement of static sensors as seen

in the class of art gallery problems [133]. However, recent investigations reveal that mo-

bile sensors can self-organize to provide better coverage than static sensors [115, 134]. In
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other words, mobile sensors are often desirable, since they can patrol a wide area and

can be repositioned for better coverage [135]. A distributed and scalable potential field-

based approach for the deployment of mobile sensors is introduced in [136] in order to

achieve full coverage. The fields are constructed such that each sensor is repelled by both

obstacles and by other sensors, thereby forcing the network to spread itself through the

environment. In [137], algorithms for controlling a group of sensing vehicles to achieve

full coverage in a dynamic environment are proposed. Nevertheless, collision avoidance

and the effect of measurement errors can’t be guaranteed. In [115], the authors proposed

an autonomic mobile sensor architecture using an ant-like scheme to self-organize nodes to

track unknown time-varying target distributions. Hoe and Varchney [134] proposed energy

efficient deployment algorithms for a mobile sensor network. The main goal is to organize

and optimize the network resources in terms of coverage, uniformity, and time and distance

traveled, until the algorithm converges on a solution.

In [138], the problem of computing robot motion strategies that maintain visibility of a

moving target in a cluttered workspace is introduced. The general problem is divided into

two categories, on the basis of whether the target is predictable or not. For the predictable

case, an algorithm that is based on numerical solutions is presented. Also, two on-line

algorithms are presented to maintain future visibility with limited or partially-predictable

target. Also in [139], the related question of maintaining the visibility of a moving target

in a cluttered workspace by a single robot is addressed. A visibility region is associated

with each robot, and the goal is o keep each target tracked by at least one robot.

In the area of multi-sensor surveillance, a coordinated multiple security sensor control

system for warehouse surveillance and inventory assessment has been developed in [140].

For this goal, a supervised robotic security and inventory assessment system basically runs

itself, until an unusual condition is encountered that requires human intervention. In other

words, the developed system is semi-autonomous which utilizes autonomous navigation
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with human supervisory control when needed. Regarding the multi-target tracking needed

in multisensor surveillance systems, an algorithm for computing the trajectories of multiple

targets is developed in [141]. Also, a real time visual surveillance system for detecting

and tracking multiple people and monitoring their activities in an outdoor environment

is presented in [142]. The proposed system employs a combination of shape analysis and

tracking to locate people and their parts (head, hands, feet, torso) and to create models of

people’s appearance.

Generally speaking, The recent interest in surveillance in public, military, and com-

mercial scenarios is increasing the need to autonomously observe the movements of targets

navigating in a bounded area of interest. This problem has been tackled by many re-

searchers in the last few decades using different types of sensors. In [143], the problem of

target tracking is tackled using stationary sensors. A single sensor and multisensor target

tracking frameworks are proposed using extended Kalman filter. However, using mobile

sensors is more beneficial than using stationary sensors for many reasons [123]. For exam-

ple, there may be little prior information on the location of the area to be observed, which

enforce the use of mobile sensors. Also, the targets to be tracked may exist in a large area

which requires the placement of a large number of stationary sensors and so increases the

system cost. Thus, the above constraints force the use of multiple sensors dynamically

moving over time.

In [123], Parker investigated the use of a cooperative team of autonomous mobile robots

for applications in the domains of surveillance, and reconnaissance. The main focus of this

work is on developing distributed strategies that allow the team to attempt to minimize the

total time in which targets escape observation by some mobile robot team member in the

area of interest. The proposed strategies investigated the power of a weighted-force vector

approach distributed across robot team members in simple, uncluttered environments that

are either obstacle-free or have a random distribution of simple convex obstacles. In other
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work [131], the implementation of this weighted-force vector approach for fault-tolerant

multi-robot cooperation is presented. The proposed approach is called A-CMOMMT (co-

operative multi-robot observation of multiple moving targets). The main disadvantage of

this approach is that one target can be observed by two robots because the algorithm

is based on the density of targets in the vicinity of robots. Also, all robots are always

exploring the environment which makes it unlikely to be an energy-efficient approach.

Kolling and Carpin [49] presented another version of the Parker work called B-CMOMMT

to overcome some of the difficulties which exist in Parker work. One of these situations

was when one robot followed two targets moving in opposite directions, eventually losing

both. The loss of both targets may happen even when another robot is close by. The

other robot is repelled from the first robot due to the force vector from that robot and

has no chance of recapturing any of the targets. Intuitively the second robot should have

attempted to capture one of the two targets instead of wandering around and attempt-

ing to discover an unknown target. B-CMOMMT operates under similar assumptions as

those in the problem definition of A-CMOMMT, with the difference that it accommodates

for varying restrictions of the sensors. An important difference is that in B-CMOMMT

weights for robots forces are also considered, which rescales the robot forces’ contributions.

A robot can be in one of three modes (follow, explore, and help), and broadcasts help calls

to indicate future target loss. A help call is broadcasted when target loss of a currently

observed target is predicted. There is no guarantee that the robot in the best location

will answer the help call. Also, the robot is always exploring the environment and, while

exploring, checking unanswered help calls. If it doesn’t find any, it will check the answered

ones and the distances of the answering robots to the help calls. It then picks the closest

help call for which it is closer than the answering robot.

Boyoon Jung [51, 144] introduced a target tracking problem using multiple, environment-

embedded stationary and mobile sensors. In this work, an architecture for robot motion
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coordination, which exploits a shared topological map of the environment is presented.

The environment is divided into regions, and so the author assumed that the topological

map of the environment is already known. The stationary and mobile sensors maintain

region-based density estimates for both the number of targets and the number of robots.

According to these densities, the mobile robots move from less urgent regions to more

urgent ones. The proposed algorithm is based on exploring the regions of the environment

by the robots even if the regions are empty. Also, the possibility of tracking a group of

targets by two robots is very high, so the proposed work is not an energy efficient one.

As seen in the literature survey above, the problem of multi target tracking which is

tackled as part of the design of multi sensor surveillance systems has been solved using

stationary sensors, mobile sensor, and a combination of both. Although this problem has

been investigated thoroughly, most research in this area has focused on the development

of a single accurate tracker (i.e, no cooperation between trackers). However, in security

or surveillance applications, it is often more important to coordinate multiple sensors

in order to accomplish the required mission efficiently and reliably. The existing multi

target tracking approaches such as [49, 123, 131] don’t consider the optimization of energy

consumption during tracking. Also, in [51, 144], the proposed approaches are based on

exploring the assigned region of the environment by the robots even if the regions are

empty, which makes them unlikely to be energy-efficient approaches.

In this section, a review of current research work in the field of target tracking has been

given. Three main issues can be drawn from this review:

1. The task of target tracking is challenging. This task can be studied from different

points of view, such as the number of trackers, the number of targets, the mobility

of trackers, the type of cooperation between trackers, etc.

2. The average accuracy of most target tracking techniques, especially in the multi-

tracking ones, is not high. It is questionable whether such techniques can be used in
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real-time target tracking systems.

3. It also seems that most of the current body of research in the field of target tracking

focuses on studying the performance of target tracking techniques from various angles,

but without much consideration of minimization of energy consumption.

In conclusion, the problem of multi-target tracking is challenging with many difficulties.

Motivated by these difficulties, and apart from [49], an energy-efficient tracking algorithm

to track multiple moving targets is presented in this thesis. The main goal is to achieve

an improvement in the B-CMOMMT proposed in [49]. This can be done by guaranteeing

that every help call is answered by only one mobile sensor, specifically, the closest sensor

to the source of this help call. A market-based cuing/handoff approach is implemented to

guarantee that the best suited sensor answers the help call. Each mobile sensor will have

three modes of operation (follow, help, and sleep). The proposed approach in this thesis

is good, when considered in terms of energy consumption.

5.4 General Problem Statement

One of the objectives of this thesis is to develop a generalized methodology for tracking of

multiple moving objects. This methodology will be energy-efficient in such a way as to use

the minimum number of resources to maintain continuous tracking of moving targets.

An autonomous surveillance system requires knowledge of the current targets’ positions

as well as their future positions, in order to be able to determine the sensor assignments

and states. In this context, the overall problem of tracking can be summarized as follows:

1. Detecting every target within a given scene.

2. Distinguishing and categorizing objects as obstacles or objects of interest.
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3. Find the centre of gravity of targets within the scene using a hybrid subtractive-K-

means clustering technique.

4. Tracking the centre of gravity of the targets within the scene using Extended Kohonen

Maps.

5. Tracking the exit targets by the best suitable trackers using a cueing/handoff market-

based approach.

5.5 Problem Formulation

With minor variations, the same notation and terminology as those introduced in [49] is

used in this thesis. Let:

1. AOI: a two dimensional, bounded obstacle free area of interest.

2. O: a set of n moving targets, oj, j = 1, 2, ......n. The position of oj at time tt shall be

denoted by oj(tt). Targets cannot leave the area of interest, i.e. ∀tt oj(tt) ∈ AOI.

3. S: a team of m mobile sensors. It is assumed that each sensor carries sensors (laser

range finders) to be able to detect the targets.

4. SC(si, tt): the sensor coverage, which is the subset of AOI observable by mobile

sensor si at time tt. This region varies as the sensor si moves inside AOI, but its

shape is supposed not to vary. In this thesis, an omnidirectional sensing shape for

each mobile sensor is assumed.

5. OM(tt) : m × n Observation matrix. A sensor si is said to be observing a target

when the target is within si’s sensing range:
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OM(t) = omij(tt) =





1 if sensor i is observing target j

0 otherwise (5.1)

The goal is to develope an algorithm that maximizes the following metric:

AC =
te∑

tt=1

n∑

j=1

g(OM(tt), j)

te
(5.2)

where

g(OM(tt), j) =





1 when there exist i such that omij(tt) = 1

0 otherwise (5.3)

In other words, the problem requires maximizing the number of targets that are ob-

served by the mobile sensors. te is the execution time of the algorithm. It is assumed

that:

⋃

si∈S

SC(si, tt) << AOI for any tt (5.4)

Moreover, it is assumed that the maximum speed of the targets is smaller than the

maximum speed of the sensors like assumed in [49, 123] in order to give the sensors the

ability to track the targets. If the targets could always move faster, then they could always

evade the sensors and the problem becomes insoluble for the mobile sensor team. Finally,

it is assumed that the sensors have a communication mechanism, which allows them to

send and receive messages in a broadcast mode.
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5.6 Approach

As in [49, 123], the sensors are assumed to have an omnidirectional field of view. The

proposed approach depends completely on that assumption. The conic field of view will be

considered in future research. In the following subsections, more details of the proposed

approach are provided.

5.6.1 Target Detection

Ideally, sensor team members would be able to passively detect nearby sensors and targets

to ascertain their current positions. Many machine vision algorithms have been developed

for this type of position calculation. Although vision systems have a very good resolution,

they do not provide accurate distance information [145]. Also, vision-based systems fre-

quently suffer from occlusion and sudden changes in illumination [146]. On the other hand,

other types of sensors, such as laser range sensors [145–147] are able to obtain accurate

distance and geometric information about the objects in their sensing range. Moreover,

laser range sensors do not have the problems of occlusion, and sudden changes in illumi-

nation, as with vision systems. The laser range sensors have attracted more attention in

the field of detection and tracking [147, 148]. Thus, in this thesis, we propose a detection

algorithm that uses laser scanners to detect moving targets and objects. The outputs of

the proposed algorithm are the positions of the targets and objects. Each sensor communi-

cates the positions of targets and other objects within its sensing range to its sensor team

members.

Fig. 5.1 depicts two types of ranges [123]: the sensing range, and the predictive tracking

range. The sensing range is the range of the sensor within which it executes the tracking

algorithm to maintain observation of the targets. The predictive tracking range is the

range within which the targets are out of the sensing range but could still be observed (i.e.,
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Predictive tracking range

Sensing range

(a)

Predictive tracking 

rangeSensing range

(b)

Figure 5.1: Field of view (a)Omnidirectional (b) Conic

the target starts to leave the sensor’s sensing range).

5.6.2 Find the Center of Gravity

Clustering is the classification of objects into different groups, or more precisely, the parti-

tioning of a data set into subsets (clusters), so that the data in each subset (ideally) share

some common trait - often proximity according to some defined distance measure. The

following techniques are the most popular clustering techniques, which are used in many

fields, including machine learning, data mining, pattern recognition, image analysis and

bioinformatics:

1. K-means (or Hard C-means) Clustering,

2. Fuzzy C-means Clustering,

3. Mountain Clustering, and
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4. Subtractive Clustering.

Among the above-mentioned techniques, subtractive clustering is chosen to initially

find the number of clusters, and then these initial clusters are used as initial conditions in

K-means clustering to find the centre of gravity of targets within the sensor sensing range.

The reason behind using K-means clustering is its high level of accuracy [149].

5.6.2.1 Subtractive Clustering

The subtractive clustering method [150] assumes each data point is a potential cluster

centre and calculates a measure of the likelihood that each data point would define the

cluster centre, based on the density of surrounding data points. By using it, the quantity

of calculation is in proportion to the number of data points and is foreign to the dimensions

of problem. However, while the actual cluster centres are not necessarily located at one

of the data points, in most cases it is a good approximation, especially with the reduced

computation this approach requires.

Consider m3 dimensions n3 data point (xx1, xx2, ....xxn3). More generally, we assume

that these data points have fallen into a unit hyper box. Because each data point is

potential cluster centre, the density of a data point at xxi is defined as:

D =
n∑

j=1

exp
‖xxi − xxj‖

(ra/2)2

2

(5.5)

where ra is a positive number. Obviously, the data point has the highest potential if

the data point xxi is surrounded by more data points. A radius defines a neighbour area.

The data points which exceed raduis ra, have no influence on the density of data points.

The first cluster centre xxc1 is chosen as the point having the largest density value Dc1 .

Next, the density measure of each data point xxi is revised as follows:
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D = Di −Dc1 exp
‖xxi − xxci‖2

(rb/2)2
(5.6)

where rb is a positive constant, which defines a neighbourhood that has measurable

reductions in density measure. Therefore the data points near the first cluster centre xxc1

will have a significantly reduced density measure. After revising the density function, the

next cluster centre is selected as the point having the greatest density value. This process

continues until a sufficient number of clusters is attained at which all points lie within a

loop belonging to a cluster centre.

In this thesis, subtractive clustering will be used to find the initial number and the

initial locations of the targets clusters. The parameters ra, and rb are selected based on

the sensors’ field of view specifications in such way to ensure that reaching the centre

of gravity of the detected targets will be sufficient to track the clusterd targets. This

information will be fed into the K-means clustering technique to find the final locations

of target clusters. The reason behind using the K-means clustering technique is its high

accuracy compared to subtractive clustering.

Each mobile sensor tries to maximize the number of targets inside its sensing range.

This is done by positioning itself at the center of gravity CG of the targets inside its sensing

range. In order to approach this position, an Extended Kohonen Neural network will

be used. As the targets move inside the sensor sensing range, the CG changes and so the

mobile sensor will move reactively.

5.6.2.2 K-means Clustering

K-means [151] is one of the simplest unsupervised learning algorithms that solves the well-

known clustering problem. The procedure follows a simple and easy way to classify a given

data set through a certain number of clusters (assume k clusters) fixed a priori. The main
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idea is to define k centroids, one for each cluster. These centroids should be placed in

intelligently, because different location will give different results. So, the best choice is

to place them as far as possible from one another. The next step is to take each point

belonging to a given data set and associate it to the nearest centroid. When no point is

pending, the first step is completed and an early group age is done. At this point we need

to re-calculate k new centroids as varying centres of the clusters resulting from the previous

step. After we have these k new centroids, a new binding has to be done between the same

data set points and the nearest new centroid. A loop has been generated. As a result

of this loop we may notice that the k centroids change their location step by step until

no more changes are done. In other words, centroids don’t move any more. Finally, this

algorithm aims at minimizing an objective function, in this case, a squared error function.

The objective function:

J =
k∑

j=1

n∑

i=1

∥∥xxj
i − cj

∥∥2
(5.7)

where
∥∥xxj

i − cj
∥∥2

is a chosen distance measure between a data point xxj
i and the cluster

centre cj, which is an indicator of the distance of the n data points from their respective

cluster centres. The partitioned groups are defined by a c× n4 binary membership matrix

MM , where the element mmij is 1 if the j data point xxj belongs to group i, and 0

otherwise. Once the cluster centres ci are fixed, minimizing mmij for Eq. 5.7 can be

derived as follows:

mmij =





1 if ‖xxj − ci‖2 ≤ ‖xxj − ck‖2 for k 6= i

0 otherwise
(5.8)

Which means that xxj belongs to group i if ci is the closest centre among all centres.

On the other hand, if the membership matrix is fixed, i.e., if mmij is fixed, then the optimal

centre ci that minimizes Eq. 5.8 is the mean of all vectors in group i :
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ci =
1

GRi

∑

k,xxk∈GRi

xxk (5.9)

The algorithm is presented with a data set xxi, i = 1, ......n; it then determines the

cluster centres ci and the membership matrix MM iteratively using the following steps:

• Step 1: Initialize the cluster centre, ci, i = 1, ......c. This is typically done by

randomly selecting c points from among all of the data points.

• Step 2: Determine the membership matrix MM .

• Step 3: Compute the cost function. Stop if it is either below a certain tolerance

value or if its improvement over the previous iteration is below a certain threshold.

• Step 4: Update the cluster centres. Go to step 2.

This is a simple version of the K -means procedure. It can be viewed as a greedy algorithm

for partitioning the n4 samples into k clusters so as to minimize the sum of the squared

distances to the cluster centres. The results depend on the value of k, which must be

specified in advance (from subtractive clustering).

5.6.3 Extended Kohonen Neural Network

Kohonen’s self-organizing map (SOM) network [152] is an unsupervised learning neural

network that maps an n-dimensional input data to a lower dimensional output map while

maintaining the original topological relations. The extended SOM network further groups

the nodes on the output map into a user-specified number of clusters. As shown in Fig. 5.2,

the Kohonen Map is a two-layered network consisting of an input layer of neurons directly
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and fully connected to an output layer. Typically, the output layer is organized as a

two-dimensional grid; wr is the fan-in weight vector (reference vector) associated with the

neuron placed at position r on the grid.

Output Layer

Input Layer

wr

r

Figure 5.2: Kohonen Map

The network is trained by unsupervised learning on a set of examples. For each example

x, the following sequence of steps is executed:

1. x is presented to the input layer.

2. A competition between the neurons takes place. Each neuron calculates the distance

between its reference vector wr and input pattern x.

d(x,wr) = ‖x− wr‖2 (5.10)
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The neuron ne whose weight vector is the closest to x is the winner of the competition.

ne = arg min d(x,wr) (5.11)

3. ne is awarded the right to learn the input pattern, i.e. to move closer to it in data

space:

wnew
ne = wold

ne + α(x− wold
ne ) (5.12)

where wold
ne is the fan-in weight of the winner ne before learning, wnew

ne is the fan-in

weights of the winner ne after learning, and α is the learning rate.

A special trait of the Kohonen algorithm is that the learning step is extended also to

the neighbors of the winner ne. The neighbors of ne are those output elements whose

distance to ne, measured on the grid G, is not greater than a neighborhood parameter

n(t). The Kohonen Map can be extended by adding a fan-out weight vector zr to store

the neuron output value as shown in Fig. 5.3. Adding a fan-out to the output neurons gives

the Extended Kohonen Map the ability to learn by supervised learning.

The computation in the EKM network proceeds as follows: When an input pattern x is

presented to the input layer, the neurons on G compete to respond to it. The competition

involves the neurons’ fan-in weight vectors wr, and consists of the computation of the

distance between x and each wr. The neuron ne, whose fan-in vector wne is the closest to

x, is the winner of the competition, and its fan-out vector zne is taken as the network output

answer to x. During the training phase, both the input pattern x and the desired output

value y proposed by the teacher are learnt by the winning neuron and by its neighbors on
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Output Layer

Input Layer

wr

r

Zr

Grid

Figure 5.3: Extended Kohonen Map

the grid. The learning step consists of moving the fan-in weight vectors of the selected

neurons closer to x, and their fan-out weight vectors closer to y.

5.6.3.1 Supervised Extended Kohonen Neural Network

The term ‘supervised’ originates from the fact that the desired signals on individual output

nodes are provided by an external ‘teacher’. This is usually performed with feedforward

nets where training patterns are composed of two parts, an input vector and an output

vector, associated with the input and output nodes respectively. A training cycle consists

of the following steps: an input vector is presented at the inputs together with a set of

desired responses, one for each node, at the output layer. A forward pass is done and

the errors, between the desired and actual response for each node in the output layer,

are found. These are then used to determine weight changes in the net according to the
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prevailing learning rule.

In the supervised Extented Kohonen Map, the situation is a little bit different from that

of feedforward nets mentioned above. During the training phase, both the input pattern x

and the desired output y proposed by a teacher are learned by the winning neuron and by

its neighbors on the grid. The learning step consists of moving the fan-in weight vectors

of the winner (which is the closet neuron to the input pattern x) closer to x, and their

fan-out weight vectors closer to y. This learning style has been described as a competitive-

cooperative training rule [153]. It is competitive because the neurons compete through their

fan-in weight vectors to respond to the presented input pattern. As a consequence, only

that part of the network which is relevant to deal with the current input data undergoes

the learning process. The rule is also cooperative in that the output value learned by the

winning neuron is partially associated to the fan-out weight vectors of its neighbors. The

supervised Extended Kohonen Map learning is shown in Fig. 5.4.

Y

ne

Grid

X

x

y

old
nez

new
nez

old
new

new
new

Figure 5.4: supervised Extended Kohonen Map learning

As shown, suppose we have trained an EKM on a set of examples < x; y >, where x is

a point in the input data space X and y is a point in the output data space Y . The input
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pattern x is presented to the network input layer to retrieve the corresponding output

value, which will be an approximation to y. This is accomplished in the usual way, namely

by letting the fan-in weight vectors wr compete on x, and by taking the fan-out weight

vector zne of the winner ne (which has the closet fan-in weights to x) as the network output

value. As mentioned above, ne is awarded the right to learn the input pattern x by moving

closer to it. Also, the fan-out zne is awarded the right to learn the output pattern y by

moving closer to it:

znew
ne = zold

ne + α(y − zold
ne ) (5.13)

where zold
ne is the fan-out weights of the winner ne before learning, znew

ne is the fan-out

weights of the winner ne after learning, and α is the learning rate.

5.6.3.2 Unsupervised Extended Kohonen Neural Network

The term ‘unsupervised’ originates from the fact that no output data is provided (i.e., there

is no supervisor). In unsupervised learning the machine simply receives inputs x1, x2, ...

but obtains neither supervised target outputs as in supervised learning, nor rewards from

its environment as in reinforcement learning. The only thing that unsupervised learning

methods have to work with is the observed input pattern xi, which is often assumed to be

independent samples. It may seem somehow mysterious to imagine what the machine could

possibly learn given that it does not get any feedback from its environment. However, it is

possible to develop a formal framework for unsupervised learning based on the notion that

the machine’s goal is to build representations of the input that can be used for decision

making, and for predicting future inputs.

The best-known form of unsupervised learning in the neural network literature is Ko-

honen’s self-organizing map (SOM) [152]. In this thesis, the Extended Kohonen Map as

unsupervised learning network [115] is used to get the function of mapping from the space
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of sensory data to the space of motor commands for tracking purposes. The details of the

single target tracking process is shown in algorithm 1.

5.6.4 The Proposed Cooperative Multi-target Tracking Approach

In multisensor tracking systems, tracking performance can be improved by maximizing

cooperation between sensors in response to the changes in target motion. As mentioned in

section 5.2.4, there are two kinds of cooperation: uncertainty reduction and task allocation.

The second type of cooperation is considered in this thesis. The mobile sensors used in

this work are assumed to be equipped with high-bandwidth communications and an array

of sensors and actuators, which give the sensors the ability to achieve cooperative behavior

at the group level. A cueing/handoff market-based method like the one in [16] is used to

guarantee that there is only one mobile sensor that will respond to the help call coming from

the sensor that detects a target about to exit its sensing range (or in its predictive tracking

range). The mobile sensor that detects an exiting target will do the task of an auctioneer

(i.e., every tracker can do the function of the auctioneer) This makes our algorithm more

robust than methods that use only one coordinator because there is no central point of

failure in this case. Using a cueing/handoff market-based algorithm will guarantee that

the most suitable sensor will track the exit target. In other words, there is no need to

explore the environment or to check the answered help calls as in [49]. This makes the

proposed method a more energy-efficient one than the method in [49]. The cueing/handoff

market-based method proceeds as follows:

1. Help cueing: the mobile sensor that needs help (detects an exiting target) broad-

casts a help call to its teammate. One sensor can issue multiple help calls according

to the number of targets about to be lost. Each help call includes the position of the

target to be lost.
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Algorithm 1: Single Target Tracking Algorithm

Data: θ: the angle difference between the detected target and the mobile tracker s;

dis:the distance between the detected target and the mobile tracker s;

Nr: number of mobile sensors;

Result: (speed, angle) the speed and orientation angle of the tracker;

1 begin

2 Initialize the parameters (fan-in and fan-out weights) of the Extended Kohonen

Map from supervised learning mentioned above;

3 repeat

4 Determine the neuron ne whose input weights (θne, disne) are the nearest

weights to the detected target sensory input (θ, dis);

5 Determine the output activity (speed(ne), angle(ne)) of the winning neuron

and move the tracker;

6 Compute the actual displacement of the tracker v = (θs, diss), which is the

difference between the old sensory input and the new one;

7 Use v as a training input to determine the winning neuron (step 2 but with v

as an input);

8 Adjust the input weights wi in the neighborhood of the winning neuron ne:

∆wi = αGaus(ne, i)(v − wi) (5.14)

Where Guas(ne, i) is the Gaussian function of the distance between the

winning neuron and input neurons and α is the learning rate;

9 Adjust the output weights in the neighborhood of the winning neuron to

minimize the error between the actual activity (speed(s), angle(s)) of the

mobile tracker and the output of the Extended Kohonen Map

10 until self organization is reached (at which the error is minimum);
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2. Bid submission: after each sensor receives the help call, they send their bids to the

auctioneer (the sensor that issued the help call). The bids include the distances of

the bidders to the target.

3. Close of auction: the auctioneer processes the bids, determines the winner, and

notifies the bidders with a message which indicates who is the winner.

4. Task handoff : the winner will proceed by orienting itself to face the target and

move with its maximum speed to put the target inside its sensing range.

The existence of the auctioneer does not mean that the proposed system is completely

centralized. The system is still distributed and the function of the auctioneer is only to

start the action of tracking. Once started, the tracker will do its task on its own, without

any dependency on the auctioneer. Furthermore, there is no single point of failure because

the auctioneer changes in the system according to the sensor that requests help (i.e.,

the sensor that requests help will be the auctioneer). The process of the cueing/handoff

market-based algorithm is shown in Fig. 5.5.

Cueing Bids submission

Handoff     Task execution

Figure 5.5: Cueing/Handoff market-based algorithm
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The cooperative tracking capability of a team of mobile sensors, each fitted with Ex-

tended Kohonen Maps, is utilized to maximize the coverage of multiple mobile targets.

The main goal is to develop an energy-efficient cooperative tracking strategy. To achieve

this goal, a minimum number of mobile sensors is used to track the moving targets in the

environment. The whole tracking strategy may be summarized in the following steps:

1. Clustering the targets in the environment by using a hybrid subtractive–K-means

clustering technique as mentioned above.

2. The clusters’ locations are reached by the best suitable trackers (the closest mobile

sensors to the clusters’ centres). The trackers use Extended Kohonen Maps to reach

these locations.

3. Each mobile tracker will try to maximize the number of targets inside its sensing

range by approaching the centre of gravity CG of the moving targets.

4. Approaching this location will be achieved through Extended Kohonen Maps as men-

tioned above.

5. Each mobile sensor will have three modes of operation:

(a) Follow: in this mode, the mobile tracker will follow the CG of the targets in

its sensing range.

(b) Help: when any of the sensors observe any of the targets leaving the sensing

range and entering the predictive tracking range, it predicts that this target will

be lost, and sends a help call asking for help from other sensors.

(c) Sleep: when no help call is requested and no targets are detected, the mobile

sensor is asleep. In other words, none of the sensors is doing the function of

exploring the environment.
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6. When a mobile sensor detects a target entering its predictive tracking range, it sends

a help call to its teammates to track the exit target. The cueing/handoff market-

based algorithm mentioned above is used to find out the best suitable sensor to track

this target. The best suitable sensor is selected only from the sensors that are in sleep

mode (i.e., no targets to track). If no trackers are in sleep mode, this target will be

lost. The existence of the exit target in the predictive tracking range of the tracker

gives a chance for this target to be observed for a period of time before being tracked

by the tracker selected by the auctioneer. This means that the time of inobservance

is minimized.

7. The sensors that are observing other targets are out of the game (i.e. they don’t send

any bids) unless they realize that they can observe the new target as well as targets

they are currently observing.

8. If at any time before being tracked by the auction winner, the exit target enters the

sensing range of another busy tracker, this tracker will send a message indicating

that the target is now tracked and there is no need for more tracking. This message

will stop the tracker selected by the auctioneer from reaching this target.

9. Each mobile sensor communicates with its teammates the positions of the targets it

observes. So, if any of the sensors sees that it can observe new targets besides the

target or targets it currently observes (i.e., the new and the old targets are clustered

in one cluster that can be observed by this sensor), it sends a bid for this exit target.

5.7 Conclusion

In this chapter, a cooperative multi-target tracking strategy has been proposed for surveil-

lance and security applications using a team of mobile sensors. The Extended Kohonen
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Map is utilized for single target tracking and multi-target tracking. The presented tar-

get tracking methodology has decoupled the single target tracking algorithm from the

cooperation strategy. The hybrid subtractive–K-means clustering technique has been used

to cluster the targets in the given environment to minimize the number of active sen-

sors and thus save energy. The cueing/handoff market-based algorithm has been utilized

to coordinate the performance of the trackers while tracking the moving targets. Using

the cueing/handoff market-based method has enhanced energy efficiency of the proposed

multi-target tracking strategy to be an energy-efficient one.
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Chapter 6

Experimental Results

As mentioned previously in this thesis, three phases should be considered in order to

accomplish the surveillance mission: task allocation, target detection, and target tracking.

In this chapter, the simulations and results of these phases are presented in detail. The

task allocation simulations and results are presented first in section 6.1. This is followed

by the target detection and tracking simulations and results in section 6.2. Finally, some

conclusions are drawn in section 6.3.

6.1 Complex Task Allocation Simulations and Results

In order to evaluate the proposed task allocation approach, an area surveillance application

is considered, where the goal is to monitor some areas in a public place using a team of

mobile sensors, each equipped with a vision system and a laser range sensor. To tackle this

application, it is assumed that for each area, a set of surveillance points (vantage points)

is selected from which the mobile sensors can view the interior of the area as illustrated

in Fig. 4.2. The architecture under study achieves the surveillance task while keeping in

mind the minimization of the total traveling distance of the whole team. Sensors frequently
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use the SSP algorithm when bidding, and when reordering schedules after trades or task

completion.

6.1.1 Outdoor Scenario

The initial experiments are performed within a 2D simulation environment using Player/Stage

simulator [154, 155]. An outdoor scenario is considered first to assess the proposed task

allocation approach. An example of this scenario is a battlefield in which it is required to

know where the enemy is. In order to address this, the mobile sensors team divides the

battlefield into various areas. A set of surveillance points is selected from which the mobile

sensors can view the interior of each area. To simplify this scenario , an example of an

outdoor scenario was run with six different cases as shown in table 6.1 with 50 runs for

each case. These runs consider different-sized areas, different locations, and different intial

positions for the mobile sensor team. In this type of scenarios, the mobile sensors are per-

mitted to move from one vantage point to another passing into the areas of interest. The

results of this scenario, considering all previously mentioned algorithms in chapter 4, are

shown in table 6.2. The average cost is used as an evaluation metric for this comaprison.

The average cost is computed by calculating the cost of executing the mission task using

50 runs and then taking the average.

As seen in table 6.2, for both allocation types (centralized & hierarchical), using two

plans (2p) is better than using one plan (1p) for both search trees.

To assess the proposed task allocation algorithms, the proposed fixed and dynamic tree

allocation algorithms are compared with a higher level allocate-then-decompose, allocate-

then-decompose, and decompose-then-allocate algorithms mentioned in section 4.3.3. In

terms of this average cost, the results in Fig. 6.1, and Fig. 6.2 show that both fixed and

dynamic tree allocations (centralized and hierarchical) consistently outperform the other

algorithms, especially for the complex cases such as cases 4, 5, and 6. It can also be seen
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Table 6.1: Test Cases

Case Number of areas Number of mobile sensors

1 1 2

2 4 2

3 5 3

4 7 5

5 6 6

6 4 7

that the dynamic tree allocation outperforms fixed tree allocation, which was expected as

the replanning ability is added to the sensors in the dynamic tree allocation.

On average, the hierarchical task tree algorithm is better than the centralized task tree

algorithm, besides its good feature of relying on different auctioneers, compared to one

auctioneer in the centralized algorithm. This is because the hierarchical auctioning allows

more auction rounds to take place, and so the mobile sensors may find themselves in better

positions to win more tasks than their old positions if it is found beneficial to the whole

system. Thus the hierarchical auctioning increases the possibility of improving the system

performance than the centralized auctioning does.

In order to determine how the proposed tree allocation algorithms are affected by

problem complexity, two sets of experiments were conducted. In the first set, the number of

mobile sensors was varied while the number of areas was kept fixed, while in the second set,

the number of areas is varying while the number of mobile sensors is kept fixed. The results

for both sets (shown in Fig. 6.3, and Fig. 6.4) are deduced using the average of 50 trials.

The quality of the proposed algorithms is again evaluated using the average traveling cost

as can be seen in the experiments shown in Fig. 6.1, and Fig. 6.2. For each type of allocation
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Figure 6.1: Comparison of the average cost for centralized allocation mechanism for outdoor

environment

mechanism (centralized and hierarchical), as the number of mobile senosrs increases in the

first set shown in Fig. 6.3, the average traveling cost decreases. It can also be seen from

Fig. 6.3 that the average traveling cost is increased as more areas are incorporated into the

environment. For the second set of experiments shown in Fig. 6.4, as the number of areas

increases, the average traveling cost increases. Also, the average traveling cost is decreased

as more mobile sensors are used to achieve the surveillance mission. A general trend in the

results shown in Fig. 6.3, and Fig. 6.4 is that the hierarchical tree allocation outperforms

the centralized one.
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Figure 6.2: Comparison of the average cost for hierarchical allocation mechanism for outdoor

environment

6.1.2 Indoor Scenario

This subsection describes a surveillance simulations and results for an indoor scenario. An

example of this is the use of a team of mobile sensors to survey an indoor environment,

such as malls or airports. Fig. 6.13 shows a simplified plan view of Waterloo airport in the

city of Waterloo, Ontario, Canada. As shown, the Waterloo airport consists of six main

areas, and so the goal of the proposed system is to track targets within these areas, such as

people, in order to secure the airport. In order to accomplish this, the airport areas (areas

of interest (AOIs)) should first be allocated to the available mobile sensors. Each mobile

sensor will scan the allocated area, if any, looking for targets to track. Not all sensors will
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Figure 6.3: A comparison of the solution quality of task tree allocation varying the number of

mobile sensors

have areas to scan. In other words, the proposed task allocation approach may allocate

more than one area to one mobile sensor in order to minimize the traveling cost. The

number of areas of interest in this scenario is fixed (six areas), which is different than the

outdoor scenario mentioned above. So, the presented simulations in this section assumes

a fixed number of areas with varying the number of mobile sensors required to achieve the

surveillance mission.

The results of this scenario, considering all task allocation algorithms mentioned in

chapter 4, are shown in table 6.3. The experiments are performed within a 2D simulation

environment using Player/Stage simulator. As seen in table 6.3, different numbers of
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Figure 6.4: A comparison of the solution quality of task tree allocation varying the number of

areas

mobile sensors are considered: starting from two sensors and ending with eight sensors.

Each datum in table 6.3 is gotten by calculating the average of 50 runs. These runs

consider different initial mobile sensors positions. A general trend in these simulations is

that for both allocation types (centralized & hierarchical), using two plans (2p) is better

than using one plan (1p) for both search trees.

The proposed task allocation algorithms are compared with the existing task allocation

approaches, as was done in the outdoor scenario. The results in Fig. 6.5, and Fig. 6.6 show

that both fixed and dynamic tree allocations (centralized and hierarchical) consistently

outperform the other algorithms. It can also be seen that the dynamic tree allocation
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Figure 6.5: Comparison of the average cost for centralized allocation mechanism for indoor

environment

outperforms fixed tree allocation. The reason for this is the replanning ability, which is

added to the sensors in the dynamic tree allocation.

6.2 Target Tracking Simulation and Results

As mentioned in chapter 5, the target tracking algorithm for an individual target is de-

coupled from the cooperative tracking algorithm for a multi-tracking system. So, the

simulation results for single target tracking system, as a basis layer of the cooperative

multi-target system, are presented first. The target tracking algorithm design depends on
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targets, sensors, and environments. Target motion recognition is one of the fundamental ca-

pabilities that a mobile sensor must have in order to operate in an environment. Therefore

a single tracker which tracks and reports the positions of moving targets in the vicinity of

this tracker is designed. The simulation results of two types of trackers are presented – su-

pervised and unsupervised Extended Kohonen Maps. The tracking performance is judged

by both accuracy of tracking and speed of convergence. Also, the simulation results for a

cooperative multi-target tracking system are presented.

6.2.1 Tracking using Supervised Learning EKM

The first step in tracking a target using Extended Kohonen Maps is to estimate the pa-

rameters of the map. This can be done by using supervised learning. First, < perception;

action > pairs are collected by observing the sensor’s behavior during operation. Then, a

learning by examples method is used to estimate the parameters of the model, which is the

Extended Kohonen Map. To be more specific, an example is a pair < (sr, sl), (θ, dis)>.

(sr, sl) are the angular velocities of the left and right wheel, while (θ, dis) are the sen-

sor’s heading change and the distance traveled by its axle mid-point during a fixed time

∆t respectively. In [156], the authors observed that this neural network model has the

property of being naturally invertible. Given an input pattern, the network output value

is retrieved by competition on the neuron fan-in weight vectors. This is the standard use

of the input-output mapping, and is called forward mode. Also, given an output value, a

corresponding input pattern can be obtained by competition on the neuron fan-out weight

vectors. This is called backward mode. The invertibility property makes the Extended

Kohonen Map worth considering for sensory motor modeling.

In this section, the EKM is trained on the forward mode, namely on a transformation

from the space of motor commands to the space of visual perceptions. Now the trained

network is used in backward mode to compute the inverse function, which transforms a
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visual perception into a motor command. The task is to guide the mobile sensor to a

target location placed at arbitrary angle θ and distance dis in the workspace. The angle

and distance data are provided by the laser range sensor attached to the tracker. To be

more specific, θ is now defined as the angle between the sensor’s heading direction and

the vector connecting the sensor axle mid-point and the target, while dis is the Euclidean

distance between the sensor axle mid-point and the target location. The observed θ and

dis values are supplied to the EKM in backward mode to retrieve a velocity pair (sr, sl).

For this particular application, the competition on the pattern (θ, dis) has been designed

to consider its components in sequence. First, θ is processed. Thus, the competition is

restricted to the weight vector component of the neuron, which stores the angle information.

As the result of this preliminary step, a subset of grid neurons which match θ equally well is

selected. Second, dis is processed, but only on neurons selected at the previous step. The

competition is restricted to the weight vector component of the neuron which stores the

distance information. The overall competition process leads to the selection of a velocity

pair for the mobile sensor, namely the fan-in weight vector of the winning neuron. In

the simulations introduced next, 30x30 neurons are used in the structure of the Extended

Kohonen Map.

Fig. 6.7 shows tracking a moving target using supervised learning EKM. The small

circle and square are the initial positions of the target and the tracker respectively. The

indicated arrows shows the direction of movement of both, the target and the tracker. As

seen from the trajectories of the target and the tracker, the supervised learning EKM does

not provide a good tracking performance in terms of accuracy and tracking speed.

6.2.2 Tracking using Unsupervised Learning EKM

In this case, the same structure for the extended Kohonen map is used but without any

idea about the correct parameters of it (i.e., the fan-in and fan-out weights). Random
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Tracker

Target

Figure 6.7: single target tracking using supervised learning EKM

parameters can be assumed initially , which will be changed during unsupervised learn-

ing. Selecting the initial parameters is very challenging, because it will affect the speed of

convergence and the accuracy of the tracking algorithm. In this thesis, the parameters of

the Extended Kohonen Map are initially selected from the supervised learning stage (men-

tioned above). After that, the single target tracking algorithm mentioned in chapter 5 is

used to adjust these parameters, while the mobile sensor is trying to track the target (on-

line training). At each training cycle, the weights of the winning neuron and its neighbors

are modified to be closer to the sensory data (which are the angle and distance from the

tracker). The input weights of the Extended Kohonen Map are updated towards the actual

displacement of the tracker and the output weights are also updated. Thus, there will be
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a map between the actual displacement of the tracker and its motor commands. After

the extended Kohonen Map self organization has converged, the neurons will stabilize in

a state such that the input weights represent the displacements traveled by the tracker

and the output weights represent the corresponding motor commands that produce these

displacements. For any winning neuron ne, given the sensory input xp = wne, the neuron

will produce motor commands yp which yields a desired displacement v = wne. For sensory

input xp 6= wne but close to wne, the motor commands output produced by the winning

neuron will still yield the corresponding displacement. Therefore, the more neurons in the

Extended Kohonen Map structure, the finer and smoother the motion of the tracker.

Figure 6.8: single target tracking using unsupervised learning EKM

Fig. 6.8 shows tracking a moving target using unsupervised learning EKM. The input-

outputs weights of the unsupervised EKM are initialized using the final weights (after

127



learning) of the supervised EKM. The small circle and square are the initial positions of the

target and the tracker respectively. The indicated arrows shows the direction of movement

of both the target and the tracker. As seen from the trajectories of the target and the

tracker, the unsupervised learning EKM has provided a good tracking performance in terms

of accuracy and tracking speed compared to the supervised learning EKM performance

shown in Fig. 6.7.

6.2.3 Cooperative Multi-target Tracking Simulations

The proposed multi-target tracking algorithm is analyzed in various configurations. The

environment was designed to be a 6m x 9m rectangular shape. The sensors were initially

deployed in the environment based on the task allocation algorithm that assigned a set of

mobile sensors to a set of vantage points as described in chapter 4. Sensor sensing range

was set to be 1.5m. The cooperative multi target algorithm performance is judged by two

parameters: the average coverage AC (eq. 5.2) over time and the average energy saving

over time AE (eq. 6.1).

AE =
te∑

i=1

st

n
∗ 1

te
∗ 100 (6.1)

where st is the number of sleeping trackers, n is the total number of the trackers, and

te is the execution time of the algorithm.

The energy saving can be measured by considering the number of busy and sleeping

trackers over time. In order to do that, three different cases are analyzed. In the first case,

the number of mobile sensors n is equal to the number of targets m, and in the second

and third cases, the number of sensors is 3/4 and 1/2 the number of targets respectively.

In each case extensive simulations have been done by changing the locations of trackers

and targets, the speed of targets and trackers, the direction of targets and trackers,and the
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number of clusters. The average coverage and average energy saving have been recorded

for around 25 trials in each case. The average coverage and the average energy saving for

all the cases are shown in Fig. 6.9 and Fig. 6.10 respectively. Each point shows the average

coverage or the average energy saving obtained in 25 simulated runs.

0 2 4 6 8 10 12 14 16
60

65

70

75

80

85

90

95

100

Time in quarters of minutes

n = m

n = (3/4)m

n = (1/2)m

Figure 6.9: comparison between EKM average coverage for different n and m ratios

As shown in Figs. 6.9 and 6.10, the average coverage and the average energy saving

percentage decrease with time. This was expected because the clustered targets will spread

in the environment over time and which will require more trackers to track them, which

decrease the energy savings. Also, the average coverage will decrease especially when the

number of targets is more than the number of trackers (n = (3/4)m, and n = (1/2)m).

The performance of the proposed approach is evaluated by comparing it with four

different approaches with different observation policies: (1)Local approach [123], (2)A-
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Figure 6.10: comparison between EKM average energy saving for different n and m ratios

CMOMMT approach [123], (3)B-CMOMMT approach [157], and (4)Modified B-CMOMMT [49].

The Local approach controls the tracker motion by computing the summation of the attrac-

tive forces coming from nearby targets and the repulsive forces coming from nearby trackers.

The A-CMOMMT approach was studied to determine the effectiveness of weighting the

force vectors coming from the nearby targets. Adding the weights to the force vectors in

A-CMOMMT causes the trackers to be less attractive to targets that are already observed

by other trackers. The B-CMOMMT approach is essentially proposed to overcome some

problematic situations that may arise in the A-CMOMMT approach. More detailed discus-

sions of these situations can be found in [49, 157]. The most important difference between

A-CMOMMT and B-CMOMMT is that the force vectors coming from nearby trackers are

weighted as well. The B-CMOMMT approach is improved by introducing more refined
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techniques for target loss prediction in [49]. The comparison results are shown in Fig. 6.11.
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Figure 6.11: comparison between EKM and other approaches

Fig. 6.11 summarizes the results of this comparison with different m/n ratios (every

point is the average of 25 simulated runs). These results show nearly equivalent perfor-

mance of our proposed algorithm and the improved B-CMOMMT approach for small m/n

ratios, but also the superior performance of our target tracking approach for larger m/n

ratios. Although, we did not prove that the simulation results would hold for larger m/n

ratios, it is expected that results similar to what we did will continue for larger m/n ratios.

More interesting is the detailed comparative performance of the proposed approach

with the improved B-CMOMMT when m/n equal to one. As shown in Fig. 6.12, the

proposed algorithm provides a good coverage performance compared to the B-CMOMMT

algorithm. Furthermore, the proposed algorithm provides average energy savings between
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8% and 45%, compared to 0% energy saving in the CMOMMT algorithm as shown in

table 6.4. The CMOMMT algorithm gives 0% energy saving because all trackers are

always busy, even if there are no targets to track (the trackers explore the environment

searching for targets even if there are no targets to track).
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Figure 6.12: comparison between EKM and CMOMMT average coverage for n = m

Table 6.4: Energy saving comparison

Case Energy saving in EKM Energy saving in CMOMMT

n=m 20-45% 0%

n=(3/4)m 12-31% 0%

n=(1/2)m 8-23% 0%

132



An example of the indoor surveillance scenario is shown in Fig. 6.13. As shown, the

mobile sensors (red ones) are used to survey the six areas of Waterloo airport using the

proposed task allocation algorithm. The mobile sensors in this scenario are not allowed to

pass from one AOI to another except through the entrances of each AOI. In other words,,

the implemented SSP algorithm which is used to find the order of visiting the vantage

points considers moving from AOI to another through the entrances only. After surveying

the areas, the mobile sensors track the center of gravity of the detected targets (blue ones)

using the proposed tracking algorithm. The green lines indicate that the blue targets are

detected by the mobile sensors using the fiducial finder detection algorithm. The cones

shown in the figure indicate the sonars the mobile sensors are using for obstacle avoidance.

Figure 6.13: Waterloo airport Surveillance
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Finally, Fig. 6.14 shows the mission fulfillment time for the Waterloo airport as the

number of available mobile sensors is varied. The mission fulfillment time represents the

total required time to reposition the mobile sensors according to the designed vantage

points, search the areas of interest, and track the detected targets in these areas of interest.

As seen, the mission fulfillment time decreases as the number of mobile sensors increases.
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Figure 6.14: Mission fulfillment time for Waterloo airport surveillance

6.3 Conclusion

In this chapter, the simulations and results for complex task allocation are presented. Two

scenarios were introduced: outdoor, and indoor. The results of the conducted experiments

showed that hierarchical dynamic tree task allocation outperforms all other techniques,
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especially in complex surveillance operations. Also, the simulation results for multi-sensor

target tracking have been presented. Two versions of an Extended Kohonen Map (EKM)

are presented; supervised, and unsupervised. The results for cooperative multi target

tracking have been presented as well. It has been shown that the unsupervised EKM gives

a better performance than the supervised Extended Kohonen Map in terms of the tracking

accuracy and speed of convergence. The proposed tracking algorithm has shown also a

good coverage performance compared to the existing literature as wellas having the ability

to outperform the other existing approaches in terms of energy saving.
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Chapter 7

Conclusion

7.1 Conclusion

In recent years, mobile surveillance systems research has received an increasing amount of

attention from researchers in academia, government laboratories and industry [34, 96,101].

This research activity has borne some fruit in tackling some of the challenging problems of

mobile surveillance that are still open. These research problems include, but are not limited

to: task allocation, mobile sensor deployment, multisensor management, cooperative object

detection and tracking, decentralized data fusion, and interoperability and accessibility of

system nodes.

Most of the current research in the field of surveillance systems focuses on studying

the performance of these systems while tackling some of the previously mentioned chal-

lenges, but without consideration of tackling them collectively seeking a unified surveillance

framework.

A market-based framework for mobile surveillance systems has been presented in this

thesis. The proposed framework capitalizes on the strengths of market economies that
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enable mobile sensing agents to collectively execute complex tasks efficiently and reliably.

Task allocation and cooperative target-tracking have been studied in this thesis using the

proposed framework as two challenging problems of mobile surveillance systems. These

challenges are addressed individually and collectively.

For the task allocation problem, centralized and hierarchical complex task allocation

algorithms with fixed and dynamic trees have been presented. Both breadth first, and

depth first search mechanisms have been used to search the proposed task trees. It has

been shown through extensive simulation experiments using Player/Stage simulator that

hierarchical dynamic tree task allocation outperforms other existing techniques, especially

in complex surveillance operations where a large number of mobile sensors is used to scan

a large number of areas.

A cooperative multi-target tracking methodology has also been proposed based on the

proposed framework. Two kinds of target tracking algorithms have been designed and

implemented: supervised, and unsupervised. The proposed target tracking algorithms are

based on an Extended Kohonen neural network. Also, a hybrid clustering technique has

been proposed to cluster the targets in the given environment to minimize the number of

active sensors while tracking the moving targets. In order to coordinate the performance

of the mobile sensors during tracking, a cueing/handoff market-based algorithm has been

presented.

A set of experiments are designed to evaluate the performance of the developed algorith-

mic solutions in indoor and outdoor scenarios. Analysis of the experimental results shows

that the proposed market-based framework successfully handles complex task allocation

and cooperative target detection and tracking in mobile surveillance systems.
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7.2 Future Work

While many questions have been answered in this thesis, there are a number of potential

research directions that are worth pursuing to build upon this research. Some of these

directions are as follows:

1. Although the performance of the proposed surveillance framework has been investi-

gated in both outdoor, and indoor environments, the proposed framework may be

developed to be a more generic framework to cope with a variety of complex and

dynamic environments.

2. Further research may also investigate the effect of using combinations of stationary

and mobile sensors on the performance of the proposed surveillance framework.

3. The proposed task allocation algorithms can be extended to handle constrained and

tight tasks. An example for constrained tasks could be two tasks which cannot be

done independently, as the same sensor would obviously have to do both of them.

Tight tasks cannot be decomposed into further single sensor tasks. In this case, a

subgroup of mobile sensors could determine their joint costs and submit joint bids

for such type of tasks. Also to ensure cost independence between the sub-teams, the

proposed framework should be extended to include the constraint that the sub-teams

being awarded tight tasks are disjoint.

4. Another extension that may be incorporated into the proposed surveillance frame-

work is the minimization of team makespan. This can be done by changing the global

objective function to minimize the maximum cost incurred by any mobile sensor while

optimizing overall mission time.

5. The proposed framework may also be developed to tackle the other surveillance

challenges like situation awareness and sensor management.
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6. The proposed framework may also be developed to tackle extended type of assign-

ment. This will require developing some scheduling algorithms to deal with this type

of assignment.

7. Test and evaluate the performance of the proposed setup in a real testbed that

realistically simulates surveillance systems. This testbed can be set up by integrating

a set of small mobile robots (Khepera III for example) with a wireless sensor network,

RFID and wireless cameras.
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