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Abstract

Segmentation is an important step in the interpretation of Magnetic Resonance
(MR) images of the human body. MRI reveals an unequaled view of the anatomy
of the brain in terms of spatial and contrast resolution, and its multispectral na-
ture has been exploited to obtain better performance in the segmentation process.
This thesis presents new techniques based on artificial neural network (ANN) ar-
chitectures for automatic segmentation and tissue classification of MR images of
the human brain. Two different methodologies were adapted for supervised and

unsupervised segmentation.

The Learning Vector Quantization (LVQ) ANN is utilized for multispectral su-
pervised classification of MR images. The original LVQ was modified for better
and more accurate classification. LVQ ANN segmentation results are compared to
those achieved with a backpropagation ANN and a conventional Maximum Likeli-
hood Classifier (MLC).

In the second scheme a fully automated technique was developed for segmen-
tation. The scheme utilizes the Self Organizing Feature Map (SOFM) ANN for
feature mapping and generates a set of codebook vectors for each tissue class. An
additional layer then completes the classification process. To minimize clustering
artifacts, an algorithm has been developed for isolating the cerebrum prior to seg-
mentation. The cerebrum is extracted by stripping away the skull pixels from the
T2 weighted image. The network is tested for different sets of image slices from
normal and abnormal brain studies. Images were selected from 54 axial images of

the whole head.

Twenty nine brain studies were analyzed using the techniques developed in this
thesis. Three tissue types of the brain are segmented: white matter, gray matter

iv



and cerebrospinal fluid (CSF); in case of abnormality, the tumor or other unknown
tissues were also segmented. From the evaluation of segmentation results, the
advantages and disadvantages of each method are discussed.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is fast becoming the technique of choice to
study the brain in health and disease [16]. It reveals an unequaled view of the
anatomy of the brain in terms of spatial resolution as well as contrast resolution.
Segmentation is the first step in the analysis of brain morphometry ; subsequently,
volumes, shapes and positions can be determined [63]. Automating the feature
extraction process provides for an objective and reproducible method of analysis.
While there were many possible approaches to image segmentation, a neural net-
work approach is appropriate because it draws directly on human experience to

develop the necessary algorithms.

This thesis describes a neural network approach to the antomatic segmenta-
tion of magnetic resonance brain images. This chapter describes the nature and

significance of the problem domain and then outlines the proposed solution.
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1.1 Segmentation of MR brain images

1.1.1 Magnetic resonance brain imaging

Figure 1.1 shows three slices from an MR study of the brain of a human subject.
The slices are obtained at the same level in the brain, but using different pulse
sequences, an MR technique that allows for the manipulation of contrast between
different tissues. A typical examination consist of 54 axial slices each 5mm thick.
The brightness of each voxel (volume pixel; Imm by lmm by 5mm in this case)
reflects an average measurement of the tissue characteristics over that volume of
the brain. While a detailed description of the magnetic resonance imaging (MRI)
technique itself is beyond the scope of this thesis, a brief discussion of the imaging
process should provide sufficient background to introduce the multispectral nature

of the MR examination.

1.1.2 The physics and nature of MRI data

This discussion presents the classical interpretation of the behavior of nuclear mag-
netic moments by using the hydrogen nucleus (i.e., a single proton) as a model.
In the classical interpretation, the position of the hydrogen nucleus can be spec-
ified with any desired degree of precision, and its movements are assumed to be
continuous and completely predictable. Each proton behaves as a small magnet
with a magnetic moment that has both magnitude and direction. In any sample of
material containing hydrogen (such as the human body), the magnetic moments of
the individual hydrogen nuclei are oriented in random directions. If a strong mag-
netic field is applied to the sample, the magnetic moments of the nuclei align in
the direction of the applied magnetic field in a manner similar to that of a compass
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(a) (b)

(c)

Figure 1.1: (a): A Tl-weighted image (b) A T2-weighted image (¢) A PD-

weighted image.
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needle aligning with the earth’s magnetic field. The field provided by the main
magnet of an MR system is of the order of 1 tesla ( compared to 0.5 x 10~ tesla
for the Earth’s magnetic field).

In addition to aligning itself with the applied magnetic field, the magnetic mo-
ment will also precess about this field. The frequency f; of precession of a proton
depends upon its gyro-magnetic ratio v and the strength of the static magnetic
field By. This relation is described by the Larmor equation.

fo=:5Bo f, in MHz, By in tesla (T)

Different nuclei have different gyro-magnetic ratios, and the resonant frequency
of a specific nucleus will vary with the magnitude of the applied magnetic field. A
radio-frequency, RF, pulse at the resonant frequency (fr) can excite the precessing
nucleus to a higher energy state in which its magnetic moment is aligned in the
opposite direction to the magnetic field. The nucleus then returns to the lower
energy state by transferring its excess energy to the neighboring nuclei or to the

surrounding lattice.

The collective effect of the applied magnetic field on many nuclei is described by
a magnetization vector whose direction is given relative to the direction of the main
magnetic field. At equilibrinm the longitudinal component of the magnetization
vector has a maximum value M, that depends on the number of nuclei aligned
anti-parallel to the field. For any tissue, this value depends on the concentration
of the MR visible protons, or proton density, in the tissue. When the RF pulse is
turned on, the longitudinal magnetization, M,, decreases with the number of nuclei
flipping to the excited state. At the same time, the transverse magnetization, M,,,
appears as a result of the synchronization of the precessing nuclei induced by the

RF pulse. M., will precess around B,, thus creating an oscillating magnetic field
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that will induce a current in an antenna near by. This is the MR signal. When the
RF pulse is switched off, the nuclei are flipped back to the original state, allowing
the longitudinal magnetization to return to its equilibrium position (see Figure 1.2).

There are two basic relaxation processes at work in the sample as the protons
return to the state that existed before the RF pulse was applied. Both processes
account for the observed decay of the MR signal. One relaxation process involves a
return of the protons to their original alignment with the static magnetic field. This
process, called longitudinal or spine-lattice relaxation, is characterized by a time
constant T1 (see Fig 1.3 (a)). The other relaxation process is a loss of synchrony
of precession among the protons. Before a radio wave is applied, the direction
of magnetization of the protons within their precession is random. Immediately
following the application of a radio wave, the protons rotate synchronously, or in
phase. When the radio frequency is switched off, the protons begin to interact
with their neighbors and give up energy in random collisions and so revert to a
state of random phase. As the protons return to random orientation, the bulk
signal decreases. This process is called transverse or spin-spin relaxation and is

characterized by a time constant T2 (Fig. 1.3 (b)).

In any sample undergoing MRI both relaxation processes, longitudinal and
transverse, occur at the same time, although the transverse or T2 relaxation is
always much shorter than the longitudinal or T1 process. For typical biologic ma-
terials, T1 may be on the order of several hundred milliseconds while T2 is a few
tens of milliseconds.

The influence of the relaxation parameters on the MR signal is one of the central
principles of tissue contrast in MRI. Contrast in MRI is influenced by differences in
relaxation parameters, T1 and T2, and nuclear spin density (proton density (PD)

number of MR visible protons per unit volume of tissue), among tissues. Since
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P R @)
4 Pulse
time
Y Y

Figure 1.2: 1. Magnetic moment of the sample is aligned with the magnetic field. 2. Imme-
diately after an RF pulse, the magnetic moment of the sample can be represented by a single
vector. 3. As the magnetization vector begins to break up or dephase as a result of localized
non-uniformities in the applied field, components of the vector begin to fan out in the xy plane. 4.
When there are an equal number of components in all directions in the xy plane, the components
cancel one another and the MR signal disappears. 5. As time passes, the cone representing the
processing but dephased magnetic moment continues to narrow because of spin-lattice relaxation.
1. Finally the magnetic moment once again is realigned with the applied field.
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T1 Relaxation time

(a) l (b)
MaM,| MO
y
z z
© @
VLW
M Mam,|  iME=0]

Mz‘_fd___—““;:‘y y | y

T2 Relaxation time

Figure 1.3: Longitudinal and transverse relaxation process

different tissues have different T1, T2 and proton density values, these parameters
can be used to discriminate between tissues in the image. Measurement techniques
that exploit differences in T1, T2, and PD among tissues are described in [58], [30],
[100] and [102].



CHAPTER 1. INTRODUCTION 8
1.1.3 Segmentation and tissue classification

Image segmentation refers to the decision process whereby similar pixels of an
image are grouped into regions that correspond to objects or pieces of objects in
a scene. For the purpose of this thesis, segmentation refers to the pixel by pixel
labeling of regions as gray matter, white matter, cerebrospinal fluid, bone, skin &
fat, background, and tumor (if present).

Major problems with segmentation of MRI

Looking at Figure 1.1 (b), it might seem easy even for an untrained observer to
decide which regions to assign to the tissue class of gray matter, white matter, CSF,
etc. The task seems trivial because we take for granted the human visual system’s
astonishingly effective segmentation abilities. Marr [81] argues that the task of
seeing only seems easy. He states that, “The reason for this misperception is that
we humans are ourselves so good at vision”. He remembers that in his attempts to
solve computer vision problems in general “The first great revelation was that the

problems are difficult. (p.16 [81])”

Figures 1.1 and 1.4 demonstrate the difficulty of this task. One reason the
task is difficult is because a single image intensity threshold cannot be selected to
distinguish gray matter from white matter. It can be seen that no single contour
line can be chosen that will adequately divide, for instance, the gray and white
matter in Figure 1.1(a). It is easy to pick out the sweeping dark lines that divide
the white matter from gray matter in Figure 1.1(b) but much more difficult to find
them. The pixels that our eyes somehow group into a single dark line actually span
a large range of intensities. By looking at the image histograms in Fig. 1.4, it is
clear that labeling all pixels below a given threshold would certainly not achieve
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the desired result.

(c)

Figure 1.4: (a): Histogram of T1-weighted image (b) Histogram of T2-weighted
image (c) Histogram of PD-weighted image.

The lack of a single threshold for segmenting an image is only the beginning

of the difficulties. If such a threshold could be found for a particular image it
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would not necessarily be the same for other images because the many sources of
variation in the MRI process do not allow intensity to be an absolute measure. As
a matter of fact one of the major problems in the segmentation of MR images is
the intensity variations introduced by inhomogeneities in the magnetic field [26]:
These occur within a slice, between slices in the same patient study, and between

patient studies.

Another problem is what is known as the partial volume effect. This occurs
because the MRI technique samples the tissue characteristics across discrete 3-
dimensional volume elements (voxels) at a certain resolution, and the resulting
signal intensity reflects the average tissue characteristics over this volume. This
causes transitions in tissue characteristics to seem blurred: the edges, for instance,
between gray matter and white matter are not ideal step edges, but could more
accurately be approximated by a ramp [91].

There are also problems which may not be solvable, for instance labeling the
segmented regions by their anatomical name. This task requires information that
is not directly obtainable from the image. When tackling this kind of problem, the
conclusion drawn by many researchers is that there is need for high level information
or knowledge ( see, for example: [48], [9], [111], [73] and [86]). Still another problem
is that this high level knowledge must be specific for a given application in order
to be useful.

1.2 Importance of segmentation

Automatic segmentation and tissue classification of MR brain images are important
tasks because segmentation is fundamental to a quantitative analysis of the brain

and because automation can increase the reliability of this analysis. Stiehl in [115]
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describes the significance of segmentation: “Segmentation of primitives and subse-
quent grouping to anatomically meaningful objects is the building-block for feature
measurement (e.g., via tissue characterization, shape recovery, and morphometry),
organ recognition, as well as 3D representation and graphics display. At present no
generally applicable, parameter-free, or even self-adaptive antomatic segmentation
scheme exists that is completely independent of the image class, the object class,
the domain and the task for the SISU ! system (p. 25 [115])”.

Quantitative measurements from MR brain images can provide an unequaled
view into the understanding of human brains through morphological analysis [16].
Segmentation is the first step to providing this analysis. Subsequent to segmenta-
tion, the volume, shape, location and homogeneity of component brain structures
can be calculated. Segmentation and subsequent analysis can lead to a better un-
derstanding of the development of the brain. Since MRI is non-invasive, morpho-
logical studies can be performed at regular intervals during development. Previous
research using these kind of techniques include characterization of the normal pop-
ulation as a function of age [35], [56], anatomical variability of primary visual cortex
[62] [130], Alzheimer’s disease 8], [14], and developmental disorders [34], [36].

An automatic MRI brain segmentation system also has another potential clinical
application: the diagnosis of brain trauma. White matter lesions which are typical
of diffuse axonal injury, a signature of traumatic brain injury, may potentially be
identified in moderate and possibly even mild cases. These methods, in turn, may
require correlation of anatomical images with functional metrics to provide sensitive

measurements of brain trauma [54].

Automatic segmentation is a natural extension of the use of computers in

1SISU stands for Spatial Image Sequence Understanding
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medicine. The improvement from a purely visual, qualitative analysis to three-
dimensional tomographic analysis and then to automated analysis can make physi-

cians’ and researchers’ image analysis tasks easier and possibly more accurate [115].

Automatic segmentation not only requires less time from human experts, but
can also provide less variable results. For instance, in the study of Alzheimer’s
disease where the quantities of interest are the volumes of white matter and gray
matter, if manual delineation is considered the analysis would be time consuming
and tedious, and would require a qualified observer [63]. Detection of white and
gray matter structures on a large number of MR images is impractical, and will
only become possible if reliable and robust antomated methods are developed to
assist human experts. In a discussion of the use of automated MRI diagnosis of
multiple sclerosis, Mitchell et al. [87] state that, “manmally quantifying the number
of lesions and determining their changes between exams are arduous and time con-
suming procedures (p.4211)". Automation could not only eliminate errors resulting
from fatigue or lack of concentration, but with increasing computational capabil-
ities, the analysis would be provided in less overall time and would even allow
additional analyses that are currently impractical. As Fleagle et al. state in their
article [38], "Magnetic Resonance (MR) imaging, although capable of producing
superb images of cardiac structure, is not widely used as a diagnostic cardiovascu-
lar tool. One reason for this is the need to assess cardiac structure and function
based on manual tracing of endocardial and epicardial borders on individual im-
ages, a tedious and time consuming process (p.4226)”. These authors go on to
describe an excellent correlation between their semi-automatic results and those
of an independent observer demonstrating that automation can be used effectively

[38].

Stiehl in his article [115] emphasizes that it is time for antomation: “Tedious,
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fatiguing, and time-consuming as well as error-prone interactive object definition
for a large number of slice images per patient sequence, as a methodic prerequisite
for the generation of 3D body geometry model, may take up to one hour or more in
turn-key systems. Thus, such working conditions do usually not attract or convince
physicians to use such technologies as a common tool in daily routine. The quest
for a certain amount of automation, or at least semi automation, of such tools is
straightforward. The existing gap has been widely recognized between the theoreti-
cal state-of-the-art in general computational vision and the state-of-the-technology
in operational turn-key systems, with respect to segmentation schemes and image
analysis/interpretation paradigms that are presently in common use. In particular,
purely interaction-driven image segmentation has been identified as being a severe

bottleneck of such operational systems (p.25)”.

1.3 Goal

The goal of this thesis work is to automate the anatomic segmentation of magnetic
resonance brain images. For the purpose of this thesis anatomic segmentation refers
to the characterization of pixels as gray matter, white matter, cerebrospinal fluid
(CSF) and skull. A completely antomatic system would by definition eliminate all
user interaction; however, this goal is neither attainable for a close ended research
project, nor desirable from the stand point of clinical verification. Therefore the
system described herein is designed with the goal of becoming completely automatic
with the realization that confirmation and corrections from human experts are

inevitable.

Twenty nine MRI studies will be considered for segmentation in this thesis. The

following table shows the imaging parameters and the total number of images in



CHAPTER 1. INTRODUCTION

14

each study. The two approaches developed, namely modified LVQ and extended

SOFM, will be used to segment the MR images in a supervised and unsupervised

fashion respectively.
# studies | T1 T2 PD Thickness | # Total images
TR/TE 18 600/16 | 2916/119 | 2916/17 | 5/2.5 972
TR/TE 6 600/16 | 2800/90 | 2800/30 5/2.5 324
TR/TE 1 600/25 | 3083/112 | 3083/16 5/2.5 54
TR/TE 2 700/25 | 3500/102 | 3500/17 | 5/2.5 108
TR/TE 1 636/16 | 2700/90 | 2700/30 5/0 66

An adaptive training scheme will be utilized to overcome intensity variation
within a slice and between image slices. The acquired results from the two ap-
proaches will be compared with standard backpropagation ANN and maximum
likelihood classifier for the supervised, and c-means clustering technique for the

unsupervised scheme.

In an attempt to automate the segmentation process, the artificial neural net-
work based image segmentation and classification schemes were investigated. There
are potentially many situations in which a clinician would use more than one image
spectrum to define an anatomical structure or tumor volume [92], [101]. Using the
same idea, multispectral classification techniques were adapted. Supervised and
unsupervised classification schemes were utilized and the neural networks architec-

tures were designed.

The design objectives for the supervised segmentation scheme included:

1. the design of the learning vector quantization (LVQ) artificial neural network
classifier for the supervised segmentation of MR images of the brain.
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2. the evaluation of results obtained using multispectral images versus single
spectral images for segmentation purposes.

3. the comparison of the technique with the Bayes maximum likelihood classifier
(MLC) and a back-propagation artificial neural network.

4. the ability to adapt to variations in the data (the proposed system must be
able to modify the segmented images by controlling the neural net parameters

and retraining the neural net).

5. the provision of a user interaction capability for cases where the system can-
not adapt to variations in the data and cannot proceed with the recognition

process for the other slices.

The objectives of the fully automated segmentation scheme were:

1. the design of the self-organizing feature maps (SOFM) artificial neural net-

work for unsupervised tissue classification of MR images.

2. the reduction of the number of clusters in segmentation by extracting the
cerebrum from the MR images of the head prior to segmentation.

3. the application of statistical pattern recognition approaches like c-means or
fuzzy c-means techniques to the problem.

4. the evaluation of the relative advantages and drawbacks of the neural network
approach versus a statistical pattern recognition approach for unsupervised

MRI tissue characterization.

The quantitative assessment of performance is complicated by the lack of a gold
standard. The problem that one faces includes the inability to segment manually
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the images, the subjective nature of any manual segmentation procedure, and the
lack of realistic phantoms which could be used as reference. Therefore, all the
segmented images in this thesis were evaluated by at least two individual observers.
The receiving operator characteristic (ROC) analysis can provide a quantitative
evaluation but because of the considerable number of observations required, this

has not attempted in this thesis and is left for future work.

1.4 Discussion

A number of imaging tools have been developed that can provide topographic in-
formation about the intact human body. Each characterize different tissues, or
their function, according to certain properties. For example, X-ray Computerized
Tomography (CT) measures the attenuation by tissue of an incident beam of X ra-
diation. The technique classifies tissues according to their attenuation properties.
Positron tomography relies on the detection of the time course and spatial distribu-
tion of certain specific molecules, such as analogue of glucose or neurotransmitters
labeled with positron emitting isotopes, to measure blood flow or rates of chemical
reaction. Magnetic resonance imaging (MRI) relies on the nuclear properties of
the hydrogen atom to study the distribution of hydrogen atoms, or their chemical
environment. In general, a particular imaging modality may be more useful to
diagnose certain type of abnormalities such as differentiation between scar tissue
and recurring tumor using FDG and PET , or would emphasize certain anatom-
ical features better, such as gray/white matter differentiation in proton weighted
MR images. However, more than one imaging technique is often used because each
provides complementary information. Automated segmentation and co-registration

techniques are essential in order to take full advantage of this capability. The im-
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portance and the difficulties of the automatic segmentation task are discussed in
several medical imaging articles, [10}, [12], [21], [72], [96], [103], and [115].

In general, the segmentation of brain images involves the discrimination between
different types of tissues and fluids (e.g., white matter, gray matter, cerebrospinal
fluid (CSF), skin, etc.). Many techniques have been developed over the years to ex-
tract different tissue components from biological images. Classical methods range
from simple techniques that rely on pixel intensity thresholding to more sophisti-
cated techniques that rely on the calculation of the median, the variance, or the
gradient of the pixel intensity distributions to characterize local statistics [9], [51],
and [116]. Because MRI permits the measurement of more than one independent
tissue-specific parameter, each image pixel can be segmented as a multidimensional
pattern whose components are the intensity values for each of the parameters.
Three types of images are acquired routinely for diagnostic purposes, T1 weighted
images (senmsitive to variations in spin-lattice relaxation time), T2 weighted im-
ages (sensitive to variations in spin-spin relaxation time), and proton density (PD)
weighted images. This multidimensional feature of an MR examination can be used

to enhance the pattern recognition and image processing technique.

Multidimensional data classification has been used extensively in the area of re-
mote sensing. The parallel between multispectral images of the earth (LAND-SAT
images) and MRI was made as early as 1985 [94], [107], [122], and pattern recogni-
tion techniques developed by NASA for the automatic classification of multispectral
images have been applied to MR images. Since then, several other classification

approaches have been tried, some of which will be surveyed in chapter 2.

Chapter 2 is a survey of the work related to the segmentation of MR images.
Previously developed systems for MR image segmentation are reviewed, and their

results, potential, and limitations are discussed. Multispectral segmentation tech-
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niques are emphasized. Recognition and/or classification tasks performed using
artificial neural networks are also mentioned to illustrate neural network capabili-

ties.



Chapter 2

Literature Review

The techniques used to segment multispectral images can be divided into supervised
and unsupervised methods [20], [12], [48] and [50]. Supervised methods require that
an operator identifies selected features on training data by using a human-machine
interface such as a mouse [6], [5],[25], [52] and [123]. Unsupervised methods define
regions in the image without any operator intervention [110] and [128], although
human intervention may be required to complete the process. The regions identified
by the algorithm will not have an anatomical label associated to them; however a
label could be attached to the clustered region in a subsequent step.

2.1 Supervised segmentation methods

2.1.1 Statistical pattern recognition methods

The design of a statistical pattern recognition technique requires complete knowl-
edge of the probabilistic structure of the data. Parametric methods assume partic-

19
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ular distributions of the features. For example, the maximum likelihood method
usually assumes multivariate Gaussian distributions (1}, [23], [29], [43], [99], [87],
[108], [118] [122], [121], and [124]. In this approach, the mean and covariance ma-
trices for each of the tissue classes are estimated from a training set provided by the
operator. The training data is usually specified by drawing regions of interest on
the images using a mouse driven interface. The remaining regions (pixels) are then
classified by calculating the likelihood of each pixel belonging to a tissue class, and
assigning the pixel to the tissue type with the highest probability. This paramet-
ric approach is useful when the feature distributions for different classes are well
known; however, this is not necessarily the case for magnetic resonance images [19],

[21], [107] and [125].

There are other statistical methods, called non-parametric methods, which do
not rely on predefined distributions. The k-nearest neighbor, or k-NN, method relies
on actual distributions of the training samples themselves [21], [54],(64], and [88].
There are other reports in the literature that use statistical pattern recognition
techniques such as shape recognition [127], contour and connectivity [31], [57],
region growing [2], Markov random field [17], [75], [76], gray level co-occurrence
matrix [106], and gray level histogram [37], [83], [117].

Gerig et al.(1991) [41] presented the application of a maximum likelihood clas-
sifier (MLC) for the segmentation of MR images and compared their results with
unsupervised clustering techniques. A Parzen window approximation was used to
estimate the continuous density function from the discrete scatter plot of the two
echoes in a double echo sequence (PD, T2). They used knowledge from their su-
pervised classification technique (MLC) to find the cluster centers, although this
strategy made the approach not fully unsupervised. Moreover, preliminary results
published by Dudewicz et al. [29] indicate that although the distributions of T1 and
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T2 values can be considered as jointly normal, the distribution of proton density
values is not normal. Also, the variations in the intensity values of the different
tissue types, across the volume, is so high that the probabilistic decision functions

usually overlap to produce conflicting results.

Three problems associated with the unsupervised clustering technique were iden-
tified by Gerig et al.[41]: 1) choosing a good criterion to split and merge clusters,
2) determining the number of classes, and 3) correcting the classification errors due

to the complexity of the problems.

Mitchell et al. (1994) [88] reported the application of maximum-likelihood and
k-nearest-neighbor (k-NN) classifiers for the segmentation of multiple sclerosis le-
sions in MR brain images. They generated a set of data by labeling regions of
interest (ROIs): CSF, white and gray matter regions in the frontal and occipital
lobes and the corpus callosum. From the labeled regions a 2D histogram of those
tissues of interest was calculated and displayed. The mean and covariance of the
region histogram were used to estimate the mean and covariance of the tissue distri-
bution. Principal components of the distribution estimate were calculated and used
to define an elliptic region centered about the estimated mean. A k-NN classifier

was then used to differentiate the lesion and brain distributions.

Lang et al. (1994) ([75] presented a statistical method which assumes that the
underlying tissue regions are piecewise contiguous and can be characterized by
a Markov random field prior. In classifying the tissues, the method models the
likelihood of realizing the images as a finite multivariate-mixture function. The
method was tested on sets of T1, T2, and PD weighted images of the brain. Their
results were verified visually. The authors state that “quantitative validation on
the accuracy and stability of the method needs further experimental studies using

different acquisition protocols, realistic anthropomorphic phantoms, and a large
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number of clinical scans™ (p.448).

Taxt et al. (1994) [117] proposed a segmentation technique that requires five
differently weighted MR images for the segmentation process. The authors conclude
that increasing the feature dimension by varying the image acquisition parameters
improves the segmentation scheme. The classification was done using the Bayesian
framework. Quantitative validation was made in two steps by using all the labeled
pixels of the imaged head and a surrounding rim of air. In the first step, they
labeled the test image manually using the same clustering and manual labeling
technique for the training image. However, the labeling of the training image and
the test image was done independently, and by a different expert to avoid bias.
In the second step they computed a confusion matrix based on the true manual
labeling and the antomatic classification of the test image.

2.1.2 Algebraic methods

Outside the field of pattern recognition, algebraic approaches have been reported
[61], [65], [114], and [112]. For images with clearly identified signature vectors
these methods provide very good solutions to the partial volume effect, which may
have some influence on measurement of tissue volumes. Algebraic approaches, how-
ever, may become impractical for images showing complex pathology. Since these
methods work with projections of feature vectors, the number of more or less un-
correlated features that need to be acquired to determine the eigen-images for every
tissue becomes very large, potentially leading to impractical processing times. Kao
et al. (1994) [61) have presented a possible solution for the dimensionality, however,
the method is optimal for signature vectors that are more or less orthogonal, which

may not be the case for pathologic tissues that exhibit similar relaxation behavior.
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2.1.3 Manual feature space segmentation methods

Other supervised segmentation methods include feature space based segmentations
that utilize operator defined decision boundaries [39], [59], and [113]. Researchers
have emphasized the feature extraction and selection step, and they display these
features in some multi-dimensional graph. The area of higher density that are
visible in this graph are then manually outlined and associated with tissue types.
Just et al. [59] impose an ellipsoid containing a predefined fraction of known samples
to delineate the decision boundaries, while other investigators have used a nearest
centroid classifier where the centroid is defined at the middle of a region of interest
in feature space [113]. Fletcher et al. [39] reported a manual selection of thresholds
in each feature for each tissue type, which forces clusters in rectangular boxes in

the feature space.

2.1.4 Knowledge-based segmentation methods

Li et al. (1993) [73] presented a knowledge-based approach to automatic classifica-
tion and tissue labeling of MR images of the human brain. Their system consists
of two components: an unsupervised clustering algorithm and an expert system.
MR brain data were first segmented by the unsupervised fuzzy c-mean clustering
(UFCM) algorithm, then an expert system located a landmark tissue or cluster
and analyzed it by matching it with a model. First they separated the skull tissues
using a quadrangle model for the head and applying “IF” and “ELSE” rules. such

as:

e “IF (The number of the foreground pixels within the quadrangle is small)

e THEN (It is a skull class)
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e ELSE (It is a class of white or gray matter) ”

They used different models for white matter, CSF and gray matter, and split them
according to their shape and tissue structures. A polygonal approximation model
along with rules specific to each tissue class was presented to segment the ventricle
area and the CSF. They also proposed an approach which was semi-supervised
FCM. In this approach the information about the known clusters (labeled tissues)
was given to UCFM, essentially, using the cluster centers of the known tissues for
initialization of clusters. Initialization has major effects on how fast FCM converges
and how accurate a result it provides. The authors used different variables as

thresholds, but did not provide any information on how to validate them.

2.1.5 Rule-based segmentation methods

Raya (1990) [104] extracted features from PD and T2 MR images and used them to
calculate confidence levels for the properties of a voxel. Six simple low-level features
were calculated; 1) PDT2-Ratio (PD + T2)/(PD - T2)), 2) T2, 3) CSF gradient
(magnitude of local gradients on T2), 4) (PD — T'2)subtracting T2 image intensity
from PD image intensity, 5) (PD - T2)-Gradient ( Magnitude of local gradients
on (PD - T?), and 6) PD, proton density image. The features were heuristically
derived to enhance the separability of features and are closely linked to the specific
brain areas to be segmented. Rules were then used to perform the segmentation.
The first rule focuses attention by deciding what is foreground and background.
Afterwards very specific rules are applied to extract areas of interest within the
brain. Finally, additional rules are used to correct mistakes.
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2.1.6 Neural network based segmentation methods

A backpropagation neural network was presented by Ozkan et al. (1993) [95].
This network consists of one input layer, one or two hidden layers, and one output
layer. Four different image modalities were used. In addition to T1, T2 and PD
weighted MR images, a CT image was also used as another feature for the ANN
classifier. The authors claim that the use of the three MR modalities is useful for
the segmentation of soft tissues, and that the use of the CT image permits a good
segmentation of bony structures and improves the separation of white and gray
matter. The neural network was sensitive to the sizes of the training set. However
it performed better classification accuracy for the white and gray matter classes
than the MLC classifier when the size of the training sets were small. For the CSF
class both the ANN and the MLC classifier faced reduction in the classification

accuracy for large training sets.

Dawant et al. (1993) [26] reported a new approach to the correction of inter-
slice intensity variations in MR images which enhanced the performance of back-
propagation neural network classifiers designed for the segmentation of the images.
They presented two different methods for the correction of intensity variations and
reported results from several studies. Two different techniques, namely “direct”
and “indirect” fit models, were proposed. In the direct method, an interpolation
technique was used to fit the intensity surface directly to the labeled points. In
the indirect approach, a classifier is trained on the labeled points, a preliminary
classification of the images is performed, reference points were selected from these
classified images, and an intensity surface is fitted to these points in a least-squares
sense. Their indirect fit method was sensitive to the training data. The difficulty of
generating a reliable set of reference points to which the surface could be fitted was
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a crucial problem. Because of this, the direct fit method was used in their routine
studies. The direct method fits an intensity correction surface directly to reference
points selected by the user in the images. Their results show improvement in seg-
mentation of MR images when using the backpropagation artificial neural network,
but the methods rely heavily on the user interactions and is fully supervised.

2.2 Unsupervised segmentation methods

2.2.1 Statistical pattern recognition approaches

Bomans and Riemer (1990) [9] applied the Marr-Hildreth [55] operator for edge
detection. They extended the zero-crossing edge detection scheme to three di-
mensions and used a morphological filtering to recover 3D surface of skin, bone,
brain and the ventricular system from MR images. The Marr-Hildreth operator
was approximated by a 3-D “Difference of Gaussian ” (DOG). The authors admit
that the convolution and the morphological filtering are computationally expensive,
and time consuming. They also reported problems in finding the correct borders:
for example the gray-white matter border may be found instead of the gray-CSF
border. The authors conclude that for a fully automatic process, knowledge-based
methods should be used for the assignment of labels to the constituents of the head.
However, Raya [104] points out that the 3-D operations cannot be used directly if

the scans have different spatial resolutions in different spatial dimensions.

Alaux and Rick (1990) [4] compared supervised and unsupervised techmiques.
They used principal components analysis, supervised Bayesian classification, and
clustering techniques for classification and segmentation of MR brain images. No
information was provided about the clustering scheme. The authors reported that
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typically, both supervised and unsupervised techniques perform at least as well as
a trained radiologist in segmenting the images. However, no significant difference
between the performance of the supervised and the unsupervised methods was

found.

Herskovits (1990) [51], combined the Bayes Maximum Likelihood classifier and
an unsupervised clustering algorithm (ISODATA) to ease the task of region draw-
ing (labeling) and to start with more reasonable seed points for ISODATA. Such an
approach was required since the distance measures used in the unsupervised meth-
ods are not necessarily clinically relevant. The clustered regions could be screened
to form good training points for the Maximum Likelihood classifier. However, the
underlying assumption was again the normal distribution of the data.

Liang (1993) [74] showed the application of Gaussian Markov random field
(GMREF) for unsupervised segmentation of MR images. His method estimates the
model parameters by fitting all voxel values to the mixture by using the maximum
likelihood principle. He showed results from a few images and no evaluation was
reported. He concluded that "the key feature of statistical approaches toward au-
tomatically classifying tissues and segmentation of MR images is determination of
the number of image classes and the model parameters of these classes from the

image data by a computer”.

Lundervold et al. (1995) [79] presented a new method for segmentation of brain
tissues and CSF in routine axial MR images. The algorithm uses information
about anatomical boundaries and intensity value of tissues in the brain. They
divided the head and brain into four regions and seven tissue types. Each tissue
type was modeled by a multivariate Gaussian distribution. The k-means algorithm
was used for initial estimation of tissue parameters. Their segmentation method is

restricted to slice images where the brain tissues and CSF spaces form connected
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regions. Because of this assumption, segmentation fails when the structures to be
segmented are not connected or do not form closed contour boundaries. They did

not perform any clinical evaluation, though results were visually satisfactory.

Yan and Karp (1995) [129] presented a technique for 3D brain image segmen-
tation using an adaptive k-means algorithm. CSF, white matter and Gray matter
were segmented in each image slice. Each tissue type was modeled by a Markov
random field with the second order neighborhood in a 3-D lattice. They presented
results from 2-D image slices; however validation of the technique was left for future

work.

2.2.2 Fuzzy clustering approaches

Hall et al. (1992) [47) compared the neural network and fuzzy clustering techniques
for segmentation of MR images of the brain. They implemented the fuzzy c-means
(FCM), and the approximate fuzzy c-means (AFCM) algorithms for fuzzy cluster-
ing and compared results with the standard feed-forward backpropagation com-
putational neural network called cascade correlation (FFCC). They claimed that
supervised and unsupervised segmentation techniques provide similar results. They
report that unsupervised fuzzy algorithms were observed visually to show better
segmentation when compared with raw image data from volunteer studies. How-
ever, for a more complex segmentation problem with tumor/edema or cerebrospinal
fluid boundary, where the tissues have similar MR relaxation behavior, inconsis-
tency in rating among experts was observed, with fuzzy c-means approaches being
slightly preferred over feed-forward cascade correlation results after several itera-
tions in the selection of training regions. They claim both FFCC and AFCM/FCM
provide results acceptable to the radiologists, however, the advantages and limita-
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tions of each approach were not discussed.

Clark et al. (1994) [18] presented a hybrid technique combining knowledge based
approaches with unsupervised fuzzy clustering to detect tumor abnormalities and
label normal volumes in the brain. Each slice within an input volume was processed
separately using the fuzzy c-means algorithm to segment MRI data into tén classes
or regions. After fuzzy clustering, an expert system used model-based recognition
and image processing techniques on the ten classes to locate a landmark tissue and
to look for expected features. The process was repeated until an abnormality was
detected, or all the tissues in the slice are labeled. The authors conclude: “The
absolute accuracy of the segmentations has not been rigorously established. The

relative accuracy appears acceptable as discussed in the paper (p.730) [18]".

2.2.3 Neural network based clustering approaches

Amarture et al. (1992) [7] described the application of Hopfield neural network
for the multispectral unsupervised classification of MR brain images. They used
“winner-take-all” neurons to obtain a classification map using PD and T2-weighted
images of the head. The results were qualitative, and the authors reported the
following observation: “The technique is at present not robust enough to handle
images corrupted by non-stationary sensitivity of the image acquisition and partial

volume effects” ([7]-p.220).

2.3 Discussion

It is clear from reviewing the recent literature on segmentation of MR images that

there is no technique that is available to segment automatically MR brain images
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satisfactorily.

A number of the segmentation systems which appear in the literature tend to
be domain specific, and often involve the use of some tricks in order to accomplish
successfully each specific task (Raya, 1990 [104] ; Bomans, 1990 [9]; Li, 1993 [73] ).
Making a system work antonomously in all cases requires the system to learn and
to be able to receive new information. Rule based systems often are not set up to

learn new rules.

In response to this conclusion, and as a way to incorporate application of learn-
ing systems for the work described in this thesis, the artificial neural networks based
image segmentation and classification schemes were investigated. There are many
situations in which a clinician would use more than one image modality to define
an anatomical structure or tumor volume [92], [101]. By analogy, multispectral
classification techniques were adapted. Supervised and unsupervised classification

schemes were utilized, and the architecture of the neural networks was designed.

The segmentation techniques described in this thesis address the problem of
more basic segmentation methods by using artificial neural networks. The compu-
tation time and reduction of operator dependence are other issues which have been
considered in this dissertation. The next chapters describe a system that performs

feature extraction, segmentation and automatic segmentation of MR brain images.



Chapter 3

Image Analysis Segmentation

Methods

3.1 Introduction

Image analysis is a process that can be used to discover, identify, and understand
patterns that are relevant to any image-based task. Figure 3.1 shows a repre-
sentative diagram of the most common parts of an image analysis system [44].
Preprocessing improves the quality of the data by reducing artifacts and noise.
Feature extraction provides the measurement vectors on which image segmentation
is based. Segmentation is the process by which an image is subdivided into its
constituent parts or objects. Classification, description and recognition are steps
from which objects or other entities of interest are extracted. Segmentation is one

of the crucial steps in the overall process.

31
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Figure 3.1: Components of an image analysis system.

3.2 Preprocessing

Preprocessing improves the quality of the data by reducing artifacts and noise.
Examples of preprocessing are noise suppression by adaptive filtering, contrast en-

hancement, and image restoration.

3.3 Feature extraction

Features that can be extracted from the image form the basis for image segmen-
tation. These features can be, for example, pixel intensities, edges or textures.
Rather than using all the information in the images at once, feature extraction
and selection breaks down the problem of segmentation to the grouping of feature
vectors. Selection of good features is the key to successful segmentation. This issue
is still under investigation [20].

Many segmentation approaches use the gray scale values of the pixels [21], [54],
[47], [88], [123]. The pixel intensity as a feature vector can be obtained from a single
spectral image (i.e., T1, T2 or PD images) or a multispectral representation of the
object from the same anatomical location. If more images become available, they
can simply be added to the feature vectors to form a higher dimensional feature
space. The advantages of higher dimensional feature space will be discussed in the

next section.

The use of edge detection methods have been reported in [9], [31], [119],[127].
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(a) (b) (c)
Figure 3.2: (a): smooth, (b) coarse, and (c) regular textures.

For segmentation, edge detection can be used when the gray-levels of the boundary
between two regions are relatively distinct. This means that the regions in ques-
tion should be sufficiently homogeneous so that the transition between two regions
can be determined on the basis of gray-level discontinuities alone. Another fea-
ture is texture [37], [106]. However, texture features are mainly applied on a large
number of pixels rather than pixel by pixel [37], [106]. Although no formal defini-
tion of texture exists, intuitively this description provides measures of properties
such as smoothness, coarseness, and regularity (Figure 3.2 shows some examples).
The three principal approaches used in image processing to describe the texture of
a region are statistical, structural, and spectral [28]. Statistical approaches yield
characterization of textures as smooth, coarse, grainy, and so on. Structural tech-
niques deal with the arrangement of image primitives, such as the description of
texture based on regularly spaced parallel lines. Spectral techniques are based on
properties of the Fourier spectrum and are used primarily to detect global periodic-
ity in an image by identifying high-energy, narrow peaks in the spectrum. Texture
features necessarily derive from a large number of pixels usually size of (8 x 8) to
(64 x 64); hence it is not suited for pixel classification [31], [44].
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The pixel intensities in a neighborhood can be used as an additional feature. For
example, the mean and standard deviation of pixels in a region of (3 x 3) attempt
to quantify the texture of that region. The nine element feature vector can also be
obtained using the eight nearest neighbors around the centered pixel.

Feature selection becomes important if the dimensionality of the data affects the
computational load; however, the criteria for feature extraction and selection have
not been extensively studied but will become an important area as the number of

features increases due to advances in MR imaging methods [20].

3.4 Image segmentation techniques

The literature on MR image segmentation can be roughly divided into two cat-
egories: 1) a single spectral image segmentation, 2) multispectral image segmen-
tation. In the former category, a single image such as T1, T2, or proton density
weighted image will be used while, in the later category, multiple MR images ob-
tained on the same level in the object bue using different acquisition parameters,

and hence with different gray scale contrasts will be employed.

3.5 Single spectral image segmentation

3.5.1 Segmentation methods based on thresholding

Single image segmentation methods which have been applied to the problem of MR
image segmentation can be subdivided as follows (Fig. 3.3.) One of the simplest
techniques for segmentation is the partitioning of the image histogram by using
single or multiple thresholds. Generally, multiple thresholding is less reliable than
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Image segmentation techniques

Single Spectral

. Edge detection and Region growing,
[ Thresholdm% { Boundary tracingﬁ] [ splitting and merging

Figure 3.3: Classification of single spectral image segmentation methods.

single thresholding, because it is difficult to establish multiple thresholds that effec-
tively isolate regions of interest, however, if the histogram can be well partitioned,

a very “clean” segmentation can be achieved.

Figure 3.4 shows an example of multilevel thresholding in which the histogram
can be partitioned very well, and three different clusters can be found. Figure
3.4(a) shows four planes through a peeled hard-boiled egg in gelatin obtained
using a fast spin echo gradient sequence (TE/TR= 25/500 ms). Figures 3.4(b)
and 3.4(c) show the image histogram and the result of segmentation respectively.
In this example the thresholds are set to 50 (s1) and 160 (s2). Segmentation is
accomplished by scanning the image pixel by pixel and labeling each pixel as gelatin
(0) , egg-yolk (100), or egg-white (200) depending on the gray level of the pixel.
Assuming f(z,y) is the gray level of pixel (x,y), then the thresholded image g(z,y)
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Figure 3.4: (a): Original image (b) image histogram and, (c) result of segmenta-

tion.
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Figure 3.5: (a): Original image, (b) image histogram, and (c) expanded image
histogram .
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is defined as

0 if f(z,y) <sl
g(z,y) =1 200 ifsl < f(z,y) < 52 (3.1)
100 if f(z,y) > s2

As indicated earlier, the success of this method depends entirely on how well the
histogram can be partitioned. In order to illustrate the problems associated with the
multilevel thresholding technique for the segmentation of MR. images of the head,
an example is given in Fig. 3.5. Figure 3.5(a) shows a plane through the head of a
human obtained using a T1 weighted technique, and Fig. 3.5 (b) the corresponding
histogram. As can be seen, the histogram can be partitioned only into two regions
(background and whole head), therefore, the histogram thresholding by itself cannot

be used for the segmentation.

3.5.2 Edge based segmentation methods

An edge is the boundary between two regions in an image with relatively distinct
gray-level properties. Usually for the edge based image segmentation, the assump-
tion is that the regions in question are sufficiently homogeneous that the transition
between two regions can be determined on the basis of gray-level discontinuities

alone.

The basic idea underlying most edge detection techniques is the computation of
a local derivative operator. Gradient operators, Laplacian (second order derivative)
and Marr-Hildreth operators are the most well known edge detection operators [55],
[119]. The Marr-Hildreth operator is based on the convolution of an image with
the Laplacian of a 2-D Gaussian fanction (h(z,y))
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2 2
h(z,y) = eap(— 1) (32)

where o, the standard deviation [44], is a free parameter which defines the smooth-
ness of the function V?h. ¢ also defines the zero crossings of the function V2h
(y/(z* + ¥*) = %0). The Laplacian of h (that is, second derivative of k) with

respect to z and y is

2, .2y _ 2 24 .2
vin= (BT T LY, (33)

One of the properties of the Marr-Hildreth operator is the smoothness it in-
troduces in the image which has the effect of reducing the noise and of providing

better performance for edge detection.

Generally, edge detection schemes suffer from incorrect detection of edges due
to noise, over and under segmentation, and variability in threshold selection in the
edge image. These schemes tend to work well in cases involving images with sharp
intensity transitions and relatively low noise. As an example, the application of the
Marr-Hildreth operator for edge detection and segmentation is presented in Fig.
3.6 The original T1 weighted image of a head is presented in Fig. 3.6(a). The
result of convolving that image with the function V2A is shown in Figure 3.6(b).
The zero crossing operator is used to locate the edges. The result is shown in Fig.
3.6(d). Before applying the zero crossing operator a binary image is created by
setting all negative pixel values in Fig. 3.6(b) to black and all positive values to
white (Fig.3.6(c)). The zero-crossing operator identifies the boundaries between
the black and white regions and locates the edges properly.

Figures 3.7(a), 3.7(c) and 3.7 (e) are examples of Marr-Hildreth operator with
different values of o, which shows the degree of blurring and smoothness introduced
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Figure 3.6: (a): Original image, (b) result of convolving (a) with V2h, (c) result
of making (b) binary to simplify detection of zero crossing; (d) zero crossing.

by the Marr-Hildreth operator. As-can be seen, the Marr-Hildreth operator provides
a “reasonable” estimate of edges. However, it is sensitive to noise and to different
threshold settings, and cannot provide a good segmentation result in all cases. The
effect of noise can be seen easily in the image background. Generally, edge detection
techniques cannot be used by themselves and need to be combined with other
techniques to overcome these problems. Bomans et gl. [9] combined morphological
filtering with the Marr-Hildreth operator for edge detection and segmentation of
the MR images of the head. The method required manual labeling and editing of
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(e) (£)

Figure 3.7: (a): Marr-Hildreth operator with o = 3.5; (b) zero crossing; (c) Marr-
Hildreth operator with o = 4.5; (d) zero crossing; (e) Marr-Hildreth operator with

o =5 and (£) zero crossing.



CHAPTER 3. IMAGE ANALYSIS SEGMENTATION METHODS 42

the regions to generate satisfactory 3D displays.

A similar approach to edge detection is boundary tracing [8]. The operation is
as follows: an operator identifies a pixel in a region to be outlined. The method
then finds a point on the boundary of the region and follows the boundary from
that point. Other investigators describe a boundary tracing method using similar
schemes for noisy brain sections with indistinct boundaries [127], however, a good
initial guess for the boundaries is required. In general boundary tracing methods
are likely to be restricted to segmentation of large, well defined structures.

3.5.3 Region-oriented segmentation methods

Region growing is a procedure that groups pixels or subregions into larger regions.
The simplest of these approaches is pixel aggregation, which starts with a set of
“seed” points and from these grows regions by appending to each seed point those
neighboring pixels that have similar properties (such as gray level, texture, color).

Cline et al.[22], used seed growing to extract the brain surface. A human opera-
tor was required to select empirically seeds and thresholds. Pixels around the seeds
were examined, and included in the region if they were within set thresholds. Each
added pixel then became a new seed whose neighbors were inspected for inclusion in
the region. Some researchers have used region growing and connectivity algorithms
to enhance the results of segmentation. It can be used as a post-processing step
to reduce the noise in the segmentations and improve the appearance of the 3D
reconstruction [23]. Results obtained with region growing are generally dependent
on the user (operator) settings. As with all single image segmentation methods, in

practice only well defined regions can be identified robustly.
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Figure 3.8: Classification of multispectral image segmentation methods.

3.6 Multispectral image segmentation

The approach to the segmentation of multispectral MR studies can be subdivided
into two categories: supervised techniques, or unsupervised (clustering) techniques
(Fig. 3.8).

The bold arrows in Fig. 3.8 show the approaches which have been considered for
MR image segmentations in this thesis. All methods will be discussed in details in
the next three chapters. The most common approach for multispectral MR image
segmentation, pattern recognition, a supervised technique will be discussed briefly

in this section.
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3.6.1 Patterns and pattern classes

A pattern is a quantitative or structural description of an object or some other
entity of interest in an image. Once patterns have been defined, the next step is
to represent patterns in vector form, and then seek approaches for gronping and
assigning pattern vectors to different pattern classes. The principal approaches are
minimum distance classifiers, Bayes classifiers, and neural networks [55],(44].

A pattern class is a category determined by some given attributes of patterns
that are the members of the class. For instance, in our case a pattern is a vector

of intensity values corresponding to the same voxel as:
X = [TU(zo,5%0) T2(z0,y0) PD(zo,0)] (3-4)

where T1(zo,y0), 1'2(z0, yo), aud PD(zo,yo) are the intensity values at (zo,¥o),
in T1l, T2 and PD MR images respectively. The feature vector can be extended
to include some other attributes (i.e. neighboring pixel intensities, other image
modalities such as CT or PET), but to have a proper representation of the object
the elements of the patterns must belong to the same pixel. Therefore the images

used must be registered to the accuracy of a pixel.

Once a pattern representation is defined, the next step is to select a method to
discriminate one class from another. If the data are purely numerical, a common
way is to use decision functions. Since it is easier to visualize two dimensional
intensity space, let us assume that the input patterns have two components, such
as T1 and T2. Assume that there are two classes of tissue patterns “*” and “o”
which are distributed in the T1-T2 space, as depicted in Figure 3.9. Let z = (z,,z,)’
represent the T1 & T2 parameters and the function d : R —+ R. Let the function
d(z) = w1T1 + woT2 + w; be the linear decision boundary, where the w’'s are the

decision function parameters and T1, T2 are the general coordinate variables. In
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'l‘2+ d(x)=w,T1 + W,T2 +w,

Class *

Figure 3.9: A simple decision function for two pattern classes

Figure 3.9, any pattern “*” belonging to class * will yield a positive quantity when
substituted into d(z) and similarly patterns “o” that belong to class O will yield
a negative quantity when substituted into the function d(z). Therefore d(z) can
be used as a decision (or discriminant) function for a given pattern y of unknown
class. We may say that y belongs to class X if d(y) > 0, or to class O if d(y) < 0.
These concepts are not restricted to two classes or linear decision functions. One
can use more classes and non-linear decision functions. The success of this kind of
pattern classification scheme, however, depends on two factors: 1) the shape of the
decision function d(z), and 2) the ability to determine the coefficients of d(z). If

more than two features are used, the decision function can be of the form:
d(z) = wiz) + waZg + ... + Wy + Wnyy = W'X (3.5)

where W = (w,, w2, ..., Wn, W41 ) and X = (24,22, ..., Zn+1)’. In general vector W
is called a weight or parameter vector. A weight vector of size n defines a hyper-
plane in n dimensional space. If there are M classes and each class is separable

from all the others by a single decision surface, there will be M decision functions



CHAPTER 3. IMAGE ANALYSIS SEGMENTATION METHODS 46

W X>0 z€¢ )
di(z) = TEa for i=1,. .M (3.6)
WiX <0 otherwise

o where W; is the weight vector associated with the ith decision function, and

¢; is the ith class [119].

In practice however, it is difficult to separate a class from all the others using a
single decision function. It is relatively easier to find decision functions that separate
the classes pairwise at the cost of increasing the number of decision functions to
find. In this case, there are M(M — 1)/2 (the combination of M classes taken two

at a time) decision surfaces. The decision functions here are of the form

dij(z) = Wiz

and have the property that, if z belongs to class ¢;, then
di;(z) > 0 for j=1..M, and j #1. (3.7)

The decision functions also have the property that d;;(z) = —d;;(z). Furthermore
d;;(z) can be shown to be composed of two decision functions each of which is
expressed as [119]:

dij(z) = di(z) — dj(2). (3.8)

In this case, a pattern z belongs to class c¢; if
di(z) >dj(z) for j=1,...M, and j #i. (3.9)

Theoretically, one can always find decision boundaries, if no two classes share iden-
tical pattern vectors. However, the complexity of the boundaries may vary from

simple lines to non-linear surfaces.
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Often in practical applications the pattern classes are not truly separable within
economic or technical constrains, which has led researchers into approximations to
the decision functions. One convenient way to generalize the linear decision fanction

concept is to consider decision functions of the form

d(z) = w1 fi(®) + w2 fa(z) + ... + Wefi(z) + Wi (3.10)

or k41
dz) = Y wifi(z) (3.11)

=1

where k is the dimension of the transformed feature space and fi(z): R* — R for
i = 1,2,...,k are real, single-valued functions of the pattern z € R*. There are an
infinite number of decision functions that can satisfy Equation (3.6), using various
non-linear functions f;(z) for a different & and a w vector. However, one can use
the fact that these decision functions provide transformation into a new space in
which everything can still be treated as inear. The vector pattern z is transformed

into a new vector z* as:
" = (fl(z)a fZ(z)i erey fk(z)’ 1)' (3'12)

or
d(z) =W'X"

For example, in a two dimensional discrete space, while it is not possible to separate

two classes of four points characterized by the “exclusive or” function , addition of

a third dimension as a non-linear function of the two inputs allows the separation

of the two classes using a linear surface in three-dimensional space (see Fig. 3.10).

The following conclusions can be made from the above (3.11,3.12) equations:
1) If the sample class points can be transformed into a higher dimensional space

using non-linear transformation functions of the initial input space in which the
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Figure 3.10: Exclusive or problem. Two classes “0” and “1” are not linearly separable in two
dimensional discrete space. With an additional nonlinear function it becomes paossible to separate

the two classes linearly.

transformed points can still be considered as being well distributed, it is easier to
find a set of decision functions to discriminate the classes. 2) In order to increase
the possibility of finding a decision boundary, the feature space dimension can be
increased when the number of classes to be separated is at least one more than
the dimensionality of the feature space, provided that the new input is not a linear

combination of the existing dimensions.

3.6.2 An example of multispectral image segmentation

In order to illustrate the multidimensional pattern recognition approach that has
been introduced, a simple example for segmentation of MR. images has been chosen.
In the following example the minimum distance (MD) classifier has been applied to
the problem in hand. Results using single spectral MR images versus multispectral
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MR images are illustrated in Figure 3.11.

In the minimum distance classifier, each pattern class is represented by a pro-
totype which is a mean vector m;

P T e— z t= 1, 2, eeoy M (3‘13)

where N; is the number of pattern vectors from class w; and the summmation is taken
over these vectors. The class membership for an unknown pattern z will be found
by measuring the Euclidean distance between vector z and prototypes m;. Then
pattern z will be assigned to class w; if it has the minimum distance to w;. The
Euclidean distance is

D;(z) = ||z — my]| t=12,...M (3.14)

Fig 3.11(a),(b), and (c) show the original PD, T2, and T1 weighted images
of the brain respectively. Fig 3.11(d) shows result of segmentation using only PD-
weighted image. Figures 3.11(e), and (£) illustrate the results using two and three
image spectral respectively. In Fig. 3.11(e) features were selecte;i from PD and
T2 weighted images. In Fig. 3.11(£) all three images were used for segmentation.
It is obvious from the results that using multidimensional independent features
will provide better classification and segmentation results. As can be seen in Fig
3.11(d) only two tissue classes were identified. In Fig 3.11(e), three tissue classes
were identified having the same problem and in Fig 3.11(£) five tissue classes are
segmented, though results are not completely correct. It should be noted that in
this particular example the training data is chosen from the same test data, that
is why a simple minimum distance classifier performs well for multispectral image

segmentation. More details regarding test and training data will be presented in the
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Figure 3.11: (a): Original PD weighted image, (b) T1 weighted image, (c) T2
weighted image (d) Segmentation using a PD-weighted image, (e) segmentation
using PD and T2 weighted images (£) segmentation using PD, T2, and T1 weighted
images, (g) histogram for image (d), (h) histogram for image (e), and (i) his-
togram for image (£)
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next chapter, for now I close this chapter with a brief summary and conclusion and

continue the discussion of multispectral image segmentation in the next chapter.

3.7 Summary

In summary, single spectral image segmentation methods may provide some useful
information, but generally are limited to relatively simple structures. For images
with complex contrast and texture, such as MR images of the head, more informa-
tion is required, and this is available in multispectral MRI data sets.

Pattern recognition techniques such as minimum distance classifiers, Bayes clas-
sifiers, and artificial neural networks appear generally to be successful, for segmen-
tation of brain MR images however, the important question is which approach can
provide better segmentation results. Now that the theoretical aspect of multispec-
tral pattern recognition is introduced, the next step is to find the best methodology
for our problem. In the following chapters some of classical pattern recognition
techniques for classification and segmentation will be introduced. Results will be
compared to the techniques which have been developed in the course of this study.



Chapter 4

Supervised Segmentation with

LVQ Networks

4.1 Introduction

In this chapter supervised techniques for classification and segmentation of MR
images will be discussed. The application of a Learning Vector Quantization (LVQ)
Artificial Neural Network (ANN) will be introduced. Theoretical issues will be
discussed, and segmentation results will be presented. A backpropagation ANN and
a classical maximum likelihood classifier (MLC) will be considered for comparison.
The architecture and design process of the network will be given and results from
each technique will be compared.

52
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4.2 Introduction to Vector Quantization (VQ)

Vector quantization (VQ) is a classical signal-approximation method that usually
forms an approximation to the probability density function p(z) of stochastic z €
R" using a finite number of so-called codebook vectors w; € R™,i = 1,2,...,k.
Once the codebook is chosen, z is approximated by finding the codebook véctor w,
closest to z . Typically, the codebook will be constructed through a process called
training or learning. During training, a set of data vectors, which is representative
of the data that will be encountered in practice, is used to determine an optimal
codebook. Each entry of the codebook is called a codeword. The data used to find
the codebook are usually called treining date, and a set of such data from each
class is called a “training set”. VQ can be viewed as a form of pattern recognition
where an input pattern is approximated by one of a predetermined set of standard
patterns, or in other words, the input pattern is matched with one of a stored set

of codewords.

A concept that is useful for the illustration of vector quantization methods in
pattern recognition and for neural networks in general is called Voronoi tessellation
[45]. Figure 4.1 shows a two dimensional space where a finite number of codebook
or reference vectors are shown as points, corresponding to their coordinates. This
space is partitioned into regions, bordered by lines (in general, hyper-planes) such
that each partition contains a reference vector that is the “nearest neighbor” to any
vector within the same partition. These lines, or the mid-planes of the neighboring
reference vectors, together constitute the Voronoi tessellation. Note that, all vectors
(&1, &) in the same partition or cell have the same reference vectors as their nearest

neighbor.
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Figure 4.1: Voronoi tessellation partitions for a two dimensional pattern space
(61762)

4.2.1 Vector Quantization for Classification

The combination of VQ with classification is a natural one because each technique
can be designed and implemented using methods from statistical clustering and
classification trees. The goal of such a combination is to incorporate classification
information into the codewords by classifying the codewords themselves during code
design. By combining VQ and low-level classification, certain features in an image

can be classified antomatically.

One can use VQ for classification by labeling all known data (vectors) as a
training set and using each training vector with its class for classification purpose.
A new vector will be classified by finding its nearest Euclidean neighbor in the
training set and then assigning the label of that nearest neighbor to the new vector.
In this case, the entire training set is a codebook which can be extremely large.
Although this can be considered as an application of VQ to classifier construction,

the reduction of codebook size is needed.
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It is not at all obvious how the codebook vectors in Vector Quantization ought
to be placed, if this method is used directly for classification, [66], [24], [84]. It
has been reported in [71] that sometimes even one codebook vector per class may
be sufficient to define the optimal border for separating the classes, and sometimes
the optimal number and placement of the codebook vectors have no direct corre-
spondence to the density functions of each class taken separately. This issue is still
under investigation, but no significant results have been reported yet.

Kohonen et al. [66], [71], [68], [69] , [70] proposed a variety of learning vector
quantizers (LVQ) to perform classification using a VQ encoder and codebook. The
encoder operates as an ordinary minimum mean squared error selection of a rep-
resentative from the codebook but the codebook is designed to attempt to reduce
classification error. Kohonen'’s general goal is to imitate a Bayes classifier with less
complexity than other neural network approaches. Kohonen’s approach has been
widely used for such disparate applications as the classification of speech sounds
[27], objects in clutter in synthetic aperture radar [49], [126], [93] proteins [85], of
bird songs [90], and of oceanic signals {42], [91].

4.3 Learning Vector Quantization (LVQ)

Several researchers have demonstrated [66],(68], [3],{11],[27] that Learning Vector
Quantization (LVQ) methods constitute a viable alternative to more traditional
approaches; their classification accuracy is at least as high as that of any other
Artificial Neural Network (ANN) algorithm, while due to the simple computations,
their speed in learning as well as in classification can be significantly higher. More-

over they are very easy to use [67],[126]

LVQ is a statistical classification or recognition method, its only purpose is to
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define class regions in the input data space. A subset of similarly labeled codebook
vectors will be placed into each class region, even if the class distributions of the
input samples would overlap at the class borders, the codebook vectors of each
class in this algorithm can be placed in and shown to stay within each class region.
The quantization regions, like the Voronoi sets in VQ, are defined by the midplane
between neighboring codebook vectors. An additional feature in LVQ is that for
class borders one can only take such borders of the Voronoi tessellation that separate
Voronoi sets into different classes. The class borders thereby defined are piecewise
linear.

Fig. 4.2(a) illustrates the distributions of two different tissue classes in (T1,
T2 and PD) space. If we assign a subset of codebook vectors to each class as
shown in 4.2(b), then the task of assigning z; to a class is simply the search
for that codebook vector w; that has the smallest Eunclidean distance from z;.
The sample z; is thought to belong to the same class as the closest w;. The
codebook vectors can be placed in a such way that those belonging to different
classes are not intermixed, although the class distributions of X overlap. Then
only the codebook vectors that lie closest to the class borders are important to the
optimal decision, obviously a good approximation of p(z|z € Ci) is not necessary
everywhere. It is more important to place the w; into the signal space in such
a way that the nearest-neighbor rule used for classification minimizes the average
expected misclassification probability. Figure 4.2(b) illustrates the distributions
of codebooks. The open circles represent the reference vectors of class C; and the
large black dots are reference vectors of class Ca3. The decision border for LVQ and
Bayes are shown in the figure by a solid and a broken line respectively.

The segmentation algorithm used in this thesis is based on the LVQ algorithm.

Various network topologies were designed and results from each network are pre-
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Figure 4.2: LVQ and Bayes decision border

sented in Chapter 5. Different learning coefficients were utilized, and the one which
presented faster convergence and better results was adopted. The technique uses a
training set which consists of the intensity level of a region of interest in the MRI
images. The idea is to generate a training set from expected tissne samples and
create a set of codewords (entries of codebook). The codeword vectors then will
represent each particular tissue. Tissue classification will be possible because each
codeword in the codebook can be associated with one of the known tissue classes
used to construct the codebook. The manner in which a codebook can be formed
to represent effectively the tissue classes will be discussed in the next chapter. In
the following sections the theoretical aspects of each classifier used in this thesis
will be discussed.
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Figure 4.3: Topology of LVQ ANN

4.3.1 LVQ ANN Classifier

LVQ is a classification network that consists of two layers. This ANN classifies
patterns by using an optimal set of reference vectors or codewords. A codeword is a
set of connection weights from input to output nodes (Figure 4.3), (the circle which
represents the neuron is called a node or a processing element (PE)). The set of
vectors w;, wa, ..., w; is called a codebook in which each vector w; is a codeword for
Vector Q;xantization. If several codewords are assigned to each class, and each is
labeled with the corresponding class symbol, the class region in the z space (input)
is defined by simple nearest-neighbor comparison of z with the codewords wy;; the
label of the closest w; defines the classification of z.

To define the optimal placement of w; in an iterative learning process, initial
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values must be set. The next step is to determine the labels of the codewords by
presenting a number of input vectors with known classification and assigning the
codewords to different classes by majority voting according to the frequency with
which each w; is closest to the calibration vectors of a particular class.

The classification accuracy improves if the w; are updated according to the
algorithm described below [66], [67). The idea is to pull codewords away from the
decision surface to demarcate the class borders more accurately. In the following
algorithm we assume w; is the nearest codeword to the input vector z (Eq. 4.1) in

the Euclidean metric; this, then, also defines the classification of =.
llz — wil| = MINL, |z — w;| (4.1)
where the Euclidean distance between any two vectors X and Y is defined as
1 = 1| = [3 (e~ w7
The following algorithm shows how the codewords will be updated.

1. either
wi(t + 1) = wi(t) + a(t)(z ~ wi(t)] (4-2)

e if z is classified correctly (if the label agreed with codeword assignment),

2. or
wi(t + 1) = w;(t) — a(t)[z — wi(t)] (4.3)
e if the classification of z is incorrect (if the label does not agree with the

codeword assignment),

3. and
wit+1) =wit),  j#i (4.4)
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o (the other codewords are not modified).

Here a(t) is a learning rate such that 0 < a(t) < 1, and is decreasing monotonically
in time (im¢oo a(t) = 0). After a sufficient number of iterations, the codebook
typically converges and the training is terminated. There are two other options for
the LVQ which will be discussed later and the differences between the two versions
and original LVQ will be explained.

LVQ2 Algorithm

The classification decision in the LVQ2 algorithm [53], [69] is identical to that in
the basic LVQ. While in the original LVQ only one reference vector is updated at
a time, in the LVQ?2 algorithm two vectors are updated at each step, namely, the
winner and the runner-up (one belongs to the correct class and the other to a wrong
class). The purpose is to shift the midplane of these two vectors directly to the
zone where the Bayes border should lie. An algorithm that can easily be seen to

work in that direction is the following.

First define a symmetric window (Fig. 4.4) with nonzero width around the
midplane of neighboring reference vectors w, and w;. Let w, belong to class C,
and wj to class Cj , respectively. If the corrections are made according to equation
4.5, it will be easy to see that for vectors falling into the window, the corrections of
both w, and w;, on the average, have such a distribution that the midplane moves
towards the crossing surface of the class distributions, and thus asymptotically

approximately coincides with the Bayes decision border.

Awy(t) = ~a(t)[z - w,(t)],

Aw,-(t) = +a(t)[z - Wj(t)] (4.5)
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LVQ?2 in one dimension
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_ Figure 4.4: LVQZ in 1 dimension

e where w, and w; are the two closest codebook vectors to z, whereby = and
w; belong to the same class, while z and w, belong to different classes, re-

spectively. Furthermore, z must fall in the “window”.

Assume that d, and d; are the Euclidean distances of z from W, and W,
respectively; then z is defined to fall in a window of width s if,

d, d; 1~s
min(-Z,-L)>e¢ where €= (4-6)

The size of s depends on the number of available training samples; Values for
s around 0.2 to 0.3 are recommended [68]. If the window is made too narrow, the
training result will suffer from low statistical accuracy due to the reduced number

of corrections.

LVQ3 Algorithm

The LVQ2 algorithm is based on the idea of differentially shifting the decision
borders toward the Bayesian limit, while no attention is paid to what might happen
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to the location of the w; in the long run if this process is continued. Therefore
a correction is necessary to ensure that the w; continue approximating the class
borders, at least roughly. These ideas have been combined in an algorithm called
LVQ3 with improved performance.

The LVQ3 algorithm updates weights according to the following rules:
Awy(t) = —a(t)[z — wy(t)],

Aw,(t) = +a(t)[z — wi(2)], (4.7)

o where w, and w; are the two closest codebook vectors to z, where z and w; be-
long to the same class, while z and w, belong to different classes, respectively.
Furthermore, £ must fall into the “window”.

Awr(t + 1) = we(t) — ra(t)[z — we(t)] (4-8)
e for k € g,j, if z,w;, and w, belong to the same class.

The value of  depends on the size of the window; for window sizes of 0.2 to 0.3,
values for 7 between 0.1 and 0.5 have been recommended [70]. 7 can be smaller
for narrower windows. This algorithm seems to be self-stabilizing, i.e. the optimal

placement of the w; does not change in continual learning.

4.3.2 Differences between basic LVQ and other options of
LVQ

The three options of LVQ were utilized in this thesis for classification and segmen-
tation of MR brain images. From results cbtained for each option no significant
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differences between accuracies were observed, though the computational time for
LVQ2, and LVQ3 were slightly higher than original LVQ. Kohonen [68] also reported
similar conclusions when he used LVQ for some statistical pattern recognition tasks.
Results of using the LVQ ANN with the modification of learning parameters and
initialization will be presented in chapter 5.

4.3.3 Backpropagation ANN classifier

The backpropagation ANN is used in this thesis for segmentation and classification
of MR images in order to compare the performance of an LVQ) classifier with one of
the neural network techniques used in the literature. Backpropagation neural net-
works are feed-forward neural networks. A backpropagation network can be made
of a single or multiple hidden layers of nodes. Figure 4.5 shows the topology of a
typical backpropagation neural network. All the nodes that are not used either for
input or output are called hidden nodes and the layer they form is called a hidden
layer. A backpropagation network has two modes of operation: 1) forward prop-
agation, 2) backpropagation. Both of the modes are executed during the learning
(training) phase of a backpropagation network, but only forward propagation is

performed during testing, or in actual use of a trained backpropagation network.

Two functions determine the output value of a node. The first one is a linearly
weighted summation of the incoming signals from other nodes plus a bias, and the
second is a nonlinear activation function (Figure 4.6). Each node computes the
weighted sum of the inputs plus the bias weight and passes this sum through the
activation function to calculate the output value from the hidden layer as

N
0ij = f(nety;) = F(O_ wipZip + 6;) (4.9)
=1
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Figure 4.5: Topology of backpropagation ANN

where X; = (21, Zi2, ..., Zin) is the ith input value for the neuron and Wj is cor-
responding weight. §; is a bias term. The bias term sometimes helps convergence
of the weights to an acceptable solution; however, its use is largely a matter of

experimentation with the specific application.

The activation function f(x) typically is a sigmoid function of the form f(2) =
Trees=r (2 is an arbitrary variable) which maps the potentially infinite range of the
weighted sum to a limited, finite range. During the training phase activations of
input units are set to values determined by the training data, and activations of all
other units are calculated using f(z). The difference between the desired output
value (target) and the actual output (observed) is used to change the weights. The

error function E; for a pattern is defined as:
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Figure 4.6: Model of artificial neurons in a feedforward neural network.

1 M
Ei=3 2 (w5 — 0i3)° (4.10)
7

where subscript “i” refers to the ith training vector, and “j” refers to jth output
unit. M is the number of nodes, y;; is the desired output (target) and o;; is the
observed output (actual output) from the jth unit. The backpropagation algorithm
is a supervised learning algorithm which performs a gradient descent on a squared
error energy surface to arrive at a minimum. The key to the use of this method
is the calculation of error values for the hidden units by propagating the errors
backward through the network. The generalized delta rule implements a gradient

descent in E to minimize the error [109]. The gradient of E; with respect to wjp is

—JE; ,
Biwsp & ——— = (4i; — 0ij) fi{neti;)oi; (4.11)
JP

Let the error §;; = (yi; — 0;;). By using a gradient descent technique [40], weight

changes iteratively as:

wip(t + 1) = wjp(t) + Biwjp(t) (4.12)
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where
Aswjp = Bbijo4 (4-13)

where 3 is the learning rate. The rule for learning may be modified for faster

convergence by adding a momentum rate » as follow:

Aswiplt + 1] = Bdj0,(t + 1] + nAcwjp[n] (4.14)

here n acts like a filter to avoid sudden changes due to conflicting data in the

training set.

When a hidden layer is used, the output error §;; changes as follows:

F/(neti;) T, Sipwp; for a hidden node
&ij = (4.15)
(yij - Oi,')f'(net.;,-) for an output node .
With f the sigmoid activation function, equation 4.15 can be rewritten as:
i (1 = 0i7) 3, dipwp; for a hidd d
5y = { 0i(1 = 0;) ¥, 0ipwp; for a hidden node (4.16)

(yi; — 0ij)0;5(1 — 0;;) for an output node

4.3.4 Maximum likelihood classifier

This classifier is based on Bayes decision rule which maximizes the ¢ posteriori

probabilities. It assigns a pattern X to the class ¢; if
p(cl|X) > p(c;|X) Vj,i#i (4.17)

o p(c;|X) is the conditional probability of class i given the observation X.
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Using Bayes’ theorem, and assuming equal probability for each class, X is allocated
to class ¢ if
p(Xla) > p(Xle;) Vi,7#4 (4.18)
If we assume a normal probability density for X in each class then p(X|c¢;) will
be

—d?
P(X|e) = (2m) ™25/ exp S, (+-19)

e where n is the dimension of the feature vector X and

d is a distance measure described by
& = (X —m)"I7H(X — my) (4.20)

where m; and ¥; are the mean vector and covariance matrix for class ¢ respectively.

Classification of each pixel is based on the following expression:

Xeag if D(X)= -%lnl!).»l - %df > D;j(X) V3,7 #1 (4.21)

4.4 Summary

In this chapter supervised techniques for classification and segmentation of MR im-
ages were discussed. The application of the LVQ Artificial Neural Network (ANN)
was introduced. Theoretical issues regarding LVQ ANN, maximum likelihood clas-
sifier and backpropagation ANN were discussed. The results of segmentation of
MR images using each of these techniques will be presented in chapter 5. The ad-
vantages and disadvantages of each technique and part of the contributions of this
thesis will be discussed in Chapter 5.



Chapter 5

Results of Supervised techniques

5.1 MR Brain Images

Twenty nine complete studies were obtained from the MRI department at McMaster
University Medical Center for the purpose of this thesis. All information identifying
the subjects was stripped before we had access to the data. The subjects were
studied on a GE 1.5T MR scanner. The axial field of view was either 20 cm for the
T1 weighted sequences, or 22 cm for the PD and T2 weighted sequences. Images
were reconstructed onto a 256 x 256 matrix, so that the size of a pixel was either
0.78 x0.78 mm? or 0.86 x 0.86 mm?. Because the T1 weighted images were acquired
with a field of view of 20 cm, they were resampled to ensure accurate registration
with the other images. Each slice was 5 mm thick, with a 2.5 mm inter-slice spacing.
Typically, 18 slices would cover the brain from the vertex to the base. Three pulse
sequences were used: TR/TE = 600 ms / 16 ms for the T1 weighted images; and
TR/TE = 2916 ms/ 17 ms for the PD-weighted images; and TR/TE = 2916 ms/
119 ms for the T2 weighted images. Six selected slices from the brain of a normal
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Tl PD

Slice 3

Figure 5.1: Six selected slices from the brain of a normal subject

subject are shown in Figures 5.1, and 5.2.
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PD

Slice 5

Slice 6

Figure 5.2: Six selected slices from the brain of a normal subject
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5.2 Segmentation using LVQ ANN

5.2.1 Generating training data

The first step for supervised tissue classification is to generate training data. In
a typical experiment, the T1, T2 and PD-weighted images are displayed on the
computer screen, one image at a time. Next, representative regions of interest
(RQOI’s) for the target tissue classes are selected interactively on the computer screen
using a mouse-driven interface. By clicking on the mouse each time, a subimage
is generated. The size of the subimage is defined by the user. A typical size for a
subimage is 3 x 3 to 5 x 5 pixels. Subimages are generated for all images at the
same anatomical spot when the user clicks on the mouse. It is also possible for
the user to select the region of interest from any of the 3 images on the screen.
To allow the user to generate more training data from other image slices, the
program interactively asks the user for this option. When the ROI’s are selected, a
data structure containing the labels of the regions and the corresponding intensity
vectors is created and stored in a file. The file which is created is then used to
train the neural networks. An example of this process is shown in Figure 5.3(a). It
illustrates the regions of interest for different classes. The resulting sample statistics

are shown in Fig. 5.3(b). Training data were selected from several slices in the

same study.

5.2.2 Generating codebook data

Using the algorithm described in Chapter 4, Section (4.3.1), the codebooks were
generated from the training data. The following initialization was made to accel-

erate the process and generate a suitable codebook.
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(a) (b)

Figure 5.3: Training regions and statistics for different classes: white matter (WM),
gray matter (GM) , CSF, Bone, and skin & fat (scalp)

Codebook initialization

For the initialization of the codebook vectors, a set of vectors is chosen from the
training data. All the entries used for initialization must fall within the borders
of the corresponding classes, and this is checked by the k-nearest neighbor (k-NN)
algorithm. In fact, in this step, the placement of all codebook vectors is determined
first without taking their classification into account.

The k-NN method is nonparametric, in that it does not require any knowledge or
assumptions about statistical properties of the data [28]. The k-NN rule essentially
relies on having a large number of (presumably) correctly labeled samples from
each tissue class. Figure 5.4 displays the geometry of this scheme. If we assume n
vectors in the feature space which are labeled, then, all that is needed is to choose

the number of nearest neighbors (k) that defines the neighborhood of any unlabeled
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Figure 5.4: The k-NN rule classifier

vector z ¢ X, and to check some measure of distance, (d) between pairs of vectors
in R?, usually the Euclidean distance

d(z,2:) = ||z ~ 2l | = \/(z = 20)7 (2 — z2)

One must also choose a voting scheme, and often this is to accept a simple
majority of the votes for any class represented by points in the k-NN neighborhood.
In Fig. 5.4, with k = 7 nearest neighbors having ¢ = 3 class labels, the point z will
be labeled as a class 2 pixel, because four of its nearest seven neighbors have this

label. It is easy to formulate the implementation used in the example as follows:

1. Store training data X. Let n be the number of vectors and ¢ be the number
of classes. Let U be a (c x n) matrix whose columns (Uy;),5 = 1,2, ...,n) are

the known label vectors of X’s elements.
2. Choose k=number of neighbors to find.
3. Choose d: any metric (distance measure) on R?.
4. For each test pattern z:

(a) using z; € X and z ¢ X: compute and rank order the distances d(z, z;)
asd) <dy<...<de <1 ... < .
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(b) Find the columns in U corresponding to the k-nearest neighbor indices
1.2,....k.

(c) calculate the label vector U, for z with the labels of its k-nn’s:

k

Uz) =3 ’—;1 for  i=12..c

=1

(d) Calculate

Dippn:(2)=€00u:>u. 1=1,2,.,¢cl#1

5. Continue for next z.

The initialization program then selects the codebook vector based on the desired
number of codewords. Note that, the k-NN rule is used here just to filter the training
vectors which were labeled mistakenly by the user, or training vectors which were
selected from the boundary between tissues. This initialization is important because
starting the network with a good estimate of location of each codeword helps speed
the learning convergence.

The accuracy of classification may depend on the number of codebook entries
allocated to each class. Different sets of codebooks with 60 to 120 codewords for
each set have been tested. There does not exist any simple rule to find out the best
distribution of the codebook vectors. We used the method of iteratively balancing
the medians of the shortest distances in all classes. Our program first computes
the medians of the shortest distances for each class and corrects the distribution
of codewords so that for those classes in which the distance is greater than the
average, codewords are added; and for those classes in which the distance is smaller

than the average, some codewords are deleted from the initialized codebook vector.
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Figure 5.5: Topology of LVQ network
Learning parameter

The learning parameter, a(t), may be constant or may decrease monotonically
with time (t). Two different learning factors were tried. It was found from sev-
eral experiments that the second learning parameter equation, 5.2, produced faster

convergence and better results.

a(t) =0.2(1 - -l-a)t—oa) (5.1)
aft) = T%(_:—ilf)' (5.2)

When the codebook has been initialized properly, training is started.

5.2.3 Segmentation using three pixel intensity value

Two different sets of features were used in this study: 1) intensity values in T1, T2,
and PD weighted images 2) neighboring pixel statistics (mean & variance) along
intensity values in T1, T2, and PD weighted images.
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In Fig. 5.5 the topology and structure of the LVQ network is shown. The three
input nodes in the network are the intensity values in T1, T2 and PD-weighted

images. Each vector can be written as
z = [T1(z;, %), T2(z:, 4:), PD(z:, y:))] (5.3)

The number of output nodes is equal to the number of target tissue classes. In
each of the cases presented in this chapter, the images were classified into seven
classes: background, cerebrospinal fluid (CSF), white matter (WM), gray matter
(GM), bone, scalp (fat and skin) and lesion or tumor (if present)

An overall view of the whole segmentation process is shown in Fig. 5.6. Com-
plete segmentation results for those images which were shown in 5.1 and 5.2 are
illustrated in Figure 5.9. In Figure 5.10 and 5.11 the three tissues, white matter,
gray matter and CSF are shown separately.

5.2.4 Segmentation using neighborhood pixels

To investigate use of other features in the images, in this approach codebooks are
formed from a set of features obtained for each pixel in the original image. Input
vectors consist of vectors of intensity value for the pixel (i.e., T'l(z;,¥:)), mean
(B2;.4: ). and variance (0,,;) of intensity values in a window of size 3 x 3, presented

as follows:
z = [T1(2i, ¥:)s TPz g ), T1(02;. ), T2(2s, 4:), T2(Bizi,:)
T2(02:4:), PD(2s,4:), PD(piz; ), PD(0z; ;)] (5-4)

The number of input nodes in the network is equal to the number of features.

The number of output nodes is equal to the number of target tissue classes. They
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Figure 5.6: Block diagram of entire segmentation process

77



CHAPTER 5. RESULTS OF SUPERVISED TECHNIQUES 78

Figure 5.7: Topology of LVQ network for 9 input features

are: background, cerebrospinal fluid (CSF), white matter, gray matter, bone, scalp
(fat and skin) and lesion or tumor (if present). The networks were trained using
initial codebooks and tested for different sets of image slices from an individual

without any brain abnormality, and one with a malignant glioma.

Figure 5.7 shows the topology of our network for nine features for input vector.

Topology of Back-propagation ANN

Figure 5.8: Topology of backpropagation ANN
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Segmentation of slice 5 Segmentation of slice 6

Figure 5.9: Segmentation results using LVQ
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5.3 Results of backpropagation ANN approach

Fig. 5.8 illustrates the topology of the network for seven classes and nine input
features. In general the input values of a backpropagation network is scaled between
0 and 1 or -1 and 1 to operate in the dynamic range of the sigmoid function. We
chose the sigmoid function in the 0 to 1 range defined as f(z) = t=. The
sigmoid function in the -1 and 1 range is defined as: f(z) = %—;—35:—:— which requires
two more operations, a subtraction and an exponential in the numerator which
would increase the computational time. Ideally an output node is either one or zero,
identifying the class of a pattern when it is one, and zero when it is not. However,
the output nodes can take any value between zero and one and the largest valued

output node defines the class of the input pattern.

The effect of the learning parameter and the momentum rate on the speed of
convergence was investigated, and the best combination was selected for classifica-
tion and segmentation. The same training and test data were used for training and
testing the network. The training was stopped if convergence was not reached after
100,000 iterations. In order to investigate the impact of the topological parameters
on both the speed of convergence and the classification accuracy several experiments
were undertaken. Neural networks with one and two hidden layers were generated,
and the number of nodes in each of the layers was varied from 10 to 30. From re-
sults obtained in each test the best combination was selected for classification and
segmentation of MR images. For nine input features (neighboring pixels statistics)
the backpropagation network with one hidden layer with 18 nodes in each layer
and the learning rate of (8 = .05) and momentum rate of (n = 0.2) provided the
best results. Similarly for three input features (pixel intensity values from T1,T2,
and PD weighted images) the backpropagation network with one hidden layer with
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9 nodes in each layer and the learning rate of (3 = .05) and momentum rate of

(n = 0.2) provided the best results.

The complete segmentation results for those images which were shown in 5.1
and 5.2 are illustrated in Figure 5.12. The three tissues, white matter, gray matter
and CSF are illustrated separately in Figures 5.13, and 5.14.

5.4 Results of maximum likelihood classifier

We compared our new technique with a conventional method, the maximum like-
lihood classifier. Equal a prior probabilities and normal probability density func-
tions for the intensity values in each class were assumed. The same training data
were used to find the mean and covariance matrix. Results are shown in Figures
5.15, 5.16, and 5.17. The results for the maximum likelihood method depend heav-
ily on the training data.

MR data does not generally support the assumptions that underlie the ML
method. Preliminary results published by Dudewicz et al. [29] indicate that al-
though the distributions of T1 and T2 values can be considered as jointly normal,
the distribution of proton density values is not normal. This is why MLC performs
poorly. Although it might be possible to use the MLC using better assumptions or
estimations, it is beyond the scope of this thesis to investigate the proper distribu-

tions for proton density values.
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5.5 Segmentation of abnormal brain images

Figures 5.19, and 5.20 show the results of segmenting the MR images of a patient
with malignant glioma. Results are shown for the LVQ and backpropagation ap-
proaches discussed in the earlier sections. Only two representative image slices were
chosen in this example. The original T1, T2, and PD-weighted images are shown in
Fig. 5.18. The first column in Figures 5.19, and 5.20 shows the segmented images

and second column shows the extracted regions of tumor.

5.6 Discussion

It has been found that backpropagation neural networks are very semsitive to the
training set in MR image segmentation of the brain. From the results presented in
sections 5.2, 5.3 and 5.4 it can be shown that results of the backpropagation ANN
suffer from noise and mis-classification. Backpropagation nets provide adequate
brain segmentations provided that the training data are good. They can learn ef-
fectively on as few as 250 pixels per class in a 256x256 image using a multi-layer
backpropagation network with between 6 and 18 hidden units, which means that
training and testing are relatively fast. Efforts to find a universal training set that
would be useful on many different MR images have been made. However, because
of the intensity variation across MR images, the backpropagation network could not
perform well every time. If backpropagation networks are to be used for segmen-
tation of MR images, at least for now, reliance on operator intervention to select
good training data for each tissue and each slice of data is crucial. The advan-
tages of the maximum likelihood classifier is in the noniterative training. However,

the assumption of a certain probability distribution of data was a weakness of the
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classifier.

The weakness of backpropagation networks is the indeterminate number of hid-
den units. The convergence of backpropagation networks is dramatically dependent
on the number of hidden units, and for most cases it was too difficult to find the

optimum number of the hidden units.

The LVQ was also sensitive to selecting the number of codewords, however,
changing the number of codewords was not too crucial for acceptable result. Se-
lecting a large set of codewords could increase the misclassification around the
border of regions of interest, however, the remaining classified regions were accept-
able. Also, LVQ was used in an adaptive fashion to update the codewords from one
image slice to another image slice in one complete study. This idea is new and was
a key for an accurate segmentation task. Treating the network as described above
suppressed the noise and caused the network not to be sensitive to the variations

of gray-level for each tissue type between different slices.

The training time required for backpropagation networks was longer than the
time required for the LVQ. The computational time for LVQ ANN is on the order of
seconds ( about 50 seconds learning and 10 seconds testing) while backpropagation
ANN requires 10 to 20 minutes. The learning parameter 8, and momentum 7 of
backpropagation networks had a crucial role in convergence and accuracy of classi-

fication task, and the best combination was found after numbers of experiments.

In case of abnormality, the segmentation of the images is complicated because
the image features of the abnormal tissues may be very close to those of their
neighbor normal tissues. Therefore, abnormal tissues may be found in a normal
tissue component after a segmentation. Abnormal tissues may also deform the

geometry of normal tissues.
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In summary, in this chapter we have shown that normal and abnormal tissues in
the brain can be recognized automatically by multispectral analysis of MR images.
We conclude that LVQ ANN is a good choice for segmentation of MR images if
implemented in an adaptive scheme. Our technique is adaptive and this allows the
user to update codebooks so that classification accuracy can be improved. Results
show that tissue segmentation using LVQ ANN produces better and faster results
than backpropagation ANN and the Maximum Likelihood method. It also shows
the LVQ neural network is a powerful technique for MR image segmentation.
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Slice 1

CSF CSF CSF

Figure 5.10: Segmentation of images using LVQ. Three tissues: Gray matter (GM),
White matter (WM), and CSF are separated
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GM

CSF

Figure 5.11: Segmentation of images using LVQ. Three tissues: Gray matter (GM),
White matter (WM), and CSF are separated
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Segmentation of slice 1 Segmentation of slice 2

Segmentation of slice 4

Segmentation of slice 5 Segmentation of slice 6

Figure 5.12: Segmentation results using backpropagation ANN
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Figure 5.13: Segmentation results using backpropagation ANN, each tissue is shown
separately
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GM

CSF

Figure 5.14: A complete segmented image using backpropagation ANN, each tissue

is shown separately
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Segmentation of slice 1 Segmentation of slice 2

Segmentation of slice 3 Segmentation of slice 4

Segmentation of slice 5 Segmentation of slice 6

Figure 5.15: Segmentation results using MLC
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Figure 5.16: Segmentation results using MLC, each tissue is shown separately
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Figure 5.17: Segmentation results using MLC, each tissue is shown separately



CHAPTER 5. RESULTS OF SUPERVISED TECHNIQUES 93

T1 image T2 image PD image

Figure 5.18: Images of a patient with malignant glioma
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Segmented image Tumor

Figure 5.19: Segmentation results for a patient with a malignant glioma using LVQ
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Segmented image Tumor

Figure 5.20: Segmentation
backpropagation ANN

results for a patient with a malignant glioma using



Chapter 6

Unsupervised Segmentation &

SOFM Network

6.1 Introduction

Neural network models for pattern recognition can be specified as two types, super-
vised approaches and unsupervised approaches. The most famous unsupervised ap-
proaches are the self organizing feature maps (SOFM) developed by Kohonen [67],
and adaptive resonance theory (ART) developed by Carpenter/Grossberg [15]).
Systems such as SOFM and ART are based on biological studies of memory or-
ganization and dynamics. The ART system has only recently been extended to
describe continuous valued input vectors, fuzzy ART, but studies indicate that
replicable behavior of the system seems to be sensitive to the exact value of the
parameters that need to be initialized to run the system {40]. It has been shown by
several researchers [33], [13], [32], [80], [105], [77], [105], [97], [82], [120], [89],[98].
that the SOFM system of Kohonen is a strong candidate for continuous valued un-
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supervised pattern recognition. Kohonen’s self organizing feature maps use a linear
update rule for the weights, which makes this model computationally attractive.

In this chapter the application of SOFM for fully automatic segmentation of
MR images is considered. The SOFM network with an additional layer is designed
for segmenting and clustering the regions of interest in the brain. To compare
results obtained from this scheme with a traditional statistical pattern recognition
method, the c-means algorithm is employed. The theoretical basis for each approach

is introduced in the following sections.

6.2 Self organizing feature map

“One important organizing principle of sensory pathways in the brain is that the
placement of neurons is orderly and often reflects some physical characteristic of
the external stimulus being sensed [78]”. For example, at each level of the andi-
tory pathway, nerve cells and fibers are arranged anatomically in relation to the
frequency which extracts the greatest response in each neuron. This tonotopic or-
ganization in the auditory pathway extends up to the auditory cortex [78], [60].
Although much of the low level organization is genetically pre-determined, it is
likely that some of the organization at higher levels is created during learning by
algorithms which promote self organization. Kohonen [67] presents one such algo-
rithm which produces what he calls self organizing feature maps similar to those
that occur in the brain. The algorithm will map a set of input vectors onto output
vectors according to some characteristic feature of the input vectors. A brief discus-
sion of this ordering behavior follows. More details can be found in the monograph
by Kohonen [70].

The basic self organization feature mapping model consists of two layers. The
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Figure 6.1: Two dimensional array of output nodes used to form feature maps.

first layer contains the input nodes and the second contains the output nodes. The
output nodes are arranged in a two dimensional grid as shown in Fig. 6.1. Every

input is connected extensively to every output node via adjustable weights.

Let X = [zq,2y,-..,ZNn-1)7 be a set of N inputs in R™ such that each z; has
m dimensions (or features). Let m be the number of input nodes and M be the
number of output nodes. Let W; = [woj, wyj, ..., Wm—1);]7 denote the weights or
reference vectors. W; is the vector containing all of the weights from the m input
nodes to output node j. After enough input vectors have been fed to the system,
the weights will specify clusters or vector centers that sample the input space such
that the point density function of the vector centers tends to approximate the

probability density function of the input vectors [67).

Updating the weight for any given input in this model is done only for output
units in a localized neighborhood. For each node j, there are NE neighbor nodes
that depend on the topological neighborhood selected. A topological neighborhood
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Figure 6.2: Topological neighborhoods at different times as feature maps are formed
0 <ty <ts).

consists of a rectangular, or a hexagonal array of points around the selected node
[70]. Figure 6.2(a) and (b) show simple forms of neighborhood sets around node j.
The neighborhood is centered on the output node whose distance d;; is minimuem.

The measurement of d;; is a Euclidean distance, defined as:
N-1
dij = Y (zi — w;;)? (6.1)
=0

where z; is the input to node j and w;; is the weight from input node ¢ to output

node j.

The neighborhood decreases in size with time until only a single node is in-
side its bounds. A learning rate is also required which decreases monotonically in
time. Convergence to a cluster center will be controlled by the learning rate. As
the learning rate decreases with more iterations, movement becomes restricted to

smaller distances around the cluster center.
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6.2.1 SOFM algorithm

The SOFM algorithm can be described as follows.

o Stepl: Initialize weights. Randomly initialize weights from N inputs. Set
the initial radius of the neighborhood NE.

e Step2: Present new input
e Step3: Compute distance to all nodes

o Step4: Select output node with minimum distance. Select node j* as

that output node with minimum distance d;.

e Step 5: Update weights to node j* and neighbors. Weights are updated
for node j* and all nodes in the neighborhood defined by NE;(t) following
Eq. 6.2. W; updates as follow,,

wi;(t+1) = w;;j(t) +hij(t)(zi—w;i(t)) for j € NE;», 0<i< N-1 (6.2)

the term h;; is called the neighborhood Kernel and will be discussed later in

section 6.2.2.

e Step 5:f NE # 0 go back to step 2

The basic idea behind the SOFM approach is to move the weights towards the
center of clusters by updating the weights on each input value. To show this, let us
consider a simple example with only one cluster and three inputs in 2 dimensional

space (Figure 6.3).
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Figure 6.3: Weight movement in SOFM

The dark circles represent the position of input values z,, z;, and z3. The gray
circle represents a weight which starts at position w. Once the input z, is fed in, the
weight is moved to position w;. When z, is input to the net, the weight is moved
to position w,, and so on as shown in Figure 6.3(b). At the end of the iteration, the
algorithm checks to see whether a weight has changed (within a tolerance) from the
previous iterations or not. If there were no changes, then the last position of the

weight will represent the center of the cluster; otherwise, the process will continue
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as shown in Fig.6.3(c). Finally, the process will stop, as illustrated in Fig.6.3(d).
The center of the cluster will be at the position of w;,

6.2.2 Neighborhood Kernel and learning parameters

The neighborhood Kernel k;; is defined over the lattice points and has a very central
role for a good feature mapping. Usually h;; = h(||r; — rjl|, ), where r; € R? and
r; € R? are the radius vectors of nodes j and i, respectively, in the array. With
increasing ||r; — rj|[, h;j = 0. The average width and form of h;; is important for
convergence. In the literature, two simple choices for h;; occur frequently. The
simpler form was shown in Fig. 6.2, in which the neighborhood was defined as
a set of array points around node j. Then, h;; = NE;(t) which is decreasing in
time monotonically. It can be seen that h;; is acting as a learning rate factor a(t)

(0 £ a(t) < 1). Both a(t) and N E;(t) decrease in time during the ordering process.

Another widely applied neighborhood kernel can be written in terms of the

Gaussian function,

hi; = a(t) exp(—uz;f,(%“—- (6.3)

where af(t) is another scaler value, and the parameter o(t) defines the width of the
kernel; the later corresponds to the radius of NE;. Both a(t) and o(t) are some
monotonically decreasing functions of time, and their exact forms are not critical.
They could be selected as linear functions. Effective choices for these functions
and their parameters have so far only been determined experimentally and will be

presented in chapter 7.
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Output Layer

....... Lo 2l L -/ Self-Organizing map
Layer (Kohonen)

Input Layer

Figure 6.4: SOFM with an additional layer using Maximum likelihood training

scheme

6.3 Feature map classification

In order to use the SOFM for clustering and classification we need to extend the
network. One way of extending SOFM can be done by adding an associative layer,
to the Kohonen layer as shown in Fig.6.4. This additional set of neurons does not
participate in weight updating. After the self-organizing network terminates and
weights are adjusted, the additional layer finds for each input the weight vector
(prototype) closest to it and assigns the input to that class.

The mapping can be accomplished by using maximum likelihood training, a
supervised learning scheme. A maximum likelihood approach suggests a simple

training algorithm which consists of counting the best matching units in the map
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corresponding to the training data. The output units are connected to the output
nodes in the Kohonen layer corresponding to that class with greatest frequency of
occurrence of training data. Usually the training data is small and for each class

few representative are selected.

Another way of extending SOFM is adding an LVQ network at the end of SOFM.
The cluster centers or codebooks that have been formed in an unsupervised learning
manner using SOFM can be fine-tuned using LVQ. This way requires a much smaller
number of samples and performs the classification task well. Figure 6.5 illustrates
the topology of the network. This last method should be preferred due to the
adaptive nature of classifier; however, results from both methods will be presented
in the next chapter.

6.4 c-Means clustering technique

The c-Means algorithm [46] is a well-known clustering procedure, which groups
a data set X into ¢ clusters through the minimization of the total inter-clusters
variances. In our case, data sets are pixel intensities from three image spectra. The
most widely used objective function for clustering a data set X into ¢ classes is the
classical within-groups sum of squared error objective function, defined as:

hUv:X) =33 waellee — vl (6.4)

k=1i=1
where v = (vy,v, ...,7.) is a vector of (unknown) cluster centers (weights or pro-
totypes), v; € RP for 1 < ¢ < ¢, and U is a hard or conventional c-partition of
X. Optimal partitions U* of X are taken from pairs (U*,v*) that are “local min- .
imizers” of J;. Generalization of 6.4 to the infinite family is called the c-means
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Figure 6.5: SOFM combined with LVQ for an adaptive patter classification.
functionals. Approximate optimization of J1 by the c-means algorithm is based on
iteration through the following necessary conditions for its local extrema:

c-Means theorem [46]: U, V may minimize J; only if

L, ||lze—wll < |z —v5ll, j=$'“1C:j :
w1 Tl < o= # 65
0, otherwise

foralli,k, 1<i<cgl<k<m;



CHAPTER 6. UNSUPERVISED SEGMENTATION & SOFM NETWORK 106
E’k':l Ui Th .
V= 1<:<c¢ 6.6
k=1 ik (6.6)
c-Means produces a partition U that contains hard clusters, so each pixel will

receive a unique class assignment from this method. A brief specification of the

procedure is as follow
1. Given unlabeled data X = {z;, z,,".., z,}
2. Choose number of classes ¢ and T', number of iteration
3. Compute all (c) weight vectors {v;o} with equation 6.6, for 1 <i < ¢
4. Fort=1, 2, ..., T.

(a) compute {u;,} with equation 6.5 for 1 < k < n;
(b) Compute E; = [|U, — Upi|| = \/(2;1 Tho1 (ke — wike-1)?);
(c) If E; < € stop; else compute {v;,} with Eq. 6.6 for the next ¢.

c-Means and fuzzy c-Means have been used by researchers for MR image segmen-
tation [47),[73]. In this thesis we present results of segmentation using a c-Means
algorithm for comparison with our scheme which utilizes SOFM.

6.5 Summary

In this chapter unsupervised techniques for classification and segmentation of MR
images have been discussed. The theoretical issues of the SOFM artificial neural
network were introduced and the network was designed. Two different schemes were

introduced for extending the SOFM network for segmentation and classification.
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The topology of the network and its detailed structure will be presented in the next
chapter. A traditional unsupervised clustering technique, the c-Means algorithm,
was introduced for the purpose of comparison.

The results of segmentation of MR images using each of these techniques will
be given in chapter 7. Advantages and disadvantages of each technique will be
~ discussed in chapter 7.



Chapter 7

Results of Unsupervised

Techniques

7.1 Introduction

This chapter presents results from two approaches discussed in the chapter 6. The
topology of the designed network and the learning parameters will be discussed.
Advantages and disadvantages of each technique will be presented. Since the main
objective of the segmentation process is to segment white matter, gray matter and
CSF from the brain, the proposed automatic approach first strips away pixels of
skull and scalp in acquired images. A novel algorithm extracts cerebrum from
the head prior to segmentation. For an unsupervised segmentation scheme such
preprocessing is needed to avoid too many clustering artifacts and to gain more

accurate segmentation results.

108
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Slice 7 Slice 8 Slice 9

Figure 7.1: A set of nine T1 weighted images from a normal subject
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Slice 1 Slice 2 Slice 3

Slice 4 Slice 5

Slice 7 Slice 8 Slice 9

Figure 7.2: A set of nine T2 weighted images from a normal subject
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Slice 1 Slice 2 Slice 3

Slice 7 Slice 8 Slice 9

Figure 7.3: A set of nine PD weighted images from a normal subject
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7.2 MR brain Images

Nine selected slices from the brain of a normal subject are illustrated in Fig. 7.1
The image slices are 5mm thick with no (zero) inter-slice space. The field of view
was 22 cm for T1, T2 and PD weighted images. Three pulse sequences were used:
TR/TE = 2800/30 ms for the PD-weighted images; for the T2 weighted images;
TR/TE = 600/16 ms for the T1 weighted images. Results of segmentation will be

shown for some of the representative images in this chapter.

7.3 Extracting the cerebrum

Extracting the cerebrum is performed by stripping away the skull and scalp pixels
from the T2 images.
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Figure 7.4: Different steps of extracting cerebrum from MR images of the head
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The following algorithm describes the technique.

1. Divide the image into four regions see (Fig. 7.4).

2. In region 4:

(a)

(b)

from the center of the T2 weighted image “0”, (z,, ¥,), identify the pixel
of bone or air, and background (z;,y;) by measuring the threshold of
pixel value on each row from left to right . If the pixel value is less than
100, then check the neighborhood pixels in a box of 4x4 or (5x5) (see
Fig7.4). If the majority of pixels in the box belong to class of bone then
stop and assign (z;,y;) as a boundary pixel.

decrement o in the row, go to (a) repeat the process until point B is

reached.

From the center of the T2 weighted image “0”, (z,,Y,), identify the
pixel of bone or air, and background (zi,y;) by measuring the threshold
of pixel value on each column from down to up. If the pixel value is less
than 100, then check the neighborhood pixels in a box of 4x4 or (5x5)
(see Fig7.4). If the majority of pixels in the box belong to the class bone
then stop and assign (zi,y;)as a boundary pixel.

(d) increment o in the column, go to (c) and repeat the process until point

B is reached.

3. Process similarly regions 1, 2, and 3 by changing the direction of search:

@ in region 1; search right to left in row and down to up in column.

@ in region 2; search right to left in row and up to down in column.

in region 3; search left to right in row and up to down in column.
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By using the detected margin in this stage a mask image is generated to remove
skull pixels from the T1 and PD weighted images. A typical example is shown in
Fig. 7.5. Figures 7.5(a), (b), and (c) show the T1, T2, and PD weighted images
respectively. Figure 7.5(d) shows how the algorithm strips the skull pixels from
the T2 weighted image. Figure 7.5(e) shows the mask image. Figure 7.5(£), (g),
and (h) show the extracted cerebrum from each image component. Figures 7.6,
and 7.7 show the extracted cerebrum from slice 1 to slice 6 which were shown in

Fig. 7.1.

7.4 Results of the SOFM network

The theoretical basis of SOFM was discussed in chapter 6. In this section only the
network parameters and results of segmentation of MR images will be presented.

One of the parameters which has to be set for a good mapping is the form of
the array. From several experiments the hexagonal lattice was chosen because it
provided better results than the rectangular lattice. Other parameters were the type
of neighborhood function and the map size. The size of map defines the number
of codewords or reference vectors. Map sizes of 6 x 6, 8 x 8, 10 x 10, and 11 x 11
were tested. Results were improved slightly as the map size increased, however, no
significant differences were observed when the size was increased from 10 x 10 to
11x11. Therefore, the size of 10 x 10 which consisted of 100 codewords was selected.
The reference vectors of the map were first initialized randomly. The lattice type of
the map and the neighborhood function used in the training procedures were also
defined in the initialization. The map was trained by the self organizing feature
map algorithm explained in chapter 6.

As discussed in chapter 6, the two different schemes , the Maximum likelihood
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and the LVQ, were utilized to classify the map into the desired number of classes.
Typical results from both approaches are shown in Figure 7.8. Several experiments
showed that adding the LVQ network as an additional layer for feature map classifi-
cation would produce better results because of the adaptive nature of the classifier.
As can be seen in Figure 7.8, the Maximum likelihood layer tends to classify white

matter tissue as gray matter.

When the LVQ was utilized in the output layer, training was done in two phases.
The first was the ordering phase during which the reference vectors of the map units
were ordered. During the second phase the values of the reference vectors were fine
tuned. In the beginning the neighborhood radius was taken almost equal to the
diameter of the map and was decreased to one during training, while the learning
rate decreased to zero. During the second phase the reference vectors in each unit
converge to their correct values. The second phase is usually much faster than
the first. Figures 7.9, 7.10, and 7.11 show results obtained from this approach.
The number of classes was equal to the number of target tissue classes. In each
of the cases presented in this chapter the images were classified into four classes:

background, CSF, white matter, and gray matter.

7.5 Results of c-means clustering algorithm

The c-means algorithm described in chapter 6 was used for unsupervised classifi-
cation of MR brain images. The results of the c-means algorithm heavily depend
on the number of iterations and classes. Typical results are shown in Figures 7.12,
7.13, and 7.14. To demonstrate how the c-means algorithm performs clustering,
different numbers of classes were chosen. In Figure 7.12 results of segmentation are

shown for ¢ = 4 classes. The different class tissnes are shown separately. Figures
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7.13 and 7.14 show results for ¢ = 5 and ¢ = 6 classes respectively.

7.6 Discussion

As can be seen from the results, the c-means algorithm could not provide a reliable
result for MR image segmentation. Although the basic theory of the c-means
algorithm is similar to the SOFM, two major differences exist; 1) in the SOFM
algorithm, each entry (i.e. vector z) is used to update the winning class and its
neighboring classes, while in the c-means algorithm each input vector is classified
and only the winning class is modified during each iteration. 2) in the SOFM the
weights represent the number of reference vectors which are normally several fold
of the number of classes, while in the c-means algorithm the number of classes is

predetermined as a constant value into the algorithm.

One can claim that if the number ”¢” in the c-means algorithm is chosen to
be the same as the number of codewords in the SOFM, similar results might be
achieved when the clusters are merged to the number of desired classes at the end.
However, some important issues have to be considered such as computational time,

validation, efficiency and complexity of the technique.

Results from the c-means algorithm are discussed below. As shown in Fig. 7.12,
for ¢ = 4, the algorithm tends to segment the image into 3 tissue classes. Figure
7.12(a) shows white matter and gray matter mixed together as ome class, while
CSF in Figure 7.12(b), and (c) is classified into 2 tissue classes.

For ¢ = 5, the algorithm tends to segment the image into 4 tissue classes, Figure
7.13(a) shows white matter and gray matter mixed together as one class, while part
of the gray matter is classified as a separate class in the Figure 7.13(b). The CSF
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is classified into 2 tissue classes as in in Fig. 7.13(c),(d).

For ¢ = 6, the algorithm tends to segment the image into 5 tissue classes.
Although in figure 7.14 results seem to be encouraging, none of the segmented
regions are correct. The white matter is classified into one class (Fig. 7.14(a)),
while the gray matter and the CSF are each classified into two tissue classes (Fig.
7.14(b),(c) and 7.14(d),(e) respectively). The first class of gray matter is correct
while the second class of the gray matter is composed of the gray matter and CSF.
An attempt was made to merge the 5 classes to 3 classes, however, similar results
were obtained as shown in Figure 7.12. Therefore, it can be concluded that merging

classes does not promise improvement of segmentation process.

There are number of important properties which make the SOFM suitable for
use as a codebook generator for clustering scheme. They can be summarized as

follows:

o The set of reference vectors are a good approximation to the original input

space.

o The reference vectors are topologically ordered in the feature map such that
the correlation between the reference vectors increases as the distance between

them decreases.

o The density of the feature map corresponds to the density of the input distri-
bution so that regions with a higher probability density have better resolution

than areas with a lower density.

In summary, this chapter has shown the ability of a new technique for fully
automated segmentation of MR images. The characteristics of this artificial neu-
ral network scheme which include a massively parallel structure, a high degree of
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interconnection and the ability to self organize — parallel many of the characteris-
tics of human visual system. That is why it is a valuable technique for MR image

segmentation.
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(a) (b) (c)

(d) . (e)

(£) () (n)

Figure 7.5: (a) T1 weighted image,(b) T2 weighted image, (c)PD weighted image
; (d) Stripped T2 image, (e) Mask image, (£) Cerebrum extracted from T1, (g
Cerebrum from T2 and (h) Cerebrum from PD image.
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Slice 1

Slice 3

Slice 5 Slice 6

Figure 7.6: Extracting cerebrum from MR images of the head
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Slice 1 Slice 2

Slice 3 Slice 4
Slice 5 Slice 6

Figure 7.7: Extracting cerebrum from MR images of the head
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(a) (b) ()

(d) (e) (£)

Figure 7.8: Results of segmentation using two different feature map classifiers.
Figures (a), (b), and (c) show results of LVQ classifier and Figures (d), (e), and
(£f) show results from Maximum likelihood classifier
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) I I

Segmentation of slice 1 Segmentation of slice 2

Segmentation of slice 3 Segmentation of slice 4

Segmentation of slice 5 Segmentation of slice 6

Figure 7.9: Typical results using SOFM and LVQ as feature map classifier
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Slice 1 Slice 2 Slice 3

CSF CSF CSF

Figure 7.10: Segmentation of images using SOFM. Three tissues: Gray matter
(GM), White matter (WM), and CSF are separated
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Slice 4 Slice 5 Slice 6

CSF CSF CSF

Figure 7.11: Segmentation of images using SOFM. Three tissues: Gray matter
(GM), White matter (WM), and CSF are separated
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Figure 7.12: Segmentation of an image using c-Meauns algorithm. Number of classes,
¢ = 4, each class is shown separately (except background)
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Segmented image

IS
(d)

(c)
Figure 7.13: Segmentation of an image using c-Means algorithm. Number of classes,

c = 3, each class is shown separately (except background)
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Figure 7.14: Segmentation of an image using c-Means algorithm. Number of classes,

¢ = 6, each class is shown separately (except background)
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Chapter 8

Conclusions and Future Directions

This thesis has generated very reliable and interesting results for segmentation of
MR brain images. These have been summarized in detail at the end of each of the
two testing chapters, chapter 5 and 7. In here, a summary of the major results and

their contribution to the research literature are presented.

8.1 Summary of the results

Supervised Segmentation Schemes

e The Maximum likelihood technique was not an acceptable choice since it
appeared to be very susceptible to the choice of training data. For reliable
results, training data may need to be chosen slice by slice for even one patient
which is extremely time consuming and tedious. Further more, techniques
that must assume an underlying statistical distribution of the data sauch as
MLC do not appear promising, since tissue regions of interest do not usually

obey the distribution tendencies of probability density functions.
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e Backpropagation neural networks, on the other hand, were very sensitive to
the training data. Their results suffer from noise and mis-classification. Back-
propagation neural networks provided adequate brain segmentations when the
training data were selected very specifically. If backpropagation networks are
to be used for segmentation of MR images, reliance on operator intervention
to select good training data for each tissue and each slice of data was crucial.
Another weakness of backpropagation networks was the indeterminate num-
ber of hidden units. The convergence of networks was dramatically dependent
on these numbers, and in most cases it was too difficult to find the optimum

number of the hidden units.

e The LVQ technique was sensitive to the selection of the number of codewords,
however, changing the number was not too crucial for acceptable results.
Selecting a large set of codewords could increase the mis-classification around
the border of regions of interest. Also, LVQ was used in an adaptive manner
to update the codewords from one image slice to another. That new approach
caused LVQ, unlike backpropagation ANN and MLC, not to be sensitive to
the variations of gray-level for each tissue type between different slices.

Unsupervised segmentation schemes

e In our new method for automatic tissue segmentation SOFM was utilized
to construct an unsupervised clustering scheme. It was further extended by
adding a layer to the Kohonen layer to accomplish the classification task.
As described previously a novel approach for extracting cerebrum from MR
images was introduced and its positive impact on the segmentation of MR

images was demonstrated. The simplicity of the method should make it an at-
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tractive pre-processing algorithm for automatic or semi-automatic MR image
analysis systems. There are two important advantages of the unsupervised
procedure. First, the process is completely automatic and there is no need
for human interaction. Second, the automated parameter learning is fully re-
producible because subjective variations created by selecting different types

of training areas are avoided.

8.2 Contributions

o Designed and implemented supervised image segmentation scheme

VQ has been used mostly in the literature for image coding and compression
purposes. Using analogy under VQ design had lead us to implement the
VQ in a neural network scheme which is learning vector quantization (LVQ).
Implementing LVQ) for segmentation of MR images is a novel idea and it has
not been tackled by any other researchers in this field. The results of this
study were presented in [5], [6].

e In most cases where supervised classification schemes are utilized, training
and testing are chosen from the same subject. In this research we developed
a new system which utilizes universal training data for classification task.
This has been accomplished by using an adaptive training scheme to update
the weights in the LVQ network.

e We have presented a modified version of the self organizing feature maps of
Kohonen which are capable of generating continnous valued outputs. Extend-
ing the output layer by an additional layer allows the network to classify the

two dimensional feature maps to a desired number of classes.



CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 132

e For the first time in the literature extracting cerebrum from the images of
the head was performed in this study as a preprocessing step prior to the
segmentation. The novel algorithm described in chapter 7, improved the
segmentation results significantly when an unsupervised scheme was utilized.
Reducing the clustering artifacts made results more accurate, and the post-

processing step was avoided.

8.3 Future directions

e The quantitative assessment of performance is complicated by the lack of a
gold standard to compare with. However, a receiving operator characteris-
tic (ROC) curve can provide a qualitative evaluation. However, it will take

considerable time and substantial assistance from expert radiologists.

e Unsupervised methods need better ways to specify and adjust the number
of tissue classes found by the algorithm. Since unsupervised classification
techniques are sensitive to good initialization, initialization is an important

issue which should be considered in future research direction.

e The Euclidean distance was used in LVQ and SOFM. It would be interesting
to compare the use of Euclidean distance versus Mahalanobis distance for

each of these two techniques.

e The two new approaches designed and implemented in this thesis can be
used for the segmentation of other multispectral images, for example, satellite

images obtained with a multispectral scanner.
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