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Abstract 

Segmentation is an important step in the interpretation of Magnetic Resonance 

(MR.) images of the human body. MRI reveals an unequded viea of the anatomy 

of the brain in tams of spatial and contrast resolntion, and its multispectral na- 

ture has been exploited to obtain better performance in the segmentation process. 

This thesis presents new techniques based on d u a l  neural nehrork (ANN) ar- 

chitectures for automatic segmentation and tissue classification of MR images of 

the human brain. Two diffment methodologies were adapted for sapervised and 

unsupdsed  segmentation. 

The Learning Vector Quantkation (LVQ) ANN is utilized for multispectrd sa- 

pavised classification of MR images. The original LVQ nas modified for better 

and more accurate classüication. LVQ ANN segmentation results are compared to 

those achieved with a badrpropagation ANN and a conventional Maximum Likeli- 

hood Classifier (MLC). 

In the second scheme a M y  sntomated technique was developed for segmen- 

tation. The scheme utüiees the Self Orgaaizing Featare Map (SOFM) ANN for 

feature mapping and generates a set of codebook vectors for each tissue class. An 

additional laya then completes the classification process. To minimize dustering 

artifacts, an algorithm has been developed for isolating the cerebrum pnor to seg- 

mentation. The cerebrmn is extracted by stripping away the SM pixels fiom the 

T2 weighted image. The network is tested for different sets of image slices fiom 

normal and abnormal brain stndies. Images were selected 6Lom 54 axial images of 

the whole head. 

Twenty nine brain studies were analyzed using the techniques developed in this 

thesis. Three tissue types of the brain are segmented: white matter, gray matter 



and cerebrospinal fluid (CSF); in case of abnormdity, the h o r  or 0th- Mknown 

tissues were aho segmented. From the evaltlation of segmentation results, the 

advantages and disadvantages of each method are discussed. 
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Chapter 1 

Introduction 

Magnetic Resonance Imaging (MW) is fast becoming the technique of choice to 

stady the brain in health and disease [16]. It reveals an uneqnaled view of the 

anatomy of the brain in terms of spatial resolntion as well as contrast resolution. 

Segmentation is the fmt step in the analysis of brain morphometry ; subseqnently, 

volumes, shapes and positions can be determined [63]. Automating the feature 

extraction process provides for an objective and teproducible method of analysis. 

While thae were many possible approaches to image segmentation, a neural net- 

work approach is apptopnate because it d r a w s  directly on human experience to 

develop the necessary algotithms. 

This thesis describes a neural network approach to the automatic segmenta- 

tion of magnetic resonance brain images. This chapter desaibes the natme and 

significance of the problem domain and then ontlines the proposed solution. 



CHAPTER 1, INTRODUCTION 

1.1 Segmentation of MR brain images 

1.1.1 Magnet ic resonance brain imaging 

Figure 1.1 shows three dices fiom an MR study of the brain of a human subject. 

The &ces are obtained at the same level in the brain, but nsing difFerent pulse 

sequences, an MR. technique that al lows for the manipulation of contrast between 

different tissues. A typical examination consist of 54 axial slices each 5mm thick. 

The brightness of each voxel ( v h e  pixel; imm by Imm by 5mm in this case) 

reflects an average measmement of the tissue characteristics over that volume of 

the brain. While a detailed description of the magnetic resonance imaging ( M . )  

technique itself is beyond the scope of this thesis, a brief discussion of the imaging 

process should provide suffiCient background to introduce the multispectral nature 

of the MR examination. 

1.1.2 The physics and nature ofMFU data 

This discussion presents the classical interpretation of the behavior of nuclear mag- 

netic moments by using the hydrogen nucleus (i-e., a single proton) as a model. 

In the classical interpretation, the position of the hydrogen nucleus can be spec- 

ified with any desired degree of precision, and its movements are assamed to be 

continuous and completely predictable. Each proton behaves as a s m d  magnet 

with a magnetic moment that has both magnitude and âirection. In any sample of 

material containing hydrogen (such as the human body), the magnetic moments of 

the individual hydrogen nuclei are oriented in random directions. If a strong mag- 

netic field is applied to the sample, the magnetic moments of the nudei align in 

the direction of the applied magnetic field in a m a M a  similar to that of a compas 
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Figure 1.1: (a) : A Tl-weighted image (b) A TZ-weighted image (c) A PD- 

weighted image. 



needle digning with the earth's magnetic field. The field provided by the main 

magne6 of an MR system is of the order of 1 tesla ( compared to 0.5 x IO-' tesla 

for the Eazth's magnetic field). 

In addition to aligning itself wïth the applied magnetic field, the magnetic rn- 

ment arill &O precess about this field. The frequency fi of precession of a proton 

depends upon its gyro-magnetic ratio 7 and the strength of the static magnetic 

field Bo. This relation is described by the Larmor eqnation. 

7 f~ = %Bo fL in M'Hz, & in tesla (T) 

DifFerent nudei have different gyro-magnetic ratios, and the resonant frequency 

of a specific nucleus wil I  vary with the magnitude of the applied magnetic field. A 

radio-frequency, RE', pdse at the resonant fiequency (fL) can d t e  the precessing 

nudeus to a higher energy state in which its magnetic moment is aligned in the 

opposite direction to the magnetic field. The nucleus then returns to the lower 

energy state by transfhg its excess energy to the neighboring nudei or to the 

surrounding lat tice. 

The collective a e c t  of the applied magnetic field on many nudei is described by 

a magnetization vector whose direction is given relative to the direction of the main 

magnetic field. At equilibrium the longitudinal component of the magnetization 

vector has a maximum value Me th& depends on the number of nudei aiigned 

anti-parallel to the fieid. For any tissue, this value depends on the concentration 

of the MR visible protons, or pmton density, in the tissue. When the RF pulse is 

t m e d  on, the longitudinal magnetization, M', decreases with the numba of nudei 

flipping to the excited state. At the same t h e ,  the transverse magnetization, MW, 

appears as a resuit of the synchronization of the precessing nuclei induced by the 

RF pulse. M, wi l l  precess a r o ~ d  Bo, thns creating an osdating magnetic fieid 
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that wil i  induce a m e n t  in an antenna near by. This is the MR signal. When the 

RF pulse is mitched off, the nudei are flipped b d  to the original state, aRowhg 

the longitndinal magnetization to retarn to its eqnilibrium position (see Fignre 1.2). 

There are fno basic relaxation processes at wozk in the sample as the protons 

retarn to the state that existed before the RF puise was applied. Both processes 

account for the observed decay of the MR signal. One relâxation process involves a 

return of the protons to their original alignment wïth the static magnetic field. This 

process, called longitudinal or spindattice relaxation, is characterïzed by a tirne 

constant Tl ( s e  Fîg 1.3 (a)). The other relaxation process is a loss of synchrony 

of precession among the protons. Before a radio wave is applied, the direction 

of magnetization of the protons aithin their precession is random. Lmmediately 

following the application of a radio wave, the protons rotate synchronously, or in 

phase. When the radio kequency is switched off, the protons begin to interack 

with th& neighbors and give up energy in random collisions and so revert to a 

state of random phase. As the protons return to random orientation, the bulk 

signal demeases. This process is called transverse or spin-spin relaxation and is 

characterized by a tirne constant T2 (Fig. 1.3 (b)). 

In any sample andergohg MRI both relaxation processes, longitudinal and 

transverse, occur at the same t h e ,  although the transvase or T2 relaxation is 

ahays much shorter than the longitudinal or Tl process. For typical biologic ma- 

t&als, Tl may be on the order of several hmdred müliseconds while T2 is a few 

tens of milliseconds. 

The influence of the relaxation parameters on the M .  signal is one of the central 

principles of tissue contraPt in MRI. Contrast in MRI is iduenced by diffaences in 

relaxation parsmeters, T l  and T2, and nuclear spin density (proton density (PD) 

numba of MR visible protons per unit volame of tissue), among tissues. Since 
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RF 

n 
Puise 

X more 

more 

Figure 1.2: 1. Magnetic moment of the sample is aiigned with the magnetic field. 2. hune- 
diateiy after an RF pulse, the magnetic mommt of the ssmple ces be representeà by a single 
vector. S. As the magnetization vector bej&w to break up or dephase as a result of lo&ed 
non-uaifonnities in the applied field, components of the vector be@n to fan out in the ry plane. 4. 
When there are an quai numba of components in all directions in the xy plane, the components 
cancel one another and the MR signai disappean. 5. As thne passes, the cone teptesenthg the 
processing but dephased magnetic moment continues to narrow because of spin-lattice relaxation. 
1. F i d y  the magnetic moment once again ia teaiigned with the appiied field. 



Tl Relaxation time 

'ï2 Relaxation time 

Figure 1.3: Longitudinal and transverse relaxation process 

cl35erent tissues have dinaent Tl, T2 and proton density values, these parameters 

can be used to disaiminate between tissues in the image. Measmement techniques 

that exploit differences in Tl, T2, and PD among tissues are described in [58], [30], 

[100] and [102]. 



1.1.3 Segmentation and tissue classifkation 

Image segmentation refers to the decision process whereby similar pixels of an 

image are gronped into regions that correspond to objects or pieces of objects in 

a scene. For the putpose of this thesis, segmentation refas to the pixel by pixel 

labeling of regions as gray matta, white matter, cerebrospinal fluid, bone, sLin & 

fat, background, and ttunor (if present). 

Major problems with segmentation of MRI 

LoolUng at Figure 1.1 (b), it might seem easy even for an untrained obsmer to 

decide which regions to assign to the tissue dass of gray matter, white matter, CSF, 

etc. The task seems trivial because we take for granted the haman visual system's 

astonishingly effective segmentation abilities. Man [81] argues that the task of 

seeing only seems easy. He states that, "The reason for this misperception is that 

we humans are ourselves so good at vision". He remembers that in his attempts to 

solve computa vision problems in general "The fmst great revelation was that the 

problems are d i f n d t .  (p.16 [81])" 

Figures 1.1 and 1.4 demonstrate the difncdy of this task. One reason the 

task is difEcult is because a single image intensity threshold cannot be selected to 

distinguish gray matta fiom white matter. It can be seen that no single contour 

liae can be chosen that wi l l  adequately divide, for instance, the gray and white 

matter in Figure l.l(a). It is easy to pick out the sweeping dark lines that divide 

the white matter fkom gray matter in Figure 1.1 (b) but much more difEcult to find 

them. The pixels that o u  eyes somehon groap into a single dark h e  actually span 

a large range of intensities. By looking at the image histograms in Fig. 1.4, it is 

dear that labeling all pixels belon a given threshold would certainly not achieve 
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Figure 1.4: (a) : Histogram of Tl-weighted image (b) Histogram of T2-weighted 

image (c) Histogram of PD-weighted image. 

the desired resdt . 
The lads of a single threshold for segmenting an image is only the beginning 

of the difficdties. If such a threshold could be found for a particdu image it 



would not necessarily be the same for o tha  images becanse the many sources of 

variation in the MRI process do not allow intensity to be an absolnte m e m e .  As 

a mat ta  of fact one of the major problems in the segmentation of MR images is 

the intensity variations introdnced by inhomogeneities in the magnetic field [26]: 

These occm within a slice, between slices in the same patient stndy, and between 

patient studies. 

Another problem is what is h o w ~  as the partial volume effect. This occurs 

becanse the MRL technique samples the tissue characteristics across discrete 3- 

dimensional volnme elements (voxels) at a certain resolution, and the resulting 

signal intensity rdects the average tissue characteristics over this volume. This 

causes transitions in tissue characteristics to seem bltmed: the edges, for instance, 

between gray matter and white matter are not ideal step edges, but could more 

accuratdy be approximated by a ramp [91]. 

There are also problems which may not be solvabIe, for instance labeling the 

segmented regions by their anatomieal name. This task requises infolplation that 

is not directly obtainable fiom the image. When tackling this kind of problem, the 

conclusion & a m  by many researchers is that there is need for high level information 

or knowledge ( see, for example: [48], [9], [ l l l ]  , [73] and [86]). S till another problem 

is that this high level knodedge mast be specinc for a given application in order 

to be u s f i .  

1.2 Importance of segmentation 

Automatic segmentation and tissue classification of MR brain images are important 

tasks because segmentation is fandamental to a quantitative analysis of the brain 

and because automation can increase the reliabüity of this analysis. Stiehl in (1151 
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describes the significance of segmentation: "Segmentation of primitives and sabse- 

quent groaping to anatomically meaninghil objects is the building-block for feahue 

measnement (e-g., via tissue characterization, shape tecovery, and morphometry), 

organ recognition, as well as 3D representation and graphics display. At present no 

generally applicable, parameter-fiee, or even self-adaptive automatic segmentation 

scheme exists that is completely independent of the image dass, the object dass, 

the domain and the task for the SISU ' system (p. 25 [115])". 

Quantitative measurements fion, MR brain images can provide an tmequaled 

view into the understanding of human brains throagh morphological analysis [16]. 

Segmentation is the first step to providing this andysis. Subsequent to segmenta- 

tion, the volame: shape, location and hornogeneity of component brain structures 

can be caidated. Segmentation and subsequent andysis can lead to a better un- 

derstanding of the development of the brain. Since MEU is non-invasive, morpho- 

logical studies can be performed at regnlar intervals during development. Previous 

research using these kind of techniques indnde characterization of the n o d  pop 

dation as a fnnction of age 1351, [56], anatomid variability of primary visual cortex 

[62] [130], Alzheimer's disease [8], [14], and development al disorders [34], [36]. 

An automatic M M  brain segmentation system &O has another potential clinical 

application: the diagnosis of brain trauma. White matter lesions which are typical 

of dinuse axonal injury, a signature of traumatic brain injury, may potentidy be 

identified in moderate and possibly even d d  cases. These methods, in turn, may 

require correlation of anatomicd Mages with hct ional  metrics to provide sensitive 

measurements of brain trauma [54]. 

Automatic segmentation is a nataral extension of the use of cornputas in 

'SISU stands for Spatial Image Sequence Understanding 



medicine. The improvement fkom a p d y  h a l ,  qualitative analysis to three- 

dimensional tomographie analysis and then to automated analysis can make physi- 

cians' and researchers' image analysis tasks easier and possibly more accarate [115]. 

Antomatic segmentation not only teqMes less time fkom human experts, but 

can also provide less wuiable resnlts. Pot instance, in the stndy of Alzheimer's 

disease where the quantities of interest are the vo11l11les of white matter and gray 

matter, if manual delùieation is considered the analysis wodd be time consuming 

and tedious, and wodd requke a quaHed observer [63]. Detection of white and 

gray matter structures on a large nnmber of MR images is impractical, and will 

only become possible if diable and robust automated methods are developed to 

assist human experts. In a discussion of the use of automated MRI diagnosis of 

multiple sclerosis, Mitchell et al. [a?] state that , "manually quantifying the number 

of lesions and determining their changes between exams are ardaons and time con- 

snming procedures (p.4211)". Automation codd not only eliminate mors  resulting 

from fatigue or la& of concentration, bnt with increasing compntational capabil- 

ities, the analysis would be provided in less ovesall time and wodd even alIow 

additional analyses that are cmently impractical. As Fleagle et al. state in th& 

article [38], "Magnetic Resonance (MR) imagùig, althongh capable of produchg 

superb images of cardiac structure, is not widely used as a diagnostic cardiovascu- 

lar tool. One reason for this is the need to assess cardiac structure and h c t i o n  

based on manuai tracing of endocardid and epicardial borders on individual im- 

ages, a tedious and time consaming process (p.4226)". These authors go on to 

describe an excellent correlation between theV semi-automatic results and those 

of an independent observer demonstrating that automation can be nsed aectively 
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Stiehl in his article [115] emphasizes that it is t h e  for automation: "Tedious, 



fatigning, and timeconsuming as well as error-prone interactive object definition 

for a large nnmber of slice images per patient sequence, as a methodic prerequisite 

for the generation of 3D body geometry model, may take np to one hour or more in 

turn-key systems. Thus, such working conditions do nsnally not attract or convince 

physicians to use snch technologies as a umunon tool in daily routine. The que& 

for a certain amou~t of automation, or at least semi automation, of snch tooh is 

straightforaatd. The existing gap ha3 been widely recognized between the theoreti- 

cal s tateof-the-art in general computational vision and the s t ate-of-thetechnology 

in operational hun-key systems, with respect to segmentation schemes and image 

analysis finterpretation paradigms that are presently in cornmon use. In particular, 

pusely interaction-driven image segmentation has been identified as being a sevae 

bottleneck of such operational systems (p.25)". 

1.3 Goal 

The goal of this thesis work is to automate the anatomie segmentation of magnetic 

resonance brain images. For the pnrpose of this thesis anatomie segmentation refers 

to the chacacterization of pixels as gray matter, white matter, cerebrospinal fluid 

(CSF) and SM. A completely automatic system wodd by delbition eliminate all 

user interaction; however, this goal is neither attainable for a close ended research 

project, nor desirable fkm the stand point of chical verification. Theref'ore the 

system described herein is designed 6 t h  the goal of becoming completely automatic 

with the realization that confirmation and corrections h m  human experts are 

inevi t able. 

Twenty nine MRI studies aill be considered for segmentation in this thesis. The 

following table shows the imaging parameters and the total nnmber of images in 



each study. The hro approaches developed, namely modified LVQ and extended 

SOFM, wi l l  be used to segment the MR images in a superviseci and unsupemised 

fashion respectively. 

An adaptive training scheme will be atilized to ovacome intensity variation 

within a slice and between image slices. The acquired results &om the two a p  

proaches nill be compared with standard backpropagation ANN and maximum 

likelihood classifier for the supervised, and c-means chtering tedinique for the 

unsupervised scheme. 

TRITE 

TR/TE 

TRITE 

TRITE 

TR/TE 

In an attempt to automate the segmentation process, the attificial n e d  net- 

work based image segmentation and classification schemes were investigated. Thexe 

are potentidy many situations in which a dinician wodd use more thsn one image 

spectrnm to define an anatomical structure or tumor volume [92], [101]. Using the 

same idea, multispectral dassification techniques w a e  adapted. Supemïsed and 

unsupervised classification schemes were atilized and the neural networks architec- 

tures were designed. 

The design objectives for the supavised segmentation scheme included: 

# stndies 

18 

6 

1 

2 

1 

1. the design of the learning vector quantization (LVQ) &&id neural network 

classifier for the snpervised segmentation of MR images of the brain. 

Tl 

600116 

600/16 

600125 

700125 

636116 

T2 

2916/119 

2800/90 

3083/112 

3500/102 

2700/90 

PD 

2916117 

2800/30 

3083116 

3500117 

2700/30 

Thickness 

512.5 

512.5 

512.5 

512.5 

510 

# Total images 

972 

324 

54 

108 

66 
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2. the evaluation of r e d t s  obtained using multispectral images venms single 

spectral images for segmentation parposes. 

3. the cornparison of the technique with the Bayes miurimum Iikelihood classifia 

(MLC) and a bd-propagation artificial n e d  networlt . 

4. the ability to adapt to variations in the data (the proposed system mnst be 

able to modify the segmented images by controIling the neural net parameters 

and retraining the neural net). 

5. the provision of a user interaction capability for cases where the system can- 

not adapt to variations in the data and cannot proceed with the recognition 

process for the 0th- slices. 

The objectives of the fdly automated segmentation scheme were: 

1. the design of the self-organizing feature maps (SOFM) artiiïcial neural net- 

work for msupervised tissue classification of MR images. 

2. the reduction of the nnmba of clusters in segmentation by extracthg the 

caebnun tkom the MR images of the head prior to segmentation. 

3. the application of st atistical pattern recognition approaches like c-means or 

f n a y  c-means techniques to the problem. 

4. the evaluation of the relative sdvantages and dtanbacks of the neural network 

approach versus a statisticd pattern recognition approach for msupervised 

MRI tissue characterization. 

The quantitative assessrnent of performance is complicated by the lack of a gold 

standard. The problem that one faces inchdes the inability to segment manudy 
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the images, the subjective nature of any manna1 segmentation procedure, and the 

lads of redistic phantoms which codd be used as reference. Therefore, all the 

segmented images in this thesis were evaiuated by at least two individual obsavers. 

The receiving operator characteristic (ROC) analysis can provide a quantitative 

evahation but because of the considaable niimber of observations required, this 

has not attempted in this thesis and is left for fiitnre work. 

1.4 Discussion 

A number of imaging toob have been developed that can provide topographic in- 

formation about the intact hnman body. Each characterke Metent tissues, or 

th& function, according to certain properties. For example, X-ray Computerized 

Tomography (CT) measures the attennation by tissue of an incident beam of X ra- 

diation. The technique classifies tissues accordhg to their attenuation properties. 

Positron tomography relies on the detection of the t h e  course and spatial distribu- 

tion of certain s p e d c  molecules, such as analogue of glucose or nemtransmitters 

labeled with positron emitting isotopes, to measare blood flow or rates of chernical 

reaction. Magnetic resonance imaging (Mm) relies on the nudear properties of 

the hydrogen atom to study the distribation of hydrogen atoms, or their chemical 

environment. In general, a particalar Maging modality may be more us& to 

diagnose b a i n  type of a b n o d t i e s  such as differentiation between scar tissue 

and recrUnng tumor nsing FDG and PET , or wodd emphasize certain anatom- 

ical features bette, such as grayInhite matter differentiation in proton weighted 

MR images. However, more than one imaging technique is often used becanse each 

provides complementary information. Automated segmentation and CO-regis tration 

techniques are essential in order to take hill advantage of this capability. The im- 



portance and the difficulties of the automatic segmentation task are dismssed in 

severai medical imagine articles, [IO], [12], [21], [72], [96], [103], and [115]. 

In generd, the segmentation of brai. images involves the discrimination between 

Werent types of tissues and flaids (e-g., white matter, gray matter, cerebrospinal 

fluid (CSF), skin, etc.). Many techniques have been developed over the years to ex- 

tract different tissue components fkom biologicd images. Classical methods range 

fiom simple techniques that rely on pixel intensity thresholding to more sophisti- 

cated techniques that rely on the calculation of the median, the &ce7 or the 

gradient of the pixel intensity distributions to characterize local statistics [9], [51], 

and [116]. Because MRI permits the memement of more than one independent 

tissue-spedc parameter, each image pixel can be segmented as a dtidimensional 

pattern whose components are the intensity values for each of the parameters. 

Three types of images are acquired routinely for diagnostic pqoses ,  Tl weighted 

images (sensitive to variations in spin-lattice relaxation time), T2 weighted im- 

ages (sensitive to variations in spin-spin relaxation time), and proton density (PD) 

weighted images. This mdtidimensional feature of an MR examination can be used 

to enhance the pattern recognition and image processing technique. 

Multidimensional data dassification has b e n  nsed extensively in the area of re- 

mote sensing. The patallel between multispectrai images of the earth (LAND-SAT 

images) and MRI was made as early as 1985 [94], [IO?], [122], and pattern recogni- 

tion techniques developed by NASA for the automatic classification of multispectral 

images have been applied to MR images. Since then, several other classification 

approaches have been trïed, some of which will  be sarveyed in chapter 2. 

Chapter 2 is a s w e y  of the work related to the segmentation of MR images. 

Previously developed systems for MR image segmentation are reviewed, and their 

results, potential, and limitations are discussed. Multispectral segmentation tech- 
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niques are emphasized. Recogpition andlot dassification tasis performed nsing 

artdicial neural networh are &O mentioned to illustrate n e d  network capabili- 

ties . 



Chapter 2 

Literat ure Review 

The techniques used to segment multispectral images can be divided into sapervised 

and unsnpervised methods [20], [12], [48] and [SOI. Supervised methods require that 

an operator identifies seiected features on training data by nsing a human-machine 

interface such as a morne [6], [5] ,[25], [52] and [123]. Unsupervised methods dehe 

regions in the image without any operator intervention [Il01 and [128], although 

human intervention may be reqnired to complete the process. The regions identified 

by the algorithm will not have an anatomical label associated to them; however a 

label could be attached to the clustered region in a snbseqaent step. 

2.1 Supervised segmentation methods 

2.1.1 Statistical pattern recognition methods 

The design of a statistical pattern recognition technique requires complete lmowl- 

edge of the probabilistic strachue of the data. Parametric methods assume partic- 
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dar distributions of the features. For example, the maximum likelibood method 

amally assumes muitivariate Gaussian distributions [l] , [23] , [29], [43], [99], (871, 

[lOS], [il81 [122], [l2l], and (1241. In this approach, the mean and covariance ma- 

trices for each of the tissue classes are estimated nom a training set provided by the 

operator. The training data is m d y  spedied by drawing regions of interest on 

the images using a mouse driven interface. The remaining regions (pixels) are then 

dassified by calculating the likelihood of each pixel belonging to a tissue dam, and 

assigning the pixel to the tissue type with the highest probability. This paramet- 

rie approach is u s a  when the featnre distributions for difterent classes are well 

known; however, this is not necessarily the case for magnetic resonance images 1191, 

[21], [lof] and [125]. 

There are O t her s tatistical methods, c d e d  non-parametric me thods, which do 

not rely on predefined distributions. The k-nearest neighbor, or k-NN, method relies 

on actnal distributions of the training samples themselves [2 11, [54] ,[64], and [Ml. 

There are 0th- reports in the literatare that use statistical pattern recognition 

techniques such as shape recognition [127], contour and connectivity [3 11, [57], 

region growing [2], Markov random field [17], 1751, [76], gray level CO-occurrence 

matrix [los], and gray level histogram [37], [83], [ll7]. 

Gerig et d(1991) (411 presented the application of a maximum likelihood clas- 

sifier (MLC) for the segmentation of MR images and compared their results with 

unsupavised clustering techniques. A Parzen window approximation was used to 

estimate the continuous density fimction from the discrete scatter plot of the two 

echoes in a double echo sequence (PD, T2). They used knowledge fkom theV su- 

pervised classification technique (MW) to h d  the cluster centers, although this 

strategy made the approach not M y  unsupervised. Moreover, preliminary resalts 

published by Dudewicz et al. [29] indicate that although the distributions of T 1 and 



T2 d u e s  can be considemi as jointly normal, the distribution of proton density 

values is not normal- Also, the variations in the intensity vaLues pf the dinerent 

tissue types, across the volume, is so high that the probab'itic decision fnactions 

nsaally overlap to produce codicting redts .  

Three problems asmciated with the nnsapervised ciusterhg technique w a e  iden- 

t s e d  by Gerig et d[41]:  1) choosing a good criterion to split and mage clusters, 

2) deterrnining the number of classes, and 3) correcting the elassikation mors due 

to the complexity of the problems. 

Mitchell e t  al. (1994) [SB] reported the application of maximum-likelihood and 

k-nearest-neighbor ( k m )  classifiers for the segmentation of multiple selerosis le- 

sions in MR .brain images. They generated a set of data by labeling regions of 

interest (ROIS): CSF, white and gray matter regions in the fiontal and occipital 

lobes and the corpus callosum. Etom the labeled regions a 2D histogram of those 

tissues of interest was caldated and displayed. The mean and covariance of the 

region histogram were used to estimate the mean and covariance of the tissue distri- 

bution. Principal components of the distribution estimate were caidated and used 

to defme an eiliptic region centered about the estimated mem. A k-NN classifier 

was then used to diff'entiate the lesion and brain distributions. 

Lang et al. (1994) [75] presented a statistical method which assumes that the 

underlying tissue regions are piecewise contiguous and can be characterized by 

a Markov random field prior. In dassifykig the tissues, the method models the 

likelihood of realizing the images as a finite mdtivariate-mixture fnaction. The 

method was tested on sets of Tl, T2, and PD weighted images of the brain. Their 

results were verified visndy- The anthors state that "quantitative validation on 

the accuracy and stability of the method needs fkther experimental studies using 

different acquisition protocols, redis tic anthropomorphic phantoms, and a large 
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Taxt e t  d. (1994) [ll?] proposed a segmentation technique that requires five 

differently weighted MR images for the segmentation process. The authors conclude 

that increasing the feature dimension by varying the image acquisition parameters 

improves the segmentation scheme. The classification was done using the Bayesian 

fkamework. Quantitative validation was made in two steps by using dl the labeled 

pixels of the imaged head and a surrounding rim of air. In the first step, they 

labeled the test image manually using the same dustering and manual labehg 

technique for the training image. However, the Iabehg of the training image and 

the test image was done independently, and by a diffetent expert to avoid b i s .  

In the second step they compnted a confision matrix based on the true manual 

labeling and the antomatic classification of the test image. 

2.1.2 Algebraic methods 

Outside the field of pattern recognition, algebraic approaches have been reported 

[61], [65], [114], and [112]. For images with dearly identified signature vectors 

these methods provide very good solutions to the partial volume efEect, which may 

have some influence on measmement of tissue vo1umes. Algebraic approaches, how- 

ever, may become impractical for Mages showïng complex pathology. Since these 

methods work with projections of feature vectors, the number of more or less un- 

correlated features that need to be acqnirad to determine the eigen-images for every 

tissue becomes very large, potentially leading to impractical processing times. Kao 

et al. (1994) [61] have presented a possible solution for the dimensionality, however, 

the method is optimal for signature vectors that are more or less orthogonal, which 

may not be the case for pathologie tissues that exhibit simJTar relaxation behavior. 



2.1.3 Manual feature space segmentation methods 

Other supwised segmentation methods indude featnre space based segmentations 

that atilize operator defined decision boundaries [39], [59], and [113]. Researchers 

have emphasized the feature extraction and selection step, and they display these 

featnres in some multi-dimensional graph. The area of higher density that are 

visible in this graph are then manually oatlined and associated with tissne types. 

Just et al. [59] impose an ellipsoid containhg a predefined &action of known samples 

to deheate the decision boundaries, while otha investigators have used a nearest 

centroid classifier where the centroid is defined at the middle of a region of interest 

in featnre space [113]. Fletcher et al. [39] reported a manual seiection of thresholds 

in each feature for each tissue type, whieh forces clustas in rectaagular boxes in 

the feature space. 

2.1.4 Knowledge-based segmentation met hods 

Li et al. (1993) [73] presented a knowledge-based approach to automatic classifica- 

tion and tissne labeling of MR images of the haman brain. Their system consists 

of two mmponents: an unsupervised clustering algorithm and an expert system. 

MR brai. data were îùst segmented by the unsupervised f n z y  c-mean clustering 

(WFCM) algorith, then an expert system located a landmark tissne or cluster 

and analyzed it by matchhg it with a model. First they sepsrated the SM tissues 

using a quadrangle model for the head and applying 'Tl?" and uELSE* d e s .  such 

as: 

a b (The number of the foreground pixels within the quadrangk is small) 

a THEN (It is a skull clsss) 



a ELSE (It is a class of white or gray matter) " 

They used diffkrent models for white matter, CSF and gray matter, and split them 

according to th& shape and tissue stnictures. A polygonal approximation model 

dong with rules specific to each tissue dass was presented to segment the ventnde 

area and the CSF. They also proposed an approach which was semi-supervised 

FCM. In this approach the information about the known dusters (labeled tissues) 

was &en to UCFM, essentially, using the cluster centers of the known tissues for 

initiabation of dristers. I n i t i ~ a t i o n  has major eEects on how fast FCM converges 

and how accnrate a result it provides. The authors used different variables as 

thresholds, bnt did not provide any information on how to validate them. 

2.1.5 Rule-based segmentation met hods 

Raya (1990) [104] extracted feahves from PD and T2 MR images and used them to 

caldate confidence Levels for the properties of a voxel. Six simple low-level featmes 

were calcdated; 1) PDT2-Ratio (PD + T%) / (P  D - T2)) , 2) T2, 3) CSF gradient 

(magnitude of local gradients on T2), 4) (PD - T2)snbtracting T2 image intensity 

from PD image intensity, 5) (PD - T2)-Gradient ( Magnitude of local gradients 

on (PD - T2), and 6) PD, proton density image. The featnres were heuristically 

derived to enhance the separability of featmes and are dosely lùiked to the speafic 

brain areas to be segmented. Rules were then used to perform the segmentation. 

The &st d e  focuses attention by deciding what is foregrouml and background. 

Afterwards vely specific d e s  are applied to erttact areas of interest nithin the 

brain. Finally, additional d e s  are used to correct mistalces. 



2.1.6 Neural network based segmentation methods 

A backpropagation n e d  network was presented by Ozkan e t  ai. (1993) (951. 

This network consists of one input layer, one or tao hidden layers, and one output 

layer. FOUI digerent image modalities were used. In addition to Tl, T2 and PD 

weighted MR images, a CT image was also used as anotha featwe for the ANN 

dasisifier. The authors daim that the use of the three MR modalities is usefiil for 

the segmentation of soR tissues, and that the use of the CT image p e t s  a good 

segmentation of bony smictures and improves the separation of white and gray 

mat ter. The neural netnork r a s  sensitive to the sizes of the training set. However 

it pedormed better classification accuracy for the white and gray matter &ses 

than the MLC classifier when the size of the training sets were smd. For the CSF 

class both the ANN and the MLC classifie. faced reduction in the classification 

accuracy for large training sets. 

Dawant et  al. (1993) [26] reported a new approach to the correction of inter- 

slice intensity d a t i o n s  in MR images which enhanced the performance of baek- 

propagation neural network ciassifiers designed for the segmentation of the images. 

They presented tao different methods for the correction of intensity variations and 

reported results from sevaal studies. Two diffkrent techniques, namely "directn 

and "indirect" fit modeb, were proposed. h the direct method, an interpolation 

technique was used to fit the intensity sdace directly to the labeled points. Ih 

the indirect approach, a dassifier is trained on the labeled points, a preiiminary 

dassification of the images is performed, refkrence points were selected from these 

dassified images, and an intensity surface is fitted to these points in a least-squares 

sense. Th& indirect fit method was sensitive to tl;e training data. The difficulty of 

generating a reliable set of reference points to which the sarface could be fitted was 



a crucial problem. Because of this, the direct fit method was used in theu routine 

studies. The direct method fits an intensity correction sdace  direct1y to refkrence 

points selected by the user in the images. Their resuits show improvement in seg- 

mentation of MR images when nsing the backpropagation artScid n e 4  network, 

but the methods rely heavily on the user interactions and is fally supavised. 

2.2 Unsupervised segmentation methods 

2.2.1 Statistical pattern recognition approaches 

Bornans and Riemer (1990) [9] applied the Mm-Hildreth [55] operator for edge 

detection. They extended the zer~crossing edge detection scheme to three di- 

mensions and used a morphological filtering to recover 3D sdace of s h ,  bone, 

brain and the ventridar system fiom MR images. The Marr-Hildreth operator 

was approximated by a 3-D "Difference of Gaussian " (DOG). The authors admit 

that the convolution and the morphoIogical filtering are computationally expensive, 

and tirne consnming. They also reported problems in finding the correct borders: 

for example the gray-white matter border may be fonnd instead of the gray-CSF 

border. The authors conclude that for a fdly automatic process, knowledge-based 

methods should be used for the assignment of labels to the constitaents of the head. 

However, Raya [104] points out that the 3-D operations cannot be nsed directly if 

the scans have Werent spatial resolutions in different spatial dimensions. 

Alaux and Ri& (1990) [4] compared snpervised and unsupervised techniques. 

They used principal components analysis, supenrised Bayesian classification, and 

dustering techniques for classification and segmentation of MR brain images. No 

idormation was provided about the clustering scheme. The authors reported that 
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typically, both sapervised and ansapervised techniques perform at least as well as 

a trained radiologist in seg~nenting the images. However, no significant difference 

between the pedormance of the snpervised and the a n s n p d e d  methods was 

Haskovits (1990) [51], combined the Bayes h&uimu.m Likelihood classifier and 

an unsnpeMsed clustering algorithm (ISODATA) to ease the task of region draw- 

ing (labeling) and to start with more reasonable seed points for ISODATA. Such an 

approach was required since the distance m e m e s  used in the unsupavised meth- 

ods are not necessarily clinidy relevant. The clustered regions codd be screened 

to form good training points for the Maximum Likelihood classifier. However, the 

underlying assnmption was again the normal distribution of the data. 

Liang (1993) [74] showed the application of Gaussian Markov random field 

(GMRF) for unsupervised segmentation of MR images. EIis method estimates the 

model parameters by fitting all voxel values to the mixture by asing the maximum 

Likelihood principle. He showed resuits from a few images and no evaluation was 

reported. He conduded that "the key feature of statistical approaches toward an- 

tomatically classifying tissues and segmentation of M R  images is determination of 

the number of image classes and the model parameters of these classes from the 

image data by a cornputet". 

Lnndavold et al. (1995) [79] presented a new method for segmentation of brain 

tissues and CSF in routine axial MR images. The algorithm uses information 

about anatomid boundaries and intensity value of tissues in the brain. They 

divided the head and brain into four regions and seven tissue types. Each tissue 

type was modeled by a multivariate Gaussian distibution. The k-means algorithm 

was used for initial estimation of tissue parameters. Their segmentation method is 

restncted to slice images where the btah tissues and CSF spaces form connected 



regions. Because of this assumption, segmentation fails when the structmes to be 

segmented are not connected or do not form dosed contour boudaries. They did 

not perform any ch ica l  eduation, though r e d t s  were visually satisfactory. 

Yan and Karp (1995) [129] presented a technique for 3D braùi image segmen- 

tation nsing an adaptive k-means algorithm. CSF, white matter and Gray matter 

were segmented in each image slice. Each tissue type was modeled by a Markov 

random field with the second order neighborhood in a 3-D lattice. They presented 

results from 2-D image slices; however validation of the technique was left for htnre 

work. 

2.2.2 Fuzzy clustering approaches 

Hall et al. (1992) [47] compared the neural network and fazy dustering techniques 

for segmentation of MR images of the brain. They implemented the fnzy c-means 

(FCM), and the approximate f u z y  c-means (AFCM) dgorithms for b z y  cluster- 

ing and compared results with the standard feed-forward badspropagation com- 

putational neural network cded  cascade correlation (FFCC). They daimed that 

supervised and unsnpervised segmentation techniques provide simüar results. They 

report that nnsnpervised fuzzy a l g o r i t h  were o b s m d  visnally to show better 

segmentation when compared with raw image data from voltmteer stndies. How- 

ever, for a more complex segmentation problem with tumor/edema or cerebrospinal 

fluid boundary, whese the tissues have similm MR re1ax;rtion behavior, inconsis- 

tency in rating among experts was observed, with k z y  c-means approaches being 

slightly preferred over feed-forward cascade correlation results aRa several itaa- 

tions in the selection of training regions. They daim both FFCC and AFCM/ FCM 

provide results acceptable to the radiologists, however, the advantages and limita- 
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tions of each approach were not diseiissed. 

Clark et d (1994) [18] presented a hybrid technique combining knonledge based 

approaches with unsupPervised f n a y  dustering to detect hunor abnormalities and 

label normal volumes in the brain. Each slice withïn an input volume was processed 

sepatately using the h z y  c-means algorithm to segment MRL data i ~ t o  ten &ses 

or regions. Afta faey clustering, an expert system used model-based recognition 

and image processing techniques on the ten classes to locate a landmark tissue and 

to look for expected featnres. The process was repeated until an abnormality was 

detected, or d the tissues in the slice are labeled. The authors conclude: "The 

absolute acctuacy of the segmentations has not been rigorously established. The 

relative accuracy appears acceptable as dismssed in the papa (p.730) [18In. 

2.2.3 Neural network based clustering approaches 

Amartme et d. (1992) [7] described the application of Hopfield neural network 

for the maltispectral unsupervised classification of MR brain images. They used 

"winner-take-alln nenrons to obtain a classification map asing PD and T2-weighted 

images of the head. The results were qualitative, and the authors reported the 

folloaing observation: "The technique is at present not robust enough to hande 

images compted by non-stationary sensitivity of the image acquisition and partial 

volume &ectsn ([7]-p.220). 

2.3 Discussion 

It is clear-fiom reviewing the recent literature on segmentation of MR images that 

there is no technique that is available to segment automaticdy MR brain images 



A number of the segmentation systems which appear in the literatme tend to 

be domain speafic, and often involve the use of some tricks in order to accomplish 

successfidly eaeh specific task (Raya, 1990 [104] ; Bomans, 1990 [9]; Li, 1993 [?3] ). 

Making a system work antonomously in al1 cases reqnires the system to learn and 

to be able to receive new information. Rule based systems often are not set np to 

leam new des.  

In response to this condusion, and as a way to incorporate application of lem- 

ing systems for the work desaibed in this thesis, the artificial neural networks based 

image segmentation and classification schemes were investigated. There are many 

situations in w h i h  a dinician would use more than one image modality to define 

an anatomical srnichue or tamor volume [92], [IOl]. By analogy, mdtispectd 

dassifkation techniques were adapted. Supervised and unsupavised classification 

schemes were utilized, and the architecture of the netual networks was designed. 

The segmentation techniques desaibed in this thesis a d h s  the problem of 

more basic segmentation methods by nsing a r t i f id  neural networks. The compu- 

tation t h e  and redaction of operator dependence are other issues which have been 

considered in this dissertation. The next chapters describe a system that performs 

feature ertraction, segmentation and automatic segmentation of MR brain images. 



Chapter 3 

Image Analysis Segmentation 

Met hods 

Introduction 

Image analysis is a process that can be nsed to 

patterns that are relevant to any image-based 

discover, identify, and understand 

task. Figure 3.1 shows a repre- 

sentative diagram of the most wmmon parts of an image andysis system [44]. 

Preprocessing knproves the qndity of the data by reducing artifacts and noise. 

Featnre extraction provides the measmement vectors on which image segmentation 

is based. Segmentation is the process by which an h a g e  is subdivided into its 

constituent parts or objects. Classification, description and recognition are steps 

fiom which objects or other entities of interest are extracted. Segmentation is one 

of the e r a d  steps in the overd process. 
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Figure 3.1: Components of an image analysis system. 

3.2 Preprocessing 

. - cxmmfhmoa-, 
cokmQthd 

Preprocessing imptoves the quality of the data by reducing artifacts and noise. 

Examples of preprocessing are noise snppression by adaptive fdtering, contrast en- 

hancement, and image res toration. 

Input 

3.3 Feature extraction 

- - 

pé.mrr && 

Feattnes that can be extracted from the image form the basis for Mage segmen- 

tation. These feahires can bel for example, pixel intensities, edges or textures. 

Rather than using all the information in the images at once, feature extraction 

and selection breaks d o m  the problem of segmentation to the gronping of feature 

vectors. Selection of good features is the key to successful segmentation. This issue 

is stiU under investigation (201. 

image. 

i 

Many segmentation approaches use the gray scde values of the pixels [21], [54], 

[47], [as], [123]. The pixel intensity as a feature vector can be ob t ained from a single 

spectral image (i.e., Tl, T2 or PD images) or a multispectral representation of the 

object fiom the same anatomicd location. If more images become adable,  they 

can simply be added to the feature vectors to fom a higher dimensional featare 

space. The advantages of higha dimensional feature space will be discussed in the 

next section. 

- . 

The use of edge detection methods have ben reported in [9], [31], [Ilg], (1271. 

. - segmentati-& 
* 

- 



Figrne 3.2: (a) : smooth, (b) coarse, and (c) regular textures. 

For segmentation, edge detection can be used when the gray-levels of the boundary 

between two regions are relatively distinct. This means that the regions in ques- 

tion should be stlfficiently homogen&ns so that the transition between tao regions 

can be determined on the basis of gray-level discontinuities alone. Another fea- 

tme is texture [37], [106]. However, texture features are mainly applied on a large 

number of pixels ratha than pixel by pixel [37], [106]. Although no formal defini- 

tion of texture exists, intuitively this description provides measnres of properties 

such as smoothness, coarseness, and regularity (Figure 3.2 shows some examples). 

The three principal approaches used in image processing to describe the texttxe of 

a region are statisticd, structural, and spectral [28]. Statistid approaches yield 

characterization of textures as smooth, coarse, grainy, and so on. Structural tech- 

niques deal with the arrangement of image primitives, mch as the description of 

texture based on repniarly spaced pardel lines. Spectral techniques ate based on 

properties of the Fomier spectrum and are used primady to detect global periodic- 

ity in an image by identifying high-energy, narrow peaks in the specenim. Texture 

features necessarily derive from a large number of pixels usually size of (8 x 8) to 

(64 x 64); hence it is not suited for pixel dassification [31], [44]. 



The pixel intensities in a ne ighbohd  can be used as an additional feature. For 

example, the mean and standard deviation of p k b  in a region of (3 x 3) attempt 

to quantify the textare of that region. The nine eiement fe8tnre vector can &O be 

obtained using the eight nearest neighbors aroupd the centered pixel. 

Feature selection becomes important if the dimensionality of the data affects the 

computational load; howeva, the criteria for feature extraction and selection have 

not been extensively studied but will become an important area as the number of 

featares increases due to advances in MR imaging methods [201. 

3.4 Image segmentation techniques 

The fiterature on MR Mage segmentation can be ronghly divided into two cab 

egories: 1) a single spectral image segmentation, 2) mnltispectral image segmen- 

tation. In the former category, a single image snch as Tl, T2, or proton densiky 

weighted Mage d be used while, in the later category, multiple MR images ob- 

tained on the same 1evel in the object bue using different acquisition parameters, 

and hence with dinerent gray scale contmsts will be employed. 

3.5 Single spectral image segmentation 

3.5.1 Segmentation met hods based on t hresholdkg 

Single image segmentation rnethods which have been applied to the problem of MR 

image segmentation can be subdivided as f o h s  (Fig. 3.3.) One of the simplest 

techniques for segmentation is the partitionhg of the image histogram by using 

single or multiple thresholds. Generally, multiple thresholding is less diable than 
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Image segmentation techniques 

Single Spectral 

Edge detection and I I Region growing, 
Boundary tracing splitting and merging 

Figtue 3.3: Classification of single spectral image segmentation methods. 

single thesholding, because it is dif6cult to establish multiple thresholds that &ec- 

tively isolate regions of interest, however, if the histogram can be well partitioned, 

a very "clean" segmentation can be achieved. 

Figue 3.4 shows an example of rnuitilevel thesholding in which the histogram 

can be partitioned very well, and three diffaent clasters csn be fonnd. Figure 

3.4(a) shows four planes tkough a peeled hard-boiled egg in gelatin obtained 

using a fast spin echo gradient sequence (TE/TR= 251500 ms). Figures 3.4(b) 

and 3.4 ( c )  show the image histogram and the result of segmentation respectively. 

ki this example the thresholds are set to 50 (sl) and 160 (s2). Segmentation is 

accomplished by scanning the image pixel by pixel and labelhg each pixel as gelatin 

(0) , egg-yolk (100), or egg-rhite (200) depending on the gray level of the pixel. 

Assuming f (x, y) is the gray level of pixel (x,y), then the thresholded image g(z, y) 
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Figure 3 -4: (a) : Ogginal image (b) image histogram and, (c )  resdt of segmenta- 

tion. 
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Figure 3.5: (a): Original image, (b) image histogram, and ( c )  expmded image 

histogram . 



CHAPTER 3. IMAGE ANALYSIS SEGMENTATION METHODS 

is dehed as 

As indicated eslier, the mccess of this method depends entirely on how well the 

histogram can be partitioned. In order to inutrate the problems associated with the 

mdtüevd thresholding technique for the segmentation of MR images of the head, 

an example is given in Fig. 3.5. Figure 3.5 (a) shows a plane tkough the head of a 

human obtained using a Tl weighted technique, and Fig. 3.5 (b) the corresponding 

histognun. As can be seen, the histogram can be partitioned ody into h o  regions 

(background and whole head) , thedore, the tllstogram thresholding by itself cannot 

be used for the segmentation. 

3.5.2 Edge based segmentation met hods 

An edge is the bonndary between two regions in an image with relatively distinct 

gray-level propaties. Usndy for the edge based image segmentation, the assump 

tion is that the regions in question are sdiciently homogeneous that the transition 

between two regions can be determined on the basis of gray-level discontinuities 

alone. 

The basic idea undalying most edge detection techniques is the computation of 

a local derivative operator. Gradient operators, Laplacian (second o rda  defivative) 

and Mm-Hildreth operators are the most well known edge deteetion operators [55], 

[119]. The Marr-Hildreth opaator is based on the convolution of an image with 

the Laplacian of a 2-D Gaussian fanction (h(z ,  y)) 



where a, the standard deviation [Ml, is a fke parameter which defines the smooth- 

ness of the h c t i o n  V2h. a also defines the zero crossings of the fanction V2h 

(&z2 + y2) = kn). The Laphcian of h (that is, second derivative of h) with 

respect to z and y is 

One of the properties of the Marr-Eildreth opaator is the smoothness it in- 

trodnces in the image which has the dect  of reducing the noise and of providing 

better performance for edge detection. 

Genaally, edge detection schemes d e r  from incorrect detection of edges due 

to noise, over and under segmentation, and variability in threshold selection in the 

edge image. These schemes tend to work weU in cases involving images with sharp 

intensity transitions and relatively low noise. As an example, the application of the 

Marr-Hildreth operator for edge detection and segmentation is presented iu Fig. 

3.6 The original Tl weighted image of a head is presented in Fig. 3.6(a). The 

result of coavolving that image with the hinction V2h is shown in Figure 3.6Cb). 

The zen> crossing operator is nsed to locate the edges. The resdt is shown in Fig. 

3.6(d). Before applying the zero aossing opaator a binary image is created by 

setting ail negative pùel values in Fig. 3.6(b) to bhck and all positive values to 

white (Fig.3.6 ( c )  ). The zero.crossing operator identifies the boundaries between 

the black and white regions and locates the edges properly. 

Figures 3.7(a), 3.7(c) and 3.7(e) are examples of MZUI-Hildreth opaator with 

different values of o, whieh shows the degree of blarring and smoothness introduced 
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Figure 3.6: (a) : Original image, (b) resdt of convolving (a) with V2 h, (c) result 

of making (b) binary to simplify detection of zero crossing; (d) zero crossing. 

by the Marr-Hildreth operator. As-can be seen, the Marr-Hildreth operator provides 

a "reasonable" estimate of edges. However, it is sensitive to noise and to different 

threshold settings, and cannot provide a good segmentation result in all cases. The 

effect of noise can be seen easily in the image background. Generally, edge detection 

techniques cannot be used by themselves and need to be combined with other 

techniques to overcome these problems. Bomans et al. [9] combined morphologicai 

filtering with the Mm-Hildreth operator for edge detection and segmentation of 

the MR images of the head. The method reqnired manual labeling and editing of 
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(4 (f) 

Figure 3.7: (a) : Mm-Hildreth operator with a = 3.5; (b) zero erossing; ( c )  Man- 

EIildteth operator with o = 4.5; (d) zero crossing; (e) Man-Hildreth operator with 

O = 5 and (f) zero crossing. 
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the regions to generate satisfactory 3D displays. 

A similar approach to edge deteetion is bonndary hacing [SI. The operation is 

as follows: an operator identifies a pird in a region to be ontiined. The method 

then iinds a point on the boundary of the region and fonows the bonndary from 

that point. Other investigators describe a boundary trachg method nsing similar 

schemea for noisy brain sections with indistinct boundaries [127], however, a good 

initial guess for the bonndaries is reqnired. In general boundary tracing methods 

are Likely to be restricted to segmentation of large, w d  defined structures. 

3.5.3 Region-oriented segmentation met hods 

Region growing is a procedure that groups pixels or subregions into larger regions. 

The simplest of these approoches is pixel aggregation, which starts with a set of 

"seed" points and fiom these grows regions by appending to each seed point those 

neighboring pixels that have similar properties (mch as gray level, texture, color). 

Cline et 1 [ 2 2 ] ,  osed seed growing to extract the brain d a c e .  A human opera- 

tor was required to select empincally seeds and thresholds. Pixels around the seeds 

were examined, and included in the region if they were within set thresholds. Each 

added pixel then became a new seed whose neighbors wae inspected for inclusion in 

the region. Some researchers have used tegion growing and comectivity algorithms 

to enhance the results of segmentation. It can be used as a post-processing step 

to rednce the noise in the segmentations and improve the appearance of the 3D 

reconstruction [23]. R.esults obtained with region growing are generally dependent 

on the user (operator) settings. As with all single image segmentation methods, in 

practice only well defined regions can be identified robustly. 



Figure 3.8: Classification of multispectral image segmentation methods. 

3.6 Mult ispect r d  image segmentation 

The approach to the segmentation of mdtispectral MR studies can be subdivided 

into tao categories: sapervised techniques, or unsupemised (clustering) techniques 

(Fig. 3.8). 

The bold arrows in Fig. 3.8 show the spproaches which have been considered for 

MR image segmentations in this thesis. All methods will be discnssed in details in 

the next tkee chapters. The most common approach for mdtispectral MR image 

segmentation, pattern recognition, a supavised techaique wil l  be disctxssed briefly 

in this section. 
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3.6.1 Patterns and pattern classes 

A pattern is a quantitative or structural description of an object or some 0th- 

entity of interest in an image. Once patterns have been definecl, the next step is 

to represent patterns in vector form, and then se& approaches for gronping and 

assigning pattern vectors to different pattern classes. The principal approaches are 

minimum distance ciassifiers, Bayes classifiers, and n e d  networks [55], [44]. 

A pattern dass is a category deterraineil by some given attributes of patterns 

that are the membexs of the dass. For instance, in ont case a pattern is a vector 

of intensity values comesponding to the same voxel as: 

where T l(zoi go), T2(zo, yo), and PD(xo, yo) are the intensity values at (xo, yo), 

in Tl, T2 and PD MR images respectively. The feature vector can be extended 

to include some other attributes (Le. neighbo~g pixd intensities, other image 

modalities such as CT or PET), but to have a proper representation of the object 

the elements of the patterns must belong to the same pixel. Therefore the images 

used mast be registered to the accuracy of a pixel. 

Once a pattern representation is defhed, the next step is to select a method to 

discriminate one class from another. If the data are purely nnmerical, a common 

way is to use decision fnnctions. Since it is easier to vimalize tno dimensional 

intensity space, let us assume that the input patterns have h o  components, snch 

as Tl and T2. Assume that there are tao classes of tissue patterns Y*n and "on 

which are distributed in the TLT2 space, as depicted in Figare 3.9. Let n = (zl, x2)' 

represent the Tl & T2 parametas and the fnnetion d : S2 RZ S. Let the fnnction 

d ( x )  = wlTl + w2T2 + ws be the linear decision boundary, where the w's are the 

decision fnnction parameters and Tl, T2 are the genaal euordinate variables. In 
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Figure 3.9: A simple decision fiuiction for two pattern classes 

Figure 3.9, any pattern Y*n belonging to class * Kîn. yield a positive quantity when 

substituted into d(z )  and similady patterns "on that belong to class O will yield 

a negative quantity when substituted into the hc t i on  d(z). Thedore d ( x )  can 

be used as a decision (or discriminant) fundion for a given pattern y of iinloiown 

class. We may Say that y belongs to class X if d(y) > O, or to dass O if d(y) < 0. 

These concepts are not restricted to two classes or linear decision nuictions. One 

can use more classes and non-linear decision functions. The stlccess of this kind of 

pat tem classification scheme, however, depends on two factors: 1) the shape of the 

decision hc t ion  d(z), and 2) the ability to determine the coefficients of d(z). If 

more than tao features are used, the decision function can be of the form: 

where W = (wl, w2, ..., wn, w,+~)' and X = (zl,zt, ..., s,+~)'. ki general vector W 

is called a weight or parameter vector. A weight vector of size n defines a hyper- 

plane in n dimensional space. If there are M classes and each class is separable 

fiom ail the others by a single decision surface, there wi l l  be M decision fnnctions 
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as: 
[ wx>o zE% 

di(%) = for i = 1, ..., M 

a where Wi is the weight vector aosociated wïth the ith decision fiuiction, and 

is the ith dass (1191. 

In practice however, it is difficult to separate a class from all the others nsing a 

single decision fnnction. It is relatively easier to find decision fanetions that separate 

the classes pairwise at the cost of increasing the namba of decision functions to 

find. In this case, there are M(M - 1)/2 (the combination of M classes taken two 

at a tirne) decision sudaces. The decision fanctions here are of the form 

and have the property that, if z beiongs to class q, then 

dij(z) > O for j =  1 ,..., M, and 3 f i .  (3-7) 

The decision fùnctions also have the property that d&) = -dy(x). Furthermore 

dii(x) can be shown to be composed of hro decision hctions each of which is 

expressed as [119]: 

4 ( 2 )  = 4 ( ~ )  d j ( z ) .  ( 3 4  

In this case, a pattern x belongs to d a s s  ci if 

Theoreticdy, one can always find decision boudaries, if no two classes share iden- 

tical pattern vectors. However, the complexity of the boundaries may vary fiom 

simple lines to non-linear sdaces. 



Ofken in practical applications the pattern classes are not M y  separable within 

economic or technical constrains, which has led researchers into approximations to 

the deusion hctions. One convenient way to genedize the h e a r  decision fnnction 

concept is to consider decision fanctions of the fom 

where k is the dimension of the t r d o r m e d  featnre space and fi(z) : 92" + 32 for 
i = 1,2, . . . , k are real, single-valued fanctions of the pattern z E Sn. There are an 

infinite number of decision hct ions  that can satisfjr Equation (3.6), nsing various 

non-linear hinctions fi(z) for a diffaent k and a w vector. However, one can use 

the faet that these decision hinetions provide transformation into a new space in 

which everything can still be treated as linear. The vector pattern x is transformed 

into a new vector z* as: 

For example, in a two dimensional discrete space, while it is not possible to separate 

two classes of four points characterized by the "exclusive orn fanction , addition of 

a third dimension as a non-linear function of the tao inputs dows the separation 

of the two classes using a Iinear surface in tbree-dimensional space (see Fig. 3.10). 

The following conclusions can be made &om the above (3.11,3.12) equations: 

1) If the sample d a s s  points can be transformed into a higher dimensional space 

using non-linear transformation fnnctions of the initial input space in which the 
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Figure 3.10: Exclusive or problem. Two ciasses &On and %ln are not Iinearly separable in two 

dimensional discrete space, With an additional nonlinear function it becornes possible to separate 

the two classes h e d y .  

transformed points can still be considered as being weU distribnted, it is eaUer to 

find a set of decision functions to discriminate the classes. 2) In order to increase 

the possibility of finding a decision boundary, the featnre space dimension can be 

increased when the nnmber of classes to be separated is at least one more than 

the dimensionalify of the feature space, provided that the new input is not a linear 

combination of the exïs ting dimensions. 

3.6.2 An example of multispectral Mage segmentation 

In order to illustrate the multidimensional pattern recognition approach that has 

been introduced, a simple example for segmentation of MR images has been chosen. 

In the foIloaing example the minimum distance (MD) classifier has been applied to 

the problem in hand. Resdf s nsing single spectral MR images versus multispectral 



MR images are illustrated in Figure 3.11, 

In the minimum distance classifier, each pattern dass is represented by a pro- 

totype which is a mean vector mi 

1 

where Ni is the nnmber of pattern vectors from dass wi and the sammation is taken 

oves these vectors. The class membaship for an rinknown pattern z dl be fonnd 

by meamring the Eudidean distance between vector x and prototypes nt+ Then 

pattern z will be assigned to class wj if it has the minimum distance to W j .  The 

Euclidean distance is 

Fig 3.1l(a) ,(b) , and (c) show the original PD, T2, and Tl weighted images 

of the brain respectively. Fig 3.11(d) shows resdt of segmentation using only PD- 

weighted image. Fignres 3.11(e), and (f) illustrate the results asing two and three 

image spectral respectively. In Fig. 3-11 (a) features were selected fkom PD and 

T2 weighted images. In Fig. 3.11 (f ) all three images w a e  ased for segmentation. 

It is obvious fiom the resdts that asing multidimensional independent features 

will provide better classification and segmentation resdts. As can be seen in Fig 

3.11(d) ody two tissue classes were identified. In Fig 3.11(e), tkee tissue classes 

were identified having the same problem and in Fig 3. l l ( f )  five tissue classes are 

segmeated, though results are not completely correct. It should be noted that in 

this partidar example the training data is chosen from the same test data, that 

is why a simple minimum distance classifier perfom well for multispectral image 

segmentation. More details regarding test and training data will be presented in the 
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P L .  

Fignre 3.11: (a) : Original PD weighted image, (b) Tl weighted image, ( c )  T2 

weighted image (d) Segmentation nsing a PD-weighted image, (a) segmentation 

using PD and T2 weighted images (f) segmentation using PD, T2, and Ti. weighted 

togram for image (f) 
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next chapter, for non 1 close this chapter with a briefsnmmary and conclusion and 

continue the discussion of multispectral image segmentation in the next chapter. 

In summary, single spectral image segmentation methods may provide some usehl 

information, but g e n d y  are limited to relatively simple structu~es. For images 

with complex contrast and texture, mch as MR images of the head, more informa- 

tion is reqnired, and this is available in multispectral MM data sets. 

Pattern recognition ter_hniques such as minimum distance classifiers, Bayes clas- 

sifiers, and artificial neural networks appear generally to be suc ces^, for segmen- 

tation of brain MR images however, the important question is which approach can 

provide better segmentation results. Now that the theoretical aspect of mdtispec- 

tral pattern recognition is introduced, the next step is to h d  the best methodology 

for our problem. In the following chapters some of dassical pattern recognition 

techniques for classification and segmentation rrill be introdiiced. Results will be 

compared to the techniques which have been developed in the course of this study. 



Chapter 4 

Supervised Segmentation wit h 

LVQ Networks 

4.1 Introduction 

In this chapter supervised techniques for classification and segmentation of M .  

images will be discnssed. The application of a Learning Vector Quantkation (LVQ) 

Artificial Nenrd Network (ANN) wi l l  be introdaced. Theoretical issues will be 

discussed, and segmentation resdts aül be presented. A backpropagation ANN and 

a classical maximum likelihood classifier (MLC) wil l  be considered for cornparison. 

The architecture and design process of the network wiJl be given and resdts fiom 

each technique nin be compared. 
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4.2 Introduction to Vector Quant ization (VQ) 

Vector quantization (VQ) is a elassical signal-approximation method that usually 

forms an approximation to the probability density h c t i o n  p ( z )  of stochastic x E 

Rn using a fiaite number of scxalied codebook vectors wi E P,i = 1,2, ..., k. 
Once the codebook is chosen, 2 is approximated by h d i n g  the codebook vector w, 

closest to z . Typically, the codebook wi l l  be constrncted through a process called 

training or learning. During training, a set of data vectors, which is representative 

of the data that wïli be encountered in prackice, is nsed to determine an optimal 

codebook. Each en@ of the codebook is called a codeword. The data nsed to find 

the codebook are osnally called training data, and a set of such data fiom each 

class is cded a Utraining set". VQ can be viewed as a form of pattern recognition 

whhere an input pattern is approxhated by one of a predetamined set of standard 

patterns, or in other words, the input pattern is matched aith one of a stored set 

of codewords. 

A concept that is usefnl for the illustration of vector quantization methods in 

pat t a n  recognition and for neural networks in general is called Voronoi tessellation 

[45]. Figure 4.1 shows a hRo dimensional space where a finite nnmber of codebook 

or reference vectors are shown as points, correspondhg to th& coordinates. This 

space is partitioned into regions, bordered by luies (in general, hyper-planes) such 

that each partition contains a reference vector that is the %are& neighbor" to any 

vector within the same partition. These lines, or the mid-planes of the neighboring 

rekence vectors, together constitate the Voronoi tessellation. Note that, all vectors 

(h, &) in the same partition or c d  have the same reference vectors as their nearest 

neighbor. 
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Figure 4.1: Voronoi tessellation partitions for a two dimensional pattern space 

4.2.1 Vector Quantization for Classification 

The combination of VQ with classification is a natutal one because each technique 

can be designed and implemented using methods fiom statistical clustering and 

classification trees. The goal of snch a combination is to incorporate classification 

information into the codewords by classifving the codewords themselves during code 

design. By combining VQ and low-levd classification, certain featttres in an image 

can be Jassilied automatically. 

One c m  use VQ for classification by labeling al1 known data (vectors) as a 

training set and osing each training vector with its dass for classification purpose. 

A new vector will be classified by finding its nearest Endidean neighbor in the 

training set and then assigning the label of that nearest neighbor to the new vector. 

In this case, the entire training set is a codebook which can be extremely large. 

Although this can be considered as an application of VQ to classifier construction, 

the reduction of codebook size is needed. 
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I t js  not at all obvioas how the codebook vectors in Vector Qnantizatioa ought 

to be placed, if this method is used directly for classification, [66], [24], [84]. It 

has been reported in [n] that sometimes even one codebook vector per clas may 

be snfficient to define the optimal border for separating the dasses, and sometimes 

the optimal number and placement of the codebook vectors have no direct corne- 

spondence to the density fnnetions of each class taken separately. This issue is still 

under investigation, but no siknificant resnlts have been reported yet. 

Kohonen et d. [66], [?Il, [68], [69] , [70] proposed a varïety of learning vector 

quantkas (LVQ) to pedorm classification ming a VQ encoder and codebook. The 

encoder operates as an ordinary minimum mean sqaared error selection of a r e p  

resentative h m  the codebook but the codebook is designed to attempt to rednce 

classification error. Kohonen's general goal is to imitate a Bayes classifia with less 

complexity than other neural network approaches. Kohonen's approach ha9 been 

widely ased for snch disparate applications as the classification of speech sounds 

[27], ob jects in clut ter in synthetic aperture radar [49], [l26], [93] proteins [85], of 

bird songs [go], and of oceanic signals (421, [gl]. 

4.3 Learning Vector Quant izat ion (LVQ) 

Sever al researchers have demonstrated [66] ,[68], (31 ,[Il] ,[27] that Learning Vector 

Quantkation (LVQ) methods constitute a viable alternative to more traditional 

approaches; th& classification accuracy is at least as high as that of any other 

Artificial Neural Network (ANN) dgorithm, whiIe due to the simple computations, 

their speed in learning as well as in classification can be significantly higha. More- 

over they are very easy to use [6ï] ,[126] 

LVQ is a statistical classification or recognition method, its only purpose is to 
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define class regions in the kipat data space. A subset of simkly labeled codebook 

vectors wii l  be placed into eaeh class region, even if the ciass distributions of the 

input samples wodd overlap at the dass borders, the codebook vectors of each 

class in this algorithm can be placed in and shown to stay within each dass region. 

The quantkation regions, like the Voronoi sets in VQ, are defined by the midplane 

between neighboring codebook vectors. An additional featnre in LVQ is that for 

dass borders one eaa only take such borders of the Voronoi tessellation that separate 

Voronoi sets into different classes. The class borders thereby defined are piecewise 

linear. 

Fig. 4.2 (a) illustrates the distributions of two difktent tissue classes in (Tl, 

T2 and PD) space. If we assign a sabset of codebook vectors to each dass as 

shown in 4.2(b), then the tagk of assigning zj to a dass is simply the search 

for that codebook vector wi that has the mde~t Euclidean distance fkom zj. 

The sample x j  is thoaght to belong to the same daps as the dosest wi. The 

codebook vectors can be placed in a snch way that those belonging to dSerent 

dasses are not intmnixed, although the dass distributions of X overlap. Then 

only the codebook vectors that lie closest to the clms bordas are important to the 

optimal decision, obvionsly a good approximation of p(zlz E Ck) is not necessary 

everywhere. It is more important to place the wi into the signal space in such 

a way that the nearest-neighbor d e  a~ed for elassification minimixes the average 

expected misdassification probability. Figure 4.2 (b) illnstrates the distributions 

of codebooks. The open àrdes  represent the reference vectors of class Ci and the 

large black dots are reference vectors of dam C2. The decision border for LVQ and 

Bayes are shown in the figure by a solid and a broken liae respectively. 

The segmentation dgoRthm used in this thesis is based on the LVQ algorithm. 

Varions nehork topologies were designed and results fiom each network are pre- 
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Figure 4.2: LVQ and Bayes deusion border 

sented in Chapter 5. DSerent leambg coefficients were ntiked, and the one which 

presented fasta convergence and be t ta  redts was adopted. The technique uses a 

training set which consists of the intensity level of a region of interest in the MRI 

images. The idea is to generate a training set fiom expected tissue samples and 

create a set of codewords (entries of codebook). The codeword vectors then will 

represent each partidar tissue. Tissue classification WU be possible because each 

codeword in the codebook can be associated with one of the knom tissue classes 

used to constnict the codebook. The manner in which a codebook can be formed 

to represent aectively the tissue classes rrill be disased in the next chapta. In 

the following sections the theoretid aspects of each classiiier used in this thesis 

will be disctlssed. 
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+ + + 

Figure 4.3: Topology of LVQ ANN 

4.3.1 LVQ ANN Classifier 

LVQ is a classification nehrork that consists of two layers. This ANN classifies 

patterns by using an optimal set of reference vectors or coderoo~ds. A codeword is a 

set of connection weights fiom input to output nodes (Figure 4.3), (the &de which 

represents the neuron is d e d  a node or a processing element (PE)). The set of 

vectors wi, wz, ..., wi is called a codebook in which each vector wi is a codeword for 

Vector Quantization. If several codewords are assigned to each class, and each is 

labded with the correspondhg clam symbol, the dass region in the z space (input) 

is defined by simple nearest-neighbor c o m p ~ o n  of z wïth the codewords w;; the 

label of the closest wi defines the classification of z. 

To define the optimal placement of w: in an iterative learning process, initial 
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values mnst be set. The next step is to determine the Iôbels of the codewords by 

presenting a number of inpat vectors with lcnown classification and assigning the 

codewords to different classes by majority voting accordhg to the fiqnency with 

which each wg ia closest to the calibration vectors of a particnlar class. 

The dassilication accuracy improves if the wà are npdated according to the 

algorithm desaibed b e b  [66], [67]. The idea is to pull codewords away fiom the 

decision sdace to dematcate the class borders more accnrately. In the fouowing 

algorithm we assume wi is the nearest codeword to the input vector z (Eq. 4.1) in 

the Enclidean metric; this, then, ais0 defines the classification of z. 

where the Eudidean distance between any two vectors X and Y is defined as 

The following aigorithm shows how the codewords d be updated. 

if z is dasssed correctly (if the label agreed with codeword assignment), 

if the classification of 2 is incorrect (if the label does not agree with the 

codeword assignment ) , 

3. and 

wj(t + 1) = wj(t), 
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a (the 0th- codewords are not modifieci). 

Here a(t) is a Ieaming mte sach that O < a(t) < 1, and is decreasing monotonically 

in time (Kmt+, a(t) = O). After a d u e n t  number of i t d i o n s ,  the codebook 

typically convages and the training is terminated. There are t r o  0th- options for 

the LVQ whïch wil l  be discussed later and the diffaences between the two versions 

and original LVQ wiU be explained- 

The classification decision in the LVQ2 algorithm [53], [69] is identical to that in 

the basic LVQ. While in the original LVQ only one reference vector is updated at 

a time, in the LVQ2 algorithm h o  vectors are updated at each step, namely, the 

winner and the runner-up (one belongs to the correct claps and the other to a m n g  

class). The purpose is to shift the midplane of these h o  vectoxs directly to the 

zone whae the Bayes border shotdd lie. An algorithm that can easily be seen to 

work in that direction is the following. 

Fkst define a symmetnc whdow (Fig- 4.4) wïth nonzero width amund the 

midplane of neighboring teference vectors wg and wj. Let wg belong to dass Cg 

and W j  to class Ci , respectivdy. If the corrections are made according to equation 

4.5, it will be easy to see that for &ors falling into the window, the corrections of 

both w, and wj,  on the average, have sach a distribntion that the midplane moves 

towards the aossing s d a c e  of the ciass distributions, and thus asymptotidy 

approximately coincides with the Bayes decision border. 
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LVQ2 in one dimension 

Figure 4.4: LVQ2 in 1 dimension 

where w, and wi are the tao dosest codebook vectors to z, whereby z and 

wj belong to the same class, while z and w, belong to différent classes, re- 

spectively. Fbrthermore, z mut f d  in the "windown. 

Assume that dg and di are the Eudidean distances of x from Wg and Wj, 

respectively; then z is defined to fall in a window of width s if, 

do dj 1-s min(-, -) > s where €=- 
di dg l+s 

The size of s depends on the numba of available training samples; Values for 

s around 0.2 to 0.3 are recommended [68]. If the window is made too narrow, the 

training result will s&er fiom low statistical accuracy due to the reduced number 

of corrections. 

LVQ3 Algorithm 

The LVQ2 algorithm is based on the idea of dinaentially shifting the decision 

borders toward the Bayesian limit, whüe no attention is paid to what might happen 
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to  the location of the uj in the long run if this process is continued. Thaefore 

a correction is necessary to ensure that the w j  continue approximating the class 

borders, at least roughIy. These ideas have been mmbined in an algorithm called 

LVQ3 with improved performance. 

The LVQ3 algorithm updates weights according to the following des: 

where wo and wj are the ~ W O  closest codebook vectors to x ,  where z and wj be- 

long to the same class, while z and w, belong to diffaent classes, respectiveiy. 

Furthermore, z mnst fall into the "window". 

0 foi k E g, j ,  if x,wj,  and w, belong to the same class. 

The value of r depends on the size of the window; for window sizes of 0.2 to 0.3, 

values for T between 0.1 and 0.5 have been secommended [70]. T can be smder 

for narrower whdows. This algorithm seems to be ~~stabi l iz ing,  Le. the optimal 

placement of the mj does not change in continual learning. 

4.3.2 DWerences between basic LVQ and other options of 

LVQ 

The three options of LVQ were atilized in this thesis for ciassikation and segmen- 

tation of MR brain images. n o m  results obtained for each option no significant 
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différences between aecuracies were observed, thongh the compatationd tirne for 

LVQ2, and LVQ3 were slightly higher than original LVQ. Kohonen [68] also reported 

simi lar  conclusions when he nsed LVQ for some statisticd pattem recognition tasks. 

Results of using the LVQ ANN with the modification of leaming parametas and 

initialization orül be presented in ehapta 5. 

4.3.3 Backpropagation ANN classifier 

The backpropagation ANN is used in this thesis for segmentation and classification 

of MR images in order to compare the performance of an LVQ classifier with one of 

the n e d  network techniques used in the literature. Baùcpropagation neural net- 

works are feed-fornard neural networks. A backpropagation network can be made 

of a single or multiple hidden layers of nodes. Figure 4.5 shows the topology of a 

typical backpropagation neural nehrork. All the nodes that are not used either for 

input or output are called hidden nodes and the layer they fona is cded a hidden 

layer. A backpropagation nehrork has twvo modes of operation: 1) forward p o p  

agation, 2) backpropagation. Both of the modes are execnted during the learning 

(training) phase of a backpropagation network, but only fornard propagation is 

performed dnring testing, or in actnal use of a trained backpropagation network. 

Two fnnctions determine the output value of a node. The first one is a Iinearly 

weighted snmmation of the incoming signals h m  other nodes plus a bias, and the 

second is a nonlinear activation fimction (Figure 4.6). Each node computes the 

weighted snm of the inputs plus the bias weight and passes this suxn through the 

activation fimction to caldate  the output value fiom the hidden layer as 

N 
OG = f (net,) = f (C w f i ~ i ,  + B j )  

P=l 
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Hidden Layer 2 

Figure 4.5: Topology of backpropagation ANN 

where Xi = (zii, ziz, ..., za) is the ith input d u e  for the neuron and Wj is cor- 

responding weight. Bi is a bias tenn. The bias term sometimes helps convergence 

of the weights to an acceptable solution; however, its use is largely a matter of 

experimentation with the spedc application. 

The activation fwiction f (*) typidy is a sigmoid hct ion of the form f (2) = 
l ( z  is an arbitrary variable) which maps the potentially infinite range of the 1fup-= 

weighted snm to a limited, finite range. Dnring the training phase activations of 

input uni ts  are set to values deteLPUned by the training data, and activations of all 

other units are calculated using f (2). The différence between the desired output 

value (target) and the a h a l  output (obsaved) is nsed to change the weights. The 

esror fanction Es for a pattern is defined as: 
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Eetj 

X 
Summet Output 

Figure 4.6: Mode1 of artScid neurons in a feedforward neural network. 

where subscript "in reférs to the ith training vector, and "j" refers to jth output 

unit. M is the nambet of nodes, y, is the desised output (target) and O, is the 

observed output (achal output) fkom the jth unit. The backpropagakion algorithm 

is a supervised learning algorithm which performs a gradient descent on a squared 

error en- sudace to amive at a minimum. The key to the use of this method 

is the calcdation of error values for the hidden un i ts  by propagating the mors 

bahard  through the netnrork. The genaaliaed delta d e  implements a gradient 

descent in E t~ m h h k e  the [log]. The gradient of Ei with respect to wjp is 

Let the =or 6, = (y, - oij) . BY n"ng a gradient descent technique [40], weight 

changes iterativdy as: 
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where 

&w% = @ i j ~ i p  (4.13) 

where /3 is the learning rate. The d e  for learning may be modified for faster 

convergence by adding a momentum rate as follow: 

&iijp[t + 11 = P&jo;p[t + 11 + qAim,[n] (4.14) 

hae 7 acts like a fdta to avoid sndden changes due to codicting data in the 

training set. 

When a hidden laya is used, the output error G, changes as follows: 

f'(n&j) & 6 , ~ ~  for a hidden node 6.; = 
-a ( (ycj - q)f f (netG)  for an output node 

With f the sigmoid activation fnnction, equation 4.15 can be rewritten as: 

4.3.4 Maximum likelihood classifier 

This classifier is based on Bayes deusion d e  which rnmthizes the a posteriori 

probabilities. It assigns a pattern X to the dass if 

p ( ~ l X )  is the conditional probability of class i given the observation X. 
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Using Bayes' theorem, and assnming equal probabüity for esch dass,  X is allocated 

to dass  i if 

~(xk) > ~(xlei) VA j # i (4.18) 

If we assnme a normal probability density for X in each dass then p ( X 1 ~ )  rrin 

be 

0 where n is the dimension of the featnre vector X and 

d is a distance meagnre described by 

$ = (X - ~#c;'(x - mi) 
where mi and Ci are the mean vector and covmiance matrix for dass i respectively. 

Classification of each pixel is based on the following expression: 

In this chapter snpervised techniques for classification and segmentation of MR im- 

ages were discussed. The application of the LVQ Artifiaal N e d  Network (ANN) 

was introduced. Theoretical issues regarding LVQ ANN, maximum Uelihood clas- 

sifier and baeltpropagation ANN were dismsed. The resuits of segmentation of 

MR images using each of these techniques wiU be presented in chapter 5. The ad- 

vantages and disadvantages of each technique and part of the contnbntions of this 

thesis will  be discussed in Chapter 5. 



Chapter 5 

Result s of Supervised techniques 

5.1 MR Brain Images 

Twenty nine complete studies were obtained iiom the MRT department at McMaster 

University Medical Center for the parpose of this thesis. An information ident-g 

the subjects was stripped before we had access to the data. The subjects were 

stndied on a GE 1.5T MR scanner. The axial field of view was either 20 cm for the 

Tl weighted sequences, or 22 cm for the PD and T2 weighted sequences. Images 

were reconstructed onto a 256 x 256 matrix, so that the size of a pixel was either 

0.78 x 0.78 mm2 or 0.86 x 0.86 mm2. Because the Tl weighted images were acquired 

with a field of view of 20 cm, they were resampled to ensure accurate registration 

with the o tha  images. Each slice was 5 mm thick, with a 2.5 mm inter-slice spacing. 

Typkally, 18 slices would cover the brain fiom the vertex to the base. Tkee pulse 

sequences were used: TRITE = 600 ms / 16 ms for the Tl weighted images; and 

TRITE = 2916 ma/ 17 ms for the PD-weighted images; and TRITE = 2916 ms/ 

119 ms for the T2 weighted images. Six selected slices from the brah of a normal 



Slice 1 

Slice 2 

OF SUPERWSED TECHNIQUES 

Slice 3 

Figure 5.1: Six selected slices fkom the brain of a normal snbject 

subject are shown in Figures 5.1, and 5.2. 
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Slice 4 

Slice 6 

Figure 5.2: Six sdected slices from the brain of a normal subject 



C W T E R  5. RESULTS OF SUPERVISED TECHNIQUES 

5.2 Segmentation using LVQ ANN 

5.2.1 Generating training data 

The first step for supervised tissue classification is to generate training data  In 

a typical experiment, the Tl, T2 and PD-weighted images are displayed on the 

cornputer saeen, one image at a time. Next, representative regions of interest 

(ROI's) for the target tissue classes are selected interactively on the cornputa screen 

using a mouse-driva intdace. By clicLing on the monse each rime, a sabimage 

is generated. The size of the sabimage is d&ed by the user. A typicd size for a 

subimage is 3 x 3 to 5 x 5 pixels. Subimages are generated for al1 images at the 

same anatomical spot when the aser clicks on the mouse. It is also possible for 

the user to select the region of interest fiom any of the 3 images on the screen. 

To d o w  the user to generate more training data from 0th- image dices, the 

program interactively asks the aser for this option. When the ROI's are selected, a 

data structure containhg the labels of the regions and the corresponding intensity 

vectors is created and stored in a file. The file which is created is then used to 

train the neural nehrorks. AR example of this process is shown in Figole 5.3 (a) . It 

illustrates the regions of interest for Merent classes. The resulting sample statistics 

are shown in Fig. 5.3(b). lkaining data were selected fiom several slices in the 

same study. 

5.2.2 Generating codebook data 

Using the algorithm described in Chapter 4, Section (4.3.1), the codebooks were 

generated fiom the training data. The following initiakation was made to accel- 

erate the process and generate a suitable codebook. 



Figure 5.3: 'bainhg regions and statistics for different classes: white matter (WM), 

gray matter (GM) , CSF, Bone, and skin k fat (scalp) 

Codebook initialization 

For the initiaiization of the codebook vectors, a set of vectors is chosen from the 

training data. AU the entries nsed for initialization mnst f d  within the borders 

of the corresponding ciasses, and this is checked by the k-nearest neighbor (k-NN) 

algorithm. In fact , in this step, the placement of d codebook vectors is determined 

h s t  without taking th& classitication into account. 

The k-NN method is nonparametric, in that it does not requke any knowledge or 

assumptions about statistical properties of the data [28]. The k-NN nile essentiaily 

relies on having a large number of (presumably) correctly labeled samples from 

each tissue dass. Figure 5.4 displays the geometry of this scheme. If we assume n 

vectors in the feature space rhich are labeled, then, ail that is needed is to choose 

the number of nearest neighbors (k) that defines the neighborhood of any unlabeled 



Fignre 5.4: The k-NN d e  classifier 

vector z 6 X, and to check some measare of distance, (d) betneen pairs of vectors 

in Sp, usudy the Euclidean distance 

One mast also choose a voting scheme, and often this is to accept a simple 

majority of the votes for any class represented by points in the k-NN neighborhood. 

IR Fig. 5.4, with h = 7 nearest neighbors having c = 3 dass labels, the point z will 

be labeled as a dass 2 pixel, because four of its nearest seven neighbors have this 

label. It is easy to formulate the ixnplementation ased in the examp1e as follows: 

1. Store training data X. Let n be the ntunber of vectors and c be the nnmber 

of classes. Let U be a (c x n) m a k  whose colamns (U(Jl, j = 1,2, .. ., n) are 

the known label vectors of X's elements. 

2. Choose k=number of neighbors to find. 

3. Choose d: any metnc (distance measnte) on RP. 

4. For each test pattern z: 
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(b) Find the colamns in U corresponding to the k-nearest neighbot indices 

l,2, ..., k. 

(c) caldate  the label vector U, for z with the labels of its k-nn's: 

(d) Calculate 

5- Continue for next z. 

The initiakation program then selects the codebook vector based on the desired 

number of codewords. Note that, the k-NNde  is nsed here just to filter the training 

vectors which w a e  labeled mistakedy by the user, or training vectors which were 

selected fiom the boudary between tissues. This initiakation is important because 

starting the network with a good esthate of location of each codeword hdps speed 

the learning convergence. 

The accuracy of classiikation may depend on the number of codebook entries 

allocated to each dass. DifF'erent sets of codebooks with 60 to 120 codewords for 

each set have been tested. There does not exist any simple d e  to find out the best 

distribution of the codebook vectors. We used the method of itaativdy balancing 

the medians of the shotest distances in ail  classes. Our prognun first cornputes 

the medians of the shortest distances for each c h s  and corrects the distribution 

of codewords so that for those &ses in which the distance is greata than the 

average, codewords are added; and for those classes in which the distance is smder 

than the average, some codewords are deleted hom the initialized codebook vector. 



Learning parameter 

The learning parameter, a(t), may be constant or may deaease monotonically 

with time ( t ) .  Two different leamhg factors were tried. It was fonnd from sev- 

eral experiments that the second learning parameter equation, 5.2, produced faster 

convergence and bet ter result S. 

When the codebook ha3 been initialized properly, training is started. 

5.2.3 Segmentation using t hree pixel int ensity value 

TWO different sets of feattues were used in this study: 1) intensity vaiues in Tl, T2, 

and PD weighted images 2) neighboring pixel statistics (mean & variance) dong 

intensity vaLues in Tl, T2, and PD weighted images. 



ln Fig. 5.5 the topology and structure of the LVQ network is shown. The three 

input nodes in the network are the intensity values in Tl, T2 and PD-weighted 

images. Each vector can be written as 

The number of output nodes is eqnal to the number of target tissue classes. In 

each of the cases presented in this chapter, the images were classified into seven 

classes: background, cerebrospinal fluid (CSF) , white mat ter ( WM) , gray mat ter 

(GM) , bone, scalp (fat and skin) and lesion or tumor (if present) 

An overall view of the whole segmentation process is shown in Fig. 5.6. Corn- 

plete segmentation results for those images which were shown in 5.1 and 5.2 are 

illustrated in Figure 5.9. Li Figure 5.10 and 5.11 the three tissues, white matter, 

gray matter and CSF are shown separateiy. 

5.2.4 Segmentationusingneighborhoodpixels 

To investigate use of other features in the images, in this approach codebooks are 

formed fkom a set of features obtained for each pixel in the original image. Input 

vectors consist of vectors of intensity value for the pixel (Le., T l(zi, yi)), mean 

(pzi,yi). and variance (u , ,~~)  of intensity values in a window of size 3 x 3, presented 

as follows: 

The number of input nodes in the network is equd to the number of featnres. 

The number of output nodes is e q d  to the number of target tissue classes. They 
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TI , R, PD 

Operator chooses tissue subregions 
on cornputer screen for training data 

1 

1 Convert Image Siices t o  - 1 

Train Classifiers on 
selected training data 

1 Classifier labels all remaining 

1 pixels fiom aii image slices 

Segmentation 

of Image complete 

Figure 5.6: Blodc diagram of entire segmentation process 



Figrue 5.7: Topology of LVQ network for 9 input featntes 

are: background, cerebrospinal fluid (CSF), white matter, gray matter, bone, scalp 

(fat and skin) and lesion or tnmor (if present). The networks were trained asing 

initial codebooks and tested for different sets of image slices fkom an individual 

without any brain abnormality, and one with a malignant glioma. 

Figure 5.7 shows the topology of our network for nine features for input vector. 

Topology of Back-propagation ANN 

t.ycr H*m= Q'w bya 

Figare 5.8: Topology of backpropagation ANN 



Segmentation of siice 1 Segmentation of slice 2 

Segmentation of slice 3 Segmentation of slice 4 

Segmentation of dice 5 Segmentation of d c e  6 

Figure 5.9: Segmentation results asing LVQ 



CHAPTER 5. RESULTS OF SUPERWSSED TECHNIQUES 80 

5.3 Results of backpropagation ANN approach 

Fig. 5.8 iliustrates the topolow of the netaork for seven classes and nine input 

features. Ln general the input valne% of a backpropagation network is scaled between 

O and 1 or -1 and 1 to opaste in the dynamic range of the sigmoid fanction. We 

chose the sigmoid fonction in the O to 1 range dehed as f(z) = l,&-z. The 
-= sigmoid fnnetion in the -1 and 1 ange is d&ed as: f (2) = :"-, which requires 

two more operations, a snbtraction and an exponential in the numerator which 

w d d  increase the computational time. Ideally an outpnt node is either one or zero, 

identifying the dass of a pattern when it is one, and zero whai it is not. However, 

the output nodes can take any value between zero and one and the largest vahed 

output node defines the dass of the input pattern. 

The dec t  of the learning parameter and the momentnm rate on the speed of 

convergence was investigated, and the b a t  combination was selected for classifica- 

tion and segmentation. The same training and test data were used for training and 

testing the network. The training was stopped if convergence was not reached after 

100,000 iterations. h order to investigate the impact of the topological parameters 

on both the speed of convergence and the classification acmacy several experiments 

were undertaken. Neural networks with one and two hidden layers wae generated, 

and the namber of nodes in each of the layers ras varied fiom 10 to 30. From re- 

sdts obtained in each test the best combination was selected for classification and 

segmentation of MR images. For nine input featares (neighboring pixels statistics) 

the backpropagation network with one hidden layet with 18 nodes in each layer 

and the learning rate of (P = .05) and momentum rate of (9 = 0.2) provided the 

best resdts. Simüarly for three input fatares (pixel intensity values from Tl,T2, 

and PD weighted images) the backpropagation network with one hidden layer with 
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9 nodes in each layer and the learnlig rate of (fl = -05) and momentam rate of 

(q = 0.2) provided the best results. 

The complete segmentation redts for those images which wae shown in 5.1 

and 5.2 are illustrated in Figure 5.12. The three tissues, white matter, gray mat ter 

and CSF are illmtrated separately in Figures 5.13, and 5.14. 

5.4 Result s of maximum likelihood classifier 

We compared our new technique with a conventional method, the maximum like- 

lihood classifier. Eqnal n prion' probabilities and normal probabiiity density h c -  

tions for the intensity values in each class were assumed. The same training data 

were used to find the mean and covariance ma*. Results are shown in Figures 

5.15, 5.16, and 5.17. The resdts for the maximum likelihood method depend heav- 

ily on the training data. 

MR data does not generdy support the assnmptions that underlie the ML 

method. Prelllninary resnlts pablished by Dudewicz et al. [29] indicate that al- 

though the distributions of Tl and T2 values can be considered as jointly normal, 

the distribution of proton density values is not normal. This is why MLC performs 

poorly. Although it might be possible to use the MLC nsing better assumptions or 

estimations, it is beyond the scope of this thesis to investigate the proper distribu- 

tions for proton density values. 
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5.5 Segmentation of abnormal brain images 

Figures 5.19, and 5.20 show the r ed t s  of segmenthg the MR images of a patient 

with malignant @orna. Results are s h  for the LVQ and badrpropagation a p  

proaches discussed in the earfier sections. Only tao representative image slices were 

chosen in this example. The original Tl, T2, and PD-weighted images are shom in 

Fig. 5.18. The f i s t  colnmn in Figures 5.19, and 5.20 shows the segmented images 

and second colamn shows the extracted regions of tumor. 

Discussion 

It has been found that backpropagation neural networks are very sensitive to the 

training set in MR image segmentation of the brain. Rom the results presented in 

sections 5.2, 5.3 and 5.4 it can be shomi that results of the badcpropagation ANN 

s u f k  from noise and mis-classification. Backpropagation nets provide adequate 

brain segmentations provided that the training data are good. They can learn ef- 

fectively on as few as 250 pixels per class in a 256x256 image using a multi-layer 

backpropagation network with between 6 and 18 hidden nnits, which means that 

training and testing are relatively fast. Efforts to h d  a tsniversal training set that 

would be u s a  on many different MR images have been made. However, because 

of the intensity variation across MR images, the backpropagation network codd not 

pedorm well every t h e .  If backpropagation networks are to be used foi segmen- 

tation of MR images, at least for now, reliance on operator intervention to select 

good training data for each tissue and each slice of data is crucial. The advan- 

tages of the maximum likelihood classifier is in the noaiterative training. However, 

the assumption of a certain probabüity dishibution of data was a weakness of the 



classifier. 

The weakness of backpropagation networb îs the indeterminate nambet of hid- 

den anits. The convergence of badrpropagation netaorks is dramaticdy dependent 

on the number of hidden units, and for most cases it was too ciifficuit to find the 

optimum namber of the hidden units. 

The LVQ was &O sensitive to selecting the namber of codewords, however, 

changing the number of codewords was not too crucial for acceptable resnlt. Se- 

lecting a large set of codewords could increase the misclassScation around the 

border of regions of interest, however, the remaining classified regions were accept- 

able. Also, LVQ was nsed in an adaptive fashion to npdate the codewords iiom one 

image slice to another image slke in one complete stndy. This idea is new and was 

a key for an accurate segmentation task. Tkeating the network as desaibed above 

suppressed the noise and caused the network not to be sensitive to the variations 

of gray-level for each tissue type between different slices. 

The training time reqaired for backpropagation networks was long- than the 

time reqnked for the LVQ. The compatational t h e  for LVQ ANN is on the order of 

seconds ( about 50 seconds learning and 10 seconds testing) while backpropagation 

ANN requires 10 to 20 minutes. The learning parameter P, and momentum q of 

backpropagation networks had a crucial role in convergence and accuracy of classi- 

fication task, and the best combination was found fier numbers of experiments. 

In case of abnormality, the segmentation of the images is complicated because 

the image featnires of the abnormal tissues may be vesy close to those of their 

neighbor normal tissues. Thetefore, abnormal tissues may be found in a normal 

tissue component after a segmentation. Abnormal tissues may also deform the 

geomehy of normal tissues. 
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In snmmary, in this chapka we have shown that normal and abnormal tissues in 

the brain can be recognized automatically by mdtispectral analysis of MR images. 

W e  conclude that LVQ ANN is a good choice for segmentation of MR images if 

implemented in an adaptive scheme. Our technique is adaptive and this allows the 

user to update codebooks so that classification acmacy can be imptoved. Resnlts 

show that tissue segmentation using LVQ ANN produces better and faster resdts 

than backpropagation ANN and the Maximum Likelihood method. It &O shows 

the LVQ n e d  network is a powafnl technique for MR image segmentation. 
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Slice 1 
A- % 

CSF CSF 

Slice 3 

CSF 

Figure 5.10: Segmentation of images using LVQ. Three tissues: Gray matta (GM), 

White matter (WM), and CSF are separated 



Slice 4 Slice 5 Slice 6 

CSF 

Figure 5.11: Segmentation of images using LVQ . Three tissues: Gray mat ter (GM) , 

White matter (WM), and CSF are separated 



Segmentation of slice 1 Segmentation of slice 2 

Segmentation of dice 3 Segmentation of slice 4 

Segmentation of dice 5 Segmentation of dice 6 

Figure 5.12: Segmentation resdts nsing ba&propagation ANN 



Slice 1 Sice 2 Slice 3 

CSF 

Figure 5.13: Segmentation results nsing backpropagation ANN, each tissue is shown 

separately 



Slice 4 %ce 5 Slice 6 

CSF 

Figure 5.14: A complete segmented image ushg backpropagation AN', each tissue 

is shown separately 



Segmentation of süce 1 Segmentation of slice 2 

Segmentation of slice 3 Segmentation of &ce 4 

Segmentation of slice 5 Segmentation of slice 6 

Figure 5.15: Segmentation results using MLC 
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Slice 1 Slice 2 SIice 3 

CSF 

Figure 5.16: Segmentation results using MLC, each tissue is shown separately 
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Slice 4 Slice 5 Slice 6 

CSF 

Figure 5.17: Segmentation results using MLC, each tissue is shown separately 
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Tl image T2 image PD image 

Figure 5.18: Images of a patient wïth malignant glioma 



Segmented image 

Figure 5.19: Segmentation results for a patient with a malignant glioma using LVQ 
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Segmented image 

Figure 5.20: Segmentation resdts for a patient with a malignant glioma using 

backpropagation ANN 



Chapter 6 

Unsupervised Segmentation & 

SOFM Network 

6.1 Introduction 

Neural network models for pattern recognition c m  be speafied as taro types, super- 

vised approaches and unsupewised approaches. The most famous msupervised a p  

proaches are the self organizing feature maps (SOFM) developed by Kohonen [67], 

and adaptive tesonance theory (ART) developed by Carpenter/Grossberg [lq). 

Systems such as SOFM and ART are based on biological studies of memory or- 

ganization and dynamics. The ART system has only recently been extended to 

describe contiauous dued input vectors, fnzzy ART, but studies indicate that 

replicable behavior of the system seems to be sensitive to the exact value of the 

parameters that need to be initialized to run the system (401. It has been shown by 

severai researchers [33], [Ml, [32], [$O], [loti], [77], [105], (971, [82], [120], [89] ,[98]. 

that the SOFM system of Kohonen is a strong candidate for continuous vahed un- 
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supervised pattern recognition- Kohonen's self  organizing feahire maps use a iinear 

update d e  for the weights, which makes this model compntationally attractive. 

In this chapter the application of SOFM for M y  automatic segmentation of 

MR images is c o n s i d d .  The SOFM nehmL with an additionat layer is designed 

for segmenthg and clustahg the regions of interest in the brain. To compare 

resdts obtained fiom this scheme with a traditional statistical pattern recognition 

method, the c-means algorithm is employed. The theoreticai bais for each approach 

is introduced in the following sections. 

6.2 Self organizing feature map 

"One important organizing principle of sensory pathways in the brain is that the 

placement of nenmns is orderly and often reflects some physical characteristic of 

the external stimulus being sensed [78In. For example, at each level of the audi- 

tory pathway, nave cells and fibers are arranged anatomically in relation to the 

frequency which extracts the greatest response in each nenron. This tonotopic or- 

ganization in the auditory pathway extends up to the auditory cortex [78], [60]. 

Although much of the low level oxganization is genetically pre-determined, it is 

likely that some of the organization at higher levels is aeated dnring learning by 

slgorithms which promote self organization. Kohonen (671 presents one such algo- 

rithm which produces what he calls s e l f  organiaing feahrre maps simîlar to those 

that occur in the brain. The algorithm will rnap a set of input vectors onto output 

vectors accordhg to some characteristic featare of the input vectors. A brief discus- 

sion of this ordering behavior follows. More d e t a  can be found in the monograph 

by Kohonen [?O]. 

The basic self organization feature mapping model consists of tao Iayers. The 
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Figure 6.1: Tao dimensional array of output nodes used to form feature rnaps. 

fist laya contains the input nodes and the second contains the output nodes. The 

output nodes are arranged in a h o  dimensional grid as shown in Fig. 6.1. Every 

input is connected extensively to every output node via adjustable weights. 

Let X = [zO, 21, ..., xN- JT be a set of N inputs in Sm such that each zi has 

m dimensions (or features). Let rn be the namber of input nodes and M be the 

number of output nodes. Let Wj = [woj ,w~j ,  ..., w ( ~ - ~ ~ ~ ] ~  denote the weights or 

reference uectors. Wj is the vector containing ail of the weights fiom the m input 

nodes to output node i. mer enongh input vectors have been fed to the system, 

the weights wül specify dusters or vector centers that sample the input space such 

that the point density fanction of the vector centas tends to approximate the 

probability density fnnction of the input vectors [67]. 

Updating the weight for any given input in this mode1 is done only for output 

u n i t s  in a l o d e d  neighborhood. For each node j, there are NE neighbor nodes 

that depend on the topological neighborhood selected. A topological neighborhood 
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1 

Figure 6.2: Topological neighborhoods at different times as feature maps are formed 

(O < tl < 4). 

consists of a rectangnlar, or a hexagonal array of points arotmd the selected node 

[70]. Figure 6.2 (a) and (b) show simple forms of neighborhood sets around node j. 

The neighborhood is centered on the output node whose distance d, is minimum. 

The measmement of d, is a Eudidean distance, defined as: 

where xi is the input to node j and we is the weight from input node i to output 

The neighborhood deaeases in size with time until only a single node is in- 

side its bounds. A leamhg rate is also reqaired which decreases monotonicdy in 

t h e .  Convergence to a clusta center nill be controlled by the learning rate. As 

the learning rate demeases with more iterations, movement becomes restricted to 

smaUer distances around the cluster center. 
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6.2.1 SOFM algorithm 

The SOFM aigorithm can be desaibed as folIows. 

0 Stepl: Init iae weights. Randomiy initialize weights fiom N inputs. Set 

the initial radius of the neighborhood NE. 

r Step2: Present new input 

a Step3: Compde distance to ali nodes 

r Step4: Select output node with minimum distance. Select node j' as 

that output node with minimum distance di. 

a Step 5: Update weights to node j' and neighbors. Wkights are updated 

for node j' and al l  nodes in the neighborhood defmed by NEi( t )  following 

Eq. 6.2. Wj updates as f0110~,, 

wi j ( t+ l )=wG( t )+k( t ) (~ i -wG( t ) )  for j € N E j . ,  O < i < N - 1  (6.2) 

the term is called the neighborhood K m e l  and will be discussed later in 

section 6.2.2. 

O Step 5:if NE # O go back to step 2 

The basic idea behind the SOFM approach is to move the weights towards the 

center of dustas by npdating the weights on each input value- To show this, let us 

consida a simple example with only one duster and three inputs in 2 dimensional 

space (Figure 6.3). 
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Figare 6.3: Weigbt movement in SOFM 

The dark &cles represent the position of input values 21, z,, and ZJ. The gray 

circle represents a weight which statts at position W .  Once the input zl is fed in, the 

weight is moved to position wi. When z, is input to the net, the weight is moved 

to position wz, and so on as shown in Figure 6.3(b). At the end of the iteration, the 

algorithm checks to see whetha a weight has changed (within a tolelance) fkom the 

previons iterations or not. If there were no changes, then the last position of the 

weight aill represent the center of the duster; otherrise, the process wi l l  continue 
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as shown in Fig.6.3(c). FinalIy, the process wiU stop, as illustrated in Fig.6.3(d). 

The center of the duster will be at the position of wi 

6.2.2 Neighborhood Kernel and learning parameters 

The neighborhood Kernel h, is defined over the lattice points and has a very central 

role for a good featme mapping. UtmalIy = h((lti - riIl, t )  , where t j  E R2 and 

T; E R2 are the radius vectors of nodes j and i, respectively, in the array. With 

increasing 1 I T ~  - 1, hij 3 0- The average tRidth and fom of is important for 

convergence. In the literatate, tro simple choices for h, occar freqaently. The 

simpla fonn was shown in Fig. 6.2, in wbicb the neighborhood was dehed as 

a set of array points around node j. Then, Ir, = NEj( t )  which is decreasing in 

time monotonicdy. It can be seen that h, is acting as a learning rate factor a(t ) 

(O 5 o(t) _< 1). Both a(t) and NEj( t )  deaease in time during the ordering process. 

Another widely appiied neighborhood kerael can be wrïtten in terms of the 

Gaussian h c  tion, 

where a(t) is another scaler vaiue, and the parameter o(t) defines the width of the 

kernel; the later corresponds to the radius of NEj. Both a(t) and a(t) are some 

monotonically deaeasing nuictions of tirne, and th& exact forms are not critical. 

They codd be selected as linear fanctioas. Effective choices for these fnnctions 

and th& parametas have so fat only been determined experixnentally and will be 

presented in chapter 7. 
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Layer (Kohonen) 

Figare 6.4: SOFM with an additional layer using M k u m  likelihood training 

scheme 

6.3 Feature map classification 

In ordet to use the SOFM for dustering and classification we need to extend the 

network. One way of extending SOFM can be done by adding associative layer, 

to the Kohonen laya as shown in Fig.6.4. This additional set of neurons does not 

participate in weight updating. Mer the selfsrganizing netaork terminates and 

weights are adjasted, the additional layer hds  for each input the weight vector 

(prototype) closest to it and assigns the input to that dam. 

The mapping can be accomplished by using m&tm Iüelihood training, a 

supervised learning scheme. A maximum likelihood approach saggests a simple 

training algorithm which mnsists of counting the best matchhg units in the map 



C W T E R  6. UNSUPERWSED SEGMENTATION & SOFM NETVVORK 104 

comesponding to the training data The output nnits are connected to the output 

nodes in the Kohonen hyer cornesponding to that class with greatest ikeqnency of 

occurrence of training data. Usnally the training data is smali and for each class 

few representative are selected. 

Anothex way of extendhg SOFM is adding an LVQ network at the end of SOFM. 

The cluster centers or codebooks that have been fonned in an unsupervised learning 

mannet using SOFM can be fine-tuned using LVQ. This way reqnires a mnch smaller 

number of samples and pdormai the classification task w d .  Figure 6.5 illustrates 

the topology of the network. This la& method should be preferred due to the 

adaptive nature of classifier; however, redts  fkom both methods will be presented 

in the next chapter. 

6.4 c-Means clustering technique 

The c-Means algorithm [46] is a wd-hown clustering procedure, which groups 

a data set X into c clustas through the minïmizstion of the total inter-clusters 

variances. In OUI case, data sets are pixel intensities fiom t h  image spectsa. The 

most widely used objective function for clustering a data set X into c classes is the 

classical nithin-gronps snm of squared exrot objective fnnction, defined as: 

where v = (q, v2, ..., W) is a vector of (unknown) dus t a  centers (weights or pro- 

totypes), w i  € 32P for 1 5 i < c, and U is a hard or conventional c-partition of 

X. Optimal partitions V of X are taken Eom pairs (U*, v') th& are 'local min- - 

imizers" of JI .  Genaalization of 6.4 to the infinite family is called the c-means 
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Figure 6.5: SOFM combined with LVQ for an adaptive patter elassification. 

funetionals. Approximate optimization of J1 by the c-means aigorithm is based on 

iteration through the following necessary conditions for it s local extrema: 

c-Means theorem [46]: U, V may minimise JI only if 
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c-Means prodnces a partition U that contains hard dusters, so each pixel wïU 

receive a unique class assignment i?om this method. A brief specification of the 

procedure is as folloa 

1. Given unlabded data X = {zt, z2,' ..., 2,) 

2. Choose namber of classes c and T, nmber of iteration 

3. Compute all (c) weight vectots {viï0) with equation 6.6, for 1 < i 5 c 

4. For t= 1, 2, ..., T. 

(c)  If Et < E stop; else compate { v ~ , ~ )  with Eq. 6.6 for the next t. 

c-Means and b z y  c-Means have been used by researehers for MR image segmen- 

tation [47],[73]. In this thesis we present redts  of segmentation using a c-Means 

algorithm for cornparison with our scheme which utilizes SOFM. 

In this chapta unsupavised techniques for classification and segmentation of MR 

Mages have been discussed. The theoretical issues of the SOFM artificial neural 

nehoork were introduced and the network was designed. Tao different schemes were 

introduced for extending the SOFM netaork for segmentation and classification. 
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The topology of the network and its detailed structure wil l  be presented in the next 

dispter. A traditional unsup-sed dustering technique, the c-Means algorithm, 

was introdaced fot the purpose of cornparison. 

The results of segmentation of MR images asing each of these techniques will 

be given in chapter 7. Advatltages and disadvantages of each technique rrill be 

discnssed in chapta 7. 



Chapter 7 

Result s of Unsupervised 

Techniques 

Introduction 

This chapter presents resdts from two approaches discnssed in the chapter 6. The 

topology of the designed network and the learning parameters WU be discussed. 

Advantages and disadvantages ofeach technique will be presented. Since the main 

objective of the segmentation process is to segment white matter, gray matter and 

CSF îrom the brain, the proposed automatic approach first stnps away pixels of 

skull and scalp in acqaired images. A novel algorithm extracts cerebnun from 

the head prior to segmentation. For an unsupemised segmentation scheme such 

preprocessing is needed to avoid too many dustering artifacts and to gain more 

accurate segmentation resdts. 



Slice 7 Slice 8 

Figure 7.1: A set of nine Tl weighted images from a 

Slice 9 

normal subject 



Slice 2 Slice 3 

Slice 5 

Slice 7 Slice 8 Slice 9 

Figure 7.2: A set of nine T2 weighted images fiom a normal sub ject 



Slice 1 Slice 2 Slice 3 

Slice 4 SIice 5 slice 6 

Slice 7 Slice 8 Slice 9 

Figure 7.3: A set of nine PI) weighted images fiom a normal subject 



7.2 MR brain Images 

Nine selected slices fkom the brain of a normal subject are illustrated in Fig. 7.1 

The image &ces are 5mm thick with no (zero) inter-slice space. The field of viea 

was 22 cm for Tl, T2 and PD weighted images. Tkee pulse sequences wae used: 

TRITE = 2800/30 ms for the PD-weighted images; for the T2 weighted images; 

TRITE = 600/16 ms for the Tl weighted images. Results of segmentation wiU be 

shown for some of the representative images in this chapter. 

7.3 Extracting the cerebrum 

&acting the cerebram is perfomed by stripping away the SM and scalp pixels 

fkom the T2 images. 

4x4 
[ I I  

I I I  
, I -J , , I , ,  

I l l  

Figure 7.4: Diffaent steps of extracthg cerebrum from MR images of the head 



The following algorithm describes the technique. 

1. Divide the image into four regions see (Fig. 7.4). 

(a) h m  the center of the T2 weighted image "on, (zO7 y.), identify the pixel 

of bone or air, and background (zi,yj) by measuring the threshold of 

pixel value on each row fiom IeR to right . If the pixel d u e  is less than 

100, then check the neighborhood pixels in a box of 4x4 or (5x5) (see 

Fig7.4). If the majority of pixels in the box belong to class of bone then 

stop and assign (zi, yi) as a boundary pixeL 

(b) deerement o in the row, go to (a) repeat the process until point B is 

reached. 

(c) h m  the center of the T2 weighted image "O", (z.,y,), identify the 

pixel of bone or air, and background (zk, yl) by measnring the threshold 

of pixel value on each colnmn fiorn d o m  to up. If the pixel value is less 

than LOO, then check the neighborhood pixels in a box of 4x4 or (5x5) 

(sec Fig7.4). If the majority of pixels in the box belong to the dass bone 

then stop and assign (zk, y[)= a boundary pixel. 

(d) increment O in the colamn, go to (c) and repeat the process untü point 

B is reached. 

3. Process similarly regions 1,2, and 3 by changing the direction of search: 

in region 1; search right to lefk in row and d o m  to up in column. 

in region 2; search right to left in row and up to d o m  in colnmn. 

a in region 3; search left to nght in row and np to d o m  in colamn. 



By using the detected margin in this stage a mask image is generated to remove 

s k d  pixels fiom the Tl and PD weighted images. A typical example is shown in 

Fig. 7.5. Figures 7.5 (a), (b) , and (c )  show the Tl ,  T2, and PD weighted images 

respectively. Figure 7.5(d) shows how the algorithm strips the SM pixels fiom 

the T2 weighted image. Figure 7.5 (e) shows the mask image. Figure 7.5 (f) , (a), 
and (h) show the extracted eerebrnm iiom each image component. Figures 7.6, 

and 7.7 show the extracted cerebrnm fiom slice 1 to slice 6 which were shom in 

Fig. 7.1. 

7.4 Results of the SOFM network 

The theoretical basis of SOFM was discnased in chapter 6. Li this section only the 

network parametexs and results of segmentation of MR images wïll be presented. 

One of the parameters which has to be set for a good mapping is the form of 

the array. From several experiments the hexagonal lattice was chosen because it 

provided betta results than the rectangular lattice. O ther parametas were the type 

of neighborhood fanetion and the rnap size. The size of rnap defines the number 

of codewords or reference vectors. Map &es of 6 x 6, 8 x 8, 10 x 10, and 11 x 11 

w a e  tested. Resnlts wese improved slightly as the rnap size inereased, however, no 

significant dinaences were observed when the size was increased from 10 x 10 to 

Il x 11. Therefote, the size of 10 x 10 which consisted of 100 codewords was selected. 

The reference vectors of the rnap were first initialized randomly. The lattice type of 

the rnap and the neighborhood hct ion used in the training procedures were abo 

defined in the initialization. The rnap was trained by the s e i f  organizing feature 

rnap algorithm explained in chapter 6. 

As discussed in chapta 6, the two different schemes , the M d m u m  UeIihood 



and the LVQ, were utiüzed to dassify the map into the desked ntunbe~ of classes. 

Typical r e d t s  from both approaches are shown in Figure 7.8. Several experiments 

showed that adding the LVQ netrork as an additional layer for featnre map chsifi- 

cation would prodnce better r d t s  because of the adaptive nature of the classifier. 

As can be seen in Figure 7.8, the Maximum likelihood layer tends to dassify white 

matter tissne as gay matter. 

When the LVQ was utiüzed in the output layer, training was done in tao phases. 

The first was the orderhg phase daring which the reference vectors of the map units 

were ordered. During the second phase the values of the reference vectors were fine 

tuned. In the beginning the neighborhood radins was taken almost equal to the 

diameter of the map and was decreased to one dnring training, while the learning 

rate decreased to zero. During the second phase the reference vectors in each unit 

converge to th& correct values. The second phase is nsually much faster than 

the first. Figures 7.9, 7.10, and 7.11 show results obtained fiom this approach. 

The number of classes was equd to the number of tatget tissue classes. In each 

of the cases presented in this chapter the images wete classified into four classes: 

background, CSF, white matter, and gray matter. 

7.5 Results of c-means clustering algorit hm 

The c-means algorithm desaibed in chapter 6 was used for unsupefvised classifi- 

cation of MR brai. images. The r e d t s  of the c-meam algorithm heavily depend 

on the namber of iterations and dasses. Typical resnlts are shown in Figures 7.12, 

7.13, and 7.14. To demonstrate how the c-means algorithm pedorms dustaing, 

different numbers of classes were chosen. In Figure 7.12 results of segmentation are 

shown for c = 4 dasses. The different class tissues are shown separately. Figures 



7.13 and 7.14 show resalts for c = 5 and c = 6 classes respectively. 

7.6 Discussion 

As can be seen fiom the r d t s ,  the c-means algorithm codd not provide a diable 

resdt for MR image segmentation. Although the basic theory of the c-means 

algorithm is similar to the SOFM, two major diffaences e s t ;  1) in the SOFM 

alwthm, eaeh entry (Le. vector z) is nsed to update the winning dass and its 

neighboring dasses, wlde in the c-means algorithm each input vector is dassified 

and only the winning clas is modified duri~g each itaation. 2) in the SOFM the 

weights represent the namber of reference vectors which are normally several fold 

of the nnmber of classes, while in the c-means algorithm the number of classes is 

predetermined as a constant value into the algorithm. 

One can c l a h  that if the ntunber "c" in the c-means algorithm is chosen to 

be the same as the nnmber of codewords in the SOFM, similar resuits might be 

achieved when the dusters are merged to the nnmber of desked classes at the end. 

However, some important issues have to be considered such as computationai tirne, 

validation, &ciency and complexity of the technique. 

Results from the c-means algorithm are discussed below. As shom in Fig. 7.12, 

for c = 4, the algorithm tends to segment the image into 3 tissue dasses. Figare 

7.12(a) shows white matter and gray matter mixed together as one dass, while 

CSF in Figure 7.12 (b) , and (c) is classilied into 2 tissue classes. 

For c = 5, the algorithm tends to segment the image into 4 tissne classes, Figure 

7.13 (a) shows white matter and gray matter d e d  together as one dam, while part 

of the gray matter is classified as a separate class in the Figure 7.13(b). The CSF 



is classified into 2 tissue classes as in in Fig. 7-13 (c) , (d) . 
For c = 6, the alg0nth.m tends to segment the image into 5 tissue classes. 

Although in figure 7.14 results seem to be encouraging, none of the segmented 

regions are correct. The white matter is classified into one clasa (Fig. 7.14(a)), 

while the gray matter and the CSF are each hs i f i ed  into two tissue classes (Fig. 

7.14(b) ,(c) and 7.14(d), (a)  sespectively). The e s t  dass of gray matter is correct 

while the second d a s s  of the gray matter is composed of the gray matter and CSF. 

An attempt aras made to merge the 5 classes to 3 dasses, however, similar results 

were obtained as shown in Figure 7.12. Thetefore, it can be condnded that merging 

classes does not promise improvement of segmentation process. 

There are namber of important propaties which make the SOFM suitable for 

use as a codebook generator for clnstaing scheme. They can be summarized as 

follows : 

O The set of reference vectors are a good approximation to the original input 

space. 

O The ref'erence vectors are topologically ordered in the feature map such that 

the correlation between the refesrence vectors increases as the distance bekeen 

t hem decreases. 

O The density of the feature map corresponds to the density of the input distri- 

bution so that regions with a higher probability density have better resolution 

than aseas with a lower density. 

In summary, this chapter ha3 show the ability of a new technique for M y  

automated segmentation of MR images. The characteristics of this artificial neu- 

ral network scheme which indude a massively pardel stnicttue, a high degree of 
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interconnection and the ability to se l f  organize - pardel many of the characteris- 

tics of human *ai system. That is why it is a valuable technique for MR image 

segmentation. 



Figure 7.5: (a) Tl weighted image, (b) T2 weighted image, ( c )  PD weighted image 

, (dl Stripped T2 image, (a) Mask image, (f) Cerebrnm extracted ôrom Tl, (g) 

Cerebram fiom T2 and (h) Cerebrum from PD image. 



Slice 3 Slice 4 

Slice 5 Slice 6 

Figure 7.6: Extracting cerebnun fkom M .  images of the head 



Slice 3 

Slice 5 

Slice 4 

Slice 6 

Figure 7.7: Extracting cerebnun from MR images of the head 
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(a) (4 Cf) 

Figure 7.8: Results of segmentation using hRo Merent featnre map classifiers. 

Figures (a), (b), and (cl show cesults of LVQ dassifier and Figures (d), (e) , and 

(f ) show results fkom Maximum likelihood classifier 



Segmentation of slice 1 Segmentation of slice 2 

Segmentation of slice 3 Segmentation of &ce 4 

Segmentation of slice 5 Segmentation of slice 6 

Figure 7.9: Typical results using SOFM and LVQ as feature map classifier 
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SJice 1 Slice 2 Slice 3 

CSF CSF CSF 

Figure 7.10: Segmentation of images nsing SOFM. Three tissues: Gray matter 

(GM), White matter (WM), and CSF are separated 



SKce 4 Slice 5 Slice 6 

CSF CSF CSF 

Figure 7.11: Segmentation of images using SOFM. Thtee tissues: Gray matter 

(GM), White matter (WM), and CSF are separated 



Segmented image 

(a) (b) (cl 

Figure 7.12: Segmentation of an image using c-Means algorithm. Number of classes, 

c = 4, each class is shown separately (except background) 



Segmented image 

(cl (dl 

Figure 7.13: Segmentation of an image using c-Means algorithm. Number of dasses, 

c = 5, each dass is shown separately (except background) 
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Segmented image 

(dl (el 

Figure 7.14: Segmentation of an image using c-Means algorithm. Number of classes, 

c = 6, each dass is shown separately (ercept background) 



Chapter 8 

Conclusions and Future Directions 

This thesis has generated very reliable and interesthg results for segmentation of 

MR brain images. These have been sammarized in detail at the end of each of the 

two testing chapters, chapter 5 and 7. In hae, a s ~ u n a r y  of the major tesults and 

theh contribution to the research fiterature are presented. 

8.1 Summary of the results 

SupeMsed Segmentation Schemes 

The Maximum likelihood technique was not an acceptable choice since it 

appeared to be very susceptible to the choice of training data. For reliable 

redts ,  training data may need to be chosen slice by slice for even one patient 

which is extremely time consnming and tedious. M h e r  more, techniques 

that mut  assume an andaiying statisticd distribution of the data such as 

MLC do not appear promising, since tissue regions of interest do not usually 

obey the distribution tendencies of probabiüty density fanctions. 
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a Badrptopagation neural networks, on the other hand, were very sensitive to 

the training data. Their resdts d e r  fiom noise and migelassification. Ba& 

propagation neural netwoxks provided adequate brai.  segmentations when the 

training data were selected very spdcally. If backpxopagation nehrorks are 

to be ased for segmentation of MR images, reliance on operator intervention 

to select good training data for each tissue and each slice of data ras crucial. 

Another weakness of backpropagation nehrorks was the indeterminate num- 

ber of hidden nnits. The convergence of networks was dramatically dependent 

on these numbas, and in mort cases it was too W d t  to find the optimum 

number of the hidden unïts. 

a The LVQ technique was sensitive to the seleetion of the number of codewords, 

however, changing the nnmber was not too crucial for acceptable resdts. 

Selecting a large set of codewords codd increase the mis-classification aronnd 

the border of regions of interest. Also, LVQ was used in an adaptive manner 

to npdate the codewords from one image slice to another. That new approach 

caused LVQ, &e backpropagation ANN and MLC, not to be sensitive to 

the variations of gray-level for each tissue type between different slices. 

Unsupervised segmentation schemes 

0 Li our new method for automatic tissue segmentation SOFM was utilized 

to constrnct an nasnpavised clustering scheme. It was nuther extended by 

adding a layer to the Kohonen layer to accomplish the classification task. 

As described previously a novel approach for &acting cerebram fiom MR 

images was introduced and its positive impact on the segmentation of MR 

images was demonstrated. The simplicity of the method should malce it an at- 
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tractive preprocessing algorithm for antomatic or semi-antomatic MR image 

analysis systems. There are tao important advantages of the unsupervised 

procedure. First, the process is mmpletdy antomatic and there is no need 

for human interaction. Second, the aatomated parameter learning is M y  re- 

prodncible because snbjective variations ueated by selecting dinerent types 

of training areas are avoided. 

8.2 Contributions 

0 Designed and implemented supavised image segmentation scheme 

VQ has been used mostly in the literature for image coding and compression 

purposes. Using analogy under VQ design had lead us to implement the 

VQ in a n e d  network scheme which is l e k g  vector quantization (LVQ). 

Implementing LVQ for segmentation of MR images is a novel idea and it ha9 

not been tadrled by any other tesearchers in this field. The resdts of this 

s tudy were presented in [5], [6]. 

In most cases where supervised classification sehemes are utilized, training 

and testing are chosen nom the same sthject. In this researeh we developed 

a new system which ntilizes universal training data for classification task. 

This has been accomplished by using an adaptive training scheme to apdate 

the weights in the LVQ network. 

0 We have presented a modined version of the self organizing feature maps of 

Kohonen which are capable of generating continuous vahed ontpats. Extend- 

ing the output laya by an additional layer allows the network to classify the 

two dimensional feature maps to a desired number of classes. 
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For the fkst time in the literature extracting cerebrum fiom the images of 

the head ras p e r f o d  in this stady as a ptepmcessing step prior to the 

segmentation. The novel algorithm desaibed in chapter 7, improved the 

segmentation r d t s  signiscantly when an unsupervised scheme was ntilieed. 

Reduchg the clustering artif'ts made r d t s  more accurate, and the post- 

processing step was avoided. 

8.3 Future directions 

The quantitative assessrnent of performance is complicated by the la& of a 

gold standard to compare with. However, a receiving operator characteris- 

tic (ROC) m e  can provide a qualitative evaluation. However, it will take 

considaable time and snbs tantial assistance &om expert radiologis ts. 

Unsupavised methods need better ways to specûy and adjost the numba 

of tissue dasses found by the algorithm. Since unsupervised cladkation 

techniques are sensitive to good initialization, initialization is an important 

issue which should be considered in hture research direction. 

0 The Euclidean distance was used in LVQ and SOFM. It wodd be interesthg 

to compare the use of Eudidean distance versus Mahalanobis distance for 

each of these tao techniques. 

The tao new approaehes designed and implemented in this thesis can be 

used for the segmentation of other multispectrd images, for ezample, satellite 

images obtained with a multispectral scanner. 
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