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Abstract

The seminal paper by Gerber and Shiu (1998) gave a huge boost to the study of risk theory

by not only unifying but also generalizing the treatment and the analysis of various risk-related

quantities in one single mathematical function - the Gerber-Shiu expected discounted penalty func-

tion, or Gerber-Shiu function in short. The Gerber-Shiu function is known to possess many nice

properties, at least in the case of the classical compound Poisson risk model. For example, upon

the introduction of a dividend barrier strategy, it was shown by Lin et al. (2003) and Gerber et al.

(2006) that the Gerber-Shiu function with a barrier can be expressed in terms of the Gerber-Shiu

function without a barrier and the expected value of discounted dividend payments. This result

is the so-called dividends-penalty identity, and it holds true when the surplus process belongs to

a class of Markov processes which are skip-free upwards. However, one stringent assumption of

the model considered by the above authors is that all the interclaim times and the claim sizes

are independent, which is in general not true in reality. In this thesis, we propose to analyze the

Gerber-Shiu functions under various dependent structures. The main focus of the thesis is the

risk model where claims follow a Markovian arrival process (MAP) (see, e.g., Latouche and Ra-

maswami (1999) and Neuts (1979, 1989)) in which the interclaim times and the claim sizes form

a chain of dependent variables. The first part of the thesis puts emphasis on certain dividend

strategies. In Chapter 2, it is shown that a matrix form of the dividends-penalty identity holds

true in a MAP risk model perturbed by diffusion with the use of integro-differential equations and

their solutions. Chapter 3 considers the dual MAP risk model which is a reflection of the ordi-

nary MAP model. A threshold dividend strategy is applied to the model and various risk-related

quantities are studied. Our methodology is based on an existing connection between the MAP

risk model and a fluid queue (see, e.g., Asmussen et al. (2002), Badescu et al. (2005), Ramaswami

(2006) and references therein).

The use of fluid flow techniques to analyze risk processes opens the door for further research as
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to what types of risk model with dependency structure can be studied via probabilistic arguments.

In Chapter 4, we propose to analyze the Gerber-Shiu function and some discounted joint densities

in a risk model where each pair of the interclaim time and the resulting claim size is assumed to

follow a bivariate phase-type distribution, with the pairs assumed to be independent and identically

distributed (i.i.d.). To this end, a novel fluid flow process is constructed to ease the analysis.

In the classical Gerber-Shiu function introduced by Gerber and Shiu (1998), the random vari-

ables incorporated into the analysis include the time of ruin, the surplus prior to ruin and the

deficit at ruin. The later part of this thesis focuses on generalizing the classical Gerber-Shiu func-

tion by incorporating more random variables into the so-called penalty function. These include

the surplus level immediately after the second last claim before ruin, the minimum surplus level

before ruin and the maximum surplus level before ruin. In Chapter 5, the focus will be on the

study of the generalized Gerber-Shiu function involving the first two new random variables in

the context of a semi-Markovian risk model (see, e.g., Albrecher and Boxma (2005) and Janssen

and Reinhard (1985)). It is shown that the generalized Gerber-Shiu function satisfies a matrix

defective renewal equation, and some discounted joint densities involving the new variables are

derived. Chapter 6 revisits the MAP risk model in which the generalized Gerber-Shiu function

involving the maximum surplus before ruin is examined. In this case, the Gerber-Shiu function

no longer satisfies a defective renewal equation. Instead, the generalized Gerber-Shiu function can

be expressed in terms of the classical Gerber-Shiu function and the Laplace transform of a first

passage time that are both readily obtainable.

In a MAP risk model, the interclaim time distribution must be phase-type distributed. This

leads us to propose a generalization of the MAP risk model by allowing for the interclaim time to

have an arbitrary distribution. This is the subject matter of Chapter 7. Chapter 8 is concerned

with the generalized Sparre Andersen risk model with surplus-dependent premium rate, and some

ordering properties of certain ruin-related quantities are studied. Chapter 9 ends the thesis by

some concluding remarks and directions for future research.
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Chapter 1

Introduction and preliminaries

1.1 Background

If we denote the surplus process of an insurance company by {Ut}t≥0, it is typically modelled as

Ut = u + ct−
Nt∑
i=1

Yi , t ≥ 0 , (1.1)

where u = U0 is the initial surplus and c > 0 is the incoming premium rate per unit time.

Furthermore, {Yi}∞i=1 is a sequence of positive random variables with Yi representing the size of

the i-th claim; while the claim number process {Nt}t≥0 is defined through the positive interclaim

times {Vi}∞i=1 with V1 being the time of the first claim and Vi for i = 2, 3, . . . the time between

the (i − 1)-th claim and the i-th claim, i.e. Nt = sup{i ∈ N :
∑i

j=1 Vj ≤ t}. Also, we let

T = inf{t ≥ 0 : Ut < 0} be the time of ruin with T = ∞ if ruin does not occur. Then, in the case

of ruin, UT− and |UT | represent the surplus prior to ruin and the deficit at ruin respectively.

Note that the above definition of the surplus process {Ut}t≥0 is very general in terms of the

distributions of the interclaim times and the claim sizes, since nothing is specified about {Yi}∞i=1
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and {Vi}∞i=1 (or {Nt}t≥0). In particular, if {Yi}∞i=1 and {Vi}∞i=1 are both independent and identically

distributed (i.i.d.) sequences independent of each other, then the model (1.1) represents a Sparre

Andersen risk model. If it is further assumed that any arbitrary Vi is exponentially distributed,

then the model (1.1) further reduces to the classical compound Poisson risk model. See, e.g.,

Cramér (1955), Gerber (1979), Grandell (1991), Seal (1969) and Sparre Andersen (1957) for the

very first treatments of the above two special cases.

The seminal paper by Gerber and Shiu (1998) introduced the Gerber-Shiu expected discounted

penalty function (or simply Gerber-Shiu function) defined by

φδ(u) = E
[
e−δT w(UT− , |UT |)1{T < ∞}|U0 = u

]
, u ≥ 0 , (1.2)

in the context of the classical compound Poisson risk model, where δ ≥ 0, w : R2 → R is the

so-called penalty function assumed to satisfy some mild integrable conditions, and 1{A} is the

indicator function of the event A. Here δ can either be viewed as a force of interest or a Laplace

transform argument. Gerber and Shiu (1998) showed that φδ(u) satisfies a defective renewal

equation whose solution can be expressed in terms of a compound geometric tail (see, e.g., Lin

and Willmot (1999) and Resnick (1992)). The introduction of the Gerber-Shiu function is indeed

an extremely clever idea which not only unifies but also generalizes the treatment of the three risk-

related quantities T , UT− and |UT |. Plenty of information can be extracted from the Gerber-Shiu

function by assuming a specific penalty function w(., .). For example, one of the most simplest

cases is where w(., .) ≡ 1, then φδ(u) reduces to the Laplace transform (with argument δ) of the

time of ruin. By further assuming that δ = 0, the ruin probability is obtained. Another important

choice of penalty function would be w(x, y) = e−s1x−s2y, which leads to the trivariate Laplace

transform of (T, UT− , |UT |). Analytic Laplace transform inversions with respect to (δ, s1, s2) yield

the trivariate density of (T, UT− , |UT |), as illustrated by Landriault and Willmot (2009). Other

information which can be extracted from φδ(u) includes (but is not limited to) the moments of

T , UT− and |UT | (see Lin and Willmot (2000)). We remark that in many cases, the extraction
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of specific information from the Gerber-Shiu function is not trivial, even if it is clear that the

information in question is contained in the Gerber-Shiu function.

Now if we return to the model (1.1) in general, the Gerber-Shiu function (1.2) can also be

defined accordingly. However, depending on the specific assumptions on {Yi}∞i=1 and/or {Vi}∞i=1

of some particular models, the definition (1.2) might have to be modified. For example, if the

surplus process has an underlying Markovian environment (see, e.g., Asmussen (2000)), it might

be convenient to define the Gerber-Shiu function with the additional information of the state at

ruin, conditional on the initial state of the Markov chain. To avoid confusion, we delay these

definitions until later chapters where specific models are encountered.

Note also that modifications such as Brownian motion (see, e.g., Dufresne and Gerber (1991),

Gerber (1970), Gerber and Landry (1998) and Tsai and Willmot (2002)), dividend barrier (see,

e.g., Gerber (1979) and Lin et al. (2003)) and dividend threshold (see, e.g., Lin and Pavlova (2006)

and Lin and Sendova (2008)) are absent in the model (1.1), and can indeed be incorporated into

it. Furthermore, a dual version of (1.1) can also be defined by reflection of the sample paths, and

such a reflected process would be suitable for companies which incur expenses at constant rate

over time and earn occasional gains that are random in nature (see, e.g., Avanzi et al. (2007)

and Seal (1969)). Again, we delay the definitions of such modifications, if any, to later chapters

when they are needed. In the next section, we primarily focus on the various specific dependency

structures imposed on {Yi}∞i=1 and/or {Vi}∞i=1 pertaining to the model (1.1).
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1.2 Various dependency structures

1.2.1 MAP risk model

In a MAP risk model, the claim number process {Nt}t≥0 follows a Markovian arrival process

(MAP). The MAP risk model is the main subject of this thesis. Under a MAP risk model,

{Nt}t≥0 has representation MAP(a,G0,G1) of order m. A MAP is a two-dimensional Markov

process on the state space N × {1, . . . ,m} for which the first dimension reflects the evolution of

the total number of claims over time while the second refers to the evolution of an underlying

irreducible homogeneous continuous-time Markov chain (CTMC) {Jt}t≥0 with finite state space

E = {1, . . . , m}. For such a process, transitions of the MAP are subdivided into two categories:

• transitions of the CTMC from state i to state j (j 6= i) without an accompanying claim

(type 1); and

• transitions of the CTMC from state i to state j (with the possibility of i = j) with an

accompanying claim (type 2).

Transitions of type 1 are governed by the generator G0 for which its (i, j)-th element G0,ij ≥ 0

corresponds to the instantaneous rate of transition from state i to state j 6= i in E without an

accompanying claim. Type-2 transitions are governed by the generator G1 for which its (i, j)-th

element G1,ij ≥ 0 corresponds to the instantaneous rate of transition from state i to state j in E

with an accompanying claim. The diagonal elements of G0 are assumed to be negative and such

that the sum of the elements on each row of the matrix G0 + G1 is zero. We denote by a the

initial probability vector of the underlying CTMC at time 0. For a detailed treatment of MAPs,

we refer the reader to, e.g., Latouche and Ramaswami (1999) and Neuts (1979, 1989).

For type-2 transitions, it is further assumed that the distribution of the accompanying claim

size may depend on the state of the CTMC immediately before and after the transition. Thus, for

4



a type-2 transition of the CTMC from state i to state j, the accompanying claim size is assumed

to have density pij(.) and cumulative distribution function (c.d.f.) Pij(.) with finite mean µij.

To ensure that the surplus process {Ut}t≥0 defined by (1.1) drifts to infinity in the long run, the

positive security loading condition has to be satisfied. In our setup, this condition is given by

m∑
i=1

πi

m∑
j=1

G1,ijµij < c , (1.3)

where π = (π1, π2, . . . , πm) represents the stationary probabilities of the CTMC {Jt}t≥0, and can

be solved from the system 



π(G0 + G1) = 0 .

π1 = 1 .
(1.4)

Here 0 is a zero column vector and 1 is a column vector of ones, both of appropriate dimension.

Indeed, the left-hand side of (1.3) represents the long run average claim per unit time, and therefore

condition (1.3) guarantees that on average the premium income is sufficient to cover the claim

cost.

It is instructive to note that the MAP risk model contains various well-known models as special

cases. For example, it contains the Sparre Andersen risk model with phase-type interclaim times.

More specifically, if {Vi}∞i=1 is an i.i.d. sequence having phase-type distribution with representation

PH(α,G), then we simply let a = α, G0 = G and G1 = −G1a. In addition, by letting G0 and G1

be diagonal respectively, the MAP risk model reduces to the semi-Markovian risk model and the

Markov-modulated risk model considered by Albrecher and Boxma (2005) and Asmussen (2000)

respectively. Interested readers are also referred to Ahn and Badescu (2007) for the study of

Gerber-Shiu function in the MAP risk model with phase-type claims via connection to a fluid

queue.
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1.2.2 Generalized Sparre Andersen risk model

In the generalized Sparre Andersen risk model, we assume that the bivariate random vectors

{(Vi, Yi)}∞i=1 form an i.i.d. sequence, so that {cVi − Yi}∞i=1 is also an i.i.d. sequence implying that

the surplus process {Ut}t≥0 retains the Sparre Andersen random walk structure. We may also

refer the generalized Sparre Andersen risk model as the Sparre Andersen type risk model. In such

a model, the positive security loading condition which ensures that the surplus process {Ut}t≥0

goes to infinity in the long run is given by

E[Y ] < cE[V ] , (1.5)

where (V, Y ) denotes an arbitrary pair of (Vi, Yi). See, e.g., Prabhu (1998, Theorems 3 and 7).

Asymptotics for ruin probabilities in the above model were examined by Albrecher and Teugels

(2006) when claims are light-tailed, while the Gerber-Shiu function was studied by Cheung et al.

(2010c).

With regards to the generalized Sparre Andersen risk model with specific distributional as-

sumptions on the generic bivariate random vector (V, Y ), in this thesis we shall only consider the

case where (V, Y ) is assumed to follow a bivariate phase-type distribution via a novel connection

to a fluid flow process (see Chapter 4). This methodology is in contrast to the analytic methods

employed by the papers in the previous paragraph. Interested readers are also referred to, e.g.,

Boudreault et al. (2006) and Cossette et al. (2008) for certain generalized Sparre Andersen risk

model under other specific (and tractable) distributional assumptions on the bivariate random

vector (V, Y ).
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1.2.3 Semi-Markovian risk model

One of the very first semi-Markovian risk models was proposed by Janssen and Reinhard (1985).

However, the model described there is too general for detailed analysis to be done. From now on,

when we refer to a semi-Markovian risk model, we mean the following model described here. Let

%0 be the environmental state at time 0 and %i be the environmental state immediately following

the i-th claim. We assume that {%i}∞i=0 is a homogeneous and irreducible discrete-time Markov

chain (DTMC) on the state space E = {1, 2, . . . ,m} with one-period transition probability matrix

P = [pij]
m
i,j=1. Furthermore, for i = 1, 2, . . ., Vi|%i−1 = j is assumed to have density kj(.), c.d.f.

Kj(.) and mean κj, while Yi|%i = j has density bj(.), c.d.f. Bj(.), survival function Bj(.) and mean

µj. Conditional on {%i}∞i=0, {Yi}∞i=1 and {Vi}∞i=1 are all mutually independent. Combining all the

above assumptions, it follows that, for i = 1, 2, . . . and j, k ∈ E,

Pr {Yi ≤ y, Vi ≤ t, %i = k|%i−1 = j} = Kj(t)pjkBk(y) , t, y ≥ 0 . (1.6)

We remark that when the kj(.)’s are exponential densities, (1.6) reduces to Eq. (2) of Albrecher

and Boxma (2005), and hence the model (1.1) becomes the semi-Markovian risk model considered

by them. The positive security loading condition under the semi-Markovian risk model is given

by
m∑

j=1

πj(cκj − µj) > 0 , (1.7)

where π = (π1, π2, . . . , πm) is the stationary distribution of the Markov chain {%i}∞i=0 satisfying





π = πP .

π1 = 1 .
(1.8)

See, e.g., Reinhard (1984, Theorem 4).
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1.2.4 Similarities and differences between the dependent risk models

While it is trivial that the classical compound Poisson risk model (in which {Yi}∞i=1 and {Vi}∞i=1

are mutually independent i.i.d. sequences with any arbitrary Vi being exponentially distributed) is

contained in all of the above-mentioned risk models involving different dependency structures, one

should keep in mind that the three risk models of our interest are not special cases of each other.

There are notable similarities as well as important differences between them. Certain similarities

are first summarized as follows.

1. The dependency structures in the MAP risk model in Section 1.2.1 and the semi-Markovian

risk model in Section 1.2.3 are both induced by an underlying Markov chain. As mentioned

earlier, they both contain Albrecher and Boxma (2005)’s semi-Markovian risk model as

special case.

2. Both the generalized Sparre Andersen risk model in Section 1.2.2 and the semi-Markovian

risk model in Section 1.2.3 allow for the modelling of arbitrary inter-arrival times between

successive claims.

Therefore, the semi-Markovian risk model appears to have the characteristics of both the MAP

risk model and the generalized Sparre Andersen risk model. Nonetheless, the following differences

should also be noted.

1. While the generalized Sparre Andersen risk model and the semi-Markovian risk model allow

for arbitrary interclaim times, in a MAP risk model the interclaim times are phase-type

distributed.

2. In the semi-Markovian risk model, any dependency between the claim sizes and the inter-

claim times is modelled via a Markov chain. This is in contrast to the generalized Sparre

Andersen risk model in the generic pair (V, Y ) is allowed to have arbitrary dependency
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structure. Moreover, the interclaim times form an i.i.d. sequence in the generalized Sparre

Andersen risk model, while the same is not true of the semi-Markovian risk model.

With regards to the motivation of the different risk models, the use of an underlying Markov

chain in both the MAP risk model and the semi-Markovian risk model allows the modelling of

different insurance claim frequencies and/or severities under different economic environments (e.g.

‘normal’ or ‘dangerous’ state). On the other hand, the generalized Sparre Andersen risk model

is suitable when a given interclaim time possibly has an impact on distribution of the resulting

claim size, which is evident in the context of earthquake insurance (see Boudreault et al. (2006)).

1.3 Generalizations of the Gerber-Shiu function

It has been more than ten years since the seminal paper by Gerber and Shiu (1998) was published.

Over the past ten years, researchers have been performing the Gerber-Shiu analysis for various

increasingly complex models, but very limited research has been done on generalizing the Gerber-

Shiu function itself. Until recently, several generalizations have been made to incorporate more

information into the Gerber-Shiu function so as to study the behaviour of the surplus process

before the time of ruin T (as opposed to UT− and |UT | which are defined at time T ). For

example, Cai et al. (2009b) generalized the Gerber-Shiu function by applying a ‘cost’ to every

point along the sample path until ruin through the use of a cost function (instead of only applying

a ‘penalty’ at ruin through the penalty function). In addition, Cheung et al. (2010b) incorporated

additionally the surplus level immediately after the second last claim before ruin into the penalty

function in the classical compound Poisson risk model, while Biffis and Morales (2010) incorporated

the minimum surplus level before ruin into the penalty in a Lévy insurance risk model using a

fluctuation identity given by Doney and Kyprianou (2006). Cheung et al. (2010c) considered a

penalty function involving both of the above two variables in the generalized Sparre Andersen risk

9



model described in Section 1.2.2, while Cheung and Landriault (2010) used a penalty function

which involves the maximum surplus prior to ruin in a risk model with taxation (see Albrecher

and Hipp (2007) for the descriptions of a tax model).

To introduce certain generalizations of the Gerber-Shiu function (1.2), we first define the

sequence {Rn}∞n=0 such that

Rn = u +
n∑

i=1

(cVi − Yi) , n = 0, 1, . . . . (1.9)

Clearly, Rn represents the surplus level immediately after the n-th claim for n = 0, 1, . . ., with

the usual assumption that the zero-th claim occurs at time 0. Then, we are interested in the

quantity RNT−1, which is the surplus level immediately after the second last claim before ruin. A

generalization of the Gerber-Shiu function (1.2), as suggested by Cheung et al. (2010b), would be

φδ(u) = E
[
e−δT w(UT− , |UT |, RNT−1)1{T < ∞}|U0 = u

]
, u ≥ 0 . (1.10)

Cheung et al. (2010b) demonstrated that the Gerber-Shiu function (1.10) can be applied to

find the distribution of the last interclaim time VNT
= (UT− − RNT−1)/c, and showed that it

is stochastically smaller than a generic interclaim time variable in the context of the classical

compound Poisson risk model, which agrees with intuition (see Chapter 8 for generalizations of

such a result). Furthermore, the Gerber-Shiu function (1.10) can also be used to find the joint

distribution of VNT
together with the claim causing ruin YNT

= UT−+|UT |. In general, one expects

the pair (VNT
, YNT

) to be dependent even if independence is assumed between the sequences {Yi}∞i=1

and {Vi}∞i=1.

Cheung et al. (2010c) extended the Gerber-Shiu function (1.10) by further incorporating the

minimum surplus level before ruin XT = min0≤s<T Us into the penalty function. Such an extension
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now reads

φδ(u) = E
[
e−δT w(UT− , |UT |, XT , RNT−1)1{T < ∞}|U0 = u

]
, u ≥ 0 . (1.11)

It was shown in Cheung et al. (2010c) that the above Gerber-Shiu function under the generalized

Sparre Andersen risk model satisfies a defective renewal equation, generalizing certain results

in, e.g., Boudreault et al. (2006), Cossette et al. (2008) and Willmot (2007), where additional

distributional and/or dependency assumptions are made on {Yi}∞i=1 and/or {Vi}∞i=1. Cheung et

al. (2010c) also showed that the distribution of the last ladder height XT + |UT | can be obtained

from the Gerber-Shiu function (1.11).

Opposite to the minimum surplus before ruin XT , one might be interested to study the max-

imum surplus before ruin ZT = max0≤s<T Us, whose marginal distribution was studied by, e.g.,

Li and Dickson (2006). As far as the Gerber-Shiu function is concerned, we shall consider the

generalization (see Cheung and Landriault (2010))

φδ(u) = E
[
e−δT w(UT− , |UT |, ZT )1{T < ∞}|U0 = u

]
, u ≥ 0 . (1.12)

The Gerber-Shiu function (1.12) allows for the study of the largest distance of the surplus process

up to and including the time of ruin, namely ZT + |UT |, which would help the understanding of

the variability of the surplus process in case of ruin.

The study of the Gerber-Shiu functions (1.11), (1.12) and (1.10) will be the main subject of

Chapters 5, 6 and 8 respectively under different risk models. The classical variables (T, UT− , |UT |),
the afore-mentioned new variables (XT , RNT−1, ZT ) as well as their related quantities for a typical

sample path are graphically depicted in Figure 1.1 below.
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Figure 1.1: New variables and their related quantities

1.4 Mathematical preliminaries

1.4.1 Notations and operators

Notations introduced earlier in this chapter will be adopted throughout the entire thesis unless

specified otherwise. For example, 1{A} is the indicator function of the event A, and T is the time

of ruin. Furthermore, we shall always assume w to be the penalty function (with the appropriate

number of arguments depending on whether (1.2), (1.10), (1.11) or (1.12) is referred to) which

satisfies some mild integrable conditions. Matrices will be denoted in boldface, and we shall

assume 0, 1 and I to be the zero matrix (or vector), a column vector of ones, and the identity

matrix respectively, all of appropriate dimension.

There are also several operators which will be used throughout the thesis. First, the Dickson-

Hipp operator Tr (see, e.g., Dickson and Hipp (2001)) is defined as, for any integrable real-valued
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function f(.) on (0,∞) and any complex number r with Re(r) ≥ 0,

Trf(y) =

∫ ∞

y

e−r(x−y)f(x) dx , y ≥ 0 . (1.13)

The Dickson-Hipp operator is known to possess several nice properties. For example, from Li and

Garrido (2004, Section 3, properties 2 and 6), we know that, for any complex numbers r1 6= r2,

Tr1Tr2f(y) = Tr2Tr1f(y) =
Tr1f(y)− Tr2f(y)

r2 − r1

, y ≥ 0 , (1.14)

while for distinct complex numbers r1, r2, . . . , rk, (1.14) can be extended to

Trk
. . . Tr2Tr1f(y) = (−1)k−1

k∑

l=1

Trl
f(y)

τ ′k(rl)
, y ≥ 0 , (1.15)

where τk(r) =
∏k

l=1(r − rl). The two properties (1.14) and (1.15) will be used later in the thesis.

Apart from the Dickson-Hipp operator, we also define the convolution operator ∗, for any

functions f(.) and g(.) on (0,∞),

(f ∗ g)(y) =

∫ y

0

f(y − x)g(x) dx =

∫ y

0

g(y − x)f(x) dx = (g ∗ f)(y) , y ≥ 0 . (1.16)

Furthermore, the first divided difference of any function f(.) with respect to two distinct

numbers x1 and x2 is defined to be

f [x1, x2] =
f(x1)− f(x2)

x1 − x2

, (1.17)

while the second divided difference with respect to three distinct numbers x1, x2 and x3 is defined

to be

f [x1, x2, x3] =
f [x1, x2]− f [x1, x3]

x2 − x3

, (1.18)
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and one can move on to define the k-th divided difference of the function f(.). By noting the

similarity between the double Dickson-Hipp operator (1.14) and the divided difference (1.17), one

can see that a result similar to (1.15) also holds true for the k-th divided difference of a function.

Since this will not be used explicitly in this thesis, we omit the details. We also remark that the

notion of divided difference can be extended from scalar to matrix quantities (see, e.g., Lu and

Tsai (2007)), and this will be considered in Chapter 5.

Finally, the Laplace transform of a function f(.) on (0,∞) is defined to be, for any complex

number s with Re(s) ≥ 0,

f̃(s) =

∫ ∞

0

e−sxf(x) dx , y ≥ 0 . (1.19)

For the rest of the thesis, we shall use the notation ‘ ˜ ’ to denote the Laplace transform of

a function. Furthermore, when the Laplace transform of a random variable is referred to, it is

understood that we mean the Laplace transform with respect to the density of the random variable

(since we are mostly concerned with continuous random variables in this thesis). Note that the

Laplace transform is in fact a special case of the Dickson-Hipp operator defined by (1.13) since

Trf(0) = f̃(r) for Re(r) ≥ 0.

The following conventions will be adopted throughout the thesis. The Dickson-Hipp operator

(Laplace transform) of a matrix.vector is simply the matrix/vector containing the Dickson-Hipp

operator (Laplace transform) of its individual elements. Also, the derivative of a matrix/vector

represents the same matrix/vector whose elements are singly differentiated.
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1.4.2 Fluid flow process, related quantities and its connection to risk

process

A detailed review of the fluid process used to analyze risk process has been given in, e.g., Badescu

et al. (2007a). To keep this thesis self-contained, a brief review is presented here.

Underlying the fluid level process {F (t)}t≥0 in this thesis is an irreducible homogeneous CTMC

{J (F )(t)}t≥0 which defines an environmental process. The states of this process are also referred

to as ‘phases’. The CTMC {J (F )(t)}t≥0 is assumed to have finite state space S = S0∪S1∪S2 and

infinitesimal generator

Q =




Q00 Q01 Q02

Q10 Q11 Q12

Q20 Q21 Q22




, (1.20)

where for i, j = 0, 1, 2, the submatrix Qij is an |Si| × |Sj| matrix containing the (r, s)-th elements

of the infinitesimal generator Q for all r ∈ Si and all s ∈ Sj. The partition of the state space S

into S0, S1 and S2 is as follows:

• during a sojourn of {J (F )(t)}t≥0 in S1 (S2), the fluid process {F (t)}t≥0 increases (decreases)

at a constant rate of c; and

• during a sojourn of {J (F )(t)}t≥0 in S0, the fluid process {F (t)}t≥0 remains constant.

Therefore, the fluid flow process of our interest is given by the bivariate process {F (t), J (F )(t)}t≥0.

For simplicity, for the remainder of this thesis, unless we would like to put emphasis on the de-

pendence of the fluid level {F (t)}t≥0 on the CTMC {J (F )(t)}t≥0, we would simply write {F (t)}t≥0

instead of {F (t), J (F )(t)}t≥0.

Associated to the above fluid flow process {F (t), J (F )(t)}t≥0 is the reflected fluid flow process

{F r(t), J (F )(t)}t≥0 in which the fluid level {F r(t)}t≥0 increases (decreases) at a constant rate of c
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during a sojourn of the CTMC {J (F )(t)}t≥0 in S2 (S1), and the fluid level remains constant during

a sojourn of the CTMC {J (F )(t)}t≥0 in S0. Then, we define z
aσ(x, y) (z

aσ
r(x, y)) to be the first

passage time of the fluid level process {F (t)}t≥0 ({F r(t)}t≥0) from level x to level y while avoiding

a visit to [0, a]∪ [z,∞) enroute. The arguments a and/or z will be suppressed whenever they are

not helpful. For example, we shall write 0σ(0, x) instead of x
0σ(0, x).

The key to the analysis of the fluid flow process {F (t)}t≥0 is the quantity σ(0, 0), which is the

first return time of the fluid to level 0 given that the process starts at level 0 at time 0. Then we

define the |S1| × |S2| matrix Ψ(δ) with (i, j)-th element by

[Ψ(δ)]ij = E
[
e−δσ(0,0)1{J (F )(σ(0, 0)) = j}|J (F )(0) = i

]
, i ∈ S1; j ∈ S2 . (1.21)

Similarly, the |S2| × |S1| matrix Ψr(δ) is defined by

[Ψr(δ)]ij = E
[
e−δσr(0,0)1{J (F )(σr(0, 0)) = j}|J (F )(0) = i

]
, i ∈ S2; j ∈ S1 . (1.22)

We remark that Ahn and Ramaswami (2005) provided an algorithm which converges quadratically

fast to compute Ψ(δ) defined by (1.21). The quantity Ψr(δ) can simply be computed in an identical

way by reversing the roles of S1 and S2. It turns out that all other related quantities in the fluid

flow process {F (t)}t≥0 that will be used in this thesis can be expressed solely in terms of the

matrices Ψ(δ) and/or Ψr(δ) (apart from some other known parameters of the model).

In addition, for the process {F (t)}t≥0, we also define, for i, j = 1, 2, the |Si| × |Sj| matrix

z
af̂ij(x, y, δ) of the Laplace-Stieltjes transform (LST) of the first passage time z

aσ(x, y) with (k, l)-th

element given by

[zaf̂ij(x, y, δ)]kl = E
[
e−δ z

aσ(x,y)1{J (F )(z
aσ(x, y)) = l}|J (F )(0) = k

]
, k ∈ Si; l ∈ Sj . (1.23)

Similarly, z
af̂

r
ij(x, y, δ) represents the corresponding LST of z

aσ
r(x, y) in the process {F r(t), J (F )(t)}t≥0.
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Note that there are some subtle relationships between the LSTs of the ordinary process and the

reflected process. For example, it can be probabilistically argued that xf̂22(x, 0, δ) = 0f̂
r
22(0, x, δ).

In addition, the matrix Ψ(δ) can be expressed as Ψ(δ) = f̂12(0, 0, δ). For future use we shall also

write xΨ(δ) = xf̂12(0, 0, δ) and xΨr(δ) = 0f̂21(x, x, δ).

In what follows, we present the LSTs of various first passage times that will be used in this

thesis and provide the references from which the matrices can be computed. As mentioned earlier,

all these quantities can be expressed in terms of Ψ(δ) and/or Ψr(δ).

1. f̂ r
11(x, 0, δ) can be obtained indirectly from f̂22(x, 0, δ) for x ≥ 0 by reversing the roles of S1

and S2, where f̂22(x, 0, δ) can be computed by Ahn and Ramaswami (2005, Theorem 3(c)).

2. f̂12(x, 0, δ) = Ψ(δ)f̂22(x, 0, δ), for x ≥ 0, is given by Ramaswami (2005, Theorem 3(a)), where

f̂22(x, 0, δ) follows from item 1.

3. 0f̂11(0, x, δ), for x ≥ 0, is computed by Ramaswami (2006, Theorem 1 and Lemma 2).

4. xΨ(δ), for x ≥ 0, is expressed in terms of 0f̂11(0, x, δ) by Ramaswami (2006, Theorem 2),

which is item 3 above. xΨr(δ) can be obtained by reversing the roles of S1 and S2 (see

Ramaswami (2006, Theorem 4)).

5. 0f̂11(x, y, δ) = [I− y−xΨ(δ) xΨr(δ)]−1
0f̂11(0, y − x, δ), for 0 ≤ x < y, is given by Ahn et al.

(2007, Theorem 1 (b)), with 0f̂11(0, y − x, δ) computed by item 3 above and y−xΨ(δ) (and

xΨr(δ)) computed by item 4.

6. xf̂22(x, 0, δ) = 0f̂
r
22(0, x, δ), for x ≥ 0, is given by Ramaswami (2006, Theorem 3), while

0f̂
r
22(0, x, δ) can be obtained from 0f̂11(0, x, δ) (item 3) by reversing the roles of S1 and S2.

7. y f̂12(x, 0, δ) and y f̂22(x, 0, δ), for 0 ≤ x < y, are both expressed in terms of y−xΨ(δ) (and

xΨr(δ)) (item 4) and xf̂22(x, 0, δ) (item 6) by Ahn et al. (2007, Theorem 1 (a)).
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For other fluid flow quantities, interested readers are referred to Ahn et al. (2007), Ahn and

Ramaswami (2005, 2006) and Ramaswami (2006).

Applications of fluid flow process in analyzing MAP risk model can be found in, e.g., Ahn

and Badescu (2007), Ahn et al. (2007), Asmussen et al. (2002), Badescu et al. (2005, 2007a,b),

Badescu and Landriault (2008), Ramwasami (2006) and references therein. In such an existing

connection between fluid and risk processes, it is assumed that the set S0 is empty. By extracting

the times spent in S2 and then pasting the rest of {F (t)}t≥0 together, one essentially obtains the

surplus process {Ut}t≥0 of the MAP risk model. See Figure 1.2. We also refer interested readers

to Badescu et al. (2005) and Ramaswami (2006) for construction of the generator Q (in (1.20))

in terms of the generators G0, G1 and the parameters of the claim size densities pij(.)’s.

Figure 1.2: Existing connection between {Ut}t≥0 and {F (t)}t≥0

We remark that in order to use fluid flow techniques to analyze the MAP risk model, all

the densities pij(.)’s have to be phase-type distributed. Furthermore, since every decrease of the
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surplus process (due to a claim), say of size y, is represented by a decreasing segment of length y/c

in the corresponding fluid flow process, the generators Q21 and Q22 always depend on c, and we

shall emphasize this dependency by writing Q21,c and Q22,c instead of Q21 and Q22 respectively. In

general we have Q21,c = cQ21,1 and Q22,c = cQ22,1. See Badescu et al. (2007a, Examples 2.1 and

2.2). It is also important to note that the CTMCs {J (F )(t)}t≥0 and {Jt}t≥0 (underlying the fluid

flow process and the MAP risk process respectively) are different. In general, {J (F )(t)}t≥0 has

many more states than {Jt}t≥0, due to the fact that in constructing the generator Q of {J (F )(t)}t≥0

one has to keep track of both the states of {Jt}t≥0 as well as the ‘phases’ of the phase-type claim

sizes. In addition, when ruin-related quantities are analyzed via fluid flow process they are usually

defined with respect to the states in the CTMC {J (F )(t)}t≥0, as we shall see in later chapters.

An important observation which is central to the whole connection between fluid process

and risk process was made by Ramaswami (2006). He observed that the portion of the time

spent by the fluid flow process {F (t)}t≥0 in S1 during a first passage time σ(x, y) is given by

σ(x, y)/2 + (y − x)/(2c). This property will be implicitly used many times in later chapters.

1.5 Organization of the thesis

This thesis is organized as follows. In Chapter 2, in the context of a MAP risk model perturbed

by diffusion, the classical Gerber-Shiu function (1.2) and the moments of the total discounted

dividends are derived, and it is shown that a matrix form of the dividends-penalty identity (see

Gerber et al. (2006) and Lin et al. (2003)) holds true. Our methodology relies on the use of integro-

differential equations and their solutions. A barrier level which depends on the environmental

states is also considered. Chapter 3 considers the dual MAP risk model under a threshold dividend

strategy. The Laplace transform of the time of ruin and the moments of discounted dividends

are studied via the connection to a fluid queue described above. In Chapter 4, we propose to
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analyze the Gerber-Shiu function and some discounted joint densities in the generalized Sparre

Andersen risk model where the generic pair (V, Y/c) is assumed to follow a bivariate phase-type

distribution. A novel fluid flow process is constructed in our analysis such that the set S0 is non-

empty (unlike the existing connection). In Chapter 5, we focus on the study of the generalized

Gerber-Shiu function (1.11) in the semi-Markovian risk model described in Section 1.2.3. It is

shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation,

and some discounted joint densities involving the new variables are derived. Chapter 6 revisits

the MAP risk model in which (a special case of) the generalized Gerber-Shiu function (1.12) is

examined. It is shown that such a Gerber-Shiu function can be expressed in terms of the classical

Gerber-Shiu function (1.2) and the Laplace transform of a first passage time. While the traditional

methods (i.e. conditioning on the time and amount of the first claim to obtain integral equations)

are mainly used in Chapters 5 and 6, at the end of both chapters, the discounted joint densities

of various ruin-related quantities are also derived using the existing connection to fluid process.

In Chapter 7, a generalization of the MAP risk model is proposed by allowing for the interclaim

time to have an arbitrary distribution (instead of being phase-type distributed), and the classical

Gerber-Shiu function (with a specific form of penalty function) is considered. Chapter 8 revisits

the generalized Sparre Andersen risk model but further generalizes the premium income to allow

for surplus-dependent premium rate. Some ordering properties of the last interclaim time VNT

and the claim causing ruin YNT
are studied in relation to the generic interclaim time V and the

generic claim size Y using the generalized Gerber-Shiu function (1.10). The Gerber-Shiu function

(1.10) itself is also considered in more detail in the compound Poisson risk model involving a

dividend threshold or credit interest. Chapter 9 ends the thesis with some concluding remarks

and directions for future research.

It is important to note that while efforts have been made to keep the notations as consistent

as possible, due to the different models and quantities considered in this thesis, the reader is

recommended to treat the remaining chapters as being independent of each other.
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Chapter 2

Perturbed MAP risk model with a

dividend barrier

2.1 Introduction

In this chapter, we consider the MAP risk model described in Section 1.2.1. Furthermore, to

account for small fluctuations in the level of surplus a diffusion component is included in the surplus

process {Ut}t≥0. Specifically, we assume that the surplus process is perturbed by a Brownian

motion with mean 0 and volatility σi > 0 whenever the CTMC {Jt}t≥0 is in state i. Under the

above descriptions, the surplus process {Ut}t≥0 is now modified to give (in contrast to (1.1))

Ut = u + ct−
Nt∑
i=1

Yi +

∫ t

0

σJs dWs , t ≥ 0 , (2.1)

where u = U0 is the initial surplus, and {Wt}t≥0 is a standard Brownian motion independent

of {Yi}∞i=1 and {Vi}∞i=1. Since ruin can occur due to the diffusion component, for notational

convenience we slightly rewrite the time of ruin as T = inf{t ≥ 0 : Ut ≤ 0}.
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It is further assumed that a dividend barrier strategy is applied to the surplus process {Ut}t≥0

defined by (2.1). For such a dividend strategy, the insurer pays the overflow as dividends to the

shareholders whenever the surplus level attains a fixed barrier level b > 0; otherwise, no dividends

are paid (see, e.g., Gerber (1979), Gerber and Shiu (2004a) and Lin et al. (2003)). We then

denote the barrier-modified surplus process by {U (b)
t }t≥0. To give a formal definition for {U (b)

t }t≥0,

we require the process of running maximum {Zt}t≥0 corresponding to the barrier process {Ut}t≥0,

which is defined through Zt = max0≤s≤t Us. Then the total (non-discounted) dividends paid until

time t under a barrier strategy is given by

Dt = (Zt − b)+ , t ≥ 0 . (2.2)

Then, the surplus process of interest in this chapter, {U (b)
t }t≥0, satisfies

U
(b)
t = Ut −Dt , t ≥ 0 . (2.3)

Pertaining to the surplus process (2.3) is the time to ruin Tb = inf{t ≥ 0 : U
(b)
t ≤ 0} which is

finite almost surely (a.s.). Another important quantity of interest in the barrier model is the total

discounted dividends paid until ruin under a force of interest δ ≥ 0, which is defined by

Dδ(u; b) =

∫ Tb

0

e−δs dDs

∣∣∣U (b)
0 = u , 0 ≤ u ≤ b . (2.4)

Furthermore, we let Mδ,i(s, u; b) be the moment generating function of Dδ(u; b) conditional on the

initial state J0 = i of the CTMC, i.e., for i ∈ E,

Mδ,i(s, u; b) = E
[
esDδ(u;b)|J0 = i

]
= 1 +

∞∑
n=1

sn

n!
Vδ,i,n(u; b) , 0 ≤ u ≤ b , (2.5)

where Vδ,i,n(u; b) = E[{Dδ(u, b)}n|J0 = i] is the n-th moment of Dδ(u, b). We shall adopt the

usual convention that Vδ,i,0(u; b) = 1, i.e. the zero-th moment of Dδ(u, b) is 1. In addition, for
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convenience, we shall denote the first moment by Vδ,i,1(u; b) = Vδ,i(u; b). The m-dimensional col-

umn vectors Vδ,n(u; b) = (Vδ,1,n(u; b), . . . , Vδ,m,n(u; b))T and Vδ(u; b) = (Vδ,1(u; b), . . . , Vδ,m(u; b))T

are also defined.

In this chapter, one of our interests is to derive a result equivalent to the dividends-penalty

identity of Gerber et al. (2006) in a perturbed MAP risk model. To this end, we have to define

the Gerber-Shiu function for the process {U (b)
t }t≥0. However, as the Gerber-Shiu function under

a barrier strategy will be expressed in terms of the Gerber-Shiu function in a barrier-free process

(see, e.g., Lin et al. (2006) and Li and Lu (2008)), we first define the Gerber-Shiu function for

the process {Ut}t≥0. Due to the diffusion component in (2.1), contributions to the Gerber-Shiu

function shall be broken down by the cause of ruin: oscillation or a claim. If ruin is due to

oscillation, both the surplus prior to ruin UT− and the deficit at ruin |UT | are simply 0. For that

purpose, we define the Gerber-Shiu function as, for i ∈ E,

φδ,i(u) = w0φ
d
δ,i(u) + φc

δ,i(u) , u ≥ 0 , (2.6)

where w0 is the fixed penalty at ruin if the ruin is caused by oscillation,

φd
δ,i(u) = E

[
e−δT 1{T < ∞, UT = 0}|U0 = u, J0 = i

]
, u ≥ 0 , (2.7)

is the Laplace transform of the time of ruin in {Ut}t≥0 due to oscillation, and

φc
δ,i(u) = E

[
e−δT w(UT− , |UT |)1{T < ∞, UT < 0}|U0 = u, J0 = i

]
, u ≥ 0 , (2.8)

is the contribution to the Gerber-Shiu function in {Ut}t≥0 due to a claim. For later use we define

the m-dimensional column vectors Φδ(u) = (φδ,1(u), . . . , φδ,m(u))T , Φd
δ(u) = (φd

δ,1(u), . . . , φd
δ,m(u))T

and Φc
δ(u) = (φc

δ,1(u), . . . , φc
δ,m(u))T . As far as the Gerber-Shiu functions in the barrier-free process

are concerned, it is common to assume either δ > 0 or the positive security loading condition holds.
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In the perturbed MAP risk model, this condition is identical to the unperturbed model and is

given by (1.3).

Similarly, for {U (b)
t }t≥0 we define, for i ∈ E,

φδ,i(u; b) = w0φ
d
δ,i(u; b) + φc

δ,i(u; b) , 0 ≤ u ≤ b , (2.9)

φd
δ,i(u; b) = E

[
e−δTb1{U (b)

Tb
= 0}|U (b)

0 = u, J0 = i
]

, 0 ≤ u ≤ b , (2.10)

φc
δ,i(u; b) = E

[
e−δTbw(U

(b)

T−b
, |U (b)

Tb
|)1{U (b)

Tb
< 0}|U (b)

0 = u, J0 = i
]

, 0 ≤ u ≤ b , (2.11)

the column vectors Φδ(u; b) = (φδ,1(u; b), . . . , φδ,m(u; b))T ,Φd
δ(u; b) = (φd

δ,1(u; b), . . . , φd
δ,m(u; b))T

and Φc
δ(u; b) = (φc

δ,1(u; b), . . . , φc
δ,m(u; b))T . Note that the event {Tb < ∞} has been dropped out

from the indicator functions in both the definitions (2.10) and (2.11) because such an event occurs

a.s. as discussed before.

As pointed out in Section 1.4.2, MAP risk models have been mainly analyzed via connecting

the surplus process to a fluid flow process. Such arguments are most probabilistic, and results are

usually expressed in terms of the Laplace transforms of various first passage times in the fluid flow

model which are known in the literature. However, a main drawback of using such matrix analytic

methods (MAMs) to analyze MAP risk models is the assumption that the claim size densities

pij(.) are all phase-type. This excludes, for example, heavy-tailed claim size distributions, from

the analysis. In this chapter, we show that the use of a purely analytic approach allows us to

analyze MAP risk models with arbitrary claim size distributions. See, e.g., Badescu (2008).

The chapter is structured as follows: in Sections 2.2 and 2.3, we analyze respectively the

moments of the discounted dividend payments and the Gerber-Shiu function for the surplus process

{U (b)
t }t≥0. In addition, it is also shown in Section 2.3 that a relationship similar to the dividends-

penalty identity also holds for the class of perturbed MAP risk processes, extending some results
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of Li and Lu (2008) derived in the context of a Markov-modulated risk model. In Section 2.4,

all these ruin-related quantities are revisited in the surplus process (2.3) with the only exception

that the barrier level enforced at a given time t depends on the state of the CTMC {Jt}t≥0 at that

time. Section 2.5 is an appendix about the barrier-free model.

2.2 Discounted dividend payments

2.2.1 Expected discounted dividend payments

We shall follow the heuristic arguments in Gerber and Landry (1998, Section 3) to derive a system

of integro-differential equations for Vδ,i(u; b). Considering a very small time interval of length h

leads to, for i ∈ E,

Vδ,i(u; b) = (1 + G0,iih)(1− δh)E[Vδ,i(u + ch + σiWh; b)] +
m∑

j=1,j 6=i

G0,ijhVδ,j(u; b)

+
m∑

j=1

G1,ijh

∫ u

0

Vδ,j(u− y; b)pij(y) dy + o(h) , 0 < u < b . (2.12)

According to Gerber and Landry (1998) and Tsai and Willmot (2002), one also has that

E[Vδ,i(u + ch + σiWh; b)] = Vδ,i(u; b) +

[
cV ′

δ,i(u; b) +
σ2

i

2
V ′′

δ,i(u; b)

]
h + o(h) , 0 < u < b . (2.13)

Note that here we have assumed that Vδ,i(u; b) is twice differentiable in u for 0 < u < b. For

detailed discussion of differentiability of various ruin functions, the reader is referred to, e.g., Cai

(2004), Cai and Yang (2005), Loisel (2005), Wang and Wu (2001) and Zhu and Yang (2009).

By substituting (2.13) into (2.12), dividing both sides by h and letting h → 0, one arrives at,

25



for i ∈ E,

σ2
i

2
V ′′

δ,i(u; b) + cV ′
δ,i(u; b)− δVδ,i(u; b) +

m∑
j=1

G0,ijVδ,j(u; b) +
m∑

j=1

G1,ij

∫ u

0

Vδ,j(u− y; b)pij(y) dy = 0 ,

0 < u < b . (2.14)

The boundary conditions associated to the above system of integro-differential equations are given

by, for i ∈ E,

Vδ,i(0; b) = 0 , (2.15)

and

V ′
δ,i(b; b) = 1 . (2.16)

Indeed, (2.15) holds since ruin occurs immediately a.s. for the surplus process {U (b)
t }t≥0 with zero

initial surplus due to the diffusion component. The condition (2.16) is a special case of (2.42) at

n = 1 and the reader is referred to the proof in Section 2.2.2.

To determine the form of the solution for Vδ,i(u; b), we consider the system of integro-differential

equations, for i ∈ E,

σ2
i

2
v′′δ,i(u)+cv′δ,i(u)−δvδ,i(u)+

m∑
j=1

G0,ijvδ,j(u)+
m∑

j=1

G1,ij

∫ u

0

vδ,j(u−y)pij(y) dy = 0 , u ≥ 0 . (2.17)

Since (2.17) forms a system of second order integro-differential equations, it is clear that the

initial conditions (vδ,1(0), . . . , vδ,m(0)) and (v′δ,1(0), . . . , v′δ,m(0)) uniquely determine its solution

(vδ,1(u), . . . , vδ,m(u)). Thus, for a given j ∈ E, let vA
δ,·,j(u) = (vA

δ,1,j(u), . . . , vA
δ,m,j(u)) and vB

δ,·,j(u) =

(vB
δ,1,j(u), . . . , vB

δ,m,j(u)) be the particular solutions of (2.17) with initial conditions vA
δ,·,j(0) = ej,

(vA
δ,·,j)

′(0) = 0 and vB
δ,·,j(0) = 0, (vB

δ,·,j)
′(0) = ej respectively. Here ej is an m-dimensional row

vector with the only non-null entry of 1 at the j-th position. According to Lakshmikantham and

Rao (1995, Theorem 2.1.1), the set of 2m solutions {vA
δ,·,j(u)}m

j=1 and {vB
δ,·,j(u)}m

j=1 are linearly in-
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dependent, and hence the general solution of (2.17), namely (vδ,1(u), . . . , vδ,m(u)), can be expressed

as, for i ∈ E,

vδ,i(u) =
m∑

j=1

vδ,j(0)vA
δ,i,j(u) +

m∑
j=1

v′δ,j(0)vB
δ,i,j(u) , u ≥ 0 . (2.18)

It follows that, the solution to the system (2.14) is given by, for i ∈ E,

Vδ,i(u; b) =
m∑

j=1

Vδ,j(0; b)vA
δ,i,j(u) +

m∑
j=1

V ′
δ,j(0; b)vB

δ,i,j(u) , 0 ≤ u ≤ b . (2.19)

Incorporating the boundary conditions (2.15) into the above representation leads to, for i ∈ E,

Vδ,i(u; b) =
m∑

j=1

V ′
δ,j(0; b)vB

δ,i,j(u) , 0 ≤ u ≤ b . (2.20)

Using the form of the solution (2.20), the boundary condition (2.16) can be rewritten as, for i ∈ E,

V ′
δ,i(b; b) =

m∑
j=1

V ′
δ,j(0; b)(vB

δ,i,j)
′(b) = 1 . (2.21)

Letting vB
δ (u) = [vB

δ,i,j(u)]mi,j=1, (2.21) can be re-expressed as, using a matrix representation,

V′
δ(0; b) = [(vB

δ )′(b)]−11 . (2.22)

Combining (2.20) and (2.22), the expected discounted dividend payments admits the representa-

tion

Vδ(u; b) = vB
δ (u)[(vB

δ )′(b)]−11 , 0 ≤ u ≤ b . (2.23)

The above expression gives the first moment of Dδ(u, b) conditional on the initial state J0 of the

underlying CTMC. Pre-multiplying both sides of (2.23) by the initial probability vector a yields

the first unconditional moment of Dδ(u, b). In what follows, results are given in conditional form

only. It is understood that the general unconditional counterpart can always be obtained by
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pre-multiplying the conditional representation of a given ruin-related quantity by a.

Remark 1 (2.23) can be viewed as a complement to the (scalar) result derived by Gerber et al.

(2006, Eq. (6)) for a class of Markov surplus processes which are skip-free upwards (i.e. there are

only downward jumps but not upward jumps). However, their probabilistic proof further allows the

possibility of, for instance, surplus-dependent premium (see Chapter 8).

Returning to (2.23), one notices that the m particular solutions {vB
δ,·,j(u)}m

j=1 play a key role in

the representation of Vδ(u; b). Thus, further details are provided next for the evaluation of vB
δ (u).

Taking Laplace transforms on both sides of (2.17) with vδ,i(.) replaced by vB
δ,i,j(.), one finds, for

i, j ∈ E,

(
σ2

i

2
s2 + cs− δ

)
ṽB

δ,i,j(s) +
m∑

k=1

G0,ikṽ
B
δ,k,j(s) +

m∑

k=1

G1,ikp̃ik(s)ṽ
B
δ,k,j(s) =

σ2
i

2
(vB

δ,i,j)
′(0) . (2.24)

With ṽB
δ (s) = [ṽB

δ,i,j(s)]
m
i,j=1, we note that (vB

δ )′(0) = I and therefore (2.24) can be expressed in

terms of matrices as

Aδ(s)ṽ
B
δ (s) = diag

{
σ2

1

2
, . . . ,

σ2
m

2

}
, (2.25)

where

Aδ(s) = Hδ(s) + G0 + G̃p(s) , (2.26)

with Hδ(s) = diag{σ2
1s

2/2 + cs − δ, . . . , σ2
ms2/2 + cs − δ} and G̃p(s) = [G1,ij p̃ij(s)]

m
i,j=1. Let

adjAδ(s) be the adjoint matrix of Aδ(s) and [adjAδ(s)]ij be its (i, j) element. It follows that

ṽB
δ,i,j(s) =

σ2
j

2

[adjAδ(s)]ij
detAδ(s)

. (2.27)

If the Laplace transforms p̃ij(s)’s are all ratios of two polynomials in s, then [adjAδ(s)]ij and

detAδ(s) are all also rational functions in s and therefore the right-hand side of (2.27) can be re-

solved into partial fractions. This allows analytic inversion of the Laplace transforms, as illustrated
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below.

For example, for the remainder of this subsection, we assume that for i, j ∈ E,

p̃ij(s) =
q1,ij(s)

q2,ij(s)
, (2.28)

where q1,ij(s) is a polynomial of degree less than rij and q2,ij(s) is a polynomial of degree ex-

actly rij. Furthermore, for each fixed i, j ∈ E, q1,ij(s) and q2,ij(s) have no common factor and

q1,ij(0)/q2,ij(0) = 1. It is clear that the so-called Lundberg’s fundamental equation

detAδ(s) = 0 , (2.29)

has 2m + r solutions, say {ρi}2m+r
i=1 , with r =

∑m
i=1

∑m
j=1 rij. Letting q2(s) =

∏m
i=1

∏m
j=1 q2,ij(s),

(2.27) can be rewritten as

ṽB
δ,i,j(s) =

σ2
j

2

$1,ij(s)

$2(s)
, (2.30)

where $1,ij(s) = q2(s)[adjAδ(s)]ij is a polynomial of degree less than 2m + r and $2(s) =

q2(s) detAδ(s) is of degree 2m+r. Assuming that the solutions {ρi}2m+r
i=1 are distinct and choosing

an arbitrary real number κ such that κ 6= ρi for i = 1, . . . , 2m + r, (2.30) can be rewritten as

ṽB
δ,i,j(s) =

σ2
j

2$2(κ)

2m+r∑

l=1

$1,ij(ρl)ϑl(κ)
κ− ρl

s− ρl

(2.31)

using the Lagrange interpolating polynomial, where ϑl(s) =
∏2m+r

k=1,k 6=l
s−ρk

ρl−ρk
. Inverting (2.31) with

respect to s yields

vB
δ,i,j(u) =

σ2
j

2$2(κ)

2m+r∑

l=1

$1,ij(ρl)ϑl(κ)(κ− ρl)e
ρlu , u ≥ 0 . (2.32)

Combining (2.23) and (2.32), a closed-form expression for Vδ(u; b) can readily be found when the

claim size densities have a rational Laplace transform. We also refer the reader to Chapter 9 for
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discussion of the roots of Lundberg’s fundamental equations.

2.2.2 Higher-order moments of discounted dividends

As for the higher moments of the discounted dividends, one could follow Gerber and Shiu (2004a)

or the arguments in Section 2.2.1 to derive a system of integro-differential equations for the moment

generating functions defined by (2.5). By doing so we arrive at, for i ∈ E,

σ2
i

2

∂2

∂u2
Mδ,i(s, u; b) + c

∂

∂u
Mδ,i(s, u; b)− δs

∂

∂s
Mδ,i(s, u; b) +

m∑
j=1

G0,ijMδ,j(s, u; b)

+
m∑

j=1

G1,ij

∫ u

0

Mδ,j(s, u− y; b)pij(y) dy = 0 , 0 < u < b . (2.33)

In addition, the boundary conditions are given by, for i ∈ E,

Mδ,i(s, 0; b) = 1 , (2.34)

and

∂Mδ,i(s, u; b)

∂u

∣∣∣∣
u=b

= sMδ,i(s, b; b) . (2.35)

Note that the condition (2.34) is trivial since ruin occurs immediately a.s. for {U (b)
t }t≥0 with zero

initial surplus and hence Dδ(u; b) = 0 a.s.. The condition (2.35) can be obtained via the heuristic

argument used by Gerber and Shiu (2004b). For the sake of completeness it is given as follows.

Define, for i ∈ E,

Θδ,i(s, u; b) = E[ϑ(sDδ(u, b))|J0 = i] , 0 ≤ u ≤ b , (2.36)

where ϑ(.) is a non-negative differentiable function. For the surplus process {Ub(t), t ≥ 0}, we

consider two situations with initial surplus b and b− h respectively for some small positive h. In

both situations, it is almost certain that the surplus process will be at the barrier level b shortly
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(and before ruin). However, a dividend of h would have been paid by then for the case where

Ub(0) = b, but not for Ub(0) = b− h. Now being at level b, both processes evolve identically going

forward. Thus the approximation Dδ(b; b) ≈ h + Dδ(b− h; b) holds and therefore

ϑ(sDδ(b; b))− ϑ(sDδ(b− h; b)) ≈ shϑ′(sDδ(b; b)) . (2.37)

Taking expectation conditional on the initial state J0 = i leads to, for i ∈ E,

Θδ,i(s, b; b)−Θδ,i(s, b− h; b) ≈ shE[ϑ′(sDδ(b, b))|J0 = i]. (2.38)

Division by h followed by taking limit as h → 0 yields

∂Θδ,i(s, u; b)

∂u

∣∣∣∣
u=b

= sE[ϑ′(sDδ(b, b))|J0 = i] . (2.39)

It can be easily seen that (2.35) is a special case of (2.39) with the choice of ϑ(x) = ex.

Using the expression (2.5) and equating the coefficients of sn on both sides of (2.33) for n =

1, 2, . . ., one obtains, for i ∈ E,

σ2
i

2
V ′′

δ,i,n(u; b) + cV ′
δ,i,n(u; b)− nδVδ,i,n(u; b) +

m∑
j=1

G0,ijVδ,j,n(u; b)

+
m∑

j=1

G1,ij

∫ u

0

Vδ,j,n(u− y; b)pij(y) dy = 0 , 0 < u < b . (2.40)

Note that (2.40) is of the same form as (2.14) with δ replaced by nδ. Similarly, the boundary

conditions (2.34) and (2.35) reduce to, for i ∈ E,

Vδ,i,n(0; b) = 0 , (2.41)
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and

V ′
δ,i,n(b; b) = nVδ,i,n−1(b; b) , (2.42)

respectively. We omit the rather repetitive arguments and state that the solution of the system

(2.40) subject to the boundary conditions (2.41) and (2.42) can be expressed as

Vδ,n(u; b) = nvB
δ,n(u)[(vB

δ,n)′(b)]−1Vδ,n−1(b; b) , 0 ≤ u ≤ b , (2.43)

vB
δ,n(u) is simply vB

δ (u) with all the calculations performed at a force of interest nδ instead of δ.

From (2.43), it is clear that the closed-form expression for Vδ,n(u; b) is given by

Vδ,n(u; b) = n!vB
δ,n(u)[(vB

δ,n)′(b)]−1vB
δ,n−1(b)[(v

B
δ,n−1)

′(b)]−1 . . .vB
δ,1(b)[(v

B
δ,1)

′(b)]−11 , 0 ≤ u ≤ b .

(2.44)

Remark 2 An equation of the form (2.44) for the higher-order moments of the discounted div-

idend payments before ruin have been shown to hold in the Markov-modulated risk model and in

the Sparre Andersen model with phase-type interclaim time distribution (see Li and Lu (2007) and

Cheung (2007) respectively).

2.3 Gerber-Shiu function and dividends-penalty identity

Following the same arguments used to obtain (2.14), the systems of integro-differential equations

for φd
δ,i(u; b) and φc

δ,i(u; b) are obtained as, for i ∈ E,

σ2
i

2
(φd

δ,i)
′′(u; b) + c(φd

δ,i)
′(u; b)− δφd

δ,i(u; b) +
m∑

j=1

G0,ijφ
d
δ,j(u; b)

+
m∑

j=1

G1,ij

∫ u

0

φd
δ,j(u− y; b)pij(y) dy = 0 , 0 < u < b , (2.45)
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and

σ2
i

2
(φc

δ,i)
′′(u; b) + c(φc

δ,i)
′(u; b)− δφc

δ,i(u; b) +
m∑

j=1

G0,ijφ
c
δ,j(u; b)

+
m∑

j=1

G1,ij

[∫ u

0

φc
δ,j(u− y; b)pij(y) dy + ωij(u)

]
= 0 , 0 < u < b , (2.46)

respectively, where

ωij(u) =

∫ ∞

u

w(u, y − u)pij(y) dy , u ≥ 0 . (2.47)

Given that ruin occurs immediately a.s. for the surplus process {U (b)
t }t≥0 with a zero initial

surplus, we have that, for i ∈ E,

φd
δ,i(0; b) = 1 ; φc

δ,i(0; b) = 0 . (2.48)

Following the same heuristic arguments in obtaining (2.35) (i.e. by comparing two situations with

initial surplus b and b− h respectively for some small positive h), it can also be argued that, for

i ∈ E,

(φd
δ,i)

′(b; b) = (φc
δ,i)

′(b; b) = 0 . (2.49)

Such an argument was indeed used in Gerber et al. (2006) in deriving their Eq. (8).

Note that the systems of integro-differential equations (2.45) and (2.46) also hold true for the

barrier-free counterparts (φd
δ,1(u), . . . , φd

δ,m(u)) and (φc
δ,1(u), . . . , φc

δ,m(u)) respectively in the risk

model without barrier, with domain extended from 0 < u < b to u > 0. Thus, (φc
δ,1(u), . . . , φc

δ,m(u))

can be viewed as a particular solution of (2.46). We also point out that (2.17) is the homogeneous

version of (2.46) for which {vA
δ,·,j(u)}m

j=1 and {vB
δ,·,j(u)}m

j=1 are 2m linearly independent solutions.

From the general theory of integro-differential equations, it follows that (see, e.g., Lakshmikantham
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and Rao (1995, p.50)), for i ∈ E,

φc
δ,i(u; b) = φc

δ,i(u) +
m∑

j=1

[
φc

δ,j(0; b)− φc
δ,j(0)

]
vA

δ,i,j(u) +
m∑

j=1

[
(φc

δ,j)
′(0; b)− (φc

δ,j)
′(0)

]
vB

δ,i,j(u) ,

0 ≤ u ≤ b . (2.50)

From the boundary conditions (2.48) (which also hold true for φd
δ,i(0) and φc

δ,i(0)), (2.50) can be

simplified to, for i ∈ E,

φc
δ,i(u; b) = φc

δ,i(u) +
m∑

j=1

[
(φc

δ,j)
′(0; b)− (φc

δ,j)
′(0)

]
vB

δ,i,j(u) , 0 ≤ u ≤ b . (2.51)

A matrix representation of (2.51) is given by

Φc
δ(u; b) = Φc

δ(u) + vB
δ (u)Υ , 0 ≤ u ≤ b , (2.52)

where Υ = ((φc
δ,1)

′(0; b) − (φc
δ,1)

′(0), . . . , (φc
δ,m)′(0; b) − (φc

δ,m)′(0))T . To determine Υ, we use the

boundary conditions (2.49) which lead to

(Φc
δ)
′(b) + (vB

δ )′(b)Υ = 0 . (2.53)

Solving for Υ in (2.53) followed by substitution into (2.52) yields

Φc
δ(u; b) = Φc

δ(u) + vB
δ (u)[(vB

δ )′(b)]−1(Φc
δ)
′(b) , 0 ≤ u ≤ b . (2.54)

Note that a similar line of logic leads to the following representation for Φd
δ(u; b), namely,

Φd
δ(u; b) = Φd

δ(u) + vB
δ (u)[(vB

δ )′(b)]−1(Φd
δ)
′(b) , 0 ≤ u ≤ b . (2.55)
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Combining (2.6), (2.54) and (2.55), one easily finds

Φδ(u; b) = Φδ(u) + vB
δ (u)[(vB

δ )′(b)]−1Φ′
δ(b) , 0 ≤ u ≤ b . (2.56)

Note from (2.54), (2.55) and (2.56) that Φc
δ(u; b), Φd

δ(u; b) and Φδ(u; b) are all expressed in terms

their barrier-free counterparts Φc
δ(u), Φd

δ(u) and Φδ(u) respectively, apart from the matrix vB
δ (u)

which has been discussed in Section 2.2.1. The matrices Φc
δ(u) and Φd

δ(u) will be given in the

Appendix at the end of this chapter.

Remark 3 In a compound Poisson risk model perturbed by diffusion, both (2.23) and (2.56) hold

with the matrices and vectors replaced by scalars. It follows that the dividends-penalty identity,

can be established between the Gerber-Shiu function and the expected discounted dividend payments

(see Gerber et al. (2006)). However, while both (2.23) and (2.56) hold in the perturbed MAP

risk model, their matrix representations do not allow us to express Φδ(u; b) in terms of Vδ(u; b).

Nevertheless, a comparison of (2.23) and (2.56) allows us to identify the matrix vB
δ (u)[(vB

δ )′(b)]−1

as a key to the determination of both Vδ(u; b) and Φδ(u; b).

2.4 A barrier dependent on the environmental process:

The two-state case

In this section, a different barrier strategy is applied to the perturbed MAP risk model described

by (2.1). In the spirit of Zhu and Yang (2008) (who considered a threshold-type strategy), we

consider a dividend barrier strategy for which the barrier level effective at a given time, say t,

depends on the state of the CTMC {Jt}t≥0 at time t. Let bi be the barrier level effective whenever

the CTMC {Jt}t≥0 is in some state i ∈ E. We assume that the bi’s are distinct. The rationale

of such a model is that, it makes more sense for an insurance company to set a higher barrier
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level when it is in a more ‘dangerous’ state (where the claims are ‘larger’, the interclaim times are

‘shorter’, and/or the diffusion component is larger reflecting more uncertainties), so that dividends

are paid only if the surplus reaches a more secure level and more capital is available to deal with

possible adverse claims experience. Once the economic environment returns to a ‘normal’ (or

‘non-dangerous’) state, the excess reserves might be released as lump sum dividends in addition

to the resuming of ‘normal’ dividend payments at a lower barrier level.

In what follows, we are interested in the study of certain ruin-related quantities corresponding

to the surplus process {U (b)
t }t≥0 under the above descriptions. Here b = (b1, . . . , bm) is a row vector

containing the set of barrier levels. We assume without loss of generality that the environmental

states are such that bi < bj for i < j. As an illustration, we only consider a two-state model.

Comments on how the corresponding quantities in a multi-state model can be found in Section

2.4.4.

2.4.1 Expected discounted dividend payments

Let Vδ,i(u;b) be the expected discounted dividends in the surplus process {U (b)
t }t≥0 with an initial

surplus of u and an initial state of the CTMC J0 = i. We assume that, at the time of a transition

in the Markovian process {Jt}t≥0, the excess of the surplus over the new barrier level, if positive,

will be paid out entirely as a dividend, i.e. we have that, for i = 1, 2,

Vδ,i(u;b) = Vδ,i(bi;b) + u− bi , u > bi . (2.57)

Following again the same arguments used to derive (2.14), one readily obtains

σ2
1

2
V ′′

δ,1(u;b) + cV ′
δ,1(u;b)− δVδ,1(u;b) + G0,11Vδ,1(u;b) + G0,12Vδ,2(u;b)

+ G1,11

∫ u

0

Vδ,1(u− y;b)p11(y) dy + G1,12

∫ u

0

Vδ,2(u− y;b)p12(y) dy = 0 , 0 < u < b1 , (2.58)
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and

σ2
2

2
V ′′

δ,2(u;b) + cV ′
δ,2(u;b)− δVδ,2(u;b) + G0,21Vδ,1(u;b) + G0,22Vδ,2(u;b)

+ G1,21

∫ u

0

Vδ,1(u− y;b)p21(y) dy + G1,22

∫ u

0

Vδ,2(u− y;b)p22(y) dy = 0 , 0 < u < b2 . (2.59)

Clearly, (2.58) and (2.59) have common domain 0 < u < b1. Hence, using the linearly independent

solutions {vA
δ,·,j(u)}2

j=1 and {vB
δ,·,j(u)}2

j=1 which satisfied (2.17) (with m = 2), it follows that, for

i = 1, 2,

Vδ,i(u;b) = V ′
δ,1(0;b)vB

δ,i,1(u) + V ′
δ,2(0;b)vB

δ,i,2(u) , 0 ≤ u ≤ b1 . (2.60)

It is clear that, for i = 1, the boundary condition (2.16) is converted to

V ′
δ,1(b1;b) = V ′

δ,1(0;b)(vB
δ,1,1)

′(b1) + V ′
δ,2(0;b)(vB

δ,1,2)
′(b1) = 1 , (2.61)

while, for i = 2, the quantity V ′
δ,2(b1;b) given by

V ′
δ,2(b1;b) = V ′

δ,1(0;b)(vB
δ,2,1)

′(b1) + V ′
δ,2(0;b)(vB

δ,2,2)
′(b1) (2.62)

is yet to be determined. Letting Vδ(u;b) = (Vδ,1(u;b), Vδ,2(u;b))T , a matrix representation of

(2.61) and (2.62) is given by

V′
δ(0;b) = [(vB

δ )′(b1)]
−1




1

V ′
δ,2(b1;b)


 . (2.63)

Substituting (2.63) into the matrix form of (2.60) leads to

Vδ(u;b) = vB
δ (u)[(vB

δ )′(b1)]
−1




1

V ′
δ,2(b1;b)


 , 0 ≤ u ≤ b1 . (2.64)
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Note that V ′
δ,2(b1;b) is unknown, which implies that (2.64) alone does not fully characterize

Vδ(u;b) for 0 ≤ u ≤ b1.

Now we consider (2.59) for an initial surplus b1 ≤ u < b2. By letting ξ(u) = Vδ,2(u + b1;b) for

0 ≤ u ≤ b2 − b1, it is immediate that

σ2
2

2
ξ′′(u) + cξ′(u)− δξ(u) + G0,22ξ(u) + G1,22

∫ u

0

ξ(u− y)p22(y) dy + α(u) = 0 , 0 ≤ u < b2 − b1 ,

(2.65)

where

α(u) = G0,21Vδ,1(u + b1;b) + G1,21

∫ u+b1

0

Vδ,1(y;b)p21(u + b1 − y) dy

+ G1,22

∫ b1

0

Vδ,2(y;b)p22(u + b1 − y) dy

= [G0,21 + G1,21P21(u)] Vδ,1(b1;b) + G1,21

∫ b1

0

Vδ,1(y;b)p21(u + b1 − y) dy

+ G0,21u + G1,21

∫ u

0

(u− y)p21(y) dy + G1,22

∫ b1

0

Vδ,2(y;b)p22(u + b1 − y) dy , u ≥ 0 ,

(2.66)

and (2.57) has been used.

To find the solution of the non-homogeneous integro-differential equation (2.65), we rely on

the use of one of its particular solutions, namely, χ(u) for u ≥ 0, with boundary conditions

χ(0) = χ′(0) = 0. By taking Laplace transform on both sides of (2.65) with ξ(.) replaced by χ(.),

we obtain

χ̃(s) =
−α̃(s)

σ2
2

2
s2 + cs− δ + G0,22 + G1,22p̃22(s)

, (2.67)
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where the Laplace transform of α(.) is readily found to be, from (2.66),

α̃(s) =

[
G0,21

s
+

G1,21

s
p̃21(s)

] [
Vδ,1(b1;b) +

1

s

]
+ G1,21 {Vδ,1(·;b) ∗ Tsp21} (b1)

+ G1,22 {Vδ,2(·;b) ∗ Tsp22} (b1) , (2.68)

using the Dickson-Hipp and the convolution operators (see (1.13) and (1.16)).

Also, we require the identification of two linearly independent solutions ϕ1(u) and ϕ2(u) for

u ≥ 0 of the homogeneous equation associated to (2.65), namely,

σ2
2

2
ϕ′′(u) + cϕ′(u)− δϕ(u) + G0,22ϕ(u) + G1,22

∫ u

0

ϕ(u− y)p22(y) dy = 0 , u ≥ 0 . (2.69)

Remark 4 Note that an homogeneous integro-differential equation of the form (2.69) has already

been studied in the context of the classical compound Poisson risk model perturbed by diffusion.

Readers are referred to Li (2006) for more details on the form of two linear independent solutions.

By defining the initial conditions ϕ
(j)
i (0) = 1{i = j + 1} for i = 1, 2 and j = 0, 1, it follows from

the general theory of integro-differential equations that

Vδ,2(u + b1;b) = ξ(u) = χ(u) + Vδ,2(b1;b)ϕ1(u) + V ′
δ,2(b1;b)ϕ2(u) , 0 ≤ u ≤ b2 − b1 . (2.70)

Incorporating the boundary condition V ′
δ,2(b2;b) = 1 (which is equivalent to (2.16) with i = 2),

differentiation of (2.70) with respect to u at u = b2 − b1 yields

ϕ′1(b2 − b1)Vδ,2(b1;b) + ϕ′2(b2 − b1)V
′
δ,2(b1;b) = 1− χ′(b2 − b1) . (2.71)
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Combining the second equation in (2.64) at u = b1, namely,

Vδ,2(b1;b) = ejv
B
δ (b1)[(v

B
δ )′(b1)]

−1




1

V ′
δ,2(b1;b)


 , (2.72)

to (2.71), we have a system of two linear equations for the unknown quantities Vδ,2(b1;b) and

V ′
δ,2(b1;b). Note that χ′(b2 − b1) (in (2.71)) does depend on V ′

δ,2(b1;b) via its non-homogeneous

term α(u). The solution of the above system leads to a complete characterization of Vδ,1(u;b) and

Vδ,2(u;b) via (2.64) and (2.70).

2.4.2 Higher moments of discounted dividends

Let Vδ,i,n(u;b) be the n-th moment of the total discounted dividends in the surplus process

{U (b)
t }t≥0 with initial surplus of u and initial state J0 = i. A binomial expansion readily leads to,

for i = 1, 2,

Vδ,i,n(u;b) =
n∑

k=0

(
n

k

)
(u− bi)

n−kVδ,i,k(bi;b) , u > bi . (2.73)

By the same arguments used to derive (2.64), it can be shown that

Vδ,n(u;b) = vB
δ,n(u)[(vB

δ,n)′(b1)]
−1




nVδ,1,n−1(b1;b)

V ′
δ,2,n(b1;b)


 , 0 ≤ u ≤ b1 , (2.74)

where Vδ,n(u;b) = (Vδ,1,n(u;b), Vδ,2,n(u;b))T . Given the form of (2.74), it is clear that the mo-

ments Vn(u;b) have to be determined recursively in terms of n. Letting ξn(u) = Vδ,2,n(u + b1;b),

one also knows that, analogous to (2.65),

σ2
2

2
ξ′′n(u)+cξ′n(u)−nδξn(u)+G0,22ξn(u)+G1,22

∫ u

0

ξn(u−y)p22(y) dy+αn(u) = 0 , 0 ≤ u < b2−b1 ,

(2.75)
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where

αn(u) =
n∑

k=0

(
n

k

)[
G0,21u

n−k + G1,21

∫ u

0

(u− y)n−kp21(y) dy

]
Vδ,1,k(b1;b)

+ G1,21

∫ b1

0

Vδ,1,n(y;b)p21(u + b1 − y) dy + G1,22

∫ b1

0

Vδ,2,n(y;b)p22(u + b1 − y) dy , u ≥ 0 .

(2.76)

The solution of the integro-differential equation (2.75) satisfies

Vδ,2,n(u + b1;b) = ξn(u) = χn(u) + Vδ,2,n(b1;b)ϕ1,n(u) + V ′
δ,2,n(b1;b)ϕ2,n(u) , 0 ≤ u ≤ b2 − b1 .

(2.77)

where for u ≥ 0, χn(u) is a particular solution of (2.75) with χn(0) = χ′n(0) = 0 while ϕ1,n(u) and

ϕ2,n(u) are two linearly independent solutions of the homogeneous version of (2.75) with initial

conditions ϕ
(j)
i,n(0) = 1{i = j + 1} for i = 1, 2 and j = 0, 1. Applying the boundary condition

V ′
δ,2,n(b2;b) = nVδ,2,n−1(b2;b) to the representation (2.77) leads to

ϕ′1,n(b2 − b1)Vδ,2,n(b1;b) + ϕ′2,n(b2 − b1)V
′
δ,2,n(b1;b) = nVδ,2,n−1(b2;b)− χ′n(b2 − b1) (2.78)

The solution of the system of two linear equations which consists of the second equation of (2.74)

at u = b1 and (2.78) together with the form of the solutions in (2.74) and (2.77) leads to a recursive

procedure for the evaluation of Vδ,n(u;b) in terms of n.

We point out that the Laplace transform of χn(u) has a representation of the form (2.67) with

δ replaced by nδ and α̃(s) replaced by

α̃n(s) =
n∑

k=0

n!

k!

1

sn−k+1
[G0,21 + G1,21p̃21(s)] Vδ,1,k(b1;b) + G1,21 {Vδ,1,n(·;b) ∗ Tsp21} (b1)

+ G1,22 {Vδ,2,n(·;b) ∗ Tsp22} (b1) . (2.79)
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2.4.3 Gerber-Shiu function

Note that the quantities corresponding to (2.6), (2.7) and (2.8) in the surplus process {U (b)
t }t≥0

are respectively denoted by φδ,i(u;b), φd
δ,i(u;b) and φc

δ,i(u;b). Clearly, for i = 1, 2, we have

φδ,i(u;b) = φδ,i(bi;b), φd
δ,i(u;b) = φd

δ,i(bi;b) and φc
δ,i(u;b) = φc

δ,i(bi;b) for u > bi. To determine

φd
δ,i(u;b), analogous to (2.64), one easily arrives at

Φd
δ(u;b) = Φd

δ(u) + vB
δ (u)[(vB

δ )′(b1)]
−1




−(φd
δ,1)

′(b1)

(φd
δ,2)

′(b1;b)− (φd
δ,1)

′(b1)


 , 0 ≤ u ≤ b1 , (2.80)

where Φd
δ(u;b) = (φd

δ,1(u;b), φd
δ,2(u;b))T .

Note that (φd
δ,2)

′(b1;b) in (2.80) is unknown and needs to be determined. Letting ξd(u) =

φd
δ,2(u + b1;b), one has

σ2
2

2
(ξd)′′(u)+c(ξd)′(u)−δξd(u)+G0,22ξ

d(u)+G1,22

∫ u

0

ξd(u−y)p22(y) dy+αd(u) = 0 , 0 ≤ u < b2−b1 ,

(2.81)

where

αd(u) = [G0,21 + G1,21P21(u)] φd
δ,1(b1;b) + G1,21

∫ b1

0

φd
δ,1(y;b)p21(u + b1 − y) dy

+ G1,22

∫ b1

0

φd
δ,2(y;b)p22(u + b1 − y) dy , u ≥ 0 . (2.82)

Again, the solution of the integro-differential equation (2.81) satisfies

φd
δ,2(u + b1;b) = ξd(u) = ζd(u)+

[
φd

δ,2(b1;b)− ζd(0)
]
ϕ1(u) +

[
(φd

δ,2)
′(b1;b)− (ζd)′(0)

]
ϕ2(u) ,

0 ≤ u ≤ b2 − b1 , (2.83)

where for u ≥ 0, ζd(u) is a particular solution of (2.81) with ζd(0) = (ζd)′(0) = 0. Given that
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(φd
δ,2)

′(b2;b) = 0, the representation (2.83) yields

ϕ′1(b2 − b1)
[
φd

δ,2(b1;b)− ζd(0)
]
+ ϕ′2(b2 − b1)

[
(φd

δ,2)
′(b1;b)− (ζd)′(0)

]
= −(ζd)′(b2 − b1) (2.84)

Therefore, the constants φd
δ,2(b1;b) and (φd

δ,2)
′(b1;b) can be solved from the system of equations

which consists of (2.80) at u = b1 and (2.84). A complete representation of Φd
δ(u;b) is then

obtained by combining (2.80) and (2.83).

Similarly, for φc
δ,i(u;b), all the results derived for φd

δ,i(u;b) still hold true, except for (2.82).

Therefore, one can simply replace the superscript ‘d’ by ‘c’ from (2.80) to (2.84), but with (2.82)

replaced by

αc(u) = [G0,21 + G1,21P21(u)] φc
δ,1(b1;b) + G1,21

∫ b1

0

φc
δ,1(y;b)p21(u + b1 − y) dy

+ G1,22

∫ b1

0

φc
δ,2(y;b)p22(u + b1 − y) dy + G1,21ω21(u + b1) + G1,22ω22(u + b1) , u ≥ 0 ,

(2.85)

Finally, for i = 1, 2, one obtains the Gerber-Shiu function φδ,i(u;b) via φδ,i(u;b) = w0φ
d
δ,i(u;b)+

φc
δ,i(u;b).

Remark 5 For a detailed numerical example regarding the two-state model with different barrier

levels, interested readers are referred to the original paper Cheung and Landriault (2009) from

which this chapter is adapted.

2.4.4 Analysis for an arbitrary number of environmental states

The above analysis assumes that the CTMC has only two environmental states. The choice of a

2-state environment process has been primarily due to its simple mathematical tractability which

43



is easier to understand. However, it is clear that the technique used in the two-state model can be

readily extended to a CTMC with an arbitrary finite number of states. We highlight the procedure

for the expected discounted dividend payments Vδ(u;b) = (Vδ,1(u;b), . . . , Vδ,m(u;b))T here.

• Step 1: Consider surplus values in (0, b1), where the complete set of integro-differential

equations for Vδ(u;b) holds. Find the form of the solution on (0, b1) and incorporate the

first derivative condition V ′
δ,1(b1;b) = 1 into it.

• Step 2: Consider surplus values in (bi, bi+1). Only a subset of the original integro-differential

equations holds for Vδ(u;b). Find the form of the solution on (bi, bi+1) and incorporate the

first derivative condition V ′
δ,i+1(bi+1;b) = 1.

• Step 3: Repeat Step 2 until all the values of i in {1, 2, . . . , m − 1} have been considered.

Combine all the first derivative conditions and solve the resulting system of linear equations.

An application of this procedure leads to a complete characterization of Vδ(u;b). For other

ruin-related quantities of interest, we simply have to use the appropriate boundary conditions.

2.5 Appendix: The barrier-free model

The aim of this Appendix is to give explicit expressions for the Laplace transform of the quantities

Φd
δ(u) and Φc

δ(u) when m = 2. Since all the techniques and procedures are almost identical to

those given in Lu and Tsai (2007), details are omitted and only results are given here.

With m = 2, Aδ(s) defined by (2.26) is given by

Aδ(s) =




σ2
1

2
s2 + cs− δ + G0,11 + G1,11p̃11(s) G0,12 + G1,12p̃12(s)

G0,21 + G1,21p̃21(s)
σ2
1

2
s2 + cs− δ + G0,22 + G1,22p̃22(s)


 . (2.86)

44



For δ > 0, an application of Rouché’s Theorem reveals that detAδ(s) = 0 has two positive real

roots which we shall denote by ρ1 and ρ2, and these are the only roots on the right half of the

complex plane. If the positive security condition (1.3) is assumed, then we have that ρ1 → 0+ as

δ → 0+.

Analogous to Eq. (4.11) and Eq. (4.12) of Lu and Tsai (2007), we arrive at

Φ̃c
δ(s) =

(s− ρ1)(s− ρ2)

detAδ(s)

{
adjAδ[s, ρ1, ρ2]B

c
δ(ρ2)− adjAδ[s, ρ1]




∑2
j=1 G1,1jω̃1j[s, ρ2]

∑2
j=1 G1,2jω̃1j[s, ρ2]




− adjAδ(ρ1)




∑2
j=1 G1,1jω̃1j[s, ρ1, ρ2]

∑2
j=1 G1,2jω̃1j[s, ρ1, ρ2]




}
, (2.87)

and

Φ̃d
δ(s) =

(s− ρ1)(s− ρ2)

detAδ(s)

{
adjAδ[s, ρ1, ρ2]B

d
δ(ρ2) + adjAδ[s, ρ1]




σ2
1

2

σ2
2

2




}
, (2.88)

where

Bc
δ(ρ2) =

[
adjAδ[ρ1, ρ2]

]−1
adjAδ(ρ1)




∑2
j=1 G1,1jω̃1j[ρ1, ρ2]

∑2
j=1 G1,2jω̃1j[ρ1, ρ2]


 , (2.89)

and

Bd
δ(ρ2) = −[

adjAδ[ρ1, ρ2]
]−1

adjAδ(ρ1)




σ2
1

2

σ2
2

2


 . (2.90)

The reader is referred to P.13 for the notion of divided differences.

45



Chapter 3

The dual MAP risk model with a

dividend threshold

3.1 Introduction

In this chapter, we consider a reflection of the MAP risk model described in Section 1.2.1. This

results in the dual MAP risk model. The surplus process of such a model is denoted by {Udual
t }t≥0

with dynamics

Udual
t = u− ct +

Nt∑
i=1

Yi , t ≥ 0 . (3.1)

Here the properties of {Nt}t≥0 (and hence {Vi}∞i=1) and {Yi}∞i=1 are exactly as described in Section

1.2.1. For example, {Nt}t≥0 still follows a MAP, and {Yi}∞i=1 are positive random variables resulting

from type-2 transitions in the MAP. However, the physical interpretations of various attributes

have now to be modified. In (3.1), u = Udual
0 is still the initial surplus of the company, but c > 0

is now interpreted as the constant rate of expenses incurred per unit time. Furthermore, {Yi}∞i=1

is now the sequence of random gains experienced by the company, with Yi representing the size of
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the i-th gain. Note that under the dual MAP risk model, ruin is caused by the expenses incurred,

and in case of ruin, both the surplus prior to ruin and the deficit at ruin are zero. The time

of ruin is thus defined to be the first time that the process {Udual
t }t≥0 hits level 0, and is given

by T dual = inf{t ≥ 0 : Udual
t = 0} with T dual = ∞ if ruin does not occur. Note that ruin occurs

immediately with zero initial surplus. In addition, the Gerber-Shiu function reduces to (a constant

multiple of) the Laplace transform of the time of ruin, since the penalty applied at ruin is constant

in this case (owing to the constant nature of the surplus prior to ruin and the deficit at ruin).

According to Avanzi et al. (2007), a dual risk model is appropriate for describing the surplus

process of companies which are involved in invention or discovery, such as pharmaceutical and

petroleum companies. The characteristics of these companies are such that, they are paying

expenses over time, while occasional gains from invention or discovery would bring upward jumps

to the surplus process, and we can think of each upward jump to be the net present value of

future income as a result of an invention or discovery. In addition, a dual model might also be

appropriate for settings involving annuity or pension fund (see, e.g., Seal (1969, p.116)). For a

detailed study of the model (3.1) under an independent set-up, we refer readers to, e.g., Mazza

and Rullière (2004) and Seal (1969).

This chapter considers a modification of the dual MAP risk model described above by incor-

porating a dividend strategy into it. However, in the dual model with a dividend barrier (see,

e.g., Avanzi and Gerber (2008), Avanzi et al. (2007) and Cheung and Drekic (2008)), the ruin

probability is 1, which is practically undesirable. The purpose of this chapter is to propose a

threshold-type dual model (see also Ng (2009) for the study of a dual compound Poisson model)

in which the ruin probability may or may not be 1. Under a threshold modification, the surplus

process is denoted by {Udual
c1,b1

(t)}t≥0 with dynamics

dUdual
c1,b1

(t) =




−c1 dt + d

(∑Nt

i=1 Yi

)
, 0 ≤ Udual

c1,b1
(t) < b1 .

−c2 dt + d
(∑Nt

i=1 Yi

)
, b1 ≤ Udual

c1,b1
(t) < b1 + b2 = ∞ .

(3.2)
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In the model {Udual
c1,b1

(t)}t≥0, the level b1 is the so-called threshold level. It is assumed that the

company pays dividends to shareholders at rate d1 (d2) and therefore the surplus decreases at rate

c1 (c2) with ci = expense rate + di whenever the surplus level is below (above) b1. To ease our

analysis, we also define the threshold-free process {Udual
c2,b2

(t)}t≥0 given by

dUdual
c2,b2

(t) = −c2 dt + d

(
Nt∑
i=1

Yi

)
, 0 ≤ Udual

c2,b2
(t) < b2 = ∞ . (3.3)

We remark that the process {Udual
c2,b2

(t)}t≥0 with Udual
c2,b2

(0) = u and c2 = c is identical to the surplus

process {Udual
t }t≥0 described by (3.1). But the seemingly more complicated notations here indeed

ease presentation later on.

Under the threshold dividend strategy described above, the positive security loading condition

for the process {Udual
c1,b1

(t)}t≥0 is identical to that of the threshold-free process {Udual
c2,b2

(t)}t≥0, and

is given by (1.3) with the inequality sign reversed and c replaced by c2. This guarantees the two

processes to have ruin probability less than 1.

For i = 1, 2, pertaining to the surplus process {Udual
ci,bi

(t)}t≥0, is the time of ruin T dual
ci,bi

(u) =

inf{t ≥ 0 : Udual
ci,bi

(t) = 0|Udual
ci,bi

(0) = u}. In addition, we define, for i = 1, 2, the discounted (at a

force of interest δ > 0) dividend random variable for the surplus process {Udual
ci,bi

(t)}t≥0 to be

Ddual
δ,ci,bi

(u) =
2∑

j=i

dj

∫ Tdual
ci,bi

(u)

0

e−δt1

{
j−1∑

k=i

bk ≤ Udual
ci,bi

(t) <

j∑

k=i

bk

}
dt . (3.4)

We remark that in defining the above random variables, their dependence on the initial surplus u

is emphasized. This proves to be helpful later on when sample paths analysis is performed.

The study of the Laplace transform of T dual
ci,bi

(u) and the moments of Ddual
δ,ci,bi

(u) will be the focus

of this chapter. Our methodology used, in contrast to Chapter 2, will be an existing connection

to a fluid flow process as described in Section 1.4.2.
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Remark 6 In the classical approach of conditioning on the time and amount of the first gain

(see, e.g., Ng (2009)) used in the study of ruin-related quantities in dual risk models, the re-

sulting integral and/or integro-differential equations no longer contain convolution-type integrals.

Convolution-type integrals, which usually arise in standard (i.e. non-dual) risk models, are rela-

tively easy to deal with in comparison to the integrals arising in dual risk models. Therefore, the

study of dual risk models is not an easy problem if the classical approach is applied. However, as

we shall see, with the use of fluid flow methodology, simply a reflected fluid flow process is required

to study the dual MAP risk model without any further complications.

Corresponding to the surplus processes (3.2) and (3.3) are the reflected fluid flow processes

{F r
c1,b1

(t)}t≥0 and {F r
c2,b2

(t)}t≥0 defined by

dF r
c1,b1

(t) =
(
1{J (F )(t) ∈ S2} − 1{J (F )(t) ∈ S1}

)




c1 dt , 0 ≤ F r
c1,b1

(t) < b1 ,

c2 dt , b1 ≤ F r
c1,b1

(t) < b1 + b2 = ∞ ,
(3.5)

and

dF r
c2,b2

(t) =
(
1{J (F )(t) ∈ S2} − 1{J (F )(t) ∈ S1}

)
c2 dt , 0 ≤ F r

c2,b2
(t) < b2 = ∞ , (3.6)

respectively. Note that for i = 1, 2, the reflected fluid process {F r
ci,bi

(t)}t≥0 is related to the

ordinary (i.e. non-reflected) fluid process {Fci,bi
(t)}t≥0 (see Badescu and Landriault (2008, Eq.

(2.4))) by

dF r
ci,bi

(t) = −dFci,bi
(t) , t ≥ 0 . (3.7)

Furthermore, for i = 1, 2, the quantity z
aτ

r
ci,bi

(x, y) (z
aτci,bi

(x, y)) denotes the first passage time of

{F r
ci,bi

(t)}t≥0 ({Fci,bi
(t)}t≥0) from level x to level y while avoiding a visit to the levels [0, a]∪ [z,∞)

enroute. As in Section 1.4.2, the arguments a and/or z will be suppressed whenever they are not

helpful. See also Section 1.4.2 regarding the details of the LSTs of various related first passage

times.
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Remark 7 In Section 1.4.2, the dependence on c of the LSTs is suppressed because there is only

one drift rate c. However, for the threshold model in this chapter, there are two rates c1 and c2 at

which the fluid level can be increasing/decreasing. Therefore, we add an additional subscript for

the LSTs. For example, at a rate of c, the LSTs previously denoted by f̂ r
11(x, 0, δ) and Ψr(δ) are

now denoted by f̂ r
11,c(x, 0, δ) and Ψr

c(δ) respectively.

The ideas in this chapter mainly come from Badescu and Landriault (2008). In their paper,

a multi-threshold ordinary MAP risk model was considered, and sample paths analysis was used

to decompose the time of ruin and the dividend payments into several pieces along disjoint time

intervals under different scenarios. Then expectation was taken with respect to the variable of

interest, taking advantage of the fact that given the state of the CTMC {J (F )(t)}t≥0, quantities

defined on disjoint intervals are independent. This chapter is organized as follows. In Section

3.2, the Laplace transform of the time of ruin is derived, while Sections 3.3 and 3.4 consider

respectively the moments of discounted dividends with and without ruin. Such separation of the

moments into cases where ruin occurs or not is believed to be first contributed by Badescu and

Landriault (2008).

3.2 Laplace transform of time of ruin

Recall from Section 1.4.2 that whenever MAP risk process is analyzed by a connection to a fluid

flow process, the ruin-related quantities have to be defined with respect to the states of the CTMC

{J (F )(t)}t≥0 (not {Jt}t≥0). Then, for i = 1, 2, we define the |S1| × |S1| matrix of the LST of the

distribution of T dual
ci,bi

(u) by ρdual
δ,ci,bi

(u), whose (j, k)-th element is given by

[ρdual
δ,ci,bi

(u)]jk = E
[
e
−δTdual

ci,bi
(u)

1{T dual
ci,bi

(u) < ∞, J (F )(τ r
ci,bi

(u, 0)) = k}|J (F )(0) = j
]

, u ≥ 0 . (3.8)

50



Note that ruin occurs immediately at the initial state with zero initial surplus and therefore

ρdual
δ,ci,bi

(0) = I.

For the threshold-free surplus process {Udual
c2,b2

(t)}t≥0, it is trivial that

ρdual
δ,c2,b2

(u) = e
− δu

2c2 f̂ r
11,c2

(
u, 0,

δ

2

)
, u ≥ 0 . (3.9)

In the case of {Udual
c1,b1

(t)}t≥0, using similar arguments as in the proof of Theorem 3.1 of Badescu et

al. (2007a), it can be shown that

ρdual
δ,c1,b1

(u) = e
− δb1

2c1 ρdual
δ,c2,b2

(u−b1)

[
I− b1Ψc1

(
δ

2

)
Ψr

c2

(
δ

2

)]−1

0f̂11,c1

(
0, b1,

δ

2

)
, u > b1 , (3.10)

and

ρdual
δ,c1,b1

(u) = e
− δu

2c1

{
0f̂11,c1

(
b1 − u, b1,

δ

2

)
+ b1 f̂12,c1

(
b1 − u, 0,

δ

2

)
Ψr

c2

(
δ

2

)

×
[
I− b1Ψc1

(
δ

2

)
Ψr

c2

(
δ

2

)]−1

0f̂11,c1

(
0, b1,

δ

2

) }
, 0 ≤ u ≤ b1 . (3.11)

The ruin probability can be obtained as a special case of (3.10) and (3.11) by letting δ = 0.

3.3 Dividend moments with ruin

Analogous to Eq. (3.1) in Badescu and Landriault (2008), for i = 1, 2 and l, n ∈ N, we define

the |S1| × |S1| matrix Wdual
l,n,ci,bi

(u) which represents the matrix of the generalized moments of the
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discounted dividend payments with ruin occurrence, with its (j, k)-th element given by

[Wdual
l,n,ci,bi

(u)]jk = E
[
e
−lδTdual

ci,bi
(u)

(Ddual
δ,ci,bi

(u))n1{T dual
ci,bi

(u) < ∞, J (F )(τ r
ci,bi

(u, 0)) = k}|J (F )(0) = j
]

,

u ≥ 0 . (3.12)

Adopting the same abbreviations as in Badescu and Landriault (2008), for the remainder of this

chapter we shall write (3.12) as, for i = 1, 2 and l, n ∈ N,

[Wdual
l,n,ci,bi

(u)]jk = E
(ruin)
jk

[
e
−lδTdual

ci,bi
(u)

(Ddual
δ,ci,bi

(u))n
]

, u ≥ 0 . (3.13)

For the threshold-free surplus process {Udual
c2,b2

(t)}t≥0, it follows from an identical argument used

to obtain Eq. (3.3) in Proposition 1 of Badescu and Landriault (2008) that, for l, n ∈ N,

Wdual
l,n,c2,b2

(u) =

(
d2

δ

)n n∑

h=0

(
n

h

)
(−1)hρdual

(l+h)δ,c2,b2
(u) , u ≥ 0 . (3.14)

Next we consider the quantity Wdual
l,n,c1,b1

(u) for the surplus process {Udual
c1,b1

(t)}t≥0. First, for

u > b1, the corresponding fluid flow process {F r
c1,b1

(t)}t≥0 has to make a transition from (u, S1)

to (b1, S1) in order for ruin to occur. In other words, τ r
c1,b1

(u, 0) has the same distribution as

τ r
c2,b2

(u − b1, 0) + (τ r
c1,b1

)∗(b1, 0), which in turn implies that T dual
c1,b1

(u) has the same distribution as

T dual
c2,b2

(u−b1)+(T dual
c1,b1

)∗(b1). Here we assume (τ r
c1,b1

)∗(b1, 0)
d
= τ r

c1,b1
(b1, 0) and (T dual

c1,b1
)∗(b1)

d
= T dual

c1,b1
(b1).

Therefore, the random variable Ddual
δ,c1,b1

(u) can be decomposed into

Ddual
δ,c1,b1

(u)
d
= Ddual

δ,c2,b2
(u− b1) + e

−δTdual
c2,b2

(u−b1)
(Ddual

δ,c1,b1
)∗(b1) , (3.15)

where (Ddual
δ,c1,b1

)∗(b1)
d
= Ddual

δ,c1,b1
(b1). Following the same ideas used in deriving Eq. (3.16) in Badescu
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and Landriault (2008), one can show that, for l, n ∈ N,

Wdual
l,n,c1,b1

(u) =
n∑

ξ=0

(
n

ξ

)
Wdual

l+ξ,n−ξ,c2,b2
(u− b1) Wdual

l,ξ,c1,b1
(b1) , u > b1 . (3.16)

Second, for 0 ≤ u ≤ b1, the fluid flow process {F r
c1,b1

(t)}t≥0 must either reach level b1 in S2 or

reach level 0 in S1 first. In the former case, for ruin to occur, the process must make a transition

back to level b1 in S1. Hence, τ r
c1,b1

(u, 0)
d
= b1τc1,b1

(b1 − u, 0) + τ r
c2,b2

(0, 0) + (τ r
c1,b1

)∗(b1, 0), which

means T dual
c1,b1

(u)
d
= b1τc1,b1

(b1 − u, 0)/2− (b1 − u)/(2c1) + τ r
c2,b2

(0, 0)/2 + (T dual
c1,b1

)∗(b1). Now, we can

decompose Ddual
δ,c1,b1

(u) into

Ddual
δ,c1,b1

(u)
d
= d1ab1τc1,b1

(b1−u,0)/2−(b1−u)/(2c1)|

+ e−δ[b1τc1,b1
(b1−u,0)/2−(b1−u)/(2c1)]

[
d2aτr

c2,b2
(0,0)/2| + e

−δτr
c2,b2

(0,0)/2
(Ddual

δ,c1,b1
)∗(b1)

]
.

(3.17)

For the latter case, it is clear that τ r
c1,b1

(u, 0)
d
= 0τc1,b1

(b1 − u, b1). This immediately yields

T dual
c1,b1

(u)
d
= 0τc1,b1

(b1 − u, b1)/2 + u/(2c1), and so

Ddual
δ,c1,b1

(u)
d
= d1a0τc1,b1

(b1−u,b1)/2+u/(2c1)| . (3.18)

Combining the above two cases with representations (3.17) and (3.18) respectively, we can apply

the same procedure as in Proposition 2 of Badescu and Landriault (2008) (but omit the rather

tedious but straightforward algebra) to arrive at, for l, n ∈ N,

Wdual
l,n,c1,b1

(u) =
n∑

ξ=0

(
n

ξ

)
W

dual

l,n,ξ,c1,b1
(u) Wdual

l,n−ξ,c1,b1
(b1)

+

(
d1

δ

)n n∑

h=0

(
n

h

)
(−1)he

− (l+h)δu
2c1 0f̂11,c1

(
b1 − u, b1,

(l + h)δ

2

)
, 0 ≤ u ≤ b1 ,

(3.19)
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where for ξ = 0, 1, . . . , n and l, n ∈ N,

W
dual

l,n,ξ,c1,b1
(u) =

ξ∑

h=0

(
ξ

h

)(
d1

δ

)h h∑
x=0

(
h

x

)
(−1)h−xe

(l+n−x)δ(b1−u)
2c1

b1 f̂12,c1

(
b1 − u, 0,

(l + n− x)δ

2

)

×
(

d2

δ

)ξ−h ξ−h∑
y=0

(
ξ − h

y

)
(−1)ξ−h−y Ψr

c2

(
(l + n− h− y)δ

2

)
, 0 ≤ u ≤ b1 ,

(3.20)

is an explicit formula enabling the computation of the |S1| × |S1| matrix W
dual

l,n,ξ,c1,b1
(u). In partic-

ular, putting u = b1 into (3.19) and solving for Wdual
l,n,c1,b1

(b1) yields, for l, n ∈ N,

Wdual
l,n,c1,b1

(b1) =
[
I−W

dual

l,n,0,c1,b1
(b1)

]−1
[

n∑

ξ=1

(
n

ξ

)
W

dual

l,n,ξ,c1,b1
(b1) Wdual

l,n−ξ,c1,b1
(b1)

+

(
d1

δ

)n n∑

h=0

(
n

h

)
(−1)he

− (l+h)δb1
2c1 0f̂11,c1

(
0, b1,

(l + h)δ

2

) ]
, (3.21)

which is a recursion in n for the evaluation of Wdual
l,n,c1,b1

(b1) with starting value Wdual
l,0,c1,b1

(b1) =

ρdual
lδ,c1,b1

(b1). Note that the term W
dual

l,n,0,c1,b1
(b1) in (3.21) can be simplified (using (3.20)) to, for

l, n ∈ N,

W
dual

l,n,0,c1,b1
(b1) = b1Ψc1

(
(l + n)δ

2

)
Ψr

c2

(
(l + n)δ

2

)
. (3.22)

To conclude this section, for 0 ≤ u ≤ b1, (3.19) together with (3.20) and (3.21) characterize

Wdual
l,n,c1,b1

(u), while for u > b1, Wdual
l,n,c1,b1

(u) is computed via (3.16) with the help of (3.14) and

(3.21). The ‘ordinary’ moments of Ddual
δ,c1,b1

(u) can then be obtained from Wdual
l,n,c1,b1

(u) by letting

l = 0.
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3.4 Dividend moments without ruin

For i = 1, 2 and n ∈ N, we define the |S1| column vector χdual
n,ci,bi

(u) with j-th element given by

[χdual
n,ci,bi

(u)]j = E
[
(Ddual

δ,ci,bi
(u))n1{T dual

ci,bi
(u) = ∞}|J (F )(0) = j

]
, u ≥ 0 . (3.23)

Similar to (3.13), we adopt the abbreviation, for i = 1, 2 and n ∈ N,

[χdual
n,ci,bi

(u)]j = Ej

[
(Ddual

δ,ci,bi
(u))n1{T dual

ci,bi
(u) = ∞}

]
, u ≥ 0 . (3.24)

Then, for the threshold-free surplus process {Udual
c2,b2

(t)}t≥0, it is easy to see that, for n ∈ N,

χdual
n,c2,b2

(u) =

(
d2

δ

)n [
1− ρdual

0,c2,b2
(u)1

]
, u ≥ 0 , (3.25)

holds by using identical arguments in obtaining Eq. (3.27) in Badescu and Landriault (2008).

Next, for the surplus process {Udual
c1,b1

(t)}t≥0, we first consider u > b1. The corresponding fluid

flow process {F r
c1,b1

(t)}t≥0 can either visit or not visit level b1 in S1 and therefore (3.24) with i = 1

can be expressed as, for n ∈ N,

[χdual
n,c1,b1

(u)]j = Ej

[
(Ddual

δ,c1,b1
(u))n1{T dual

c2,b2
(u− b1) < ∞, (T dual

c1,b1
)∗(b1) = ∞}

]

+ Ej

[
(Ddual

δ,c1,b1
(u))n1{T dual

c2,b2
(u− b1) = ∞}

]
, u > b1 . (3.26)

For the former case represented by the first term on the right-hand side of (3.26), the random

variable Ddual
δ,c1,b1

(u) has the same representation as (3.15) and hence the above equation leads to,

55



for n ∈ N,

χdual
n,c1,b1

(u) =
n∑

ξ=0

(
n

ξ

)
Wdual

ξ,n−ξ,c2,b2
(u− b1) χdual

ξ,c1,b1
(b1) + χdual

n,c2,b2
(u− b1) , u > b1. (3.27)

For 0 ≤ u ≤ b1, the corresponding fluid flow process {F r
c1,b1

(t)}t≥0 must first reach level b1 in

S2 before reaching level 0 in S1 to avoid ruin. After reaching level b1 in S2, the process either

visits or does not visit level b1 in S1. Thus, one has, for n ∈ N,

[χdual
n,c1,b1

(u)]j = Ej

[
(Ddual

δ,c1,b1
(u))n1{b1τc1,b1

(b1 − u, 0) < ∞, τ r
c2,b2

(0, 0) < ∞, (T dual
c1,b1

)∗(b1) = ∞}
]

+ Ej

[
(Ddual

δ,c1,b1
(u))n1{b1τc1,b1

(b1 − u, 0) < ∞, τ r
c2,b2

(0, 0) = ∞}
]

, 0 ≤ u ≤ b1 .

(3.28)

The first term on the right-hand side of (3.28) represents the former case where the variable

Ddual
δ,c1,b1

(u) has an identical decomposition as (3.17), while the second term represents the latter

case with Ddual
δ,c1,b1

(u) given by

Ddual
δ,c1,b1

(u)
d
= d1ab1τc1,b1

(b1−u,0)/2−(b1−u)/(2c1)| + e−δ[b1τc1,b1
(b1−u,0)/2−(b1−u)/(2c1)]

(
d2

δ

)
. (3.29)

Following the same line of logic in obtaining (3.19), one finds that (3.28) reduces to, for n ∈ N,

χdual
n,c1,b1

(u) =
n∑

ξ=0

(
n

ξ

)
W

dual

0,n,ξ,c1,b1
(u) χdual

n−ξ,c1,b1
(b1)

+
n∑

ξ=0

(
n

ξ

) (
d1

δ

)ξ (
d2

δ

)n−ξ ξ∑

h=0

(
ξ

h

)
(−1)ξ−he

(n−h)δ(b1−u)
2c1

× b1 f̂12,c1

(
b1 − u, 0,

(n− h)δ

2

) [
1−Ψr

c2
(0)1

]
, 0 ≤ u ≤ b1 . (3.30)
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Letting u = b1 in the above equation together with the use of (3.22) yields, for n ∈ N,

χdual
n,c1,b1

(b1) =

[
I− b1Ψc1

(
nδ

2

)
Ψr

c2

(
nδ

2

)]−1
{

n∑

ξ=1

(
n

ξ

)
W

dual

0,n,ξ,c1,b1
(b1) χdual

n−ξ,c1,b1
(b1)

+
n∑

ξ=0

(
n

ξ

)(
d1

δ

)ξ (
d2

δ

)n−ξ ξ∑

h=0

(
ξ

h

)
(−1)ξ−h b1Ψc1

(
(n− h)δ

2

) [
1−Ψr

c2
(0)1

]
}

,

(3.31)

which provides a recursive scheme for computing χdual
n,c1,b1

(b1), with starting value χdual
0,c1,b1

(b1) =

1− ρdual
0,c1,b1

(b1)1.

In conclusion, for 0 ≤ u ≤ b1, χdual
n,c1,b1

(u) can be evaluated via (3.30) together with (3.20) and

(3.31), while for u > b1, χdual
n,c1,b1

(u) is determined by (3.14), (3.25), (3.27) and (3.31).
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Chapter 4

Generalized Sparre Andersen risk model

with bivariate phase-type distribution

4.1 Introduction

In Section 1.2.2, the generalized Sparre Andersen risk model has been introduced. In this chap-

ter, we turn our attention to one of its particular cases in which the bivariate random vectors

{(Vi, Yi)}∞i=1 form an i.i.d. sequence, with an arbitrary pair of Vi and Yi related through a bivari-

ate phase-type distribution. Indeed, we shall assume that the pair (V, Y/c) (instead of (V, Y ))

follows a bivariate phase-type distribution, which will be discussed in detail in Section 4.2. As in

the univariate case, we point out that the class of bivariate phase-type distributions is dense in

the set of distributions defined on R+ × R+ (see Assaf et al. (1984, Corollary 1)).

For the surplus process (1.1) in the generalized Sparre Andersen risk model with (V, Y/c) having

a bivariate phase-type distribution, our main objective in this chapter is to analyze a subclass of

Gerber-Shiu functions (see (1.2)), namely, those for which the penalty function depends on the
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deficit at ruin |UT | only, i.e. w(x, y) = w2(y). To this end, we define the Gerber-Shiu function of

our interest as

φ2,δ(u) = E
[
e−δT w2(|UT |)1{T < ∞}|U0 = u

]
, u ≥ 0 . (4.1)

This special class of Gerber-Shiu functions has been considered by, e.g., Landriault and Willmot

(2008) and Willmot (2007). For the Gerber-Shiu function φ2,δ(u), we always assume δ > 0 or

the positive security loading condition (1.5) holds. In this chapter, we propose to analyze φ2,δ(u)

using a novel connection to a particular fluid flow model described in Section 4.3.

The chapter is organized as follows. Section 4.2 gives a review of the bivariate phase-type

distribution. In Section 4.3, the construction of a particular fluid flow model is presented and

its connection to the surplus process {Ut}t≥0 is established. The main results of this chapter are

provided in Section 4.4 in which an explicit expression for the Laplace transform of the time of

ruin T is obtained and the distribution of the deficit at ruin |UT | is shown to be phase-type.

Finally, Section 4.5 deals with the analysis of some discounted joint distributions of certain ruin-

related quantities including the surplus immediately prior to ruin UT− as well as the surplus level

immediately after the second last claim before ruin RNT−1.

4.2 Bivariate phase-type distributions

We consider the class of bivariate phase-type distributions introduced by Assaf et al. (1984).

For purposes of completeness, this class of distributions is discussed in detail here. Suppose that

the time-homogeneous CTMC {Jt}t≥0 has finite state space E = {1, . . . ,m} ∪ {∆}, infinitesimal

generator A and initial probability vector a. Let Γ1 and Γ2 be two non-empty stochastically closed

subsets of E. Note that a set is said to be stochastically closed if once the CTMC enters it, the

CTMC never leaves. Also, define ∆ = Γ1 ∩Γ2 to be a non-empty subset of E. We further assume

that the CTMC {Jt}t≥0 is defined such that both subsets Γ1 and Γ2 are visited at least once a.s..
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Let Θ1 and Θ2 be the times of the first visit of {Jt}t≥0 into Γ1 and Γ2 respectively, i.e., for

i = 1, 2,

Θi = inf{t ≥ 0 : Jt ∈ Γi} . (4.2)

We assume, without loss of generality, that ∆ = Γ1 ∩ Γ2 contains only one state, since both

random variables Θ1 and Θ2 must have been realized upon absorption into ∆. The state space E

is then partitioned into the following four subsets: E0 = Γc
1 ∩ Γc

2, E1 = Γ1 ∩ Γc
2, E2 = Γc

1 ∩ Γ2 and

∆ = Γ1 ∩ Γ2. In addition, |E0| = m0, |E1| = m1 and |E2| = m2 such that m0 + m1 + m2 = m.

The infinitesimal generator A can be written as

A =




T −T1

0 0


 , (4.3)

where

T =




T00 T01 T02

0 T11 0

0 0 T22




. (4.4)

Note that

• Tii is an mi × mi matrix with negative diagonal elements and non-negative off-diagonal

elements containing the rate of transition in Ei; and

• Tij (i 6= j) is an mi×mj matrix with non-negative elements containing the rate of exit from

any state in Ei to any state in Ej.

Due to the form of (4.4), the column vector −T1 in (4.3) can be rewritten as

−T1 =




t0

t1

t2




, (4.5)
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where for i = 0, 1, 2, ti is an mi-dimensional column vector. We shall call the joint distribution of

(Θ1, Θ2) a bivariate phase-type distribution with representation BPH(a,T).

It is worth noting that such a class was further generalized by Kulkarni (1989) whose definition

is based on the total accumulated reward until absorption in a finite-state CTMC. However, the

class defined by Assaf et al. (1984) is dense in the set of distributions defined on R+ × R+, and

is practically sufficient for modelling purposes.

The class of bivariate phase-type distributions by Assaf et al. (1984) contains various well-

known bivariate distributions as special cases, notably Marshall and Olkin (1967)’s bivariate expo-

nential distribution and Freund (1961)’s extension of the exponential distribution (see, e.g., Assaf

et al. (1984, Example 5.2) and Cai and Li (2007, Example 4.3) for their bivariate phase-type rep-

resentations respectively). We remark that while the former distribution only allows for positive

correlation between the two variables, the latter distribution can be used to model both positive

and negative dependence structures. Interested readers are referred to Assaf et al. (1984, Section

5) for other special cases of bivariate phase-type distributions.

Note that bivariate phase-type distributions may have singular components along Θ1 = 0,

Θ2 = 0 and/or Θ1 = Θ2. In our context, given that the claim sizes and the interclaim times

are assumed to be positive random variables, the possible singular components along Θ1 = 0 and

Θ2 = 0 are removed by assuming the initial probability vector a to be of the form a = (a0,0)

where a0 is a row vector with m0 non-negative elements satisfying a01 = 1.

In addition, it seems unreasonable to assume that the interclaim time and (a constant multiple

of) the claim size are equal with a positive probability. Such a possibility can be discarded

by assuming that t0 = 0. However, in most cases, no significant simplification occurs in the

subsequent analysis when t0 = 0. Thus, we will keep the vector t0 without assuming it is a zero

vector unless specified otherwise.
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4.3 Connection with a particular fluid queue

To analyze the surplus process {Ut}t≥0, suppose we would like to apply the existing connection

between risk models and fluid queues described in Section 1.4.2 where the set S0 is assumed

empty. Recall that in such existing construction, the fluid process {F (t), J (F )(t)}t≥0 has a rate

of increase/decrease of c and alternates between periods of increasing and decreasing fluid level.

Then the joint distribution of the length a period of increasing fluid level and its subsequent

period of decreasing fluid level has to follow the generic pair (V, Y/c) under the assumption of a

generalized Sparre Andersen risk model. Indeed, this also suggests that it seems more natural to

model (V, Y/c) (instead of (V, Y )) as a bivariate phase-type distribution, since V and Y/c are of

the same units and can both be interpreted as the length of time.

In the fluid flow literature, the use of MAMs to analyze a fluid process {F (t)}t≥0 is well

documented and typically requires the introduction of an underlying time-homogeneous CTMC

{J (F )(t)}t≥0 which makes the bivariate process {F (t), J (F )(t)}t≥0 Markovian. In our context,

under the assumption that (V, Y/c) has a bivariate phase-type distribution, it is believed that

such an underlying CTMC {J (F )(t)}t≥0 does not exist. Even if such an underlying CTMC exists,

its definition will likely be a challenging task.

In what follows, we propose to apply the general fluid flow model where the generator of the

CTMC {J (F )(t)}t≥0 is given by (1.20) AND the set S0 is NOT empty. For the remainder of

this chapter, we shall forget about the existing connection between risk process and fluid queue

given in Section 1.4.2. Instead, we shall show that the risk process {Ut}t≥0 under the assumption

that the generic pair (V, Y/c) has identical distribution as the bivariate phase-type random vector

(Θ1, Θ2) can be analyzed by specifying the generator Q of {J (F )(t)}t≥0 in terms of the parameters

of the distribution of (Θ1, Θ2). To this end, defining the fluid process {F (t)}t≥0 together with

its underlying CTMC {J (F )(t)}t≥0 such that the bivariate process {F (t), J (F )(t)}t≥0 is Markovian
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represents the key step to analyze the risk process {Ut}t≥0 via MAMs.

Note that for i = 1, 2, . . ., every pair of (Vi, Yi/c) is generated by a different sample path of

the CTMC {Jt}t≥0. To avoid confusion, we shall refer to the sample path of {Jt}t≥0 generating

the pair (Vi, Yi/c) as the i-th sample path of {Jt}t≥0. The construction of the fluid level process

{F (t)}t≥0 with F (t) = u is done as follows:

1. the fluid process {F (t)}t≥0 remains constant as long as the 1st sample path of {Jt}t≥0 remains

in E0 = Γc
1 ∩ Γc

2, i.e. {Jt}t≥0 has not yet visited any states in Γ1 ∪ Γ2;

2. the fluid process {F (t)}t≥0 starts to decrease (increase) at a rate c once the 1st sample path

of {Jt}t≥0 enters E1 = Γ1 ∩ Γc
2 (E2 = Γc

1 ∩ Γ2) (given that V1 < (>)Y1/c);

3. at the time that the 1st sample path of {Jt}t≥0 enters ∆ = Γ1∩Γ2, the fluid process {F (t)}t≥0

stops its increasing/decreasing/constant pattern; and

4. from this newly established fluid level, we repeat Steps 1-3 by replacing the 1st sample path

of {Jt}t≥0 by successively the 2nd, 3rd, . . . sample path of {Jt}t≥0.

Figure 4.1 depicts graphically the novel connection between {Ut}t≥0 and {F (t)}t≥0 (in contrast to

the existing connection as in Figure 1.2 for the study of MAP risk model).

From the construction of the fluid process {F (t)}t≥0, it is immediate that for i = 1, 2, . . . ,, the

level of the surplus process {Ut}t≥0 immediately after the payment of the i-th claim corresponds

to the fluid level of the process {F (t)}t≥0 at the end of the i-th sample path of {Jt}t≥0. Thus,

the ruin probability for the surplus process {Ut}t≥0 coincides with the probability that the fluid

process {F (t)}t≥0 hits level 0 at least once. However, with regards to the time of ruin T , it is not

true that the first passage time to level 0 of {F (t)}t≥0 corresponds to the time of ruin T in the

surplus process {Ut}t≥0. Indeed, when the fluid process {F (t)}t≥0 increases or remains constant,

the surplus process {Ut}t≥0 increases at a rate c, whereas time does not evolve in {Ut}t≥0 when

{F (t)}t≥0 decreases. Hence, the time of ruin T in the surplus process {Ut}t≥0 is equivalent to the
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Figure 4.1: Novel connection between {Ut}t≥0 and {F (t)}t≥0

total amount of time the process {F (t)}t≥0 takes to reach level 0, removing periods of time for

which the fluid decreases over that first passage time.

Having explained the logic behind the construction of the bivariate process {F (t), J (F )(t)}t≥0,

now it remains to formally define the sub-matrices Qij’s of (1.20) in terms of the sub-matrices

Tij’s of (4.4) for i = 0, 1, 2. At time 0, we consider the 1st sample path of {Jt}t≥0 starting in

some states in E0 = Γc
1 ∩ Γc

2. Recall that the fluid level remains constant as long as {Jt}t≥0 is in

E0. Furthermore, in case where t0 6= 0, it is possible that the 1st sample path of CTMC {Jt}t≥0

enters ∆ directly from E0 and we shall move on to consider the 2nd sample path of {Jt}t≥0. Note

that the transition rates of {Jt}t≥0 within E0 are governed by T00. Together with the fact that

absorption directly into ∆ = Γ1 ∩ Γ2 is governed by t0 and the initial probability of being in the

states of E0 regarding the 2nd sample path of {Jt}t≥0 is governed by a0, we arrive at S0 = E0,

and

Q00 = T00 + t0a0 . (4.6)
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When the process {Jt}t≥0 first leaves E0, it may enter E1 = Γ1 ∩ Γc
2 (governed by rate matrix

T01), E2 = Γc
1∩Γ2 (governed by rate matrix T02), or ∆ = Γ1∩Γ2. The last case has already been

accounted for by (4.6), so we only have to consider the first two cases. Suppose it enters E1. From

the time of entrance, as long as {Jt}t≥0 does not enter ∆, the fluid level decreases at a rate c. It

follows that S2 = E1. We also recall that the transitions within E1 are governed by the matrices

T11. Combining the above observations, it is immediate that

Q02 = T01 and Q22 = T11 . (4.7)

When the fluid level is decreasing at rate c and the CTMC {Jt}t≥0 is in E1, apart from staying in

E1 the CTMC {Jt}t≥0 can only enter ∆ upon leaving the set E1. Such transition of {Jt}t≥0 into

∆ is governed by t1. Once a transition into ∆ occurs, both random variables from the bivariate

phase-type distribution have been generated and we immediately move on to the next sample path

of {Jt}t≥0 via the initial probability vector a0. From the above descriptions, we have that

Q20 = t1a0 . (4.8)

Furthermore, by noting that under our construction of the bivariate process {F (t), J (F )(t)}t≥0, S1

cannot be reached from S2 (and actually vice versa) without passing through S0, we arrive at

Q21 = 0 . (4.9)

Similarly, if the process {Jt}t≥0 enters E2 when it first leaves E0, identical arguments lead to

Q01 = T02 , Q11 = T22 , Q10 = t2a0 and Q12 = 0 . (4.10)
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The characterization of the generator Q in (1.20) is now complete according to (4.6) - (4.10), i.e.

Q =




T00 + t0a0 T02 T01

t2a0 T22 0

t1a0 0 T11




. (4.11)

4.4 Laplace transform of time of ruin T and distribution

of deficit at ruin |UT |

In this section, we aim at analyzing the particular Gerber-Shiu function φ2,δ(u) defined by (4.1).

Such an analysis will be conducted via the connection of the surplus process {Ut}t≥0 to the fluid

level process {F (t)}t≥0. We recall here some crucial observations resulting from Section 4.3:

• for i = 1, 2, . . ., the surplus level immediately after the payment of the i-th claim corresponds

to the fluid level of the process {F (t)}t≥0 at the end of the i-th sample path of {Jt}t≥0; and

• with respect to time, time evolves in the surplus process {Ut}t≥0 only when the CTMC

{J (F )(t)}t≥0 is either in S0 or S1 (in contrast to the process {F (t)}t≥0 where time evolves

independently of the state of the CTMC {J (F )(t)}t≥0).

Clearly, the analysis of the Gerber-Shiu function φ2,δ(u) in the risk process {Ut}t≥0 requires a

freeze in the clock time whenever the CTMC {J (F )(t)}t≥0 is in the set of phases S2. Then, we

consider the evolution of the fluid process {F (t)}t≥0 and its underlying CTMC {J (F )(t)}t≥0. Let ν

be the time taken by {F (t)}t≥0 to become empty for the first time, i.e. ν = inf{t ≥ 0 : F (t) < 0},
with ν = ∞ if F (t) ≥ 0 for all t ≥ 0.

Remark 8 Note that using the notations of fluid flow process defined in Section 1.4.2, one sees

that (ν|F (0) = u)
d
= σ(u, 0) for u ≥ 0. However, the new notation ν is defined to ease presentation
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here, as we shall see later.

Also, for i = 0, 1, 2, let νi =
∫ ν

0
1{J (F )(s) ∈ Si} ds be the time spent in the set of phases Si during

the first passage time ν, with νi = ∞ if ν = ∞. Then, for i = 0, 1, 2, j ∈ Si and k ∈ S2, we define

the |Si| × |S2| matrix Υi,u(x) with (j, k)-th element defined by

[Υi,u(x)]jk = Pr{ν < ∞, ν0 + ν1 ≤ x, J (F )(ν) = k|F (0) = u, J (F )(0) = j} , x ≥ 0 . (4.12)

We also define the LST, for i = 0, 1, 2, Υ̂i,u(δ) =
∫∞
0

e−δx dΥi,u(x). Our objective is to establish

some relationships between the LSTs. To this end, we condition on the first transition of the

process {J (F )(t)}t≥0 into another set of phases and readily obtain

Υ̂0,u(δ) = (δI−Q00)
−1

[
Q01Υ̂1,u(δ) + Q02Υ̂2,u(δ)

]
, u ≥ 0 , (4.13)

Υ̂1,u(δ) =

∫ ∞

0

e(Q11−δI)yQ10Υ̂0,u+cy(δ) dy =
1

c

∫ ∞

u

e(Q11−δI) y−u
c Q10Υ̂0,y(δ) dy , u ≥ 0 , (4.14)

and

Υ̂2,u(δ) = eQ22
u
c +

∫ u
c

0

eQ22yQ20Υ̂0,u−cy(δ) dy = eQ22
u
c +

1

c

∫ u

0

eQ22
u−y

c Q20Υ̂0,y(δ) dy, u ≥ 0 .

(4.15)

In order to simplify the notations, we introduce the matrix Q∗(δ) defined by

Q∗(δ) =




Q∗
11(δ) Q∗

12(δ)

Q∗
21(δ) Q∗

22(δ)


 =




Q10(δI−Q00)
−1Q01 Q10(δI−Q00)

−1Q02

Q20(δI−Q00)
−1Q01 Q20(δI−Q00)

−1Q02


 . (4.16)

It is instructive to observe that for i, j = 1, 2, the block matrix Q∗
ij(δ) gives the Laplace transform

of the time spent by the underlying CTMC {J (F )(t)}t≥0 in S0, given the state before entering S0

is Si and the state after leaving S0 is Sj.
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Now, differentiating (4.14) with respect to u and then making use of (4.13) and (4.16), one

finds that

∂

∂u
Υ̂1,u(δ) = −1

c

[
Q10Υ̂0,u(δ) + (Q11 − δI)Υ̂1,u(δ)

]

= −1

c

{[
Q10(δI−Q00)

−1Q01 + (Q11 − δI)
]
Υ̂1,u(δ) + Q10(δI−Q00)

−1Q02Υ̂2,u(δ)
}

= −1

c

{
[Q11 − δI + Q∗

11(δ)] Υ̂1,u(δ) + Q∗
12(δ)Υ̂2,u(δ)

}
, u ≥ 0 . (4.17)

Note that, under δ > 0 or the positive security loading condition (1.5),

lim
u→∞

Υ̂1,u(δ) = 0 . (4.18)

Similarly, the differentiation of (4.15) with respect to u followed by the use of (4.13) and (4.16)

yields

∂

∂u
Υ̂2,u(δ) =

1

c

[
Q22Υ̂2,u(δ) + Q20Υ̂0,u(δ)

]

=
1

c

{
Q22Υ̂2,u(δ) + Q20(δI−Q00)

−1
[
Q01Υ̂1,u(δ) + Q02Υ̂2,u(δ)

]}

=
1

c

{
[Q22 + Q∗

22(δ)] Υ̂2,u(δ) + Q∗
21(δ)Υ̂1,u(δ)

}
, u ≥ 0 , (4.19)

with the trivial boundary condition

Υ̂2,0(δ) = I . (4.20)

From (4.17), (4.18), (4.19) and (4.20), we observe that Υ̂1,u(δ) and Υ̂2,u(δ) satisfy a Feynman-Kac

equation (see, e.g., Asmussen et al. (2002, Theorem 2)).

For a moment we turn our attention to another random time pertaining to the fluid level

process {F (t)}t≥0. Starting with an initial fluid level u, we let η be the time taken for the fluid

level to return to its initial level for the first time. It is clear that η is indeed independent of the

initial level u. We then define η = inf{t ≥ 0 : F (t) < 0|F (0) = 0}, with η = ∞ if F (t) ≥ 0 for all
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t ≥ 0. Also, for i = 0, 1, 2, let ηi =
∫ η

0
1{J (F )(s) ∈ Si} ds be the time spent in the set of phases

Si during the first return time η, with ηi = ∞ if η = ∞. Again we would like to remove the time

that the CTMC {J (F )(t)}t≥0 is in S2, and therefore for j ∈ S1 and k ∈ S2 we define Λ(x) to be

the |S1| × |S2| matrix with (j, k)-th element defined by

[Λ(x)]jk = Pr{η < ∞, η0 + η1 ≤ x, J (F )(η) = k|F (0) = 0, J (F )(0) = j} , x ≥ 0 , (4.21)

with its LST given by Λ̂(δ) =
∫∞

0
e−δx dΛ(x). Note also that Λ̂(δ) = Υ̂1,0(δ).

Now if we return to the quantity Υ̂1,u(δ), note that starting with initial fluid level u, for the

fluid level to become zero, the skip-free property of the fluid process {F (t)}t≥0 implies that the

process must revisit level u at least once and ultimately make a transition from level u to level 0.

Hence,

Υ̂1,u(δ) = Λ̂(δ)Υ̂2,u(δ) , u ≥ 0 . (4.22)

By substitution of (4.22) into (4.19), one arrives at

∂

∂u
Υ̂2,u(δ) =

1

c

[
Q22 + Q∗

22(δ) + Q∗
21(δ)Λ̂(δ)

]
Υ̂2,u(δ) , u ≥ 0 . (4.23)

(4.23) together with the boundary condition (4.20) leads to

Υ̂2,u(δ) = e[Q22+Q∗22(δ)+Q∗21(δ)Λ̂(δ)]u
c , u ≥ 0 . (4.24)

Finally, using (4.24), (4.22) becomes

Υ̂1,u(δ) = Λ̂(δ)e[Q22+Q∗22(δ)+Q∗21(δ)Λ̂(δ)]u
c , u ≥ 0 . (4.25)
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The substitution of (4.24) and (4.25) into (4.17) yields

Λ̂(δ)
[
Q22 + Q∗

22(δ) + Q∗
21(δ)Λ̂(δ)

]
e[Q22+Q∗22(δ)+Q∗21(δ)Λ̂(δ)]u

c

=−
{

[Q11 − δI + Q∗
11(δ)] Λ̂(δ) + Q∗

12(δ)
}

e[Q22+Q∗22(δ)+Q∗21(δ)Λ̂(δ)]u
c , u ≥ 0 , (4.26)

which implies

[Q11 − δI + Q∗
11(δ)] Λ̂(δ) + Λ̂(δ) [Q22 + Q∗

22(δ)] + Λ̂(δ)Q∗
21(δ)Λ̂(δ) + Q∗

12(δ) = 0 . (4.27)

(4.27) satisfied by the LST Λ̂(δ) is known as a Riccati equation (see, e.g., Abou-Kandil et al.

(2003, Chapter 2)). Several numerical algorithms have been proposed in the literature to obtain

solutions of a Riccati equation. We also refer interested readers to Badescu et al. (2005), Bean

et al. (2005) and Guo (2001). Once Λ̂(δ) has been determined, then Υ̂1,u(δ) and Υ̂2,u(δ) can be

determined by (4.25) and (4.24) respectively, and Υ̂0,u(δ) can be calculated from (4.13).

Remark 9 An alternative proof of the fact that Λ̂(δ) satisfies the Riccati equation (4.27) can be

found in Badescu et al. (2009).

Now we have all the necessary components for one of the main results in this chapter regarding

the risk process {Ut}t≥0. The Laplace transform of the time of ruin T , denoted by

ρδ(u) = E
[
e−δT 1{T < ∞}|U0 = u

]
, u ≥ 0 , (4.28)

has representation

ρδ(u) = a0(δI−Q00)
−1

[
Q01Λ̂(δ) + Q02

]
Υ̂2,u(δ)1 , u ≥ 0 . (4.29)
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The probabilistic proof of (4.29) is as follows. Starting at time 0 in S0 with the initial probability

vector a0, the CTMC {J (F )(t)}t≥0 stays within the set S0 for a period of time whose Laplace

transform is given by (δI−Q00)
−1. Upon leaving the set S0, the CTMC {J (F )(t)}t≥0 either enters

S1 (governed by Q01) or S2 (governed by Q02). If the transition is made into S1, in order for

ruin to occur, the fluid flow {F (t)}t≥0 has to first return to the same level u in S2 and then hit

level 0 in S2, giving rise to Λ̂(δ)Υ̂2,u(δ). On the other hand, if the transition is made into S2, the

fluid flow has to make a first passage from u to 0 for ruin to occur, explaining the term Υ̂2,u(δ).

Combining these two cases and adding up all the possible phases at ruin results in (4.29).

A direct consequence of (4.29) is the ruin probability, which can be retrieved by letting δ = 0.

It is given by

Pr{T < ∞|U0 = u} = a0(−Q00)
−1

[
Q01Λ̂(0) + Q02

]
Υ̂2,u(0)1 , u ≥ 0 . (4.30)

Note that (4.30) can also be obtained from Ahn and Ramaswami (2005, Theorem 3) with s = 0 by

recalling that the ruin probability for the surplus process {Ut}t≥0 coincides with the probability

that the fluid process {F (t)}t≥0 eventually hits level 0 at least once.

The (defective) distribution of the deficit at ruin also arises as a direct consequence of the

Markov property exhibited by the process {F (t), J (F )(t)}t≥0. The deficit at ruin |UT | in the

bivariate phase-type risk model {Ut}t≥0 has a phase-type distribution with representation given

by PH(a0(−Q00)
−1[Q01Λ̂(0) + Q02]Υ̂2,u(0),Q22/c). To see this, note that starting at level u, the

fluid process {F (t)}t≥0 has to hit level 0 in S2 for ruin to occur. The distribution of the phase in

S2 of the CTMC {J (F )(t)}t≥0 at the time of hitting is given by a0(−Q00)
−1[Q01Λ̂(0)+Q02]Υ̂2,u(0).

Since Q22 corresponds to the intensity matrix of a descending period, the correction factor of c

arises because we are interested in the intensity matrix with respect to level instead of time.
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Because the time of ruin T and the deficit at ruin |UT | are conditionally independent given

the phases of the CTMC {J (F )(t)}t≥0, the Gerber-Shiu function φ2,δ(u) can also be obtained in

integral form immediately, and is given by

φ2,δ(u) = a0(δI−Q00)
−1

[
Q01Λ̂(δ) + Q02

]
Υ̂2,u(δ)

∫ ∞

0

eQ22
y
c

(q2

c

)
w2(y) dy , u ≥ 0 , (4.31)

where q2 = −Q221.

4.5 Discounted joint density of (UT−, |UT |, RNT−1)

In this section, we investigate how some discounted joint distributions involving the surplus imme-

diately prior to ruin UT− can be analyzed via the connection to the particular fluid queue discussed

in Section 4.3. The discounted joint density of the surplus prior to ruin UT− and the deficit at

ruin |UT | has been studied by many authors, e.g., Gerber and Shiu (1997), Li and Garrido (2005),

and Ren (2007). In this section, we further make the practical assumption that ties between the

variables V and Y/c are not possible, i.e. we assume t0 = 0.

In Section 4.4, the Laplace transform of the time of ruin T , the distribution of the deficit

at ruin |UT | and the Gerber-Shiu function φ2,δ(u) in the bivariate phase-type risk model {Ut}t≥0

are expressed in terms of some particular quantities in the fluid process {F (t)}t≥0. However, a

similar connection for the surplus prior to ruin UT− turns out to be highly non-trivial to establish.

Indeed, from the construction of the process {F (t)}t≥0, the initial upward segment of {Ut}t≥0

(before the first claim) is translated in the fluid process {F (t)}t≥0 to either a level segment (if

V1 < Y1/c) or a combination of a level segment followed by an upward segment (if V1 > Y1/c).

Thus, it is clear that the construction of {F (t)}t≥0 does not allow us to directly associate UT− to

any fluid level of {F (t)}t≥0. However, we already pointed out that for i = 1, 2, . . ., the fluid level of

{F (t)}t≥0 at the end of the i-th sample path of {Jt}t≥0 corresponds to the surplus level of {Ut}t≥0
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immediately after the payment the i-th claim, which is exactly Ri according to the definition (1.9).

As a consequence, it appears possible to analyze UT− by keeping track of the variable RNT−1, the

surplus level immediately after the second last claim before ruin with the definition R0 = u if

ruin is caused by the first claim (see Section 1.3). By using sample paths arguments, we shall

obtain an expression for the discounted joint distribution of the triplet (UT− , |UT |, RNT−1). Given

that the contributions to this discounted joint distribution have different functional forms based

on whether ruin is caused by the first claim or any of its subsequent claims (see, e.g., Cheung et

al. (2010b) in the context of a compound Poisson risk model), we introduce two |S0| × 1 column

vectors, namely h∗1,δ(x, y|u) and h∗2,δ(x, y, v|u), whose i-th elements are respectively

[h∗1,δ(x, y|u)]i dx dy

= E
[
e−δT 1{NT = 1, UT− ∈ (x, x + dx), |UT | ∈ (y, y + dy)}|F (0) = u, J (F )(0) = i

]
,

x > u ≥ 0; y > 0 , (4.32)

and

[h∗2,δ(x, y, v|u)]i dx dy dv

= E




e−δT 1{NT > 1, UT− ∈ (x, x + dx)}
1{|UT | ∈ (y, y + dy), RNT−1 ∈ (v, v + dv)}

∣∣∣∣F (0) = u, J (F )(0) = i


 ,

y > 0; x > v > 0; u ≥ 0 . (4.33)

To identify expressions for h∗1,δ(x, y|u) and h∗2,δ(x, y, v|u), we have to first define some new

quantities in the fluid process {F (t)}t≥0 and its reflected version {F r(t)}t≥0 (see Section 1.4.2).

For 0 ≤ x < y, let the |S1| × |S1| matrix 0ĝ11(x, y, δ) be the LST (with argument δ) of the total

time spent by {J (F )(t)}t≥0 in S0 and S1 during a first passage of {F (t), J (F )(t)}t≥0 from (x, S1) to

(y, S1) avoiding level 0 enroute. In addition, analogous to Λ̂(δ) defined in Section 4.4, for y ≥ 0
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we define the |S2| × |S1| matrix yΛ̂r(δ) to be the LST (with argument δ) of the total time spent

by {J (F )(t)}t≥0 in S0 and S1 during a first passage of {F r(t), J (F )(t)}t≥0 from (0, S2) to (0, S1)

avoiding level y enroute.

Remark 10 The expressions of the quantities corresponding to 0ĝ11(x, y, δ) and yΛ̂r(δ) have been

derived in the context where all the time spent by {J (F )(t)}t≥0 in S0, S1 and S2 is accounted

for (see, e.g., Ahn et al. (2007, Theorem 1) and Ramaswami (2006, Theorem 4) respectively

and references therein). Their notations are 0f̂11(x, y, δ) and yΨr(δ) respectively according to

Section 1.4.2. Interested readers are also referred to Badescu et al. (2009, Appendix II) for the

computation of 0ĝ11(x, y, δ) and yΛ̂r(δ).

By sample paths analysis, we have that

h∗1,δ(x, y|u) =
1

c2
e(Q00−δI)x−u

c Q02e
Q22

u+y
c q2 , x > u ≥ 0; y > 0 , (4.34)

and

h∗2,δ(x, y, v|u) = (δI−Q00)
−1[Q01r1,δ(x, y, v|u) + Q02r2,δ(x, y, v|u)] , y > 0; x > v > 0; u ≥ 0 ,

(4.35)

where

r1,δ(x, y, v|u)

=





1
c 0ĝ11(u, v, δ)

[
I− Λ̂(δ) vΛ̂r(δ)

]−1 [
Q10 + Λ̂(δ)Q20

]
h∗1,δ(x, y|v) , x > v > u ≥ 0; y > 0 ,

Λ̂(δ)r2,δ(x, y, v|u) , x > v; y > 0; 0 < v < u ,

(4.36)
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and

r2,δ(x, y, v|u)

=





uΛ̂r(δ)r1,δ(x, y, v|u) , x > v > u ≥ 0; y > 0 .

1
c
Υ̂2,u−v(δ)

[
I− vΛ̂r(δ)Λ̂(δ)

]−1 [
Q20 + vΛ̂r(δ)Q10

]
h∗1,δ(x, y|v) , x > v; y > 0; 0 < v < u .

(4.37)

To prove (4.34), note that since the first claim causes ruin, the surplus prior to ruin UT− = x has

to be greater than the initial surplus U0 = u. For UT− to be x and |UT | to be y,

• the surplus process {Ut}t≥0 has to first reach level x from level u without a claim. This

is translated into a level segment of duration (x − u)/c in the associated fluid flow process

{F (t)}t≥0. Accounting for the time spent by {J (F )(t)}t≥0 in S0 during this level segment

yields a contribution of e(Q00−δI)(x−u)/c to h∗1,δ(x, y|u);

• then, the first claim occurs within c−1 dx after reaching level x in the surplus process {Ut}t≥0.

In order for ruin to occur upon this first claim, the fluid process {F (t)}t≥0 has to make a

transition from a level segment to a decreasing segment, giving rise to c−1Q02;

• but the duration of the above decreasing period in {F (t)}t≥0 has to be (u + y)/c to ensure

a deficit at ruin of |UT | = y. Given that the time spent by {F (t)}t≥0 in S2 is factored out,

this yields a contribution of eQ22(u+y)/c to h∗1,δ(x, y|u); and

• finally, the fluid process {F (t)}t≥0 should stop its descending pattern within c−1 dy after

reaching −y which results in a contribution of c−1q2 to h∗1,δ(x, y|u) by summing up all the

phases in S0.

Now, let us look at the expression for h∗2,δ(x, y, v|u) give by (4.35). Note that h∗2,δ(x, y, v|u) is

non-zero only if x > v (given that UT− > RNT−1 a.s.). First, the term (δI−Q00)
−1 corresponds to

the Laplace transform of the time that the CTMC {J (F )(t)}t≥0 first leaves S0 (given that J (F )(0) ∈
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S0). Upon this first exit from S0, {J (F )(t)}t≥0 enters either S1 (governed by Q01) if V1 > Y1/c

or S2 (governed by Q02) if V1 < Y1/c. If the first exit is made into Si, we denote, for i = 1, 2,

the discounted (by the time remaining until ruin) joint density of the triplet (UT− , |UT |, RNT−1)

(with the event that the first claim does not cause ruin) by ri,δ(x, y, v|u). This explains the form

of (4.35).

For i = 1, 2, we shall give a detailed probabilistic proof of the expressions ri,δ(x, y, v|u) for the

case x > v > u ≥ 0; y > 0 (i.e. the first equations of (4.36) and (4.37)). We first examine the

quantity r1,δ(x, y, v|u). For RNT−1 to be v (> u), the surplus process {Ut}t≥0 has to first reach

level v from level u before ruin. Equivalently, the fluid level process {F (t)}t≥0, starting with level

u in S1, has to first attain level v in S1 avoiding level 0 enroute. The LST of the total time spent

in S0 and S1 during this first passage time is 0ĝ11(u, v, δ). Being at level v in S1 for the first time,

it is possible to revisit level v in S1 an arbitrary number (≥ 0) of times prior to ruin. The LST

of the time spent by {J (F )(t)}t≥0 in S0 and S1 before the last visit of {F (t)}t≥0 to level v in S1 is

given by [I− Λ̂(δ) vΛ̂r(δ)]−1. Now, having the fluid process {F (t)}t≥0 at level v in S1 for the last

time, RNT−1 can be v via two scenarios:

• the fluid process {F (t)}t≥0 should stop its ascending pattern within c−1 dv after reaching v

for the last time in S1, and this results in a contribution of c−1Q10 to r1,δ(x, y, v|u); or

• the fluid process {F (t)}t≥0 continues its ascending pattern, returns to level x1 this time in

S2 and then stop its descending pattern within c−1 dv after reaching v in S2, which provides

a contribution of Λ̂(δ)c−1Q20 to r1,δ(x, y, v|u).

Note that in both cases, the fluid process {F (t)}t≥0 reaches level v in S0. Given that ruin has to

occur at the time of the next claim with a surplus prior to ruin of x and a deficit at ruin of y, this

yields a final contribution of h∗1,δ(x, y|v).

For r2,δ(x, y, v|u), note that the fluid process {F (t)}t≥0, being at level u in S2, must return to
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level u in S1 avoiding level 0 enroute for RNT−1 to be v, since v > u. The LST of the total time

spent in S0 and S1 during this first passage time is exactly uΛ̂r(δ). Being back at level u in S1,

the remaining contribution is easily seen to be r1,δ(x, y, v|u).

The formulae provided for r1,δ(x, y, v|u) and r2,δ(x, y, v|u) for the case x > v; y > 0; 0 < v < u

can be obtained probabilistically along the same line of logic.

From the results (4.34) - (4.37), it is immediate that the discounted joint density of UT− and

|UT |, denoted by hδ(x, y|u) and having as its i-th element, for i ∈ S0,

[hδ(x, y|u)]i dx dy = E
[
e−δT 1{UT− ∈ (x, x + dx), |UT | ∈ (y, y + dy)}|F (0) = u, J (F )(0) = i

]
,

x, y > 0; u ≥ 0 . (4.38)

is given by

hδ(x, y|u) = h∗1,δ(x, y|u) +

∫ x

0

h∗2,δ(x, y, v|u) dv , x, y > 0; u ≥ 0 . (4.39)

Remark 11 From Cheung et al. (2010c), the discounted joint density of the triplet (UT− , |UT |, XT )

can be directly obtained from the discounted joint density a0hδ(x, y|0) (recall from Section 1.3

that XT = min0≤s<T Us is the minimum surplus level before ruin). Furthermore, the discounted

joint density of the quadruple (UT− , |UT |, XT , RNT−1) can be obtained from a0h
∗
1,δ(x, y|0) and

a0h
∗
2,δ(x, y, v|0).
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Chapter 5

Semi-Markovian risk model: The

minimum surplus prior to ruin

5.1 Introduction

The chapter focuses on the class of semi-Markovian risk models introduced in Section 1.2.3. The

generalized Gerber-Shiu function (1.11) (with slight modifications to suit the model) involving

both the minimum surplus level before ruin XT and the surplus level immediately after the second

last claim before ruin RNT−1 will be considered.

For the surplus process {Ut}t≥0 defined in (1.1) with dynamics (1.6), the Gerber-Shiu function

with a generalized penalty function which incorporates the quadruple (UT− , |UT |, XT , RNT−1) is

defined as, for i, j ∈ E,

φδ,ij(u) = E
[
e−δT w(UT− , |UT |, XT , RNT−1)1{T < ∞, %NT

= j}|U0 = u, %0 = i
]

, u ≥ 0 . (5.1)

As mentioned in Section 1.3, the extended version (5.1) of the traditional Gerber-Shiu function
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(1.2) allows the analysis of the last ladder height before ruin |UT | + XT and the last interclaim

time prior to ruin VNT
= (UT−−RNT−1)/c among other quantities of possible interest (see Cheung

et al. (2010b, c, d)). These are not possible with the classical Gerber-Shiu function. For later

use, we also define the matrix version of (5.1) to be Φδ(u) = [φδ,ij(u)]mi,j=1.

The remainder of this chapter is organized as follows. In Section 5.2, it is shown that the gener-

alized Gerber-Shiu function Φδ(u) satisfies a matrix defective renewal equation, and its solution is

then derived. In Section 5.3, we identify the discounted joint distribution of (UT− , |UT |, XT , RNT−1)

and the discounted marginal distribution of the last ladder height before ruin. Special cases of the

risk model defined in (1.1) with dynamics (1.6) are considered in more detail in Sections 5.4 and

5.5. Section 5.6 discusses the discounted joint distribution of (UT− , |UT |, XT , RNT−1) in a MAP

risk model (described in Section 1.2.1) via the connection to the fluid flow process in Section 1.4.2.

5.2 Matrix defective renewal equation and its solution

As pointed out by Landriault and Willmot (2009), the joint density of T , UT− and |UT | takes

different form depending on whether ruin occurs on the first claim (NT = 1) or on any subsequent

claim to the first (NT > 1). This is also the case for the joint distribution of T , UT− , |UT | and

RNT−1 for similar reasons (see Cheung et al. (2010c)).

For ruin occurring on the first claim, the joint density of (UT− , |UT |) at (x, y) together with

%1 = j given that U0 = u and %0 = i is easily found to be, for i, j ∈ E,

h∗1,ij(x, y|u) =
1

c
ki

(
x− u

c

)
pijbj(x + y) , x > u ≥ 0; y > 0 . (5.2)

In this case, it is clear that T = (x− u)/c and RNT−1 = R0 = u. In matrix notation, one rewrites
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(5.2) as

h∗1(x, y|u) =
1

c
k

(
x− u

c

)
P b(x + y) , x > u ≥ 0; y > 0 . (5.3)

where the matrices h∗1(x, y|u) = [h∗1,ij(x, y|u)]mi,j=1, k(t) = diag{k1(t), . . . , km(t)} and b(y) =

diag{b1(y), . . . , bm(y)} are defined. If ruin occurs on claims subsequent to the first, for i, j ∈ E we

denote the joint density of (T, UT− , |UT |, RNT−1) at (t, x, y, v) together with %NT
= j, given that

U0 = u and %0 = i, by h∗2,ij(t, x, y, v|u) for t, y > 0; x > v > 0; u ≥ 0. For future reference, it is

convenient to define the discounted (with respect to T ) densities, for i, j ∈ E,

h∗1,δ,ij(x, y|u) = e−
δ(x−u)

c h∗1,ij(x, y|u) , x > u ≥ 0; y > 0 , (5.4)

and

h∗2,δ,ij(x, y, v|u) =

∫ ∞

0

e−δth∗2,ij(t, x, y, v|u) dt , y > 0; x > v > 0; u ≥ 0 . (5.5)

The matrix versions of the above two discounted densities are denoted respectively by h∗1,δ(x, y|u) =

[h∗1,δ,ij(x, y|u)]mi,j=1 and h∗2,δ(x, y, v|u) = [h∗2,δ,ij(x, y, v|u)]mi,j=1. We remark that the above discounted

densities have been studied extensively in the classical compound Poisson model by Cheung et al.

(2010b), and in the bivariate phase-type risk model in Chapter 4. It is also clear from (5.2) and

(5.4) that

h∗1,δ(x, y|u) = h∗1,δ(x− u, y + u|0) , x > u ≥ 0; y > 0 . (5.6)

Our goal is to derive a matrix defective renewal equation for the Gerber-Shiu function Φδ(u). By

conditioning on the first drop of the surplus level below its initial level u (which may occur upon

the first claim or its subsequent claims) and keeping track of the underlying environmental states

of the process {%i}∞i=0, one arrives at, for i, k ∈ E,

φδ,ik(u) =
m∑

j=1

∫ u

0

[∫ ∞

0

h∗1,δ,ij(x, y|0) dx +

∫ ∞

0

∫ x

0

h∗2,δ,ij(x, y, v|0) dv dx

]
φδ,jk(u− y) dy + αδ,ik(u) ,

u ≥ 0 , (5.7)
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where, for i, k ∈ E,

αδ,ik(u) =

∫ ∞

u

∫ ∞

0

w(x + u, y − u, u, u)h∗1,δ,ik(x, y|0) dx dy

+

∫ ∞

u

∫ ∞

0

∫ x

0

w(x + u, y − u, u, v + u)h∗2,δ,ik(x, y, v|0) dv dx dy , u ≥ 0 . (5.8)

In matrix form, (5.7) and (5.8) can respectively be rewritten as

Φδ(u) =

∫ u

0

[∫ ∞

0

h∗1,δ(x, y|0) dx +

∫ ∞

0

∫ x

0

h∗2,δ(x, y, v|0) dv dx

]
Φδ(u− y) dy + αδ(u) , u ≥ 0 ,

(5.9)

and

αδ(u) =

∫ ∞

u

∫ ∞

0

w(x + u, y − u, u, u)h∗1,δ(x, y|0) dx dy

+

∫ ∞

u

∫ ∞

0

∫ x

0

w(x + u, y − u, u, v + u)h∗2,δ(x, y, v|0) dv dx dy , u ≥ 0 , (5.10)

where αδ(u) = [αδ,ik(u)]mi,k=1. Letting

fδ(y) =

∫ ∞

0

h∗1,δ(x, y|0) dx +

∫ ∞

0

∫ x

0

h∗2,δ(x, y, v|0) dv dx , y > 0 , (5.11)

be the matrix version of the (defective) ladder height density, (5.9) becomes

Φδ(u) =

∫ u

0

fδ(y)Φδ(u− y) dy + αδ(u) , u ≥ 0 , (5.12)

which is a Markov renewal equation (see, e.g., Asmussen (2003) and Çinlar (1969)).

To further verify the ‘defective’ nature of the above Markov renewal equation, we need the

following definitions. A square matrix is said to be substochastic if all of its entries are non-

negative, and the sum of each row is less than or equal to 1. For a matrix to be strictly substochastic,

it further requires that the sum of at least one row to be (strictly) less than 1. Then, we consider
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the m-dimensional square matrix Υδ defined by

Υδ =

∫ ∞

0

fδ(y) dy (5.13)

with (i, j)-th element (according to (5.1), (5.10), (5.11) and (5.12) with w(., ., ., .) ≡ 1 and u = 0)

[Υδ]ij = E
[
e−δT 1{T < ∞, %NT

= j}|U0 = 0, %0 = i
]

. (5.14)

It is clear that for any i ∈ E, the sum of the i-th row of Υδ, namely E
[
e−δT 1{T < ∞}|U0 = 0, %0 = i

]
,

is less than 1 under either δ > 0 or the positive security loading condition (1.7), implying that

Υδ is strictly substochastic. Therefore, (5.12) can be viewed as a matrix version of a defective

renewal equation.

Next we pay special attention to the particular Gerber-Shiu function Φδ(u) with w(., ., ., .) ≡ 1

that we shall denote by Θδ(u). As we shall see, the solution Φδ(u) to (5.12) can be expressed

in terms of the particular Gerber-Shiu function Θδ(u). For the scalar case, we refer interested

readers to Lin and Willmot (1999). From (5.10), (5.11) and (5.12), Θδ(u) satisfies

Θδ(u) =

∫ u

0

fδ(y)Θδ(u− y) dy +

∫ ∞

u

fδ(y) dy , u ≥ 0 . (5.15)

Taking Laplace transforms on both sides of (5.15) yields

Θ̃δ(s) = f̃δ(s)Θ̃δ(s) +
Υδ − f̃δ(s)

s
. (5.16)
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Simple algebraic manipulations of (5.16) lead to

Θ̃δ(s) = [I− f̃δ(s)]
−1Υδ − f̃δ(s)

s

= [I− f̃δ(s)]
−1 I− f̃δ(s)− (I−Υδ)

s

=
I− [I− f̃δ(s)]

−1(I−Υδ)

s

=
Υδ − {[I− f̃δ(s)]

−1 − I}(I−Υδ)

s
, (5.17)

Note that the inverse [I − f̃δ(s)]
−1 is known to exist given that the DTMC {%i}∞i=0 is irreducible

and f̃δ(s) is strictly substochastic, since for s ≥ 0,

f̃δ(s) =

∫ ∞

0

e−syfδ(y) dy ≤
∫ ∞

0

fδ(y) dy = Υδ . (5.18)

Given that Υδ = Θδ(0), it is immediate from (5.17) that

Θδ(u) =
∞∑

n=1

F
∗n
δ (u)(I−Υδ) , u ≥ 0 , (5.19)

where F
∗n
δ (u) =

∫∞
u

f∗nδ (y) dy is the survival function associated to the (defective) density f∗nδ (u),

the n-fold (matrix) convolution of fδ(u). Note that Θδ(u) can be viewed as a matrix version of a

compound geometric tail.

Now, taking the Laplace transform on both sides of (5.12) followed by some simple manipula-

tions yields

Φ̃δ(s) = [I− f̃δ(s)]
−1α̃δ(s)

= α̃δ(s) +
{

[I− f̃δ(s)]
−1 − I

}
α̃δ(s)

= α̃δ(s) +
({

[I− f̃δ(s)]
−1 − I

}
(I−Υδ)

)
(I−Υδ)

−1α̃δ(s) , (5.20)

83



where, from (5.17), one observes that {[I − f̃δ(s)]
−1 − I}(I − Υδ) corresponds to the Laplace

transform of

−Θ′
δ(u) =

∞∑
n=1

f∗nδ (u)(I−Υδ) , u ≥ 0 . (5.21)

Inverting the Laplace transforms in (5.20) leads to

Φδ(u) = αδ(u)−
∫ u

0

Θ′
δ(u− y)(I−Υδ)

−1αδ(y) dy , u ≥ 0 , (5.22)

which is the general solution to the matrix defective renewal equation (5.12). If αδ(y) is differen-

tiable, an alternative representation for Φδ(u) is found by applying integrating by parts to (5.22).

Omitting the details here, one easily finds

Φδ(u) = (I−Υδ)
−1αδ(u)−Θδ(u)(I−Υδ)

−1αδ(0)−
∫ u

0

Θδ(u− y)(I−Υδ)
−1α′

δ(y) dy , u ≥ 0 .

(5.23)

By examining (5.10), (5.11), (5.13) and (5.19), one observes that all the quantities αδ(u)

Υδ and Θδ(u) are functions of h∗1,δ(x, y|0) and h∗2,δ(x, y, v|0). It follows from (5.22) (or (5.23))

that the generalized Gerber-Shiu function Φδ(u) is fully characterized by the discounted densities

h∗1,δ(x, y|0) and h∗2,δ(x, y, v|0). An expression for h∗1,δ(x, y|0) has been found in (5.4) together

with (5.2). However, the same cannot be said of h∗2,δ(x, y, v|0). In general, it is not easy to find

an expression for h∗2,δ(x, y, v|0). An explicit expression might be derived by assuming that the

interclaim time densities kj(.)’s and/or the claim size densities bj(.)’s come from a specific class

of distributions (see Sections 5.4 and 5.5 for more details).

Remark 12 Although the solution (5.22) (or (5.23)) is exact, closed form solution is in general

difficult to obtain, due to the convolutions appearing in (5.19). Interested readers are referred to,

e.g., Li and Luo (2005), Miyazawa (2002) and Wu (1999) for approximations, asymptotics and

two-sided bounds for a matrix defective renewal equation.

84



5.3 Discounted joint density of (UT−, |UT |, XT , RNT−1) and

last ladder height |UT | + XT

In this section, it is shown that the discounted joint density of (UT− , |UT |, XT , RNT−1) can be

expressed in terms of the discounted densities h∗1,δ(x, y|0) and h∗2,δ(x, y, v|0). The last ladder

height before ruin |UT | + XT is also discussed. Let Φ1234,δ(u) and Φ124,δ(u) be the Gerber-Shiu

function with penalty function w(x, y, z, v) = e−s1x−s2y−s3z−s4v and w(x, y, z, v) = e−s1x−s2y−s4v

respectively. From (5.10) and (5.12), it is clear that

Φ1234,δ(u) =

∫ u

0

fδ(y)Φ1234,δ(u− y) dy + e−s3uα124,δ(u) , u ≥ 0 , (5.24)

and

Φ124,δ(u) =

∫ u

0

fδ(y)Φ124,δ(u− y) dy + α124,δ(u) , u ≥ 0 , (5.25)

where

α124,δ(u) =

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s4uh∗1,δ(x− u, y + u|0) dx dy

+

∫ ∞

0

∫ ∞

u

∫ x

u

e−s1x−s2y−s4vh∗2,δ(x− u, y + u, v − u|0) dv dx dy , u ≥ 0 . (5.26)
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From (5.22), the solution to (5.24) can be expressed as

Φ1234,δ(u)

= e−s3uα124,δ(u)−
∫ u

0

Θ′
δ(u− z)(I−Υδ)

−1e−s3zα124,δ(z) dz

=

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s3u−s4u
[
h∗1,δ(x− u, y + u|0)

]
dx dy

+

∫ ∞

0

∫ ∞

u

∫ x

u

e−s1x−s2y−s3u−s4v
[
h∗2,δ(x− u, y + u, v − u|0)

]
dv dx dy

−
∫ u

0

∫ ∞

0

∫ ∞

z

e−s1x−s2y−s3z−s4z
[
Θ′

δ(u− z)(I−Υδ)
−1h∗1,δ(x− z, y + z|0)

]
dx dy dz

−
∫ u

0

∫ ∞

0

∫ ∞

z

∫ x

z

e−s1x−s2y−s3z−s4v
[
Θ′

δ(u− z)(I−Υδ)
−1h∗2,δ(x− z, y + z, v − z|0)

]
dv dx dy dz ,

u ≥ 0 . (5.27)

Given that %0 = i and U0 = u, the quadruple (UT− , |UT |, XT , RNT−1) has discounted densities

(with environmental state at ruin %NT
= j) on the subspace of R4. By the uniqueness of Laplace

transforms, the above quantity is given by extracting the (i, j)-th element of the following matrices:

1. h∗∗12,δ(x, y|u) = h∗1,δ(x− u, y + u|0) on {(x, y, z, v)| x > u, y > 0, z = u, v = u}: contribution

from ruin occurring on the first claim;

2. h∗∗124,δ(x, y, v|u) = h∗2,δ(x− u, y + u, v − u|0) on {(x, y, z, v)| x > u, y > 0, z = u, u < v < x}:
contribution from the case where ruin occurs on the first drop in surplus below its initial

excluding the first claim;

3. h∗∗123,δ(x, y, z|u) = −Θ′
δ(u− z)(I−Υδ)

−1h∗1,δ(x− z, y + z|0) on {(x, y, z, v)| x > z, y > 0, 0 <

z < u, v = z}: contribution from the case where an arbitrary number (≥ 1) of drops bringing

the surplus to level z followed by ruin on the next claim; and

4. h∗∗δ (x, y, z, v|u) = −Θ′
δ(u − z)(I −Υδ)

−1h∗2,δ(x − z, y + z, v − z|0) on {(x, y, z, v)| z < v <

x, y > 0, 0 < z < u}: contribution from an arbitrary number (≥ 1) of drops bringing the

surplus to level z followed by ruin occurring on the next drop in surplus but excluding the
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next claim.

Again, since both the quantities Υδ and Θ′
δ(u) are functions of h∗1,δ(x, y|0) and h∗2,δ(x, y, v|0), the

discounted joint density of (UT− , |UT |, XT , RNT−1) can be expressed in terms of the discounted

densities h∗1,δ(x, y|0) and h∗2,δ(x, y, v|0) only. Same comments made just before Remark 12 apply.

Assuming that an expression for h∗2,δ(x, y, v|0) has been identified, a complete characterization

for the general Gerber-Shiu function Φδ(u) can be obtained via the discounted densities of the

quadruple (UT− , |UT |, XT , RNT−1) as

Φδ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u, u)h∗∗12,δ(x, y|u) dx dy

+

∫ ∞

0

∫ ∞

u

∫ x

u

w(x, y, u, v)h∗∗124,δ(x, y, v|u) dv dx dy

+

∫ u

0

∫ ∞

0

∫ ∞

z

w(x, y, z, z)h∗∗123,δ(x, y, z|u) dx dy dz

+

∫ u

0

∫ ∞

0

∫ ∞

z

∫ x

z

w(x, y, z, v)h∗∗δ (x, y, z, v|u) dv dx dy dz , u ≥ 0 . (5.28)

One can easily verify that (5.28) is indeed consistent with (5.22).

Remark 13 Along the same line of logic used in the derivation of the discounted joint density

of (UT− , |UT |, XT , RNT−1), one can also prove that the discounted joint density of (UT− , |UT |, XT )

depends solely on the discounted joint density of (UT− , |UT |) (see Cheung et al. (2010c)). The

details are omitted here.

From the use of our generalized penalty function, one may be interested to analyze various

quantities related to the last ladder height before ruin |UT |+ XT by a choice of penalty function

of the form w(x, y, z, v) = w5(y + z) (see Cheung et al. (2010c)). Let, for i, j ∈ E,

φ5,δ,ij(u) = E
[
e−δT w5(|UT |+ XT )1{T < ∞, %NT

= j}|U0 = u, %0 = i
]

, u ≥ 0 , (5.29)
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and define Φ5,δ(u) = [φ5,δ,ij(u)]mi,j=1. From (5.10), (5.11) and (5.12), it is clear that

Φ5,δ(u) =

∫ u

0

fδ(y)Φ5,δ(u− y) dy +

∫ ∞

u

w5(y)fδ(y) dy , u ≥ 0 , (5.30)

whose solution is given by, with the application of (5.23),

Φ5,δ(u) = (I−Υδ)
−1

∫ ∞

u

w5(y)fδ(y) dy −Θδ(u)(I−Υδ)
−1

∫ ∞

0

w5(y)fδ(y) dy

+

∫ u

0

Θδ(u− y)(I−Υδ)
−1w5(y)fδ(y) dy , u ≥ 0 . (5.31)

By further assuming w5(y) = e−s5y, we can invert (5.31) with respect to s5 analytically to get the

discounted (defective) density of the last ladder height before ruin, namely

f5,δ(u, y) =





[Θδ(u− y)−Θδ(u)] (I−Υδ)
−1fδ(y) , y < u .

[I−Θδ(u)] (I−Υδ)
−1fδ(y) , y > u .

(5.32)

Note that (5.32) expressed the discounted density of the last ladder height before ruin f5,δ(u, y)

in terms of the generic discounted ladder height density fδ(y) only, as both Υδ and Θδ(u) are

functions of fδ(y) only (see (5.13) and (5.19)).

Remark 14 In the scalar case (i.e. m = 1) or even more generally in the generalized Sparre

Andersen risk model described in Section 1.2.2, it can be proved that the proper distribution (after

normalizing with an appropriate constant) of the last ladder height before ruin |UT |+ XT is larger

than a generic ladder height in likelihood ratio ordering (which implies stochastic ordering). See

Cheung et al. (2010c, d). Unfortunately, in the semi-Markovian model in general, it appears not

easy to define what distributions to compare since the ladder height can depend on the initial state

and the state at ruin.
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5.4 Analysis with exponential interclaim times

In this section, we consider the semi-Markovian risk model (1.1) with dynamics (1.6) in which

the interclaim time densities are all exponential, i.e. kj(t) = λje
−λjt for j ∈ E. This exactly

corresponds to the risk model studied by Albrecher and Boxma (2005).

5.4.1 Discounted joint density of (UT−, |UT |, RNT−1)

As discussed in Sections 5.2 and 5.3, in principle it is sufficient to determine h∗2,δ(x, y, v|0) in order

to compute the Gerber-Shiu function Φδ(u). With that in mind, let us consider the Gerber-Shiu

function Φ124,δ(u) with penalty function w(x, y, z, v) = e−s1x−s2y−s4v. By conditioning on the time

and amount of the first claim, we have that, for i, k ∈ E,

φ124,δ,ik(u) =

∫ ∞

0

λie
−(λi+δ)t

m∑
j=1

pij

∫ u+ct

0

bj(y)φ124,δ,jk(u + ct− y) dy dt

+

∫ ∞

0

λie
−(λi+δ)tpik

∫ ∞

u+ct

bk(y)e−s1(u+ct)−s2(y−u−ct)−s4u dy dt

=
λi

c

m∑
j=1

pij

∫ ∞

u

e−
λi+δ

c
(t−u)

∫ t

0

bj(y)φ124,δ,jk(t− y) dy dt

+
λi

c
pike

−(s1+s4)u

∫ ∞

u

e−(λi+δ

c
+s1)(t−u) Ts2bk(t) dt , u ≥ 0 . (5.33)

Differentiating on both sides of (5.33) with respect to u, one obtains the integro-differential equa-

tion, for i, k ∈ E,

φ′124,δ,ik(u) =
λi + δ

c
φ124,δ,ik(u)− λi

c

m∑
j=1

pij

∫ u

0

bj(y)φ124,δ,jk(u− y) dy

− λi

c
pike

−(s1+s4)u Ts2bk(u)− λi

c
piks4e

−(s1+s4)u Tλi+δ

c
+s1
Ts2bk(u) , u ≥ 0 . (5.34)
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By taking Laplace transforms on both sides of (5.34) and rearranging terms, we arrive at, for

i, k ∈ E,

(
s− λi + δ

c

)
φ̃124,δ,ik(s) +

λi

c

m∑
j=1

pij b̃j(s)φ̃124,δ,jk(s)

= φ124,δ,ik(0)− λi

c
pikTs+s1+s4Ts2bk(0)− λi

c
piks4Ts+s1+s4Tλi+δ

c
+s1
Ts2bk(0) . (5.35)

One can rewrite (5.35) in matrix form as

Aδ(s)Φ̃124,δ(s) = cΦ124,δ(0)−ΛPTs+s1+s4Ω(0)− s4Λ
[
pikTs+s1+s4Tλi+δ

c
+s1
Ts2bk(0)

]m

i,k=1
(5.36)

with

Aδ(s) = (cs− δ)I−Λ + ΛP b̃(s) , (5.37)

where Λ = diag{λ1, . . . , λm} and Ω(u) = diag{Ts2b1(u), . . . , Ts2bm(u)}. Letting A∗
δ(s) be the

adjoint matrix of Aδ(s), one can express (5.36) as

Φ̃124,δ(s) =
A∗

δ(s){cΦ124,δ(0)} − Γs1,s4(s)−∆s1,s4(s)

detAδ(s)
, (5.38)

where

Γs1,s4(s) = A∗
δ(s)ΛPTs+s1+s4Ω(0) , (5.39)

and

∆s1,s4(s) = s4A
∗
δ(s)Λ

[
pjkTs+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1
. (5.40)

From Albrecher and Boxma (2005, Proposition 2.1), we know that the Lundberg’s fundamental

equation

detAδ(s) = 0 , (5.41)

has m solutions with non-negative real parts, say {ρi}m
i=1, when δ > 0 or the positive security
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loading condition
∑m

j=1 πj(c/λj − µj) > 0 holds. To determine Φ124,δ(0) in (5.38), we follow the

ideas of Li and Lu (2008, Section 2.2). Assuming that every element of Φ̃124,δ(ρi) is finite, it

follows from (5.38) that for i ∈ E,

A∗
δ(ρi){cΦ124,δ(0)} = Γs1,s4(ρi) + ∆s1,s4(ρi) . (5.42)

Repeated applications of divided differences yields

Φ124,δ(0) =
1

c
{A∗

δ [ρ1, . . . , ρm]}−1{Γs1,s4 [ρ1, . . . , ρm] + ∆s1,s4 [ρ1, . . . , ρm]} , (5.43)

where A∗
δ [ρ1, . . . , ρm], Γs1,s4 [ρ1, . . . , ρm] and ∆s1,s4 [ρ1, . . . , ρm] are the m-th divided differences of

the matrices A∗
δ(s), Γs1,s4(s) and ∆s1,s4(s) respectively (see Section 1.4.1). Analogous to Eq. (2.6)

of Li and Lu (2008), we have that

Γs1,s4 [ρ1, . . . , ρm] =
m∑

i=1

A∗
δ [ρ1, . . . , ρi]ΛP(−1)m−i Tρi+s1+s4 . . . Tρm+s1+s4Ω(0) , (5.44)

and

∆s1,s4 [ρ1, . . . , ρm] = s4

m∑
i=1

A∗
δ [ρ1, . . . , ρi]Λ(−1)m−i

[
pjkTρi+s1+s4 . . . Tρm+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1
.

(5.45)

Using Property 6 in Section 3 of Li and Garrido (2004) (see (1.15)) followed by a change in the

order of summation, one arrives at

Γs1,s4 [ρ1, . . . , ρm] =
m∑

i=1

A∗
δ [ρ1, . . . , ρi]ΛP

m∑

l=i

Tρl+s1+s4Ω(0)

τ ′i(ρl)

=
m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
ΛPTρl+s1+s4Ω(0) , (5.46)
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and

∆s1,s4 [ρ1, . . . , ρm] = s4

m∑
i=1

A∗
δ [ρ1, . . . , ρi]Λ

m∑

l=i

1

τ ′i(ρl)

[
pjkTρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

= s4

m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
Λ

[
pjkTρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1
, (5.47)

where τi(s) =
∏m

n=i(s− ρn) and thus for i ∈ E,

τ ′i(ρl) =
m∏

n=i,n6=l

(ρl − ρn) . (5.48)

Simple manipulations of (5.47) lead to

∆s1,s4 [ρ1, . . . , ρm]

=
m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
Λ

[
pjk

(
s4 + ρl − λj + δ

c

)
Tρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

−
m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
Λ

[
pjk

(
ρl − λj + δ

c

)
Tρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

=
m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
Λ

[
pjkTλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1
−

m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
ΛPTρl+s1+s4Ω(0)

−
m∑

l=1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
Λ

[
pjk

(
ρl − λj + δ

c

)
Tρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

, (5.49)

where the last line follows from Property 2 in Section 3 of Li and Garrido (2004) (see (1.14)). By

substituting (5.46) and (5.49) into (5.43), it is immediate that

Φ124,δ(0) =
1

c

m∑

l=1

Cl,δΛ
[
pjkTλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

− 1

c

m∑

l=1

Cl,δΛ

[
pjk

(
ρl − λj + δ

c

)
Tρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0)

]m

j,k=1

. (5.50)
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where, for l ∈ E,

Cl,δ = {A∗
δ [ρ1, . . . , ρm]}−1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]

τ ′i(ρl)

}
. (5.51)

Thus, it remains to invert (5.50) with respect to s1, s2 and s4 to obtain h∗2,δ(x, y, v|0) (and

h∗1,δ(x, y|0) as a by-product). Note that

Tλj+δ

c
+s1
Ts2bk(0) =

∫ ∞

0

e
−

(
λj+δ

c
+s1

)
x
∫ ∞

x

e−s2(y−x)bk(y) dy dx

=

∫ ∞

0

∫ ∞

0

e−s1x−s2y
[
e−

λj+δ

c
xbk(x + y)

]
dy dx , (5.52)

and

Tρl+s1+s4Tλj+δ

c
+s1
Ts2bk(0) =

∫ ∞

0

e−(ρl+s1+s4)v

∫ ∞

v

e
−

(
λj+δ

c
+s1

)
(x−v)

∫ ∞

x

e−s2(y−x)bk(y) dy dx dv

=

∫ ∞

0

∫ ∞

v

∫ ∞

0

e−s1x−s2y−s4v
[
e−ρlv−

λj+δ

c
(x−v)bk(x + y)

]
dy dx dv .

(5.53)

Substitution of (5.52) and (5.53) into (5.50) followed by Laplace transform inversions yields

h∗1,δ(x, y|0) =
1

c

(
m∑

l=1

Cl,δ

)
Λe−(Λ+δI)x

c P b(x + y) , x, y > 0 , (5.54)

and

h∗2,δ(x, y, v|0) =
1

c2

m∑

l=1

e−ρlvCl,δΛ [Λ + (δ − cρl)I] e
−(Λ+δI)x−v

c P b(x + y) , y > 0; x > v > 0 .

(5.55)

We remark that from (5.2) and (5.4), it is clear that

h∗1,δ(x, y|0) =
1

c
Λe−(Λ+δI)x

c P b(x + y) , x, y > 0 . (5.56)

Indeed, (5.54) is consistent with (5.56) since
∑m

l=1 Cl,δ = I. To see this, we note from (5.48) and

93



(5.51) that

m∑

l=1

Cl,δ =
m∑

l=1

{A∗
δ [ρ1, . . . , ρm]}−1

{
l∑

i=1

A∗
δ [ρ1, . . . , ρi]∏m

n=i,n6=l(ρl − ρn)

}

= {A∗
δ [ρ1, . . . , ρm]}−1

m∑
i=1

A∗
δ [ρ1, . . . , ρi]

m∑

l=i

1∏m
n=i,n6=l(ρl − ρn)

= I , (5.57)

where the last line follows from the fact that

m∑

l=i

1∏m
n=i,n6=l(ρl − ρn)

=





0, i = 1, 2, . . . ,m− 1 .

1, i = m .
(5.58)

See, e.g., Klugman et al. (2008, Eq. (3.19)).

Interestingly, using (5.56), one can rewrite (5.55) as

h∗2,δ(x, y, v|0) =
m∑

l=1

e−ρlvDl,δh
∗
1,δ(x− v, y + v|0) , y > 0; x > v > 0 , (5.59)

where the matrix Dl,δ is defined as, for l ∈ E,

Dl,δ =
1

c
Cl,δ[Λ + (δ − cρl)I] . (5.60)

Finally, the ladder height matrix fδ(y) can easily be obtained by letting s1 = s4 = 0 in (5.50)

and then inverting the resulting equation with respect to s2. One can verify that

fδ(y) =
1

c

m∑

l=1

Cl,δΛP Tρl
b(y) , y > 0 , (5.61)
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and therefore by (5.13) we have

Υδ =
1

c

m∑

l=1

Cl,δΛP Tρl
B(0) , (5.62)

where B(y) = diag{B1(y), B2(y), . . . , Bm(y)}.

5.4.2 Gerber-Shiu function Φ124,δ(u) involving RNT−1

In this subsection, we consider the Gerber-Shiu function Φ124,δ(u) now with a general penalty

function not depending on the fourth argument, i.e. w(x, y, z, v) = w124(x, y, v). It is clear that

Φ124,δ(u) satisfies the matrix defective renewal equation (5.25) with

α124,δ(u) =

∫ ∞

0

∫ ∞

u

w124(x, y, u)h∗1,δ(x− u, y + u|0) dx dy

+

∫ ∞

0

∫ ∞

u

∫ x

u

w124(x, y, v)h∗2,δ(x− u, y + u, v − u|0) dv dx dy , u ≥ 0 . (5.63)

Letting

Πδ(u) =

∫ ∞

0

∫ ∞

u

w124(x, y, u)h∗1,δ(x− u, y + u|0) dx dy , u ≥ 0 , (5.64)

and using (5.59), (5.63) can be rewritten as

α124,δ(u) = Πδ(u) +
m∑

l=1

Dl,δ

∫ ∞

0

∫ ∞

u

∫ x

u

w124(x, y, v)e−ρl(v−u)h∗1,δ(x− v, y + v|0) dv dx dy

= Πδ(u) +
m∑

l=1

Dl,δ

∫ ∞

u

e−ρl(v−u)

[∫ ∞

0

∫ ∞

v

w124(x, y, v)h∗1,δ(x− v, y + v|0) dx dy

]
dv

= Πδ(u) +
m∑

l=1

Dl,δ

∫ ∞

u

e−ρl(v−u)Πδ(v) dv

= Πδ(u) +
m∑

l=1

Dl,δTρl
Πδ(u) , u ≥ 0 . (5.65)
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Now using (5.22) with αδ(u) replaced by α124,δ(u) obtained in (5.65), one finds that

Φ124,δ(u) = Πδ(u) +
m∑

l=1

Dl,δTρl
Πδ(u)−

∫ u

0

Θ′
δ(u− v)(I−Υδ)

−1Πδ(v) dv

−
∫ u

0

Θ′
δ(u− y)(I−Υδ)

−1

[
m∑

l=1

Dl,δTρl
Πδ(y)

]
dy

= Πδ(u) +

∫ ∞

u

[
m∑

l=1

e−ρl(v−u)Dl,δ

]
Πδ(v) dv −

∫ u

0

[
Θ′

δ(u− v)(I−Υδ)
−1

]
Πδ(v) dv

−
∫ u

0

[∫ v

0

Θ′
δ(u− y)(I−Υδ)

−1

m∑

l=1

e−ρl(v−y)Dl,δ dy

]
Πδ(v) dv

−
∫ ∞

u

[∫ u

0

Θ′
δ(u− y)(I−Υδ)

−1

m∑

l=1

e−ρl(v−y)Dl,δ dy

]
Πδ(v) dv , u ≥ 0 . (5.66)

Clearly, Φ124,δ(u) can be expressed as

Φ124,δ(u) = Πδ(u) +

∫ ∞

0

Ξδ(u, v)Πδ(v) dv , u ≥ 0 , (5.67)

where

Ξδ(u, v) =




−Θ′

δ(u− v)(I−Υδ)
−1 − ∫ v

0
Θ′

δ(u− y)(I−Υδ)
−1

[∑m
l=1 e−ρl(v−y)Dl,δ

]
dy , 0 < v < u .

∑m
l=1 e−ρl(v−u)Dl,δ −

∫ u

0
Θ′

δ(u− y)(I−Υδ)
−1

[∑m
l=1 e−ρl(v−y)Dl,δ

]
dy , v > u ≥ 0 .

(5.68)

When m = 1, the risk model reduces to the classical compound Poisson risk model. It is not

hard to see that (5.67) and (5.68) reduce to Eq. (17) and Eq. (18) in Cheung et al. (2010b)

respectively. A probabilistic interpretation of (5.67) is provided next. First, using (5.6), (5.64)

becomes

Πδ(u) =

∫ ∞

0

∫ ∞

u

w124(x, y, u)h∗1,δ(x, y|u) dx dy , u ≥ 0 , (5.69)

which implies that Πδ(u) is the contribution to the Gerber-Shiu function Φ124,δ(u) from the case

where ruin occurs upon the first claim. Thus, the integral term
∫∞
0

Ξδ(u, v)Πδ(v) dv in (5.67)
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shall be the contribution to Φ124,δ(u) due to ruin occurring as a result of at least two claims.

Indeed, from an initial surplus of u, the surplus process drops to level v immediately after an

arbitrary number (≥ 1) of claims before ruin (with contribution Ξδ(u, v) to Φ124,δ(u)) followed

by the subsequent claim possibly causing ruin (with contribution Πδ(v) to Φ124,δ(u)). Integrating

over the possible values of v, this gives rise to the integral term
∫∞

0
Ξδ(u, v)Πδ(v) dv.

To further justify our interpretation of Ξδ(u, v), let us revisit the Gerber-Shiu function Φ124,δ(u)

by separating cases where ruin occurs on the first claim or not, namely,

Φ124,δ(u) =

∫ ∞

0

∫ ∞

u

w124(x, y, u)h∗1,δ(x, y|u) dx dy +

∫ ∞

0

∫ ∞

0

∫ x

0

w124(x, y, v)h∗2,δ(x, y, v|u) dv dx dy

= Πδ(u) +

∫ ∞

0

∫ ∞

0

∫ x

0

w124(x, y, v)h∗2,δ(x, y, v|u) dv dx dy , u ≥ 0 . (5.70)

On the other hand, by substituting (5.69) into the integral term in (5.67) followed by a change of

order of integration, one obtains

Φ124,δ(u) = Πδ(u) +

∫ ∞

0

∫ ∞

0

∫ x

0

w124(x, y, v)Ξδ(u, v)h∗1,δ(x, y|v) dv dx dy , u ≥ 0 . (5.71)

Since (5.70) and (5.71) hold true for a general penalty function w124(x, y, v), a comparison of them

implies that

h∗2,δ(x, y, v|u) = Ξδ(u, v)h∗1,δ(x, y|v) , y > 0; x > v > 0; u ≥ 0 . (5.72)

The above equation expresses the discounted joint density of (UT− , |UT |, RNT−1) for ruin on claims

subsequent to the first claim (with initial surplus u) in terms of the discounted joint density of

(UT− , |UT |) for ruin on the first claim (with initial surplus v), generalizing Eq. (23) of Cheung

et al. (2010b) proved in the context of the classical compound Poisson risk model. From the

definition of h∗2,δ(x, y, v|u), the surplus level immediately after the second last claim prior to ruin

has to be v and, from this new surplus level v, the next claim shall cause ruin which is represented

by the term h∗1,δ(x, y|v) on the right-hand side of (5.72). Since Ξδ(u, v) connects the above two
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densities according to (5.72), our previous interpretation of Ξδ(u, v) is justified.

Remark 15 Equations of the form (5.67) and (5.72) also hold true in the context of a generalized

Sparre Andersen risk model with surplus-dependent premium rate. See Section 8.2.

5.5 Analysis with exponential claim sizes

In this section, we consider another special case of the semi-Markovian risk model described in

Section 5.1 in which the claim size densities bj(.)’s are all exponential (i.e. bj(y) = βje
−βjy for

j ∈ E) while the interclaim time densities kj(.)’s are kept general. If possible, our goal is to identify

h∗2,δ(x, y, v|0) in this model. For that purpose, let Φ124,δ(u) = [φ124,δ,ij(u)]mi,j=1 be the particular

Gerber-Shiu function Φδ(u) with penalty function w(x, y, z, v) = e−s1x−s4vw2(y). Contrary to

Section 5.4, it is believed that the usual approach of conditioning on the time and the amount of

the first claim alone does not lead to an expression for Φ124,δ(0) or h∗2,δ(x, y, v|0) in the present

case. Interested readers are referred to Cheung et al. (2010c), Landriault and Willmot (2008)

and Willmot (2007) for risk models with arbitrary interclaim times in which a similar problem

arises. In such cases, the way to approach the problem is to first identify the form of the solution

to φ124,δ,ij(u) apart from some unknown constants by making use of a pre-assumed discounted

density and the property of the claim size distributions. The unknown constants can typically be

solved from a system of linear equations which arise by conditioning on the time and the amount

of the first claim. Due to the similarity of the approach to Chapter 7, we omit the rather tedious

algebra here and only state the results.

Let {−γi}m
i=1 be the m roots with negative real parts to the generalized Lundberg equation

det[I− ςδ(s)] = 0 , (5.73)
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where

ςδ(s) = k̃(δ − cs)P b̃(s) . (5.74)

For simplicity, we assume that {γi}m
i=1, {βi}m

i=1 and {s1 + s4 + βi}m
i=1 are all distinct. One finds

that

φ124,δ,ij(u) =
m∑

k=1

ϑijke
−γku + ηije

−(s1+s4+βj)u , u ≥ 0 . (5.75)

For i, j, k ∈ E, the coefficients ϑijk’s and ηij’s in the solution (5.75) are determined as follows.

• For each fixed j ∈ E, {ηij}m
i=1 satisfies the following system of equations:

ηij = k̃i(δ+c(s1+s4+βj))
m∑

l=1

pil
βl

βl − (s1 + s4 + βj)
ηlj+pijβjw̃2(βj)k̃i(δ+c(s1+βj)) , i ∈ E .

(5.76)

• Once the solution for the ηij’s have been found, one solves for the ϑijk’s via the system of

equations

ϑijk = k̃i(δ + cγk)
m∑

l=1

pil
βl

βl − γk

ϑljk , i, j, k ∈ E , (5.77)

and
m∑

k=1

ϑljk

βl − γk

+
ηlj

βl − (s1 + s4 + βj)
= 0 , j, l ∈ E . (5.78)

Note that, for any fixed j, k ∈ E, one of the m equations (i ∈ E) in (5.77) is redundant. Therefore,

combining the resulting m2(m − 1) equations with the m2 equations in (5.78) yields a system

of m3 linear equations to solve for all the ϑijk’s. The above procedure results in a complete

characterization of Φ124,δ(u). Finally, choosing w2(y) = e−s2y, it is clear that Φ124,δ(u) corresponds

to the joint Laplace transform of the quadruple (T, UT− , |UT |, RNT−1). Note that the coefficients

ϑijk’s and ηij’s in (5.75) depend on s1, s2 and s4. Therefore, it seems unlikely that in general the

Laplace transform inversion with respect to the arguments s1, s2 and s4 can be done analytically

(even when u = 0).
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5.6 Discounted joint density of (UT−, |UT |, XT , RNT−1) in the

MAP by fluid queue

So far, we have analyzed the generalized Gerber-Shiu function Φδ(u) for the class of semi-

Markovian risk models described in Section 1.2.3. We have shown that in principle it is sufficient

to determine h∗2,δ(x, y, v|0) to compute Φδ(u). To find h∗2,δ(x, y, v|0) under further assumptions on

the interclaim times or the claim sizes, the usual way is to condition on the time and amount of

the first claim. However, one should note that this is possible because of an important property of

our assumed structure of (1.6). The property is that, whenever something happens, there has to

be an accompanying claim which is positive. This property allows us to keep track of the surplus

level immediately after the first claim (if the claim does not cause ruin) and hence the quantity

RNT−1. Unfortunately, if claims follow a MAP as described in Section 1.2.1, then it is possible to

have a change in environment without a claim and the usual arguments of conditioning on the first

event that occurs do not work anymore. This is because when a change in environment without

a claim occurs before a claim, we lose track of the surplus level immediately after the previous

claim. In this section, we shall derive the discounted joint density of (UT− , |UT |, XT , RNT−1) when

claims follow a MAP using the connection to a fluid queue described in Section 1.4.1. Readers

should, however, be reminded that the semi-Markovian risk model and the MAP risk model are

not special cases of one another (see Section 1.2.4).

By analyzing all possible sample paths of the MAP risk process and the corresponding fluid

flow process (see, e.g., Ahn et al. (2007), Ramaswami (2006), and Badescu et al. (2007a,b)), the

discounted joint density of (UT− , |UT |, XT , RNT−1) given that the risk process has an initial surplus

of U0 = u ≥ 0 and the fluid flow process starts in state i ∈ S1 is given by the i-th element of the

following |S1| column vectors:
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1. for ruin on the first claim, on {(x, y, z, v)| x > u, y > 0, z = u, v = u},

h∗∗∗12,δ(x, y|u) = e(Q11−δI)x−u
c

(
Q12

c

)
eQ22,1(x+y)q21,1 , (5.79)

2. for ruin on the first drop in surplus other than the first claim, on {(x, y, z, v)| x > u, y >

0, z = u, u < v < x},

h∗∗∗124,δ(x, y, v|u) = e−
δ(v−u)

2c 0f̂11

(
0, v − u,

δ

2

)
Ψ

(
δ

2

)[
I− v−uΨr

(
δ

2

)
Ψ

(
δ

2

)]−1

×Q21,1h
∗∗∗
12,δ(x, y|v) , (5.80)

3. for an arbitrary number (≥ 1) of drops bringing the surplus to level z followed by ruin on

the next claim, on {(x, y, z, v)| x > z, y > 0, 0 < z < u, v = z},

h∗∗∗123,δ(x, y, z|u) = e
δ(u−z)

2c f̂12

(
u− z, 0,

δ

2

)
Q21,1h

∗∗∗
12,δ(x, y|z) , (5.81)

4. for an arbitrary number (≥ 1) of drops bringing the surplus to level z followed by ruin

occurring on the next drop in surplus excluding the next claim, on {(x, y, z, v)| z < v <

x, y > 0, 0 < z < u},

h∗∗∗δ (x, y, z, v|u) = e
δ(u−z)

2c f̂12

(
u− z, 0,

δ

2

)
Q21,1h

∗∗∗
124,δ(x, y, v|z) , (5.82)

where q21,1 = Q21,11.

We shall only prove (5.80) and (5.81). First consider the quantity h∗∗∗124,δ(x, y, v|u). The explanation

for different components are as follows:

• the surplus process {Ut}t≥0 has to first reach level v from level u without dropping below u,

since the first drop in surplus has to result in ruin. This is translated into a first passage in
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the associated fluid flow process {F (t)}t≥0 from level u to level v avoiding level u enroute.

This results in a contribution of e−δ(v−u)/(2c)
0f̂11(0, v − u, δ/2) to h∗∗∗124,δ(x, y, v|u);

• then, the fluid flow process {F (t)}t≥0 has to make a transition back to level v in the set

of phases S2, since the requirement of RNT−1 = v in {Ut}t≥0 would mean level v has to be

reached in S2 in {F (t)}t≥0. This results in the term Ψ(δ/2);

• the fluid flow process {F (t)}t≥0 then revisits level v in S2 for an arbitrary number (≥ 0) of

times avoiding level u enroute, resulting in [I− v−uΨr(δ/2)Ψ(δ/2)]−1; and

• finally, after visiting level v in S2 for an arbitrary number of times, the fluid process {F (t)}t≥0

makes a transition into S1, accounting for the term Q21,1. Clearly, the next claim causes

ruin and this explains the term h∗∗∗12,δ(x, y|v) given by (5.79).

For the quantity h∗∗∗123,δ(x, y, z|u) given by (5.81), the fluid process {F (t)}t≥0 has to make a first

passage from level u to level z which corresponds to the minimum surplus level in the surplus

process {Ut}t≥0. This gives rise to the term eδ(u−z)/(2c) f̂12(u − z, 0, δ/2). After reaching the

minimum before ruin, the fluid process {F (t)}t≥0 has to switch immediately from decreasing to

increasing pattern which explains Q21,1. Because the next claim causes ruin, we again require the

term h∗∗∗12,δ(x, y|v).
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Chapter 6

MAP risk model: The maximum surplus

prior to ruin

6.1 Introduction

In this chapter, we revisit the MAP risk model defined in Section 1.2.1 and consider a generalization

of the Gerber-Shiu function where the penalty function involves the maximum surplus before ruin

ZT = max0≤s<T Us. In our context, the general Gerber-Shiu function is defined to be, for i, j ∈ E,

φδ,ij(u) = E
[
e−δT w123(UT− , |UT |, ZT )1{T < ∞, JT = j}|U0 = u, J0 = i

]
, u ≥ 0 , (6.1)

The above function φδ,ij(u) is hard to solve in general. For the remainder of this chapter, we assume

that the penalty function w123(., ., .) admits the factorization w123(x, y, z) = w12(x, y)w3(z), i.e.

we are interested in the special case of the Gerber-Shiu function (6.1) given by, for i, j ∈ E,

φδ,ij(u) = E
[
e−δT w12(UT− , |UT |)w3(ZT )1{T < ∞, JT = j}|U0 = u, J0 = i

]
, u ≥ 0 . (6.2)

103



For convenience, we further define the matrix of Gerber-Shiu functions Φδ(u) = [φδ,ij(u)]mi,j=1. The

classical Gerber-Shiu function (which does not involve the random variable ZT ) can be retrieved

from (6.2) by letting w3(.) ≡ 1, and is denoted by φ12,δ,ij(u). Then we have the matrix Φ12,δ(u) =

[φ12,δ,ij(u)]mi,j=1. Again we assume either δ > 0 or the positive security loading condition (1.3).

We remark that the assumed factorization form of w123(., ., .) is still general enough for practical

purposes because, in principle, by letting w12(x, y) = e−s1x−s2y and w3(z) = e−s3z in (6.2), the

discounted joint distribution of the triplet (UT− , |UT |, ZT ) can be obtained by Laplace transform

inversion. Interested readers are also referred to Li and Dickson (2006) and Li and Lu (2008)

respectively for the study of the marginal distribution of the maximum surplus level in some

Sparre Andersen models and in the Markov-modulated risk model respectively. On the other

hand, if one assumes w12(x, y) = e−s4y and w3(z) = e−s4z under δ = 0, one obtains the Laplace

transform (with argument s4) of the largest distance of the surplus process {Ut}t≥0 up to and

including the time of ruin ZT + |UT |.

In general, we do not expect Φδ(u) to satisfy a (matrix) defective renewal equation like the pre-

vious chapter. However, it is possible to express Φδ(u) in terms of Φ12,δ(u) and some other known

quantities. Furthermore, it can be shown that Φδ(u) is closely related to the classical Gerber-Shiu

function in the same MAP risk model under a dividend barrier strategy. The corresponding gen-

eralized Gerber-Shiu function under the barrier strategy is also obtained with little extra effort.

These aspects will be the subject matter of Section 6.2. In Section 6.3, we consider the simplest

case of the MAP risk model - the classical compound Poisson risk model, and show that how the re-

sults in Section 6.2 can be applied to find the discounted joint density of the triplet (UT− , |UT |, ZT )

through analytic Laplace transform inversion of an appropriate Gerber-Shiu function. The den-

sity of the largest distance ZT + |UT | is given and numerical examples are illustrated. Section 6.4

revisits the MAP risk model, and the discounted joint distribution of (UT− , |UT |, ZT , XT ) (which

additionally involves the minimum surplus before ruin XT = min0≤s<T Us) is studied via the

existing connection to a fluid flow process given in Section 1.4.1.
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6.2 Gerber-Shiu function Φδ(u) involving ZT

6.2.1 Solution for Φδ(u)

Note that from time 0 the surplus process {Ut}t≥0 is at its running maximum until the first

claim occurs. However, the first change in the environmental process {Jt}t≥0 may or may not be

accompanied by a claim. If it is not accompanied by a claim, the surplus will still be at its running

maximum until the first claim. If the change is accompanied by a claim, the claim may or may

not cause ruin. If the claim causes ruin, the maximum surplus level is identical to the surplus

prior to ruin. If the claim does not cause ruin, there are two possibilities as the process further

evolves:

• the surplus process reaches the previous maximum level (i.e. the level just prior to the first

claim) before ruin; or

• the surplus process drops below 0 before it can reach the previous maximum level and hence

the maximum surplus prior to ruin is equal to the level just prior to the first claim.

Therefore, by conditioning on the time of the first change in environment and keeping track of

the underlying environmental states, one arrives at, for i, l ∈ E,

φδ,il(u) =

∫ ∞

0

e(G0,ii−δ)t

{
m∑

j=1,j 6=i

G0,ijφδ,jl(u + ct)

+
m∑

j=1

m∑

k=1

G1,ij

[∫ u+ct

0

pij(y)χδ,jk(u + ct− y; u + ct) dy

]
φδ,kl(u + ct)

}
dt

+

∫ ∞

0

e(G0,ii−δ)t

m∑
j=1

G1,ij

[∫ u+ct

0

pij(y)ϕ12,δ,jl(u + ct− y; u + ct) dy

]
w3(u + ct) dt

+

∫ ∞

0

e(G0,ii−δ)tG1,il

[∫ ∞

u+ct

pil(y)w12(u + ct, y − u− ct) dy

]
w3(u + ct) dt , u ≥ 0 ,

(6.3)
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where for j, k ∈ E,

χδ,jk(u; b) = E
[
e−δτb1{τb < T, Jτb

= k}|U0 = u, J0 = j
]

, 0 ≤ u ≤ b , (6.4)

is the Laplace transform of the first passage time τb = inf{t ≥ 0 : Ut = b} avoiding ruin enroute,

and for j, l ∈ E,

ϕ12,δ,jl(u; b) = E
[
e−δT w12(UT− , |UT |)1{T < τb, JT = l}|U0 = u, J0 = j

]
, 0 ≤ u ≤ b , (6.5)

is the classical Gerber-Shiu function with the event that the surplus process does not up-cross

level b before ruin occurs. For later use we also define the matrices χδ(u; b) = [χδ,jk(u; b)]mj,k=1 and

ϕ12,δ(u; b) = [ϕ12,δ,jl(u; b)]mj,l=1.

By changing the variable of integration x = u + ct in (6.3), one finds, for i, l ∈ E,

φδ,il(u)

=
1

c

∫ ∞

u

e
G0,ii−δ

c
(x−u)

{
m∑

j=1,j 6=i

G0,ijφδ,jl(x) +
m∑

j=1

m∑

k=1

G1,ij

[∫ x

0

pij(y)χδ,jk(x− y; x) dy

]
φδ,kl(x)

}
dx

+
1

c

∫ ∞

u

e
G0,ii−δ

c
(x−u)

[
m∑

j=1

G1,ij

∫ x

0

pij(y)ϕ12,δ,jl(x− y; x) dy + G1,ilωil(x)

]
w3(x) dx , u ≥ 0 ,

(6.6)

where for i, l ∈ E,

ωil(x) =

∫ ∞

x

pil(y)w12(x, y − x) dy , x ≥ 0 . (6.7)
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Differentiating with respect (6.6) to u yields, for i, l ∈ E,

φ′δ,il(u)

=− G0,ii − δ

c
φδ,il(u)− 1

c

m∑

j=1,j 6=i

G0,ijφδ,jl(u)− 1

c

m∑
j=1

m∑

k=1

G1,ij

[∫ u

0

pij(y)χδ,jk(u− y; u) dy

]
φδ,kl(u)

− 1

c

[
m∑

j=1

G1,ij

∫ u

0

pij(y)ϕ12,δ,jl(u− y; u) dy + G1,ilωil(u)

]
w3(u) , u ≥ 0 . (6.8)

It is convenient to re-express the above system of integro-differential equations in matrix form as

Φ′
δ(u) =

δ

c
Φδ(u)− 1

c
G0Φδ(u)− 1

c

[∫ u

0

Gp(y)χδ(u− y; u) dy

]
Φδ(u)

− 1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
w3(u) , u ≥ 0 , (6.9)

where Gp(y) = [G1,ijpij(y)]mi,j=1 and Gω(u) = [G1,ijωil(u)]mi,l=1.

In order to solve (6.9) for Φδ(u), for a moment we turn our attention to the matrix χδ(u; b)

with elements defined by (6.4). It follows from the argument in Chapter 2 and Li and Lu (2007)

that

χδ(u; b) = vδ(u) [vδ(b)]
−1 , 0 ≤ u ≤ b , (6.10)

where the matrix vδ(u) satisfies the homogeneous integro-differential equation

v′δ(u) =
δ

c
vδ(u)− 1

c
G0vδ(u)− 1

c

∫ u

0

Gp(y)vδ(u− y) dy , u ≥ 0 . (6.11)

Furthermore, with the initial condition

vδ(0) = I , (6.12)
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the Laplace transform of vδ(u) is given by

ṽδ(s) =

[(
s− δ

c

)
I +

1

c
G0 +

1

c
G̃p(s)

]−1

. (6.13)

When the Laplace transforms p̃ij(.)’s are all ratios of two polynomials in s, each element of (6.13)

is also a rational function in s and can therefore be resolved into partial fractions. This allows

analytic inversion of the Laplace transforms. See Chapter 2.

Now, applying (6.10) and (6.11) to (6.9) leads to

Φ′
δ(u) =

δ

c
Φδ(u)− 1

c
G0Φδ(u)− 1

c

[∫ u

0

Gp(y)vδ(u− y) dy

]
[vδ(u)]−1 Φδ(u)

− 1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
w3(u)

=
δ

c
Φδ(u)− 1

c
G0Φδ(u) +

[
v′δ(u)− δ

c
vδ(u) +

1

c
G0vδ(u)

]
[vδ(u)]−1 Φδ(u)

− 1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
w3(u)

= v′δ(u) [vδ(u)]−1 Φδ(u)− 1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
w3(u) , u ≥ 0 .

(6.14)

However, (6.14) also holds true for the classical Gerber-Shiu function Φ12,δ(u) (i.e. with w3(.) ≡ 1)

and therefore by rearranging terms one obtains,

−1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
= Φ′

12,δ(u)−v′δ(u) [vδ(u)]−1 Φ12,δ(u) , u ≥ 0 . (6.15)

Substituting (6.15) into (6.14) yields

Φ′
δ(u) = v′δ(u) [vδ(u)]−1 Φδ(u) +

{
Φ′

12,δ(u)− v′δ(u) [vδ(u)]−1 Φ12,δ(u)
}

w3(u) , u ≥ 0 . (6.16)
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Multiplying both sides of (6.16) by [vδ(u)]−1 followed by rearrangement of terms, we arrive at

− {
[vδ(u)]−1 Φ′

δ(u)− [vδ(u)]−1 v′δ(u) [vδ(u)]−1 Φδ(u)
}

=− {
[vδ(u)]−1 Φ′

12,δ(u)− [vδ(u)]−1 v′δ(u) [vδ(u)]−1 Φ12,δ(u)
}

w3(u) , u ≥ 0 . (6.17)

Capitalizing on the matrix differentiation property that (d/du)[vδ(u)]−1 = −[vδ(u)]−1v′δ(u)[vδ(u)]−1

together with the product rule of matrix differentiation, one can rewrite (6.17) as

− d

du

{
[vδ(u)]−1 Φδ(u)

}
= −w3(u)

d

du

{
[vδ(u)]−1 Φ12,δ(u)

}
, u ≥ 0 . (6.18)

Since limu→∞Φδ(u) = 0, replacing u by z in (6.18) and integrating with respect to z from u to

∞, it follows that

[vδ(u)]−1 Φδ(u) = −
∫ ∞

u

w3(z)
d

dz

{
[vδ(z)]−1 Φ12,δ(z)

}
dz , u ≥ 0 , (6.19)

or equivalently,

Φδ(u) = −
∫ ∞

u

w3(z)
d

dz
[χδ(u; z)Φ12,δ(z)] dz , u ≥ 0 . (6.20)

Note that (6.20) expresses the general Gerber-Shiu function Φδ(u) in terms of the classical Gerber-

Shiu function Φ12,δ(u) and the Laplace transform of the first passage time χδ(u; z). While the

quantity χδ(u; z) can be computed by (6.10) and (6.13), Φ12,δ(u) can be evaluated along the same

lines as in Lu and Tsai (2007) (see Section 2.5).

Remark 16 Note that although our first step of conditioning on the first change in environment

to obtain (6.3) involves the function ϕ12,δ,jl(u; b), ϕ12,δ(u; b) does not appear in our main result

(6.20). Indeed, one could see that ϕ12,δ(u; b) has been eliminated from (6.14) through the use of

(6.15).
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6.2.2 Dividend barrier strategy

In this subsection, we examine how Φδ(u) can be expressed in terms of the classical Gerber-Shiu

function in the same MAP model under a dividend barrier strategy. In addition, the general

Gerber-Shiu function under a dividend barrier strategy is also derived.

Under a dividend barrier strategy, whenever the surplus attains a fixed barrier level b > 0,

the insurer pays the entire premium income to the shareholder as dividends until the next claim

occurs, and no dividends are paid when the surplus level is below b (see also Section 2.1). We

denote the resulting surplus process by {U (b)
t }t≥0, which satisfies, for t ≥ 0,

dU
(b)
t =





c dt− d
(∑Nt

i=1 Yi

)
, U

(b)
t < b .

−d
(∑Nt

i=1 Yi

)
, U

(b)
t = b .

(6.21)

The time of ruin, the surplus prior to ruin, the deficit at ruin and the maximum surplus level before

ruin are given by Tb = inf{t ≥ 0 : U
(b)
t < 0}, U

(b)

T−b
, |U (b)

Tb
| and Z

(b)
Tb

= max0≤s<Tb
U

(b)
s respectively.

Therefore, the general Gerber-Shiu function of our interest is given by, for i, j ∈ E,

φδ,ij(u; b) = E
[
e−δTbw12(U

(b)

T−b
, |U (b)

Tb
|)w3(Z

(b)
Tb

)1{Tb < ∞, JTb
= j}|U (b)

0 = u, J0 = i
]

, 0 ≤ u ≤ b ,

(6.22)

with the classical Gerber-Shiu function retrieved by letting w3(.) ≡ 1 and denoted by φ12,δ,ij(u; b).

We also define the matrices of Gerber-Shiu functions Φδ(u; b) = [φδ,ij(u; b)]mi,j=1 and Φ12,δ(u; b) =

[φ12,δ,ij(u; b)]mi,j=1.

Suppose we want to relate Φδ(u) to Φ12,δ(u; b). We need an additional result - the dividends-

penalty identity which was first introduced by Gerber et al. (2006). Gerber et al. (2006) derived

the identity in the context of a Markov process which is skip-free upwards. In the present context,

we require a matrix version of the identity, which can be adapted from Chapter 2 and Li and Lu
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(2008). It is given by

Φ12,δ(u; b) = Φ12,δ(u)− vδ(u) [v′δ(b)]
−1

Φ′
12,δ(b) , 0 ≤ u ≤ b . (6.23)

By (6.17) and (6.18), one readily obtains

− d

du

{
[vδ(u)]−1 Φδ(u)

}
= −w3(u)

{
[vδ(u)]−1 Φ′

12,δ(u)− [vδ(u)]−1 v′δ(u) [vδ(u)]−1 Φ12,δ(u)
}

= w3(u) [vδ(u)]−1 v′δ(u) [vδ(u)]−1
{
Φ12,δ(u)− vδ(u) [v′δ(u)]

−1
Φ′

12,δ(u)
}

= −w3(u)

{
d

du
[vδ(u)]−1

}
Φ12,δ(u; u) , u ≥ 0 , (6.24)

where the last line follows from (6.23). Thus, we arrive at, along the same lines in obtaining

(6.20),

Φδ(u) = −
∫ ∞

u

w3(z)

[
d

dz
χδ(u; z)

]
Φ12,δ(z; z) dz , u ≥ 0 , (6.25)

which expresses Φδ(u) in terms of Φ12,δ(z; z), the classical Gerber-Shiu function in the same MAP

model under a dividend barrier strategy, and the Laplace transform χδ(u; z).

Next we are going to find the expression for the general Gerber-Shiu function Φδ(u; b) with

elements defined by (6.22). Given an initial surplus of u such that 0 ≤ u ≤ b, note that if

the surplus process {U (b)
t }t≥0 reaches level b before ruin first occurring (with such a first passage

time having Laplace transform χδ(u; b)), then the maximum surplus level before ruin is simply

b, and the discounted penalty applied to the surplus prior to ruin and the deficit at ruin at the

time of hitting would simply be Φ12,δ(b; b). On the other hand, if the process {U (b)
t }t≥0 drops

below 0 before it can ever reach level b, then the general Gerber-Shiu function is equivalent to

ϕδ(u; b) = [ϕδ,ij(u; b)]mi,j=1 with (i, j)-th element given by, for i, j ∈ E,

ϕδ,ij(u; b) = E
[
e−δT w12(UT− , |UT |)w3(ZT )1{T < τb, JT = j}|U0 = u, J0 = i

]
, 0 ≤ u ≤ b ,

(6.26)
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We remark that when w3(.) ≡ 1, ϕδ(u; b) reduces to ϕ12,δ(u; b).

Combining all the above, we arrive at

Φδ(u; b) = χδ(u; b)w3(b)Φ12,δ(b; b) + ϕδ(u; b) , 0 ≤ u ≤ b . (6.27)

From (6.27), it is clear that it remains to determine ϕδ(u; b) if we want to find Φδ(u; b). In the

same way as (6.9) is obtained, we omit the details and arrive at

ϕ′
δ(u; b) =

δ

c
ϕδ(u; b)− 1

c
G0ϕδ(u; b)− 1

c

[∫ u

0

Gp(y)χδ(u− y; u) dy

]
ϕδ(u; b)

− 1

c

[∫ u

0

Gp(y)ϕ12,δ(u− y; u) dy + Gω(u)

]
w3(u) , 0 ≤ u ≤ b , (6.28)

with trivial boundary condition

ϕδ(b; b) = 0 . (6.29)

Analogous to (6.20), with the above boundary condition we ultimately obtain

ϕδ(u; b) = −
∫ b

u

w3(z)
d

dz
[χδ(u; z)Φ12,δ(z)] dz , 0 ≤ u ≤ b . (6.30)

This completes our characterization of ϕδ(u; b) and hence that for Φδ(u; b). Similar to (6.25), an

alternate representation for ϕδ(u; b) in relation to Φ12,δ(z; z) is given by

ϕδ(u; b) = −
∫ b

u

w3(z)

[
d

dz
χδ(u; z)

]
Φ12,δ(z; z) dz , 0 ≤ u ≤ b . (6.31)

6.3 Example: Classical compound Poisson risk model

In this section, we consider the simplest case of the MAP risk model where m = 1, i.e. the

classical compound Poisson risk model. In such a case, {Nt}t≥0 reduces to a Poisson process with
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rate λ > 0, and we have G0,11 = −λ and G1,11 = λ. To simplify our notation, we denote the

claim size density by p(.) = p11(.). Furthermore, all the matrix quantities in Section 6.2 reduce

to scalar quantities, and we shall write Φδ(u) = φδ(u), Φ12,δ(u) = φ12,δ(u), χδ(u; b) = χδ(u; b),

Gω(u) = λω11(u) = λω(u) and vδ(u) = vδ(u). In this simplest model, we shall first give more

explicit expression for the general Gerber-Shiu function φδ(u). Then such an expression will be

used to find the discounted joint density of (UT− , |UT |, ZT ), as well as the density of the largest

distance ZT + |UT | followed by numerical illustrations.

6.3.1 Gerber-Shiu function Φδ(u) involving ZT

In the compound Poisson model, (6.19) reduces to

φδ(u) = vδ(u)

∫ ∞

u

w3(z)

[
− d

dz

φ12,δ(z)

vδ(z)

]
dz , u ≥ 0 . (6.32)

Suppose we want to evaluate −(d/dz)[φ12,δ(z)/vδ(z)] in the above equation explicitly. We first

define ρ to be the unique non-negative root of the Lundberg’s fundamental equation

cs− (λ + δ) + λp̃(s) = 0 . (6.33)

In addition, let gδ(u) be the compound geometric density

gδ(u) =
∞∑

n=1

(1− κδ)(κδ)
nl∗nδ (u) , u ≥ 0 , (6.34)

where

κδ =
λ

c

∫ ∞

0

∫ ∞

0

e−ρxp(x + y) dx dy < 1 , (6.35)
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and l∗nδ (u) is the density function of the n-fold convolution of the ladder height density

lδ(y) =

∫∞
0

e−ρxp(x + y) dx∫∞
0

∫∞
0

e−ρxp(x + y) dx dy
, y ≥ 0 , (6.36)

with itself. It is known from Gerber and Shiu (1998) that φ12,δ(u) satisfies a defective renewal

equation with solution given by (see, e.g., Lin and Willmot (1999))

φ12,δ(u) = αδ(u) +
1

1− κδ

∫ u

0

αδ(u− y)gδ(y) dy , u ≥ 0 , (6.37)

where

αδ(u) =
λ

c

∫ ∞

u

∫ ∞

0

w12(x, y)e−ρ(x−u)p(x + y) dy dx , u ≥ 0 . (6.38)

Differentiating (6.37) with respect to u yields

φ′12,δ(u) = α′δ(u) +
1

1− κδ

[
αδ(0)gδ(u) +

∫ u

0

α′δ(u− y)gδ(y) dy

]
, u ≥ 0 . (6.39)

From the definition of αδ(u) in (6.38), it is easy to find that, using the scalar version of (6.7),

α′δ(u) = ραδ(u)− λ

c

∫ ∞

0

w12(u, y)p(u + y) dy = ραδ(u)− λ

c
ω(u) , u ≥ 0 . (6.40)

Substituting (6.40) in (6.39), one obtains

φ′12,δ(u) =

[
ραδ(u)− λ

c
ω(u)

]
+

1

1− κδ

{
αδ(0)gδ(u) +

∫ u

0

[
ραδ(u− y)− λ

c
ω(u− y)

]
gδ(y) dy

}

= ρ

[
αδ(u) +

1

1− κδ

∫ u

0

αδ(u− y)gδ(y) dy

]

− λ

c
ω(u) +

1

1− κδ

[
αδ(0)gδ(u)− λ

c

∫ u

0

ω(u− y)gδ(y) dy

]

= ρφ12,δ(u) +
1

1− κδ

{
αδ(0)gδ(u)− λ

c

[
(1− κδ)ω(u) +

∫ u

0

gδ(u− y)ω(y) dy

]}
, u ≥ 0 .

(6.41)
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Similar to φ12,δ(u), it can be shown readily that (the scalar version of) the integro-differential

equation (6.11) with initial condition (6.12) can be transformed to a defective renewal equation

with solution

vδ(u) = eρu +
1

1− κδ

∫ u

0

eρ(u−y)gδ(y) dy , u ≥ 0 . (6.42)

We remark that an alternative form of vδ(u) was given in Bühlmann (1970, Section 6.4.9) or Lin

et al. (2003, Section 4). It can be proved that their solution is in fact equal to the one given here.

However, as we shall see later, the solution (6.42) allows us to simplify some expressions.

It follows from (6.42) that

v′δ(u) = ρvδ(u) +
1

1− κδ

gδ(u) , u ≥ 0 . (6.43)

Applying (6.41) and (6.43), it is easy to see that

− d

dz

φ12,δ(z)

vδ(z)

=
v′δ(z)φ12,δ(z)− vδ(z)φ′12,δ(z)

[vδ(z)]2

=
1

1−κδ
gδ(z)φ12,δ(z)− vδ(z)

1−κδ

{
αδ(0)gδ(z)− λ

c

[
(1− κδ)ω(z) +

∫ z

0
gδ(z − y)ω(y) dy

]}

[vδ(z)]2

=
1

(1− κδ)vδ(z)

{
gδ(z)

vδ(z)
φ12,δ(z)− αδ(0)gδ(z) +

λ

c

[
(1− κδ)ω(z) +

∫ z

0

gδ(z − y)ω(y) dy

]}
, z ≥ 0 .

(6.44)

Therefore, substitution of (6.44) into (6.32) yields

φδ(u)

=

∫ ∞

u

w3(z)vδ(u)

(1− κδ)vδ(z)

{
gδ(z)

vδ(z)
φ12,δ(z)− αδ(0)gδ(z) +

λ

c

[
(1− κδ)ω(z) +

∫ z

0

gδ(z − y)ω(y) dy

]}
dz,

u ≥ 0 , (6.45)
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which is an explicit expression for φδ(u).

6.3.2 Discounted joint density of (UT−, |UT |, ZT )

In what follows, we apply our results from previous subsection to find the discounted joint density

of (UT− , |UT |, ZT ). To do so, we let w12(x, y) = e−s1x−s2y and w3(z) = e−s3z, so that it is clear

from (6.2) that φδ(u) represents the joint Laplace transform of the quadruple (T, UT− , |UT |, ZT ),

whereas φ12,δ(u) represents the joint Laplace transform of the triplet (T, UT− , |UT |). We aim at

analytically inverting φδ(u) with respect to s1, s2 and s3, and this will result in the so-called

discounted joint density of (UT− , |UT |, ZT ).

Landriault and Willmot (2009) showed that

φ12,δ(u) =

∫ ∞

0

∫ ∞

0

e−s1x−s2yhδ(x, y|u) dx dy , u ≥ 0 , (6.46)

where

hδ(x, y|u) =





λ
c(1−κδ)

p(x + y)
∫ x

0
e−ρ(x−v)gδ(u− v) dv , x < u .

λ
c(1−κδ)

p(x + y)
[
(1− κδ)e

−ρ(x−u) +
∫ u

0
e−ρ(x−v)gδ(u− v) dv

]
, x > u .

(6.47)

is the discounted joint density of (UT− , |UT |) at (x, y) for an initial surplus of U0 = u. With the

help of (6.42), (6.47) can be rewritten as

hδ(x, y|u) =





λ
c
[e−ρxvδ(u)− vδ(u− x)] p(x + y) , x < u .

λ
c
vδ(u)e−ρxp(x + y) , x > u .

(6.48)
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For our choice of penalty functions, substitution of (6.7), (6.38) and (6.46) into (6.45) leads to

φδ(u) =

∫ ∞

u

∫ ∞

0

∫ ∞

0

e−s1x−s2y−s3z χδ(u; z)

1− κδ

[
gδ(z)

vδ(z)
hδ(x, y|z)− λ

c
e−ρxp(x + y)gδ(z)

]
dx dy dz

+

∫ ∞

u

∫ ∞

0

e−s1z−s2y−s3z

[
λ

c
χδ(u; z)p(z + y)

]
dy dz

+

∫ ∞

u

∫ z

0

∫ ∞

0

e−s1x−s2y−s3z χδ(u; z)

1− κδ

[
λ

c
gδ(z − x)p(x + y)

]
dy dx dz , u ≥ 0 . (6.49)

By the uniqueness of Laplace transforms, given an initial surplus of U0 = u, the triplet (UT− , |UT |, ZT )

has discounted densities on the subspaces of R3 given by

1. on {(x, y, z) : y > 0, x = z > u}:

h∗12,δ(x, y|u) =
λ

c
χδ(u; x)p(x + y) , (6.50)

and

2. on {(x, y, z) : y > 0, 0 < x < z, z > u}:

h∗123,δ(x, y, z|u) =
χδ(u; z)

1− κδ

[
λ

c
gδ(z − x)p(x + y) +

gδ(z)

vδ(z)
hδ(x, y|z)− λ

c
e−ρxp(x + y)gδ(z)

]

=
λ

c

χδ(u; z)

1− κδ

{
gδ(z − x) +

gδ(z)

vδ(z)

[
e−ρxvδ(z)− vδ(z − x)

]− e−ρxgδ(z)

}
p(x + y)

=
λ

c

χδ(u; z)

1− κδ

[
gδ(z − x)− gδ(z)

vδ(z − x)

vδ(z)

]
p(x + y) , (6.51)

where the second last line follows from (6.48).
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In addition, on {(x, y, z) : y > 0, x > z > u}, the density

hnull
123,δ(x, y, z|u) =

χδ(u; z)

1− κδ

[
gδ(z)

vδ(z)
hδ(x, y|z)− λ

c
e−ρxp(x + y)gδ(z)

]

=
λ

c

χδ(u; z)

1− κδ

{
gδ(z)

vδ(z)

[
vδ(z)e−ρxp(x + y)

]− e−ρxp(x + y)gδ(z)

}

= 0 , (6.52)

where the second last line again follows from (6.48). (6.52) is indeed expected to be 0 since the

surplus prior to ruin cannot be greater than the maximum surplus before ruin.

We remark that the density h∗12,δ(x, y|u) given by (6.50) is the contribution to the joint dis-

tribution of (UT− , |UT |, ZT ) from the case where the claim causing ruin occurs exactly when the

surplus process reaches its maximum level before ruin.

6.3.3 Density of largest distance until ruin ZT + |UT | and numerical

illustrations

Having obtained the discounted joint density of (UT− , |UT |, ZT ) in (6.50) and (6.51), one readily

obtains the (defective) density of the largest distance until ruin ZT + |UT | (at v) given an initial

surplus of U0 = u, namely h4(v|u), as

h4(v|u) =

∫ v

u

h∗12,0(z, v − z|u) dz +

∫ v

u

∫ z

0

h∗123,0(x, v − z, z|u) dx dz

=
λ

c

∫ v

u

χ0(u; z)

{
p(v) +

1

1− κ0

∫ z

0

[
g0(z − x)− g0(z)

v0(z − x)

v0(z)

]
p(x + v − z) dx

}
dz

=
λ

c

∫ v

u

v0(u)

v0(z)

{
p(v) +

1

1− κ0

[∫ z

0

g0(x)p(v − x) dx− g0(z)

v0(z)

∫ z

0

v0(x)p(v − x) dx

]}
dz ,

v > u . (6.53)
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We remark that the same result can also be obtained by performing analytic Laplace transform

inversion with respect to s4 on the right-hand side of (6.49) under the choice of penalty functions

w12(x, y) = e−s4y and w3(z) = e−s4z with δ = 0. The details are omitted here.

Although the (defective) density h4(v|u) given by (6.53) is expressed in integral form, the

integrals involved can be computed via computer software such as Mathematica. To show the

numerical tractability, the density h4(v|u) and some moment-based quantities in relation to ZT +

|UT | are obtained in the compound Poisson risk model under three different claim size distributions

including the sum of two exponential density

p(y) = 2

(
3

2
e−

3
2
y

)
− 3e−3y , y > 0 , (6.54)

the exponential density

p(y) = e−y , y > 0 , (6.55)

and the mixture of two exponentials density

p(y) =
1

3

(
1

2
e−

1
2
y

)
+

2

3

(
2e−2y

)
, y > 0 . (6.56)

While the means of the three claim size distributions are all 1, they possess different amount of

variability which is evident in their respective standard deviations of 0.745, 1 and 1.414. Under

all cases, the Poisson claim arrival rate is λ = 1 and the premium rate is assumed to be c = 1.5.

As a result, it is easy to check that the positive security loading condition holds.

Note that the density h4(v|u) in (6.53) is expressed in terms of the functions v0(.) and g0(.)

apart from the claim size density p(.). Letting ψ(u) = Pr{T < ∞|U0 = u} be the ruin probability,

it is known from e.g. Lin et al. (2003) that v0(u) and the compound geometric density g0(u) can

be expressed as v0(u) = [1−ψ(u)]/[1−ψ(0)] and g0(u) = −ψ′(u) respectively. Since the densities

(6.54), (6.55) and (6.56) all belong to the class of the combinations of exponentials, ψ(u) can be
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found based on the results in Gerber et al. (1987, Section 3). As a direct consequence, both v0(u)

and g0(u) are both linear sums of exponential terms.

First, for an initial surplus of u = 5, the density h4(v|u) under the three claim size densities is

plotted in Figure 6.1 below.

Figure 6.1: Plot of the density h4(v|5) of different claim size distributions

From Figure 1, one observes that the mode of the defective density h4(v|5) has the same ordering

as the standard deviation of the claim size. Also, except for small values of v, the same is also true

for h4(v|5) itself. This can be attributed to the fact that all else being equal, a larger variability in

claim sizes leads to larger fluctuations in the surplus process, resulting in higher ruin probability

and larger distance between the running maximum and the running minimum at the time of ruin.
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Second, we also consider the moment-based quantities

Mean = E[ZT + |UT ||T < ∞, U0 = u] =

∫ ∞

u

v

[
h4(v|u)

ψ(u)

]
dv , (6.57)

Standard deviation = SD[ZT + |UT ||T < ∞, U0 = u]

=

√∫ ∞

u

v2

[
h4(v|u)

ψ(u)

]
dv −

{∫ ∞

u

v

[
h4(v|u)

ψ(u)

]
dv

}2

, (6.58)

and

Coefficient of variation = CV [ZT + |UT ||T < ∞, U0 = u] =
SD[ZT + |UT ||T < ∞, U0 = u]

E[ZT + |UT ||T < ∞, U0 = u]
,

(6.59)

all conditional on the event that ruin occurs. These three quantities at various initial surplus

levels are given in Table 6.1 below for all three claim size distributions.

Sum of exponentials Exponential Mixture of exponentials
u Mean SD CV Mean SD CV Mean SD CV
0 2.0813 1.7641 0.8476 2.6479 2.4050 0.9082 3.8769 4.0934 1.0558
5 7.8779 2.3194 0.2944 8.8027 3.0666 0.3484 11.1953 4.9898 0.4457
10 12.9564 2.3575 0.1820 13.9640 3.1452 0.2252 16.5754 5.1751 0.3122
15 17.9647 2.3615 0.1315 18.9933 3.1591 0.1663 21.7026 5.2351 0.2412
20 22.9656 2.3620 0.1028 23.9987 3.1617 0.1317 26.7472 5.2559 0.1965
25 27.9657 2.3620 0.0845 28.9998 3.1622 0.1090 31.7631 5.2633 0.1657
30 32.9658 2.3620 0.0717 34.0000 3.1623 0.0930 36.7688 5.2660 0.1432
100 102.9658 2.3620 0.0229 104.0000 3.1623 0.0304 106.7720 5.2675 0.0493

Table 6.1: Mean, standard deviation and coefficient of variation of ZT + |UT |

From Table 6.1, we observe that in general, the mean, standard deviation and coefficient of

variation are larger when the claim size distribution has a larger standard deviation. It is also

interesting to notice that in each of the three cases, the excess of the conditional mean of ZT + |UT |
over the initial surplus u appears to converge to a constant as the initial surplus u gets large. The
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same seems to be true for the standard deviation itself.

6.4 Discounted joint density of (UT−, |UT |, ZT , XT ) by fluid

queue

The techniques used in the previous sections in the chapter are analytic methods. In this chapter,

we shall analyze the MAP risk model by a purely probabilistic approach through the connection to

a fluid queue given in Section 1.4.1. We shall further incorporate the variable XT = min0≤s<T Us

into our analysis, and the discounted joint density (UT− , |UT |, ZT , XT ) will be considered.

To begin, we have to first define the discounted joint density of (UT− , |UT |, ZT , XT ). Note that

the contributions to this discounted joint density have different functional forms based on

1. whether ruin whether ruin is caused by the first claim or any of its subsequent claims (see,

e.g., Chapter 5 and Landriault and Willmot (2009)); and

2. whether a claim causing ruin occurs immediately as the surplus reaches its maximum level

before ruin (see Section 6.3.2).

Therefore, we have to introduce three column vectors to account for the discounted joint density

of (UT− , |UT |, ZT , XT ) as follows.

1. For ruin occurring on the first claim, the minimum surplus before ruin XT is simply equal

to the initial surplus whereas the maximum surplus before ruin ZT equals the surplus prior

to ruin UT− , and the time of ruin is T = (UT− − u)/c . In such a case, the discounted joint

density of represented by the column vector h
(1)
12,δ(x, y|u) with the i-th element (i ∈ S1) given
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by, on {(x, y, z, v) : x = z > u, y > 0, v = u},

[h
(1)
12,δ(x, y|u)]i dx dy

= E
[
e−δT 1{NT = 1, UT− = ZT ∈ (x, x + dx), |UT | ∈ (y, y + dy)}

∣∣F (0) = u, J (F )(0) = i
]

.

(6.60)

2. For ruin occurring on claims subsequent to the first, it could possibly be caused by a claim

occurring immediately when the surplus reaches its maximum before ruin. Then ZT equals

UT− , and the discounted joint density of represented by h
(2)
124,δ(x, y, v|u) with the i-th element

(i ∈ S1) given by, on {(x, y, z, v) : x = z > u, y > 0, v < u},

[h
(2)
124,δ(x, y, v|u)]i dx dy dv

= E




e−δT 1{NT ≥ 2, UT− = ZT ∈ (x, x + dx)}
1{|UT | ∈ (y, y + dy), XT ∈ (v, v + dv)}

∣∣∣∣F (0) = u, J (F )(0) = i


 . (6.61)

3. For ruin occurring on claims subsequent to the first, if the claim causing ruin does not occur

when the surplus level reaches the maximum before ruin, then there is no simple relationship

among the random variables. The discounted joint density of represented by h
(2)
δ (x, y, z, v|u)

with the i-th element (i ∈ S1) given by, on {(x, y, z, v) : y > 0, v < x < z, z > u, v < u},

[h
(2)
δ (x, y, z, v|u)]i dx dy dz dv

= E




e−δT 1{NT ≥ 2, UT− ∈ (x, x + dx), |UT | ∈ (y, y + dy)}
1{ZT ∈ (z, z + dz), XT ∈ (v, v + dv)}

∣∣∣∣F (0) = u, J (F )(0) = i


 .

(6.62)

Now we are ready to derive the discounted joint density of (UT− , |UT |, ZT , XT ) in the MAP risk
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model. For (6.60), it is easy to see that

h
(1)
12,δ(x, y|u) = e(Q11−δI)x−u

c

(
Q12

c

)
eQ22,1(x+y)q21,1 , (6.63)

where q21,1 = Q21,11. For (6.61), one can show that

h
(2)
124,δ(x, y, v|u) = e−

δ(x−u)
2c

x−uΨ

(
δ

2

)
x−v f̂22

(
u− v, 0,

δ

2

)
Q21,1 0f̂11

(
0, x− v,

δ

2

)

×
(

Q12

c

)
eQ22,1(x+y)q21,1 . (6.64)

The proof of (6.64) is omitted and instead we give the proof for part of the next quantity which

is the most complicated. For (6.62), we shall write

h
(2)
δ (x, y, z, v|u) = h

(2)
max,δ(x, y, z, v|u) + h

(2)
min,δ(x, y, z, v|u) , (6.65)

where h
(2)
max,δ(x, y, z, v|u) is the contribution by the case where the maximum is attained before

the minimum, and h
(2)
min,δ(x, y, z, v|u) represents the case where the minimum is reached before the

maximum. We have that

h
(2)
max,δ(x, y, z, v|u) = e−

δ(x−u)
2c 0f̂11

(
u− v, z − v,

δ

2

) (
Q12

c

)
z−v f̂22

(
z − v, 0,

δ

2

)
Q21,1

× 0f̂11

(
0, x− v,

δ

2

)[
I− z−xΨ

(
δ

2

)
x−vΨr

(
δ

2

)]−1 (
Q12

c

)
eQ22,1(x+y)q21,1 ,

(6.66)
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and

h
(2)
min,δ(x, y, z, v|u) = e−

δ(x−u)
2c

z−uΨ

(
δ

2

)
z−v f̂22

(
u− v, 0,

δ

2

)
Q21,1 0f̂11

(
0, z − v,

δ

2

)(
Q12

c

)

×z−x f̂22

(
z − x, 0,

δ

2

)
x−vΨr

(
δ

2

)[
I− z−xΨ

(
δ

2

)
x−vΨr

(
δ

2

)]−1

×
(

Q12

c

)
eQ22,1(x+y)q21,1 . (6.67)

Now we give a probabilistic proof for (6.66) via sample paths argument. Recall again that

h
(2)
max,δ(x, y, z, v|u) represents the case where ruin is caused by at least two claims, and the claim

causing ruin does not occur when the surplus reaches its maximum. In addition, the maximum

occurs before the minimum. In order for the surplus process {Ut}t≥0 to reach the maximum level z

from initial surplus u before the minimum level v, the fluid level process {F (t)}t≥0 has to first reach

level z from level u avoiding level v enroute, which is represented by the term 0f̂11(u−v, z−v, δ/2).

Upon reaching the maximum, {F (t)}t≥0 immediately switches from S1 to S2 and this accounts for

the term Q12/c. Then {F (t)}t≥0 has to reach the minimum level v in S2 without reaching level

z enroute, and this explains the term z−v f̂22(z − v, 0, δ/2). At the minimum level v, {F (t)}t≥0

switches immediately to S1, giving rise to the term Q21,1. Now being at minimum level v in S1,

{F (t)}t≥0 has to reach level x, the surplus prior to ruin, in S1 at least once avoiding level v enroute.

This is represented by the term 0f̂11(0, x−v, δ/2). At level x in S1, the fluid level {F (t)}t≥0 further

hits level x in S1 an arbitrary number (≥ 0) of times avoiding the maximum level z and the min-

imum level v. This is accounted for by the term [I− z−xΨ(δ/2) x−vΨr(δ/2)]−1. Being at level x

in S1 for the last time, {F (t)}t≥0 switches from S1 to S2 giving rise to Q12/c. Then eQ22,1(x+y)q21,1

represents a claim of size x+y and hence guarantees a deficit at ruin of exactly size y. We remark

that the term e−δ(x−u)/(2c) is an adjustment term arising when the downward segments of {F (t)}t≥0

is removed to give the surplus process {Ut}t≥0. See, e.g., Ramaswami (2006).
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Chapter 7

Further generalizations of the MAP risk

model

7.1 Introduction

In this chapter, we propose to further generalize the MAP risk model described in Section 1.2.1.

Recall that, in a MAP risk model, there are two types of transitions, namely, type-1 transitions

which occur without a claim, and type-2 transitions which occur with an accompanying claim. In

what follows, we refer to either type of transition as a system change. It is instructive to note that

from the construction of the MAP risk model, it is implicitly assumed that the times between two

successive system changes are exponentially distributed. More precisely, for i ∈ E, given that the

underlying state of the CTMC {Jt}t≥0 at a given time is i, it is assumed that the time until the

next system change is exponentially distributed with mean −1/G0,ii. In addition, the probability

that the system change is a transition of the CTMC {Jt}t≥0 from state i to state j with (without)

a claim is given by −G1,ij/G0,ii (−G0,ij/G0,ii for j 6= i).
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Here, we propose to extend the class of MAP risk models by relaxing the assumptions on

the distribution of the time between two system changes. More specifically, we shall assume an

arbitrary distribution instead of an exponential one. Thus, such a generalized version of the MAP

risk model has the added flexibility of allowing the selection of heavy-tailed distributions (e.g.

Pareto or lognormal distribution) for the time between system changes.

We now introduce the risk model of interest in this chapter. Let %0 be the initial environmental

state at time 0 and %i be the environmental state immediately after the i-th system change. It is

assumed that the sequence {%i}∞i=0 is an irreducible and time-homogeneous DTMC on the state

space E = {1, 2, . . . , m}. The one-period transition probability of the Markov chain {%i}∞i=0 is

G = Q + P, where Q = [qij]
m
i,j=1 and P = [pij]

m
i,j=1 with qij, pij ≥ 0 and (Q + P)1 = 1. Note that

the one-period transition probability G has been expressed as Q + P given that, as in the MAP

risk model, two types of system changes may occur: (1) a change in the environmental process

without a claim; or (2) a possible change in the environment process accompanied by a claim.

The transition probabilities of those scenarios are respectively contained in the matrices Q and

P. Note that the diagonal elements of Q are all zero due to the definition of a system change.

In order to express the surplus process {Ut}t≥0 in the form of (1.1), we have to slightly modify

the definitions of {Nt}t≥0 (and hence {Vi}∞i=1) and {Yi}∞i=1. For i = 1, 2, . . ., let T0 = 0 and Ti be

the time of the i-th system change. Then we define {Nt}t≥0 to be counting process of the system

changes (instead of the claims), where Nt = sup{i ∈ N : Ti ≤ t}. In addition, the sequence {Vi}∞i=1

has to be modified such that V1 = T1 is the time of the first system change and for i = 2, 3, . . .,

Vi = Ti − Ti−1 is the time elapsed between the (i − 1)-th and the i-th system changes. For

i = 1, 2, . . ., Vi|%i−1 = j is assumed to have density kj(.), c.d.f. Kj(.) and mean κj. Furthermore,

the sequence {Yi}∞i=1 now is such that for i = 1, 2, . . ., Yi is the ‘claim size’ associated with the i-th

system change. We assume that Yi = 0 if the i-th system change does not involve a claim while

Yi has density fjk(.), c.d.f. Fjk(y) = 1−F jk(y) and mean µjk if the i-th system change involves a

claim and %i−1 = j while %i = k for j, k ∈ E. Conditional on {%i}∞i=0, {Yi}∞i=1 and {Vi}∞i=1 are all
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mutually independent. Combining all the above assumptions, it follows that, for i = 1, 2, . . . and

j, k ∈ E,

Pr {Yi ≤ y, Vi ≤ t, %i = k|%i−1 = j} = Kj(t)[qjk + pjkFjk(y)] , t, y ≥ 0 . (7.1)

The definitions of the time of ruin T , the surplus prior to ruin UT− and the deficit at ruin |UT |
are the same as in Section 1.1, and NT is now the number of system changes until ruin.

Remark 17 It is clear that the generalization of the MAP model described by (7.1) contains the

semi-Markovian model described in Section 1.2.3 by letting Q be a zero matrix and assuming that

the densities fjk(.)’s do not depend on j for j, k ∈ E.

Analogous to (1.7) (along with (1.8)), the positive security loading condition for the above model

is

c

m∑
j=1

πjκj >

m∑
j=1

πj

m∑

k=1

pjkµjk , (7.2)

where π = (π1, π2, . . . , πm) is the stationary distribution of the Markov chain {%i}∞i=0 satisfying





π = πG = π(Q + P) .

π1 = 1 .
(7.3)

The Gerber-Shiu function φi(u) in our model is given by, for i ∈ E,

φδ,i(u) = E
[
e−δT w(UT− , |UT |)1{T < ∞}|U0 = u, %0 = i

]
, u ≥ 0 . (7.4)

Whenever the Gerber-Shiu function φδ,i(u) is concerned, we assume either δ > 0 or the positive

security loading condition (7.2) holds. In this chapter, we are mainly interested in an important

special case of the above Gerber-Shiu function with the choice of penalty function w(x, y) =
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e−s1xw2(y), i.e. for i ∈ E,

ϕδ,i(u, s1) = E
[
e−δT−s1UT−w2(|UT |)1{T < ∞}|U0 = u, %0 = i

]
, u ≥ 0 . (7.5)

We remark that the above particular case of Gerber-Shiu function has been studied extensively

in the context of a Sparre Andersen model with general interclaim time by Willmot (2007) and

Landriault and Willmot (2008). This chapter is organized as follows. In Section 7.2, when all

the claim sizes are distributed as a combination of exponentials, the form of the solution for

the Gerber-Shiu function (7.5) is identified apart from some unknown constants through a pre-

assumed discounted joint density. In Section 7.3, the full characterization of (7.5) is obtained by

showing that the unknown constants can be solved from a system of linear equations. Section

7.4 is concerned with numerical examples in which two special cases of the Gerber-Shiu function

ϕδ,i(u, s1), namely the ruin probability and the expected value of deficit at ruin, are studied.

7.2 Solution form of Gerber-Shiu function

Define hδ,ijk(x, y) via, for i, j, k ∈ E,

hδ,ijk(x, y) dx dy

= E
[
e−δT 1{UT− ∈ (x, x + dx), |UT | ∈ (y, y + dy), %NT−1 = j, %NT

= k}|U0 = 0, %0 = i
]

, x, y > 0 .

(7.6)

Note that hδ,ijk(x, y) is (a generalization of) the discounted joint density of UT− and |UT | with

zero initial surplus. This quantity will play a crucial role in determining the solution form of the

Gerber-Shiu function (7.5).

For the Gerber-Shiu function φδ,i(u) defined by (7.4), by conditioning on the first drop in
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surplus and keeping track of the states of the Markov chain {%i}∞i=0, we have that, for i ∈ E,

φδ,i(u) =
m∑

j=1

m∑

k=1

∫ u

0

[∫ ∞

0

hδ,ijk(x, y) dx

]
φδ,k(u− y) dy

+
m∑

j=1

m∑

k=1

∫ ∞

u

[∫ ∞

0

hδ,ijk(x, y)w(x + u, y − u) dx

]
dy , u ≥ 0 . (7.7)

Note that hδ,ijk(x, y) can be decomposed as, for i, j, k ∈ E,

hδ,ijk(x, y) = hδ,ij(x)
pjkfjk(x + y)∑m

l=1 pjlF jl(x)
, x, y > 0 , (7.8)

where hδ,ij(x) is such that, for i, j,∈ E,

hδ,ij(x) dx = E
[
e−δT 1{UT− ∈ (x, x + dx), %NT−1 = j}|U0 = 0, %0 = i

]
, x > 0 , (7.9)

and can be interpreted as the discounted density of UT− . The probabilistic interpretation of (7.8)

is as follows:

• the term hδ,ij(x) explains that ruin occurs with the surplus prior to ruin UT− being x and

the environmental state just before ruin %NT−1 being j, given zero initial surplus and an

initial state of %0 = i;

• being at the surplus level x in state j, to ensure the deficit at ruin |UT | is y and the

environmental state at ruin %NT
is k, a transition from state j to state k has to be made

(instantly) with an accompanying claim of size x+y. This gives rise to the term pjkfjk(x+y);

and

• however, the second event is in fact conditional on the first item which tells us ruin occurs

at the next instant (upon the next claim) originating from surplus level x and state j.

Therefore the term pjkfjk(x+y) should be further divided by the probability that a claim of

size greater than x occurs when the Markov chain {%i}∞i=0 is in state j. Taking into account
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all the possible destinations of transition from state j, such a probability is easily found to

be
∑m

l=1 pjlF jl(x).

For further reference, it is helpful to write (7.8) as, for i, j, k ∈ E,

hδ,ijk(x, y) = hδ,ij(x)p∗jk(x)
fjk(x + y)

F jk(x)
, x, y > 0 , (7.10)

where, for j, k ∈ E,

p∗jk(x) =
pjkF jk(x)∑m
l=1 pjlF jl(x)

, x > 0 , (7.11)

accounts for the transition probability from a state prior to ruin j to a state at ruin k given that

the surplus prior to ruin is x and the state prior to ruin is j.

By substituting (7.10) into (7.7), one further obtains, for i ∈ E,

φδ,i(u) =
m∑

j=1

m∑

k=1

∫ u

0

[∫ ∞

0

hδ,ij(x)p∗jk(x)
fjk(x + y)

F jk(x)
dx

]
φδ,k(u− y) dy

+
m∑

j=1

m∑

k=1

∫ ∞

u

[∫ ∞

0

hδ,ij(x)p∗jk(x)
fjk(x + y)

F jk(x)
w(x + u, y − u) dx

]
dy , u ≥ 0 . (7.12)

For the Gerber-Shiu function ϕδ,i(u, s1) defined by (7.5), (7.12) reduces to, for i ∈ E,

ϕδ,i(u, s1) =
m∑

j=1

m∑

k=1

∫ u

0

[∫ ∞

0

hδ,ij(x)p∗jk(x)
fjk(x + y)

F jk(x)
dx

]
ϕδ,k(u− y, s1) dy

+
m∑

j=1

m∑

k=1

∫ ∞

u

[∫ ∞

0

e−s1(x+u)hδ,ij(x)p∗jk(x)
fjk(x + y)

F jk(x)
dx

]
w2(y − u) dy , u ≥ 0 .

(7.13)

In what follows, we further assume that the claim size density fjk(.) is of the form, for j, k ∈ E,

fjk(y) =

njk∑

l=1

Ajklβjkle
−βjkly , y > 0 . (7.14)
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Here the parameters βjkl > 0 for l = 1, 2, ..., njk are assumed to be distinct for each fixed j, k ∈ E,

and moreover
∑njk

l=1 Ajkl = 1. It is known that the class of combinations of exponentials are is

dense in the set of distributions defined on R+. See, e.g., Dufresne (2007) also for the fitting of

this class of distributions.

Remark 18 Recall that in this chapter we are interested in generalizing the MAP risk model

to allow for arbitrary distributions between successive system changes. However, in order for

full solutions to be obtained, such a generalization cannot be done without making distributional

assumptions on the claim sizes (see Landriault and Willmot (2008) and Willmot (2007)). The

choice of the class of combinations of exponentials as the claim size distribution is due to its

denseness property as well as mathematical tractability. Indeed, the upcoming analysis can also

be done if the claim sizes belong to the more general class of finite scale and shape mixture of

Erlangs. But this would result in much more lengthy and tedious calculations without gaining

additional insights. So we prefer the densities (7.14) for illustrative purposes.

Obviously, the associated residual lifetime distribution of (7.14) is a different combination of the

same exponentials given by, for j, k ∈ E,

fjk(x + y)

F jk(x)
=

njk∑

l=1

$jkl(x)βjkle
−βjkly , x, y > 0 , (7.15)

where for l = 1, 2, . . . , njk and j, k ∈ E,

$jkl(x) =
Ajkle

−βjklx

∑njk

z=1 Ajkze−βjkzx
, x > 0 . (7.16)
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Using (7.15), (7.13) can be rewritten as, for i ∈ E,

ϕδ,i(u, s1) =
m∑

j=1

m∑

k=1

njk∑

l=1

[∫ ∞

0

hδ,ij(x)p∗jk(x)$jkl(x) dx

] ∫ u

0

βjkle
−βjklyϕδ,k(u− y, s1) dy

+
m∑

j=1

m∑

k=1

njk∑

l=1

[∫ ∞

0

e−s1(x+u)hδ,ij(x)p∗jk(x)$jkl(x) dx

] ∫ ∞

u

βjkle
−βjklyw2(y − u) dy ,

u ≥ 0 . (7.17)

Letting, for l = 1, 2, . . . , njk and i, j, k ∈ E,

χδ,ijkl(s1) =

∫ ∞

0

e−s1xhδ,ij(x)p∗jk(x)$jkl(x) dx , (7.18)

(7.17) can be reduced to, for i ∈ E,

ϕδ,i(u, s1) =
m∑

j=1

m∑

k=1

njk∑

l=1

χδ,ijkl(0)

∫ u

0

βjkle
−βjklyϕδ,k(u− y, s1) dy

+
m∑

j=1

m∑

k=1

njk∑

l=1

χδ,ijkl(s1)βjkle
−(s1+βjkl)uw̃2(βjkl) , u ≥ 0 . (7.19)

Taking the Laplace transform on both sides of (7.19) with respect to the argument u, one finds,

for i ∈ E,

ϕ̃δ,i(s, s1) =
m∑

j=1

m∑

k=1

njk∑

l=1

χδ,ijkl(0)
βjkl

βjkl + s
ϕ̃δ,k(s, s1) + ξδ,i(s, s1) , (7.20)

where, for i ∈ E,

ξδ,i(s, s1) =
m∑

j=1

m∑

k=1

njk∑

l=1

χδ,ijkl(s1)
βjkl

s1 + βjkl + s
w̃2(βjkl) . (7.21)

The use of matrices allows us to write (7.20) as

ϕ̃δ(s, s1) = Γ(s)ϕ̃δ(s, s1) + Ξδ(s, s1) , (7.22)
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implying

ϕ̃δ(s, s1) = [I− Γ(s)]−1Ξδ(s, s1) , (7.23)

where ϕ̃δ(s, s1) = (ϕ̃δ,1(s, s1), . . . , ϕ̃δ,m(s, s1))
T , Ξδ(s, s1) = (ξδ,1(s, s1), . . . , ξδ,m(s, s1))

T , and Γ(s)

is an m-dimensional square matrix with (i, k)-th element given by

[Γ(s)]ik =
m∑

j=1

njk∑

l=1

χδ,ijkl(0)
βjkl

βjkl + s
. (7.24)

We remark that the inverse in (7.23) exists because the matrix Γ(s) is strictly substochastic (see

Section 5.2 for the definition of a strictly substochastic matrix) for s ≥ 0. To see this, we apply

(7.18) at s1 = 0 to (7.24) to arrive at, for i ∈ E,

m∑

k=1

[Γ(s)]ik =
m∑

j=1

m∑

k=1

∫ ∞

0

hδ,ij(x)p∗jk(x)

[
njk∑

l=1

$jkl(x)
βjkl

βjkl + s

]
dx . (7.25)

Since the discounted densities hδ,ij(x)’s and the probabilities p∗jk(x)’s are non-negative, and for

each j, k ∈ E the term inside the square bracket corresponds to the Laplace transform of the

residual lifetime distribution (7.15), one has that, for i ∈ E,

m∑

k=1

[Γ(s)]ik ≤
m∑

j=1

m∑

k=1

∫ ∞

0

hδ,ij(x)p∗jk(x) dx . (7.26)

According to the expressions (7.4) and (7.12) (both with w(., .) ≡ 1 and u = 0), the right-hand

side of the above inequality equals E
[
e−δT 1{T < ∞}|U0 = 0, %0 = i

]
which is less than 1 under

either δ > 0 or the positive security loading condition (7.2). Hence we have proved that Γ(s) is

strictly substochastic.

Letting

H(s) =
m∏

j=1

m∏

k=1

njk∏

l=1

(βjkl + s) , (7.27)
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an alternative representation for ϕ̃δ(s, s1) in (7.23) is given by

ϕ̃δ(s, s1) =
H(s) adj[I− Γ(s)]

H(s) det[I− Γ(s)]
Ξδ(s, s1) . (7.28)

From the definition of Γ(s), it is immediate that H(s) det[I−Γ(s)] is a polynomial in s of degree n =
∑m

j=1

∑m
k=1 njk with a leading coefficient of 1. It is also easy to conclude that the (i, k)-th element of

the matrix H(s) adj[I−Γ(s)], given by H(s) Cof[I−Γ(s)]ki, is of the form [
∏m

j=1

∏nji

l=1(βjil+s)]Lik(s)

with Lik(s) a polynomial in s of degree at most n−∑m
j=1 nji.

Let {ρk}n
k=1 be the n zeros of H(s) det[I − Γ(s)]. From Theorem 1 of Cheung et al. (2010a)

(the original paper from which this chapter is adopted), all the n roots {ρk}n
k=1 have negative real

parts. One can rewrite (7.28) as

ϕ̃δ(s, s1) =
H(s) adj[I− Γ(s)]Ξδ(s, s1)∏n

k=1(s− ρk)
. (7.29)

It follows that the i-th element of ϕ̃δ(s, s1), namely, ϕ̃δ,i(s, s1), can be expressed as, for i ∈ E,

ϕ̃δ,i(s, s1) =

∑m
j=1

∑m
z=1

∑njz

l=1
βjzl

s1+βjzl+s
w̃2(βjzl)H(s) {∑m

k=1 Cof[I− Γ(s)]ki χδ,kjzl(s1)}∏n
k=1(s− ρk)

. (7.30)

For simplicity, it is assumed that for l = 1, 2, . . . , njk and i, j, k ∈ E, the ρi’s and −(s1 + βjkl)’s

are all distinct for a chosen s1 ≥ 0. Clearly, (7.30) can be expressed via partial fractions as, for

i ∈ E,

ϕ̃δ,i(s, s1) =
n∑

k=1

ϑik(s1)

s− ρk

+
m∑

j=1

m∑
z=1

njz∑

l=1

ηijzl(s1)

s1 + βjzl + s
, (7.31)

for some constants ϑik(s1)’s and ηijzl(s1) which need to be determined for l = 1, 2, . . . , njz; k =

1, 2, . . . , n and i, j, z ∈ E. Thus, a Laplace transform inversion of (7.31) with respect to s yields,
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for i ∈ E,

ϕδ,i(u, s1) =
n∑

k=1

ϑik(s1)e
ρku +

m∑
j=1

m∑
z=1

njz∑

l=1

ηijzl(s1)e
−(s1+βjzl)u , u ≥ 0 . (7.32)

If s1 = 0, it can be proved (see Cheung et al. (2010a, Appendix)) that ηijzl(0) = 0 for

l = 1, 2, . . . , njz and i, j, z ∈ E, and hence the solution (7.32) simplifies to give, for i ∈ E,

ϕδ,i(u, 0) =
n∑

k=1

ϑik(0)eρku , u ≥ 0 . (7.33)

Interested readers are also referred to Landriault and Willmot (2008) and Willmot (2007) where

a similar simplification arises.

7.3 Determination of constants

By conditioning on the time of the first system change V1 and the environmental state %1 at this

time, one finds that, for i ∈ E,

φδ,i(u) =

∫ ∞

0

e−δtki(t)

[
m∑

j=1

qijφδ,j(u + ct) +
m∑

j=1

pij

∫ u+ct

0

fij(y)φδ,j(u + ct− y) dy

]
dt

+

∫ ∞

0

e−δtki(t)

[
m∑

j=1

pij

∫ ∞

u+ct

fij(y)w(u + ct, y − u− ct) dy

]
dt , u ≥ 0 . (7.34)

For its special case ϕδ,i(u, s1), one easily deduces that, for i ∈ E,

ϕδ,i(u, s1) =

∫ ∞

0

e−δtki(t)

[
m∑

j=1

qijϕδ,j(u + ct, s1) +
m∑

j=1

pij

∫ u+ct

0

fij(y)ϕδ,j(u + ct− y, s1) dy

]
dt

+ e−s1u

∫ ∞

0

e−(δ+cs1)tki(t)

[
m∑

j=1

pij

∫ ∞

0

fij(u + ct + y)w2(y) dy

]
dt , u ≥ 0 . (7.35)
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By further assuming that the claim size has density (7.14), the above equation becomes, for i ∈ E,

ϕδ,i(u, s1)

=

∫ ∞

0

e−δtki(t)

{
m∑

j=1

qijϕδ,j(u + ct, s1) +
m∑

j=1

pij

∫ u+ct

0

[
nij∑

k=1

Aijkβijke
−βijky

]
ϕδ,j(u + ct− y, s1) dy

}
dt

+ e−s1u

∫ ∞

0

e−(δ+cs)tki(t)
m∑

j=1

pij

nij∑

k=1

Aijkβijke
−βijk(u+ct)

[∫ ∞

0

e−βijkyw2(y) dy

]
dt

=

∫ ∞

0

e−δtki(t)

{
m∑

j=1

qijϕδ,j(u + ct, s1) +
m∑

j=1

pij

∫ u+ct

0

[
nij∑

k=1

Aijkβijke
−βijky

]
ϕδ,j(u + ct− y, s1) dy

}
dt

+
m∑

j=1

nij∑

k=1

pijAijkβijkw̃2(βijk)k̃i(δ + c(s1 + βijk))e
−(s1+βijk)u , u ≥ 0 . (7.36)

From now on we shall assume that s1 6= 0, so that the solution form (7.32) holds true with the

coefficients generally being non-zero. The case where s1 = 0 will be treated separately at the end

of the section. Then, substitution of (7.32) into (7.36) leads to, for i ∈ E,

n∑

l=1

ϑil(s1)e
ρlu +

m∑
x=1

m∑
z=1

nxz∑

l=1

ηixzl(s1)e
−(s1+βxzl)u

=
m∑

j=1

qij

∫ ∞

0

e−δtki(t)

[
n∑

l=1

ϑjl(s1)e
ρl(u+ct) +

m∑
x=1

m∑
z=1

nxz∑

l=1

ηjxzl(s1)e
−(s1+βxzl)(u+ct)

]
dt

+
m∑

j=1

pij

∫ ∞

0

e−δtki(t)

{∫ u+ct

0

[
n∑

l=1

ϑjl(s1)e
ρl(u+ct−y) +

m∑
x=1

m∑
z=1

nxz∑

l=1

ηjxzl(s1)e
−(s1+βxzl)(u+ct−y)

]

×
[

nij∑

k=1

Aijkβijke
−βijky

]
dy

}
dt

+
m∑

z=1

niz∑

l=1

pizAizlβizlw̃2(βizl)k̃i(δ + c(s1 + βizl))e
−(s1+βizl)u , u ≥ 0 . (7.37)
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Straightforward integrations and grouping of terms give rise to

n∑

l=1

ϑil(s1)e
ρlu +

m∑
x=1

m∑
z=1

nxz∑

l=1

ηixzl(s1)e
−(s1+βxzl)u

=
n∑

l=1

[
k̃i(δ − cρl)

m∑
j=1

(
qij + pij

nij∑

k=1

Aijkβijk

βijk + ρl

)
ϑjl(s1)

]
eρlu

+
m∑

x=1

m∑
z=1

nxz∑

l=1

{
k̃i(δ + c(s1 + βxzl))

m∑
j=1

[
qij + pij

nij∑

k=1

Aijkβijk

βijk − (s1 + βxzl)

]
ηjxzl(s1)

}
e−(s1+βxzl)u

−
m∑

j=1

nij∑

k=1

{
pijAijkβijkk̃i(δ + cβijk)

[
n∑

l=1

ϑjl(s1)

βijk + ρl

+
m∑

x=1

m∑
z=1

nxz∑

l=1

ηjxzl(s1)

βijk − (s1 + βxzl)

]}
e−βijku

+
m∑

z=1

niz∑

l=1

pizAizlβizlw̃2(βizl)k̃i(δ + c(s1 + βizl))e
−(s1+βizl)u , u ≥ 0 . (7.38)

Given that (7.38) holds true for all u ≥ 0, equating the coefficients of eρlu yields, for i ∈ E and

l = 1, 2, . . . , n,

ϑil(s1) = k̃i(δ − cρl)
m∑

j=1

(
qij + pij

nij∑

k=1

Aijkβijk

βijk + ρl

)
ϑjl(s1) . (7.39)

For each fixed l = 1, 2, . . . , n, (7.39) forms a system of m homogeneous linear equations in

{ϑjl(s1)}m
j=1. However, in general {ϑjl(s1)}m

j=1 are not all equal to 0, which means that the above-

mentioned system has non-trivial solution. This in turn implies that the coefficient matrix of the

system has zero determinant. Thus, we have that, for l = 1, 2, . . . , n,

det[I− ςδ(ρl)] = 0 , (7.40)

where the (i, j)-th element of the m × m matrix ςδ(s) is given by k̃i(δ − cs)[qij + pij f̃ij(s)].

Equivalently, we can say that {ρl}n
l=1 satisfy the generalized Lundberg’s equation

det[I− ςδ(s)] = 0 . (7.41)

According to Cheung et al. (2010a), (7.41) has exactly n roots with negative real parts. Therefore
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{ρl}n
l=1 must be these roots by recalling the fact that H(s) det[I − Γ(s)] has exactly n zeros

(defined by {ρl}n
l=1) and all of them have negative real parts. Since the matrix Γ(s) defined via

(7.24) involves the unknown quantity χδ,ijkl(0), {ρl}n
l=1 should be identified as the n zeros of (7.41)

with negative real parts.

By equating the coefficients of e−(s1+βxzl)u in (7.38), one obtains, for l = 1, 2, . . . , nxz; x, z ∈ E

and i = 1, 2, . . . , x− 1, x + 1, . . . , m,

ηixzl(s1) = k̃i(δ + c(s1 + βxzl))
m∑

j=1

[
qij + pij

nij∑

k=1

Aijkβijk

βijk − (s1 + βxzl)

]
ηjxzl(s1) , (7.42)

and for l = 1, 2, . . . and nxz; x, z ∈ E,

ηxxzl(s1) = k̃x(δ + c(s1 + βxzl))
m∑

j=1

[
qxj + pxj

nxj∑

k=1

Axjkβxjk

βxjk − (s1 + βxzl)

]
ηjxzl(s1)

+ pxzAizlβxzlw̃2(βxzl)k̃x(δ + c(s1 + βxzl)) . (7.43)

Therefore, for each fixed l = 1, 2, . . . and nxz; x, z ∈ E, we have got a system of m linear equations

(m−1 equations from (7.42) and 1 equation from (7.43)) to solve for {ηixzl(s1)}m
i=1. Note that the

linear system has coefficient matrix I−ςδ(−(s1 +βxzl)) which has non-zero determinant according

to our assumption following (7.30) and the fact that {ρl}n
l=1 are the only solutions to (7.41) with

negative real parts. This guarantees that the solution {ηixzl(s1)}m
i=1 to the linear system is unique,

and we have a full characterization of all ηixzl(s1)’s.

Similarly, equating the coefficients of e−βijku in (7.38) leads to, for k = 1, 2, . . . , nij and i, j ∈ E,

n∑

l=1

ϑjl(s1)

βijk + ρl

+
m∑

x=1

m∑
z=1

nxz∑

l=1

ηjxzl(s1)

βijk − (s1 + βxzl)
= 0 . (7.44)
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Interestingly, (7.44) can also be written as, for k = 1, 2, . . . , nij and i, j ∈ E,

ϕ̃δ,j(−βijk, s1) = 0 . (7.45)

Finally, for each fixed l = 1, 2, . . . , n, we remove one of the m equations from (7.39) (i.e. remove

from any i ∈ E), knowing that they are linearly dependent from (7.40). This creates n(m − 1)

equations. These together with the n equations from (7.44) form a system of nm equations to

solve for all the ϑjl(s1)’s.

As for the case s1 = 0, we recall the simpler solution form (7.33). Omitting the details, similar

arguments as in the case for s1 6= 0 leads to the following conclusion. (7.39) still holds true, and

{ρl}n
l=1 are the n roots with negative real parts to the Lundberg’s fundamental equation (7.41).

Furthermore, we have that, for k = 1, 2, . . . , nij and i, j ∈ E,

n∑

l=1

ϑjl(0)

βijk + ρl

= w̃2(βijk) , (7.46)

or equivalently,

ϕ̃δ,j(−βijk, 0) = w̃2(βijk) . (7.47)

Again, for each fixed l = 1, 2, . . . , n, we remove one equation from (7.39) from i ∈ E, creating

n(m − 1) equations. Together with the n equations from (7.46), a system of nm equations is

obtained to solve for all the ϑjl(0)’s.
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7.4 Numerical illustrations: Ruin probability and expected

deficit

In this section, we illustrate the tractability of the proposed methodology via the study of the

ruin probability as well as the expected value of deficit at ruin, which are both special cases of the

Gerber-Shiu function ϕδ,i(u, 0). We would like to study whether the choice of the distributions for

the waiting time between two successive system changes have a significant impact on the above

two ruin-related quantities.

Let us consider a two-state model with probability matrices of system changes

Q =




0 1/10

1/5 0


 and P =




4/5 1/10

2/5 2/5


 . (7.48)

Under these assumptions for the Markov chain {%i}∞i=0, the long-run proportions of time in state

1 and 2 are found to be π1 = 3/4 and π2 = 1/4. Moreover, the claim size densities are assumed

to be

f11(y) = 2e−2y , f12(y) =
1

3

(
1

6
e−

1
6
y

)
+

2

3

(
2

3
e−

2
3
y

)
,

f21(y) = e−y and f22(y) =
1

5

(
1

10
e−

1
10

y

)
+

4

5

(
1

5
e−

1
5
y

)
, y > 0 , (7.49)

with means µ11 = 1/2, µ12 = 3, µ21 = 1 and µ22 = 6 respectively.

We consider three scenarios in which the distributions for the waiting time between two suc-

cessive system changes vary. We choose the distribution of the waiting times to be of one of three

types: exponential, gamma or Pareto (denoted by EXP(β), GAM(α, β) and PAR(α, θ)) having
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respective densities

k(t) = βe−βt , k(t) =
βαtα−1e−βt

Γ(α)
and k(t) =

αθα

(t + θ)α+1
, t > 0 . (7.50)

The distributional assumptions on the k1 and k2 densities for the three scenarios are summarized

in Table 7.1 below.

Scenario Distribution of k1(.) Distribution of k2(.)
1 EXP(2/3) EXP(2)
2 GAM(3/2, 1) GAM(5/2, 5)
3 PAR(4, 9/2) PAR(7, 3)

Table 7.1: Distributional assumptions on waiting time densities k1(.) and k2(.)

All the three k1(.) (k2(.)) densities have mean κ1 = 3/2 (κ2 = 1/2). Under Scenarios 1-3, the

variances of the k1(.) densities are 2.25, 1.5 and 4.5 respectively, whereas the variances of the k2(.)

densities are found to be 0.25, 0.1 and 0.35. Finally, a premium rate of c = 1.5 is assumed so that

the positive security loading condition (7.2) holds.

Note that one could consider Scenario 1, a MAP risk model, to be the baseline scenario.

Scenarios 2 and 3 are respective generalizations of the MAP risk models with lower and higher

variances for the times between successive system changes in both states. We remark that state 1

of the Markov chain {%i}∞i=0 can be regarded as the ‘normal’ state while state 2 can be viewed as

the ‘dangerous’ or ‘infectious’ state. Claims associated with state 1 have smaller mean than those

associated with state 2. On the other hand, the mean waiting time until a system change in state

1 is larger than that in state 2, meaning that system changes (and also claims) are less frequent

in state 1 than state 2.

First we study the ruin probability Pr(T < ∞|U0 = u, %0 = i) of the surplus process {Ut}t≥0,

which is a special case of the Gerber-Shiu function ϕδ,i(u, 0) with δ = 0 and w2(.) ≡ 1. In Figure

7.1 below, the ruin probabilities under the three scenarios are plotted against the initial surplus
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U0 = u for both initial states %0 = 1 and %0 = 2.

Figure 7.1: Plot of ruin probability under different waiting time distributions

One observes from Figure 7.1 that for a given scenario, the ruin probability with %0 = 2 is always

greater than the ruin probability with %0 = 1 for all initial surplus levels, which is expected due to

the infectious nature of state 2 of the Markov chain {%i}∞i=0. Furthermore, for each fixed i = 1, 2,

given %0 = i the ruin probability increases with the variance of the k1(.) and k2(.) densities. This

is consistent with an observation made by Landriault and Willmot (2008). Indeed, recall that

the mean of the k1(.) and k2(.) densities are fixed under all three scenarios. A distribution with

a large variance (e.g. Pareto distribution) is more likely to have extremes when compared to a

distribution with identical mean but lower variance. Consequently, for a heavy-tailed distribution,

a system change (and hence a claim) can occur shortly with a larger probability than a distribution

with lighter tail. Thus, under Scenario 3, the occurrence of an early claim will be more likely to

result in ruin.

Next, we study the expected deficit at ruin E [|UT |1{T < ∞}|U0 = u, %0 = i] which is a special
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of ϕδ,i(u, 0) with δ = 0 and w2(y) = y. A plot of the expected deficit against the initial surplus

U0 = u under the three scenarios in Table 7.1 can be found in Figure 7.2.

Figure 7.2: Plot of expected deficit under different waiting time distributions

Here again, the choice of the waiting time distributions has a significant impact on the values of

the expected deficit at ruin. Also, we observe that the ordering of the six lines in Figure 2 (with

the exception of small initial surplus levels) is identical to that for the ruin probability in Figure

7.1.
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Chapter 8

Generalized Sparre Andersen risk model

with surplus-dependent premium

8.1 Introduction

In this chapter, the generalized Sparre Andersen risk model considered in Section 1.2.2 is revisited,

but we would like to further generalize the representation for the surplus process {Ut}t≥0 in (1.1) by

allowing the premium rate to depend on the surplus level. The motivation for a surplus-dependent

premium rate is two-fold. First, as mentioned by Lin and Pavlova (2006), from the insurer’s

point of view, a higher surplus level allows the insurer to reduce premium to stay competitive. In

contrast, in case of low surplus level, the insurer might need to charge a higher premium to avoid

the possibility of insufficient funds. Second, from a mathematical point of view, the class of risk

models with surplus-dependent premium rate includes a large variety of risk models which may

involve dividend strategies and/or interest earnings.

The generalized Sparre Andersen risk model with surplus-dependent premium rate is described

145



as follows. The aggregate claims process {∑Nt

i=1 Yi}t≥0 is still defined via the claim number process

{Nt}t≥0 (or the sequence of interclaim times {Vi}∞i=1) and the sequence of claims {Yi}∞i=1, with

{(Vi, Yi)}∞i=1 forming an i.i.d. sequence of bivariate random vectors (see Section 1.2.2). With

(V, Y ) being a generic pair of (Vi, Yi), we let K(t) = 1 − K(t) = Pr{V ≤ t} be the c.d.f. of V

for t ≥ 0. We further assume that K(t) is differentiable and hence V has density k(t) = K ′(t).

Since V and Y are possibly dependent, it is convenient to specify the joint distribution of (V, Y )

by the product of the marginal density k(t) and the conditional density of Y given V . To do

so, we define the c.d.f. Pt(y) = Pr{Y ≤ y|V = t} = 1 − P t(y) for y ≥ 0. By assuming that

Pt(y) is differentiable in y for each fixed t > 0, its corresponding density is pt(y) = P ′
t(y), so that

the joint density of (V, Y ) at (t, y) is given by pt(y)k(t). We remark that the traditional Sparre

Andersen model can be recovered from the model considered here by assuming that Pt(y) does

not depend on t. With the surplus process of the insurance company being denoted by {Ut}t≥0,

by surplus-dependent premium rate we mean that the instantaneous premium rate at time t ≥ 0

is assumed to be c(Ut), where c(.) is a positive deterministic function. Therefore {Ut}t≥0 satisfies

dUt = c(Ut) dt− d

Nt∑
i=1

Yi , t ≥ 0 . (8.1)

We further assume c(.) satisfies the two technical conditions

∫ x

0

dz

c(z)
< ∞ for any finite x ≥ 0 and

∫ ∞

0

dz

c(z)
= ∞ , (8.2)

which will be used later in the derivation. See also Lin and Sendova (2008).

Indeed, apart from the simplest case of constant premium, the class of risk models with surplus-

dependent premium rate includes many existing models as special cases. Two important examples

are as follows.

• Multi-threshold risk model : In a risk model under a multi-threshold dividend strategy (see
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Albrecher and Hartinger (2007) and Lin and Sendova (2008)) with n thresholds {bi}n
i=1

(0 < b1 < b2 < . . . < bn < ∞), it is assumed that when the surplus is between levels bi−1

and bi, the incoming premium rate (net of any dividends) is ci for i = 1, 2, . . . , n + 1 with

b0 = 0 and bn+1 = ∞. This can be retrieved from the present risk model by letting c(x) = ci

for bi−1 ≤ x < bi. The case n = 1 with represents a (single-)threshold model (see Gerber

and Shiu (2006), Lin and Pavlova (2006) and Zhou (2004)).

• Risk model with credit interest and liquid reserves : In this risk model, it is assumed that the

insurer collects premium at a rate c. Whenever the surplus level is below a fixed threshold

level η, the surplus is kept as liquid reserves and does not earn interest. On the other hand,

whenever the surplus level exceeds η, the excess of the surplus over η earns credit interest at

a rate ε > 0 (see Cai et al. (2009a) and Embrechts and Schmidli (1994)). In our context, we

set c(x) = c for x < η and c(x) = c + ε(x− η) for x ≥ η. The special case η = 0 corresponds

to the risk model with credit interest only (see, e.g., Cai and Dickson (2002), Gerber and

Yang (2007) and Sundt and Teugels (1995)).

Under the above descriptions, we are interested in the generalized Gerber-Shiu function φδ(u)

defined by (1.10) involving the variable RNT−1 which is the surplus immediately after the second

last claim before ruin. However, with the premium rate being surplus-dependent, an alternative

definition to the sequence {Rn}∞n=0 (instead of (1.9)) is needed to retain the interpretation that

Rn represents the surplus level immediately after the n-th claim for n = 0, 1, . . .. To this end, we

redefine the sequence {Rn}∞n=0 as follows. With an initial surplus of U0 = u, we suppose that the

first claim occurs at some time t > 0. Furthermore, let γ(u, s) denote the surplus level at time s

for 0 ≤ s < t, with the definition that γ(u, t) = γ(u, t−) is the surplus level just before the first

claim. Then,

γ(u, t) = u +

∫ t

0

c(γ(u, s)) ds , u ≥ 0 . (8.3)
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We define the sequence of {Rn}∞n=0 recursively via the function γ(u, t) such that R0 = U0 = u and

Rn = γ(Rn−1, Vn)− Yn , n = 1, 2, . . . . (8.4)

Clearly, now we have the correct interpretation for {Rn}∞n=0 and hence RNT−1.

As mentioned in Section 1.3, in the case of constant premium (i.e. c(.) ≡ c), the generalized

Gerber-Shiu function φδ(u) defined by (1.10) can be used to study the last interclaim time before

ruin VNT
= (UT− − RNT−1)/c. In the current setting of surplus-dependent premium, the last

interclaim time VNT
can still be studied via φδ(u) through the introduction of a new function as

follows. With an initial surplus of U0 = u, if x = γ(u, t) denotes the surplus level just before the

first claim, it can be verified that the time of the first claim must be t = ϑ(u, x), where

ϑ(u, x) =

∫ x

u

dz

c(z)
, x > u ≥ 0 . (8.5)

Then the last interclaim time can be expressed as VNT
= ϑ(RNT−1, UT−). We remark that the

technical conditions (8.2) are required for (8.5). Indeed, those conditions are required whenever

there is a change of variable between surplus level and time unit.

In Section 8.2, a general representation for the generalized Gerber-Shiu function φδ(u) (in-

volving RNT−1) is derived in terms of a transition function which is independent of the penalty

function. Such a representation is first used in Section 8.3 to derive some ordering properties

of the last interclaim time VNT
= ϑ(RNT−1, UT−) and the claim causing ruin YNT

= UT− + |UT |
in relation to the generic variables V and Y . It turns out that the exact solution of the above-

mentioned transition function is not required for such purposes. Since the transition function

characterizes the Gerber-Shiu function φδ(u) itself, Section 8.4 deals with the transition function

in more detail. Section 8.5 considers the classical compound Poisson risk model, and we illustrate

how the transition function can be fully determined under a threshold dividend strategy or credit
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interest.

8.2 Gerber-Shiu function φδ(u) involving RNT−1

As in Sections 4.5 and 5.2 (see also Cheung et al. (2010b,c)), we begin by introducing the joint

distribution of the quadruple (T, UT− , |UT |, RNT−1). According to the way the function ϑ(u, x)

in (8.5) is defined, with an initial surplus of U0 = u, if ruin occurs on the first claim, there is a

one-to-one relationship between UT− and T given by T = ϑ(u, UT−), and additionally RNT−1 = u.

Thus, it is sufficient to specify the joint distribution of (UT− , |UT |) at (x, y) for ruin upon the first

claim. In order to have a deficit of |UT | = y after reaching level UT− = x, the first claim has to

be of size x + y. By applying the joint density of (V1, Y1) (with a change of variable), such a joint

(defective) density of (UT− , |UT |) is given by

h∗1(x, y|u) =
1

c(x)
k(ϑ(u, x))pϑ(u,x)(x + y) , x > u ≥ 0; y > 0 . (8.6)

On the other hand, if ruin occurs on claims subsequent to the first, T and RNT−1 are no longer sim-

ple functions of UT− and |UT |, and we denote the joint (defective) density of (T, UT− , |UT |, RNT−1)

at (t, x, y, v) given U0 = u by h∗2(t, x, y, v|u), for t, y > 0; x > v > 0; u ≥ 0. Then the discounted

joint densities corresponding to h∗1(x, y|u) and h∗2(t, x, y, v|u) are given by

h∗1,δ(x, y|u) = e−δϑ(u,x)h∗1(x, y|u) , x > u ≥ 0; y > 0 , (8.7)

and

h∗2,δ(x, y, v|u) =

∫ ∞

0

e−δth∗2(t, x, y, v|u) dt , y > 0; x > v > 0; u ≥ 0 , (8.8)

respectively.

In light of the relationship (5.72) in a semi-Markovian risk model, we would like to argue

149



probabilistically that the discounted densities h∗1,δ(., .|.) and h∗2,δ(., ., .|.) are related by

h∗2,δ(x, y, v|u) = τδ(u, v)h∗1,δ(x, y|v) , y > 0; x > v > 0; u ≥ 0 , (8.9)

where τδ(., .) is a non-negative transition function. In order for ruin to occur upon at least two

claims and the surplus level after the second last claim before ruin to be v (as h∗2,δ(x, y, v|u)

suggests), the surplus process {Ut}t≥0, starting with initial surplus U0 = u, has to first make a

transition from level u to level v after an arbitrary number (≥ 1) of claims. Such a transition is

explained by the term τδ(u, v). After reaching level v, the process restarts, and if the next claim

causes ruin according to h∗1,δ(x, y|v), then the triplet (UT− , |UT |, RNT−1) will be exactly (x, y, v).

Similar probabilistic interpretation has also been made at the end of Section 5.4. A proof of (8.9)

(accompanied by a formal definition of τδ(u, v)) is given in Section 8.4.

Remark 19 It is interesting to note that expression in the form of (8.9) is also evident in matrix

form from (4.34) - (4.37) when (V, Y/c) follows a bivariate phase-type distribution.

An (almost) immediate consequence of (8.9) is a general representation for the generalized

Gerber-Shiu function φδ(u) defined by (1.10) which is central to the analysis in the remainder of

this chapter. As in (5.70), since φδ(u) is an expectation of a discounted penalty, it can simply be

written as an integral of the penalty function with respect to the discounted densities h∗1,δ(., .|u)

and h∗2,δ(., ., .|u) as

φδ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h∗1,δ(x, y|u) dx dy +

∫ ∞

0

∫ ∞

0

∫ ∞

v

w(x, y, v)h∗2,δ(x, y, v|u) dx dy dv

=

∫ ∞

0

∫ ∞

u

w(x, y, u)h∗1,δ(x, y|u) dx dy +

∫ ∞

0

τδ(u, v)

∫ ∞

0

∫ ∞

v

w(x, y, v)h∗1,δ(x, y|v) dx dy dv

= βδ(u) +

∫ ∞

0

τδ(u, v)βδ(v) dv , u ≥ 0 , (8.10)
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where the second last line follows from the substitution of (8.9), and βδ(u) is defined by

βδ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h∗1,δ(x, y|u) dx dy , u ≥ 0 . (8.11)

It is clear from (8.11) that βδ(u) is the contribution by ruin upon the first claim (see also (5.69)).

Thus, the representation (8.10) is again an intuitive result complementing (5.67). We omit its

probabilistic interpretation here since it is essentially identical to that of (5.67).

Note that the representation (8.10) holds true very generally, as it has been mentioned in

Section 8.1 that the class of risk models with surplus-dependent premium considered in this chapter

contains various risk models under dividend strategies and/or credit interest. The advantage of

such a representation is that the dependence of φδ(u) on the penalty function w(., ., .) only appears

through βδ(u), which is explicitly given by (8.11) (since h∗1,δ(x, y|u) is known from (8.6) and (8.7)).

It is clear from (8.10) that the generalized Gerber-Shiu function φδ(u) can be characterized by the

transition function τδ(u, v), which is independent of the choice of penalty w(., ., .). Once τδ(u, v)

is determined, φδ(u) follows accordingly. However, as mentioned earlier, as far as the ordering

properties in the next section are concerned, solution for τδ(u, v) is not required. Therefore we

shall delay the formal definition of τδ(u, v) as well as its evaluation under certain examples to

Sections 8.4 and 8.5.

8.3 Ordering properties of ruin-related quantities

Since we are interested in the marginal distributions of the last interclaim time VNT
= ϑ(RNT−1, UT−)

and the claim causing ruin YNT
= UT− + |UT |, throughout this section we assume δ = 0. Then
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using (8.6) followed by a change of variable t = ϑ(u, x), (8.11) becomes

β0(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)

[
1

c(x)
k(ϑ(u, x))pϑ(u,x)(x + y)

]
dx dy

=

∫ ∞

0

∫ ∞

γ(u,t)

w(γ(u, t), y − γ(u, t), u)k(t)pt(y) dy dt , u ≥ 0 . (8.12)

8.3.1 Last interclaim time VNT
= ϑ(RNT−1, UT−)

In this subsection, we aim at comparing the proper distribution of the last interclaim time before

ruin with the distribution of a generic interclaim time V . To this end, we consider the Gerber-Shiu

function φ0(u) with penalty function w(x, y, v) = e−sϑ(v,x). For this choice of penalty function,

(8.12) becomes

β0(u) =

∫ ∞

0

∫ ∞

γ(u,t)

e−sϑ(u,γ(u,t))k(t)pt(y) dy dt =

∫ ∞

0

e−stk(t)P t(γ(u, t)) dt , u ≥ 0 , (8.13)

where the last equality follows from the definition (8.5) that ϑ(u, γ(u, t)) = t. Therefore, (8.10)

(with δ = 0) becomes

E
[
e−sVNT 1{T < ∞}|U0 = u

]
=

∫ ∞

0

e−stk(t)

[
P t(γ(u, t)) +

∫ ∞

0

τ0(u, v)P t(γ(v, t)) dv

]
dt , u ≥ 0 .

(8.14)

Let gV (t|u) be the (proper) density of (VNT
|T < ∞) for an initial surplus of U0 = u. One concludes

that

gV (t|u) = au(t)k(t) , t > 0; u ≥ 0 , (8.15)

where

au(t) =
1

ψ(u)

[
P t(γ(u, t)) +

∫ ∞

0

τ0(u, v)P t(γ(v, t)) dv

]
, t > 0; u ≥ 0 , (8.16)

and ψ(u) = Pr{T < ∞|U0 = u} is the ruin probability.
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From (8.15), we observe that if au(t) is decreasing (i.e. non-increasing) in t for each fixed

u ≥ 0, then (VNT
|T < ∞) is smaller than a generic interclaim time variable V in likelihood ratio

order, i.e.

(VNT
|T < ∞) ≤LR V , (8.17)

for any initial surplus U0 = u ≥ 0. Define GV (t|u) =
∫∞

t
gV (x|u) dx. (8.17) implies (see, e.g.,

Denuit et al. (2005))

GV (t|u) ≤ K(t) , t > 0; u ≥ 0 , (8.18)

i.e. (VNT
|T < ∞) is stochastically smaller than V for any initial surplus u ≥ 0. The reader is also

referred to Schmidli (2010) for the conditional law of various risk processes given ruin occurs.

A closer look at (8.16) reveals that a sufficient condition for au(t) to be decreasing in t for each

fixed u ≥ 0 (and hence the orderings (8.17) and (8.18)) is that P t(γ(v, t)) is decreasing in t for

each fixed v ≥ 0. Such a sufficient condition might not be that easy to check directly. Fortunately,

it is obvious from (8.3) that γ(v, t) is increasing (i.e. non-decreasing) in t for each fixed v ≥ 0, and

therefore a sufficient condition for all the above to hold true is that P t(y) is decreasing in t for

each fixed y ≥ 0. We also remark that the above sufficient condition automatically holds true in

the traditional Sparre Andersen model where {Vi}∞i=1 and {Yi}∞i=1 are independent. In particular,

Cheung et al. (2010b,c) respectively showed that (8.18) holds true when either the interclaim time

or the claim size is exponentially distributed.

In the literature, the condition that P t(y) is decreasing in t for each fixed y ≥ 0 is well-

documented, and it is equivalent to saying that the r.v. Y is stochastically decreasing in V , denoted

by SD(Y |V ). The condition SD(Y |V ) is indeed a form of negative association for the pair (V, Y )

which implies Cov(V, Y ) ≤ 0 (see, e.g., Joag-Dev and Proschan (1983), Lehmann (1966) and

Shaked (1977)). In fact, the negative dependence between V and Y under the condition SD(Y |V )

explains intuitively why (8.18) holds true. A negative dependence means that a short interclaim

time is likely to result in a large claim. In other words, insufficient premium income since the
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previous claim is likely to be followed by a large claim. Therefore, ruin is likely to be accompanied

by a relatively short interclaim time and this explains (8.18).

Next we illustrate an example in which the sufficient condition SD(Y |V ) holds true. Consider

the dependency structure proposed by Boudreault et al. (2006), i.e.

pt(y) = e−κtf1(y) + (1− e−κt)f2(y) , t, y > 0 , (8.19)

where κ ≥ 0 is a dependence parameter and fi(.) (i = 1, 2) is a proper density function with

corresponding survival function F i(.). If

F 1(y) ≥ F 2(y) , y ≥ 0 , (8.20)

then it is easy to see that P t(y) is a decreasing function of t for each fixed y ≥ 0, i.e. SD(Y |V )

holds. Thus, (8.20) is a sufficient condition for the ordering (8.17) (and hence (8.18)) to hold.

Remark 20 One could only expect the upper bound for the survival function of the last interclaim

time given by (8.18) to be a weak one. In cases where V and Y are independent, improved bound

and/or two-sided bounds might be obtained depending on the reliability of the interclaim time

distribution. See Cheung et al. (2010d) for details.

8.3.2 Claim causing ruin YNT
= UT− + |UT |

We now consider a penalty function of the form w(x, y, v) = e−s(x+y) which leads to the Laplace

transform of the claim causing ruin YNT
. Hence, (8.12) can be reduced to, by a change of order of

integration,

β0(u) =

∫ ∞

0

∫ ∞

γ(u,t)

e−syk(t)pt(y) dy dt =

∫ ∞

u

e−sy

[∫ ϑ(u,y)

0

k(t)pt(y)

]
dt , u ≥ 0 . (8.21)
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Thus, substitution into (8.10) (with δ = 0) yields

E
[
e−sYNT 1{T < ∞}|U0 = u

]

=

∫ ∞

u

e−sy

[∫ ϑ(u,y)

0

k(t)pt(y) dt

]
dy +

∫ ∞

0

τ0(u, v)

∫ ∞

v

e−sy

[∫ ϑ(v,y)

0

k(t)pt(y) dt

]
dy dv , u ≥ 0 .

(8.22)

With a slight abuse of notation, use of Bayes theorem yields

pt(y)k(t) = p(y)ky(t) , t, y > 0 , (8.23)

where p(.) is the marginal density of the generic claim size Y and ky(t) is the conditional density

of (V |Y = y) at t. Substituting (8.23) into (8.22) followed by some simple manipulations leads to

E
[
e−sYNT 1{T < ∞}|U0 = u

]

=

∫ ∞

u

e−syp(y)Ky(ϑ(u, y)) dy +

∫ ∞

0

τ0(u, v)

∫ ∞

v

e−syp(y)Ky(ϑ(v, y)) dy dv

=

∫ ∞

0

e−syp(y)

{
Ky(ϑ(u, y)) +

∫ y

0

Ky(ϑ(v, y))τ0(u, v) dv

}
dy , u ≥ 0 , (8.24)

where Ky(t) =
∫ t

0
ky(x) dx is the c.d.f. of (V |Y = y) at t. It follows that the (proper) density of

(YNT
|T < ∞) at y for an initial surplus of U0 = u, denoted by gY (y|u), is

gY (y|u) =
1

ψ(u)
bu(y)p(y) , y > 0; u ≥ 0 , (8.25)

where

bu(y) =
1

ψ(u)

[
Ky(ϑ(u, y)) +

∫ y

0

Ky(ϑ(v, y))τ0(u, v) dv

]
, y > 0; u ≥ 0 . (8.26)

Similar to the case for the last interclaim time (VNT
|T < ∞), one observes that if bu(y) is increasing

in y for each fixed u ≥ 0, then (YNT
|T < ∞) is larger than a generic claim size r.v. Y in likelihood
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ratio order, i.e.

(YNT
|T < ∞) ≥LR Y , (8.27)

for any initial surplus U0 = u ≥ 0, which again implies stochastic ordering. Examination of

(8.26) reveals that a sufficient condition for bu(y) to be increasing in y for each fixed u ≥ 0 is

that Ky(ϑ(v, y)) is increasing in y for each fixed v ≥ 0. This in turn has sufficient condition that

Ky(t) is increasing in y for each fixed t ≥ 0, since from (8.5) ϑ(v, y) is increasing in y for each

fixed v ≥ 0. The latter condition is equivalent to SD(V |Y ), i.e. V is stochastically decreasing in

Y . The same probabilistic interpretation as for the ordering (8.17) or (8.18) applies. Again the

above-mentioned sufficient condition automatically holds true in the traditional Sparre Andersen

model.

Parallel to the example given at the end of Section 8.3.1, we consider a reverse dependency

structure compared to Boudreault et al. (2006) with

ky(t) = e−κ∗yg1(t) + (1− e−κ∗y)g2(t) , t, y > 0 , (8.28)

where κ∗ ≥ 0 and gi(.) (i = 1, 2) is a (proper) density function with survival function Gi(.). In

this dependent risk model, a sufficient condition for the ordering (8.27) to hold is

G1(t) ≥ G2(t) , t ≥ 0 .

8.4 More on the transition function τδ(u, v)

As mentioned at the end of Section 8.2, the generalized Gerber-Shiu function φδ(u) is characterized

by the transition function τδ(u, v) via the representation (8.10). This section aims at providing a

formal definition of τδ(u, v) which forms a basis for its evaluation. To do so, we provide a heuristic
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proof of (8.9). Using the Dirac delta function ∆(x) heuristically defined as

∆(x) =





+∞, x = 0

0, x 6= 0
(8.29)

satisfying
∫ +∞
−∞ ∆(x) dx = 1, the discounted densities (8.7) and (8.8) admit the representations

h∗1,δ(x, y|u) = E
[
e−δT ∆(UT− − x)∆(|UT | − y)1{NT = 1}

∣∣U0 = u
]

= E
[
e−δV1∆(γ(u, V1)− x)∆(Y1 − (x + y))

]
, x > u ≥ 0; y > 0 , (8.30)

and

h∗2,δ(x, y, v|u) = E
[
e−δT ∆(UT− − x)∆(|UT | − y)∆(RNT−1 − v)1{NT > 1}|U0 = u

]
,

y > 0; x > v > 0; u ≥ 0 , (8.31)

respectively (see also (4.32) and (4.33)). Note that by conditioning on the number of claims

causing ruin, h∗2,δ(x, y, v|u) can be expressed as

h∗2,δ(x, y, v|u) =
∞∑

n=1

E
[
e−δT ∆(UT− − x)∆(|UT | − y)∆(RNT−1 − v)1{NT = n + 1}

∣∣U0 = u
]

=
∞∑

n=1

E




e−δ
∑n+1

j=1 Vj∆(γ(Rn, Vn+1)− x)∆(|γ(Rn, Vn+1)− Yn+1| − y)

∆(Rn − v)1{NT = n + 1}

∣∣∣∣U0 = u




=
∞∑

n=1

E




e−δ
∑n+1

j=1 Vj∆(γ(v, Vn+1)− x)∆(Yn+1 − (x + y))∆(Rn − v)

1{Ri ≥ 0, i = 1, 2, . . . , n}

∣∣∣∣U0 = u




=
∞∑

n=1

E
[
e−δ

∑n
j=1 Vj∆(Rn − v)1{Ri ≥ 0, i = 1, 2, . . . , n}

∣∣U0 = u
]

× E
[
e−δVn+1∆(γ(v, Vn+1)− x)∆(Yn+1 − (x + y))

]
, y > 0; x > v > 0; u ≥ 0 ,

(8.32)
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where the last line follows from the independence of (Vn+1, Yn+1) on {(Vi, Yi)}n
i=1 together with

the fact that for n = 1, 2, . . ., Rn only depends on {(Vi, Yi)}n
i=1 and R0 = U0. By further using the

fact that (Vn+1, Yn+1) has identical distribution as (V1, Y1), application of (8.30) to (8.32) leads to

(8.9) with τδ(u, v) given by

τδ(u, v) =
∞∑

n=1

E
[
e−δ

∑n
j=1 Vj∆(Rn − v)1{Ri ≥ 0, i = 1, 2, . . . , n}

∣∣U0 = u
]

, v > 0; u ≥ 0 . (8.33)

Having obtained the formal definition of τδ(u, v), we also outline the procedure of its determi-

nation as follows. The determination of τδ(u, v) can be done through its Laplace transform ( with

respect to the argument v) defined by

ϕδ,r(u) =

∫ ∞

0

e−rvτδ(u, v) dv , u ≥ 0 , (8.34)

which by substitution of (8.33) yields

ϕδ,r(u) =
∞∑

n=1

E
[
e−δ

∑n
j=1 Vje−rRn1{Ri ≥ 0, i = 1, 2, . . . , n}∣∣U0 = u

]
, u ≥ 0 . (8.35)

Then, ϕδ,r(u) can obtained by conditioning on the time t and the amount y of the first claim as

ϕδ,r(u) =

∫ ∞

0

e−δt

{∫ γ(u,t)

0

[
e−r(γ(u,t)−y) + ϕδ,r(γ(u, t)− y)

]
pt(y) dy

}
k(t) dt . (8.36)

Note that there is only contribution to ϕδ,r(u) if the first claim does not cause ruin. In

such a case, the term e−r(γ(u,t)−y) is due to the process reaching level γ(u, t) − y immediately

after the first claim, while ϕδ,r(γ(u, t) − y) represents the future contribution to ϕδ,r(u) with the

process restarting at level γ(u, t) − y. The integral equation (8.36) is usually solved by making

additional distributional assumptions on the claim size and/or the interclaim time. In contrast, if

we condition on the time and the amount of the first claim to directly get an integral equation for
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φδ(u), we do not expect that such an integral equation can be solved easily without making any

further assumption on the form and/or differentiability of the penalty function w(., ., .) in cases

where c(.) is not constant.

To illustrate the generality of our approach in studying risk models with surplus-dependent

premium, the next section considers the classical compound Poisson risk model under a threshold

dividend strategy or credit interest. We refer the interested readers to Cheung et al. (2010b),

Willmot and Woo (2010) and Woo (2010) for various (special cases of) generalized Sparre Andersen

risk models in which τδ(u, v) was obtained explicitly when c(.) is constant.

8.5 Example: Classical compound Poisson risk model

In this entire section, we assume a classical compound Poisson risk model, i.e., k(t) = λe−λt and

pt(y) = p(y). Under these assumptions, a change of variable x = γ(u, t) in (8.36) followed by

differentiation with respect to u leads to the integro-differential equation

ϕ′δ,r(u) =
λ + δ

c(u)
ϕδ,r(u)− λ

c(u)

∫ u

0

ϕδ,r(u− y)p(y) dy − λ

c(u)

∫ u

0

e−r(u−y)p(y) dy , u ≥ 0 . (8.37)

Next, we assume specific form of c(.) in order to solve (8.37) for ϕδ,r(u) (and hence τδ(u, v)).

8.5.1 Dividend threshold

Under a threshold dividend strategy with fixed threshold level b > 0, whenever the surplus process

{Ut}t≥0 is above b (and ruin has not occurred), dividend is payable to the shareholders at rate

α > 0 out of the constant premium rate c received from the policyholders, otherwise no dividend

is paid. According to Section 8.1, the (single-)threshold model can be retrieved from our present
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model with surplus-dependent premium by letting

c(x) =





c , 0 ≤ x < b .

c− α , x ≥ b .
(8.38)

The positive security loading condition under the dividend threshold model is α < c−λE[Y ], and

will be assumed here.

To emphasize the dependence of ϕδ,r(u) (and τδ(u, v)) on the threshold level b, we shall write

ϕδ,r(u; b) instead of ϕδ,r(u) with ϕδ,r(u; b) =
∫∞

0
e−rvτδ(u, v; b) dv. Note also that ϕδ,r(u; b) is of

different functional form depending on whether 0 ≤ u < b or u ≥ b, and therefore we shall write

ϕδ,r(u; b) =





ϕδ,r,1(u; b) =
∫∞
0

e−rvτδ,1(u, v; b) dv , 0 ≤ u < b .

ϕδ,r,2(u; b) =
∫∞
0

e−rvτδ,2(u, v; b) dv , u ≥ b .
(8.39)

For later use, it will be convenient to denote the corresponding ϕδ,r function in a threshold-

free model (i.e. c(.) ≡ c) by ϕδ,r(u;∞) =
∫∞
0

e−rvτδ(u, v;∞) dv. We remark that the quantity

τδ(u, v;∞) has been given by Eq. (18) Cheung et al. (2010b), and therefore we shall regard such

a quantity as known in the upcoming analysis.

Under our choice of c(.) in (8.38), the integro-differential equation (8.37) is now expressed in

a piecewise manner as

ϕ′δ,r,1(u; b) =
λ + δ

c
ϕδ,r,1(u; b)− λ

c

∫ u

0

ϕδ,r,1(u− y; b)p(y) dy − λ

c

∫ u

0

e−r(u−y)p(y) dy , 0 ≤ u < b ,

(8.40)

and

ϕ′δ,r,2(u; b) =
λ + δ

c− α
ϕδ,r,2(u; b)− λ

c− α

[∫ u−b

0

ϕδ,r,2(u− y; b)p(y) dy +

∫ u

u−b

ϕδ,r,1(u− y; b)p(y) dy

]

− λ

c− α

∫ u

0

e−r(u−y)p(y) dy , u ≥ b . (8.41)
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Interestingly, the system comprising (8.40) and (8.41) is structurally identical to that given by

Lin and Pavlova (2006, Eq. (3.1)) (with their ζ(u) replaced by
∫ u

0
e−r(u−y)p(y) dy = (e−r· ∗ p)(u)).

In addition, by continuity one also has ϕδ,r,1(b
−; b) = ϕδ,r,2(b; b) (and one can extend the domain

of ϕδ,r,1(u; b) to include u = b). Therefore, we can directly apply the results in Lin and Pavlova

(2006, Theorem 5.1) to state the solution of (8.40) and (8.41). To this end, we first define ρ2 to be

the unique non-negative root to the Lundberg’s fundamental equation (6.33) with c replaced by

c− α. Also, let κδ,2 and lδ,2(.) be identical to κδ and lδ(.) given by (6.35) and (6.36) respectively

but with c replaced by c− α (and hence ρ replaced by ρ2). Furthermore, gδ,2(.) is the compound

geometric density (6.34) with κδ,2 and lδ,2(.) in place of κδ and lδ(.) respectively. Then, the solution

of ϕδ,r(u; b) is given by

ϕδ,r,1(u; b) = ϕδ,r(u;∞) + ηδ,r(b)vδ(u) , 0 ≤ u ≤ b , (8.42)

and

ϕδ,r,2(u; b) =
1

1− κδ,2

∫ u−b

0

$δ,r(u− y; b)gδ,2(y) dy + $δ,r(u; b) , u > b , (8.43)

where

ηδ,r(b) =
κδ,2

∫ b

0
ϕδ,r(b− y;∞)lδ,2(y) dy − ϕδ,r(b;∞) + λ

c−α
Tρ2(e

−r· ∗ p)(b)

vδ(b)− κδ,2

∫ b

0
vδ(b− y)lδ,2(y) dy

, (8.44)

$δ,r(u; b) = κδ,2

∫ u

u−b

ϕδ,r,1(u− y; b)lδ,2(y) dy +
λ

c− α
Tρ2(e

−r· ∗ p)(u) , u > b , (8.45)

and vδ(u) is given by (6.42).

To perform Laplace transform inversion on (8.42) and (8.43) with respect to r, we note that

Tρ2(e
−r· ∗ p)(u) =

∫ ∞

u

e−ρ2(y−u)

∫ y

0

e−rvp(y − v) dv dy

=

(∫ u

0

∫ ∞

u

+

∫ ∞

u

∫ ∞

v

)
e−rve−ρ2(y−u)p(y − v) dy dv

=

∫ ∞

0

e−rvχδ(u, v) dv , u ≥ 0 , (8.46)
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where

χδ(u, v) =





∫∞
u

e−ρ2(y−u)p(y − v) dy = Tρ2p(u− v) , v < u .
∫∞

v
e−ρ2(y−u)p(y − v) dy = p̃(ρ2)e

−ρ2(v−u) , v > u .
(8.47)

Therefore, the numerator of (8.44) can be written as

κδ,2

∫ b

0

ϕδ,r(b− y;∞)lδ,2(y) dy − ϕδ,r(b;∞) +
λ

c− α
Tρ2(e

−r· ∗ p)(b)

= κδ,2

∫ ∞

0

e−rv

∫ b

0

τδ(b− y, v;∞)lδ,2(y) dy dv −
∫ ∞

0

e−rvτδ(b, v;∞) dv +
λ

c− α

∫ ∞

0

e−rvχδ(b, v) dv ,

(8.48)

and inversion of (8.42) with respect to r leads to

τδ,1(u, v; b) = τδ(u, v;∞)+
κδ,2

∫ b

0
τδ(b− y, v;∞)lδ,2(y) dy − τδ(b, v;∞) + λ

c−α
χδ(b, v)

vδ(b)− κδ,2

∫ b

0
vδ(b− y)lδ,2(y) dy

vδ(u) , 0 ≤ u ≤ b .

(8.49)

Similarly, using (8.46), (8.45) can be written as

$δ,r(u; b) =

∫ ∞

0

e−rvσδ(u, v; b) dv , u > b , (8.50)

where

σδ(u, v; b) = κδ,2

∫ u

u−b

τδ,1(u− y, v; b)lδ,2(y) dy +
λ

c− α
χδ(u, v) , u > b . (8.51)

Hence, upon substitution of (8.50), inversion of (8.43) with respect to r yields

τδ,2(u, v; b) =
1

1− κδ,2

∫ u−b

0

σδ(u− y, v; b)gδ,2(y) dy + σδ(u, v; b) , u > b . (8.52)

To summarize this subsection, for 0 ≤ u ≤ b, τδ,1(u, v; b) is explicitly given by (8.49), while for

u > b, τδ,2(u, v; b) is given by (8.52). It is instructive to note that the expression (8.52) involves

σδ(u, v; b), which depends on the function τδ,1(u, v; b) via (8.51).
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8.5.2 Credit interest

Instead of a dividend threshold, now we consider the case where the surplus process {Ut}t≥0 is

subject to credit interest (only). From the discussion in Section 8.1, this corresponds to a premium

rate function of c(x) = c + εx for x ≥ 0 where ε is the rate of credit interest earned. Then, the

integro-differential equation (8.36) becomes

ϕ′δ,r(u) =
λ + δ

c + εu
ϕδ,r(u)− λ

c + εu

∫ u

0

e−r(u−y)p(y) dy − λ

c + εu

∫ u

0

ϕδ,r(u− y)p(y) dy , u ≥ 0 .

(8.53)

In general, it is not easy to solve (8.53) for ϕδ,r(u). In the context of compound Poisson risk models

with credit interest, integro-differential equation of the form (8.53) is usually transformed into a

Volterra integral equation whose solution can be approximated recursively by Picard’s sequence

(see, e.g., Cai and Dickson (2002) and Wu et al. (2007)). For illustrative purposes we assume

exponential claim density p(y) = θe−θy for y > 0 where an explicit expression for τ0(u, v) is

derived.

Omitting some straightforward algebra, application of the operator (d/du + θ) to (8.53) leads

to the differential equation

ϕ′′δ,r(u) +

(
θ +

ε− λ− δ

c + εu

)
ϕ′δ,r(u)− δθ

c + εu
ϕδ,r(u) = − λθ

c + εu
e−ru , u ≥ 0 . (8.54)

To solve the above equation for ϕδ,r(u), we further assume that δ = 0. Then (8.54) reduces to

ϕ′′0,r(u) +

(
θ +

ε− λ

c + εu

)
ϕ′0,r(u) = − λθ

c + εu
e−ru , u ≥ 0 . (8.55)

By Polyanin and Zaitsev (2003, Section 2.1.9 Solution 3), the solution to (8.55) is given by

ϕ0,r(u) = C1 +

∫ u

0

e−Q1(x)

[
C2 +

∫ x

0

eQ1(v)Q2(v) dv

]
dx , u ≥ 0 , (8.56)
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where

Q1(v) =

∫ v

0

(
θ +

ε− λ

c + εz

)
dz = θv+

(
1− λ

ε

)
ln

(
1 +

ε

c
v
)

and Q2(v) = − λθ

c + εv
e−rv , v ≥ 0 .

(8.57)

and C1 and C2 are constants to be determined by two boundary conditions. The first boundary

condition can be obtained by letting u → ∞ in (8.56) together with limu→∞ ϕ0,r(u) = 0. This

yields

0 = C1 + C2

∫ ∞

0

e−Q1(x) dx +

∫ ∞

0

e−Q1(x)

∫ x

0

eQ1(v)Q2(v) dv dx . (8.58)

In addition, by putting u = 0 into the integro-differential equation (8.53), one arrives at

ϕ′0,r(0) =
λ

c
ϕ0,r(0) (8.59)

which, according to (8.56), leads to the second boundary condition

C2 =
λ

c
C1 . (8.60)

Solving (8.58) and (8.60) simultaneously yields

C1 = −
∫∞
0

e−Q1(x)
∫ x

0
eQ1(v)Q2(v) dv dx

1 + λ
c

∫∞
0

e−Q1(x) dx
and C2 = −λ

c

∫∞
0

e−Q1(x)
∫ x

0
eQ1(v)Q2(v) dv dx

1 + λ
c

∫∞
0

e−Q1(x) dx
,

(8.61)

and therefore (8.56) becomes

ϕ0,r(u) =−
[

1 + λ
c

∫ u

0
e−Q1(x) dx

1 + λ
c

∫∞
0

e−Q1(x) dx

]∫ ∞

0

e−Q1(x)

∫ x

0

eQ1(v)Q2(v) dv dx +

∫ u

0

e−Q1(x)

∫ x

0

eQ1(v)Q2(v) dv dx ,

u ≥ 0 . (8.62)
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From the above expression, ϕ0,r(u) depends on r only through Q2(.). By noting that

∫ u

0

e−Q1(x)

∫ x

0

eQ1(v)Q2(v) dv dx = −
∫ u

0

e−rv

[∫ u

v

e−Q1(x) dx

]
λθ

c + εv
eQ1(v) dv , u ≥ 0 , (8.63)

inversion of (8.62) with respect to r leads to

τ0(u, v) =

{[
1 + λ

c

∫ u

0
e−Q1(x) dx

1 + λ
c

∫∞
0

e−Q1(x) dx

]∫ ∞

v

e−Q1(x) dx− 1{v < u}
∫ u

v

e−Q1(x) dx

}
λθ

c + εv
eQ1(v) .

(8.64)

A more explicit formula for τ0(u, v) can be obtained by substituting into (8.64) the expression of

Q1(v) given in (8.57). We then obtain

τ0(u, v) =

{[
1 + λ

c

∫ u

0
e−θx

(
1 + ε

c
x
)−1+λ

ε dx

1 + λ
c

∫∞
0

e−θx
(
1 + ε

c
x
)−1+λ

ε dx

] ∫ ∞

v

e−θ(x−v)

(
c + εx

c + εv

)−1+λ
ε

dx

− 1{v < u}
∫ u

v

e−θ(x−v)

(
c + εx

c + εv

)−1+λ
ε

dx

}
λθ

c + εv
, (8.65)

which is explicitly expressed in terms of model parameters.

Remark 21 From Cheung (2010), expressions in the form of (8.9) and (8.10) also hold true in

the context of an absolute ruin model (see, e.g., Cai (2007) and Gerber and Yang (2007)). The

methodology in the section can also be applied to obtain the corresponding τ0(u, v) function.
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Chapter 9

Concluding remarks and future research

Chapters 2 and 3 of this thesis are mainly concerned with the study of various ruin-related quanti-

ties under different types of dividend strategies in the MAP risk model. More specifically, Chapter

2 is concerned with a dividend barrier strategy, which is possibly dependent on the underlying

Markovian environment, while Chapter 3 studies a threshold-type strategy in the dual MAP risk

model. In contrast, in Chapters 4, 5 and 6, Gerber-Shiu functions with a generalized penalty

function involving additional variables and various discounted joint densities are considered. The

surplus level immediately after the second last claim before ruin RNT−1 is studied in Chapters 4

and 5. Interestingly, it appears that in Chapter 4 the study of such an additional variable is the

only way to keep track of the surplus prior to ruin UT− due to the methodology adopted (i.e. a

novel connection to a fluid flow process). In Chapters 5 and 6, the minimum surplus level before

ruin XT and the maximum surplus level before ruin ZT are studied respectively. Chapter 7 con-

siders a generalization of the MAP model by relaxing its exponential distributional assumption

between two system changes, whereas Chapter 8 studies some orderings of certain ruin-related

quantities via the generalized Gerber-Shiu function involving RNT−1, even when premium rate

can possibly be surplus-dependent.
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In this thesis, two entirely different approaches have been used to study the MAP risk model.

For example, in the entire Chapter 2 and Sections 6.1 and 6.2, the analysis is purely analytic.

In these analyses, the usual convention is to condition on the time and amount of the first claim

to obtain integral and/or integro-differential equations. In contrast, in the entire Chapter 3 and

Sections 5.6 and 6.4, the analysis is purely probabilistic and is based on sample paths arguments

via a connection to a fluid queue. It is important to understand the advantages and disadvantages

of the two different approaches. For the analytic approach, the main advantage is that the results

obtained usually hold true without any assumptions on the claim size distributions (see, e.g., Sec-

tions 5.4 and 6.2). In contrast, a significant drawback of using the fluid flow technique to analyze

risk models is that all the interclaim times and claim sizes have to be phase-type distributed, which

poses a problem in modelling heavy-tailed distributions. Nonetheless, one could observe from, e.g.,

Sections 5.6 and 6.4, that the use of fluid flow arguments allows certain discounted joint distribu-

tions to be obtained immediately. Central to the representation of these discounted joint densities

is Ψ(δ), the Laplace transform of the busy period in a fluid flow model, for which a quadratically

convergent algorithm is available (see Ahn and Ramaswami (2005)). Such a quantity replaces the

role of the roots of Lundberg’s fundamental equation (see, e.g., (2.29), (5.41), (6.33) and (7.41)),

which are usually required in the analytic analysis. The findings of these Lundberg’s roots might

cause numerical problems when the number of environmental states of the MAP model becomes

large.

While the discounted joint density of (UT− , |UT |, ZT , XT ) in the MAP risk model has already

been studied in Section 6.4 via the existing connection to a fluid flow process, it is the author’s

belief that further research is required to study the Gerber-Shiu function involving both the

minimum and maximum levels before ruin at the same time using analytic analysis in various risk

models involving dependency. However, it appears that this could be a challenging task due to

the huge difference in the two separate approaches used to analyze the minimum (Section 5.2)

and the maximum (Section 6.2). To keep track of the minimum level, one has to focus on the
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drop in surplus below its initial level because a new minimum can only occur when there is a drop

in surplus below the running minimum. A semi-Markovian type risk model described in Section

1.2.3 is believed to be one of the most general models in which the minimum level before ruin

XT (indeed together with RNT−1) can be studied using this argument. The rationale is that the

variables XT and RNT−1 are surplus levels at claim instants (or at time 0), and in a semi-Markovian

risk model the process restarts anew at claim instants. On the other hand, to study the maximum,

it is important to keep track of whether the process up-crosses the running maximum again after

a claim. Therefore, we require a Markov property such that one can keep track of the states at

which an up-crossing occurs, and the MAP risk model turns out to be a good candidate. We

remark that some joint distributions of various related variables have also been studied by Wei

and Wu (2002) and Wu et al. (2003) in the context of the classical compound Poisson risk model,

but the minimum level before ruin is not involved in their analyses.

Another direction for future research would be to study the Gerber-Shiu function (or dis-

counted densities) involving the maximum surplus ZT and/or the minimum surplus XT before

ruin in the MAP risk model under certain dividend strategies or credit/debit interest, using ei-

ther probabilistic or analytic methods. While it is clear that the discounted joint density of the

quadruple (UT− , |UT |, ZT , XT ) can still be obtained using the sample paths arguments of Section

6.4 for a MAP risk model with barrier or threshold type dividend strategies, apparently (to the

best of the author’s knowlege) no research has been done on any related discounted densities

under credit/debit interest using such probabilistic arguments. The author believes this is due to

the difficulty in relating the ‘clocks’ between the risk process and the fluid flow process arising

from the non-linearity of sample paths, since the key observation by Ramaswami (2006) regard-

ing the two ‘clocks’ (see end of Chapter 1) no longer holds. The recent paper by Rabehasaina

(2009) provided a breakthrough by finding the Laplace transform of the time of ruin in the MAP

model with credit/debit interest. It might be interesting to see whether similar approach can be

applied to study the discounted joint densities of various ruin-related quantities. With regards to
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analytic methods, in general we expect to be able to keep track of the maximum surplus before

ruin ZT upon the introduction of dividend strategies or credit/debit interest (see Cheung and

Landriault (2010)). However, the minimum surplus before ruin XT remains a difficult problem

because the distribution of a drop in surplus now depends on the initial surplus level under the

dividend/interest modifications.
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