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Abstract 

Maximum voluntary forces and psychophysically acceptable forces are often used to 

set force guidelines for exertions as a means to protect against overexertion injuries in the 

workplace. The focus of this dissertation was the exploration of the roles of whole body 

balance, shoe-floor friction and joint strength in limiting the capacity of a person to produce 

maximum voluntary hand forces and psychophysically acceptable hand forces. The underlying 

goal was to advance knowledge regarding how physical exertion capacity is biomechanically 

governed, then to use this information to develop models to predict capability based on these 

governing principles. The hypothesis underscoring this work was that maximum voluntary 

hand force capability is governed by whole body balance, shoe-floor friction and joint 

strength; and consequently, psychophysically acceptable forces would be chosen 

proportionally to this maximum voluntary force capability, where the magnitude of the 

proportionality was dependent on the limiting factor, or „weakest link‟. 

To investigate this hypothesis, both experimental and mathematical modeling 

paradigms were used. Initially, an experimental study was used to investigate how 

biomechanical factors governed maximum hand force capability across a range of exertions. It 

revealed that each governing factor differentially limited maximum force capability. 

Moreover, this study identified how foot placement, handle height, distance from the handle, 

friction, and body posture all influence the underlying biomechanical weakest link, and 

ultimately force producing capability. 

Data gathered in the experimental study was next used to evaluate a mathematical 

model that was developed to predict maximum force capability, given information on posture 

and direction of force application. In addition, the model also predicted population variability 
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in maximum capacity based on the inclusion of a novel approach to probabilistically represent 

population variability. The evaluation demonstrated that the model underestimated maximum 

hand force capability compared to measured hand forces by approximately 18, 26, and 41% 

during medial, pulling and downward exertions respectively. However, it appeared that the 

„weakest link‟ principle for predicting maximum force capacity was plausible, as evidenced by 

significant rank ordered correlations between the measured and predicted hand forces.  

Further research investigated if psychophysically acceptable forces were selected as a 

proportion of task specific maximum voluntary force capability, where the proportionality was 

related to the biomechanical weakest link. Using an experimental design, psychophysically 

acceptable forces and corresponding maximum forces were measured. Participants chose 

psychophysically acceptable forces that were 4/5
ths

 of their task specific maximum voluntary 

force capability when capability was limited by balance. Additionally, they choose 

psychophysically acceptable forces that were 2/3
rds

 of their maximum voluntary force 

capability when capability was limited by joint strength. The identification and confirmation of 

a weakest link proportionality principle represents an important contribution to the field of 

occupational biomechanics. 

The weakest link proportionality principle was integrated into the model to allow 

prediction of: maximum voluntary hand force capability, the limiting factor, and 

psychophysically acceptable hand force capability. The updated model underestimated 

empirically measured psychophysically acceptable forces by 24% and 43% during downward 

and pulling exertions respectively. However, the original model underestimated the maximum 

hand force capacity by 23% and 34% during the same exertions, without the proportional 

relationships. This underestimation may be a result of the underlying assumption that joint 
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strength is independent, resulting in an underestimation of maximum joint strength capacity 

and a corresponding underestimation of maximum hand force capacity. The underestimation 

may also be due to differences in strength capacities between the participants tested during this 

thesis compared to those tested in past research used to determine the maximum strength 

indices reported in the literature. 

This body of work supported the hypothesis that psychophysically acceptable forces 

are selected as a proportion of the maximum voluntary hand force, where the proportionality 

depends on the underlying biomechanical weakest link. The model is a promising first step 

towards predicting maximum and psychophysically acceptable occupational force threshold 

limits.  
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Chapter 1 – General Overview 

The focus of this dissertation was to explore work capacity from the perspective of the 

worker as a means to provide evidence based exposure guidelines for sub-maximal work. 

More specifically, this research aimed to quantify relationships between maximum work 

capacity, defined as a worker‟s upper limit to produce force for a given workplace task and 

subjectively determined sub-maximal capacity, defined as the maximum acceptable amount of 

force produced for a repetitive task. The general hypothesis investigated in this thesis is that 

workers choose to perform sub-maximal repetitive work at a certain percentage of their 

maximum work capacity, where this percentage is related to the biomechanical component 

limiting their maximum capacity for the given work conditions, whether it is individual joint 

strength, whole body balance, friction, or another alternative. This framework is built upon the 

assumption that a worker will not choose to work at a level that could result in injury. 

Although this assumption has not been validated (Snook, 1999) this approach is useful for 

providing guidelines for work in the absence of a more complex rule based on a presently 

unachieved comprehensive understanding of the multi-factorial interactions that occur and 

result in the development of a disorder.  

A work capacity focus was used within the paradigm of strength. The strength 

paradigm provides a means to describe and classify both maximum and sub-maximum 

capabilities and provide a backdrop for understanding capacity and demand in the context of 

this thesis. 

1.1 – The paradigm of strength in occupational biomechanics 

Muscular strength has received a great deal of attention in occupational biomechanics 

and ergonomics as an indicator of workplace performance capability. Dating back to the 19th 
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century, researchers have used muscular strength as a metric of “all-around ability” by testing 

individual maximum capable push, pull, or lift forces (Sargent, 1897). Remarkably, over 100 

years later, this approach still persists as a popular method for assessing workplace 

performance capacity (Mital & Kumar, 1998 a; b). The paradigm continues to evolve over 

time as advances are made in both strength testing equipment and our understanding of the 

characteristics of strength.  

Muscular strength can be defined in terms of the characteristics of the exertion as well 

as the characteristics of the strength application. Mital and Kumar (1998a; 1998b) provide a 

description of each form of muscular strength as it relates to work performance and capacity 

(Figure 1.1).  

 

Figure 1.1 – Classification and characteristics of strength exertions and applications (as 

described by Mital & Kumar, 1998). 

Each form of strength has been scrutinized and researched within the occupational 

biomechanics paradigm to determine how it relates to human capability and injury. Of the 

strengths indicated in Figure 1.1, three characteristics of muscular strength application have 

been transitioned into useful applied ergonomic assessment tools. These characteristics are: 

simulated job static strength, psychophysical strength, and simulated job dynamic strength. 
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Simulated job static strength and psychophysical strength based applied ergonomics tools have 

quickly been adopted as the most used of any ergonomics risk assessment tool (Dempsey et al., 

2005). Simulated dynamic job strength is more often used as a screening tool to determine 

candidate readiness for a job (Harbin and Olson, 2005), rather than as a risk assessment based 

tool. Each of these measures provides useful information that can be used to monitor a 

worker‟s capacity. This dissertation endeavored to expand the usefulness of simulated job 

static strength and psychophysical strength in ergonomic applications.  

1.2 – Simulated job static and psychophysical strength applied to ergonomics assessment 

Simulated job static strength can be measured experimentally, or predicted using 

ergonomic software applications. This type of strength is defined as the maximum voluntary 

force (MVF) that can be produced within the constraints of the task being simulated. The most 

common prediction software used in ergonomics is the Michigan 3D Static Strength Prediction 

Program (3DSSPP). With this software, users are able to configure a mannequin into a 

specified work posture and include the magnitude and direction of the applied hand force to 

simulate a work task. Using these inputs, a biomechanical link segment and joint model then 

provide an estimate of the individual joint strengths required to complete that task, referenced 

to population strength. The reference to population joint strengths provides an index of the task 

requirements relative to maximum strength capability. This form of output is appealing for 

ergonomists. By modifying task requirements accordingly, an ergonomist can ensure that a 

minimum percentage of the workplace's population could perform the task. The software has 

continuously progressed since its conceptual origin (Martin & Chaffin, 1972), evolving 

theoretically and computationally based on emerging research evidence; a key strength of the 

program. This dissertation aimed to further advance the usefulness of simulated job static 
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strength, extending from the strong research and conceptual framework of the 3DSSPP 

approach.         

Psychophysical strength is commonly used in ergonomic applications to determine sub-

maximal work capabilities during repetitive or cyclic tasks. It refers to the psychophysically 

acceptable force (PAF) that can be produced repetitively within the constraints of the task 

being simulated, without any undue pain or fatigue. Many other applications of psychophysics 

have also been used in ergonomics applications such as rate of perceived exertion and so on; 

however, the focus of this work remains on the application of psychophysical force estimation 

as a means to determine sub-maximal exertion thresholds. Its application to ergonomics stems 

primarily from work by Dr. Stover Snook and his colleagues at Liberty Mutual Insurance. 

Through decades of psychophysical research they developed the Liberty Mutual Manual 

Materials Handling Guide, also referred to as the Snook tables (Snook, 1978; Snook and 

Ciriello, 1991). The fundamental benefit in using psychophysical strength within the context of 

ergonomics is its ability to provide threshold values for repetitive sub-maximal work. As 

physical labor continues to be dominated by low-force highly repetitive work there is an 

increasing demand to incorporate risk assessment tools that focus on these types of efforts 

(Marras et al., 2009).  

The application of psychophysical strength in ergonomics is attractive. Using a look-

up-table approach, an ergonomist can find the population sub-maximal capability for a task as 

defined by the primary action, the work height, the frequency, and the hand distance. The 

resulting table value then serves as the threshold for comparison against current task 

requirements. If the requirements exceed the value listed in the Liberty Mutual Manual 

Materials Handling Guide, the task should be modified until the exposures no longer exceed 
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the listed value. The simplicity and ease of use of this method is favored by ergonomists 

(Pascual and Naqvi, 2008). The challenge with psychophysical limits is their dependency on a 

myriad of work factors including posture, force application direction, friction, etc. Therefore, 

each psychophysically derived threshold is specific to those dependencies under which it was 

derived. In order to advance the usefulness and range of application for psychophysical 

strength, we must try to explore if underlying biomechanical based principles can be useful in 

helping to understand how these factors interact to dictate psychophysical capacity. Hence, a 

secondary thrust of this dissertation attempted to provide a more quantitative rational to 

explain the influence of these factors in an effort to increase our capacity to predict 

psychophysical strength. An improved predictive capacity can benefit the ergonomics 

community by increasing the specificity of the assessments, furthering the usefulness of the 

psychophysical approach.          

1.3 – Contrasting simulated job static strength and psychophysical strength 

Simulated job static strength and psychophysical strength have opposing attributes 

making them each suited to differing assessment situations. Using 3DSSPP as an example, 

simulated job static strength is concerned with gauging actual task requirements relative to the 

maximum capacity – a peak approach. Psychophysical strength does not assess task 

requirements relative to maximum capacity. Rather, it focuses on the maximum acceptable 

capability, where acceptability is generally defined as a sub-maximal level of force that does 

not result in any undue pain, discomfort, or fatigue – a sub-maximal approach. While 

simulated job static strength is dependent primarily on posture and force direction, 

psychophysical strength capability is additionally dependent on repetition and rest. 
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From a biomechanical perspective, it is intriguing to consider the causes of the 

differences that exist between simulated job static and psychophysical strengths. Recent 

evidence proposes that these two modes of strength may share a predictable relationship 

(Nussbaum and Lang, 2005; Potvin, 2007). Hypothetically, psychophysical strength may be 

chosen, in part to maintain a specific margin of safety at the mechanical link that limits the 

simulated job static strength for that task. Therefore any relationship between psychophysical 

strength and simulated job static strength hinges on identifying the mechanical weakest link. 

Taking this information into consideration, the third aim of this dissertation was to examine the 

plausibility of a weakest link relationship between simulated job static and psychophysical 

strengths.   

1.4 – Thesis statement 

This dissertation has a central thesis: psychophysical strength is quantitatively related 

to simulated job static strength during one handed exertion tasks. The quantitative relationship 

will be related to the exposure at the joint or element most likely to limit maximum capacity 

during a task.  

1.5 – Thesis aims and objectives 

1. To advance our capacity to predict simulated job static strength by developing a 

biomechanically driven model to predict maximum hand forces during unilateral 

exertions. 

2. To predict the element, or “weakest link”, most likely to limit simulated job static 

strength during a unilateral exertion. 

3. To investigate how psychophysical strength may be determined within the strength 

paradigm. 
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4. To examine the plausibility of a weakest link explanation for the relationship between 

simulated job static strength and psychophysical strength. 

5. To determine the feasibility of developing an ergonomic assessment tool combining the 

benefits of both simulated job static strength and psychophysical strength approaches 

(Figure 1.2). 

 

Figure 1.2 – A conceptual overview of the components and models developed throughout 

this dissertation. 

1.6 – Thesis organization 

 This dissertation was written as a collection of manuscripts, placed between two 

introductory and one concluding chapters. All of the experimental work is dedicated to the 

study of one-handed simulated work tasks.  

 Chapter 2 provides a review of background literature to strengthen the rationale behind 

the global thesis. The second chapter also serves as a discussion of the methodological 

considerations that guided the experimental protocols used during the experiments.  
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 Chapter 3 describes the experimental study examining the impact of potential limiting 

elements on hand force production. The experiment was conducted a) to examine how 

friction, balance, and joint strength influence hand force capacity, and b) to provide 

experimental data to be used in evaluating the 3D Hand Force Prediction Model 

(3DHFPM). The description and evaluation of that model are provided in Chapters 4 

and 5.  

 Chapter 4 details the motivation and describes the model. The fourth chapter also 

describes how a novel stochastic approach was used to predict the weakest link limiting 

hand force capability.  

 Chapter 5 offers an evaluation and discussion of the predictive capability of the model.  

 Chapter 6 describes an experimental study that measured both simulated job static and 

psychophysical strength. The resulting data was used to investigate the relationships 

between simulated job static strength and psychophysical strength.  

 Chapter 7 provides the final research piece for this dissertation by describing the 

feasibility of predicting psychophysical strength from simulated job static strength. 

Specific relationships are presented and discussed.  

 Chapter 8 summarizes the major conclusions with respect to the global thesis and 

objectives and discusses the feasibility of using the 3DHFPM in concert with a 

psychophysical prediction methodology to advance ergonomic assessment.  

This final chapter concludes with an overview of the possible future research that could help 

evolve the 3DHFPM into a viable, practical, ergonomics assessment tool.  
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Chapter 2 – Background Literature 

2.1 - Overview  

 This review of literature is intended to provide the context and rationale behind the 

global thesis of this work and is presented through the following five sections. 

1. Musculoskeletal disorders in the workplace – A philosophical perspective 

2. Musculoskeletal disorder in the workplace – The scope of the problem 

3. Common metrics to assess musculoskeletal disorder risk factors in the workplace 

4. The use of psychophysical strength based metrics 

5. Methodological considerations for assessing psychophysical strength 

2.2 – Musculoskeletal disorders in the workplace - A philosophical perspective  

 Musculoskeletal disorders (MSDs) present a tremendous challenge for the workplace. 

Dating back as far as the 18
th

 century, we have known about the potential to develop disorders 

from work. 

“The maladies that afflict clerks aforesaid arise from three causes: First, constant sitting, 

secondly the incessant movement of the hand and always in the same direction, thirdly the 

strain on the mind from the effort not to disfigure the books by errors …” (Ramazzini, 1964: 

pg. 423). 

“… they have to exert much effort when they use the right foot to drive round and round the 

larger wooden wheel … their arms and hands are continually on the stretch as they work and 

hence they incur intense fatigue… So far as I can see the only sort of precaution that might 

help them is to avoid excess and take rest from this sort of work for several hours at a time; 

they should consider health more valuable than the money they make.” (Ramazzini, 1964: pg. 

445-447).    

Building from Ramazzini's foundational insight, researchers have paid much attention 

to furthering our understanding of MSD development. As a result, we have a much better 

understanding of how disorders may arise, and an insight into various risk factors that may 

initiate or exacerbate the development of an MSD (Bernard, 1997). However, much of the 
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current biomechanical knowledge is related to maximum tolerance levels (Marras et al. 2009), 

which is better suited to limiting overexertion, for example not lifting more than 23 kg (Waters 

et al., 1993). There is an ongoing struggle to understand injury etiology in work that involves 

lower levels of exertion, albeit with higher repetition, or sub-maximal work maintained for 

longer durations. More research is warranted to understand this complex relationship between 

these factors (Marras et al., 2009) and it is imperative to consider how rest can be integrated in 

work designs to reduce the risk of developing an MSD. Arguably, Ramazzini's sixteenth 

century perspective may still provide the best prevention advice, whereby workplaces “should 

consider health more valuable than the money they make”. In this case, workers would rest 

when they feel undue pain or discomfort and resume work when they feel ready. 

Unfortunately, this philosophy is not likely to be adopted in today‟s business culture and we 

are forced to find alternative methods to control, reduce, or limit exposures in an effort to 

reduce MSD risks to acceptable levels.  

2.3 –Musculoskeletal disorders in the workplace – The scope of the problem  

Musculoskeletal disorders (MSDs) are a concern in the workplace. In Ontario 45.7 % 

of lost time injury claims were a result of overexertion, bodily reaction, repetitive motion, and 

static posture (WSIB, 2008). These injuries carry a heavy economic burden (Spengler et 

al.1986; Webster and Snook 1990; 1994a; 1994b; Silverstein et al., 1998; Punnett et al., 2000). 

Further, jobs with the highest injury and claims rates are often characterized as highly 

repetitive or requiring manual labour (Silverstein et al., 1998). In addition to the financial 

impact, productivity in the workplace and quality of life beyond the workplace are both likely 

affected (Burton et al., 2005; Ricci et al., 2006). Occupational biomechanics remains as a 
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fundamental approach to help continue to address MSD concerns in the workplace (Chaffin, 

2009).  

In order to reduce MSDs it is important to understand what factors affect their initiation 

or progression. Although specific injuries are categorized by specific risk factors, in a broad 

sense, the following six risk factors share an epidemiological link to MSDs: forceful exertion, 

repetitive work (frequency and duration of motion), sustained or static contraction, posture 

(whole body and joint specific), and vibration (Bernard, 1997). Over- or prolonged exposure to 

one or more risk factors can lead to MSD development (Kumar, 2001). From a conceptual 

perspective Armstrong and colleagues (1993) provided a parsimonious dose-response model 

(Figure 2.1) to demonstrate how exposure to these risk factors can impact MSD development. 

 

Figure 2.1 – A conceptual dose-response model to demonstrate how external exposures 

cause internal doses; which can result in a cascade of changes that can reduce or impair 

capacity, resulting in a MSD (adapted from Armstrong et al., 1993).  
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This model demonstrates how an exposure may affect internal tissues to varying 

degrees, which may ultimately modify the capacity to withstand subsequent exposures. In the 

context of this dissertation, this model provides a conceptual backdrop for investigating if 

workers subjectively select exposure levels (force) based on the corresponding internal 

exposure magnitude (joint strength demand) and capacity (joint strength capacity).     

2.4 – Common metrics to assess musculoskeletal disorder risk factors in the workplace 

Eliminating or reducing exposure to MSD risk factors in the workplace can be an 

effective approach to reduce or eliminate MSDs. Based on the model presented in Figure 2.1, 

the ideal exposure would cause an internal dose that does not initiate a negative cascade of 

responses, leading to a reduction in capacity or impairment. However, identifying the ideal 

level of exposure is not trivial, especially when risk factors interact (Bernard, 1997; Kumar, 

2001), jobs are complex, and other factors workplace factors influence tasks (Bongers et al., 

1993). In the absence of safe exposure limits, the focus remains on screening for, and reducing 

exposure doses using pencil and paper based checklists and methods. When possible, more 

advanced approaches including biomechanical analysis and strength assessment can also 

provide useful information for determining exposure limits. Additionally, physiological or 

other metabolic based thresholds can be used to establish guidelines for work scenarios 

requiring high physical demands. The remaining discussion will focus on: pencil and paper 

methods, biomechanical analysis, and strength assessment. 

2.4.1 – Pencil and paper based methods 

Generally, risk metrics can be categorized in the following groups: pencil and paper 

based methods, biomechanical analysis, and strength assessment. Pencil and paper based 

screening approaches are most often used by practicing ergonomists (Dempsey et al., 2005). 
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Table 2.1 provides an overview of some commonly used checklists and pencil and paper based 

tools. 

Table 2.1 – An overview of six commonly used risk screening or assessment tools. 
Pencil and Paper 

Method 

Physical Hazards 

Considered 

Analysis Level Final Output 

Rapid Upper Limb 

Assessment (RULA) 

(McAtamney and 

Corlett, 1993) 

Repetition or static 

load, upper limb 

posture, forceful 

exertions 

Task / Element Single score 

integrated from a 

combination of risk 

factors 

UAW-GM Risk 

Factor Checklist 

(Keyserling, 1993) 

Repetition, body 

posture, forceful 

exertions, contact 

stress 

Job Single score 

integrated from a 

combination of risk 

factors 

Strain Index (Moore 

and Garg, 1995) 

Repetition, body 

posture, forceful 

exertions 

Task, combined into 

job 

Single score 

integrated from a 

combination of risk 

factors 

OCRA (Occhipinti, 

1998) 

Repetition, body 

posture, forceful 

exertions 

Task, combined into 

job 

Single score 

integrated from a 

combination of risk 

factors 

Hand Activity Level 

(HAL) (Latko, 1997) 

Repetition, hand 

posture, hand force 

Job Continuous variable 

for each risk factor 

(can be compared to 

the ACGIH TLV) 

Quick Exposure 

Checklist (QEC) 

(David et al., 2008 

Repetition, body 

posture, force, 

vibration, stress 

Task / Element Single score for each 

exposure factor 

ranked by exposure 

level 

Posture Activity Tools 

and Handling (PATH) 

(Buchholz et al., 1996) 

Posture, Work 

activities, tools used, 

handling of tools / 

objects 

Task / Element Customizable 

* Adapted from Ebersole, 2005 

 

Each method provides a quick indication of the potential risk factors a worker may be exposed 

to during the performance of their job, or a task within their job. The primary function of each 

tool is to provide a means for MSD surveillance in the workplace (Silverstein et al., 1997). 

They do not necessarily correspond to specific internal doses or capacities, or reveal any 

information about safe or appropriate exposures, though some association is implied.  

2.4.2 – Biomechanical analysis 
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 Biomechanical analysis provides more detailed information about internal doses 

corresponding to a given workplace exposure. Effective risk assessment through 

biomechanical analysis is performed by modeling internal doses and comparing those 

estimates to known or estimated capacity thresholds. With reference to the low back, 

researchers have developed methods to model internal spine compression and shear doses (e.g. 

McGill and Norman, 1987; Marras and Granata, 1997) that can be directly compared to known 

threshold limit values for spine compression (NIOSH, 1981, Jager and Luttmann, 1992) or 

shear (McGill et al., 1998) indicating the level of risk for a specific MSD. This process is more 

targeted than posture based approaches. Conversely, it requires a means to model internal 

tissue loading, threshold exposure levels for tissues loading, and higher fidelity information to 

drive model predictions, which can be costly (Winkel and Mathiassen, 1994). 

Epidemiological support also underscores the importance of using biomechanical 

analysis in the workplace.  Marras and colleagues (1995) found that five trunk motion 

characteristics described the relationship with risk of reporting am incidence of low back pain 

(odds ratio 10.7), where three of those are determined using biomechanical analysis: load 

moment, trunk lateral velocity and twisting velocity. Additional epidemiological support also 

demonstrates relationships between peak and cumulative spine compression and shear loading 

(Kumar 1990; Norman et al., 1998), where workers in the top 25% of loading exposures were 

about six times more likely to report low back pain than those in the bottom 25% of loading 

exposure.   

Using shoulder related MSDs as an example; biomechanical analysis has a more 

restrictive ability to inform MSD prevention efforts in its current state. Shoulder problems are 

becoming an increasing concern in workplaces (Marras et al., 2009). However, few models 
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exist to predict shoulder internal loading in the context of ergonomic applications (an 

exception is Dickerson et al., 2007). Therefore, at the outset we are currently restricted in our 

ability to readily predict internal shoulder demands in the workplace. Research effort continues 

in this regard with the development of robust shoulder modeling approaches to predict internal 

loading (Dickerson et al., 2007); however we still lack benchmarks with which to compare this 

information to determine the level of risk. Unlike research on the spine, where internal loading 

such as compression is directly linked to mechanical bone failure (Brinckmann et al., 1988); 

internal shoulder loading is not specifically linked to a threshold level of mechanical exposure 

linked to failure. Though the ratio of compression and shear loading is important to prevent 

dislocation of the joint (Lippett et al., 1993), it is more likely that shoulder MSDs occur in soft 

tissue, as a result of complex interactions between loading, postural, kinematic and muscle 

changes (Michener et al., 2003). Therefore the use of biomechanical analysis in the workplace 

as a means to prevent shoulder related MSDs remains restricted as we continue building an 

effective knowledge base.   

Biomechanical analysis plays a key role in explaining the relationships between 

external work exposures, internal doses, and their corresponding affects on tissue capacities. 

One key difference between biomechanical analysis and the checklists and postural tools 

described above is highlighted in context of the question posed by Wells (2009): “how good 

are our MSD risk factors?” Broadly, risk factors provide a means to screen for increased MSD 

risk (Silverstein et al., 1997). Checklists and posture based tools encapsulate this broad 

knowledge based on the strong associations uncovered between risk factors and MSDs. 

However, more detailed information about causal relationships between the internal dose, 

response(s) and capacity changes are needed to help better target intervention efforts. 
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Biomechanical analysis can provide this level of information. Wells (2009) demonstrates this 

point by highlighting that low back pain, at a biomechanical level, could be due to cumulative 

damage to a structure, a loss of spine stability, or “a statistically rare loading outlier in a 

normally innocuous task”, where each of these mechanisms could be impacted by different 

internal dose exposures. Therefore a broadly classified risk factor of “forceful exertion” may 

not provide enough information to characterize the internal biomechanical doses with respect 

to specific injury pathways. Further, this lack of detailed information might impact the ability 

to adequately inform intervention. There is a clear need for biomechanical analysis in the 

workplace as a means to prevent MSDs. Unfortunately biomechanical analysis, as a metric for 

assessing MSD risks in the workplace, remains restricted in part due to the detailed 

information required, and the limited data available demonstrating threshold dose levels that 

are problematic (Garg and Kapellusch, 2009). 

2.4.3 – Strength assessment 

 Strength assessment is a method of predicting whether a person is capable of 

performing a physically demanding task without incurring an injury (Chaffin, 1975). Workers 

exposed to demands that are at a higher percentage of their strength capacity also have a higher 

incidence of injury (Chaffin and Park, 1973; Keyserling et al., 1980; Kilbom, 1988). In the 

context of the MSD dose-response model (Armstrong et al., 1993) illustrated above in figure 

2.1, an incidence of MSD is more likely when strength dose approaches or exceeds the 

strength capacity, resulting in overexertion (Kumar, 2001).  

Strength testing assists MSD prevention. It does so in three ways: as a tool in post-

offer, pre-placement screening (Harbin and Olsen, 2005), proactive job design (Chaffin, 1997), 

and reactive job design (Haslegrave et al., 1997; Mital and Kumar, 1998). This type of testing 
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is more targeted than postural assessments because it depends on actual worker capability, as 

opposed to a general association between a risk factor and an MSD. However, unlike 

biomechanical analysis, strength testing does not provide information on tissue specific doses 

and responses. Figure 2.2 presents a modified version of the model presented by Armstrong et 

al. (1993) to demonstrate how both strength assessment and biomechanical analysis provide 

different types of information within this context. 

 

Figure 2.2 – The conceptual dose-response model (Armstrong et al., 1993) modified to 

demonstrate how biomechanical analysis and strength assessment can yield important 

information in the context of this process.  

2.4.4 – The intersection of biomechanical analysis and strength assessment 

Both strength assessment and biomechanical analysis provide information in the 

context of the dose-response model presented by Armstrong et al (1993). The critical 

difference is that biomechanical analysis typically deals with dose-response-capacity 

interactions at a tissue specific level (i.e. spine compression – fatigue fracture – reduced 
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capacity); whereas strength assessment deals with capacity to handle the work requirements, at 

the broader system level independent of what specific tissue level capacity may be limiting 

(i.e. the total system has capacity to lift 23 kg). Through decades of research Chaffin and 

colleagues (summarized in Chaffin 1997) have demonstrated that these two types of 

information can be combined to provide greater insight and application as a metric to prevent 

MSDs. 

 The Michigan 3-Dimensional Static Strength Prediction Program (3DSSPP) unites 

strength assessment and biomechanical analysis for MSD risk assessment to inform primary 

and secondary injury prevention. The biomechanical analysis portion of the program models 

joint net moment and force doses on the body based on exposure to a given work requirement. 

Further, the biomechanical analysis extends to the low back, where a detailed approach is used 

to generate estimates of spine shear and compression loading (Chaffin, 1997). Additionally, 

based on the joint moments calculated from the biomechanical model, a strength assessment is 

achieved by comparing the resulting joint moment exposures, to the population strength 

capacity to withstand those exposures. Collectively, this approach informs the user of a) the % 

of population that is likely to have adequate joint strength to perform the work requirement 

(strength assessment), b) the dose of compression or shear imposed on the spine due to that 

work requirement (biomechanical analysis), and c) the additional details regarding whole-body 

balance and friction requirements, and modeled muscle demands (biomechanical analysis).  

 In the context of the dose-response model (Armstrong et al., 1993) the 3DSSPP 

approach provides a link between strength assessment and biomechanical analysis. Within the 

software, strength capacity is dictated based on internal joint moment generating capacities, 

providing a direct link between strength capacity and the underlying biomechanical factor 
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governing that capacity. Additionally, Kerk et al., (1994; 1998) further exploit this link to 

estimate whole body strength capabilities based on the underlying biomechanical factors 

governing that capability. This combined approach provides strength related information 

which can be used to effectively inform both proactive job design, and reactive job design; but 

also, detailed biomechanical information is included, such as joint moments and forces, which 

can be further used to model tissue specific loading (McGill, 1996). Lastly, this approach 

provides a biomechanical rationale to support strength assessment by highlighting the 

connection between overall strength capacities and underlying biomechanical doses. 

 Advancing the relationship between strength capacities and underlying biomechanical 

features is a main theme in this dissertation. The extensive work of Chaffin and colleagues has 

provided a strong foundation with respect to maximum strength, or simulated job static 

strength using the definitions provided in Chapter 1. However, advancing this approach to 

include biomechanical explanations for sub-maximal (psychophysical) strength capacities is 

needed to continue to refine MSD prevention efforts.   

2.5 – The use of psychophysical strength based metrics  

2.5.1 – The evolution of psychophysics in ergonomics 

Psychophysics is a branch of psychology used to investigate the relationships between 

physical stimuli and the sensations they produce in the body. The paradigm originated from the 

work of Gustov Fechner (1860), who first discovered logarithmic relationships between the 

magnitude of physical stimuli and the perceived sensations to those stimuli. One hundred years 

after Fechner‟s foundational research, Stanley Stevens derived the Stevens power law 

(Stevens, 1957) which helped revive Fechner‟s earlier work only this time using a power 

function to relate the magnitude of a stimulus (S) to the magnitude of a resulting sensation (Ψ) 



20 

 

in concert with a proportionality constant (k) and an exponent (
n
), both specific to the applied 

stimulus. Through a number of experiments, Stevens established the power law by measuring 

the sensory responses to a variety of physical stimuli.  

 nkS  (eq. 2.1) 

The power law effectively described stimulus-response relationships between sounds and 

loudness and light and brightness, among many other factors (Stevens, 1970). It was from 

Stevens‟ work that Snook and Irvine (1967) were able to evolve the use of psychophysics into 

a method for determining subjective acceptable exposure limits for workplace design.  

The psychophysical paradigm originated by measuring the sensory response for a given 

stimulus. Snook and Irvine (1967) were less interested in quantifying the sensations that 

resulted from a given stimulus; rather they wanted to measure the stimulus that resulted in a 

given sensory response. Where Stevens provided stimuli and measured the resulting responses, 

Snook and Irvine asked participants to self-adjust the stimulus (weight of box lifted) to achieve 

a specific response (“the maximum amount you can lift comfortably without straining 

yourself”). The resulting box weight was then considered the acceptable limit for the lift. This 

initial research by Snook and Irvine (1967) transformed the psychophysical paradigm into a 

useful method for developing acceptable guidelines for work. Snook continued to use and 

evolve this approach, which eventually resulted in the development of the Liberty Mutual 

Manual Materials Handling Guide (©Liberty Mutual), one of the most commonly used 

observational techniques by certified ergonomists (Dempsey et al., 2005).     

2.5.2 – Applications of psychophysics in ergonomics – lifting, pushing, pulling 

 Psychophysical was originally adapted for ergonomics applications focused on 

determining acceptable limits for lifting. Beginning with the work of Snook and Irvine (1967) 
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several studies were conducted to investigate how various parameters of a lift influenced the 

acceptable limit. The Liberty Mutual Manual Materials Handling Guide, for example, was 

derived from studies looking at lifting, pushing and pulling: at different frequencies, to and 

from different heights, using different boxes and using different handle types, etc (Table 2.2). 

Many other researchers have conducted similar research, but the efforts of Dr. Snook at 

Liberty Mutual represent the most concentrated thrust using psychophysical estimation to 

determine load acceptability.  
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Table 2.2 – List of published psychophysical research performed at Liberty Mutual used 

to develop the Manual Materials Handling Guidelines. 

Authors Year Title 

Snook & Irvine 1967 Maximum acceptable weight of lift 

Snook & Irvine 1969 Psychophysical studies of physiological fatigue 

Snook et al. 1970 
Maximum weights & workloads acceptable to male industrial 

workers 

Snook 1978 
Ergonomics Society Lecture: The design of manual materials 

handling tasks 

Ciriello & Snook 1983 
A study of size, distance, height, and frequency effects on manual 

handling tasks 

Ciriello et al. 1990 
The effects of task duration on psychophysically determined 

maximum acceptable load changes 

Snook & Ciriello 1991 
The design of manual materials handling tasks: revised tables of 

maximum acceptable weights and forces 

Ciriello et al. 1993 
Further studies of psychophysically determined maximum 

acceptable weights and forces 

Ciriello et al. 1999 
Maximum acceptable forces of dynamic pushing, a comparison of 

two techniques 

Ciriello 2001 
The effects of box size, vertical distance, and height on lowering 

tasks 

Ciriello et al. 2007 
Revisited: Comparison of two techniques to establish maximum 

acceptable forces of a dynamic pushing task 

 

In addition to providing limits for lifting, pushing and pulling, the psychophysical 

approach has also been applied to investigate how work parameters influence the perception of 

acceptability. With respect to psychophysically acceptable lifting, researchers have examined 

the role of lifting style (Garg and Saxena, 1979), asymmetry of lift (Garg and Banaag, 1988; 

Han et al., 2005), the role of footwear and floor conditions (Li et al., 2007; Wickel and Reiser, 

2008) and the effects of obesity (Singh et al., 2009). These investigations continue to inform 

the understanding of how to (re-)design work to maximize work productivity by creating 

parameters that result in the highest acceptable limits.  
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2.5.3 – Applications of psychophysics in ergonomics – upper extremity motions 

Psychophysical force and moment estimation has also been used to examine acceptable 

limits for the upper limb. Several additional applications for psychophysics beyond force and 

moment estimation have also been used to determine “acceptability‟ criteria (e.g. Sood et al., 

2007); however this work will focus on the force or moment estimation application of 

psychophysics. Similar to the psychophysically acceptable lifting research, the literature on 

upper limb specific psychophysical limits again includes work from Snook and colleagues 

where they examined psychophysical limits for a number of hand motions and gripping tasks 

(Snook et al., 1995; 1997; 1999; Ciriello et al., 2001; 2002). One key difference that 

accompanied their transition into upper limb psychophysical limits was a switch from using 

task based definitions (lifting, lowering, etc.) to joint motion based definitions (wrist flexion, 

ulnar deviation, etc.). In the context of the global thesis being investigated here, this difference 

is important. By testing psychophysically acceptable moments for joint specific motions, the 

acceptable moment is inherently related to the strength capacity for that motion (i.e. the 

psychophysically acceptable force cannot be more that the maximum moment capability). This 

provides support to the hypothesis that psychophysical limits are at least in part related to 

maximum moment capacity.  

Upper limb psychophysical limits have also been derived using task based definitions. 

Though other researchers have contributed to the upper limb psychophysical literature, two 

research groups have been prolific in their contributions in this regard. Jeffery Fernandez‟s 

group has examined gripping, pinching, drilling, and riveting (Kim and Fernandez, 1993; 

Dahalan and Fernandez, 1994; Davis and Fernandez, 1994; Marley and Fernandez, 1995; 

Klein and Fernandez, 1997; Fredericks and Fernandez, 1999). Jim Potvin and colleagues have 
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examined hose insertions, fastener initiations, pinches, and hand impacts (Potvin et al., 2000; 

Cort et al., 2006; Potvin et al., 2006; Andrews et al., 2008).  

In addition to providing a variety of task based threshold limits, each group has also 

made a unique contribution. Fernandez demonstrated how the traditional load-adjust approach 

to psychophysics - where the participant self selects the load - could be altered to a frequency-

adjust approach - where the load is constant but the participant self-selects the work rate. This 

contribution does not directly impact the work in this dissertation. However, it does provide 

evidence that frequency (exposure time) of motion is also perceivable. Therefore it is 

important to note that the relationships investigated through this dissertation are dependent on 

the exposure time as well. Potvin and colleagues contributed the idea that psychophysical force 

is proportionally related to maximum voluntary force (Potvin, 2007). Although this idea has 

been suggested by others, (Nussbaum and Lang, 2005), Potvin demonstrated it quantitatively 

(Potvin, 2007). This dissertation aimed to evaluate this proportionality relationship and 

identify if it was supportable through a biomechanical explanation.  

Two other notable contributions further our understanding of upper limb 

psychophysical limits. Moore and Wells (2005) extended the work addressing the effect of 

frequency on psychophysical limits. Their research demonstrated that duty cycle, rather than 

cycle time (frequency), most substantially affected psychophysically acceptable forces. In the 

context of the weakest link approach described in this dissertation, this finding is important. If 

the psychophysically acceptable force is directly related to the joint moment capacity (during 

strength limited exertions) then it could be expected that the acceptable forces would decrease 

as the time required to sustain the relative moment demands increased (Rohmert, 1973).  
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The second notable contribution supports the hypothesis that psychophysically 

acceptable forces for the upper limb are additionally dependant on time related factors. 

Nussbaum and Johnson (2002) modeled psychophysically acceptable finger forces using the 

following equation: 

 25.0 (%)MALFK      (eq. 2.2)     

In their equation, MAF% was the psychophysically acceptable force as a percentage of the 

maximum voluntary force, K was a finger specific constant, and F referred to the frequency 

(exertions / min). The key point illustrated by the equation is that psychophysically acceptable 

forces are likely related to the maximum acceptable force and that this relationship is scalable 

based on a time sensitive factor. This underscores the importance of testing the relationship 

between psychophysically acceptable forces and maximum voluntary forces in conditions 

where the influence of a time sensitive factor is minimal and controlled.   

2.5.4 – Advantages and disadvantages of using psychophysical metrics for setting threshold 

exposure limits in the workplace 

Psychophysical strength has many advantages with respect to setting exposure 

thresholds in the workplace. The following list of advantages has been reported in the literature 

(Ayoub and Dempsey, 1999; Snook, 1999; Dempsey, 2006): 

1. Psychophysics allows for the realistic simulation of industrial tasks. 

2. Psychophysical results are consistent with the industrial engineering concept of "A fair 

days work for a fair days pay". 

3. Psychophysical results are very reproducible. 

4. Psychophysical judgments take into account the whole job, integrating biomechanical 

and physiological factors. 
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5. The psychophysical approach is less costly and less time consuming to apply in industry 

than many of the biomechanical or physiological techniques. 

6. Currently, psychophysical data represent one of the few quantitative guidelines for the 

design of force limits in upper extremity intensive tasks. 

 

Additionally, the following limitations and disadvantages were also described: 

1. Psychophysics is a subjective method by definition. 

2. The assumption that the subjective workloads selected by participants are below the 

thresholds for injury has not been validated. There is no epidemiological support for 

using psychophysical data in the design of upper extremity extensive tasks to prevent 

injury. 

3. The range of data for designing upper extremity tasks is somewhat limited at this time.  

The scope of this dissertation aims to provide information that will help address these three 

limitations by investigating a possible relationship between psychophysical strength capacity, 

simulated job static strength capacity and the underlying biomechanical doses.  

 Psychophysical strength provides important information despite it being viewed as a 

subjective measure. Biomechanical analysis and strength assessment each provide useful 

quantitative information (section 2.4.4). As 3DSSPP demonstrates, a link between strength 

capacity at a whole body level and internal biomechanical doses and capacities at an internal 

level (Figure 2.2) can yield additional knowledge. Considering that psychophysical strength 

provides additional information that is different from biomechanical and physiological 

assessment (Garg and Ayoub, 1980; Nicholson 1989; Dempsey, 1998; Keyserling et al., 2000) 

it is useful to investigate how psychophysical strength may also be related to both 



27 

 

biomechanical and maximum strength capacity information. Within the context of the dose-

response model (Armstrong et al., 1993), psychophysical strength provides insight into how 

much exposure can be withstood without causing responses that generate feelings of pain or 

discomfort (Snook et al., 1995) (Figure 2.3). By linking psychophysical load selection with 

underlying biomechanical doses and maximum strength capacities, we aim to address the 

limitation that psychophysical limits are solely subjective, and further improve our ability to 

predict these types of limits in the workplace 

 

Figure 2.3 – The conceptual dose-response model (Armstrong et al., 1993) modified to 

demonstrate how biomechanical analysis, strength assessment and psychophysical 

assessment can yield important information in the context of this process. 

 Where maximum strength assessment reveals the maximum system capacity, and 

biomechanical analysis reveals specific internal doses and responses, psychophysical 

assessment reveals information about what work exposure is acceptable without causing 

responses related to uncomfortable sensations. By expressing these features overlaid on a dose 
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response model, it is inherently implied that they all relate to injury. However, as noted in the 

list of limitations, psychophysically acceptable strength thresholds may not necessarily protect 

against injury development (Ayoub and Dempsey, 1999; Snook, 1999). Nonetheless, by 

viewing each of these factors in this context it also implies that there is a link between them. 

This thesis is directed at examining the relationships between maximum strength, 

psychophysical strength and underlying biomechanics. And although the goal is not to 

demonstrate that working at or below psychophysically selected exposures protects against 

injury, the objective of this work is to demonstrate if a quantitative relationship between these 

factors exists.      

2.5.5 – The link between biomechanics and psychophysics 

 This dissertation is not the first attempt to examine a biomechanical explanation for 

psychophysical load selection. Explanations based on electromyographic findings have been 

discussed most frequently in the literature. Table 2.3 summarizes those findings.  
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Table 2.3 – A summary of EMG findings reported in the literature when conducting 

psychophysical research on upper extremity intensive tasks. 

 
* FCR – flexor carpi radialis, ECR – extensor carpi radialis, Adelt – anterior deltoid, FD – flexor digitorum, ED – 

extensor digitorum, ECU – extensor carpi ulnaris, FCU - flexor carpi ulnaris, BB – biceps brachii, BR – 

brachioradialis, FDI – first dorsal interosseous, TNR – thenar,  FDS – flexor digitorum superficialis, FPL – flexor 

palmaris longus, ECRB – extensor carpi radialis brevis. 

Reference Muscles EMG Processing Results

Klein & 

Fernandez, 

1997

FCR, ECR

Calculated RMS and 

Median Frequency                            

Sampled at 1024 Hz

RMS increased and MF 

decreased with increases in 

wrist flexion angle, pinch force, 

or duration

Marley & 

Fernadez, 

1995

Flexor carpi 

ulnaris, Anterior 

deltoid

Calculated RMS                            

Sampled at 800 Hz

Increased RMS with increased 

wrist flexion (FCU) or inceased 

shoulder flexion (Delt)

Davis & 

Fernandez, 

1994

Forearm flexor 

and extensor 

muscles

no details reported no results reported

Kim and 

Fernandez, 

1993

Forearm flexor 

and Adelt

Calculated RMS                             

Sampled at 512 Hz

Increased RMS with increased 

force requirments

Fredericks 

and 

Fernandez, 

1999

Forearm flexor 

and extensor 

muscles

Calculated RMS and MF 

(note EMG electrodes 

repositioned for every 

measurement)                             

Sampled at 800 Hz

Increased RMS in flexors with 

increase in wrist flexion

Dahalan and 

Fernandez, 

1993

FD, ECR

Calculated RMS and 

Median Frequency                            

Sampled at 1024 Hz

RMS increased and MDF 

increased with increases in 

contraction intensity

Cort et al., 

2006

ECU, FCU, BB, 

BR, FDI, TNR 

Normalized EMG to MVC                             

Sampled at 1000 Hz

Low activity as a %MVC, 

phasic response of thenar 

muscle suggests its importance 

in fastner initiations

McFall, 2008

ECU, ED, ECR, 

FCU, FCR, 

FDS, FPL, FDI

Normalized EMG to MVC 

obtained during pinch and 

power grips                           

Calculated APDF's and 

MPF                     

Sampled at 1000 Hz

No decrease in MPF over the 

course of individual trials                   

Peak %MVC EMG fell below 

recommend static (10th%ile) 

and dynamic (50th%ile) 

recommended thresholds

Moore, 1999
FDS, ECRB, 

FCR

Normalized EMG to initial 

measurement of the day                           

Calculated average 

%change in EMG, MF and 

MPF                     

Sampled at 1000 Hz

Average EMG for FCR 

increased from the start to end 

of the day
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 This body of work demonstrates that EMG changes occur as task parameters change; 

however, acceptable forces and frequencies are chosen by workers such that the corresponding 

EMG amplitudes remain below identified threshold levels (Jonsson, 1978), and further EMG 

mean power frequency remains consistent. These results are consistent with Keyserling et al. 

(2000) suggesting that psychophysical estimation is sensitive to fatigue. Though insightful, the 

EMG results alone do not provide the level of information needed to more adequately address 

the plausibility of a biomechanical explanation for psychophysical force selection.   

To date, only one study has calculated the joint moment demands associated with 

psychophysical load selection (Nussbaum and Lang, 2005). Corresponding relative joint 

demands were calculated during each psychophysical load selection by dividing the joint 

moment (L4/L5, shoulder, elbow) by the maximum joint strength (moment) calculated based 

on strength tests. Psychophysically acceptable loads were selected such that the highest 

relative joint demand experienced by any single joint was equal to approximately 70% of the 

maximum strength at the joint that was biomechanically most limiting. The kinematic and 

kinetic results presented by Nussbaum and Lang (2005) lays the foundation for the current 

work to further investigate the relationship between joint demands and psychophysical force 

selection hinging on an understanding of the capacity at the weakest or limiting joint or factor. 

2.6 – Methodological considerations for assessing psychophysical strength  

Many researchers have scrutinized aspects of the traditional psychophysical protocol. 

Those aspects investigated most often include: participant selection, training, psychophysical 

instructions, and the data recording length.  
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2.6.1 – Participant selection 

 Participant recruitment is an important concern in the development of a research 

experiment. Three specific participant related concerns have been addressed in the literature 

with respect to their influence on psychophysically acceptable forces. Work experience is 

considered to be the most critical of these concerns. Skilled workers, familiar with the task 

respond differently than unskilled workers not familiar with the task (Gamberale, 1987; 1988; 

Potvin et al., 2000). Further, inexperienced students selected psychophysically acceptable 

forces at significantly higher levels than industrial workers (Johnson and Nussbaum, 2003).  

These findings support the conviction that industrial workers should be used when determining 

psychophysical guidelines for industrial work because “students, housewives and military 

personnel may have different perceptions of industrial work” (Snook, 1978). This dissertation 

is directed towards having an applied application in the long term. Therefore in light of the 

known influence that work experience can have on estimates of psychophysical force, workers 

familiar with general manual materials handling were hired as participants.  

 Gender and age may also impact the magnitude of psychophysical estimates. Indeed, 

females do tend to select psychophysical forces at a lower magnitude; however, when this 

difference is considered, men and women respond similarly (Ciriello and Snook, 1983; Ciriello 

et al., 1990; Nussbaum and Johnson, 2002; Wickel and Reiser, 2008; Singh et al., 2009). In 

terms of age, Wright and Mital (1999) reported no considerable difference in psychophysically 

acceptable loads between people aged 55 - 74 and 18-35. Using an age blocked design; both 

Cort et al. (2006) and Potvin et al. (2006) corroborated this finding with reference to fastener 

initiation frequencies, or grasp, pinch, and finger press forces. Collectively these results 
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indicate that psychophysically acceptable forces will likely be similar across workers stratified 

by age; however, females are likely to select forces at a lower level than males.  

2.6.2 – Training    

The determination of psychophysically acceptable loads requires participants to make a 

choice about a workload that they feel would be acceptable for them to perform for a defined 

number of repetitions over the course of a work shift. To ensure that participants are able to 

make this choice and understand how different magnitudes of workload can affect their 

feelings of wellness, it has become standard operating procedure to provide a training or 

familiarization period prior to psychophysical testing. However some controversy exists 

regarding the length or type of training required. Training prior to psychophysical experiments 

has varied from 4-5 days (Snook et al., 1995; 1997; 1999) to 2 hours of hands on training (Kim 

and Fernandez, 1993), to watching a video for familiarization (Nussbaum and Johnson, 2002). 

Though research demonstrates that unskilled workers can be trained to produce psychophysical 

forces that converge with those of skilled workers (Potvin et al., 2000) no conclusive research 

has clearly demonstrated how much training is required for a skilled worker to become 

familiar.      

2.6.3 – Psychophysics instructions  

Within the paradigm of psychophysics, participants are asked to select a parameter (in 

this case force) such that their perception to the response of selecting that parameter is below 

some criteria. For example, when asking workers to select an acceptable weight for lifting 

Snook and Irvine (1967) told workers “We are not interested in the maximum amount of 

weight that can be lifted, but only in the amount that can be lifted comfortably and without 

strain”. This statement provided the participants with the knowledge that they were to gauge 
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their lift weight according to their perception of their comfort level and strain level. The 

specific content of this verbal message can have an impact on psychophysically acceptable 

forces (Karwowski et al., 1999). In addition, the frequency at which the instructions are 

provide can also impact estimates (Gamberale, 1987; 1988). Therefore it is prudent to maintain 

a consistent form of instruction, provided at regularly occurring intervals to ensure that these 

factors do not adversely affect psychophysical estimates between or within participants. 

2.6.4 – Time required to obtain a stable psychophysical estimate 

There is no consensus on the appropriate length of time over which to determine 

psychophysically acceptable loads. Nussbaum and Johnson (2002) found that estimates of 

acceptable forces for single digit pushes stabilized quickly (within 5 minutes), and did not 

significantly vary over the remainder of the 25 minute load-adjust protocol. Ciriello et al. 

(1990) report no significant change in lifting or lowering loads over the course of a four hour 

protocol. Conversely Snook et al. (1995; 1997; 1999) reported a small, but significant decrease 

in acceptable torque levels from the first hour, until the fifth hour, where the acceptable 

torques leveled off for the remainder of the seven hour collection. In addition, Fernandez et al. 

(1991) demonstrated that load decreased over the course of an 8-hour work shift, although 

most changes occurred in the first hour (46% of all adjustments), or fifth hour, immediately 

following the allotted lunch break (24% of all adjustments). The lack of a clear timeline to 

obtain stable estimates is troubling. However, in a practical sense, this indecision in length of 

time is rationalized based on the high cost to perform the research and the small difference in 

magnitude that would be expected to occur by using longer lengths (Snook et al., 1995; 1997; 

1999).  
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2.6.5 – General conclusions on choosing a psychophysical protocol 

 The outcomes of this dissertation hinge on being able to adequately determine 

psychophysically acceptable forces. Throughout section 2.6, a number of considerations have 

been presented with reference to their impact on psychophysically acceptable forces. It is clear 

that some factors (skilled vs. unskilled workers) appear to have more of an affect than others 

(age). Each of these considerations and factors were considered in the design of the 

psychophysical studies performed as part of this dissertation. The purpose of this section was 

to provide the rationale to support those study designs.   
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Chapter 3 – The roles of whole body balance, shoe-floor friction and 
joint strength during maximum exertions: Searching for the 
“weakest link”. 

Steven L Fischer, Bryon Picco, Richard P Wells and Clark R. Dickerson 

Submitted to Applied Biomechanics 

3.1 – Overview 

 Exerting manual forces is critical during occupational performance. Considering how 

specific factors influence performance capacity, including balance, friction, or joint strength 

could help discern situational underlying sources of hand force capacity. This research focused 

on identifying how these factors limited hand force capability during unilateral pulling, 

pressing down, and medial exertions. These efforts were performed in a self-selected manner 

under four conditions in which different body regions were constrained, thereby removing 

potential limiting factors. Centre of pressure movements (COP), upper body joint strengths, 

and muscle activation were monitored.  

 Joint strength limited downward forces – specifically, shoulder, trunk or potentially 

lower body strength. Whole body balance limited pulling, with maximal force occurring when 

the COP excursions reached a functional limit within the base of support (BOS). While braced 

at the trunk and pulling, COP excursions surpassed BOS limits by 400% while hand force 

increased nearly 300%. Medial exertion strength was modified by balance, friction and joint 

strength; but a clear limiting factor did not emerge. Medial force capacity may be limited by 

trunk strength, but is also influenced by both friction and balance. Depending on the specific 

circumstances, balance, friction, and joint strength appear to differentially limit the ability to 

exert manual forces.   
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3.2 – Introduction  

Incorporating human force producing capability into job design can mitigate workers‟ 

risk of injury. Since the nineteenth century, researchers have measured force production in an 

effort to match individual capability with anticipated performance demands (Sargent, 1887) to 

optimize performance and minimize injury risk. The relevance of this concept persists, as the 

risk of injury increases when working at or above capability (Chaffin et al., 1978). However, 

measuring individual worker capabilities to facilitate this matching is time and cost intensive. 

Alternatively, models designed to predict force producing capability could enable designers to 

match job demands with prospective worker capabilities. However, there have been few 

attempts to develop comprehensive predictive models (Grieve 1979a; 1979b; Kerk et al., 

1994), and none designed to incorporate three dimensional tasks. This may be due to an 

incomplete understanding about how force capacity is limited.  

 Several factors, both extrinsic and intrinsic to the worker, can limit force producing 

capability during manual material handling exertions. Limiting factors include whole body 

balance (Kerk et al., 1998; Holbein and Chaffin, 1997), shoe-floor friction (Kroemer, 1974), 

hand-handle friction (Seo et. al., 2010), and individual joint moment strength (Chaffin, 1997).  

Whole body balance becomes limiting when the centre of pressure (COP) approaches the 

limits of support (BOS). As a worker exerts a force, the reaction force creates a moment about 

the workers centre of mass (COM). Assuming the worker remains in a static posture; the COP 

must be displaced to ensure the moment caused by the ground reaction force is equal and 

opposite to the moment caused by the reaction force at the hand. Gaughran and Dempster 

(1956) demonstrated this experimentally while measuring horizontal force capability. Hand 

force production was directly proportional to the length of the BOS, where higher hand forces 
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were recorded when the BOS was extended. Recent work investigating balance and hand force 

production has shown that COP excursions are further limited to an area within the BOS, the 

“functional base of support” (FBOS), (Holbein and Chaffin, 1997; Holbein and Redfern, 1997; 

Holbein-Jenny et al., 2007).Quantifying COP excursions within the FBOS may help infer how 

balance constrains capability. Delineating FBOS limits during maximum pulling and pressing 

efforts should aid future modeling approaches. 

Joint strength has been identified as a fundamental limiting factor to hand force 

production capability. Through decades of research, Chaffin and colleagues conceptualized the 

use of joint strength as a constraint on capability in the workplace (Chaffin, 1969; Chaffin and 

Baker, 1970; Garg and Chaffin, 1975; Chaffin et al., 2006) in the development of the Michigan 

Three Dimensional (3D) Static Strength Prediction Program (3DSSPP). The strength 

constraints in the 3DSSPP are based on work by Schanne (1972) and Stobbe (1982) who 

developed population scalable strength estimates to predict maximum joint strength for each 

joint, depending on the posture and exertion type. Although these estimates of joint strength 

are widely cited, modeling of the actual joint strengths (moments) generated in simulated 

occupational activities when joint strength is known to be limiting is scarce. Moreover, 

comparison of measured joint strengths and estimated maximum joint strengths is rare.  

Shoe-floor friction and hand-handle friction can also be limiting factors, though they 

may be less likely to limit performance under most conditions. Grieve (1983) concluded that 

friction is most likely the limiting factor only during conditions where the coefficient of 

friction is greatly reduced. Similarly, Seo et al., (2010) demonstrated that hand-handle friction 

is also most limiting only when it is greatly reduced, and further, it can be eliminated as a 

constraint if the handle is perpendicular to the hand.  
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The purpose of this research was to identify when specific factors (whole-body 

balance, shoe-floor friction, and joint strength) limited the ability of the distal upper limb to 

exert forces on the environment during unilateral pulling, pressing down, and medial exertions. 

Further, we quantified maximum COP excursion, maximum joint strengths, and maximum 

muscle activation achieved in the context of these factors. We aimed to provide improved 

clarification for the influence of limiting factors on hand force production. 

3.3 – Methods 

3.3.1 – Participants  

 A convenience sample of eighteen right hand dominant male university students 

(stature: 1.79 ± 0.08 m; body mass: 80.5 ± 10.2 kg) participated. According to an a priori 

power analysis, a minimum of ten participants was necessary to provide >80% power to detect 

significant differences in hand force between conditions with an effect size greater than 1.0 

(partial η2 greater than 0.5 when using a repeated measures design) (Faul et al., 2007; 2009). 

The study exclusion criteria were self-reported upper extremity or low back disorders or pain 

within the previous year. The research protocol was approved by the university research ethics 

review board.  

3.3.2 – Instrumentation 

Ten muscles were monitored using surface electromyography (sEMG). Bi-polar silver 

silver-chloride Noraxon dual surface electrodes with a fixed 20-mm inter-electrode spacing 

(Noraxon, Arizona, USA) were placed over each muscle belly (Table 1). Prior to electrode 

placement, the skin overlaying the muscle was shaved and cleaned with alcohol to minimize 

impedance. EMG signals were acquired using the Noraxon Telemyo 2400 T G2 telemetered 

EMG system (Noraxon, Arizona, USA) and A/D converted at 1500 samples/second using a 
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16-bit A/D card with a ±3.5V range (VICON, Oxford, UK). The recording system included 

band pass filtering (10-500 Hz) and differential amplification (common-mode rejection ratio 

>100 dB at 60Hz, input impedance 100MΩ) of the detected signal. Force was measured using 

an AMTI 6 degree-of-freedom transducer (MC3A, AMTI MA, USA), rigidly fixed to a custom 

handle to allow the participant to exert force in the specified directions (described below). 

Force was sampled synchronously with sEMG at 1500 Hz using VICON Nexus 1.2 software 

(Oxford, UK).   

  



40 

 

Table 3.1 – A list of the muscles recorded using sEMG, the electrode locations and MVIE 

tests used to determine muscle specific MVEs. Surface electrodes locations and MVIE 

tests were adapted from SENIAM
a
, McGill, 1991

b
, and Delagi et al., 1980

c
. 

Muscle Surface electrode location MVIE test 

Bilateral Rectus 

Abdominus
b
 

Approximately 3 cm lateral to 

the umbilicus, over the muscle 

belly 

Lying supine with trunk 

elevated 60 degrees from 

horizontal, resist against trunk 

flexion 

Bilateral Erector 

Spinae - 

longissimus
b
 

Approximately 5 cm lateral to 

the T9 spinous process, over 

the muscle belly 

Lifting the trunk from a prone 

position 

Right upper 

trapezius
a
 

Placed at 50% of the distance 

on the line from the acromion 

to the spine on c7 vertebra, 

over the muscle belly 

Elevate the acromial end of the 

clavicule and scapula. Apply 

pressure against the shoulder 

in the direction of depression 

and against the head in the 

direction of flexion 

anterolaterally. 

Right middle 

trapezius
a
 

Placed at 50% of the distance 

between the medial border of 

the scapula and the spine, at 

the level of T3, over the 

muscle belly 

To position the scapula and to 

obtain leverage for the test, the 

elbow needs to be extended 

and the shoulder placed in 90 

degrees abduction and lateral 

rotation. This rotation of the 

shoulder is denoted by the 

position of the hand with the 

palm facing cranially (without 

elevating the shoulder girdle) 

Right latissimus 

dorsi
b
 

Lateral to the T9 spinous 

process, over the muscle belly 

Resisted lat pulldown with 

internal rotation of the 

humerus 

Right teres major
c
 Three fingerbreadths above the 

inferior angle of the scapula 

along the lateral border 

Resisted lat pulldown with 

internal rotation of the 

humerus 

Right pectoralis 

major - sternal 

origin
c
 

Over the anterior axillary fold, 

6 cm above the nipple, 

directed superior-laterally  

Press palms together with arms 

flexed to 90° degrees and 

elbow slightly bent 

Right pectoralis 

major - clavicular 

origin
c
 

Over the anterior axillary fold, 

between the sternoclavicular 

joint and the corocoid process, 

2 cm below the clavicle, 

directed inferior-laterally 

Press palms together with arms 

flexed to 90° degrees and 

elbow slightly bent 

Reference electrode Place over the clavicle    



41 

 

Three-dimensional motion was tracked at 50 Hz using an 8-camera Vicon MX20 

System (Vicon, Oxford, UK). Thirty-eight individual markers were placed over anatomical 

landmarks including the C7 and L5 vertebrae, over the suprasternal notch, xiphoid process, 

and bilaterally over the 2nd and 5th metacarpals, radial and ulnar styloids, medial and lateral 

epicondyles, the acromion, ear, anterior superior iliac spine, greater trochanter, medial and 

lateral condyles of the knee, medial and lateral malleolus, the tip of the 1st and 5th metatarsals, 

and at the posterior border of the calcaneus. Additional marker clusters secured on rigid plates, 

were positioned over the sternum, and bilaterally over the forearm, upper arm, leg, shank, and 

over the top of the foot. The marker clusters were used to track segment movement during 

experimental testing. A static calibration frame established the relationship between the 

clusters and the calibration markers over the anatomical landmarks, and subsequently joint 

centers and segment coordinate systems were described (Kingma et al., 1996).  

3.3.3 – Protocol 

Participants completed six different maximum voluntary isometric exertion (MVIE) tests 

(Table 1) under manual resistance, where each test was selected to elicit the maximum 

electrical activity from each of the muscles respectively. Each MVIE test was performed three 

times where the trial with the highest maximum voluntary electrical activity (MVE) was used 

to as the reference value to normalize subsequent sEMG data (Winter, 1991). Participants were 

given 2 minutes of rest between MVIE tests (Chaffin, 1975; Mathissen et al., 1995). 

Participants were provided with approximately five minutes to warm-up and practice the 

MVIE tests in the postures outlined in Table 3.1. Twenty minutes of rest was provided before 

participants began the experimental trials.  
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For the experiment, participants completed maximal exertions in the medial (left across the 

body), horizontal pull (inwards towards the body), and downward press (towards the floor) 

directions against a handle using a power grip. Each exertion was performed twice within each 

of the five experimental conditions (described below). Participants completed each exertion 

within a five second window and were asked to ramp up to their maximum force during the 

first 1-2 seconds, and then sustain that maximum until the end of the five seconds (Chaffin, 

1975). A minimum of two minutes of rest was provided in between exertions (Chaffin, 1975). 

The five experimental conditions were: 

1. Shoulder Width Foot Posture (SWFP): Each participant stood with their feet shoulder 

width apart (Figure 1-A). This condition represented a generic working position. 

2. Free Foot Posture (FFP): Without altering the position of the torso and shoulder relative 

to the handle, participants were given up to five minutes to test different foot placements 

to determine a position that would allow them to produce the most force in the required 

direction (Figure 1-B). This condition represented a generic work posture where 

participants could choose their own preferred posture to maximize hand force. 

3. High Friction (HF): Participants stood with their feet shoulder width apart, similar to 

Figure 1-A with the soles of their shoes taped to the floor using double sided indoor 

Scotch carpet tape (3M, MN, USA) . This condition was intended to eliminate friction as 

a possible limiting factor. 

4. Lower Body Braced (LBB): The upper legs were braced with a rigid fixture (Figure 1-C, 

with only the legs braced) with the feet positioned and still taped similar to the HF 

condition. This condition was intended to eliminate balance as a possible limiting factor. 
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5. Upper Body Braced (UBB): Both the lower and upper body were braced (Figure 1-C). 

This condition was intended to eliminate the influence of trunk strength as a possible 

limiting factor, and to further reduce balance as a possible constraint. 

 
Figure 3.1 – The experimental conditions tested. Participants completed downward 

presses, pulls, and medial pushes in five conditions: 1) shoulder width foot placement 

(”SWFP” seen in frame A), 2) free foot placement (”FFP” seen in frame B), 3) high 

friction (“HF” seen in frame A, with feet taped to floor), 4) lower body braced (“LBB” 

seen in frame C, without upper body chest strap), and upper body braced (”UBB” seen in 

frame C).  

Exposure to experimental conditions was block randomized, whereby participants 

completed exertions within the blocks of SWFP, FFP, and the group of HF, LBB, and UBB in 

a random order. The exertion direction was randomized within each block. For all exertions 

the handle was positioned at shoulder height, along the midline of the body, at a distance of 

approximately 80% of limb length for all exertions. 
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3.3.4 – Data analysis  

All sEMG signals were linear enveloped by full wave rectifying and digitally filtering 

the data (Winter, 2005) at 4 Hz using a single pass 4th order low pass Butterworth filter 

(Mathiassen et al., 1995). Linear enveloped sEMG was then expressed relative to the peak 

activity measured in the MVIE tests, yielding a time series %MVE. A single representative 

%MVE value was then determined for each muscle in each trial as the mean %MVE between 

the 2nd and 3rd second of each trial (for a detailed schematic please see Appendix 3a). The 

EMG was processed to determine how active each muscle was relative to the maximum 

amount of activity that could be generated in an optimal, standardized posture.  An average of 

the signal between the 2
nd

 and 3
rd

 seconds was used as the representative amount of activity 

required to sustain the contraction. 

Peak hand force was determined as the peak value resulting from a 500 millisecond 

moving window average over the raw force trace (for a detailed schematic please see 

Appendix 3b).The corresponding postural data was also extracted and averaged over the same 

500 millisecond window. This ensured that both the force and postural data from the same 

instance in time were used for subsequent analysis. A low pass filter was used to remove 

electrically induced noise from the signal and a sliding window average was used to smooth 

the effects of tremor and small jerking motions applied to the handle. 

Shoulder moments were calculated using a 3D static linked segment model (Dickerson 

et al., 2007) using the peak force and corresponding joint positions extracted from the postural 

data. Using the assumptions that the body is both rigid and static during the exertion, the 

location of the COP was solved for by summing the moments acting about the COP. The 

opposing moments are caused by the reaction force acting at the hand and the mass of the body 
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acting at the whole body center of mass (Figure3.2). From the figure, it is clear that the A-P 

COP location is dependent on the components of force applied in the vertical (Fz) and along 

the AP horizontal axis (Fy), while the M-L COP location is again dependent on the force 

applied in the vertical (Fz) axis, but also along the ML horizontal axis (Fx).  The vertical 

location of the COP is assumed to always be on the floor, and no axial rotation moments about 

the COP were determined. By simplifying the AP and ML COP calculation into two separate 

2D analyses, the corresponding moment arms required to solve the AP and ML moment 

equilibrium equations could be obtained from the marker data.  Once the COP location was 

obtained in global coordinates, the AP COP was expressed as the distance from the BOS 

center normalized to the length of the BOS.  The ML COP was similarly expressed as the 

distance from the BOS centre normalized to the breadth of the BOS. The geometric centre of 

the BOS and the BOS dimensions were obtained from marker data (the lateral malleolus, the 

tip of the 1st and 5th metatarsals, and at the posterior border of the calcaneus – Holbein-Jenny 

et al., 2007). 
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Figure 3.2 – A schematic illustration to demonstrate how the COP location was 

determined by solving for the moment about the COP in both the AP and ML planes.  

The simplification allowed COP (x,y) to be determined; however it does not allow for any 

axial rotational moments to be determined. 

3.3.5 – Statistical analysis 

A repeated measures analysis of variance (ANOVA) was used to examine the effect of 

condition (SWFP, FFP, HF, LBB, UBB) on the dependent variables: %MVE (for each muscle)  
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peak hand force, shoulder moment (about each anatomical axis), and COP excursion 

percentage, within each exertion direction. Dependent measures were not compared between 

different exertion directions. A Greenhouse-Geisser correction was used to protect against 

violations of the sphericity assumption. Pairwise comparisons with a Bonferonni adjustment 

were used to determine individual differences between different levels of the condition 

variable. Partial η2 was used as an estimate of effect size due to the use of a repeated measures 

design. Alpha was set at 0.05 for all comparisons. All statistical processing was completed 

using SPSS software (SPSS INC., Chicago, IL, USA). 

3.4 – Results 

 During pulling hand force was significantly affected by the experimental conditions 

(p< 0.001) (Figure 3.3, Table 3.2). When balance was removed as a limiting factor during the 

braced conditions (i.e. LBB and UBB conditions) hand force capability increased 

approximately 2.5 times, compared to the SWFP condition. During unilateral medial exertions 

hand force was also significantly affected by the experimental conditions (p<0.001) (Figure 

3.3, Table 3.2).   Unilateral medial hand force capability increased 60% when participants 

were braced as compared to the SWFP condition. Unilateral exertions in a downward direction 

were also affected by the experimental conditions (p<0.001); however only the force in the 

UBB trial differed, significantly less than the downward force in the other conditions. 

 A summary of the ANOVA results (Table 3.2 and 3.3) demonstrates where the 

experimental conditions had a significant effect on the dependent measures. The significant 

variables with effect sizes (partial η2) greater than 0.5 are considered most meaningful (Cohen, 

1988) and will be the primary focus of the results. 
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Figure 3.3 – The maximum hand force capability and standard deviation for each 

experimental condition in each direction. Bars with different letters are significantly 

different (p< 0.05). SWFP = shoulder width foot placement; FFP = free foot placements; 

HF = high friction; LBB = lower body braced; UBB = upper body braced. 
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Table 3.2 – Summary of the ANOVA results and the effect of the experimental conditions on the dependent measures: hand 

force and %MVE for all muscles. Significant findings (p< 0.05) and meaningful effect sizes (partial η2 ≥ 0.5) are bolded and 

noted with an asterisk (*).   
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Table 3.3 – Summary of the ANOVA results and effect of the experimental conditions on 

the dependent measures: COP (M/L and A/P) and the shoulder moments. Significant 

findings (p< 0.05) and meaningful effect sizes (partial η2 ≥ 0.5) are bolded and noted with 

an asterisk (*). 
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Exposure to different experimental conditions during pulling had a significant and 

meaningful affect on the %MVE for the middle trapezius (p<0.001, effect size 0.5) and right 

erector spinae muscles (p<0.001, effect size 0.6) (Figure 3.4). Low effect sizes (expressed as 

partial η2) across the remaining %MVE measures suggest that the magnitude of the 

relationships between the %MVE and exposure to experimental conditions was weak to 

moderate (Cohen, 1988)  Further, the group averaged peak %MVE never exceeded 73%, 

indicating that no muscle was ever used maximally. Peak %MVE during pulling was recorded 

from the latissimus dorsi (73%) in the UBB condition; during downward pressing from the 

teres major (69%) in the FFP condition; and from the pectoralis major – clavicular insertion 

(70%) during medial exertions in the HF condition. A representative plot illustrating the 

%MVE for the muscle measured around the torso during downward pressing is provided as 

trunk muscle strength could be implicated as a limiting factor during downward pressing 

(Figure 3.5).  
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Figure 3.4 – The %MVE and standard deviations for the right erector spinae and middle 

trapezius during pulling. Bars with different letters are significantly different (p < 0.05). 

SWFP = shoulder width foot placement; FFP = free foot placements; HF = high friction; 

LBB = lower body braced; UBB = upper body braced. 



53 

 

 
Figure 3.5 – The %MVE recorded from the trunk muscles during unilateral downward 

exertions. Bars with different letters are significantly different (p < 0.05). SWFP = 

shoulder width foot placement; FFP = free foot placements; HF = high friction; LBB = 

lower body braced; UBB = upper body braced. 

The COP excursion in the A/P direction was both significantly and meaningfully 

affected during pulling. When pulling, the COP extends forward beyond the BOS during 

braced conditions (Figure 3.6). The COP excursion in the M/L direction was significantly 

affected during medial and pulling exertions. Participants chose to shift their COP furthest 

towards the right side of the BOS when they were braced and less so in the FFP and SWF 

condition; though they never exceeded the lateral border of the BOS during any exertions 

(Figure 3.6). 
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Figure 3.6 – COP distance and standard deviation as a percentage of the distance 

between the BOS centre and the edge of the BOS. Bars with different letters are 

significantly different (p < 0.05). SWFP = shoulder width foot placement; FFP = free foot 

placements; HF = high friction; LBB = lower body braced; UBB = upper body braced. 

 Shoulder moments varied considerably between conditions (Figure 3.7). Shoulder 

moments in all axes tended to increase as participants were braced during pulling and medially 

oriented exertions. During downward exertions the adduction moment remained consistent 

across trials, while the internal rotation moment was decreased significantly when the upper 

body was braced. The overall peak internal rotation moment occurred during downward 

pressing in the FFP conditions, while the peak adduction moment occurred during medial 

pushing in the UBB condition. The peak flexion moment occurred while pushing medially 
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during the FFP condition, while the peak extension moment occurred during downward 

pressing in the HF condition. 

 
Figure 3.7 – Shoulder moments between conditions. Note that pairwise comparisons were 

only made between conditions within each exertion direction. Moments were not 

compared between exertion directions. Bars with different letters are significantly 

different (p-value < 0.05). SWFP = shoulder width foot placement; FFP = free foot 

placements; HF = high friction; LBB = lower body braced; UBB = upper body braced. 
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3.5 – Discussion 

The purpose of this study was to identify when specific factors (whole-body balance, 

shoe-floor friction, and joint strength) limited the ability of the distal upper limb to exert forces 

on the environment during unilateral pulling, pressing down, and medial exertions. Whole-

body balance limited capability during un-braced pulling and medial pushing exertions, while 

pressing down, braced pulling and medial exertions were limited by joint strength. Shoe-floor 

friction played a role in medially directed exertions, but was not definitively the limiting 

factor. However, EMG does not support that these joint strengths are limited by the capacity of 

individual prime movers acting at the trunk or shoulder given that muscle activations were 

substantially less than that in the calibration trials. The following discussion will underscore 

how these conclusions were made based on the results presented, and in context with previous 

literature. 

3.5.1 – The role of balance as a weakest link 

Balance played the greatest role in limiting exertions in the horizontal plane (pushing 

medially and pulling inward). The highest unilateral pull and medial push forces were 

achieved when participants were braced, eliminating balance as a possible limiting factor.  

This phenomenon can be additionally explained using the COP data.  When the participants 

were not braced, the COP was restricted to the area defined by the BOS to maintain static 

stability; however, when participants were braced, they allowed their COP to migrate beyond 

the BOS limits. Further, the COP often remained within a sub-range within the BOS area. This 

supports the principle of a FBOS region (Holbein and Chaffin, 1997; Holbein and Redfern, 

1997; Lee and Lee, 2003; Holbein-Jenny et al., 2007). During pulling in the SWFP condition, 

the forward excursion of the COP was 59 (±30) % of the distance from the BOS centre to the 
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most anterior point. Using a loaded leaning experiment, Holbien-Jenny et al., (2007) reported a 

comparable average of 58 (±17) %, where Lee and Lee (2003), using a similar loaded leaning 

protocol reported a slightly lower value of 51 (±9) %. The similarity between the FBOS 

reported previously and the COP excursion calculated during pulling exertions in this study are 

consistent with balance being the most likely limiting factor. Whether leaning as far as 

possible or pulling as hard as possible, a similar A/P limit was reached.  

COP excursions in the M/L direction during medial exertions were not as consistent as 

those in the A/P direction during pulling. Hobein-Jenny et al., (2007) reported an M/L FBOS 

of 66 (±12) % while Lee and Lee (2003) reported an M/L FBOS of 58 (±12), both more than 

the M/L COP excursion in this study: 43 (±12) %. This may indicate that M/L balance was not 

limiting in the current study. As indicated in Figure 3.3, removing balance as a constraint 

through bracing did result in an increase in force relative to the SWFP condition; however the 

M/L COP excursion was only significantly greater during the LBB braced condition and not 

the UBB braced condition.  These experimental results suggest that M/L balance may play a 

role in the production of unilateral medial pushing forces, but that role is unclear in the present 

study. Though it is puzzling that participants did not reach the limits described in the literature, 

it may be that the M/L forces cause a rotational moment about the vertical axis projected up 

from the COP.  This rotational moment may be internally controlled similarly to A/P or M/L 

balance, but was not monitored in the current study.  It may also be possible that our 

participant pool had different ankle strengths, or postural control strategies (Holbein and 

Redfern, 1997) than those observed previously, reducing the effective FBOS range in the M/L 

direction for our participant pool.  

3.5.2 – The role of joint strength as a weakest link 
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Joint strength was most likely to limit unilateral hand force capacity in the absence of a 

balance or friction related constraint. The downward pressing forces measured in this study 

were not limited by balance as force capability was consistent across exertions, and did not 

increase when the possibility of a balance limitation was removed by bracing. Since force 

capability could not be increased by eliminating balance and friction based constraints, joint 

strength emerges as the limiting factor in this direction (Figure 3.6). Shoulder and trunk joint 

strength were considered, a priori, to be most likely to limit downward pressing in the absence 

of a balance or friction constraint, based on the moment arms between the point of force 

application and each of those joint centres. With respect the shoulder joint the peak internal 

rotation (34 ± 10 Nm) and extension moments (90 ± 17 Nm) calculated during downward 

pressing approached estimated population maximum internal rotation (37 ± 9 Nm) and 

extension (97 ± 20 Nm) strengths predicted using the equations presented by Schanne (1972) 

and Stobbe (1982) incorporated into the 3DSSPP. These data suggest that shoulder strength 

may limit unilateral hand force during downward exertions.  

Trunk moments were not calculated in this study due to the use of the bracing 

apparatus.  Instead EMG measured bilaterally from the rectus abdominus and the erector 

spinae were used to examine whether trunk strength could be limiting.  As indicated in the 

Figure 3.5, none of the torso muscles recorded reached more than 50% activation during 

downward exertions relative to the activity recorded during the standardized MVIE tests. 

However, many other muscles act to move and control the trunk, and may have reached near 

maximum activity, but have gone unnoticed due to this study design. Kerk et al., (1998) 

calculated trunk moments during downward pressing in a similar posture and then compared 

those moments to the population strength data described above.  They reported that trunk 
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moments often reached population thresholds, rather than moments at other joints, supporting 

a trunk strength limitation during downward exertions. They further hypothesized that strong 

subjects should maintain an advantage over weaker subjects when exerting force in the vertical 

direction due to the underlying strength limitation, while stronger and weaker subjects should 

respond similarly during horizontal pulling where balance is typically more limiting (Kerk et 

al., 1998).  

By default, joint strength was the limiting factor during all UBB exertions. Similar to 

the increases in force that occurred with bracing, shoulder joint moments increased 

considerably from non-braced conditions, approaching but not reaching the same magnitude 

observed during downward exertions and presented by previous authors. Medial exertions also 

resulted in a maximum adduction moment of 64 ± 16 Nm, lower than the maximum adduction 

moment 88 ± 24 Nm predicted using the equations presented by Schanne (1972) and Stobbe 

(1982). This suggests that another joint may have reached capacity before the shoulder 

moment capacity was reached. For instance, trunk strength may have limited these exertions. 

Previous research suggests that participants attempt to minimize trunk moments during 

pushing and pulling tasks (de Looze et al., 2000; Hoozemans et al., 2004; Hoffman et al., 

2007), which is consistent with the trunk being a weak link. In the current study, trunk 

moments were not determined during the braced conditions and force was not recorded 

between the participant and the bracing apparatus.  

3.5.3 – Is joint strength limited by the individual capacity of a prime mover? 

Electromyography provided quantification of the muscle activation of primary movers 

during the various exertions. If joint strength is limiting, it could be expected that muscle 

activity would also increase to near 100% MVE in one or all of the primary movers associated 
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with that joint. However, few muscles were significantly or meaningfully affected by changing 

conditions (Figure 3.4, 3.5); which suggests that muscle activity in the primary movers was not 

highly influenced whether a joint was limiting or not. This implies that either a secondary 

muscle not recorded in this study has achieved a maximum, therefore limiting joint strength, a 

different joint was limiting where muscles were not monitored (ankle, hip or knee) or a more 

complex phenomenon exists to set the upper limit for joint strength. For instance, joint stability 

maintenance may be intrinsically responsible for maximum joint strength when a joint limits 

hand force. During maximum pushing and pulling tasks, Granata and Bennett (2005) noted 

that participants attempted to limit trunk moments. In doing so, the corresponding lower 

moments resulted in lower trunk stability and therefore much higher levels of trunk muscle co-

contraction were required to compensate for the decreased stability (Granata and Bennett, 

2005). In the study by Granata and Bennett (2005) joint strength was not limited by the ability 

the prime movers to produce an opposing moment, but rather they were limited in their ability 

to remain stable while producing the opposing moment. At the shoulder Veeger and van der 

Helm (2007) note that the large primary movers can help provide stability, but they can often 

result in large antagonistic moments. Therefore, the result of a 69% active teres major during a 

shoulder limited downward exertion, for example, could require near 100% activity from 

corresponding rotator cuff muscles to ensure the joint remains in a stable position within the 

glenoid cavity. Therefore, although this research has determined that joint strength can limit 

the ability of the distal upper limb to exert forces the data does not support that this joint 

strength limitation is related to the muscle activation capacity of the prime movers. 

3.5.4 – Limitations 
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This study had inherent limitations. Only one handle location relative to the 

participants was tested. Errors arising from the postural data collection, such as inter-trial skin 

motion and marker placement accuracy, and the use of population-based anthropometric tables 

to estimate segment masses, cause some uncertainly in the COP calculation and the linked 

segment modeling outcomes. These effects were mitigated through the use of rigid clusters to 

help reduce potential artifacts in the motion capture data (Kingma et al., 1996) and the error 

from the use of anthropometric tables would likely be randomly distributed across participants. 

Only male university students participated in this study. Males were selected for ease of 

electrode placement and bracing options, whereas female participants would have required the 

upper body brace to be place higher on the chest (rather than at the nipple line) and the area of 

the suprasternal notch could not be covered as reflective markers were positioned there and 

were to remain visible.   

3.6 – Conclusions 

This study examined potential hand force limiting factors or constraints during inward 

pulling, medial pushing, and downward pressing and attempted to explain why these factors 

were potentially limiting. Unilateral pulling hand forces were limited by whole-body balance. 

Downward pressing was not limited by balance and may be more likely limited by another 

factor, potentially trunk or shoulder joint strength.  Medial exertions were affected by balance, 

and shoe-floor friction; however, it was not clear which factor is the greatest limiter. When 

joint strength was identified as the likely constraint no individual primary movers of the 

shoulder or trunk reached maximal activity, suggesting that the joint strength limitation may be 

guided at a deeper level by internal joint requirements, such as joint stability, or the joint 

strength limitation may occur at joints where corresponding muscles were not monitored (i.e. 
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lower body). This study concludes that foot placement, handle height, distance from the 

handle, friction, and body posture can all influence force producing capability, as each of these 

factor affects the required balance needs and joint moment capacities that may constraint 

performance. 
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Chapter 4 – A stochastic 3D static hand force prediction model for 
estimating maximum feasible hand forces during unilateral 
exertions: Part 1 – Motivation and model description 

Steven L Fischer, Clark R Dickerson and Richard P Wells 

4.1 – Overview 

Accurate estimation of occupational performance capacity facilitates better proactive 

job design, or reactive redesign, by informing appropriate changes to job demands. This 

chapter (Part 1 – Motivation and model description) explains the rationale and describes a 

three-dimensional biomechanical hand force prediction model to estimate the maximum hand 

force capability during unilateral upper limb exertions. The model includes a novel 

probabilistic approach for predicting hand force capacity. The inclusion of a stochastic method 

provided an opportunity to evaluate maximum force demands in a population context, using a 

percent capable approach and identifies both a primary limiting factor, and a description of the 

probability that other factors may be limiting performance.  

The main function of the model is to identify the biomechanical factor most likely 

limiting hand force capacity, then to determine the maximum hand force capacity possible 

given that limiting constraint. Probability was included by randomly selecting constraint 

thresholds from a normal distribution of probable thresholds and predicting the corresponding 

hand force that would result. Monte Carlo simulation was used realize the likely distribution in 

maximum hand force. 

The following chapter (Part 2 – A model evaluation) provides an evaluation of the 

model. The evaluation was conducted by comparing model predictions with experimental 

results from a laboratory strength study where participants exerted hand forces chosen to be 

limited by balance, floor friction and joint strength.  
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4.2 – Introduction 

Overexertion injuries can diminish both worker productivity and quality of life. In 

Ontario in 2008, overexertion injuries represented 28.1% of all lost time claims paid out by the 

Workplace Safety and Insurance Board, the highest percentage of any injury event (WSIB, 

2008). Further, from 1999-2008 this percentage has fluctuated between 29.1 and 27.4% 

(WSIB, 2008). Conceptually, these injuries result from excessive exertion which exceeds the 

tolerance limit or capacity of the system or system components (McGill 1997; Kumar, 2001). 

Therefore, reducing the incidence of these injuries requires robust limits or capacity 

thresholds, to help identify if an exertion poses unacceptable risk. A better understanding of 

hand force exertion capacity may help guide more effective work designs to decrease the 

occurrence of excessive exertions.   

Three approaches have been developed to address force exertion capacity during 

occupational exertions. The Michigan three-dimensional static strength prediction program 

(3DSSPP) (summarized in Chaffin, 1997) is the most widely adopted in the field (Dempsey et 

al., 2005). The program does not predict force exertion capacity directly; but rather it computes 

the percentage of the population that has the necessary joint strength capacity to perform a 

given exertion. The model requires the user to input a force and application direction, in 

addition to posture and anthropometric data to predict the corresponding population strength 

capacity. However, it may be more favorable to predict the force as an output. This would 

reduce the number of inputs required to drive the model, and improve its usefulness in a 

proactive scenario where force requirements may not be known. 

A second approach uses the postural stability diagram (PSD) which provides a 

graphical approach for predicting force exertion capacity (Grieve, 1979a; 1979b). This method 
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is used to identify which mechanical constraints may be operational for a specified exertion 

(Grieve, 1979a), revealing the maximum force capacity. The approach is founded upon the 

equation for static equilibrium for a given exertion, based on the forces acting at the hands and 

at the feet. The equation is then used to define the relationship between the horizontal and 

vertical force components, which are then plotted on the PSD in the horizontal and vertical 

axis respectively. For example, assuming a task requires a horizontal push (Fhorizontal), the 

following equation for linear static equilibrium would apply: 

 
  feethorizontalfeetverticalhandverticalhandhorizontal FFFF ____ *  

 (eq. 4.1) 

 Where F is the force acting in the vertical and horizontal directions at both the hands and feet, 

and μ is the coefficient of friction. The net vertical and horizontal forces can then be plotted as 

bound by their relationship to the μ, defining the range of possible forces. This requirement to 

determine the relationships each time, depending on the work environment, limits the 

usefulness of the PSD as an applied tool. Further the analysis capacity is restricted to two-

dimensional symmetrical tasks and it does not consider strength as a possible limiting factor. 

Thirdly, a two dimensional static human force exertion capability model (2DHFEC) 

was developed drawing on concepts from the previous two models (Kerk et al., 1994). The 

2DHFEC predicts maximum hand force capability in the prescribed direction based on the 

input of anthropometric and posture data. Similar to the 3DSSPP, the 2DHFEC is based on a 

biomechanical inverse static model; which incorporates population joint strength profiles to 

constrain individual joint moments during maximum hand force predictions. Similar to the 

PSD, it also incorporates shoe-floor friction and whole body balance as constraints to hand 

force predictions. The model is advantageous in that force is an output rather than an input, 

thus reducing the number of inputs to run the model. However, the utility of the model is 
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limited to 2D sagittal plane exertions and moreover the model does not provide information 

about population variability.  

A force prediction model could be improved by combing three dimensional analysis 

capability and population scalability (similar to 3DSSPP), with the prediction of force as an 

output variable (similar to the PSD and 2DHFEC). Three-dimensional analysis capability 

increases the range of tasks for which a model could be used to generate estimates. It requires 

the input of more detailed posture information to describe the third dimension, 

Population variability considerably affects exertion capability (Chaffin, 1997). The 

variability in exertion capacity may be due to the well established population variability in 

underlying joint strengths (Stobbe, 1982; Kumar, 1996) and balance control (Holbein and 

Chaffin, 1997; Holbein and Redfern, 1997; Lee and Lee, 2003; Holbein-Jenny et al., 2007). 

Including this type of variability in a model could help improve predictions, and it may help 

explain population variability in hand force capability. A probabilistic modeling approach can 

be introduced to model this variability. Similar probabilistic approaches have shown success 

when defining a reachable workspace (Venema and Hannaford, 1991),  determining the net 

present value of cash flow resulting from low back pain interventions (Hughes and Nelson, 

2009), and predicting external rotation strength of the shoulder (Langenderfer et al., 2006). 

  The objective of this two part paper is to describe (Part 1) and evaluate (Part 2) a novel 

model to predict maximum hand force capability during unilateral pulling, downward pressing 

and medial pushing tasks. It includes a three-dimensional analysis and a probabilistic approach 

for modeling the constraints that can limit hand force capacity. Part 1 provides a detailed 

description of the model. Part 2 presents an evaluation that compares model predictions with 

maximum forces obtained experimentally for both constrained and unconstrained exertions. 
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4.3 – Methods 

 4.3.1 – A general overview of the model 

 The Three-Dimensional Hand Force Prediction Model (3DHFPM) was developed to 

predict maximum unilateral hand force capability during occupational tasks (Figure 4.1). The 

model was derived using a weakest link strategy, where the maximum hand force was 

determined as the highest force capable without exceeding the weakest constraint. A 

probabilistic approach was used to generate constraint thresholds based on literature data. The 

model output was a distribution of maximum hand forces based on the constraints and a 

description of the most frequently selected constraint, or weakest link. The model hierarchy is 

provided in Figure 4.2 and each component is described in more depth in the following 

sections.
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Figure 4.1 – The user interface for the 3DHFPM. Input data includes: participant stature and body mass, information on hand 

force direction, and a posture (“Get LOC File” – where an LOC file is a lab specific standardized method for describing 

posture data obtained using motion capture equipment).
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Figure 4.2 – The model hierarchy and data flow through the components of the model. 

Required inputs (framed with a single solid line) include hand force direction, 

anthropometrics and posture. Intermediate outputs (framed with dashed lines) include 

the COP location, the normal force, joint angles and the local joint moments. The final 

outputs (framed by double lines) include the most likely limiting factor and the maximum 

hand force capability. Major model components are highlighted in black with white text. 

Since hand force is not an input, but is required for estimating the joint moments, COP 

location and frictional force, the initial hand force was assumed to be equal to 1 N and was 

iteratively increased by increments of 1 N up to 1000 N. The resulting joint moments, COP 

locations and frictional forces for each hand force magnitude were compared to the constraint 

thresholds for each measure to determine at which level of hand force the first constraint was 

exceeded. The static model is based a single instantaneous posture, which assumes that this 
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posture represents the posture required to produce a maximum force in the prescribed direction 

for a person with those anthropometric attributes. 

4.3.2 – Three-dimensional static linked segment model 

 The linked segment portion of the model served to calculate five parameters: the whole 

body center of mass location, potential hand forces, the normal force, joint angles at the elbow, 

shoulder and trunk, and joint moments at the elbow, shoulder and trunk (Figure 4.3). The 

linked segment model was described using seventeen segments (Figure 4.4). The 

anthropometric segment specific properties included: mass and COM locations and were 

described using the ratio relationships presented by Winter (2005). The left and right clavicle 

segments were assumed to be mass-less. A geometric heuristic approach was used to estimate 

the joint centers from the motion capture data for the glenohumeral (represented by the center 

of the humeral head), elbow, and the wrist joints (Nussbaum and Zhang, 2000) in addition to 

the trunk endpoints (c7 and L5 vertebra) (Dickerson, 2005). Nominal joint centre locations 

were estimated for the ankle and knee (Zatsiorsky, 1998) and for the hip joint centre (Bell, 

1989). Using the joint center locations, the whole body center of mass location was calculated 

using equations presented by Winter (2005). 
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Figure 4.3 – A schematic representation of the input (grey boxes) and calculations in the 3D static linked segment model. 
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Figure 4.4 – An illustration of the 17-segments used in the 3DHFPM. In the stick figure 

on the right, msubscript refers to the segment mass, and g refers to the acceleration due to 

gravity.  
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4.3.2.1 – Anatomical axis system definitions 

Anatomical axis systems were defined for the forearms, upper arms, trunk and pelvis 

(Figure 4.5), adapted from Dickerson et al. (2007).  

The forearm system had its origin at the elbow joint center. The positive x-axis was 

directed through the wrist joint center. The positive z-axis was described as the cross product 

of the forearm x-axis and the upper arm x-axis, directed laterally. The positive y-axis was 

orthogonal to the x- and z-forearm axes.  

The upper arm system originated at the center of the humeral head. The positive x-axis 

was directed through the elbow joint center. The positive z-axis was described as the cross 

product of the forearm x-axis and the upper arm x-axis, directed laterally. The positive y-axis 

was orthogonal to the x- and z-upper arm axes.  

The trunk system originated at the L4/L5 vertebra. The positive x-axis was directed 

through the C7 vertebra. The positive z-axis was described as the cross product of the trunk x-

axis and a vector extending from the C7 vertebra to the suprasternal notch marker. The z-axis 

was directed to the left side of the body. The y-axis was orthogonal to the x- and z-trunk axes. 

The pelvis system originated at the midpoint between the left and right hip joint 

centers. The positive x-axis was directed through the L4/L5 vertebra. The positive z-axis was 

described as the cross product of the pelvis x-axis and a vector extending from the L4/L5 

vertebra to the midpoint between the anterior superior iliac spine markers. The z-axis was 

directed to the left side of the body. The y-axis was orthogonal to the x- and z-axes. 
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Figure 4.5 – Anatomical axis definitions for the forearm, upper arm, trunk and pelvis. 

Skeleton graphics were created using Primal Pictures ©2010. 

4.3.2.2 – Inverse static calculations 

A top down inverse static analysis procedure was used to calculate joint moments in 

global coordinates at the elbow, shoulder and trunk. Each body segment is considered a free 

body diagram (Figure 4.6), interconnected at the joint centers (Kingma et al., 1996). 

Newtonian mechanics were used to solve for the moments using equations of static 

equilibrium. Normal force acting at the foot-floor interface was also calculated, as the 
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summation of the force due to gravity acting on the body and any vertically directed hand 

force components. 

 

 

Figure 4.6 – A representative free body diagram and subsequent equations of static 

equilibrium used to calculate joint moments at the elbow, shoulder and trunk.  

 To drive the top-down inverse static approach the force magnitude and application 

direction were required. Since force magnitude was a desired output, it was assumed to be 

equal to 1, then 2, and so on up to 1000 N, with the corresponding resultant data being stored 

for later use in the maximum force calculator component. The force application direction is a 

required input. The application direction is entered with respect to two pre-defined axis – a 

horizontal angle, measured about the global z axis (in line with gravity), and a vertical angle, 

measured about the global x-axis (configured to be in the medial/lateral direction for this 
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study). A three-dimensional force direction unit vector was then determined by rotating a 

vector [1, 0, 0] through the horizontal then vertical angles using a method outlined by Spong 

and Vidyasagar (1989). Subsequent possible net hand forces were calculated assuming hand 

force was 1 to 1000 N by multiplying the possible force by the directional unit vector.  

4.3.2.3 – The consideration of off-axis forces 

Several researchers have reported considerable off-axis force production during 

maximum exertions in addition to the force produced in the prescribed direction (Abel et al., 

1991; Fothergill et al., 1991; de Looze, et al., 2000; Granata and Bennett, 2005; Hoozemans et 

al., 2007; Hoffman et al., 2007). The additional off-axis forces alter the direction of the force 

vector from the prescribed direction. Current theory suggests that these off-axis forces are 

produced to help reduce the joint loads at the shoulder and low back (de Looze et al., 2000; 

Granata and Bennett, 2005; Hoffman et al., 2007). The current model does not account for any 

potential shifting of the force direction vector, and assumes that force is produced in the user 

prescribed direction. To determine the effect of this assumption, the model was evaluated in its 

current state (assuming no change in the force vector direction), and again by revising the 

prescribed direction to match the actual direction (See Figure 4.7 for a representative example 

using a pull exertion). The actual force vector was extracted from the experimental force data 

for each exertion, generated to evaluate the model.  
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Figure 4.7 – An illustration to demonstrate how off-axis forces impact the actual force 

direction angle using a pulling example.  Based on data from a typical participant, when 

the off-axis forces are considered, the actual net force direction shifts from the prescribed 

direction. *Note: the hominoid graphic was generated using the 3DSSPP™. 

4.3.2.4 – Transformation matrices and Cardan angle decomposition 

In addition to calculating the whole body COM location, the hand force vector, and the 

normal force, two remaining intermediate outputs were required for subsequent model 

components: 1) the local joint moments at the elbow, shoulder and trunk and 2) joint angles for 

the elbow, shoulder and trunk respectively. Local joint moments were calculated in a two step 

process using an approach presented by Spong and Vidyasagar (1989). First segment specific 

transformation matrices (T) were derived to describe the relationship between the global 

coordinate system (GCS) and the segment specific local coordinate systems (LCS): 
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 The local joint moments (MLCS) were then determined using the transformation 

matrices and the global joint moments (MGCS) by using the following equation:  

 
  GCS

GCS
LCSLCS MTM 

  (eq. 4.3) 

 

The joint angles were similarly calculated during a two step process. First 

transformation matrices were derived to describe the relationship between proximal and distal 

segments, LCS1 and LCS2: 
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Then, using a Cardan z-y-x decomposition, similar to Dickerson et al. (2007) the 

corresponding angles were determined. The first angle (α) was about the flexion / extension 

axis (z), the second (β) about the adduction and abduction axis (y) and the third (γ) about the 

segmental axial twist axis (x): 
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 (eq. 4.5) 
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 (eq. 4.6) 

 

The local joint moments at the elbow, shoulder and trunk, in addition to the normal 

force, were all calculated and stored as hand force increased in increments of 1 N from 1 to 
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1000 N. The corresponding net hand forces were also stored for use in subsequent model 

components.  

4.3.3 – COP calculator 

 The center of pressure (COP) was also calculated using a top down approach. The data 

used to drive the calculation included: whole body COM location, the hand force and the 

global location of the point of application of the hand force (assumed to be at the COM of the 

hand). The COP location was calculated at each increment of hand force. The corresponding 

COP locations could then be compared in the Maximum Force Calculator to determine which 

level of hand force caused the COP to migrate beyond the functional base of support (FBOS). 

The COP location was determined by solving for the static moment equilibrium about the COP 

location in the global X and Y directions. The A-P COP location is dependent on the 

components of force applied in the vertical (RFz) and along the AP horizontal axis (RFy), while 

the M-L COP location is again dependent on the force applied in the vertical (RFz) axis, but 

also along the ML horizontal axis (RFx).  The vertical location of the COP is assumed to 

always be on the floor, and no axial rotation moments about the COP were determined. By 

simplifying the AP and ML COP calculation into two separate 2D analyses, the corresponding 

moment arms required to solve the AP and ML moment equilibrium equations could be 

obtained from the marker dataThe diagram (Figure 4.8) demonstrates how the COP in the 

global Y direction was calculated using a pulling example. 
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Figure 4.8 –Sagittal plane diagram used to demonstrate how the static moment 

equilibrium about the COP in the global X axis was determined. The specific variable 

definitions are described below following the derivation of the equation. *Note: the 

hominoid graphic was generated using the 3DSSPP™.  
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In the above equations dy is the distance between the COP and the COM in the global 

Y direction, RFy is the reaction force vector at the hand in the global Y direction, h is the 

height of the point of force application at the hand relative to the floor surface, m is the 
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participant mass, g is the acceleration due to gravity, RFz is the reaction force vector at the 

hand in the global Z direction, w is the horizontal distance between the COM and the point of 

force application. Identical calculations determined the COP location in the global X direction, 

based on the reaction forces in the Z and X directions. The resulting COP location was 

expressed relative to the whole body COM (dx, dy), and then translated into the global 

coordinate system. The COP location in the global coordinate system (for each increment of 

hand force) was then passed on to the Maximum Force Calculator.  

4.3.4 – Maximum force calculator and Monte Carlo simulation 

Population variability was modeled by probabilistically selecting constraint thresholds 

and comparing them against outputs from the linked segment model (Figure 4.9).  

 

Figure 4.9 – A schematic representation of the Maximum Force Calculator. 

Each linked segment model output variable was expressed as a 1000 row matrix, 

depicting the variable magnitude corresponding to each increment of possible hand force from 

1 to 1000 N. Within the Maximum Force Calculator, each matrix was searched to determine at 
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which point the magnitude exceeded the probabilistically generated constraint. A Monte Carlo 

simulation was used to achieve this, where constraints were randomly selected for each 

iteration of the simulation. The process for setting and generating constraint limits within the 

simulation is described as follows: 

4.3.4.1 – Balance constraint 

Whole body balance was implemented as a constraint by determining when the COP 

extended beyond the area of the base of support.  However, several researchers have 

demonstrated that participants prefer to maintain their COP within a smaller “functional” 

region within the BOS termed the Functional BOS or FBOS (Holbein and Chaffin, 1997; 

Holbein and Redfern, 1997; Kerk et al., 1998; Lee and Lee, 2003; Holbein-Jenny et al., 

2007location with FBOS (Holbien & Chaffin, 1997; Holbein-Jenny et al., 2007). The FBOS 

limits are directionally defined as a percentage of the distance between the center of the BOS 

and the edge of the BOS. Therefore it was considered important to incorporate this level of 

control in the balance constraint within the model.  Rather than restrict the COP to the entire 

area of the BOS, the COP was restricted to the FBOS limits defined in previous literature 

(Holbein and Chaffin, 1997). The FBOS percentages (FBOS%) used to determine the FBOS 

constraint (Table 1) were presented by Holbein and Chaffin (1997), and are the only 

description of FBOS limits for both symmetrical and asymmetrical foot placement. Since 

asymmetrical foot placements are often advocated as a useful technique to improve force 

exertion capacity (Daams, 1993), it was important to include an asymmetrical representation of 

balance during these types of exertions. Asymmetry was assumed when a heel marker was 

located in front of the 5
th

 metatarsal head marker for the contralateral foot.   
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The BOS was defined in the 3DHFPM from the posture data input,  based on markers 

placed over the lateral malleolus, the tip of the 1
st
 metatarsal, the head of the 5

th
 metatarsal the 

posterior edge of the calcaneous (heel). These landmarks were used to define the BOS, 

calculate the center of the BOS, and determine the length (BOSlength) from the BOS center to 

the BOS edge in the forward, backward, left and right directions. The FBOS% reported by 

Holbein and Chaffin (1997) were based on a three-point description for the BOS (highlighted 

in table 4.1). The 3DHFMP used an adjusted approach to define the BOS using a four-point 

estimate, shifting the 2
nd

 tarsal marker the tip of the 1
st
 metatarsal and adding a marker on the 

lateral malleolus to more accurately define the BOS (Holbein-Jenny et al., 2007). The 

adjustment increased the area defined as the BOS compared to the less detailed BOS definition 

(Holbein and Chaffin, 1997). As illustrated in Table 4.1, some limits exceed the BOS as 

defined by the marker data.  The marker locations underestimate the actual BOS as they do not 

account for the additional area between the head of the metatarsals to the end of the shoe.  

Therefore, the COP may actual extend beyond the edge of the BOS defined as the head of the 

metatarsals, into the phalanges and toe of the shoe. 
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Table 4.1 – Functional base of support as a percentage of the base of support (bolded) 

and standard deviations (italicized) used to constrain balance in the 3DHFPM. The BOS 

diagrams below provide a graphical representation of the FBOS limits (Holbein and 

Chaffin, 1997; Reproduced with permission from Human Factors. 39(3), 456-468. 

Copyright 1997 by the Human Factors and ergonomics Society. All rights reserved). The 

values listed in the table for both symmetric and asymmetric foot placements represent 

an average of wide and narrow foot placements. 

 

The FBOS constraint (% of FBOS length) in each direction (i) was calculated at each 

increment of the Monte Carlo simulation as follows: 

 

 RFBOSFBOSBOSFBOS SDilengthi *%%* 
  (eq. 4.8) 

 where R is a random number selected from a normal distribution with a mean of 0 and a 

standard deviation of 1. This approach allowed the constraint to be drawn probabilistically 

from a normal distribution of possible FBOS limits based on mean (FBOS%) and 

corresponding standard deviation (FBOS%SD). 
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4.3.4.2 – Friction constraint 

Shoe-floor friction was implemented as a constraint by comparing the ratio between 

horizontal hand force and normal force to a probabilistically generated coefficient of friction 

(μ). This relationship assumes that the maximum amount of horizontal force that can be 

generated at the handle is limited to the amount of frictional force available at the feet, 

assuming no other body-environment contact points. Further, the frictional force available is 

dependent on the normal force and the static coefficient of friction at the footwear-floor 

interface. This approach has been used previously in deterministic models to predict maximum 

horizontal hand forces (Grieve, 1979a; 1979b; Kerk et al., 1994).  To model the available 

friction using a probabilistic approach the variability in static coefficients of friction was 

modeled based on possible coefficients depending on the type of footwear and surface.  This 

approach to induce variability was sought, as there is no population variability in the 

coefficient of friction.  The variability in this measure is related to the footwear and floor 

surfaces. To generate a distribution for μ, a mean ( X ) and standard deviation (SDμ ) were 

calculated from previously reported experimental data measured for dry leather soles over 

twelve different floor surfaces (Kroemer, 1974). The resulting X  and SDμ used were 0.51 ± 

0.16.  

Similar to equation 8, the μ constraint was probabilistically determined for each increment of 

the simulation as follows: 

  
RSDX * 

  (eq. 4.9) 

4.3.4.3 – Strength constraint 

Maximum net moments at each joint were also used as constraints. Local joint 

moments output from the linked segment model were compared to population joint strength 
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limits. The mean population joint strength capability ( iS ) in Newton meters was predicted 

using gender specific regression equations (Schanne, 1972; Stobbe, 1982; adapted from 

Kumar, 1996). The regression equations estimated iS  based on the input of joint angles. The 

joint angles used in the equations were described in section 4.3.2.4. The standard deviation 

(SDSi) in joint strength about the mean was then calculated by multiplying the iS by the 

coefficient of variation reported in the literature (Stobbe, 1982).  

Strength data for the elbow (flexion/extension) and shoulder (flexion/extension, 

ab/adduction, internal/external rotation) were incorporated directly using the regression 

equations of Schanne (1972) and scaled using the data presented by Stobbe (1982), as 

summarized in Chaffin et al., (2005). Ideally, all strength estimates would be taken from the 

same source to ensure that all the data was collected in the same manner. However, the 

Schanne (1972) dataset did not provide information on trunk rotation strength. Therefore the 

data provided by Kumar (1996) was used as it provided strength estimates about all three 

anatomical axes (flexion/extension, lateral bend, and axial twist). Kumar (1996) reported 

strength estimates over a series of discrete angles so regression equations were derived using a 

2
nd

 order polynomial fit (similar to the approach used by Schanne, 1972) in order to predict 

strength over a continuous range of angles. The α, β, and γ angles were calculated as described 

in section 4.3.2.4: 

Extension strength ( extS ): 

 9571.0

1240475.180562.0
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S trunktrunkext 

 (eq. 4.10) 

Flexion strength ( flexS ): 
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 (eq. 4.11) 

Lateral bend strength ( bendS ): 

 9789.0
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 (eq. 4.12) 

 

Axial twist strength ( twistS ): 

 9696.0

775.650467.10024.0
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2





R

S trunktrunktwist 

 (eq. 4.13) 

A coefficient of variation (CV) factor was also calculated from the trunk strength data 

(Kumar, 1996), similar to the approach previously used by Stobbe (1982), yielding the 

standard deviation (SDSi) in mean joint strengths. The CV factor was calculated for each iS , 

by dividing the standard deviation in strength by the mean measured strength at each discrete 

test interval. The resulting CVs were averaged across the discrete intervals to generate a 

representative CV. The corresponding representative CVs used in the model were: Extension 

strength = 0.3962; flexion strength = 0.3267; lateral bend strength = 0.2876; and axial twist 

strength = 0.3446.  

Similar to equations 8 and 9, the joint specific strength constraint (Si) was 

probabilistically determined for each increment as follows: 

  
RSDSS Siii *

  (eq. 4.14) 

 

 



88 

 

4.4 – Model output 

 A maximum force and corresponding limiting constraint is generated at each increment 

of the Monte Carlo simulation. At the conclusion of the simulations a mean and standard 

deviation of the resulting maximum forces is determined. A limiting factor frequency is also 

calculated by counting how many times each constraint is limiting, and then expressing that 

count as a percentage of the number of simulation iterations. The resulting percentage provides 

an indication of the probability that the designated factor is indeed limiting the exertion. The 

user interface shown in Figure 4.1 is presented again in Figure 4.10, now including the outputs 

predicted for a pulling exertion.
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Figure 4.10 – The user interface for the 3DHFPM. Input data for a pull exertion includes: participant stature and body mass, 

information on hand force direction, and a posture (LOC file format currently). Output data includes the description of the 

limiting factor, the probability that it is the limiting factor (the frequency that it is selected as the constraint), the maximum 

hand force capability (N), the corresponding standard deviation, and a graph expressing the frequency (y-axis) of selecting 

each force level (x-axis) during the simulation. 
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The interface also allows a user to graph the simulated forces as a cumulative density function 

(Figure 4.11) and to view a histogram demonstrating the frequency for each constraint that was 

selected as a limiter for the described exertion (Figure 4.12).  

 

Figure 4.11 – The cumulative density function (CDF) of the maximum hand forces 

generated during the simulation of a medial pushing task. Assuming that the 

probabilistic approach provides an adequate representation of population variability, the 

CDF can be interpreted as the force capability across percentiles of the population.  
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Figure 4.12 – A histogram demonstrating the probability that each constraint is a 

limiting factor during the simulation of a medial pushing task. The most probable 

limiting factor was right side balance (shown as 4 in the histogram). The second most 

probable limiting factor was trunk twisting strength (shown as 25 in the histogram). 

The 3DHFPM provides an approach to predict both the biomechanical weakest link 

and the maximum voluntary hand force. The following Chapter – Part 2: model evaluation, 

provides an evaluation to demonstrate how well the 3DHFPM predicts these variable of 

interest. 
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Chapter 5 – A stochastic 3D static hand force prediction model for 
estimating maximum feasible hand forces during unilateral 
exertions: Part 2 – Model evaluation 

Steven L Fischer, Clark R Dickerson and Richard P Wells 

5.1 – Overview 

In the previous chapter a model to predict maximum hand force capacity was 

described. This chapter presents and interprets the results of an evaluation of that model, 

comparing model predictions with empirically measured maximum hand force capacities. The 

evaluation was used to examine how well the model predicted a biomechanical weakest link, 

and to assess the magnitude similarity between model predicted and empirically derived 

maximum hand forces. Additional sensitivity analyses were performed to assess the impact of 

including off-axis hand forces, and to determine the impact of using a top-down approach to 

estimate the center of pressure location.  

The model correctly identified limiting factors that matched those uncovered in the 

empirical investigation, 83% of the time. The model typically underestimated measured force 

production by 41%, 18% and 25% during downward pressing, medially pushing and horizontal 

pulling respectively. These predictions assumed all force was directed along the prescribed 

exertion direction. The underestimation was reduced to 26% during downward exertions and 

was not changed in the other directions when off-axis forces were accounted for. The model, 

when accounting for off-axis force provides a robust approach for population based force 

predictions. 
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5.2 – Introduction 

 Accurate estimation of occupational performance capacity facilitates better proactive 

job design and reactive redesign, by informing appropriate changes to job demands. In Part 1 a 

model to predict hand force capability was described. The model was developed using a 

weakest link strategy, where the maximum force capacity was governed by an underlying 

biomechanical factor such as joint strength (moment), shoe-floor friction, or whole body 

balance. In Part 2 the evaluation process and results are presented along with a general 

discussion of the predictive capacity of the model.  

 The predictive capacity of the model was evaluated by comparing experimentally 

measured maximum hand forces with model predicted hand forces. The experimental data was 

collected as part of a research project investigating the role of whole-body balance, shoe-floor 

friction and joint strength on hand force capability (Chapter 3). An overview of the 

methodology is provided along with specific details describing how the motion data was used 

to drive the model predictions. 

5.3 – Methods 

5.3.1 – Experimental data 

Hand force and posture data were collected while participants exerted maximal forces 

in a series of constrained and unconstrained positions. Participants completed two repetitions 

of a horizontal pull, a medial push, and a downward press in each of five experimental 

conditions (Figure 5.1): shoulder width foot placement (SWFP), free foot placement (FFP), 

high friction – feet shoulder width (HF – to reduce the influence of friction as a limiter), lower 

body braced (LBB – to eliminate the influence of both friction and balance as force limiters), 
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and both the lower and upper body braced (UBB – to eliminate the influence of both balance, 

friction and torso strength).  

 
Figure 5.1 – The experimental conditions tested. Participants completed downward 

presses, pulls, and medial pushes in five conditions: 1) shoulder width foot placement 

(”SWFP” seen in frame A), 2) free foot placement (”FFP” seen in frame B), 3) high 

friction (“HF” seen in frame A, with feet taped to floor), 4) lower body braced (“LBB” 

seen in frame C, without upper body chest strap), and upper body braced (”UBB” seen in 

frame C).  

 The postural data input into the model was derived from the experimental marker data. 

Posture data was described in a pre-defined format, created from the experimental marker data. 

The predefined format was selected to allow the same data to also be used with the Michigan 

three-dimensional static strength prediction program (3DSSPP) and the Shoulder Loading 

Analysis Modules (SLAM) program (Dickerson et al., 2007). The use of the format was 

deliberate to allow experimental data to be easily used in other biomechanically based models 

to facilitate comparison where appropriate. The method used for extracting joint centers from 

the experimental data was described in Part 1. The specific joint centers and experimental 
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markers used to describe posture are shown in Figure 5.2 and the abbreviations are presented 

in Table 5.1.  

 

Figure 5.2 – An illustration of the joint center and surface marker data used to describe 

the whole body posture to be inputted into the model. Note that not all columns in a 

particular file will have numeric data (i.e. they may be zeros), depending on the 

collection.  
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Table 5.1 – A description of the abbreviations used to describe the marker locations in 

Figure 5.2. 

 

5.3.2 – Evaluation criteria 

The model was evaluated on two criteria: identification of the limiting constraint 

(content validity), and magnitude similarity (criterion validity). Evaluation of the accuracy of 

constraint identification was performed as the percentage of correctly identified constraints 

(where constraints were identified experimentally and described in Chapter 3). Magnitude 

similarity was quantitatively assessed using repeated measures ANOVA and Spearman Rho 

correlations within each force direction.  
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The experimental conditions were chosen to be limited by different factors through the 

use of different foot placements and constraints. Therefore, when modeling the force output 

the model was also changed to systematically remove constraints matching the experimental 

conditions. All constraints were enabled when modeling the data from the SWFP and FFP 

experimental conditions. The friction constraint was disabled in the model during the HF 

condition. Both balance and friction were disabled in the model while predicting hand force for 

the LBB and UBB conditions and trunk strength was also disabled during the UBB conditions. 

The systematic removal of model constraints, corresponding to experimental conditions where 

constraints were removed, helped evaluate the feasibility of using a weakest link strategy. 

Theoretically, if the weakest link is removed experimentally and hand force increases, the 

model should predict a similar increase in force when the same constraint is disabled in the 

model. 

Two additional tests were performed during the evaluation process: an off-axis force 

test, and a COP calculation test to determine the effects of the underlying assumptions related 

to these calculations. Off-axis force production during any maximum exertion can alter the net 

force direction from a prescribed direction (Abel et al., 1991; Fothergill et al., 1991; de Looze, 

et al., 2000; Granata and Bennett, 2005; Hoozemans et al., 2007; Hoffman et al., 2007). The 

model does not account for this alteration and assumes the force is exerted in the direction 

prescribed by the user‟s input. To determine the effect of this assumption, the model was 

evaluated in its current state (assuming no change in the force vector direction), and again by 

revising the prescribed direction to match the actual direction. A unit vector describing the 

actual force direction was determined from the components of the experimentally measured 

force data (See Figure 4.7).  
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The model described in Part 1 relied on the center of pressure (COP) being estimated, 

rather than measured using force plate data. An “impact of COP assumptions” evaluation was 

conducted to compare the 3DHFPM COP estimates with those obtained from a force plate. 

One male participant completed two repetitions of a pull, a medial push and a downward press 

in the SWFP condition, while standing on a force plate. The COP calculated from the force 

plate was compared to the COP calculated from the 3DHFPM to determine any differences. 

5.3.3 – Statistical analysis 

A one-factor repeated measures ANOVA was used to detect for significant differences 

between the measured, model predicted (no-off axis) and model predicted (off-axis included) 

hand force in each of the fifteen different experimental conditions to determine if the model(s) 

significantly under- or over predicted measured values. The measured value and two model 

predicted values represented the repeated measure within each participant, within each of the 

fifteen conditions. A Greenhouse-Geisser correction was used to correct the degrees of 

freedom when the data violated the sphericity assumption. Pairwise comparisons were used 

post hoc to detect the location of the significant differences. A repeated measures ANOVA 

was selected  for two main reasons: The repeated measures design accounts for the correlation 

between the measures, as the modeled and measured hand forces are not independent, violating 

the assumption of the ANOVA, and second, the repeated measures helps to account for the 

large inter-participant variability in hand force capability. The Spearman Rho was used to 

determine if the model readily predicted higher forces for individuals producing higher hand 

forces. Rank ordered correlations were calculated between measured and predicted hand force 

means in each of the fifteen experimental conditions (n=18).  The Spearman Rho was applied 

to detect if the model predicted higher hand forces in conditions where participants also 
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produced higher hand forces. The Spearman Rho was selected because of the limited sample 

size.  A larger sample would be needed to ensure a normal distribution, which is required to 

support a parametric alternative Alpha was set at 0.05 for all statistical comparisons. All 

statistical analysis was completed using SPSS (SPSS INC., Chicago, IL, USA).      

5.4 – Results  

5.4.1 – Constraint selection 

 The most frequently predicted limiting factor for each condition correctly matched the 

experimentally determined limiting factor for ten of the fifteen conditions (Table 5.2). 

Mismatches occurred twice; in the SWFP and FFP conditions during downward pressing, 

where the model selected backwards balance as limiting while the biomechanical data pointed 

to shoulder or elbow strength as  limiting. For the remaining three conditions (medial SWFP, 

FFP and HF), an experimentally determined limiting factor was unidentifiable within that 

study‟s design, as it may have been related to a rotational balance constraint that was not 

controlled or tested for. Therefore there was no experimental data to compare model estimates 

against for these conditions. 
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Table 5.2 – Comparison of experimentally determined and model predicted limiting factors by experimental scenario. 

Agreements on the limiter are shown in bold and italicized.  
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5.4.2 – Magnitude similarity 

 The model predictions underestimated experimental hand forces by an average of 18, 

26, and 41% during medial, pulling and downward exertions respectively (Table 5.3). Model 

predictions were not different from experimentally measured forces (Figure 5.3) in three 

experimental conditions (medial exertions in the SWFP and UBB conditions, and when pulling 

in the UBB condition). Despite these underestimates, the Spearman Rho statistic demonstrated 

that the rank ordered predicted values were significantly associated with the rank ordered 

measured force values in twelve of the fifteen exertion scenarios (Table 5.4). No significant 

associations were seen during downward exertions in the FFP and UBB conditions, or during 

pulling in the FFP condition. The lack of a significant association in the FFP conditions, and 

the demonstrated relative differences observable between model and predicted hand forces in 

the FFP condition shown in Figure 5.3 may provide evidence that the current approach for 

constraining balance during asymmetric exertions (FFP) may be overly restrictive.  
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Table 5.3 – Results from the Repeated Measures ANOVA statistical model. Repeated 

measures were compared between the measured hand force, and two model predicted 

hand forces (with and without accounting for off-axis forces).  Both models adequately 

predicted measured forces during medial exertions in the SWFP and UBB conditions. 
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Figure 5.3 – Measured and predicted hand forces during fifteen different exertions 

scenarios. Significant pairwise differences (p<0.05) between measured and predicted 

hand forces (no off-axis forces) are denoted with an asterisk (*). 
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Table 5.4 – Spearman Rho correlation coefficients between measured and modeled hand 

forces. Significant associations are bolded (p<0.05).  

 

5.4.3 – Impact of including off-axis forces  

The use of the actual force vector improved the capacity of the model to identify 

limiting constraints. The number of correctly identified constraints improved from ten to 

eleven of the fifteen conditions tested (Table 5.5).  

The use of the actual force vector also improved the magnitude similarity during all 

downward exertion scenarios, and during pulling in the SWFP scenario (Figure 5.5). For 

downward exertions, the revised approach using the actual force vectors improved the 

underestimate from 41% to 26% on average across conditions. During pulling in the SWFP 

condition, including the influence of off-axis forces by incorporating the actual force vector 

significantly improved estimates by a more modest 4%. Using the actual force vector had no 

significant impact on predictions for medial exertions, and the model therefore continued to 

underestimate hand force during these exertions in the FFP, HF, and LBB scenarios. 
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Table 5.5 – Comparison of experimentally determined and model predicted limiting factors by experimental scenario, 

incorporating off-axis forces. Correct matches are shown in bold and italicized.  
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Figure 5.4 – Measured, predicted and revised (inclusion of off-axis force) predicted hand 

forces during fifteen different exertions scenarios. Significant pairwise differences 

(p<0.05) between measured, predicted and revised predicted hand forces are denoted 

with line above the significant data points. 
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5.4.4 – COP evaluation 

The 3DHFPM overestimated the COP distance from the centre of the BOS compared to 

force plate estimates (Figure 5.5). During downward and medial exertions the 3DHFPM 

overestimated the global X (M/L) locations by 4 cm and 1.0 cm, and the global Y (A/P) 

locations by 2 cm and 2 cm, respectively. These differences had little impact on the model 

selecting the correct limiting factor as these exertions were not often limited by balance 

constraints. During pulling the 3DHFPM overestimated the distance of the COP from the 

centre of the BOS in the A/P direction by approximately 6 cm.  

 

Figure 5.5 – A graphical representation of the calculation of the COP using the 3DHFPM 

top-down approach (filled circles) and a bottom-up force plate approach (empty circles) 

during pulling (top plot) and medial pushing (bottom plot).  



108 

 

5.5 – Discussion 

 The 3DHFPM was intended to facilitate the prediction of both maximum hand force 

capability and also to identify the factor most likely limiting that capacity, based on a weakest 

link approach. The evaluation demonstrated that the model does have moderate predictive 

capacity in that the predicted force limiters matched with theoretical force limiters in 83% of 

the scenarios where a theoretical limiter was identified. Further, the correlation analysis 

demonstrated significant associations between the rank-ordered measured and predicted hand 

forces, which indicates that the model typically predicted higher forces for scenarios where 

participants also produced higher measured forces. However, the repeated measures ANOVA 

indicated a significant under-prediction in twelve of the fifteen evaluated scenarios, which 

restricts its usefulness as a means to determine absolute maximum capability. The magnitude 

of under-prediction could be reduced from 41 to 26% for downward directed exertions by 

incorporating off axis forces, though the predictions were still less than experimental forces. 

The combination of a significant difference and a significant association suggests that the 

model responds to participant specific postures; however, the constraint values appear overly 

restrictive. 

5.5.1 – Interpretation of the model evaluation results 

 The observed underestimates of maximum hand force was anticipated based on 

previous research. Kerk et al., (1998) also reported an underestimation when using their model 

to predict maximum hand force capacity during bilateral pulling and downward pressing while 

standing with feet positioned shoulder width apart. Similar to the evaluation results from the 

3DHFPM, Kerk et al., (1998) demonstrated that forward balance was the limiting factor during 

pulling exertions, though they underestimated capability by 36%. During pulling in the SWFP 
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condition the 3DHFPM under-estimated pulling force by 25%. Though the exertions were 

different (bilateral versus unilateral), they shared the same limiting factor. Since the 3DHFPM 

used a balance constraint that is less restrictive than the one presented by Kerk et al., (1998) 

and still under-estimated force, it may indicate that the true forward balance limit may be 

further forward than the FBOS limits posed by Holbein and Chaffin (1997) and used in the 

3DHFPM.  

The underestimation may also be a result of the underlying data used to describe the 

constraint thresholds. The original strength data used to determine joint strength constraints 

may not be well suited for use in predicting strengths for a modern day workforce. Research 

has shown secular changes in a number of health and performance related measures 

(Tomkinson and Olds, 2007; Danubio and Sanna, 2008). Specifically in terms of strength, 

Westerstahl et al. (2003) reported a significant increase in isometric strength in young males 

from 1974 to 1995. Further, Schanne (1972) described that the strength thresholds developed 

using a regression model underestimate empirical strength thresholds by approximately 30%, 

approximately the underestimation noted in this study. This is a result of the assumption that 

joint strengths are independent. In the underlying regression equations (Schanne, 1972; 

Stobbe, 1982) moment loading at adjacent articulations does not affect the strength capability 

of a particular muscle group. The assumption of independence may be impacting the ability to 

adequately determine joint strength thresholds.  

5.5.2 – Importance of off-axis forces 

 Including the influence of off-axis forces either did not change or improved estimate 

accuracy. This has two implications: it provides a rationale for supporting the inclusion of off-

axis force estimates in determining maximum hand force capacity; and the influence of 
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including off-axis forces on the selection of limiting factors in the model provides context to 

current discussion in the literature attempting to explain how off-axis forces are selected to 

protect against possible weakest links, such as the shoulder or trunk. Since the inclusion of off-

axis forces did not diminish the predictive capacity (except in the case of pulling while 

completely braced), and in particular, off-axis force inclusion during downward exertions 

significantly improved the predictive capacity, it is suggested that an approach to predict off-

axis forces be implemented in future revisions of the model.   

Off-axis forces are theoretically believed to help minimize joint moments. 

Experimentally, the moment arm between the actual force vector and either the shoulder or 

L4/L5 joint, can be compared with the moment arm between the desired force vector (no off-

axis forces) and the shoulder or L4/L5 joints (de Looze et al., 2000; Granata and Bennett, 

2005; Hoffman et al., 2007). The concern with this approach is that the choice of joint for 

comparison seems to be unrelated to the mechanical weakest link. All three studies 

investigated pushing and pulling tasks, which have been identified as being limited by balance 

both within this study and previously (Kerk et al., 1998). Logically, it would be ideal to create 

off-axis forces that protect against a limiting factor, which in the case of horizontal pushing 

and pulling, is most likely balance. Therefore, it is not surprising that a clear consensus has not 

emerged in the literature as to whether off-axis forces are protective to trunk or shoulder joint 

moments.  

When using the 3DHFPM to predict force for pulling exertions, allowing for off-axis 

forces did not significantly increase hand force. However modest increases were observed with 

a concurrent decrease in the probability that balance was limiting (comparing the limiter 

probability for pulling in SWFP, FFP, and HF between Tables 5.3 and 5.5). The decrease in 
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probability suggests that the off-axis force has helped to protect against a balance limitation, 

shifting this limit to another location about 10% more often. During downward exertions, the 

inclusion of off-axis forces helped to protect against a backwards balance limitation, so much 

so, that it was no longer deemed the limiting factor. Therefore, it is likely that off-axis forces 

do act to minimize moments; however the moment to be minimized may be more closely 

related to a current exertion limiting factor, rather than strength at a specific joint.  

5.5.3 – Importance of the COP calculation 

Error existed between the 3DHFPM COP and the COP determined from force plate 

data. The 3DHFPM overestimated the COP location. This may be due in part to the errors 

associated with the use of anthropometric tables to estimate the whole body COM, and due to 

the assumption of static equilibrium. As illustrated in Figure 5.5 (top plot – a pulling example), 

this error may be problematic in that the 3DHFPM predicts that the COP has moved beyond 

the BOS limit, when the force plate based COP indicated that the COP is on the edge of the 

BOS limit. Therefore the 3DHFPM would likely underestimate hand force because of an 

overestimation of the COP location in the A/P direction. As demonstrated in the magnitude 

similarity section, the 3DHFPM does indeed underestimate when balance is a limiter during 

pulling. Future revisions of the model will aim to correct the overestimation of the COP A/P 

location to improve the magnitude similarity of the model to measured values when balance is 

limiting. Since the purpose of the model is to ultimately be used in the field, it is not ideal to 

require force plate information and therefore future work must aim to better understand why 

this mismatch exists, and then develop an appropriate corrective adjustment. 

5.5.4 – Model limitations 
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 One purpose of a model is to provide a realistic and simple approach to predict or 

explain phenomena. Although some of the more critical elements limiting the predictive 

capacity have already been discussed, several additional considerations should inform model 

output interpretation, including the representation of joint strength.  

 Joint strength capacity was predicted using strength databases derived from 

experimental research. The data selected for the strength constraint in the 3DHFPM (Schanne 

1977; Stobbe, 1981; Kumar 1996) include the errors associated with using a regression 

equation to predict strength at continuous, unmeasured intervals. However, in order to detect 

the sensitivity of the model to these data, it may be prudent to evaluate the model using 

alternative sources of data. For example, Holzbaur et al., (2007) reported a maximum elbow 

flexion moment of approximately 65 Nm with the elbow flexed to 90°, where the equations 

provided by Schanne (1977) and Stobbe (1981) would predict an elbow flexion moment of 77 

Nm, an 18% increase in projected capacity. Future model revisions will be accompanied by a 

sensitivity analysis with regard to the impact of the strength data used to determine the joint 

moment constraints in the model.  

 Additional limiting factors may impact hand force capability. Currently the 3DHFPM 

incorporates joint strengths for the trunk and upper limbs, balance, and shoe-floor static 

friction. Recent research has identified the impact of friction at the hand-handle interface as a 

probable limiter for hand force capability in some situations (Greig and Wells, 2004; Seo et al., 

2010). The forces and moments transmitted by the hand are sensitive to the grip type and the 

direction of force exertion (Greig and Wells 2004). Force transmission is also heavily 

influenced by friction, when the handle is oriented in parallel with the desired exertion 

direction (Seo et al., 2010). In the current 3DHFPM these effects are not modeled. However, 



113 

 

the empirical data set used in the current evaluation was generated with the hand oriented 

perpendicularly to the desired force direction. This provided a mechanical interference at the 

hand preventing hand-handle frictional properties from limiting those exertions (Seo et al., 

2010). 

 The impact of static versus dynamic modeling approaches can be substantial (Leskinen 

et al., 1983). The 3DHFPM was purposefully designed for a static case despite these 

differences. In the current model, a user only needs postural data for a single instant in time 

which could be derived from photographs, where a dynamic analysis would require either 

estimation or measurement of the time series of motion, requiring more time and effort.  

 The posture date input into the model carries the assumption that it is representative of 

the population average postural response required to produce a maximum unilateral hand force 

for a person of the stature and body mass described.  The posture data used to drive the model 

was selected at the same time point where the peak force was recorded to ensure that the 

posture was representative of that required to produce a maximum force. In terms of postural 

consistency across populations, Hoffman (2008) found that participants chose similar postural 

strategies when pushing or pulling; however their tactics were more varied during up/down 

exertions.  This suggests that the postural assumption is less likely to impact the predicted 

population variability in pushing or pulling strength, but may be more impactful on predictions 

of population variability in up/down maximum unilateral hand forces. 

 The use of unilateral exertions for evaluation and current design was deliberate. The 

addition of external forces to the contra-lateral hand requires an approach to mathematically 

parse out the net external forces acting at each limb. Experimentally, this was achieved using 

separate instrumented handles, however theoretically this is more challenging to realize. 
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Therefore, the initial focus has been to examine unilateral exertions, allowing the focus to be 

on the correct identification of force limiters, and the inclusion of a probabilistic model which 

presents a significant advance to previous modeling approaches. 

5.5.5 – Practical uses for the 3DHFPM 

The 3DHFPM makes significant contributions to the occupational biomechanics 

community by providing an approach to predict both maximum hand force capability and the 

factor most likely limiting the exertion, or the „weakest link‟. These predictions are important 

for both field and experimental applications. As a tool for field assessment, the model is 

robust, non-invasive, quick, and provides reasonable predictive power, meeting many of the 

attributes that are ideal in a field assessment tool (Hamrick, 2006). The probabilistic aspect of 

the model provides a significant advance by providing users with a distribution of maximum 

hand force capability, which is based on the population variability in strength, balance and 

friction. This allows users to alter task force requirements to be acceptable for a given 

percentage of the population. For example, design could be conducted to ensure 75% of the 

population could produce a specified hand force. This corresponds to the force value at 0.25 on 

a cumulative density function (Figure 5.6). 
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Figure 5.6 – An amplitude probability distribution function output from the 3DHFPM 

for a medial exertion. For the prescribed exertion the model predicted a range of possible 

forces with the probability of their likelihood given the population variability in the 

modeled constraints. 

 From an experimental aspect, the 3DHFPM provides the ability to understand the 

complex biomechanical interactions that occur during maximum force production. 

Specifically, the model is able to help explain the biomechanical impact of off-axis forces, on 

both shoulder and trunk moments, and also on balance. This level of explanation has not yet 

been provided in the peer reviewed literature. Additionally, further revisions to the model will 

help aid in understanding the influence and biomechanical rational to support bracing in the 

workplace, potentially as a means to protect against the „weakest link‟ (Jones et al., 2010). 

Currently little information exists to explain why workers choose to brace or support 

themselves in the work environment while producing forceful exertions. It is likely that 

bracing or supporting is used to help provide resistance against a weakest link. However, the 
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3DHFPM is well situated to help explain the biomechanical impact of bracing on the selection 

of a weakest link and the resultant hand force capability. The aim of future work will be to 

extend the predictive capacity of the 3DHFPM for use during bilateral exertions better 

situating it as a tool to investigate the influences of bracing. 

5.6 - Conclusion 

 The 3DHFPM was developed to predict maximum hand force capacity during 

unilateral exertions. Further, the use of a probabilistic approach for selecting constraint limits 

provides a significant contribution by providing an estimate of the expected population 

variability about the predicted hand force capability. Lastly, the identification of limiting 

factors is important as their description may help identify regions of concern for potential 

injury, and moreover, the limiting factor may be useful in helping to predict sub-maximal 

limits.  

 The evaluation revealed that the current form of the model usually underestimated hand 

force capability compared to measured hand forces. However it appears that a „weakest link‟ 

principle for predicting maximum force capacity is plausible, as evidenced by the significant 

rank ordered correlations between the measured and predicted hand forces. The 3DHFPM 

shows promise as a possible method to estimate maximum unilateral hand force capability. 

However it can be improved by addressing the off-axis force concern, addressing the 

assumption of independence in joint strength measures and by improving the specificity of the 

underlying data used to establish the constraints. 
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Chapter 6 – Relationships between psychophysically acceptable 
hand forces, maximum voluntary hand force capacity and 
underlying biomechanical limitations 

Steven L Fischer, Elora C Brenneman, Richard P Wells, and Clark R Dickerson 

6.1 – Overview 

Psychophysical approaches are commonly used to derive thresholds for exposure to 

occupational demands. However, there is little biomechanical evidence to support that 

psychophysically derived thresholds are appropriate. This research explored the possibility that 

a proportional relationship exists between maximum voluntary force (MVF) capability and 

psychophysically acceptable forces. Additionally, we sought to determine if the magnitude of 

the proportionality was dependent on the biomechanical factor that limited the capacity to 

perform and MVF.  

Seventeen male participants completed unilateral MVF exertions and determined their 

psychophysically acceptable force (PAF) for nine defined conditions. Proportionalities were 

determined by dividing the PAF by the corresponding MVF. Center of pressure and joint 

moments were calculated during MVF trials and used to determine if the limiting factor was 

balance or joint strength. The corresponding proportional values were then grouped based on 

this classification.  

The proportional relationship depended on the factor limiting MVF. When balance 

limited an MVF, the subsequent PAF was 80% of MVF. When strength limited an MVF, the 

subsequent PAF was 67%. Psychophysically acceptable forces were consistently related to 

MVF capacity and the biomechanical factor limiting that capacity. This finding provides a new 

insight to understand how psychophysical forces are selected from a biomechanical 
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perspective. Further, this proportional relationship may be exploited in future research to 

predict a PAF from knowledge of an MVF and the corresponding limiting factor. 

6.2 - Introduction 

The psychophysical approach has been used extensively for determining maximum 

acceptable exposure limits for work. Psychophysical limits have been reported for a variety of 

manual material handling tasks including: lifting, lowering, carrying, pushing, and pulling 

(Snook and Irvine, 1967; 1969; Snook, 1978; Ciriello and Snook, 1983; Ciriello et al., 1990; 

1993; 1999; Snook and Ciriello, 1991; Ciriello, 2001); upper limb tasks including: wrist 

flexion/extensions, screw driving, hose insertions and wrist deviations (Snook et al., 1995; 

1997; 1999; Ciriello et al., 2001; 2002; Moore and Wells, 2005; Andrews et al., 2008); and 

pinch, grasp, and finger pressing tasks (Nussbaum and Johnson, 2002; Potvin et al., 2006, 

McFall, 2008). The approach is attractive due to lower costs and the potential for faster 

application in industry than most biomechanical or physiological techniques (Ayoub and 

Dempsey, 1999). Also, psychophysical judgments are believed to take the whole job demand 

into consideration, integrating biomechanical and physiological factors (Karwowski and 

Ayoub, 1984). The major limitation of the approach is the assumption that subjectively 

selected workloads are below injury thresholds (Ayoub and Dempsey, 1999; Snook, 1999). 

 The lack of quantifiable support that psychophysically estimated forces relate to 

reducing injury risk is concerning. This concern has manifest due to a lack of research 

demonstrating a quantifiable link between psychophysical load selections and underlying 

mechanical loading (Thompson and Chaffin, 1993; Ayoub and Dempsey, 1999). In fact, 

psychophysical selection may not relate to known mechanical determinants of structural failure 

(Nicholson, 1989). Additional evidence has shown that workers choose loads despite their 
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generation of greater spinal compression forces than recommended biomechanical tolerance 

metrics (Chaffin and Page, 1994; Jorgensen et al. 1999).  

However, recent evidence suggests that a quantifiable relationship may exist between 

psychophysical selections and biomechanical metrics. For example, during upper extremity 

exertions, participants subjectively chose workloads that did not result in electromyographic 

measures exceeding traditional markers indicative of increased injury risk (Moore, 1999; Cort 

et al., 2006; McFall, 2008). During lifting, Jorgensen et al. (1999) reported an association 

between the sagittal plane lumbar spine moment and the psychophysically acceptable lifting 

load. Further, joint loading (at the elbow, shoulder or trunk) remained below approximately 

70% of the maximum possible joint moment when participants self selected their maximum 

psychophysically acceptable weight for a sustained static hold (Nussbaum and Lang, 2005).  

Psychophysically determined maximum force also relates to maximum voluntary force 

(MVF). Using previously reported psychophysical data (Snook and Ciriello, 1991), and data 

collected in his lab, Potvin and colleagues have demonstrated that psychophysical limits for 

exertions completed once per minute are typically selected at approximately 2/3
rds

 of the MVF 

capability in a given posture (Potvin et al., 2006; Potvin, 2007; Andrews et al., 2008). Further, 

the decrease in psychophysically acceptable workloads that occurs as the duty cycle and cycle 

time is increased is predictable using a logarithmic curve fit anchored on the once per minute 

value of 2/3
rds

 of the MVF (Potvin, 2007). Though the simplicity of this general rule of 2/3
rds

 

of the MVF for infrequent efforts would be attractive from a design or applied ergonomics 

perspective, further substantiation of its universality is needed. 

Unlike psychophysical capacity, MVF capacity is guided by biomechanical parameters. 

The most influential parameters used in predicting MVF include whole-body balance and joint 
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strength (Gaughran and Dempster, 1956; Kroemer, 1974; Grieve 1979a; 1979b; 1983; Kerk et 

al., 1998; Seo et al., 2010; Fischer et al., submitted). During exertions where MVF is limited 

by balance, underlying joint demands are often low. Conversely, when strength limits MVF, 

the joint demand is maximal, specifically at the limiting joint (Fischer et al., submitted). Based 

on previous research demonstrating that psychophysically acceptable forces are at least in part 

related to joint demand (Jorgensen et al., 1999; Nussbaum and Lang, 2005), it is logical to 

assume that psychophysically acceptable forces will be related to the underlying limiting 

factor; as that factor dictates joint demand. Therefore, it is anticipated that psychophysically 

acceptable forces will be selected as a proportion of MVF (Potvin et al., 2006; Potvin, 2007; 

Andrews et al., 2008); however, that proportion will be specific to the underlying limiting 

factor. For example when joint strength is a limiting factor, joint demand is high and therefore 

psychophysically acceptable forces will be chosen as a smaller proportion to reduce the 

demand; this is in contrast to balance limited exertions, where joint demands are lower and the 

proportion can therefore be higher.  

The purpose of this research was therefore to determine if estimates of psychophysical 

force were selected as a uniform proportion of MVF capacity independent of the exertion type 

or biomechanical factors limiting MVF capacity. The null hypothesis for this research states 

that psychophysically acceptable forces would not be selected at a different proportion of MVF 

dependent on the limiting factor. 

6.3 – Methods 

6.3.1 – Participants 

 Seventeen right-handed males were hired from a local temporary work agency to 

participate [mean age 41.4 ± 13.7 years; stature 1.74 ±0.08 m; body mass 82.0 ± 14.7 kg]. 
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Participants were required to have some general manufacturing experience (Appendix 2), be 

free of hand and forearm injuries within the past 6 months and have no sensitivity to ethanol 

on the skin. This study received ethical approval through the university board of ethics and all 

participants gave informed consent.  

6.3.2 – Instrumentation 

 Force and postural information were collected to provide information to help address 

the research questions. Hand force was collected using an AMTI six degrees of freedom 

transducer (MC3A, AMTI MA, USA) rigidly fixed between a D-style handle and a clamp 

apparatus (Figure 6.1). The clamp allowed for the handle height to be adjusted according to the 

stature of each participant. Postural information was collected using an 8-camera VICON 

MX20 system (VICON, Oxford, UK). The motion of thirty-eight individual markers placed on 

anatomical landmarks was recorded, including the C7, suprasternal notch, xiphoid process, L5; 

bi-laterally, on the ear, acromion, lateral and medial epicondyle, radial and ulnar styloid, 2nd 

and 5th metacarpal, anterior superior iliac spine, greater trochanter, lateral and medial condyle, 

lateral and medial malleolus, heel, and 1st and 5th metatarsal. An additional eleven marker 

clusters fixated to rigid plates were attached over the sternum and bi-laterally on the top of the 

foot, shank, thigh, forearm, and upper arm to track segment motion during the experiment 

while reducing the effect of skin motion artifact. A static calibration frame established the 

relationship between the clusters and the calibration markers. The marker clusters were then 

used to track motions during the experimental trials. The marker cluster data and calibration 

frame were used to recreate virtual markers representing the landmarks above. These virtual 

markers were subsequently used to calculate joint centers and segment coordinate systems 

(Kingma et al., 1996). The joint center locations and segment coordinate systems were used as 
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inputs into the 3D static linked segment model described below. Specific details are also 

described in Chapter 4 and 5. Both force and motion were captured synchronously at 50 Hz. 

6.3.3 – Experimental protocol 

  Participants completed exertions in three force directions (pull towards the body, down 

and medial) within three different postural conditions, for a total of nine different testing 

scenarios. For each scenario a handle, perpendicular to the grip, was positioned at shoulder 

height along the midline of the body, at a horizontal distance of 80% of the participants‟ upper 

limb length. These postures and force directions were chosen to 1) challenge different 

biomechanical limits (whole-body balance or joint strength) and 2) to simulate rubber window 

trim moulding tasks that have previously been shown to relate to injury development in the 

workplace (McClellan et al., 2009).  The specific conditions (Figure 6.1) were: 

1. Shoulder Width Foot Placement (SWFP): the participant stood with their feet shoulder 

width apart and their shoulders square to the force transducer and the right hand resting 

on the handle with a power grip. Their body was positioned at a distance equivalent to a 

comfortable arm‟s length (approximately 80 % of maximum reaching distance). Once 

the feet were comfortably in place, the researcher marked the foot locations on the floor 

in order to standardize foot position (Figure 6.1-A). 

2. Free Foot Placement (FFP): similar to the condition above; however, the participant was 

free to place their feet in any orientation that was preferred (Figure 6.1-B).  

3. Upper Body Braced (UBB): the participant stood as if they were going to complete a 

SWFP condition. A rigid frame was then slid in behind the participant until it was in 

contact with the posterior aspect of the participant. The frame was clamped into place 

using adjustable C-clamps and frame guides screwed into the floor. The participant was 
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then strapped to the board using two Velcro straps, one placed over the legs, just above 

the thigh clusters and a second over the torso just below the nipple line (Figure 6.1-C). 

Experimental scenarios were presented to each participant in a random order. Prior to 

collecting the experimental data, two practice conditions duplicating the experimental 

conditions were completed to familiarize the participants with psychophysical estimation. The 

test conditions required participants to pull (practice trial 1) and press down (practice trial 2). 

Practice was provided as a means to help participants understand the self-selection of force 

approach and participants felt comfortable doing so without additional practice in the medial 

exertion direction. 

 
Figure 6.1 – The experimental conditions tested. Participants completed downward 

presses, pulls, and medial pushes in three conditions: 1) shoulder width foot placement 

(”SWFP” seen in frame A), free foot placement (”FFP” seen in frame B), and upper body 

braced (”UBB” seen in frame C). 

 A psychophysical load-adjust methodology was employed where participants were 

asked to exert force on the handle with magnitudes that they found acceptable (i.e. no signs of 

discomfort, numbness, or pain) at the predetermined cadence. The instructions were modified 

from Snook et al., (1995) (Appendix 1). Participants performed their maximal acceptable 
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exertions for 30 minutes per condition at one exertion per minute, sustaining each exertion for 

approximately one second. Two audible cues (spaced at one second apart) were presented 

every minute using a custom metronome (LabVIEW, National Instruments, Austin Texas, 

USA) to indicate when force was to be exerted.  

Immediately before and following the performance of each condition, participants 

performed two 5-second maximum voluntary force (MVF) exertions in the requested force 

direction and condition. These MVF contractions provided an estimate of the maximum 

voluntary force in each condition and provided an indication of fatigue if the post MVF force 

was significantly less than the pre MVF force.  

To ensure the participants were working within the guidelines provided in the 

instructions, discomfort ratings were taken 10 and 20 minutes into each scenario using a CR-

10 scale (Borg, 1990). If participants responded with discomfort scores of 2 or more, the 

researcher re-read the instructions to them.  

The total collection time required for each participant was approximately nine hours, 

divided over two days. The first day consisted of attaching the reflective markers to the 

participant, the completion of two practice conditions, followed by the completion of seven 

experimental scenarios. Participants were given scheduled lunch and rest breaks similar to a 

normal workday. The following day participants were again instrumented with reflective 

markers and completed the last two remaining experimental conditions. The remainder of day 

two was used to collect data for a complementary study.  

6.3.4 – Data analysis 

Data was analyzed to yield kinematic and kinetic information. All postural and force 

data were low-pass filtered using a dual pass Butterworth digital filter (fc = 4 Hz, and fc = 15 
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Hz respectively). Peak hand force in the desired direction was determined as the peak value 

resulting from a 500 millisecond moving window average passed over each minute of the 

filtered force trace. This process was used to identify the force magnitude during each of the 

30 discrete exertions within each scenario.  The 500 millisecond average helped to smooth the 

data to reduce the impact of jerking on the force cube when participants pushed, pulled or 

pressed.  Figure 6.2 demonstrate how this process occurred using an representative data for 

one participant performing and pull in the FFP condition. The data points used to create the 

500 millisecond average selected as the peak force were indexed in time allowing for the 

corresponding kinematics and six axis force data to be selected and averaged over the 500 

millisecond window that aligned with the peak force data. The psychophysically acceptable 

force (PAF) was then calculated as the average force value recorded over the final five 

exertions within each test scenario. The resulting force was normalized to the highest peak 

force observed from the two pre- and post- scenario specific MVEs, yielding the normalized 

psychophysically acceptable force (%PAF). 
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Figure 6.2 – The processing steps used to determine the psychophysically acceptable force using data from a representative 

participant performing a pull in the FFP condition.
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In order to determine factors limiting force exertion (weakest link), the center of 

pressure (COP), elbow joint moments and shoulder joint moments were calculated and 

averaged across the four MVF trials for each condition. Shoulder moments were calculated by 

inputting the hand force and posture information into a 3D static linked segment model 

(adapted from Dickerson et al., 2007). The center of pressure was calculated using a top down 

approach by solving for the moment about the COP. To normalize COP between participants, 

the raw COP location was expressed as a percentage of the distance from the geometric centre 

of the base of support (BOS) to the edge of the base of support in both the anterior/posterior 

(A/P) and medial/lateral (M/L) directions (%COP). The BOS was defined using markers 

placed on the lateral malleolus, the tip of the 1st and 5th metatarsals, and at the posterior 

border of the calcaneus (Holbein-Jenny et al., 2007).  

6.3.5 – Determining the weakest link 

The weakest link was determined for each participant in each condition by comparing 

the %COP, elbow moment and shoulder moments calculated from the MVE trial that produced 

the highest hand force to the %COP and joint moment population thresholds described in the 

literature (Table 6.1). Balance thresholds were obtained from Holbein-Jenny et al. (2007). 

Flexion and extension limits for both the elbow and shoulder were calculated using the 

equations provided in Chaffin et al. (2006). Shoulder abduction, adduction, internal and 

external rotation strength limits were calculated using data from Schanne (1972) and Stobbe 

(1982). Based on the initial posture defined within the experimental conditions the following 

joint angles were used in estimating the joint strength limits: Elbow angle = 135°, Shoulder 

vertical angle = 90°, Shoulder horizontal angle and rotation angle = 0°. Though postures used 

to produce a maximum hand force deviated from the initial postures, the angles above deviated 
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by no more the 10°. The corresponding effect on the predicted population strength capacities 

would also vary based on the angle changes; however the effect on the calculated population 

strength was less than 10 Nm. Wrist strength was not considered as a limiting factor based on 

previous research demonstrating that wrist strength is typically only potentially a limiter when 

it is in a non-neutral position (Al-Eisawi et al., 1998).  In this study participants maintained a 

neutral wrist posture while exertion force on the handle. 

Once the limits were established, MVF exertions were then classified as limiting if the 

experimentally determined value (COP or joint specific moment) fell within one standard 

deviation of the population limit threshold, or exceeded the limit. If more than one weak link 

was identified during this process the limit that exceeded the threshold by the greatest 

percentage was selected as the primary limiting factor. When no limiter could be found, it was 

assumed to be trunk strength in all UBB conditions (where balance could not be limiting by 

design) or undefined for SWFP and FFP conditions (where friction or trunk strength may have 

been limiting). Following the weakest link classification process, each %PAF value was sorted 

into one of three groups – strength, balance, or undefined based on the weakest link exposed 

during the corresponding MVF trials.  
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Table 6.1 – Threshold limit values used to determine if balance or joint strength was 

limiting an MVF exertion. 

 

6.3.6 – Statistical analysis  

 To test the null hypothesis that %PAF is uniform between exertions limited by balance 

and exertions limited by joint strength, an independent samples Wilcoxen rank sum test was 

used. A non-parametric test was selected to avoid the assumption of normality required with a 

parametric counterpart.  The test was selected to detect any significant differences in the 

dependent variable %PAF between the two limiting factors (balance and strength). To 

determine if the psychophysical protocol resulted in fatigue, a repeated measures ANOVA was 

used to detect significant differences in the MVF force between the pre and post trials for each 

of the nine experimental conditions. A Greenhouse-Geisser correction was used to protect 

against violations of the sphericity assumption. Significance levels were set at p < 0.05 for all 
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tests. All statistical processing was completed using SPSS software (SPSS INC., Chicago, IL, 

USA). 

6.4 – Results  

Of the 129 exertions classified, 33 (26%) were limited by balance, 76 (59%) were 

limited by joint strength and 20 (15%) were undefined. The Wilcoxon test identified that the 

%PAF were significantly different, z =-4.27,  p<0.001. When balance was limiting %PAF 

values were 83 ± 19%. When joint strength was limiting %PAF values were 67± 17% (Figure 

6.3). The repeated measures ANOVA did not detect a significant decrease in hand force 

between pre and post conditions indicating no loss in MVF capacity as a result of the 

psychophysical protocol (Figure 6.4). 

 

Figure 6.3 – The psychophysically acceptable force as a percentage of the maximum 

voluntary force (%PAF) during exertions limited by balance and those limited by 

strength. The significant difference is denoted by an asterisk „*‟ (z = - 4.27, p< 0.001). 
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Figure 6.4 – The maximum voluntary force measured before (pre) and after (post) 

exposure to a thirty minute psychophysical estimation protocol in each of the nine 

experimentally defined conditions. No significant differences were found between the pre 

and post force levels within each experimental condition. SWFP – shoulder width foot 

placement, FFP – free foot placement, UBB – upper body braced. 

The limiting factors were assigned by comparing the %COP and joint moments from 

individual trials to population thresholds. Table 6.2 documents the number of times an exertion 

was limited by a specific factor within each of the experimental conditions. Though each 

condition (9) should have 17 exertions classified (n=17), this was not possible. In 24 of the 153 

total exertions, motion data was not available. Throughout the work day, the rigid plates 

occasionally shifted over the course of a thirty minute trial. Although rigid plates were checked 

often, and several static calibrations were performed, in 24 instances the rigid plates shifted 

such that the corresponding estimated joint centers and segment coordinate systems were not 

indicative of actual postures. This is discussed in more depth in the limitations section.     



132 

 

Table 6.2 – Classification of maximum voluntary exertions based on the limiting factor stratified by experimental condition. 

When no limiter was uncovered it was classified as undefined. All UBB exertions not limited by the upper limb were assumed 

to be limited by trunk strength as balance and friction limitations were removed as possible constraints through the use of 

bracing. The number of exertions within each condition (“n”) differs as a result of missing data. 
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6.5 – Discussion 

 These findings reject the null hypothesis and show that the proportion of MVF exerted 

in the psychophysical load-adjust protocol is different between situations when balance limits 

force and where joint strength limits force. This is an important finding for two reasons. First, 

it provides additional quantitative evidence to support a relationship between psychophysical 

estimates and biomechanical factors (Nussbaum and Lang, 2005; Potvin, 2007). Second, this 

finding encourages the possibility of using a weakest link classification approach to help 

facilitate predictions of psychophysically acceptable forces from known MVF estimates 

(Potvin, 2007). 

 This research used a novel approach for classifying psychophysical chosen exertions 

based on the biomechanical factor limiting a corresponding MVF. During un-braced pulling, 

25 of 28 MVF exertions were limited by balance, while 21 of 29 downward exertions were 

limited by joint strength. Previous research classifying limiters for MVF exertions have found 

similar results, in that pushing and pulling were balance limited (33 of 34 exertions) while 

lifting and downward pressing were limited by joint strength (22 of 30 exertions), (Kerk et al., 

1998). Extending these findings, if we assume horizontal exertions along the sagittal plane at 

or near shoulder height are likely balance limited, and vertically aligned exertions close to the 

body are likely strength limited, we can classify previously documented psychophysical 

exertions as being balance or strength limited based on the exertion direction and task 

condition. Table 6.3 presents data from Snook and Ciriello‟s classic 1991 paper expressed as 

the psychophysically acceptable force at one exertion per minute, the corresponding MVF 

value assumed from the acceptable force value at the once per day rate and the resulting %PAF 

for males. 
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Table 6.3 – The %PAF calculated as a ratio between psychophysically acceptable forces 

at one exertion per minute and at one exertion per day (assumed to represent the MVF) 

(Snook and Ciriello, 1991), classified based on the theoretical limiting factor. 

 

The %PAF relationships calculated from the Snook and Ciriello (1991) data support 

the current research proposing that psychophysically acceptable force selection is related to the 

MVF and dependent on the biomechanical factor most likely limiting the MVF. Further 

evidence to support this relationship is discernable from comparing psychophysically 

acceptable initial pulling forces of 425 N (Ciriello et al., 1990) to the population maximum 

voluntary pulling force capacity of 537 N (Mital and Kumar, 1998), yielding a %PAF of 79%, 

where both measures were taken at a height of approximately 1 metre. 
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Other past psychophysical research also demonstrates this proportional relationship 

when viewed using a weakest link, or limiting factor approach. Work by Andrews et al., 

(2008) measured psychophysically acceptable forces for a variety of hose insertion tasks 

(varied by task location and the direction of the hose insertion). They calculated the %PAF in 

each condition and found a consistent %PAF value of 63%. They did not determine what the 

potential limiting factor might be, though it is likely that joint strength in the upper limb is a 

dominant weak link in these exertions. The orientation of the exertions were such that elbows 

were often at 90° of flexion and the shoulder was often at 0° up to a maximum of 45° of 

elevation from the vertical. From a biomechanical perspective these positions would: direct 

pushing and pulling forces through the whole body center of mass – protecting against a 

balance limiter; while increasing the shoulder and elbow moments, increasing the probability 

of a strength limitation.      

Other researchers have reported %PAF values below the 67% thresholds reported in 

this study. Nussbaum and Johnson (2002) reported %PAF values of 45.6 ± 11.3 % and 35.4 ± 

15.1 % for finger pressing tasks using the index finger and thumb respectively. Similarly, 

Potvin et al. (2006) reported %PAF values of 48.1 ± 16.1%, 61.8 ± 15.7%, and 63.4 ± 16.5% 

during oblique grasping, finger pressing and pulp pinching respectively. Though these values 

are less than those reported here (83 ± 19% and  67 ± 17% for balance and strength limited 

exertions) the variability is consistent between studies.  A weakest link explanation may help 

provide context for these differences.  For example, both previous studies examined finger 

pressing and reported considerably different %PAF values.  This may be a result of posture.  In 

the study by Nussbaum and Johnson (2002) participants extended their index finger, with the 

hand pronated and the palm facing down, and then proceed to press down in a vertical 
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direction, perpendicular to the long axis of the extended index finger.  Biomechanically, this 

causes a moment about each of the joints along the index finger, and so on traveling 

proximally along the limb.  Therefore finger joint strength could be a limiting factor if the 

moment reached a finger joint limit threshold.  Conversely, Potvin used a similar posture; but 

asked participants to push horizontally, along the axis of the finger.  Biomechanically, the 

force line of action now passes through the joints of the index finger, greatly reducing any 

moments at those joints.  The limiting joint may then be further along the kinematic chain, 

possibly the elbow or shoulder.  It is likely that each joint may have a different resolution, 

whereby a PAF of 67% is not uniform across all joints, but each joint may have a more 

specific threshold.  These data do not provide the detail necessary to answer that question, but 

future work may help address this issue in more detail. 

  The proportional relationship between psychophysically acceptable forces and MVF in 

exertions limited by strength is consistent with previous findings. Many theories of injury 

causation describe how overexertion may lead to injury (McGill, 1997; Kumar, 2001). In 

addition, participants can perceive shoulder and low back muscular effort, measured in terms 

of joint strength (Nussbaum and Lang, 2005; Dickerson et al., 2006; Nastasia et al., 2007). 

Therefore a psychophysically acceptable exertion force may be selected in part to provide a 

margin of safety (Kumar and Mital, 1992) to protect against joint strength overexertion. 

However, as the exposure duration, cycle time or frequency of a task changes, this relationship 

is also likely affected and the perception of joint strength alone may not be enough to protect 

against other modes of injury (Kumar and Mital, 1992). It remains unclear why a margin of 

67% of the MVF capacity is chosen specifically; however, evidence supports that 

psychophysical exertion levels at one exertion per minute, in strength limited conditions, are 
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likely chosen to provide a margin of safety to protect against joint strength related 

overexertion. 

 The proportional relationship between psychophysical forces and MVF in exertions 

limited by balance is more challenging to explain. Participants do not extend their COP all the 

way to the BOS edge during loaded and unloaded leaning (Holbein and Chaffin, 1997; Holbein 

and Redfern, 1997; Lee and Lee, 2003; Holbein-Jenny et al., 2007); rather they limit COP 

excursions to a smaller region of the base of support termed the functional base of support 

(FBOS). Hence, when balance is most challenged, a balance safety margin already exists. 

Therefore, during psychophysical exertions in conditions limited by balance it is unclear why 

an additional margin of safety is introduced. It may be that the additional safety margin is 

related to the muscular demand required to maintain balance near the edges of the FBOS. 

Indeed, recent research has shown that sustained isometric pushing efforts ceased as a result of 

postural muscle fatigue and not fatigue in the prime movers (Le Bozec et al., 2004). In the 

current study, muscle activity or joint loading were not determined for the lower limbs, 

prohibiting a more detailed understanding of why the 80% proportionality persists for 

psychophysical exertions in conditions where the MVF capacity is limited by balance.           

This study had inherent limitations. The major assumption is that participants adopt the 

same posture and exert forces in the same directions during the psychophysical exertions as 

they do during the MVF exertions, and are thereby being limited by the same factor. Although 

this was not quantitatively assessed, qualitatively participants remained in a similar posture 

during both MVF and psychophysical exertions. Errors arising from the postural data 

collection, such as inter-trial skin motion and marker placement accuracy, and the use of 

population-based anthropometric tables to estimate segment masses, cause some uncertainly in 
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the COP calculation and the linked segment modeling outcomes. These effects were reduced 

through the use of rigid clusters to help reduce potential artifacts in the motion capture data 

(Kingma et al., 1996) and the error from the use of anthropometric tables should be randomly 

distributed across participants. To further reduce this effect, motion data was discarded for 24 

of 153 trials (16%). These motion data were discarded as the rigid clusters shifted during 

collection (due to sweat, by being bumped, or due to the straps in the UBB conditions) 

affecting the re-created anatomical landmarks. The trunk cluster was most often affected. It 

was assumed that the trunk was a rigid segment, and therefore one marker cluster was used to 

generate virtual landmarks required to describe the trunk posture. This assumption did not 

always hold as some participants flexed through the spine and in some cases bumped the 

cluster, affecting the recreation of the virtual landmarks and subsequent trunk postural 

description. This was determined qualitatively by visually assessing all re-created anatomical 

motion data. Only males participated in this study as a result of financial constraints. The 

research budget did not permit hiring more than seventeen workers and a decision was made to 

have a larger sample size for a homogeneous population, rather than smaller sample sizes in 

diverse populations.  

The approach used to classify exertions a balance or strength limited is based on 

population threshold data.  This is a limitation of this work as it is difficult to interpret an 

individual response (COP or joint strength) in the context of population distributions.  To help 

account for this the thresholds were established as one standard deviation below the population 

mean.  This approach sets a conservative threshold, which may have caused specific joints to 

be selected as limiting although that individual may have had capacity well beyond that 

threshold.  However, this would have more impact on selecting the appropriate joint where 
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strength is limiting rather than impacting the classification between strength or balance limited, 

affecting the overall findings of the study.    

6.6 – Conclusions 

 Psychophysically determined acceptable forces for unilateral exertions at once per 

minute were selected as a proportion of the MVF capacity for that exertion. By classifying 

MVF exertions as being balance or strength limited, the corresponding %PAF were sorted and 

found to be significantly different. Psychophysical loads were selected at approximately 2/3
rds

 

of the MVF capacity during strength limited exertions, while they were selected at 4/5
ths

 when 

the MVF capacity was limited by balance. These results demonstrate that a biomechanical 

weakest link classification strategy may help to elucidate how workers select psychophysically 

acceptable forces dependent on their maximum capacity. This relationship may help direct 

future research efforts towards: 1) predicting psychophysical limits, and 2) understanding the 

relationship between psychophysical thresholds and biomechanical links to tissue damage or 

injury.  
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Chapter 7 – Predicting Psychophysically acceptable hand forces by 
scaling predictions of maximum hand force capacity based on the 
biomechanically limiting factor 

Steven L Fischer, Clark R Dickerson and Richard P Wells 

7.1 – Overview 

This paper describes a novel approach to predict psychophysically acceptable forces 

during unilateral exertions. Traditionally, psychophysically acceptable forces (PAFs) have 

been determined experimentally or predicted using task-specific tables of regression equations. 

In this study a biomechanical model is used to first estimate the maximum voluntary force 

(MVF) capacity based on a weakest link approach, and then derives a predicted PAF by 

multiplying the MVF by a scaling factor that is specific to the biomechanical factor that is 

limiting the MVF capacity: whole body balance or joint strength. This study provides an 

evaluation of this approach using one-handed horizontal pulling and downward pressing tasks, 

performed at a frequency of once per minute.  

Experimental hand force data showed that participants chose PAFs at 2/3
rds

 of their 

MVF capability when they were limited by joint strength and chose 4/5
ths

 of the MVF capacity 

when they were limited by balance. This finding supported the use of a limiting factor scaling 

approach to predict PAFs from MVFs. When using these proportions to predict PAFs from 

model estimated MVFs, the model underestimated PAFs by 24% and 43% during downward 

and pulling exertions respectively. This underestimation is the result of the biomechanical 

model underestimating MVF capacity by 23% and 34% prior to scaling MVFs to predict 

PAFs. This model provides an innovative approach for predicting PAFs. 
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7.2 – Introduction   

 The psychophysical approach has been used extensively to determine maximum 

acceptable exposure limits for work. Psychophysically acceptable limits have been reported for 

a variety of manual material handling tasks including: lifting, lowering, carrying, pushing, and 

pulling (Snook and Irvine, 1967; 1969; Snook, 1978; Ciriello and Snook, 1983; Ciriello et al., 

1990; 1993; 1999; Snook and Ciriello, 1991; Ciriello, 2001); upper limb tasks including: wrist 

flexion/extensions, screw driving, hose insertions and wrist deviations (Snook et al., 1995; 

1997; 1999; Ciriello et al., 2001; 2002; Moore and Wells, 2005; Andrews et al., 2008); and 

pinch, grasp, and finger pressing tasks (Nussbaum and Johnson, 2002; Potvin et al., 2006, 

McFall, 2008). Psychophysically derived exposure threshold limits are appealing because they 

are more time and cost effective to apply in industry than many biomechanical or 

physiological techniques (Ayoub and Dempsey, 1999). Conversely these thresholds are limited 

in that there is little support that working below psychophysical thresholds will help reduce 

injury risk (Ayoub and Dempsey, 1999; Snook, 1999).  

Improving psychophysical thresholds as an option to reduce injury risks in the 

workplace is critical to the advancement of the approach. It requires a more detailed 

understanding of the relationships between psychophysical capacity, corresponding job 

demand and the incidence and severity of musculoskeletal disorders (MSDs). In an ideal 

situation, an epidemiological paradigm would be well situated to investigate these 

relationships (Ayoub and Dempsey, 1999) given data on the psychophysical capacity, job 

demand and MSD severity. The underlying challenge is in readily determining psychophysical 

capacities for a range of work scenarios. Though psychophysical capacity estimates are readily 

obtainable in a lab environment, they are less easy to obtain in the field. Rather, 
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psychophysical capacity predictive models (PCPM) may provide a means to forecast capacities 

for a number of workers in a number of jobs much more efficiently, facilitating the 

epidemiological research required to support or refute the future use of psychophysically based 

exposure thresholds (Ayoub and Dempsey, 1999).  

 Several approaches have been used to try to develop psychophysical capacity 

prediction models (PCPM). Techniques have included stepwise regression (Genaidy et al., 

1988), prediction using Steven‟s Power Law (Nussbaum and Johnson, 2002), and the use of 

fuzzy logic (Karwowski and Ayoub, 1984). Regression has been used most frequently (Ayoub 

et al., 1980; Genaidy et al., 1988). Regression equations provide a straightforward way to 

predict capacity, but the equations are task specific and data set dependent. The power law 

approach adopted by Nussbaum and Johnson (2002) is also straightforward to use. However, 

the approach does not capture any individual parameters, assuming that the capacity is the 

same for everyone and based only on the force required and the frequency of force application. 

The fuzzy logic approach is novel to psychophysical capacity modeling, but remains 

challenging to integrate into a useful field technique (Genaidy et al., 1988). 

 Predictive approaches based on biomechanical principles rather than correlations and 

associations may be more effective. The historical dominance of correlation and association 

based PCPMs were likely due to the lack of evidence for any alternative underlying principles. 

However, recent work has reported a general rule that psychophysical forces for infrequent 

(one exertion per minute) exertions are selected at approximately 2/3
rds

 of the maximum 

voluntary force (Potvin et al., 2006; Potvin, 2007; Andrews et al., 2008; Chapter 6). Further, 

this general rule has been extended to demonstrate that the proportionality is dependent on the 

mechanical factor most likely limiting MVF capacity (Chapter 6). When an MVF exertion is 
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likely limited by joint strength, workers will subsequently choose to psychophysically work at 

about 2/3
rds

 of their MVF capacity in that task. However, when the MVF exertion is limited by 

whole body balance, workers will alternatively choose to psychophysically work at about 4/5
ths

 

of the MVE capacity in that task. This proportional relationship allows for psychophysical 

limits to be predicted given the MVF and the factor most likely limiting the MVF.  

 A model that predicts MVF capacity and the biomechanical weakest link, was recently 

developed (Chapter 4). The model was adapted to include these psychophysical proportions to 

additionally yield predictions of the psychophysically acceptable capacity. The purpose of the 

study discussed in this chapter was to evaluate if the adapted model predicts psychophysical 

capacities that approximate empirical psychophysically derived acceptable forces for unilateral 

pulling and downward pressing tasks. Further the experimental data were used to determine if 

the 2/3
rds

 and 4/5
ths

 proportionalities persisted.      

7.3 – Methods  

7.3.1 – Participants  

 Seventeen right-handed males were hired from a local temporary work agency to 

participate in this study [mean age 41.4 ± 13.7 years; stature 1.74 ±0.08 m; body mass 82.0 ± 

14.7 kg]. Participants were required to have some general manufacturing experience 

(Appendix 2), be free of hand and forearm injuries within the past 6 months and have no 

sensitivity to ethanol on the skin. This study received ethical approval through the university 

board of ethics and all participants signed an informed consent.  
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7.3.2 – Instrumentation  

 Force and posture information were collected for this study. Force was collected using 

an AMTI six degrees of freedom transducer (MC3A, AMTI MA, USA) rigidly fixed between 

a D-style handle and a clamp apparatus (Figure 7.1). The clamp allowed for the handle height 

to be adjusted according to the stature of each participant. Kinematic information was 

collected using an 8-camera VICON MX20 system (VICON, Oxford, UK). Motion was 

recorded from thirty-eight individual markers placed on anatomical landmarks, including the 

C7, suprasternal notch, xiphoid process, L5; bi-laterally, on the ear, acromion, lateral and 

medial epicondyle, radial and ulnar styloid, 2nd and 5th metacarpal, anterior superior iliac 

spine, greater trochanter, lateral and medial condyle, lateral and medial malleolus, heel, and 1st 

and 5th metatarsal. An additional eleven marker clusters fixated to rigid plates were attached 

over the sternum; bi-laterally, on the top of the foot, shank, thigh, forearm, and upper arm. 

Marker clusters were used to track segment motion during the experiment to reduce the effect 

of skin motion artifact. A static calibration frame established the relationship between the 

clusters and the calibration markers over the anatomical landmarks, and subsequently joint 

centers and segment coordinate systems were described (Kingma et al., 1996). These data were 

used to describe the whole body posture required to drive the model. Both force and motion 

were captured synchronously at 50 Hz. 

7.3.3 – Experimental protocol 

  Participants performed a repetitive horizontal pulling task and a downward pressing 

task (Figure 7.1) each for thirty minutes at one repetition per minute. For each scenario the 

handle was positioned at chest height along the midline of the body. An obstruction was placed 

in front of the participant. The distance from the obstruction to the handle on the force cube 
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was equivalent to 75% of the participant‟s upper limb length. The obstruction was used to 

force the participant to reach to the handle to simulate reaching over a surface in a working 

environment. They were instructed not to make contact with the hip bar or with the foot plate. 

Participants were then able to self select their desired working postures within the confines of 

those instructions.  

 
Figure 7.1 – The experimental conditions tested. Participants completed horizontal pulls 

(„A‟) and downward presses („B‟), at one exertion per minute for thirty minutes, at their 

psychophysically acceptable force level. Participants also completed maximum voluntary 

exertions in these positions, both prior to- and following the psychophysical exertions. 

The obstruction was used to oblige participants to reach for the handle simulating a work 

environment. 

A psychophysical methodology was employed where participants were asked to exert 

force on the handle with magnitudes that they found acceptable (i.e. no signs of discomfort, 

numbness, or pain). The instructions were modified from Snook et al., (1995) (Appendix 1). 

Participants completed the psychophysically acceptable exertions for 30 minutes per condition 

at a cycle time of one exertion per minute, sustaining each exertion for approximately one 
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second. Two audible cues (spaced at one second apart) were presented every minute using a 

custom metronome software program (LabVIEW, National Instruments, Austin Texas, USA) 

to indicate when force was to be exerted.  

To ensure the participants were working within the guidelines provided in the 

instructions, discomfort ratings were taken at 10 and 20 minutes into each scenario using a 

CR-10 scale (Borg, 1990). If participants responded with discomfort scores of 2 or more, the 

researcher re-read the instructions to them.  

Before and following the performance of the psychophysical force estimation protocol, 

participants performed two 5-second maximum voluntary force (MVF) exertions in the 

requested force direction and condition. These MVF contractions provided a measure of the 

maximum capable force in each scenario for each participant.  

Experimental scenarios were presented to each participant in a random order. This 

study took place as part of a larger research study, where participants had completed 

psychophysical exertions in the lab for a full eight-hour day prior to completing the exertions 

described here. They were familiar with the psychophysical paradigm and comfortable in the 

lab environment.      

7.3.4 – Experimental data analysis 

Data was analyzed to yield kinematic and kinetic information. All postural and force 

data were low-pass filtered using a dual pass Butterworth digital filter (fc = 4 Hz, and fc = 15 

Hz respectively). Peak hand force in the desired direction was determined as the peak value 

resulting from a 500 millisecond moving window average passed over each minute of the 

filtered force trace (Appendix 3A). This process was used to identify the force magnitude 

during each of the 30 discrete exertions within each scenario.  The 500 millisecond average 
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helped to smooth the data to reduce the impact of jerking on the force cube when participants 

pushed, pulled or pressed.  The psychophysically acceptable force (PAF) was then calculated 

as the average force value recorded over the final five exertions within each test scenario. The 

resulting force was normalized to the highest peak force observed from the two pre- and post- 

scenario specific MVEs, yielding the normalized psychophysically acceptable force (%PAF). 

The data points used to create the thirtieth and final 500 millisecond average, within 

each condition, were indexed in time allowing for the corresponding posture data to be 

selected and averaged over the same range, aligning with the peak force data. These data 

served to drive the force prediction model. 

7.3.5 – Model description 

 A hand force capacity prediction model, previously described, was used to generate 

predictions of the MVF and limiting factor (Chapter 4). The original model computed MVF 

capacity and predicted the weakest link by using the inputs of posture, stature, body mass and 

prescribed exertion direction. Using these inputs, joint strengths (moments) and whole body 

balance requirements (center of pressure relative to the base of support) are incrementally 

calculated as the assumed hand forces increased from  1 to 1000 N. The resultant joint strength 

and center of pressure (COP) locations are then compared to stochastically generated 

constraint thresholds for joint strength and COP excursion limits. This process is used to 

identify the maximum hand force achievable without exceeding a constraint. Using a Monte 

Carlo simulation the constraint generation and threshold comparisons were repeated for 1000 

iterations. At each iteration the constraint thresholds are selected from a normal distribution of 

possible constraint values based on experimental data previously reported in the literature 

(Schanne, 1972; Stobbe, 1982; Holbein and Chaffin, 1997). Following the simulation, the 
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model output a predicted MVF and standard deviation, while also describing the constraint that 

most frequently limited MVF capacity through the simulation process. 

 The psychophysical predictions were computed within the Monte Carlo simulation 

processes, where the maximum hand force determined at each iteration was multiplied by 0.67 

(2/3
rds

) if a strength based constraint limited capacity or by 0.8 (4/5
ths

) if a balance based 

constraint limited capacity. Following the Monte Carlo simulation the updated model also 

output the PAF and the corresponding standard deviation. 

7.3.6 – Model evaluation 

 Experimentally obtained posture information was used as an input into the model, 

along with the participant‟s specific stature and body mass and the direction of the exertion, 

extracted from the force data. Participants were instructed to exert forces in a given direction 

(i.e. horizontal pull); however participants often exert additional off-axis forces (de Looze et 

al., 2000; Granta and Bennett, 2005; Hoffman et al., 2007). This change in force direction has 

been shown to affect the ability to predict MVF capacity (Chapter 5). The actual force 

direction vector was used as an input in this case to parse out the effect that misrepresenting 

the desired force vector may have in estimating both MVF and psychophysically acceptable 

forces (Chapter 5).  

 Model evaluation was performed in three ways: 1) Evaluation of the proportional 

relationships: the measured PAFs were categorized based on the model predicted limiting 

factors then divided by the corresponding measured MVF to test if %PAF values were indeed 

selected a different magnitudes dependent on the weakest link.  This comparison was 

evaluated statistically using a Mann Whitney U test. A non-parametric test was selected to 

avoid the assumption of normality required with a parametric counterpart, and the Mann 
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Whitney U was selected instead of the Wilcoxen sum of ranks tests because each group had 

less than 20 observations.; 2) Maximum magnitude similarity: the model estimates of MVF 

capability were compared to the pre and post measured MVF values obtained during the 

experiment to demonstrate the ability to predict MVF capacity; 3) Psychophysical magnitude 

similarity: measured PAFs were compared to predicted PAFs in each condition to evaluate if 

predictions under- or overestimated experimentally determined values. The magnitude based 

measured versus predicted comparisons (evaluations 2 and 3) were made using two separate 

repeated measures ANOVA‟s. A Greenhouse-Geisser correction was used to protect against 

violations of the sphericity assumption. Significance levels were set at p < 0.05 for all tests. All 

statistical processing was completed using SPSS software (SPSS INC., Chicago, IL, USA). 

7.4 – Results  

 The proof of principle evaluation supported the use of the 2/3
rds

 and 4/5
ths

 proportional 

relationships (Figure 7.2). In exertions classified as balance limited, participants chose %PAF 

values at 79.8 ± 20.9%, significantly higher (U=30, Ucrit = 37, n1=9, n2=16 ) than those limited 

by strength, chosen at 64.8 ± 21.6%.  The magnitude similarity evaluations demonstrated that 

the model predictions underestimated both experimental MVFs and PAFs (Figure 7.2). The 

significantly model significantly underestimated psychophysical forces by 24% during 

downward exertions (F=6.649, p=0.026, partial η2
 = 0.377) and by 43% during pulling 

exertions (F=6.630, p=0.026, partial η2
 = 0.376). However, the underestimations of PAF 

values were primarily a result of the underestimation of MVFs (23% for downward exertions 

(F=12.315, p=0.001, partial η2
 = 0.26) and 34% for pulling exertions (F=36.218, p< 0.001, 

partial η2
 = 0.509)).   
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Figure 7.2 – The psychophysical acceptable force (mean and standard deviation) as a 

percentage of the maximum voluntary force (MVF) during exertions limited by balance 

and those limited by strength. Chapter 6 suggests that strength limited exertions should 

be selected at approximately 2/3
rds

 of MVF, where balance limited should be selected at 

4/5
ths

 of the MVF. The significant difference is denoted by an asterisk „*‟. 

* 
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Figure 7.3 – A comparison between measured and predicted hand forces (means and 

standard deviations). Comparisons made during maximum voluntary force exertions are 

shown in „A‟, and comparisons made during psychophysically acceptable exertions are 

shown in „B‟. Significant differences are denoted with an asterisk „*‟. Arrows and 

percentages describe the relative difference between the measured and predicted values. 
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7.5 – Discussion  

   The current method for predicting psychophysically acceptable forces provides a robust 

approach based on an underlying testable principle. The underlying principle poses that PAFs 

at one exertion per minute are proportional to the MVF capability, where the proportionality is 

dependent on the biomechanical weakest link governing MVF capability. The proof of 

principle evaluation provides additional support to justify the use of this relationship predicting 

PAFs (Chapter 6). The magnitude similarity comparisons demonstrate that the current 

approach conservatively estimates PAF values; however, these estimates can likely be 

improved by better predicting the MVF capability, which is fundamental for the prediction of 

the PAF capability.  

 The ability to adequately and reliably predict PAF values depends on correctly 

identifying which factors affect PAF selection. Historically, research has focused on task 

related factors including: box size, lift height, reach distance, asymmetry, carrying method, 

handle type, wrist posture, obesity, etc. (Mital et al., 1989; Ciriello, 2001; Ciriello et al., 2001; 

Singh et al., 2009; Wu and Chang, 2010). These influential factors are then used to develop a 

table or regression equation, or series of equations to predict PAFs based on the associations 

between these factors and the PAF outcome. Lu and Aghazadeh (1994) have comprehensively 

reviewed this process. They concluded that more task factors need to be investigated and more 

participants need to be assessed to improve predictive capabilities. The current research 

suggests an alternate approach to improving PAF predictive ability. It advocates that attention 

should shift from investigating how various task factors affect PAFs towards understanding 

how the underlying biomechanics directly impact PAF selection (Chapter 6).    
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 A limiting factor dependent proportionality based model is consistent with numerous 

published associations based on numerical regression approaches. Historically, predictive 

capability has been dependent on the strengths and limitations of regression based approaches 

(Ayoub et al., 1980; Genaidy et al., 1988). For example, Jiang and Ayoub (1987) used the 

predictor variable strength (calculated as a composite score) and were able to predict 

psychophysical lifting capacity with a variance explanation (r
2
) of 0.924. Similarly, Genaidy et 

al. (1990) used predictor variables including: lift height, box dimension, and handle type, but 

not strength, and predicted psychophysical lifting capacity with variance explanations (r
2
 

values) of 0.83 and 0.85 for males and females, respectively. Interestingly, strength alone was 

a better predictor for lifting and lowering tasks. From a biomechanical perspective, MVF 

capacity is governed by factors including balance, strength and friction (Kerk et al., 1998; 

Holbein and Chaffin, 1997; Kroemer, 1974, Seo et al., 2010; Chapter 3). During lifting and 

lowering, when the load is close to the body, strength is more likely to limit capacity than 

balance or friction (Kerk et al., 1998). This may explain why strength alone had greater 

predictive capacity in terms of the variance in the data set, as it plays a prominent role in 

determining the threshold limit for capacity. However, the other predictor variables still 

accounted for a large amount of variability as those factors influence the demand on the body 

in terms of joint moments (Davis et al., 1998; Kingma et al., 2004; Kingma et al., 2006). As a 

result, strength may be a better predictor as it relates to the peak capacity, but external task 

factors are also important as they are needed to determine the demand relative to that capacity. 

Together both forms of information are needed to determine the relative demand on the body.     

 The weakest link proportionality approach to predict PAF values during one-handed 

exertions at once per minute is dependent on knowing the MVF capacity. Although the model 
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provides an underestimate of PAFs relative to experimental values, it is predominantly due to 

the underestimation of the MVF prior to introducing the weakest link proportionality (as 

shown in Chapter 4). Additionally, Kerk et al. (1994; 1998) presented a two-dimensional MVF 

prediction model and similarly reported underestimations up to 36% for pushes, pulls, lifts and 

downward presses. Since these models use similar data sets to derive the strength constraint 

thresholds (Schanne, 1972; Stobbe, 1982) it is expected that they would result in similar 

conservative estimates. The underestimation may be a result of the underlying data used to 

describe the constraint thresholds. The original data may not be well suited for use in 

predicting strengths for a modern day workforce. Research has shown secular changes in a 

number of health and performance related measures (Tomkinson and Olds, 2007; Danubio and 

Sanna, 2008). Specifically in terms of strength, Westerstahl et al. (2003) reported a significant 

increase in isometric strength in young males from 1974 to 1995. Further, Schanne (1972) 

described that the strength thresholds developed using a regression model underestimate 

empirical strength thresholds by approximately 30%. This is a result of the assumption that 

joint strengths are independent. In the underlying regression equations (Schanne, 1972; 

Stobbe, 1982) moment loading at adjacent articulations does not affect the strength capability 

of a particular muscle group. The assumption of independence may be greatly impacting the 

ability to adequately determine joint strength thresholds. Therefore, in order to improve MVF 

estimates and subsequently PAF estimates, more current research is needed regarding 

constraint thresholds that govern MVF capacity.    

 The weakest link based proportionality is attractive as a possible guiding principle to 

facilitate PAF predictions from both evidentiary and practical application perspectives. This 

research supports that proportional relationships do exist between MVFs and PAFs (Potvin et 
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al., 2006; Potvin, 2007; Andrews et al., 2008). However, this work additionally demonstrates 

that the usefulness of this proportional relationship can be improved by accounting for the 

biomechanical weakest link. Although the existence of this weakest link based relationship has 

been previously hypothesized (Nussbaum and Lang, 2005), this research in concert with the 

results from Chapter 6 provide quantitatively evidence for this relationship. Future work is 

needed to demonstrate if the weakest link principle can be more readily applied as a general 

rule for predicting PAFs from MVFs. Since the exertions examined here were only marginally 

different from those previously tested (Chapter 6); it is difficult to make a broader conclusion 

that the weakest link principle will extrapolate well to substantially different exertion 

scenarios. If the principle does extrapolate well, then a weakest link modeling approach could 

provide a means to forecast capacities for a number of workers in a number of jobs much more 

efficiently.  

 The outputs from the current model for predicting PAFs for unilateral exertions 

occurring once per minute should be interpreted with caution. As noted, the weakest link 

proportionality principle has not been evaluated over a wider range of tasks to support its 

general use. In addition, limitations and assumptions in the fundamental biomechanical model 

should guide interpretation. The biomechanical model is subject to errors arising from the 

postural data collection, such as inter-trial skin motion and marker placement accuracy, and the 

use of population-based anthropometric tables to estimate segment masses. These 

considerations can cause some uncertainly in the center of pressure calculations guiding the 

ability to determine if balance is limited, and the linked segment modeling outcomes guiding 

the ability to determine if strength is limited (Chapter 4). These effects were lessened through 

the use of rigid clusters to help reduce potential artifacts in the motion capture data (Kingma et 
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al., 1996) and the error from the use of anthropometric tables should be randomly distributed 

across participants. Further, only males were tested during this study. If this approach is to be 

applied to predict thresholds in industry, more work is needed to evaluate if the same principle 

applies to females. However, the use of male participants with industry experience provides 

support that this principle is justified for male workers performing unilateral manual materials 

handling tasks.  

7.5 – Conclusion  

 This study presented and evaluated if PAFs could be predicted for unilateral pulling 

and downward pressing tasks by proportionally scaling predicting MVF capacity based on the 

corresponding biomechanical weakest link. The results indicate that this approach 

conservatively predicts PAFs. The underlying weakest link proportionality principle for 

predicting PAFs from MVFs is supported; however, overall predictive capacity could be 

enhanced by improving estimates of MVF capacity prior to predicting the PAF.  
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Chapter 8 – General Conclusions 

8.1 – Revisiting the thesis statement 

This dissertation aimed to address the global thesis that psychophysical strength is 

quantitatively related to simulated job static strength during one handed exertion tasks. 

Further, it aimed to determine if the relationship was related to the exposure at the weakest 

biomechanical link, most likely to limit maximum capacity during a task. This collection of 

manuscripts provided quantitative evidence to support the thesis that simulated job static 

strength capacity is limited by specific biomechanical limiting factors (whole-body balance, 

shoe-floor friction, and joint strength). Further, psychophysical strength was selected as a 

proportion of simulated job static strength, where the proportion was specific to the underlying 

biomechanical limiting factor.  

8.2 – Revisiting the thesis aims and objectives 

1. To advance our capacity to predict simulated job static strength by developing a 

biomechanically driven model to predict maximum hand forces during unilateral 

exertions. 

a. A 3D hand force prediction model (3DHFPM) was developed to estimate 

simulated job static strength during unilateral exertions. The model included a 

novel approach for predicting variability in the estimates by including a 

probabilistic modeling component. This inclusion provides population scalability 

in the estimates of simulated job static strength. A model evaluation determined 

that it is necessary to accommodate for additional off-axis forces that re-direct the 

force vector away from the prescribed direction. Further, it was determined that 

the model conservatively predicted unilateral simulated job static strength by 



158 

 

approximately 25%. The underestimation may be related to overly restrictive 

biomechanical constraint thresholds in determining MVF levels.  

2. To predict the element, or “weakest link”, most likely to limit simulated job static 

strength during a unilateral exertion. 

a. The 3DHFPM was successful ten times out of twelve at predicting biomechanical 

factors that limited unilateral simulated job static strength compared to 

biomechanical limiting factors determined experimentally.  

3. To investigate how psychophysical strength may be determined within the strength 

paradigm. 

a. Chapter six demonstrated a quantitative relationship between simulated job static 

strength and psychophysically acceptable strength. This relationship was 

supported in Chapter seven. This work provides quantitative evidence to support 

previous research (Nussbaum and Lang, 2005; Potvin et al., 2006; Potvin, 2007; 

Andrews et al., 2008) suggesting that psychophysical strength could be selected as 

a proportion of simulated job static strength. 

4. To examine the plausibility of a weakest link explanation for the relationship between 

simulated job static strength and psychophysical strength. 

a. This thesis provided insight into the proportionality relationship described as part 

of objective three. This body of work demonstrates that the biomechanical factor 

limiting job static strength, or the „weakest link‟, also plays a role in the selection 

of a psychophysically acceptable force. When the weakest link is joint strength, 

psychophysically acceptable forces were selected at approximately 2/3
rds

 of the 

simulated job static strength; however, when whole-body balance was the weakest 
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link psychophysically acceptable forces were selected at approximately 4/5
ths

 of the 

simulated job static strength. 

5. To determine the feasibility of developing an ergonomic assessment tool combining the 

benefits of both simulated job static strength and psychophysical strength approaches 

(Figure 8.1 - adapted from Figure 1.2 in Chapter 1). 

a. This dissertation outlines the development of a model to predict simulated static 

strength (3DHFPM), the quantification of a principle that may help relate 

psychophysical strength to simulated job static strength, and presents an updated 

model to include predictions of psychophysical forces scaled from estimates of 

simulated job static strength based on the principle. Based on these contributions it 

is feasible to develop an ergonomic assessment tool combining the benefits of both 

simulated static strength and psychophysical strength with the following two 

caveats. First, the simulated static strengths predicted by the 3DHFPM are well 

below actual capabilities, where underestimation has also been reported for other 

strength prediction models. This underestimate also affects the subsequent ability 

to predict psychophysical strength. As noted in Figure 8.1, this needs to be 

addressed before attempting to mobilize this approach into a useful ergonomics 

tool.  

b. Second, this thesis only examined one-handed exertions at approximately shoulder 

height. Additional work is required to determine: a) if the model is capable of 

predicting simulated static strengths at other work locations, b) if the same 

“weakest link” approach can be used to predict simulated strength in bilateral 

tasks, and c) if the weakest link proportionality principle holds across other tasks.  
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c. So, although this approach seems feasible based on the research performed 

throughout this dissertation, at present it may not yet be practical to implement as 

an ergonomic assessment tool.  

 

Figure 8.1 – A conceptual overview of the components and models developed throughout 

this dissertation (adapted from Figure 1.2). As identified in the figure, the 3DHFPM 

should be improved if this approach is to be transferred into an applied ergonomics 

assessment tool. Within the context of this research, the proportionality and 

psychophysical force prediction are feasible with an improved capacity to predict 

maximum hand force capability. 

8.3 – Novel contributions 

 This thesis offers two novel contributions to the field of occupational biomechanics: 

firstly, the introduction and use of probabilistic approach to modeling hand force capacity, and 

secondly, experimental findings uncovering a weakest link proportionality principle relating 

psychophysical strength to simulated job static strength. The probabilistic approach used to 

select constraint thresholds (described in Chapter 4) presents a new way to understand 

variability in hand force capability. It is well known that hand force capacity is variable across 
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a population (Warwick et al., 1980; Haslegrave et al., 1997; Kerk et al., 1998; Das and Wang, 

2004), a finding supported by the variability in force capacity observed in Chapter 3. Within 

the biomechanical weakest link paradigm used here the variability in hand force capacity is 

realized because of the underlying variability modeled in constraint thresholds. Although this 

thesis does not focus on this issue directly, the novel application of the probabilistic approach 

in this manner invites future research aimed at investigating the role of variability in 

underlying constraints on the variability observed in hand force capacity.  

 The experimental evidence demonstrating the weakest link proportionality principle 

advances the current idea that a uniform proportionality may exist. The novelty of this research 

is not related specifically to the development of the principle, but in providing a new way to 

look at both psychophysical and simulated static strength, revealing the principle. By further 

classifying these exertions based on the biomechanical weakest link, both the experimental 

data collected within this dissertation, and previously reported data demonstrate the same 

relationships (Chapter 6). This insight may provoke future research investigating why different 

proportionalities exist for different constraints, or why the proportion magnitudes seem so 

consistent within each constraint classification, across participants, although the 

psychophysical forces are self-selected. Addressing these issues in the future, guided by the 

proportional relationship demonstrated here, may help us understand the pathways through 

which a person arrives at a psychophysically acceptable force.         

8.4 – Research significance and impact 

 Psychophysically derived thresholds are used extensively in applied settings, but 

continue to be criticized for their dependence on subjective measures (Ayoub and Dempsey, 

1999; Snook, 1999; Dempsey, 2006). This dissertation has identified the potential for a 
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quantifiable biomechanical explanation linking psychophysical forces and maximum capable 

forces. This relationship is based on Newton‟s third law, where every action has an equal and 

opposite reaction. Under that law, in the case of maximum exertions, the body can only apply 

increasing levels of force until the corresponding reaction effect is greater than the body can 

resist, in terms of balance, friction, or strength. Identifying that psychophysical forces are in 

part dictated by this same explanation is a significant contribution. This dissertation 

demonstrates that participants apply psychophysically acceptable forces such that the reaction 

response reaches a pre-determined margin, below the absolute threshold limit to maintain 

balance or fall within joint strength capability. This margin is related specifically to the 

threshold most likely to be exceeded, be it balance or joint strength.       

8.5 – Limitations  

 A weakest link proportionality principle is posed throughout this dissertation. There are 

a number of notable cautions that should inform its future use and interpretation.  

8.5.1 – Determining the weakest link 

First, the approach for determining a “weakest link” must be refined. Based on the 

results of the model evaluation (Chapter 5) it was clear that predictions were significantly 

lower than observed values. This may be a result of the quality of data being input into the 

model, the weakest link model logic, or the constraint thresholds selected from previous 

literature.  

In terms of data quality, caution was used to ensure appropriate procedures and 

protocols were followed to determine representative posture data. The most critical limitation 

of the procedures used was discussed in Chapter 6, stating the limitations in using a single 

cluster placed over the sternum to determine virtual markers representing landmarks all over 
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the trunk. Although this approach was not ideal, the sternum was selected as the most rigid 

point on the trunk that would not be covered up when the bracing apparatus was used.  

In terms of the model logic, a weakest link approach was used, which is predicated on 

Newton‟s third law. The caveat here is that the equal and opposite reaction must not cause 

balance to be lost or joint strength to be exceeded. The evaluation data presented in Chapter 5 

indirectly speaks to this issue. If a weakest link approach applies, then individuals would be 

more likely to adjust the force direction from a prescribed direction (e.g. pulling horizontally 

and down during a horizontal pull) to protect against a weakest link. In comparing the 

differences between actual and prescribed force application directions, this rational seems to 

hold true, at least for downward exertions. Using a weakest link approach, participants did 

manipulate the force direction to protect against joint strength limiters, supporting the weakest 

link logic used in the model. 

The use of previously published data remains a target for understanding the 

conservative predictions. With reference to joint strength limits, the work of Stobbe (1982) and 

Schanne (1972) still likely represents the most comprehensive description of individual joint 

strengths collected on the same populations using the same methodology. However, there are 

several limitations that they describe in their seminal work. Among those limitations, Schanne 

(1972) describes that predicted hand forces are typically underestimated by approximately 

30% during one-handed exertions, when using the regression equations to determine joint 

strength capacity. Extending from this Schanne (1972) describes that this undershoot is 

dominated by a faulty assumption that moment loading at adjacent articulations does not affect 

the strength capability of a particular muscle group. Schanne (1972) effectively points out that 

joint strengths are treated as independent, though they are quite dependent. This work has also 
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relied on this independence assumption, which is a limitation that may be responsible for the 

model underestimations during strength limited exertions. 

Further, strength attributes may differ between participant pools.  The original data 

from Schanne (1972) was established using university students, while the data generated later 

by Stobbe (1981) was based on a different sample, possibly with different force producing 

attributes.  Figure 8.2 illustrates the maximum strengths observed between the university 

students (Study 1) with the workers hired (Study 3).  Qualitatively, the strengths are similar for 

most exertions; however they do differ significantly in the free “FFP” down exertion and 

during the medial and pulling exertions while braced “UBB”.  The weakest link modeling 

approach assumes that these maximum forces are all governed using the same population joint 

strength limits.  This assumption may therefore be impacting the underestimations; however, 

given the similarity in maximum strength between the groups during six of the nine different 

exertions, it is unlikely that this assumption is a dominant explanation for the underestimations 

made by the model.  
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Figure 8.2 – A comparison of maximum hand forces produced by male university students (Study 1) and males hired from a 

temporary work agency (Study 3).The asterisks „*‟ denotes significant differences between the strengths of university students 

and workers hired from a temporary work agency within the respective conditions.
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Additionally, the data used to determine balance thresholds may also have limitations 

that may further limit the predictive capability of the model described in this work. Holbien 

and Chaffin (1997) discuss how the use of static limits may underestimate the actual center of 

pressure (COP) excursion limits, especially when one considers the ranges of excursions that 

are present under more dynamic conditions. However, the relatively static postures tested 

throughout this work likely mitigate the effect of this limitation. More importantly, Holbein 

and Chaffin (1997) also noted that the COP excursion limits they reported using an un-loaded 

and loaded leaning protocol, were less than those observed by Kerk et al., (1998) using a two-

handed exertion protocol. For example, participants may move their COP less when leaning 

versus when pushing or pulling. Although the data presented by Kerk et al. (1998) 

demonstrated greater COP excursion thresholds, their data set provided only anterior and 

posterior limits in a shoulder width foot position. The data presented by Holbein and Chaffin 

(1997) were more restrictive, but included anterior, posterior and lateral limits for both 

shoulder width and asymmetric foot placements. It remains as a limitation in this work that the 

more conservative limits were chosen to represent the COP excursion limits (from Holbein and 

Chaffin, 1997), when more task specific limits were available (Kerk et al., 1998). This choice 

was predicated on the need to have more than only anterior and posterior limits in the three-

dimensional case.    

8.5.2 – The specificity of the task  

 The second notable caution is the specificity of the task used to uncover the weakest 

link principle. The proportional relationship was demonstrated using one handed exertions 

completed at once per minute, for thirty minutes. Although Chapter 6 demonstrated that this 
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relationship might exist across other types of exertions, it remains crucial to experimentally 

demonstrate consistency in this principle across a wider range of exertions or tasks. Also, this 

relationship is dependent on psychophysical exertions completed at once per minute with low 

duty cycle (2% duty cycle). Psychophysically acceptable force estimates are sensitive to work 

time, and specifically the duty cycle (Moore and Wells, 2005). It would be expected that as the 

duty cycle increases, the psychophysically acceptable forces would decrease. Therefore, it is 

important to understand that this principle may be task specific, but more importantly duty 

cycle specific. 

8.5.3 – Postural consistency 

 The third notable caution relates to postural consistency. As discussed in Chapter 6, the 

weakest link is determined based on the posture assumed during the MVF trial. Although the 

gross posture remained consistent (foot locations, hand locations) the participant may have 

subtly altered specific joint positions within the context of the gross posture when performing 

a psychophysically acceptable force trial. Although specific positional differences were not 

quantified, when the actual psychophysical trials were classified based on the weakest link, in 

nearly all cases the COP limits were reached. Since the hand forces were lower than those 

measured during the MVF trials the joint moments were considerably lower by default, but it 

would be expected that the COP excursion would also be less. Using the description provided 

in Chapter 4, and illustrated in Figure 8.3, the following explanation is provided. 
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Figure 8.3 – A reproduction of Figure 4.7 - Sagittal plane diagram used to demonstrate 

how the static moment equilibrium about the COP in the global X axis was determined. 

The specific variable definitions are described with the original Figure 4.7. *Note: the 

hominoid graphic was generated using the 3DSSPP™. 

 During MVF trials, participants chose to shift their hips and consequently their center 

of mass (COM) in a posterior direction, increasing the moment arm between the COM and 

COP to accommodate a higher moment produced by the hand force. During psychophysical 

trials, the hand force was lower, and the corresponding rotation moment it caused was lower. 

Concurrently, participants did not shift their hips and COM as much, reducing the moment arm 

and subsequent moment generating capacity. This was not quantified directly, but was 
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observed as the vertical projection of the COM and the COP were displayed on plots of the 

base of support similar to Figure 5.5. 

 Although gross body postures were maintained, specific joint postures were different. 

This is a limitation as the same exact postures were not likely used to perform both exertions. 

However, in the context of the weakest link, it is assumed that participants would self-adjust 

their posture within the context of the gross postural requirements to enable them to produce a 

maximum force (Hoffman, 2008). In the posture required to exert maximally they may be at an 

increased risk of falling or overexerting, though it is deemed reasonable to achieve a maximum 

effort. However, when the force is lower, at a psychophysically acceptable level, the self-

adjusted posture may not need to be as extreme, and a more conservative approach is sought. 

This rational remains speculative at this point, and the postural inconsistencies remain as a 

limitation of this work.  

 These broader limitations provide context for interpreting the results presented here.  

8.6 – Future research 

 Two next steps are needed to help mobilize this research into a practical applied tool: 

1) improve the ability of the model to predict maximum voluntary hand forces, and 2) validate 

the weakest link proportionality principle over a wider range of tasks and for a female 

population. Pending the outcome of these first two steps, a third step can help expand the 

scalability of predictions.  

 Model predictions can likely be improved through addressing some current model 

limitations. First, the inclusion of a routine to predict the hand force vector from a user 

prescribed hand force vector would generate more realistic moments. Optimization may 

provide one avenue to achieve this goal; however, more research is needed to determine why 
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off-axis forces are produced (de Looze et al., 2000; Granata and Bennett, 2005; Hoffman et al., 

2007). Secondly, the constraint thresholds should be improved. In terms of balance thresholds, 

previous research has not identified multi-direction COP boundaries during forceful exertions 

with different foot positions (Kerk et al., 1998). Additionally, research examining the 

interdependence of joint strengths may help eliminate the conservative nature of those 

thresholds. 

 The weakest link proportionality principle represents a significant contribution to the 

field of occupational biomechanics. However, this finding should be validated and supported 

by additional research. The principle is underpinned by the notion that every exertion is limited 

by a biomechanical factor. As a result, any exertion can be classified based on the 

biomechanical factor by solving for equilibrium, within the confines of balance, strength, and 

friction. A subsequent psychophysically acceptable force, at one exertion per minute, can be 

determined accordingly and the proportionality principle can be tested. As is indicated in the 

discussion in chapter 6, different joints may also have different proportionalities.  Specifically, 

finger joint strength may be lower than the 2/3
rds

 presented here.  Additionally, these data are 

representative of a small sample of males with some manual materials handling experience.  

Additional work is warranted to examine if this trend holds across different sample 

populations, and if it transfers to a female population.  

 The third step is related to improving the temporal scalability of model predictions. 

Assuming the predictive power of the model can be adequately improved, and that the 

proportionality principle remains consistent, an approach is needed to scale psychophysical 

predictions to encompass different work frequencies and duty cycles. Potvin (2007) has 

suggested that a logarithmic curve fit approach may be useful to scale psychophysically 
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acceptable force according to duty cycle and frequency. Improved temporal scalability would 

increase the range of tasks for which the model could be used to predict both MVF and 

psychophysically acceptable forces in the workplace. However, this remains a substantially 

longer term goal, and its pursuit is predicated on the prior successful improvement of model 

predictions and more universal validation of the proportionality principle. 
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Appendices 

Appendix 1 – Psychophysical instructions (modified from Snook et al., 1995) 

 

YOUR JOB IS TO PUSH ON THE HANDLE EVERY TIME YOU HEAR THE BEEP AND 

ADJUST HOW HARD YOU PUSH ACCORDING TO THE GUIDELINES BELOW: 

Instructions for choosing the force: 

We want you to imagine that you are on piece work getting paid for the amount of work that 

you do, but working a seven hour shift that allows you to go home without unusual discomfort 

in the hands, wrists, forearms, neck, or shoulders. In other words, we want you to work as 

hard as you can without straining your hand, wrist, forearm, neck, or shoulders. 

 

Please feel free to adjust the amount you are pushing with as often as you would like. We want 

to find out how hard you can push without straining yourself. Adjusting your own resistance 

is not an easy task. Only you know how you feel. Do not be afraid to make adjustments. You 

have to make enough adjustments so that you get a good feeling for what is too hard and what 

is too easy. You can never make too many adjustments, but you can make too few. 

 

REMEMBER, THIS IS NOT A CONTEST. EVERYONE IS NOT EXPECTED TO PUSH 

ON THE HANDLE WITH THE SAME AMOUNT OF FORCE. 
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Appendix 2 – A summary of previous work experiences of the participants hired to complete the psychophysical research 

studies 
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Appendix 3a – A schematic illustration of the processing steps applied to the EMG data 

in study 3. This data was taken from a representative participant and the EMG is from 

the pectoralis sternal insertion during a medial exertion in a free foot posture condition. 
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Appendix 3b – A schematic illustration of the processing steps applied to the voltage data 

in study 3 to determine hand forces.  This data was taken from a representative 

participant and following data was acquired from a medial exertion in a free foot posture 

condition. 
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