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Abstract

For its high overall cost during product development, program debugging is an

important aspect of system development. Debugging is a hard and complex activity,

especially in time-sensitive systems which have limited resources and demanding

timing constraints.

System tracing is a frequently used technique for debugging embedded systems.

A specific use of system tracing is to monitor and debug control-flow problems in

programs. However, it is difficult to implement because of the potentially high over-

head it might introduce to the system and the changes which can occur to the system

behaviour due to tracing.

To solve the above problems, in this work, we present a sampling-based approach

to program execution monitoring which specifically helps developers trace the pro-

gram execution in time-sensitive systems such as real-time applications. We build

the system model and propose three theorems which determine the sampling period

or the optimal in different scenarios. We also design seven heuristics and an instru-

mentation framework to extend the sampling period which can reduce the monitoring

overhead and achieve an optimal tradeoff between accuracy and overhead introduced

by instrumentation. Using this monitoring framework, we can use the information

extracted through sampling to reconstruct the system state and execution paths to

locate the deviation. Based on the statistically significant data, we also model the

trend of the sampling period with the instrumentation steps. Based on the modelling

results, we devise a scheme for predicting the number of markers we need to reach a

certain sampling period. Last, we build a tool chain to instrument and monitoring

the software system and further prove the soundness of our approach.

v





Acknowledgements

The work presented in this thesis would not be possible if I did not have such a stim-

ulating, creative and supportive supervisor, Professor Sebastian Fischmeister. Under

his supervision, I feel happy and fulfilled by the growth in myself both academically

and personally during the past two years. Majoring in Electrical Engineering before

I came to UW, I appreciate Professor Fischmeister’s patience and support which

allowed me enough time to catch up and accomplish solid work. His acumen towards

cutting-edge technologies and new methods along with his passion for pushing the

envelope is encouraging. From his rigorous working attitude, I learned what defined

good academia and integrity. I always believe that if a supervisor is willing to sit

with his student to revise the student’s paper sentence by sentence, that student is

lucky. And I think I am the lucky one. I am also very grateful of the financial support

provided by Professor Fischmeister, so that I can totally focus on my work and have

a enjoyable life in Canada. The trip to Stockholm was fantastic and unforgettable.

I would like to express my greatest thanks to Professor Fischmeister for giving me

such an amazing learning experience in University of Waterloo.

I also would like to thank my dear supervisor Professor Yu Peng, in HIT back in

China, for his constant understanding and spiritual support along my way, especially

during my most difficult time in Canada. I know you are always there for me.

For me, my supervisors for years, my role models for life.

Special thanks to my dear friends in both China and Canada. I feel blessed to

be always surrounded by you.

Finally, the greatest and most special thanks to my family. It does not matter

where I am, every step I take, I know I am not alone. I love you all.

vii





Contents

List of Tables xiii

List of Figures xvi

1 Introduction 1

1.1 Motivation and Problem Overview . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 7

2.1 Software Testing and Debugging . . . . . . . . . . . . . . . . . . . . . 8

2.2 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Monitoring Framework . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Monitoring to Facilitate Program Understanding . . . . . . . . 13

2.2.3 Monitoring through Code Instrumentation . . . . . . . . . . . 14

2.2.4 Monitoring for Quality Assurance . . . . . . . . . . . . . . . . 15

2.2.5 Dynamic Monitoring . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Software Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Program Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



3 Sampling-based Program Execution Monitoring 25

3.1 System Model and Terminology . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Model Definition and Terminology . . . . . . . . . . . . . . . 25

3.1.2 Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Theoretical Optimum . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Calculating the Sampling Period . . . . . . . . . . . . . . . . . . . . . 33

3.4 Instrumenting Control Flows . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Increment VS Assignment . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Instrumentation Performance Metric . . . . . . . . . . . . . . 41

3.5.2 Monotonicity Metric . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.3 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Instrumentation Performance . . . . . . . . . . . . . . . . . . 43

3.6.2 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.3 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 SBMTC: A Sampling-based Monitoring Tool Chain 49

4.1 Tool Chain Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Control Flow Graph Generation . . . . . . . . . . . . . . . . . . . . . 50

4.3 Execution Time Measurement . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 General Working Flow . . . . . . . . . . . . . . . . . . . . . . 56

x



4.3.2 Using Time Stamp Counter . . . . . . . . . . . . . . . . . . . 57

4.3.3 Issues Affecting the Accuracy of TSC . . . . . . . . . . . . . . 59

4.4 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 GDB based Sampling . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Shared Memory based Sampling . . . . . . . . . . . . . . . . . 63

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Predicting the Number of Markers 67

5.1 Scheme of Adding a New Marker . . . . . . . . . . . . . . . . . . . . 67

5.2 Curve Fitting of the Sampling Period Trend . . . . . . . . . . . . . . 69

5.3 Optimal Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions and Future Work 77

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References 89

xi





List of Tables

4.1 Input Files of GDB based Sampling Engine . . . . . . . . . . . . . . . 63

xiii





List of Figures

2.1 Cause-consequence Diagram of Fault, Error and Failure . . . . . . . . 9

2.2 Task A terminates before task B . . . . . . . . . . . . . . . . . . . . . 11

2.3 Task B preempts task A . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Software Instrumentation on Different Stages of Compilation . . . . . 18

3.1 Different sampling periods for one control flow . . . . . . . . . . . . . 27

3.2 Control-flow graph with marker instrumented . . . . . . . . . . . . . 29

3.3 pathfindt(vi, vj,∆t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 pathfinds(vi, vj, statei, statej,∆t) . . . . . . . . . . . . . . . . . . . . 30

3.5 Scenario when theoretical optimum is reached using only one marker 33

3.6 Scenario where increment works but not assignment . . . . . . . . . . 36

3.7 The problem of direct interference during greedy instrumentation . . 38

3.8 The indirect interference caused by a greedy pick . . . . . . . . . . . 38

3.9 Example of interference of greedy instrumentation . . . . . . . . . . . 42

3.10 Instrumentation performance of all algorithms. . . . . . . . . . . . . . 44

3.11 Monotonicity of heuristics . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Improving monotonicity with multiple markers . . . . . . . . . . . . . 47

4.1 Work Flow of the Tool Chain . . . . . . . . . . . . . . . . . . . . . . 51

xv



4.2 Control Flow graph generated by CIL . . . . . . . . . . . . . . . . . . 55

4.3 Working Flow of Measuring Execution Times of Basic Blocks . . . . . 58

4.4 Visualized CFG with execution times of basic blocks . . . . . . . . . 59

4.5 The Working Scheme of Shared Memory Based Sampling Method . . 65

5.1 Power Law Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Tradeoff between Instrumentation Steps and the Number of Markers . 73

5.3 Interference Found in Benchmark Program . . . . . . . . . . . . . . . 75

xvi



Chapter 1

Introduction

Driven by the evolution in the silicon and optical technologies, the field of comput-

ing has been developing rapidly for the past decades. The programs executing on

computers have grown immensely in both functionality and size and are becoming

more and more distributed. However, such programs and software systems pose a

significant challenge for program testing, debugging and monitoring. In addition,

software testing and debugging are expensive components of the software develop-

ment and maintenance which take between 30 to more than 50 percent of the overall

development budget [22, 31] and add considerable length to the development cycle.

Thus, developing more efficient and more effective testing and debugging techniques

becomes inevitable and imperative. Section 1.1 of this thesis motivates our research

and gives a brief overview of the problem I am trying to solve. Section 1.2 presents

the contributions of our work. Finally, Section 1.3 describes the organization of this

thesis.

1.1 Motivation and Problem Overview

Traditional monitoring tasks involve instrumenting the code by inserting a full com-

plement of probes into each instance of the software. For most such tasks, this

approach requires probes at many points in the software, significantly increasing
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the program size and compromising its performance. Such overhead is in general

unacceptable to users, and inapplicable in contexts in which resources are limited,

such as embedded systems. Instead of collecting all the information from a program,

recording information from only parts of program can decrease monitoring overhead

and increase the efficiency of monitoring simple software. We can use probes to

monitor and track the execution of program entities, such as variables and state-

ments. Monitoring more sophisticated entities, such as execution paths, requires

more sophisticated techniques.

Instrumentation is a key technique in many aspects of software development,

such as software debugging and monitoring. The instrumented programs produce

various information about the states of the program, such as data traces, that en-

able developers to locate the origins of bugs in the system under test. However,

instrumentation and producing traces incur run-time overhead in the form of ad-

ditional computation resources in terms of both space and execution time. This

might impose critical issues for embedded systems whose computation resource is

quite constrained. The overhead introduced by instrumentation may also interfere

with system’s timing and perturb its behaviour, which are unacceptable in context

of hard real-time systems, such as heavily-loaded safety critical applications and

time-sensitive applications, in which meeting the deadline and carrying out precise

function at the specific time are entitled to have the top priority. In time-related

probe effects, the overhead introduced by instrumentation prevents the developers

from reproducing the misbehaviour which actually exists in the original defective

program.

Targeting the above problems, we aim to develop a novel method with less and

bounded overhead and provide a framework which assists more effective and efficient

debugging and monitoring techniques of resource-constrained embedded systems.

Our approach gathers run-time information using a sampling technique which records

a subset of the program execution and events that occur, thus introducing much less

overhead than regular monitoring yet providing a decent accuracy.
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1.2 Thesis Contribution

The advantages of our approach are as follows: Compared with continuous monitor-

ing, our sampling-based technique can greatly reduce the overhead introduced. Since

the sampling rate is fixed, we can estimate and bound the overhead and impact on

the system under test. Also, our approach can easily be combined with data-tracing

methods. There are, however, several issues to be solved regarding sampling-based

approaches:

First, we need to balance between overhead and correct reconstruction of the

control flow. On one hand, we want to gather enough information to be able to

reconstruct the execution path; on the other hand, monitoring should have only

modest impact on the program.

Second, we need to address the problem of how many markers should be used.

Each marker requires memory, so we want to use as few markers are possible.

Third, we need to devise an instrumentation algorithm that efficiently uses the

available markers. Using markers well can reduce the number of required markers to

achieve the target sampling period.

This paper makes several contributions to the issues mentioned above:

• We provide a formal framework that permits quantitative reasoning about

many aspects involved in sampling-based mechanisms.

• We define optimality from both vertex and the whole control-flow graph per-

spectives.

• We provide theorems for termination conditions of instrumentation algorithms

with an unlimited number of markers and with exactly one marker.

• We validate the general approach by proposing and comparing several algo-

rithms for inserting markers into programs.

• We investigate interference among markers and propose tailored algorithms to

compensate for this interference.
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• We discuss a number of observations and insights obtained during the devel-

opment of the algorithms.

• We devise a scheme for predicting the number of markers needed to reach a

given sampling period and reason about the optimal tradeoff between markers

and instrumentation steps.

• We build the tool chain to instrument and monitor the software system and

further prove the soundness and effectiveness of our approach.

Besides debugging, sampling-based execution monitoring can also be used in per-

formance profiling of software systems. Combined with tracing, it can give perfor-

mance engineers a sufficiently detailed analysis of the system with low overhead [46],

such as event relationships in time and reconstructing the dynamic behavior of a

software system. In addition, sampling-based execution monitoring can be applied

to code coverage testing [61] which finds the code exercised by a particular set of test

input. Moreover, sampling-based execution monitoring can be a feasible and efficient

technique for reducing the overhead while collecting profile information [42].

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 presents a survey of related work and gives an overview of the back-

ground material and past works. It first introduces testing and debugging

techniques and defines some terminology. Then, it discusses monitoring, soft-

ware instrumentation and program sampling.

• Chapter 3 first describes the problem targeted and then builds our system

model (Section 3.1) which serves as the theoretical foundation for the thesis.

Second, we propose two theorems which provide the termination conditions for

instrumentations in different scenarios and give the corresponding examples to
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explain them (Section 3.2). We then propose a BFS-based algorithm which

calculates the sampling period (Section 3.3). We analyze the interference be-

tween instrumentations in Section 3.4. Varying the interference and using the

model, we experiment with different algorithms (Section 3.5) and interpret the

results (Section 3.6).

• Chapter 4 first gives an overview of the tool chain developed to implement all

aspects of the sampling based program execution monitoring. It then presents

the details on how each element of the tool chain is implemented and the

techniques involved in it.

• Chapter 5 provides a scheme for predicting the number of markers needed

to achieve a certain sampling period and explains the scheme along with the

modelling method when carrying out curve fitting. In addition, it presents

the experiments from real bench marks and further proves the claims made in

previous sections.

• Chapter 6 draws conclusions and discusses the possible future work.
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Chapter 2

Background and Related Work

Software testing and debugging have great importance in software development since

the quality of software system plays a more and more critical role in many aspects of

society as well as people’s everyday life. Intensive research has been done on software

quality assurance. In this domain, numerous researchers have investigated software

monitoring and instrumentation techniques which effectively assist software testing

and debugging. However, with software becoming more and more complicated and

the rapid evolution of operating environments, especially with the advent of embed-

ded systems which have strict constraints on resources, continuous work is required

to develop more efficient and cost-effective testing and debugging methods. This

chapter presents previous works and papers that pertain to this thesis. Section 2.1

gives an overview of software testing and debugging including definitions and dif-

ferent strategies. Section 2.2 presents existing monitoring techniques found in the

literature. Section 2.3 discusses different methods of software instrumentation used

in both research and industry. Though the sampling-based method is quite new and

not much work has been done on it, Section 2.4 gives a brief introduction to the work

related to this topic.
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2.1 Software Testing and Debugging

Testing and debugging are important procedures in embedded software develop-

ment, as between 30 to 50 percent of the development cost is spent on testing and

debugging [22, 31]. We define a software defect as “An incorrect step, process, data

definition or result.” [1]. Testing is a process which developers can use to assure the

software quality by collecting information and it uncovers failures by checking the

runtime behaviour of the system for potential violations of the possibly implicit spec-

ification. Debugging, on the other hand, focuses on revealing the errors that cause

the failures, removing those errors, and verifying the correctness of the software.

Thus, the steps most frequently seen in debugging are as follows [9]:

• Issue Recognition: identifying what is actually defined as incorrect in the sys-

tem under test

• Intelligence Gathering: by inspecting the target, figure out how it works and

how it produces the symptom

• Diagnosis: determining the fundamental bug

• Prescription: planning out how to remove or fix the bug

• Response: fixing or removing the bug

• Verification: checking the bug is removed from the target system and make

sure the way it is fixed has not introduced other bugs

• Deployment: releasing the bug-free software system

There are various of causes of unreliability in software and computer systems.

Figure 2.1 shows the cause-consequence diagram of fault, error, and failure. [8]

along with [67] give the formal definitions of the terms in this figure:

• Defect: An imperfection or deficiency in a work product where that work

product does not meet its requirements or specifications and needs to be either

repaired or replaced.
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Error Failure
Defect

Fault

Figure 2.1: Cause-consequence Diagram of Fault, Error and Failure

• Fault: Abnormal condition that may cause a reduction in, or loss of, the capa-

bility of a functional unit to perform a required function. Fault is the hypoth-

esized cause of an error.

• Error: Discrepancy between a computed, observed or measured value or con-

dition and the true, specified or theoretically correct value or condition.

• Failure: Termination of the ability of a product to perform a required function

or its inability to perform within previously specified limits.

In [53], B. Parhami generalizes the relationships between defect, fault, error, and

failure as follows: At first, a software component may be defective. Some system

states will show the defect. This exposure of a defect can lead to the development

of faults. According to B. Parhami, if a fault is executed, it might contaminate

the data which run through the system in such a way that it might cause some

errors. However, incorrect information or states is not bound to make the subsystem

malfunction. Different subsystems’ designs have different error tolerances, which

might handle some level of malfunction. Thus, B. Parhami suggests that a subsystem

malfunction does not necessarily result in a disaster. Moreover, the degradation of

service could lead to system failure which might cause catastrophe depending on the

situation when the failure happens. To further clarify the above definition, here is

an example [53]:

Example 1. An aircraft begins to age as soon as it carries out its first flight. With

passage of time, an aircraft with structural fatigue becomes defective. If the structure
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fatigue propagates a crack, the aircraft becomes faulty. A detection inspection of the

aircraft during base maintenance can reveal the fault. However, the pilot does not

notice this fault while flying the aircraft. When the internal load-bearing airframe

structural components has less residual strength, the aircraft system becomes erro-

neous. When the structures no longer meet their damage tolerance requirements,

they might unexpectedly produced cracks of a sufficient size and density in the struc-

ture to weaken it so much that it no longer has the intended residual strength, thus

suffering sudden structural failure, which might result in explosive decompression in

the worst case.

To test or debug a software system, we must inspect the run time behaviour of

the system and check how well this behavior is consistent with the specification.

Equally important, the act of observation should not disturb or intrude on system

behaviour. However, any form of observation is also an interaction — the act of

testing can also affect what is being tested. In [30], Jason Gait defined the probe effect

as “a characteristic behaviour of the execution trace of an incorrectly synchronized

concurrent program when extraneous delays are introduced”. In some situations,

the presence of the debugger or the act of observation can affect some timing-related

bugs in such a way that the bug disappears or the threads switch their execution

order. The following is an example [67] of a probe effect.

Example 2. In Figures 2.3 and 2.2, we make the assumption that two tasks A and

B share a resource X and they both can carry out an operation on X. In addition, we

assume that there is a semaphore S protecting the resource X and that the priority of

task B is higher than that of task A. The execution time of each task varies according

to different inputs, which leads to different accesses to the shared resource.

1. In Figure 2.2, task A terminates before task B is released, and thus performs

an operation on X before B. The new value of X is A(X). The entire operation

will produce a value of X corresponding to B(A(X)).

2. As shown in Figure 2.3, task B locks the semaphore, and enters the critical

region before task A. Task B then preempts A and performs an operation on
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Figure 2.2: Task A terminates before task B

Priority
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(a) (b)

Figure 2.3: Task B preempts task A

X. The new value of X is B(X). The entire operation will produce a value of X

corresponding to A(B(X)).

To test task A’s behavior, we attached a probe to it and extend its execution time in

such a way that only scenario (2) runs. As a result, scenario (1) will never show

up during run time. If B(A(X)) is faulty, due to an error in task A, this error will

never be revealed. After testing which shows no errors, we remove the probe in task

A. However, scenario (1) will occur again and the erroneous calculation B(A(X))

may be executed, causing a failure.
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2.2 Monitoring

In [72], Wong defines system monitoring as “the observation of specific activities or

events that occur in an information system as specified by a predefined set of rules or

polices”. Previous work on system monitoring proposes the following categories [72]:

• monitoring frameworks

• monitoring to facilitate program understanding

• monitoring through code instrumentation

• monitoring for quality assurance

• dynamic monitoring

2.2.1 Monitoring Framework

For monitoring applications, it is more cost efficient to selectively record informa-

tion. That is, instead of storing the entire temporal history of data, the monitoring

framework records the history of the data object from the moment when a certain

event happens. In [19], Bertino et al develop an event-based temporal object data

model which can selectively store the past values of object attributes. In addition,

they devise an event language which allows combining database operations, condi-

tions on the database options, temporal and periodic events, using several operators.

With this model, by keeping track of selective values, they develop a more efficient

support for monitoring frameworks and provide the monitoring application with a

more meaningful and effective set of data objects.

Detecting subsequence pattern has great importance in a monitoring system for

suspicious activities. In [33], Robert Gwadera et al argues that setting thresholds for

alarm is critical in observing long sequences of events, since it makes the monitoring

system avoid false alarms. He suggests that setting the threshold too low results

in too many false alarms while setting the threshold too high will fail to detect the
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real intrusions. To address the above issues, the authors in the paper carried out

a quantitative analysis and devise a monitoring framework to set up the threshold

that avoids false alarms and reduces the probability of missing the real intrusion.

In [63], Janusz Sosnowski et al proposes a on-line monitoring framework that

combines hardware and software monitoring. This framework involves three tech-

niques: event monitoring, performance monitoring at high and low architectural

levels. These three techniques cover different scopes and relate to various system

resources.

2.2.2 Monitoring to Facilitate Program Understanding

In [32], Neil M. Goldman argues that applications obtains a great portion of func-

tionalities from their binary codes which is less amenable to static analysis than is

the source code. In addition, he argues that compilers destroy a large amount of the

structure so that the binary code cannot give answers to questions on observation of

program’s runtime behavior. To address the above issues, in this paper, he develops

a tool named Smiley to help an analyst observe and record a program’s runtime

behavior and achieve an understanding of the program’s implementation.

Mohlalefi Sefika et al, in [60], point out that the implementation of a software

system tends to deviate from its original or intended design. He also considers this

deviation undesirable since it makes the system hard to understand and modify.

Thus, to avoid such undesirable deviation, he suggests that developers should make

use of codified design principles supplemented by checks to ensure that the actual

implementation adheres to its design guidelines. In the paper, they presents a hybrid

computer-aided approach by integrating logic-based static analysis and dynamic vi-

sualization which provides multiple perspective of the code. Their approach provides

a close monitoring of the implementation’s faithfulness to its intended design through

all stages of system’s development.
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2.2.3 Monitoring through Code Instrumentation

In [38], Amir Kishon et al introduce monitoring semantics, an extension of a lan-

guage’s standard semantics which captures monitoring activity. Monitoring seman-

tics can provide a realistic basis for constructing effective monitors. Specifically, the

they believe that by instrumenting the semantics into the program their approach

has a decent degree of generality, safety and modularity which ease the process of

reasoning about monitors. Furthermore, they indicate that their approach is very

practical: it enables practical implementations of monitors.

A. W. Moore et al in [49] observed that kernel instrumentation tended to give an

accurate record of what had happened in the kernel of a system; it is common to use

kernel instrumentation when high precision is needed. However, through intensive

study, he speculates that kernel instrumentation has several disadvantages, such

as the difficulty to debug the code in the kernel, the availability of kernel source-

code and the system crashes caused by the errors in kernel code. Due to these

drawbacks of kernel instrumentation, he suggests that passive network monitoring

can be an alternative to kernel instrumentation with several advantages such as no

modifications to the operation of the monitored systems and the collection of data

does not impact the machines being monitored. By comparing the pros and cons

of these two methods, he presents methods by which the discrepancies between the

results of the two techniques can be minimized.

William N. Robinson pointed out in [55] that analyzing software requirements is

difficult and deviation software from requirements (if there is any) tends to cause er-

rors. Targeting this challenge, he presents a framework to monitor the requirements

of software while it is being executed by instrumentation and provides assurances

about the state of a software’s execution. According to him, this framework allows

for automated support and uses a combination of assertion and model checking to

inform the monitor. In another publication [56], He presents another requirement

monitoring framework, called ReqMon. According to him, this monitoring frame-

work can increase the visibility of requirements compliance provided by the system

under test and employs monitoring tools to visualize the extent to which information

systems comply with the stated requirements.
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2.2.4 Monitoring for Quality Assurance

In structural testing, monitoring the software’s execution determines which program

entities have been executed. However, as pointed out by Raul Santelices et al in [58],

this monitoring method introduces large overhead to the program execution. With

covering all statements being a basic testing strategy, he suggests that cover all

definition-use associations (DUAs) is more effective. Based on branch monitoring, in

the paper, he presents a technique which can efficiently monitor DUAs. By speculat-

ing the technique, he presents two approaches for monitoring DUAs, that is, branch

monitoring based and direct DUA-monitoring. Moreover, he indicates that there are

efficiency and precision trade-offs between these two approaches and discusses the

scenarios under which branch-monitoring can be used. He also present a tool, called

DUA-FORENSICS which implements all aspects of their techniques.

In [23], Jim Bowring et al present a technique, called software tomography, for

monitoring the deployed software products. According to them, software tomography

is a low-impact and minimally-intrusive monitoring technique. As they describes in

the paper, the technique divides the task into subtasks each of which introduces little

instrumentation, and assigns these subtasks to single software instances for monitor-

ing. To yield the original monitoring information, the technique at last synthesizes

the information from each instance.

As Chenglian Peng et al point out in [54], due to the large scale and complicated

architecture in distributed software systems, traditional static analysis fails to solve

the emerging problems efficiently. Targeting the parallel and distributed computers,

he introduces a method based on on-line monitoring. He presents a monitor sys-

tem, called MS-1, which is a distributed event-driven hybrid monitor system with a

synchronous clock system. In the paper, he suggests combining the control of the

monitor system, collection of event trace and analysis tool an OM fulfills on-line

monitor. In addition, with the internal states and the dynamic behaviour, he be-

lieves that the OM can help debug and test the computer systems effectively and

efficiently.
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2.2.5 Dynamic Monitoring

Monitoring depends on software instrumentation to collect run-time data from the

programs. During monitoring, the instrumented running programs usually generate

a huge amount of instrumentation data. Processing and storing the data introduces

overhead and may even perturb execution. In [47], Barton P. Miller et al develop a

performance measurement tool, called Paradyn, which monitors long running par-

allel applications using dynamic instrumentation and an adjustable sampling rate

to reduce the collected performance data amount. According to him, by using a

hypothesis set of performance problems, the time driven control can change the sam-

pling rate accordingly. Further more, he points out that, in Paradyn, if incoming

data show a problematic pattern then the sampling rate can be increased to get more

data and thus achieve a better understanding of the problem.

In performance monitoring of parallel system, Jerry C. Yan considers the facility

that can capture and display the program execution as a worthy feature. To accom-

plish this facility, in [73], he develops AIMS which is parallel monitoring system that

employs event driven data collection mechanisms for MPI applications. According to

Jerry C. Yan, interested parts of an application are instrumented before execution.

He also indicates that when instrumented application executes, it generates perfor-

mance data as a side effect. He also states that, with the performance data displayed

on workstations, the user will have a good observation of program’s behavior and

have a way to trace the operation sequence.

2.3 Software Instrumentation

Software instrumentation tools have great importance in program analysis, profil-

ing, performance evaluation, and bug detection. Instrumentation is “a technique

for inserting extra code into an application to observe its behavior” [45]. Though

introducing minor side effects such as increase in execution time, instrumentation

should maintain the program structure and functionality. To achieve this purpose,

as pointed out by Marina Biberstein et al in [20], instrumentations should not remove
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program elements; variables defined by the original program might be read out but

not written. According to them, instrumentation may add its own variables, and

those variables may be read or written. He further suggests that, instrumentation

can insert new code into the original program, and invoke other methods from this

instrumented code. However, he indicates that in such invocation original variables

can not be modified.

There are a variety of applications for program instrumentation. As summarized

in [39], instrumentation is usually used to collect program profile and run-time in-

formation for various testing, debugging and analysis applications, such as detecting

program deviation, dynamic slicing and alias analysis. It can also be used to monitor

and track the program behavior [20]. However, software instrumentation is intrusive

because it introduces considerable overhead to the execution that might perturb the

behaviour of the original programs. Researchers have proposed several methods to

reduce the cost of instrumentation overhead [39, 16, 48]. Software instrumentation

collects information of program execution by inserting instrumentation statements

which might print out program location or variable values [69]. Instrumenting printf

statements is a naive approach which is tedious and inflexible. It might also result

in “probe effect”.

Developer can carry out instrumentation at different stages: in the source code,

at compile time, post link time, or at run time, as shown in Figure 2.4 [52]:

Generally, software instrumentation can be categorized as follows:

• Where to instrument:

1. Source code instrumentation: instrument the source program

2. Binary instrumentation: instrument the executable directly

• When to instrument:

1. Static instrumentation: code is inserted to programs before runtime

2. Dynamic instrumentation: code is inserted and removed from programs

during execution
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2. Background

2.1. Software instrumentation

Performance information can only be obtained by monitoring
program execution via instrumentation. In a software monitoring
system, instances of software instrumentation are referred to as
sensors [8]. Software instrumentation may be inserted before, dur-
ing or after compilation as shown in Fig. 1 [3,9–14,1].

Instrumentation data is logged by a sensor if an event of interest
occurs. A sensor trigger policy may either be event-driven or time-
driven (these correspond to tracing and sampling, respectively) [15].
Instrumentation data is collected synchronously with the occur-
rence of an event in event-driven policy, whereas in time-driven
policy; the data is collected asynchronously. Instrumentation data
is recorded as an event record that includes information related to
that particular event; such as a time-stamp that shows when the
event occurred, a location-stamp that shows where the event oc-
curred, and additional data about the state of the system. Software
instrumentation can incur substantial overhead and redundant
instrumentation can be expensive.

2.2. Informativeness of a performance data

Un-interested performance data elimination efforts take place
in instrumentation or execution phases. Many instrumentation
tools allow user to select only some strategic points in the applica-
tion to reduce the performance data [2,3]. Others employ dynamic
intelligent algorithms that changes instrumentation automatically
while the application is running [1]. We have focused on finding a
way to change data collection (instrumentation) dynamically
based on informativeness of performance data.

For our goal, the entropy definition in information theory is
found eligible. However, this definition must be re-interpreted
for performance data collection. The idea is as follows: almost all
events that happen during an execution are known priori, however,
the order in which they occur is not known. This is because con-
trol-flow of a program can not be inferred from a static analysis.
Since the control-flow of a program is not known, it may still be
generating redundant data during execution (for example; re-
peated segments in executions). From the traces, it is clear that in-
stances of performance data do not contain equal amounts of
information; many of them are redundant. So, a redundant data
is whether (1) a data contain no information, which means causes
of an event are obvious and known by interested observer, or (2)

the information, of which the data may contain, can be extracted
using previous data.

2.3. The entropy definition

The concept of entropy is introduced as a measure of uncer-
tainty of a random variable in the information theory [16,17].
The entropy, H, is defined in Eq. (1), where n is the number of pos-
sible events whose possibilities of occurrence pi:

H ¼ "
Xn

i¼1

pi logðpiÞ ð1Þ

Since
Pn

i¼1pi ¼ 1; it can be shown that 0 6 H 6 log(n). The units in
which the entropy is measured depend on the base of the logarithm
used in the definition. Bit and nats are used for base 2 and e,
respectively.

The entropy H can also be interpreted as the average amount of
information that a message contains [18,19]. Suppose there is a
message which could be either a1 or a2 with probabilities p1 = 1
and p2 = 0, respectively; the entropy H is 0, which means the mes-
sage contains no new information. At the other extreme, suppose
p1 ¼ p2 ¼ 1

2 :
The entropy is then H = 1 bit. Receiving the message clearly

adds new information.

3. The algorithm

The entropy concept can be used to evaluate information con-
tent of instrumentation data. A link between parallel monitoring
and the information theory is set up with the following two
statements:

% All the events that will occur during the execution can be known
priori, but the exact order is not known.

% The uncertainty of events occurrence increases information con-
tent of its data.

We have slightly modified the original entropy definition to get
it work for monitoring properly. There are two concepts in the
algorithm: A window that holds a sequence of events that hap-
pened in the past, and a probability of transition scheme that de-
scribes the possibility of an event sequence occurrence. An event
in the right most position of the window is called the most recent
event, and an event which has just occurred and is not in the
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Figure 2.4: Software Instrumentation on Different Stages of Compilation

In [70], Zhonglei Wang summarizes that “the idea behind source code instru-

mentation is to insert timing information or analysis code into original source code

to estimate execution time or to profile other software behaviour of interest”. He

also gives some reasoning about the advantages of the source code instrumentation

as follows: source code instrumentation has good portability meaning the technique

can be ported to different platform, since the output of a source code instrumentation

is also source code just with additional sentences which provide or generate timing

or analysis information; another advantage is that the instrumented software can be

combined with hardware simulation.

Source code instrumentation shows promising results on software performance

estimation. SciSim [70] framework proposes an infrastructure to carry out static in-

struction scheduling for superscalar architectures during instrumentation. According

to Zhonglei Wang, the framework models runtime interactions between software and

microarchitecture by combining instrumented code and microarchitecture simulators.

Moreover, it instruments source code according to debugging information. A similar

work in [36] uses code instrumentation methods in software profiling to make an es-

timation on the task latencies and memory access. The source code instrumentation
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engine in the framework insert extra function calls inside software tasks.

In [21], Aimen Bouchhima suggests that software instrumentation can also be

used in embedded software annotation to enable performance modelling in high level

hardware/software co-simulation environment. [21] proposes a “cross annotation”

technique that allows instrumentation of embedded software on a basic block level.

Consistent with Zhonglei Wang in [70], Aimen Bouchhima indicates that the ad-

vantage about source level instrumentation strategy is that it tries to get rid of host

processor dependency by instrumenting the original source code. However, he argues

that finding the basic block boundaries in the source code and inserting the instru-

mentation call is a very difficult task. The reason for this difficulty is, as he points

out, the complex and rich syntax of the source code along with the effect of compiler

optimizations. In [20], as Marina Biberstein points out, another problem about in-

strumenting annotated program is that instrumentation might perturb the integrity

of annotation, making them invalid, and generating unpredictable results during the

execution of the programs, since the tools used for instrumentation are unaware of

the semantics of information which is passed by the annotation mechanism. In this

paper, Marina Biberstein presents a solution to address this interaction problem.

Comparing with source code instrumentation, binary instrumentation tools offer

the following advantages: since they instrument the binary or the executables, they

are independent of the compiler and the source language [64]; in addition, they do not

require recompilation and can take advantage of the processor characteristics [64];

Morever, in [51], the author suggests that “It also gives 100% instrumentation cover-

age of user-mode code”. In dynamic binary instrumentation, analysis code is added

to and removed from the original code of program at run-time.

One use for software instrumentation is to monitor control-flow. From the per-

spective of when to instrument the program, there are usually two types of software

instrumentations: the static instrumentation insert the instrumentation code to the

program before it executes, while the dynamic instrumentation instruments the pro-

gram when it is running. The most commonly used static binary instrumentation

tool is ATOM (Analysis Tools with OM) [64], is implemented by extending OM and

provides a framework for building customized program analysis tools, such as basic
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block counting tool and cache modelling tool. It also provides selective instrumenta-

tion. Thus, user can specify the points to be instrumented, the procedure calls to be

made, and the arguments to be passed on his own. For dynamic binary instrumenta-

tion, Pin provided by Intel is a valid option. It is a software instrumentation system

that carries out binary instrumentation on Linux applications during their run time.

Following the model of ATOM, PIN [45] makes the tool writer analyze an applica-

tion at the instruction level. Unlike ATOM, it does not instrument an executable

statically, but rather adds the code dynamically while the executable is running. Pin

carries out the instrumentation using a just-in-time compiler. Both ATOM and PIN

work on object modules. There are also other instrumentation frameworks avail-

able, such as Valgrind and DynamoRIO. Compared with PIN, these tools are not

fully automated. For example, Valgrind [51] depends on the tool writer to add spe-

cial operations to their intermediate representation to perform inlining. However,

by instrumenting the executable with extra code, these software instrumentation

methods might change the timing of the execution of the program unexpectedly and

unpredictably. Thus, they are not soundly applicable to the real-time systems where

timing has the top priority. Related work investigated software-support perspec-

tives [17] and hardware-based approach [74]. Meanwhile, monitoring control-flow is

especially expensive, and there is little work done so far to characterize or bound its

cost.

One disadvantage of binary instrumentation is that a tool that performs binary

instrumentation is usually limited to a specific instruction set architecture, since

an object file cannot be ported to other architectures. The binary instrumentation

tools ATOM is designed for Alpha AXP architecture [64]. Pin is originally designed

for Intel Itanium architecture, and PIN 2 extends its support to four architectures:

IA32, EM64T, Itanium and ARM [45].

From the modern language point of view, RAIL [24] (the Runtime Assembly In-

strumentation Library) is a general purpose code instrumentation library for .NET

platform. According to Bruno Cabral, the developer of this framework, RAIL allows

manipulating assemblies in an object-oriented way and provides high level instru-

mentation patterns for assisting the program in code instrumentation. Moreover,
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with the help of RAIL, assemblies can be instrumented at runtime.

In [25], Anil Chawla et al suggest that, there are two common approaches of

collecting run time information for Java program:

• Through a library which can rewrite the bytecode, adding instrumentation to

the code

• Using an aspect-oriented language

However, as they argue in the paper, both of these two approaches have their own

limitations: the first approach is expensive and hard to reuse and modify, while

the second approach cannot provide information at the basic-block level. Targeting

the above problem, they provide an extensive, configurable and generic framework

that can gather information from an executing program. According to them, the

framework lets the user define instrumentation tasks thus provides an easy method

to instrument entities located in different parts of the code and collect distinct in-

formation from these entities.

Another application of program instrumentation is software dynamic translator

(SDT) for self-managing systems which dynamically modify and control the execution

of a program for code transformations at run-time, detection and repair of program

faults. In [40], Naveen Kumar et al present a scalable and flexible framework,

called FIST, which is also a dynamic instrumentation system. The instrumentation

primitives in the framework are portable across different SDT infrastructures and

machine architectures with both variable length and fixed-length instruction sets.

Software instrumentation can also aid program execution monitoring. In [65],

Kevin S. Templer et al present an automatic software instrumentation tool, called

CCI, which instruments C programs for program monitoring and visualization. In

their method, they reduce the runtime overhead by instrumenting selective events.

The tool also provides ways of extracting high level events.

In static instrumentation, the instrumentation is inserted into the code before

execution and remains in the code afterwards. Although simple, static configura-

tion is not generally efficient in terms of the information gathered versus overhead
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introduced, especially for long running programs. Thus, static instrumentation in-

troduces immense overhead to both time and space. The instrumentation results in

the growth of code and the instrumentation stays in the code leading to unnecessary

time overhead. The large volume of data collected by static software instrumentation

is a problem since storing and processing the data consume system resources such as

memory, disk space, and CPU time.

Instrumentation also provides aids in structural testing which checks that a given

coverage criterion is satisfied. In [48], Jonathan Misurda et al propose a demand-

driven approach for instrumenting a program to perform different types of structural

testings based on the execution path. According to them, the framework employs

dynamic instrumentation to generate structural software testing tools.

Although the data trace produced by the instrumented programs make it possible

for developers to locate bugs in the system, producing these data traces introduce

large runtime overhead and might perturb the system’s timing and behaviour. To

solve the above problem, the authors in [28] develop an instrumentation technique

for applications with temporal constraints and give reasoning about space and time

for software instrumentations.

2.4 Program Sampling

Several works apply the concept of sampling to program debugging: using random

sampling in statistical debugging to isolate bugs [44]; debugging programs given sam-

pled data from thousands of user runs [75]; a sampling infrastructure for gathering

information from a large number of executions [43]. These works focused on using the

sampling concept to gather run-time information from program executions in work-

station software. Paradyn [14], which monitors long running parallel applications,

uses dynamic instrumentation and adjustable sampling rate to reduce the perfor-

mance data amount collected. The time driven control changes the sampling rate

using a hypothesis set of performance problems. If incoming data show a problematic

pattern then sampling rate is increased to get more data and thus a better vision
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about the problem. Jonathan Misurda et al also build a tool called Jazz [48] which

inserts and removes the instrumentation dynamically according to the demand.
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Chapter 3

Sampling-based Program

Execution Monitoring

3.1 System Model and Terminology

This work concentrates on multi-process single-threaded applications like the ones

found in background/foreground systems. This structure dominates the embedded

software domain due to its maintainable structure and efficient resource utiliza-

tion [41, 29]. Note that about 85 percent of all embedded systems use 8-bit or

smaller architectures [66].

We also assume that the system supports interrupts and has at least one high-

precision timer as commonly found in microcontrollers. For example, the ATmega128

microcontroller has four timers.

3.1.1 Model Definition and Terminology

To analyze and reconstruct the execution path of an application, we convert a source

program to a directed graph, representing the program’s control flow. We define the

control-flow graph as G = 〈V,E〉.
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In G, each vertex (v ∈ V ) represents a basic code block in a program. The

entry vertex ven is the start of the program. The exit vertex vex is the termination

of the program. Edge e := 〈vs, vd〉 represents the specific transition from a source

vertex vs to a destination vertex vd. It assumes that G is an unweighted graph with

e := 〈vs, vd〉 = 0, which means that there is no delay in the transition between two

vertices.

We define the function c : V → N, which specifies the required execution time

for a vertex v. For example, c(v0) = 10 means that the basic code block at vertex v0

requires 10 time units for its execution.

We define a path p as a sequence of adjacent vertices vi → vi+1 → . . .→ vk. The

execution time of a path p is the sum of the execution times of all vertices and is

defined as cp(p) =
∑
c(vi) for all vi ∈ p. An execution path r is the actual path

executing from the entry vertex ven to the exit vertex vex.

Our approach periodically takes samples from the execution information and

program state. In this context, we define a sample as a triple s := 〈state, v, t〉 where

v represents the vertex sampled, t represents the time stamp when we take the

sample and state represents the program state (e.g. the values of some variables) at

that time stamp. We define the sampling period T as the constant time interval ∆t

between two adjacent samples, that is, T = ∆t = ti+1 − ti for two adjacent samples

si := 〈statei, vi, ti〉 and si+1 := 〈statei+1, vi+1, ti+1〉.

Furthermore, to evaluate the quality of the sampling period, we define the func-

tion pathfindt(vi, vj,∆t) with ∆t = tj − ti returning all possible paths between two

vertices while ∆t represents the execution time interval between vi and vj. We define

the sampling period as too long, if multiple paths exist between two vertices of two

samples, which is indicated by |pathfind(vi, vj,∆t)| > 1,where vi, vj ∈ V . We define

a sampling period as sufficient, if only one path exists between two vertices.

We form the concept of optimality for the sampling period with respect to both a

vertex and a complete control-flow graph. If a sampling period T is sufficient and a

sampling period T + ε is too long, T is the optimal sampling period for the starting

vertex in the given control-flow graph. In other words, sampling after T permits

only one path between the two samples and T + ε permits multiple paths. ε is the
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Figure 3.1: Different sampling periods for one control flow

smallest integral positive quantity of execution times in a control flow graph. Stating

this formally, starting from a specific node vi, we say the sampling period T is optimal

for the node vi, if |pathfindt(vi, vnext, T )| = 1 while
∣∣pathfindt(vi, v

′
next, T + ε)

∣∣ > 1.

For a control-flow graph G = (V,E), the optimal sampling period is the minimum

of the optimal sampling periods of vertices in that control-flow graph. Thus, we define

the optimal sampling period Topt as Topt = min(T1, . . . , Tk) where Ti is the optimal

sampling period for vi ∈ V with V = (v1, . . . , vk).

Example 3. Figure 3.1 shows an example of a control-flow graph, a starting vertex

v1, and several sampling periods ∆t1 = 1, ∆t2 = 2, and ∆t3 = 3. All basic blocks

have the same execution time c(vi) = 1. From our definitions, for vertex v1 the sam-

pling period ∆t1 is sufficient, since |pathfindt(v1, v2,∆t1)| = |pathfindt(v1, v5,∆t1)|
= 1;∆t2 is optimal, since |pathfindt(v1, v3,∆t2)| = 1 while |pathfindt(v1, v4,∆t2 + 1)| =
2; ∆t3 is too long, since |pathfindt(v1, v4,∆t3)| = 2.

3.1.2 Markers

To increase the sampling period and reduce monitoring overhead, we introduce the

concept of markers and extend a sample with state information. A marker can be
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a system element such as the program counter, because a vertex in the control-

flow graph is a basic block in the source code. Alternatively, a marker can also be a

newly introduced variable solely used for monitoring the software. For the remainder

of this paper, we will only use extended samples and thus s := 〈state, v, t〉 where

state is also a tuple defined as state := 〈m1, . . . ,mk〉 with mi representing a marker

of a system state such as memory, processor word, I/O registers, or our introduced

variables which we can carry out arithmetic operations on or assign values to.

We thus refine the pathfind function as pathfinds(vi, vj, statei, statej,∆t)

where statei and statej are the state elements of the corresponding samples.

Using the function pathfinds, a sampling period T is optimal,

if |pathfinds(vi, vnext, statei, statenext, Ti)| = 1 while∣∣pathfinds(vi, v
′
next, statei, state

′
next, Ti + ε)

∣∣ > 1.

As stated above, markers are special variables that can be used for extending the

optimal sampling period. We introduce such new markers and increment their values

at well-placed locations. We give the following example to show how the markers

work.

Example 4. Figure 3.2 shows a program control flow. All basic blocks have the same

execution time c(vi) = 1.

Without introducing a monitoring variable a, we use function pathfindt(vi, vj,∆t)

to find the optimal sampling period. Starting from vertex v1, there are three possi-

ble paths afterwards. If we take the sample after time 1, then |pathfindt(v1, vi, 1) | = 1

with i = 2, 3, 4. However, if we take the sample after time 2, then

|pathfindt(v1, v5, 2)| = 2. Figure 3.3 shows the mechanism of this function. Thus,

the optimal sampling period for node v1 is T1 = 1. Applying the same mechanism,

for every other vertex vi with i = 2, 3, 4, 5 in the control-flow graph, the optimal

sampling period Ti with i = 2, 3, 4, 5 is 4, 3, 3, 2 respectively. Thus, for the whole

control-flow graph G = 〈V,E〉, the optimal sampling period Topt is 1.

Using the monitoring variable a, Figure 3.4 shows the resulting optimal sampling

period. We will use function pathfinds(vi, vj, statei, statej,∆t) to select the optimal

sampling period. Starting from vertex v1, the mechanism is shown in Figure 3.4.
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Figure 3.3: pathfindt(vi, vj,∆t)

While |pathfinds(v1, vi, state1, statei, 4)| = 1 with i = 2, 3, 4, 5 and state := 〈a〉,
|pathfinds(v1, v5, state1, state5, 5)| = 2. Thus, for vertex v1, the optimal sampling

period is 4. Applying the same mechanism, for every other vertex vi with i = 2, 3, 4, 5

in the control-flow graph, the optimal sampling period Ti with i = 2, 3, 4, 5 is 7, 6, 6, 5

respectively. Thus, for the whole control-flow graph G = 〈V,E〉, the optimal sampling

period Topt is 4. Compared with the previous example, introducing marker a increases

the optimal sampling period Topt by a factor of 4.

3.2 Theoretical Optimum

By using markers, we can increase the sampling period without losing any essential

information about the execution paths. We call inserting such markers into vertices

instrumentation.
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Figure 3.4: pathfinds(vi, vj, statei, statej,∆t)

An important problem is to understand the limitations of such marker-based

instrumentation. We therefore provide theorems to find the theoretic sampling period

and decide on the termination conditions.

We require two additional definitions for the theorems. A path pair pp can

be defined as two paths which have the same entrance vertex and the same

exit vertex with their exit vertices overlapping in time, but no other vertices between

the entrance vertex and the exit vertex overlap in time.

That is, |pathfinds(ven, vex, stateen, stateex,∆tex)| = 2 while

|pathfinds(ven, vnext, stateen, statenext,∆tnext)| = 1, where 0 < ∆tnext < ∆tex. A

path set is defined as a set of paths of which any two paths constitute a path pair as

defined above.

Lemma 1. In a path pair pp, a path which starts from the entrance vertex ven and

ends at any other vertex except the exit vertex vex is unique. Formally,

|pathfinds(ven, vnext, stateen, statenext,∆t)| = 1, where vnext ∈ Vpp and vnext 6= vex.

From the definition of a path pair, we can draw the following conclusion:

Lemma 2. (Optimal Vertex Sampling Period) In a control-flow graph, all path pairs

starting at vertex vi constitute a vector PPvi〈pp1, pp2, . . . , ppk, . . . , ppm〉, with each
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path pair starting at time tien and ends at time tkex, with k = 1, 2, . . . ,m. The

optimal sampling period of this vi is defined as Topti = min |(tkex − tien)| − ε, with

k = 1, 2, . . . ,m.

Therefore, to calculate the theoretic optimal sampling period, it is essential to

find path pairs for every vertex in the control-flow graph. We propose the following

approach to find path pairs starting from vi: we construct an array of vertex states

ordered by time; starting from vi, we search vi’s child vertices and their corresponding

states; then, we compare the state of child vertex vj with that of vk in the state array.

If they meet the path pair conditions, we will say that the path which starts from vi

and ends at vj and the path which starts from vi and ends at vk constitute a path

pair; if the conditions are not met, we will treat that child vertex as a father vertex,

add it to the state array after sorting and continue to search for path pair.

Definition 1 (Optimal Sampling Period). For a control-flow graph with N vertices,

the optimal sampling period of the whole graph is the minimum sampling period of

all sampling periods for all vertices. Formally, Topt = min(Topt1 , . . . , ToptN ).

By choosing a proper strategy to find the vertices which are instrumented with

markers and thus making the states of overlapping exit vertices different, we can

extend the path pair and therefore increase the sampling period. However, the

number of markers to instrument with is limited. With the the number of markers

increasing, the following situation would occur. After the number of markers reaches

a certain value, no matter how we instrument the vertices with markers, we cannot

extend the path pair any further. In other words, we cannot increase the sampling

period any more. In this situation, regardless how many markers are available, we can

no longer distinguish the two paths in the path pair. Obviously, we should terminate

the instrumentation process at this point. We propose the following theorem to draw

this termination condition:

Theorem 1 (path pair Termination). For two paths p1 and p2 in a path pair, if they

meet the following conditions:

• they have the same vertices with the same number of appearances but possibly

a different order in time
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• the states of the corresponding vertices are the same

we can no longer instrument vertices with markers to differentiate these two paths,

thus reach the theoretical optimum sampling period for this path pair.

Proof. We use proof by contradiction to prove our theorem. Suppose that we reach a

path pair with its two paths (p1 and p2) violating the above conditions in Theorem 1.

For example, the two paths have different vertices between them or the two paths

have exactly the same vertices but the numbers of their appearances in these two

paths differ. We assume that the sampling period Tfalseopt we get here is the theoretic

optimum sampling period. However, if we instrument the distinct vertices of the two

paths or the identical vertices which have different numbers of appearances in two

paths with markers, we can still extend this path pair and form a new path pair

whose sampling period is larger than Tfalseopt. This contradicts the assumption that

Tfalseopt is the theoretic optimum sampling period, as we can still distinguish these

two paths. In this way, we prove that our theorem is correct.

When a path pair satisfies the conditions in Theorem 1, we can terminate the

instrumentation process since we can no longer distinguish the two paths through

instrumenting vertices with markers.

Theorem 2 (Single Marker Termination). If the optimal sampling period can be

extended by instrumenting a path pair or a path set with only one marker is an SAT

problem.

Proof. For a path pair ppk, all the vertices except the entrance and exit vertices

constitute an internal vertex set Ωk. In Ωk, all vertices that can be used to instrument

with markers constitute the set Φk, with all the other vertices which can not be

instrumented constituting the set Ψk. Then, Ωk = Φk ∪ Ψk. In Φk, the vertices, all

of which cancel out the instrumentation when they are instrumented with markers

at the same time, constitute Υk. Thus, Υk ⊆ Φk. When condk = (vk1 ∨ vk2 ∨ . . . ∨
vkj) ∧ (vc1 ∧ vc2 ∧ . . . ∧ vcm) ∧ (vkj+1 ∨ vkj+2 ∨ . . . ∨ vkj+m),with Φk = {vk1 . . . vkj},
Υk = {vc1 . . . vcm} and Ψk = {vkj+1 . . . vkj+m}, is satisfiable, we can distinguish the

two paths in a path pair k.

32



va vc ve vd

vb vc

ve vb

Figure 3.5: Scenario when theoretical optimum is reached using only one marker

The theoretical optimum for a graph using only one marker is reached, when we

get to a path set, where Ω = cond1 ∧ cond2 ∧ . . . ∧ condN can never be satisfied.

Example 5. As shown in Figure 3.5 we get to a path set S = {p1, p2, p3} with

p1 = va → vb → vc → vd, p2 = va → vc → ve → vd and p3 = va → ve → vb → vd.

For path pair pp12 = {p1, p2}, the two paths p1 and p2 can be distinguished using only

one marker, as cond12 = (vb ∨ ve) ∧ (vb ∧ ve) ∧ vc is satisfiable. Similarly, the two

pairs of paths in path pairs pp13 = {p1, p3} and pp23 = {p2, p3} can be distinguished

respectively, with cond13 = (vc∨ve)∧(vc ∧ ve)∧vb and cond23 = (vb∨vc)∧(vb ∧ vc)∧ve
satisfiable. However, cond12, cond13 and cond23 can not be satisfied at the same time

using only one marker. In other words, Ω = cond12 ∧ cond13 ∧ cond23 can never be

satisfied. At this point, we reach the theoretic optimum using only one marker.

3.3 Calculating the Sampling Period

However, in practice, we encounter path pairs much more often than path set as

the likelihood is quite small for three or more paths to have the same entry and exit

vertices with the same time span. Thus, it is both practical and important to develop

an algorithm that has a polynomial runtime complexity to calculate the sampling

period for path pairs.
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Given a control-flow graph G = 〈V,E〉, to calculate the optimal sampling period

for a vertex in the path pair, we propose the following algorithm based on the breath-

first-search (BFS) [26] to implement pathfinds.

This algorithm is based on breadth-first search (BFS). Firstly, we pick a starting

vertex vertex by setting its state as OPEN. We also build a set Vopen which contains

all vertices that are adjacent to vertex vertex and set it to OPEN as well. In

set Vopen, we choose the vertex which has the least execution time tmin as the next

starting vertex vnext to move to. At the same time, we update the sampling period by

increasing it by tmin and the execution time of all vertices in set Vopen by decrementing

them by tmin. We build another set Vtoopen which contains all the vertices that are

both adjacent to and reachable from vnext. At last, we check the set Vtoopen. If it

contains a vertex whose state is OPEN and execution time is greater than zero, we

say the optimum sampling period for that vertex is reached and return the current

sampling period as optimum. If not, we repeat the above procedure until we reach

the optimum conditions stated above.

Since the algorithm uses BFS, the runtime complexity for our algorithm is O(|V |+
|E|).

3.4 Instrumenting Control Flows

As stated above, to increase the sampling period, we introduce markers to the control-

flow graph. In this section, we present our instrumentation approaches, analyze the

related issues caused by the instrumentation and give our strategies to resolve these

issues.

3.4.1 Increment VS Assignment

Instrumentation algorithms can use markers in different ways. One method is to

increment the value of the marker each time the marker is hit. The other assigns a

fixed number to the marker. We provide the following two examples to prove that

neither of these two options is better than the other.
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Vertex v := 〈state, time〉,
Edge e := 〈vsrc, vdst, cond, updates〉
for all v ∈ V do

v.state⇐ CLOSED

end for

ven.state⇐ OPEN

tResult⇐ 0

Vtoopen ⇐ {}
Vopen ⇐ {}
loop

if Vopen is empty then

for all v ∈ Vtoopen do

v.state⇐ OPEN

end for

Vopen
⋃
{v|v ∈ V andv.state = OPEN}

Vtoopen ⇐ {}
end if

tmin ⇐ min(v.time) of all v ∈ Vopen
vnext ⇐ v where v ∈ Vopen with v.time = tmin

tResult⇐ tResult+ tmin

for all v in Vopen do

v.time⇐ v.time− tmin

end for

for all e ∈ E with e.vsrc = vnext and eval(e.cond) = T do

if e.vdst.state = OPEN and e.vdst.time > 0 then

break from loop

else

create state for e.vdst and execute updates (e.updates) on this state

Vtoopen ⇐ Vtoopen
⋃
e.vdst

end if

end for

vnext.state⇐ CLOSED

end loop

return tResult− 1

Algorithm 1: Find optimal sampling period for a vertex
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Figure 3.6: Scenario where increment works but not assignment

Figure 3.5 shows a path set. By adding the marker with a different assignment to

the last vertex before the exit vertex (e.g., vc ← a = 1, ve ← a = 2 and vb ← a = 3 )

in each path, we can distinguish these three paths in a sample taken at vd. However,

according to Theorem 2, we cannot distinguish these three paths by increment-based

marker methods. Thus, the assignment-based marker method can instrument cases

that the increment-based one cannot.

Figure 3.6 shows another case. We can instrument v4 or v7 with increment-based

markers and distinguish the two paths in path pair pp(6,8). However, since v4 and v7

are also the exit vertices of two other path pairs pp(1,4) and pp(10,7), instrumenting

these two vertices by assignments renders any previous instrumentations invalid, as

several paths will share the same marker value and can invalidate another instru-

mentation at a later point. As shown, if we use increment instead, we will be able

to solve this problem and distinguish the paths. Thus, the increment-based method

can instrument cases that the assignment-based method cannot.

Since each method can instrument at least one case that the other cannot instru-

ment, both methods have their justification as they can instrument different sets of

control-flow problems. Instrumentation with assignment can be used in the scenario

in which there is no previous increment marker introduced in the path set or path

pair. Instrumentation with increment can be used as long as the elements in path

set or path pair are not isomorphic.
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3.4.2 Interference

Greedy instrumentation suffers from the problem that the instrumentation at a sub-

sequent step may influence the instrumentations of previous steps. This can happen

in either a direct or an indirect way. In direct interference, the subsequent instru-

mentation adds a marker to a vertex which is already part of a previous path pair or

path set and this breaks the original instrumentation for that particular path pair,

which relies on one of the paths being free of instrumentation. In indirect interfer-

ence, the subsequent instrumentation adds a marker to a vertex which reveals a new

path pair with a shorter time span. The following two examples show these effects.

Example 6 (Direct interference). We assume a control-flow graph, a greedy in-

strumentation strategy with only one available marker, and that each vertex has an

execution time of one time step. Figure 3.7(a) shows the initial state of a path pair

pp(1,4). Any greedy strategy will pick either v2 or v5 to instrument with a marker.

Here we assume that the strategy picks v2 as shown in Figure 3.7(b).

v5 is also part of another path pair pp(6,11) with a longer time span as shown in

Figure 3.7(c). In this example, there will be a problem if the greedy strategy picks

v5 in the subsequent instrumentation step instead of v10, v7, or v8. Instrumenting v5

breaks the original instrumentation for path pair pp(1,4), since both paths in path pair

pp(1,4) are then instrumented and can not be distinguished from each other.

Example 7 (Indirect interference). We make the same assumptions as that in Ex-

ample 6. As shown in Figure 3.8, the greedy algorithm first discovers the path pair

pp(1,4) and instruments v5 to distinguish the two paths. By instrumenting v5, the

greedy algorithm also distinguishes the path pair pp(6,11), so the algorithm will not

notice it—we now call it hidden—and instead see the path pair pp(12,14) as the next

path pair with the shortest time span. If the algorithm now instruments v8, it will

reveal the hidden path pair which will cause a decrease in the sampling period.

While a greedy algorithm can eliminate direct interference—see our SAT-based

algorithms—eliminating indirect interference is hard, as it requires the algorithm to

search for hidden path pairs with all possible marker configurations.
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Figure 3.7: The problem of direct interference during greedy instrumentation
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Figure 3.8: The indirect interference caused by a greedy pick
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3.4.3 Algorithms

We design seven different greedy algorithms (strategies) to find a suitable instrumen-

tation. In our algorithms, the potential candidate vertex to instrument with markers

to distinguish the two paths in a path pair is the one that is distinct in either of the

two paths or is contained in both paths but has different numbers of appearances.

The seven strategies can be divided into three categories:

I Degree-Based: The algorithms make decisions based upon the largest or smallest

sum of in-degree and/or out-degree of the vertices in the context of the whole

directed graph.

II Frequency-Based: The algorithms make decisions based upon the occurrence

frequency in the path pair, such as the most or least frequently occurring vertex.

III SAT-Based: The algorithms transform the instrumentation into a SAT problem

and compute a solution to find the instrumentation. The weighted SAT algo-

rithm tries to combine the frequency-based method with the SAT-based ideas.

The following gives a detailed description of how each strategy works:

1. InOutDegreeMaxStrategy : It firstly finds potential candidate vertices in a

path pair. Then among these vertices, it finds the one that has the largest sum

of in degree and out degree in the context of the whole directed graph as the

to-be instrumented vertex.

2. OutDegreeMaxStrategy: Among the potential candidate vertices, it finds the

one that has the largest out degree in the context of the whole directed graph

as the to-be instrumented vertex.

3. OutDegreeMinStrategy: Just the opposite of OutDegreeMaxStrategy, it finds

the one that has the smallest out degree in the context of the whole directed

graph as the to-be instrumented vertex.
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4. SimpleGreedyMaxStrategy: Firstly it builds a hash table ht = 〈key, keyvalue〉
with key being Vertex’s ID and key value being vertex’s sum of difference of

appearance in each path pair across the whole path set. Then among the

potential candidate vertices, it finds the one that has the largest key value in

the hash table as the to-be instrumented vertex.

5. SimpleGreeyMinStrategy: Just the opposite of SimpleGreedyMaxStrategy, it

finds the one that has the smallest key value in the hash table as the to-be

instrumented vertex.

6. GreedySATStrategy: We use this strategy to decrease the interference between

different path pairs. Firstly, it separates the potential candidate markers be-

tween T1 and T2 and constructs a truth table. Secondly, it lists all the possible

combinations which make the SAT expression true in the true table and return

the combination as the to-be instrumented vertices. In the second run, while it

constructs the true table, it also considers the outcome of the first run, that is,

uses conjunction with the first. Instead of instrumenting one vertex each run,

this strategy instruments several vertices in one run. Using SAT, it efficiently

decreases the interference between different runs to the minimum.

7. MultipleGreedySAT: It is an extension of GreedySAT and focuses on instru-

menting different markers. It firstly use SAT in GreedySAT to get the list of

vertices. Then, it constructs a true table for the header of the list and gets

all the possible scenarios to make the SAT expression true. In the later runs,

it also considers the outcome of the previous runs when constructing the true

table. In each run, instead of instrumenting using only marker, it instruments

with different markers.

3.5 Simulation Method

To validate the theorems and the concepts of this work, we build an instrumentation

engine that instruments control flow graphs. The engine provides the framework to
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test different heuristics but also computes the theoretic optimum following Theo-

rem 1. The outputs are the instrumentation vertices, the required execution time,

and the resulting sampling period.

Our inputs are realistic and statistically significant. The input data consist of

5 000 control flow graphs which model typical C program flows [68]. We generate

these control flows with a customized version of Task Graphs For Free [27]. Regarding

the SAT-based heuristic, we implement it using a SAT solver called SAT4J [2] in our

instrumentation engine. One experiment run works as follows: we select a control

flow graph, a heuristic (or the optimum algorithm), and the number of available

markers and pass these values to the instrumentation engine. The engine computes

the input control-flow graph and returns the sampling period, vertex to instrument,

and the required execution time. Since the computational work is quite intensive,

we perform our simulation through the Canadian super computing cluster called

SHARCNET [3] collecting about 3.2 million instrumentation data points from up to

50 instrumentation steps, seven strategies, and several multi-marker configurations.

Our data successfully pass these integrity checks: (1) the execution time of the

heuristic increases with the number of instrumentation steps, (2) no sampling period

found by a heuristic is greater than the optimal sampling period, and (3) on average,

the sampling period increases with the increase in the number of instrumentation

steps.

The data distribution differs from a normal distribution (Shapiro-Wilk normality

test for the data series varies around p = 10−15). Thus, we rely on median values

and testing procedures free of the normality assumption.

3.5.1 Instrumentation Performance Metric

To compare the performances of the algorithms, we take the maximum sampling

period achieved in each run per algorithm and sum them; see Eq. (3.1). This metric

is robust against direct and indirect interference outlined in Section 3.4.2.

P =
∑

max(Ti) (3.1)
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Figure 3.9: Example of interference of greedy instrumentation

3.5.2 Monotonicity Metric

Interference in the greedy instrumentation algorithms has an unpleasant effect on

the monotonicity of the algorithms: a subsequent instrumentation may decrease the

sampling period. This is contrary to what the user expects. Since each instrumenta-

tion introduces overhead, it is generally expected that the sampling period increases

accordingly. Figure 3.9 shows an example of this behaviour. X-coordinate represents

each instrumentation step with the same marker (the same variable in this case).

Y-coordinate is the sampling period resulting from each instrumentation.

We use the following monotonicity metric to evaluate the algorithms:

M =
N∑
di

(3.2)

with

di =

{
0 if Truni − Truni+1 ≤ 0,

Truni − Truni+1 otherwise
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In the metric, we use di to denote the decrement of the sampling periods between

two instrumentation steps runi and runi+1, if the sampling period of one instrumen-

tation step runi is greater than that of its subsequent instrumentation step runi+1.∑
di denotes the sum of decrements in the entire instrumentation steps for a test

case. N denotes the number of the total instrumentation steps. This monotonic-

ity describes the reciprocal of the average decrement across the entire process of

instrumentation steps for a test case using a specific strategy and gives a general as-

sessment of that strategy, since the decrement represents the interference introduced

by instrumenting vertices with markers.

3.5.3 Execution time

We measure the execution time by comparing the time stamp when the execution

of heuristic starts with the time stamp after the instrumentation step is completed.

The sum of all these times for one run provides the total execution time for that

run. While we will not be able to compare quantitative results, because of the

heterogeneity of SHARCNET, we will draw conclusions based on the similarity of

the algorithms.

3.6 Results and Discussion

Following the experimental methods presented we give our experiment results which

are sound and show statistical integrity. We also discuss the results and present the

corresponding interpretation.

3.6.1 Instrumentation Performance

We follow the recommended guidelines for multiple testing [18]. We check that

all input data for calculating the performance metric have roughly the same shape

(single bell-like shape with a cut-off left tail) for all algorithms. The instrumentation

performance differs significantly among the algorithms (Kruskal-Wallis Rank Sum
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Test returns p = 2−6). Using a Bonferroni correction for multiple testing among our

algorithms, we test an individual algorithm with a p ≤ 0.05
91

to be accepted.

Figure 3.10 shows the result of the performance measurements for up to 50 instru-

mentation steps and compares it with the theoretic maximum achievable following

Theorem 2. X-coordinate represents different heuristics with either multiple mark-

ers or a single marker. Y coordinate is the normalized experiment results of sam-

pling period. The higher the performance value, the better. For the single-marker

algorithms—the right part of the figure—the degree-based algorithms outperform

the others except the ‘max impact’ algorithm. We use the Wilcoxon rank sum test

with continuity correction and it shows that the differences among the degree-based

algorithms are insignificant while it shows a difference between all degree-based al-

gorithms and the ‘min impact’ as well as the SAT-based algorithms. An interesting

point is that the SAT-based algorithms perform significantly worse than any of the

other algorithms. Part of this is, because bad early decisions in the SAT algorithm

cannot be undone by a later instrumentation. While, for example, the degree-based

algorithms may break a previous instrumentation and cause direct interference, the

SAT-based ones cannot do this, because they preserve all previous instrumentations.
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Figure 3.10: Instrumentation performance of all algorithms.

Using multiple markers improves the performance and asymptotically approaches

the optimum. The middle part of Figure 3.10 shows the ‘max impact’ algorithm

with different markers. Since ‘max impact’ performs similarly to other degree-based
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algorithms, if we were using a different algorithm, it would result in the same data.

The gains achieved with small marker increases are significant. However, once the

number of markers grows beyond ten, the results no longer differ using the Wilcoxon

rank sum test with the adjusted significance level.

3.6.2 Monotonicity

Besides instrumentation performance, we also investigate monotonicity by the mono-

tonicity metric defined in Section 3.5.2. Figure 3.11 shows the monotonicity of all

heuristics normalized to SAT. X-coordinate represents different heuristics with ei-

ther multiple markers or a single marker. Y coordinate is the normalized experiment

results of sampling period. The higher the monotonicity value, the better. The left

part of the figure shows the results of using only one marker. We use the same

statistical test procedures as mentioned above to establish statistical significance.

The SAT-based algorithms clearly outperform all the other algorithms. The rea-

son is that the SAT-based heuristics always carry forward the previous path pairs

and thus guarantee that a subsequent instrumentation avoids interfering with a pre-

vious one. The remaining monotonicity only originates from indirect interference.

We can also conclude that in general approximately 20% of the interference in the

instrumentation is indirect interference while 80% is direct interference.

Using multiple markers, we try to: (1) increase the achieved sampling period, and

(2) improve monotonicity. We try to increase the sampling period, because if one

marker is no longer sufficient (Theorem 2), we can use another marker until we hit

the optimum for path pairs (Theorem 1). Figure 3.10 shows that we have achieved

this. We also hope to improve monotonicity by reducing the interference between

subsequent instrumentation steps. Whenever we switch to a new marker, we avoid

interfering with a previous instrumentation. The results are quite surprising.

The right part of Figure 3.11 shows monotonicity with multiple markers. While

using multiple markers improves the monotonicity of the heuristics, the improvements

are still rather limited, and at some point become insignificant in general. However,

individual cases can benefit significantly, as Figure 3.12 shows. X-coordinate rep-
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Figure 3.11: Monotonicity of heuristics

resents each instrumentation step with either multiple markers or a single marker.

Y-coordinate represents the sampling period resulting from each instrumentation

steps. The SAT-based heuristics still shows a better overall monotonicity than the

‘max impact’ heuristic with 25 markers.

3.6.3 Execution Time

We use SHARCNET to compute the results and collected the execution time of

each instrumentation step. Based on the differences in the available computation

time and platforms on SHARCNET, the results are purely informal and allow us to

draw only conclusions when we can justify them algorithmically. For example, the

weighted SAT algorithm builds on the SAT algorithm and uses a timeout to bound

the execution time. Its execution time is about three orders of magnitudes greater

than the SAT-based test. However, the complexity of the weighted SAT algorithm

yields no improvement as seen in the performance and monotonicity analysis before.
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Figure 3.12: Improving monotonicity with multiple markers

3.7 Summary

In this Chapter, we proposed a framework for sampling-based monitoring to de-

termine the execution path of the program and analyzed different algorithms for

instrumenting a control-flow graph. We defined the system model and proposed two

theorems based on it to determine when to stop instrumentation. While all heuristics

worked to increase the sampling period, the degree-based heuristics outperformed the

SAT-based ones, but the SAT-based ones achieved a higher monotonicity. Through

normalized comparison, the SAT-based heuristic proved to be superior to others in

terms of monotonicity. We further concluded that only 20% of interference was from

indirect interference. We showed how to increase the sampling period by using mul-

tiple markers. However, this method had a limitation in that overusing markers did

not pay off as much as we expected in the long run.
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Chapter 4

SBMTC: A Sampling-based

Monitoring Tool Chain

To investigate and evaluate the effectiveness and efficiency of the sampling-based

program execution monitoring, we implemented our method and built a tool chain

with it. The tool chain, called SBMTC, consists of a CFG generation, an execution

time measurement, a sampling-marker search engine, a marker insertion engine, and

a sampling-monitoring engine.

4.1 Tool Chain Overview

Based on the methodology proposed in Chapter 3, I built a tool chain to implement

the sampling-based program execution monitoring method. Figure 4.1 shows the

work flow of the tool chain.

In this section, I briefly describe the functionality of each module in the tool

chain as follows and I will give more details in the subsequent sections.

1. CFG Generation: Using CIL, it generates the segmentation and CFGs of the

C programs.

49



2. Execution Time Measurement: It instruments programs with timestamps to

measure the execution times of basic blocks and annotates vertices in CFG.

3. File Conversion: It converts the .dot files into the input files readable by the

Sampling-Marker Search Framework.

4. Sampling-Marker Search Framework: It uses heuristics to find the vertices to

instrument and then calculates the optimal sampling period based on those

vertices. I have given extensive discussion on the heuristics and the methods

employed in this framework in Chapter 3.

5. Marker Info Extraction: It extracts the information about marker instrumen-

tations from the output files of Sampling-Marker Search Framework and gen-

erates the input file which is also part of the input files of Marker Insertion

Engine.

6. Marker Insertion Engine: It instruments the source code with the markers

using the information provided by the previous steps.

7. Sampling-Monitoring Engine: It uses either “shared memory” or “GDB auto-

mated by Python” to sample the running program and collect the run time

information.

4.2 Control Flow Graph Generation

This section explains how to use CIL to generate control flow graph from a C program

along with some limitations using this method and other potential options.

The methodology of sampling-based program execution monitoring works with

control flow graphs. To implement the tool chain based on the methodology proposed

in the previous chapter, first of all, we have to extract the control flow graph from

a given program. However, due to the complexity imposed by various programs and

programming styles, extracting or generating the control flow graph from a program
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is also a standalone problem and is beyond the scope of my current research. Thus,

the method employed in this thesis is just one of the many methods that tackle the

CFG generating problem.

A control flow graph (CFG) is a directed graph with a single entry. A CFG

is “comprised of vertices representing basic blocks with directed edges representing

the flow of control in a program” [57]. A basic block represents a stream of succes-

sive statements where the control flow comes in at the start and exits at the end,

without any branching except at the end of the basic block [15]. Though flexible in

dealing with low-level constructs, the C program language is difficult to analyze and

instrument by either humans or automated tools [50].

Before choosing to use CIL, I examined a number of existing tools that might

be useful for generating control flow graph. None of the those tools met all my

requirements on a CFG or served other components well enough to finish the tasks

in the tool chain. Some (e.g. [71, 37]) are designed for specific compilers and are

thus too low level for me to carry out the implementation. In [50], George C. Necula

et al argue that the low-level representations generally lose structural information on

high-level constructs, such as types and loops. Thus, he suggests that the printed

out low-level representation is hardly faithful to the original C code. Some (e.g. [5])

are so high-level that detailed analyses are not supported, though they can visualize

control flow graph in a fancy way. An intermediate language for generating the CFG

which can be used to instrument the source code should be simple to analyze, close

to the C source code so that conclusions from the tool can be mapped back to the

statements in the source code, and able to handle real-world code [50]. CIL, which

is a highly-structured subset of C, meets all these requirements.

CIL (C Intermediate Language) is a high-level representation. It allows an anal-

ysis and a source-to-source transformation of C programs [4]. Thus, it provides us

with a way to analyze the C source code and generate the corresponding control flow

graph from a program. CIL has served us very well for this purpose in the tool chain.

In the tool chain, I use the Library of CIL Modules which is very helpful for

program analysis and transformation. Specially, the Control-Flow Graphs (CFG)

Module is what I use in the tool chain and is one of the best options to generate the
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CFG.

The API of this module provides many possible actions. By invoking the module

on the source file, one can configure the tool in various ways, such as generating CFG

for one function at a time and printing the CFG in .dot form.

I chose the style which generates the CFG of every function. I modified some

source code of the CFG module, because the original version cannot get the location

information of the function. There is some additional code to produce the line

number of every block, since I have to insert marker in these blocks in the following

steps.

The CIL tool is quite sensitive about the format of a given program and requires

the C source file be well formatted. I had the following observations about CIL when

using it to generate the CFG of a C source file:

1. One C statement on one line: To get the CFG of a C program, CIL has to get

all the instr blocks of that program and requests that one line contain one C

statement. If there are multiple statements in one line, CIL won’t get the right

starting or ending line number of that instr block which is critical for inserting

either “timestamps” or “markers” into the source code in the following steps.

2. The calculation process (such as “i + +”) can not be in the control structure

of a program, such as “if”, “while” and “for” statements. If the calculation

process is in the control statement, CIL will consider that control sentence as

one instr block, which is not really the case. Furthermore, considering the

control sentence as one instr block, the framework (which will be explained

in the following section) inserts timestamps right before and after the control

statement and will of course get syntax errors in later runs.

3. CIL can not handle some situations such as “precompiler”. For example, there

are some programs starting with “#ifdef” or “#elseif” which is so complex

that CIL cannot get the ideal results.

4. For CIL to process, the curly braces “{” and “}” must be put in one line
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respectively, otherwise there will be some syntax errors during the processing

by CIL.

To prepare a well-formatted C program for CIL to process, I use GNU Indent,

which changes the appearance of a C program by inserting or deleting whitespace.

Besides understanding a great amount about the syntax of C, Indent also tries to

handle the incomplete and misformed syntax [7]. I just used a small part of Indent

program to tackle the problems mentioned in the above observations. The usage of

the Indent involved in the tool chain is as follows:

indent -bl -nhnl input.c > output.c

with

• -bl option meaning “put braces on line after if”. It formats the program like

this:

if ( x < 0 )

{
x - - ;

}

• -nhnl option meaning “Do not prefer to break long lines at the position of

newlines in the input”

Then, by running a script, I delete all the comments in the program. Following

the above steps, I got the program well formatted for CIL to process.

CIL takes the well-formatted C program and generates the corresponding control

flow graph which can be visualized as that in Figure 4.2. In this Figure, the format

of each vertex is as follows:

vertex ID: vertex type: the line numbers the vertex covers in source code
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Figure 4.2: Control Flow graph generated by CIL
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For “vertex type”, instr represents the regular basic block in the source code while

others represent control statements or termination statement, such as if and break.

At this point in the .dot file generated by CIL, we have a program’s CFG, basic

block label and line number map available. Once the CFG and the line number map

are generated, we can instrument the program with either timestamps or markers

according.

4.3 Execution Time Measurement

4.3.1 General Working Flow

The methodology of sampling-based program execution monitoring works with con-

trol flow graph which is a directed weighted graph with the value of a vertex being

the execution time of that basic block. However, since the execution time measure-

ment can be a standalone problem and is not the focus of my current research, I

addressed this problem to a reasonable degree that is enough for carrying forward

the tool chain.

There are three challenges for performing the execution time measurement on the

instrumented source code:

1. Determine the granularity of the measurement

2. The resolution of the measurement has to be high enough to catch the extremely

short execution time of the basic block.

3. Due to the high resolution of the time measurement, the counter has to be

large enough in order to not overflow when measuring large basic blocks with

long execution time.

After segmenting the program into basic blocks, as discussed in Section 4.2, the

tool chain places instrumentation points before and after each basic block to mea-

sure the corresponding execution time. The general work flow of this execution time
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measurement is shown as Figure 4.3. The original input files of this working flow are

C source file and the corresponding CFG file generated by CIL framework. Then, ac-

cording to the program partition provided by the CFG, the tool inserts time stamps

before and after each basic block of the C source code. Then, the tool runs the in-

strumented program and collects the information about execution time for each basic

block. At last, with information provided by the original CFG file and tes.c.touinfo

file which is the configuration file, the tool generates a new CFG with execution time

for each basic block. The subsequent CFG file with execution times of basic blocks

can be visualized as Figure 4.4.

4.3.2 Using Time Stamp Counter

Since the execution times of some basic blocks are extremely short, we need a counter

with very high resolution to catch the execution times of those basic blocks. To

achieve this purpose, I chose to use Time Stamp Counter. Time Stamp Counter

(TSC) is a high-resolution way to get CPU timing information. It is a 64-bit MSR

(model specific register) that increments every clock cycle since reset. We can use

the RDTSC (read time-stamp counter) instruction to access this counter [34].

The following gives some details on how I measure the execution time of each basic

block in practice. In my code, the instruction asm("RDTSC") reads the time stamp

counter and is wrapped in the function getClock(). The function getStartClock()

is placed right before the beginning of a basic block to mark the starting time of that

basic block. Function getEndClock() is placed right after the end of the same basic

block to mark the ending time of that basic block. The difference between the timing

values provided by function getStartClock() and function getEndClock() is the

execution time of that basic block.

On a fast processor, we might encounter the situation when the time stamp

counter overflows. However, this is not a problem to use the Time Stamp Counter

in my measurement. A simple calculation can prove this point. The time stamp

counter measures “cycles” and not “time”. For example, four hundred million cycles

on a 400 MHz processor is equivalent to one second of real time, while the same
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Figure 4.3: Working Flow of Measuring Execution Times of Basic Blocks
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Figure 4.4: Visualized CFG with execution times of basic blocks

number of cycles on a 800 MHz processor is only one-half second of real time. To

get the “real” time, we should convert the cycle counts into time units, where:

#seconds =
#cycles

frequency
(4.1)

Note: frequency is given in Hz, where: 1,000,000 Hz = 1MHz

On a 1596MHz processor (the “klagenfurt” machine I used), the time for TSC to

overflow (starting from reset) is:

264cycles× 1second

1596 ∗ 106cycles
= 366.5years

which is long enough for running any of the test cases I used for the experiments.

4.3.3 Issues Affecting the Accuracy of TSC

Though the timer stamp counter provides a high-resolution and low-overhead way to

get CPU timing information, according to [34], the following issues might prevent
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us from getting reliable and accurate results from TSC:

1. Out-of-Order-Execution

2. Data Cache and Instruction Cache

3. Register Overwriting

4. Counter Overflow

My implementation does not take the issues 1–3 into account and we’ve already

proved that issue 4 will not be a problem. Thus, we here assume that the timing

information provided by TSC is accurate. However, there is code coverage problem

existing in the current execution time measurement. Though the instrumentation

of basic blocks is complete, there are still basic blocks with the execution time of

zero because they are not executed during program’s run. Here, we consider the

basic blocks with zero execution to have low coverage expectation and assign a small

value to them as their execution time assuming that the small value won’t affect the

calculation of the optimal sampling period.

4.4 Sampling Methods

The last module of the tool chain is the sampling engine, which periodically samples

the instrumented running program and collects run time information. During the

implementation, the following issues arise:

1. The execution times of basic blocks and the optimal sampling periods obtained

from the previous steps are in the unit of “cycle” instead of “real” time, thus,

they have to be converted into “real” time when the sampling is carried out.

This is platform dependent, since different processors have different main fre-

quencies.

2. Since the optimal sampling period is quite short in terms of “real” time, the

clock used here has to have high enough resolution to carry out this sampling.
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3. The method employed should introduce as little overhead as possible to the

running program.

There are two options of implementing this sampling engine:

1. GDB based sampling automated by Python extension

2. Shared memory based sampling

Besides providing more details on these two methods in the following sub-sections,

I also analyze the pros and cons of each method and the corresponding suitable

working situation.

4.4.1 GDB based Sampling

GDB is a general-purpose software debugger developed by GNU project team. GDB

is portable and usually works on Unix-like systems. It can debug many programming

languages, such as Ada, C, and C++. It also supports a large number of processors

for embedded system such as i386, ARM, and MIPS [35]. GDB provides the pro-

grammers with adequate functionalities to trace and alter the execution of programs.

It offers methods to monitor and modify the values of programs’ internal variables,

and even make it possible to call functions independently.

Though GDB is an excellent debugging tool by itself, using it with some other

language or integrating it with other environments is not that straight forward.

Python is an object-oriented scripting language known for its ability to support

various programming paradigms. One can write procedural, functional, and object-

oriented code in Python [59]. Integrating Python scripting into gdb gives a full

control over gdb from Python and automates the debugging process. This means

that we can extend gdb with our own commands or create functions to operate with

data structures. The many features of python-gdb include the following [11]:

1. Writing new commands
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2. Convenience functions

3. Pretty-printing

4. Auto-loading of Python code

5. gdb from Python

6. Bringing up a GUI

Since the highest timing resolution that can be achieved by solely using Python

is one second, which is too long to implement the required nanosecond sampling

period, I have to embed a C timing library whose function can be called from within

the Python script. Fortunately, there is a library, called ctypes, in Python to help

me realize this. For Python, ctypes is a foreign function library which provides

C compatible data types and offers a method to call functions in DLLs or shared

libraries. Thus, we can wrap these libraries in pure Python [6]. ctypes exports the

cdll which loads libraries by accessing them as attributes of these objects [6]. In

order to carry out the “sleep” function whose “sleeping” time is actually the optimal

sampling period calculated and is also quite short, I construct a dynamic shared

object which contains a subroutine to solve the timing issue involved here. This

dynamic shared object is loaded by cdll at the beginning of the Python script. Inside

the subroutine of the dynamic shared object, the nanosleep() function provides a

timing resolution which is high enough to implement of optimal sampling period of

a program. Table 4.1 shows the input files of this sampling engine.

By reading these input files, the Python script will get the PID of the instru-

mented running program, the markers whose values are to be exported later and

calculate the optimal sampling period in “real” time which can be converted from

“cycles” given the frequency of the processor which is provided in the config file. The

script first attaches GDB to the instrumented running program and, between two

sleeps with sleeping time equal to the optimal sampling period, prints the values of

the markers to an output file.
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Table 4.1: Input Files of GDB based Sampling Engine

Input Files File Content

PID file pid of the application under test

config file marker number and marker name, sampling period in

“cycles” and the frequency of the processor in “GHz”

instrumentation file the line numbers which contains the inserted markers

instrumented source file the source file which has been instrumented with mark-

ers

4.4.2 Shared Memory based Sampling

As mentioned before, another option to implement the sampling engine is to use

Shared Memory. Shared Memory is an efficient way to pass data between programs

or processes. The idea behind the shared memory is that one process creates a

memory portion which other processes can access [10]. After the memory is mapped

to the address space of the processes which share the memory region, no kernel

involvement will happen when two processes pass data between each other [12].

Thus, it decreases the time for system calls and increases the efficiency. However,

the shared memory itself does not provide any synchronization function. That is,

before the first process finishes writing to the shared memory, there is no automatic

method to prevent a second process from writing to the shared memory. Thus, some

form of synchronization between the processes using the shared memory is necessary.

There are various forms of synchronization available: mutex, condition variables, and

semaphores [12].

Following the general server-client scheme of using shared memory in [13], we can

consider the whole shared memory based sampling as the server-client framework.

The server is the SHMSample project (the sampling engine), while the client is the
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C test case which is instrumented with markers. Thus, the scheme of the shared

memory based sampling is as follows:

• The sampling engine should be started before any C test case. The sampling

engine should perform the following tasks:

1. Apply for a shared memory which has a memory key and keep the returned

shared memory ID

2. Attach this shared memory to the sampling engine’s address space

3. Initialize the shared memory

4. Wait for all C test case’ completion

5. Detach the shared memory

6. Remove the shared memory

• For C test case part, the procedure is similar:

1. Apply for a shared memory with the same memory key and keep the

returned shared memory ID

2. Attach this shared memory to the C test case’s address space

3. Use the memory

4. Detach all shared memory segments

5. Exit

To be more specific: the C test case just writes the marker value into the shared

memory, while the SHMSample project is running and waiting for the data. There is

one timer in the SHMSample project, which controls the sampling period and makes

the sample engine periodically read the marker values from the shared memory.

The working scheme for the shared memory based sampling method is shown in

Figure 4.5.

I use the following functions to implement the shared memory between the in-

strumented running program and the sampling engine. The shm open() function is
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Figure 4.5: The Working Scheme of Shared Memory Based Sampling Method

used to connect a shared memory with a file descriptor. Functions can use the file

descriptors shm open() creates to refer to the shared memory object. Then, I create

and initialize a semaphore to protect the shared variable (the global marker 0, for

example) using sem open(). At last, mmap() establishes a mapping of a shard mem-

ory object into a process address space. By using sem wait(), the instrumented

program writes the values of markers into the shared memory and prevents other

processes from writing to the shared memory at the same time. After the instru-

mented program is done with updating the marker values in the shared memory, it

uses sem post() to inform other processes (sampling engine, for example) that it is

safe to write to the shared memory now. The usage of sem wait() and sem post()

is the same for the sampling engine when it periodically reads marker values from

the shared memory.

The second option which employs shared memory introduces much less overhead

to the running program than the first option, since the sampling engine does not

pause the running program as opposed to the one using GDB. However, the first

option is also useful in the scenario where multiprogramming is not supported.

65



4.5 Summary

This chapter presents a tool chain which is developed according to the methodology

of sampling-based program monitoring discussed in the previous chapter and gives

the details on the working scheme of each element in the tool chain. The tool chain

generally works well with the C files or C projects which contain multiple files and

implements the sampling-based program monitoring method.
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Chapter 5

Predicting the Number of Markers

Based on our observations, it becomes inefficient to use only one marker throughout

the instrumentation in the long run. When using one marker, the sampling period

on average increases with the number of instrumentation steps until it reaches either

the optimum or the termination criteria, assuming the trend of the curves in Fig-

ure 3.9 and Figure 3.12. However, from Figure 3.9, the increment in the sampling

period between one instrumentation step and its predecessor decreases. Still worse,

interference invalidates the previous instrumentation thus decreasing the sampling

period between instrumentation steps sharply.

5.1 Scheme of Adding a New Marker

Figure 3.12 shows that using multiple markers can improve monotonicity by reducing

the interference between subsequent instrumentation steps and achieve higher sam-

pling period than that achieved by using only one marker given a certain number of

instrumentation steps. Inspired by the above promising results, we feel that using

multiple markers has its benefits in resource-constrained embedded systems. Given

the expected sampling period and the threshold, we can predict how many mark-

ers we need to achieve a certain sampling period with fewer instrumentation steps

than those by using only one marker. Thus, we can enhance the efficiency of the
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instrumentation. Note that it is the system’s resource allocated for the debugging

that determines the expected sampling period. In the modelling of the changing of

markers, we define the following terms:

1. effective gain: the actual increment of the sampling period between an instru-

mentation step and its predecessor and the overhead introduced by adding a

marker (either new or old), denoted as GE. Formally,

GE =
Ti − Ti−1

C
(5.1)

while Ti−1 is the sampling period of the current instrumentation step, Ti is the

sampling period of the next instrumentation step and C is the cost of adding

a marker (either new or old).

Thus, we can define the effective gain from adding a new marker as follows:

GEN = TiN−Ti−1

CN
, while TiN is the potential sampling period that can be

achieved by adding a new marker and CN is the overhead (or cost) introduced

by adding that new marker. We can also define the effective gain from using

the same old marker like this: GEO = TiO−Ti−1

CO
, with TiO being the sampling

period achieved with the same old marker as the one inserted by the previous

step and CO being the overhead introduced by the marker.

2. absolute gain: it makes an evaluation of the effective gain by using the same

marker against the effective gain by adding a new marker, formally:

GA =
GEO

GEN

=
TiO − Ti−1

TiN − Ti−1

× CN

CO

. (5.2)

Both CN and CO are constants determined by the system under test, thus
CN

CO
is also a constant Cs. Thus, we can re-write the absolute gain as GA =

TiO−Ti−1

TiN−Ti−1
× Cs.

With the above definitions, in the modelling, we need to consider the following

factors on the changing of markers:
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1. The resources that the embedded system allocates to the debugging, sampling-

based monitoring to be specific: this factor determines the minimum sampling

period (Tmin) the sampling-based monitoring method should have. The ex-

pected sampling period that the instrumentation tends to achieve must be

equal to or greater than this value.

2. The threshold (H) which determines when to add a new marker to the instru-

mentation: this value is pre-determined by the system under test or the user.

However, we need to compare it with the effective gain or the absolute gain of

the next instrumentation step to determine whether to add a new marker or

not.

3. Finally, we compare the absolute gain GA with the given threshold H and

determine whether to add a new marker or not. If GA < H, we will add a new

marker into the instrumentation; otherwise, we continue to use the same old

marker.

Using the above model, we can determine when to add a new marker to the in-

strumentation to achieve a certain sampling period with a certain amount of resource

provided by the system under test.

5.2 Curve Fitting of the Sampling Period Trend

Since the data (in terms of instrumentation steps and the corresponding sampling

periods) obtained from different heuristics using only one marker is statistically sig-

nificant and reliable, we can safely use the data to generalize the trend which the

sampling period of the instrumentation follows. The discrete data shown in each

heuristic using only one marker besides the ones in Figure 3.9 and Figure 3.12 sug-

gests that the sampling period increasing with the number of instrument steps might

follow the Logarithm or Power Law curve.

Here, we decided to use least-square fitting to model the trend. The reason

for using this method is as follows. In the least-square fitting, the sum of squared

69



Figure 5.1: Power Law Trend

residuals provided by the model has its least value, with residuals being the difference

between the experimental value and the value calculated by the model. Instead of the

absolute residual, we use the sum of the squared residual to get a better continuous

differentiable quality. Figure 5.1 shows the curve fitting results using both Logarithm

and Power Law.

From Figure 5.1, we have the following indications: Even though the modelled

Logarithm curve may have a better fitting in the long run, it gives a bad prediction

on the trend of early instrumentation steps since the difference between the points

on the curve and the actual experimental data is quite large. However, the modelled

Power Law curve has a much better fitting with the experimental data during the
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early instrumentation steps. In our modelling, the early instrumentation steps carries

more importance than the latter instrumentation steps, since we will use the early

points of the curve to determine whether to add a new marker or not. Based on the

above indications, we naturally choose to regard the Power-law curve as the trend

of the sampling period increasing with the instrumentation steps and use it to make

the marker prediction in the following section.

5.3 Optimal Threshold

Before continuing our discussion, we need to define another two terms:

1. instrumentation pattern: the number of markers and the corresponding total

number of instrumentation steps to achieve a certain sampling period.

2. optimal threshold : the threshold used to achieve a certain sampling period with

the best balance between the number of markers and the number of instrumen-

tation steps.

From the discussion of Section 5.1 and Section 5.2, given the cost of inserting a same

marker and adding a new marker and the threshold provided, we can predict the

total number of markers we need to achieve a certain sampling period. Since the

costs of markers are constants which are provided by the system under test, we can

get different instrumentation patterns by tuning the threshold H. We get different

instrumentation patterns as shown in Figure 5.2(a), with X-coordinate representing

independent threshold, Y-coordinate on the left-hand side representing the number

of instrumentation steps and Y-coordinate on the right-hand side representing the

number of markers. To compare the results in Figure 5.2(a), we normalized the data

and showed the normalized results in Figure 5.2(b). From these two figures, we can

get the following conclusions:

1. Adding new markers reaches the expected sampling period with fewer instru-

mentation steps than using only one marker.
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2. There is a tradeoff between the number of markers and the number of instru-

mentation steps.

3. By increasing the value of threshold, we increase the number of markers needed

while decreasing the total number of instrumentation steps. Given the costs of

adding a new marker and inserting with a same marker, by choosing the optimal

threshold, we can achieve the best balance between the number of markers

and the total number of instrumentation steps, thus optimize the overhead

introduced by the instrumentation.

5.4 Experiments

Using an embedded benchmark, called MiBench, we performed experiments on the

SBMTC to prove the soundness of the sampling-based program execution monitoring.

MiBench offers a set of 35 embedded applications which are divided into six suites

with each suite targeting a specific area of the embedded market. All the programs

in MiBench are available as standard C source code, which makes MiBench a perfect

testing candidate for SBMTC. MiBench also provides small and large data sets. The

small data set represents a light-weight embedded application of the benchmark,

while the large data set provides a more stressful, real-world application. To collect

more run-time information, we only use the large data set when running the test

cases from MiBench. We ran the experiments on an unloaded 2.4GHz Intel Core 2

Quad Q6600 processor with 3GB of memory and Ubuntu Linux 9.10.

Figure 5.3 shows the experiment result from test case sha in the Security category

of MiBench. From the figure, we have the following observations which reinforce the

conclusions we get from the simulation data:

1. In the general trend, the sampling period increases with the increase of instru-

mentation steps.

2. Interference between instrumentation steps does exist.
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3. The SAT heuristics cannot avoid indirect interference between instrumentation

steps, though it eliminates the direct interference.
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Chapter 6

Conclusions and Future Work

Determining the execution path of a program helps locate bugs in a program. Soft-

ware monitoring and instrumentation is one of the most important methods to debug

and analyze the software system. However, for real-time embedded systems, the de-

veloper needs to bound the instrumentation overhead. This thesis addresses the

above issue by providing a sampling-based program execution monitoring framework

with the bounded overhead.

6.1 Conclusions

In our paper, we proposed a framework for sampling-based monitoring to determine

the execution path of a program and permitted quantitative reasoning of many as-

pects involved in the mechanism. We also proposed and analyzed different algorithms

for instrumenting a control-flow graph and propose the notion of optimality from both

the vertex and the whole CFG perspective. We defined the system model and pro-

posed two theorems based on which to determine when to stop instrumentation with

an unlimited number of markers and with exactly one marker. We validate the gen-

eral approach by proposing and comparing several algorithms for inserting markers

into programs. Moreover, we investigated interference among markers from differ-

ent instrumentation steps and proposed tailored algorithms to compensate for this
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interference. We discussed a number of observations and insights from the develop-

ment of the algorithms. While all heuristics worked to increase the sampling period,

the degree-based heuristics outperformed the SAT-based ones, but the SAT-based

ones achieved a higher monotonicity. Through normalized comparison, SAT-based

heuristic proved to be superior to others in terms of monotonicity based on which we

further concluded that only 20% of interference was from indirect interference. We

showed how to increase the sampling period by using multiple markers. However,

this method had a limitation: over provisioning markers did not pay off as much as

we expected in the long run. Based on our statistically significant and reliable data,

we generalized the trend which the sampling period follows. Furthermore, we devised

a scheme to predict the number of markers to reach a certain sampling period with a

tradeoff with the number of instrumentation steps. At last, we built a tool chain to

implement the sampling-based program execution monitoring methods and proved

the soundness of the methods through experiments on benchmarks.

6.2 Future Work

The presented work fills the first pieces in a holistic framework for sampling-based

execution monitoring. There are several ways to extend and improve the current

work. The following are a number of possible paths to carry out the future work on

this subject.

• Optimization: There is room for optimization by improving the algorithms

to achieve both longer sampling periods and better monotonicity. However, we

also need to investigate decision criteria when to switch markers before moving

on to industrial case studies.

• More Empirical Studies: The lack of proper data and the limitation of the

current benchmark prevented us from conducting a systematic evaluation of the

current tool chain and comparing its effectiveness with the previous approaches.

More case studies would help us better understand the pros and cons of both

the framework and the tool chain. It would be good to test our tool chain on
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a large number of software systems from different domains. Particularly, large

software system and programs are good candidates for this purpose.

• Randomized and Dynamic Sampling Period: We use the fixed sampling

period in the current framework and tool chain. By using this method, we might

omit certain sections of program that periodically run between two samples.

Randomized sampling periods might be used to avoid this miss. As suggested

in [62], randomized sampling can discover sections of code that fixed sampling

does not discover, thus providing more accurate snapshots of the software sys-

tems. Another extension is to devise a dynamic sampling scheme. According to

different system conditions and criteria, the framework can dynamically tune

the sampling period to reveal more information about the software system and

decrease overhead.

• Consider Code Coverage Constraints: In our framework, we assumed that

we could get full coverage of the program. However, in some test cases, some

parts of the program never get executed which automatically invalid these test

case. Future studies can take the code coverage into account and handle the

test cases which do not have the desired code coverage.

• If Statement: It would be also interesting to investigate on the possibility of

instrumenting if statements.
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