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Abstract

This thesis consists of three essays on commodity-linked investment decisions

under uncertainty. Specifically, the first essay investigates whether a regime switch-

ing model of stochastic lumber prices is a better model for the analysis of optimal

harvesting problems in forestry than a more traditional single regime model. Prices

of lumber derivatives are used to calibrate a regime switching model, with each of

two regimes characterized by a different mean reverting process. A single regime,

mean reverting process is also calibrated. The value of a representative stand of

trees and optimal harvesting prices are determined by specifying a Hamilton-Jacobi-

Bellman Variational Inequality, which is solved for both pricing models using a fully

implicit finite difference approach. The regime switching model is found to more

closely match the behaviour of futures prices than the single regime model. In

addition, the optimal harvesting model indicates significant differences in terms of

land value and optimal harvest thresholds between the regime switching and single

regime models.

The second essay investigates whether convenience yield is an important fac-

tor in determining optimal decisions for a forestry investment. The Kalman filter

method is used to estimate three different models of lumber prices: a mean revert-

ing model, a simple geometric Brownian motion and the two-factor price model due

to Schwartz (1997). In the latter model there are two correlated stochastic factors:

spot price and convenience yield. The two-factor model is shown to provide a rea-

sonable fit of the term structure of lumber futures prices. The impact of convenience

yield on a forestry investment decision is examined using the Schwartz (1997) long-

term model which transforms the two-factor price model into a single factor model

with a composite price. Using the long-term model an optimal harvesting problem

is analyzed, which requires the numerical solution of a Hamilton-Jacobi-Bellman
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equation. I compare the results for the long-term model to those from single-factor

mean reverting and geometric Brownian motion models. The inclusion of conve-

nience yield through the long-term model is found to have a significant impact on

land value and optimal harvesting decisions.

The third essay investigates the dynamics of recent crude oil prices by compar-

ing and contrasting three different stochastic price models, which are a two-state

regime switching model, a two-factor model analyzed in Schwartz (1997) and a two-

factor model examined in Schwartz and Smith (2000). Prices of long-term crude

oil futures contracts are used to calibrate and estimate the model parameters. The

performances of the two-factor models are comparable in terms of fitting the market

prices of the long-term oil futures contracts and more closely match the behavior

of oil futures prices than the regime switching model.
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Chapter 1

Introduction

The past several decades have witnessed an increased interest by academics, invest-

ment professionals and others in commodity-related risk management and asset

valuation. Markets for major commodities, such as lumber, crude oil and electric-

ity, tend to be highly volatile with prices determined in global markets. It has

long been recognized that a significant misallocation of resources can occur when

management decisions are taken without reference to market volatility. An im-

portant research question raised is how best to characterize this uncertainty and

what impact different assumptions about the nature of this uncertainty have on

commodity-linked investment valuation.

The main purpose of this dissertation is to investigate the valuation of commodity-

related investments and the derivation of the appropriate decision making rules. A

key ingredient to valuing a commodity linked investment is the choice of a stochas-

tic model for the commodity’s price. Using the principle of equivalent risk-neutral

valuation, the price process can be expressed in the appropriate risk neutral mea-

sure which is termed a Q-measure (see fu Huang and Litzenberger (1990)). One

major component of this research is to investigate several model specifications un-

der the Q-measure for both lumber and crude oil prices and examine the impacts

1



of different price models on investment decisions and valuations. In particular, all

the models describing the behavior of commodity price processes examined in the

dissertation are expressed in the risk-neutral world and the corresponding model

parameters are calibrated or estimated using commodity derivatives, such as com-

modity futures or commodity options. Since commodity derivatives are actively

traded in the market and play an important role for commodity-related risk man-

agement, another motivation of this dissertation is to use the informational content

of lumber and oil derivatives prices in model calibration or estimation.

In devising better models for commodity prices we are faced with a tradeoff

between increased realism through the addition of more stochastic factors, jumps,

etc., and the added complexity and difficulty of solving for the value of related

contingent claims. The focus of this dissertation is to find an approach to modeling

commodity prices which, while adequately rich, still allows for a relatively simple

solution of the related contingent claims using standard methods. In other words,

the research seeks to find parsimonious models which can capture the main proper-

ties of commodity prices and are easily incorporated into the real option valuation

problem.

One of my main interests in the dissertation is the analysis of forest industry

investments. Forest products, including logs, lumber, and paper, are traded world-

wide and Canada is a major player in this market, accounting for 14% of the value

of world forest product exports in 2006.1 Forest products are a significant com-

ponent of Canada’s balance of trade, with the corresponding exports amounting

to $29 billion (Canadian) in 2006, which was 5.4% of total exports of goods and

services. Note that this is down from a peak of $43 billion in 2000. The valuation

of a forested land is an active research area in the academic literature. A more

than thirty-year-long strand of this literature emphasizes the importance of valu-

1Source: FAOstat database, Food and Agricultural Organization of the United Nations,
http://faostat.fao.org/site/381/DesktopDefault.aspx?PageID=381
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ing managerial flexibility in the context of irreversible harvesting decisions when

forest product prices are volatile relative to harvesting costs.2 Furthermore, there

has been a trend over the last two decades to view commercial timber lands as a

suitable asset to diversify the portfolios of large investors. Institutional investors

in the United States have significantly increased their holdings of timberlands, giv-

ing an added motivation for a better understanding of timber price dynamics and

investment valuation.3 An ongoing challenge is how best to model the dynamics

of timber prices in determining optimal harvesting strategies and in estimating the

value of forested lands. The model chosen to describe timber prices can have a

significant effect on optimal harvesting decisions and land valuation. The issue is

of importance to forest management, whether on publicly or privately owned land.

Therefore, chapter II and III of my dissertation examine the performances of several

promising stochastic models for describing lumber price dynamics and the effects of

different model specifications on forestry investment decisions and land valuation.

In both of chapter II and chapter III, I use calibrated or estimated lumber

price models to analyze a forestry investment problem. Harvesting a stand of trees

generates revenue to the owner from log sales, but also incurs several costs such as

harvesting costs and the loss of any additional timber volume that would accrue

if the trees were allowed to grow for more periods. Given the stochastic prices, if

the harvest is delayed until next period, the timber price may be higher or lower

than in the current period. Holding the right to harvest, the land owner can delay

cutting the trees until the prices are high enough to generate positive net revenue.

In general, the opportunity to harvest a stand of trees may be treated as a real

option, similar to an American call option, which can be exercised at any time

before the expiration date. The rationale behind using real options to model real

asset investment is that in the context of market uncertainty, in particular asset

2Hool (1966); Lembersky and Johnson (1975) are examples of some of the earlier literature.
3See Global Institute of Sustainable Forestry (2002) and Caulfield and Newman (1999) for a

discussion of this shift in ownership.
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price uncertainty, there is some value in having the possibility to delay the decision.

The real options approach explicitly incorporates such managerial flexibility. In

contrast a simple expected Net Present Value (NPV) approach, typically ignores

the importance of options embedded in the investment decision which leads to a

non-optimal solution.

Each of chapter II and chapter III begins with the calibration or estimation of

specific stochastic lumber price models and the corresponding model fit is analyzed.

In the second part of each chapter, the calibrated or estimated lumber price models

are used to solve a representative optimal tree harvesting problem. Specifically, for

Chapter II, two model specifications, a regime switching mean reverting model and

a traditional one-factor mean reverting model, are calibrated using both lumber

futures and lumber options. These models are compared in terms of fitting the

market data for lumber derivatives. In the second part of this chapter, an optimal

tree harvesting problem over infinite time is examined. For Chapter III, I investigate

the impact on a forestry investment decision of modeling convenience yield. Three

different stochastic models of lumber prices are estimated and compared: a mean

reverting model, a geometric Brownian motion and the two-factor model analyzed

in Schwartz (1997). The impact of convenience yield on an optimal tree harvesting

problem is examined using the Schwartz (1998) long-term model which transforms

the two-factor price model into a single factor model with a composite price.

In Chapter II, I apply a regime switching model to lumber prices and investigate

whether it represents an improvement over a single regime model that has been

previously used in the forestry literature. This task is motivated by two factors.

First, a regime switching model first proposed by Hamilton (1989) appears to be

a promising model for commodity prices. For example, Deng (2000), de Jong

(2005), Chen and Forsyth (2008) all examine empirical models of regime switching

in commodity prices (electricity or natural gas prices) and have shown promising

results for their empirical applications. Second, the lumber industry is characterized
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by periods of boom and bust which might point to the existence of two regimes.

The reason for using the Schwartz (1997) two-factor model in Chapter III for de-

scribing lumber prices is that for storable commodities and commodities that serve

as inputs to production like lumber and oil, convenience yield plays an important

role in the price formation. Convenience yield is said to arise from the benefit that

producers obtain from physically holding inventories. This represents a benefit not

available to individuals holding a futures or forward contract. Since convenience

yield is very much like the dividend obtained from holding a company’s stock, it

also helps to explain the term structure of commodity futures prices. The term

structure of futures prices is defined as the relationship between the spot price and

the corresponding futures prices for any delivery date. It conveys useful information

for hedging or investment decisions, because it synthesizes the information available

in the market and reflects the operators’ expectations concerning the future. The

futures price can be greater or less than the commodity spot price, depending on

the relationship between the (net) convenience yield4 and the risk-free interest rate.

This is explained by the cost of carry pricing model in which the forward/futures

price is expressed as a function of the spot price and the cost of carry.5 It is impor-

tant to model convenience yield in order to make use of the valuable information

conveyed by the commodity futures prices and reproduce the term structure of

futures prices as accurately as possible.

In both Chapters II and III, the optimal choice of harvesting date for an even-

aged stand of trees and the value of the option to harvest are modeled as a comple-

mentarity problem. The corresponding Hamilton-Jacobi-Bellman (HJB) equation

characterizing the value of the option to harvest a stand is solved numerically using

a combination of the fully implicit finite difference method, the semi-Lagarangian

4Net convenience yield is defined as the benefit of holding inventory minus physical storage
costs. It is negative if the storage expense is higher. For simplicity, convenience yield mentioned
in the rest of this document refers to net convenience yield.

5Cost of carry is defined as the physical storage cost plus the forgone interest. See Pindyck
(2001)
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method and the penalty method, since there is no analytical solution to this type

of tree cutting problem. The value of the stand of trees and critical prices at which

harvesting would be optimal are examined for various cases.

Energy prices and economic growth have been closely linked for decades. The

development of energy derivatives markets has increased the ability of investors

to hedge energy risk. After a period of relative stability in the 1990’s, the post

2003 period has shown a marked change. Specifically, from 2003 until mid-2008,

the world crude oil price rose from about $35/barrel to over $140/barrel. Then

in September 2008 with the financial crisis initiated by the collapse of Lehman

Brothers, the world oil price decreased sharply to around $40/barrel followed by

another sharp increase in 2009. In chapter IV, this thesis attempts to model recent

patterns in world oil prices. A regime switching model based on the Schwartz (1997)

single-factor model is proposed and its performance in terms of explaining the term

structure of recent oil futures prices is compared with the widely used two-factor

models proposed and analyzed in Schwartz (1997) and Schwartz and Smith (2000).

The choice of these three specifications for modeling recent crude oil price move-

ments is motivated by the following considerations. First of all, Schwartz (1997)

compares and contrasts one, two and three-factor models for explaining commod-

ity prices including crude oil and shows that both two and three-factor models6

are able to explain the term structure of commodity futures prices and generate

lower estimation errors compared with a one-factor model. The regime switching

model proposed in this chapter is based on the one-factor model applied in Schwartz

(1997). By allowing the parameters in the one-factor model to be regime dependent,

I wish to determine whether this revised one-factor model is rich enough to capture

the main properties of the term structure of oil futures prices compared with the

multi-factor models analyzed in Schwartz (1997). Secondly, the two-factor models

6Since both two-factor and three-factor models analyzed in Schwartz (1997) are empirically
similar (see Schwartz (1998)), in this paper, I focus on the two-factor model which represents a
considerable computational advantage in terms of oil-related investment valuation.
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analyzed in Schwartz (1997) and Schwartz and Smith (2000) have been successfully

used to model crude oil prices in the literature and some oil-related investments are

valued based on these models. Given the very different oil price dynamics shown in

recent years, it is worth exploring whether these two-factor models can still explain

the main features of the recent oil price process. Furthermore, due to the lack of

long-term crude oil futures data, Schwartz (1997) uses Enron long-term forward

data. Since futures contracts are more regulated and standard than forward con-

tracts, in this thesis, I use the available long-term7 futures data to further explore

the performance of both two-factor models.

In summary this dissertation contributes to our understanding of the modeling

of commodity prices making use of the information contained in the prices of com-

modity derivatives, especially commodity futures prices. The thesis also contributes

to our understanding of the valuation of commodity linked investments and the im-

pact of key variables, such as volatility and convenience yield, on optimal decisions.

This thesis is the first work to use a regime switching model for lumber prices and

examine the impact on optimal decisions in forestry. It is also the first to apply a

two-factor model of stochastic convenience yield and study its impact on a tree har-

vesting decision. Further, the thesis makes some methodological contributions in

the implementation of real options models for natural resource investments. These

include:

• Implementing numerical schemes for solving an optimal tree harvesting prob-

lem assuming a regime switching stochastic price process.

• Demonstrating the calibration, using derivatives price data, of regime switch-

ing price models for lumber prices and oil prices.

The main results of the thesis are briefly summarized below.

7The longest maturity of the chosen futures and forward contracts examined in Schwartz
(1997) are less than 2 years and 9 years respectively. The longest maturity of the chosen oil
futures contract in this chapter is up to 6 year.
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• Regime switching models show promise as parsimonious models able to de-

scribe the dynamics of lumber prices. In an empirical example, price is shown

to switch between two regimes, with each regime composed of a different

mean reverting price process. The regime switching model generates reason-

able values for the option to harvest a hypothetical stand of trees. The value

of the stand and optimal harvesting prices are shown to differ depending on

the regime that price currently resides in. The estimated stand values and op-

timal harvesting prices are significantly different than those calculated using

a traditional single regime model.

• Convenience yield is found to play an important role in lumber price dynamics.

A two factor price model with stochastic convenience yield and spot price is

found to fit the lumber futures curve reasonably well. In the empirical tree

harvesting example, the inclusion of convenience yield increases significantly

the minimum stand age at which harvesting should occur. The estimated

value of the stand of trees is also affected. It follows that forest owners and

investors should take the dynamics of the convenience yield into account when

making the forestry-related investment decisions.

• Multi-factor stochastic price models are found to be able to match oil futures

prices reasonably well even given the increased volatility in world oil markets

since 2003. I conclude that these models are good candidates for use in valuing

oil linked investments.
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Chapter 2

Regime switching in stochastic

models of commodity prices: an

application to an optimal tree

harvesting problem

2.1 Introduction

The modelling of optimal tree harvesting and the valuation of land devoted to com-

mercial timber harvesting is an active research area in the academic literature. An

ongoing challenge is how best to model the dynamics of timber prices in deter-

mining optimal harvesting strategies and in estimating the value of forested lands.

Over the past two decades some researchers have modeled lumber price as an ex-

ogenous factor described by a stochastic differential equation (see Thomson (1992);

Plantinga (1998); Morck et al. (1989); Clarke and Reed (1989) for example). Others

have used stand value (price of wood times quantity of wood), as a stochastic factor,
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abstracting from physical tree growth, such as in Alvarez and Koskela (2007) and

Alvarez and Koskela (2005). The model chosen to describe timber prices can have

a significant effect on optimal harvesting decisions and land valuation. The issue

is therefore of importance to forest management, whether on publicly or privately

owned land. There has been a trend over the last two decades to view commercial

timber lands as a suitable asset to diversify the portfolios of large investors. Insti-

tutional investors in the United States have significantly increased their holdings of

timberlands, giving an added motivation for a better understanding of timber price

dynamics and investment valuation.1

Several specifications have been proposed in the literature for modeling stochas-

tic lumber prices, including geometric Brownian motion (GBM), mean reversion

and jump processes. A number of researchers have solved optimal tree harvesting

problems analytically, assuming prices follow GBM.2 Some researchers have found

that mean reversion rather than GBM provides a better characterization of the

dynamics of the lumber prices (Brazee et al. (1999)). For commodities in general,

it has been argued that mean reversion in price makes sense intuitively since any

significant upturn in price will bring on additional supplies. Unfortunately it is

difficult to conclude definitively whether the price of any particular commodity is

stationary or not. As is noted in Insley and Rollins (2005) many different statistical

tests exist, but none has been shown to be uniformly most powerful. In optimal tree

harvesting problems, the assumption of a price process other than GBM generally

requires a numerical solution. This can present significant challenges particularly if

the researcher chooses to model the growing forest stand in a realistic fashion over

multiple rotations or cutting cycles.

An added complication is that for many commodities, price appears to be char-

acterized by discrete jumps. A recent insight in the literature suggests that instead

1See Global Institute of Sustainable Forestry (2002) and Caulfield and Newman (1999) for a
discussion of this shift in ownership.

2Examples are Clarke and Reed (1989) and Yin and Newman (1997).

10



of modeling jumps, we may consider regime switching models, initially proposed

by Hamilton (1989), to better capture the main characteristics of some commodity

prices. Using a regime switching model, the observed stochastic behavior of a spe-

cific time series is assumed to be comprised of several separate regimes or states.

For each regime or state, one can define a separate underlying stochastic process.

The switching mechanism between each regime is typically assumed to be governed

by an unknown random variable that follows a Markov chain. Various factors may

contribute to the random shift between regimes, such as changes in government

policies and weather conditions.

In this chapter I investigate whether a regime switching model is a good alter-

native for modeling stochastic timber prices. For simplicity I assume the existence

of two states or regimes. In line with Chen and Forsyth (2008), I calibrate a regime

switching model with timber price as the single stochastic factor which follows a

different mean reverting process in each of two regimes. I compare this model

(denoted the RSMR model) with a single regime mean reverting model (denoted

the traditional mean reverting, or TMR, model) which has been used previously

in the literature. For parameter calibration, these two models are expressed in the

risk-neutral world and the corresponding parameters are calibrated using the prices

of traded lumber derivatives, i.e. lumber futures and options on lumber futures.

A benefit of calibrating model parameters in this way is that the parameters ob-

tained are risk adjusted so that a forest investment can be valued using the risk-free

interest rate.

In the second part of this chapter I use the calibrated RSMR and TMR models

to solve an optimal harvesting problem. The optimal choice of harvesting date for

an even-aged stand of trees and the value of the option to harvest are modeled

as a Hamilton-Jacobi-Bellman variational inequality which is solved numerically

using a fully implicit finite difference method. The approach is similar to that used

in Insley and Lei (2007), except that the model must accommodate the different
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regimes. I use the same cost and timber yield estimates as in Insley and Lei (2007)

and hence I am able to compare my results with theirs.3

This chapter makes a methodological contribution to the literature. It demon-

strates the numerical solution of a dynamic optimization problem in a natural

resources context under the assumption of a regime switching stochastic state vari-

able. In the future it is hoped that this methodology may be usefully applied to

other types of natural resource investment problems, which are often sufficiently

complex that closed-form solutions are unavailable. This chapter also makes an em-

pirical contribution in the investigation of the dynamics of lumber prices. To my

knowledge the parameterization of risk-adjusted lumber price models using lumber

derivatives prices has not been done previously in the literature. Although I am

limited by the short maturity dates of traded lumber futures, I find that the regime

switching model shows promise as a parsimonious model of timber prices that can

be incorporated into problems of forestry investment valuation using standard nu-

merical solutions techniques. In the concluding section I discuss how this and other

limitations of the current chapter point toward avenues for future research.

The remainder of the chapter will be organized as follows. Section 2.2 presents

a brief literature review. Section 2.3 provides descriptive statistics and preliminary

tests on a lumber price time series. Section 2.4 specifies the lumber price models

that will be used in our analysis and details the methodology for calibrating the

parameters of these models. Section 2.5 provides the results of the calibration.

Section 2.6 specifies the forestry investment problem and its numerical solution.

Section 2.7 uses the regime switching and single regime price models to solve for

the optimal harvesting time and land value in a tree harvesting problem. Section

2.8 provides some concluding comments.

3In Insley and Lei (2007) parameter estimates of the price process were obtained by applying
ordinary least squares on historical lumber price data only.
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2.2 Modeling commodity prices: An overview of

selected literature

Stochastic models of commodity prices play a central role for commodity-related

risk management and asset valuation. As noted in Schwartz (1997), earlier re-

search into valuing investments contingent on stochastic commodity prices generally

adopted an assumption of geometric Brownian motion (GBM), dP = aPdt+ bPdz,

where P denotes commodity prices, a and b are constant, dz is the increment of

a standard Winner process. This simple process allows the procedures developed

for valuing financial options to be easily extended to valuing commodity based

contingent claims.

Schwartz (1997) and Baker et al. (1998), among others, have emphasized the

inadequacy of using GBM to model commodity prices. Under GBM the expected

price level grows exponentially without bound. In contrast there is evidence that

the real prices of many natural resource-based commodities have shown little up-

ward trend. This is explained by the presence of substitutes as well as improvements

in technology to harvest or extract a resource. In addition if a commodity’s spot

price is assumed to follow GBM, it can be demonstrated using Ito’s lemma that

the futures price will also follow GBM and both spot and futures prices will have

the same constant volatility, (Geman, 2005). However, for most commodities, the

volatility of futures prices decreases with maturity, so that the single factor log-

normal model such as GBM is not consistent with reality (Pilipovic, 2007, page

233-234). In the literature on optimal tree harvesting, early papers adopting the

GBM assumption include Reed and Clarke (1990), Clarke and Reed (1989), Yin

and Newman (1995), and Morck et al. (1989).

It is not unreasonable to expect that the workings of supply and demand will

result in commodity prices that exhibit some sort of mean reversion. There is also

empirical research that supports this claim. For example Bessembinder et al. (1995)

13



find support for mean-reversion in commodity prices by comparing the sensitivity

of long-maturity futures prices to changes in spot prices. One possible choice of

mean reverting model is a common variation of Ornstein-Uhlenbeck process:

dP = α(K − P )dt+ σPdz. (2.1)

α is a constant and referred to as the speed of mean reversion. K represents the

(constant) long run equilibrium price that P will tend towards. σ is a constant and

dz is the increment of a Wiener process. The conditional variance of P depends on

the level of P , thereby preventing P from becoming negative.

This process is adopted in Insley and Rollins (2005) and Insley and Lei (2007)

to represent lumber prices in an optimal tree harvesting problem. Other opti-

mal harvesting papers to adopt variations on this mean reverting process include

Plantinga (1998) and Gong (1999). Mean reverting processes have also been used

in modeling prices for oil, electricity, copper, and other minerals (see Cortazar and

Schwartz (1994), Dixit and Pindyck (1994), Pilipovic (2007), Smith and McCardle

(1998) and Lucia and Schwartz (2002) for example).

The mean reverting model of Equation (2.1), while an improvement over GBM,

is not entirely satisfactory. It can be shown that under this model the implied

volatility of futures prices decreases with maturity, which is a desirable property

for modelling commodity prices. However volatility tends to zero for very long

maturities, which is not consistent with what is observed in practice. In addition

this model presumes a constant long run equilibrium price (K), when in reality K

may be better characterized as a stochastic variable. Schwartz and Smith (2000)

propose a two-factor model in which the equilibrium price level is assumed to evolve

according to GBM and the short-term deviations are expected to revert toward

zero following an Ornstein-Uhlenbeck process. In another variation, a commodity’s

convenience yield is modelled as additional stochastic factor which is assumed to
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follow a MR process. Schwartz (1997) also develops a three-factor model with

stochastic price, convenience yield and interest rate. Alternative versions of multi-

factor models can be derived through variation of a number of dimensions. However

the more factors incorporated into the model, the more complicated is the solution

of the resulting partial differential equation that describes the value of contingent

claims on the commodity.

A simple mean reverting model of price also ignores the presence of jumps.

Saphores et al. (2002) find evidence of jumps in Pacific North West stumpage

prices in the U.S. and demonstrate at the stand level that ignoring jumps can lead

to significantly suboptimal harvesting decisions for old growth timber.

In devising better models for commodity prices we are faced with a tradeoff

between increased realism through the addition of more stochastic factors, jumps,

etc., and the added complexity and difficulty of solving for the value of related

contingent claims. The optimal tree harvesting problem has the further complica-

tion that the asset (a stand of trees) is growing and being harvested over multiple

rotations. The timing of harvest and hence the age of the stand depend on price,

so that stand age is also stochastic. It is desirable to find an approach to modeling

timber prices which, while adequately rich, still allows for the solution of the related

contingent claim using standard approaches. It is towards this end that I investi-

gate a regime switching model. The regime switching model with two regimes can

readily be solved with a finite difference numerical approach.

Jumps in commodity prices are often driven by discrete events such as weather,

disease, or economic booms and busts which may persist for months or years.

Therefore the typical continuous time models with isolated and independent jumps

may not provide a good description of stochastic commodity prices. The Markov

regime switching (RS) model first proposed by Hamilton (1989) is a promising

model for commodity prices. In a RS model, spot prices can jump discontinuously

between different states governed by state probabilities and model parameters. The
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RS model can be used to capture the shifts between “abnormal” and “normal”

equilibrium states of supply and demand for a commodity.

Versions of the RS model have previously been applied to the investigation of

business cycle asymmetry in Hamilton (1989) and Lam (1990), heteroscedasticity

in time series of asset prices in Schwert (1996), the effects of oil prices on U.S. GDP

growth in Raymond and Rich (1997). RS specifications for modeling stochastic

commodity prices are studied in Deng (2000) and de Jong (2005) for electricity

prices and in Chen and Forsyth (2008) for natural gas prices. Deng (2000) shows

that by incorporating jumps and regime switching in modeling electricity prices, as

opposed to the commonly used GBM model, the values of short-maturity out-of-the-

money options approximate market prices very well. de Jong (2005) indicates that

RS models are better able to capture the market dynamics than a GARCH(1,1) or

Poisson jump model. Chen and Forsyth (2008) show that the RS model outperforms

traditional one-factor MR model by solving the gas storage pricing problem using

numerical techniques.

In this chapter, I examine the application of a RS model to lumber prices to

investigate whether it represents an improvement over a single regime model that

has been used previously in the forestry literature. I will use the prices of lumber

derivatives to calibrate the parameters of the price process in each of two regimes,

and compare with the results of assuming a single regime. Allowing for two regimes

may be thought of as a generalization of the more restrictive one regime case. The

two regimes may be seen as representing two distinct sets of parameter values,

perhaps reflecting good and bad times, in which the volatility, long run equilibrium

price level and speed of mean reversion are all able to change. It is hoped that the

two regimes may be a rich enough description of timber prices so that the addition

of other stochastic factors is unnecessary.
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2.3 A first look at lumber markets and prices

Forest products, including logs, lumber, and paper, are traded worldwide and

Canada is a major player in this market, accounting for 14% of the value of world

forest product exports in 2006.4 Canada’s forest product exports are mainly des-

tined for the United States (over 75% went to the U.S. in 2006) and Canada is the

source of over 80% of U.S. lumber imports.5

Forest product prices in North America are affected by swings in housing starts

and other demand sources, supply factors such as fire and pests that plague forests

from time to time, regulatory changes and by the increased integration of forest

product markets worldwide. In addition, forest operations in Canada have been

severely affected by on-going trade disputes between Canada and the U.S. Forest

product prices are almost all quoted in U.S. dollars, which is an added source

of volatility for Canadian forest product producers who receive revenue in U.S.

dollars but pay silviculture and harvesting costs in Canadian dollars. Participants in

forest product markets can hedge some risks by buying or selling futures contracts.

Lumber futures contracts with expiry dates for up to one year in the future have

been traded on the Chicago Mercantile Exchange (CME) since 1969.

Real weekly spot prices for Canadian lumber are shown in Figure 2.1. Softwood

lumber is the underlying commodity of the lumber futures traded at the CME.

Periods of boom and bust are evident in the diagram, with the especially difficult

time in the industry clearly apparent from mid-2004 onward. This reflects declining

lumber prices in the United States as well as the appreciation of the Canadian dollar

which rose from 0.772 $U.S./$Cdn in January 2004 to 0.998 $U.S./$Cdn in January

2008. Descriptive statistics for the lumber price time series and its corresponding

4Source: FAOstat database, Food and Agricultural Organization of the United Nations,
http://faostat.fao.org/site/381/DesktopDefault.aspx?PageID=381

5Source: Random Lengths, “Yardstick” and Canada’s Forests, Statistical Data, Natural Re-
sources Canada, http://canadaforests.nrcan.gc.ca/statsprofileCanada (retrieved May 4, 2008).
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Figure 2.1: Real prices of softwood lumber, Toronto, Ontario. Weekly
data from January 6th, 1995 to April 25th, 2008, $Cdn./MBF, (MBF ≡
thousand board feet). Nominal prices deflated by the Canadian Consumer
Price Index, base year = 2005. Source: Random Lengths.
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Item Max Min Mean Std. Dev. Skewness Kurtosis

Cdn(2003)$/m3 785.6 226.5 459.3 109.6 0.2151 2.711
Weekly Return 653.0 % -644.5 % -6.5 % 21.5 % 0.134 4.448

Table 2.1: Descriptive statistics for the lumber price time series (as shown
in Figure 1) and its returns, from January 6th, 1995 to April 25th, 2008.
The return is the continuously compounded return.

return are provided in Table 4.1. Return is calculated as ln(Pt/Pt−1) where Pt

referes to price at time t. Weekly data are used, however, the minimum, maximum,

and mean returns as well as the standard deviation have been annualized. The

returns of the price time series exhibit excess kurtosis, which implies that a pure

GBM model is not able to fully describe the dynamics of lumber price process.6 A

formal tests of normality (the Jarque-Bera test) strongly rejects the null hypothesis

that return follows a normal distribution.

2.4 Calibration of Lumber Spot Price Models

In this section I specify and parameterize the two timber price models that will be

used in our optimal harvesting problem. The models I consider are a traditional

mean reverting process (TMR) as used in Insley and Rollins (2005) and Insley and

Lei (2007) and a regime switching model (the RSMR model) in which the spot

price follows potentially two different mean reverting processes. I calibrate the two

models using lumber derivatives prices and present evidence as to which can better

describe timber prices.

6A GBM model implies that price follows a log normal distribution or the log returns are
normal. For a normal distribution skewness is zero and kurtosis is three.
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2.4.1 RSMR and TMR models

The RSMR model for lumber price, P , is given by the following stochastic differ-

ential equation (SDE):

dP = α(st)(K(st)− P )dt+ σ(st)PdZ (2.2)

where st is a two-state continuous time Markov chain, taking two values 0 or 1.

The value of st indicates the regime in which the lumber price resides at time t.

Define a Poisson process qst→1−st with intensity λst→1−st . Then

dqst→1−st = 1 with probability λst→1−stdt over an infinitesimally small dt

= 0 with probability 1− λst→1−stdt over an infinitesimally small dt

In other words, the probability of regime shifts from st to 1 − st during the small

time interval dt is λst→1−stdt. The probability of the lumber price staying in the

current regime st is 1− λst→1−stdt.

In this RSMR model, each parameter in the equation is allowed to shift between

two states implied by st. K(st) is the long-run equilibrium level to which the price

tends toward following any disturbance. I refer to α(st) as the mean reversion rate;

the higher its value the more quickly price reverts to its long run mean value. σ(st)

denotes price volatility; dZ is the increment of the standard Wiener process. The

stochastic factors for the two regimes are perfectly correlated. Therefore there is a

common dZ for two different SDE.

The TMR model, which is calibrated for comparison with the RSMR model, is

described by the following stochastic differential equation:

dP = α(K − P )dt+ σPdZ (2.3)

20



In contrast with RSMR model, the parameters in the above equation are constant,

instead of being regime dependent,

Ideally I would rely on statistical tests to determine which of Equation (2.2) or

Equation (2.3) is a better model of lumber prices. However, since the parameter

λst→1−stdt is defined only in relation to st in Equation (2.2) and is not present

in (2.3), the traditional asymptotic tests such as the likelihood ratio, Lagrange

multiplier and Wald tests do not have a standard asymptotic distribution and

cannot be used (Davies (1977), Davies (1987)). As is detailed later in this section,

I rely on the calibration procedure to determine which model best describes lumber

prices.

For the regime switching model, Hamilton (1989) presents a nonlinear filter and

smoother to get statistical estimates of the unobserved state, st, given observations

on values of Pt. The marginal likelihood function of the observed variable is a

byproduct of the recursive filter, allowing parameter estimation by maximizing this

likelihood function. The parameters estimated in this way are under the P-measure

implying that a corresponding market price of risk has to be estimated as well.

In contrast to Hamilton’s method, in Chen and Forsyth (2008) the parameters of

the risk-adjusted processes are calibrated by using natural gas derivative contracts,

meaning that the parameters thus estimated are under the risk neutral probability

measure, Q-measure, allowing the assumption of risk neutrality in the subsequent

contingent investment valuation. In this chapter, I follow a similar procedure to

Chen and Forsyth (2008) using lumber derivatives, and present the details here

for the convenience of the reader. For all parameter values except the volatilities,

lumber futures contracts are used in the calibration process. For reasons explained

below, options on lumber futures are used to calibrate volatilities.
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2.4.2 Calibration using futures prices

Ito’s lemma is used to derive the partial differential equations characterizing lum-

ber futures prices for the two price models. These partial differential equations

are simplified to a system of ordinary differential equations which can be solved

numerically to give futures prices consistent with different parameter values. The

calibration procedure determines those parameter values (except for the volatili-

ties) which produce calculated futures prices that most closely match a time series

of market futures prices.

Beginning with the TMR model, let F (P, t, T ) denote the futures price at time

t with maturity T . A futures contract is a contingent claim. From Ito’s lemma, the

PDE describing the futures price is given by Equation (2.4).

Ft + α(K − P )FP +
1

2
σ2P 2FPP = 0 (2.4)

At the expiry date T the futures price will equal the spot price, which gives the

boundary condition: F (P, T, T ) = P

The solution of this PDE is known to have the form

F (P, t, T ) = a(t, T ) + b(t, T )P (2.5)

Substituting Equation (2.5) into Equation (2.4), gives the following ODE system

at + αKb = 0

bt − αb = 0 (2.6)

where at ≡ ∂a/∂t and bt ≡ ∂b/∂t. The boundary conditions: a(T, T ) = 0; b(T, T ) =

1 are required in order for F (P, T, T ) = P to hold.

Next for the RSMR model, let F (st, P, t, T ) denote the lumber futures price at
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time t with maturity T in regime st, where st ∈ {0, 1}. The no-arbitrage value

F (st, P, t, T ) can be expressed as the risk neutral expectation of the spot price at

T .

F (st, P, t, T ) = EQ[P (T )|P (t) = p, st] (2.7)

The lumber futures price is a derivative contract whose value depends on the

stochastic price and the corresponding regime. Using Ito’s lemma for a jump process

the conditional expectation satisfies two PDEs, one for each regime, given by:7

F (st)t+α(st)(K(st)−P )F (st)P+
1

2
σ(st)

2P 2F (st)PP+λst→(1−st)(F (1−st)−F (st)) = 0

(2.8)

with the boundary condition: F (st, P, T, T ) = P .

The solution to these PDEs is known to have the form

F (st, P, t, T ) = a(st, t, T ) + b(st, t, T )P (2.9)

This yields the following ordinary differential equation (ODE) system,8

a(st)t + λst→(1−st)(a(1− st)− a(st)) + α(st)K(st)b(st) = 0

b(st)t − (α(st) + λst→(1−st))b(st) + λst→(1−st)b(1− st) = 0 (2.10)

with boundary conditions a(st, T, T ) = 0; b(st, T, T ) = 1. a(st)t ≡ ∂a(s, t)/∂t and

b(st)t ≡ ∂b(s, t)/∂t. These ODEs will be solved numerically, which gives the model

parameters. This is detailed in Section 2.5.

Note that the volatility σ does not appear in Equations (2.6) and (2.10). Hence

I cannot use lumber futures prices to calibrate the spot price volatility. As in Chen

and Forsyth (2008), lumber futures option prices are used to calibrate the volatility.

7F (st) ≡ F (st, P, t, T )
8a(st) ≡ a(st, t, T ) and b(st) ≡ b(st, t, T ).
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A least squares approach is used for calibrating the risk-neutral parameter val-

ues. Let θ denote the set of parameters calibrated to the futures price data, where

θRSMR = {α(st), K(st), λ
st→(1−st)|st ∈ {0, 1}} and θTMR = {α,K}. In particular,

at each observation day t, where t ∈ {1, ..., t∗}, there are T ∗ futures contracts with

T ∗ different maturity dates. For the RSMR model the calibration is performed by

solving the following optimization problems:

min
θRSMR,st

∑
t

∑
T

(F̂ (st, P (t), t, T ; θ)− F (t, T ))2 (2.11)

where F (t, T ) is the market futures price on the observation day t with maturity

T . F̂ (st, P (t), t, T ; θ) is the corresponding model implied futures price computed

numerically and determined in equation (2.9) using the market spot price P (t) and

the parameter set θ, as well as the regime st.

This is a Mixed Integer problem, since the unknown parameters in θ are contin-

uous variables and st is a binary variable which equals to 0 or 1 depending on the

regime. It is known that some certain software packages provide a way of solving

this Mixed Integer optimization problem. However in this thesis, I use an intuitive

and reasonable way of calibrating these unknown model parameters. Specifically,

this optimization program is implemented in Matlab which is a program specially

devised for handling large vectors and performing matrix computations. I used

the built-in function lsqnonlin to solve the problem. The lsqnonlin function take

initial values of the parameters as inputs and then solves the problem iteratively by

updating the parameters in the direction where the decline in the target function is

the greatest. The calibrated parameter set θ and st will then minimize the distance

between F and F̂ for all t∗.

Similarly, for TMR model, the optimization problem becomes

min
θTMR

∑
t

∑
T

(F̂ (P (t), t, T ; θ)− F (t, T ))2 (2.12)
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where F̂ (P (t), t, T ; θ) is the model implied futures price.

2.4.3 Calibration of volatilities using options on futures

In this section, the spot price volatility is calibrated for the two different price

models using market European call options on lumber futures. For the RSMR

model, let V̄ (st, F, t, Tv) denote the (theoretical) European call option value on

the underlying lumber futures contract F at time t with maturity at Tv in regime

st. F (st, t, T ) represents the value of the underlying futures contract at time t

with maturity at T , where T ≥ Tv. Let X be the strike price of option. In the

risk-neutral world, V̄ (st, F, t, Tv) can be expressed as

V̄ (st, F, t, Tv) = e−r(Tv−t)EQ[max(F (sT , Tv, T )−X, 0)|F (st, t, T ) = F, st] (2.13)

For the calibration I must assume that T = Tv, which implies that V̄ (st, F, t, Tv) =

V̄ (st, F, t, T ) and F (sT , Tv, T ) = F (sT , T, T ). Therefore the above equation can be

transformed to

V̄ (st, F, t, T ) = e−r(T−t)EQ[max(F (sT , T, T )−X, 0)|F (st, t, T ) = F, st]

= e−r(T−t)EQ[max(P (T )−X, 0)|a(st, t, T ) + b(st, t, T )P (t) = F, st] (2.14)

where P (T ) is the lumber spot price and F (sT , T, T ) = P (T ) at the maturity date

T .

For calibration purposes, a hypothetical European call option is needed. Let

V (st, P, t, T ) denote such a call option on lumber at time t with maturity T in regime

st. This option value can be expressed in the form of the risk-neutral expectation

as

V (st, P, t, T ) = e−r(T−t)EQ[max(P (T )−X, 0)|P (t) = P, st] (2.15)
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Given that lumber price P follows RSMR, the option value V (st, P, t, T ) satisfies

the coupled PDEs

V (st)t + α(st)(K(st)− P )V (st)P +
1

2
σ(st)

2P 2V (st)PP − rV (st) +

λst→1−st [V (1− st)− V (st)] = 0 (2.16)

with the boundary condition: V (st, P, T, T ) = max[P (T )−X, 0]. The value of this

hypothetical option V (st, P, t, T ) can be solved numerically by solving the above

PDEs.

Comparing equations (2.14) and (2.15), the following relationship holds.

V̄ (st, F, t, T ) = V (st,
F − a(st, t, T )

b(st, t, T )
, t, T ) (2.17)

Therefore, after getting V (st, P, t, T ) by solving the equation (2.16), the theoretical

lumber option value V̄ (st, F, t, T ) can be calculated using the interpolation method.

Similarly, for the TMR model, let V̄ (F, t, T ) and V (P, t, T ) represent the Eu-

ropean call option on lumber futures and the hypothetical European call option

on lumber respectively.9 The corresponding PDE for characterizing V (P, t, T ) is

expressed as

Vt + α(K − P )VP +
1

2
σ2P 2VPP − rV = 0 (2.18)

with boundary condition: V (P, T, T ) = max[P (T )−X, 0]. Given the relationship10

V̄ (F, t, T ) = V (
F − a(t, T )

b(t, T )
, t, T ) (2.19)

the model implied option value V̄ (F, t, T ) can be computed after getting V (P, t, T )

by solving the above PDE.

9Tv ≈ T in this model as well.
10This relationship is derived in the same way as equation (2.17).
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A least squares approach is also used to calibrate the volatility. In particular

for the RSMR model, I solve the following optimization problem:

min
σ0,σ1

∑
K

(V̄ (st, F (t, T1), t, T1; θ,K, σ0, σ1)− V (t, T1;K))2 (2.20)

where V̄ (st, F, t, T1; θ,K, σ0, σ1) represents the corresponding model implied option

value at time t with maturity T and strike price K and V (t, T1;K) is the mar-

ket value of lumber call option on futures. T ∗ option contracts with T ∗ different

strike prices are needed for volatility calibration. The calibrated parameter set

{σ(0), σ(1)} will minimize the square distance between V̄ and V .

Similarly, for the TMR model, the optimization problem becomes:

min
σ

∑
K

(V̄ (F (t, T1), t, T1; θ,K, σ)− V (t, T1;K))2 (2.21)

2.5 Calibration results and model comparison

2.5.1 Data description: lumber futures and options on fu-

tures

Lumber market futures and options on futures are used to calculate the risk neutral

spot price process. Four different futures contracts corresponding to each obser-

vation date for every Friday from January 6th, 1995 to April 25th, 2008 will be

employed in the calibration. The average maturity days for these four futures con-

tracts which trade on the Chicago Mercantile Exchange (CME), are about 30, 90,

150 and 210. Since I am interested in estimating the stochastic process for real

lumber prices for a Canadian forestry problem, future prices were deflated by the
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consumer price index and converted to Canadian dollars.11

The call options on futures used to calibrate volatilities are also from the CME.

Two sets of six call options written on the same futures contract were chosen. The

call options expire on October 31st, 2008 while the underlying futures contract

expires on November 14, 2008. (At the CME, the lumber options expire the last

business day in the month prior to the delivery month of the underlying futures

contract.) The first set of six options was obtained on May 23rd, 2008 and the price

of the corresponding futures contract was 260.8 $U.S./mbf. The second set was

obtained on May 30th, 2008 and the futures price on that day was 260.9 $U.S./mbf.

The strike prices of the six call options range from 260 to 310 $U.S./mbf.

In our case since the underlying futures contracts expires on November 14, 2008

and the options expire on October 31, 2008, Tv < T . For the calibration, I must

assume that Tv = T holds approximately. To justify this assumption, I appeal to

the fact that options prices were retrieved in May 2008, some months before their

expiry.

2.5.2 Calibration Results

A non-linear least squares approach is used to calibrate model parameters. Specif-

ically given initial values of all the parameters, model implied futures prices of all

the maturities at each date can be computed by solving the ODE for each of the

two regimes. The differences of the model implied futures prices and market fu-

tures prices for all the futures contract at each date are computed for both regimes.

The sum squared differences are used to determine the regime at each date. The

sum squared difference of each date is then summed together over all the periods.

11For CME Random Length Lumber futures, the delivery contract months are as follows: Jan-
uary, March, May, July, September and November. There are six lumber futures on each day only
the first four of which are actively traded. Therefore, only the first four futures contracts are used
in parameter calibration. The last day of trading is the business day prior to the 16th calendar
day of the contract month.
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The optimal parameter values will be those that generate the lowest sum squared

difference. Matlab is used for parameter calibration. There are 12 iterations in

the calibration process and it took about 30 minutes to converge. When change in

the residual is smaller than the specified tolerance, which is 5e(−3) in this case, the

program will stop.

It is important to check whether the obtained parameters are the only choices

of parameter values which attain a reasonable in-sample fit. There could be the

case that there exist several ranges of parameter values, all providing a reasonable

fit to data. In other words, since the calibrated parameters are obtained by solving

a nonlinear optimization optimization program, there is no guarantee that the ob-

tained solution is a unique and global solution. This issue can be investigated by

varying the initial values of the parameters used to initialize the calibration algo-

rithm, and the upper bound and lower bound of the calibrated parameters used in

the optimization process. If the optimal parameters are sensitive to changes in the

initial values this should be taken to indicate that there are potentially several local

optima. Following this argument, different sets of initial values as well as different

combinations of upper and lower bounds are used to find the optimal solution and

to check the stability of the calibrated parameter values. Given a certain set of

upper and lower bounds the resulting estimates are insensitive to the initial val-

ues. Hence the calibrated parameters may be the local optimal. Since we used the

bounds that seem economically reasonable, we believe that the resulting estimates

are economically reasonable.

Table 2.2 and Table 2.3 present the calibration results for parameter values

under the risk neutral measure in the RSMR model. In the table we observe two

quite different regimes in the Q-measure. Regime 1 has a much higher equilibrium

price level, K(1), but a lower speed of mean reversion, α(1), compared to regime 0.

The risk neutral intensity of switching out of regime 1 is very low at λ1→0 = 0.39

which implies that in the risk neutral world, prices are mostly in this regime with
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RSMR Model

α(0) α(1) K(0) K(1) λ0→1 λ1→0

3.61 0.40 71.92 516.64 17.09 0.39

TMR Model

α K
0.69 341.00

Table 2.2: Calibrated parameter values for the RSMR and TMR model,
K(0), K(1) and K are in $Cdn(2005)/cubic metre.

RSMR Model TMR Model

σ(0) σ(1) σ
0.0038 0.2545 0.28

Table 2.3: Calibrated volatilities for the RSMR and TMR models

the higher equilibrium price.

These parameter estimates for the RSMR model describe a situation where

price is mostly in regime 1 with the high long run equilibrium price and a moderate

pace of mean reversion. Ignoring volatility and the risk of regime change, the

mean reversion speed α(1) = 0.04 implies the half-life for returning to the long

run equilibrium is 1.7 years.12 Occasionally price reverts to regime 0 which has

a significantly lower equilibrium price and very little volatility. Regime 0 may be

thought of as a depressed state, and in the risk neutral world this state is not

expected to persist for long. The mean reversion rate is much higher in regime 0

than in regime 1.

Calibrated parameter values for the TMR model are also reported in Table 2.2

and Table 2.3. The long-run price level, K, and mean reversion rate α in the TMR

model fall between regime 1 and regime 0 values in the RSMR model while volatility

is close to that of regime 1.

12Solving the differential equation dP = α(K − P )dt, the time to reduce (Pt − K) by half is
− ln(0.5)/α.
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It is tempting to interpret these parameter estimates in terms of the behaviour

of historical lumber prices, but this would be invalid since these are risk adjusted or

Q-measure estimates. If I assume that in the real world, or under the P-measure,

the spot price follows a process like Equation (2.2), then I can derive the relationship

between P-measure and Q-measure parameters. I show in Appendix A1 that given

assumptions about the signs of the speed of mean reversion, α(st), and the market

price of risk for lumber price diffusion, denoted βP , then the speed of mean reversion

in the risk neutral world will exceed that of the real world. In addition, the long

run equilibrium price K(st) will be lower in the risk neutral world than the real

world. It makes intuitive sense that the risk adjustment in moving to the Q-

measure results in a price process which reverts at a faster rate to a lower long

run equilibrium level. This would make the Q-measure process more pessimistic,

as expected. It is also shown in Appendix A1 that volatility is the same in the real

and risk-neutral worlds. Further, the risk neutral intensity of switching regimes,

λst→(1−st), equals the market price of risk for regime switching, which I denote βsw.

Hence the calibrated risk adjusted probability λst→(1−st)dt may be quite different

from the P-measure probability of switching regimes.

These calibration results allow me to determine the regime that is most likely

reflected for any given date. From this I can derive an estimate of the physical

probability of being in either regime, which may be contrasted with the risk neutral

probabilities. Regimes in the period under consideration as implied by RSMR model

are plotted in Figure 2.2. I assume that if the calibration error in a particular regime

exceeds the error in the other, then price is most likely in the former regime. In

the risk neutral world, regime 0 has a lower equilibrium price level, while regime 1

has the high equilibrium price level. It is shown in Appendix A1 that if I assume a

positive and not a very large market price of stochastic price risk βP , the high price

regime in the risk neutral world is also the high price regime in the real world.

I observe in Figure 2.2 that price fluctuates between the two regimes and there
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Figure 2.2: Implied regimes in the period under consideration by RSMR
model. Blue O’s on upper line indicate time steps in regime 1 and reddish
X’s on lower line indicate time steps in regime 0.

are distinct intervals when price appears to remain in one regime or the other.

It is interesting to observe whether these regime shifts coincide with any partic-

ular events or shocks in lumber markets. For example, from the middle of the

year 1998 to the beginning of year 2001, lumber prices mainly stay in high mean

regime (regime 1). This period followed the signing of the five-year trade agree-

ment between the United States and Canada in 1996. Under this Softwood Lumber

Agreement, Canadian lumber exports to the United States were limited to a speci-

fied level that would be duty free. I hypothesize that this quantity restriction would

support lumber prices remaining in the high price regime. The trade agreement

expired in April 2001 and the two countries were unable to reach consensus on a

replacement agreement. From Figure 2.2 I observe that during the period between

middle 2001 to late 2002, lumber prices fluctuate between the two regimes. Even

though, a new agreement between Canada and the United States was implemented
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in 2006, this deal was criticized as “one-sided” and a “bad deal for Canada”. After

the middle of 2004 until 2008, lumber prices stay in the low mean regime most of

time. The lumber industry has been severely affected by the global financial crisis

that began in 2007 and precipitated a drastic fall in the number of new housing

starts. The linking of the probability of being in either of the regimes to current

events in lumber markets is just a rough intuitive analysis. However, the shifting

that we observe between the two regimes lends support for a regime shifting model

to account for the different circumstances faced by the industry in good times and

bad times.

From the data used in Figure 2.2 we can estimate that over the 1995 to 2008

period, price is 51.4 percent of the time in regime 0 and 48.6 percent of the time in

regime 1. In contrast the estimated λ’s in the risk neutral world imply that price

will be in the high price regime 98 percent of the time and in the low price regime

only 2 percent of the time. It is surprising that that the risk adjusted probability

of staying in the high price regime is larger than the actual probability, implying a

more optimistic view in the Q-measure. However the impact of moving to the risk

neutral world is reflected in adjustments to all of the parameters. I noted above

that the speed of mean reversion will be higher and the equilibrium price level will

be lower, which present a more pessimistic view of price.

2.5.3 Model comparison

Table 2.4 reports the mean absolute errors for the four futures contracts used to

calibrate the RSMR and the TMR models. From the last column, it appears that

the RSMR model outperforms the TMR model, since the overall average errors

expressed in two different ways are lower in the RSMR model. The RSMR model

also has lower errors for each of the four futures contracts individually. Figures 2.3

and 2.4 show plots of the the model implied futures prices and market futures prices
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Mean absolute error

T 30 90 150 210 Overall
RSMR model

In dollars 22.23 18.50 18.97 20.56 20.07
In percentage 5.65 4.49 4.56 5.00 4.93

TMR model
In dollars 39.33 30.90 30.49 34.48 33.80

In percentage 10.36 7.85 7.48 8.21 8.47

Table 2.4: Mean absolute errors for all the four different futures contracts
in both RSMR and TMR models, expressed in dollars and in percentage.
T refers to the number of days to maturity

for the two futures contracts corresponding to the largest and smallest calibration

errors from Table 2.4. The closer fit of the RSMR model to market data is noticeable

through visual inspection of these graphs.

2.6 Specification of the optimal harvesting prob-

lem and its numerical solution

After analyzing the dynamics of the lumber price process and calibrating all the

parameter values of the corresponding model, I am ready to solve for the value of

a forestry investment. I will value a hypothetical stand of trees in Ontario’s boreal

forest using both price models examined in this chapter. I will investigate whether

use of these models in a realistic optimal harvesting problem will result in different

land values and optimal harvesting ages. I use the same investment problem as in

Insley and Lei (2007). In Insley and Lei (2007) a TMR process was used and the

estimation procedure was carried out through ordinary least squares on spot price

data. I compare the regime switching model with the result of the single-factor

mean reversion process and also the results from Insley and Lei (2007).
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(a) f1: futures contracts with average 30 days to maturity.
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(b) f2: futures contract with average 60 days to maturity.

Figure 2.3: RSMR model implied futures prices and market futures prices
for two futures contracts. f1 has the largest error while f2 has the smallest
error in Table 2.4.
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(a) f1: futures contracts with average 30 days to maturity.
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Figure 2.4: TMR model implied futures prices and market futures prices
for two futures contracts, f1 has the largest error while f3 has the smallest
error from Table 2.4.
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In the following sections, a real options model of the forestry investment valua-

tion will be developed assuming lumber prices follow the RSMR process. Coupled

partial differential equations (PDEs) characterizing the values of the option to har-

vest the trees will be derived using contingent claim analysis. A finite difference

method will be employed to solve the PDEs numerically given appropriate bound-

ary conditions. The model and numerical solution scheme for the TMR price case

is described in Insley and Rollins (2005).

2.6.1 Harvesting model for the RSMR case

I model the optimal decision of the owner of stand of trees who wants to maximize

the value of the stand (or land value) by optimally choosing the harvest time. It

is assumed that forestry is the best use for this land, so that once the stand is

harvested it will be allowed to grow again for future harvesting. Since this is a

multirotational optimal harvesting problem, it represents a path-dependent option.

The value of the option to harvest the stand today depends on the quantity of

lumber, which itself depends on the last time when the stand was harvested.

Lumber price is assumed to follow either the RSMR model or the TMR model

detailed in the previous sections. In this section I derive the key partial differential

equation that describes the value of the stand of trees for the RSMR case. Deriva-

tion of the key partial differential equation for the TMR case can be found in Insley

and Lei (2007).

For now I write the RSMR model from Equation (2.2) in a more general form

as:

dP (st) = a(st, P, t)dt+ b(st, P, t)dZ (2.22)

Denote qst→1−st , the risk of regime shift, as a Poisson process, where st ∈ {0, 1}
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indicates the regime.

dqst→1−st = 1 with probability λst→1−stdt

dqst→1−st = 0 with probability 1− λst→1−stdt

With probability λdt price changes regime during the small interval dt, and with

probability 1− λdt price remains in the same regime.

There are two risks associated with this stochastic process. One is the standard

continuous risk in the dZ term. The other, in discrete form, is due to the risk

of regime switch. In order to hedge these two risks and value the stand of trees

V (st, P, ϕ), two other traded investment assets, which depend solely on lumber

price, are needed. Let ϕ denote the age of the stand, defined as ϕ = t− th, where

th represents the time of last harvest. ϕ in this case is another state variable, in

addition to P . ϕ satisfies dϕ = dt.

Assume that there exist investment assets which depend on the lumber price P

and can be used to hedge the risk of our investment. Using standard arguments I set

up a hedging portfolio that eliminates the two risks. I can derive the fundamental

partial differential equation that characterizes the value of the stand of trees when

it is optimal to refrain from harvesting.

V (st)t + (a(st, P, t)− βP b(st, P, t))V (st)P +
1

2
b(st, P, t)

2V (st)PP +

V (st)ϕ − rV (st) + βsw(V (1− st)− V (st)) = 0 (2.23)

βP and βsw are parameters which represent market prices of risk for the diffusion

risk and regime-switching risk respectively.

Our estimation method detailed in Sections 2.4 and 2.5 yields risk neutral pa-
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rameter values. Therefore the following relationships hold

a(st, P, t)− βP b(st, P, t) = α(st)(K(st)− P )

b(st, P, t) = σ(st)P

βsw = λst→1−st

Substituting these equations into the above PDE give

V (st)t + α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP + V (st)ϕ −

rV (st) + λst→1−st(V (1− st)− V (st)) = 0. (2.24)

The complete harvesting problem which determines the optimal harvesting date

can then be specified as a Hamilton-Jacobi-Bellman (HJB) variational inequality

(VI). Define τ ≡ T − t as time remaining in the option’s life. Rewrite the above

PDE and define HV as

HV ≡ rV (st)− (V (st)t + α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP+

V (st)ϕ + λst→1−st(V (1− st)− V (st))) (2.25)

Then the HJB VI is:

(i) HV ≥ 0 (2.26)

(ii) V (st, P, ϕ)− [(P − Ch)Q(ϕ) + V (st, P, 0)] ≥ 0

(iii) HV

[
V (st, P, ϕ)− [(P − Ch)Q(ϕ) + V (st, P, 0)]

]
= 0

where Ch is the cost per unit of lumber, Q(ϕ) is the volume of the lumber which

is a function of age, Q = g(ϕ). [(P − Ch)Q(ϕ) + V (st, P, 0)] is the payoff from

harvesting immediately and consists of revenue from selling the harvested timber
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plus the value of the bare land, V (st, P, 0). The above HJB VI implies if the stand

of trees is managed optimally either HV , V (st, P, ϕ)− [(P −Ch)Q(ϕ)+V (st, P, 0)],

or both will be equal to zero. If HV = 0, it is optimal for the investor to continue

holding the option by delaying the decision to harvest. The growing stand of trees

is earning the risk free return. If V (st, P, ϕ)− [(P−Ch)Q(ϕ)+V (st, P, 0)] = 0, then

the value of the stand of trees just equals the value of immediate harvest and the

investor should harvest the trees. If both terms are equal to zero, either strategy

is optimal.

2.6.2 Numerical solution of the HJB VI equation

This section briefly describes the numerical methods used for solving the regime

switching HJB VI, Equation (2.26). I also analyze the properties of the scheme,

such as the stability and monotonicity. More details of the numerical solution are

contained in Appendix A2.

General description of the numerical methods

The option to choose the optimal harvest time has no analytical solution. The

HJB VI expressed in Equation (2.26) in this chapter is solved numerically using

the combination of fully implicit finite difference method, semi-Lagrangian method

and the penalty method. This approach is also used in Insley and Lei (2007)

but for a single regime problem. The finite difference method is used to convert

a differential equation into a set of discrete algebraic equations by replacing the

differential operators in PDEs with finite difference operators.

For the optimal tree harvesting problem examined in this chapter, there are two

state variables. One is the spot price P and the other is the stand age ϕ. Using the

semi-Lagrangian method this two-factor problem can be reduced to a one factor
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problem for each time step. After each time step, the true option value is obtained

by using linear interpolation. For the details of this method, see Insley and Rollins

(2005) and Morton and Mayers (1994).

There are several approaches to the numerical solution of the HJB VI. The

penalty approach used here converts it into a nonlinear algebraic problem, which

is then solved by Newton iteration. The penalty method has several benefits. It

is more accurate than an explicit method and has good convergence properties.

Another advantage is that at each iteration it generates a well-behaved sparse

matrix, which can be solved using either direct or iterative methods.13

The penalty method used in this chapter is outlined here. Define τ = T − t and

V (st)t = −V (st)τ . The HJB VI14 in Equation (2.26) can be expressed as a single

equation:

V (st)τ − V (st)ϕ = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP −

rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st) (2.27)

where Υ(st) on the right hand side of this equation is the penalty term, which

satisfies

Υ(st) > 0 if V (st, P, ϕ) = [(P − Ch)Q(ϕ) + V (st, P, 0)] (2.28)

= 0 if V (st, P, ϕ) > [(P − Ch)Q(ϕ) + V (st, P, 0)] (2.29)

Equation (2.28) implies that if value of the asset equals to the payoff, which is

[(P −Ch)Q(ϕ)+V (st, P, 0)]15, it is optimal to harvest the trees immediately, which

is the first condition in HJB VI Equation (2.26). If the asset value is higher than the

payoff, Equation (2.29) implies the harvest should be delayed which is the second

13See Zvan et al. (1998) and Fan et al. (1996) for more on the penalty method.
14This HJB VI characterizes the option value in regime st, V (st).
15The payoff is defined as the net revenue of selling the trees plus the value of the bare land.
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condition in the HJB VI equation. Since the investors can exercise the option to

harvest the trees at any time, the penalty method in this way incorporates the

characteristic of early exercise. This numerical method can also handle the case

when the expiry date of the option T → ∞. Basically T can be chosen to be a

very large number so that the number is large enough that the option value is not

sensitive to the increase of it.

A complicating factor in our problem is the presence of regime switching in the

spot price process. I have two PDEs in the form of Equation (2.24), one for the

value in each of the two regimes. Moreover, the value in one regime affects the value

in the other regime16. I deal with this problem by stacking the discretized version

of equation (2.27) for option values in two regimes and solving the two discretized

PDEs together at each time step. In this manner the PDEs in the two regimes are

fully coupled.

Discretization

This section illustrates the main results of finite difference discretization, the semi-

Lagrangian method and penalty method of dealing with the HJB VI17. Prior to

presenting the matrix form of the HJB VI discretization, some notations are intro-

duced here.

For PDE discretization, unequally spaced grids in the directions of the two state

variables P and ϕ are used. The grid points are represented by [P1, P2, ..., Pimax]

and [ϕ1, ϕ2, ..., ϕjmax] respectively. I also discretize the time direction, represented

as τN , ..., τ 1(18). Define V (st)
n+1
ij as an approximation of the exact solution

V (st, Pi, ϕj, τ
n+1), and V ∗(st)

n
ij as an approximation of V (st, Pi, ϕj, τ

n). Recall that

16i.e. The value in regime (1 − st), V (1 − st), appears in Equation (2.24) characterizing the
option value in regime st, V (st).

17Detailed discretization is provided in Appendix.
18The iteration starts from the final maturity date T and moves backward along the time

direction until the current time 0.
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τ = τN , t = 0 and at τ = τ 1, t = T . Based on the semi-Lagrangian method, the true

solution of V (st, Pi, ϕj+∆τ , τ
n) is obtained from V ∗(st)

n
ij using linear interpolation

after each time step.

Denote ` a differential operator represented by

`V (st) = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP − rV (st) + λst→1−stV (st)

Equation (2.27) can be rearranged as:

V (st)τ − V (st)ϕ = `V (st) + λst→1−stV (1− st) + Υ(st) (2.30)

Note that the right hand side of this equation has derivatives with respect to P only.

Therefore this one-dimensional PDE for each ϕj is solved independently within each

time step. After each time step is completed, using linear interpolation I will get

V (st, Pi, ϕj+∆τ , τ
n) from V ∗(st)

n
ij. The discretized version of Equation (2.30) using

the fully implicit method and the semi-Lagrangian method is written as

V (st)
n+1
ij − V ∗(st)nij

∆τ
= [`V (st)]

n+1
ij + λst→1−stV (1− st)n+1

ij + π(st)
n+1
ij (2.31)

where the penalty term π(st)
n+1
ij is defined as

π(st)
n+1
ij =

1

∆τ
(payoff− V (st)

n+1
ij )Large; if V (st)

n+1
ij < payoff (2.32)

= 0; otherwise (2.33)

The term ‘Large’ in equation (2.32) refers to a large number19 and case dependent.

The subscript ij refers to the point corresponding to (Pi, ϕj) and superscript n

denotes the nth time step.

19For example, Large = 106 for some cases.
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Rearranging Equation (2.31) and writing in a matrix form results in

W (st)V (st)
n+1−∆τλst→1−stV (1−st)n+1 = V ∗(st)

n+π(st)
n+1

payoff(st)
n+1 (2.34)

where W (st) is a sparse matrix containing all the parameters corresponding to the

value in regime st. The other terms except ∆τλst→1−st are expressed in vector form.

The ijth element in the penalty vector π(st)
n+1

is defined as

π(st)
n+1

ij = Large; if V (st)
n+1
ij < payoff

= 0; otherwise

Equation (2.34) is the final discretized version of the HJB VI corresponding to

V (st). However, the value in the other regime V (1− st) appears in this expression.

In order to obtain both option values for all the grid points at each time step,

the discretized HJB VI for V (1− st) which is similar with the expression (2.34) is

stacked with Equation (2.34) to form a system of equations, which can be written

as

Zmatrix

 V (st)

V (1− st)

n+1

=

 V ∗(st)

V ∗(1− st)

n+

 π(st)

π(1− st)

n+1  payoff(st)

payoff(1− st)

n+1

(2.35)

Zmatrix is a large sparse matrix. This system of equations is solved iteratively at

each time step. For simplicity, the more compact version of Equation (2.35) can be

expressed as

Zmatrix[V ]n+1 = [V ∗]n + [π]n+1[payoff]n+1 (2.36)

This is the scheme I use to numerically solve the optimal tree harvesting problem.
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Boundary conditions and pseudo code

In order to solve Equation (2.36), the appropriate boundary conditions as well as

the terminal condition are specified below. These are the same as used in Insley

and Rollins (2005).

1. As P → 0, no specific boundary condition is needed. Substitute
P = 0 into Equation (2.36) and discretize the resulted PDE.

2. As P → ∞, I set V (st)PP = 0. As price goes to infinity, I
assume the option value is a linear function of P .

3. As ϕ → 0, no specific boundary condition is needed since the
PDE is first order hyperbolic in the ϕ direction, with outgoing
characteristic in the negative ϕ direction.

4. As ϕ → ∞, V (st)ϕ → 0, and hence no boundary condition is
needed. Since as the stand age goes to infinity, I assume the wood
volume in the stand has reached a steady state and the value of
the option to harvest does not change with ϕ.

5. Terminal condition. V (st, T ) = 0 This means when T gets
very large, it has a negligible effect on the current option value.

Pseudo code for solving Equation (2.36) is provided as the follows20.

20All programs are written in Matlab.

45



1. Set up tolerance level tol

2. Large = 1
tol

3. for τ = 1 : N − 1; % time step iteration
for j = 1 : jmax; % iterate along the age ϕ direction
([V ]n+1)0 = [V ]n; % initial guess for [V ]n+1

for k = 0, ... until convergence; % penalty American constraint iteration

(πn+1)k = Large; if V n+1 < payoff

= 0; otherwise

Zmatrix([V ]n+1)k+1 = [V ∗]n + ([π]n+1)k[payoff]n+1

if maxi
|((Vi)n+1)k+1−((Vi)

n+1)k|
max(1,|((Vi)n+1)k+1|) < tol

quit;

endfor; % end penalty American constraint iteration
endfor; % end iteration along ϕ direction
V (st, Pi, ϕj+∆τ , τ

n) = V ∗(st)
n
ij; % by linear interation

endfor; % end time step iteration

Properties of the numerical scheme

Since no closed-form solution exists for this optimal tree harvesting problem, the

properties of my proposed numerical scheme have to been examined. In the case of

nonlinear pricing problems, seemingly reasonable numerical schemes can converge

to an incorrect solution21. A stable, consistent and monotone discretization will

converge to the viscosity (i.e. reasonable) solution.22. Generally speaking, consis-

21See Pooley et al. (2003).
22See Barles (1997) for detailed proof. For the definition of viscosity solution, see d’Halluin

et al. (2005). For the existence of a viscosity solution in the regime switching case, see Pemy and
Zhang (2006).
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tency is guaranteed if a reasonable discretization is used23. I use finite difference

discretization which is a one of the standard discretization methods. In Appendix

A3, I prove that this scheme is monotone and stable and thus converges to the

viscosity solution which is financially reasonable.

2.7 Optimal harvesting problem: data and em-

pirical results

2.7.1 Cost, wood volume and price data

I examine an optimal harvesting problem for a hypothetical stand of Jack Pine trees

in Ontario’s boreal forest. I consider the optimal harvesting decision and land value

assuming that the stand will continue to be used for commercial forestry operations

over multiple rotations. Values are calculated prior to any stumpage payments or

taxes.

Timber volumes and harvesting costs are adopted from Insley and Lei (2007)

and are repeated here for the convenience of the reader. Volume and silviculture

cost data were kindly provided by Tembec Inc. The estimated volumes reflect ‘basic’

levels of forestry management which involves $1040 per hectare spent within the

first five years on site preparation, planting and tending. These costs are detailed

in Table 3.10. Note that in the Canadian context these basic silviculture expenses

are mandated by government regulation for certain stands.

Volumes, estimated by product, are shown in Figure 2.5 for the basic regime.24

SPF1 and SPF2 are defined as being greater than 12 centimeters at the small end,

23See d’Halluin et al. (2005).
24The yield curves were estimated by Margaret Penner of Forest Analysis Ltd., Huntsville,

Ontario for Tembec Inc.
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Item Cost, $/ha Age cost incurred
Site preparation $200 1
Nursery stock $360 1

Planting $360 2
First tending $120 5
Monitoring $10 35

Table 2.5: Silviculture costs under a basic regime

Harvest and transportation cost $47
Price of SPF1 $60
Price of SPF2 $55
Price of SPF3 $30

Price of poplar/birch $20

Table 2.6: Assumed values for log prices and cost of delivering logs to the
mill in $ per cubic meter

SPF3 is less than 12 centimeters, and ‘other’ refers to other less valuable species

(poplar and birch). Data used to plot this graph is provided in Insley and Wirjanto

(2008).

Assumptions for harvesting costs and current log prices at the millgate are

given in Table 2.6. These prices are considered representative for 2003 prices at the

millgate in Ontario’s boreal forest. Average cost to deliver logs to the lumber mill

in 2003 are reported as $55 per cubic meter in a recent Ontario government report

Ontario Ministry of Natural Resources (2005). From this is subtracted $8 per cubic

meter as an average stumpage charge in 2003 giving $47 per cubic meter.25 It will

be noted the lower valued items (SPF3 and poplar/birch) are harvested at a loss.

These items must be harvested according to Ontario government regulation. The

price for poplar/birch is at roadside, so there is no transportation cost to the mill.

25This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation.
Average stumpage charges are available from the Ontario Ministry of Natural Resources.
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Land value in $ per hectare, Initial lumber price of $60/m3

RSMR model TMR model
Initial Stand age Regime 0 Regime 1 Single regime

Age 0 2858 2858 1404
Age 50 10593 10728 5617
Age 75 13406 13660 9078

Land value in $ per hectare, Initial lumber price of $100/m3

RSMR model TMR model
Initial Stand age Regime 0 Regime 1 Single regime

Age 0 2858 2858 1404
Age 50 11503 12242 7474
Age 75 15352 16619 13896

Table 2.7: Land values at the beginning of the first rotation for regime
switching and traditional mean reversion models, $(2005)Canadian per
hectare

2.7.2 Results for land value and critical harvesting prices

The parameter values of the RSMR model used to evaluate the investment are

provided in previous sections. The equilibrium price levels in the two regimes,

K(st), as shown in Table 2.2, are stated in Canadian dollars at Toronto. In order

to value our hypothetical stand of trees, the equilibrium prices need to be scaled

to reflect prices at the millgate. Our estimate of price at the millgate in 2003 for

SPF1 logs is Cdn.$60 per cubic meter. In 2003 the average spot price in Toronto

was Cdn. $375 per MBF. I use the ratio of 375/60 as adjustment factor to scale the

equilibrium price levels. The scaled long-run price levels become K(0) = $11.51

and K(1) = $82.66 per cubic metre. This rescaling accounts for transportation

costs from Toronto to the mill and milling costs (as well as the conversion from

MBF to m3).

Land values calculated using the RSMR and TMR models are provided in Table

2.7 for three different initial stand ages and two initial lumber prices. For the
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RSMR model, the value of the opportunity to harvest a stand at the beginning of

rotation (stand age of zero) is $2858 per hectare in either regime 1 or 2 regime and

for both initial price levels shown. This reflects the fact that at the beginning of

the rotation the harvest date is many years away and regime switching will likely

happen numerous times over the next few decades. Hence the current regime has

little effect on land value at the beginning of the rotation. Similarly the current

price has a negligible effect on the value of the bare land. For older stands for which

the optimal harvesting time is nearer, the value of the stand does depend positively

on the current price of lumber. Further, the stand value is slightly higher in regime

1 than in regime 0. In Table 2.7, we observe that at an initial price of $100/m3

the land value in regime 1 is approximately 8% higher than in regime 0. Another

perspective on land values for older stands is given in Figure 2.6. Here we see that

land values for 50 and 75 year old stands rise with lumber price and that for a range

of prices values in regime 1 exceeds values in regime 0. As will be seen below, this

price range is around the critical price level that would trigger optimal harvesting

in regime 0. The apparent kink for regime 0 occurs at the critical harvesting price

for that regime. The critical harvesting price for regime 1 occurs at the point of

tangency between the two curves.

The value of land in the TMR regime, also shown in Table 2.7, is $1404 per

hectare at age 0, significantly lower than in the RSMR case. This is because, for the

RSMR model, the calibrated mean price level in regime 1 is higher than that of the

corresponding one-factor TMR model. Further, the price in the regime switching

model stays in the high mean regime most of time giving a higher land value for

the RSMR case.

For comparison purposes I note that the land value for the same stand at age

0 calculated in Insley and Lei (2007) was $1630/ha. The analysis in Insley and

Lei (2007) uses the same cost and yield data, with a TMR process. However the

parameters of the TMR process were estimate through OLS on spot price data and
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the market price of risk was estimated separately in a more simplistic manner.

Critical harvesting prices versus stand age are shown in Figure 2.7. For a stand

of a given age, once the critical harvesting price is met or surpassed, harvesting of

the stand and replanting for the next rotation are the optimal actions. Harvesting

is not permitted in the model prior to age 35 until all silviculture expenditures have

been made.

Critical prices are high during the earlier ages when the trees are still growing,

but fall as the stand ages and eventually reach a steady state. Critical prices

are highest for Regime 1 which is characterized by a high equilibrium level and

a slower speed of mean reversion. Since volatility is at a moderate level of 0.25

and the probability of switching out of this regime is low, it is worthwhile delaying

harvesting until a higher threshold is reached. In contrast in regime 0, the speed

of mean reversion is faster and the equilibrium level is lower so that when in that

regime it is expected that price will return fairly quickly to the low equilibrium

level. In addition volatility in this regime is very low which reduces the value of

delay. Offsetting this is a high likelihood of switching into the higher priced regime.

Overall the critical prices of this regime are below those of Regime 1 at every age.

Critical prices for the TMR case are consistently below those of the two regimes

in the RSMR model. This makes intuitive sense given that the long run equilibrium

level is lower in the TMR case than in the high price regime (Regime 1) and that

unlike in Regime 0, there is no potential to switch into a different regime with a

higher long run equilibrium level.

In summary, the regime switching model results in different land values and leads

to significantly different investment strategies than the corresponding single-factor

models. The calibration results show the regime switching model outperforms the

single regime model in terms of fitting lumber market prices. Moreover the regime

switching model generates reasonable stand values as well as the critical prices. I

would argue that the the regime switching model is preferred in the analysis of
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forestry investment decisions and land valuation.

2.8 Concluding remarks

Understanding forest valuation is important for policy makers, forestry firms and

investors. In the Canadian situation, harvesting rights to specific areas of publicly

owned forests are leased to private firms. Government regulators need to be aware

of the value of these harvesting rights in order to ensure the public is compensated

for the use of the resource and in order to gauge the impact of regulatory changes on

the profitability of forestry operations. And of course private players in the industry

also have an incentive to understand the impact of volatile prices on land values and

optimal decisions, as well as changes that might result from regulatory decisions

such as a requirement to increase spending on replanting or other conservation

measures.
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This chapter investigates a possible improvement in the modelling of stochastic

timber prices in optimal tree harvesting problems. My goal is to find a modelling

approach that is rich enough to capture the main characteristics of timber prices,

while still being simple enough that the resulting price model can easily be in-

corporated into problems of forest investment valuation. I compare two different

stochastic price process, a regime switching model with a different mean revering

process in each regime (RSMR) and a traditional mean reverting model (TMR).

The RSMR model allows for two states in lumber markets which we may charac-

terize as being good times and bad times. The price models are calibrated using

lumber futures prices and futures call option prices. The calibration process is able

to find a reasonable fit for both models, but the mean absolute error is lower for

the RSMR model.

In the second part of the chapter, I use the calibrated timber price models in

a real options model of the optimal harvesting decision. PDEs characterizing the

value of the stand of trees are derived using contingent claim analysis. A Hamilton-

Jacobi-Bellman (HJB) variational inequality is then developed and solved using a

fully implicit numerical method. I show that our numerical scheme converges to

the viscosity solution (i.e. the financially reasonable solution.)

The empirical example is for a hypothetical stand of trees in Ontario’s boreal

forest. For the RSMR model, the estimated land value at the beginning of the

rotation is insensitive to the particular regime and at $2858 per hectare is of a

reasonable order of magnitude. The land value for the TMR model is $1404 per

hectare. I also examined critical harvesting prices, which for the RSMR model

differ depending on the current regime.

I conclude that the RSMR model shows some promise as a parsimonious model

of timber prices, that can fairly easily be incorporated into optimal harvesting

models. One limitation of this methodology is in the use of short term maturity

contracts in the calibration exercise. The longest maturity of the chosen futures
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contract is less than one year, but unfortunately this is all that is available. One

may ask whether the calibrated parameter values are appropriate for long term

forestry investment valuation problems. Schwartz and Smith (2000) has proposed

a way of dealing with this issue. The applicability of his method for lumber prices

is an area for future research.

Future research will also investigate the robustness of the RSMR model through

comparison with other multi-factor models that have been used in the literature

to value other commodity linked investments. I hope that other researchers will

find the methodologies demonstrated here useful for the analysis of other types of

investments, particularly those dependent on commodity prices where active futures

markets exist.

56



Chapter 3

The impact of stochastic

convenience yield on long-term

forestry investment decisions

3.1 Introduction

The optimal management of natural resource investments typically depends on the

ability of resource owners to interpret and react to volatile commodity prices. Own-

ers of commercial forest land are no exception to this. Landowners are faced with

decisions about when to harvest a stand of trees in an environment of highly uncer-

tain timber prices which respond to news about the health of the economy, tariffs

and trade barriers, as well as supply side factors such as fire and pests. A long

strand of economics literature addresses the dual issues how best to model com-

modity prices and the determination of optimal resource management decisions

under different representations of price. The literature has evolved significantly

over the past few decades moving from deterministic models based on versions of

57



Hotelling’s rule to stochastic models that draw on finance theory and contingent

claims arguments. In addition to stochastic prices, the natural resources litera-

ture has investigated the impact of other key uncertain parameters, such as costs,

interest rates, and convenience yield, on optimal natural resource management.

The focus of this chapter is on lumber prices and optimal decisions in forestry. A

number of specifications have been proposed in the literature for modeling stochas-

tic lumber prices, including geometric Brownian motion (GBM), mean reverting

processes, jump processes and regime-switching models. For example, Clarke and

Reed (1989) and Yin and Newman (1997) solve optimal tree harvesting problems

analytically by assuming lumber prices follow GBM. Some researchers including

Brazee et al. (1999) have found that mean reversion rather than GBM provides a

better characterization of lumber prices. Saphores et al. (2002) find evidence of

jumps in Pacific North West stumpage prices in the U.S. and demonstrate at the

stand level that ignoring jumps can lead to significantly suboptimal harvesting deci-

sions for old growth timber. A recent insight in the literature suggests that instead

of modeling jumps in commodity prices, we may consider regime-switching models,

initially proposed by Hamilton (1989), to better capture the main characteristics of

lumber prices. Chen and Insley (2008) compare and contrast a two-state regime-

switching mean reverting model and a traditional mean reverting model. They

find that the regime-switching model outperforms the traditional one-factor mean

reverting model in terms of fitting prices of market lumber derivatives.

For storable commodities and those that serve as inputs to production, such

as lumber and oil, convenience yield1 plays an important role in price formation.

Convenience yield refers to the benefit that producers obtain from holding physical

inventories, a benefit not available to individuals holding a futures or forward con-

tract. Convenience yield is expected to be negatively correlated with inventories

1See Working (1948)
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levels.2 The seasonal harvesting of trees, as well as the importance of wood prod-

ucts as inputs to other industries, suggest that convenience yield may be important

to understanding the dynamics of timber prices.

From a modelling perspective, convenience yield may be viewed as analogous to

the dividend obtained from holding a company’s stock. Convenience yield helps to

explain the relationship between spot prices and futures prices - i.e. the term struc-

ture of commodity futures prices. The term structure conveys useful information

for hedging or investment decisions, because it synthesizes the information available

in the market and reflects the investors’ expectations concerning the future. A fu-

tures price can be greater or less than the commodity spot price, depending on the

relationship between the (net) convenience yield3 and risk-free interest rate. This is

explained by the cost of carry pricing model which expresses forward/futures price

as a function of the spot price and the cost of carry.4 Modelling of convenience

yield is important for any analysis of futures prices.

Multi-factor models have been proposed in the literature to describe commod-

ity price dynamics by including stochastic convenience yield to help explain the

term structure of commodity futures prices. For example, Gibson and Schwartz

(1990) first introduced a two-factor model, where spot prices are assumed to evolve

according to GBM and the convenience yield follows a mean reverting stochastic

process. Schwartz (1997) further explores this two-factor model in the context of a

term structure model of commodity prices. This model provides a reasonable fit of

the term structure of long-term forward prices which are essential for valuing long-

term commodity linked investments. The Schwartz (1997) two-factor model has

been successfully applied in the modelling of several key commercial commodities,

2See Brennan (1958), and Litzenberger and Rabinowitz (1995a).
3Net convenience yield is defined as the benefit of holding inventory minus physical storage

costs. It is negative if the storage expense is higher. For simplicity, convenience yield mentioned
in the rest of this chapter refers to net convenience yield.

4Cost of carry is defined as the physical storage cost plus the forgone interest. See Pindyck
(2001).
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including crude oil and copper. However, to the best of my knowledge no previous

work has examined the impact of modeling stochastic convenience yield in an opti-

mal harvesting problem applied to a renewable natural resource such as timber. In

this chapter, I will investigate the implication of including stochastic convenience

yield on the behavior of lumber prices and long-term forestry investment decisions.

The objective of this chapter is to further our understanding of the optimal

valuation and harvesting of commercial forest land by using lumber future prices to

estimate a two-factor model of lumber prices that includes stochastic convenience

yield. The approach for estimating the price model uses the Kalman filter as is

done in Schwartz (1997). I compare the ability of this two-factor model to match

the term structure of lumber futures prices with that of two other simpler models

which do not include stochastic convenience yield. These simpler models represent

GBM and mean reverting processes. I then use the estimated price models in a

multi-rotational optimal tree harvesting problem.

A real options model of the forestry investment valuation is developed assuming

a joint stochastic process of lumber prices and convenience yield. The Hamilton-

Jacobi-Bellman (HJB) equation characterizing the value of the option to harvest a

stand contains three state variables: lumber prices, convenience yield and the stand

age. To simplify the solution of the harvesting problem, I use the one-factor model

introduced in Schwartz (1998), which retains most of the main characteristics of his

two-factor model, especially its ability to fit long-term commodity futures prices. I

call this one-factor model the “long-term model”. The HJB equation derived using

the long run model is solved numerically using the combination of the fully implicit

finite difference method, the semi-Lagrangian method and the penalty method. The

optimal harvesting decisions and land value computed for the long-term model are

then compared with results using the simple GBM and mean reverting models.

The main conclusion is that modelling stochastic convenience yield improves

our ability to match lumber futures prices and that the long run model provides
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reasonable estimates of land value and optimal harvesting decisions. The long-run

model gives significantly different results than the other simpler models that are

used for comparison.

The remainder of this chapter is organized as follows. In Section 3.2 I give a brief

description of lumber spot and futures prices. Section 3.3 describes the two-factor

price model as well as the GBM and mean reverting models used for comparison.

Section 3.4 describes the estimation of the price models using the Kalman filter.

Section 3.5 presents the long-term model which is used as an approximation of the

two-factor model. Section 3.6 describes the empirical results of the price model

estimation and compares the ability to the different models to match the term

structure of futures prices. Section 3.7 presents the real options model and analysis

of an optimal tree harvesting problem. Section 3.8 concludes.

3.2 Lumber spot prices and futures prices

Forest products are traded worldwide and Canada is a major player in this market,

accounting for 14% of the value of world forest product exports in 2006. There

are two types of lumber, softwood and hardwood, with softwood lumber generally

used in construction, building and housing purposes. It is also the underlying

asset of lumber futures contracts traded in the futures market. There is no single

spot market in which a uniform lumber product is traded, and therefore there is

no unique lumber spot price. However, there is a single North American market

for standard lumber futures contracts. Following the literature5, the price of the

futures contract which is closest to maturity is treated as the lumber spot price.

Lumber futures contracts were first traded on the Chicago Mercantile Exchange

(CME) in 1969. The Random Length Lumber futures traded on the CME are

5See Gibson and Schwartz (1990).
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Item Max Min Mean Std. Dev. Skewness Kurtosis

$ Cdn/MBF 718.1 164.8 423.7 107.6 -0.09 2.50

Table 3.1: Descriptive statistics for the lumber price time series (as shown
in Figure 3.1), from January 6th, 1995 to April 25th, 2008.

for on-track mill delivery of 110,000 board feet (plus or minus 5,000 board feet)

of random length 8-foot to 20-foot nominal 2-inch × 4-inch pieces. The delivery

contract months for CME Random Length Lumber futures are as follows: January,

March, May, July, September and November. The last trading day of each contract

is the business day prior to the 16th calendar day of the contract month.

Real spot prices, as approximated by the prices of the lumber futures contract

closest to maturity, are shown in Figure 3.16. These are weekly data, covering

the period from January 1995 to April 2008. The original data in U.S. dollars were

deflated by the CPI and converted to Canadian dollars. The transformation is made

because our real options application is a hypothetical decision problem in Canada’s

boreal forest. In Figure 3.1 prior to 2006 there appears to be a tendency to revert

to a mean between $400 and $500 (Cdn) per MBF. After 2006 we see a downward

progression in price reflecting weak North American lumber markets as well as the

impact of a strengthening Canadian dollar. We also observe a significant level of

volatility. Summary statistics of the spot lumber prices are reported in Table 3.1.

There are six lumber futures contracts traded each day on the CME, the first

four of which will be used in my analysis as these have the highest trading volumes

and can be expected to provide more accurate information. Real weekly prices of

the four selected lumber futures prices, ranging from January 1995 to April 2008,

are shown in Figure 3.2. Summary statistics of these four time series are provided

in Table 3.2. The mean price shown in Table 3.2 is lowest for the shortest maturity

contract and rises with contract maturity. Conversely, the largest volatilities are for

6Data source: Chicago Mercantile Exchange.
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Figure 3.1: Real prices of lumber futures contract closed to maturity.
Weekly data from January 6th, 1995 to April 25th, 2008, $Cdn./MBF,
(MBF ≡ thousand board feet). Nominal prices deflated by the Consumer
Price Index, base year = 2005.
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First four lumber futures prices
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Figure 3.2: Real prices of four CME lumber futures,$Cdn./MBF (thousand
board feet). Weekly data from January 6th, 1995 to April 25th, 2008.
Nominal prices deflated by the Consumer Price Index, base year = 2005.

the prices of the short-term contracts, while the volatilities for the two longer term

contracts are fairly close. The decreasing pattern of volatilities along the prices

curve is often called “the Samuelson effect” in the literature. The term structure of

lumber futures shown in Figure 3.3 provides an illustration of the Samuelson effect.

In the diagram the spread of futures prices at 4 (F4) is smaller than at 1 (F1),

indicating that the near term prices are more volatile. From this graph, we observe

different shapes of the lumber term structure, from backwardation to contango for

example.
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Item Number of observations Mean Std. Deviation Maturity(on average)

F1 695 423.7 107.57 1 mon
F2 695 427.5 96.24 3 mon
F3 695 429.6 89.08 5 mon
F4 695 431.5 86.15 7 mon

Table 3.2: Summary statistics of four chosen CME lumber futures prices,
$Cdn./MBF. Weekly data from January 6th, 1995 to April 25th, 2008.

Term structure of monthly lumber futures prices
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Figure 3.3: Term structure of lumber futures,$Cdn./MBF. Monthly data
from January 6th, 1995 to April 25th, 2008.
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3.3 Valuation models

The varying shapes of term structure of lumber futures prices shown in Figure 3.3

imply the need to model convenience yield in order to capture the main characteris-

tics of lumber spot and futures prices. The two-factor model analyzed in Schwartz

(1997) is one of the most popular models in this literature and it has been success-

fully employed to model several commodities, including crude oil and copper. For

the convenience of the reader, in the next section I summarize the Schwartz (1997)

two-factor model. I also present two one-factor models, GBM and mean reverting,

to be used as comparison with the two-factor model. These one-factor models are

also popular in the literature and are simpler to estimate and use in models of

investment decisions than the two-factor model. I would like to determine whether

the two-factor model does a substantially better job at modelling lumber prices and

is therefore worth using despite its increased complexity.

3.3.1 The Schwartz (1997) two-factor model

The two-factor model analyzed in Schwartz (1997) is based on the model developed

in Gibson and Schwartz (1990). Specifically, the spot price S follows a GBM process

with a stochastic drift and the net convenience yield δ is formulated as a mean-

reverting Ornstein-Uhlenbeck process. The joint stochastic process of the two state

variables in Schwartz (1997) is given by:

dS = (µ− δ)Sdt+ σsSdzs

dδ = κ(α− δ)dt+ σδdzδ

dzsdzδ = ρdt (3.1)

where µ is the expected return of spot prices, κ and α represent the mean reversion

rate and the long-run equilibrium level of convenience yield respectively, σs and σδ

66



denote the volatilities of the two state variables, and ρ is the correlation coefficient

between the two standard Brownian increments dzs and dzδ.

I note in the above specification that µ represents the total expected return from

S and it remains constant. As the convenience yield changes the portion of total

return that derives from capital gains, (µ − δ), and the portion that derives from

convenience yield adjusts stochastically while the total return is assumed fixed and

determined by the market equilibrium return for that particular asset class.

I expect convenience yield and the commodity price to be positively correlated.

Intuitively, when there is excess supply on the market, lumber inventories will rise

and the spot price should fall. Convenience yield should also fall since the benefit

of owning the commodity is smaller than when the commodity is scarce. A lower

convenience yield implies it is more costly to carry commodity inventories. This will

tend to drive up the futures price as it becomes more attractive to secure supply

in the futures market rather than carrying inventory.

In Equation (3.1) convenience yield affects S through the correlation coefficient

as well as through the drift term. With a positive ρ, a fall in S implies a fall in δ.

This lower δ increases the drift rate for S, and hence S is pulled up again. Hence

in the model specified in Equation (3.1), S is characterized by some reversion to

the mean, but the mean is not constant.

The specification of convenience yield as a mean reverting process also makes

intuitive sense. α represents a long run level that reflects the cost of storing the

commodity and a benefit conveyed by having immediate access to inventories. δ

will vary around α depending on commodity market conditions with δ > α when

markets are buoyant and the reverse when markets are depressed. The inverse

relationship between the level of inventory and the convenience yield prevents the

possibility that the net convenience yield goes to infinity. This relationship holds

for storable commodities including lumber.
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Under the equivalent martingale measure, the risk adjusted processes for the

two state variables, the spot price S and convenience yield δ, are expressed as:

dS = (r − δ)Sdt+ σsSdz
∗
s

dδ = [κ(α− δ)− λ]dt+ σδdz
∗
δ

dz∗sdz
∗
δ = ρdt (3.2)

where λ is the market price of convenience yield risk. From the no-arbitrage con-

dition, the risk-adjusted drift of the price process is r − δ. The market price of

convenience yield risk has to be incorporated in the risk neutral process of conve-

nience yield, since convenience yield is not traded.

Applying Ito’s Lemma, the log spot price X = lnS in this two-factor model can

be derived as:

dX = (µ− 1

2
σs − δ)dt+ σsdzs (3.3)

The partial differential equation (PDE)7 characterizing the futures price

F (S, δ, t, T ) can be derived using Ito’s Lemma and expressed as:

1

2
σ2
sS

2Fss + (r − δ)SFs +
1

2
σ2
δFδδ + (κ(α− δ)− λ)Fδ + ρσsσδSFsδ − Ft = 0 (3.4)

subject to boundary condition: F (S, δ, T, T ) = S, where T denotes the maturity

date of the futures contract. The analytical solution of equation (4.15) is derived

in Jamshidian and Fein (1990) and Bjerksund (1991) and can be expressed as:

F (S, δ, 0, T ) = S exp
[
A(T )− δ1− e−κT

κ

]
(3.5)

7For detailed derivation of this PDE, see Gibson and Schwartz (1990).
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where

A(T ) = (r − α̂ +
1

2

σ2
δ

κ2
− σsσδρ

κ
)T +

1

4
σ2
δ

1− e−2κT

κ3
+ (α̂κ+ σsσδρ−

σ2
δ

κ
)
1− e−κT

κ2

α̂ = α− λ

κ
(3.6)

The linear relationship between futures prices and spot prices can be found in the

log form of futures prices:

lnF (S, δ, 0, T ) = lnS + A(T )− δ1− e−κT

κ
(3.7)

Equation (3.7) will be used for model estimation.

3.3.2 Single factor models

In order to analyze the impact of incorporating stochastic convenience yield on long-

term forestry investment decisions, two single factor models are also estimated and

compared in this chapter. These one-factor models are the log price mean reverting

model analyzed in Schwartz (1997) and a GBM model with a constant convenience

yield. Since the two-factor model analyzed in this chapter features mean reversion in

the commodity’s price, it seems reasonable to compare it with a single factor mean

reverting model. I also use the GBM model for comparison since it is so widely

used and the spot price in two-factor model follows an adjusted GBM process with

stochastic convenience yield on the drift term. In this section, these one-factor

models are briefly summarized.
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The one-factor mean reverting model

This model is the same single factor model as analyzed in Schwartz (1997). The

spot prices S are modeled as:

dS

S
= κMR[µMR − lnS]dt+ σMRdz (3.8)

Applying Ito’s Lemma, the log spot price X = lnS follows an Ornstein-Uhlenbeck

process:

dX = κMR

[
(µMR −

σ2
MR

2κMR

)−X
]
dt+ σMRdz (3.9)

where the mean reverting rate is κMR and the long-run equilibrium log price level

is µMR −
σ2
MR

2κMR
. The risk-adjusted version of this model can be expressed as:

dX = κMR[α∗ −X]dt+ σMRdz
∗ (3.10)

where α∗ = µMR −
σ2
MR

2κMR
− λMR and λMR represents the market price of risk.

The corresponding futures price in log form, lnF (S, 0, T ), can be expressed as8:

lnF (S, 0, T ) = e−κMRT lnS + (1− e−κMRT )α∗ +
σ2
MR

4κMR

(1− e−2κMRT ) (3.11)

This linear relationship between log futures prices and the state variable log spot

prices will be used for model estimation.

The GBM model

The GBM model can be expressed as:

dS = [µGBM − δGBM ]Sdt+ σGBMSdz (3.12)

8See Schwartz (1997).
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where δGBM refers to the constant convenience yield. Similarly, the log price X =

lnS follows a normal distribution which can be expressed as:

dX =
[
µGBM − δGBM −

σ2
GBM

2

]
dt+ σGBMdz (3.13)

The risk-neutral version of this model is:

dX =
[
r − δGBM −

σ2
GBM

2

]
dt+ σGBMdz

∗ (3.14)

The conditional mean of X under the equivalent martingale measure is E0[X(T )] =

(r − δGBM −
σ2
GBM1

2
)T +X0. Its conditional variance is V ar0[X(T )] = σ2

GBMT .

Based on the properties of the log normal distribution, the futures price F (S, 0, T )

in this model can be expressed as:

F (S, 0, T ) = elnS+(r−δGBM )T (3.15)

The log futures price can be derived as:

lnF = lnS + (r − δGBM)T (3.16)

3.4 Model estimation: Kalman filter

When state variables are not observable, a practical method for estimating this type

of model is by stating the problem in state space form and by using the Kalman

filter based on an error prediction decomposition of the log-likelihood function. The

Kalman filter is a recursive procedure for estimating unobserved state variables

based on observations that depend on these variables (Kalman (1960)). Prediction

errors, a by-product of the Kalman filter, can then be used to evaluate the likelihood
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function and the model parameters are estimated by maximizing this likelihood

function.

The state space form consists of a transition equation and a measurement equa-

tion. The transition equation describes the dynamics of an unobserved set of state

variables. The measurement equation relates the unobserved variables to a vector

of observables. In the two-factor model analyzed in this chapter, both the lumber

spot price and convenience yield are assumed to be unobserved state variables.9

The lumber spot prices in the single-factor models are also assumed to be unob-

served. Futures prices with different maturities observed at different dates serve

as observed variables and the measurement equation will specify the relationship

between futures prices and the two state variables.

Specifically, the linear Gaussian state space model can be expressed as the

following system of equations:

xt+1 = dt + Ttxt + ηt (3.17)

yt = Ct + Ztxt + εt (3.18)

where x denotes the vector of unobserved state variables and y = lnF denotes the

observed log futures prices for all the models analyzed in this chapter.10 Equation

(3.17) represents the transition equation of the model, which describes the evolution

of the non-observed state vector xt over time. Equation (3.18) is the measurement

equation describing the vector of observations yt in terms of the state vector.

Two types of variables used recursively in the Kalman filter algorithm are called

priori variables and posteriori variables. Define the observed data set at time t as

9In the commodity literature, since the exact meaning of commodity spot prices like electricity
is difficult to pin down, when using Kalman filter to estimate parameters of the model containing
spot price dynamics, researchers treat spot prices as unobserved state variable. See Schwartz
(1997) for example.

10dt, Tt, Ct, Zt are terms containing corresponding model parameters which will be specified
later in this chapter. ηt and εt denote the disturbances of the two equations.
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Yt = (y1, ..., yt). Priori variables refer to the conditional mean, defined as xt|t−1 =

E[xt|Yt−1], and conditional variance, defined as Pt|t−1 = var[xt|Yt−1], of the state

vector xt based on information available at time t − 1. Posteriori variables are

the estimates for the mean and variance of the state vector conditional on the

information available at time t, denoted as xt|t = E[xt|Yt] and Pt|t = var[xt|Yt]
respectively.

The first step of the Kalman filter is to compute one time step ahead priori

variables xt|t−1 and Pt|t−1 using the values of posteriori variables at time t − 1 via

the prediction equations:

xt|t−1 = dt−1 + Tt−1xt−1|t−1 (3.19)

Pt|t−1 = Tt−1Pt−1|t−1T
′
t−1 + V ar(η) (3.20)

Next, with the new observation yt, the posteriori variables at time t can be updated

using updating equations:

xt|t = xt|t−1 +Ktvt (3.21)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tK
′
t (3.22)

where

vt = yt − Ct − Ztx′t|t−1 (3.23)

Ft = ZtPt|t−1Z
′
t + var(ε) (3.24)

Kt = Pt|t−1Z
′
tF
−1
t (3.25)

where vt is the residual of the measurement equation (3.18) or prediction error. Ft

is the variance of this prediction error, Ft = var(vt). Kt is the Kalman gain. This

process is then repeated until the whole set of observations YN has been observed
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and used in this recursive process. The resulting estimates of posteriori variables

xt|t will be the filtered estimates of the state vector for each observation date t. The

smoothed estimates of the state vector can be obtained by using all the information

in the observation set YN .

Unknown parameters of the state space model can be estimated by maximizing

the prediction error decomposition of the log-likelihood function, which is a by-

product of the Kalman filter. The sample log-likelihood function is

lnL =
N∑
t+1

ln f(vt) = c− 1

2

N∑
t+1

(ln |Ft|+ v′tF
−1
t vt) (3.26)

c is a constant and f(vt) denotes the probability density function of prediction error

vt. The standard errors of the maximum likelihood estimates of the parameters

were calculated by taking the inverse of the sum of the outer product of the score

functions evaluated at the maximum likelihood estimates for each observation.11

The two-factor model and single-factor models analyzed in this chapter are

all written in the state space form and the corresponding model parameters are

estimated using the Kalman Filter method. The state space form of each model is

provided in this section.

3.4.1 Two-factor model

For the two-factor model, both the stochastic spot price and convenience yield serve

as the unobserved state variables x = [X, δ]′, where X = lnS denotes the log of the

spot price. Based on equations (3.1) and (3.3), the terms of the transition equation

11S-plus was used to conduct the estimation process.
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(3.17) in the state space form can be expressed as:

dt = [(µ− 1

2
σ2
s)∆t, κα∆t]′

Tt =

 1 −δt
0 1− κδt


ηt in equation (4.19) denotes serially uncorrelated disturbances with mean zero for

the equations characterizing the unobserved two state variables , and its covariance

matrix is expressed as:

V ar(ηt) =

 σ2
s∆t ρσsσδ∆t

ρσsσδ∆t σ2
δ∆t


Based on equation (3.7), the terms of the measurement equation (3.18) are given

as:

Ct = [A(Ti)]

Zt =

[
1,−1− e−κTi

κ

]
i = 1, ..., N , whereN is the number of futures contracts at each date t. εt in equation

(3.17) represents a vector of serially uncorrelated disturbances with zero mean and

identity variance-covariance matrix. The innovations in the transition equation ηt

and those in the measurement equation εt are assumed to be independent in all the

analyzed models in this chapter, which means E[ηtεt] = 0.

3.4.2 One-factor mean reverting model

The spot price in this one-factor mean reverting model is the unobserved state

variable, x = [X]. Based on equation (3.9), the terms of the transition equation
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(3.17) in the state space form can be expressed as:

dt = [κMR(µMR −
σ2
MR

2κMR

)4t]

Tt = [1− κMR4t]

ηt in equation (3.17) denotes serially uncorrelated disturbances with mean zero,

and its variance is σ2
MR4t.

Based on equation (3.11), the terms of the measurement equation (3.18) are

given as:

Ct = [(1− e−κMRTi)α∗ +
σ2
MR

4κMR

(1− e−2κMRTi)]

Zt = [e−κMRTi ]

i = 1, ..., N . εt in equation (3.18) represents a vector of serially uncorrelated dis-

turbances with zero mean and identity variance-covariance matrix.

3.4.3 GBM model

In this one-factor model, the spot price is the unobserved state variable, x = [X].

Based on equation (3.13), the terms of the transition equation (3.17) in the state

space form can be expressed as:

dt =
[
(µGBM − δGBM −

σ2
GBM

2
)4t

]
Tt = [1]

ηt in equation (3.17) denotes serially uncorrelated disturbances with mean zero,

and its variance is σ2
GBM4t.

Based on equation (3.16), the terms of the measurement equation (3.18) are
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given as:

Ct = [(r − δGBM)Ti]

Zt = [1]

i = 1, ..., N . εt in equation (3.18) represents a vector of serially uncorrelated dis-

turbances with zero mean and identity variance-covariance matrix.

3.5 Schwartz (1998) one-factor long-term model

Schwartz (1998) develops a one-factor model which is simpler than the two-factor

model analyzed in Schwartz (1997) in terms of valuing long-term commodity-related

investments, but it closely matches the performance of the two-factor model in terms

of fitting the term structure of long term futures prices and the volatilities of all

futures contracts. Schwartz (1998) calls it the long-term model. In this section, the

one-factor long-term model is summarized.12 All the parameters in this long-term

model are derived from the parameter estimates in the Schwartz (1997) two-factor

model.

The motivation for this one-factor long-term model is to match as closely as

possible the risk-neutral distribution of the spot prices in the Schwartz (1997) two-

factor model. In the risk-neutral world, the spot prices in the two-factor model are

lognormally distributed with mean equal to the futures price and variance depend-

ing on the volatility of futures returns.13 Schwartz (1998) applied his one-factor

long-term model to oil and was able to fairly accurately generate long-term futures

prices and the term structure of the futures volatilities.

12For the convenience of readers, the derivation of this long-term model is provided in Appendix
B1.

13See Schwartz (1998).
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The long-term model uses a composite price, denoted Z, as the single stochas-

tic state variable.14 Z depends on the two stochastic factors, spot price S and

convenience yield δ, as follows:15

Z(S, δ) = Se[ c−δ
κ
− σ2

δ
4κ3 ] (3.27)

c is defined as the constant convenience yield used to match the long-term rate of

change in the futures prices and is expressed as

c = α− λ

κ
− σ2

δ

2κ2
+
ρσsσδ
κ

(3.28)

Given S, δ, and the model parameters, Z can be calculated based on Equation

(3.27). Z is defined in such a way that the futures prices of this one-factor model

F (Z, T ) match the long-term futures prices of two-factor model F (S, δ, T ), given

the constant convenience yield expressed in Equation (3.28). It may be noted from

Equation (3.27) that Z is increasing in S and decreasing in δ.

In order to match the volatility of futures returns between the one-factor long

term model and the two-factor model, the stochastic differential equation followed

by Z is given as:
dZ

Z
= (r − c)dt+ σF (t)dz (3.29)

where σF (t) represents the volatility of the futures returns based on the Schwartz

(1997) two-factor model and is derived as

σ2
F (t) = σ2

s + σ2
δ

(1− e−κt)2

κ2
− 2ρσsσδ

(1− e−κt)
κ

(3.30)

Therefore, the futures price, F , with maturity T and the composite spot price Z,

14In Schwartz (1998), Z is referred to as the shadow price.
15This expression is slightly different than the corresponding Equation 17 in Schwartz (1998).
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in this one-factor long-term model can be expressed as:

F (Z, T ) = Ze(r−c)T (3.31)

This long-term model devised by Schwartz (1998) is much easier to use in valuing

investment opportunities because there is only one stochastic variable, the compos-

ite price Z. Schwartz (1997) found that for oil prices the performance of this one-

factor model in terms of fitting the long-term futures prices and the term structure

of futures volatilities is comparable with that of the two-factor model. I investigate

whether the long term model also works for lumber prices.

3.6 Estimation results

The prices of four lumber futures contracts are used for model estimation and their

main characteristics are detailed in Section 3.2. In order to check the convergence of

the estimated parameters, I used different sets of starting values for the maximiza-

tion of the log-likelihood function of the model and obtained the same parameter

estimates. In this section, the estimation results of one-factor and two-factor models

analyzed in this chapter are presented and the corresponding model performance

is examined. In addition the futures prices implied by the long-term model and

the two-factor model are compared to determine whether the former provides a

reasonable approximation of the latter.

3.6.1 The two-factor model

The parameter estimates of the two-factor model, Equation (3.1), using weekly

futures prices are reported in Table 3.3. The estimate of the correlation coefficient,

ρ, is above 0.9 and is statistically different from zero. This result implies that
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µ κ α σs σδ ρ λ

Estimates -0.124 2.089 -0.142 0.397 0.824 0.934 -0.212
Std. Error (0.107) (0.136) (0.107) (0.014) (0.049) (0.008) (0.227)

LL 6471.7

Table 3.3: Parameter estimates of Schwartz (1997) two-factor model using
Kalman filter. LL refers to the value of log-likelihood function. Weekly
futures prices, from January 6th, 1995 to April 25th, 2008.

convenience yield is an important factor affecting lumber price dynamics. The

positive estimate of ρ is consistent with the theory of storage and helps to explain

the mean reverting feature of lumber prices observed in Figure 3.1. The estimate of

the mean reversion rate, κ, for the convenience yield process is high and significant

as well. −ln(0.5)/κ can be interpreted as the half-life of the time it takes for δ

to return to its long run value. With κ = 2.089 I expect the deviation δ from the

long run value will halve in 0.33 years. The estimate of the equilibrium convenience

yield level α is not significantly different from zero, which implies that on average,

the net convenience yield of lumber is about zero. This result is consistent with

the theoretical prediction that in equilibrium, the benefit of holding the physical

commodity should be equal to the cost of storage, which leads to the zero net

convenience yield. The estimate of market price of convenience yield risk, λ, is

found to be not significant as well.

Model implied spot prices, S, and market lumber prices proxied by the futures

contract closest to maturity, F1, are plotted in Figure 3.4. From this graph it

appears that the model implied prices move very closely with the market spot

prices.

Figure 3.5 plots the two model implied state variables, spot prices and con-

venience yield. The red line denotes the spot prices and blue line represents the

convenience yield. This figure shows that spot prices and convenience yield tend to

move together, confirming the estimation result of a high and positive correlation
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Model implied spot prices and market lumber prices
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Figure 3.4: Plots of model implied (two-factor model) and market spot
prices. Blue line: model implied prices. Red line: market prices.

Item Max Min Mean Std. Dev.

Net convenience yield 1.00 -0.94 -0.14 0.35

Table 3.4: Descriptive statistics for model implied net convenience yield.

coefficient ρ. From this figure, we also notice that the net convenience yield can be

negative or positive and fluctuates around zero in the range of [−1, 1]. Whenever

convenience yield exceeds higher than storage cost, net convenience yield is positive.

Conversely, if storage cost exceeds convenience yield, net convenience yield will be

negative. In the long-run, convenience yield is approximately equal to storage cost.

Summary statistics of net convenience yield are provided in Table 3.4.

Model estimation errors of both futures prices and log futures prices including

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) expressed in

dollars per thousand board feet for four futures contracts are reported in Table 3.5.

The overall average error of model implied futures prices from the last column is
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Figure 3.5: Red line: model implied spot prices. Blue line: model implied
convenience yield.
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Schwartz (1997) two-factor model

F1 F2 F3 F4 All
Estimation errors of futures prices

RMSE 13.664 1.764 4.719 3.600 7.501
MAE 9.701 1.327 3.547 2.711 4.322

Estimation errors of log futures prices
RMSE 0.031 0.004 0.011 0.009 0.017
MAE 0.023 0.003 0.008 0.006 0.010

Table 3.5: Average estimation errors of both futures prices and log futures
prices of Schwartz (1997) two-factor model expressed as RMSE and MAE
of 4 futures contracts, Cdn$/MBF.

less than $8/MBF which is about 1.8% of the mean lumber spot price. The overall

average errors of log futures prices expressed in both ways are less than two cents

per thousand board feet. It appears that the two-factor model provides a good

tracking of the lumber futures time series. Plots of market futures prices and the

model implied futures prices for the four futures contracts are shown in Figure 3.6.

Again, the graphs display a reasonably close fit of the model prices versus actual

prices.

3.6.2 One-factor mean reverting model

Parameter estimates for the single-factor model are reported in Table 3.6. From this

table we find that all the model parameters are statistically significant except for

the market price of risk λMR. The long-run equilibrium log price level µMR−
σ2
MR

2κMR
=

6.206 which implies a value for S of $496 per MBF. The mean reverting rate κMR

is moderate at 0.229. Model implied and market lumber spot prices are plotted in

Figure 3.7. The average error (RMSE) for all four futures maturities is $17.8 per

MBF which is larger than for the two-factor model. More details are provided in

Appendix B.
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Figure 3.6: Plots of model implied and market futures prices for the two-
factor model and the four chosen futures contracts. Weekly data from
January 6th, 1995 to April 25th, 2008. Units are $Cdn per MBF. Blue line:
model implied futures prices. Red line: market futures prices.

µMR κMR σMR λMR

Estimates 6.323 0.229 0.231 0.007
Std. Error (0.297) (0.031) (0.009) (0.284)

LL 5343.2

Table 3.6: Parameter estimates of Schwartz (1997) one-factor model using
Kalman filter. LL refers to the value of log-likelihood function. Weekly
futures prices, from January 6th, 1995 to April 25th, 2008.
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Model implied spot prices and market lumber prices - One-factor mean reverting model
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Figure 3.7: Plots of model implied and market spot prices: one-factor mean
reverting model. Blue line: model implied prices. Red line: market prices.

85



µGBM σGBM δGBM

Estimates -0.065 0.215 -0.027
Std. Error (0.058) (0.006) (0.004)

LL 5145.2

Table 3.7: Parameter estimates of GBM model with convenience yield using
Kalman filter. LL refers to the value of log-likelihood function. Weekly
futures prices, from January 6th, 1995 to April 25th, 2008.

3.6.3 The GBM model

Parameter estimates for the GBM model with constant convenience yield are re-

ported in Table 3.7. The drift term µGBM is negative, but not statistically signifi-

cant. The constant convenience yield δGBM is small in magnitude. Model implied

and market lumber spot prices are plotted in Figure 3.8. The average RMSE for

all maturities is $19.3 per MBF. Details are provided in Appendix B.

3.6.4 The one-factor long-term model

Since the single factor long-term model proposed in Schwartz (1998) is a mathe-

matical transformation of the two-factor model, the model parameters are the same

for the two models. Specifically, the constant convenience yield, c, based on Equa-

tion (3.28) is 0.028. Table 3.8 shows descriptive statistics for the composite spot

price Z of this long-term model. Comparing this table with Table 3.1, we find that

the range of the true spot price is wider than the composite spot price and the

composite prices is less volatile than the market spot price. A plot of composite

spot prices and model implied spot prices is provided in Figure 3.9. The composite

price shown in this graph is less volatile than the model implied spot price.

For a given maturity T , model implied futures prices of both the two-factor

model and the long-term model can be derived based on Equations (3.5) and (3.31)

respectively. We are interested in the performance of the long-term model in terms

86



Model implied spot prices and market lumber prices - GBM with constant convenience yield
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Figure 3.8: Plots of model implied and market spot prices: one-factor GBM
model with constant convenience yield. Blue line: model implied prices.
Red line: market prices.

Max Min Mean Std. Dev. Skewness Kurtosis

Cdn (2005) $/MBF 558.6 239.2 428.1 77.73 -0.48 2.37

Table 3.8: Descriptive statistics for the composite spot prices Z of one-
factor long-term model.
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Composite spot prices and model implied spot pirces
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Figure 3.9: Plots of composite spot prices and model implied spot prices.
Solid line: composite spot prices; dotted line: model implied spot prices.
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Differences of futures prices in $/MBF: two-factor model and long-term model

F1 F2 F3 F4 F1-F4 average
RMSE 58.83 41.69 29.73 21.52 40.45
MAE 48.43 34.26 24.27 17.35 31.08

F5 F6 F7 F8 F5-F8 average
RMSE 11.47 8.71 8.75 8.72 9.49
MAE 8.99 8.45 8.59 8.57 8.65

F9 F10 F11 F12 F9-F12 average
RMSE 8.68 8.63 8.59 8.55 8.61
MAE 8.53 8.49 8.45 8.40 8.47

Table 3.9: Differences of model implied futures prices with different matu-
rities for two models.

of fitting long-term commodity derivatives prices compared to that of the two-factor

model. To this end, model implied futures prices with the maturities up to 8 years

are calculated for both models. Note that beyond one year there are no actual

futures prices that can be used for comparison. The differences expressed in RMSE

and MAE of the model implied futures prices with different maturities between the

two-factor model and the long-term model are reported in Table 3.9. The average

difference for long term futures contracts (with maturities from 5 years to 8 years)

is less than $9, which is about 2% of the mean futures prices. This result further

confirms the close match of these two models in terms of generating long maturity

futures prices. Plots of the model implied futures prices with different maturities

for these two models are provided and compared in Appendix B3.

3.7 Analysis of a forestry investment

In this section I model the optimal decision of the owner of a stand of trees who

seeks to maximize the value of the stand (or land value) by optimally choosing the

harvest time. It is assumed that forestry is the best use for this land, so that once the

stand is harvested it will be allowed to grow again for future harvesting. Since this
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is a multi-rotational optimal harvesting problem, it represents a path-dependent

option. This is because the value of the option to harvest the stand today depends

on the quantity of lumber, which itself depends on the last time when the stand was

harvested. The tree harvesting problem is impulse control problem (Phan, 2005).

Determining the value of the stand and the optimal harvesting decision requires

the numerical solution of a Hamilton-Jacobi-Bellman (HJB) variational inequality.

Some of the details of this timber harvesting problem such as costs and the

growth curve for wood volume have been used in other papers including Chen and

Insley (2008), Insley and Rollins (2005) and Insley and Wirjanto (2008). The latter

two papers use a simple one factor mean reverting process for price, while Chen

and Insley (2008) examine a regime-switching model.

3.7.1 Cost, wood volume and price data

I consider a harvesting problem for a hypothetical stand of Jack Pine trees in

Ontario’s boreal forest assuming that the stand is used for commercial forestry.

Values are calculated prior to any stumpage payments or taxes.

Timber volumes and harvesting costs are adopted from Insley and Lei (2007)

and are repeated here for the convenience of the reader. Volume and silviculture

cost data were kindly provided by Tembec Inc. The estimated volumes reflect ‘basic’

levels of forestry management which involves $1040 per hectare spent within the

first five years on site preparation, planting and tending. These costs are detailed in

Table 3.10. Note that in the Canadian context these basic silviculture expenses are

mandated by government regulation for certain stands. I assume that harvesting

is not permitted before age 35 once all silvicultural expenditures have been made.

Volumes, estimated by product, are shown in Figure 3.10 for the basic silvicul-

tural regime.16 SPF1 and SPF2 are defined as being greater than 12 centimeters

16The yield curves were estimated by Margaret Penner of Forest Analysis Ltd., Huntsville,
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Item Cost, $/ha Age cost incurred

Site preparation $200 1
Nursery stock $360 1

Planting $360 2
First tending $120 5
Monitoring $10 35

Table 3.10: Silviculture costs under a basic regime

Harvest and transportation cost $47

Price of SPF1 $60
Price of SPF2 $55
Price of SPF3 $30

Price of poplar/birch $20

Table 3.11: Assumed values for log prices and cost of delivering logs to the
mill in $ per cubic meter

at the small end, SPF3 is less than 12 centimeters, and ‘other’ refers to other less

valuable species (poplar and birch). Data used to plot this graph is provided in

Insley and Wirjanto (2008).

Assumptions for harvesting costs and current log prices at the millgate are

given in Table 3.11. These prices are considered representative for 2003 prices at

the millgate in Ontario’s boreal forest. Average cost to deliver logs to the lumber

mill in 2003 are reported as $55 per cubic meter in a recent Ontario government

report (Ontario Ministry of Natural Resources, 2005). From this is subtracted $8

per cubic meter as an average stumpage charge in 2003 giving $47 per cubic meter.17

It will be noted the lower valued items (SPF3 and poplar/birch) are harvested at a

loss. These items must be harvested according to Ontario government regulation.

The price for poplar/birch is at roadside, so there is no transportation cost to the

mill.

Ontario for Tembec Inc.
17This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation.

Average stumpage charges are available from the Ontario Ministry of Natural Resources.
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Figure 3.10: Volumes by product for hypothetical Jack Pine stands in On-
tario’s boreal forest under basic management
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3.7.2 Optimal harvesting with different price models

Ideally I would solve the optimal harvesting problem using the two-factor model

with stochastic price and convenience yield. However this requires the numerical

solution of a complex HJB variational inequality with three state variables (price,

volume and convenience yield) plus time. I have shown that the performance of

the long-term model introduced in Schwartz (1998) is comparable to that of the

two-factor model in terms of matching long run futures prices. I therefore analyze

the forest investment problem using the long-term model with the composite price

as the single stochastic variable. The results from the long-term model will be

compared with those from the single factor mean reverting and GBM models. In the

following sections, the HJB variational inequality is specified for the three different

price models.

The long-term model

In the single-factor long-term model, based on the stochastic process describing the

composite price Z in Equation (3.27), the value of the stand of trees is denoted

as V (Z, ϕ, t). At each period the stand owner makes the choice either to harvest

the stand immediately or let the trees grow for another period and then reconsider

whether or not harvesting should be undertaken. If the stand is harvested the stand

owner receives revenue from selling the timber equal to [(S−Ch)Q(ϕ) +V (Z, 0, t)].

This it the price of timber, S, less per unit harvesting costs, Ch, times the quantity

of timber, Q(ϕ), which is a function of age, Q = g(ϕ). In addition the stand owner

receives an asset equal to V (Z, 0, t) which refers to the value of the bare land when

the stand is of age zero. If the stand owner chooses to delay harvesting for another

period, he receives the value of the land, V (Z, ϕ, t). Using standard no-arbitrage

arguments, when it is optimal to delay harvesting (in the continuation region) the
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value of the stand satisfies the following PDE:

Vt + (r − c)ZVZ +
1

2
(σF (t)Z)2VZZ + Vϕ − rV = 0 (3.32)

where the variance of the futures returns σF (t) is time dependent and is given in

Equation (3.30). Rewrite the PDE Equation (3.32) as:

HV ≡ rV − (Vt + (r − c)ZVZ +
1

2
(σF (t)Z)2VZZ + Vϕ) (3.33)

Then the HJB variational inequality characterizing the full optimal harvesting prob-

lem can be expressed as:

(i) HV ≥ 0 (3.34)

(ii) V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)] ≥ 0

(iii) HV

[
V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)]

]
= 0

Equation (3.34) implies if the stand of trees is managed optimally either HV ,

V (Z, ϕ, t) − [(S − Ch)Q(ϕ) + V (S, 0, t)], or both will be equal to zero. If HV = 0

and V (Z, ϕ, t) − [(S − Ch)Q(ϕ) + V (S, 0, t)] > 0, it is optimal for the investor to

continue holding the option by delaying the decision to harvest. In this case growing

stand of trees is earning the risk free return and the value of the stand is greater

than the payout the owner would receive from harvesting. On the other hand, if

HV < 0 and V (Z, ϕ, t) − [(S − Ch)Q(ϕ) + V (S, 0, t)] = 0, then the value of the

stand of trees just equals the value of immediate harvest. The owner is not earning

the risk free return from maintaining the standing timber and should harvest the

trees. If both parts (i) and (ii) in Equation (3.34) are equal to zero, either strategy
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is optimal. Equation (3.34) may be written more compactly as:

min

{
HV ;

[
V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)]

]}
= 0 (3.35)

No analytical solution exists for Equation (3.35). I solve it numerically, using

the combination of the fully implicit finite difference method, the semi-Lagrangian

method and the penalty method.18

Single-factor models

For the one-factor mean reverting model, the value of the stand of trees, V (S, ϕ, t),

satisfies the following PDE in the continuation region:

Vt + κMR(µMR − λMR − lnS)SVS +
1

2
(σMRS)2VSS + Vϕ − rV = 0 (3.36)

The HJB equation can be expressed as in Equation (3.35), except that the HV is

defined as:

HV ≡ rV − (Vt + κMR(µMR − λMR − lnS)SVS +
1

2
(σMRS)2VSS + Vϕ)

For the GBM model, the value of the stand of trees, V (S, ϕ, t), satisfies the

following PDE in the continuation region:

Vt + (r − δGBM)SVS +
1

2
(σGBMS)2VSS + Vϕ − rV = 0 (3.37)

18Details on this approach are provided in Insley and Rollins (2005). An introduction to nu-
merical methods is provided in Wilmott (2006).
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HV in this case is defined as:

HV ≡ rV − (Vt + (r − δGBM)SVS +
1

2
(σGBMS)2VSS + Vϕ)

As with the long term model, the HJB equations for these single-factor models are

solved numerically.

3.7.3 Results for land value and critical harvesting prices

In this section I present results for each of the lumber price models in terms of the

value of the stand of trees (land value) and the critical prices at which it is optimal

to harvest. As discussed earlier, the spot price data used to parameterize the models

is approximated by the CME random lengths futures price for the nearest maturity

date. To value a hypothetical stand of trees in Ontario, the long run equilibrium

price (µMR in Equation (3.9)) needs to be scaled to reflect Ontario prices at the

millgate. The estimate of price at the millgate in 2003 for SPF1 logs is Cdn.$60 per

cubic meter. In 2003 the average spot price proxied by the price of futures contract

closest to maturity was Cdn. $375 per MBF. I used the ratio of 375/60 as a rough

adjustment factor to scale the equilibrium price levels. This rescaling accounts for

transportation costs and milling costs (as well as the conversion from MBF to m3).

For the one-factor long-term model, the middle curve in Figure 3.11 shows how

the bare land value (a stand age of zero) changes with the composite lumber price,

Z. We observe that land value increases with Z. For example, when the composite

price is $50/m3, the land is worth $1147 per hectare. This rises to $1559/ha when

the composite price is $60. This makes sense since Z is defined to be increasing

in S and decreasing in δ (recall Equation (3.27)). In line with finance theory, the

value of a call option increases with spot price and decreases with the dividend.

In our forestry investment problem, the bare land value is like a call option and

the convenience yield is like the dividend. Land values for different stand ages are
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plotted in Figure 3.12. The land becomes more valuable as the trees mature and

as Z increases.

I am more interested in the relationship of land value with spot price S rather

than with our constructed composite price. One of the disadvantages of using the

long term model is that this relationship is obscured. However we note from Table

3.4, that net convenience yield fluctuates in the range of [−1, 1]. Given the land

value estimate for each Z, we can back out what the implied spot price would

be when convenience yield is at either +1 or -1. This gives us a range for land

values versus spot price which are shown as the dashed and dotted curves in Figure

3.11. For example, when Z = $50, land value is $1150. If δ = −1, the spot price

consistent with that Z and land value is $31. If instead δ = 1, the implied spot price

must be higher at $81. The logic here is that a higher convenience yield implies that

it is more beneficial to hold the harvested lumber rather than trees “on the stump”,

so the option to harvest is actually worth less. Hence a higher spot price is required

to be consistent with a land value of $1150. Figure 3.11 also implies that given a

certain level of convenience yield, land value increases with lumber prices. This can

be explained as given a fixed net benefit of holding lumber in stock, the higher the

lumber price is, the more the land value is. This result is consistent with the finance

theory. Moreover, this graph indicates that the combination of high convenience

yield and low spot price will lead to low land value and the combination of low

convenience yield and high price will generate high land value. This result is also

consistent with the finance theory, since with high convenience yield and low spot

price, the option is less valuable and vice versa.

Figures 3.13 and 3.14 show land value versus the lumber spot price for the mean

reverting and GBM models. We observe that for the MR process at a stand age of

zero, land value is about $5900 per hectare, which is insensitive to spot price. This

follows from the fact that the estimated long run equilibrium price is constant and

the speed of mean reversion is a moderate 0.229 (implying a half life to return to
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this value of three years.) At a stand age of zero, the trees will not be harvested

for at least 35 years, so that with this price model we expect to be back at the long

run mean by the harvest date.19 As the stand age increases, land value becomes

positively related to spot price, since the stand may be harvested within a few

years.

The GBM results are very different from the MR and long run models. At

a lumber price of $50, the GBM model gives a land value of $199 million per

hectare compared to around $5900 for the MR model. The GBM land values are

also much greater than the range given for the long-term model. At a $50 spot

price land value ranges from around $500 for δ = −1 to around $2500 for δ = 1.

The large land value for GBM is consistent with the estimated parameter values.

The risk adjusted drift rate for S in the GBM model is r − δ which works out to

19This result is consistent with the findings in Insley and Rollins (2005) in which a slightly
different mean reverting process was used.
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[0.023− (−0.027)] = .05 from the estimates reported in Table 3.7. This exceeds the

assumed riskfree discount rate of 2.3%.

In addition to land value, I am also concerned with critical harvesting prices

which indicate when it is optimal to harvest. The middle curve in Figure 3.15

shows the critical composite price versus stand age for the long-term model. We

see the critical Z value is about $120 per m3 at age 70 and declines to reach a

steady state of around $90 per m3. Based on the relationship amongst the spot

price, convenience yield, δ, and composite price Z shown in Equation (3.27), I can

calculate a range for the corresponding critical spot prices by substituting in the

range of convenience yield. The upper and lower lines in Figure 3.15 show the

corresponding upper and lower bounds of the critical spot prices for the long-term

model. The upper line reflects critical S if δ = 1 and the lower line reflects the

critical S if δ = −1.
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The long term model is an approximation of the results that would be produced

by the two-factor model. For intuition about the upper and lower bounds in Figure

3.15, I consider the relationship between the convenience yield and the spot price

in the two-factor model. Referring to Equation (4.14), when δ is at its lower bound

of -1, this implies the current drift rate of S is relatively high, but it is known that

δ will be pulled up quickly in the future to its long run value. In this circumstance

the critical prices are relatively low since the future reward for holding harvested

lumber will increase while the reward for holding standing trees will decrease. With

the high drift rate of S, given this lower bound of convenience yield δ, the land

owner should also take advantage of the high future spot prices to harvest at a

relatively low critical price. When δ = 1 this implies the expected growth rate in

S is relatively low, but it is expected that δ will revert back to its long run mean

fairly quickly. This implies that the growth rate of S will increase in the future.

Therefore, unless the current spot price is quite high, it is not optimal to harvest.

By delaying the harvest the owner of the stand puts off paying harvesting costs and

can take advantage of expected future growth in lumber prices.20

Figure 3.16 shows the critical harvesting prices for the MR single-factor model as

well as the range of critical prices for the long-term model. Critical prices generated

by the mean reverting and long-run models decrease with the stand age. When the

trees are young and growing fairly rapidly it makes sense to delay harvesting, so

that the critical prices that trigger harvesting are higher. Once tree growth declines

we reach an approximate steady state for the critical harvest price.

The critical harvest prices for the MR case lie between the upper and lower

bounds for the long run model case. For the MR model there are critical prices

defined from age 35 and onward, whereas for the long run model critical prices

are defined from age 70 onward. This implies that for the MR model if the spot

price hits a very high value it is worthwhile harvesting even though the trees are

20We assume people are rational and forward looking in this economy.
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still very young and growing rapidly. This follows from the assumption of a fixed

equilibrium price in this model which make it beneficial to take advantage of any

short term price surges. For the long run model, on the other hand, it would

never be optimal to harvest before the trees are 70 years of age. In terms of the

stochastic process followed by Z, Equation (3.29), the drift is a small negative

number: r − c = 0.023 − 0.028 = −0.005. The expected return from holding the

trees therefore comes from volume growth rather than any expected upward drift

in Z. Hence with the long run model it is not optimal to harvest before age 70

while the volume growth rate is still strongly positive, no matter what the price.

Referring to Figure 3.10 it may observed that volume growth is highest in the years

before age 70.

There are no critical prices for the GBM case, implying it would never be optimal

to harvest the stand. This is a result of the negative convenience yield which implies

a drift rate in the risk neutral world that exceeds the riskless interest rate. (Note

that after age 255 it is assumed that wood volume in the stand of trees remains

constant.)

In reviewing the results I note that the long run model using the composite

price Z gives significantly different land values and critical prices than the other

two single factor models. It is interesting that for the GBM model, the parameter

values that result from the Kalman filter estimation produce land values that are

so different from the other two models. I obtained some land sale data for 2003 in

the Ontario region which the timber volume curves apply. The land was marginal

agricultural land which was being purchased for reforestation. The average land

sale price was around $1100 per hectare. I therefore feel confident in concluding

that the GBM results are not reasonable.

The land values given by the MR and long-term model are at least the right

order of magnitude. It is significant that the MR model recommends harvesting

at much younger stand ages than the long-term model. The composite price in
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the long-term model is summarizing the long run relationship between convenience

yield and spot price. We saw previously that the two-factor model provided a better

match of market futures prices than the single factor mean reverting model. The

performance of long-term model and two-factor model in terms of fitting long-term

market data are comparable. In addition economic theory tells us convenience yield

is an important consideration for pricing in commodity markets such as lumber.

Hence it seems reasonable to have more confidence in the results of the long-run

model, than in the simple MR model in which convenience yield is ignored.

3.7.4 Model comparison: regime switching model and the

two-factor model

The forestry investment problem analyzed in Chapter 2 is the same as the one

investigated in this chapter. Hence it is natural to compare the performances of

the two price models examined in Chapter 2 and this chapter: regime switching

model and the Schwartz (1997) two-factor model, in terms of their ability to price

the land values as well as the critical prices generated by these two models.

At age 0, the land values generated by the regime switching model are indifferent

with respect to the regime at which the lumber prices reside. However, for the

two-factor model with stochastic convenience yield, the land value is an increasing

function of the lumber prices given a certain level of convenience yield. The land

values generated by both price models increase when the land ages.

The critical prices at which the lumber owner should harvest the trees exhibit

the similar trend for these two models. They decrease with the age of stand. The

critical prices generated by the regime switching model depend on the regime at

which the lumber price resides, while those generated by the stochastic convenience

yield two-factor model depend on the level of convenience yield.
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Given the above analysis, we can not see which model is more suitable to be ap-

plied to solve this particular forestry investment problem. On one hand, the lumber

price process exhibit two regimes. On the other hand, the economic theory suggests

the importance of incorporating the convenience yield on the forestry investment

analysis. Future research might further investigate this issue. For example, the

collection of the land sales data can be used to find the actual land values.

3.8 Concluding remarks

This chapter investigates the importance of modeling the stochastic convenience

yield of lumber in the context of an optimal tree harvesting problem. Schwartz

(1997) proposed a stochastic model of commodity prices with both spot price and

convenience yield as stochastic factors. In the first part of the chapter, I examine

the performance of this two-factor model in terms of its ability to characterize the

price of lumber derivatives . The estimation result shows that there is a positive

and significant correlation between lumber prices and convenience yield. This two-

factor model also provides a good model fit in terms of explaining the dynamics of

lumber derivatives.

In the second part of the chapter, I examine the impact of stochastic conve-

nience yield on a multi-rotational optimal harvesting problem. The HJB equation

characterizing the value of the option to harvest a stand contains three stochastic

variables: lumber prices, convenience yield and the stand age. To simplify the solu-

tion of the harvesting problem, we use the result of Schwartz (1998) who proposes

a one-factor model (called the long-term model) which retains most of the charac-

teristics of his two-factor model, especially its ability to fit long-term futures prices.

The HJB equation derived using this one-factor model is solved numerically using

the combination of the fully implicit finite difference method, the semi-Lagrangian

method and the penalty method. I compare the results of the long term model with
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two single factor models are common in the literature: a mean reverting model and

geometric Brownian motion.

The result shows that including the effect of convenience yield through the long-

term model has an important impact on long-term forestry investment decisions.

Land values and critical harvesting prices were significantly different across the

three models. The GBM model gave excessive land values. The single factor mean

reverting model gave land values of a reasonable order of magnitude, but under MR

model harvesting would potentially occur at much earlier stand ages than with the

long-term model.

The results for the long-term model also showed that the critical harvesting

prices varied significantly depending on the assumed value of the convenience yield.

The higher the convenience yield, the higher the spot price that land owner requires

to harvest the trees. This follows from the interaction of the convenience yield and

the spot price. A high convenience yield today implies a lower convenience yield in

the future and also a higher expected growth rate for the spot lumber price. Hence

with a high convenience yield, the critical price that induces harvesting is relatively

high, and we expect that the stand will be harvested at a later date than for a lower

convenience yield.

A natural extension of this research is to solve the HJB equation for the full

two-factor problem and compare with the long-run model results. This will be left

for future research.

A criticism of both the two-factor model and the long-run model is that the

forest owner is required to know what the convenience yield is to formulate his

optimal harvesting strategy. Convenience yield is not easily observable, but it can

be calculated from futures prices. More informally, one could imagine a forest

owner taking into account convenience yield in a more intuitive fashion. If lumber

inventories are very low and markets are buoyant, players in the market would be

aware that there is a benefit to holding an inventory of logs - i.e. convenience yield
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is high.

In conclusion, the results in this chapter demonstrate that convenience yield has

an important effect on the optimal harvesting decision and that it is worthwhile

using a richer model, such as the long-term model used in this chapter, when

analyzing forest investment decisions, rather than relying on simple single factor

models.
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Chapter 4

The dynamics of crude oil prices:

an analysis of recent evidence

4.1 Introduction

A casual observation of historical world oil prices shows a long period of stability

from the post World War II era until 1973 when the turmoil of the OPEC oil crisis

led to a greater than 10 fold increase in price by the peak in 1980. Prices collapsed

in the 1980’s and remained low until the end of the 1990’s, but with much more

volatility than the pre-1970 era. Since about 2003 we have witnessed another run

up in oil prices, peaking at over $140 per barrel in July 2008. Figure 4.1 shows the

price of West Texas Intermediate (WTI) since 1986.

Oil is a non-renewable resource and is a key input to the world’s economy. This

plus the highly volatile nature of oil prices since the 1970’s has led a number of

researchers to investigate different models of oil prices in an effort to better under-

stand the dynamics of oil prices, for use in the valuation of oil-linked investments

and portfolio risk management. This literature highlights the tradeoff between the
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desire for added model complexity and realism versus the need to keep price models

simple enough, so that they can be used to determine optimal decisions in complex

oil related investments.

This chapter extends the literature on the modeling of oil prices by investigating

the ability of three different models to describe the dynamics of oil futures prices. In

particular, I propose a regime switching model in an effort to capture the historically

observed effect of periods of lower but more stable prices followed by periods of high

and volatile prices. I compare this regime-switching model with two well known

commodity pricing models as described in Schwartz (1997) and Schwartz and Smith

(2000). I estimate these latter two models using up-to-date data that includes the

volatile post-2003 period and compare the estimation results with those presented

in the earlier research. The objective of this chapter is to determine whether a

regime switching model can provide a good fit of futures prices compared to the

models proposed in Schwartz (1997) and Schwartz and Smith (2000). A second

goal is to investigate the merits of the Schwartz (1997) and Schwartz and Smith

(2000) models using more recent data.

In the literature, there are two main approaches which are used to explain the

dynamics of commodity price processes, namely equilibrium models as in Deaton

and Laroque (1992) and Chambers and Bailey (1996), and reduced form models as

in Gibson and Schwartz (1990) and Schwartz (1998). Equilibrium models focus on

the implications of total stock depletion, or stock-outs. In the presence of stock-

outs, spot prices may be higher than expected future spot prices net of cost of

carry.1 This result in general suggests that the backwardation of the term structure

of futures curve can occur only when there are stock-outs. However, this is not

consistent with the empirical data. In Litzenberger and Rabinowitz (1995b) for

instance, they find strong backwardation in the oil futures curve 77% of the time

and stock-outs are the exception. One of the main drawbacks of the equilibrium

1See Newbery and Stiglitz (1981) and Bobenrieth et al. (2002).
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model approach is that the models are highly stylized. Therefore we can not use an

equilibrium model approach to analyze quantitative predictions about spot prices

and the characteristics of the corresponding commodity derivatives, which is one of

the main interests of practitioners.

In contrast, reduced form models explicitly specify the dynamics of a set of

underlying state variables, such as the commodity spot price, the convenience yield

or the instantaneous interest rate. The specified stochastic models can be used

to capture the term structure of futures or forward curves and value sophisticated

commodity derivatives.2 The reduced form class of models has gained widespread

acceptance and dominates the current literature and practice on energy derivatives,

since it is flexible in capturing the relationship among several state variables, and it

can be used for various commodity-based derivative valuation purposes. Therefore,

in this chapter, I employ the reduced form method to analyze the crude oil price

process.

Brennan and Schwartz (1985) proposed the first and simplest version of a re-

duced form commodity price model. The only stochastic factor in their model is

the spot price which is assumed to follow a geometric Brownian motion (GBM).

The convenience yield is treated as a constant dividend yield. A mean reverting

process has also been proposed in the commodity literature in order to capture the

notion that the workings of supply and demand will eventually result in commod-

ity prices that exhibit some form of mean reversion. Bessembinder et al. (1995)

find support for evidence of a mean reversion in commodity prices by compar-

ing the sensitivity of long-maturity futures prices to changes in spot prices. One

of the main drawbacks of these one-factor specifications is that they neglect the

inventory-dependence property of the convenience yield by assuming that it is con-

stant. Schwartz (1997) applied a one-factor model in which the logarithm of the

2See in particular Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000)
and Casassus and Collin-Dufresne (2005).
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commodity prices follows a mean reverting process and showed that this model is

incapable of explaining the main properties of the term structure of commodity

futures prices.

A two-factor model was first introduced in Gibson and Schwartz (1990) where

the spot price is assumed to evolve according to a GBM and the convenience yield

follows a mean reverting process. Mean reversion in commodity prices is there-

fore captured by letting the two stochastic factors to be positively correlated. For

example, a positive shock to the spot price will typically be accompanied by a pos-

itive shock to the convenience yield which lowers the future expected return on the

commodity. Schwartz (1997) further explores this two-factor model by explicitly

incorporating the stochastic convenience yield into the drift part of the spot price

dynamics and using the Kalman filter to estimate the model parameters. Schwartz

and Smith (2000) introduce another type of two-factor model, the so-called short-

term/long-term model, which does not explicitly specify the dynamics of conve-

nience yield. The long-term equilibrium price level and short-term deviation are

jointly modeled in their paper. The former follows a GBM process and the latter is

assumed to fluctuate around zero and follows a mean-reverting process. The short-

term/long-term model is mathematically equivalent to the stochastic convenience

yield model proposed by Gibson and Schwartz (1990) because the underlying state

variables in one model can be expressed as linear combinations of the state vari-

ables in the other. The idea of stochastically evolving short-term deviations and

equilibrium long run prices seem more general and intuitive as well compared to

the notion of convenience yields. These two types of two-factor specifications have

been successfully used to model crude oil prices in the commodity literature and

some oil-related investments are valued based on these models. Given the recent

events in world oil markets, it is worth investigating whether these two models can

still successfully match the term structure of oil futures prices. Schwartz (1997) and

Schwartz and Smith (2000) use price data for Enron long-term forward contracts
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in their estimation. In this chapter I use long-term futures contracts to calibrate

the models and estimate the parameters. By estimating both of these models the

robustness of the estimation method can be more readily assessed.

The Markov regime switching (RS) model first proposed by Hamilton (1989) is a

promising model for commodity prices that has been used in the literature3. In a RS

model, the observed stochastic behavior of commodity prices is assumed to consist

of several regimes. For each regime, one can define a separate underlying stochastic

process. The switching mechanism between each state is typically assumed to

be governed by an unknown random variable that follows a Markov chain. The

RS model can be used to capture the shifts between “abnormal” and “normal”

equilibrium states of supply of and demand for a commodity. Resource industries

tend to be characterized by times of boom and bust, which are often related to the

world economy and demand for the resource as well as political events. Crude oil

prices behave in a similar way as other commodities with a relatively large price

swing in times of shortage and over-supply. Assuming for simplicity that there are

only two regimes, I extend the one factor model of Schwartz (1997) allowing most of

the model parameters to be regime dependent and calibrate this regime switching

model using crude oil futures prices.

In summary, in this chapter I compare and contrast three different model spec-

ifications for oil prices: a regime switching model, the Schwartz (1997) two-factor

model and the Schwartz and Smith (2000) two-factor model, in terms of their abil-

ities to explain the main characteristics of trends in oil prices since 1997 (which

is when the data on long-term futures prices become available). The remainder of

this chapter is organized as follows. Section 4.2 describes the oil data examined in

this chapter. Section 4.3 specifies the models used in the analysis and details the

calibration and estimation methods. Section 4.4 presents the results of the model

3For example, Deng (2000), de Jong (2005), Chen and Forsyth (2008) all examine empirical
models of regime switching in commodity prices (electricity or natural gas prices).
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calibration and estimation. Section 4.5 provides some concluding comments.

4.2 The data

The models of interest in this chapter will be specified in the risk-neutral world and

the model parameters will be estimated or calibrated using crude oil futures prices.

The calibrated models can therefore be used in valuing oil-linked investments with

the risk free interest as the discount rate. Before presenting the candidate models,

in this section, both the crude oil spot prices and the corresponding futures prices

examined in this chapter are discussed and analyzed.

4.2.1 Crude oil spot prices

Two major oil types often referenced in the literature are West Texas Intermediate

(WTI) and Brent Crude. The crude oil spot price examined in this chapter is WTI,

which is also considered as the major benchmark of crude oil in the Americas. It is

of very high quality and is excellent for refining a larger portion of gasoline. WTI

is a light and sweet crude, lighter and sweeter than Brent Crude. Its American

Petroleum Institute (API) gravity4 is 39.6 degrees which makes it a ”light” crude

oil, and it contains about 0.24% of sulfur which makes it a ”sweet” crude oil. WTI

is traded in the U.S. spot market at Cushing, Oklahoma and is also the underlying

commodity of New York Mercantile Exchange (NYMEX)’s oil futures contracts.

The price of WTI since 1986 is shown in Figure 4.1.5

In this chapter, I focus on explaining the prices ranging from January 24th, 1997

to May 29th, 2009, since the data for long-term oil futures contracts with maturi-

ties up to 6 years are available only from 1997. As the price models examined in

4API gravity is a measure of how heavy or light a petroleum liquid is compared to water.
5Data source: Energy Information Administration, official energy statistics from the U.S.

government.
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Figure 4.1: Weekly spot prices of WTI crude oil, from January 3rd, 1986
to May 29th, 2009.

this chapter are intended to be used to value an oil-related long-term project, the

use of long-term futures price data is expected to be able to increase the accuracy

and relevancy of the estimated model parameters for this sort of application. Due

to the lack of long-term crude oil derivative prices, Schwartz (1997) and Schwartz

and Smith (2000) use Enron long-term forward data to estimate the model param-

eters. Since futures contracts are more regulated and standard than the private

forward contracts, the parameter estimates based on futures contracts should be

more accurate.

As stated in Schwartz (1997), for some commodities the spot price is hard to

obtain, so the futures contract closest to maturity is used as a proxy for the spot

prices in the commodity literature.6 I follow the literature and use the prices of

crude oil futures with one month to maturity as a proxy for crude oil spot prices.

Figure 4.2 plots the recent 13 years’ spot prices examined in this chapter.

6See Jaillet et al. (2004) for example.
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Recent WTI spot price: proxied by futures prices
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Figure 4.2: Weekly prices of WTI crude oil futures contract with one month
to maturity, $/barrel, from January 24th, 1997 to May 29th, 2009.

Summary statistics of both spot prices and the corresponding log returns for

three data sets are reported in Table 4.1. The full sample covers the period from

January 24th 1997 to May 29th, 2009. Two sub samples cover the period before and

after year 2003 when there appears to be a break in the series. Negative skewness

and excess kurtosis of return series for all three data sets indicate the GBM model

is not appropriate for modeling recent crude oil prices. The excess kurtosis of spot

prices in both the full sample and the post-2003 sub-sample shows that the spot

prices in these two periods are also not normally distributed.

Formal tests of normality, unit root and stationarity for spot prices and the

corresponding returns for three data sets are performed and the results are reported

in Table 4.2. The null hypothesis of normality is rejected for both the spot prices

and returns for all three data sets. The unit root null hypothesis is strongly rejected

for all three return processes. However, for the spot prices, the unit root hypothesis

can not be rejected at a reasonable level of significance. This result is consistent
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Item Max Min Mean Std. Dev. Skewness Kurtosis

Full sample
Spot price 145.3 10.79 42.39 26.69 1.389 4.772

Weekly return 12.06 -15.61 7.88% 39.85% -0.722 6.986
Sub-sample: before 2003

Spot price 35.92 10.79 22.79 6.11 -0.075 1.98
Weekly return 8.84 -10.45 4.98% 36.93% -0.297 4.318

Sub-sample: after 2003
Spot price 145.3 25.67 60.52 25.54 1.106 4.026

Weekly return 12.06 -15.61 10.41% 42.48% -0.977 8.206

Table 4.1: Summary statistics for WTI crude oil prices and the correspond-
ing log returns for three data sets. Full sample: from January 24th, 1997
to May 29th, 2009; before 2003 sub-sample: from January 24th, 1997 to
December 27th, 2002; after 2003 sub-sample: from January 3, 2003 to May
29th, 2009.

with the stationarity test for spot prices, which indicates that the stationarity null

hypothesis is strongly rejected for spot price time series. These results are reassuring

since the tests that have a unit root as the null hypothesis tend to over-reject the

null hypothesis due to their poor size in finite samples. These results also confirm

that the traditional one-factor GBM and mean reversion processes are unlikely to

be able to capture the main properties of the recent crude oil spot prices.

4.2.2 Crude oil futures prices

A large data set of WTI crude oil futures traded in NYMEX are examined in this

chapter. They are the world’s most liquid and largest-volume futures contracts

trading on a physical commodity. Each contract trades in units of 1,000 US bar-

rels (42,000 gallons) of light, sweet crude oil and the delivery point is Cushing,

Oklahoma, which is also accessible to the international spot markets via pipelines.

The expiration of the contract is on the third business day prior to the 25th of

each month. The contract is listed for up to 72 months. The availability of long
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Tests Spot prices Returns
Normality test: Jarque-Bera test

Full sample 291.68(0.00) 482.38(0.00)
Sub sample: before 2003 13.74(0.00) 26.92(0.00)
Sub sample: after 2003 83.02(0.00) 430.28(0.00)

Unit root test: Phillips-Perron test
Full sample -2.65(0.26) -27.12(0.00)

Sub sample: before 2003 -2.38(0.39) -17.34(0.00)
Sub sample: after 2003 -1.76(0.72) -20.5(0.00)

Stationarity test: KPSS test
Full sample 0.57** 0.07

Sub sample: before 2003 0.48** 0.16
Sub sample: after 2003 0.24** 0.10

Table 4.2: Model diagnostic tests for WTI crude oil prices and its log
returns. Corresponding p-values are reported in parentheses.** denotes
significant at 1% level.

maturity oil derivatives is necessary to improve the oil-related project investment

valuation.

Data on 32 oil futures contracts with the maximum maturity up to 72 months

are available. Among them, 10 futures contracts with different maturities for each

day are selected and examined in this chapter. The choice of the futures contracts

is consistent with the selected forward contracts used in Schwartz (1997). The

maturities and the corresponding summary statistics for the 10 selected contracts

are presented in Table 4.3. Term structure of futures prices on four selected days

are presented in Figure 4.3. Both backwardation and contango are visible in this

plot, which indicates the importance of convenience yield in modeling oil prices.
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Item Max ($) Min ($) Mean ($) Std. Dev. ($) Maturity (months)
F2 145.9 11.26 42.55 26.83 2
F5 146.5 12.10 42.48 27.19 5
F8 146.8 12.65 42.21 27.42 8
F12 146.1 13.12 41.83 27.58 12
F18 144.8 13.67 41.35 27.68 18
F24 143.9 14.16 41.02 27.67 24
F36 142.3 14.82 40.72 27.62 36
F48 141.7 15.35 40.49 27.61 48
F60 141.6 15.70 40.28 27.66 60
F72 141.7 16.02 40.23 27.79 72

Table 4.3: Summary statistics for 10 selected WTI crude oil futures prices,
from January 31st, 1997 to April 25th, 2009. F2 represents the futures
contract with 2 months maturity. The same notation applies to F5 to F72.
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Figure 4.3: Term structure of futures prices for the 10 futures contracts on
four selected days: Jan 24, 1997; Oct 18, 1998; Oct 12, 2007 and May 29,
2009.
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4.3 The models and estimation methods

Three model specifications are examined and compared in this section. In particular

I specify the newly proposed regime switching model and the two versions of two-

factor models. For the regime switching model, the parameters are calibrated using

the crude oil futures prices. The estimation of the two-factor models is carried out

using the Kalman filter, which is a recursive estimation method.

4.3.1 Regime switching model

The model

The regime switching model proposed in this chapter is based on the one-factor

mean reversion model analyzed in Schwartz (1997). The log commodity price in

the one-factor model follows a mean reverting process. Specifically, the spot price

S follows the following stochastic differential equation (SDE):

dS = κ(µ− lnS)Sdt+ σSdZ (4.1)

Applying Ito’s lemma, the log price X = lnS can be expressed as a mean-reverting

Ornstein Uhlenbeck (OU)process:

dX = κ(α−X)dt+ σdZ (4.2)

where α = µ − σ2

2κ
. In equation (4.2), κ is the mean reversion rate, α denotes the

long-run equilibrium level of log price X and σ refers to volatility. Euqation 4.1 is

referred to as a log mean reverting process in this one-factor model.

Since the above one-factor model is not able to generate the various shapes

of term structure of commodity futures prices, I extend this model to allow some
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parameters in this model to be regime dependent assuming the existence of two

states. Based on the data analysis in Section 4.2, in each of the two regimes, the

crude oil spot price is assumed to follow a log mean reverting process as in equation

(4.1).

Specifically, the regime switching model for crude oil spot price S is given by

the following SDE:

dS = κ(µ(st)− lnS)Sdt+ σ(st)SdZ (4.3)

where st is a two-state continuous time Markov chain, taking two values 0 or 1.

The value of st indicates the regime in which the oil price resides at time t. Define

a Poisson process qst→1−st with intensity λst→1−st . Then

dqst→1−st = 1 with probability λst→1−stdt over an infinitesimally small dt

= 0 with probability 1− λst→1−stdt over an infinitesimally small dt

In other words, the probability of regime shifts from st to 1 − st over an infinites-

imally small time interval dt is λst→1−stdt. The probability of the crude oil price

staying in the current regime st over an infinitesimally small dt is 1 − λst→1−stdt.

The log price X in this model follows a regime switching stochastic process:

dX = κ(α(st)−X)dt+ σ(st)dZ (4.4)

where α(st) = µ(st)− σ(st)2

2κ
.

In this regime switching model, both the equilibrium level of log price α(st) and

the volatility σ(st) are allowed to be regime dependent. However, for mathematical

simplicity, the mean reversion rate κ is assumed to be the same for both states. As

will be demonstrated in the following section, the calibration of the regime switching
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model involves specifying partial differential equations satisfied by futures prices in

each of the two regimes. When the constraint is imposed on κ, it is relatively easy

to find a guess of the solution of the PDE’s which transforms them into a system of

ODE’s. In spite of the imposition of this constraint, this regime switching model is

still more flexible than the original one-factor model analyzed in Schwartz (1997).

Model calibration

Model parameters of the risk-adjusted process expressed in equation (4.3) are cal-

ibrated using oil futures prices. Specifically, the PDE characterizing oil futures

prices can be simplified to a system of ODEs which can be solved numerically to

give model implied futures prices consistent with different parameter values. A

least squares approach is used to determine the parameter values which produce

the calculated futures prices that most closely match a time series of market futures

prices. A similar approach has been used in Chen and Forsyth (2008) and Chen and

Insley (2008). All the parameters in the regime switching model proposed in this

chapter can be calibrated simultaneously using futures data. This contrasts with

the approaches in Chen and Forsyth (2008) and Chen and Insley (2008), where the

volatilities have to be calibrated separately using data on options on futures which

may incur more calibration errors.7

The crude oil future is a derivative contract whose value depends on the stochas-

tic price S and the corresponding regime st. Let F (st, S, t, T ) denote oil futures

prices at time t with maturity T in regime st, where st ∈ {0, 1}. The no-arbitrage

value F (st, S, t, T ) can be expressed as a risk neutral expectation of the spot price

at T :

F (st, S, t, T ) = EQ[S(T )|S(t), st] (4.5)

7The regime switching models analyzed in Chen and Forsyth (2008) and Chen and Insley
(2008) are more flexible than the one proposed in this chapter, since all the parameters are regime
dependent in their papers.
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Applying Ito’s lemma, two PDEs characterizing the futures prices for both regimes

can be derived and the one for regime st is expressed as:8

F (st)t+κ(µ(st)−lnS)SF (st)S+
1

2
σ(st)

2S2F (st)SS+λst→(1−st)(F (1−st)−F (st)) = 0

(4.6)

with the boundary condition: F (st, S, T, T ) = S.

Given the assumption of constant mean reversion rate for both states, a guess

for the solution of equation (4.6) has the following form:

F (st, S, t, T ) = e[a(st,t,T )+b(t,T ) lnS] (4.7)

Note that in Equation (4.7) only the expression a(st, t, T ) is regime dependent as a

direct consequence of our model specification. Substituting this solution guess into

PDE (4.6) yields:9

F (st){κb(µ(st)− lnS) + a(st)t + bt lnS +
1

2
σ(st)

2[b2 − b]− λst→(1−st)}

+λst→(1−st)F (1− st) = 0 (4.8)

The following relationship between F (st) and F (1− st) holds:

F (1− st) = e[a(1−st)+b lnS] = F (st)e
[a(1−st)−a(st)] (4.9)

Substituting equation (4.9) into the revised PDE (4.8) yields the following ODE

system:

κbµ(st) + a(st)t +
1

2
σ(st)

2[b2 − b] + λst→(1−st)[e[a(1−st)−a(st)] − 1] = 0

bt − κb = 0 (4.10)

8F (st) ≡ F (st, S, t, T ) and F (1− st) ≡ F (1− st, S, t, T )
9a(st) ≡ a(st, t, T ) and b ≡ b(t, T ) in the following equation, where a(st)t ≡ ∂a(st)/∂t and

bt ≡ ∂b/∂t.
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with boundary conditions a(st, T, T ) = 0; b(T, T ) = 1. These ODEs will be solved

numerically, which gives the model implied futures prices for each set of the pa-

rameter values.

A least squares approach is used for calibrating the risk-neutral parameter val-

ues. Let θ denote the set of parameters calibrated to the futures price data, where

θ = {κ, µ(st), σ(st), λ
st→(1−st)|st ∈ {0, 1}}. In particular, at each observation day

t, where t ∈ {1, ..., t∗}, there are T ∗ futures contracts with T ∗ different maturity

dates. The calibration is performed by solving the following optimization problems:

min
θ,st

∑
t

∑
T

{F̂ (st, S, t, T ; θ)− F (t, T )}2 (4.11)

where F (t, T ) is the market futures price on the observation day t with maturity

T . F̂ (st, S, t, T ; θ) is the corresponding model implied futures price computed nu-

merically and determined in equation (4.7) using the market spot price S and the

parameter set θ, as well as the regime st.

This is a Mixed Integer problem, since the unknown parameters in θ are contin-

uous variables and st is a binary variable which equals to 0 or 1 depending on the

regime. It is known that some certain software packages provide a way of solving

this Mixed Integer optimization problem. However in this thesis, I use an intuitive

and reasonable way of calibrating these unknown model parameters. Specifically,

this optimization program is implemented in Matlab which is a program specially

devised for handling large vectors and performing matrix computations. I used

the built-in function lsqnonlin to solve the problem. The lsqnonlin function take

initial values of the parameters as inputs and then solves the problem iteratively by

updating the parameters in the direction where the decline in the target function is

the greatest. The calibrated parameter set θ and st will then minimize the distance

between F and F̂ for all t∗.
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4.3.2 Schwartz (1997) two-factor model

The model

The two-factor model proposed in Gibson and Schwartz (1990) specifies that the

spot price S follows a GBM process and the net convenience yield, δ, is formulated

as a mean-reverting process. That is,

dS = µSdt+ σsSdzs

dδ = κ(α− δ)dt+ σδdzδ

dzsdzδ = ρdt (4.12)

where µ is the expected return of spot prices, κ and α represent the mean reversion

rate and the long-run equilibrium level of convenience yield respectively, σs and σδ

denote the volatilities of the two state variables, and ρ is the correlation coefficient

between the two standard Brownian increments dzs and dzδ.

Schwartz (1997) further explores this two-factor model by incorporating a stochas-

tic convenience yield in the drift of price process. Specifically, the joint stochastic

process of the two state variables in Schwartz (1997) is given by:

dS = (µ− δ)Sdt+ σsSdzs

dδ = κ(α− δ)dt+ σδdzδ

dzsdzδ = ρdt (4.13)

In this model, the convenience yield also follows a mean-reverting process. But

the spot prices are assumed to follow an adjusted GBM process, the drift of which

is stochastic instead of constant. Unlike a single factor GBM model, convenience

yield will affect the price process through the correlation coefficient. Since oil is a

storable commodity, based on the theory of storage, the changes in the two state
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variables should be positively correlated. When inventory of crude oil rises, the

spot price should decrease in response to the increasing supply and the convenience

yield should also decrease since the benefit of owning the commodity is smaller

compared with the time when the commodity is scarce.

Under the equivalent martingale measure, the risk adjusted processes for the

two state variables, the spot price S and convenience yield δ, are expressed as:

dS = (r − δ)Sdt+ σsSdz
∗
s

dδ = [κ(α− δ)− λ]dt+ σδdz
∗
δ

dz∗sdz
∗
δ = ρdt (4.14)

where λ is the market price of convenience yield risk. From the no-arbitrage condi-

tion, the risk-adjusted drift of price process is r−δ. The market price of convenience

yield risk has to be incorporated in the risk neutral process of convenience yield,

since the convenience yield is not traded.

Model estimation: Kalman filter

As mentioned before, there is no universal oil spot market. This renders the true

oil prices not directly observable. Since both state variables are un-observable, an

applicable method for estimating this type of model is by stating the problem in

state space form and by using Kalman filter based on an error prediction decompo-

sition of the log-likelihood function. The Kalman filter is a recursive procedure for

estimating unobserved state variables based on observations that depend on these

variables (Kalman (1960)). Prediction errors, a by-product of the Kalman filter,

can then be used to evaluate the likelihood function and the model parameters are

estimated by maximizing this likelihood function.

The state space form consists of a transition equation and a measurement equa-
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tion. The transition equation describes the dynamics of an unobserved set of state

variables. And the measurement equation relates the unobserved variables to a

vector of observable. In this two-factor model, the oil spot price and convenience

yield are two unobserved state variables. Futures prices with different maturities

observed at different dates are served as observed variables and the measurement

equation will specify the relationship between futures prices and the two state vari-

ables.

The partial differential equation (PDE)10 characterizing the futures prices

F (S, δ, t, T ) can be derived using Ito’s Lemma and expressed as:

1

2
σ2
sS

2Fss + (r− δ)SFs +
1

2
σ2
δFδδ + (κ(α− δ)− λ)Fδ + ρσsσδSFsδ − Ft = 0 (4.15)

subject to the following boundary condition: F (S, δ, T, T ) = S, where T denotes the

maturity date of the futures contract. The analytical solution of equation (4.15) is

derived in Jamshidian and Fein (1990) and Bjerksund (1991) and can be expressed

as:

F (S, δ, 0, T ) = S exp
[
A(T )− δ1− e−κT

κ

]
(4.16)

where

A(T ) = (r − α̂ +
1

2

σ2
δ

κ2
− σsσδρ

κ
)T +

1

4
σ2
δ

1− e−2κT

κ3
+ (α̂κ+ σsσδρ−

σ2
δ

κ
)
1− e−κT

κ2

α̂ = α− λ

κ
(4.17)

The linear relationship between the futures prices and spot prices can be found

in the log form of futures prices:

lnF (S, δ, 0, T ) = lnS + A(T )− δ1− e−κT

κ
(4.18)

10For a detailed derivation of this PDE, see Gibson and Schwartz (1990).
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Equation (4.18) relates the observed futures prices and the unobserved two state

variables in this model and serves as measurement equation in the state space form

of the model.

Specifically, the linear Gaussian state space model for Schwartz (1997) two-

factor model can be represented as the following system of equations:

xt+1 = dt + Ttxt + ηt (4.19)

yt = Ct + Ztxt + εt (4.20)

where x denotes the vector of two unobserved state variables, x = [X, δ]′, where

X = lnS denotes the log of spot prices and y = lnF denotes the log futures prices.

Equation (4.19) represents the transition equation of the model, which describes

the evolution of the non-observed state vector xt over time. Based on equation

(4.13), the expressions in this transition equation are given as:

dt = [(µ− 1

2
σ2
s)∆t, κα∆t]′

Tt =

 1 −δt
0 1− κδt


ηt is serially uncorrelated disturbances with mean zero, and its variance is expressed

as:

V ar(ηt) =

 σ2
s∆t ρσsσδ∆t

ρσsσδ∆t σ2
δ∆t


Equation (4.20), describing the vector of observations yt in terms of the state vector,

is the measurement equation. Based on equation (4.18), the expressions in this
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measurement equation are given as:

Ct = [A(Ti)]

Zt =

[
1,−1− e−κTi

κ

]
i = 1, ..., N . Hence N is the number of futures contracts at each date t and εt is a

vector of serially uncorrelated disturbances with zero mean and identity variance-

covariance matrix. The relationship between log-futures and the two unobserved

state variables shown in this equation is linear. The innovations in the transition

equation ηt and those in the measurement equation εt are assumed to be indepen-

dent in our model, which means E[ηtεt] = 0.

Two types of variables used recursively in the Kalman filter algorithm are called

priori variables and posteriori variables. Define the observed data set at time t as

Yt = (y1, ..., yt). Priori variables refer to the conditional mean, defined as xt|t−1 =

E[xt|Yt−1], and conditional variance, defined as Pt|t−1 = var[xt|Yt−1], of the state

vector xt based on information available at time t − 1. Posteriori variables are

the estimates for the mean and variance of the state vector conditional on the

information available at time t, denoted as xt|t = E[xt|Yt] and Pt|t = var[xt|Yt]
respectively.

The first step of the Kalman filter is to compute one time step ahead priori

variables xt|t−1 and Pt|t−1 using the values of posteriori variables at time t − 1 via

the prediction equations:

xt|t−1 = dt−1 + Tt−1xt−1|t−1 (4.21)

Pt|t−1 = Tt−1Pt−1|t−1T
′
t−1 + V ar(η) (4.22)

Next, with the new observation yt, the posteriori variables at time t can be updated
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using the following updating equations:

xt|t = xt|t−1 +Ktvt (4.23)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tK
′
t (4.24)

where

vt = yt − Ct − Ztx′t|t−1 (4.25)

Ft = ZtPt|t−1Z
′
t + var(ε) (4.26)

Kt = Pt|t−1Z
′
tF
−1
t (4.27)

where vt is the residual of the measurement equation (4.20) or prediction error. Ft

is the variance of this prediction error, Ft = var(vt). Kt is the Kalman gain. This

process is then repeated until the whole set of observations YN has been observed

and used in this recursive process. The resulting estimates of posteriori variables

xt|t will be the filtered estimates of the state vector for each observation date t. The

smoothed estimates of the state vector are obtained by using all the information in

the observation set YN .

Lastly unknown parameters of the state space model can be estimated by max-

imizing the prediction error decomposition of the log-likelihood function, which is

a by-product of the Kalman filter. The sample log-likelihood function is

lnL =
N∑
t+1

ln f(vt) = c− 1

2

N∑
t+1

(ln |Ft|+ v′tF
−1
t vt) (4.28)

where c is constant, f(vt) denotes the probability density function of prediction

error vt. The resulting Quasi-Maximum likelihood estimates of the parameters are

consistent and asymptotically normal.
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4.3.3 Schwartz and Smith (2000) two-factor model

The model

The two state variables in the Schwartz and Smith (2000) model are short-term

deviations which is defined as the difference between the spot and long-term prices,

and the long-term equilibrium price level. The short-term deviation is assumed

to follow a mean-reverting process and the equilibrium price level in their model

evolves according to a GBM. The intuition is that there will be a long term drift

in price in response to long run demand and supply conditions, but there will also

be variations away from the long run trend due to temporary market conditions.

The spot prices are therefore determined jointly by these two state variables.

Specifically, St = eχt+ξt , where χt denotes the short-term deviation and ξt represents

the equilibrium price.

dχt = κ(0− χt)dt+ σχdzχ

dξt = µdt+ σξdzξ

dzχdzξ = ρdt (4.29)

where κ is the mean-reversion rate of the short-term deviation, µ denotes the drift

of equilibrium level, σχ and σξ represent the volatilities of the two state variables.

The deviation χ is short-lived and not expected to persist. Therefore it is

modeled as a process reverting to a mean of zero. The change in long-run price

level is caused by permanent changes in supply or demand.

Estimation framework

The Kalman filter will be applied for model parameter estimation in this case as

well. The two unobserved state variables in this model are short-term deviation
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χ and long-term price level ξ. The observed futures prices will be used for the

parameter estimation. Since futures prices depend on the risk-neutral spot price

process, the risk-adjusted version of equation (4.29) can be written as:

dχt = (−κχt − λχ)dt+ σχdz
∗
χ

dξt = (µ− λξ)dt+ σξdz
∗
ξ (4.30)

where λχ and λξ denote the market prices of short-term deviation risk and equilib-

rium price risk respectively. Based on this specification, the log-futures prices yt,

defined in the same way as in Schwartz (1997) model, can be expressed as:

yt = e−κTχ0 + ξ0 + A(T ) (4.31)

where χ0 and ξ0 represent the initial values of the two variables. In equation (4.31),

A(T ) = µ∗T − (1− e−κT )
λχ
κ

+
1

2
((1− e−2κT )

σ2
χ

2κ
+ σ2

ξT + 2(1− e−κT )
ρσχσξ
κ

)

where µ∗ = µ− λξ.

Therefore the measurement equation can be expressed as:

yt = Ct + Zt[χt, ξt]
′ + εt (4.32)

where

Ct = [A(Ti)]

Zt =
[
e−κT , 1

]
(4.33)
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And the transition equation is

[χt+1, ξt+1]′ = dt + Tt[χt, ξt]
′ + ηt (4.34)

where

dt = [0, µ∆t]′

Tt =

 e−κ∆t 0

0 1


Hence ηt is serially uncorrelated disturbances with mean zero, and the variance is

expressed as:

V ar(ηt) =

 (1− e−2κ∆t)
σ2
χ

2κ
(1− e−κ∆t)

ρσχσξ
κ

(1− e−κ∆t)
ρσχσξ
κ

σ2
ξ∆t



4.4 Empirical results

WTI crude oil futures prices are used for model calibration and estimation. The

basic statistics and the term structure of 10 chosen futures contracts are shown in

section 4.2. In this section, I present the calibration and estimation results, and

compare the performance of all the three models examined in this chapter.

4.4.1 Calibration results of the regime switching model

For the regime switching model, a non-linear least squares approach is used to

calibrate model parameters. Specifically given initial values of all the parameters,

model implied futures prices of all the maturities at each date can be computed

by solving the ODE for each of the two regimes. The differences of the model
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implied futures prices and market futures prices for all the futures contract at each

date are computed for both regimes. The sum squared differences are used to

determine the regime at each date. The sum squared difference of each date is

then summed together over all the period. The optimal parameter values will be

those that generate the lowest sum squared difference. Matlab is used for parameter

calibration. There are 21 iterations in this calibration process and it took about 100

minutes to converge. When the change in the residual is smaller than the specified

tolerance, which is 5e(−3) in this case, the program will stop.

It is important to check whether the obtained parameters are the only choices

of parameter values which attain a reasonable in-sample fit. There could be the

case that there exist several ranges of parameter values, all providing a reasonable

fit to data. In other words, since the calibrated parameters are obtained by solving

a nonlinear optimization program, there is no guarantee that the obtained solution

is a unique and global solution. This issue can be investigated by varying the initial

values of the parameters used to initialize the calibration algorithm. If the optimal

parameters are sensitive to changes in the initial values this should be taken to

indicate that there are potentially several local optima and, as a result, the optimal

parameters will be unstable. Following this argument, different sets of initial values

are used to find the optimal solution and to check the stability of the calibrated

parameter values as a hint that the algorithm attains a global (instead of a local)

minimum of the sum of squared function, and the estimates are generally robust to

different initial values.

Table 4.4 presents the calibration results for parameter values in the proposed

regime switching model for the spot price process given in equation (4.3).11 In the

table we observe two quite different regimes for the price process in the Q-measure.

11Since these parameters are calibrated in the Q-measure, it is not possible to interpret them
in terms of the observed behavior of spot prices. However, if the market price of risk equals zero,
the P-measure and Q-measure will coincide. If we believe that the market price of risk for a
commodity is fairly low then we can draw some intuition about the P-measure process from our
results.
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Regime switching model

κ µ(0) µ(1) σ(0) σ(1) λ0→1 λ1→0

0.06 0.92 4.87 0.98 0.20 0.36 0.08

Table 4.4: Calibrated parameter values for the regime switching model.

Regime 0 has a much lower level of µ(0), but a higher volatility σ(0) compared to

regime 1 for the spot price process. The mean equilibrium level of log oil price in

regime 0 α(0) is much lower than that of the log price in regime 1. The risk neutral

intensity of switching out of regime 1 is lower at λ1→0 = 0.08 which implies that in

the risk neutral world prices are mostly in the regime with a higher long-run mean

price level.

Plots of the model implied and market futures prices for four selected contracts

are shown in Figure 4.4. The differences between the model implied futures prices

and market data are smaller for contracts close to maturity, i.e. F2 and F8 (where

F2 is the price on a futures contract with 2 months to maturity, etc.), and larger for

long-term maturity contracts, i.e. F36 and F72. Model calibration errors including

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of both log

futures prices and cash futures prices are reported in Table 4.5. From this table we

observe that the longer the maturity the larger the calibration error, which implies

that this regime switching model is better at capturing the dynamics of short-term

contracts. The overall average errors for the futures prices expressed in two ways

are less than 4.6 US$ by observing the last column of table.

4.4.2 Estimation results of Schwartz (1997) two-factor model

The parameter estimates for the Schwartz (1997) two-factor model using the Kalman

filter are reported in Table 4.6.12 For comparison purposes, the original Schwartz

12The subscript 97 for each parameter in this table indicates the estimated parameter for
Schwartz (1997) two-factor model.
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Figure 4.4: Regime switching model: plots of market futures and model
implied futures prices for four different contracts, F2, F8, F36 and F72.
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Calibration errors: Regime switching model
Log futures prices

F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All
RMSE 0.02 0.05 0.07 0.08 0.10 0.11 0.12 0.12 0.13 0.15 0.10
MAE 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.10 0.11 0.07

Futures prices
F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All

RMSE 0.92 2.14 2.79 3.41 4.10 5.59 5.17 5.57 6.08 6.86 4.52
MAE 0.63 1.48 1.92 2.31 2.72 3.02 3.43 3.70 4.02 4.45 2.77

Table 4.5: Calibration errors of both log futures prices and cash futures
prices for regime switching model expressed as RMSE and MAE of 10 fu-
tures contracts, US$/barrel.

(1997) results using private Enron forward data are also provided in this table.

The correlation coefficient ρ97 is large and statistically significant from zero. The

results from the current estimation and the Schwartz (1997) paper are generally

consistent. The positive ρ97 is also consistent with the theory of storage and in-

dicates the two state variables respond in the same direction in the presence of

an unexpected change. The long-run equilibrium level of convenience yield α97 is

higher than that reported in Schwartz (1997) and is statistically significant from

zero. However α97 estimated using the long-term Enron forward data is not sta-

tistically significant. Both total expected return on the commodity prices µ97 and

market price of convenience yield risk λ97 estimated using the more recent oil data

are higher than those reported in Schwartz (1997) and (unlike in Schwartz) they

are statistically significant. This result confirms the importance of accounting for

changing convenience yield in oil price models.

Model implied futures prices and market futures prices for four selected oil

futures contracts are plotted in Figure 4.5. The differences between the model

implied and market futures prices are smaller for futures contracts with middle-

length maturities, i.e. F8 and F36, and larger for a short-term future contract F2

and a long-term future contract F72. Two estimation errors for both log futures
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Schwartz (1997) two-factor model

This chapter’s results using long-term futures data
µ97 κ97 α97 σs σδ ρ97 λ97

Estimates 0.695 0.825 0.475 0.388 0.278 0.871 0.412
Std. Error (0.115) (0.008) (0.099) (0.011) (0.008) (0.010) (0.084)

Original Schwartz (1997) results using Enron forward data
Estimates 0.082 1.187 0.090 0.212 0.187 0.845 0.093
Std. Error (0.120) (0.026) (0.086) (0.011) (0.012) (0.024) (0.101)

Table 4.6: Parameter estimates for Schwartz (1997) two-factor model using
two different data sets. Weekly futures prices, from January 24th, 1997 to
May 29th, 2009. Weekly Enron forward prices, from January 15, 1993 to
May 16, 1996.

prices and cash futures prices, expressed as RMSE and MAE, are calculated for this

model as well and reported in Table 4.7. The overall errors for the futures prices

expressed in both ways are very small, lower than 1.2 US$/barrel. This model fits

the futures with middle-length maturities the best, since the errors for F8 and F24

are close to zero. Comparing Tables 4.5 and 4.7, we can find lower errors generated

by using Schwartz (1997) model than using a regime switching model for most

futures contracts except for F2.

4.4.3 Estimation results of Schwartz and Smith (2000) model

The estimated parameter values for Schwartz and Smith (2000) model are reported

in Table 4.8. For comparison purpose, the original Schwartz and Smith (2000)

results using private Enron forward data are also provided in this table. The mean

reversion rate in the short-term deviations κ00 is lower than that calculated in

Schwartz and Smith (2000) using long-term forward Enron data. This implies that

for recent oil data, it takes longer time which is about 10 months13 for the short-

term deviations to halve the distance from the long-run trend. The short-term

13Calculated based on the formula: − ln(0.5)/κ00.
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Figure 4.5: Schwartz (1997) two-factor model: plots of market futures and
model implied futures prices for 4 different contracts, F2, F8, F36 and F72.
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Estimation errors: Schwartz (1997) two-factor model
Log futures prices

F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All
RMSE 0.03 0.01 0.00 0.01 0.01 0.00 0.02 0.03 0.04 0.05 0.03
MAE 0.03 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.04 0.02

Futures prices
F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All

RMSE 1.46 0.45 0.00 0.25 0.25 0.00 0.63 1.16 1.71 2.47 1.15
MAE 1.07 0.34 0.00 0.18 0.19 0.00 0.47 0.83 1.21 1.68 0.60

Table 4.7: Estimation errors of log and cash futures prices for Schwartz
(1997) two-factor model expressed as RMSE and MAE of 10 futures con-
tracts, US$/barrel.

deviation is more volatile than the long-run equilibrium. The risk adjusted drift

rate µ∗ is negative indicating a large positive market price of equilibrium price risk

λξ. The correlation coefficient ρ00 is statistically significant, which is consistent

with the result in Schwartz and Smith (2000).

Model implied spot prices and the long-run equilibrium prices are plotted in

Figure 4.6. The red line represents the spot prices and the blue line indicates

model implied equilibrium price level. The spot prices fluctuate around the long-

run price level until the year 2005, after which the spot prices are consistently below

the long-run mean level. The recent higher equilibrium prices indicate that market

participants expected higher world demand for crude oil and relatively shortage of

oil supply.

Figure 4.7 shows model implied and market futures prices for four selected

futures contracts. We can find a good fit for F8 and F36, since the differences

between the two series are smaller compared with the very short futures contract F2

and the very long contract F72. Table 4.9 reports the estimations errors expressed

as RMSE and MAE to the oil futures prices. This table also indicates that Schwartz

and Smith (2000) model fits the mid-term futures contract the best since the errors

of them are close to zero. In particular, the errors expressed in both ways for F8
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Model implied spot price and equilibrium price processes
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Figure 4.6: Schwartz and Smith (2000) model implied spot and equilibrium
prices. Red line: spot prices. Blue line: equilibrium prices.
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Schwartz and Smith (2000) model

This chapter’s results using long-term futures data
κ00 σχ µ00 σξ ρ00 λ00 µ∗

Estimates 0.831 0.341 0.217 0.191 0.154 0.268 -0.017
Std. Error (0.008) (0.009) (0.054) (0.005) (0.040) (0.093) (0.001)

Original Schwartz and Smith (2000) results using Enron data
Estimates 1.19 0.158 -0.039 0.115 0.189 0.014 0.016
Std. Error (0.03) (0.009) (0.073) (0.006) (0.096) (0.082) (0.001)

Table 4.8: Parameter estimates for Schwartz and Smith (2000) model using
two different data sets. Weekly futures prices, from January 24th, 1997 to
May 29th, 2009. Weekly Enron forward prices, from January 15, 1993 to
May 16, 1996.

Estimation errors: Schwartz and Smith (2000) model
Log futures prices

F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All
RMSE 0.03 0.01 0.00 0.01 0.01 0.00 0.02 0.03 0.04 0.05 0.03
MAE 0.03 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.04 0.02

Futures prices
F2 F5 F8 F12 F18 F24 F36 F48 F60 F72 All

RMSE 1.46 0.45 0.00 0.25 0.25 0.00 0.63 1.16 1.71 2.47 1.15
MAE 1.07 0.34 0.00 0.18 0.19 0.00 0.47 0.83 1.21 1.68 0.60

Table 4.9: Estimation errors of log futures prices for Schwartz and Smith
(2000) model expressed as RMSE and MAE of 10 futures contracts,
US$/barrel.

and F24 are almost zero. For the very-short and very-long futures contracts, the

estimation errors are relatively large. The overall errors for the futures prices case

expressed in two ways are lower than 1.2 US$/barrel indicating that this model

produces a good fit for the recent oil futures. Furthermore, comparing Tables 4.7

and 4.9, we can see that the performances of both Schwartz and Smith (2000) model

and Schwartz (1997) two-factor model are comparable in terms of fitting market

futures prices.

Schwartz and Smith (2000) show that the two-factor model in Gibson and
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Figure 4.7: Schwartz and Smith (2000) model: plots of market futures and
model implied futures prices for 4 different contracts, F2, F8, F36 and F72.
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S97 two-factor model V.S. SS00 short-long model
S97 parameters S97 Using SS00 parameters

µ97 0.695 0.537
κ97 0.825 0.831
α97 0.475 0.234
σs 0.388 0.417
σδ 0.278 0.283
ρ97 0.871 0.891
λ97 0.412 0.223

Table 4.10: Model equivalence check: Schwartz (1997) and Schwartz and
Smith (2000).

Schwartz (1990) is mathematically the same as their short-term deviation and long-

term dynamic model. Since the Schwartz (1997) two-factor model is a variation of

Gibson-Schwartz 1990 model, they derive the relationships between the parame-

ters of the two models. Using the parameter estimates reported in Table 4.8, the

corresponding parameter values of Schwartz (1997) two-factor model are calculated

based on the formulas derived in Schwartz and Smith (2000). These are presented

in Table 4.10 where we see that most parameters in the Schwartz (1997) two-factor

model including κ97 and ρ97 calculated using Schwartz and Smith (2000) parameter

estimates (column 3 in Table 4.10) are close to Schwartz (1997) estimated parame-

ter values (column 2 in Table 4.10). This result illustrates the closeness of these two

models in terms of their similar performances in fitting the market futures prices.

4.4.4 Model comparison

To compare the performances of the above three models, I perform a cross-section

out-of-sample test introduced in Schwartz (1997). The idea of this test is to com-

pare the model calibration errors calculated by using the out-of-sample parameter

estimates. Specifically, the parameters and the state variables are calibrated and

estimated using the chosen 10 futures contracts over the period. And they will be
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Out-of-Sample test

RMSE MAE
Model RS S97 SS00 RS S97 SS00

F1 0.319 1.955 2.147 0.269 1.395 1.542
F4 1.786 0.611 0.727 1.198 0.429 0.520
F7 2.520 0.192 0.208 1.690 0.074 0.094
F10 3.014 0.170 0.206 2.004 0.086 0.124
F15 3.668 0.126 0.295 2.406 0.084 0.216
F21 4.268 0.162 0.156 2.783 0.121 0.119
F30 4.740 0.518 0.250 3.159 0.385 0.192
All 3.226 0.808 0.878 1.930 0.368 0.401

Table 4.11: Cross-section out-of-sample test between regime switching
model (RS), Schwartz (1997) two-factor model (S97) and Schwartz and
Smith (2000) model (SS00), expressed as RMSE and MAE of 7 futures
contracts, US$/barrel.

applied to price 7 selected futures contracts which were not used for parameter esti-

mation and calibration. The errors are then computed and compared. The average

maturities (in months) of the 7 futures contracts are 1, 4, 7, 10, 15, 21 and 30.

Table 4.11 presents the results of the cross-section test for the three models

examined in this chapter. The errors are expressed as RMSE and MAE. Comparing

the overall errors which are reported in the last row of this table, we can find that

the errors generated by using the regime switching model are the largest. The longer

the maturity of a futures contract, the larger the errors for the regime switching

model. Both Schwartz (1997) two-factor model and Schwartz and Smith (2000) fit

the futures contracts the best and the errors for both near and long contracts are

larger compared with those for the mid-term maturity contracts.

In this regime switching model specification, the mean reversion rates for the

log price for the two regimes are kept the same. This restriction may be one of

the reasons leading to the relatively larger calibration errors compared with the

multi-factor models. However the calibration error expressed as RMSE on average

146



generated by the regime switching model is only about $2.5/barrel higher than that

obtained from the two multi-factor models. One obvious step for future research

is to relax the constant mean reversion rate in this regime switching model and

examine the performance of fitting the market data.

In general, the calibration and estimation errors of all three models are small in

magnitude (less than $4.6/barrel on average) indicating a good performance of all

three models in terms of explaining the recent crude oil dynamics. Both two-factor

models analyzed in Schwartz (1997) and Schwartz and Smith (2000) are shown to

be able to explain the dynamics of recent crude oil prices using the long-term oil

futures data. This result further confirms the importance of modeling the stochastic

convenience yield on generating various term structures of oil futures prices. Hence

for evaluating a long-term oil-linked investment, investors can apply these multi-

factor models to make decisions. The proposed two-state regime switching model

is worthy of further exploration.

4.5 Conclusions

The behavior of crude oil prices before and after year 2003 differs dramatically.

This chapter investigates the dynamics of recent crude oil prices by comparing and

contrasting three different stochastic models: a two-state regime switching model

based on the one-factor model examined in Schwartz (1997), and two-factor models

analyzed in Schwartz (1997) and Schwartz and Smith (2000) respectively. The

regime switching model allows for two states in the crude oil markets represent

good times and bad times. The importance of modeling stochastic convenience

yield is further explored in this chapter by examining the Schwartz (1997) two-factor

model. This chapter also illustrates the implication of the empirical equivalence of

the Schwartz (1997) and Schwartz and Smith (2000) two-factor models. The goal

of this chapter is to find a modeling approach that is rich enough to capture the
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main features of the recent crude oil prices, while still being simple enough to be

easily applied to evaluate a long-term oil-linked investment.

Long-term oil futures prices are used for model parameter calibration and esti-

mation. A non-linear least squares approach is used to calibrate parameter values

for the regime switching model and Kalman filter along with Quasi Maximum Like-

lihood method is applied to estimate the parameters for the two-factor models. The

performances of these three different model specifications in terms of fitting market

prices are then compared and analyzed. The estimation errors generated by the

two multi-factor models are comparable and smaller in magnitude than the calibra-

tion errors generated by the proposed regime switching model. The implication of

the mathematical equivalence of the two-factor models analyzed in Schwartz (1997)

and Schwartz and Smith (2000) is empirically illustrated in this chapter as well.

Imposing the same mean reversion rate for the two regimes may be one of the

reasons which leads to the relatively large calibration errors for the regime switching

model. However the calibration errors expressed as RMSE generated by the regime

switching model are small (less than $4.6/barrel on average), indicating that this

regime switching specification shows some promises as a parsimonious model which

is able to explain the main properties of the recent crude oil prices. Future research

will further investigate this regime switching model by relaxing the constant mean

reversion rate in both regimes. Given the good fit of the multi-factor model in

terms of matching the recent oil market data, in the future research, I will focus

on applying the multi-factor model in a regime switching context to an analysis of

oil-related investment decisions and asset valuation.
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Chapter 5

Conclusion

The main purpose of this thesis is to propose and analyze stochastic models ex-

pressed in the risk neutral world for commodity prices in the context of valuing

commodity linked investments. The goal is to find modeling approaches that are

rich enough to capture the main characteristics of commodity prices, lumber and

crude oil prices in particular, while still being simple enough that the resulting price

model can easily be incorporated into problems of commodity investment valuation.

In Chapter 2, I investigate a possible improvement in the modeling of stochastic

timber prices in optimal tree harvesting problems. In particular, I compare two dif-

ferent stochastic price processes, namely a regime switching model with a different

mean reverting process in each regime (RSMR) and a traditional mean reverting

model (TMR). The RSMR model allows for two states in lumber markets which

we may characterize as being good times and bad times. These two price models

are calibrated using lumber derivatives prices. I then use the calibrated timber

price models to solve a forest investment problem for a hypothetical stand of trees

in Ontario’s boreal forest. A real options approach is used in this thesis to model

the optimal harvesting decision. A Hamilton-Jacobi-Bellman (HJB) variational in-

equality is developed and solved numerically. I show that the RSMR model provides

149



a reasonably good and parsimonious model for lumber prices in terms of fitting the

market prices of lumber derivatives. Moreover the regime switching model is shown

to generate reasonable stand values and critical prices which serve as a useful in-

put into the investment decision. Thus it is a preferred model to be used in the

analysis of forestry investment decisions compared to the single-factor model which

has been widely used in the forestry literature. Future research will investigate the

robustness of the RSMR model for describing lumber price dynamics through a

comparison with other multi-factor models that have been used in the literature to

value other commodity linked investments.

For storable commodities and those that serve as inputs to production such as

lumber, convenience yield plays an important role in price formation. The seasonal

harvesting of trees, as well as the importance of wood products as inputs to other

industries, suggest that convenience yield may be important to understanding the

dynamics of timber prices. In chapter 3, I investigate whether convenience yield

is an important factor in determining optimal decisions for a forestry investment.

Three different stochastic models of lumber prices including a single-factor mean

reverting model, a one-factor geometric Brownian motion model and a two-factor

model analyzed in Schwartz (1997) are analyzed and compared in this chapter.

The two-factor model is shown to provide a reasonable fit of the term structure of

lumber futures prices. The impact of convenience yield on a forestry investment

decision is examined using the Schwartz (1998) long-term model which transforms

the two-factor price model into a single factor model with a composite price. Using

the long-term model an optimal harvesting problem is analyzed, which requires a

numerical solution of a Hamilton-Jacobi-Bellman (HJB) equation. I compare the

results for the long-term model to those from the single-factor mean reverting and

the geometric Brownian motion models. The inclusion of convenience yield through

the long-term model is found to have a significant impact on land value and optimal

harvesting decisions. When making the investment decisions, investors should take
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the dynamics of the convenience yield into account. This chapter also shows that

it is worthwhile applying the Schwartz (1998) long-term model when analyzing

forestry investment decisions. A natural extension of this research is to solve the

HJB equation for the full two-factor problem and compare it with the long-term

model results.

Oil is a non-renewable resource and is a key input to the world’s economy. Since

about year 2003, we have witnessed a significant run up in oil prices, peaking at

over $140 per barrel in July 2008. In chapter 4, I propose a new regime switching

model to capture the recent crude oil dynamics and compare it with the widely

used Schwartz (1997) and Schwartz and Smith (2000) two-factor models. Long-

term oil futures data are used to calibrate and estimate the model parameters.

The performances of the two-factor models are comparable in terms of fitting the

market prices of the long-term oil futures contracts and are found to more closely

match the behavior of oil futures prices than the regime switching model. Future

research will further investigate the proposed regime switching model by relaxing

the constant mean reversion rate. Given the good fit of the multi-factor model in

terms of matching the recent oil market data, in the future research, I will also focus

on applying the multi-factor model in a regime switching context to an analysis of

oil-related investment decisions and asset valuation.
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A Appendix to Chapter 2

A1 Relating P-measure and Q-measure parameters

Parameter estimates in Section 2.5 are all Q-measure or risk-adjusted estimates. It

is natural to want to relate these estimates to real-world or P-measure parameter

values. We can determine the relation between Q-measure and P-measure estimates

if we make an assumption for the price process in the P-measure. Assume that the

spot price model in the P-measure for the RSMR case is comparable to the Q-

measure model and is given by:

dP = α′(st)(K
′(st)− P )dt+ σ′(st)PdZ (A1)

where st is a two-state continuous time Markov chain, taking two values 0 or 1.

The value of st indicates the regime in which the lumber price resides at time t.

Define a Poisson process qst→1−st with intensity λ′[st→1−st]. Then

dqst→1−st = 1 with probability λ′[st→1−st]dt

= 0 with probability 1− λ′[st→1−st]dt

Observe that in the above equations, we have defined P-measure parameters, α′,

K ′, σ′,and λ′, to distinguish them from their counterparts in the Q-measure process.

Consider a futures contract on P , denoted F (P, t, st) or just F (st). Using Ito’s

lemma we can express dF as:

dF = µ(st)dt+ σ′(st)PF (st)PdZ + ∆Fdqst→1−st (A2)
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where

µ(st) ≡ α′(st)(K
′(st)− P )FP +

σ′(st)
2P 2

2
FPP + Ft (A3)

∆F ≡ [F (1− st)− F (st)] (A4)

To find the value of F we create a hedging portfolio in the normal manner.

Suppose we have three contracts, F1, F2 and F3, which may be futures contracts

with different maturities. We create a portfolio with these three securities choosing

the quantity of each asset so that the portfolio is riskless. Following standard steps,

this leads to the following condition that must hold under no-arbitrage assumptions

for any contract F (P, t):

µ(st) = βPσ
′(st)PFP − βsw∆F (A5)

βP is the market price of risk for price diffusion risk and reflects the extra return

over the risk free rate that the market requires for exposure to price risk. βsw is

the market price of risk for regime switching. Both of these terms may depend on

P and t. Substituting in for µ(st) and ∆F gives

α′(st)(K
′(St)−P )FP +

σ′(st)
2P 2

2
FPP +Ft = βPσ

′(st)PFP − βsw[F (1− st)−F (st)]

(A6)

Further rearranging results in:

α′(st)

(
1 +

βPσ
′(st)

α′(st)

)(
K ′(St)

1 + βP σ′(st)
α′(st)

− P

)
FP +

σ′(st)
2P 2

2
FPP + Ft +

βsw[F (1− st)− F (st)] = 0 (A7)

Equation (A7) describes the behaviour of a futures contract that depends on

the stochastic variable P , in terms of the parameters defined in the P-measure,
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assuming the P-measure spot price is described by Equation (A1). Comparing

Equation (A7) with Equation (4.6) we can see the relationship between P-measure

and Q-measure parameters. In particular,

α(st) = α′(st)

(
1 +

βPσ
′(st)

α′(st)

)
(A8)

K(st) =
K ′(st)

1 + βP σ′(st)
α′(st)

(A9)

σ(st) = σ′(st) (A10)

λst(1−st) = βsw (A11)

For further comparison we make assumptions regarding the signs of the parameters

in the above equations. We know that σ′(st) > 0. For the other two parameters the

most likely case is that βP and α′(st) are also positive. In this case it follows that

α(st) > α′(st) and K(st) < K ′(st). It makes intuitive sense that in moving from

the real world to the risk neutral world, the risk adjustment implies a more rapid

speed of mean reversion and a lower long run equilibrium level. Optimal actions

are taken by assuming that lumber prices revert to a lower long run mean and at

a faster rate than is actually the case.

Rearranging Equations (A8) and (A9), the mean reversion rate and the long run

equilibrium price level under the P-measure, α′(st) and K ′(St), can be expressed

as:

α′(st) = α(st)− βPσ(st) (A12)

K ′(st) =

(
1 +

βPσ
′(st)

α′(st)

)
K(st) (A13)

Based on the calibrated parameters presented in Tables 2.2 and 2.3, it is obvious

from Equation (A12) that given a small positive βP , α′(0) > α′(1). Hence Equation

(A13) implies that the high price regime in the real world is also the high price
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regime in the risk neutral world, i.e. K ′(0) < K ′(1).

Equation (A10) tells us that volatility is the same in the P and Q measures.

Equation (A11) tells us that the intensity of regime switching, λst→(1−st), is equal

to the market price of risk of regime switching. Hence the risk-adjusted probability

of switching regimes λst→(1−st)dt may be quite different from the actual probability,

λ′dt, as implied by historical price data.

A2 Numerical solution of HJB Variational Inequality

The basic linear complementarity problem of our optimal tree harvesting problem

can be expressed as Equation (2.27)

V (st)τ − V (st)α = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP −

rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st) (A14)

This PDE is discretized using unequally spaced grids in the directions of P and α.

Time direction is also discretized. Define nodes on the axes for P , α and τ by

P = [P1, P2, ..., PI ] (A15)

α = [α1, α2, ..., αJ ]

τ = [τ1, τ2, ..., τN ]

Using fully implicit difference method, the difference scheme for Equation (A14)

can be written as

V (st, Pi, αj, τ
n+1)− V (st, Pi, αj+∆τ , τ

n)

∆τ
=

[
α(st)(K(st)− P )V (st)P

+
1

2
(σ(st)P )2V (st)PP − rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st)

]n+1

ij

(A16)

163



For simplicity, define V (st)
n+1
ij = V (st, Pi, αj, τ

n+1), V ∗(st)
n
ij = V (st, Pi, αj+∆τ , τ

n)

and rewrite Equation (A16) as

V (st)
n+1
ij − V ∗(st)nij

∆τ
=

[
α(st)(K(st)− P )V (st)P +

1

2
(σ(st)P )2V (st)PP −

rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st)

]n+1

ij

(A17)

Since the right hand side of Equation (A17) only contains the state variable P ,

this one-dimensional PDE is solved numerically for each stand age αj within each

time step. After one time step iteration completes, using linear interpolation to

get V (st, Pi, αj+∆τ , τ
n). Hence our only concern is the discretization of derivatives

with respect to P .

A2.1 Discretization for interior points along P direction

For simplicity, the dependence of the regime st is dropped for discretization, except

for V (1− st) in Equation (A17). Hence it can be further simplified as

V n+1
ij − V ∗nij

∆τ
=

[
α(K − P )VP +

1

2
(σP )2VPP − rV +

λst→1−st(V (1− st)− V ) + Υ

]n+1

ij

(A18)

Central difference, forward difference and backward difference methods can be

used to discretize the first derivative term VP for interior points i = [2, ..., I − 1].

We choose the difference method which will assure the positive coefficient scheme.

If all these three methods can guarantee the positive coefficient scheme, central

difference will be picked up for its faster convergence. For illustration purpose, the

complete discretiztion equation will use central difference method for VP .
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V n+1
ij − V ∗nij

∆τ
=

{
σ2P 2

2

[ Vi+1,j−Vij
Pi+1−Pi −

Vij−Vi−1,j

Pi−Pi−1

Pi+1−Pi−1

2

]
+ α(K − P )

[
Vi+1,j − Vi−1,j

Pi+1 − Pi−1

]
−(r + λst→1−st)Vij + λst→1−stV (1− st)ij

+
πij
∆τ

[(Pi − C)Qj + Vi0 − Vij]
}n+1

(A19)

Equation (A19) can be simplified as

V n+1
ij − V ∗nij

∆τ
= aiV

n+1
i−1,j + biV

n+1
i+1,j − [ai + bi + r + λst→1−st +

πij
∆τ

]V n+1
ij

+λst→1−stV (1− st)n+1
ij +

πij
∆τ

[(Pi − C)Qj + Vi0 − V n+1
ij ] (A20)

where define αi ≡ σ2P 2
i

Pi+1−Pi−1

1. For central difference method

ai ≡
αi

Pi − Pi−1

− α(K − Pi)
Pi+1 − Pi−1

; bi ≡
αi

Pi+1 − Pi
+

α(K − Pi)
Pi+1 − Pi−1

2. For forward difference method

ai ≡
αi

Pi − Pi−1

; bi ≡
αi

Pi+1 − Pi
+
α(K − Pi)
Pi+1 − Pi

3. For backward difference method

ai ≡
αi

Pi − Pi−1

− α(K − Pi)
Pi − Pi−1

; bi ≡
αi

Pi+1 − Pi
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A2.2 Discretization of boundary conditions for i = 1 and i = I

When P = 0, no specific boundary condition is needed. Substitute P = 0 into HJB

Equation (A14) to get PDE for this boundary

V (st)τ −V (st)ϕ = α(st)K(st)V (st)P − rV (st) +λst→1−st(V (1− st)−V (st)) + Υ(st)

(A21)

Using forward discretization for V (st)P , the discrete version of Equation (A21) can

be written as

V n+1
1j − V ∗n1j

∆τ
= b1V

n+1
2,j − [b1 + r + λst→1−st +

π1j

∆τ
]V n+1

1j +

λst→1−stV (1− st)n+1
1j +

π1j

∆τ
[(P1 − C)Qj + V10 − V n+1

1j ] (A22)

where b1 = αK
P1−P0

.

When P = PI , the option value is a linear function of the price. Hence the

second derivative term V (st)PP = 0. Guess the solution V (st)Ij = A(τ) + B(τ)PI .

When P → ∞, the term B(τ)PI dominates and V (st)Ij ≈ B(τ)PI . For the

first derivative term α(st)(K(st) − P )V (st)P , PI � K(st). Hence α(st)(K(st) −
P )V (st)P ≈ −α(st)PV (st)P = −α(st)V (st). The HJB equation (A14) in this

boundary can then be expressed as

V (st)τ−V (st)ϕ = −α(st)V (st)−rV (st)+λst→1−st(V (1−st)−V (st))+Υ(st) (A23)

The discrete version of Equation (A23) can be written as

V n+1
Ij − V ∗nIj

∆τ
= −[α + r + λst→1−st +

πIj
∆τ

]V n+1
Ij + λst→1−stV (1− st)n+1

Ij +

πIj
∆τ

[(PI − C)Qj + VI0 − V n+1
Ij ] (A24)
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A2.3 Complete discretization

Combine Equations (A20), (A22) and (A24), and write them in matrix form as

[(1 + ∆τ(r + λst→1−st))I +W (st) + πn+1]V (st)
n+1

−∆τλst→1−stV (1− st)n+1 = V (st)
∗n + π(st)

n+1
[(P − C)Q+ V (st)

n+1
0 ] (A25)

where W (st) is a square sparse matrix which has the following elements:

W (st) =

∆τb1 −∆τb1 0 ... 0 0

−∆τa2 ∆τ(a2 + b2) −∆τb2 ... 0 0

... ... ... ... ... ...

0 ... 0 −∆τaI−1 ∆τ(bI−1 + bI−1) −∆τaI−1

0 ... 0 0 0 ∆τα(st)


(A26)

The above analysis for the option value in regime st can be used in the same way

for the option value in the other regime 1 − st. The similar equation as Equation

(A25) can be derived for V (1− st) which can be written as

[(1 + ∆τ(r + λ1−st→st))I +W (1− st) + πn+1]V (1− st)n+1 −

∆τλ1−st→stV (st)
n+1 = V (1− st)∗n + π(1− st)

n+1
[(P − C)Q+ V (1− st)n+1

0 ](A27)

Denote AA(st) = [(1 + ∆τ(r + λst→1−st))I + W (st) + πn+1]. Then its counterpart

for regime 1− st can be defined as AA(1− st) = [(1 + ∆τ(r+ λ1−st→st))I +W (1−
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st) + πn+1]. Stack Equations (A25) and (A27) together and get

 AA(st) −∆τλst→1−st

−∆τλ1−st→st AA(1− st)

 V (st)

V (1− st)

n+1

=

 V ∗(st)

V ∗(1− st)

n +

 π(st)

π(1− st)

n+1  payoff(st)

payoff(1− st)

n+1

(A28)

where Zmatrix =

 AA(st) −∆τλst→1−st

−∆τλ1−st→st AA(1− st)

.

A3 Convergence to the viscosity solution

In this appendix, the monotonicity and stability properties of the discrete equa-

tions in our numerical scheme are analyzed. We claimed earlier that our scheme is

consistent. A discretization that is consistent, monotone, and stable will converge

to the viscosity solution.

Before proving the monotonicity and stability of our scheme, it is useful to

gather together several results for the finite difference discretization.

Lemma A.1. Zmatrix is an M matrix1

Proof. Equation (2.30) is discretized using central difference, forward difference

or backward difference methods to get a positive coefficient discretizations. The

positive coefficient discretization means that Zmatrix has non-positive offdiagonal

elements. Moreover, the sum of all elements in each row of Zmatrix is non-negative2.

Hence Zmatrix is an M matrix.

1For definition and properties of M matrix, see Varga (2000).
2This can be checked from detailed discretization in Appendix.
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We follow d’Halluin et al. (2005)’s definition of monotone discretizations and

rewrite the discrete Equation (2.27) at each pair of node (Pi, ϕj) as3

gij(V
n+1
ij , {V n+1

i−j }, {V
n}) = −[ZV n+1

j ]i + [Φn+1V n]ij + [πn+1]ii(payoffij − V n+1
ij )

= 0 (A29)

where {V n+1
i−,j } denotes the set of values V n+1

i−,j without the ith element V n+1
ij . Φn+1

in this expression is the Lagrange linear interpolant operator4 used to deal with

linear interpolation in the semi-lagrangian method.

[Φn+1V n]ij = V (st, Pi, ϕj+∆τ , τ
n) + interpolation error

Theorem A.2. The discretization scheme (A29) is unconditionally monotone.

Proof. In Lemma A.1 we have already showed that Z is an M -matrix. Therefore,

−[ZV n+1
j ]i is a strictly decreasing function of V n+1

ij , and a non-decreasing function

of {V n+1
i−,j }. [Φn+1V n]ij is a non-decreasing function of {V n}, since Φn+1 is a linear

interpolant operator. The last term in equation (A29) [πn+1]ii(payoffij − V n+1
ij ) is

a non-increasing function of V n+1
ij since the elements in [πn+1]ii are non-negative.

Therefore, this discretization scheme is monotone based on d’Halluin et al. (2005)’s

definition.

Theorem A.3. The scheme satisfies

||V n+1||∞ ≤ max{||V n||∞, ||payoff||∞}

and is unconditionally stable.

3For simplicity, in this expression V ≡ V (st) or V ≡ V (1− st).
4For details about Lagrange linear interpolation operator, seed’Halluin et al. (2005).
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Proof. Write out the complete discretized version of Equation (2.27) as

−∆τV (st)
n+1
i−1,j + [1 + ∆τ(a(st)i + b(st)i + r + λk→1−k) + π(st)

n+1

ij ]V (st)
n+1
ij

−∆τb(st)iV (st)
n+1
i+1,j −∆τλk→1−kV (1− st)n+1

ij =∑
ij

wijV (st)
n
ij + π(st)

n+1

ij payoffij (A30)

where wij is linear interpolant weight, satisfying 0 ≤ wij ≤ 1 and
∑
wij = 1.

a(st)i and b(st)i
5 are the components in Z matrix, which are non-negative. Denote

|V (st)
n+1
m,j | = ||V n+1

j ||∞ where m is an index. Equation (A30) implies that

||V n+1
j ||∞(1 + r∆τ + πmm) ≤ ||V n||∞ + πmm||payoff||

which can be further simplified as

||V n+1
j ||∞(1 + r∆τ + πmm) ≤ max{||V n||∞, ||payoff ||∞}(1 + πmm) (A31)

Rearrange Equation (A31)

||V n+1
j ||∞ ≤ max{||V n||∞, ||payoff ||∞}

(1 + πmm)

(1 + r∆τ + πmm)

Hence just as claimed, we get

||V n+1||∞ ≤ max{||V n||∞, ||payoff ||∞}

and the scheme is unconditionally stable

5The detail expression is in Appendix.
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B Appendix to Chapter 3

B1 Derivation of Schwartz (1998) long-term model

Schwartz (1998) derives the one-factor long-term model based on the basic one-

factor GBM model with constant convenience yield. Specifically, the spot price in

the basic model follows GBM:

dS = (r − c)Sdt+ σSdZ (B1)

where c is the constant convenience yield.6 Hence the futures price of this basic

one-factor model F (S, T ) can be derived as:

F (S, T ) = Se(r−c)T (B2)

Based on Ito’s Lemma, the futures return can be derived as dF
F

= σdZ. Its volatility

is
V ar( dF

F
)

dt
=

E[( dF
F

)2]

dt
= σ, which is the same as the volatility of spot prices. The

rate of change of the futures price7 in this model is

∂F/∂T

F
= r − c (B3)

The futures price of the two-factor model F (S, δ, T ) is given in Equation (4.16).

The rate of change of the futures price in this two-factor model can be derived as:

∂F/∂T

F
= r − α̂ +

σ2
δ

2κ2
− ρσSσδ

κ
+
e−2κT

2κ2
+ [α̂κ+ ρσSσδ −

σ2
δ

κ
]
e−κT

κ
− δe−κT

6All the stochastic processes in this part are expressed in the risk-neutral world.
7See Schwartz (1997).
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As time goes to infinity T →∞, this rate will converge to:

∂F/∂T

F T→∞
= r − α̂ +

σ2
δ

2κ2
− ρσSσδ

κ
(B4)

Comparing Equations (B3) and (B4), if we define the constant convenience yield

c = α̂− σ2
δ

2κ2 + ρσSσδ
κ

in the long-term model, the rate of change of futures prices in

long-term model will converge to that in two-factor model.

With this rate of change r − c, the composite price Z(S, δ) is constructed to

match the futures prices of two-factor model F (S, δ, T ) based on the formula for

futures prices8 F (Z, T ) = Ze(r−c)T . Hence, Z can be derived as:

Z(S, δ) = lim
T→∞

e−(r−c)TF (S, δ, T )

= Se
c−δ
κ
− σ2

δ
4κ3 (B5)

Given this composite price, Z, expressed in Equation (B5), combined with the

defined constant convenience yield c, this long-term one-factor model can generate

futures prices F (Z, T ) which closely match the long-term futures prices in the two-

factor model F (S, δ, T ).

Applying Ito’s lemma to Equation (4.16), the futures return in the two-factor

model can be derived as:

dF

F
= σSdZS − σδ

1− e−κT

κ
dZδ

Hence, the volatility of the futures return for this two-factor model is:

σ2
F (T ) =

V ar(dF
F

)

dt
= σ2

S + σ2
δ

(1− e−κT )2

κ2
− 2ρσSσδ

1− e−κT

κ
(B6)

8In this expression, T →∞ due to the convergence of rate of change to r − c.
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Define the stochastic differential equation of composite price Z as:

dZ = (r − c)Zdt+ σF (t)Zdz (B7)

Therefore, the volatility of the futures return in this long-term model is the same

as that in two-factor model.

B2 Model comparison

This section compares model performances of single-factor models with that of two-

factor model in terms of fitting market prices. Model estimation errors including

RMSE and MAE of the three one-factor models analyzed in this paper are provided

here. Plots of model implied futures prices and market futures prices are also shown

in this section.

B2.1 One-factor mean reverting model

Estimation errors of the one-factor mean reverting model including the Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) are reported in Table

B1. Comparing this table with Table 3.5 we find that except for the third futures

contract F3, the errors of the futures contracts expressed in both ways for two-

factor model are lower than those for the one-factor mean reverting model. This

indicates the better performance of the two-factor model in terms of fitting market

lumber derivative prices.

Plots of market futures prices and the model implied futures prices for the four

futures contracts are shown in Figure B1. We observe the close match between these

two time series. But comparing this figure with Figure 3.6 we find that except for

the futures contract F3, the differences between the two futures prices for the other

three futures contracts are higher for the one-factor mean reverting model.
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Single-factor mean reverting model

F1 F2 F3 F4 All
Calibration errors of futures prices

RMSE 31.217 14.065 0.068 9.650 17.787
MAE 23.651 10.860 0.054 7.175 10.435

Calibration errors of log futures prices
RMSE 0.070 0.032 0.000 0.023 0.040
MAE 0.056 0.026 0.000 0.017 0.025

Table B1: Estimation errors of both futures prices and log futures prices
of Schwartz (1997) single-factor model expressed as RMSE and MAE of 4
futures contracts, Cdn$/MBF.
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Figure B1: Plots of model implied and market futures prices for the single
factor mean reverting model of the four chosen futures contracts. Weekly
data from January 6th, 1995 to April 25th, 2008. Blue line: model implied
futures prices. Red line: market futures prices.
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Single-factor GBM model

F1 F2 F3 F4 All
Calibration errors of futures prices

RMSE 33.761 15.260 0.000 10.570 19.264
MAE 26.123 12.093 0.000 8.080 11.574

Calibration errors of log futures prices
RMSE 0.079 0.036 0.000 0.024 0.045
MAE 0.063 0.029 0.000 0.019 0.028

Table B2: Estimation errors of both futures prices and log futures prices of
one-factor GBM model with constant convenience yield expressed as RMSE
and MAE of 4 futures contracts, Cdn$/MBF.

B2.2 GBM model

Estimation errors of one-factor GBM model with constant convenience yield are

reported in Table B2. We find that except for the third futures contract F3, the

errors of the rest futures contracts expressed in both ways for the two-factor model

are lower than those for the GBM model. This indicates the better performance of

the two-factor model in terms of fitting market lumber derivative prices.

Plots of market futures prices and the model implied futures prices for the four

futures contracts are shown in Figure B2. We can also find the close match between

these two time series. But comparing this figure with figure 3.6 we find that except

for the futures contract F3, the differences between the two futures prices for the

rest three futures contracts are higher for the GBM model.

B3 Long-term model performance

Figures B3, B4 and B5 show the model implied futures prices with different ma-

turities for the two-factor model and the long-term model. Comparing these three

plots we observe that the differences between the two model implied futures prices

are larger for contracts with short-term maturities and smaller for contracts with
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Figure B2: Plots of model implied and market futures prices for the one-
factor GBM with constant convenience yield model of the four chosen fu-
tures contracts. Weekly data from January 6th, 1995 to April 25th, 2008.
Blue line: model implied futures prices. Red line: market futures prices.
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Figure B3: Prices in $/MBF of model implied futures contracts with four
short-term maturities for Schwartz (1997) two-factor model and Schwartz
(1998) long-term model.

long-term maturities. This result is consistent with the construction of the long-

term model introduced in Schwartz (1998) since the purpose of the long-term model

is to match the performance of the two-factor model analyzed in Schwartz (1997)

in terms of fitting the long-term futures prices. The discrepancy between these two

models in terms of generating the short-term futures prices is not as important in

the analysis of a long-term forestry investment.
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F5: T = 1 year
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Figure B4: Prices in $/MBF of model implied futures contracts with four
mid-term maturities for Schwartz (1997) two-factor model and Schwartz
(1998) long-term model.
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F9: T = 5 years
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Figure B5: Prices in $/MBF of model implied futures contracts with four
long-term maturities for Schwartz (1997) two-factor model and Schwartz
(1998) long-term model.
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