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Abstract

Since the introduction of CUSUM statistic by E.S. Page (1951), detection of change or a
structural break in time series has gained significant interest as its applications span across
various disciplines including economics, industrial applications, and environmental data sets.
However, many of the early suggested statistics, such as CUSUM or MOSUM, lose their
effectiveness when applied to time series data. Either the size or power of the test statistic
gets distorted, especially for higher order autoregressive moving average processes. We use
the test statistic from Gombay and Serban (2009) for detecting change in the mean of an
autoregressive process and show how the application of Sieve Bootstrap to the time series
data can improve the performance of our test to detect change. The effectiveness of the

proposed method is illustrated by applying it to econometric data sets.
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Chapter 1
Introduction

“We change, whether we like it or not.” - Ralph Waldo

Perhaps change occurs consistently and we are unable to identify it most of the time. Fail-
ure to recognize a change can have dire consequences. A router can fail in a network with
heavy traffic causing a delay in productive capacity of the attached terminals. A conveyor
belt could stop on an assembly line costing the plant considerable downtime. Even a bank
could fail in an economy as observed during the 2008 financial crisis, prior to which the

banks were perceived to be too big to fail.

Even though most analysis and control schemes assume a stochastic stationary process,
any change in the series (mean, variance, covariance, and/or distribution) invalidates such
an assumption. The study of change-point detection in time series (which is referred to as
structural break in econometrics literature) is crucial for model building and forecasting pro-
cess. Assuming homogeneity over the entire series under consideration can lead to inaccurate

models and large forecasting errors in the presence of a change.

The purpose of change point analysis is to determine if and when a change occurred
in order to correct and change the control parameters of the process. Usually identifying
change starts off with testing the null hypotheses (Hy) claiming that the process is stationary.
Against the alternative hypothesis (H4) which claims that the process is non-stationary and

the stationarity was violated in a specific way.

In this chapter we briefly review the history of Change-Point analysis and then discuss



our main contributions and outline of our thesis.

1.1 History of Change-Point Analysis

Typically, the analysis of time series data assumes homogeneity in the parameters and the
properties of the underlying data. The application of the tools and methods developed to
detect change in properties of the data initiated in industrial settings to detect a break down
in a process. In the beginning, Shewart control charts were used [37] which had a disadvan-
tage of giving false alarms. After Page’s introduction of the cumulative summation statistic
[30], the study of change-point gained significant interest across various disciplines. Other
significant contributions preceding this were made by [34] where he suggested Exponentially
Weighted Moving Average (EWMA) procedure and by Shiryaev’s optimum change detection

scheme [38] for reducing the probability of false alarms.

Extensive studies have been conducted in the change-point literature where the above
mentioned procedures were applied to various change-point problems. With the advent of
computers, more properties and efficiency of these procedures were tested which revealed
that while effective for independent data, these procedures have their shortcomings for the
dependent data. In addition, their delay in time of detection was also spotted in various
studies such as [40] and [24]. The work of [24] was particularly noticeable as it proposed some
generalizations in change-point literature for detecting change using generalized likelihood
ratio (GLR) schemes.

As cheap computing became easily available, the advantage of using bootstrap proce-
dures, which was initially proposed in [15], became apparent. As discussed in [19], bootstrap
methods provide asymptotic refinements. This development was significant in the literature
because bootstrap critical values are more robust than the asymptotic critical values [22].
Furthermore, bootstrapping allows us to construct confidence intervals using an empirical
distribution of resamples which are smaller than the asymptotic intervals and gives estimates

closer to their target values as shown by various studies in literature such as [5], [21], and [22].



1.2

Main Contributions

The thesis illustrates the effectiveness of using sieve bootstrap to get critical values to

detect a change in mean of an autoregressive moving average processes. The change point

statistic that we primarily use is from [I8]. Our main contributions are the following:

1.3

illustration of distortion in size of test statistic from [I8] when errors follow a heavy
tailed distribution such as ¢5 or tg for AR(1) and AR(2) process;

distortion in size of test statistic from [I8] for detecting change in mean from of a
MA(1), MA(2), and ARMA(1,1) processes with errors from normal distribution;

application of sieve bootstrap to detect change in mean of ARMA processes which

provides consistency in size of the test statistic.

increase in power to detect change with sieve bootstrap for errors following normal and
t—distribution of an AR(1) and AR(2) process.

increase in power to detect change with sieve bootstrap for errors following normal
distribution of MA(1), MA(2), and ARMA(1,1) process.

derivation of a new approach built further on sieve bootstrap by attaining the critical

values in blocks. We refer to this approach as Block Sieve Bootstrap.

illustration of consistency in size and increase in power by using critical values from
Block Sieve Bootstrap approach which provides more stable critical values than sieve

bootstrap.

Thesis Outline

The thesis is organized as follows.

In chapter 2, we introduce some of the most commonly used procedures to detect change

in a given sequence of data. In addition, we discuss the Bayesian approach to a change-point

problem and the inadequacy of the common procedures to detect change in time dependent

data.



In chapter 3, we discuss bootstrap procedures and their application to time series data.
In addition to usual I.I.D. and block bootstrap methods, we also discuss the novel sieve

bootstrap approach for time series which is the method used in our proposal.

Chapter 4 outlines the change-point statistic of [I§] for autoregressive processes, its deriva-
tion, and its asymptotic properties. We then propose our simulation procedure for deter-

mining the critical values for the change-point statistic from [18] using Sieve bootstrap.

In Chapter 5, we present the simulation results of our proposed method for a change in

mean of an autoregressive process.

In Chapter 6, we use our procedure on real world data sets to illustrate its effectiveness

to detect change.

In Chapter 7, we summarize our main contributions and provide a possible direction for

future work on detecting change in dependent processes using sieve bootstrap.



Chapter 2
Overview of Change-Point detection

” Nothing endures but change” - Herculitus.

The main idea behind change-point detection is to find any change in the underlying dis-
tribution of the given data set. The change could be either in the mean, variance, covariance,
parameter, or the actual distribution itself. In this chapter, we briefly introduce the topic

and illustrate it in context of time series analysis.

2.1 Hypothesis for Change-Point framework

From the perspective of mathematical statistics, the problem of Change-Point detection
can be classified into two categories: (i). On-line (Sequential) change-point detection, and

(ii) Off-line change-point detection. The two categories are briefly discussed below.

2.1.1 On-line Change-Point Detection

The goal of on-line change-point detection is to determine the time of change in the
sequence of observations as soon as it occurs. More specifically, let { X, Xs, ..., X} be a se-
quence of incoming observations (dependent or independent) with density f(X;, Xa, ..., X,;0,7)
where 0 € ), C R? is our parameter of interest with d > 1 and n € {2, C R? is a nuisance

parameter with ¢ > 0. Then our hypothesis is to detect the unknown time of change t, as



soon as possible, where

Hy: 0=0, for ,\Vi=1,..,n
HAZ 6:90 forz'zl,..,to—l
9:91 for@':to,..,n (211)

where 6y # 0. In the on-line change detection framework, we usually define a stopping

criteria such as
to :mf{n : T(Xl,XQ,...7Xn> Z )\} (212)

where 7(X1, Xy, ..., X,,) is our statistic for detecting the change-point and A is the thresh-
old/critical value signifying the change in the sequence of observations. Once we detect the
change time ty, we can similarly start with the new subset {Xy,, Xi,11,...,X,} and the

incoming observations { X, 11, X192, ...} to detect the next change-point ;.

2.1.2 Off-line Change-Point Detection

In off-line change-point detection, we start with a given set of data without any new
incoming observations. The main idea is to only identify if a change has occurred. Suppose
we are given a set of observations { X7, Xs, ..., X,,} (dependent or independent) with density
f(X1, Xo, ..., X,;0,n) where 0 € Q; C R? is our parameter of interest with d > 1 and
n € 0y C R? is a nuisance parameter with ¢ > 0. The hypothesis for off-line change-point

detection can be stated as follows.

Hy: 0=60, fori=1,..,n
Hy: dmed{l,...,n} s.t.
=10, fori=1,..m

0=0, fori=m+1,..,n (2.1.3)

where 0y # 6,. The challenge in off-line hypothesis testing comes when choosing the change
detection statistic/algorithm. We have to decide between the ability to detect changes when
they actually occur, and the ability to minimize false positive results. Problems of false pos-
itive results may arises in case of small changes to 6. If the change-point detection statistic

is sensitive to minor change in the parameter @, then it is likely to have more false alarms



of detecting changes when they actually do not occur. The usual criterion in statistical hy-
pothesis testing requires a trade-off between Type I error (reject the Hy when it is true) and
Type 11 error (accept the Hy when it is false). Given the two contradictory requirements,
the standard criterion in change-point detection is to maximize the probability of accepting
H 4 when its true (i.e. the power) subject to the constraint of holding a fixed probability of

rejecting Hy when its actually true.

Note that the above stated hypothesis is for detecting only one change in the given set
of observation. If we can estimate the change-point index, then hypothesis test from
can be generalized to the case of more than one change-point. For instance,if we estimate
a change in data {X;, Xo,..., X, } at to, where ¢ty € {1,...,n}, then the hypothesis
can be recursively applied to subsets { X1, Xo, ..., Xy, } and { X411, Xigr2, - - -, X}, to detect
more changes in the overall data set {X;, Xo,..., X, }.

In our thesis, we primarily focus on the off-line change-point framework.

2.2 Change-Point Statistics

In order to overcome the inefficiencies of control charts, Page’s introduction of summation-
type statistics [30] was a break through in the field of change-point detection. Various
change-point statistics exist in literature such as M-type, R-type. We review some of the
most commonly used statistics and illustrate their application on a constant mean model
with at most one change (AMOC). Similar analogies can be drawn to more complicated

models.

Assume a constant mean model for the sequence {Y7,...,Y,} with at most one change
point
Yi=p+e, (2.2.4)

where p € R is some constant and ¢; is the random error peculiar to the i** observation.
We want to test the hypothesis whether a change occurred in the series {Y;} ;. Thus,
(similar to off-line framework as in (2.1.3)) ) our hypotheses test would be



Hy: Yi=pu+e¢ 1=1,..n
Hy: 3 me{l,...,.n—1} s.t.
Yi=pu+e, 1=1,..,m
Yi=p+6+e 040, j=m+1,..n (2.2.5)

If a change occurred, it happened at some time m € (1,...,n). We want to find such an m
for which H, is not rejected. There are various test statistics which can be used to test such

a hypothesis. Three of the most common approaches are discussed below.

2.2.1 Ordinary Least-Squares Estimate

For the constant mean model ([2.2.4)) the first approach that comes to mind would be that
of simple least squares. Note that the main parameters in our model are pu, 6 and m which

have the least squares estimates firg, 5/,;\3, and myg respectively.

Define S}, as

Se=> (Yi=Y,), k=1,.n (2.2.6)

The least squares approach is to minimize the sum

min {Z(}Q — )+ Z (Y; — p— 5)2} (2.2.7)

i=1 i=k+1
where k € {1,..,n—1}, and p, § € R and m € (1,...,n). The above equation comes from

the least squares approach where the parameters p, o, and ¢ are estimated such that the
sum of squares of residuals is minimized. Solving (2.2.7)) yields mps to be

@zm&x{,/ﬁﬁﬂ; ke{l,...,n}} (2.2.8)

However, there are other test statistics which can be used to find such an estimate of m
(denoted by m).



2.2.2 Cumulative Sum Test - CUSUM

Cumulative Sums (CUSUM) is one of the first statistic introduced by [30] which is based
on partial sums to detect change in a given series. Define Sj to be the partial sums of the

sequence {Y;}", where o, is the standard deviation of the process and

where Y,, = — (2.2.9)

Then, according to the CUSUM statistic, a change has occurred if V k= 1,...,n

T, > A where

T = Sk — min S; (2.2.10)

1<i<k

where A is the threshold/critical value signifying the change. Thus, for example, with re-
spect to hypothesis (2.2.5) the CUSUM estimator of the change-point m = ming 74 > A.
The choice of A can be through either the boundaries of control charts (as it was originally

intended) or it can be achieved through bootstrapping (discussed in the next chapter).

CUSUM statistic is the most commonly used statistic and preferred because of its sim-
plicity. However, a drawback of using the CUSUM statistic is that in order to find a critical
value, it is assumed that the mean is constant over the entire time series while trying to
identify the change point. This increases the liklihood of reporting a false positive result.

These drawbacks are overcome by other statistics introduced such as MOSUM estimators.

2.2.3 Moving Sums Test - MOSUM

The moving sums statistic (MOSUM) is an M-type estimator where for a certain pre-
defined bandwidth G, the statistic is calculated recursively. More specifically, for G € (0,1)
we consider [G X n] consecutive units over the sequence {Y;}" , and calculate the MOSUM

statistic over each segment. Given a process {Y;} , with standard deviation o, of the process



over k observations, the MOSUM statistic is defined as [§]

MSQy(Yi,...,Y,:G) = S — min S, (2.2.11)

1<i<k

where S, denotes the partial sums

n—G

o 1 _
Sy = Y (Yi=Ye), k=1,..n
0. VG k=G+1
B n—G Y,
where Yo = Z - (2.2.12)
i=G+1

First introduced by [8], it was illustrated that the MOSUM statistic is more robust than
the CUSUM statistic (especially for large ‘n’) because the empirical fluctuations in the se-
ries {Y;}?_, do not depend on the entire process but a fixed data window instead which is
moved over the entire dataset. Because of the tuning parameter (i.e. bandwidth G) we only

consider a proportion of data when calculating the statistic at each index k.

As shown by [14], it follows that the limiting process of MOSUM type statistic in (2.2.11))

are increments of a Brownian Bridge.

MSQu(Yi, ..., Y Q) LW, (L” k| = |G kJ) —w, (M> (2.2.13)

k k

where W(.) is the standard Brownian Motion.

2.3 Bayesian formulation of Change-Point Problem

Until now the literature we introduced on change-point analysis has been mainly viewed
from a frequentist point of view. Typically, the Bayesian literature on the change-point de-
tection problem commonly deals with detecting the point/index for a change in distribution.

In this section we introduce the Bayesian formulation of the Change-Point problem.
Suppose that for a given experiment, a sample of independent sequential observations

{z, : n > 1} is available. For known and different densities fy(x) and fi(x) we are interested

in finding the change point “r” [27]

10



H::1 Jo(@i) - H?:TH fi(x) 1<r<n-1

Fulalr) = {
[Tizy fo(:) r=n

(2.3.14)

where the discrete unknown parameter r, indicates a change-point in the time-series. We

want to test the null hypothesis of no change i.e.

Ho : fulel) = [ o)
Hy: folz|r) {1<r<n-1} (2.3.15)

From a Bayesian viewpoint, this is equivalent to solving the model selection problem.

Thus, we test the hypothesis which is formulated as choosing between two models M, and
M; where

My = {fu(z|r), m(rn)} (2.3.16)
where 7(r|n) is a prior distribution on the set {1,2,--- ,n}.

As introduced by [27], if we let ¢;; be the cost associated with choosing model M; when
the underlying model is M; where 4,j € {0,1}, then the optimal decision is to reject M,

when the inequality

> ¢ (2.3.17)

is satisfied where P(My|z) and P(M;|x) are the posterior probabilities of each of two
models involved and c is the ratio of costs associated with choosing each model i.e. ¢ = %’
Note that, from Bayes theorem

SOV v AC S L T

A (2.3.18)
fulalr)P(Mo) + 32070 fulw|r)m(r|n) P(M)

11



where P(My) and P(M;) are the prior probabilities of selecting each model respectively.

Then, for prior 7(r|n), the Bayesian estimation of r is based on the posterior distribution.

(i)
St fulalr)m(rin)

Again, we illustrated the case for one change point in data set of size n, though similar

7(r|x) (2.3.19)

analogies can drawn models with more than one change point.

2.4 Identifying Change-Point in Time Dependent Pro-

cesses

The initial change-detection scheme introduced in [30] was primarily for IID random vari-
ables. However, most of the processes that we come across in application have dependency
structure in them. For instance, parts being produced from a machine are likely to be au-
tocorrelated where one flawed part will probably be followed by another. Such a behavior
would indicate a break in the production process. As discussed in [43], earlier introduced
methods such as Shewart control charts and the CUSUM test lose their effectiveness when
the data are correlated. In this section we first introduce the concept of a autoregressive
process and briefly discuss the various approaches in the literature to detect change in an
autoregressive process. We also introduce Moving Average processes and then conclude the

chapter with model for mixed Autoregressive Moving Average processes.

2.4.1 Autoregressive Processes

An Autoregressive process is a process where the current and future observations depend

on the weighted sample from the past data. More specifically,

Definition 2.4.1. A stochastic process is referred to as an Autoregressive Process of order
‘D’ (AR(p)) if it can be expressed in the form

Xt = U + ¢1Xt_1 + qf)QXt_z + -+ Xt_p + €& (2420)

where € R is a constant and €; is a white noise process, i.e. an IID sequence of random

12



variables with
Ele] =0, Varle] = o? (2.4.21)

Note that the parameter vector of an AR(p) process has a total of (p + 2) parameters
and we will denote it as & = (u, 02, ¢y, -+ ,#,). The condition from defines most
fundamental conditions for stationarity (or, strictly speaking, wide sense or second order
stationary). Stationarity is a desirable trait of a process as it makes the analysis of the
process more precise due to its stability. We can define the above conditions more generally

by using the definition below.

Definition 2.4.2. Let “B” be the backshift operator such that B X; = X; 1. Then an
autoregressive process is said to be stationary if all the roots of its characteristic polynomial

in terms of B
¢(B)=1—¢1B—¢oB* —--- —¢,B" (2.4.22)

has roots of ¢(B) = 0 greater than one in absolute value i.e. its roots must lie outside the

unit circle.

For example, given definition (2.4.1)), the stationarity condition for AR(1) process (X; =
p+ o1 X1 + &) is

1] < 1 (2.4.23)

For an AR(2) process, the stationarity conditions are

o1+ P2 <1
G — 1 <1
o] < 1 (2.4.24)

2.4.2 Change-Point Detection in Autoregressive Processes

Initial tests to detect change in an autoregressive process were tests that used CUSUM
with likelihood ratios such as [25], [26] and , [33]. The main idea of Generalized Likelihood
Ratios (GLR) was extended by [28] who suggested the following statistic

13



. - fo(Xil X1, -+, Xiq) }
to = inf { n : max su lo 2.4.25
0 { 1<k<n Geg [; g{feo(Xi’le" aXi—l) ( )

where t; denotes the index of the change point, # is a p x 1 parameter vector and © is a
given subset of the parameter space (2. However, it was noted afterwards by [7] that prac-
tical implementation of such GLR algorithms is not always possible as the computational

complexity increases drastically.

Other classical tests considered in the literature were those such as Wald’s Sequential
Probability Ratio Test (SPRT) [42] with control charts where

to = inf {n >1: ]j %‘g; <A or f‘j((j(()) > B} (2.4.26)

One of the most notable contributions was made by [24] which extended the classical
change detection schemes to AR(p). It was also built on Page’s idea of monitoring partial
sums and calculating the expected value of stopping time. T. S. Lai [24] suggested a slightly

modified version of window-limited GLR where windows of size v over the n data points are

considered. Given a data set {Xi,---, X, }, define the stopping time ¢, where
. (Xi + -+ + Xn)?
t, = inf {n ; n_rggzcén{ 2=kt 1) > ¢y (2.4.27)

where ¢, = logy+ 1 log(log v) +log K +0(1) defines our threshold. Note that K = 7~'/2 [*
z *(z) dz is a constant as defined in [24]. They show that the Ey(t,) = f(*lcfﬂ exp{c,}.
This was a significant contribution as Lai’s algorithm outperformed all the prior approaches

as shown in [24].

In [18], the authors also illustrate the effectiveness of Lai’s algorithm in detecting changes
in parameter and compare its performance to their statistic. We primarily use the change
detection statistic from [18] for monitoring change in the nuisance parameter £ and illustrate

how our approach can increase its effectiveness.

14



2.4.3 Moving Average Processes

A time series can also be represented as dependent on the white noise component i.e. a
linear combination of “¢,” on the right-hand side of the equation ([2.4.20)). Such processes

are called Moving Average processes as defined below.

Definition 2.4.3. A stochastic process is referred to as a Moving Average Process of order
‘¢’ (MA(q)) if it can be expressed in the form

Xt — U= € + 0161571 + ‘92€t72 + -+ 9(16157(1 (2428)

where p € R is a constant and €; is a white noise process satisfying conditions from equation

B2,

The total number of parameters for a MA(q) process is (q+2) where £ = (1, 02,01, ,0,).
A moving average process is always stationary since its linear filter representation has only
finite number of weights. For any given moving average process, we only observe the actual
time series {X;}}; and not the white noise component. Thus, as discussed in [1], there is no
unique on-to-one correspondence between MA(q) process and its corresponding autocorrela-
tion function. To mimic the stationary criterion of an AR(p) process, some moving average
processes can be represented as AR(co). Such processes are called invertible process and are
defined below.

Definition 2.4.4. Let “B” be the backshift operator such that B X; = X;_1. Then a moving

average process of order ‘q’ can be expressed in terms of its characteristic polynomial 6 (B)

where 0 (B) = =1—60,B —0,B* —--- —0,B%. Furthermore, the MA(q) process is said to be
invertible if the roots of 6(B) = 0 lie outside the unit circle.

Similar to the AR case, the invertibility of an MA(q) process imposes conditions on the
parameters . For example, given definition (2.4.3)), the invertibility conditions for MA(1)
process (X; — = € + 01€6,_1) is

16,] < 1 (2.4.30)
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The invertibility conditions of a MA(2) process are

91 —|—62 <1
92 — ‘91 <1
6] < 1 (2.4.31)

Note that invertibility is a desirable trait because having an AR(o0) representation allows
us to apply some of the methods discussed in section to detect change in a moving
average process. This advantage is further emphasized in Chapters [ & [5

2.4.4 Mixed Autoregressive-Moving Average Processes

In reality, not all the time series incurred are perfectly autoregressive or moving average
processes. To have more flexibility in modeling the time series, sometimes the series is a
modeled as a mixture of the two processes. Such models are referred to as Autoregressive-

Mowving Average process and are defined below.

Definition 2.4.5. A stochastic process is referred to as an Autoregressive-Moving Average
Process ARMA (p, q) if it can be written in the form

Xt = U+ Xt + (let,l + ¢2Xt,2 + -+ (ﬁpXt,p + € + (9161571 + (9261572 + -+ qut,q

where p € R is a constant and €; is a white noise process satisfying conditions from equation
2.4.21). For ARMA(p, q), ‘p’ and ‘q’ are non-negative integers representing the orders of

the autoregressive and moving average component respectively.

ARMA representation is advantageous because it allows for parsimonious models when
AR or MA models end up having a high order due to dynamic nature of the data. Since
it is a mixed process, the stationarity of the ARMA(p, q) process depends on the station-
arity of the AR(p) component of the process i.e. ¢(B) =1 — ¢ B — ¢2B*> — -+ — ¢,B?
has roots of ¢(B) = 0 outside the unit circle. Similarly, the ARMA(p, q) is invertible if the
MA(q) component is invertible i.e. #(B) in equation has roots outside the unit circle.

Since a MA(q) has an AR(o0) representation as discussed in the previous section, this

allows to have an AR(oco) representation of an ARMA(p, q) process as well. Therefore, a
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stationary and invertible ARMA (p, q) process has an AR(oco) representation which gives the
advantage of applying change-detection methods discussed in section [2.4.2] We discuss this
in more detail in Chapters [4 & [5
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Chapter 3
Bootstrap Methods for Time Series

“We must become the change we want to see.” - Mahatma Gandhi

Sparked by Efron’s research on Non-Parametric bootstrap method for independent iden-
tically distribute (IID) data [I5], bootstrap methods have come to be a class of methods
which can be used to resample the original data. Since then, the research on bootstrap
methods has outgrown significantly with various cases showing the asymptotic consistency
of bootstrap estimates. Bootstrapping techniques can be quite useful as it overcomes the
limitations of insufficient data size or unknown theoretical distribution. However, in addition
to being computationally intensive, it was realized that this method has its limitations when
applied to dependent data such as time series data. These barriers can be overcome thor-
ough methods such as Block bootstrap and Sieve bootstrap. We first introduce the concept
of bootstrap and then further illustrate its subclasses such as Block bootstrap and Sieve
bootstrap which provide an improvement over the original method introduced by Efron[I5]

for dependent data.

3.1 Bootstrap Resampling for Independent Data

In its most general form, given a data of size n with unknown theoretical distribution,
we typically assume that each realized sample value is equally likely (i.e. sampled with
probability %) The idea of a bootstrap technique is to substitute the unknown theoretical
distribution of the sample with the known empirical distribution. Suppose we are given a
sequence of IID random variables {X7, X5, -+, X,} from a common (possibly known) un-
derlying distribution F. Let &, = {X;, Xy, -+, X, } and 7, = T,,(X,; F) be a statistic of
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interest for n > 1 that can then be estimated based on the empirical distribution (e.g. esti-

Z?:l(xi*Xn)Q )

mators of mean X,, = Y., 2% or variance s? = p—

Typically, our goal is to find the approximate underlying distribution of 7,, or some un-
derlying characteristic such as its standard deviation o,. Then bootstrapping provides a
non-parametric approach to achieve our goal without making any assumption about the
underlying distribution F. We resample from X,, by sampling m points with replacement,
giving X} = (X}, X3,--- , X?) where m < n. Note that in our resampling protocol, we

assume that each sample is equally likely
1
P(X! = Xi|X,) = =, where 1 <i<n, 1<j<m (3.1.1)
n

where P is a probability measure defined on the space Q C R? for d > 1. Typically, the
resample size m = n, though there are examples where a different sample size could be

desirable as explained in [10]. The bootstrap procedure can be defined as follows

1. Generate a bootstrap sample X)) == (X}, X3,---, X)) from X, by sampling with

replacement where m < n.

2. Compute 77, (X}, X5, -, X)) which is the estimate of 7, from the bootstrap sample
b

m,n*

3. Repeat 1 and 2 “BS” times.

The statistic %ﬁl,n is the bootstrap estimate of 7,, based on the b bootstrap sample Xﬁm
where 1 < b < BS. Repeating the bootstrap procedure “BS” times gives a conditional
distribution Flﬁjn of statistic 7}, given X, where ﬁgn is the estimate of the unknown dis-

tribution H,, of 7,.

We know that bootstrap estimation of the conditional distribution ﬁgm of statistic f',l?’w
gives an approximation of H, in the case of IID data sequence. A valid approximation is
proved in [23] which shows that if X, is IID with finite second moments (E[X?] < o0), and

the resample size m = n, then

Theorem 3.1.1. If X, Xy, -+ are IID with p = E[X;] and 0* = Var(X;) € (0,00), then

TH)

=o(1) as n — oo, a.s. (3.1.2)
o

sup [B(7,,,, < ) — @
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P is a probability measure defined on the space ) C R? for d > 1. Recall that ®(.) denotes

the standard normal distribution function and a.s is the abbreviation for almost surely.

3.2 Inadequacy of Bootstrap for Dependent Data

While the above bootstrap method works well for an IID data sequence, it fails for data
with dependent structure such as time series data as first pointed out in [39]. Before elabo-
rating on inadequacy of Efron’s IID bootstrap, we first review the properties of m-dependent
data.

Definition 3.2.1. A sequence of random variable X1, X5, -+ is m — dependent if for some
integer m > 0 the observation X is only dependent on {X;_1,--- ,X,;_n} for all j > m.
Thus, the subsets { X1, Xo, -+, Xi} and {Xyrme1, Xkrmao, -+ } are independent for all k >
1.

Note that for a sequence of m-dependent variables, {X7, Xs,---, X,} the mean is still
X, =" % but the variance is 02, = >0, Var(X;) + 237" Cov(Xy, X14) for 02, €
(0, 00).

Define 7,, to be our statistic of interest and Tffn to be our bootstrapped estimate of the
statistic based on B resamples of size n. Then the following corollary from [23] proves why

Efron’s bootstrap fails for dependent data.

Corollary 3.2.2. Suppose that we have a sequence of stationary m-dependent random vari-
ables X™ = { X1, Xy, , X,,} with E[X;] = u and E[X?] < oo where p € R and 1 < i < n.
If " Cov(Xj, Xjom) # 0 form < j <n and o2, # 0, then for any x # 0

lim [P(72 <) —P(7, < 2)] = [®(z/0) — ®(x/0,,)] # 0 a.s. (3.2.3)

n,n
n—00

Efron’s bootstrap fails to account for lagged covariance terms in the asymptotic variance
and, thus, completely ignores the dependence structure in the sequence of bootstrap gener-
ated data. As a result, the mean squared error (MSE) tends to a non-zero number as n — oo.
Thus, the bootstrap estimator rfjm of the statistic of interest 7, is inconsistent when the data
generating process has an m-dependent structure for m > 1. This shortcoming is overcome
by variation of Efron’s IID bootstrap methods, Block bootstrap and Sieve Bootstrap, which

are further discussed below.
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3.3 Block Bootstrap

The concept of block bootstrap was first introduced by Carlstein (1986) and further ad-
vanced by Kiinsch (1989). In this method, where the idea is to preserve the dependency
structure in the data by resampling from continuous blocks of data as opposed to selecting
individual points. The advantage of such an approach is that the dependency structure in

the observations within a single block is maintained.

There are several variations of block bootstrap that have been introduced over time. In
this section we introduce the first block bootstrap method as proposed by Kiinsch (1989) ,

and discuss some of its variations.

3.3.1 Overlapping Block Bootstrap

The Overlapping Block Bootstrap (OBB) method was first introduced by Kiinsch (1989)
which is also referred to as Moving Block Bootstrap. To motivate the illustration, suppose
we have a subset X, = { X1, Xy, -+, X} from a sequence of stationary (possibly dependent)
random variables. Let 7, = T, (&X,; F) be a statistic of interest for n > 1 that can then
be estimated based on the empirical distribution F,,. Let B; = {X;, X;41, -+, Xpi_1} for
1 <17 < N denote a subset from X,, where 1 < k < n is an integer representing the number
of elements in this subset. We refer to B; as a block of length £ with elements obtained by
sampling k consecutive elements from &,,. Thus, such subsampling gives us a set of NV blocks
B ={By, By, - ,By} where N =n —k -+ 1. Then, to have a resampled set of size m where

m < n, the moving block bootstrap procedure is

1. Generate a bootstrap sample BY,, = (B, BS,---,BY%) from By by sampling with

replacement where m < n.

2. Compute 75, (B?, B, - -+, BY ) which is the estimate of 7,, based on the block bootstrap
Sample B?n,N = (Bfa BS» T B?\])

3. Repeat 1 and 2 “BS” times.

where BS is the number of bootstrap iterations desired. Note that if the length k of each
block is 1, then this procedure is similar to Efron’s IID Bootstrap. Our bootstrap sample is

X? where
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X =BYUuBlU---UBY (3.3.4)

OBB provides the advantage over IID bootstrap by having dependency structure in the
bootstrapped data. For each resampled block Bj?

1
P(B! = B;|By) = ' where 1 <i,j < N (3.3.5)
and the dependency structure is maintained within each block B;. However, a major draw-
back of OBB is that not every point from the empirical distribution in A&, is sampled with
equal probability. Note that from the construction of blocks By from X, if each block is of
length k& then

Bl :X17X27”' 7Xk‘
B2 :X27X37"' 7Xk:+1

BN - Xn7k+17 e 7Xn

Each block B; is sampled with equal probability, for block length & > 1. Points in A&, are
not sampled with equal probability. For instance, the end points X; and X,, are least likely
to be included in the bootstrap sample X,Z,n with probability % Compared to points Xo

and X,,_; are included in bootstrap samples X&m with probability % Thus in OBB, points

are resampled from the empirical distribution &), with probability.

N .
P(X; € &) = 2 baBi Ix; = ! (3.3.6)
N 0 otherwise

This shortcoming gives biased OBB samples where the first and last few observations are
least likely to be included in X° compared to others. The use of non-overlapping blocks can

be shown to overcome this drawback of OBB.
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3.3.2 Non-Overlapping Block Bootstrap

The Non-Overlapping Block Bootstrap (NBB) is a variant of the OBB which was initially
introduced by Carlstein (1986) [13]. Using the same motivating example as in section [3.3.1]
let us suppose that X, = { X1, X, -+, X,,} is a sequence of stationary random variables, 7,

= T,,(X,; F) be a statistic of interest for n > 1, and T(-) is a real-valued function. Similarly
to OBB, let the length of each block be k (€ Z™) and denote each NBB block by

Bi = (X(i—l)k-f-h e 7Xik)7 1= 17 e 7N (337)

Once we get N blocks, our sampling procedure is exactly the same as OBB.

1. Generate a bootstrap sample B’ = (B? BS,---, BY) from By by sampling with

replacement where m < n.

2. Compute %ﬁm(BIf, Bb. ... Bb) which is the estimate of %, based on the block bootstrap
Sample Bzm,N = (B{)v Bga T B?V)

3. Repeat 1 and 2 “BS” times.

where BS is the number of desired bootstrap iterations. It is clear that the NBB scheme
is quite similar to OBB, but test statistics from each approach have very different proper-
ties. For instance, as shown by Lahiri (2003) [23], if the process {Y},},>1 satisfies standard
moment and mixing conditions and our statistic of interest 7, is the simple case of sample
mean, then E{E[7,,,] — E[},..]}? = O(%).

3.3.3 Circular Block Bootstrap

The Circular Block Bootstrap (CBB) was proposed by [32] to overcome the limitations of
OBB from the boundary conditions as stated in Section Let that X, = { X1, Xo, -+, X, }
be a sequence of stationary random variables and 7,, = T,,(X,,; F) be our statistic of interest
for n > 1 and T(-) is a real-valued function. Then, the CBB approach is to construct a
new dataset ), = {Y}2, by wrapping &), around in a circle and define X; = Y;, where

iN
1<i< N andiy=1i( modN).
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While the block bootstrap methods have their advantages, there are some general draw-
backs. For instance, the resampled blocks might not represent the actual behavior of the
time-series under consideration. As a result of this, the bootstrapped series might have
weaker dependency than that of original series. Such disadvantages can be overcome by

another approach to the bootstrap method for time series called Sieve Boostrap.

3.4 Sieve Bootstrap

The sieve bootstrap procedure was first introduced by [12] which suggested a bootstrap
method based on resampling from residuals of a fitted model as opposed to resampling the
original data itself. [12] suggested to estimate the underlying process by a sequence of au-
toregressive processes of order p = p(n) where p(n) — 0o as n — oo. Thus, when the data
comes from a class of linear processes, sieve bootstrap provides consistent estimators with
lower bias and mean squared error (MSE) compared to any of the block bootstrap approaches
introduced in section |3.3| . In this section, we introduce sieve bootstrap for time series as
introduced by [12] and elaborate on the Sieve bootstrap approach in [2] that we adopted in

our proposed method.

Let X, = {X;} be a stationary time series for ¢ € Z" and 7,, = T,,(X,,; F) be our statistic
of interest where n > 1 and T(-) is a real-valued function. Let pux = E[X]. Then by Wold’s
decomposition theorem [11], the process {X;} can be represented, as an infinite moving

average process

Xi =) e (3.4.8)
j=0

where

e Yo =1land ) 2 47 < oo
e {e} ~ WN(0,0?) is an uncorrelated sequence of innovations.

Further, if we assume that the MA(oo) process in (3.4.8) is invertible, then the process
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can be represented as one-sided infinite order autoregressive process
> 0i(Xij—px) =€ (3.4.9)
§=0

where

® ¢o=1land Y ) d7 < o0
o {e} ~ WN(0,0?).

The representation in (3.4.9) motivates the sieve approach which proceeds by fitting an

autoregressive process of finite order to &,,. We outline the sieve bootstrap approach below.

1. Given the sample &,, estimate the order ‘p’ of the process based on an order selection
criterion for autoregressive processes such as Akaike’s Information Criterion (AIC) [3],
or Bayesian Information Criterion (BIC) [36], or the bias corrected AIC (AICC) [20]
which was used in [2]. Note that given &, the order p(n) is a function of n where p(n)

— 00 as n — Q.

2. Once we estimate the order p(n), we estimate the autoregressive coefficients of the
AR(p) process: b = (gzgl,ég, e ,qu). ¢ can be estimated through least-squares or

(more commonly) through Yule-Walker estimation.

3. The above yields the residuals from the fitted process

p
&=Y ¢j(X,;—X.), do=1 and pn)+1<t<n (3.4.10)
=0
where X,, = —Z?:nl i

4. We obtain the centered residuals and their empirical distribution function

A

F(X)= ) Tg<x (3.4.11)

t=p+1
where & = & - efore =377 ., .

5. From the empirical distribution defined in (3.4.11)) we can get a new set of resampled

sieve bootstrap residuals €, where 7 > p + 1.
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6. Using {€*}, we can generate sieve bootstrap observations X, by defining the following

recursive relation for an Autoregressive process of same order p as chosen in step 1.

p
(X7 = X0) =) 6;(X; ;= Xo) +e, i>p+1 (3.4.12)
j=1
where the starting p observations X7, X3, -+, X can be set equal to X, or 0 for large

1.

To get more than one sample from the sieve bootstrap, we repeat steps 5 & 6 “BS” times
(where BS is the desired number of bootstrapped samples). Thus, for our statistic of interest

T =1, n(Xn; F ), we can use the autoregressive sieve bootstrap estimator

Tom = I (X7, X)), m > p(n) (3.4.13)

m,n
which estimates the variance of the estimators more accurately than OBB, or NBB as shown

by [12] and [2].

In our approach, we use the sieve bootstrap method illustrated since the primary purpose
of our work is to detect a change in the mean of an AR(p), MA(q), and ARMA(p, q)

processes.
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Chapter 4

Sieve Bootstrap for Detecting Change

in Time Series

“God, grant me the serenity to accept the things I cannot change, the courage to change

the things I can, and the wisdom to know the difference.” - Reinhold Niebuhr

In chapter [2| detecting change in time-dependent series was discussed. As summarized in
[24], typical statistics such as CUSUM or MOSUM fail to detect a change in the parameters.
Bootstrapped critical values on the other hand provide asymptotic refinements and provide
coverage and rejection probabilities that are more accurate than the first-order asymptotic
critical values as discussed in [19] and [31]. Furthermore, [21] and [22] show that bootstrap
critical values are more robust than the actual distribution of the change-point statistic and

provide consistency in size and power.

In this chapter, we illustrate our main contribution by applying sieve bootstrap to detect
a change-point using the statistics from [18]. We show how the change-point statistic from
[18] under perform for heavy-tailed distributions and have inconsistency in size. We also
introduce two different approaches for which we obtain sieve bootstrap critical values and

demonstrate how they outperform the first order asymptotic distribution of the test statistic.

4.1 Detecting Change in Autoregressive processes

As previously discussed in chapter [2| when detecting change in time dependent series, the
traditional sequential algorithms such as CUSUM and MOSUM fail. Most of the methods
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discussed in section [2.4.2| either end up having a distorted size or higher probability of false
alarms as shown by [24]. The approach taken by [I8] is also based on recursive partial sums,
however, it makes use of efficient score vectors to detect a change in the parameters. First,
we introduce the test statistic from [I§] and discuss its derivation and asymptotic distribu-

tion below.

Let {X;}?, be a stationary autoregressive process as defined in section and let 6
be a the parameter of interest for which we want to test for its departure from an initially
hypothesized value of §y. The typical approach for the test statistic (including [30]) is to
consider the standardized partial sum of the process max;<;< Zf: jXifor ke {1,--- n}.
However, [18] considers the partial sums of the efficient score vectors instead of the series by

defining

V() = V3(€) = Ve D log F(Xi ) — Ve Y log f(Xii) (11.1)

where £ = (0,n) is the parameter vector with 6 being the parameter of interest and 7
denotes a (p + 1) dimensional vector which we estimate at each k. Thus, 7 denotes the
maximum likelihood estimate of the parameters using observations {Xj, Xs, -+, Xx} and
leaving 0 = 6. Standardizing V} from equation with the information matrix 7(¢)
gives the statistic Wy (0o, ) = 1 ’%(Ho,ﬁk)‘/k(eo,ﬁk) which has uncorrelated components.

Thus, the test proposed by [18] for monitoring change in # can be given as follows.

TEST. Given {X1,---,X,}, conclude that Hy is not supported by the data at first k,
1 <k <n, when

max n”2 (Wi (0o, 7ie) — W;(00, 7)) > C(e) (4.1.2)

1<j<k
otherwise do not reject Hy.
The test above is one-sided test with critical value C(«) where « is the specified significance

level. W(.) is the standard brownian motion as shown in theorem (4.1.2)) from [I8]. The test

statistics Wy (.) — W;(.) converges to the well known distribution
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sup W(t) —W(s)

0<s<t<1
= sup |W(t)|
0<t<1
R piag
_ M _1\k K =
_p{£3§t|w<s)|<ﬁ|vv(0)_o}_mhz( 0 /_ﬂjwe dy (4.1.3)

where the sum and the integral converge as h — oo shown by [29]. Note that the test is
defined only for stationary AR(p) processes which satisfy the conditions specified in section

2.4.1] Thus, C(0.10) = 1.96, C(0.05) = 2.24, and C(0.01) = 2.80.

The following discussion is about the derivation of the test statistic for detecting change
in mean of an AR(p) process. Given a sequence of observations X = {X7, X5, -+, X, } from
an autoregressive process (2.4.1)) of order p we illustrate the hypothesis and test statistic

under consideration.

4.1.1 Change in Mean

When testing for change in mean for an AR(p) process, we test the following hypothesis.

Hy:  p; = po, o and ¢ unknown, for all i >1
Hy: oy = po, o2 and ¢ unknown, for all i=1,...,m (4.1.4)
Hi = [A, o? and ¢ unknown, for all i=m+1,...n

for 1 < m < n. For the above hypothesis (4.1.4]), only the nuisance parameters 7, =
<UAZ]€, qgl, e ,qu) have to be estimated by their restricted maximum likelihood estimators
and using p = g for calculation along the entire sequence { X1, Xs, -+, X,,}. The following

theorem from [I8] proves the required precision of the estimators of the nuisance parameter.

Theorem 4.1.1. Let us assume there is no change in any of the parameters. Under the

hypothesis ¢ = ¢y or o> = o, and stationary condition in §

|y — p| = O ((k:_l log log k)%> a.s. (4.1.5)
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For monitoring a change in mean, with o2 and ¢ are unknown, the standardized efficient

score vector 1s

k

Wi, (Mm o @k) = i > [(Xi — po) — Zﬂgkj(Xi—j - Mo)] (4.1.6)

o
kim

The test statistic max;, Wi (,uo, o3, ék) - W; (ug, 63, ngSk) for |4.1.2| is based on the fol-

lowing theorem from [I§].

Theorem 4.1.2. Under the hypothesis Hy : 1 = po, with ¢, and o® unknown, stationarity
conditions of , 3 a Brownian Motion W(.), such that

1

Wi (10,2, 61) = W () (2) 0 (k) (4.1.7)

for some v > 2.

The simulation results and performance of this test statistic under various AR(p) scenarios

is illustrated in the next chapter.

4.2 Application of Sieve Bootstrap to obtain critical

values

Typically the critical values used in change point hypothesis testing are based on the limit-
ing behavior of the change-point test statistic. As stated earlier in Chapter 2, in the practice
of off-line change-point detection hypothesis we fix the size of the test at level & = 0.05 in
our simulation simulations and try to maximize the power of our change-point test. How-
ever, the convergence to an asymptotic distribution is slow. In fact, the critical values from
first order asymptotic distribution are based on large sample tests as n — oco. In practice

most of the assumptions about the data do not hold, especially that of having a large data set.

In this case, the bootstrap approach turns out to be quite useful. Using sieve bootstrap,
we obtained critical values as bootstrap provides asymptotic refinements. We discuss and
apply two approaches below that we apply to the original data in question. We illustrate in
Chapter 5 how both the sieve bootstrap approaches outperform the first-order asymptotic
critical values and how sieve bootstrap critical values have stable size and improved power

than that of the asymptotic critical values.
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4.2.1 Block Sieve Bootstrap

In the Block Sieve bootstrap approach, we resample the data and obtain critical values by
using blocks of test statistics calculated on each resampled data set. Before illustrating the

algorithm we first define the following terms,

e MC :- refers to the number of Monte Carlo simulations done to obtain the power.
e B :- Number of iterations done for each block.

BSy - The number of blocks we divide our bootstrapped test statistic into and take

the (1 — «) level quartile of each block.

e 7, :- the test statistic calculated on i** bootstrap sample.

The following algorithm is used to produce the results in Appendix A.
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Algorithm 1
1: form=1---MC do

2:  Simulate Y; from an AR(p) process

3 fori=1---BS, do

4 forb=1---B do

5: Sieve Bootstrap {Y;}7_, and get {Y;*}}~,

6 Calculate the change-point test statistic 7;, on {Y;*}}-,

7 end for

8 From the set of “ordered” change-point statistics {7; 1,72, -+, 7i.5} take its (1 —«)

level quartile.

9: end for

10:  Given the set of change-point statistics {7, 7o, -+ , Tn}, get the bootstrap critical value
=2 0

11:  Simulate {X;}}, from an AR(p) process to test the H,

12 Calculate the change-point statistic 7,, on X;

13:  Define P,, for each monte carlo iteration where

1 if T > T
P, = /
0 otherwise

14: end for

ity Pm

15: Power = e

Note that the total number of sieve bootstrap iterations performed is (BS, x B). For
each i € {1,---, BS,}, we bootstrap the original data set {Y;}?_, B times and calculate the
test statistic on each bootstrapped resample Y, Y}, --- Y. The main difference between
Block Sieve Bootstrap and Naive Sieve Bootstrap (discussed below) is in Step 8, where the
critical value is chosen by using the (1 — ) level quartile of the test statistic calculated
on each " block. Note that in Step 10, we take the mean of the critical value from each
block that is chosen to be our bootstrap critical value. Another possible choice is by taking
the median of the critical values in Step 10 since median is more robust than mean. The
results of the proposed algorithm are illustrated in Chapter 5. We denote the Block Sieve
Bootstrap approach with mean and median by BSBjjeqn, and BS Bjjegian respectively.
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4.2.2 Naive Sieve Bootstrap Approach

Naive Sieve bootstrap approach is the simple application of sieve bootstrap to obtain the
critical values. Using the same definition of terms as defined in |4.2.1], we illustrate the algo-

rithm below.

Algorithm 2
1: form=1.---MC do

2:  Simulate Y; from an AR(p) process

33 fori=1---Bdo

4: Sieve Bootstrap {Y;}7; and get {Y;*}},

5 Calculate the change-point test statistic 7;, on {Y;*}},

6: end for

7. From the the set of “ordered” change-point statistics {7, 7o, -+, 75} take its (1 — «)
level quartile. This value will be our bootstrap critical value 7.

8:  Simulate {X;}}; from an AR(p) process to test the Hy

9:  Calculate the change-point statistic 7,,, on X;

10:  Define P,, for each monte carlo iteration where

1 if Ty, > T
. T >
0 otherwise

11: end for

2iz1 P

12: Power = YT

We denote the Naive Sieve Bootstrap approach by NSB and discuss its results later in
Chapter 5. Note that the NSB approach is a special case of block sieve bootstrap where
there is only 1 block and the number of bootstrap iterations within that 1 block is increased.
Thus, the total number of bootstrap iterations in BSB and NSB are the same. Initially, we
considered the NSB approach as it provided insight into the spread and stability of sieve
bootstrap critical values. Furthermore, the NSB approach also assisted us with choosing the

optimal number of monte carlo simulations and bootstrap repetitions.

Note that we use sieve bootstrap in both algorithms which allows us to test for change in
not just an AR(p), but MA(q), and ARMA(p, q) processes as well. As discussed in section
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[B.4] sieve bootstrap estimates the underlying process as an autoregressive process of order
p = p(n) where p(n) — oo as n — oo. Since an invertible moving average process has an
AR(00) representation, and the test proposed by [I8] is for stationary autoregressive pro-
cesses, this suggests that the proposed methods can also be applied to MA(q) and ARMA((p,

q) processes.

In chapter , we discuss whether simple application of Sieve Bootstrap (NSB) to obtain
critical values is effective or by dividing bootstrap critical values into blocks (BSB) gives any
extra advantage in obtaining a higher power. Appendix A includes various tables for AR(1)
and AR(2) process for errors from Normal and ¢—distribution. Furthermore, we applied our
algorithms to detect change in MA(1), MA(2) and ARMA(1,1) processes. The results of all
three approaches are discussed in chapter
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Chapter 5
Simulation Results

In this chapter, we discuss the results of applying sieve bootstrap to detect changes in the
means of autoregressive moving average processes of first and second order. Our test com-
pares the size and power of various sample sizes and errors from normal and t—distribution.
We also extend our results to moving average processes of first and second order and mixed
processes. Furthermore, we show that sieve bootstrap critical values outperform first-order

asymptotic critical values even when there are delays in change indexes.

We use the following notation in the results for each approach.
e GS:- The test statistics from [I8] as discussed in section [4.1.1]

e BSB;:- Application of the block sieve bootstrap algorithm from (4.2.1)) to test statistic
from [18]. The “I” in the subscript is to denote that we take the mean of the critical
values obtained in Step 10 of algorithm in section (4.2.1]) i.e. the results from B.SBcan

e BSBy:-Similar to the above, the block sieve bootstrap algorithm from section [4.2.1]
to test statistic from [I8]. However the “IT” in the subscript is to denote that we take
the median of the critical values obtained in Step 10 of algorithm in section (4.2.1)) i.e.

it represents B.S Bsedian-

e NS B:- The results from this approach are based on application of naive sieve bootstrap
algorithm from section (4.2.2)) to the test statistic from [18].

For each bootstrap approach (BSB;, BSB;r, and NSB) we performed 1500 bootstrap
iterations. Initially, tests were performed with 1000, 1500, 2000, and 2500 bootstrap itera-

tions. We found 1500 to be optimal as no significant deviations were observed in mean and
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variance of the critical values obtained. The number of Monte Carlo Iterations performed
for each test was 1000. Again, tests were performed with 1000 and 1500 Monte Carlo itera-
tions and no significant differences were observed in power and size of the tests. The chosen

significance level for all the results was 5% (a = 0.05).

The results are illustrated for sample sizes of 100, 200, and 300 data points in Appendix
A. We show these results for an AR(1) and AR(2) process, with errors from N(0,1) and
t-distribution with 5 and 8 degrees of freedom. The results are also illustrated for MA(1),
MA(2), and ARMA(1,1) processes with errors from N(0,1).

For block sieve bootstrap approaches (BSB; & BSBj;), the size of each block was 10.
In general, blocks of bigger sizes may be used for larger samples and methods such as cross

validation can be used for selecting an optimal block size.

5.1 Consistency in Size

As stated earlier in chapter [I} the challenge in change-point detection is to minimize the
probability of Type I error while maximizing the power. Unfortunately, the two choices con-
tradict each other. The standard criterion in off-line change-point hypothesis is to maximize
the probability of accepting the H4 when it is actually true (i.e. the power = 1 - Type
IT error), with respect to the constraint of fixed probability of rejecting the Hy when it is

actually true (i.e. the size = Type I error).

5.1.1 Size for Autoregressive Processes

We checked size for an AR(1) process for the coefficients for which the stationarity con-
ditions hold (stated in [2.4.23)). Considering that our chosen significance level was 5%, Fig.
shows that results from BSB;, BSBjr, and NSB are closer to the significance level.

Fig. shows that even though the results from Bootstrap approach have a larger size, it
is still closer to the chosen empirical significance level of o = 0.05. This is true for all AR(1)
coefficients. In Fig. we see on the right tail end that bootstrap results deviate from the
chosen significance level for ¢; =0.8 & 0.9 since they are closer to unit root circle. However,

they are still better than the results from first-order asymptotic critical values of [18]’s test
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Size Comparison for AR(1)

0.06

0.05

0.04 ~— L4 .

5

i

=

=

£ 003 ——G5

-

U& ——B5SB Mean

= —&—BSB Median
o/’_\ I . ——NsB

0.02 o 3 ;\’//

0.01

-9 08 -07 -06 -05 -04 -03 -02 01 01 02 03 04 0.5 06 0.7 08 0.9

0

Figure 5.1: Distortion in size given by GS compared to the results from sieve bootstrap critical
values when € ~ N(0,1). The significance level at @ = 0.05. The number of Sieve
Bootstrap Iterations = 1500, number of Monte Carlo Iterations = 1000, and number
of points n = 100. GS: Test Statistic from Gombay and Serban (2009), BSBr:
Block Sieve Bootstrap with mean of critical values from each block, BSBi: Block
Sieve Bootstrap with median of critical values from each block, NSB: Naive Sieve
Bootstrap approach

statistic. In fact, the results from G'S appear to approach zero for ¢; > 0.7.

The results for € ~ N (0, 1) are also summarized in in Table (A.1). Consistency in size is
also true for n = 200 points (Table |A.5) and n = 300 points (Table [A.9). The size from
bootstrap critical values varies around 0.04, compared to the size from GS in both cases

which tends to zero as ¢; — 1.
When errors of an AR(1) process come from a heavy tailed distribution such as ¢-distribution,
the size from bootstrap critical values is still closer to the chosen significance level of o = 0.05

for all AR(1) coefficients compared to the results from GS. Figures [5.2] & [5.3below show the
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results for an AR(1) process when € ~ t5 and € ~ 3.
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Figure 5.2: Distortion in size given by GS compared to the results from sieve bootstrap critical
values when € ~ t5. The significance level at & = 0.05. The number of Sieve Bootstrap
Iterations = 1500, number of Monte Carlo Iterations = 1000, and number of points
n = 100. GS: Test Statistic from Gombay and Serban (2009), BSBy: Block Sieve
Bootstrap with mean of critical values from each block, B.S Byr: Block Sieve Bootstrap
with median of critical values from each block, NSB: Naive Sieve Bootstrap approach

The results are also summarized in Table for € ~ t5 and Table for € ~ tg re-
spectively. The size from GS approach is below 0.02 in both cases, even though the chosen
significance level was of a = 0.05. Compared to our proposed algorithm, Fig. [5.2] and Fig.
[5.3 show consistent size for all tested AR(1) coefficients for ¢5 and ts errors respectively.

We know that bootstrap critical values obtained are stable and consistent because they
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Figure 5.3: Distortion in size given by GS compared to the results from sieve bootstrap critical
values when € ~ tg. The significance level at & = 0.05. The number of Sieve Bootstrap
Iterations = 1500, number of Monte Carlo Iterations = 1000, and number of points
n = 100. GS: Test Statistic from Gombay and Serban (2009), BSBy: Block Sieve
Bootstrap with mean of critical values from each block, B.SBy: Block Sieve Bootstrap
with median of critical values from each block, NSB: Naive Sieve Bootstrap approach

have low standard deviation. For example, for the results in Table we show the mean
and standard deviation for each bootstrap approach (BSB;, BSBr;, NSB) in Table ,
Table[A.3] and Table[A.4]respectively. We see that all the critical values obtained have a low
standard deviation and vary with the AR(1) coefficient for each approach. Similarly for each
set of results in the Appendix A we show the mean, variance and standard deviation of the
critical values from B.SByean, BSBredian, and NSB. We can conclude from the tables in
Appendix A, that the results for AR(1) processes have stable bootstrap critical values from
all three approaches and that size is consistent across various AR(1) coefficients when testing

for a change in the mean of an AR(1) for both, Normal and t4 errors (for df > 5) respectively.
For an AR(2) process, the set of coefficients we choose also satisfy stationarity conditions
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as defined in equations . The results for an AR(2) process with n = 100 data points
are shown in Table for € ~ N(0,1). We can see that the Type I error from GS is
completely distorted as it is mostly around 0.01 for each set (¢, ¢2). Compared to the
results from bootstrap critical values which stay mostly at 0.04 (closer to @ = 0.05). Fur-
thermore, bootstrap critical values are consistent as shown by low standard deviation for
BSBy, BSB;r, and NSB in Tables [A.27, [A.28 and [A.29] Similar conclusions hold, when
€ ~ t5 & tg as shown in Tables [A.30] and [A.34] respectively.

5.1.2 Size for Moving Average Processes

We applied all three approaches to MA(1) and MA(2) processes as well. Their results are
shown in Tables [A.35] and [A 40| respectively. In both cases, we approximated the underlying

moving average process by an AR(p) process where the order p was selected based on the
AIC. Then the test statistic from [I§] and our 3 suggested approaches were applied to test
for change in the estimated AR(p) process.

The results from Table show that for MA(1), GS doesn’t work well since our chosen
significance level was o = 0.05 and the size from GS stays below 0.01 for all MA(1) coef-
ficients. This is not surprising as GS is meant to test for changes in finite autoregressive
stationary processes. Whereas, the results from, BSB and NSB are more stable and stay
close to 0.05 for —0.5 < #; < 0.8. However, for values of ; closer to the invertibility bound-
ary condition (—1 < ;) such as 6; = —0.8, we see that size is below 0.01. This leads us to

conclude that the size for a MA(1) process gets distorted as ¢; — —1.

Table shows that MA(2) processes also have stable size relative to GS which is below
0.01. Compared to the other 3 approaches, BSB and NSB have relatively stable size for
chosen set of (#,0,) coefficients. For some of the values such as (0, 62) = (—0.5, —0.1),
the size is low from all three approaches (close to 0.02). Otherwise, in general, the sieve

bootstrap approach outperforms the GS for MA(2).

In case of both MA(1) and MA(2), the critical values from sieve bootstrap are stable as
they have low standard deviation of < 0.1 in every case. This is shown in Tables[A.36] [A.37]
& for MA(1). In both cases, we approximated the order of the underlying process
using an AR approximation. From Tables [A.39 and [A.41] we see that the chosen order of
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the AR(p) approximation varies between 1 and 3.

5.1.3 Size of Autoregressive Moving Average Processes

Our results for ARMA(1, 1) are illustrated in Tables[A.42]and |A.43] The set of AR coeffi-
cients chosen satisfy the stationarity conditions and for the MA(1) we choose ¢; = 0.8 & 0.5.

This ensured that the underlying ARMA(1,1) process is stationary & invertible and, thus,
has an AR(c0) representation as discussed before in section [2.4.4] In Tables &
we show the order of the underlying process as selected by AIC. There was no significant

difference in results for n = 200 and 300 data points

As expected, GS approach has a distorted size close to 0.01 in every case. However, BS By,
BSByy, and NSB have a size varying between 0.04 and 0.05 which is preferred given that
our chosen significance level was o« = 0.05. The order estimated by AIC for each underlying
process usually varies between 1 & 3 for each set of values. This suggests that sieve bootstrap
approach is stable in detecting change for ARMA(1,1) process for ¢; > 0.5. Tables and
also show that there is no significant difference in the critical values obtained from each
of the three approaches. Given any set of ARMA(1, 1) coefficients e.g. ¢; = 0.5 and 0; =
0.5, we see that the maximum difference between size from BSB;, BSB;;, and NSB is of
0.002.

We can conclude that with respect to criterion of fixing Type I error probability, sieve
bootstrap critical values are more stable not only for various scenarios and errors distribution
for an AR(1) and AR(2) process, but also for MA(1), MA(2), and ARMA(1, 1). Compared
to the first-order asymptotic critical values of GS which provides lower and distorted size.
While lower Type I error of GS might seem like an attractive choice, however, in addition
to being inconsistent with practice of fixing Type I error probability, it offsets for a higher

Type II error () as shown in the next section.

5.2 Increase in Power

The power of a statistical test is defined as the probability of rejecting Hy when it is
actually false i.e. 1 - Type II Error (). In change- detection hypothesis testing, we want to
maximize the power of our test and minimize the probability of false alarm as discussed in

the beginning of section 5.1} In this section, we discuss our test results and illustrate how
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sieve bootstrap critical values increase the power of the test statistic.

5.2.1 Power for Autoregressive Processes

Fig. shows that for a small change in the mean (u4 = 0.1), the GS approach hardly
recognizes any change and has a very low power, mainly below 0.05. Since minor changes
are very hard to detect, we see that three bootstrap approaches also have low power for p4
= 0.1. However, its capability to detect change is still much higher than that of GS. It is
also evident that while the GS approach shows a decreasing pattern of power as ¢; — 0.9,
the results from bootstrap critical values are consistently higher between 0.12 and 0.14 till
the ¢; values get close to unit root stationary. Similar patterns can be observed in Fig.
for py = 0.3, 0.5, and 0.7. The power from bootstrap critical values is consistently higher

than that of GS and converges faster to 1 as the magnitude of change increases.

For normal errors with sample size of 100, Table shows that the results from boot-
strap values are close to each other for AR(1) coefficients and outperform the power of GS

consistently. Similar results are expected when the sample size increases to n = 200 (Table

A.5) and n = 300 (Table [A.9).

The power also increases when errors come from t5 and tg distributions. As shown in Ta-
bles and [A.25] all three bootstrap approaches give consistently higher power than that
of GS. Another observation we made was that when the change point lies the second half of
the data (i.e. [§] < 7 < n — 1), bootstrap critical values still give higher power compared
to GS. This is shown in Tables and [A.17 We can see from Tables [A.18] [A.19] and
that even in this case, the critical values from bootstrap have low standard deviation.
[18] suggested that their test statistics could also be used for on-line change detection. This
finding suggests that the bootstrap critical value would also out perform if they are used in

on-line change-point detection.

Similarly, when looking at results for AR(2) in the Appendix A, we can see from Tables
[A.20] [A.30] and [A.34] that bootstrap critical values again offer better results than GS and

tables preceding them again show consistency and stability in bootstrap critical values.
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Figure 5.4: Power Comparison of the 4 approaches when for changes of different magnitude in p 4.
The significance level is @ = 0.05 and € ~ N(0,1). The number of Sieve Bootstrap
Iterations = 1500, number of Monte Carlo Iterations = 1000, and number of points
n = 100. GS: Test Statistic from Gombay and Serban (2009), BSBy: Block Sieve
Bootstrap with mean of critical values from each block, BSByr: Block Sieve Bootstrap
with median of critical values from each block, N.SB: Naive Sieve Bootstrap approach

5.2.2 Power for Moving Average Processes

Tables|A.35|and |A.40|show the power for MA(1) and MA(2) processes respectively. Again,

all the three bootstrap approaches have stable critical values with low standard deviations.

For a MA(1) process, Tables |A.36] |A.37, & [A.38| show that the maximum standard de-

viation we observe for the critical values is approximately 0.16. An increasing pattern in

standard deviation can be noticed across all MA(1) coefficients as the alternative mean ji4
increases. The power from the sieve bootstrap approach is also higher than GS. However,
the power stops increasing as the magnitude of change in mean gets higher. For example,

for #; = —0.5, as 4 increases from 0.7 to 0.9, we see that the power for BSB; decreases
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from 0.827 to 0.789. Similar conclusion can be drawn for all the other MA(1) coefficients as
well. This can be explained by the underlying process approximated by the sieve bootstrap
method. Table shows that for 6, = —0.5, the order of the approximated AR(p) process

increases on average from 2.6 to 3.3 as the change in mean increases from 0.7 to 0.9.

A similar conclusion can be drawn for MA(2) processes as shown in Table [A.40f Our
bootstrap critical values obtained from each of the three approaches is stable and they
outperform GS significantly. For example, for (61, ) = (0.5, 0.1) and ps = 0.9 the power
from GS is 0.399 whereas all three bootstrap approaches give a power greater than 0.7. We
can also see that (just like in case of MA(1)) as the magnitude of change increases, the

underlying AR(p) process estimated is of higher order and, thus, has a lower power.

5.2.3 Power for Autoregressive Moving Average Processes

The results for ARMA(1, 1) are shown in Tables [A.42 and [A.43| for 6; = 0.8 and 0.5

respectively. Our conclusion are similar to the case of moving average processes since we

estimate the underlying process using AIC in both cases. Our bootstrap critical values are
stable though their standard deviation does increase by a negligible amount as the magni-

tude of change increases.

The three bootstrap approaches outperform the GS approach from [I§] as it is meant for
finite autoregressive stationary processes with known order. We see an increasing pattern in
power as 4 increases. However, for an increase in the mean from 0.7 to 0.9 the power de-
creases for the chosen set of ARMA coefficients. Analogous the moving average processes, a
plausible explanation for this is the underlying process approximated by the sieve bootstrap
method using AIC.

Thus, we can conclude that application of sieve bootstrap to get critical values for de-
tecting change in mean of a time series is much more effective and gives better results than
using the first-order asymptotic critical values. Sieve bootstrap critical values do not only
give a consistent size closer to our chosen empirical level but it also provides higher power for
detecting change in AR(1) and AR(2) processes when errors follow normal or t-distribution.
This conclusion can also be applied moving average processes as shown for MA(1) & MA(2),

and mixed processes as shown for ARMA(1, 1).
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5.3 Block Sieve Bootstrap V.S. Naive Sieve Bootstrap

The results show that Block Sieve Bootstrap (BSB) and Naive Sieve Bootstrap (NSB),
both give stable critical values as shown by the variance and standard deviation of the crit-
ical values used in Appendix A. Both approaches give better results than the test statistic
from [18] i.e. the GS approach. However, when compared with each other we see that BSB
gives better results than NSB.

While the difference between the results might not be significant,but BSB is still closer
to our criterion of fixing the size and maximizing the power. For instance looking at Table
[A.25 when 14 = 0.3, we can see that BSBisean (BSBy) and BSBuyjedian (BSBi;) give higher
power than NSB. The difference becomes more significant for ¢; > 0. Similar observation

can be made in all the presented results.

The results of BSByean and BSBjjegian are quite similar. Mostly the difference in power
and size does not exceed 0.05 in all the displayed results. We observe see that BSByjean
gives slightly higher results than BSBjjegian. However, this is not always the case e.g. in
for pa = 0.3 and ¢; = —0.8, BSBy gives a power of 0.391 whereas BS By gives 0.393.
Such minor differences can be ignored and overall we suggest that B.SBjjeq, should be the
chosen approach when testing for changes in the mean of linear autoregressive processes.
This is the approach we adapt in Chapter 6 as we apply our suggested approach to some

real world data sets in the following chapter.

45



Chapter 6

Case Studies

“There is nothing wrong with change, if it is in the right direction” - Winston Churchill

In Chapter 5 we illustrated how application of sieve bootstrap can further enhance the
power to detect a change in the mean of an autoregressive moving average time series. In
this chapter we illustrate the application of our approach to some of the real world data sets.
We present three case studies showing some of the areas where Block Sieve Bootstrap can

be used effectively.

6.1 EUR/USD Exchange Rate

Since its inception as a legal tender, the European currency gained significant trade volume
against the United States Dollar. As of year 2002, and even today, EUR/USD is the most
widely traded pair in the Foreign Exchange market with its daily volume exceeding $300
million dollars [6]. We analyze the EUR/USD weekly data from 2002 to 2007 and see how
the beginning recent financial crisis infirmed the myth of demolition of the United States
dollar. Fig. shows the plot of the data that we analyze (available in Appendix C).
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Figure 6.1: Plot of weekly closing Prices of EUR/USD from 2002 - 2007. The data consists of
311 data points.

Since we are dealing with financial time series, we preprocessed the data by taking the
first difference of the log data to get a weakly stationary series. The resulting plot is shown
in Fig. [6.2l The assumption of weak stationarity can be verified from Fig. which
shows zero mean and constant variance over the sampled period. This is also verified by the

Augmented-Dickey Fuller Test which yields a p-value of less than 0.1.
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Figure 6.2: Plot of EUR/USD Exchange Rate data after variance stabilizing transformations.

First we apply the test statistic from [I8] to test for a change in the mean. The test
yields a critical value 2.2442 which is close to the test statistic’s asymptotic critical value
corresponding to a = 0.05 significance level. Then we apply our Block Sieve Bootstrap
approach where we choose the size of each block to be 10, similar to our simulation studies.
After 1500 bootstrap samples we get the critical value of 0.7036 which is significantly lower
than 2.442. We experimented with several numbers of bootstrap samples and found that
1500 bootstrap samples gave stable critical value with a standard deviation of 0.58.

We conclude from our finding that the rising trend of EUR/USD is likely to discontinue
after 2007. The validity of our finding became evident as the exchange rate reach a low of

1.23 in 2008 and is trading around 1.19 since the beginning of June, 2010.

6.2 Quarterly Business Bankruptcy Filings in U.S.A.

In United States of America, businesses unable to meet their debt obligations file for
chapter 11 bankruptcy, after which they are insolvent. In this example we analyze quarterly
bankruptcy filings in USA from 1994 to first quarter of 2010. The raw plot of Bankruptcy
filings in USA is given below. While it might seem obvious at first sight that there is a

structural break in the data, not all tests indicate such a finding.
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Figure 6.3: Plot of Quarterly business bankruptcy filings in USA from 1994 - 2010. The data

consists of 64 data points.

Fig. shows that the number of business bankruptcies did not significantly increase from
2000 - 2002 dot-com bubble burst which is the general perception. In fact, they decreased
afterwards especially during 2005. First we performed a variance stabilizing transformation

to the data to get a weakly stationary series shown in Fig. [6.4]
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Figure 6.4: Plot of the first difference of logged Quarterly Business Bankruptcy filings in USA
from 1994 - 2010.

Fig. makes us question the stationarity because of one significant spike. However,
applying Augmented-Dickey fuller test yielded a p-value of less than 0.1. Furthermore, the
autocorrelation function (ACF) had no significant correlations, but the partial autocorrela-
tion function (PACF) had first correlation significant. This lead us to fit an AR(1) model
to the series based on AIC.

Initially, we applied the approach from [I§] and we got a test statistic value of 1.0650. At
5% significance level, the first-order asymptotic critical value of the test statistic is 2.24 and
using this approach would indicate that there has been no change in average bankruptcies
in the United States. However, applying our Block Sieve Bootstrap approach, we get a
bootstrap critical value of 0.8483 which is less than the test statistic value of 1.0650. We used
1500 bootstrap simulations where size of each block was 10 and we know that our bootstrap
critical values were stable with the standard deviation of 0.76. Thus, according to our Block
Sieve Bootstrap approach there was a change in the average number of bankruptcies in
USA from 1994-2010. Our findings can be confirmed by recent economic events as the U.S.

economy faced the worst credit crisis since the Great Depression.
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Chapter 7
Conclusions and Future Work

“The price of doing the same old thing is far higher than the price of change.” - Bill Clinton

The purpose of this thesis was to illustrate how application of sieve bootstrap to detect
change in time series can give us more stable size and higher power in our hypothesis testing.
The test statistic we chose for illustration was from [I§], which was built on the idea of using
cumulative sums of efficient score vectors. We illustrated our results for detecting change in
the mean of an autoregressive, moving average, and processes. We introduced two different
approaches of applying sieve bootstrap to get the bootstrap critical values i.e. Block Sieve
Bootstrap and Naive Sieve Bootstrap. From the simulation results illustrated in chapter 5
we concluded that Block Sieve Bootstrap gives better results than the Naive Sieve Bootstrap

approach.

In chapter 6, we illustrated how the use of our approach is effective in detecting changes
on two econometric data sets. In case of EUR/USD exchange rate, it showed that the
GS approach [1§] is equally effective in detecting the change. However, detecting change in

quarterly US Bankruptcy filings, our approach does not give false positive results like their’s.

Our research gave us more ideas which can be considered in the future to add more to the
field of change-point analysis in time series. We are considering some of the following in the

future.

e The sieve bootstrap approach from [2] approximates a linear time series using the AIC
as model selection criterion. Another approach we would like to consider would be to

apply Non-Linear Sieve Bootstrap Methods such as to Neural-Network Sieve Bootstrap
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[16] to see if it adds to the performance of the change-point test statistics.

e In our thesis the algorithms we suggested enhance the power to detect change in the
mean of an autoregressive moving average time series. We would further like to see
if other methods or algorithms can be derived that can add similar improvements to

detect a change in variance or parameter(s) of such processes.

e The processes under consideration in our thesis were stationary autoregressive, moving
average, and mixed processes. We would like to extend the framework to see if appli-
cation of sieve bootstrap will work for ARIMA(p,d,q) and FARIMA (p,d,q) processes.

e The case studies illustrated in chapter 6 considered the data at regularly spaced inter-
vals. The frequency of the data analyzed was not very high (i.e. daily or weekly data).
The problem of detecting change in time series that is not equally spaced and sampled
at a higher frequency becomes much harder because of the statistical properties of such
data. However, examples of high-frequency data are witnessed quite often in the field
of financial risk management, high speed network monitoring, and real-time computing
in information systems management to name a few. We would like to see if bootstrap
methods can be found which are applicable to high-frequency data, and, thus enhance

the power to detect change in on-line change-point framework.

The contributions of Bradley E. Efron and E.S. Page sparked extensive research into two
new fields which are coming together now as more computing power becomes available to
us. With the given interactions among various fields today, we can expect and hope to see

further advancements in change-point detection for time series.
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Appendix A

Tables for Change in Mean
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L 0 0.1 0.3
o | ¢S | BSB | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 0.024 [ 0.044 | 0.046 | 0.044 | 0.066 | 0.124 | 0.125 | 0.126 | 0.335 | 0.469 | 0.47 | 0.465
0.5 | 0.02 | 0.048 | 0.049 | 0.048 | 0.068 | 0.127 | 0.131 | 0.132 | 0.334 | 0.483 | 0.484 | 0.478
0.3 | 0.02 | 0.046 | 0.049 | 0.047 | 0.062 | 0.128 | 0.132 | 0.131 | 0.326 | 0.483 | 0.487 | 0.482
0.1 | 0.019 | 0.043 | 0.045 | 0.044 | 0.054 | 0.132 | 0.136 | 0.137 | 0.315 | 0.477 | 0.488 | 0.476
0.1 | 0.022 | 0.042 | 0.041 | 0.043 | 0.052 | 0.133 | 0.139 | 0.134 | 0.302 | 0.478 | 0.483 | 0.474
0.3 | 0.021 | 0.041 | 0.04 |0.042 | 0.048 | 0.133 | 0.132 | 0.134 | 0.269 | 0.455 | 0.458 | 0.45
0.5 | 0.019 | 0.04 | 0.045 | 0.043 | 0.045 | 0.129 | 0.132 | 0.133 | 0.206 | 0.449 | 0.44 | 0.442
0.8 | 0.007 | 0.038 | 0.039 | 0.038 | 0.013 | 0.114 | 0.112 | 0.11 | 0.015 | 0.367 | 0.368 | 0.366
L 0.5 0.7 0.9

¢ | GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 | 0.763 | 0.868 | 0.871 | 0.87 | 0.971 | 0.985 | 0.986 | 0.986 | 0.998 | 1 1 1
0.5 | 0.761 | 0.866 | 0.863 | 0.865 | 0.975 | 0.982 | 0.982 | 0.982 | 0.997 | 0.999 | 0.999 | 0.999
0.3 | 0.749 | 0.867 | 0.871 | 0.867 | 0.972 | 0.981 | 0.982 | 0.982 | 0.997 | 1 1 1
0.1 0.734 | 0.875 | 0.877 | 0.875 | 0.958 | 0.98 | 0.98 | 0.982 | 0.996 | 0.998 | 0.998 | 0.998
0.1 | 0.699 | 0.852 | 0.849 | 0.846 | 0.944 | 0.976 | 0.974 | 0.973 | 0.993 | 0.997 | 0.997 | 0.997
0.3 | 0.633 | 0.818 | 0.816 | 0.813 | 0.894 | 0.959 | 0.958 | 0.955 | 0.964 | 0.984 | 0.984 | 0.984
0.5 | 0.477 | 0.767 | 0.768 | 0.761 | 0.622 | 0.875 | 0.86 | 0.858 | 0.585 | 0.842 | 0.836 | 0.834
0.8 | 0.016 | 0.485 | 0.488 | 0.48 | 0.003 | 0.387 | 0.388 | 0.382 | 0 | 0.216 | 0.219 | 0.212

Table A.1: Comparison for an AR(1) process for errors ¢ ~ N(0,1) with n = 100, change 7 = 50, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBir: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap

approach
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9085 | 0.0303 | 0.1739 | 1.9136 | 0.0309 | 0.1756 | 1.9698 | 0.0309 | 0.1756 | 2.0847 | 0.039 0.1973
-0.5 || 1.899 | 0.0328 | 0.1811 1.9099 | 0.0324 | 0.1799 | 1.9658 | 0.0335 0.183 2.0784 | 0.0393 0.198
-0.3 || 1.9032 | 0.0316 | 0.1778 1.907 | 0.0317 0.178 1.9605 | 0.0311 | 0.1763 | 2.0561 | 0.0375 | 0.1937
-0.1 || 1.8959 | 0.0236 | 0.1535 | 1.9035 | 0.0224 | 0.1496 1.935 | 0.0223 | 0.1493 | 2.0123 | 0.0339 | 0.1842
0.1 || 1.8867 | 0.024 0.1549 | 1.8899 | 0.0248 | 0.1575 | 1.9321 | 0.0269 | 0.1638 | 2.0322 | 0.0385 0.196
0.3 || 1.8711 | 0.0274 | 0.1656 | 1.8755 | 0.0282 | 0.1678 | 1.9221 | 0.0288 | 0.1695 | 2.0086 | 0.039 0.1973
0.5 || 1.8464 | 0.0253 | 0.1588 | 1.8523 | 0.0256 0.16 1.8937 | 0.0273 | 0.1651 1.946 | 0.036 0.1896
0.8 || 1.7702 | 0.0159 | 0.1261 1.77 10.0166 | 0.1287 | 1.7599 | 0.0148 | 0.1216 | 1.7302 | 0.0143 | 0.1196

A 0.7 0.9

¢1 || Mean Var | Std. Dev. | Mean Var | Std. Dev.

-0.8 || 2.2239 | 0.0275 | 0.1656 | 2.3094 | 0.0061 | 0.0781

-0.5 || 2.2163 | 0.0281 | 0.1676 | 2.3031 | 0.0066 | 0.0808

-0.3 || 2.182 | 0.0344 | 0.1855 | 2.2671 | 0.0176 | 0.1325

-0.1 ] 2.1355 | 0.04 0.1999 | 2.2539 | 0.0187 | 0.1366

0.1 || 2.1402 | 0.0382 0.1953 2.234 | 0.0215 0.1467

0.3 || 2.0914 | 0.0431 0.2074 2.1691 | 0.0341 0.1845

0.5 || 2.0047 | 0.0442 0.2101 2.0371 | 0.0467 0.2159

0.8 | 1.6872 | 0.0119 0.109 1.6446 | 0.0085 0.092

Table A.2: Mean, Variance, and Standard Deviation of the the critical values used in Table for BS Br: Block Sieve Bootstrap

with mean of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9017 | 0.0338 | 0.1837 | 1.9067 | 0.0347 | 0.1861 | 1.9649 | 0.0357 | 0.1889 | 2.0824 | 0.0433 | 0.2079
-0.5 || 1.891 | 0.0356 | 0.1887 | 1.9017 | 0.0356 | 0.1887 | 1.9579 | 0.0377 | 0.1941 | 2.0764 | 0.0436 | 0.2088
-0.3 || 1.8945 | 0.0349 | 0.1867 | 1.8993 | 0.0349 | 0.1866 | 1.9529 | 0.0349 | 0.1867 | 2.0529 | 0.0414 | 0.2034
-0.1 || 1.8851 | 0.026 0.161 1.8951 | 0.025 0.158 1.9259 | 0.0253 | 0.1591 | 2.0061 | 0.0374 | 0.1934
0.1 || 1.8765 | 0.0259 | 0.1609 | 1.8811 | 0.0269 | 0.1639 | 1.9238 | 0.0299 | 0.1727 | 2.0292 | 0.0422 | 0.2053
0.3 | 1.8623 | 0.0294 | 0.1713 | 1.8673 | 0.03 0.1731 1.916 | 0.032 0.1788 | 2.0077 | 0.0431 | 0.2076
0.5 || 1.8402 | 0.0272 | 0.1649 | 1.8466 | 0.0277 | 0.1663 | 1.8901 | 0.0301 | 0.1735 | 1.9464 | 0.039 0.1974
0.8 1.77 |1 0.0167 | 0.1292 | 1.7701 | 0.0174 | 0.1319 | 1.7596 | 0.0155 | 0.1242 1.73 1 0.0148 | 0.1216

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2227 | 0.03 0.173 2.3093 | 0.0066 | 0.0808

-0.5 || 2.2155 | 0.0304 | 0.1742 | 2.3029 | 0.007 0.0835

-0.3 || 2.1809 | 0.0369 0.192 2.2666 | 0.0184 | 0.1354

-0.1 || 2.1329 | 0.0426 | 0.2064 | 2.2535 | 0.02 0.1412

0.1 | 2.1404 | 0.0407 0.2017 2.2357 | 0.0224 0.1496

0.3 | 2.0943 | 0.0459 | 0.2141 | 2.1733 | 0.0356 | 0.1886

0.5 | 2.0085 | 0.0468 | 0.2162 | 2.0412 | 0.0486 | 0.2203

0.8 | 1.6862 | 0.0121 0.11 1.6438 | 0.0087 0.093

Table A.3: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve Bootstrap

with median of critical values from each block. Number of Blocks = 10




LS

1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9083 | 0.0328 | 0.1809 | 1.9141 | 0.0337 | 0.1836 | 1.9704 | 0.0341 | 0.1845 | 2.0867 | 0.0416 | 0.2039
-0.5 || 1.8974 | 0.0348 | 0.1864 | 1.9083 | 0.0346 | 0.1858 | 1.9649 | 0.0361 | 0.1899 | 2.0808 | 0.0416 0.204
-0.3 || 1.901 | 0.0337 | 0.1836 | 1.9053 | 0.0338 | 0.1838 | 1.9591 | 0.0332 | 0.1823 | 2.0571 | 0.0399 | 0.1998
-0.1 || 1.8925 | 0.0251 | 0.1582 | 1.9007 | 0.024 0.1548 | 1.9324 | 0.024 0.1547 | 2.0106 | 0.0359 | 0.1895
0.1 || 1.8826 | 0.0244 | 0.1561 1.886 | 0.0256 | 0.1598 | 1.9295 | 0.0283 | 0.1681 2.034 | 0.0407 | 0.2016
0.3 1.87 | 0.0283 | 0.1681 | 1.8744 | 0.0292 | 0.1707 | 1.9231 | 0.0308 | 0.1753 | 2.0126 | 0.0419 | 0.2046
0.5 || 1.8473 | 0.0264 | 0.1625 | 1.8526 | 0.0266 | 0.1629 1.896 | 0.0293 | 0.1712 1.952 | 0.0382 | 0.1953
0.8 || 1.7748 | 0.0164 | 0.1279 | 1.7751 | 0.017 0.1304 | 1.7638 | 0.0151 | 0.1226 | 1.7338 | 0.0146 | 0.1207

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2254 | 0.0284 | 0.1684 2.31 ]0.0064 | 0.0798

-0.5 || 2.2186 | 0.0288 | 0.1696 | 2.3037 | 0.0068 | 0.0823

-0.3 || 2.1837 | 0.0354 0.188 2.2673 | 0.0181 | 0.1342

0.1 | 2.1361 | 0.0412 | 0.2029 |2.2551 | 0.0192 | 0.1384

0.1 || 2.1439 | 0.0393 0.1981 2.2372 | 0.0218 0.1474

0.3 || 2.0975 | 0.0445 0.211 2.1763 | 0.0344 | 0.1854

0.5 || 2.013 | 0.0458 0.214 2.0455 | 0.0478 | 0.2185

0.8 | 1.6899 | 0.0121 | 0.1099 | 1.6471 | 0.0086 | 0.0926

Table A.4: Mean, Variance, and Standard Deviation of the the critical values used in Table for NSB: Naive Sieve Bootstrap
Approach
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L 0 0.1 0.3
o | ¢S | BSB | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 0.024 [ 0.044 | 0.046 | 0.044 | 0.066 | 0.124 | 0.125 | 0.126 | 0.335 | 0.469 | 0.47 | 0.465
0.5 | 0.02 | 0.048 | 0.049 | 0.048 | 0.068 | 0.127 | 0.131 | 0.132 | 0.334 | 0.483 | 0.484 | 0.478
0.3 | 0.02 | 0.046 | 0.049 | 0.047 | 0.062 | 0.128 | 0.132 | 0.131 | 0.326 | 0.483 | 0.487 | 0.482
0.1 | 0.019 | 0.043 | 0.045 | 0.044 | 0.054 | 0.132 | 0.136 | 0.137 | 0.315 | 0.477 | 0.488 | 0.476
0.1 | 0.022 | 0.042 | 0.041 | 0.043 | 0.052 | 0.133 | 0.139 | 0.134 | 0.302 | 0.478 | 0.483 | 0.474
0.3 | 0.021 | 0.041 | 0.04 |0.042 | 0.048 | 0.133 | 0.132 | 0.134 | 0.269 | 0.455 | 0.458 | 0.45
0.5 | 0.019 | 0.04 | 0.045 | 0.043 | 0.045 | 0.129 | 0.132 | 0.133 | 0.206 | 0.449 | 0.44 | 0.442
0.8 | 0.007 | 0.038 | 0.039 | 0.038 | 0.013 | 0.114 | 0.112 | 0.11 | 0.015 | 0.367 | 0.368 | 0.366
L 0.5 0.7 0.9

¢ | GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 | 0.763 | 0.868 | 0.871 | 0.87 | 0.971 | 0.985 | 0.986 | 0.986 | 0.998 | 1 1 1
0.5 | 0.761 | 0.866 | 0.863 | 0.865 | 0.975 | 0.982 | 0.982 | 0.982 | 0.997 | 0.999 | 0.999 | 0.999
0.3 | 0.749 | 0.867 | 0.871 | 0.867 | 0.972 | 0.981 | 0.982 | 0.982 | 0.997 | 1 1 1
0.1 0.734 | 0.875 | 0.877 | 0.875 | 0.958 | 0.98 | 0.98 | 0.982 | 0.996 | 0.998 | 0.998 | 0.998
0.1 | 0.699 | 0.852 | 0.849 | 0.846 | 0.944 | 0.976 | 0.974 | 0.973 | 0.993 | 0.997 | 0.997 | 0.997
0.3 | 0.633 | 0.818 | 0.816 | 0.813 | 0.894 | 0.959 | 0.958 | 0.955 | 0.964 | 0.984 | 0.984 | 0.984
0.5 | 0.477 | 0.767 | 0.768 | 0.761 | 0.622 | 0.875 | 0.86 | 0.858 | 0.585 | 0.842 | 0.836 | 0.834
0.8 | 0.016 | 0.485 | 0.488 | 0.48 | 0.003 | 0.387 | 0.388 | 0.382 | 0 | 0.216 | 0.219 | 0.212

Table A.5: Comparison for an AR(1) process for errors € ~ N(0,1) with n = 200, change 7 = 100, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBir: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap

approach
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9085 | 0.0303 | 0.1739 | 1.9136 | 0.0309 | 0.1756 | 1.9698 | 0.0309 | 0.1756 | 2.0847 | 0.039 0.1973
-0.5 || 1.899 | 0.0328 | 0.1811 1.9099 | 0.0324 | 0.1799 | 1.9658 | 0.0335 0.183 2.0784 | 0.0393 0.198
-0.3 || 1.9032 | 0.0316 | 0.1778 1.907 | 0.0317 0.178 1.9605 | 0.0311 | 0.1763 | 2.0561 | 0.0375 | 0.1937
-0.1 || 1.8959 | 0.0236 | 0.1535 | 1.9035 | 0.0224 | 0.1496 1.935 | 0.0223 | 0.1493 | 2.0123 | 0.0339 | 0.1842
0.1 || 1.8867 | 0.024 0.1549 | 1.8899 | 0.0248 | 0.1575 | 1.9321 | 0.0269 | 0.1638 | 2.0322 | 0.0385 0.196
0.3 || 1.8711 | 0.0274 | 0.1656 | 1.8755 | 0.0282 | 0.1678 | 1.9221 | 0.0288 | 0.1695 | 2.0086 | 0.039 0.1973
0.5 || 1.8464 | 0.0253 | 0.1588 | 1.8523 | 0.0256 0.16 1.8937 | 0.0273 | 0.1651 1.946 | 0.036 0.1896
0.8 || 1.7702 | 0.0159 | 0.1261 1.77 10.0166 | 0.1287 | 1.7599 | 0.0148 | 0.1216 | 1.7302 | 0.0143 | 0.1196

A 0.7 0.9

¢1 || Mean Var | Std. Dev. | Mean Var | Std. Dev.

-0.8 || 2.2239 | 0.0275 | 0.1656 | 2.3094 | 0.0061 | 0.0781

-0.5 || 2.2163 | 0.0281 | 0.1676 | 2.3031 | 0.0066 | 0.0808

-0.3 || 2.182 | 0.0344 | 0.1855 | 2.2671 | 0.0176 | 0.1325

-0.1 ] 2.1355 | 0.04 0.1999 | 2.2539 | 0.0187 | 0.1366

0.1 || 2.1402 | 0.0382 0.1953 2.234 | 0.0215 0.1467

0.3 || 2.0914 | 0.0431 0.2074 2.1691 | 0.0341 0.1845

0.5 || 2.0047 | 0.0442 0.2101 2.0371 | 0.0467 0.2159

0.8 | 1.6872 | 0.0119 0.109 1.6446 | 0.0085 0.092

Table A.6: Mean, Variance, and Standard Deviation of the the critical values used in Table for BS Br: Block Sieve Bootstrap

with mean of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9017 | 0.0338 | 0.1837 | 1.9067 | 0.0347 | 0.1861 | 1.9649 | 0.0357 | 0.1889 | 2.0824 | 0.0433 | 0.2079
-0.5 || 1.891 | 0.0356 | 0.1887 | 1.9017 | 0.0356 | 0.1887 | 1.9579 | 0.0377 | 0.1941 | 2.0764 | 0.0436 | 0.2088
-0.3 || 1.8945 | 0.0349 | 0.1867 | 1.8993 | 0.0349 | 0.1866 | 1.9529 | 0.0349 | 0.1867 | 2.0529 | 0.0414 | 0.2034
-0.1 || 1.8851 | 0.026 0.161 1.8951 | 0.025 0.158 1.9259 | 0.0253 | 0.1591 | 2.0061 | 0.0374 | 0.1934
0.1 || 1.8765 | 0.0259 | 0.1609 | 1.8811 | 0.0269 | 0.1639 | 1.9238 | 0.0299 | 0.1727 | 2.0292 | 0.0422 | 0.2053
0.3 | 1.8623 | 0.0294 | 0.1713 | 1.8673 | 0.03 0.1731 1.916 | 0.032 0.1788 | 2.0077 | 0.0431 | 0.2076
0.5 || 1.8402 | 0.0272 | 0.1649 | 1.8466 | 0.0277 | 0.1663 | 1.8901 | 0.0301 | 0.1735 | 1.9464 | 0.039 0.1974
0.8 1.77 |1 0.0167 | 0.1292 | 1.7701 | 0.0174 | 0.1319 | 1.7596 | 0.0155 | 0.1242 1.73 1 0.0148 | 0.1216

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2227 | 0.03 0.173 2.3093 | 0.0066 | 0.0808

-0.5 || 2.2155 | 0.0304 | 0.1742 | 2.3029 | 0.007 0.0835

-0.3 || 2.1809 | 0.0369 0.192 2.2666 | 0.0184 | 0.1354

-0.1 || 2.1329 | 0.0426 | 0.2064 | 2.2535 | 0.02 0.1412

0.1 | 2.1404 | 0.0407 0.2017 2.2357 | 0.0224 0.1496

0.3 | 2.0943 | 0.0459 | 0.2141 | 2.1733 | 0.0356 | 0.1886

0.5 | 2.0085 | 0.0468 | 0.2162 | 2.0412 | 0.0486 | 0.2203

0.8 | 1.6862 | 0.0121 0.11 1.6438 | 0.0087 0.093

Table A.7: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve Bootstrap

with median of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9083 | 0.0328 | 0.1809 | 1.9141 | 0.0337 | 0.1836 | 1.9704 | 0.0341 | 0.1845 | 2.0867 | 0.0416 | 0.2039
-0.5 || 1.8974 | 0.0348 | 0.1864 | 1.9083 | 0.0346 | 0.1858 | 1.9649 | 0.0361 | 0.1899 | 2.0808 | 0.0416 0.204
-0.3 || 1.901 | 0.0337 | 0.1836 | 1.9053 | 0.0338 | 0.1838 | 1.9591 | 0.0332 | 0.1823 | 2.0571 | 0.0399 | 0.1998
-0.1 || 1.8925 | 0.0251 | 0.1582 | 1.9007 | 0.024 0.1548 | 1.9324 | 0.024 0.1547 | 2.0106 | 0.0359 | 0.1895
0.1 || 1.8826 | 0.0244 | 0.1561 1.886 | 0.0256 | 0.1598 | 1.9295 | 0.0283 | 0.1681 2.034 | 0.0407 | 0.2016
0.3 1.87 | 0.0283 | 0.1681 | 1.8744 | 0.0292 | 0.1707 | 1.9231 | 0.0308 | 0.1753 | 2.0126 | 0.0419 | 0.2046
0.5 || 1.8473 | 0.0264 | 0.1625 | 1.8526 | 0.0266 | 0.1629 1.896 | 0.0293 | 0.1712 1.952 | 0.0382 | 0.1953
0.8 || 1.7748 | 0.0164 | 0.1279 | 1.7751 | 0.017 0.1304 | 1.7638 | 0.0151 | 0.1226 | 1.7338 | 0.0146 | 0.1207

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2254 | 0.0284 | 0.1684 2.31 ]0.0064 | 0.0798

-0.5 || 2.2186 | 0.0288 | 0.1696 | 2.3037 | 0.0068 | 0.0823

-0.3 || 2.1837 | 0.0354 0.188 2.2673 | 0.0181 | 0.1342

0.1 | 2.1361 | 0.0412 | 0.2029 |2.2551 | 0.0192 | 0.1384

0.1 || 2.1439 | 0.0393 0.1981 2.2372 | 0.0218 0.1474

0.3 || 2.0975 | 0.0445 0.211 2.1763 | 0.0344 | 0.1854

0.5 || 2.013 | 0.0458 0.214 2.0455 | 0.0478 | 0.2185

0.8 | 1.6899 | 0.0121 | 0.1099 | 1.6471 | 0.0086 | 0.0926

Table A.8: Mean, Variance, and Standard Deviation of the the critical values used in Table for NSB: Naive Sieve Bootstrap
Approach
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L 0 0.1 0.3
o | ¢S | BSB | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 0.024 [ 0.044 | 0.046 | 0.044 | 0.066 | 0.124 | 0.125 | 0.126 | 0.335 | 0.469 | 0.47 | 0.465
0.5 | 0.02 | 0.048 | 0.049 | 0.048 | 0.068 | 0.127 | 0.131 | 0.132 | 0.334 | 0.483 | 0.484 | 0.478
0.3 | 0.02 | 0.046 | 0.049 | 0.047 | 0.062 | 0.128 | 0.132 | 0.131 | 0.326 | 0.483 | 0.487 | 0.482
0.1 | 0.019 | 0.043 | 0.045 | 0.044 | 0.054 | 0.132 | 0.136 | 0.137 | 0.315 | 0.477 | 0.488 | 0.476
0.1 | 0.022 | 0.042 | 0.041 | 0.043 | 0.052 | 0.133 | 0.139 | 0.134 | 0.302 | 0.478 | 0.483 | 0.474
0.3 | 0.021 | 0.041 | 0.04 |0.042 | 0.048 | 0.133 | 0.132 | 0.134 | 0.269 | 0.455 | 0.458 | 0.45
0.5 | 0.019 | 0.04 | 0.045 | 0.043 | 0.045 | 0.129 | 0.132 | 0.133 | 0.206 | 0.449 | 0.44 | 0.442
0.8 | 0.007 | 0.038 | 0.039 | 0.038 | 0.013 | 0.114 | 0.112 | 0.11 | 0.015 | 0.367 | 0.368 | 0.366
L 0.5 0.7 0.9

¢ | GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB
0.8 | 0.763 | 0.868 | 0.871 | 0.87 | 0.971 | 0.985 | 0.986 | 0.986 | 0.998 | 1 1 1
0.5 | 0.761 | 0.866 | 0.863 | 0.865 | 0.975 | 0.982 | 0.982 | 0.982 | 0.997 | 0.999 | 0.999 | 0.999
0.3 | 0.749 | 0.867 | 0.871 | 0.867 | 0.972 | 0.981 | 0.982 | 0.982 | 0.997 | 1 1 1
0.1 0.734 | 0.875 | 0.877 | 0.875 | 0.958 | 0.98 | 0.98 | 0.982 | 0.996 | 0.998 | 0.998 | 0.998
0.1 | 0.699 | 0.852 | 0.849 | 0.846 | 0.944 | 0.976 | 0.974 | 0.973 | 0.993 | 0.997 | 0.997 | 0.997
0.3 | 0.633 | 0.818 | 0.816 | 0.813 | 0.894 | 0.959 | 0.958 | 0.955 | 0.964 | 0.984 | 0.984 | 0.984
0.5 | 0.477 | 0.767 | 0.768 | 0.761 | 0.622 | 0.875 | 0.86 | 0.858 | 0.585 | 0.842 | 0.836 | 0.834
0.8 | 0.016 | 0.485 | 0.488 | 0.48 | 0.003 | 0.387 | 0.388 | 0.382 | 0 | 0.216 | 0.219 | 0.212

Table A.9: Comparison for an AR(1) process for errors € ~ N(0,1) with n = 300, change 7 = 150, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBir: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap

approach
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9085 | 0.0303 | 0.1739 | 1.9136 | 0.0309 | 0.1756 | 1.9698 | 0.0309 | 0.1756 | 2.0847 | 0.039 0.1973
-0.5 || 1.899 | 0.0328 | 0.1811 1.9099 | 0.0324 | 0.1799 | 1.9658 | 0.0335 0.183 2.0784 | 0.0393 0.198
-0.3 || 1.9032 | 0.0316 | 0.1778 1.907 | 0.0317 0.178 1.9605 | 0.0311 | 0.1763 | 2.0561 | 0.0375 | 0.1937
-0.1 || 1.8959 | 0.0236 | 0.1535 | 1.9035 | 0.0224 | 0.1496 1.935 | 0.0223 | 0.1493 | 2.0123 | 0.0339 | 0.1842
0.1 || 1.8867 | 0.024 0.1549 | 1.8899 | 0.0248 | 0.1575 | 1.9321 | 0.0269 | 0.1638 | 2.0322 | 0.0385 0.196
0.3 || 1.8711 | 0.0274 | 0.1656 | 1.8755 | 0.0282 | 0.1678 | 1.9221 | 0.0288 | 0.1695 | 2.0086 | 0.039 0.1973
0.5 || 1.8464 | 0.0253 | 0.1588 | 1.8523 | 0.0256 0.16 1.8937 | 0.0273 | 0.1651 1.946 | 0.036 0.1896
0.8 || 1.7702 | 0.0159 | 0.1261 1.77 10.0166 | 0.1287 | 1.7599 | 0.0148 | 0.1216 | 1.7302 | 0.0143 | 0.1196

A 0.7 0.9

¢1 || Mean Var | Std. Dev. | Mean Var | Std. Dev.

-0.8 || 2.2239 | 0.0275 | 0.1656 | 2.3094 | 0.0061 | 0.0781

-0.5 || 2.2163 | 0.0281 | 0.1676 | 2.3031 | 0.0066 | 0.0808

-0.3 || 2.182 | 0.0344 | 0.1855 | 2.2671 | 0.0176 | 0.1325

-0.1 ] 2.1355 | 0.04 0.1999 | 2.2539 | 0.0187 | 0.1366

0.1 || 2.1402 | 0.0382 0.1953 2.234 | 0.0215 0.1467

0.3 || 2.0914 | 0.0431 0.2074 2.1691 | 0.0341 0.1845

0.5 || 2.0047 | 0.0442 0.2101 2.0371 | 0.0467 0.2159

0.8 | 1.6872 | 0.0119 0.109 1.6446 | 0.0085 0.092

Table A.10: Mean, Variance, and Standard Deviation of the the critical values used in Table for BS Br: Block Sieve Bootstrap

with mean of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9017 | 0.0338 | 0.1837 | 1.9067 | 0.0347 | 0.1861 | 1.9649 | 0.0357 | 0.1889 | 2.0824 | 0.0433 | 0.2079
-0.5 || 1.891 | 0.0356 | 0.1887 | 1.9017 | 0.0356 | 0.1887 | 1.9579 | 0.0377 | 0.1941 | 2.0764 | 0.0436 | 0.2088
-0.3 || 1.8945 | 0.0349 | 0.1867 | 1.8993 | 0.0349 | 0.1866 | 1.9529 | 0.0349 | 0.1867 | 2.0529 | 0.0414 | 0.2034
-0.1 || 1.8851 | 0.026 0.161 1.8951 | 0.025 0.158 1.9259 | 0.0253 | 0.1591 | 2.0061 | 0.0374 | 0.1934
0.1 || 1.8765 | 0.0259 | 0.1609 | 1.8811 | 0.0269 | 0.1639 | 1.9238 | 0.0299 | 0.1727 | 2.0292 | 0.0422 | 0.2053
0.3 | 1.8623 | 0.0294 | 0.1713 | 1.8673 | 0.03 0.1731 1.916 | 0.032 0.1788 | 2.0077 | 0.0431 | 0.2076
0.5 || 1.8402 | 0.0272 | 0.1649 | 1.8466 | 0.0277 | 0.1663 | 1.8901 | 0.0301 | 0.1735 | 1.9464 | 0.039 0.1974
0.8 1.77 |1 0.0167 | 0.1292 | 1.7701 | 0.0174 | 0.1319 | 1.7596 | 0.0155 | 0.1242 1.73 1 0.0148 | 0.1216

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2227 | 0.03 0.173 2.3093 | 0.0066 | 0.0808

-0.5 || 2.2155 | 0.0304 | 0.1742 | 2.3029 | 0.007 0.0835

-0.3 || 2.1809 | 0.0369 0.192 2.2666 | 0.0184 | 0.1354

-0.1 || 2.1329 | 0.0426 | 0.2064 | 2.2535 | 0.02 0.1412

0.1 | 2.1404 | 0.0407 0.2017 2.2357 | 0.0224 0.1496

0.3 | 2.0943 | 0.0459 | 0.2141 | 2.1733 | 0.0356 | 0.1886

0.5 | 2.0085 | 0.0468 | 0.2162 | 2.0412 | 0.0486 | 0.2203

0.8 | 1.6862 | 0.0121 0.11 1.6438 | 0.0087 0.093

Table A.11: Mean, Variance, and Standard Deviation of the the critical values used in Table for BS By Block Sieve Bootstrap

with median of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9083 | 0.0328 | 0.1809 | 1.9141 | 0.0337 | 0.1836 | 1.9704 | 0.0341 | 0.1845 | 2.0867 | 0.0416 | 0.2039
-0.5 || 1.8974 | 0.0348 | 0.1864 | 1.9083 | 0.0346 | 0.1858 | 1.9649 | 0.0361 | 0.1899 | 2.0808 | 0.0416 0.204
-0.3 || 1.901 | 0.0337 | 0.1836 | 1.9053 | 0.0338 | 0.1838 | 1.9591 | 0.0332 | 0.1823 | 2.0571 | 0.0399 | 0.1998
-0.1 || 1.8925 | 0.0251 | 0.1582 | 1.9007 | 0.024 0.1548 | 1.9324 | 0.024 0.1547 | 2.0106 | 0.0359 | 0.1895
0.1 || 1.8826 | 0.0244 | 0.1561 1.886 | 0.0256 | 0.1598 | 1.9295 | 0.0283 | 0.1681 2.034 | 0.0407 | 0.2016
0.3 1.87 | 0.0283 | 0.1681 | 1.8744 | 0.0292 | 0.1707 | 1.9231 | 0.0308 | 0.1753 | 2.0126 | 0.0419 | 0.2046
0.5 || 1.8473 | 0.0264 | 0.1625 | 1.8526 | 0.0266 | 0.1629 1.896 | 0.0293 | 0.1712 1.952 | 0.0382 | 0.1953
0.8 || 1.7748 | 0.0164 | 0.1279 | 1.7751 | 0.017 0.1304 | 1.7638 | 0.0151 | 0.1226 | 1.7338 | 0.0146 | 0.1207

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.2254 | 0.0284 | 0.1684 2.31 ]0.0064 | 0.0798

-0.5 || 2.2186 | 0.0288 | 0.1696 | 2.3037 | 0.0068 | 0.0823

-0.3 || 2.1837 | 0.0354 0.188 2.2673 | 0.0181 | 0.1342

0.1 | 2.1361 | 0.0412 | 0.2029 |2.2551 | 0.0192 | 0.1384

0.1 || 2.1439 | 0.0393 0.1981 2.2372 | 0.0218 0.1474

0.3 || 2.0975 | 0.0445 0.211 2.1763 | 0.0344 | 0.1854

0.5 || 2.013 | 0.0458 0.214 2.0455 | 0.0478 | 0.2185

0.8 | 1.6899 | 0.0121 | 0.1099 | 1.6471 | 0.0086 | 0.0926

Table A.12: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach
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HA

0 0.1 0.3

b1

GS | BSB; | BSBy | NSB| GS | BSBy | BSB;y | NSB| GS | BSBy | BSByy | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.017 | 0.042 | 0.042 | 0.043 | 0.044 | 0.094 | 0.096 | 0.092 | 0.21 | 0.329 | 0.335 | 0.329
0.016 | 0.04 | 0.042 | 0.04 | 0.043 | 0.086 | 0.092 | 0.091 | 0.22 | 0.335 | 0.338 | 0.335
0.014 | 0.042 | 0.041 | 0.038 | 0.042 | 0.091 | 0.095 | 0.092 | 0.209 | 0.329 | 0.331 | 0.329
0.015 | 0.04 | 0.042 | 0.039 | 0.043 | 0.085 | 0.087 | 0.086 | 0.193 | 0.336 | 0.339 | 0.333
0.013 | 0.041 | 0.04 | 0.043 | 0.044 | 0.09 | 0.092 | 0.091 | 0.18 | 0.335 | 0.343 | 0.34
0.012 | 0.039 | 0.041 | 0.041 | 0.04 | 0.09 | 0.098 | 0.09 | 0.162 | 0.327 | 0.329 | 0.329
0.014 | 0.04 | 0.041 | 0.041 | 0.03 | 0.101 | 0.104 0.1 0.13 | 0.303 | 0.306 | 0.299
0.004 | 0.038 | 0.036 | 0.036 | 0.008 | 0.086 | 0.089 | 0.088 | 0.014 | 0.244 | 0.243 | 0.243

HA

0.5 0.7 0.9

b1

GS | BSBy | BSBy | NSB| GS | BSBy | BSBy | NSB | GS | BSBy | BSB | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.546 | 0.679 | 0.68 | 0.671 | 0.871 | 0.923 | 0.926 | 0.921 | 0.979 | 0.989 | 0.989 | 0.989
0.547 | 0.684 | 0.68 0.68 | 0.866 | 0.928 | 0.923 | 0.922 | 0.979 | 0.988 | 0.988 | 0.987
0.536 | 0.68 | 0.681 | 0.678 | 0.848 | 0.918 | 0.916 | 0.918 | 0.975 | 0.985 | 0.985 | 0.984
0.514 | 0.685 | 0.689 | 0.681 | 0.826 | 0.912 | 0.917 | 0.912 | 0.959 | 0.98 | 0.981 | 0.981
0.461 | 0.653 | 0.657 | 0.654 | 0.757 | 0.879 | 0.879 | 0.878 | 0.927 | 0.949 | 0.946 | 0.947
0.391 | 0.623 | 0.627 | 0.615 | 0.638 | 0.813 | 0.808 | 0.808 | 0.77 | 0.878 | 0.872 | 0.867
0.267 | 0.56 | 0.566 | 0.554 | 0.347 | 0.683 | 0.675 | 0.67 | 0.336 | 0.682 | 0.664 | 0.666
0.01 | 0.301 | 0.312 | 0.301 0 0.256 | 0.253 | 0.255 0 0.135 | 0.136 | 0.13

Table A.13:

Comparison for an AR(1) process for errors € ~ N(0,1) with n = 100, change 7 = 60, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBrr: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach



L9

A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9062 | 0.0331 0.182 1.9176 | 0.0294 | 0.1713 | 1.9621 | 0.031 0.1759 | 2.0498 | 0.0387 | 0.1966
-0.5 || 1.9038 | 0.0319 | 0.1784 | 1.9121 | 0.0305 | 0.1745 | 1.9604 | 0.0325 | 0.1802 | 2.0519 | 0.0381 0.195
-0.3 || 1.8974 | 0.0309 | 0.1758 | 1.9019 | 0.0307 | 0.1751 1.9546 | 0.031 0.1759 | 2.0359 | 0.0363 | 0.1904
-0.1 || 1.8924 | 0.0235 | 0.1532 | 1.8983 | 0.0228 | 0.1508 | 1.9326 | 0.0226 | 0.1503 | 1.9923 | 0.0312 | 0.1764
0.1 || 1.8829 | 0.0227 | 0.1506 1.888 | 0.0216 | 0.1468 1.919 | 0.0258 | 0.1606 | 1.9913 | 0.0351 | 0.1873
0.3 || 1.8671 | 0.0282 | 0.1678 | 1.8736 | 0.029 0.1702 | 1.9081 | 0.0307 0.175 1.9739 | 0.0363 | 0.1904
0.5 || 1.8411 | 0.0259 | 0.1607 | 1.8491 | 0.0263 | 0.1622 | 1.8814 | 0.027 0.1643 | 1.9306 | 0.0333 | 0.1825
0.8 || 1.7668 | 0.0159 0.126 1.7681 | 0.0158 | 0.1254 | 1.7634 | 0.0131 | 0.1145 | 1.7401 | 0.012 0.1095

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1687 | 0.0355 | 0.1884 2.279 | 0.0144 0.12

-0.5 || 2.1679 | 0.0347 | 0.1861 | 2.2722 | 0.015 0.1224

-0.3 || 2.1337 | 0.0377 0.194 2.2335 | 0.0249 | 0.1577

-0.1 || 2.0904 | 0.0399 | 0.1996 | 2.2028 | 0.0303 0.174

0.1 || 2.0976 | 0.0395 | 0.1986 | 2.1973 | 0.0282 | 0.1678

0.3 | 2.0593 | 0.042 0.2049 | 2.1334 | 0.039 0.1975

0.5 || 1.9831 | 0.0413 | 0.2031 | 2.0221 | 0.0443 | 0.2105

0.8 | 1.6986 | 0.0103 | 0.1015 | 1.6586 | 0.008 0.089

Table A.14: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.8968 | 0.0367 | 0.1914 1.908 | 0.0328 | 0.1811 | 1.9537 | 0.0349 | 0.1868 | 2.0455 | 0.0429 | 0.2072
-0.5 || 1.8959 | 0.0353 | 0.1877 | 1.9044 | 0.0342 | 0.1849 | 1.9545 | 0.0367 | 0.1914 | 2.0473 | 0.0428 | 0.2068
-0.3 || 1.8904 | 0.0342 | 0.1848 | 1.8944 | 0.0343 | 0.1851 | 1.9488 | 0.0354 0.188 2.0315 | 0.0404 0.201
-0.1 || 1.8838 | 0.026 0.1611 | 1.8897 | 0.0252 | 0.1588 | 1.9237 | 0.0257 | 0.1603 | 1.9847 | 0.0346 | 0.1859
0.1 || 1.8731 | 0.0247 0.157 1.8794 | 0.0236 | 0.1536 | 1.9112 | 0.0285 | 0.1688 | 1.9865 | 0.0384 | 0.1958
0.3 || 1.8607 | 0.0303 | 0.1741 1.868 | 0.031 0.1761 1.904 | 0.0336 | 0.1833 | 1.9723 | 0.0399 | 0.1998
0.5 || 1.8359 | 0.0277 | 0.1662 1.845 | 0.0284 | 0.1685 | 1.8782 | 0.0296 | 0.1718 | 1.9293 | 0.0365 | 0.1909
0.8 || 1.7642 | 0.0166 | 0.1286 | 1.7663 | 0.0165 | 0.1284 | 1.7639 | 0.0138 | 0.1173 | 1.7396 | 0.0126 0.112

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1664 | 0.0387 | 0.1966 | 2.2785 | 0.0157 | 0.1253

-0.5 || 2.1659 | 0.0379 | 0.1947 | 2.2718 | 0.0161 | 0.1267

-0.3 || 2.1303 | 0.0412 | 0.2029 | 2.2317 | 0.0269 | 0.1639

-0.1 || 2.0852 | 0.0434 | 0.2083 | 2.2013 | 0.0325 | 0.1801

0.1 || 2.0951 | 0.0433 0.208 2.1993 | 0.0296 | 0.1721

0.3 || 2.0589 | 0.0461 0.2147 2.1367 | 0.0414 0.2034

0.5 || 1.9858 | 0.0446 0.2111 2.0261 | 0.0469 0.2166

0.8 || 1.6981 | 0.0105 | 0.1025 | 1.6585 | 0.0083 | 0.0908

Table A.15: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9043 | 0.0351 | 0.1872 | 1.9152 | 0.0313 | 0.1768 | 1.9621 | 0.0334 | 0.1827 | 2.0516 | 0.0408 0.202
-0.5 || 1.9031 | 0.034 0.1843 | 1.9115 | 0.0328 0.181 1.9597 | 0.0349 | 0.1866 | 2.0527 | 0.0407 | 0.2017
-0.3 || 1.8969 | 0.033 0.1817 1.901 | 0.0327 | 0.1808 | 1.9547 | 0.0334 | 0.1825 | 2.0366 | 0.0386 | 0.1963
-0.1 || 1.8909 | 0.0246 | 0.1567 | 1.8967 | 0.024 0.1547 | 1.9317 | 0.024 0.1548 | 1.9913 | 0.0329 | 0.1813
0.1 || 1.8815 | 0.0235 | 0.1532 | 1.8863 | 0.0225 | 0.1497 | 1.9192 | 0.0274 | 0.1653 | 1.9927 | 0.0369 | 0.1921
0.3 || 1.868 | 0.0295 | 0.1718 1.874 | 0.0303 0.174 1.9105 | 0.0327 | 0.1807 | 1.9772 | 0.0385 | 0.1962
0.5 || 1.8422 | 0.0268 | 0.1638 | 1.8514 | 0.0278 | 0.1666 | 1.8844 | 0.0289 | 0.1698 | 1.9355 | 0.0354 | 0.1881
0.8 || 1.7704 | 0.0161 | 0.1267 | 1.7721 | 0.0161 | 0.1266 | 1.7677 | 0.0134 | 0.1157 | 1.7437 | 0.0123 | 0.1109

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

0.8 | 2.1699 | 0.037 | 0.1922 |2.2804 | 0.0148 | 0.1214

-0.5 || 2.1693 | 0.0363 | 0.1905 | 2.2735 | 0.0154 | 0.1239

-0.3 || 2.1345 | 0.0395 | 0.1987 | 2.2337 | 0.0258 | 0.1606

-0.1 || 2.0895 | 0.0416 | 0.2038 | 2.2037 | 0.0314 | 0.1771

0.1 | 2.1001 | 0.0413 | 0.2033 | 2.2013 | 0.0288 | 0.1695

0.3 | 2.0642 | 0.0442 0.2101 2.1402 | 0.0401 0.2001

0.5 || 1.9912 | 0.0437 0.2091 2.0314 | 0.0464 0.2153

0.8 || 1.7017 | 0.0103 | 0.1015 | 1.6622 | 0.0081 | 0.0896

Table A.16: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach




0L

KA

0 0.1 0.3

b1

GS | BSB; | BSBy | NSB| GS | BSBy | BSB;y | NSB| GS | BSBy | BSByy | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.026 | 0.053 | 0.06 | 0.053 | 0.048 | 0.093 | 0.098 | 0.096 | 0.138 | 0.244 | 0.25 | 0.248
0.023 | 0.055 | 0.058 | 0.055 | 0.048 | 0.093 | 0.094 | 0.091 | 0.154 | 0.247 | 0.25 | 0.244
0.026 | 0.055 | 0.054 | 0.055 | 0.048 | 0.099 | 0.099 | 0.097 | 0.149 | 0.249 | 0.249 | 0.247
0.023 | 0.052 | 0.055 | 0.052 | 0.045 | 0.104 | 0.104 | 0.104 | 0.144 | 0.245 | 0.253 | 0.244
0.022 | 0.056 | 0.059 | 0.058 | 0.047 | 0.106 | 0.108 | 0.107 | 0.134 | 0.236 | 0.239 | 0.235
0.023 | 0.059 | 0.061 | 0.061 | 0.046 | 0.104 | 0.101 | 0.101 | 0.117 | 0.226 | 0.236 | 0.229
0.021 | 0.061 | 0.061 | 0.063 | 0.04 | 0.106 | 0.105 | 0.104 | 0.093 | 0.229 | 0.236 | 0.226
0.008 | 0.052 | 0.052 | 0.052 | 0.013 | 0.101 | 0.101 0.1 ]0.018 | 0.191 | 0.195 | 0.186

HA

0.5 0.7 0.9

b1

GS | BSBy | BSBy | NSB| GS | BSBy | BSBy | NSB | GS | BSBy | BSB | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.333 | 0.46 | 0.458 | 0.453 | 0.612 | 0.704 | 0.708 | 0.706 | 0.835 | 0.875 | 0.875 | 0.872
0.329 | 0.467 | 0.471 | 0.461 | 0.584 | 0.693 | 0.692 | 0.696 | 0.826 | 0.867 | 0.867 | 0.864
0.314 | 0.464 | 0.467 | 0.46 | 0.561 | 0.697 | 0.698 | 0.696 | 0.8 | 0.854 | 0.853 | 0.851
0.292 | 0.457 | 0.464 | 0.458 | 0.524 | 0.684 | 0.684 | 0.686 | 0.731 | 0.81 | 0.812 | 0.809
0.272 | 0.433 | 0.438 | 0.436 | 0.455 | 0.609 | 0.616 | 0.603 | 0.622 | 0.716 | 0.717 | 0.711
0.233 | 0.414 | 0.41 0.41 | 0.358 | 0.548 | 0.552 | 0.547 | 0.452 | 0.626 | 0.624 | 0.621
0.163 | 0.36 0.36 | 0.357 | 0.203 | 0.466 | 0.464 | 0.459 | 0.195 | 0.486 | 0.481 | 0.478
0.01 | 0.233 | 0.233 | 0.222 | 0.002 | 0.184 | 0.19 | 0.182 | 0.001 | 0.105 | 0.108 | 0.103

Table A.17:

Comparison for an AR(1) process for errors € ~ N(0,1) with n = 100, change 7 = 70, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBrr: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach



1L

A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9032 | 0.0306 | 0.1749 | 1.9051 | 0.031 0.1759 | 1.9479 | 0.0307 | 0.1751 | 2.0143 | 0.0352 | 0.1874
-0.5 || 1.8985 | 0.0308 | 0.1755 | 1.9029 | 0.0319 | 0.1784 | 1.9443 | 0.0318 | 0.1783 | 2.0056 | 0.0358 | 0.1893
-0.3 || 1.8904 | 0.0312 | 0.1765 | 1.8943 | 0.0323 | 0.1797 | 1.9347 | 0.0322 | 0.1794 | 1.9909 | 0.0336 | 0.1832
-0.1 || 1.8902 | 0.0254 | 0.1594 | 1.8925 | 0.0261 | 0.1614 | 1.9185 | 0.0261 | 0.1614 | 1.9673 | 0.0292 | 0.1708
0.1 || 1.8776 | 0.0225 0.15 1.8845 | 0.0232 | 0.1522 | 1.9157 | 0.0259 | 0.1607 | 1.9646 | 0.0309 | 0.1756
0.3 || 1.868 | 0.0268 | 0.1635 | 1.8709 | 0.0294 | 0.1713 | 1.9002 | 0.031 0.1759 | 1.9545 | 0.0358 | 0.1892
0.5 || 1.8433 | 0.0256 0.16 1.8469 | 0.0262 | 0.1617 | 1.8703 | 0.0282 | 0.1679 1.911 | 0.0312 | 0.1766
0.8 || 1.7734 | 0.0159 0.126 1.7683 | 0.0166 | 0.1286 | 1.7646 | 0.0163 | 0.1274 | 1.7458 | 0.0147 | 0.1212

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1123 | 0.04 0.2 2.2129 | 0.0306 | 0.1748

-0.5 || 2.1054 | 0.0396 0.199 2.2076 | 0.0298 | 0.1725

-0.3 || 2.0819 | 0.0399 | 0.1996 | 2.1708 | 0.0357 | 0.1889

-0.1 || 2.0418 | 0.0373 | 0.1931 | 2.1377 | 0.0386 | 0.1965

0.1 || 2.0524 | 0.0401 | 0.2002 | 2.1416 | 0.0369 | 0.1919

0.3 | 2.0206 | 0.0407 | 0.2017 | 2.0904 | 0.0417 0.204

0.5 | 1.9582 | 0.0384 0.196 1.9947 | 0.0426 | 0.2063

0.8 || 1.7164 | 0.0129 | 0.1136 | 1.6789 | 0.0097 | 0.0982

Table A.18: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10




¢l

1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.8968 | 0.034 0.1842 | 1.8979 | 0.0342 | 0.1849 | 1.9417 | 0.0349 | 0.1867 | 2.0114 | 0.0395 | 0.1988
-0.5 || 1.8917 | 0.0334 | 0.1826 | 1.8955 | 0.0349 | 0.1868 | 1.9369 | 0.0359 | 0.1894 | 2.0015 | 0.04 0.2
-0.3 || 1.8827 | 0.0335 | 0.1829 | 1.8878 | 0.0352 | 0.1875 | 1.9262 | 0.0351 | 0.1872 | 1.9854 | 0.0373 | 0.1931
-0.1 || 1.8825 | 0.0276 0.166 1.8831 | 0.0282 | 0.1677 | 1.9098 | 0.0284 | 0.1686 1.96 | 0.0326 | 0.1806
0.1 || 1.8685 | 0.0244 | 0.1561 | 1.8748 | 0.0254 | 0.1591 | 1.9076 | 0.0286 | 0.1691 | 1.9581 | 0.0342 | 0.1849
0.3 || 1.8623 | 0.0295 | 0.1717 | 1.8654 | 0.0322 | 0.1794 | 1.8962 | 0.0345 | 0.1858 | 1.9518 | 0.0398 | 0.1995
0.5 || 1.8386 | 0.028 0.1671 | 1.8426 | 0.0286 0.169 1.8679 | 0.0309 | 0.1756 | 1.9097 | 0.0348 | 0.1865
0.8 || 1.7723 | 0.0168 | 0.1293 | 1.7668 | 0.0175 | 0.1323 | 1.7641 | 0.017 0.1304 | 1.7449 | 0.0153 | 0.1236

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1104 | 0.0435 | 0.2086 2.213 | 0.0323 | 0.1798

-0.5 || 2.1036 | 0.0429 | 0.2071 | 2.2071 | 0.0319 | 0.1785

-0.3 || 2.0792 | 0.0436 | 0.2087 | 2.1692 | 0.0383 | 0.1955

-0.1 || 2.0378 | 0.0412 | 0.2028 | 2.1356 | 0.0416 | 0.2038

0.1 | 2.0515 | 0.0438 | 0.2093 2.142 | 0.0396 0.199

0.3 || 2.0205 | 0.0445 0.2108 2.0927 | 0.0447 0.2113

0.5 | 1.9597 | 0.0419 | 0.2047 | 1.9985 | 0.0455 | 0.2132

0.8 || 1.7156 | 0.0131 | 0.1143 | 1.6786 | 0.0098 | 0.0986

Table A.19: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10




€L

1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.902 | 0.0323 | 0.1798 | 1.9047 | 0.033 0.1815 | 1.9482 | 0.0335 0.183 2.0166 | 0.0381 | 0.1952
-0.5 || 1.8977 | 0.0324 | 0.1798 | 1.9019 | 0.0337 | 0.1834 | 1.9446 | 0.0344 | 0.1855 | 2.0076 | 0.0385 | 0.1962
-0.3 || 1.8895 | 0.0326 | 0.1805 | 1.8934 | 0.0342 | 0.1849 | 1.9338 | 0.0341 | 0.1845 | 1.9916 | 0.036 0.1896
-0.1 || 1.8884 | 0.0265 | 0.1626 | 1.8909 | 0.0272 | 0.1649 | 1.9173 | 0.0272 | 0.1649 | 1.9663 | 0.0309 | 0.1756
0.1 || 1.8756 | 0.023 0.1517 | 1.8822 | 0.024 0.1547 | 1.9149 | 0.0272 | 0.1647 | 1.9651 | 0.0328 | 0.1809
0.3 || 1.869 |0.0284 | 0.1686 | 1.8722 | 0.0311 | 0.1763 | 1.9027 | 0.0333 | 0.1825 | 1.9577 | 0.0385 | 0.1963
0.5 || 1.8455 | 0.0271 | 0.1645 | 1.8497 | 0.0276 | 0.1662 | 1.8733 | 0.03 0.173 1.9158 | 0.0338 | 0.1837
0.8 || 1.7772 | 0.0164 | 0.1278 | 1.7717 | 0.017 0.1302 | 1.7686 | 0.0167 | 0.1291 | 1.7497 | 0.0152 | 0.1231

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1144 | 0.042 0.2049 2.2149 | 0.0316 0.1776

-0.5 || 2.1072 | 0.0415 | 0.2037 | 2.2089 | 0.0309 | 0.1758

-0.3 || 2.0849 | 0.0416 | 0.2038 | 2.1716 | 0.0369 0.192

-0.1 || 2.0424 | 0.0392 0.1979 2.1391 | 0.04 0.2

0.1 || 2.0554 | 0.0425 0.206 2.1457 | 0.0381 | 0.1952

0.3 | 2.0252 | 0.043 0.2073 | 2.0972 | 0.0433 | 0.2081

0.5 | 1.9645 | 0.0407 | 0.2016 | 2.0025 | 0.0445 | 0.2109

0.8 || 1.7201 | 0.0133 | 0.1153 | 1.6823 | 0.0098 | 0.0988

Table A.20: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach




2

L 0 0.1 0.3
¢ | GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB, | BSBy | NSB

-0.8 | 0.018 | 0.048 | 0.05 | 0.048 | 0.043 | 0.112 | 0.116 | 0.112 | 0.203 | 0.351 | 0.352 | 0.346
-0.5 || 0.018 | 0.046 | 0.047 | 0.046 | 0.046 | 0.108 | 0.106 | 0.106 | 0.217 | 0.351 | 0.354 | 0.349
-0.3 || 0.019 | 0.046 | 0.047 | 0.046 | 0.043 | 0.111 | 0.108 | 0.107 | 0.212 | 0.358 | 0.366 | 0.361
-0.1 ]/ 0.017 | 0.045 | 0.048 | 0.044 | 0.043 | 0.113 | 0.114 | 0.108 | 0.198 | 0.357 | 0.368 | 0.363
0.1 | 0.016 | 0.049 | 0.049 | 0.047 | 0.038 | 0.111 | 0.115 | 0.111 | 0.184 | 0.356 | 0.364 | 0.36
0.3 | 0.017 | 0.044 | 0.045 | 0.044 | 0.035 | 0.103 | 0.104 0.1 ]0.156 | 0.353 | 0.357 | 0.352
0.5 | 0.015 | 0.047 | 0.044 | 0.044 | 0.027 | 0.096 | 0.098 | 0.092 | 0.132 | 0.352 | 0.35 | 0.346
0.8 | 0.005 | 0.041 | 0.041 | 0.039 | 0.011 | 0.083 | 0.082 | 0.081 | 0.019 | 0.289 | 0.287 | 0.286

La 0.5 0.7 0.9
o | ¢S | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

-0.8 || 0.542 | 0.667 | 0.668 | 0.666 | 0.839 | 0.9 0.893 | 0.893 | 0.962 | 0.975 | 0.972 | 0.971
-0.5 || 0.546 | 0.69 | 0.697 | 0.689 | 0.844 | 0.904 | 0.904 | 0.902 | 0.959 | 0.975 | 0.973 | 0.972
-0.3 ]| 0.535 | 0.695 0.7 0.688 | 0.831 | 0.898 | 0.899 | 0.898 | 0.955 | 0.975 | 0.976 | 0.973
-0.1 || 0.521 | 0.693 | 0.703 | 0.692 | 0.811 | 0.898 | 0.896 | 0.896 | 0.949 | 0.969 | 0.97 | 0.971
0.1 0493 | 0.671 | 0.672 | 0.668 | 0.784 | 0.881 | 0.882 | 0.876 | 0.936 | 0.962 | 0.96 | 0.956
0.3 || 0.45 | 0.635 | 0.632 | 0.635 | 0.702 | 0.855 | 0.855 | 0.85 | 0.883 | 0.945 | 0.942 | 0.94
0.5 | 0.322 | 0.608 | 0.609 | 0.601 | 0.508 | 0.793 | 0.789 | 0.79 | 0.592 | 0.84 | 0.837 | 0.829
0.8 || 0.02 | 0456 | 0.45 | 0.443 | 0.009 | 0.481 | 0.485 | 0.471 0 0.414 | 0.411 | 0.396

Table A.21: Comparison for an AR(1) process for errors € ~ t5 with n = 100, change 7 = 50, and significance level at a = 0.05.
The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test Statistic
from Gombay and and Serban (2009), BSBy: Block Sieve Bootstrap with Mean of Critical Values from each block,
BSBi: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.9018 | 0.0397 | 0.1991 1.9074 | 0.0378 | 0.1944 | 1.9513 | 0.0396 | 0.1989 | 2.0263 | 0.0413 | 0.2032
-0.5 || 1.8933 | 0.0393 | 0.1981 1.9012 | 0.0383 | 0.1956 | 1.9424 | 0.0371 | 0.1926 | 2.0141 | 0.0421 0.205
-0.3 || 1.8916 | 0.0395 | 0.1986 | 1.8977 | 0.0381 | 0.1952 | 1.9325 | 0.0369 0.192 2.0009 | 0.0409 | 0.2022
-0.1 || 1.8866 | 0.0338 | 0.1837 | 1.8902 | 0.0323 | 0.1795 | 1.9209 | 0.0323 | 0.1797 | 1.9692 | 0.0364 | 0.1907
0.1 || 1.8763 | 0.0344 | 0.1854 1.881 | 0.0344 | 0.1853 | 1.9126 | 0.034 0.1844 | 1.9724 | 0.039 0.1974
0.3 || 1.8567 | 0.037 0.1922 | 1.8617 | 0.0371 | 0.1926 | 1.8994 | 0.0383 | 0.1957 1.955 | 0.0399 | 0.1997
0.5 || 1.8341 | 0.0353 | 0.1878 | 1.8401 | 0.0362 | 0.1901 1.8687 | 0.0349 | 0.1868 1.916 | 0.0365 | 0.1911
0.8 || 1.763 | 0.0191 | 0.1382 1.761 | 0.019 0.1376 1.76 ] 0.0178 | 0.1334 | 1.7451 | 0.0164 0.128

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1232 | 0.0409 | 0.2021 | 2.2248 | 0.0281 | 0.1677

-0.5 || 2.1121 | 0.0433 0.2081 2.2111 | 0.0315 0.1773

-0.3 || 2.0834 | 0.0444 | 0.2106 | 2.1743 | 0.0393 | 0.1983

-0.1 || 2.0462 | 0.0443 0.2103 2.1433 | 0.0425 0.206

0.1 2.056 | 0.0452 0.2126 2.1424 | 0.0411 0.2026

0.3 || 2.026 | 0.0462 0.2148 2.0916 | 0.0461 0.2147

0.5 | 1.9698 | 0.0439 | 0.2094 2.003 | 0.0487 | 0.2206

0.8 || 1.7178 | 0.0151 | 0.1226 | 1.6812 | 0.0125 | 0.1118

Table A.22: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.899 | 0.0446 0.211 1.9041 | 0.0428 | 0.2068 | 1.9508 | 0.0456 | 0.2135 | 2.0272 | 0.0471 | 0.2169
-0.5 || 1.8886 | 0.0435 | 0.2084 | 1.8961 | 0.0425 | 0.2062 | 1.9404 | 0.0419 | 0.2047 | 2.0131 | 0.047 0.2166
-0.3 || 1.8868 | 0.0432 | 0.2078 | 1.8932 | 0.0421 | 0.2052 | 1.9277 | 0.0411 | 0.2028 | 1.9988 | 0.046 0.2144
-0.1 || 1.8813 | 0.0373 | 0.1929 | 1.8848 | 0.0357 0.189 1.9148 | 0.0365 | 0.1911 | 1.9635 | 0.0404 0.201
0.1 || 1.8705 | 0.0376 | 0.1938 | 1.8752 | 0.0375 | 0.1935 | 1.9066 | 0.0372 | 0.1928 | 1.9693 | 0.0428 | 0.2067
0.3 | 1.8532 | 0.0399 | 0.1996 | 1.8581 | 0.0399 | 0.1997 | 1.8944 | 0.0414 | 0.2034 | 1.9526 | 0.0436 | 0.2088
0.5 | 1.8303 | 0.0372 | 0.1928 | 1.8365 | 0.0379 | 0.1947 | 1.8664 | 0.0373 | 0.1931 | 1.9152 | 0.0396 | 0.1989
0.8 || 1.7625 | 0.0201 | 0.1417 | 1.7607 | 0.0198 | 0.1405 | 1.7608 | 0.0186 | 0.1361 | 1.7452 | 0.017 0.1303

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1239 | 0.0447 | 0.2114 | 2.2264 | 0.0295 | 0.1717

0.5 || 2.1126 | 0.047 | 0.2167 |2.2117|0.0333 | 0.1824

0.3 || 2.0821 | 0.0481 | 0.2193 | 2.1725 | 0.0421 | 0.205

-0.1 || 2.0436 | 0.0478 | 0.2186 | 2.1425 | 0.0451 | 0.2123

0.1 2.054 | 0.049 0.2212 2.143 | 0.0438 0.2091

0.3 | 2.0258 | 0.0496 | 0.2226 | 2.0933 | 0.0488 | 0.2209

0.5 || 1.9715 | 0.0475 | 0.2178 | 2.0059 | 0.0518 | 0.2275

0.8 || 1.7171 | 0.0152 0.1232 1.6808 | 0.0129 0.1134

Table A.23: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBy: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10




L.

1A 0 0.1 0.3 0.5
¢1 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
-0.8 || 1.908 | 0.0446 0.2112 1.914 | 0.043 0.2073 1.9589 | 0.0445 0.2108 2.0342 | 0.0449 0.2118
-0.5 || 1.8968 | 0.0428 | 0.2067 | 1.9053 | 0.0418 | 0.2044 | 1.9476 | 0.0413 | 0.2032 2.019 | 0.0451 | 0.2124
-0.3 || 1.8938 | 0.0425 | 0.2061 | 1.9009 | 0.0413 0.203 1.9353 | 0.0402 | 0.2003 | 2.0037 | 0.0441 | 0.2098
-0.1 || 1.8875 | 0.0365 | 0.1909 | 1.8914 | 0.0347 | 0.1861 | 1.9231 | 0.0349 | 0.1868 | 1.9708 | 0.0385 | 0.1962
0.1 || 1.8778 | 0.0367 | 0.1915 | 1.8834 | 0.0368 | 0.1917 | 1.9137 | 0.0361 | 0.1898 | 1.9764 | 0.0415 | 0.2038
0.3 || 1.8585 | 0.039 0.1975 | 1.8644 | 0.039 0.1973 | 1.9025 | 0.0404 | 0.2009 | 1.9588 | 0.0423 | 0.2056
0.5 || 1.8365 | 0.0365 0.191 1.8431 | 0.0374 | 0.1934 | 1.8734 | 0.0366 | 0.1913 | 1.9205 | 0.0388 | 0.1968
0.8 || 1.7671 | 0.0196 | 0.1399 | 1.7652 | 0.0193 | 0.1387 | 1.7641 | 0.0181 | 0.1345 | 1.7493 | 0.0169 | 0.1298

A 0.7 0.9

¢1 | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

-0.8 || 2.1286 | 0.0432 | 0.2077 | 2.2285 | 0.0285 | 0.1688

0.5 2117 | 0.0452 | 0.2124 | 2.2143 | 0.0321 | 0.1791

-0.3 || 2.0868 | 0.0462 0.215 2.1758 | 0.0405 | 0.2011

-0.1 || 2.0484 | 0.0461 | 0.2145 | 2.1456 | 0.0438 | 0.2092

0.1 | 2.0598 | 0.0471 0.2169 2.1472 | 0.0421 0.2051

0.3 | 2.0313 | 0.0482 | 0.2195 | 2.0975 | 0.0474 | 0.2176

0.5 | 1.9768 | 0.0465 | 0.2155 | 2.0109 | 0.0508 | 0.2253

0.8 1.721 | 0.0151 0.1227 1.6842 | 0.0127 0.1126

Table A.24: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach
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L 0 0.1 0.3
¢ | GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB, | BSBy | NSB

-0.8 |/ 0.014 | 0.049 | 0.051 | 0.051 | 0.053 | 0.13 | 0.131 | 0.133 | 0.257 | 0.391 | 0.393 | 0.391
-0.5 |/ 0.016 | 0.048 | 0.051 | 0.048 | 0.059 | 0.129 | 0.131 | 0.13 | 0.264 | 0.404 | 0.412 | 0.408
-0.3 ]/ 0.015 | 0.05 | 0.051 | 0.049 | 0.054 | 0.125 | 0.126 | 0.126 | 0.266 | 0.414 | 0.419 | 0.412
-0.1 || 0.016 | 0.047 | 0.049 | 0.047 | 0.054 | 0.131 | 0.13 0.13 | 0.26 | 0.417 | 0.422 | 0.419
0.1 || 0.016 | 0.052 | 0.055 | 0.051 | 0.051 | 0.126 | 0.129 | 0.128 | 0.239 | 0.418 | 0.42 0.42
0.3 || 0.017 | 0.051 | 0.052 | 0.052 | 0.051 | 0.123 | 0.122 | 0.123 | 0.214 | 0.407 | 0.405 | 0.402
0.5 | 0.017 | 0.055 | 0.055 | 0.056 | 0.051 | 0.128 | 0.127 | 0.125 | 0.176 | 0.381 | 0.381 | 0.378
0.8 || 0.008 | 0.054 | 0.057 | 0.054 | 0.021 | 0.141 | 0.141 | 0.138 | 0.032 | 0.318 | 0.317 | 0.314

La 0.5 0.7 0.9
o | ¢S | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

-0.8 | 0.617 | 0.716 | 0.722 | 0.714 | 0.906 | 0.936 | 0.938 | 0.938 | 0.991 | 0.995 | 0.995 | 0.995
-0.5 || 0.629 | 0.741 | 0.737 | 0.735 | 0.897 | 0.93 0.93 |0.929 | 0.988 | 0.996 | 0.996 | 0.996
-0.3 ]/ 0.617 | 0.741 | 0.738 | 0.735 | 0.885 | 0.931 | 0.93 0.93 10985 | 0995 | 0.996 | 0.995
-0.1 || 0.592 | 0.747 | 0.753 | 0.748 | 0.868 | 0.935 | 0.939 | 0.933 | 0.975 | 0.995 | 0.995 | 0.995
0.1 | 0.557 | 0.728 | 0.73 | 0.727 | 0.838 | 0.909 | 0.909 | 0.909 | 0.961 | 0.987 | 0.987 | 0.986
0.3 | 0.502 | 0.707 | 0.705 | 0.707 | 0.78 | 0.883 | 0.878 | 0.879 | 0.912 | 0.959 | 0.957 | 0.955
0.5 | 0.382 | 0.673 | 0.672 | 0.659 | 0.554 | 0.815 | 0.807 | 0.798 | 0.602 | 0.854 | 0.844 | 0.841
0.8 || 0.02 | 0.457 | 0.453 | 0.456 | 0.004 | 0.427 | 0.432 | 0.418 0 0.297 | 0.29 | 0.289

Table A.25: Comparison for an AR(1) process for errors € ~ tg with n = 100, change 7 = 50, and significance level at a = 0.05.
The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test Statistic
from Gombay and and Serban (2009), BSBy: Block Sieve Bootstrap with Mean of Critical Values from each block,
BSBi: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach



6L

[ 0 0.1 0.3
& | ¢ | GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB, | BSBy | NSB
05| 0.1 | 0.012] 0.042 | 0.041 | 0.041 [0.029 | 0.123 | 0.123 | 0.124 | 0.107 | 0.393 | 0.398 | 0.388
0.5 | -0.1 || 0.017 | 0.046 | 0.047 | 0.044 | 0.043 | 0.134 | 0.137 | 0.133 | 0.202 | 0.446 | 0.452 | 0.444
0.1 | 0.5 | 0.009 | 0.039 | 0.04 |0.039 |0.022 | 0.104 | 0.105 | 0.1 |0.049 | 0.366 | 0.363 | 0.362
0.5 [ -0.1 | 0.021 | 0.044 | 0.045 | 0.045 | 0.053 | 0.133 | 0.131 | 0.133 | 0.286 | 0.467 | 0.468 | 0.466
0.5 [-0.9 | 0.014 | 0.036 | 0.038 | 0.037 | 0.039 | 0.091 | 0.089 | 0.088 | 0.234 | 0.340 | 0.344 | 0.334
0.9 [ -0.5 | 0.019 | 0.043 | 0.044 | 0.045 | 0.053 | 0.108 | 0.106 | 0.107 | 0.283 | 0.437 | 0.443 | 0.436
0.9 [-0.9 | 0.012 | 0.027 | 0.026 | 0.027 | 0.041 | 0.081 | 0.081 | 0.078 | 0.233 | 0.308 | 0.304 | 0.301

L 0.5 0.7 0.9
¢ | ¢ | GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB, | BSBy | NSB
05 ] 0.1 [ 0143 ] 0.638 | 0.642 | 0.629 | 0.071 | 0.672 | 0.673 | 0.673 | 0.018 | 0.599 | 0.592 | 0.584
0.5 | 0.1 || 0.449 | 0.767 | 0.766 | 0.765 | 0.594 | 0.891 | 0.886 | 0.886 | 0.541 | 0.857 | 0.847 | 0.848
0.1 | 0.5 | 0.034| 0.522 | 0.518 | 0.519 | 0.011 | 0.484 | 0.479 | 0.471 | 0 | 0.331 | 0.326 | 0.319
0.5 [-0.1 | 0.679 | 0.849 | 0.849 | 0.847 | 0.935 | 0.979 | 0.978 | 0.977 | 0.992 | 0.998 | 0.997 | 0.998
0.5 [-0.9 | 0.618 | 0.691 | 0.684 | 0.683 | 0.904 | 0.911 | 0.908 | 0.909 | 0.989 | 0.992 | 0.991 | 0.991
0.9 [-0.5 | 0.702 | 0.811 | 0.812 | 0.808 | 0.935 | 0.961 | 0.96 | 0.959 | 0.997 | 0.998 | 0.998 | 0.998
0.9 [-0.9 | 0.598 | 0.625 | 0.618 | 0.618 | 0.884 | 0.882 | 0.881 | 0.88 | 0.978 | 0.974 | 0.973 | 0.974

Table A.26: Comparison for an AR(2) process for errors € ~ N(0,1) with n = 100, change 7 = 50, and significance level at
a = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and Serban (2009), BSB;: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBrr: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap

approach
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A 0 0.1 0.3 0.5
¢1 | ¢o | Mean Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev.
0.5 ] 0.1 || 1.8146 | 0.0136 | 0.1164 | 1.8143 | 0.0142 | 0.1191 1.8278 | 0.0165 | 0.1283 | 1.8337 | 0.0231 | 0.1518
0.5 | -0.1 || 1.8426 | 0.0166 0.1288 1.8448 | 0.017 0.1301 1.8653 | 0.02 0.1415 1.9022 | 0.03 0.1731
0.1 | 0.5 || 1.7999 | 0.0193 | 0.1388 | 1.8008 | 0.0207 | 0.1437 1.81 | 0.0212 | 0.1454 | 1.7916 | 0.0232 | 0.1522
-0.5 | -0.1 || 1.8781 | 0.0222 | 0.1487 | 1.8846 | 0.0218 | 0.1476 | 1.9195 | 0.0239 | 0.1545 | 1.9926 | 0.0352 | 0.1876
-0.51-0.9 || 1.8852 | 0.0743 | 0.2725 | 1.9015 | 0.0741 | 0.2721 1.9996 | 0.0642 | 0.2533 | 2.1477 | 0.0373 0.193
-0.9 | -0.5 || 1.9154 | 0.0296 | 0.1718 | 1.9255 | 0.0312 | 0.1766 | 1.9761 | 0.0326 | 0.1804 | 2.0727 | 0.0395 | 0.1987
-0.9 [-09 || 1.959 | 0.0682 | 0.2612 | 1.9721 | 0.0683 | 0.2613 | 2.0705 | 0.0528 | 0.2297 | 2.1918 | 0.0262 | 0.1619
A 0.7 0.9

¢1 | ¢o || Mean Var | Std. Dev. | Mean Var | Std. Dev.

0.5 | 0.1 | 1.8215 | 0.0278 | 0.1667 | 1.7904 | 0.0274 | 0.1654

0.5 [-0.1 || 1.9449 | 0.0428 | 0.2068 | 1.9863 | 0.0498 | 0.2231

0.1 | 0.5 || 1.746 | 0.0201 | 0.1418 | 1.6978 | 0.0147 | 0.1209

-0.5]-0.1 | 2.117 | 0.0426 0.2064 2.2284 | 0.0261 0.1614

-0.5 1-0.9 || 2.2477 | 0.0132 | 0.1147 | 2.2949 | 0.0033 | 0.0567

-0.9 | -0.5 || 2.1956 | 0.0291 | 0.1706 | 2.2808 | 0.0108 | 0.1039

-0.9 | -0.9 || 2.2699 | 0.0084 | 0.0914 | 2.3065 | 0.0019 | 0.0431

Table A.27: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBy: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3 0.5
¢1 | ¢2 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
0.5 | 0.1 || 1.8114 | 0.0147 0.1212 1.8113 | 0.0152 0.1233 1.8267 | 0.018 0.1342 1.8336 | 0.0248 0.1575
0.5 | -0.1 || 1.8392 | 0.0183 | 0.1353 | 1.8406 | 0.0189 | 0.1375 | 1.8628 | 0.0221 | 0.1486 | 1.9005 | 0.0324 | 0.1799
0.1 | 0.5 1.798 | 0.0204 0.1428 1.7987 | 0.0217 0.1473 1.8094 | 0.0222 0.149 1.7911 | 0.024 0.155
-0.5 | -0.1 || 1.8696 | 0.0242 | 0.1553 | 1.8764 | 0.0243 | 0.1558 | 1.9126 | 0.0267 | 0.1632 | 1.9881 | 0.0387 | 0.1966
-0.5 1 -0.9 || 1.8907 | 0.083 0.2881 1.9064 | 0.0824 | 0.2869 | 2.0060 | 0.0716 | 0.2676 | 2.1572 | 0.0406 | 0.2014
-0.9 | -0.5 || 1.9088 | 0.0337 | 0.1834 | 1.9211 | 0.036 0.1896 | 1.9738 | 0.0378 | 0.1943 | 2.0743 | 0.0443 | 0.2103
-0.9 [ -0.9 || 1.9653 | 0.0762 | 0.2759 | 1.9787 | 0.0762 | 0.2759 2.078 | 0.0587 | 0.2423 | 2.2014 | 0.0278 | 0.1666
A 0.7 0.9

01 | ¢2 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

0.5 | 0.1 || 1.822 |0.0291 | 0.1705 | 1.7905 | 0.0284 | 0.1686

0.5 | -0.1 || 1.9457 | 0.0454 0.2129 1.9891 | 0.0522 0.2285

0.1 | 0.5 || 1.7464 | 0.0208 0.144 1.6972 | 0.015 0.1225

-0.5 1 -0.1 || 2.1149 | 0.0457 0.2137 2.2281 | 0.0272 0.1649

-0.5 1-0.9 || 2.2539 | 0.0136 | 0.1165 | 2.2969 | 0.0031 | 0.0552

-0.9 | -0.5 || 2.1987 | 0.0314 | 0.1772 | 2.2821 | 0.0114 | 0.1064

-0.9 | -0.9 || 2.2751 | 0.0084 | 0.0913 | 2.3079 | 0.0016 0.04

Table A.28: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBy: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3 0.5
¢1 | ¢2 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
0.5 | 0.1 || 1.8167 | 0.0141 0.1185 1.8164 | 0.0145 0.1204 1.832 | 0.0174 0.1318 1.8377 | 0.0243 0.1558
0.5 | -0.1 || 1.8448 | 0.0175 0.1322 1.8463 | 0.018 0.1342 1.8689 | 0.0211 0.1452 1.9063 | 0.0314 0.1772
0.1 | 0.5 || 1.8031 | 0.02 0.1413 1.804 | 0.0211 0.1451 1.8147 | 0.0216 0.1468 1.7955 | 0.0236 0.1536
-0.5 | -0.1 || 1.8764 | 0.0231 0.152 1.8841 | 0.0231 | 0.1518 | 1.9178 | 0.0254 | 0.1594 | 1.9929 | 0.0373 | 0.1932
-0.5-0.9 || 1.8988 | 0.0832 | 0.2884 | 1.9144 | 0.0818 | 0.2861 | 2.0147 | 0.0706 | 0.2656 | 2.1631 | 0.039 0.1973
-0.9 | -0.5 || 1.9153 | 0.0329 | 0.1814 | 1.9269 | 0.0346 | 0.1859 | 1.9788 | 0.0365 0.191 2.0778 | 0.043 0.2073
-0.9 | -0.9 || 1.9733 | 0.0753 | 0.2743 | 1.9882 | 0.0753 | 0.2744 | 2.0873 | 0.057 0.2387 | 2.2056 | 0.0269 | 0.1639
A 0.7 0.9

01 | ¢2 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev.

0.5 | 0.1 | 1.826 | 0.0288 | 0.1695 | 1.7947 | 0.0281 | 0.1675

0.5 | -0.1 || 1.9506 | 0.0444 0.2106 1.9929 | 0.0511 0.2261

0.1 | 0.5 || 1.7496 | 0.0205 0.143 1.7 10.0148 | 0.1215

-0.5 | -0.1 || 2.1178 | 0.0442 0.2102 2.2298 | 0.0265 0.1628

-0.5 1 -0.9 || 2.2569 | 0.0128 0.113 2.2985 | 0.0027 | 0.0519

-0.9 | -0.5 || 2.2017 | 0.0301 | 0.1733 | 2.2834 | 0.0108 | 0.1039

-0.9 | -0.9 || 2.2775 | 0.0075 | 0.0865 | 2.3089 | 0.0016 | 0.0393

Table A.29: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap

Approach
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L 0 0.1 0.3
¢ | ¢ || GS | BSB | BSBy | NSB| GS | BSB | BSBy | NSB| GS | BSB; | BSBy | NSB

0.5 | 0.1 || 0.005 | 0.042 | 0.041 | 0.041 | 0.022 | 0.096 | 0.096 | 0.093 | 0.0700 | 0.3130 | 0.3160 | 0.3090
0.5 -0.1| 0.01 | 0.045 | 0.047 | 0.044 | 0.032 | 0.1 0.099 | 0.101 | 0.032 0.1 0.099 | 0.101
0.1 | 0.5 || 0.003 | 0.04 | 0.042 | 0.04 | 0.013 | 0.087 | 0.087 | 0.084 | 0.035 | 0.274 | 0.278 | 0.276
0.1 |-0.5| 0.015 | 0.045 | 0.041 | 0.042 | 0.042 | 0.096 | 0.099 | 0.096 | 0.181 | 0.336 | 0.34 | 0.336
-0.5 | -0.1 || 0.011 | 0.049 | 0.049 | 0.049 | 0.038 | 0.11 | 0.109 | 0.106 | 0.176 | 0.356 | 0.356 | 0.354
-0.51-0.9 || 0.01 | 0.039 | 0.038 | 0.038 | 0.036 | 0.082 | 0.082 | 0.081 | 0.15 | 0.255 | 0.255 | 0.25

-09-0.5 | 0.014 | 0.042 | 0.044 | 0.041 | 0.04 | 0.093 | 0.096 | 0.092 | 0.174 | 0.307 | 0.31 0.303
-0.9 1 -0.9 || 0.014 | 0.033 | 0.033 | 0.032 | 0.014 | 0.033 | 0.033 | 0.032 | 0.149 | 0.228 | 0.223 | 0.223

A 0.5 0.7 0.9
o1 | P2 GS | BSBy | BSBy | NSB| GS | BSBy | BSBy | NSB| GS | BSBy | BSBy | NSB

05|01 || 0122 054 | 0.536 | 0.536 | 0.113 | 0.671 | 0.668 | 0.665 | 0.082 | 0.679 | 0.669 | 0.663
0.5 |-0.1 | 0303 0.616 | 0.617 | 0.612 | 0.469 | 0.803 | 0.805 | 0.802 | 0.5040 | 0.8330 | 0.8280 | 0.8210
0.1 | 0.5 || 0.041 | 0.465 | 0.466 | 0.46 | 0.026 | 0.525 | 0.523 | 0.517 | 0.008 | 0.503 | 0.496 | 0.495
0.1 |-0.5| 0.497 | 0.654 | 0.656 | 0.65 | 0.782 | 0.869 | 0.866 | 0.861 | 0.941 | 0.962 | 0.96 | 0.959
-0.5 | -0.1 || 0.473 | 0.666 | 0.671 | 0.666 | 0.758 | 0.884 | 0.879 | 0.877 | 0.929 | 0.961 | 0.957 | 0.958
-0.5]-09 | 041 | 0.503 | 0.503 | 0.499 | 0.701 | 0.744 | 0.739 | 0.734 | 0.901 | 0.908 | 0.904 | 0.903
-0.9 | -0.5 || 0.483 | 0.624 | 0.621 | 0.619 | 0.782 | 0.861 | 0.858 | 0.857 | 0.937 | 0.959 | 0.959 | 0.959
-0.91-09 | 0.384 | 0.436 | 0.426 | 0.426 | 0.682 | 0.71 | 0.707 | 0.706 | 0.873 | 0.88 | 0.877 | 0.878

Table A.30: Comparison for an AR(2) process for errors € ~ t5 with n = 100, change 7 = 50, and significance level at a = 0.05.
The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test Statistic
from Gombay and Serban (2009), BSBy: Block Sieve Bootstrap with Mean of Critical Values from each block, B.S Br:
Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap approach
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A 0 0.1 0.3 0.5
¢1 | ¢2 || Mean | Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev.
0.5 ] 0.1 || 1.8061 | 0.0192 | 0.1386 | 1.8066 | 0.0201 | 0.1415 | 1.8179 | 0.0204 | 0.1428 | 1.8372 | 0.0253 | 0.1588
0.5 | -0.1 || 1.8364 | 0.0268 | 0.1637 | 1.8371 | 0.0284 | 0.1684 | 1.8371 | 0.0284 | 0.1684 | 1.8853 | 0.0312 | 0.1765
0.1 | 0.5 | 1.7842 | 0.0206 | 0.1434 | 1.7856 | 0.0222 | 0.1489 | 1.7951 | 0.0214 | 0.1461 1.7985 | 0.0251 | 0.1583
0.1 | -0.5 | 1.8905 | 0.0365 0.191 1.895 | 0.036 0.1897 | 1.9323 | 0.0373 | 0.1931 | 2.0009 | 0.0425 | 0.2062
-0.5 | -0.1 || 1.8664 | 0.0283 0.168 1.8717 1 0.0278 | 0.1667 | 1.9027 | 0.0279 0.167 1.9458 | 0.0346 | 0.1858
-0.51-0.9 || 1.8808 | 0.0811 | 0.2847 | 1.8898 | 0.0795 0.282 1.958 | 0.0728 | 0.2697 | 2.0635 | 0.0567 | 0.2382
-0.9 | -0.5 || 1.9147 | 0.035 0.1869 | 1.9178 | 0.0353 | 0.1878 | 1.9544 | 0.0367 | 0.1915 | 2.0226 | 0.04 0.2
-0.9 | -0.9 || 1.9468 | 0.0722 | 0.2686 | 1.9468 | 0.0722 | 0.2686 2.028 | 0.0597 | 0.2443 | 2.1284 | 0.0412 | 0.2028
A 0.7 0.9

o1 | ¢o || Mean Var | Std. Dev. | Mean Var | Std. Dev.

0.5 | 0.1 || 1.8333 | 0.029 0.1701 1.8235 | 0.0311 | 0.1763

0.5 | -0.1 || 1.9177 | 0.0398 | 0.1995 | 1.9584 | 0.0460 | 0.2146

0.1 | 0.5 | 1.7815 | 0.026 0.161 1.7454 | 0.0228 0.151

0.1 | -0.5 | 2.0979 | 0.0433 0.208 2.1893 | 0.0335 0.183

-0.5 | -0.1 || 2.0217 | 0.0456 | 0.2134 | 2.1165 | 0.0467 0.216

-0.51-0.9 || 2.1686 | 0.0331 | 0.1817 | 2.2447 | 0.0146 | 0.1206

-0.9 | -0.5 || 2.1075 | 0.041 0.2023 | 2.1913 | 0.0329 | 0.1813

-0.9 | -0.9 || 2.2154 | 0.0206 | 0.1433 | 2.2665 | 0.0102 | 0.1006

Table A.31: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3 0.5
¢1 | ¢2 || Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev. | Mean | Var | Std. Dev.
0.5 | 0.1 || 1.8037 | 0.0204 0.1428 1.804 | 0.0211 0.1452 1.8168 | 0.0215 0.1465 1.8367 | 0.0265 0.1626
0.5 | -0.1 || 1.8323 | 0.0292 | 0.1709 | 1.8337 | 0.0306 | 0.1747 | 1.8337 | 0.0306 | 0.1747 | 1.8836 | 0.0335 0.183
0.1 | 0.5 || 1.7837 | 0.0216 | 0.1467 | 1.7849 | 0.0228 | 0.1509 | 1.7952 | 0.0223 | 0.1492 1.799 | 0.0261 | 0.1615
0.1 | -0.5 | 1.8875| 0.0411 | 0.2027 | 1.8913 | 0.0404 0.201 1.9298 | 0.0419 | 0.2046 | 1.9996 | 0.0466 | 0.2158
-0.5 | -0.1 || 1.8607 | 0.0309 | 0.1757 | 1.8669 | 0.0307 | 0.1751 1.8976 | 0.0311 | 0.1762 | 1.9422 | 0.0383 | 0.1956
-0.5 |1 -0.9 || 1.8863 | 0.0898 | 0.2996 1.895 | 0.0881 | 0.2968 | 1.9643 | 0.0807 0.284 2.0717 | 0.0632 | 0.2512
-0.9 | -0.5 || 1.9145 | 0.0401 | 0.2003 | 1.9173 | 0.0408 | 0.2018 1.956 | 0.0425 | 0.2062 | 2.0252 | 0.0452 | 0.2125
-0.9 | -0.9 || 1.9542 | 0.0797 | 0.2823 | 1.9542 | 0.0797 | 0.2823 | 2.0366 | 0.0653 | 0.2556 | 2.1397 | 0.0447 | 0.2113
A 0.7 0.9

01 | ¢2 || Mean Var | Std. Dev. | Mean Var | Std. Dev.

0.5 | 0.1 || 1.8331 | 0.0304 | 0.1742 | 1.8235 | 0.0324 | 0.1799

0.5 [-0.1 || 1.9179 | 0.0425 0.206 1.9595 | 0.0485 | 0.2203

0.1 | 0.5 || 1.7817 | 0.0267 | 0.1635 | 1.7456 | 0.0232 | 0.1521

0.1 [-0.5 | 2.1005 | 0.0461 | 0.2147 | 2.1915 | 0.0348 | 0.1866

-0.5 | -0.1 || 2.0192 | 0.0491 0.2216 2.1164 | 0.0487 0.2206

-0.51-0.9 || 2.179 | 0.0354 0.1882 2.2527 | 0.0145 0.1201

-0.9 | -0.5 2.11 | 0.0447 0.2114 2.1944 | 0.0345 0.1855

-0.9 1-0.9 || 2.2249 | 0.0214 | 0.1461 | 2.2715 | 0.0099 | 0.0994

Table A.32: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3 0.5
¢1 | ¢o | Mean Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev. | Mean Var | Std. Dev.
0.5 | 0.1 || 1.8096 | 0.0199 0.141 1.8103 | 0.0205 0.1432 1.8217 | 0.0209 0.1445 1.8414 | 0.026 0.1612
0.5 | -0.1 || 1.8391 | 0.0281 | 0.1675 | 1.8395 | 0.0297 | 0.1723 | 1.8395 | 0.0297 | 0.1723 | 1.8892 | 0.0329 | 0.1812
0.1 | 0.5 || 1.7885 | 0.0214 0.146 1.7907 | 0.0229 | 0.1511 1.7995 | 0.0219 | 0.1477 | 1.8028 | 0.0257 | 0.1602
0.1 |-0.5 | 1.8926 | 0.04 0.1999 | 1.8973 | 0.0392 | 0.1978 | 1.9355 | 0.0404 0.201 2.0042 | 0.0449 | 0.2119
-0.5 | -0.1 || 1.8688 | 0.0299 | 0.1728 | 1.8738 | 0.0296 0.172 1.9042 | 0.0297 | 0.1723 | 1.9483 | 0.0368 | 0.1917
-0.51-0.9 || 1.8938 | 0.0892 | 0.2986 | 1.9019 | 0.0875 | 0.2957 | 1.9715 | 0.0797 | 0.2822 | 2.0789 | 0.0614 | 0.2477
-0.9 | -0.5 || 1.9201 | 0.0392 | 0.1979 | 1.9239 | 0.04 0.1999 | 1.9609 | 0.0415 | 0.2037 | 2.0293 | 0.0442 | 0.2102
-0.9 | -0.9 || 1.9596 | 0.079 0.281 1.9596 | 0.079 0.281 2.0417 | 0.0645 | 0.2538 | 2.1433 | 0.0434 | 0.2082
A 0.7 0.9

01 | ¢2 || Mean Var | Std. Dev. | Mean Var | Std. Dev.

0.5 | 0.1 || 1.8384 | 0.0297 | 0.1723 | 1.8288 | 0.0322 | 0.1794

0.5 [-0.1 || 1.9225 | 0.0414 | 0.2033 | 1.9647 | 0.0474 | 0.2178

0.1 | 0.5 || 1.7854 | 0.0264 | 0.1625 | 1.7489 | 0.0232 | 0.1523

0.1 [-0.5 | 2.1043 | 0.0449 | 0.2119 | 2.1942 | 0.0338 | 0.1838

-0.5 | -0.1 || 2.0236 | 0.0473 | 0.2175 | 2.1189 | 0.048 0.2191

-0.51-0.9 || 2.185 | 0.0338 | 0.1837 | 2.2559 | 0.0136 | 0.1164

-0.9 | -0.5 || 2.1148 | 0.0435 | 0.2084 | 2.1973 | 0.0334 | 0.1826

-0.9 1 -0.9 || 2.2284 | 0.0203 | 0.1425 | 2.2731 | 0.0097 | 0.0983

Table A.33: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap

Approach




L8

lin 0 0.1 0.3
b1 | ¢» | GS | BSBi | BSBn | NSB | GS | BSB; | BSBy | NSB | GS | BSB; | BSBy | NSB

0.5 | 0.1 | 0.013 | 0.059 | 0.059 | 0.059 | 0.034 | 0.121 | 0.123 | 0.12 | 0.092 | 0.349 | 0.349 | 0.343
0.5 | -0.1 | 0.015 | 0.054 | 0.054 | 0.053 | 0.045 | 0.125 | 0.125 | 0.126 | 0.162 | 0.383 | 0.388 | 0.38
0.1 | 0.5 | 0.011 | 0.059 | 0.057 | 0.055 | 0.026 | 0.12 | 0.12 | 0.118 | 0.055 | 0.317 | 0.326 | 0.314
0.1 |-0.5 | 0.014 | 0.043 | 0.044 | 0.046 | 0.048 | 0.114 | 0.113 | 0.117 | 0.229 | 0.367 | 0.372 | 0.369
0.5 | -0.1 || 0.013 | 0.047 | 0.052 | 0.048 | 0.047 | 0.127 | 0.127 | 0.125 | 0.223 | 0.403 | 0.411 | 0.409
0.5 | -0.9 || 0.015 | 0.048 | 0.049 | 0.046 | 0.046 | 0.097 | 0.094 | 0.096 | 0.188 | 0.279 | 0.282 | 0.274
0.9 | -0.5 || 0.015 | 0.042 | 0.045 | 0.043 | 0.046 | 0.104 | 0.105 | 0.104 | 0.228 | 0.35 | 0.357 | 0.349
0.9 | -0.9 || 0.011 | 0.039 | 0.036 | 0.036 | 0.038 | 0.083 | 0.086 | 0.083 | 0.179 | 0.239 | 0.239 | 0.237
lia 0.5 0.7 0.9
¢ | ¢2 | GS | BSB: | BSBn | NSB| GS | BSB; | BSBy | NSB | GS | BSB; | BSBy | NSB

0.5 | 0.1 | 0.136 | 0.582 | 0.588 | 0.576 | 0.097 | 0.645 | 0.639 | 0.636 | 0.04 | 0.61 | 0.614 | 0.603
0.5 [-0.1 | 035 | 0.678 | 0.674 | 0.675 | 0.507 | 0.822 | 0.819 | 0.813 | 0.564 | 0.862 | 0.855 | 0.859
0.1 | 0.5 | 0.041 | 0.461 | 0.462 | 0.46 | 0.014 | 0.484 | 0.487 | 0.475 | 0.002 | 0.413 | 0.422 | 0.415
0.1 [-0.5| 0.57 | 0.706 | 0.712 | 0.707 | 0.861 | 0.91 | 0.911 | 0.909 | 0.974 | 0.986 | 0.986 | 0.986
-0.5 [ -0.1 || 0.541 | 0.725 | 0.72 | 0.722 | 0.833 | 0.912 | 0.911 | 0.913 | 0.953 | 0.985 | 0.982 | 0.984
-0.51-09 | 0.481 | 0.558 | 0.546 | 0.544 | 0.784 | 0.811 | 0.811 | 0.809 | 0.947 | 0.951 | 0.949 | 0.949
-0.9 | -0.5 || 0.541 | 0.668 | 0.663 | 0.66 | 0.855 | 0.899 | 0.899 | 0.897 | 0.973 | 0.985 | 0.984 | 0.984
-0.9 1-09 || 0.462 | 0.522 | 0.519 | 0.513 | 0.755 | 0.769 | 0.758 | 0.757 | 0.92 | 0.916 | 0.914 | 0.913

Table A.34: Comparison for an AR(2) process for errors € ~ tg with n = 100, change 7 = 50, and significance level at o = 0.05.
The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test Statistic
from Gombay and Serban (2009), BSBy: Block Sieve Bootstrap with Mean of Critical Values from each block, B.S Brr:
Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap approach
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KA

0 0.1 0.3

0,

GS | BSB; | BSBy | NSB| GS | BSBy | BSB;y | NSB| GS | BSBy | BSByy | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.001 | 0.007 | 0.009 | 0.007 | 0.002 | 0.022 | 0.021 | 0.021 | 0.008 | 0.077 | 0.079 | 0.075
0.006 | 0.034 | 0.034 | 0.031 | 0.021 | 0.083 | 0.082 | 0.082 | 0.114 | 0.319 | 0.322 | 0.318
0.012 | 0.042 | 0.042 | 0.042 | 0.038 | 0.114 | 0.116 | 0.117 | 0.212 | 0.406 | 0.408 | 0.405
0.016 | 0.044 | 0.046 | 0.046 | 0.052 | 0.129 | 0.134 | 0.132 | 0.26 | 0.454 | 0.468 | 0.459
0.017 | 0.046 | 0.045 | 0.043 | 0.043 | 0.14 | 0.137 | 0.139 | 0.247 | 0.447 | 0.458 | 0.451
0.013 | 0.051 | 0.052 | 0.052 | 0.041 | 0.14 | 0.138 | 0.138 | 0.193 | 0.422 | 0.424 | 0.419
0.015| 0.05 | 0.054 | 0.05 | 0.04 | 0.134 | 0.135 | 0.135 | 0.147 | 0.414 | 041 | 0.413
0.009 | 0.056 | 0.057 | 0.057 | 0.031 | 0.13 | 0.135 | 0.128 | 0.112 | 0.395 | 0.402 | 0.401

KA

0.5 0.7 0.9

01

GS | BSBy | BSBy | NSB| GS | BSBy | BSBy | NSB | GS | BSBy | BSB | NSB

-0.8
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.8

0.045| 0.22 | 0.221 | 0.221 | 0.109 | 0.409 | 0.42 | 0.412 | 0.22 | 0.613 | 0.62 | 0.615
0.357 | 0.673 | 0.676 | 0.67 | 0.644 | 0.827 | 0.833 | 0.83 | 0.697 | 0.789 | 0.786 | 0.785
0.521 | 0.755 | 0.76 | 0.7538 | 0.673 | 0.792 | 0.796 | 0.795 | 0.579 | 0.679 | 0.675 | 0.68
0.563 | 0.778 | 0.781 | 0.776 | 0.635 | 0.783 | 0.777 | 0.779 | 0.48 | 0.643 | 0.649 | 0.646
0.496 | 0.74 | 0.744 | 0.744 | 0.573 | 0.767 | 0.767 | 0.765 | 0.45 | 0.684 | 0.688 | 0.684
0.428 | 0.728 | 0.729 | 0.725 | 0.555 | 0.789 | 0.789 | 0.789 | 0.465 | 0.709 | 0.713 | 0.706
0.313 | 0.693 | 0.691 | 0.692 | 0.397 | 0.758 | 0.761 | 0.756 | 0.326 | 0.704 | 0.712 | 0.707
0.186 | 0.627 | 0.627 | 0.629 | 0.163 | 0.682 | 0.678 | 0.671 | 0.103 | 0.633 | 0.637 | 0.633

Table A.35:

Comparison for MA(1) process for errors € ~ N(0,1) with n = 100, change 7 = 50, and significance level at
o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, B.SBrr: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach
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1A 0 0.1 0.3

0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.7333 | 0.0102 | 0.1008 | 1.7355 | 0.0099 | 0.0993 | 1.7425 | 0.0095 | 0.0973
-0.5 || 1.807 | 0.009 0.0949 | 1.8076 | 0.0091 0.095 1.8317 | 0.0082 | 0.0902
-0.3 || 1.8491 | 0.0081 | 0.0898 | 1.8512 | 0.0079 | 0.0885 | 1.8739 | 0.0081 | 0.0899
-0.1 || 1.8723 | 0.0067 | 0.0814 | 1.8746 | 0.0064 | 0.0799 | 1.8874 | 0.0072 | 0.0847
0.1 || 1.8648 | 0.0059 | 0.0765 1.865 | 0.0061 0.078 1.8769 | 0.0075 | 0.0866
0.3 || 1.8369 | 0.0055 | 0.0739 | 1.8386 | 0.0055 0.074 1.8483 | 0.0057 | 0.0753
0.5 || 1.8104 | 0.0052 | 0.0718 | 1.8142 | 0.0056 | 0.0747 | 1.8241 | 0.0057 | 0.0753
0.8 || 1.8008 | 0.0059 | 0.0762 | 1.8003 | 0.0058 | 0.0762 | 1.8027 | 0.0058 | 0.0759
A 0.5 0.7 0.9

0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.7558 | 0.0087 0.093 1.773 | 0.0083 | 0.0906 | 1.7929 | 0.0086 | 0.0923
-0.5 || 1.8687 | 0.0104 | 0.1016 | 1.9081 | 0.0145 | 0.1202 1.958 | 0.02 0.1414
-0.3 || 1.9072 | 0.0105 | 0.1024 | 1.9548 | 0.0182 | 0.1348 | 1.9801 | 0.021 0.1448
-0.1 || 1.9161 | 0.011 0.1049 | 1.9513 | 0.0176 | 0.1326 | 1.9558 | 0.0208 0.144
0.1 || 1.9001 | 0.0103 | 0.1012 | 1.9139 | 0.0144 | 0.1197 | 1.9049 | 0.0168 | 0.1293
0.3 || 1.8666 | 0.0082 | 0.0903 | 1.8769 | 0.0119 | 0.1089 | 1.8709 | 0.0137 | 0.1168
0.5 || 1.8392 | 0.0079 | 0.0885 | 1.8387 | 0.0094 | 0.0966 | 1.8256 | 0.0108 | 0.1038
0.8 || 1.7945 | 0.0061 | 0.0778 1.772 | 0.0066 | 0.0813 | 1.7449 | 0.0064 0.08

Table A.36: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3

0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.727 | 0.0105 | 0.1024 | 1.7293 | 0.0102 | 0.1008 | 1.7341 | 0.0099 | 0.0993
-0.5 || 1.7971 | 0.0095 | 0.0973 | 1.7978 | 0.0097 | 0.0981 | 1.8222 | 0.0089 | 0.0939
-0.3 || 1.8389 | 0.0089 | 0.0939 | 1.8402 | 0.0082 | 0.0903 | 1.8645 | 0.0094 | 0.0967
-0.1 || 1.861 | 0.0076 | 0.0869 | 1.8644 | 0.0076 | 0.0872 | 1.8784 | 0.0088 | 0.0936
0.1 || 1.8539 | 0.0066 | 0.0809 | 1.8547 | 0.0069 | 0.0829 | 1.8685 | 0.0089 | 0.0943
0.3 || 1.8294 | 0.0061 | 0.0778 | 1.8308 | 0.0062 | 0.0783 | 1.8421 | 0.0066 | 0.0811
0.5 || 1.8032 | 0.0057 | 0.0755 | 1.8089 | 0.0061 | 0.0777 | 1.8184 | 0.0064 | 0.0799
0.8 || 1.795 | 0.0062 | 0.0782 | 1.7944 | 0.0061 | 0.0778 | 1.7979 | 0.0062 | 0.0785
A 0.5 0.7 0.9

0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.7473 | 0.009 0.0946 | 1.7642 | 0.0089 | 0.0939 | 1.7857 | 0.0094 | 0.0969
-0.5 | 1.8612 | 0.0122 | 0.1102 1.902 | 0.018 0.134 1.957 | 0.026 0.161
-0.3 || 1.8993 | 0.0134 | 0.1158 | 1.9534 | 0.0236 | 0.1534 | 1.9827 | 0.0275 | 0.1656
-0.1 || 1.9103 | 0.0142 | 0.1191 | 1.9501 | 0.022 0.1481 | 1.9557 | 0.0264 | 0.1625
0.1 || 1.8948 | 0.0126 | 0.1122 | 1.9127 | 0.0174 | 0.1316 1.903 | 0.0199 0.141
0.3 || 1.8619 | 0.0099 | 0.0991 | 1.8731 | 0.0138 | 0.1174 | 1.8688 | 0.016 0.1262
0.5 || 1.836 | 0.0091 | 0.0952 | 1.8354 | 0.0108 | 0.1037 | 1.8225 | 0.0119 0.109
0.8 || 1.7912 | 0.0065 | 0.0801 | 1.7704 | 0.0071 0.084 1.7442 | 0.0068 | 0.0825

Table A.37: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSByr: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3
0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.7331 | 0.0097 | 0.0984 | 1.7351 | 0.0093 | 0.0963 | 1.7414 | 0.0091 0.095
-0.5 || 1.805 | 0.0086 | 0.0926 | 1.8054 | 0.0088 | 0.0936 | 1.8284 | 0.0083 | 0.0907
-0.3 || 1.8443 | 0.0078 | 0.0881 | 1.8467 | 0.0074 | 0.0859 | 1.8716 | 0.0087 0.093
-0.1 || 1.8673 | 0.0066 | 0.0812 | 1.8706 | 0.0066 0.081 1.8843 | 0.008 0.089
0.1 || 1.8607 | 0.0059 | 0.0766 | 1.8612 | 0.006 0.0773 | 1.8749 | 0.0081 | 0.0899
0.3 || 1.8359 | 0.0055 | 0.0741 | 1.8369 | 0.0054 | 0.0735 | 1.8476 | 0.0061 | 0.0779
0.5 || 1.8103 | 0.005 0.0702 | 1.8137 | 0.0055 | 0.0738 | 1.8249 | 0.006 0.0769
0.8 || 1.8017 | 0.0058 | 0.0757 1.801 | 0.0058 | 0.0761 | 1.8043 | 0.0057 | 0.0754
A 0.5 0.7 0.9
0, || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.8 || 1.7539 | 0.0084 | 0.0912 | 1.7707 | 0.0081 | 0.0899 | 1.7914 | 0.0086 | 0.0925
-0.5 || 1.8663 | 0.0115 | 0.1069 | 1.9087 | 0.0172 | 0.1311 | 1.9644 | 0.0255 | 0.1596
-0.3 || 1.906 | 0.0124 0.111 1.9603 | 0.0228 | 0.1509 | 1.9899 | 0.0269 | 0.1638
-0.1 || 1.9154 | 0.0134 | 0.1155 | 1.9567 | 0.0215 | 0.1464 | 1.9622 | 0.0257 | 0.1603
0.1 || 1.8992 | 0.012 0.1095 | 1.9181 | 0.0169 | 0.1298 | 1.9084 | 0.0194 0.139
0.3 || 1.8677 | 0.0094 | 0.0969 | 1.8794 | 0.0134 | 0.1158 | 1.8744 | 0.0157 | 0.1252
0.5 || 1.841 | 0.0088 | 0.0936 | 1.8413 | 0.0102 0.101 1.8288 | 0.0117 | 0.1081
0.8 || 1.7962 | 0.0061 | 0.0781 | 1.7751 | 0.0066 | 0.0812 1.748 | 0.0064 | 0.0798

Table A.38: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap

Approach
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A 0 0.1 0.3

0, Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.8 || 3.5921 3 3 3.5729 3 3 3.4921 3 2
-0.5 || 2.5046 2 2 2.4967 2 2 2.3377 2 1
-0.3 || 1.9749 1 1 1.9647 1 1 1.9289 1 1
-0.1 || 1.6618 1 1 1.66 1 1 1.7004 1 1
0.1 || 1.6754 1 1 1.6825 1 1 1.799 1 1
0.3 || 1.9637 1 1 1.9679 1 1 2.0133 1 1
0.5 || 2.5067 2 2 2.5222 2 2 2.5701 2 1
0.8 || 3.6516 3 2 3.6625 3 3 3.7929 3 3
1A 0.5 0.7 0.9

0, Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.8 || 3.3494 3 2 3.1908 3 2 3.0378 2 2
-0.5 || 2.3093 1 1 2.6064 1 1 3.3526 2 1
-0.3 || 2.1321 1 1 2.8558 1 1 3.8333 4 1
-0.1 || 2.0337 1 1 2.925 2 1 3.9399 4 1
0.1 || 2.2414 1 1 2.9453 2 1 3.681 3 1
0.3 | 2.3152 1 1 2.8099 2 1 3.3205 3 1
0.5 | 2.8289 2 1 3.1762 3 1 3.5333 3 3
0.8 || 4.0643 3 3 4.3072 3 3 4.4539 3 3

Table A.39: Average AR(p) order chosen by Sieve Bootstrap for the underlying process based on AIC Criterion. Values in

reference to Table where the underlying process was MA(1).
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L 0 0.1 0.3
0. | 0 | ¢s | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB, | BSBy | NSB

0.5 | 0.1 || 0.015| 0.047 | 0.048 | 0.048 | 0.038 | 0.128 | 0.13 | 0.127 | 0.151 | 0.421 | 0.425 | 0.423
0.5 [-0.1 | 0.01 | 0.056 | 0.055 | 0.056 | 0.039 | 0.13 | 0.129 | 0.129 | 0.14 | 0.417 | 0.427 | 0.417
0.1 | 0.5 || 0.008 | 0.041 | 0.045 | 0.044 | 0.035 | 0.116 | 0.116 | 0.115 | 0.071 | 0.367 | 0.363 | 0.368
0.1 [-0.5| 0.004 | 0.031 | 0.032 | 0.032 | 0.02 | 0.079 | 0.08 0.08 | 0.099 | 0.311 | 0.314 | 0.31
-0.5 [ -0.1 || 0.002 | 0.021 | 0.019 | 0.019 | 0.01 | 0.055 | 0.055 | 0.056 | 0.061 | 0.217 | 0.225 | 0.22
-0.8 | 0.1 || 0.002| 0.02 | 0.021 | 0.02 | 0.011 | 0.051 | 0.052 | 0.05 | 0.06 | 0.21 | 0.208 | 0.203
0.7 | 0.2 | 0.013 | 0.052 | 0.054 | 0.053 | 0.039 | 0.141 | 0.139 | 0.142 | 0.129 | 0.406 | 0.413 | 0.406

L 0.5 0.7 0.9
0, | 6, | GS | BSB;| BSBy | NSB| GS | BSB; | BSBy | NSB| GS | BSB; | BSBy | NSB

05|01 | 0343 0.711 | 0.713 | 0.71 | 0.441 | 0.776 | 0.776 | 0.774 | 0.399 | 0.72 | 0.719 | 0.719
0.5 |-0.1 | 0.281 | 0.684 | 0.681 | 0.677 | 0.321 | 0.735 | 0.742 | 0.74 | 0.2410 | 0.6590 | 0.6600 | 0.6630
0.1 | 0.5 || 0.119 | 0.616 | 0.612 | 0.603 | 0.091 | 0.679 | 0.681 | 0.671 | 0.036 | 0.666 | 0.674 | 0.666
0.1 [-0.5 0.292 | 0.624 | 0.632 | 0.633 | 0.502 | 0.818 | 0.819 | 0.817 | 0.539 | 0.809 | 0.809 | 0.81

-0.5 | -0.1 || 0.201 | 0.517 | 0.523 | 0.522 | 0.449 | 0.767 | 0.778 | 0.773 | 0.652 | 0.866 | 0.866 | 0.859
-0.8 1 0.1 || 0.171 | 0.482 | 0.495 | 0.486 | 0.401 | 0.735 | 0.747 | 0.732 | 0.605 | 0.828 | 0.83 | 0.829
0.7 102 | 024 | 0.676 | 0.679 | 0.674 | 0.261 | 0.732 | 0.736 | 0.731 | 0.213 | 0.699 | 0.704 | 0.695

Table A.40: Comparison for MA(2) process for errors € ~ N(0,1) with n = 100, change 7 = 50, and significance level at
a = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000. GS: Test
Statistic from Gombay and Serban (2009), BSBr: Block Sieve Bootstrap with Mean of Critical Values from each
block, BSBrr: Block Sieve Bootstrap with Median of Critical Values from each block, NSB: Naive Sieve Bootstrap
approach
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1A 0 0.1 0.3
0, 0, || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
0.5 | 0.1 || 2.1825 1 1 2.1673 1 1 2.1671 1 1
0.5 | -0.1 || 2.9699 2 2 2.9908 2 2 3.0892 3 3
0.1 | 0.5 || 3.2167 2 2 3.2298 2 2 3.2008 2 2
0.1 |-0.5 | 3.1632 2 2 3.1712 2 2 3.136 2 2
-0.5 1 -0.1 || 2.9101 2 2 2.8879 2 2 2.746 2 2
-0.8 | 0.1 || 3.2635 3 2 3.2417 3 2 3.1253 2 2
0.7 | 0.2 || 2.5959 2 2 2.5865 2 2 2.6377 2 2

1A 0.5 0.7 0.9
0, 0y || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
0.5 | 0.1 || 2.3254 1 1 2.6728 1 1 3.009 3 1
0.5 [ -0.1 || 3.3623 3 3 3.7286 3 3 4.0636 3 3
0.1 | 0.5 || 3.4129 2 2 3.6684 2 2 3.8464 2 2
0.1 |-0.5 || 3.1975 2 2 3.5142 3 2 4.0814 3 3
-0.5 | -0.1 || 2.5471 2 2 2.5292 2 1 2.7427 1 1
-0.8 | 0.1 || 2.9582 2 2 2.92 2 2 3.0571 2 2
0.7 | 0.2 || 2.8051 2 1 3.0596 3 1 3.2711 3 1

Table A.41: Average AR(p) order chosen by Sieve Bootstrap for the underlying process based on AIC Criterion. Values in
reference to Table where the underlying process was MA(2).
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L 0 0.1 0.3
o | 0|l GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

051080012 ] 0052 | 0.053 | 0.054 | 0.041 | 0.135 | 0.136 | 0.136 | 0.165 | 0.41 | 0.412 | 0.408
0.3 0.8 0.018 | 0.044 | 0.046 | 0.043 | 0.053 | 0.138 | 0.14 | 0.139 | 0.263 | 0.457 | 0.465 | 0.453
0.1 0.8 0.009| 0.05 | 0.053 | 0.052 | 0.038 | 0.124 | 0.124 | 0.121 | 0.133 | 0.41 | 0.419 | 0.416
0.1 | 0.8/ 0.013] 0.051 | 0.052 | 0.049 | 0.041 | 0.132 | 0.136 | 0.131 | 0.204 | 0.425 | 0.432 | 0.43
0.3 | 0.8 | 0.008 | 0.052 | 0.053 | 0.053 | 0.035 | 0.125 | 0.126 | 0.127 | 0.119 | 0.406 | 0.405 | 0.403
0.5 | 0.8 | 0.012 | 0.053 | 0.053 | 0.052 | 0.041 | 0.138 | 0.142 | 0.139 | 0.173 | 0.418 | 0.42 | 0.418
L 0.5 0.7 0.9
o | 0|l Gs | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

-0.5 1 0.8 0.35 | 0.668 | 0.668 | 0.668 | 0.386 | 0.717 | 0.719 | 0.709 | 0.309 | 0.654 | 0.663 | 0.657
-0.3 1 0.8 0.542 | 0.754 | 0.763 | 0.758 | 0.586 | 0.767 | 0.771 | 0.766 | 0.463 | 0.663 | 0.665 | 0.665
-0.1 1081 026 | 065 | 0.645 | 0.651 | 0.268 | 0.701 | 0.699 | 0.697 | 0.215 | 0.655 | 0.658 | 0.653
0.1 [0.81 0.441 | 0.721 | 0.726 | 0.724 | 0.559 | 0.77 | 0.772 | 0.772 | 0.458 | 0.704 | 0.709 | 0.704
0.3 [0.81 0.203 | 0.642 | 0.644 | 0.638 | 0.203 | 0.688 | 0.689 | 0.684 | 0.131 | 0.654 | 0.658 | 0.656
0.5 [0.81 0.362 | 0.703 | 0.701 | 0.701 | 0.46 | 0.76 | 0.763 | 0.757 | 0.398 | 0.713 | 0.716 | 0.716

Table A.42: Comparison for ARMA(1,1) process for errors € ~ N(0,1) with #; = 0.8, n = 100, change 7 = 50, and significance
level at o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000.
GS: Test Statistic from Gombay and Serban (2009), BSB;: Block Sieve Bootstrap with Mean of Critical Values
from each block, BSBir: Block Sieve Bootstrap with Median of Critical Values from each block, N.SB: Naive Sieve
Bootstrap approach
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L 0 0.1 0.3
o | 0|l GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

0.5 0.5 ] 0.009 | 0.056 | 0.055 | 0.055 | 0.032 | 0.134 | 0.139 | 0.135 [ 0.099 | 0.392 | 0.39 | 0.388
0.3 05| 0.01 | 0.051 | 0.053 | 0.051 | 0.042 | 0.135 | 0.135 | 0.135 | 0.129 | 0.416 | 0.42 | 0.417
0.1 0.5 0.012 | 0.047 | 0.046 | 0.047 | 0.027 | 0.133 | 0.133 | 0.131 | 0.1 | 0.387 | 0.393 | 0.392
0.1 | 0.5 | 0.011 | 0.057 | 0.057 | 0.055 | 0.039 | 0.134 | 0.137 | 0.132 | 0.115 | 0.403 | 0.409 | 0.403
0.3 |05 001 | 0.04 | 004 | 0.04 | 0.02 | 0.121 | 0.127 | 0.123 | 0.075 | 0.355 | 0.363 | 0.354
0.5 | 0.5 0.012 | 0.052 | 0.054 | 0.053 | 0.03 | 0.127 | 0.129 | 0.13 | 0.101 | 0.394 | 0.399 | 0.39
L 0.5 0.7 0.9
o | 6| GS | BSB | BSBy | NSB| GS | BSB, | BSBy | NSB| GS | BSB; | BSBy | NSB

-0.51 0.5 0.172 | 0.615 | 0.622 | 0.619 | 0.147 | 0.664 | 0.664 | 0.659 | 0.085 | 0.635 | 0.63 | 0.626
03105 028 | 0.69 | 0.693 | 0.688 | 0.332 | 0.743 | 0.745 | 0.74 | 0.458 | 0.704 | 0.709 | 0.704
-0.1 1 0.5 0.138 | 0.593 | 0.595 | 0.585 | 0.114 | 0.636 | 0.636 | 0.635 | 0.072 | 0.572 | 0.563 | 0.562
0.1 [0.51 0.196 | 0.65 | 0.654 | 0.644 | 0.183 | 0.695 | 0.706 | 0.698 | 0.125 | 0.653 | 0.658 | 0.649
0.3 [0.51 0.112 | 0.563 | 0.558 | 0.56 | 0.091 | 0.55 | 0.548 | 0.552 | 0.05 | 0.474 | 0.48 | 0.479
0.5 (051 0.133 | 0.59 0.59 | 0.589 | 0.088 | 0.628 | 0.627 | 0.621 | 0.039 | 0.568 | 0.57 | 0.561

Table A.43: Comparison for ARMA(1,1) process for errors € ~ N(0,1) with #; = 0.5, n = 100, change 7 = 50, and significance
level at o = 0.05. The number of Sieve Bootstrap Iterations = 1500 and number of Monte Carlo Iterations = 1000.
GS: Test Statistic from Gombay and Serban (2009), BSB;: Block Sieve Bootstrap with Mean of Critical Values
from each block, BSBir: Block Sieve Bootstrap with Median of Critical Values from each block, N.SB: Naive Sieve
Bootstrap approach
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A 0 0.1 0.3
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.8 || 1.8194 | 0.0063 | 0.0791 | 1.8216 | 0.0063 | 0.0788 | 1.8385 | 0.0076 | 0.0871
-0.3 | 0.8 || 1.8727 | 0.0059 | 0.0766 | 1.8741 | 0.0059 | 0.0764 | 1.8852 | 0.0071 | 0.0838
-0.1] 0.8 | 1.8085 | 0.006 0.0773 | 1.8107 | 0.0064 | 0.0798 | 1.8191 | 0.0065 | 0.0804
0.1 | 0.8 1.844 | 0.006 0.0775 | 1.8464 | 0.0061 | 0.0779 | 1.8584 | 0.0065 | 0.0806
0.3 | 0.8 || 1.8017 | 0.0059 | 0.0763 | 1.8025 | 0.0058 | 0.0758 | 1.8075 | 0.0059 | 0.0767
0.5 | 0.8 || 1.8166 | 0.0053 | 0.0727 1.819 | 0.0054 | 0.0734 | 1.8339 | 0.0061 | 0.0776
A 0.5 0.7 0.9
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.8 | 1.8538 | 0.0081 | 0.0898 | 1.8582 | 0.0106 | 0.1025 | 1.8383 | 0.0123 | 0.1108
-0.3 1 0.8 1.9134 | 0.0114 | 0.1065 1.935 | 0.0159 0.126 1.9273 | 0.0192 | 0.1383
-0.1 1 0.8 ] 1.8239 | 0.0071 | 0.0838 | 1.8154 | 0.0086 | 0.0923 | 1.7908 | 0.0087 | 0.0928
0.1 | 0.8 | 1.8813 | 0.0093 0.096 1.8914 | 0.0128 | 0.1131 | 1.8838 | 0.0144 | 0.1197
0.3 [ 0.8 1.8022 | 0.0062 | 0.0787 | 1.7861 | 0.0073 | 0.0855 | 1.7584 | 0.0068 | 0.0822
0.5 [ 0.8 | 1.8521 | 0.0081 | 0.0897 | 1.8561 | 0.0102 0.101 1.8468 | 0.0124 | 0.1111

Table A.44: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3
o1 | 01 | Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.5 0.5 | 1.7992 | 0.0059 | 0.0763 | 1.7975 | 0.0058 | 0.0758 | 1.7985 | 0.0056 | 0.0744
-0.3 ] 0.5 | 1.8073 | 0.005 0.0706 | 1.8076 | 0.0055 | 0.0739 | 1.8157 | 0.0054 | 0.0735
-0.1] 0.5 | 1.7932 | 0.0058 | 0.0761 | 1.7936 | 0.0059 | 0.0765 | 1.7857 | 0.0056 | 0.0742
0.1 | 0.5 1.8015 | 0.0048 | 0.0693 | 1.8007 | 0.0052 | 0.0718 | 1.8011 | 0.0051 | 0.0709
0.3 | 0.5 || 1.7865 | 0.0061 | 0.0777 | 1.7851 | 0.0063 | 0.0794 | 1.7704 | 0.0055 | 0.0736
0.5 | 0.5 1.7925 | 0.0047 | 0.0682 | 1.7896 | 0.0047 | 0.0683 | 1.7835 | 0.0045 | 0.0666

A 0.5 0.7 0.9
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.
-0.5 ] 0.5 | 1.7853 | 0.0061 | 0.0777 | 1.7598 | 0.0062 | 0.0783 | 1.7319 | 0.0059 | 0.0763
-0.3 0.5 | 1.824 | 0.0067 | 0.0814 | 1.8199 | 0.0085 | 0.0918 | 1.8838 | 0.0144 | 0.1197
-0.1] 0.5 | 1.7675 | 0.0055 0.074 1.7362 | 0.006 0.0772 | 1.7079 | 0.0058 | 0.0761
0.1 | 0.5 1.7989 | 0.0064 | 0.0799 | 1.7819 | 0.0071 | 0.0838 | 1.7564 | 0.0069 | 0.0831
0.3 | 0.5 || 1.7429 | 0.0057 | 0.0753 | 1.7108 | 0.0061 | 0.0776 | 1.6811 | 0.0051 | 0.0712
0.5 | 0.5 || 1.7654 | 0.0053 | 0.0727 | 1.7363 | 0.0057 | 0.0753 1.706 | 0.0049 | 0.0699

Table A.45: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBr: Block Sieve

Bootstrap with mean of critical values from each block. Number of Blocks = 10




66

A 0 0.1 0.3
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.8 | 1.8116 | 0.0069 | 0.0828 1.815 | 0.0068 | 0.0824 | 1.8332 | 0.0086 | 0.0928
-0.3 1 0.8 | 1.8616 | 0.007 | 0.0834 | 1.8633 | 0.0069 0.083 1.8758 | 0.0087 | 0.0929
-0.1 ] 0.8 || 1.8032 | 0.0063 | 0.0794 | 1.8057 | 0.0069 | 0.0826 | 1.8137 | 0.0072 | 0.0848
0.1 | 0.8 || 1.8347 | 0.0068 | 0.0822 | 1.8373 | 0.0067 | 0.0817 | 1.8515 | 0.0075 | 0.0864
0.3 [ 0.8 1.7962 | 0.0064 | 0.0794 1.797 | 0.0061 | 0.0778 | 1.8031 | 0.0065 | 0.0803
0.5 [ 0.8 | 1.8093 | 0.0058 | 0.0758 1.812 | 0.0056 | 0.0742 | 1.8289 | 0.0068 | 0.0819
A 0.5 0.7 0.9
¢ | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 1 0.8 | 1.8498 | 0.0092 | 0.0959 | 1.8538 | 0.0122 | 0.1103 | 1.8352 | 0.0136 | 0.1165
-0.3 1 0.8 ] 1.9097 | 0.0145 | 0.1203 | 1.9342 | 0.0193 | 0.1388 | 1.9266 | 0.0233 | 0.1526
-0.1 1 0.8 | 1.8197 | 0.0075 | 0.0866 | 1.8132 | 0.0093 | 0.0961 1.788 | 0.0091 | 0.0951
0.1 0.8 1.8763 | 0.0111 | 0.1053 | 1.8884 | 0.0153 | 0.1233 | 1.8814 | 0.0171 | 0.1305
0.3 | 0.8 || 1.7987 | 0.0067 | 0.0817 | 1.7839 | 0.0077 | 0.0876 | 1.7571 | 0.0072 | 0.0845
0.5 [ 0.8 | 1.8486 | 0.0095 | 0.0973 | 1.8533 | 0.0119 | 0.1091 | 1.8452 | 0.0141 | 0.1186

Table A.46: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBy: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 1 0.5 | 1.7938 | 0.0062 | 0.0784 | 1.7926 | 0.0062 | 0.0783 | 1.7945 | 0.006 0.0771
-0.3 | 0.5 | 1.8007 | 0.0055 | 0.0737 | 1.8027 | 0.006 0.0773 | 1.8103 | 0.0062 | 0.0784
-0.1 1 0.5 | 1.788 | 0.0062 | 0.0783 | 1.7885 | 0.0063 | 0.0794 | 1.7818 | 0.0059 | 0.0765
0.1 | 0.5 1.7964 | 0.0053 | 0.0724 | 1.7963 | 0.0058 | 0.0756 | 1.7969 | 0.0054 | 0.0734
0.3 [ 0.5 1.7823 | 0.0063 | 0.0794 | 1.7809 | 0.0066 | 0.0812 | 1.7681 | 0.0058 | 0.0758
0.5 [ 0.5 | 1.7888 | 0.005 0.0706 | 1.7861 | 0.0049 | 0.0698 | 1.7815 | 0.0048 | 0.0688
A 0.5 0.7 0.9
¢ | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.5 | 1.7821 | 0.0063 | 0.0793 1.758 | 0.0066 0.081 1.7314 | 0.0063 0.079
-0.3 1 0.5 | 1.8212 | 0.0075 | 0.0864 | 1.8173 | 0.0096 | 0.0979 | 1.8814 | 0.0171 | 0.1305
-0.1 1 0.5 | 1.7654 | 0.0057 | 0.0749 | 1.7352 | 0.0061 | 0.0776 | 1.7064 | 0.0059 | 0.0763
0.1 [ 0.5 1.7962 | 0.0071 | 0.0839 | 1.7794 | 0.0075 | 0.0866 1.755 | 0.0071 | 0.0842
0.3 [ 0.5 1.7413 | 0.0059 | 0.0765 | 1.7102 | 0.0062 | 0.0785 | 1.6801 | 0.0051 | 0.0714
0.5 [ 0.5 | 1.7631 | 0.0055 | 0.0742 | 1.7345 | 0.0057 | 0.0753 | 1.7044 | 0.005 0.0707

Table A.47: Mean, Variance, and Standard Deviation of the the critical values used in Table for BSBy: Block Sieve

Bootstrap with median of critical values from each block. Number of Blocks = 10
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A 0 0.1 0.3
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.8 | 1.8173 | 0.0063 0.079 1.8204 | 0.0062 | 0.0785 | 1.8391 | 0.0082 | 0.0904
-0.3 1 0.8 | 1.8678 | 0.006 0.0772 | 1.8697 | 0.0059 | 0.0764 | 1.8819 | 0.0076 | 0.0869
-0.1] 0.8 | 1.8082 | 0.006 0.0769 | 1.8102 | 0.0063 | 0.0793 | 1.8204 | 0.0068 | 0.0821
0.1 | 0.8 1.8425 | 0.0061 | 0.0776 | 1.8441 | 0.006 0.0774 | 1.8571 | 0.007 0.0833
0.3 [ 0.8 | 1.8017 | 0.0057 | 0.0752 | 1.8028 | 0.0057 | 0.0755 | 1.8092 | 0.0059 | 0.0766
0.5 [ 0.8 | 1.8165 | 0.0052 | 0.0718 | 1.8184 | 0.0052 0.072 1.8347 | 0.0062 | 0.0785

A 0.5 0.7 0.9
¢ | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.8 | 1.8558 | 0.009 0.0945 | 1.8606 | 0.0121 | 0.1097 | 1.8403 | 0.0136 | 0.1163
-0.3 1 0.8 | 1.9134 | 0.0137 | 0.1171 | 1.9401 | 0.019 0.1378 | 1.9326 | 0.0232 | 0.1521
-0.1 ] 0.8 | 1.8257 | 0.0073 | 0.0855 | 1.8182 | 0.0091 | 0.0953 | 1.7932 | 0.0089 | 0.0941
0.1 [ 0.8 1.8825|0.0108 | 0.1039 | 1.8946 | 0.0147 | 0.1212 | 1.8862 | 0.0166 | 0.1286
0.3 | 0.8 || 1.8047 | 0.0063 | 0.0794 | 1.7891 | 0.0073 | 0.0855 | 1.7615 | 0.0068 | 0.0825
0.5 [ 0.8 | 1.8539 | 0.0089 | 0.0939 | 1.8586 | 0.0113 | 0.1061 | 1.8504 | 0.014 0.118

Table A.48: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach
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A 0 0.1 0.3
o1 | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 0.5 | 1.799 | 0.0058 | 0.0757 | 1.7986 | 0.0057 | 0.0752 | 1.8001 | 0.0056 | 0.0745
-0.3 1 0.5 | 1.8072 | 0.0048 | 0.0687 | 1.8076 | 0.0053 | 0.0728 | 1.8166 | 0.0056 | 0.0747
-0.1 1 0.5 1.794 | 0.0058 | 0.0757 | 1.7952 | 0.006 0.077 1.7877 | 0.0053 | 0.0725
0.1 [ 0.5 1.8025 | 0.0047 | 0.0685 | 1.8019 | 0.0052 | 0.0719 1.803 | 0.0049 | 0.0698
0.3 [ 0.5 1.7875 | 0.0059 | 0.0768 | 1.7863 | 0.006 0.0773 | 1.7725 | 0.0052 | 0.0718
0.5 [ 0.5 | 1.7948 | 0.0045 | 0.0669 | 1.7919 | 0.0045 | 0.0668 | 1.7862 | 0.0045 | 0.0668

A 0.5 0.7 0.9
¢ | 01 || Mean | Var | Std.Dev. | Mean | Var | Std.Dev. | Mean | Var | Std.Dev.

-0.5 ] 0.5 | 1.7875 | 0.0061 | 0.0776 | 1.7623 | 0.0062 | 0.0786 | 1.7352 | 0.006 0.0769
-0.3 1 0.5 | 1.825 | 0.0069 0.083 1.8232 | 0.0092 | 0.0959 | 1.8862 | 0.0166 | 0.1286
-0.1 1 0.5 | 1.7696 | 0.0053 | 0.0727 | 1.7389 | 0.006 0.0771 | 1.7103 | 0.0058 | 0.0756
0.1 | 0.5 | 1.8028 | 0.0066 0.081 1.7852 | 0.0075 | 0.0861 | 1.7592 | 0.0068 | 0.0819
0.3 [ 0.5 | 1.7455 | 0.0056 | 0.0745 | 1.7133 | 0.0061 | 0.0777 | 1.6824 | 0.0051 0.071
0.5 [ 0.5 | 1.7676 | 0.0053 | 0.0726 | 1.7397 | 0.0056 | 0.0746 | 1.7083 | 0.0049 | 0.0698

Table A.49: Mean, Variance, and Standard Deviation of the the critical values used in Table for NS B: Naive Sieve Bootstrap
Approach
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A 0 0.1 0.3
¢1 | 01 || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.5 | 0.8 || 2.6248 2 1 2.6403 2 1 2.7875 2 1
-0.3 | 0.8 || 1.6169 1 1 1.6063 1 1 1.7035 1 1
-0.1 1 0.8 || 3.2784 3 2 3.3017 3 2 3.3878 3 3
0.1 | 0.8 || 1.9068 1 1 1.9026 1 1 2.0031 1 1
0.3 | 0.8 || 3.5811 3 2 3.6009 3 3 3.7027 3 3
0.5 | 0.8 || 2.3477 2 1 2.3528 2 1 2.401 2 1

A 0.5 0.7 0.9
¢1 | 01 || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.5 | 0.8 || 3.1196 3 1 3.6657 3 3 4.1642 3 3
-0.3 | 0.8 || 2.1444 1 1 2.9653 2 1 3.8498 3 1
-0.1 | 0.8 || 3.6975 3 3 4.0968 3 3 4.3704 3 3
0.1 | 0.8 || 2.3888 1 1 2.9828 2 1 3.5862 3 1
0.3 | 0.8 || 3.9957 3 3 4.2919 3 3 4.4504 3 3
0.5 | 0.8 ] 2.672 2 1 3.1022 3 1 3.5039 3 3

Table A.50: Average AR(p) order chosen by Sieve Bootstrap for the underlying process based on AIC Criterion. Values in
reference to Table where the underlying process was ARMA(1, 1) with 6; = 0.8.
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A 0 0.1 0.3
¢1 | 01 || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.5 | 0.5 || 3.6905 3 3 3.6973 3 3 3.8457 3 3
-0.3 | 0.5 || 2.667 2 2 2.6716 2 2 2.726 2 2
-0.1 | 0.5 || 3.6908 3 3 3.7174 3 3 3.8451 3 3
0.1 | 0.5 | 2.8595 2 2 2.8672 2 2 2.9578 2 2
0.3 | 0.5 || 3.6505 3 2 3.6905 3 2 3.7921 3 3
0.5 | 0.5 || 2.9623 2 2 2.9767 2 2 3.0582 2 2

A 0.5 0.7 0.9
¢1 | 01 || Mean | Median | Mode | Mean | Median | Mode | Mean | Median | Mode
-0.5 | 0.5 || 4.0924 3 3 4.3157 3 3 4.416 3 3
-0.3 | 0.5 || 2.9292 2.5 1 3.2888 3 3 3.5862 3 1
-0.1 | 0.5 || 4.0828 3 3 4.2391 3 3 4.3214 3 3
0.1 | 0.5 ] 3.1661 3 3 3.3904 3 3 3.5123 3 3
0.3 | 0.5 | 3.9727 3 3 4.092 3 3 4.1138 3 3
0.5 ] 0.5 3.2313 3 3 3.3762 3 3 3.4381 3 3

reference to Table where the underlying process was ARMA(1, 1) with ¢, = 0.5.

Table A.51: Average AR(p) order chosen by Sieve Bootstrap for the underlying process based on AIC Criterion. Values in




Appendix B

Matlab Code
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7/5/10 2:32 AM H:\Change Point\MY RESEARCH\Gombay and

S..\GombayTestMean_Print.m

lofl

% @ param: -) mu_0: Value of mean under Null

% -) y: The data set for which we calculat
% -) p: order of the AR process

% -) n_max: index upto which we calculate
% numpoints

function  TestStat = GombayTestMean(mu_0,y,p,n_max,CV)
y = reshape(y,length(y),1);

%% make X

% without subtracting mean from it.
Y = [O];

X = zeros(n_max,p);

for i=1p
X(,i) = Y(1:n_max);
Y = [y@);Y];

end

%% make M
Y = [05y];
M = zeros(n_max,p);

for i=1:n_max
M(,:) = Y(1:p);
Y = [y(@);YI;
end

%% calculate phi (Start of Loop)

e the statistic

the test statistic -> must be <=

i=p+10; % we ignore the first ten points as recommended by Prof. Edit Gombay
TestStat = 0;
while i<=n_max && TestStat < CV % this loop is run for each subset of the data k

Xh = X(2:i,:) - mu_0 * ones(i,p);

Zh = y(L:i) - mu_0 * ones(i,1);

phi_k = (Xh*Xh)\(Xh'*Zh);

sigma_k = ( sum( (Zh - (M(L:i,:) - mu_0 * on

Sum_S = cumsum( y(1:i) - mu_0 * ones(i,1) - (

);
D = (Sum_S(end)*ones(i-2,1) - Sum_S(2:end-1))
TestStat = max(D);
i=i+1;
end
end
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es(i,p)) * phi_k).~2) ) /i

(M(2:,:) - mu_0 * ones(i,p)) * phi_k)

J(sqgrt(length(y)*sigma_Kk));



7/5/10 2:42 AM H:\Change Point\MY RESEARCH\Gombay and

Serban ...\SieveBootstrap.m

lofl

% @param: x = Original data set on which we have to
% bs = Number of bootstrap samples that hav
function  [SBSamples] = SieveBootstrap(x,bs)
[templ,temp2,temp3,temp4,temp5, Order] = invest
function is used to estimate optimal AIC Order of t
%0O0rder(2) contains AIC
% Order(3) contains BIC
NumPoints = length(x);

apply bootstrap data.
e to be generated.

1(x,ceil(length(x)/2));
he specified data

O = max(Order(1,2),1); % Selected Order Finally chosen

a=ar(x, O, yw' ); % Step 2 i.e. Fit Yule Walker
error=resid(a,x); % Step 3 -> Get the residuals
centerResidual=error-mean(error);
% Step 5 that is resampling the residuals
bsResiduals = randsample(centerResidual, bs, tr
for i=1:NumPoints-1
bsResiduals = [bsResiduals ; randsample(ce
end
X = sim(a,bsResiduals(1:NumPoints,1));
for j=2:bs
X = [X sim(a,bsResiduals(1:NumPoints,j))];
end

SBSamples = X;

end
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% Step 4 -> Demean the residuals

ue)’;

nterResidual, bs, true)T;

% investl

"4



7/5/10 2:42 AM H:\Change Point\MY RESEARCH\Gombay and Serban 2009\Me..\simARMA.m 1 of1

%%%%%%% %% %% %% %% %% %% % %% % % %% % % %% % % %%
% The following function generates the ARMA(p,q) da
% the specified coefficients.

0%%%%%% %

% @ param: NumPoints - Number of points for the ser ies you want to generate. Try to keep
it greater than p +q

% NumSamples - Number of Samples required

% ARVector - The vector representing AR(p) coefficients.

% MAVector - The moving average component of the process.

% mu - mean of the process to be generated

% sigma - standard deviation of the proces s to be generated

% (optional) df - degrees of freedom for t -distribution, Currently

% setfordf >=4

%@ return: An ARMA(p,q) process with N(0,1) errors . The returned matrix

% will have dimensions [NumPoints x NumSa mples]

% Note: The first 20-30 points will be discarded.

function Y = simARMA(NumPoints, NumSamples, ARVector, MAVec tor, mu, sigma, df)

A = [1 -ARVector];

B=1[

C = [1 MAVector];
D=11];

F=0;

% if nargin >= 7
% randn('seed',seed);
% end

ptsToDiscard = 20; % Initial Number of points that we discard when gen erating randomly

if ((nargin >=7) && (df >=5))

errors = mu*ones(NumPoints + ptsToDiscard,N umSamples) + sigma*trnd(df, NumPoints +
ptsToDiscard,NumSamples);

else

errors = mu*ones(NumPoints + ptsToDiscard,N umSamples) + sigma*randn(NumPoints +
ptsToDiscard,NumSamples);

end

y=filter([1 MAVector],[1 -ARVector],errors);
Y=y( (ptsToDiscard+1):(NumPoints+ptsToDiscard),: );

end

108



Appendix C

Data Sets

C.1 EUR/USD Exchange Rate Data (2002 - 2007)

Data Source: Forex Capital Markets
http://www.FXCM.com
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http://www.FXCM.com

Date EUR/USD Rate Date EUR/USD Rate Date EUR/USD Rate
04-Jan-02 0.8925 13-Sep-02 0.9814 23-May-03 1.1766
11-Jan-02 0.8844 20-Sep-02 0.9806 30-May-03 1.1699
18-Jan-02 0.865 27-Sep-02 0.9789 06-Jun-03 1.1862
25-Jan-02 0.8613 04-Oct-02 0.9864 13-Jun-03 1.1604
01-Feb-02 0.8727 11-Oct-02 0.9717 20-Jun-03 1.1426
08-Feb-02 0.8733 18-Oct-02 0.9762 27-Jun-03 1.1486
15-Feb-02 0.8752 25-Oct-02 0.9965 04-Jul-03 1.1296
22-Feb-02 0.8653 01-Nov-02 1.0128 11-Jul-03 1.1273
01-Mar-02 0.8744 08-Nov-02 1.0092 18-Jul-03 1.1508
08-Mar-02 0.8823 15-Nov-02 0.9969 25-Jul-03 1.126
15-Mar-02 0.8769 22-Nov-02 0.9943 01-Aug-03 1.13
22-Mar-02 0.8713 29-Nov-02 1.0094 08-Aug-03 1.1255
29-Mar-02 0.8787 06-Dec-02 1.0226 15-Aug-03 1.0889
05-Apr-02 0.8798 13-Dec-02 1.0267 22-Aug-03 1.0988
12-Apr-02 0.8908 20-Dec-02 1.0436 29-Aug-03 1.1105
19-Apr-02 0.9013 27-Dec-02 1.0415 05-Sep-03 1.1286
26-Apr-02 0.9159 03-Jan-03 1.0576 12-Sep-03 1.1359
03-May-02 0.9135 10-Jan-03 1.0664 19-Sep-03 1.1477
10-May-02 0.9205 17-Jan-03 1.0827 26-Sep-03 1.1568
17-May-02 0.9207 24-Jan-03 1.0763 03-Oct-03 1.1801
24-May-02 0.9328 31-Jan-03 1.0826 10-Oct-03 1.1672
31-May-02 0.9432 07-Feb-03 1.0791 17-Oct-03 1.1794
07-Jun-02 0.9456 14-Feb-03 1.0763 24-Oct-03 1.158
14-Jun-02 0.9715 21-Feb-03 1.0798 31-Oct-03 1.1533
21-Jun-02 0.9906 28-Feb-03 1.1003 07-Nov-03 1.178
28-Jun-02 0.9729 07-Mar-03 1.074 14-Nov-03 1.1915
05-Jul-02 0.991 14-Mar-03 1.0522 21-Nov-03 1.1989
12-Jul-02 1.0144 21-Mar-03 1.0779 28-Nov-03 1.2164
19-Jul-02 0.9869 28-Mar-03 1.0729 05-Dec-03 1.2292
26-Jul-02 0.9864 04-Apr-03 1.0751 12-Dec-03 1.2376
02-Aug-02 0.9698 11-Apr-03 1.088 19-Dec-03 1.2426
09-Aug-02 0.9844 18-Apr-03 1.1034 26-Dec-03 1.2591
16-Aug-02 0.9724 25-Apr-03 1.1227 02-Jan-04 1.2841
23-Aug-02 0.9824 02-May-03 1.1491 09-Jan-04 1.2371
30-Aug-02 0.9818 09-May-03 1.1572 16-Jan-04 1.2586
06-Sep-02 0.9716 16-May-03 1.1827 23-Jan-04 1.2473
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Date EUR/USD Rate Date EUR/USD Rate Date EUR/USD Rate
30-Jan-04 1.2701 08-Oct-04 1.2474 17-Jun-05 1.2101
06-Feb-04 1.2739 15-Oct-04 1.267 24-Jun-05 1.1947
13-Feb-04 1.2522 22-Oct-04 1.2796 01-Jul-05 1.1958
20-Feb-04 1.2493 29-Oct-04 1.2969 08-Jul-05 1.2041
27-Feb-04 1.2373 05-Nov-04 1.2976 15-Jul-05 1.206
05-Mar-04 1.222 12-Nov-04 1.3024 22-Jul-05 1.2123
12-Mar-04 1.2274 19-Nov-04 1.3293 29-Jul-05 1.235
19-Mar-04 1.2124 26-Nov-04 1.3455 05-Aug-05 1.2435
26-Mar-04 1.2134 03-Dec-04 1.3224 12-Aug-05 1.2163
02-Apr-04 1.2086 10-Dec-04 1.3285 19-Aug-05 1.2283
09-Apr-04 1.1989 17-Dec-04 1.353 26-Aug-05 1.2543
16-Apr-04 1.1835 24-Dec-04 1.3531 02-Sep-05 1.2411
23-Apr-04 1.198 31-Dec-04 1.3043 09-Sep-05 1.2232
30-Apr-04 1.1886 07-Jan-05 1.3102 16-Sep-05 1.2046
07-May-04 1.1879 14-Jan-05 1.3044 23-Sep-05 1.2018
14-May-04 1.1993 21-Jan-05 1.3045 30-Sep-05 1.2123
21-May-04 1.2212 28-Jan-05 1.2872 07-Oct-05 1.2083
28-May-04 1.2287 04-Feb-05 1.2866 14-Oct-05 1.195
04-Jun-04 1.2018 11-Feb-05 1.3067 21-Oct-05 1.2067
11-Jun-04 1.2139 18-Feb-05 1.3241 28-Oct-05 1.1822
18-Jun-04 1.2158 25-Feb-05 1.324 04-Nov-05 1.1727
25-Jun-04 1.232 04-Mar-05 1.3449 11-Nov-05 1.1765
02-Jul-04 1.2411 11-Mar-05 1.3312 18-Nov-05 1.1724
09-Jul-04 1.2447 18-Mar-05 1.2956 25-Nov-05 1.1718
16-Jul-04 1.2099 25-Mar-05 1.2907 02-Dec-05 1.1814
23-Jul-04 1.2023 01-Apr-05 1.2927 09-Dec-05 1.2013
30-Jul-04 1.2287 08-Apr-05 1.2917 16-Dec-05 1.1873
06-Aug-04 1.237 15-Apr-05 1.3063 23-Dec-05 1.1838
13-Aug-04 1.231 22-Apr-05 1.2868 30-Dec-05 1.2152
20-Aug-04 1.2009 29-Apr-05 1.2822 06-Jan-06 1.2131
27-Aug-04 1.206 06-May-05 1.2621 13-Jan-06 1.2136
03-Sep-04 1.2265 13-May-05 1.2559 20-Jan-06 1.21
10-Sep-04 1.218 20-May-05 1.2579 27-Jan-06 1.2019
17-Sep-04 1.226 27-May-05 1.2222 03-Feb-06 1.1894
24-Sep-04 1.241 03-Jun-05 1.2119 10-Feb-06 1.1932
01-Oct-04 1.2407 10-Jun-05 1.2275 17-Feb-06 1.1867
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Date ‘ EUR/USD Rate ‘ ‘ Date ‘ EUR/USD Rate ‘ ‘ Date ‘ EUR/USD Rate
24-Feb-06 1.2035 03-Nov-06 1.2845 13-Jul-07 1.382
03-Mar-06 1.1915 10-Nov-06 1.2824 20-Jul-07 1.3636
10-Mar-06 1.2192 17-Nov-06 1.3094 27-Jul-07 1.3785
17-Mar-06 1.2035 24-Nov-06 1.3335 03-Aug-07 1.3695
24-Mar-06 1.2117 01-Dec-06 1.3202 10-Aug-07 1.3488
31-Mar-06 1.21 08-Dec-06 1.3082 17-Aug-07 1.3666
07-Apr-06 1.2111 15-Dec-06 1.314 24-Aug-07 1.3621
14-Apr-06 1.2346 22-Dec-06 1.3201 31-Aug-07 1.3767
21-Apr-06 1.2614 29-Dec-06 1.3002 07-Sep-07 1.3876
28-Apr-06 1.2727 05-Jan-07 1.2915 14-Sep-07 1.4089
05-May-06 1.2927 12-Jan-07 1.296 21-Sep-07 1.4258
12-May-06 1.2772 19-Jan-07 1.2913 28-Sep-07 1.4133
19-May-06 1.2723 26-Jan-07 1.2964 05-Oct-07 1.4176
26-May-06 1.292 02-Feb-07 1.3005 12-Oct-07 1.4295
02-Jun-06 1.2639 09-Feb-07 1.3138 19-Oct-07 1.4389
09-Jun-06 1.2638 16-Feb-07 1.3164 26-Oct-07 1.4512
16-Jun-06 1.2509 23-Feb-07 1.3191 02-Nov-07 1.4668
23-Jun-06 1.2789 02-Mar-07 1.3113 09-Nov-07 1.4647
30-Jun-06 1.2814 09-Mar-07 1.3312 16-Nov-07 1.4836
07-Jul-06 1.2645 16-Mar-07 1.3286 23-Nov-07 1.4629
14-Jul-06 1.2694 23-Mar-07 1.3357 30-Nov-07 1.4653
21-Jul-06 1.2747 30-Mar-07 1.3373 07-Dec-07 1.4422
28-Jul-06 1.2874 06-Apr-07 1.353 14-Dec-07 1.4356
04-Aug-06 1.2729 13-Apr-07 1.3592 21-Dec-07 1.4714
11-Aug-06 1.2828 20-Apr-07 1.3648
18-Aug-06 1.2755 27-Apr-07 1.3595
25-Aug-06 1.2836 04-May-07 1.3531
01-Sep-06 1.2676 11-May-07 1.351
08-Sep-06 1.2655 18-May-07 1.3445
15-Sep-06 1.2785 25-May-07 1.3445
22-Sep-06 1.2678 01-Jun-07 1.3367
29-Sep-06 1.2592 08-Jun-07 1.3379
06-Oct-06 1.2507 15-Jun-07 1.3464
13-Oct-06 1.2617 22-Jun-07 1.3534
20-Oct-06 1.2733 29-Jun-07 1.3623
27-Oct-06 1.2715 06-Jul-07 1.3786
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C.2 Quarterly U.S. Bankruptcy Filings

Source: American Bankruptcy Institute

http: //www.abiworld.org/
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http://www.abiworld.org/

Date | No. of Bankruptcies Date | No. of Bankruptcies
Mar-94 13858 Jun-02 9695
Jun-94 13617 Sep-02 9433
Sep-94 12878 Dec-02 9500
Dec-94 12021 Mar-03 8814
Mar-95 13123 Jun-03 9331
Jun-95 12216 Sep-03 8446
Sep-95 12648 Dec-03 8294
Dec-95 12891 Mar-04 10566
Mar-96 13388 Jun-04 8249
Jun-96 13992 Sep-04 7574
Sep-96 13198 Dec-04 7778
Dec-96 12887 Mar-05 8063
Mar-97 13831 Jun-05 8736
Jun-97 13991 Sep-05 9476
Sep-97 13456 Dec-05 12798
Dec-97 12653 Mar-06 4086
Mar-98 12410 Jun-06 4858
Jun-98 11552 Sep-06 5284
Sep-98 10346 Dec-06 5586
Dec-98 9888 Mar-07 6280
Mar-99 9180 Jun-07 6705
Jun-99 10378 Sep-07 7167
Sep-99 8986 Dec-07 7985
Dec-99 9020 Mar-08 8713
Mar-00 9456 Jun-08 9743
Jun-00 9243 Sep-08 11504
Sep-00 8211 Dec-08 12901
Dec-00 8413 Mar-09 14319
Mar-01 10005 Jun-09 16014
Jun-01 10330 Sep-09 15177
Sep-01 9537 Dec-09 15020
Dec-01 10013 Mar-10 14607
Mar-02 9775
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