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Abstract

The traditional constraints associated with five-dimensional Kaluza-Klein gravity
are removed. namely that the 5D metric can depend on the extra-coordinate and
that this coordinate is non-compact. The assumption that the 5D theory is vac-
uum R4p = 0 is the minimal set of field equations to induce matter from 5D to 4D
via a dimesional reduction. This reduction is carried out for two general types of
5D metrics : 1) the traditional Kaluza-Klein metric which unifies gravity. electro-
magnetism and a scalar field. and 2) conformal extra-coordinate dependent metrics
which induce an effective cosmological constant and realistic neutral matter. The
physical aspects such as test particle motion. the weak-field limit and gravitational
waves. and the energy from a Hamiltonian perspective and conserved quantities
associated with scalar-tensor theories of gravity are studied in detail. It is found
that 5D relativity is a rich extension of 4D gravity that unifies geometry with 4D

matter.
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Chapter 1

Introduction to 5D KKG

1.1 Historical Remarks

In 1919. just four years after the advent of general relativity and with Maxwell's
theory of electromagnetism on a solid foundation. Kaluza explored the mathemat-
ical consequences of employing a higher-dimensional metric in tandem with the
higher-dimensional vacuum field equations of general relativity. His idea was to de-
duce more than just the gravitational physics known at the time. He used one extra
dimension above the four known from Einstein’s general relativity to unify gravity
and Maxwell's theory of electromagnetism by including the electromagnetic gauge
potential as the off-diagonal components of the 5D metric tensor [1]. He went as
far as to include a scalar field to measure the proper length in the extra dimension
which lead to a relativistic scalar wave equation years prior to the Klein-Gordon
equation in the context of relativistic quantum mechanics. At first. the inclusion of
the scalar field was considered an embarrassing feature of the theory but was later

resurrected by Jordon (2] and Thiry [3], and later gave rise to Brans-Dicke [4] type
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theories of gravity. Kaluza’s investigation was an example of how the 5D Einstein
vacuum field equations R45 = 0 in a higher-dimensional space could reproduce
4D general relativity plus induced matter. Go5 = Tas. The main observation that
was derived from this exercise was that a higher-dimensional stress-energy tensor
i1s not needed to produce 4D physics. but meaningful physics can be derived from
pure geometry in five dimensions. The idea was attractive to Einstein and he pre-
sented the paper on behalf of Klein to the Prussian Academy of Sciences in 1921
(see appendix in [5] for the correspondence between Einstein and Kaluza regarding
Kaluza’'s 5D theory). However, the experimental physics of the early 1920s did not
point to any direct observational evidence for the extra dimension. Kaluza avoided
this problem by reasoning that it was because the 5D metric did not have any
dependence on the extra coordinate. and so experiments could not directly probe
for the extra dimension. Mathematically speaking. this isometry of the 5D metric

1s known as Kaluza's cylinder condition

a .
H7a948 = 0. (L.1)

which today remains a mechanism for hiding the direct effects of the extra di-
mensions in modern higher-dimensional Grand Unified Theories (GUTS). He also
cxplained the known general covariance of general relativity and the gauge invari-
ance of classical EM by a restricted form of 5D general covariance. The restricted

set of coordinate transformations involved only translations,
' =z and ' =z + f(z7). (1.2)

These transformations generate the gauge transformation of the off diagonal com-

ponents gyo ~ Ag.

Aa = A — a f(z7) - (1.3)
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Thus coordinate invariance has been translated into gauge invariance and leads
us to think that gauge symmetries in nature could be explained as coordinate
invariance in higher dimensions. With the advent of quantum mechanics in the
mid-1920s Klein proposed a physical interpretation as to why the fifth dimension
is unobservable. He reasoned that effects of the extra coordinate are not directly
scen because the topology of the extra coordinate is circular and the radius of the
compactified dimension is of order of the Planck length (8], [9]. Klein's explanation
stemmed from quantum mechanics. and he postulated that the fields in the 5D
metric were periodic in the extra coordinate. Klein then used the compactification
scale as an expausion parameter in the Fourier decomposition of the fields. The
motivation was to give a physical explanantion to the origin of the charge-to-mass
ratio of the electron. This attempt gave the charge-to-mass ratio of the electron
many orders of magnitude too large [7]. Including all the Fourier modes gave rise
to the so-called mass hierchy problem with KK theories [10] in which there is an
infinite tower of states which have predicted masses that are at variance with the
observed values of particles. For the theory to remain finite, it is artificially cut-off
at the first mode. This may seem drastic, but this type of truncation persists in
modern quantum field theories such as QED and QCD which have to include a

mass cut-off parameter in order to avoid divergences.

In order to circumvent the above problems associated with the compactification
scale and rather than making any special assumptions about the 5D spacetime we
adopt a non-compact view of the coordinates and treat them all on equal foot-
ing thus eliminating both the circular topology of the extra coordinate and the
5D cylinder condition. The theory is also postulated to be 5D generally covari-
ant, considerably extending Kaluza’s original version of covariance. This is also

an extremely powerful statement when applied to 4D induced matter as we shall
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see thoughout the manuscript. The lifting of the two historical constraints in 5D
relativity has recently produced a flurry of activity in the field of dimensionally
reduced string theories ([11]-[14] and references therein). But the idea has been
around for quite some time. This modern approach was advocated by Wesson and
researchers [15]-[21] and goes under the name of Space-Time-Matter (STM) app-
proach to 5D relativity [17], [18]. This theory is not limited to describe gravity,
electromagetism and a scalar field but has a general enough structure to describe
other forms of matter. It also has the feature that all 4D matter is a consequence
of the geometry of 5D spacetime, and the type of matter one can induce into 4D
to decribe physics depends on the form of the metric (ie. the symmetries) chosen
in 5D. This procedure of inducing 4D matter from a 5D vacuum is guaranteed by
particular embedding theorems of differential geometry due to Campbell [22] (see
also [23] and [24] for general results in embeddings) and recently rediscovered in
a modern context by Romero and others {25]-[27]. One theorem states that any
analytic N-dimensional Riemannian manifold can be locally embedded in a (N +1)-
dimensional Ricci-flat manifold. Thus 4D general relativity can always be locally
embedded in a 5D Ricci-flat manifold. From the 5D point of view, matter in 4D is
induced by a reduction from a 5D Ricci-flat manifold. Clearly the form of the 4D
induced matter depends crucially on the symmmetries in the 5D space and thus on
the form of the 3D metric. We will investigate two general forms for the 5D metric
in the next chapter and outline the procedure for inducing 4D general relativity

with source matter.
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1.2 Qutline

In the next chapter we derive the induced matter for two metrics: one which obeys
the cylinder condition and one which has a general z*-dependence. We also con-
sider the effects of conformally rescaling the fields in the 5D metric and examine the
consequences for the induced matter. In the case of z*-independence, the field equa-
tions can be chosen to have the form of a scalar field minimally or non-minimally
coupled to gravity depending on the parametrization of the conformal rescalings.
Contact is made between Kaluza-Klein theory and other non-minimally coupled
theories of gravity such as Brans-Dicke theory. We also develop a 4 + 1 hyper-
surface foliation analogous to the 1 + 3 ADM split of 4D spacetime to derive the
induced matter for extra-coordinate dependent metrics. Here we foliate along the
extra coordinate. and induce matter on a 4D hypersurface which is taken to be the
usual 4D manifold of general relativity. It is then shown that the induced mat-
ter is a direct consequence of the geometric relations known as the Gauss-Codazzi
equations, thus reinforcing our view that matter is of geometric origin. We then
derive the induced matter for a special form of the 5D metric which consists of
a conformal rescaling in the extra coordinate. The resulting matter contains an
effective cosmological constant which depends on the scalar field and reduces to the

vacuum value under certain physical limits.

We next turn to the study of particle motion in Kaluza-Klein gravity. Since we
can induce matter in 4D via a 5D reduction scheme, we expect that a reduction
of the 5D equations of motion for hypothetical test particle in 5D will reproduce a
4D test particle interacting with 4D matter. We will assume that the test particle
motion is 5D geodesic, which agrees with our minimal input recipe for inducing

4D matter properties. This is analogous to postulating the 5D vacuum equations
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rather than have an ad hoc 5D stress-energy tensor T4p to produce matter. We
demonstrate this for the case of the traditional Kaluza-Klein metric and show that
the 5D geodesic equation reduces to the 4D Lorentz force equation augmented by
a scalar force term and an effective charge-to-mass ratio for charged test particles.
We define the energy of test particles and we make a comparison between the 5D
definition and the induced 4D definition. This assists us in identifying the effective
4D mass and charge that is consistent with the charge-to-mass ratio. For metrics
which retain the extra-coordinate dependence in the fields as a conformal factor.
we derive the acceleration equation and show that there exists an effective force
that is of geometric origin which allows for the variation of particle rest masses. In
the case of photons the force is zero as well as their mass variation. We calculate
the charge to mass ratio and mass variation for some known solutions and make

comments.

Chapter 4 investigates the weak-field limit of the general 5D theory as well
as examining the consequences of the 5D harmonic gauge for both the weak-field
form of the metric and the z*-independent metric. We show that the 5D harmonic
gauge can reproduce the 4D harmonic and Lorentz gauges. For the extra-coordinate
dependent metric. the possibility of massive gravitons exists as is now being realized
In non-compact versions of superstring theory [11]. We also study the propagation
of null geodesics in spacetimes with a scalar field and show the deviations from the
usual 4D photon propagation. We finish by giving a 5D solution which describes a

combination of plane gravitational and plane electromagnetic waves.

The fifth chapter deals with the Hamiltonian derivation for Kaluza-Klein gravity
and conserved quantities traditionally derived from it such as energy and angular
momentum. Both forms of the 5D metric are considered. Since the Hamiltonian

is derived for a general 5D metric which can depend on the extra coordinate, it is
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simple to make a reduction to the two special forms of the metric. In the case where
the metric obeys the cylinder condition the energy of a solution reduces to previous
forms considered in scalar-tensor theories of gravity as well as dimensionally reduced
Kaluza-Klein gravity. We then consider conserved Komar integrals for this form
of the metric and make a connection with other forms of scalar-tensor gravity via
conformal rescalings to show that the energy derived from the Hamiltonian is a

sum of scalar and gravitational energy for solutions of the 5D field equations.

Chapter six deals with metrics that include the extra-coordinate dependence
in the 5D metric. and we show that the Hamiltonian reduces to previously-known
forms in five dimensions by showing a reduction of the Hamiltonian energy to the 5D
ADM energy. We then consider the special case of the conformal extra-coordinate
dependent metrics and show that the 5D energy provides a valid definition for
asymptotically deSitter spacetimes by making use of the properties of 5D flat back-
grounds and their 4D sections. This also provides us with a unique definition of
the 5D gravitational coupling constant in terms of the 4D one and the cosmological

constant. We follow chapter 6 with the conclusions in chapter 7.

Two appendices are included at the end of the thesis. The first appendix derives
the induced matter for two classes of metrics and is intended to give the reader more
cxposure to the solutions in 5D Kaluza-Klein gravity that have extra-coordinate de-
pendence and the mechanism for inducing matter into 4D. The second appendix
deals with some quantum effects of 5D Kaluza-Klein field theory. First, the thermo-
dynamic properties of a class of spherically-symmetric solutions is discussed in the
semi-classical approach to quantum gravity. Secondly, we investigate the postulate
that particle properties can be derived from a massless 5D wave equation. To derive
this wave equation from an action wouid require the input of a scalar field ‘il(z:", z4)

as a source term in the 5D Lagrangian, which would introduce a 5D stress-energy
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tensor Typ. Although this contradicts the minimal input principle of 5D. we are
removing two historical constraints (the 5D cylinder condition and the compact
extra dimension). and we investigate how these two extra degrees of freedom affect
the 5D wave equation. We reduce the problem to a 4D wave equation and examine

the definition of particle masses for two different induced matter scenarios..

1.3 Notation

The notation used throughout the thesis is summarized here for convenient refer-

€lce.

Tensors in 5D are labelled with hats and have uppercase Latin indices which
run 0 — 4, while tensors in 4D have lowercase Greek indices which run 0 — 3.
Lowercase Latin indices are reserved for the spatial components of the tensors
and a.b.crun 1 — 4 while 7,5,k run 1 — 3. We use the signature (—. +,+. +)

throughout and use units & = ¢ = 8#G = 1 unless explicitly stated otherwise.



Chapter 2

4D Induced Matter From 5D
KKG

2.1 Introduction

It is well known that higher-dimensional theories of gravity that have symmetries
associated with the extra dimensions can be reduced to four-dimensional theories
with an induced energy-momentum tensor [20]. One of the most cited examples
of this is classical 5D Kaluza-Klein gravity (KKG) which unifies electromagnetism
and a scalar field with 4D gravity. The symmetry which allows for the reduction
of the 5D theory is usually referred to as the cylinder condition, which states that
the 5D metric components 4p are independent of the extra coordinate 9,945 = 0.
Mathematically stated. there exists a spacelike Killing vector éA = §4, associated
with the extra coordinate z*. The existence of this symmetry guarantees that the

metric can be written as
d$? = gap(z°)dz=dz? + $*(z) (dy + 2A,.(z7)dz")? . (2.1)

9
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Here the A, are interpreted as the electromagnetic (EM) vector potentials. ¢ the
scalar field and we have defined z* = y. This metric will be referred to as the 5D
Kaluza-Klein EM metric (5D KKEM metric). This form of the metric is usually
referred to as the Jordan frame metric [28] because the 5D action generates a 4D
Einstein-Maxwell theory where the scalar field is non-minimally coupled to gravity.
A conformal transformation is needed for the induced 4D theory to be minimally
coupled. the resulting metric being in the Einstein frame. We will discuss this in
more detail in the next section and discuss the dimensional reduction of the action

in detail in chapter 5.

A second and more modern approach to inducing non-trivial 4D matter from a
5D vacuum is the space-time-matter (STM) theory of Wesson and co-workers (see
[18]. [20] and [21] for reviews). The approach is motivated by the fact that while the
above metric may describe a scalar field, electromagnetism and gravity, it fails to
describe any other forms of matter. Thus the cylinder condition must be removed
as a constraint on the 5D theory if general forms of 4D induced matter are to arise
from a 5D vacuum. With the elimination of the cylinder condition. derivatives of
the metric with respect to the extra coordinate occur and we will show that non-
trivial matter may be induced on hypersurfaces of z* = const. [15]. [16], [29]. This
theory has had great success in deriving all the usual equations of state used in
4D cosmology [30]-[33], and derives the matter content of the 4D induced theory in

terms of geometry, thus coming one step closer to unifying geometry and physics.

We now proceed to derive the induced matter for the case when the cylinder
condition holds and for the more general case when the metric has extra-coordinate

dependence.
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2.2 z'-Independence: The KKEM Metric

Since dimensional reduction is possible if there is a Killing vector (4 = §4,. the
resulting 4D induced theory is equivalent to a 4D theory of gravity non-minimally
coupled to a scalar field plus electromagnetism. Rather than doing only this case
we wish to treat the problem generally, and thus conformally rescale both the scalar
field and the 4D metric by

Jap — D Gap and ¢ — ¢%. (2.2)

The parameters ¢ and d play a vital role in determining the nature of the theory
and we will show how they come into play in determining the field equations. Our
starting point is the 5D vacuum equations Rsp = 0 from which we will calculate
the components Ra,g. Rio and Rys. We can then form the (af3) component of the
Einstein tensor and calculate G,g = 0. This gives us our induced matter since this
equation breaks down into the 4D Einstein tensor plus extra terms which are then

atttributed to the stress-energy tensor,

Gag =0= Gag = Tag . (2.3)

For the above metric. it is a routine task to calculate the tensor components and

so we only quote the results :

A 2¢+d a
Cop = 0= Gop = = (Vo — gas9) + o P22
Y 1
—c ¢;;f gas + 2¢2(d—c) (Fa‘yPﬁ - Zgaﬁpsp75) (2.4)
Gia=0 = V,(¢MF*) =0 (2.5)
é =0 O , ¢a¢a _ 1 2(d—c)+1 vy$
44 = = ¢T(2C+d—l)7—2¢ F F-y&-. (26)
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where ¢g and ¢; are the constants
co = c(c — 1) — 2¢d — 2¢(c + 1) and aa=clc—=1)+cd+c(c—2). (2.7)

and F,; = 0,As — 95A,. The above equations are Einstein gravity coupled to scalar
and electromagnetic source terms (2.4), Maxwell’s equations coupled to the scalar
field (2.5) and a nonlinear scalar wave equation with an electromagnetic source
(2.6). In order to obtain minimally coupled (MC) gravity we see that we must
make the parameter choice 2¢ +d = 0 in (2.4) to remove the terms containing sec-
ond derivatives of the scalar field. while for non-minimally coupled (NMC) gravity
the choice is 2¢ + d = 1. The case of NMC gravity is special since it contains
regular KKG. (c.d) = (0. 1). It has also been shown that KKG shares a conformal

correspondence with Brans-Dicke (BD) theory [34]. [35]. To make the connection

2c=1—p and d=p, P=y1+2w/3, (2.8)

where w is the Brans-Dicke parameter. and so KKG can be viewed as a w = 0

we must set

BD theory. The above field equations (2.4)-(2.6) are complicated by the general
(c.d) dependence and in order to make the physics more transparent we will restrict

ourselves to the MC and NMC cases. They are:

MC Gravity: 2c+ d = 0. For this case it is advantageous to transform the scalar

ficld by letting ¢ = e” so that the field equations reduce cleanly to

Gag = Tis+2“ TEM (2.9)
Vo (¥F*) = 0 (2.10)
O = %ead" FZ. (2.11)

What remains is the choice for the parameter d. The conventional choice is d —

2/4/3. which gives the correct coefficient for the kinetic energy of the scalar field in
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the dimensionally reduced action [36]. as will be seen in chapter 5. This choice of
d sets the parameter ¢ = —1//3 via the relation 2d + ¢ = 0. so we have (c.d) =
(—1//3.2/4/3) for minimally coupled gravity.

NMC Gravity: 2c + d = 1. Identifying the parameters with the BD parameters

we can discuss both Kaluza-Klein gravity as well as Brans-Dicke gravity for this

case. The field equations reduce to:

Gas = Tip + 5 (ats = 2n87000) +297C7VEF) o (1)
Vo (¢*4Ff) = 0 (2.13)
¢ = §¢3"F2 . where d= \/m (2.14)
As usual the stress-energy terms used in the above equations are defined as
TEM = Fo Fg-— %gang (2.15)
T = %(Vafﬁa — 9o 09) , (2.16)

and the electromagnetic field strength is defined by F,5 = 8,45 — 9sA..

We give here a particular class of solutions to the KKG (w = 0) field equations
to which we will repeatedly return. It is a static spherically symmetric 3-parameter
family discovered by Liu and Wesson [37], which is the charged version of the 2-
parameter Gross-Perry-Sorkin (GPS) class of solutions {38]-[40]. The Liu-Wesson

solution in the Kaluza-Klein-Jordan frame is
Bb —

§2 = _u)_?f_ 2 —a—=b4.2, .2RQl—a—b 02 kB 2 -
ds” = 1 — LBa-b dt*+B dr‘+r°‘B dQ2 +——-—1 — (dy+2A,.dt)*. (2.17)
Here the function B, the timelike component of the EM vector potential, and the

scalar field are given respectively by:

2M(1 — k) _ Vk(1 - B*"?) Bb — kBe
—_— .

AT = 3 =55 #(r) = 4T (2.18)

B(ry=1-
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where the parameters (a.b) satisfy
a+b +ab=1. (2.19)

We note that the constants (a.b) satisfy the same restriction for both the charged
and neutral classes of solutions. The identification of the parameter & may be found
by making a comparison of the potential A, for large r with the standard potential
for a charged point-like object A, = Q/r. or by appealing to the conserved charge
in Maxwell's equations. For both methods we find that the parameter k is related

to the charge by

Q?
k = —— £ b, .
Mia—-0)2 *7 (2:20)

When a = b we find that the vector potential A, is zero by (2.18), which corresponds
to setting the charge to zero. and hence k = 0 when a = b. Here we should note that
the Liu-Wesson solutions are not the unique class of solutions to the 5D vacuum
field equations. and other charged solutions exist in the literature [36], [41]-[44]. as
well as neutral solutions [45]-[47]. This is due to the fact that in 5D. Birkhoff’s
theorem does not hold when the 4D sections y = const are spherically-symmetric
[48]. This violation of Birkhoff’s theorem also allows for spherically-symmetric

time-dependent solutions [49], [50].

We briefly mention the conditions for a horizon and discuss whether the solutions
can be viewed as conventional black holes for the general parameters (a, b). Horizons
arc usually defined as surfaces where the norm of the timelike Killing vector £4
vanishes. i.e. gwé"é" = 0. To simplify the analysis of the solutions (2.17) we
take the neutral limit & = 0. We find that the condition for a horizon for the
neutral GPS solutions is B® = 0. The existence of a horizon at r, = 2M requires
that a > 0. which is also needed for the positivity of the gravitational mass in

the large-r limit since g, ~ —(1 — 2M,/r). The area of 2-spheres for the solution
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for a general distance r is Area(r) = 4nr?(1 — 2M/r)!=2~%. We observe that for
the area to decrease as the radius decreases we need 1 —a — b > 0. As the radial
coordinate r — 2M the area converges to zero and the “horizon™ is a point. Thus
the solution should be referred to as a naked singularity when 1 —a — b > 0, as
noticed by several authors [45], [46], [47]. The choice (a,b) = (1,0) is the usual
Schwarzschild solution, which has a horizon at » = 2M . and the spacetime does not
have a curvature singularity there. To further set limits on the range of parameters
(a.b) we turn to the definition of the mass function. In 4D. the mass function m(r)
is defined from the g,, component of the metric. We will adopt the same definition

but dimensionally extend it to 5D. The mass function is then defined by

—a-b 2 -1
e (BT (o)
which is easily solved for m(r)
2M ﬂ+b
m(r) = % [1 - (1 - T) J : (2:22)

If we consider the Schwarzschild case (a,b) = (1,0) this gives
m(r) =M, (2.23)

which is independent of r as expected. However, for a general (a.b) this will not be

the case. and we examine the large-r limit and the limit as » — 2M which gives:

large-r m(r) ~ M(a +b) (2.24)
r2M  lim m(r) =M [1 - (o+)“+"] , (2.25)

where 07 is symbolic for approaches zero from above. We see that for the mass
function to remain positive for both limits and finite as r — 2M . the parameters

must satisfy a + b6 > 0. This constraint on (a, b) together with the constraints on
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the positivity of the gravitational mass, the decreasing area and the consistency

relation a® + ab + b* = 1 force the range of values allowed for a and b to be

a€ [1, \/ii] and be[-1,0]. (2.26)

We will return to the possible values for these parameters when we discuss the
energy derived from the Hamilonian and the Tolman mass in chapter 5. Wesson
and co-workers have shown that in general the GPS solutions describe objects of
stable extended distributions of scalar matter with a pressure and density related by
the radiation equation of state P = p/3. and therefore should be correctly termed
solitons [51]. [52]. The solitons are general enough to encompass both the naked
singularity cases as well as the Schwarzshild solution. For a further discussion of

the physical properties of the Liu-Wesson class of solutions we refer back to [37].

2.3 z'-Dependence: The 4+1 Induced Matter

In this section we demonstrate that a 5D vacuum Kaluza-Klein theory which has
extra coordinate dependence can induce realistic matter into 4D which contains
both gravity and a scalar field, as well as matter that depends on the extra co-
ordinate. We investigate this matter for cosmological cases and show that the
extra-coordinate dependence of the 4D metric is responsible for inducing an effec-

tive cosmological constant in 4D.

2.3.1 441 Split of the 5D Kaluza-Klein Metric

The method of inducing matter on hypersurfaces of the extra coordinate closely

follows the methods used to define hypersurface evolution in time for 4D relativity.
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This material is usually covered in good books on relativity [53]-[56] and we use

the same mathematical method, but applied to 5D.

The 5D spacetime (Ms, gag) is chosen to be foliated by 4D non-null hypersur-
faces ,. These surfaces are chosen to be parametrized by a global function y and

the unit normal to the X, is n4. Thus, g4p5 induces a metric hap on each Xy, by
hap = jap — enanp, (2.27)

where 2474 = € and hagn® = 0 since the normal to ¥, may be spacelike (¢ = 1)

or timelike (¢ = —1). We choose a vector field §# on M that satisfies
§AV.ay = 1. (2.28)
and we decompose §# into terms normal and parallel to £,. This gives the lapse

j. = eg?h,s = N(z°,y) and the shift QHB = g}‘fzf = NB(z°.y). Here we give g4,

L
n#. 4. and N4 in component form:

g* = (0,0,0,0,1)

at = (—N— l.) (2.29)
N N
ig = (0,0,0.0,eN)
N4 = (1\70,0) .
The 5D line element can therefore be written using (2.27) and (2.29) as

di* = gap(z’,y)dztdz®

= hap (dz® + Nody) (dzf + NPdy) + eN2dy®. (2.30)

In matrix form the 5D metric and its inverse are

gaB = Jos Vo 318 = §°0 + eNoNE —eNe/N? (2.31)
A —_— - - . —— - - " . -
Nsg €/N? —eNB/N? e/ N?
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In order to describe the embedding of £, in the 5D manifold the extrinsic curvature

tensor (second fundamental form of the surfaces y = const.) must be introduced

Kap = —hSVcia, (2.32)
or in matrix form
- kaﬁ NﬁIA{aﬁ
Kig = o (2.33)
NeK,p 0
Ky = - VN+VN—3‘ (2.34)
af — 2N at¥g BiVa ayga,a . 2.

where V,, is the covariant derivative operator on £,. Applying the standard projec-
tion techniques [53]-[56] and using the 5D vacuum equations R4p = 0 we obtain 15
equations which are broken into 10 field equations for gravity with induced matter,
the four Gauss-Codazzi equations which are the covariant conservation equations
on E,. and one scalar wave equation for the lapse function N [29]. The equations

are:
Rop = =VaVal + % (CyRap — OyKas) + N (KRup —2KayKy)  (2.35)
N N
Vo (K§ - 6%5K) =0 (2.36)
€ON = 9,K — N°V K — NK**K,;. (2.37)

Here. K = g"ﬂf{a,@, 0 = VeV, and Cﬁf{aﬁ is the Lie derivative of kag with
respect to N. A large simplification of the field equations occurs when we set the
shift vector to zero (N = 0), which in turn reduces the extrinsic curvarture to

. 1 - ) -
Kop = = =0kas, with No=0. (2.38)

With the above assumption, the 5D line element can be expressed in 4+1 form as

ds® = hop dz®dz? + eN3dy® . (2.39)



CHAPTER 2. 4D INDUCED MATTER FROM 5D KKG 19

Since we wish to make contact with the usual 5D Kaluza-Klein theory we must

compare the above metric with the standard 5D Kaluza-Klein metric [15], [16] :
ds? = gap(z°.y) dzdzP + e¢*(z°.y)dy*. (2.40)

Here the scalar field has been introduced and both g.s and ¢ may have y-dependence.
By comparing equations (2.39) and (2.40) one can derive the relationship between

the 4+1 fields and the usual 5D Kaluza-Klein fields.

hag = gap (z7.y). N =¢(z°.y) and Na =0. (2.41)

Thus the 4D induced metric on X, is the metric in 4D general relativity except
for the extra-coordinate dependence. In order to measure the curvature of the 4D
manifold as embedded in the 5D manifold we need the extrinsic curvature. which
is defined as
- 1 - 1
Kog=—-—0yhag = —— . 2.42
8 o7 O tas 54 v s (2.42)

Evaluation of the 5D vacuum field equations (2.35)-(2.37) is tedious. Forming the

Einstein tensor gives the induced matter, and explicitly written out reproduce the

results of Wesson and Ponce de Leon [15]. [16]. which with (") = ;’—u are:
1 : %Gas — Jap + 9 Jardsu
Top = SVaVpd — 523 & o . (2.43)
¢ ¢ —%g“"g,wgag + %gaﬁ 9" G + (g‘wguu)z]
1 ay - a .
Va [3(9 Tgas — 8 ﬁg“"guu)] =0 (2.44)
e¢D¢—L¢3 g —l("ﬁ" + 2578 ) (2.45)

Thus the induced matter crucially depends on the metric having a non-trivial depen-
dence on the extra coordinate. and is different for each y = constant hypersurface
if there is y-dependence in the stress-energy Tog. If the 4D cylinder condition is im-

posed (8, gag = 0. which is different from the 5D cylinder condition 9, Gap = 0) the
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field equations simplify and the induced matter is only a scalar field contribution.
The non-linear interactions in the wave equation disappear and only a massless
scalar field remains. The stress-energy tensor in this case is traceless and so the
scalar field may be thought of as having a radiation equation of state P = p/3 if
the induced matter is modelled after a perfect fluid [15], [16]. There exist many
solutions to the induced matter field equations for the case when the 4D cylinder
condition is enforced since the theory reduces to a NMC Scalar-Tensor (ST) theory
of gravity. of which Brans-Dicke theory is a well known example (see [20] and [21]
for an extensive bibliography of solutions). Here. we will not restrict ourselves to
this case. but will deal with a conformally rescaled form of the 4D metric in which

the extra-coordinate dependence is retained.

2.3.2 Induced Matter and Conformal Rescalings

As an example of induced matter with non-trivial metric dependence on the extra
coordinate we consider the following 5D metric which has recently been termed
canonical in the Kaluza-Klein literature [57], but has its roots in non-compact

extra-coordinate dependent 6D Kaluza-Klein theory [58] :

gap(z?,l) = ( £79a8(="- 1) 0 ) . (2.46)
0 e4?(z")

Here we have made the simplifying assumption that the scalar field is independent

of the extra coordinate which we have denoted by z* = I. The importance of the

length scale L will shortly be seen. The shift vector in this case is zero and the

induced metric on &; is

R 2

haﬁ = Egaﬁ(zas I) . (247)
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Since we have partially factored out the extra-coordinate dependence conformally.
we may expect a significant algebraic reduction of the field equations. Evaluation

of the 4D Ricci scalar (2.35) gives

Vad 3e l 1
Rapg = é g + $2L2 (1 + 6(976819‘76)) 9ap + Zsaﬁ (2.48)
where we have defined the tensor
— 612 4 1 ¥4 ~¥& 2
Sap = 3 YE [(7 +39 019.,5) Oigap — (g Otgar) Orgps + O gaﬁ] , (2.49)

which collects the derivatives with respect to the extra coordinate [59]. Each of the
terms in the Ricci tensor has a physical significance. The first term is a scalar field

term that will generate the scalar stress-energy tensor

Tos(d) = %(va«ﬁﬁ — O¢gas) - (2.50)

The second term in (2.48) can be used to define an effective cosmological constant
since it is the coefficient of the metric g,s5. Finally the last term will generate the

matter stress-energy due to the metric dependence of the extra coordinate by
= 1 Y =
Tap(019) = Sap — Egaﬁs v- (2.51)

Thus the total induced energy-momentum tensor can be expressed as

Tap(919)
¢ .

where we have factored out the ¢~! term in the extra-coordinate stress-energy

Top = Tap($) — Acts9as + (2.52)

tensor in order to emphasize its role as a matter contribution and not a scalar

contribution (this is analogous to what is done in Brans-Dicke theory).

In order to determine the vacuum cosmological constant we take the limit in

which the 4D metric is independent of the extra coordinate so that the matter term
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Top(81g) is zero. Consistency of the induced matter field equations requires ¢ = 1.
This gives for the Ricci tensor

3e
Rop = 729a8 5 (2.53)

from which we can define the vacuum cosmological constant as

3e

I (2.54)

AUGC =

and it is here we see the effects of the signature of the extra dimension. If the extra
dimension is spacelike (¢ = 1) then the vacuum cosmological constant is deSitter
(A > 0). while if the extra dimension is timelike the cosmological constant is anti-
deSitter (A < 0) as well as introducing a two-time metric. This creates a uniqueness
problem for the physical choice of time and therefore we rule anti-deSitter spaces
as unphysical, viewed as an induced 4D theory from 5D. Current astrophysical
constraints deduced from observations of supernovae indicate a large contribution
to the vacuum energy density of the universe Q4 = pa/perie. as well as requiring
that A > 0 [60]. Thus from a physical viewpoint. and a mathematical justification

for a well-defined metric, we will only work with deSitter-type metrics.

The effective cosmological constant can then be defined as

Avac I .
Acgy = e (1 t59 Bazgaﬁ) . (2.55)

This definition can be used to express the conservation equation in terms of more
physical quantities. Susbtitution of the above equation (2.55) into the conservation

equation (2.44) gives

AC a l (o §
A€ L 57— 520 " 0igs,) = 0. (2.56)

It is evident that if we assume the 4D cylinder condition 8;g,s = 0, the effective

cosmological constant reduces to its vacuum value and the scalar field must be a
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constant which we can scale to unity without loss of generality. However. if we
choose to retain the extra coordinate dependence in the 4D metric we require that
g 1019 ~ 17! in order for A4 to be a function of the 4D spacetime coordinates only.
This is satisfied for solutions that are diagonal and have power law dependence in

the extra coordinate. We now present such a solution.

The example we consider is a one-parameter class of cosmological solutions
found by Ponce de Leon [30]. On the induced 4D hypersurfaces they are the ana-

logues of the & = 0 FRW cosmologies. The metric is

N & sz (C\YE (1\OT a \? (ct\? o,
= fy(—ear- () (1) ama) e (522) (3) @ osm

where « is characteristic of the induced equation of state as will be shown below.

The effective cosmological constant can be evaluated from (2.55) and gives

Metr = e (1—a) () (2.58)

which varies as a function of time and depends on the value of a. This inverse square
law for the cosmological constant is favoured in string cosmologies [61] and time-
varying A theories from BD gravity [62] for inflation, since it gives a large A for early
times and a negligible A for late times (see [63] for an extensive bibliography). The
equations of state for each of the components of the induced stress-energy tensor

(2.52) which has been modelled after a perfect fluid are [59]:

3 c\? 1 c\? 1
=~ < = - Py = ——pyc? 2.5
pec 16nGa (t) P 16nGa (t) = fe 3p¢,c (2:59)

2 Avac(l—a) (Lc)z _ Awc(l1—a) (Lc)2 _ )
pAc = 87G at Fa = 87G at)] T Pa=—pac” (2:60)

2 9 c\? 3 e\ 2 1 \
= t =- Z =-= 2.
Pme = 167Ga (t) B 167Ga (t) = b 3fme - (2.61)
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where we have restored units and designated the p,, and P, arising from T, 5(9:g)
as matter terms . Finally, if we treat the entire energy-momentum tensor as one

fluid. we obtain from (2.52)

s 3 c\? _(2ch-—3)(¢)2 _(2 ) -
pe —Ser(at)’ P==%c &) F=(32-1)r  (262)

which is equivalent with the results found in [31]. In this case, we have a simple
fluid with a linear equation of state parameter v = %a. Note that when considering
T.3(01g) alone as the fluid source. it is necessary to require that @ < 1 in which case
the effective cosmological constant is positive. When considering both T,3(8:g9) and
Tap(@) as the fluid source a > 0 to ensure py + pm > 0. Finally, when considering
the entire energy-momentum tensor as describing a single fluid, @ may have any
value. In this final case we find. as in [31]. there are three physical choices for a:
a € (0.1) for inflation, a = 2 for radiation, and a = 3/2 for dust. and for the latter
two values. the cosmological constant is negative (a = 0,1 are excluded since these
choices introduce singularities into the 5D metric). Thus this metric seems to best

describe inflation since it is favourable to have an effective cosmological constant

which is positive.

We pause here to briefly discuss the density and pressure for the components of
the induced stress-energy. and whether they satisfy the energy conditions in 4D GR.
In 4D. the matter content is known from the outset and enters the field equations
via the T,g. In the induced matter approach the 4D field equations with source T,z
are generated from the geometry of a 5D vacuum, and the algebraic form of the
induced stress-energy tensor is directly related to symmetries of the 5D metric and
its components. Matter is generated from the extra-coordinate terms 8;das. the
EM gauge potential sa ~ A, and the scalar field jgq ~ ¢. Since fluid stress-energy

tensors are well understood in 4D relativity, we impose a fluid interpretation on the
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geometrically derived induced matter in order to represent 4D physical quantities

such as density p and pressure P [64], [65].

In the context of classical 4D general relativity, the stress-energy tensor satisfies
certain energy conditions which prove to be invaluable in proving singularity the-
orems. The constraints on the matter derived from the stress-energy include the
positivity of energy density and that the energy density is larger than the pressure.
There exist different versions of the energy conditions of varying strength. The

energy conditions are [56] :
weak (WEC) : T, >0 = p>0 p+ P >0 (2.63)
strong (SEC) : Rgv®v?> 0= p+ S P.>0 p+ P >0 (2.64)

dominant (DEC) : —T,gv® future directed = p>0 p>|P], (2.65)

where v® is any future-directed vector field. We now check if the induced matter
for the Ponce de Leon class of metrics satisfies the above energy conditions. Since
this class is parametrized by the constant a we expect that the energy conditions
will place restrictions on the value a can have. We will consider the value of a
to range @ € (0.1) and a > 1 since these values represent physically desirable
equations of state for the total induced matter (2.62). It is a simple task to check
the above energy conditions for the energy densities and pressures of the different
fluid components of the induced stress-energy tensor (2.59)-(2.62). We summarize

the results here.
WEC:

The scalar energy density (p, < 0) and pressure (ps + Py < 0) violate the
WEC. The cosmological energy density obeys the WEC if a € (0,1) (inflation)
while violates it if @ > 1 (dust, radiation). The total matter energy density and

pressure are found to obey the WEC.
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SEC:

The scalar energy density does not obey the SEC since pg < 0 for the a range.
It is also found that the cosmological term violates the SEC for the inflationary
period. and the matter contribution satisfies the SEC for all a. The total stress-
energy violates the SEC for inflation a € (0,1), but for dust and radiation models
(a > 1) the SEC is satisfied.

DEC:

Here both the scalar and cosmological components violate the DEC for a >
1. but the matter component satisfies the DEC for inflation, dust and radiation

models. The total matter is found to obey the DEC for all epochs.

Although certain components of the stress-energy violate different energy con-
ditions. the total matter violates only the SEC during inflation. We can conclude
that the total induced matter is physical and preserves ideas regarding the energy

conditions in 4D.

2.4 Implications of 5D Covariance

The assumption that the induced matter theory is covariant in 5D has some far-
rcaching implications for the 4D induced matter theory. That the theory should
be 5D covariant is a natural assumption when extending a 4D theory of gravity to
a 5D theory. The field equations in 5D are the vacuum equations Ras = 0 which

are generally covariant under the coordinate transformations
A o 2 =427 . 1Y), (2.66)

which include the usual 4D trasformations z* — z'* = z'*(z?) as a subset. The

4D induced matter from the 5D vacuum is covariant under these 4D coordinate
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transformations. but will not be covariant under 5D coordinate transformations
(2.66) since the induced matter will in general depend on the 4D coordinates =
and the extra coordinte z*. The induced matter theory will. however. be invariant
under a restricted set of 5D coordinate transformations. We have already seen
an example of this with the KKEM metric (2.1). In this case the matter is only
invariant under the restricted set of 5D coordinate transformations which include
the general 4D ones and a translation in the extra coordinate z* — z'* = z* +
f(z7). which generates the gauge freedom A, - A’ = A, — Jaf in the EM gauge
potential. If we consider the whole set of coordinate transformations (2.66) we
are not guaranteed invariance of the 4D induced matter since the 4D coordinates
and the extra-coordinate may mix and thus 4D physical quantities may change
their meaning. This implies that 4D physics is not invariant under 5D coordinate

transformations and that we can alter the interpretation of the induced 4D matter

with a 5D coordinate transformation [18].

We now give two examples which illustrate 5D covariance and its implications
for the induced matter. We first consider the canonical metric (2.46). which has
the form

ds? = %gaﬁ(zf’, [) dz®dzP + ¢*(z°)dI?, (2.67)

where we have chosen the extra dimension to be spacelike. Now let us pull out the

factor of I2/L? so that the 5D metric appears to be 5D conformal

2 2
ds? = Iz (gag(z"._l) dz®dz? + %—d)z(z’)dlz) . (2.68)
We then make the coordinate transformation
dl? +
1,21—2 = dy® = l = Le*v/L (2.69)

and obtain for the 5D metric

ds? = v/l (ga,g(:z:’.y)d:c"dzﬁ + ¢2(z")dy2) : (2.70)
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where L is a length scale and the parameter a satisfies a> = 1. The first case we
consider is when the 4D cylinder condition is applied (9ygag = 0 — ¢ = 1 by the

field equations) :
ds? = e2¥/L (g,5(z7)dzdz? + dy?) . (2.71)

The 5D vacuum equations Rap = 0 for the metric (2.71) generate the Einstein field

equations with a cosmological constant

3
Gap = —Agas. A =75 >0. (2.72)

while the remaining five field equations (Rya =0. wa = 0) are identically satisfied.
We can conclude that the 4D deSitter solution in 4D general relativity can be locally
embedded in a 5D canonical metric (2.71) when the 4D cylinder condition is applied
to the 4D metric [25] (for a discussion of embeddings of D-dimensional gravity into
D-+1 dimensions. see {25]-[27]). If we consider deSitter space it is simple to show
that the 5D manifold is 5D Riemann flat since it is well known that 5D deSitter

space is a 4D pseudosphere of constant curvature 3/L? = A.

The geodesic equations in the original coordinate system (2.68) have an inter-
esting form. in which the departures from 4D geodesic motion are governed by the
derivative of the 4D metric with respect to the extra coordinate [66] . This can be
interpreted as a geometric force which is removed if the extra coordinate depen-
dence is removed. As well we will show in the next chapter there is a cosmological
variation in the rest masses of massive particles associated with the original coor-
dinate system but not with the 5D conformal metric (2.70). This is an example of

how a coordinate transformation may alter 4D physics.

In the second example we reinstate the extra-coordinate in the 4D metric and

consider the Ponce de Leon solutions (2.57). In order to simplify the analysis we
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momentarily set ¢ = L = 1. Thus the metric takes the form

a2

(1-a)?

where we have introduced spherical coords in the 3-space. Under the coordinate

d7? = Pdt? — t2/212/0-a)(dr? 1 +24Q?) £2dI? (2.73)

transformations [18]

2 1-2a)/a
T - gtl/all/(l—a) (1‘*":;2') ;)(t—lla/(i—a))( M (2.74)

T 2(1 - 2a
R = rtt/epr/(-a) (2.75)
Q "'2 a (1-2a)/a
Z = ttfep/U-a ) )4 (gie/0-e) . (276
2 a? 2(1 — 2a) ( ) (2.76)

the 5D line element transforms to
d7? = dT? — dR? — R?*dQ? — dZ2. (2.77)

which is just the 5D Minkowski metric, and hence is 5D Riemann flat. This is one
example of how a 5D Riemann flat manifold may still have meaningful physics on a
4D hypersurface z* = const. Many other examples exist in the literature [67]-[69].

which can describe cosmological models and soliton-like solutions.

To add to the above examples of induced matter from an extra-coordinate de-
pendent metric a few more interesting solutions are presented in Appendix A. There.
two types of metrics are introduced. The first is a variation of the canonical co-
ordinate system and the second is an extra-coordinate dependent analogue of the
4D Kerr-Schild coordinate system. Both are general enough to induce a variable

cosmnological constant and non-trivial matter.

2.5 Final Comments

In this chapter we have given two general methods for generating 4D matter from

a 5D vacuum. This matter can describe electromagnetic phenomena when the 5D
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space has a Killing vector associated with the extra coordinate. and can describe
general forms of matter when this symmetry is removed. The most notable effect
the extra-coordinate has is the generation of a variable A and a realistic matter
stress-energy which does not violate the 4D energy conditions. For the remainder
of the thesis we will investigate the physical aspects of the induced matter theory
such as particle motion, the weak-field limit and gravitational waves and the energy

associated with solutions of the field equations.



Chapter 3

Particle Motion

3.1 Introduction to KKG Particle Motion

This chapter deals with the 4D particle motion induced from 5D for the two metrics
considered in Chapter 2. For the KKEM (2.1) metric. it is found that the 4D electric
and scalar charge-to-mass ratios have a 4D spacetime dependence. This dependence
of the charges on the scalar field affects the energy of test particles in 4D through the
definition of an effective mass. For the canonical metric (2.46) we derive the particle
trajectories from a Lagrangian and show that particles may follow four-dimensional
trajectories corresponding to massive or null particles when the parameterization is
chosen properly. This leads to the possibilty of a cosmological variation in the rest
masses of particles in the STM approach to 5D gravity, and a consequent departure
from 4D geodesic motion due to a geometric force. Some examples are considered
to illustrate the weak-field limit of the acceleration of charged particles, and the

variation of rest-masses in 5D cosmology.

31
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3.2 Test Particle Motion and KKEM Metric

Let us consider the KKEM form of the 5D metric written in the Jordan frame (2.1)
d7? = dr? — ¢*(dz* + 2A.dz°)?, (3.1)

where dr is the proper time and we make the assumption that particles follow 5D
geodesics

wBVgat =0, (3.2)
where 4* = dz#/d7. From this equation the 4D acceleration equation can be
extracted as well as the motion in the fifth dimension. Since we assume the 5D
cylinder condition 9ygap = 0. there exists a 5D Killing vector associated with this
symmetry. namely (4 = §4;. The scalar product ¢ - @ is a 5D constant of the
motion by virtue of the 5D geodesic equation (3.2) and Killing’s equation. The

conserved quantity is
c=const. = (- it = gaaiih = ¢ (@' +24-4) . (3.3)

The 4D part of the geodesic equation @BV gi® will simplify if we use the constant
of the motion and expand the 5D covariant derivative in terms of the electric and

scalar parts to give

(e
2%

&

where V, is the 4D covariant derivative operator associated with the metric g,g.

WPVt =0 = @PVga® = cFo%dP — (3.4)

This equation takes on a more familiar form after we transform the 5D velocities
into 4D velocities by using the relationship between the 5D and 4D line-elements
provided by equation (3.1). and the constant of the motion (3.3). Thus:

dr du®
F = —— = — =u“* 2H—2
dt e = = pralal V1+c2o2. (3.5)
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The 4D acceleration reduces to the induced matter anologue of the Lorentz force

equation in 4D:

e
Vg = TJ‘ZC—_C%—SF ot i agn (3.6)

This is the form of the 4D equation that has been considered by workers in tra-
ditional KKG {70]-[74]. Here h®*® = ¢g°® + u®u® is the usual 4D projection tensor
and obeys the orthogonality condtion A*Pu, = 0. When the Faraday tensor F,z is
non-zero the coefficient of the Lorentz term F®zu® can be defined as the effective

charge-to-mass ratio of the test particle:

) ___° (3.7)
Micsys V1+ g2

This agrees with the usual Lorentz equation for a charged test particle in 4D rela-
tivity. The second term on the right hand side of (3.6) appears to be a scalar force
term but a closer examination reveals that it may be written as a derivative. Thus.

the Kaluza-Klein version of the Lorentz equation when F,z # 0 may be written as

) . (3.8)
eff

However. when F,3 = 0 the Lorentz term F®gu® vanishes and therefore it is not

uBV,gu"’ =4 Faﬂuﬁ + h""aﬁln (—q—

mcj! m

possible to define a charge-to-mass ratio for a test particle from the acceleration
equation. In this case the last term on the right hand side of (3.6) may survive and
represents a scalar force term which we define to be

f2(4) = h°ﬂ%". (3.9)

The coefficient of this scalar force term may be defined as the effective scalar charge-

to-mass ratio

o c?

mlesr ~ F(1+672) (3.10)
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where o is the scalar charge for the test particle. Although the definition for the
scalar term may appear to be arbitrary, we are guided by a physical motivation
provided by the gravitational field. In 4D the force terms for a test particle are a
result of the Christoffel symbols which have the form (barring numerical factors)
F, ~ g~'8g, and so we can plausibly extend this to define the scalar force term
F, ~ g*9g44 ~ O¢/p. We expect that when the test particle is at a large distance
from the clectro-gravitating source, the weak-field limit applies to the 4D metric
and gauge fields so that the effective electric (3.7) and scalar (3.10) charge to mass

ratios of the test particle tend towards constants

o
g
d) -1 = —q = —q = —C and -
Mlefy m 1+ ¢ m

R () e

eff m

Since setting ¢ = 0 in equation (3.11) sets g/m = 0 we can safely assume the test
particle charge is zero. the other alternative being that the test particle mass is
infinite in the asymptotic limit, which is clearly unphysical. With this assumption,
the constant ¢ may be taken to be proportional to the electric charge ¢. In order
for the geometrized units to be consistent. the proportionality factor must have
dimensions of inverse length. the simplest choice being an inverse rest mass m,

which in the asymptotic limit gives

2
b1 = c=L = m=me 1+(-q—). (3.12)
mg

These definitions for the charge and mass can formally be extended to include the

spacetime dependence through the scalar field and give

2
g _ q
Qess =g =const and mesp = Mo J 1+ (mo¢) : (3.13)

Before moving on to describe the energy of the test particles we make a few com-

ments on how the interaction between the charge of the particle and the source



CHAPTER 3. PARTICLE MOTION 35

affect the 4D acceleration equation. As a consequence of setting ¢ = 0 in (3.7) we
have effectively removed the electric charge from the problem, since ¢ = 0 by (3.11).
This leads to neutral particles which follow geodesics since both force terms drop
out of the acceleration equation (3.6). But when we consider neutral spacetimes
which have F,3 = 0. the Lorentz force is zero and so charged particles cannot be
defined as stated earlier, and the scalar force remains for neutral test particles. The
acccleration equation (3.6) then provides us with a possible probe for the effects of
KKG using the classical tests of general relativity [75]. In addition, possible viola-
tions of the Weak Equivalence Principle could be tested by an experiment such as
the Satellite Test of the Equivalence Principle (STEP) [76]. In the case of spinning
test particles. the scalar interactions are expected to be small but may be tested in
the future with the Gravity Probe B (GP-B) experiment [77] (see [78] for reviews
of GP-B).

We will now give the definition of energy for the test particle familiar to us from
classical mechanics. We can define the energy from a 5D point of view provided
that the spacetime admits a timelike Killing vector £é4 = §4,. The 5D energy is

then the conserved quantity
E=¢€ i = gaat, (3.14)

which. when expanded in terms of 4D quantities gives,

E=E- (u\/l-%-czd)‘z-f-cA) . (3.15)

In the above we have used the fact that the 5D Killing vector in the Jordan frame
can be expressed as

A=64 = {=¢6,=¢, (3.16)
so the 4D component of the 5D Killing vector is just the usual timelike 4D Killing
vector. When the 5D energy (3.15) is compared to the classical 4D result from
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general relativity
E=§-(u+1A), (3.17)
m

we find that the 5D and 4D energies are related by

E = 1+c¢2 (5-u+-————ﬁ,§4)

M.
— 14 (E-u+i

Mo m

¢- A) (3.18)
eff

where we have used the definitions for the effective charge to mass ratio (3.7) and

the effective mass (3.13) for the test particle.

3.2.1 The Weak-Field Limit

In this section we will examine the weak-field limit of the geodesic equation. We
make the usual assumptions about the weak-field limit of the metric tensor and the

scalar field. namely

GgaB = MNag + haﬂe Ihlﬂf I’II
2
6 = 1+x x~- rs (3.19)
and the velocities. )
utx~1, and u'x—<1. (3.20)
c

By expanding the i**-component of the acceleration equation (3.6) it can be shown

that equation (3.6) reduces to
i=-VU+ L (E+vxB)+ ZV¢. (3.21)
m m

where as usual the classical gravitational potential U is defined by h, = —2U.

Here the electric and scalar charge-to-mass ratios are their asymptotic values given
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by (3.11). This is the classical result apart from the scalar force term which is a
Kaluza-Klein addition. As an example of what the extra terms may appear like
for a solution to the induced matter field equations (2.12)-(2.14) (with w = 0). we

consider the static spherically-symmetric charged solution (2.17):

(1—Fk)B® 2 pacb 2, 2pi-a-b o2, B —kB® )
1B dt*+B™*dr*+r*B dQ* + T % (dy+2A.dt)?. (3.22)

The equation for the radial acceleration of a charged test particle in the weak-field

ds* =

limit then can be shown to reduce to

M 9 _ oMy ta k ¢ (3.23)

F = ——(a — kb) + —= — . Y Y R AV I
r r2 (a )+ mr?  2mr? M3(a — b)?
This equation motivates the definition of the metric-based gravitational and scalar

masses

M,=M(a—-kb) and M, = % (b — ka) . (3.24)

which we will verify using Komar integrals in chapter 5. For charged test particles.
the electrostatic term will dominate the motion. Macroscopically Q/M <« 1. and

we expect the parameter b to be small as well. which gives the radial accleration

Mb
7’:____Ma+ 7¢ _Z (3.25)

r2 mr?  2mr?

If the source is neutral (Q = 0 hence k = 0) there remains a scalar force term

which affects the motion of neutral particles:

Ma oMb

T2 2mr?

(3.26)

This implies that the parameter b must be very small since we do not observe such
a force in macroscopic physics. As well, the scalar force may be attractive or re-
pulsive depending on the sign of ob. In fact the choice (a,b) = (1.0) in neutral
spacetimes would not violate any known physics, since this is just the Schwarzschild
solution trivially embedded in 5D. This choice of parameters is supported by ther-

modynamical arguments which we discuss in appendix B.



CHAPTER 3. PARTICLE MOTION 38

3.3 Test Particles and the Canonical Metric

In this section we approach particle dynamics from a 5D Lagrangian for the canoni-
cal metric and use the Euler-Lagrange equations to obtain the acceleration equation
induced in 4D. When the path parameterization is chosen judiciously we then show
that the components of the 5D acceleration equation reproduce the 4D geodesic
equation for massive and null particles, as well as a rest-mass variation for massive
particles. The rest-mass variation is a direct consequence of the STM interpretation
in which the extra coordinate is related to the rest-masses of particles. We conclude
by giving an example 5D solution to the field equations which is of cosmological

interest and make some final comments.

3.3.1 Motion and Mass Variation

To study the dynamics in 5D Kaluza-Klein gravity with the canonical metric (2.46)

we consider the action

B
. . dre d
I=[La* % dr = / \/ L gop(. 1) ;”A ;A + g2zt 1) 2 dx, A, (3.27)
A

where A is an arbitrary path parameter and the velocities are coterminal at the

points A. B. With these boundary conditions, extremizing the action gives the

well-known Euler-Lagrange equations

d (0L oL dult
() -Lhco & itgere D). G

Here. the term on the right hand side can be set to zero if the path parameterization

is chosen to be the 5D proper distance A = 5. The 4D and [ components of equation

(3.28) are:

d, (L L 1.
u‘anu = -C-l—/\-hl (12) u® — g [azgg.,‘u.' - -2- (T¢) 63 (1n ¢2) l] l (3.29)
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] &I\ ¢ (Léi\’
{om(F)]-2(5) )5
.2 .2
‘%(Ll—qﬁ) [—2+ (é?—l) ] [-212-{-31.%3“““‘34- (#) 311n¢2J - (3.30)

Here we have chosen the 4D proper distance to be the path parameter A = s

such that u,u® = I, which is 1 for timelike paths and 0 for null paths: and ()
is shorthand for d/dA. The extra terms on the rhs of the two above equations
are a result of choosing A = s, as opposed to the 5D proper distance A = § [66].
Equation (3.30) for [ is very complicated in general. but we may get a simple result

by choosing
S\ 2
l b
(i) B (3.31)
This satisfies (3.30) identically, and causes the particle paths to be 5D null even

though we have chosen the 4D proper distance A = s to be the path parameter.
That the paths are 5D null follows from the definition of the 5D canonical line
element and the assumption (3.31) for [. The relation (3.31) constrains the velocity
[ but does not give it physical meaning. For this we turn to the STM approach
to Kaluza-Klein gravity, the essential feature being that the extra coordinate can
be interpreted as a geometric mass via [ = Gm/c? [17]-[21]. We now look at the
variation of rest mass as a function of 4D path parametrization. The solution for

the rest mass of a particle is easily obtained from (3.31) and is

m = m,exp (:t\/g/ds ¢'1) . (3.32)

Since in 4D we have & = 0 for photons, this implies that the variation in a photon’s
rest mass is zero and its mass may consistently be set to zero. However, for 4D
paths with ¥ = 1, there is a variation in the rest-mass of massive particles driven

by the scalar field ¢ which behaves as a Higgs-type field generating the rest-mass
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variation. If the 4D cylinder condition (9;gag = 0 — ¢ = 1) is imposed. we get a
cosmological variation of the rest masses of massive particles in the deSitter vacuum

(¢ = 1). We now turn our attention to the acceleration equation.

Some algebra is required to show that the 4D acceleration equation (3.29) can

be reduced to the form
u'BV,g u® = f*, (3.33)

where f® is the force per unit rest mass, given by

PR (2%’- + O1gupuP 1') . (3.34)

When the 4D cylinder condition is imposed (Jigas = 0 — ¢ = 1), the force term
is f* = 0. This gives geodesic motion for both photons and massive particles in
the pure 4D deSitter vacuum. which is the correct 4D result in general relativity.
However. when the 4D cylinder condition is lifted (8:gag # 0), photons will still
travel along null 4D geodesics since they obey £ = 0 and { = 0: but massive
particles will experience a geometric force since £ = 1 and | # 0. This rest-mass
variation of massive particles could in principle be used to test for the existence of
the scalar field which could be inferred from particle motion in the coming Satellite
Test of the Equivalence Principle (STEP) [76]. We now consider some examples to

elucidate these ideas.

3.3.2 Cosmological Example

In this section we revisit the cosmological example first discussed in chapter 2.
We will show that the rest masses of particles may vary in a cosmological frame
which employs a comoving coordinate system, and make some comments about the

observability of the geometric force for comoving particles.
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Consider the one-parameter Ponce de Leon [30] class of cosmological solutions

(2.57):

L D wag (N (IO a \? fct\? .,
ds* = — (—c dt —(f) (Z) d - di +(1_a) (f) di*. (3.35)

Since the 4D metric has a non-trivial [-dependence. the cosmological constant will

not be pure deSitter as seen in chapter 2. A simple analysis of (3.31) with! = Gm/c?

leads to rest-mass variation as follows:

ﬂzi(l—a)l_ (3.36)

m a t

For the present universe (¢ ~ 15 x10° yr) whose matter content is well approximated
by dust (a = 3/2). the variation of rest masses is approximately 2 x 10~!! yr—! which

is consistent with the classical tests of 4D general relativity [20]. [79]. [80].

The acceleration equation for the Ponce deLeon metric is simplified when eval-
uated in the comoving coordinate system. In general, the assumption that the
spatial velocities are zero (u' = 0), implies that the scalar field can only depend
on time. so ¢ = ¢(t). Thus we can conclude that any 5D metric in the canonical
form of (2.46). which has the 4D section g,s written in comoving coordinates with
a time-dependent scalar field. will not impart a fifth force and the motion will be

4D geodesic.

3.4 Final Comments

For the KKEM metric and the 5D geodesic equation we have been able to deduce the
electric and scalar properties of 4D test particles from the induced 4D Kaluza-Klein-
Lorentz equation. We found that the electric charge of test particles is constant

while mass is not and has a scalar field dependence. In the weak-field limit we derive
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the usual Lorentz equation augmented by a scalar force term which is parametrized
by the scalar mass M, = Mb/2 and has to be small to agree with the classical tests

of relativity.

By retaining the extra coordinate z* = ! in 5D Kaluza-Klein gravity we have
seen that a 5D vacuum may induce non-trivial matter and particle dynamics on
4D hypersurfaces. We used the assumption of 5D null geodesics to induce particle
motion in the 4D subspace with the added feature of variable rest mass for massive
particles. once we interpreted the extra dimension as mass [17]-[20]. The accel-
cration of null particles remained the same as in 4D. but the motion for massive
particles was modified by a geometric force. This force has a contribution from a
scalar field and crucially depends on the existence of the extra dimension. This
motion was investigated for the Ponce de Leon class of solutions and it was found
that the geometric force is undetectable for observers in the comoving coordinate
system. It seems that we should turn to /-dependent analogues of the Schwarzschild
metric [68] to observe and test any deviations from the classical tests of GR due to
the geometric force. Work on this is underway. and we expect to relate 5D dynamics
to the upcoming Satellite Test of the Equivalence Principle [76] and Gravity Probe
B (GP-B) [78].



Chapter 4

Gauges in KKG

4.1 Introduction

Five-dimensional Kaluza-Klein theory is a generalization of 4D Einstein theory and
is commonly regarded as a unified theory of the gravitational. electromagnetic and
scalar fields whose quantum analogues are the spin-2 graviton. spin-1 photon and
the spin-0 scalar. In the present chapter we wish to give a generic account of
how a gauge choice in KKG may induce novel physics in the 4D manifold. We
specifically choose the 5D harmonic gauge and analyze two specific cases of this
gauge. Linearized 5D gravity with an extra coordinate dependence is explored, and

secondly the 5D harmonic gauge is examined for the KKEM metric.

In section 2 we take a new look at the case where the 5D metric can be written
as a perturbation from 5D Minkowski space. The linearized 5D field equations can
be made algebraically tractable if one chooses the 5D harmonic gauge. This gives a
wave equation for the 4D components of the perturbation and a Klein-Gordon type

equation for the extra part of the perturbation. These wave equations in general

43
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have sources. and can represent gravitons with finite masses. We investigate a
restricted version of 5D linearized gravity in which the 5D cylinder condition holds
and we choose the 5D linearized KKEM metric. In section 3, we consider the
full conformally rescaled KKEM metric and again choose the 5D harmonic gauge.
For the conformal parameter choice giving 4D minimally coupled gravity the 5D
harmonic gauge reduces to the 4D harmonic gauge of gravity and the Lorentz
gauge in electromagnetism. while for non-minimally coupled gravity these gauges
are coupled to the scalar field. We then examine the geometric optics approximation
to Maxwell’s equations and discuss the propagation of photons in both NC and
NMC gravity. We also present a plane wave solution to the field equations in the
5D harmonic gauge which is comprised of both EM plane waves and gravitational

parallel plane (pp) waves.

4.2 Waves in Linearized 5D Theory

To linearize 5D gravity we assume as in the 4D problem that the metric can be

written as

GaB =7aB + has. Al < [ (4.1)

where h g is viewed as a small perturbation from flat 5D Minkowski space. The
block diagonal form for the 5D Minkowski space is fjag = (7.4, €) where € can be
spacelike (+1) or timelike (—1). The inverse of the above metric to O(il) is

AB _ ﬁAB _ ilAB , (4'2)
and the Christoffel symbols to O(iz) are

3 1 - . A
[gc = E(thAc + dch?*p — 0*hpc). (4.3)
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Here 94 = 32 and indices are raised and lowered using the flat-space metric (h4c =
74Bhpc). We take as our starting point the fifteen field equations representing the

5D vacuum

Rup=0. (4.4)

Evaluation of the 5D Ricci tensor to O(ix) gives
> 1 i C iC =i iC
Rip = §(C'?Aach B +980ch™ 4 — Ohug — 8498h% ) . (4.5)

where the trace of & aB 1s defined as

E] = ﬁABaAaB - (47)

In order to reduce the algebraic complexity of the 5D Ricci tensor it is advantageous

to choose the harmonic gauge:
€ = §4P1r¢; =o0. (4.8)

This to first order in k gives
R 1 ..
Oah4€ = Each . (4.9)

which removes the first. second and fourth terms in (4.5), so that the 5D Ricci

tensor reduces to

. 1--
Rup = ) has . (4.10)

If we now impose the 5D vacuum field equations (4.4), we obtain a wave equation

for the hap, namely

Shug =0. (4.11)
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The trace of this equation gives

R=—_-8h=0. (4.12)

1
2

However. it Is sometimes more convenient to use the tensor

p—

Yap = hap — ~riagh. (4.13)

[SV]

which by (4.10) and (4.12), satisfies the wave equation (a 5D Pauli-Fierz equation):

GA2 = 2847 = 0. (4.14)
Now the harmonic gauge (4.9) applied to ¥ ap becomes

A8 = 0. (4.15)

Since this equation is a representation of the non-covariant harmonic it is not in-
variant under arbitrary 5D coordinate transformations. We can, however, require

(as in 4D theory) that (4.15) be invariant to O(€ ) under the transformation
A 5t =4 + I (4.16)

where é” is an infinitesimal 5-vector. Under this transformation h AB,!Z’AB and the

harmonic gauge condition transform as

hap = by = hap —0p€a — Oaésn (4.17)
Vap = g = Yap —Op€a — afp + 1an0cEC (4.18)
davAB o F AP = 9,448 —O¢B . (4.19)

The invariance of (4.15) under the gauge transformation (4.16) then holds provided

the following wave equation for €2 is satisfied:

868 =0. (4.20)
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The transformation (4.16) represents the only gauge freedom left in the theory and
is important in deducing the actual degrees of freedom of the metric hs5. Now h4p
has fifteen independent components. But we have used five coordinate degrees of
freedom in (4.16) and imposed five constraints through (4.15). We therefore con-
clude that h4p has only 15 — 5 — 5 = 5 degrees of freedom left. These correspond
to two degrees of freedom for the gravitational field, two degrees for the electro-
magnetic field and one degree for the scalar field. To show this we refer back to the

KKEM metric (2.1)
ds® = gap(z%)dzdz? + ¢*(z7) (dy + 2A,(z°)dz*)* . (4.21)

which obeys the 5D cylinder condition. If we linearize the 4D metric by gog = Nag +
hep as well as the scalar field by ¢ = ¢¢+ x. and assume that O(h) ~ O(A) ~ O(x)-
then the induced matter field equations (2.12)-(2.14) (with w = 0) reduce to

DMhaB = "’vaXﬂ (422)
Op AP — 8%0,4 = 0 (4.23)
Omx = 0, (4.24)

where Oy = 9,95 is the 4D Minkowski box operator. The above three equations
correspond to a massless spin-2 graviton, a massless spin-1 photon and a spin-
0 scalar field. The restricted set of coordinate transformations for the KKEM
metric is the set of 4D transformations that preserves 4D covariance and so is
casily accomodated in the linearized theory. The coordinate transformations for

the extra coordinate in the KKEM metric are

y—=y=y+f(z?) => Ays— A,=A,-0.f. (4.25)
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The coordinate transformations for the extra coordinate in the linearized 5D theory

(with the cylinder condition imposed) are
'z =+ 42°) =  heya o i.zf‘a = hgq + Oabe. (4.26)
By making a direct comparison it is evident that
hsa ~ Aq and  8ués ~ Oaf (4.27)

and the gauge condition for the infinitesimal vector component €q is

0é=0 = Of=0. (4.28)

which is the subsidiary condition for the gauge transformations in EM under the
Lorentz gauge. Thus the equivalence between the off-diagonal components in 5D
linearized theory and EM vector potential has been shown. We can again infer that
the iz.m are spin-1 fields as are the A, and the spins of iza,g and h,pg are the same

(spin-2) as well as has and x (spin-0).

We now reduce the field equations to 4D form and interpret their meaning. We
have shown that the field equations for 5D linearized theory in the harmonic gauge
are

Oh4B = ¢ or GypA8 =0 (4.29)
H4h4B = %af’iz 949" =0 (4.30)
with general covariance being replaced by the restricted coordinate transformations
A 5zt =24+ €4, and G4 =0. (4.31)
From the (af3). (4a) and (44) components of the right part of (4.29) we obtain
(@f) Omdp*® = —ed2gP (4.32)
(4a) Oy = —ediy*™ (4.33)
(44) OpP™ = —ed2p*. (4.34)
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The 3 and fourth components of the constraint equations (4.30) yield

D™ = —0,9* (4.35)
Ou¥p™™ = —0,9", (4.36)

and the wave equation (4.31) for €4 gives

Omé€® = —ed?ée (4.37)

-

thf4 = —€ 04254 . (4‘38)
In the above. the 5D box operator was expanded as
0 = 7480405 = 10,05 + €2, (4.39)

and using the 4D Minkowski box operator Oy = n®#8,8; equation (4.39) reduces

to

8 = Op + €2. (4.40)

The most important of the sets of equations given above is (4.32) since it describes
an induced energy-momentum tensor from the definition G*? = T*P. Its explicit

form and the corresponding field equations are:
T = —e 24P (4.41)
Opep®f = T8 (4.42)

These are the equations for 4D linearized gravity, with a source term [29]. For
a 5D vacuum to go to a 4D vacuum it would be necessary to have 8,945 = 0
(the 5D cylinder condition), gsa = 0 and g4 = comst. (to satisfy the (4a) and
(44) equations) . These conditions will not in general be satisfied by physically
interesting solutions of the 5D field equations (4.4). So. in general. Kaluza-Klein

theory in 5D generates an energy-momentum tensor for Einstein theory in 4D.



CHAPTER 4. GAUGES IN KKG 50

The question of whether the induced energy-momentum tensor is conserved

(VoT*# = 0) is now addressed. Since T°? is of O(¢) we only need to verify that
0.T** =0, (4.43)

since the product of T%? and the Christoffel symbols is of O(3)?). which we neglect
in our approximation. Taking the partial derivative of both sides of (4.42) and

using the gauge conditions (4.35) we obtain
0aT® = —€9,029°P . (4.44)

Therefore. for the induced stress-energy to be conserved in our approximation we
must have —ed,979°# = 0. There are three cases in which this statement will hold.

and they are presented here.

Casel: 929 = 0. This automatically sets the graviton mass to zero since this
term drops out of the wave equation (4.32). The spin-1 %% and spin-0 ¥** fields

also are massless by virtue of the gauge constraints and field equations.

Case2: 9,9*# = 0. For wavelike fields, this implies the transverse condition on
¥°# but may allow for a massive graviton. From the gauge conditions and the field

equations we find that ¢¥** and 1* fields are both massless.

A combination of these cases is when both of the above constraints hold. which

implies that all the fields are massless.

Case3: The final case is when ¢*¥ = 0. Since Oup®P = —Op*B, if Y% = 0
by a choice of the coordinate frame then 9,9 = 0 automatically. This can be
achieved by setting from the outset hys = 0. and this defines what we will refer to
as the natural frame. This condition removes the spin-1 field (up to a coordinate
transformation involving the extra coordinate), and allows for either massive or

massless gravitons, but constrains the scalar field to be massless.
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We now look at a simple example of plane waves in the natural frame. The

flat-space metric and the perturbation are

’7aﬂ 0 - haﬁ 0
NaB = has = . (4.45)
We can assume that 1[143 has the form of a 4D gravitational wave and a scalar wave:
X .,jaﬁ 0 AoBei(kaz® +az!) 0
‘(,!rAB = . = i . (4.46)
0 .¢,44 0 A“ edaz"

Here A°P is the constant 4D polarization tensor. A** is the amplitude of the scalar
wave, and a is a constant with dimensions of inverse length which parametrizes the
extra coordinate dependence. The field equations (4.32)-(4.34) simplify consider-

ably and give
Wb = B = i = —a? (447)

Om¥™ = —ed* = LI =0. (4.48)

We see that (4.48) can be interpreted as a massless scalar field, while (4.47) can be

interpreted as a massive graviton when the parameter a is identified as

a==xVem. (4.49)
The induced stress-energy (4.41) is
TP — _¢ q2 AP oi(kaz? +azt) ) (4.50)
and its trace is given by
T®, = ea’A%, 'lkaz"+az') (4.51)

This will be zero either if the 4D polarization tensor is assumed to be trace-free

or if we choose a = 0 (or both). This would imply a radiation-like equation of
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state induced on the 4D manifold representing gravitational radiation. The gauge
condition (4.35) gives

kgA®? =0, (4.52)
since the conservation of energy demands 94%*# = 0 and so the propagation of the

4D gravitational plane wave is transverse as it is in the 4D linearized theory.

Thus far, there exists little difference in the qualitative features of 5D and 4D
linearized theory, but the difference becomes apparent when the gauge freedom in
€4 is used to obtain a transverse-traceless (TT) representation for A*?. The wave

equations for the components of {“‘ which must be satisfied are

Oué® = —ediE° (4.53)
Opét = —ed26*. (4.54)

The choice
£ = (£2.€%) = (—iee'*==T+a=") _jeeteilhz)) (4.55)

satisfies these wave equations. since (4.47) and (4.48) hold. In the natural frame.
the transformations for the polarization components of 148 under the gauge trans-

formation are given by the following (see equation (4.18)) :

A8 — poP _ e B _ [Bea + naﬁk_ye'r (4.56)
Ala = _geeeiltkazTHazt) eeil, e’ (4.57)
A = Ay ekaeaei[(k_l)’:’+a:‘] . (4.98)

We see that off-diagonal amplitudes have been generated and that the scalar ampli-
tude has also been changed. What is interesting about the off-diagonal components
is that they are a linear superposition of plane waves with different wave vectors,
and functions of all five coordinates. The choice of setting a = e* = 0 is consis-

tent with all the equations derived above but physically limiting since is sets the
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off-diagonal components in the transformed natural frame to zero. and therefore
removes the electromagnetic effects which are usually associated with these com-
ponents. This choice also sets the graviton mass to zero, and hence the 5D theory
would give a conventional TT (transverse-traceless) 4D gravitational wave and a
scalar wave with an oscillating amplitude. Another simplification that takes place
is if one chooses to remove the periodic behaviour from the scalar field amplitude
with the choice k, = [,. Since [, is null. this forces k, to be null as well. and
hence a must equal zero. which implies a massless graviton again. In this case. the

off-diagonal terms survive and give a simple expression:
ske. =4
Al = _eketettTT (4.59)

This has the form of an electromagnetic plane wave propagating with the same null
wave vector as the gravitational plane wave.
Let us now consider an example of a plane gravitational wave in the natural
frame propagating in the z-direction. The wave vector is
k, = (w.0,0,k), (4.60)

and obeys the conditions (4.47), (4.49) and (4.52). These give

W -k = m? (4.61)

wA% = kA

Performing the gauge transformations and using the above we see that the only

independent components of the 4B are
A = A% —we — ke
AO = A0l _ el

AIOZ — A02 — we
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A = AY el + ke
A2 = g2
AI22 — A22 _ weo + kes
A = A% _ (we® — ked). (4.62)
Then the choice
1 1 1
0 _ ta00 a1 L0
e1 = 2‘8’1(A +2A +2A )
e = A
82 — AOZ
1 1 1
63 = ﬁ(AOO - §A11 -_ §A22) (4.63)

will bring the 4D polarization tensor to a transverse-traceless form. but will generate
off-diagonal terms and an oscillating scalar field amplitude. The choice et = a =
0 corresponds to setting the off-diagonal terms of A’*® to zero, and hence 4B
represents a massless T'T gravitational wave and a scalar wave. If we choose [, = &,
(which again forces the graviton mass to zero). the 4D gravitional wave is again
TT. but the off-diagonal components with the choice of e* = e C/k (where C « 1

is a constant. since e* must be infinitesimal), are:

AIO4 = _Ceik-.,z’
AP = Cet*® (4.64)

These arc simple plane waves with constant amplitude.

4.3 Waves in Conformal 5D Gravity

In this section we investigate the consequences of imposing the 5D harmonic gauge

condition for the conformal KKEM metric. We then look at the propagation of
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electromagnetic waves and their interaction with the scalar field. To end this section

we give a solution to the field equations which has physical relevance.

Let us consider the metric
d3? = ¥ gapdzdz? + €% (dz* + 2A,dz")?, (4.65)

where ¢ and d are constants and o is the scalar field. The requirement that this

metric satisfy the 5D harmonic gauge condition (4.8) gives two equations:

M"=§%%r%,; = 0 = 9Tl + (2c+d)o”" =0 (4.66)
M=%, = 0 = VaA* + (2c + d) 0, A% =0.  (4.67)

Here V, is the 4D covariant derivative operator associated with the metric g,gs.
In order for the 5D harmonic gauge to induce the 4D harmonic gauge as well as
the Lorentz gauge. we are forced to choose 2¢ + d = 0 (MC gravity with (c.d) =
(—1/v/3.2/3). With this constraint the metric takes the form

d.§2 = e-za/ﬁgaﬁdzadzﬂ + 640/\/5((134 + 2Aadza)2 . (468)

which is the usual metric for Kaluza-Klein gravity in the Einstein frame [36].

We now investigate the propagation of electromagnetic waves using the Lorentz
gauge (4.67) and Maxwell's equations (2.10). We postpone the use of the 4D
harmonic gauge so the following equations hold covariantly in 4D for the induced
matter from the Kaluza-Klein metric in the Einstein frame. The 4D harmonic
gauge will however be imposed when we discuss an exact solution at the end of this

section. The ansatz for the electromagnetic vector potential is
Aa = aqe™® . (4.69)

which represents a good approximation for large w only. This statement is usually

referred to as the geometric optics approximation [53]. Substituting this ansatz
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into both the Lorentz gauge condition and Maxwell’s equations (2.10) and setting

the coefficients of w? and w separately to zero. gives respectively

VA% =0 = kaa® = 0 (4.70)
O(w?) : kek® = 0 (4.71)
O(w) : k®Vga?® — a®Vgk? — 2PV ga® = —2v3os(k%a® — kPa®). (4.72)

Here k = J,S5 1s the gradient to the surfaces of constant phase. and as such the

null condition implies that the k, follow null geodesics:
PV ak® = 0. (4.73)

Contraction of (4.72) with @, (the complex conjugate of a,) and the orthogonality

condition (4.70) allows us to obtain

Va(a?k®) = —2v3 0,(ak") . (4.74)

2

where a® = a,a*. If we define a photon current j* = a?k®. the right-hand side of
(4.74) can be interpreted as a nonconservation of photon number due to the coupling
of the gradient of the scalar field to the wave vector. The equation governing the
propagation of the unit polarization vector can be obtained from (4.74) by the

substitution of f* = a*/a?, and is

1 %
KVaf* = V3opfok® + 2 (Vaf" 4 17Va a”“) k= (4.75)
This again differs from the usual 4D result due to the scalar-field coupling. However,
both the nonconservation of photon number and the effect of the scalar field term on
the propagation of the unit polarization vector could in principle be tested, although

we expect the deviations from standard 4D results to be small in physically realistic

weak-field situations.
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So far we have not used the 4D harmonic gauge in deriving the above equations.
We will illustrate the use of this gauge by deriving an exact, gravitational plane
wave solution accompanied by a plane electromagnetic wave and a scalar wave. The
choice of an electromagnetic plane wave simplifies the induced 4D field equations
since F?> = 0 for plane waves. This reduces the Kaluza-Klein field equations (2.12)-

(2.14) along with the 4D harmonic and Lorentz gauge to

RE, = 2¢2V3°F, Fg7 + 20,08 (4.76)
0aF? + (Baln y=g) F** = _2\/30,F° (4.77)
Qo = ¢g%%9,080 =0 (4.78)

g*Tls = 0 (4.79)

VaA® = ¢°¥9,Ap = 0. (4.80)

Here RE; is the Ricci tensor in the 4D harmonic gauge. We would like a 4D gravita-
tional wave metric that would simplify these equations even further. The candidate
metric should have a determinant equal to a constant, which would remove the sec-
ond term on the left-hand side of (4.77), while also satisfying the 4D harmonic
gauge (4.79). A simple metric which satisfies these conditions is that of an exact
gravitational plane wave with parallel rays ( pp-waves have a null vector field which

satisfies V,kg = 0 [24] ) travelling along the z-direction. Such a metric has the form

ds? = —K(u,£.€)du® — 2dudv + dEdE . (4.81)

Here u and v are retarded and advanced coordinates, and € = z +iyand € = z —iy
are complex transverse coordinates. If we choose the electromagnetic vector poten-
tial and the scalar field to be independent of the complex transverse coordinates,

we have

Ay, = A(u) daz and o =o(u). (4.82)
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The vector potential then corresponds to an electric field oscillating in the x-
direction and a magnetic field oscillating in the y-direction, while the wave prop-
agates in the z-direction. One can check that the scalar wave equation (4.78) and
Maxwell's equations (4.77) are satisfied by arbitrary functions o(u) and A(x), and
that the only surviving component of the Ricci tensor is R, which gives for (4.76)
the equation

0eeK (u.€,§) = 37 [ 9, A(u) |* + [Buo(u) |- (4.83)

This equation can be integrated immediately to give
K(w.€.8) = (V5 [0.A@) ] + [duo(w) )€ + Fw)E + @, (4.84)

where f(u) is an arbitrary complex function. Since we are interested in electromag-

netic and scalar waves we assume that they can be written as
A(x) = Re (Aoe™) o(u) = Im (goe™) (4.85)
where Aq and o0g are real constants. This gives on taking the real parts only.
K(u.£ €)= [ez"“’ow'(*")[ Alsin®(wu) ] + 02A%sin?(\u) ] €. (4.86)

This particular solution is simple and would probably repay future investigation.

4.4 Final Comments

In this chapter we have shown that 5D gravity can be linearized in the same way
as 4D gravity, but that the harmonic gauge (4.8) is very restrictive; and since it
is non-covariant, conservation of the induced energy-momentum tensor on the 4D
subspace holds only when certain restrictions are imposed on the components of

the perturbation tensor. Also. while the equations allow in principle for massive
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gravitons. the most natural choice of parameters which removes electromagnetic
effects also reduces the graviton mass to zero. We have also shown that the imple-
mentation of the 5D harmonic gauge for the conformally rescaled KKEM metric
reproduces the 4D harmonic gauge plus the Lorentz gauge provided we choose min-
imally coupled gravity. In the geometric optics limit the coupling of the scalar field
to Maxwell’s equations alters the propagation equations for photons. The most
notable effect is the nonconservation of photon current. It should be noted that the
modification to photon motion is not restricted to Kaluza-Klein gravity, but will

occur in any theory that has a scalar field coupled to electromagnetism.



Chapter 5

A Hamiltonian Treatment of 5D
KKG

5.1 Introduction

With a renewed interest in the literature concerning the energy of solutions in
general relativity from a Hamiltonian point of view [81]. [82], and its relation to
entropy [83]-[85], we formulate a definition of energy making use of a background
subtraction term for Kaluza-Klein theory that retains the extra coordinate depen-
dence. This chapter aims to investigate the energy and angular momentum of 5D
solutions. In the case where the 5D spacetimes obey the 5D cylinder condition
the definition of energy from the Hamiltonian dimensionally reduces to the energy
associated with 4D non-minimally coupled induced matter, and is shown to equal
conserved quantities in a non-minimally coupled scalar-tensor theory. This compar-
ison is important since it is well known that Kaluza-Klein gravity is a non-standard

theory of gravity which includes at the very least a scalar field plus Jordan-frame

60
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gravity, and therefore must have conserved quantities associated with both sectors
of the theory. We will show that for the examples we consider, both approaches give
the same results. With the 5D cylinder condition imposed, we next study theories
which can be derived from 5D KK theory via conformal transformations and di-
mensional reduction of the 5D Hamiltonian. These theories include the minimally-
coupled (MC) and non-minimally-coupled (NMC) Einstein-Maxwell theory, and
Brans-Dicke (BD) theory. The energy and angular momentum of axially symmet-
ric stationary spacetimes are calculated for a host of examples from these different
theories. We then compare the results of the previous section to how conserved
quantities constructed from Killing vectors (the Komar integrals) behave under
conformal transformations for the induced scalar-tensor theories, and agreement
with the results from the charged GPS spacetimes of chapter 2 is shown. When
appropriate, we will draw comparisons to previous definitions of energy and angular

momentum in the literature [83], [87]. [88].

In section 2 we will first discuss notation and set up a 1+4 ADM split of the
5D spacetime metric and derive the lapse function and shift vector. In section 3
we will derive the Hamiltonian in general. paying special attention to the concept
of background fields in 5D to define a zero-point energy. and then examine certain
pliysical limits of this definition of energy. As an example we calculate the energy for
a class of 5D spherically symmetric solutions with the cylinder condition enforced,
known as the GPS solutions [38]-[40]. We then extended this example to the charged
version [37]. In section 4 we look at the energy associated with imposing the cylinder
condition and show that it agrees with conserved quantities associated with the 4D
induced scalar-tensor matter for the two GPS cases considered. It is also shown
that the Hamiltonian energy or the total mass associated with these solitons is the

sum of the gravitational and scalar masses. Section 5 deals with the derivation
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of the conserved quantities associated with the induced matter theory via Komar
integrals. We show here that the total mass derived for solutions considered can be
represented in a conserved scalar and gravitational Komar integrals. In section 6
we extend the Komar integrals to include other theories of gravity by considering
the conformally rescaled action and its dimensional reduction. We apply the results
to solutions of Brans-Dicke gravity which include rotation as well as considering the

rotating version of the GPS solutions [89], [90].

5.2 A 1+4 Split and the 5D Kaluza-Klein Metric

We begin by explaining the foliation of the 5D spacetime and stating the notation
that will be used. The notation used in [81] will be adopted throughout the chapter
with modifications to the dimension of the spacetime. We assume that the 5D
manifold Ms with metric § can be foliated by a time function ¢(z#) defined over
a closed interval I, which generates a set of 4D spacelike hypersurfaces 3, labelled
by t. and a vector field {4 which obeys {4V ¢ = 1. The vector field {4 can be
decomposed using the unit normal 74 to the sufaces ¥, and the shift N4 such that
t4 = N7 + N4, The boundary dMs of Ms is the union of initial 3., and final it!
4D spacelike hypersurfaces, and a timelike 4D boundary B which has a unit normal
@A, The intersection of £, = I, x &, and B is a 3-surface B® = I, x B? which
bounds the 4D hypersurface .. Here I, is a finite interval of the extra dimension.
The unit normal to the surface B} is denoted by #4. The set of all B? then foliates
the timelike boundary B = I, x B3, where I, is a finite interval in time. We also
assume for simplicity that the surfaces £, and the timelike surfaces B intersect
orthogonally, so that w74 = 0. With the above 5D spacetime split the 5D metric
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can then be written in 1+4 ADM form as
d3® = —N%dt? + hg (dz® + N°dt)(dz® + N*dt). (5.1)

where hgp is the induced metric on E,.

Since we wish to make contact with the usual 5D Kaluza-Klein theory we must

compare the above metric with the standard 5D metric written in the Jordan frame:

ds® = gap(z°,y)dzAdzB (5.2)

= gapdz®dzP + ¢*(dy + 2A. dz*)?. (5.3)

To bring the metric into the Einstein frame a conformal rescaling of the 4D metric
and the scalar field is necessary. A discussion of conformal transformations their
role in the 5D Hamiltonian formulation is discussed in detail in [86]. Here we assume

that the 4D metric can be written in the standard 143 ADM form [91] :

ds? = gap(z°.y)dzdz? (5.4)

= —NZ%dt* + h;j (dz' + N'dt)(dz’ + N7dt). (5.5)

By absorbing the 143 ADM (5.5) metric into the Kaluza-Klein metric (5.3) we can

write the 5D metric in 14341 form as
ds? = —N2dt? + hy; (dz* + N'dt)(dz? + N7dt) + ¢*(dy + 24, dt + 24;dz')?. (5.6)

When this metric is compared to the 1+4 form of the metric (5.1) we find that
the lapse for the 1+4 metric equals the lapse associated with the 14+-3+1 metric,

namely

N=N. (5.7)

Also, the unit normal to 3. in covariant and contravariant form is

1 N 24, + N‘2A,-)

I_V-v _Ts N (5’8)

fia = (~N.0.0,0,0), 74 =g*Bip= (
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The 4D shift vector in contravariant and covariant form is given by
N = (N'.24, — 2N* A;) , N, = hay N® = (N; + 44° A, A; . 2¢4%A,)  (5.9)

and the induced metric on 2, 1s

- ( hij + AP A: A; 24°A; ) | (5.10)
2¢%A; ¢

This metric comparison was first introduced by Beciu [92], but there are errors in

that article concerning the shift vector that are corrected here. We note in passing

that if the electromagnetic vector potential is set to zero (A, = 0) then the 5D

metric (5.3) is block diagonal. and the 144 lapse function and shift vector are

identical to their 1+3 counterparts.

5.3 Derivation of the Hamiltonian

The 5D action appropriate for Kaluza-Klein gravity in which the induced metric
hrap is held fixed is

i=—1—_/d5z\/—12+ fd‘z\/—l{ (5.11)

where & = 87Gs is the five-dimensional gravitational coupling constant and K is
the trace of the extrinsic curvature of the boundary. By fixing the induced metric
has on OM; one is effectively fixing the 3D metric h;;, the spatial components of
the electromagnetic vector potential A; and the scalar field ¢, all on the boundary
OMs. At this point it is usually assumed that the 5D spacetime has a Killing vector
¢ = 64,. If so. one can dimensionally reduce the action to 4D, to produce the non-

minimally coupled gravitational action. This dimensional reduction also introduces
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a length scale which is used to redefine the 5D gravitational coupling constant by
1
Z= T/dy, (5.12)
[ [

where the interval I, must be finite. We do not assume this symmetry here initially
and treat the extra spacelike coordinate democratically until the end where one
can assume y-independence if one chooses. To begin the traditional Hamiltonian

treatment. the 5D Ricci scalar must be decomposed using the 1+4 split [53]-[56] as
R(§) = R(h) + K K® — K* —2V 4 (a* — 24 K). (5.13)

Here a4 = 7BV i is the acceleration of the normal vector 4. and R(h) is the
Ricci scalar associated with the metric izab. The extrinsic curvature of the 4D

hypersurface £, and its trace are defined as

. 1 R Loa .. . i
Kap = = (0thas — DaNy = Do), K = b Kap (5.14)
where D is the covariant derivative operator on the hypersurface ¥,. Inserting

(5.13) into the expression for the action (5.11) gives
F — 1 - 7 7 ~ab -2 1 ~ (A .~ ~A
i= 2_"M/ &z /= (R(h) + Ka B* ~ K?) +E/mx,/—7 (6 — @ad?) . (5.15)
s B

where we have used Gauss’ theorem to remove the total divergences from (5.13),
plus the fact that nsa% = 0, as well as the boundary condition 474 = 0. The
integral over the boundary B contains O, which is the trace of the extrinsic curva-
ture associated with the timelike boundary B, and # its determinant. In order to
reduce (5.15) to canonical form we need to define the momentum conjugate to the

induced metric hgp via

27 P = Vb (R — h*R) . (5.16)



CHAPTER 5. A HAMILTONIAN TREATMENT OF 5D KKG 66

This can be used to simplify the kinetic term in the action. Some algebra and the

use of Gauss’ theorem again reveals that the action has the canonical form

I= /dt {!d‘z P 9,hgy — H} . (5.17)

where the Hamiltonian is a sum of three terms. H = fIc + f[k + f[m that are

described below.

The first term H, is the constraint term

H = /d‘; (W + N.7e) (5.18)
£
- R R R il .
— /([‘:cN 25 (P“"Pab _ %P’) _ 2"/—;12(11)
2 Vi
—2/4‘*3&,[),,13“”. (5.19)
£
Since the lapse and the shift behave as Lagrange multipliers, a variation of the

action with respect to them generates the constraints

A o e . h_ -
A= 22 (Bby— 1B7) - —[—R(h) = 0. (5.20)
\/Z 3 2k
He = —2D, P = 0. (5.21)

If the 5D cylinder condition is imposed, the first Hamiltonian constraint can be
shown to give the usual Hamiltonian constraint for gravity and electromagnetism
non-minimally coupled to the scalar field from a 1 + 3 split [86], [93]; and the
second one represents Maxwell’s equations coupled to the scalar field. This is to be
expected since we began with a 5D metric that contained the 4D electromagnetic

vector potential. If the cylinder condition is dropped these constraints would give
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the usual constraints in a 1+ 3 split but with matter terms that would have extra-

coordinate dependence.

The next term Hi in (5.17) i1s a boundary curvature term which will be identified

with the total mass of a solution to the field equations, and is

A -_L /(P:: NVGE. (5.22)
KBS

It can be shown [81]. [82] that k = @ — 4, a® is the curvature of the boundary B3
cmbedded in B. and ¢ is the determinant of B?. The curvature term (5.22) can
be reduced to a more familiar form by noting that for the 1 + 3 + 1 form of the
metric N = N, V& = #v/o.and B} = [, x B?, so that the above definition of mass

reduces to
o o=-1 f dy/d?z NéJai. (5.23)
K L

If the scalar field is a constant and the cylinder condition is imposed. we recover

the usual 4D expression [81]. [83].

The final term in (5.17) is the momentum term and includes the conjugate
momentum defined with a different weight since the integration is over B}, and is

expressed as

H.=2 /daz 7 Ny P2t = 2 fdy/dzz 7o Ny P2, (5.24)
B} I, B?
where
Pt = 2i\/3 (K - hotK) = 2i évT (K — hPK). (5.25)
[ % [

Since the constraint terms vanish for a 5D vacuum solution. we can use the curvature

term (5.23) and the momentum term (5.24) to define the Hamiltonian of a 5D
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vacuum solution as
. 1 - . .
A=- /dy/dza: (Novak — 277, N, P2 . (5.26)
1, B2

Some comments are in order about interpreting this as the total energy-momentum
of a solution to the 5D field equations. Since the action in general will diverge for
non-compact 3., we need to regularize the action by choosing a background metric
g. We require that the background metric itself be a solution, so that the physical
action

iphya = i(g}) - i(g) (5.27)
defined for the background is zero [83)]. This definition also provides a way of com-
paring the contribution of the gauge fields to the action and the background action
since they are contained in the 5D metric. We must also demand that the topology
of the extra coordinate be the same for the solution and the background so they
redefine the gravitational coupling in the same manner. We can can also assume
that the induced metrics on £, agree [81], which implies that their volume elements
will be the same, Nv& = N¢ v/o. The physical energy-momentum associated with
a time translation is then

E= —% [dy [ &z [Nova (k- ) -2k (7N, P2 — 7Ny P2 (5.28)

I, B2
Note that the integrand may have extra-coordinate dependence, which is investi-
gated for 5D spacetimes in the next chapter. For 5D spacetimes that are asymptot-
ically flat the natural choice of a background is 5D flat space, and we now consider

two examples of this type.
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5.4 z*-Independent Solutions

We now consider two simple examples which illustrate how to calculate the energy.
Both examples are spherically-symmetric solutions, which are independent of the
extra coordinate, d,gap = 0. In the first example we include only the timelike
component of the electromagnetic gauge potential A, # 0 in order to describe a
charged solution, and in the second example we consider only the effects of a scalar
field. The ubiquitous example of Kaluza-Klein theory. the magnetic monopole
(A, = 0. A; # 0) will not be considered here since it is treated in detail in [38]. [40].
[43]. [87]. [94].

First we would like to make some general comments about these particular
classes of metrics. The matching boundary B? = I, x B} will be taken to be the
surface r = R = const., and will be designated by B}(R) = I, x B?(R). We will
let R — oo at the end of the calculation so that B?(R) — S*. The background
metric is chosen to be 5D flat space. Since the 14+3+1 metric (5.6) is independent
of the extra coordinate and A; = 0 under our initial assumptions, it can be verified

that the curvature term k reduces to

Par®
¢

where k is the curvature of the B? boundary. Thus the curvature k dimensionally

k=k+ when A;=0.A4,#0, (5.29)

reduces. and includes a projection of the scalar field. This will occur for the back-
ground metric as well, but the scalar field contribution will vanish since the scalar
field is constant on the matching boundary. By redefining the 5D gravitational
coupling using (5.12) the expression for the energy for uncharged solutions then

reduces to

E=— [N o [¢(k~F) +6u] . (5.30)
52
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where & denotes the background curvature term of the solution embedded in flat
space. This is exactly the expression one would obtain if the starting point was
the 4D action for gravity non-minimally coupled to a scalar field [95]. Since the
block diagonal form of the 5D metric induces this in 4D, it is a good check of the
Hamiltonian approach in 5D. In the case where a 5D solution has a scalar field
which is constant (which can be normalized to one by scaling the extra coordinate)
the energy reduces to the 4D definition given in [81], [83]. This again produces
the correct limit since the theory is equivalent to the 4D theory embedded in 5D.
We now proceed to evaluate the energy for the charged GPS class of metrics which

satisfy our initial assumptions.

5.4.1 The Energy of Charged 5D Liu-Wesson Solutions

We seek to derive the energy of the charged Liu-Wesson solutions (2.17) presented
in chapter 2. The metric of the 3-parameter class of solutions written in the Kaluza-

Klein-Jordan frame is :
Bt —

(1 - k)Ba ] —a—b 2 2 plea—b 2 kBa ) 5
~{"5ges dt*+ B dr*+r°B d2 +T(dy+2.4gdt) . (5.31)

Here the function B. the timelike component of the EM vector potential, and the
scalar field are given by (2.18):

a2
ds® =

_ . 2M(1—k) _Vvk(1-B** . = B _kBe
B(r)=1- o Alr) = 21— kB ’ ¢ (r) = —F—5— (5:32)
where (a,b) obey the consistency relation and k is defined by
2
a?+b*+ab=1 and k=Q— (5.33)

M?(a—b)*"
The presence of the A, in the above means that the shift vector is nonzero, so by
(5.9)
N® =(0,0.0,24%4,). N, = (0.0,0.24,) (5.34)
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- [(1 = k)Bs
N=N= i——kB);I- (5.35)

The non-zero shift vector would imply that the conjugate momentum term does

and the lapse function is

not vanish. and hence one must use the expression (5.28) when the electromagnetic
potential A, is present. But as will be shown, the momentum contribution to the
energy is zero due to the asymptotic behaviour of the potential A,. The background
metric for the charged case is the solution embedded in 5D flat space. In order for
the solution and the background to agree on the surface r = R = const., we will
need to scale the time coordinate and translate the extra dimension so that the 5D

flat space background is
ds* = —[N(R)]?dt® + dF* + 7F2dQ® + ¢ (R) [dy + 2A.(R)dt]*. (5.36)

Evaluation of the curvature term gives

- 412 2M:z b Mz [B(R)]Be-b/2-1
. (a+b)/2-1 [ 2 _ 2V ke —b )
h=[B(R)] [R R (H“*z)} (=) B T BRI
(5.37)
and for the background
E = %[B(R)]‘““”"‘”/z, (5.38)

where z = 1 — k. The integrand for the momentum term of the charged solution

(5.31) reduces to

_ ¢3\/;Ag Ti h'J 8_,.4: _ qb"’\/t;@,.Af

AN %RNvR (5:39)

Fa N P2P =

which has a large-R behaviour of

P, 2 1
FulhPP =% 40 (ﬁ) , (5.40)

and when integrated over the angles will not contribute to the energy in the large-
R limit. Thus only the curvature term contributes to the total energy for charged

solutions that are well-behaved asymptotically.



CHAPTER 5. A HAMILTONIAN TREATMENT OF 5D KKG 72

The evaluation of the curvature term gives the total energy as

1 . 2 I 2M:z b . M-z a
E:—;gﬁ/;d&Rz [E(l_ B(R))— R? (1+a+§)—k(a—b)F[B(R)] b:l .

(5.41)
When evaluated for large-R, this gives
b a
E=M(a+§)—Mk(§+b), (5.42)
or rearranging terms,
b k
E=M(a+§)(1—k)+MT(a—b). (5.43)

We see that when the charge is set to zero (k = 0) the solution reduces to the
neutral GPS case and the energy reduces to a sum of gravitational (Ma) and scalar
(Mb/2) terms.

We also see that the Hamiltonian approach gives the total energy as the sum of
total gravitational and electromagnetic, but does not separate out the scalar and
gravity parts. One could identify the terms containing the parameter b with the
scalar field contribution since it signals the presence of the scalar field (the case

b =0 sets ¢ = 1). To prove this we turn to the Komar integrals in section 5.5 .

5.4.2 The Energy of Neutral 5D GPS Solutions

We briefly give an account of how to calculate the energy of the neutral GPS solu-
tions in order to emphasize the procedure of matching the solution and background

metrics.

The Gross-Perry-Sorkin (GPS) solitons [38]-[40] are a class of solutions given
by the 5D metric

ds~2 — —A“dt2 +A—a—bdr2 +r2A1‘°"bdﬂz + Abdy2 (544)
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where

Ar)y=1- "7, (5.45)

This class of solutions has two independent parameters: M and only one of
a or b by (5.33). This solution reduces to the Schwarzschild solution in the case
(a.b) = (1.0), but in general is different [38], [52] as discussed in chapter 2. This
will become important when considering the temperature and entropy of these
solutions in appendix 2. We will consider the metric with (a,b) left general. The
metric (5.44) has zero shift, and the lapse and scalar field are

N = A%?, ¢ = AY? (5.46)

while the curvature of the 3-boundary is

E=[A(R)]et0)/2-1 [% — 272’—’-: (1 +a+ g)J . (5.47)

The background g is the 5D Minkowski metric in spherical coordinates with a scaled

time and a scaled extra coordinate to ensure matching at the boundary. Thus:
ds = —[A(R)*dt? + di* + 72dQ? + [ A(R) |Pdy>, (5.48)

where 72 = r? A'~2~% to ensure the same metric on B?. The background curvature

on the boundary is
2

T(R)
from which the energy can be calculated:

Ez—% /d2032 {%(1—,/A(R))—gg(1+a+g)] =M(a+g) .
s

(5.50)

k=

—3 (a+b—-1)/
= R [A(R)]¥*7D2, (5.49)

Here the square root has been expanded for large R. This reduces to the energy
of the Schwarzschild black hole E = M when the parameters (a.b) reduce to their
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Schwarzschild values (1.0). The general result depends on both a and &. and we can
obviously identify the gravitational M; = Ma and scalar M, = Mb/2 contribution
to the total mass. which agrees with previous results [38], [87].

5.5 Conservation Laws of 4D Induced Scalar-Tensor

Gravity

In this section we derive the conserved quantities associated with the induced 4D
matter from a 5D vacuum. Since dimensional reduction is possible if there is a
Killing vector ¢ = 844, the resulting 4D induced theory is equivalent to a 4D
theory of gravity non-minimally coupled to a scalar field plus electromagnetism.

The field equations for this induced matter from chapter 2 are :

Gap =T +24*TEM (5.51)
Vo (6*F*) =0 (5.52)
O¢ = ¢°F* Fop. (5.53)

We expect the definitions of conserved quantities defined in regular 4D general
relativity, such as the Komar mass and the electrical charge, to be modified by
the presence of the scalar field. Fortunately, conserved quantities associated with
Killing vectors have already been defined for Brans-Dicke theory [96]-[99]. We
briefly review the development of the conserved quantities using the notation of

[96]. Consider the following vector
©° = V,B*? (5.54)
where the antisymmetric tensor B8 is defined as

B =~ [v* (4¢°) - V° (46 , (5.55)
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£* is a 4D Killing vector and ¢ is the scalar field. It follows that since B®? is

antisymmetric, the vector @ has zero divergence:
V.0% =0. (5.56)
Then we can define a conserved quantity

1
C = P v Baﬁ — = af
E/' £. Vs 5 deag B*F (5.57)

where Gauss’ theorem has been used. Substituting the expression for B¢ into the
integral. and using the anti-symmetry properties of B®? and dS,s. one can show
that the conserved quantity C is

1

[

}{ dS.s ¢ VEP . (5.58)

St

1
—_ apef
C = nfd5°ﬁ¢€

When the 2-surface approaches infinity (S, — S7°). and setting €= = £%, as a time-
like Killing vector which generates an asymptotic time translation, the conserved

quantity can be identified with the total energy [56]:
1 1
Br=-- § dSapdtf — = § dSussVoe. (5.59)
S See

Thus the total energy is a sum of the scalar energy and the modified gravitational

Komar energy:

_ __l a B

E, = st dSap ¢°€° (5.60)
1 x

E, = _;Sf dS.s 6 V€S . (5.61)

When the scalar field is set to one (¢ = 1) the energy of the scalar field (5.60) is
zero and the gravitational energy (5.61) reduces exactly to the gravitational Komar

integral. For the case of the uncharged GPS solutions considered in the last section.
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the evaluation of the scalar and gravitational energies is a simple task and gives as

expected

M
2
which is the same total energy defined from the Hamiltonian,

E, = E, = Ma, (5.62)

ET=E.+Eg=M(a+§). (5.63)

For the charged soliton, the expressions for the gravitational and scalar energies
are still valid. The 4D metric components and the scalar field are modified by the
presence of the parameter k. To find an expression for this parameter we use Gauss’

theorem on Maxwell’s equations (5.52). giving

Q= sirsf dSas ($°F*#) = MVK(a - b), (5.64)
and so o
k= ameTgE o*b (5.65)
but when
a=b=Q =0. (5.66)

which is in agreement with the value derived from the large r behaviour of A,. The
calculation of the scalar and gravitational energies for the charged GPS solutions
is again straightforward and the results are
M
E, = > (b — ak) (5.67)
E, = M(a-—kb). (5.68)

Therefore the total conserved energy for the charged solution is

b
ET=M<a+§> — Mk (§+b), (5.69)
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and this result agrees with the expression for the total energy derived from the
Hamiltonian (5.43).

Here we should mention that the total energy Er may become negative for
certain choices of (a,b). Under a rescaling of the 5D metric g4p — A?§45. where
A = const, the total energy (5.59) rescales as E; — A3Eg. If the total energy can
be negative then there exists no lower bound, which is an undesirable feature of
any field theory. Thus in the case of the neutral GPS solutions we should restrict
ourselves to the case when the parameters (a.b) satisfy a + b/2 > 0 for the total
energy to be positive. If we demand that the total energy (5.69) of the Liu-Wesson
solutions is positive, this effectively sets an upper bound on the charge to mass

ratio of the source

Q? - (a-’:—%)(a—b)2
N CED I

where we have used the definition (5.65) for k.

(5.70)

9.5.1 Tolman Mass for the GPS Solutions

Here we derive the Tolman mass for the induced matter for the simple case of the
neutral GPS solutions which have the scalar field as the source of the stress-energy

tensor Tog = Vadg/$. The conventional 4D definition for the Tolman mass is
My, = — fd“; B nogh (T L ) (5.71)
Tol 4n 2 af 2 afB ¥ i .

where X, is the spacelike surface orthogonal to the timelike Killing vector £=. This

integral can be shown to reduce to

— 1 3
Mz, = Gfd z /=g (p + 3P) (5.72)
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for the case of a perfect fluid [53]. When the Tolman mass (5.71) is evaluated for
the neutral GPS solutions (5.44) the result can be expressed as

2M R

-b/2
Mo = Ma (1 _ ——)

r

(5.73)

2M

where R and 2M are the outer and inner limits of integration on the spacelike
hypersurface X,. Since we demand that the gravitational mass M, = Ma > 0
we sec that the Tolman mass will remain finite and positive only if b < 0 (2.26).
This agrees with our assumptions first made in chapter 2. Although the Tolman
mass depends on the scalar field through the stress-energy tensor. the asymptotic
limit R — oo is independent of the scalar field and only measures the gravitational
contribution. This however will not be the case for finite radial distances R. where

the scalar field will make a contribution.

5.6 Conformal Rescalings and the 5D KKEM Met-
ric

We want to investigate 4D theories that can be obtained from a conformal rescaling
and a dimensional reduction of the 5D KKEM (2.1) metric which obeys the cylinder
condition. We begin with the 5D action

I = %M{d%\/_—_gi{+£ fd‘z\/i—lﬁ

IMs

- ;_&I[dyld“x —§R+§/dy fd%\/i—né (5.74)

I, oM,

where £ = 87 Gj is the five-dimensional gravitational coupling constant, € is 1 or

—1 according to whether the unit normal to the boundary is spacelike or timelike.
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and K is the trace of the extrinsic curvature of the boundary. The 5D manifold
and its boundary are taken to be the products

Ms =1, x M, and OMs =1, x OM,. (5.75)

At this point it is usually assumed that the 5D spacetime has a spacelike Killing
vector (4 = 64, . in which case one could dimensionally reduce to 4D to produce the
gravitational action with the electromagnetic and scalar terms. This dimensional
reduction also introduces a length scale which is used to formally redefine the 5D
gravitational coupling constant by (5.12). The 5D action I, from (5.74), thus

reduces to an effective 4D action

r= L / dizy/~g (4R — 204 — #°F?) + < f d*zvh (/& + ‘f’;") . (5.76)
2K K ¢
M, oM,
where we have used the fact that the extrinsic curvature reduces as
$-n
hK = f( —V, °) \/K(zc+—). 5.77
Vik = VR (o=Va(ov=gn") > (5.77)

Here K is the extrinsic curvature of the boundary M, and n, is the unit normal of
this boundary. This action is recognized as the NMC Einstein-Maxwell action and
we wish to investigate how the action transforms under the conformal rescaling of

the metric and the dilaton as

9o = *°gag and ¢ — ¢°. (5.78)

where (c.d) are constants. It is useful to see how each term in the action rescales

under this transformation. We have for the volume and boundary terms

V—goR — J=gp*td (R +6¢c(1 — ¢) =2~ ¢"¢° - 6c9¢—¢) , (5.79)
V—9O0¢ — dy—g¢*Hd ((2c +d— 1)¢;‘f’a + 7}) (5.80)
V=9’F* = J=g¢*F?, (5.81)

VREK — Vhgtd (IC + 3c¢;7”) . (5.82)
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Adding the above terms in the 4D action and applying Gauss’ theorem on the O¢

term. it can be verified that the action transforms as
I — I(c.d) = / diz\/—g $**d (R + 6¢(c + d) — ¢2(d‘°’F2)(5.83)

+< /dy § d°z VR gtk
I,  aM,
This is general. holding for any choice of the parameters ¢ and d. However. to
reduce the above action to a MC theory it is evident that 2c + d = 0. otherwise the
theory is NMC. For a MC theory the conventional choices for the parameters are
c=-1/V3 and d = 2/+/3 [36]. and the 5D KKEM metric (2.1) transforms from

the Jordan frame to the Einstein frame.

5.6.1 Energy and Conformal Transformations

The standard procedure for deriving the energy from the action begins with a 1+3
ADM decomposition of the 4D metric gog and any other gauge or matter fields in
terms of the lapse function N and the shift vector N*. Detailed derivations already
exist in the literature {81], [93]. [91]. and rather than repeat the analysis here for
the action (5.83) we simply mention that extra care must be taken to include the
factor ¢>+? properly. the rest of the derivation being similar. Thus the energy-
momentum associated with the timelike vector field ¢, = Nn, + N, for rescaled

action (5.83) is

E(Cd) = ——/d2 ¢2C+dN\/_[(L L) ¢2(d—c)Fa/3J

+; /d22¢2c+d\/¢;7‘0N5 (Kaﬁ_haﬁK) , (5.84)

o
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where the subtraction of the background curvature term designated by k has been
included to define a zero-point energy. Here n, is the unit normal to the surfaces
of constant time and K, = V,ng is the extrinsic curvature of these surfaces.
The curvature term of the 2-boundary is defined as k = V,r® + n®*nPVgr,, where
T« 1s the unit normal to the 2-surface. The first integral represents the energy
associated with a time translation whereas the second integral is the negative of
the angular momentum when the shift is identified with an asymptotic rotation.
The minus sign is included to account for the usual right-hand-rule definition of
angular momentum {56]. Details of the character of the background spacetime and
its contribution to the definition of energy are discussed in [81] and [83]. We now
turn our attention to the calculation of the energy and angular momentum of 4D
axially symmetric stationary (ASS) solutions in MC and NMC theories derived
from neutral 5D Kaluza-Klein gravity. For charged solutions the reader is referred
to [100].

We wish to derive the energy and angular momentum of ASS solutions in suf-
ficient generality so as to cover both MC and NMC theories. We will adopt the
following form of the 4D ASS metric and decompose it into ADM form

ds* = —(N?— N;N")dt? + h;j(dz' + N* dt)(dz’ + N7 dt) (5.85)
= —e¥dt® + e (d¢ — w dt)? + 2*dr? + e?Pd#?, (5.86)

from which the lapse function N, shift vector N* and 3-metric h;; can be obtained

in the form:

N=¢ N =(0,0,-w) N; = (0,0, —we?¥), (5.87)
e’ 0 0
hi; = 0 ¥ 0 . (5.88)
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The unit normal to the spacelike hypersurface t = const. and the unit normal to

the surfaces r = const. are
n, = €(—-1,0,0,0) n® = e ¥(1,0,0,w), (5.89)

ro = €7(0,1,0,0) r* =¢e77(0,1,0,0). (5.90)

Evaluation of the curvature term for the spherical 2-boundary gives
k= Var® + n°nfVgr, = €70, (Inf+) . (5.91)

For a background which matches the metric and scalar field on the 2-boundary the
expression for the energy associated with a time translation reduces to

E(c.d) = —-'1; /dQ g2ett 4948 9, (Ine?*P) (e* — 1) + (2c + d) €728, (In #)] -

$?
(5.92)

The angular momentum associated with an asymptotic rotation for the ASS metric

(5.86) can also be evaluated as

J(c.d) = —% / dQ@*ctd ¥th-v-a g o, (5.93)
s?

and we now proceed to evaluate E(c.d) and J(c, d) for some examples.

The first example we consider is the N + 1 dimensional vacuum solutions of
Myers and Perry {101]. The choice N = 4 is then the 5D Kaluza-Klein vacuum,
and we note that the corresponding 5D solution can be viewed as a 4D induced-

matter solution of BD gravity [34]. The 5D metric is
dsi® = gapdz®dzP + $*dy? (5.94)

24 52 _ :
ds? = — (r'—’ :_ ;':_ “-'52:20) dt®*+ Asin® 0(d¢—'lZA— dt)2 +1pdr?+p*d6* +(r cos 6)2dy?

(5.95)
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where the metric components are given by

2 = 1P+ j%cos?d (5.96)
A = ,% (5.97)
A = 4+ 3531 + Asin®¥) (5.98)
2
- __F
Y = i (5.99)

The BD solution obtained by conformally scaling the 4D metric and scalar field is
dshp = (r cos 8)Pg,sdzdz? with ¢ = (rcos)?. (5.100)

Since the scalar field has this particular angular dependence, one can verify that
both the energy and angular momentum of this solution are zero since the inte-
gration of the scalar field over the solid angle is zero. This contradicts the results

originally given in [101], where for general N the energy and angular momentum

are
(N -1)An N—2
E = .
N+1 167G 11 M [L ] (5.101)
AN—l . N
J — . .
N+1 st (L7] (5.102)

Here Ay_; is the area of the N —1 sphere and G4, is the dimensionally dependent
gravitational coupling. (We have also included the dimensions of the energy and
angular momentum.) Although this gives the correct results for 4D theory (N = 3).
it gives nonzero results for 5D theory (N = 4) and there seems to be a contradiction
with the induced-matter calculations. This is resolved by the following reasoning.
In the large-r region, we have for a general dimension N, g,, = —1 + u/r¥-2_ so
that for N = 4 there is no O(}) term and hence no mass. This would agree with the
induced matter results. The dimensionality of u also suggests that it may represent

a charge. but without a mass present we conclude that for N = 4 the solution is
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unrealistic. Thus care must be exercised in reducing higher-dimensional solutions

to 4D.

The next example we examine follows the proposed rotating solutions of Krori
and Bhattacharjee [89], [90] (for other forms of Kerr-type metrics in scalar-tensor
theory see [102]-[106]). They have given a Kerr-type solution for BD theory by
utilizing the complex coordinate transformation of Newman and Janis [107] on the
original BD static spherically-symmetric solution [4]. Instead of using the the 4D
BD metric as the seed metric for the Newman-Janis algorithm (recently summarized
in [108]). we choose to work in 5D and use the closely related GPS metric [38]-[40]

as the seed metric,
ds? = —A°dt? + A7 bdr? + 2 AT 0d0O? + Abdy? (5.103)

where A =1 — 2M/r. The scalar field for this metric is defined as ¢ = A%2. This
class of solutions has two independent parameters: M and only one of a or b by
the consistency relation (2.19). After using the Newman-Janis algorithm on the 4D
part of the 5D metric. we find a new 4D Kerr-type metric which has the form of
(5.86),

A
Y= 104
e T Bi-a + j2sin? 6 (2BY/% — Ba+b) (5.104)
eV = (2 Bl-a-b +]-2 sin2 6 (2B—b/2 _ Ba)) sin2 @ (5.105)
i (B-¥* - B*)
W = ypicacs + j%sin’ 8 (2B-%/2 — Ba) (5.106)
e = %B e (5.107)
= BETT (5.108)

where scalar field is redefined to be

¢ = BY?. (5.109)
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The new metric components are :

2Mr

= 1- 5.110

5 ( )

£ = r*+;%sin%6 (5.111)
= r?-2mr+j2. (5.112)

It can be verified that the above solution reduces to the 4D Kerr solution embedded
in 5D when the parameters take on their Schwarzschild values (a,b) = (1,0). Since
this metric is asymptotically flat. the definitions of energy and angular momentum

can be applied and yield

b b
Er=M (a + 5) and Jr=Mj (a + 5) . (5.113)
The energy agrees with previous calculations using various methods [38], [87]. [94],
[100]. and the angular momentum has the form expected. Hence when the param-

eter combination a + b/2 # 0 the total energy and total angular momentum are

related by
. Jr
J = ET N
which agrees with the physical interpretation of this parameter being the angular

(5.114)

momentum per unit mass. If the combination a + b/2 = 0, the total energy and
angular momentum are zero. One might expect that the solution might be 5D (or
even 4D) Riemann flat when the total energy is zero (even in the case without
rotation) but this is not the case because there is an exchange of scalar and grav-
itational energy which curves the 4D space. This 5D metric goes over to the BD

solution when the conformal factors are appropriately chosen as described before.
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5.6.2 Conformal Komar Integrals For S-T Gravity

In this section we look at the conserved quantities associated with the induced 4D
matter from a 5D vacuum and how they behave under conformal transformations
of the type (5.78). The conserved quantity is a sum of a scalar field component and

a gravitational component,
—_ — Co a_ ;B Co a_ 1B
C=Co+Cp=—=§ dSus 479 ——}{dsaﬁ¢v¢ : (5.115)
3 K
st Sz

Here % is a Killing vector. ¢ is the scalar field and ¢, is an appropriate constant
that will be specified once a Killing vector is chosen. We now wish to see the
effect of the conformal rescalings on the definition of the Komar integrals for the
4D induced matter. Under the conformal rescalings {5.78), the surface element and

the Killing vector rescale as
dSap — $*°dSap and Y 5 Y, o = ¢ Y. (5.116)

After a little algebra one can show that the conserved scalar C, and gravitational

C, quantities rescale to:

Co = Culed)= =22 {45, grerizigoyp, (5.117)
s

C, = C,c.d)= —% f dSap $7H471 (204742 + $V4F) . (5.118)
s

Thus the scalar and gravitational quantities are not invariant under the conformal

rescalings. and neither is their sum
C=C,+C,= —% f dSap 641 ((2¢ + d)§™yP + $V9P) . (5.119)
St

The total energy can be defined when the Killing vector ¥* is identified with £*

which generates asymptotic time translations and the constant cg is chosen as ¢g =
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1. The angular momentum is defined when ¥ = ;. which generates asymptotic
rotations and co = —1/2. However, for this choice of Killing vector one finds upon
explicit evaluation that dSa,g¢°fg = 0 since 1,3 = 0 and n,{3 = 0. Thus the
scalar contribution to the total angular momentum is zero. Hence the total energy

and total angular momentum can be defined as:

Er(e.d) = —~ § dS.p 4t (2c + d)6°€f + 49°¢0) . (5.120)
s

and

Jr(e.d) = 51: f dSap >+ (4V28]) . (5.121)
sz

The choice 2¢ + d = 0 which we know reduces to a minimally coupled theory in
the Einstein frame metric reduces the energy and angular momentum to the usual
4D Komar definitions. However, as mentioned above, to make the connection to
Brans-Dicke theory the parameters must satisfy 2c + d = 1 which leaves the total
energy and angular momentum invariant (compare (5.115) and (5.119)). We can
therefore conclude that the Komar energy and angular momentum of the induced
matter derived from the 5D vacuum field equations using the 5D metric in the
Jordan frame are equivalent to the total energy and angular momentum in 4D
Brans-Dicke theory. This is somewhat unexpected since this holds for all w even

though Kaluza-Klein gravity is the special case w = 0.

To finish this section, we would like to give the explicit form of the energy
and angular momentum for 5D metrics which have axially-symmetric-stationary
4D parts and evaluate them for the two examples from the previous section. One

can verify that expressions (5.120) and (5.121) reduce to:
E(c.d) = —% /dQ pctd g¥th-a-v [3,.62"' + %ez"’a,wz —(2c+d)e*8. In ¢] .
s? '

(5.122)
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and

J(c.d) = —i /dQ ptd ¥tBa-v g . (5.123)
s2?

For the Myers and Perry solution (5.95) it is verified that the energy and angular
momentum are zero due to the angular dependence of the scalar field. For the
Kerr-type GPS solution the energy and angular momentum agree with the results
of the last section. Er = M(a + b/2) and Jr = jM(a + b/2).

5.7 Final Comments

We have given a Hamiltonian formulation of Kaluza-Klein gravity in the Jordan
frame that is unrestricted in the extra coordinate. When the 5D metric has a Killing
vector ( = §4, associated with the extra coordinate, the Hamiltonian reduces to the
Hamiltonian of 4D gravity and electromagnetism non-minimally coupled to a scalar
field. The total energy for the neutral GPS and charged Liu-Wesson solutions was
calculated. and shown in both cases to reduce to a sum of scalar and gravitational
masses. The scalar M, = M(b — ak)/2 and gravitational M, = M(a — kb) masses
were shown to agree with conserved Komar integrals for solutions of the 4D induced
theory. Positivity of the total energy constrained the GPS parameters to obey
a+b/2 > 0 and for the Liu-Wesson solution set an upper bound on the charge-to-
mass ratio of the solution. These results were then extended into the conformally
rescaled theory and examined for a class of rotating GPS solutions, where the energy
agreed with the neutral result and the total angular momentum was found to be
J = Mj(a + b/2). In short, we have shown that the 5D Hamiltonian approach
naturally contains the 4D one. and that quantities like the energy and angular

momentum in 5D are natural extensions of those in 4D.



Chapter 6

The 5D ADM Mass

In the previous chapter we derived a general expression for the energy (5.28) for a
solution of the 5D field equations from a Hamiltonian perspective. Here we wish
to show the versatility of this definition by showing its equivalence to previous
definitions of energy considered in Kaluza-Klein theory [87]. In the context of 4D
general relativity, Hawking and Horowitz [83] have shown the equivalence between
the energy derived from the Hamiltonian and the classical ADM result [91] for
flat backgrounds, and to the definition considered by Abbott and Deser [88] for
non-flat backgrounds. Their derivation did not depend on the dimensionality of
spacetime and so it is easy to extend it to 5D. We briefly outline their proof of
the equivalence between the Hamiltonian energy and the ADM energy here, and
show that it reduces to the Deser-Soldate energy. A detailed derivation may also
be found in [56].

The definition of the ADM energy in 5D can be dimensionally extended from
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the 4D definition without much effort and is
1 - .
MADM = ﬂ /ds:c \/51:“ (Dbﬁ'ab - Da’?) ’ (61)
s

where 7 is the unit normal to the asymptotic surface element which can be taken
as the product of a 2-sphere S? times an interval of the real line I, for the extra
coordinate, Jqp = izab — hgp is the difference between the spatial metric under con-
sideration and the background reference metric. Also D, is the covariant derivative
operator associated with the background metric f.zab which will also be used to raise

and lower indices. The energy defined from the Hamiltonian (5.28) is
1 _ . -
Mtom = =% /dy /d’z\/E (k-F) . (6.2)
v 5%

where we have made the choice of a unit time translation N =1 and N = 0 in the
definition for the energy. To show that these two definitions are equivalent we need
to appeal to two coordinate systems on the asymptotic surface S. One coordinate
system for izab and another for the background metric hay. We must also take
care that the background spacetime redefines the gravitational coupling constant
in the same manner as the original spacetime through the integral over the extra
coordinate. The choice of coordinates simplifies the analysis and is permitted since
the expressions for the ADM and Hamiltonian energy are coordinate invariant. In

a neighbourhood of S we can construct coordinate systems such that
hapdz®dz? = dr® + Bia(z', z%) dz'dz™ (6.3)
hopdz®dz® = dr?® + B;,,.(z‘, ) dz'dz™. (6.4)
Since the background is chosen such that the metrics agree on S, we have izab = ha

on S. We find that in these coordinates the curvature of the boundary term can

be expressed as

R 8, has (6.5)
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which reduces the Hamiltonian energy (6.2) to

Mitam =~ [dy [ &2 VG (k% 0, hos — 6, h) . (6.6)
"L s
But since the metrics are equivalent kg, = kg on S, and using the definition

Yab = hap — has, the expression for M., reduces to

1 —.
Mo = —ﬁ/dys[ Pz G hoy 8, Fas . (6.7)

The next step is to show that the ADM definition (6.1) reduces to the same result.

From the integrand of (6.1) we have

7 DP 3ap =0 (6.8)

.= D (7% 4as) . (% D* #°)

where the first term is zero since the unit normal vector is orthogonal to both

metrics. and the second term is zero by definition on S. The remaining term can

be simplified. and gives

D = r‘°ilbcb,,:,,,c| (6.9)
S S
= h®8, 9| +27* R, 5% (6.10)
S S
= k%8, Jm (6.11)
S

In going from the second to third line we have used the fact that 4,, = 0 on S by

definition. Thus the ADM mass reduces to
1 = 2a (b = A -
Mspm = 2% S/dsr V5 (D Yab — Da"l) (6.12)
1 — - -
= —ﬁ:i/dys.[f:c \/;haba,.’)'ab, (6.13)

which is equivalent to the energy from the Hamiltonian (6.7). This was derived with

the assumption that the lapse was asymptotically N =1, but can be extended to
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include a general lapse that is not asymptotically flat [83]. With a general lapse
function, the definition of energy can accomodate both anti-deSitter spacetimes
[88]. and deSitter spacetimes [88]. [109], [110]. Before we move on to discuss the
mass of deSitter spacetimes from a 5D point of view we wish to examine the limits

of the 5D ADM mass.

In the case that the 5D cylinder condition holds and the background is flat. the

form of the ADM mass reduces to
1
Mipw = 5= [d*2 V57 (003w — 0a?) (6.14)
s
1 . . . .
= —5 / d*z /o 7: (05 %i; — Oi¥i5 — Oiaa) » (6.15)
sz

which is the Deser-Soldate mass for 5D Kaluza-Klein gravity. To show that this
indeed agrees with the mass from the Hamilitonian and to illustrate the mechanics
involved in performing the calculation we evaluate it for the Liu-Wesson solutions.
To start, it is advantageous to work in comoving coordinates which are defined by

r=p(1+1¥—:) . (6.16)
and then take the large-p limit which behaves like p ~ r. The only components of
the 5D metric we need is the 3D spatial metric and the g4 part of the metric. If
we make the transformation to comoving coordinates and take the large-p limit, we

find that the 3D spatial metric can be expressed in Cartesian coordinates as

_ dz - dT
g,-_,-dz‘dz-’ = (1 + 2MZ(a + b)) z 3 z ) (6.17)
T r
and the extra-coordinate part of the metric is given by
. 2Mz(b — ak
Jaady® = (1 - _Z(r__a_)) dy? . (6.18)
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By defining the 3D spatial unit vector #* = z'/r we can write the ¥%; and 744

components as

. 2Mz(a +b) . . . 2Mz(b — ak)
Yi; = TiT; and Y4 = ———————

T T

(6.19)

where we have used flat space as the background. A simple evaluation of (6.16)

gives the ADM mass

Mapre = M (a + g) —k (g + b) . (6.20)

which agrees with the result obtained from the Hamiltonian. This was a simple
example in which the 5D cylinder condition was assumed. We now turn to the case

when this constraint is lifted from the 5D metric.

6.1 Asymptotically deSitter Spacetimes

Whereas the previous section dealt with spacetimes which obeyed the 5D cylinder
condition (8,gas = 0). we now turn our attention to 5D canonical spacetimes which
explicitly depend on the extra coordinate. This extra coordinate dependence has

the form of a 5D conformal factor and the 5D metric can be written as

d3® = gap(z°,y)dz*dz® (6.21)

= e WL (gap(z7)dzdz? + dy?) | (6.22)

where the range for the extra coordinate is y € [0, 0o).

Although the 4D cylinder condition of the 4D metric is still enforced (9,gas = 0).
there exists non-trivial induced matter from this metric. The field equations for

the 5D vacuum Rap = 0 generate the ten Einstein field equations with a positive
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cosmological constant (see chapter 2):

R.g = Agagp where = % ; (6.23)

The remaining five field equations éya =0, Ryy = 0 are satisfied identically. Thus
the y-dependent conformal factor is responsible for generating a 4D deSitter vacuum
from a pure 5D vacuum. As stated before, any 4D deSitter vacuum solution of
Einstein gravity can be embedded in a 5D Kaluza-Klein vacuum via the canonical

metric (6.22). Here we will examine the Hamiltonian for the canonical metric.

One must be careful. however, in choosing a background spacetime since it
will involve a redefinition of the 5D gravitational coupling <. We therefore must
restrict the background spacetime to have the same topology associated with the
extra coordinate as the original solution. so the redefinition of & will be the same
for the solution as well as the background. The total physical energy for a solution
can then be defined. and we recall the definition here for time translations

E=-%/dy/d=z1s‘/\/5 (k—F) . (6.24)

, B

For 5D spacetimes that are not asymptotically flat the background has to be chosen
carefully. In the case of 5D canonical spacetimes which are asymptotically deSitter
in their 4D sections, the background can be chosen as 5D flat, which can be written
as a 4D deSitter spacetime trivially embedded in 5D (deSitter space can be viewed as
a 4D pseudosphere embedded in 5D). Thus by extending the procedure of including
a flat background subtraction term from 4D to 5D, we are able to include deSitter
spaces as backgrounds automatically since they are 5D flat but have 4D curved
background sections. For the 5D canonical spacetimes we expect the definition of
energy (6.24) to be a valid definition of energy for 4D deSitter spacetimes, and to
reduce to the proposed definition of energy in deSitter spacetime by Abbott and
Deser [88] and later in refs. [109], [110]. We now proceed to demonstrate this.
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Since the canonical metric has the extra coordinate as a conformal factor on
the 4D metric gog we expect that there would be large simplifications to the terms
in the action. This is reinforced by the fact that the induced Einstein-deSitter
equations are independent of the extra coordinate, but not of the length scale L
which defines the cosmological constant. We therefore expect this length parameter

to play an important role in the action when reducing from 5D to 4D.
We start this decomposition by splitting the 5D canonical metricinto 1 +3 + 1
form
di® = —N2dt? + hgy(dz® + N°dt)(dz® + Ntdt) (6.25)
= e WL (—N?dt? + hij(dz’ + N'dt)(dz? + N7dt) + dy?).  (6.26)
From this decomposition, the geometrical quantities between the 5D and 4D theory

can be determined. The unit normal and shift vector to the hypersurface f)g are

defined by

iy = (—N.0.0.0,0) = (—e™¥/*N,0,0,0,0) = e ¥*(na.0). (6.27)
\Ta (1
nt = (%—%) = ev/L (%,—%,o) = e¥'L(n=,0), (6.28)
and the induced metric on ¥, is
- . hi; 0
hap = e~/ g ) (6.29)
0 1
One can show that the extrinsic curvature (5.14) has the components
- K;; 0
Ka = e VE , (6.30)
0 o

where K;; is the extrinsic curvature associated the hypersurface ¥,. These defi-

nitions can be used to express the conjugate momenta (5.16) in a straightforward
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manner from their definitions. After some algebra we find that the Ricci scalar for

¥, can be expressed as

R(h) = R(h) — 2A. (6.31)

One can also show that the action (5.15) reduces cleanly to the formal result one

expects in 1 + 3 with a cosmological constant, but with an overall factor of

[= =]

% e=3/L gy (6.32)
4]

which is defined to be unity so that the gravitational couplings between 4D and 5D
can be related. This defines the 5D gravitational coupling as

Lk K
—_— = —_— 6.33
3 Vv3A ( )

Thus it is appropriate that the metric was initially referred to as canonical, since

K

it maps the 5D Hamiltonian in canonical form to the 4D Hamiltonian in canonical

form but with a cosmological constant.

The boundary terms f[k + fIm which define the energy-momentum of 5D solu-
tions in canonical form also reduce to their 1 + 3 expressions times the redefinition

of the gravitational coupling, giving

E = -% /dzz [NvVE (k—F) — 267y P2 . (6.34)
B2

Here I denotes the background curvature term of the 4D deSitter background.
Now. Hawking and Horowitz [83] have shown the equivalence of the above defi-
nition of total energy to the ADM energy for a general lapse function N. This
includes the Abbott-Deser energy for 4D anti-deSitter spacetimes [88] when N be-
haves asymptotically anti-deSitter, and the extension to deSitter spacetimes can

be easily made, although care must be taken in defining the integration region in
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deSitter space due to the cosmological event horizon. This is elucidated in [88].
where the authors calculate the energy of the Schwarzschild-deSitter solution and
show the expected result E = M. We have therefore shown that (5.28) is a valid
definition for the energy induced from 5D into 4D, which includes extra-coordinate

dependence and gives the energy for deSitter spacetimes.

6.2 Final Comments

The 5D definition for the energy presented in detail in the last chapter was shown
to agree with the ADM definition for Kaluza-Klein metrics which are independent
of the extra-coordinate. The Deser-Soldate mass was evaluated for the Liu-Wesson
solutions and shown to agree with previous results. For the canonical metrics
which induce a cosmological constant in 4D. the definition of 5D energy was shown
to reduce to the 4D result for deSitter spacetimes considered by Abbott and Deser.
Here we used the fact that 4D solutions with a vacuum cosmological constant
can be embedded in the 5D canonical metric, and the natural background for the

calculation of energy for 4D deSitter spaces is 5D flat space.



Chapter 7

Conclusions

Five-dimensional Kaluza-Klein gravity can be regarded as the simplest higher di-
mensional generaliztion of classical general relativity. The extra degrees of freedom
in the metric tensor and the dependence of the metric components on the extra
coordinate are sufficient to induce matter in 4D from a 5D vacuum RAB = 0. We
found no need to introduce higher-dimensional matter through a stress-energy ten-
sor Tap as is done in some unified field theories such as superstrings. or interpret
what such matter means physically. The matter induced into 4D is thus a con-
sequence of pure geometry in 5D and there is no distinction between source and
field in 5D. but this distinction is made in 4D via the induced matter equations

Gaﬁ =0-— Gag = Tag.

The nature of the 4D induced matter in general depends on the symmetries of
the 5D metric. The induced matter was calculated for two distinct types of metrics:
1) the traditional Kaluza-Klein metric which is independent of the extra coordinate
and unifies 4D gravity, electromagnetism and a scalar field, and 2) the canonical

metrics which have an extra-coordinate dependent conformal factor and lead to the
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cosmological constant and neutral matter.

The role of the extra cooordinate in these two cases is very different. For the
KKEM metrics, the Killing symmetry of extra-coordinate plays a vital role in the
algebraic reduction of the 5D vacuum into a 4D spacetime with matter. This has
historically been referred to as the 5D cylinder condition. Because of this symmetry,
the off-diagonal components of the 5D metric can describe the EM vector potential,
and the extra metric component the scalar field. We note that the induced matter
is independent of any length scale associated with the extra dimension which is
also a result of the Killing symmetry. In assuming the 5D geodesic equation. the
4D particle dynamics that arise from this metric point to no physical identification
of the extra coordinate, but the conserved quantity ¢ = f - u 1s related to the
charge ¢ of associated test particles. This is a consequence of the modified 4D
Kaluza-Klein-Lorentz equation. which is derived from the 5D geodesic equation.
For the canonical metrics the situation is drastically different. The matter that is
induced into 4D has its origins in the metric dependence on the eztra coordinate.
The length scale L associated with the extra coordinate does appear in the induced
matter field equations and defines the vacuum cosmological constant A = 3/L? .
As well. the effective cosmological constant and neutral matter depend crucially
on z*-dependence of the 4D metric gas(z”.z*). Another difference is that the
particle motion derived for the canonical metric does give the extra coordinate
meaning. Since there exist three fundamental units for neutral dynamics, namely.
time. length and mass, we expect that the fifth dimension can be geometrized via
a combination of fundamental constants. This is the case and we set z* = Gm/c?,
with the extra coordinate interpreted as a mass. By making a judicious choice of
path parameterization for the 4D motion we find that the 5D equations of motion

from a Lagrangian derivation allow for the rest-mass variation of particles. and
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that their motion in 4D is affected by a geometric force. Photons are exempt from
this force but massive particles will feel a type of “fifth’ force. This force is also
related to the dependence of the 4D metric on the extra coordinate and is zero if
the 4D cylinder condition is imposed. The geometric force was calculated for the
astrophysically important Ponce de Leon class of metrics and shown to be zero for
comoving particles. Hence massive particles must be in a non-comoving frame for

the geometric force to be realized.

The physics induced into 4D is not only affected by coordinate symmetries, but
also by 5D gauge choices. The linearized version of 5D gravity in which the 5D
harmonic gauge was imposed, reproduced 4D linearized gravity with the possibility
of a massive graviton. The extra degrees of freedom in the metric where shown
to be associated with the photon and a scalar field. From a field theoretical point
of view. massive gravitons are associated with a modification of the gravitational
potential which effectively reduces the range of the gravitational force. Although
this possibility exists for the induced matter theory, the natural choice is to set the
graviton mass to zero. By imposing the 5D harmonic gauge for the conformally
rescaled KKEM metric, we found that the 4D harmonic and Lorentz gauges could
be induced simultaneously with the parameter choice for MC gravity, 2c+d = 0.
Although the 5D harmonic gauge is not covariant, it seems as though the natural
choice for the conformally rescaled metric is the MC form which simplifies the gauge
choices and the induced matter field equations. Especially important are Maxwell’s
cquations, which are coupled to a scalar field. The scalar field in this case plays the
role of a spacetime-dependent dielectric. In the geometric optics approximation
it was found that the scalar field coupling to the Faraday tensor, baFB, was
responsible for the nonconservation of the photon current and a change in the

propagation of the unit polarization vector. Although we expect that these effects
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should be small. in order to agree with the classical tests of 4D GR, they are non-
zero and could possibly be detected. It should also be noted that these deviations
from the usual 4D results are not solely a Kaluza-Klein effect. In any scalar-tensor
theory in which the scalar field is coupled to Maxwell’s equations, such as Brans-
Dicke gravity or the low-energy limit of superstring theory, the propagation of
photons will be affected.

The Hamiltonian approach to 5D Kaluza-Klein gravity was derived in general
and then applied to the two different metrics. Due to the generality of the expression
for the energy. various expressions for the energy previously given in the literature
such as the ADM energy, the Deser-Soldate energy and the Abbott-Deser energy
were shown to be included in the 5D approach. For the KKEM metrics, the total
energy or inertial mass was calculated from the Hamiltonian for the Liu-Wesson
class of solutions, and was found to be the sum of gravitational and scalar mass,
agreeing with the type of decomposition that occurs in scalar-tensor theories such as
Brans-Dicke gravity. The calculations where also carried out for a neutral-rotating
extension of the GPS solutions, and the angular momentum per unit inertial mass

was found to be independent of any scalar-tensor parameters.

The difference between the inertial mass and the gravitational mass is a violation
of the Weak Equivalence Principle (WEP). The extent of this violation is dependent
on the gravitational and scalar parameters a and b in the neutral GPS solutions.
Although the Schwarzschild values (a,b) = (1,0) do not violate the WEP, a general
choice for (a,b) will however. The experimental accuracy for the violation of the
WEDP is of the order 10~!! for terrestrial experiments [79], but this will be greatly
improved upon by the satellite experiment STEP [76] which will put very tight

constraints on the parameters (a,b).

The Hamiltonian for the canonical metric was shown to accomodate the defini-
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tion of energy for deSitter spacetimes, and can reduce to the Abbott-Deser energy.
This is a natural consequence of the 5D approach since the definition of energy
involves the reference to a background metric. The 5D Minkowski metric can be
viewed as an embedded 4D psuedosphere representing deSitter space. Since any
solution to the 4D Einstein field equations with a cosmological constant can be
embedded in a 5D canonical metric, we used a 5D flat background as the reference
spacetime. This is equivalent to using a 4D deSitter background to calculate the
4D energy for these solutions, which is the case for the Abbott-Deser energy.

Although all of the above results could in principle be derived for a general
N-dimensional theory of gravity, a five-dimensional vacuum theory is preferred for
its simplicity, the physical identification of the extra-coordiate as a mass and for
the non-trivial matter that can be induced into 4D via the extra-coordinate depen-
dence in the metric. The physical interpretation of the extra-coordinates in higher-
dimensional theories seems to be lacking and their experimental consequences tenu-
ous at this time, whereas this is not the case for the modern version of Kaluza-Klein

gravity.



Appendix A

Induced Matter Examples

In this appendix we derive the induced matter for two z*-dependent solutions of the
5D vacuum field equations RAB = 0. The first solution is a class of metrics which
have been termed shell-like [68], [69] in the Kaluza-Klein literature. They induce
matter on the 4D hypersurfaces z* = const but are 5D Riemann flat. This fact
shows that 5D Minkowski metrics can induce non-trivial matter in 4D, provided
the 4D sections have an extra-coordinate dependence introduced by a particular
choice of coordinates. The second solution is a Kerr-Schild type of metric which
exploits the simplification of the field equations as a result of the null vector used in
the ansatz for the 4D metric gag = nag — 2f(z7,{)koks. Again the induced matter

is found and shown to give physically meaningful results.
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A.1 Shell-like Solutions

The shell-like solutions to the 5D vacuum field equations due to Wesson and Liu
(69] are a two-parameter class of solutions :

l2

di* = 75

(-A%c2dt? + B2dr® + C?r?dQ?) + dI?, (A.1)

where the functions A, B and C are

1 kL
= ‘§+—l—— (A.2)
B = —1— (A.3)
1-fz
. 2
c = 14521 (A.4)
rl

(note that this form can be expressed as the form given in [69] by letting k, — ko /Ky
and ¢ — kit). A discussion of the spacetime structure is given in [69]. This
metric reduces to the deSitter metric when the parameters k, and k3 are both zero.
Through the inclusion of the extra-coordinate, this metric may be interpreted as a
generalization of the deSitter vacuum with an effective cosmological constant given

by (2.55) C 4 9AB
+
L2ABC °

which reduces to the vacuum deSitter value in the limit ks = k3 =0 (A= B71.C =

Aggs = (A.5)

1) as does the metric (A.1). For the metric (A.1) the matter T,5(8:g9) and total

stress-energy T,s tensors, defined by equations (2.51) and (2.52), give:

(1+2C) (AB+2C) C+AB+1 C+AB+1]

L?C? ° L2ABC? "’ [L?ABC ' L?ABC (A-6)

Taﬁ = —dJag [

L*ABC?’ L?ABC* ' [?ABC ' L*ABC
(A7)

—C? 2 _ _ _
Taﬁ(alg)=diag[(AB C?) (AB-C?+2C(1—AB) (1- AB) (1 AB)]_
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The total stress-energy tensor (A.6) reduces to the vacuum deSitter value p =

—P =3/L%* when ky = k3 = 0.

A.2 Kerr-Schild Solutions

In this section we will study the induced matter produced by two Kerr-Schild

metrics which have explicit extra-coordinate dependence.

The first 5D metric we investigate is of the form

as — 2f(27.1) ko k
gAB=(ﬂB F(z7.1) kakg 0 ) (A.8)
0 ¢ (z7,1)

where K, is a null vector with respect to the metric g,g kok® = 0 and Tlap is the
flat 4D Minkowski metric. Since k, is null, the raising and lowering of indices can
be done with the flat-space metric. k* = g*Pkg = n°Pkgs. The extrinsic curvature

and its trace can be calculated from (2.42) and have the form
f{aﬁ = %f'kakﬁ : K= gaﬂf(aﬁ =0, (A.9)

where the trace is zero since the inner product of the null vectors is zero, and where
we have defined overdot as (*) = d/9l. The induced matter can easily be calculated
from (2.43)-(2.45) and has a simple form due to the algebraic reduction in using

the null vector k,. The induced matter field equations for the above metric (A.8)

are: .
_r,. -1 _g (L) kb
GaB = Taﬁ = ¢ VQ¢B al (¢) ¢ 3 (A].O)
fk"k") _ (f'kakﬂ) 3
Va ( " = Ou 3 =0, (A.11)
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The stress-energy temsor (A.10) has two components and represents a massless
scalar field and a null radiation field. It is also traceless T7, = 0 which suggests
a radiation equation of state P = p/3. The conservation equation (A.11) can be
viewed as a constraint equation between the null vector and the scalar field where
the second equality follows from the fact that the null vector is orthogonal to the
Christoffel symbols for Kerr-Schild coordinates [24]. Since we are interested in

non-trivial induced matter we will assume that f # 0.
The next metric we consider is the canonical form of the Kerr-Schild metric
used above. The metric is
s ( £ (Mo = 20(=". ) kaka) 0 ) | (A13)
0 ¢ (z7)
Due to the conformal factor {2/ L? in front of the 4D Kerr-Schild metric, the extrinsic

curvature and its trace both gain an extra term:

Kog = —3%; (%gag - fkak,g) and K = —%. (A.14)
The resulting induced matter (2.52) from the 5D vacuum is:
Top = qlbva@g - ¢T3L;gaﬁ - # (41f + 12 F) kaks . (A.15)
and the constraint equation and scalar wave equation are
Va [é (3g% + 1f k"k")J =0, (A.16)
O¢=0. (A.17)

The above induced stress-energy can be viewed as a 3-component fluid having a
scalar field component and null radiation as before, but the second term describes

an effective cosmological constant (2.55)

AUGC

Acsp(z?.1) = ol

(A.18)
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The exact form of the effective cosmological constant will be determined by a solu-
tion to the field equations. In particular, the generalization to the Schwarzschild-
deSitter solution where the function f(z?,l) has a non-trivial /-dependence would
be desirable. This would also lead to variations of the rest-masses of particles in
Schwarzschild-deSitter spacetime (see chapter 3). The first steps towards this have

been taken in [68] and work on this problem continues.



Appendix B

Quantum Effects in KKG

Here we wish to give a fairly brief account of some semi-classical and quantum effects
in Kaluza-Klein gravity. First we examine the temperature of the GPS solutions
and find that the Schwarzschild solution is favoured in the class of solutions, and we
discuss the surface gravity and temperature for the canonical metrics and relate 4D
and 5D results. Secondly, we look at the five-dimensional Klein-Gordon equation
for the KKEM and canonical metrics. We rely upon the gauge fields in the 5D
KKEM metric and the extra-coordinate dependence in the canonical metric to
induce properties such as charge and mass when the problem is reduced from 5D to
4D. In this way. the quantum properties of particles have their origins in a higher

dimensional wavefunction and metric.

B.1 Temperature and Stability

In this section we look into the issues of thermodynamical and classical stability

for the GPS solutions.
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B.1.1 Entropy of the GPS Solutions

In order to investigate the temperature of the GPS solitons we appeal to the method
of using Euclidean metrics. In what follows we will only consider the uncharged
soliton since it simplifies the analysis. The first step in defining the Euclidean
metric is to Wick rotate the time ¢ = —i{7 and remove any conical singularities by
defining a period 8 for = that may have been introduced as a result of the Wick
rotation. The conical singularity for the uncharged GPS soliton is removed if we
define the period to be

- 8xM .

b= S0 i A ®.1)

The value of this period is governed by the parameters (a,b). Using the classical

Hamiltonian expression for energy (5.50) the period can be rewritten as

r

oo M < Er
. 8TM _
B= = lim AMEIN =] gxM M= Br (8.2)
{ 0 M > ET .

In this form the period depends on whether the total classical energy is greater
than, less than, or equal to the Schwarzschild result. However, it is obvious that
the only sensible case is when E = M or (a,b) = (1,0) because otherwise the period
B is ill-valued. This implies that the Schwarzschild solution is the only Euclidean
solution with a well-defined period and thus unique among the GPS class. This is
due to the fact the Schwarzschild solution is the only metric among the members of
the GPS class with a conventional horizon [52]. It also follows that the entropy of
this system is one-quarter of the area, as expected. Thus we can conclude that the

Schwarzschild solution is thermodynamically unique among members of the GPS
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class of solutions since it is the only member with a well-defined temperature and

entropy.

If we now turn to the canonical metrics with the 4D cylinder condition imposed,
it is easy to show that the 5D and 4D temperatures are equivalent. In general, the
surface gravity on the horizon is defined as

R = h®*9,N ON (B.3)

when the metric is written in 1 + 4 ADM form. The surface gravity is related to
the period of the Euclidean time coordinate and the temperature by
s 27 1
B=— and T=p87". (B.4)
Kp
One can check that this reproduces the above temperature for the GPS solutions.
If we expand the terms in the 5D surface gravity (B.3) for the canonical metric we

find

Bt g N (B.5)
Th

where x5 is the 4D surface gravity and the last term is zero since it defines the
location of the horizon(s). Thus for the canonical metric with the 4D cylinder
condition obeyed, the 5D and 4D surface gravities are the same, hence the 5D and

4D temperatures are the same
T=rT. (B.6)

We can thus conclude that when the 4D cylinder condition holds, all classical and
thermodynamical properties in 4D deSitter spaces are the same in 5D canonical

spaces.
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B.2 5D Wave Equations

The 4D Klein-Gordon equation for a massive particle is given by

PaPY(z7) = —-m*P(z7) (B.7)
Oy(z7) = m?P(z’) (B.8)
where the 4-momenta operators are p, = —iV,, and the mass is a constant. We

are motivated to dimensionally extend this wave equation to a massless higher-
dimensional scalar wave equation for two reasons. The first reason being that
derivatives with respect to the extra coordinate acting on a higher-dimensional
wave function will generate particle properties such as mass and charge. The second
reason is that by including gauge fields in the higher-dimensional metric we expect

to induce wave equations that depend on the gauge fields.

In 4D relativity the 4-momenta obey p,p® = —m?, and so a 5D theory must be
able to reproduce this in an appropriate limit. The simplest extention to higher-
dimensional theories is to assume that 5-momenta P# = (P, P%) obey the null

condition

P4PA=0 = P,P®=—PP*. (B.9)

If we quantize this relation by the usual substitution 15,4 — —ihV 4. and introduce

a 5D wavefunction we have

PaBAY (2%, 2%) = PV, V5 (2%, 2%) = \/l__gau (V=35*285%) =0. (B.10)

We will examine this equation for the two types of spacetimes encountered in the

main body of the thesis, the KKEM and canonical spacetimes.
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B.2.1 z*-Independence : The KKEM Metric

The KKEM metric (2.1) first presented in chapter 2 has an inverse given by
- o ¢—2c Gap _¢—2c A
a*B(z%) = (B.11)
_¢—2c Aﬁ ¢—zd + ¢—2c Az
where we have used the conformally rescaled metric to include both the MC and
NMC cases, and we have suppressed the factor of 2 for simplicity. A simple expan-

sion of the 5D wave equation results in
0a (V=9¢**1g°P0p) — 0a (V—g#**+*A"0s¥)
—td /=g A% 0. 00 + §*H /=g (62D + A7) j¥ =0.  (B.12)
where we have separated the derivatives with respect to the extra-coordinate from
the 4D spacetime derivatives. It is clear that to uncouple the scalar field from the
wavefunction ¥ we must choose 2¢ + d = 0, with (¢, d) = (—1/v/3.2/v/3), which is
the choice for MC gravity (see chapter 2). The wave equation (B.12) reduces to

OF — VoA 9, ¥ — 24%0,0,% + A202 & = —4~ V3 92 . (B.13)

If we now make the assumption that the 5D wavefunction is separable in terms of

a 4D wavefunction and a function of the extra coordinate
¥(z7.y) = P(z7)e /=), (B.14)
the wave equation takes the form
9°® (Va — i0af(z*)Aa) (Vs — i0uf(z*) Ag) ¥ = (3uf(z") 672%¢.  (B.15)

This form is suggestive of the Klein-Gordon equation for a charged particle and
we are compelled to make the identification f(z*) = gz*, and we can identify the

induced mass of the charged particle as

mlyy = g6V, (B.16)
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Thus given a solution to the 5D vacuum field equations Rip = 0 we can solve
for the 4D wavefunction on a curved-electromagnetic background and identify the

charge-to-mass ratio of the particles with (B.16).

If we use the expression for the scalar field from the 5D Liu-Wesson vacuum

solution
B® — kB 2M(1 - k)
2 T e— = — ——————
P = e B=1 - , (B.17)
we find that the charge-to-mass ratio
V3
i - V3 _ Bb — kB°
Im eff o = ( 1-k ’ (B-18)
in general depends on the choice of (a,b). In the large-r limit this gives
|-"- 1 Y3M(b—ak) (B.19)
mlesys r ) )

This gives the extreme result ¢ = m for r — oo which is problematic for elementary

particles.

If we consider neutral spacetimes (A, = 0) we do not encounter the gauge
potential in the Klein-Gordon equation, and thus avoid the identification of the

function f(z*!) = gz*. The wave equation for neutral spacetimes reduces to
2
Oy = — (8uf(2*)) 6729, (B.20)

and we can either have a massless scalar field if f(z*) = const, or a massive scalar
field with the choice f(z*) = z*/A. where A. = h/mc is the Compton wavelength
of the particle with units restored. This identification supports the geometrization

of the extra-coordinate in terms atomic units [19].
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B.2.2 z*-Dependence : The Canonical Metric

Whereas the above example removed the non-compact nature of the extra coor-
dinate we now move on to remove both traditional constraints in Kaluza-Klein
theory. We will consider a 5D scalar wave equation in which the 5D metric de-
pends on the extra-coordinate and is non-compact. Examples of this nature, but
with mass terms assumed from the outset have been condsidered previously in [111],

and more recently for gravitons in superstring theories [11].

We take the 5D conformal form of the canonical metric (6.22)

~2y/L A 0
Py = % (B.21)
0 e~ 2w/L

where we assumed the 4D cylinder condition 9,9, = 0 and have left out the scalar
field ¢ for simplicity. Although this form of the metric is simple, it induces the
non-trivial Einstein-deSitter field equations Gog = —Agas (A = 3/L?) from the 5D
vacuum R = 0. Expanding the 5D box operator for the 5D canonical metric
yields
(5-38,+8)¥=0. (B.22)
If we factor the 5D wavefunction as done previously we arrive at the 4D Klein-
Gordon equation
Oy + [ia;;’ f- %a,, f= (3, f)z] =0, (B.23)
The term in the brackets is suggestive of an induced mass, and in order for the

mass term to be real the fuction f(y) must satisfy
3AR?
fly) = foe't = miy =(8,f)" = =5, (B.24)

where fo is a dimensionless constant which we set to unity, and we have inserted

units in the final answer. Since the coordinate range for the extra coordinate is
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y € [0.00) we find that the mass of these cosmologically induced particles grows
with the distance in the extra-coordinate. This result may be due to the simplicity
of this model and could be alleviated by lifting the 4D cylinder condition and
including the scalar field.
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