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Abstract

Ranking queries are widely used in data exploration, data analysis and decision

making scenarios. While most of the currently proposed ranking techniques focus

on deterministic data, several emerging applications involve data that are imprecise

or uncertain. Ranking uncertain data raises new challenges in query semantics and

processing, making conventional methods inapplicable. Furthermore, the interplay

between ranking and uncertainty models introduces new dimensions for ordering query

results that do not exist in the traditional settings.

This dissertation introduces new formulations and processing techniques for rank-

ing queries on uncertain data. The formulations are based on marriage of traditional

ranking semantics with possible worlds semantics under widely-adopted uncertainty

models. In particular, we focus on studying the impact of tuple-level and attribute-

level uncertainty on the semantics and processing techniques of ranking queries.

Under the tuple-level uncertainty model, we introduce a processing framework

leveraging the capabilities of relational database systems to recognize and handle data

uncertainty in score-based ranking. The framework encapsulates a state space model,

and efficient search algorithms that compute query answers by lazily materializing the

necessary parts of the space.

Under the attribute-level uncertainty model, we give a new probabilistic ranking

model, based on partial orders, to encapsulate the space of possible rankings originat-

ing from uncertainty in attribute values. We present a set of efficient query evaluation

algorithms, including sampling-based techniques based on the theory of Markov chains

and Monte-Carlo method, to compute query answers.

We build on our techniques for ranking under attribute-level uncertainty to support

rank join queries on uncertain data. We show how to extend current rank join methods

to handle uncertainty in scoring attributes. We provide a pipelined query operator

implementation of uncertainty-aware rank join algorithm integrated with sampling

techniques to compute query answers.
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Chapter 1

Introduction

Ranking queries are widely used in data exploration, data analysis and decision mak-

ing scenarios. The objective of ranking queries (also referred to as top-k queries) is to

report the top ranked query results based on scores computed by a given scoring func-

tion (e.g., a function defined on one or more database columns). A scoring function

induces a unique total order on query results, where score ties are usually resolved

using a deterministic tie-breaking criterion.

While most of the currently proposed ranking techniques focus on deterministic

data, several emerging applications (e.g., Web mashups, location-based services, and

sensor data management) involve data that are imprecise or uncertain. Dealing with

data uncertainty by removing uncertain values is not desirable in many settings. For

example, there could be too many uncertain values in the database (e.g., readings of

sensing devices that become frequently unreliable under high temperature). Alterna-

tively, there could be only few uncertain values in the database but they are involved

in data entities that closely match query requirements. Dropping such uncertain val-

ues may lead to inaccurate or incomplete query answers. For these reasons, modeling

and processing uncertain data have been the focus of many recent studies [56, 9, 20].

With data uncertainty, the semantics of ranking queries become unclear. For

example, reporting a top ranked query result may not depend only on its computed

score, but also on the potential uncertainty of that result as well as the scores and
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uncertainty of other query results. Ranking and uncertainty models interplay to

decide on meaningful interpretation of ranking queries in this context.

Studying the interplay between ranking and uncertainty models is motivated by

the need for ranking support in environments that generate or process uncertain data.

For example, in the context of the Web, information extraction techniques are used

to extract instances of entities, e.g., organization and person names. The imperfec-

tion of extraction tools and the inherent ambiguity of unstructured text introduce

uncertainty in extracted information. Ranking objects with such uncertain informa-

tion, based on some scoring measure, is important to a wide range of applications.

For example, a popularity survey may require ranking movies based on the extracted

ratings from online reviews. In the context of sensor networks, sensor readings are

usually represented using a probabilistic model, based on readings history and the

dependencies among different sensors. Many applications can benefit from ranking

sensor data. For example, aggregating and ranking sensor readings to find the top

ranked locations based on temperature. Evaluating these queries needs to take into

account both the uncertainty in the underlying data, and the ranking requirements

to be imposed on query results.

Under the relational data model, we focus on studying the implications of two

different types of data uncertainty on the semantics and processing techniques of

ranking queries:

• Tuple level uncertainty. Tuples may belong to the database with less than

absolute confidence. A widely-used model to capture this type of uncertainty

is representing tuples as probabilistic events, and model the database as a joint

distribution defined on these events.

• Attriubute level uncertainty. Tuple attributes may have uncertain values. A

widely-used model to capture this type of uncertainty is representing tuple at-

tributes as probability distributions defined on discrete or continuous domains.

This chapter starts by presenting real-world examples motivating the need for

2



Prob Speed PlateNo Make Location Time 
0.4 130 X-123 Honda L1 11:45 

0.7 120 Y-245 Toyota L1 11:50 

0.3 80 Y-245 Toyota L2 11:35 

0.4 90 W-541 Mazda L3 12:10 

0.6 110 W-541 Mazda L4 12:25 

1.0 105 L-105 Nissan L4 12:15 

t1 
t2 
t3 
t4 
t5 
t6 

Readings 

(a) (b) 

SELECT PlateNo, Make, Time 
FROM Readings 
WHERE Time BETWEEN ’11:30’ AND 
’12:30’ 
ORDER BY Speed DESC 

LIMIT k 

Figure 1.1: (a) A relation with tuple uncertainty (b) Example ranking query

supporting ranking queries under tuple-level uncertainty (Section 1.1), and attribute-

level uncertainty (Section 1.2). We then list the challenges raised by the integration

of ranking and uncertainty models in Section 1.3. We summarize our contributions

and present the outline of this dissertation in Section 1.4.

1.1 Tuple Level Uncertainty

We use the following example to illustrate the challenges involved in formulating and

computing ranking queries under tuple level uncertainty:

Example 1 In a traffic-monitoring system, radars detect cars’ speeds automatically,

while car identification, e.g., by plate number, is performed by a human operator, or

OCR of plate number images. In this system, multiple sources contribute to data un-

certainty, e.g., high voltage lines that interfere with radars affecting their precision,

close by cars that cannot be distinguished, or plate number images that are not clear

enough to identify the car precisely. Figure 1.1(a) is a snapshot of speed Readings

relation in the last hour. The special attribute “Prob” in each tuple indicates the

probability that the whole tuple gives correct information. This probability can be ob-

tained from various sources. For example, history of previous readings might indicate

3



that 70% of the readings obtained from radars close to high voltage lines are actually

correct. Hence, the readings of a radar unit that is close to high voltage lines can

be assumed to be correct with probability 0.7. Other sources, e.g., clearness of plate

number images, can be additionally incorporated to better quantify tuple’s uncertainty.

Figure 1.1(b) shows an example ranking query to be evaluated on the Readings

relation in Example 1. The given query is a Top-k Selection Query, in which scores

are computed for base tuples, and the k query results with the highest scores are

reported. The query requests the top-k speeding cars in one hour interval, which can

be used, e.g., in an accident investigation scenario.

Although tuple scores (the Speed values) are given as deterministic values, the

tuples themselves are uncertain. Both tuples’ probabilities and scores need to be

factored in our interpretation of this query. This effectively introduces two interacting

ranking dimensions that interplay to decide meaningful query answers. For example, it

is not meaningful to report a top-scored tuple with insignificant probability. Moreover,

combining scores and probabilities into one measure, using some aggregation function,

may eliminate uncertainty and lose valuable information that can be used to get more

meaningful answers conforming with probabilistic query models (we elaborate on this

point in Section 2.2).

1.2 Attribute Level Uncertainty

Uncertainty in attribute values induces uncertain scores when computing ranking

queries. In contrast to conventional ranking settings, where a total order on query

results is induced by the given scoring function, score uncertainty induces a partial

order on the underlying tuples, where multiple rankings are valid (we formally define

partial orders in Section 3.2).

To illustrate, consider Figure 1.2 which shows a snapshot of actual search results

reported by apartments.com for a simple search for available apartments to rent. The

shown search results include several uncertain pieces of information. For example,

4



Figure 1.2: Uncertain data in search results

some apartment listings do not explicitly specify the deposit amount. Other listings

mention apartment rent and area as ranges rather than single values.

We illustrate the challenges involved in ranking with uncertain scores using the

following simple example of the previous apartment search scenario.

Example 2 Assume an apartment database. Figure 1.3(a) gives a snapshot of the

results of some query posed against such database. Assume that we are interested

in ranking query results using a function that scores apartment records based on rent

(the cheaper the apartment, the higher the score). Since the rent of apartment a2 is

specified as a range, and the rent of apartment a4 is unknown, the scoring function

assigns a range of possible scores to a2, while the full score range [0− 10] is assigned

to a4.

Figure 1.3(b) depicts a diagram for the partial order induced by apartment scores.

Disconnected nodes in the diagram indicate the incomparability of their corresponding

records. Due to the intersection of score ranges, a4 is incomparable to all other records,

and a2 is incomparable to a3.
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4$1200a5
[0-10]negotiablea4

7$800a3
[5-8][$650-$1100]a2
9$600a1

a2

a4

a3

a1

<a1,a4,a3,a2,a5>

<a1,a2,a3,a4,a5>

<a1,a2,a4,a3,a5>

<a1,a3,a2,a4,a5>

<a1,a3,a4,a2,a5>

<a4,a1,a2,a3,a5>

<a4,a1,a3,a2,a5>

<a1,a3,a2,a5,a4>

<a1,a2,a3,a5,a4>

<a1,a4,a2,a3,a5>

(a)

(b) (c)

Linear ExtensionsScoreRentAptID

a5

Figure 1.3: Partial order for tuples with uncertain scores

A simple approach to compute a ranking based on the above partial order is

to reduce it to a total order by replacing score ranges with their expected values.

However, ranking based on expected values can result in unreliable ranking, as we

show in Section 3.2. Moreover, expected values are known to be sensitive to the

existence of outliers.

Another possible ranking query on partial orders is finding the skyline (i.e., the

non-dominated objects [16]). An object is non-dominated if, in the partial order

diagram, the object’s node has no incoming edges. In Example 2, the skyline objects

are {a1, a4}. The number of skyline objects can vary from a small number (e.g.,

Example 2) to the size of the whole database. Furthermore, skyline objects may

not be equally good and, similarly, dominated objects may not be equally bad. For

example in Figure 1.3(b), a4 dominates no objects, while a1 dominates all objects

except a4. However, both a1 and a4 are skyline objects. This shows that there can be

a considerable difference in the dominance power of skyline objects. A user may want

to compare objects’ relative orders in different data exploration scenarios. Current

proposals [13, 69] have demonstrated that there is no unique way to distinguish or

6



rank the skyline objects.

A different approach to rank the objects involved in a partial order is inspecting the

space of possible rankings that conform to the relative order of objects. These rankings

(or permutations) are called the linear extensions of the partial order. Figure 1.3(c)

shows all linear extensions of the partial order in Figure 1.3(b). Inspecting the space

of linear extensions allows ranking the objects in a way consistent with the partial

order. For example, a1 may be preferred to a4 since a1 appears at rank 1 in 8 out

of 10 linear extensions, even though both a1 and a4 are skyline objects. A crucial

challenge for such approach is that the space of linear extensions grows exponentially

in the number of objects [11].

Furthermore, in many scenarios uncertainty is quantified probabilistically. For

example, a moving object’s location can be described using a probability distribution

defined on some region based on location history [15]. Similarly, a missing attribute

can be filled in with a probability distribution of multiple possible imputations [74,

75]. Augmenting uncertain scores with such probabilistic quantifications generates

a (possibly non-uniform) probability distribution of linear extensions that cannot be

captured using a standard partial order or dominance relationship.

1.3 Challenges

There are multiple challenges associated with incorporating data uncertainty in the

semantics and processing techniques of top-k queries. We summarize such challenges

as follows:

• Query Semantics. Proper semantics of top-k queries on uncertain data need

to integrate the semantics of querying uncertain data with the conventional

semantics of top-k queries. Different possible query semantics arise from this

integration. For example, conventional top-k query semantics assume that each

tuple has a single score and a distinct rank (by resolving ties using a determin-

istic tie breaker). However, under uncertainty, query semantics allowing for a
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range of possible scores per tuple, and hence a set of possible ranks per tuple,

need to be adopted. This is a clear departure from the conventional semantics of

top-k queries, and is not also captured by current query semantics in uncertain

databases.

• Ranking Models. Most current ranking models assume that computed tuple

scores induce a total order on query results. Such total order model can be

insufficient to capture uncertainty in the underlying data, and its impact on

the computed ranking of query results. While partial order models can capture

uncertainty in the relative order of tuples, incorporating probabilistic ranking

quantifications in such models requires extending the definition of a partial

order. We thus need to construct probabilistic ranking models different from

the currently adopted models.

• Query Processing. While minimizing the number of accessed tuples is central

to most conventional ranking techniques, uncertainty adds further processing

complexity making existing methods inapplicable. Integrating ranking and un-

certainty models yields a probability distribution over a huge space of possible

rankings that is exponential in the database size. Hence, we need efficient algo-

rithms to process such space in order to compute query answers. Under these set-

tings, integrating tuple retrieval, ranking, and uncertainty management, within

the same framework, is essential for efficient processing.

1.4 Contributions and Dissertation Outline

We present a summary of our contributions, and give the organization of the remainder

of this dissertation.
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1.4.1 Semantics of Top-k Queries on Uncertain Data

This dissertation presents the first proposed semantics of top-k queries on uncertain

data. Our key contributions are the following:

• We study the impact of tuple level uncertainty on the semantics and formulations

of ranking queries (Section 3.1).

• We introduce a novel probabilistic ranking model, based on partial orders, to

represent the space of tuple orderings originating from attribute level uncertainty

(Section 3.2).

• We formulate the problem of ranking uncertain data by introducing new se-

mantics of top-k queries that can be adopted in different application scenarios

(Section 3.4).

1.4.2 Top-k Selection Algorithms

We give novel query evaluation techniques to compute top-k query answers under

both tuple level and attribute level uncertainty models.

For tuple level uncertainty model, our key contributions are the following:

• We introduce a processing framework that allows for early query termination by

integrating tuple retrieval, uncertainty management, and ranking in a pipelined

fashion (Section 4.1).

• We define top-k query evaluation as a space search problem. We introduce

principled space navigation algorithms, with performance guarantees, to lazily

and partially materialize the answer space while searching for top ranked query

answers (Sections 4.2).

For attribute level uncertainty model, our key contributions are the following:

9



• We introduce a space pruning algorithm to cut down the answer space, allowing

efficient query evaluation to be conducted subsequently (Sections 5.2).

• We give branch-and-bound search algorithms to compute exact query answers

based on A∗ search. The search algorithms explore the space of possible answers,

and early-prune search paths that do not lead to query answers (Section 5.5.1).

• We propose novel sampling techniques based on a Markov Chain Monte-Carlo

(MCMC) method to compute approximate query answers (Section 5.5.2).

• We study the problem of optimal rank aggregation in partial orders induced

by uncertain scores under both the Spearman footrule and Kendall tau distance

metrics (Section 5.6):

– We give a polynomial time algorithm to solve the problem under Spearman

footrule distance (Section 5.6.1).

– We identify classes of partial orders in which computing the optimal rank

aggregation under Kendall tau distance has polynomial time cost. We

give the corresponding query evaluation algorithms, and provide a detailed

complexity analysis (Section 5.6.2).

1.4.3 Top-k Join Algorithms

We build on our techniques for computing top-k queries under attribute level un-

certainty to support top-k join queries on uncertain data. In top-k join (rank join)

queries, scores are computed for join results, rather than base tuples, and the top-k

join results are reported. Our key contributions are summarized as follows:

• We formulate the problem of rank join under uncertainty, and give new query

definitions that can be adopted in various application scenarios (Section 6.1).

• We extend rank join methods to handle uncertain scores, and provide a pipelined

query operator implementation of uncertainty-aware rank join algorithm. The

implementation can be integrated into relational query plans (Section 6.2).
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• We present a new infrastructure for probabilistic rank join based on Monte-

Carlo simulation. The infrastructure handles dependencies among the scores of

join results using a novel join-aware sampling method, and incrementally reports

ranked results under multiple probabilistic ranking semantics (Section 6.3).

1.4.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 gives an overview

of related works from the literature of rank-aware query processing and probabilistic

data management. Chapter 3 describes our adopted uncertainty models, and gives for-

mal definitions for the problems we study in this dissertation. Chapter 4 presents our

proposed processing techniques for top-k queries under tuple level uncertainty. Chap-

ter 5 presents our proposed processing techniques for top-k queries under attribute

level uncertainty. Chapter 6 describes our proposal to formulate and compute rank

join queries under score uncertainty, where we also present the details of MashRank, a

research prototype that applies our techniques in data mashup scenarios on the Web.

Finally, Chapter 7 gives our conclusions, discusses the limitations of our proposal,

and lists a number of directions for future work.
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Chapter 2

Background and Related Work

In this chapter, we review related work from the literature of top-k processing (Sec-

tion 2.1), and probabilistic data management (Section 2.2). We also give background

on the technical tools we make use of in our methods, namely Monte-Carlo method

and the theory of Markov chains (Section 2.3). We finally describe a set of recent

proposals for supporting ranking queries on uncertain data (Section 2.4).

2.1 Top-k Processing

Formulating and processing top-k queries have been addressed from different perspec-

tives in the current literature. We have conducted an extensive literature survey on

this topic in [36].

A key component in any top-k processing technique is the scoring (ranking) func-

tion. The properties of the scoring function largely influence the design of top-k

processing techniques. One important property is the ability to determine upper-

bounds on scores. This property allows early pruning of certain query results with-

out exactly knowing their scores. A monotone scoring function facilitates upper-

bound computation. A function F , defined on predicates p1, . . . , pn, is monotone if

F (p1, . . . , pn) ≤ F (ṕ1, . . . , ṕn) whenever pi ≤ ṕi for every i. Most of the current top-k
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processing techniques assume monotone ranking functions since they fit in many prac-

tical scenarios, and have appealing properties allowing for efficient top-k processing.

In the following, we describe the ranking query models adopted by current pro-

posals. We discuss two different models: (1) top-k selection, and (2) top-k join.

Top-k Selection. In this model, scores are attached to base tuples, and the query

reports the k tuples with the highest scores, similar to the query in Figure 1.1 (b).

Scores may not be readily available since they could be the outcome of a user-defined

scoring function that aggregates information coming from different tuple attributes.

Consider a relation R, where each tuple in R is associated with some score that gives

it a rank within R. The score of a tuple t ∈ R is given by user-defined scoring function

F (t) defined on a set of scoring predicates {p1(t), . . . , pm(t)} in R. For example, a

scoring predicate can simply be a column in R. A top-k selection query produces

the top-k ranked tuples in R. A possible SQL-like formulation for expressing a top-k

selection query is the following:

SELECT *

FROM R

WHERE selection condition

ORDER BY F (p1(t), . . . , pm(t))

STOP AFTER k

The NRA algorithm [24] is one example of top-k techniques that adopt the top-k

selection model. The input to the NRA algorithm is a set of sorted lists, each ranks

the “same” set of objects based on one scoring predicate. The output is a ranked

list of these objects ordered on the aggregate input scores. The NRA algorithm finds

the top-k answers by adopting sequential access retrieval from each list. The NRA

algorithm may not report the exact object scores, as it produces the top-k answers

using bounds computed on their exact scores. The score lower-bound of some object

t is obtained by applying the score aggregation function on t’s known scores and

the minimum possible values of t’s unknown scores. On the other hand, the score

upper-bound of t is obtained by applying the score aggregation function on t’s known

scores and the maximum possible values of t’s unknown scores, which are the same
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as the last seen scores in the corresponding ranked lists. This allows the algorithm to

report a top-k object even if its score is not precisely known. Specifically, if the score

lower-bound of an object t is not below the score upper-bounds of all other objects

(including unseen objects), then t can be safely reported as the next top-k object.

Top-k Join. In this model, scores are assumed to be attached to join results rather

than base tuples. A top-k join query joins a set of relations based on a given join

condition, assigns scores to join results based on some scoring function, and reports

the top-k join results. Consider a set of relations {R1, . . . , Rm}. Each tuple in Ri

is associated with some score that gives it a rank within Ri . The top-k join query

joins R1 to Rm and produces the results ranked on a total score. The total score is

computed according to a user-defined function F that combines the individual scores.

A possible SQL-like formulation of a top-k join query is the following:

SELECT *

FROM R1, R2, . . . , Rm

WHERE join condition(R1, R2, . . . , Rm)

ORDER BY F (R1.score, R2.score, . . . , Rm.score)

STOP AFTER k

Many top-k join techniques address the interaction between computing the join re-

sults and producing the top-k answers. One example is the Rank-Join algorithm [35],

which efficiently integrates the joining and ranking tasks. Similar to the NRA algo-

rithm, the Rank-Join algorithm adopts no random access, however, the main differ-

ence is that the Rank-Join algorithm maintains the scores of the completely seen join

combinations only, not partially seen objects in each list as in the NRA algorithm.

The Rank-Join algorithm scans input lists (the joined relations) in the order of their

scoring predicates. Join results are discovered incrementally as the algorithm moves

down the ranked input relations. For each join result j, the algorithm computes a

score for j using a score aggregation function F . The algorithm maintains a threshold

T bounding the scores of join results that are not discovered yet. The top-k join

results are obtained when the minimum score of the k join results with the maximum

F (·) values is not below T .
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Current proposals in top-k processing provide a good basis for ranking probabilistic

data in general. Specifically, these techniques reduce the cost of top-k queries by

exploiting two main optimizations: (1) most database tuples are not part of the query

answer, and hence many tuple retrieval operations can be avoided; and (2) the scores

of retrieved tuples can be bounded, i.e., not fully computed, while still being able

to rank query answers. Our problem formulation, described in Section 3.4, is based

on integrating tuples’ scores and probabilities as two interacting ranking dimensions.

Current top-k processing proposals assume deterministic data, and hence they are

not explicitly designed to treat probability as an additional ranking dimension. We

extend the optimization opportunities of top-k queries in the context of probabilistic

databases, and analyze the implication of incorporating probability as an additional

ranking dimension.

2.2 Managing Probabilistic Data

Uncertain and incomplete data are common in real life. Managing such data is cur-

rently receiving increasing attention in many application domains, e.g., sensor net-

works, data cleaning, data integration, information extraction, and location-based

services. These domains exhibit uncertainty in their underlying data, coupled with

increasing demand from users to efficiently derive high-quality answers for the queries

posed on such data. We next discuss multiple current proposals for modeling and

querying uncertain data.

2.2.1 Data Models

We discuss two important constructs for building uncertain data models. The first

construct is possible worlds semantics, where data uncertainty is captured by viewing

the database as a set of possible instances that correspond to the different possible

instantiations of the uncertain data items. The second construct is data dependencies,

where the dependencies among data items are represented by some dependency model.
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Figure 2.1: Probabilistic database (a) Probabilistic relation and generation rules
(b) Possible worlds space

We then describe several proposed implementations of uncertain data models.

Possible Worlds Semantics

Many proposed uncertainty models, e.g., [38, 4, 56], adopt possible worlds semantics,

where a probabilistic database D is viewed as a set of possible instances (worlds)

{PW 1, . . . , PW n}. The possible worlds space represents an enumeration of all pos-

sible views of the database resulting from the uncertainty or incompleteness in the

underlying data.

Possible worlds probabilities are determined based on the probabilistic dependen-

cies among tuples, e.g., mutual exclusion of tuples that map to the same real world

entity [56]. We call such dependencies generation rules, since they control how the

possible worlds space is generated. Such rules could naturally arise with unclean data

[5], or could be enforced to satisfy application requirements or reflect domain seman-

tics [73, 56, 9]. Moreover, the relational processing of probabilistic tuples induces

dependencies among intermediate query results, even when base tuples are indepen-

dent [20]. We elaborate on this point in Section 2.2.2.

To illustrate, Figure 2.1(a) shows the Readings relation, from Example 1 in

Chapter 1, augmented with generation rules that enforce the following constraint:
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“based on radar locations, the same car cannot be detected at two different loca-

tions within 1 hour interval.” Figure 2.1(b) shows the possible worlds, and their

probabilities. Each world can be seen as a joint event of the existence of world’s

tuples, and the absence of all other database tuples. The probability of this joint

event is determined by tuple probabilities, and the generation rules that apply to

these tuples. The given xor rules in Figure 2.1(a) mean that, in any possible

world, the existence of t2 implies the absence of t3, and, similarly, the existence

of t4 implies the absence of t5. All other tuples are independent. Consequently,

Pr(PW 1) = Pr(t1 ∧ t2 ∧ t6 ∧ t4 ∧ ¬t3 ∧ ¬t5) = 0.4 × 0.7 × 1.0 × 0.4 = 0.112. The

probabilities of other worlds are computed similarly. Any possible world, other than

PW 1 . . . PW 8, has zero probability based on tuple probabilities and generation rules.

Data Dependencies

Dependency models give a foundation for capturing and dealing with noise and un-

certainty of real-world data. A Bayesian network is an example probabilistic model

that compactly encodes complex dependencies among random variables. The key in-

sights exploited in Bayesian networks are the locality of dependence and conditional

independence, i.e., a variable is directly dependent on only a few others (called par-

ent variables), and conditionally independent of other variables given its parents. A

Bayesian network captures this insight by representing the variables joint distribu-

tion as a directed acyclic graph whose nodes are the variables and whose edges are

the direct dependencies. Each node is associated with a conditional probability table

specifying the node’s probability distribution given each combination of the values of

its parents.

One limitation of Bayesian networks is that they can only encode dependencies

among a fixed set of variables. The concept of an entity that encodes the properties of

a set of similar instances is missing in such model. This makes the model incapable of

reasoning about entities with dependent properties, or represent domains where the set

of entities and their relations are not fixed in advance. Probabilistic Relational Models

(PRMs) [26, 10] augment probabilistic models with relational constructs to model
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domains as entities, properties, and relations among them. Hence, the uncertainty of

the properties of an entity and its dependence on other properties in the same entity

or other entities can be captured.

The basic components in a PRM are entities and relations. Entities define a

set of disjoint classes X1, . . . , Xn. Each class has a set of attributes A(Xi). Each

attribute Aj ∈ A(Xi) has some fixed domain of values. Relations in a PRM encode

dependencies among entities. The PRM induces a probability distribution whose

random variables are the entity attributes. The PRM defines for each attribute a

set of parents, and a local probabilistic model that specifies the dependence on these

parents. The PRM defines the dependency model at the class level, allowing it to be

used for any instance in the class. Further, the PRM explicitly uses the relational

structure of the model, in that it allows the probabilistic model of an entity attribute

to depend on the attributes of related entities.

The semantics of the PRM is that given a dependency structure, we have a set of

random variables of interest: the set of entity attributes in the structure. The PRM

specifies a probability distribution over the possible assignments of values to these

random variables, such that each possible value assignment is an instance whose

probability is computed by multiplying the conditional probability distributions of

the attributes under consideration. We give an example highlighting the details of

the PRM when discussing model implementations later in this section.

Model Implementations

One of the classical models that adopt possible worlds semantics to capture uncer-

tainty and incompleteness in attribute values is the c-tables model [38]. c-tables are

relational tables whose attributes are represented using variables, and each tuple is

associated with a Boolean condition on the attribute variables. A tuple belongs to

the database if and only if its associated condition is satisfied. Figure 2.2 gives a

simple example of a c-table, where some attributes are represented as variables, and

each tuple is associated with a Boolean condition, which can be empty. Assuming

the integer domain for all attribute variables, Figure 2.2 shows some of the possible
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worlds that can be enumerated based on possible assignment of attribute values. The

possible worlds space has an infinite size since the variables’ domains are infinite. By

restricting the domains of the variables, e.g., variables only take Boolean values, the

number of possible worlds becomes finite.

The conditions associated with tuples in the c-tables capture the uncertainty on

the tuple level, while attribute variables capture the uncertainty on the attribute

level. The c-tables model assumes that these two types of uncertainties are somehow

related, i.e., a tuple belongs to the database if the assignment of attribute variables

grounds tuple’s condition to true. Many of the proposed models afterwards, e.g.,

[4, 56, 20, 14, 27], treat tuples’ uncertainty and attributes’ uncertainty separately by

introducing two basic types of uncertainty quantified with probability values. The

first type, usually referred to as “membership uncertainty” [20, 56], treats tuples as

probabilistic events capturing the belief that they belong to the database. Specifically,

a tuple t is associated with an event t.e, such that t exists in the database with

probability Pr(t.e), and does not exist in the database with probability Pr(¬t.e) =

1 − Pr(t.e). Possible worlds are thus viewed as conjunctions of tuple events. The

probabilities of tuples’ events originate from different sources, e.g., reliability of data

source in data integration environments [32], or similarity measures in approximate

matching [20]. The second uncertainty type, referred to as “value uncertainty” [14,

56, 49] represents attributes as probability distributions on continuous or discrete

domains of possible values, e.g., modeling readings of sensing devices, or data entry

errors in dirty databases.

The proposal in [8] addressed efficient materialization of the possible worlds space

based on the concept of world-set decompositions (WSDs). The WSDs encode the
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world-set relation whose tuples are the possible worlds of a relation with value uncer-

tainty. Each tuple in the world-set relation is assumed to be padded with a special

symbol ⊥ such that all tuples (worlds) have the same arity. The world-set relation

is impossible to maintain explicitly even for probabilistic relations with reasonable

size, due to the explosion of the possible worlds space. This problem is addressed by

representing the world-set relation as a set of relations (components) such that the

Cartesian product of the components gives the world-set relation. Each component

in the WSDs enumerates possible values of one attribute in one tuple in the original

relation. WSDs are based on the independence among attribute values. That is, each

set of attribute values in different tuples involving dependencies is separated as a sin-

gle component in the WSDs. For example, for a relation with value uncertainty in the

SSN attribute, in order to enforce the constraint that the SSN value must be unique,

a component enumerating only the unique combinations of SSN values in different

tuples is maintained in the WSDs. The WSDs are stored in a relational schema that
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maps attribute values in each component to tuples in the original relation.

Figure 2.3 depicts the previous example for a relation that holds survey data with

value uncertainty. The world-set relation has a total of 32 records corresponding to all

possible combinations of attribute values. Enforcing the constraint that SSN is unique

reduces the number of possible worlds to 24, which are represented using WSDs by

grouping dependent SSN values in one component.

The above concepts were the bases of several research projects that address model-

ing uncertain data. The TRIO system [73, 56, 9] introduced working models to capture

uncertainty at different levels by relating uncertainty with lineage and leveraging ex-

isting DBMSs capabilities for uncertain data management. Lineage is a mechanism

to track query results to their source tuples, allowing for encoding tuple dependencies

and computing the probabilities of query answers. The ORION project [14] deals

with constantly evolving data in the form of continuous intervals, and presents query

processing and indexing techniques for managing uncertain data in such representa-

tion. The CONQUER project [5, 27] introduced query rewriting algorithms to extract

clean and consistent answers from unclean databases under possible worlds semantics,

and proposed methods to derive probabilistic quantifications of data uncertainty. The

MystiQ project [20, 54] analyzes the complexity of structurally rich queries (e.g., joins,

subqueries, aggregate and group-by) in uncertain databases. It was shown that, in

general, exact evaluation of many query types in uncertain databases is intractable.

However, there exist some query plans under which the evaluation of some query in-

stances can be done in polynomial time. The MayBMS project [7, 8] proposes a query

language and algebra for processing uncertain data, coupled with a space-efficient ma-

terialization of the possible worlds space supporting efficient query evaluation.

Graphical models are the primary representations of probabilistic dependencies.

Graphical models compactly encode the joint distribution of a set of variables using

a graph. The graph nodes are the variables, while the graph edges encode direct

variables dependencies. Disconnected variables are conditionally independent given

a combination of some other variables. These conditional independencies represent
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the full joint distribution as a product of conditional probability distributions each

involving a smaller subset of variables.

The PRM graphical model in [10, 26] focuses on capturing the dependencies among

attributes in the underlying relations, which can be used for several tasks such as

filling in missing attribute values, computing high-level data summaries, and detecting

different anomalies in the underlying data. The relational schema consists of a set of

tables where each table may contain descriptive (uncertain) attributes whose values

are drawn from a finite domain of possible values. The probabilistic schema models

the conditional dependence of descriptive attributes on other attribute values.

We illustrate the previous model using an example from [26] depicted in Figure 2.4.

The example describes the inheritance of a gene that determines person’s blood type.

Each person has two copies of the chromosome containing this gene, one inherited from

mother, and one inherited from father. There is also a possibly contaminated test that

attempts to recognize the person’s blood type. The relational schema contains two re-

lations Person and Blood-Test. Conventional attributes are shown in regular font and
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probabilistic attributes are shown in italic. Dotted lines indicate foreign keys, while

solid lines indicate attribute dependencies. Consider the attribute BloodTest.Result.

Since the result of a blood test depends on whether it was contaminated, it has

BloodTest.Contaminated as a parent. The result also depends on the genetic mate-

rial of the person tested, which is encoded in the Person.BloodType attribute, which

in turn depends on Person.MChromosome and Person.PChromosome. Given a

set of parents for each attribute, we can define a conditional probability distribution

for the attribute values given the possible parents’ values. The conditional distribu-

tions are learned from training data in the form of different complete instances of

the database. Specifically, the counts of value combinations for an attribute and its

parents can be used to estimate the conditional probability distributions.

Factorization is a widely-adopted technique to decompose a complex joint distri-

bution into a product of set of independent factors. A graphical dependency model

based on factor graphs was proposed in [58]. The proposed model assumes Boolean

variables associated with database tuples to capture their uncertain existence in the

database. The modeled dependencies are defined over tuples rather than attributes.

These dependencies are represented as factors defined on the tuple random variables,

where each factor enumerates the possible assignments of tuples’ variables dependent

on a certain tuple t, as well as the conditional probability of t under each assignment.

The factor tables capture different kinds of tuple dependencies such as mutual exclu-

siveness, implication, and mutual co-existence. Each complete assignment of the tuple

random variables gives one possible world (instance) of the database. The probability

of an instance is computed by multiplying all factors defined on the tuple random

variables in the database.

Factor graphs have been also adopted by the uncertainty model given in [72] to

capture the dependencies among random variables corresponding to database objects

such as tuples and attributes. In this model, the underlying relational database

always represents a single world, and an external factor graph encodes a distribution

over possible worlds. The given techniques combine the use of factor graphs with

the MCMC method (discussed in Section 2.3) in order to provide scalable query
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Figure 2.5: Markov Logic Network

evaluation. The MCMC method generates samples from the possible worlds space.

The main idea is to evaluate the given query on deltas between consecutive samples

generated by the MCMC method, rather than evaluate the query from scratch on each

sample. The probability of a tuple t to be in the query answer is then approximated

as the relative frequency of samples containing t.

Markov Logic Network (MLN) [22, 55] is a related graphical dependency model

that is based on integrating first order logic and Markov networks. Uncertainty in

MLN is modeled as a set of first order logic formulas, each associated with a weight.

Each formula expresses a constraint on the underlying data, while formula’s weight

expresses the strength of that constraint. Assigning a weight of ∞ to a formula F

means that F is a hard constraint that should always hold, while assigning a finite

weight to F means that F is a soft constraint that may be violated. We illustrate

the previous model using Figure 2.5, which shows a simple example of Markov logic

defined using two weighted first order formulas. The first formula models the uncer-

tainty of the existence of data entities (for example, this can capture tuple uncertainty

in an uncertain database), while the second formula models the potential exclusive-

ness of entities’ existence (for example, this can capture generation rules discussed in

Section 2.2.1).
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Let ‘grounding’ of a predicate p mean the assignment of variables in p to values

from the corresponding domains. The grounding of a formula F means the grounding

of all predicates involved in F . A Markov logic L can be represented graphically using

a grounded MLN created by assigning each possible grounding of a predicate in L to

a binary node, such that the value of that node is 1 if the ground predicate is true,

and 0 otherwise. An edge is created between two nodes if the corresponding ground

predicates appear together in at least one grounding of one formula in L. A possible

world is given by assigning truth values to each grounded predicate in the graph.

We illustrate the previous graphical representation using Figure 2.5, where we as-

sume the variables x and y range over a domain of three possible constants {t1, t2, t3}.
We further assume that only t1 and t2 are exclusive. Hence, we assign constant truth

values to all the ‘exclusive’ nodes in the MLN, while the remaining ‘exists’ nodes are

binary variables. Hence, the set of possible worlds contains 8 worlds created by taking

all possible truth assignments of the three ‘exists’ variables. Given a Markov logic,

where the weight of formula Fi is given by wi, the probability of a possible world X

is computed using the following log-linear model:

Pr(X) =
1

Z
· e

∑
Fi

wi · ni(X)

where ni(X) is the number of true groundings of Fi in X, and Z is a normalizing

constant computed as follows:

Z =
∑
X∈X

∏
Fi

e(wi·ni(X))

where X is the set of all possible worlds.

For example in Figure 2.5, let the world X = {exists(t1), exists(t2), exists(t3)}.
Then, Pr(X) = e3w1/(e3w1 + 3e(2w1+w2) + 3e(w1+w2) + ew2), where the denominator is

the normalizing constant Z. Hence, if we set w2 = ∞, we get Pr(X) = 0, since X

violates the hard exclusiveness constraint between t1 and t2 in X. If, alternatively,
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we set w2 to a finite value, the value of Pr(X) will be inversely proportional to w2,

since X violates a soft constraint in this case.

2.2.2 Query Processing

In possible worlds semantics, each possible world is effectively a deterministic

database, and hence query processing in individual worlds follows the operational

semantics of conventional query operators. The huge number of possible worlds hin-

ders instantiating and processing worlds explicitly. However, thinking in terms of

possible worlds allows defining proper query semantics.

In the following, we mean by a “probabilistic relation” a relation with uncertain

tuple membership. Let Q be a query to be executed over a probabilistic database D,

where Q(D) is the output of Q, and Q(PW i) is the output of Q restricted to PW i. In

possible worlds semantics, the probability of an output tuple tq ∈ Q(D) is computed

as the summation of the probabilities of the possible worlds where tq is reported as a

query answer, as given in the following equation:

Pr(tq.e) =
∑

PW i:tq∈Q(PW i)

Pr(PW i) (2.1)

We now discuss computing SPJ queries over probabilistic relations. The semantics

of SPJ operators are overloaded to handle probability computation. Let R and S be

two probabilistic relations containing the tuples r and s, respectively. Let σp, πp, and

./p be the probabilistic selection, projection, and join operators, respectively. The

tuples produced by these operators are associated with the following events:

(σpc (r)).e =

{
r.e if c(r) = true

undefined if c(r) = false
; where c(r) is the selection condition (2.2)

(πp{A1...An}(r)).e =
∨

ŕ∈R:π{A1...An}(ŕ)=π{A1...An}(r)

ŕ.e (2.3)
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(r ./pc(r,s) s).e =

{
r.e ∧ s.e if c(r, s) = true

undefined if c(r, s) = false
; where c(r, s) is the join condition

(2.4)

The probability of each query output tuple tq is computed as Pr(tq.e), which is

equivalent to the probability computed under possible worlds semantics, as given in

Equation 2.1 [20]. Such computation is done using the formulation of tq.e (as given

above), and the dependencies that bind the tuple events involved in tq.e.

Computing the probabilities of output tuples in SPJ queries is generally feasible

under bag semantics. However, under set semantics, probability computation is hard

in some cases even if the base tuple events are independent [20]. In particular, com-

puting the probabilities of the output tuples of the πp operator is as hard as computing

the satisfiability ratio of a DNF formula, which is #P-Complete [70].

Relational query processing on graphical dependency models is based on the con-

cepts of probabilistic inference. For example, the model in [58] uses a factored repre-

sentation of tuples dependencies to compute the probabilities of output tuples. The

computational cost is reduced using variable elimination and factor decomposability,

however, the problem remains generally intractable. The query evaluation procedure

in [58] encodes dependencies among (intermediate) query output tuples by introduc-

ing new factors. The selection operator applied to a tuple t, satisfying the selection

predicate, gives a new tuple r dependent on t through a new factor, where the exis-

tence event of r is true if and only if the existence event of t is true. Similarly, the join

operator gives a new tuple r dependent on the joined tuples t1 and t2 through a new

factor, where the existence event of r is true if and only if both the existence events

of t1 and t2 are true. The projection operator is defined similarly as disjunction of

the existence events of the involved tuples.

Probabilistic graphical models can be also used to support queries on tuple fre-

quencies [29]. This frequency information can be used to efficiently answer questions

about the expected number of tuples in query answer, which can be used by the query

27



optimizer to choose the appropriate query plan, or it can be used to approximate ag-

gregate query answers. In the following example, we illustrate the approach of [29]

to use tuple frequencies for selectivity estimation. Consider two tables R and S such

that R has a foreign key, R.F , that points to S.K, which is the key of S. The joint

probability of R and S is defined using a sampling process that randomly samples a

tuple r from R and independently samples a tuple s from S. The two tuples may or

may not join with each other. A join indicator variable is used to model this event.

This variable, J , is binary valued; it is true when r.F = s.K and false otherwise.

This sampling process induces a distribution Pr(J,A,B), where A = {A1, . . . , An} is

the set of descriptive, i.e., uncertain, attributes in R, while B = {B1, . . . , Bm} is the

set of descriptive attributes in S. For any query Q over R and S with the predi-

cates R.A = a, S.B = b, R.F = S.K, the probability that Q is satisfied is found by

computing Pr(J = true,A = a,B = b).

Most of the discussed uncertainty models can be extended to allow computing

preference scores based on some user-defined scoring functions. However, the inter-

pretation of tuple scores in this context is challenging due to their interaction with

probabilities. Probabilistic query models need thus to be extended with score-based

ranking semantics. Further, from query processing perspective, current proposals

mainly assume Boolean queries, and so they are insufficient to handle probabilistic

top-k queries. For example, current probabilistic query processing techniques are

primarily tuple-based, i.e., they compute probabilities for individual tuples in query

output, while, as we show in Section 3.4, probabilistic top-k queries can be after

computing the probabilities of top-k tuple vectors/sets.

2.3 Monte-Carlo Integration and Markov Chains

In this section, we give background on the method of Monte-Carlo integration and the

theory of Markov chains. These technical tools are used in our proposed solutions for

formulating a probability space of tuple orderings under attribute-uncertainty model,

and designing sampling-based ranking techniques.
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Monte-Carlo Integration. The method of Monte-Carlo integration [52] computes

accurate estimate of the integral
∫

Γ́
f(x)dx, where Γ́ is an arbitrary volume, by sam-

pling from another volume Γ ⊇ Γ́ in which uniform sampling and volume computation

are easy. The volume Γ́ is estimated as the proportion of samples from Γ that are

inside Γ́ multiplied by the volume of Γ. The average f(x) over such samples is used

to compute the integral. Specifically, let v be the volume of Γ, s be the total number

of samples, and x1 . . . xm be the samples that are inside Γ́. Then, the value of the

integral can be estimated as follows:

∫
Γ́

f(x)dx ≈ m

s
· v · 1

m

m∑
i=1

f(xi) (2.5)

In general, let Γ be a sample space in which uniform independent sampling can

be done. Assume that we would like to estimate ρ, the volume of some subspace

embedded in Γ relative to the volume of Γ. Given two real numbers ε ∈ (0, 1] and

δ ∈ (0, 1], the Monte-Carlo method computes an estimate of ρ, denoted ρ̂, such that

Pr ( |ρ− ρ̂| ≤ ε · ρ) ≥ (1− δ), provided that the number of drawn samples from

Γ is in Ω( 1
ρ·ε2 ln(1

δ
)) ([50], Theorem 11.1).

Several variations of Monte-Carlo methods have been used to solve different

database problems. The closest work to our study is the proposal given in [54],

where the objective is to find the top-k probable records in the answer of conjunctive

queries that do not have score-based ranking aspect, which is the main focus of this

dissertation. Hence, the data model, problem definition, and processing techniques

are quite different in both works. For example, the proposed Monte-Carlo method

in [54] is mainly used to estimate the satisfiability ratios of DNF formulae correspond-

ing to the membership probabilities of individual records, while we study computing

the probabilities of possible tuple orderings.

Markov Chains. We give a brief description for the theory of Markov chains.

We refer the reader to [40, 43] for more detailed coverage of the subject. Let X be

a random variable, where Xt denotes the value of X at time t. Let S = {s1, . . . , sn}
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be the set of possible X values, denoted the state space of X. We say that X follows

a Markov process if the probability that X moves from the current state to a next

state depends only on its current state; X’s previous history contains no further

information. That is, ∀si, sj : Pr(Xt+1 = si|X0 = sm, . . . , Xt = sj) = Pr(Xt+1 =

si|Xt = sj). A Markov chain is a state sequence generated by a Markov process.

The transition probability between a pair of states si and sj, denoted Pr(si → sj), is

the probability that the process at state si moves to state sj in one step. A Markov

process of n states is usually described using a stochastic n × n matrix P , where

P [i, j] = Pr(si → sj) and
∑

j P [i, j] = 1.

A Markov chain may reach a stationary distribution π over its state space, where

the probability of being at a particular state is independent from the initial state of

the chain. A stationary distribution π satisfies π = Pπ. Any distribution satisfying

the detailed balance equation (Equ. 2.6) is a stationary distribution of the Markov

chain [43].

Pr(si → sj)π(si) = Pr(sj → si)π(sj) (2.6)

The conditions of reaching a unique stationary distribution are irreducibility (i.e., any

state is reachable from any other state), and aperiodicity (i.e., the chain does not cycle

between states in a deterministic number of steps).

Markov Chain Monte-Carlo (MCMC) Method. The concepts of Monte-Carlo

method and Markov chains are combined in the MCMC method [40] to simulate a

complex distribution using a Markovian sampling process, where each sample depends

only on the previous sample.

A standard MCMC algorithm is the Metropolis-Hastings (M-H) sampling algo-

rithm [31]. Suppose that we are interested in drawing samples from a target distri-

bution π(x). The (M-H) algorithm generates a sequence of random draws of sample

values that follow π(x) as follows:

1. Start from an initial sample x0.

2. Generate a candidate sample x1 from an arbitrary proposal distribution q(x1|x0).
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3. Accept the new sample x1 with probability

α = min(π(x1).q(x0|x1)
π(x0).q(x1|x0)

, 1).

4. If x1 is accepted, then set x0 = x1.

5. Repeat from step (2).

The (M-H) algorithm draws sample values biased by their probabilities under π. At

each step, a candidate sample x1 is generated based on the current sample x0. For

example, if samples are simply real values, x1 can be computed as x0 + ε, where

ε is a random positive/negative real value. The ratio α compares π(x1) and π(x0)

to decide on accepting x1. The main idea is that we always accept a new sample

that has a higher probability than the probability of the current sample according

to the target distribution. On the other hand, when the new sample has a smaller

probability than the probability of the current sample, the new sample is accepted

with some probability. As a result, values that are highly probable according to the

target distribution are more likely to appear in the generated sequence of samples.

The (M-H) algorithm satisfies the balance condition (Equation 2.6) with arbitrary

proposal distributions [31]. Hence, the algorithm converges to the target distribution

π. The (M-H) algorithm is typically used to compute distribution summaries (e.g.,

average) or estimate a function of interest on π.

2.4 Ranking Queries on Uncertain Data

The techniques we present in this dissertation are the first to address formulating and

computing score-based ranking queries in the presence of data uncertainty. Recently,

multiple other works that build on our proposed query semantics have been proposed.

In addition, other formulations of ranking queries on uncertain data have also been

identified. We discuss some of the recent proposals in this area.

Supporting ranking queries on uncertain data has been first proposed in our work

in [64, 65], while [76, 33, 17] proposed other query semantics and efficient processing
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algorithms. The proposal in [48] uses the notion of generating functions to construct

a unified ranking function that can be instantiated to multiple ranking functions

proposed in the current literature. The given algorithms use an and/xor tree model

(discussed in more detail in Section 3.1), where leaf nodes are tuple instances that can

be possibly exclusive. The uncertainty model in all these works assumes that tuples

have deterministic single-valued scores, and they are associated with membership

probabilities.

In [17], a number of plausible properties (borrowed from conventional ranking

queries) of adopted semantics for ranking queries on uncertain data are given:

• Exact-k: A top-k answer contains exactly k tuples.

• Containment: The top-(k + 1) answer contains the top-k answer.

• Unique ranking: Each tuple appears in a unique position in the top-k answer.

• Value invariance: Changing the scores of tuples without changing their relative

order should not alter the top-k answer.

• Stability: If tuple t is part of the top-k answer, then t should remain in the

top-k answer if its score is increased.

It was shown in [17] that proposed semantics for ranking queries do not satisfy all

of these properties together. The main reason is that the existence of dependencies

among tuples may introduce irregularities in the space of possible tuple orderings.

The proposed semantics in [17] is based on computing the expected rank of each tuple

in the space of possible worlds. While satisfying the previous properties, expected

ranks can be easily thrown off with the existence of outliers. For example, we may

not be able to report tuples with very high scores and probabilities, if the majority

of other tuples have low scores and/or probabilities. In addition, a ranking based on

expected ranks may not be consistent with the modeled dependencies. For example,

the top-2 tuples based on expected ranks may be exclusive tuples that do not appear
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together in any possible world. This is not the case with other query semantics that

do not rely on computing expected values.

In [33], computing probabilistic ranking queries with a given probability threshold

is addressed. Given a threshold τ , the objective is to report each tuple whose proba-

bility to appear in the top-k answer is at least τ . The given techniques are based on

dynamic programming formulation under tuple level uncertainty.

The uncertainty model we propose in [62] (discussed in Section 3.2) is the first to

study the impact of attribute level uncertainty on score-based ranking. The model is

based on assigning a score range to each tuple; a representation that fits many real

data sources particularly on the Web (cf. Section 1). In contrast to tuple uncertainty

models (e.g., [48, 33, 76]), our score uncertainty model enforces all tuples to belong to

every possible world, where the difference among worlds is the relative order of tuples,

which captures a new types of uncertainty in the context of score-based ranking.

Our proposal in [67] (discussed in Chapter 6) adopts the attribute level uncertainty

model for formulating uncertain rank join queries, where we study the integration

of rank join processing with probabilistic ranking. The methods proposed in [47]

assume a similar model, where generating functions are used to formulate and compute

ranking queries efficiently on continuous score distributions. We mainly address in [67]

the consequences of assuming such model in the case of joins.

Some recent works have addressed the problem of computing a consensus ranking

from a space of possible worlds. The algorithms given in [46] for computing a consen-

sus ranking return a consensus top-k answer, while the methods we propose in [63]

(discussed in Section 5.6) return a consensus full ranking. In addition, while [46]

gives an approximate algorithm for computing a consensus ranking under the Kendall

tau distance, we identify in [63] different classes of uncertainty models, where there

exist exact polynomial time algorithms for computing a consensus ranking under the

Kendall tau distance.

Impact of Data Uncertainty on Ranking Queries. The impact of tuple-level

and attribute-level uncertainty on ranking queries has been modeled and addressed
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by current proposals from different perspectives. In most proposals, the two uncer-

tainty types are handled in isolation by assuming that the underlying uncertainty

type is either tuple-level (e.g., [64, 33]) or attribute-level (e.g., [62]). An important

distinction among proposals that handle attribute-level uncertainty is their ability to

support discrete and/or continuous domains of the uncertain attributes. For discrete

uncertain attributes, a mapping can be constructed to model attribute-level uncer-

tainty as tuple-level uncertainty, and hence leverage the ranking techniques developed

for tuple-level uncertainty. We discuss this mapping in Section 3.1. Such mapping

is not possible (without loss in accuracy) when uncertain attributes have continuous

domains. Consequently, specialized processing techniques that handle uncertainty in

attributes with continuous domains have also been proposed [62, 63, 47].

The expressiveness of the underlying dependency model also impacts query eval-

uation. For example, simple models that assume restricted types of dependencies

(e.g., exclusiveness rules) usually allow for efficient evaluation techniques with poly-

nomial time complexity (e.g., [17, 33]). In Section 4.3.1, we discuss using dynamic

programming techniques for efficient evaluation of ranking queries under a simplistic

dependency model. On the other hand, more expressive models (e.g., a graphical

model that captures a complicated joint distribution) usually impose non-trivial com-

putational overhead (e.g., [58, 64]). The main reason is that computing the probability

of a query answer under such general models usually entails probabilistic inference; a

problem that is known to be generally intractable. We discuss using different depen-

dency models in the context of evaluating ranking queries in Chapter 3.
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Chapter 3

Query Semantics

The material of this chapter presents our proposed query semantics in [62, 63, 64, 65].

We start by describing the impact of tuple level (Section 3.1) and attribute level

(Section 3.2) uncertainty models on the semantics of ranking queries. We then give

the formal definition of our proposed query semantics (Section 3.4).

3.1 Ranking under Tuple Uncertainty

Under tuple level uncertainty, tuples are represented as probabilistic events, and the

database is modeled as a joint distribution defined on these events. Tuple events can

be dependent as we show in Section 2.2. Each tuple is assigned a determinstic score

given by a user-defined scoring function.

An intuitive and simple choice of ranking query semantics under the tuple uncer-

tainty model is to rank the tuples based on their expected scores. We show in the

next example that such a simple approach can result in unreliable ranking.

Example 3 Expected Scores under Tuple Uncertainty. Assume 2 tuples t1 and t2,

where score(t1) = 1000, score(t2) = 1, Pr(t1.e) = 0.01, and Pr(t2.e) = 1. Then, the

expected scores of t1 and t2 are 10 and 1, respectively. The ranking based on expected
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scores is thus 〈t1, t2〉. That is , t1 is ranked first even though Pr(t1.e) is very low.

Moreover, if score(t1) drops to 10, the ranking becomes 〈t2, t1〉. That is, the ranks of

t1 and t2 are reversed even though score(t1) > score(t2) in both cases.

The previous example shows that we may have two database instances with iden-

tical tuple probabilities and identical ranking based on tuple scores. Yet, the ranking

based on expected scores is different in the two instances. Another problem with ex-

pected scores is that dependencies among tuple events are not considered at all, which

means that we can obtain a tuple ranking that is against the modeled dependencies.

A third, and more fundamental, problem is that when computing expected scores, we

assume that the score of a tuple t equals score(t) with probability Pr(t.e), and equals

0 with probability Pr(¬t.e). This assumption is unjustified, since the non-existence

event of t should not be interpreted the same as having 0 score of t.

In order to study the impact of tuple uncertainty on the semantics and evaluation

of ranking queries, we assume a general tuple uncertainty model that allows for com-

puting the joint probability of tuple events. Computing this probability is the only

interface between the uncertainty model, and our proposed processing framework, as

we discuss in Section 4.1. This separation of model details and query processing allows

for great flexibility in adopting different models that describe the uncertainty in the

underlying data in different forms. In the following, we describe example models pro-

posed in the literature, conforming to our requirements with different specifications

and implementations.

Independence. The simplest possible model is when all tuple events are indepen-

dent. The model needs only to maintain the membership probabilities of all tuples.

Using such model, the joint probability of any combination of tuple events is com-

puted by multiplying the probabilities of the corresponding tuple events. Note that

this simple model cannot be adopted when relational operations (e.g., joins) take

place, since these operations induce dependencies among intermediate query results.
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Readings (PlateNo, Speed, Prob) ID 
? (X-123, 130, 0.4) r1 

(Y-245, 120, 0.7) ||  (Y-245, 80, 0.3) r2 
(W-541, 90, 0.4)  ||  (W-541, 110, 0.6)  r3 
(L-105, 105, 1.0)  r4 

Prob Speed PlateNo 
0.4 130 X-123 … r1.1 
0.7 120 Y-245 … r2.1 
0.3 80 Y-245 … r2.2 
0.4 90 W-541 … r3.1 
0.6 110 W-541 … r3.2 
1.0 105 L-105 … r4.1 

€ 

(r2.1⊕ r2.2), (r3.1⊕ r3.2)
An equivalent 1NF relation 


under tuple uncertainty model


Readings X-Relation


Figure 3.1: X-Relation Model

X-Relation. The model adopted in [9, 56] captures tuple uncertainty when each

entity in the database is represented by one or more tuples called alternatives. Each

set of alternatives corresponding to the same entity is denoted as X-Tuple. When

the presence of an entity is uncertain, the corresponding x-tuple is denoted as ‘maybe

x-tuple.’ A set of x-tuples is referred to as x-relation, defined as follows:

Definition 1 [X-Relation] An x-relation R is a set of x-tuples that compactly rep-

resents a finite set of possible worlds. Each world is created by choosing exactly one

alternative from each x-tuple in R that is not a maybe x-tuple, and choosing zero or

one alternatives from each maybe x-tuple in R.

For example, assume that PlateNo is a key in the Readings relation in Figure 1.1.

Figure 3.1 shows the x-relation version of the Readings relation that complies with

such key constraint. Tuples with identical keys are alternatives of the same x-tuple.

The x-tuple r1 is a maybe x-tuple since it belongs to the relation with less than

absolute confidence. X-tuples can be mapped to uncertain tuples by transforming the

X-relation into its 1NF, as shown in Figure 3.1. Exclusiveness rules enforce that no

two alternatives of the same x-tuple co-exist in the same possible world.

Under the previous mapping, the joint probability of a combination of tuple events

is computed based on tuples’ probabilities, and rules semantics. For example, for a rule
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(t1⊕ t2) that states that t1 is mutually exclusive with t2, we have Pr(t1.e∧ t2.e) = 0,

while Pr(t1.e ∧ ¬t2.e) = Pr(t1.e).

Mutual Exclusion and Co-existence. The and/xor tree model proposed in [46]

captures mutual exclusion/co-existence dependencies in a tree structure allowing for

combining tuple uncertainty and discrete attribute uncertainty under the same model.

Definition 2 [And/Xor Tree] A tree where each leaf node is a tuple instance, and

each internal node is labeled with either (∨) or (∧). The edge connecting a (∨)

node u to one of its children v is labeled with a non-negative value Pu,v such that∑
v∈children(u) Pu,v ≤ 1. Moreover, the least common ancestor of any two leaf nodes,

corresponding to the same source tuple, must be a (∨) node. 2

Given a node u, the and/xor tree model inductively defines a possible world Wu

(a subset of the leaves of the subtree rooted by u) by the following recursive process:

• If u is a leaf, Wu = {u}.

• If u is a (∨) node, Wu =

{
Wv with probability Pu,v

φ with probability 1−
∑

v∈children(u) Pu,v

• If u is a (∧) node, Wu =
⋃
v∈children(u) Wv.

For example, Figure 3.2 shows the and/xor tree corresponding to the relation

shown in Figure 2.1.

Under the and/xor tree model, the joint probability of a combination of tuple

events is computed based on the labels of the and/xor tree nodes. For example, for

two tuples t1 and t2 whose parent is a (∨) node, we have Pr(t1.e ∧ t2.e) = 0. On

the other hand, for two tuples t1 and t2 whose parent is a (∧) node, we know that

t1.e ≡ t2.e, and hence Pr(t1.e ∧ t2.e) = Pr(t1.e) = Pr(t2.e).
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Prob Speed PlateNo 
0.4 130 X-123 … t1 
0.7 120 Y-245 … t2 
0.3 80 Y-245 … t3 
0.4 90 W-541 … t4 
0.6 110 W-541 … t5 
1.0 105 L-105 … t6 

∧ 

∨  ∨  ∨  ∨ 

t1
 t6
t2
 t3
 t4
 t5


0.4 0.7 0.3 0.4 0.6 1.0 

Figure 3.2: And/Xor tree model

General Dependency Models. The previous models are limited in their scope

to special cases. Hence, such models may be insufficient to represent and reason about

rankings of uncertain data in more general scenarios. A more general model, subsum-

ing the above simple models, is to maintain the explicit joint probability distribution of

all database tuples. One compact representation of such huge joint distribution is fac-

tor graphs (discussed in Section 2.2.1), which are adopted by the proposals in [58, 72].

In this model, tuple dependencies are maintained in the form of conditional probability

tables exploiting the concept of conditional independence, and allowing representing

arbitrary dependencies.

We illustrate the model of [58] using Figure 3.3 which shows the Readings rela-

tion, augmented with exclusiveness and implication dependencies. The dependency

(t1→ t2) means that the existence of t1 in any world must be accompanied with the

existence of t2 in the same world. Figure 3.4 shows the corresponding factor graph that

describes these dependencies. In the shown graph, connected tuples are conditionally

dependent, while disconnected tuples are independent. Each tuple maintains a condi-

tional probability table representing its conditional probability distribution given its

parents. For example, the third row in the table of tuple t1 maintains the two condi-

tional probabilities Pr(t1.e|t2.e∧¬t3.e), and Pr(¬t1.e|t2.e∧¬t3.e). The dependencies

and conditional probability tables are inferred from the semantics of the dependen-

cies. However, this model is quite general, since it can compactly encode arbitrary

dependencies among tuple events. To illustrate, we show how to compute the joint
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Figure 3.4: Factor graph

probability Pr(t1.e∧t2.e∧¬t3.e). Based on Bayes chain rule, such joint probability is

expressed as Pr(¬t3.e)×Pr(t2.e|¬t3.e)×Pr(t1.e|t2.e∧¬t3.e) = 0.7×1.0× 0.4
0.7

= 0.4,

which is the same as Pr(t1.e) as implied by the semantics of the dependencies.

3.2 Ranking under Attribute Uncertainty

When the values of one or more uncertain attributes are used to compute tuple scores

in ranking queries, the resulting scores become uncertain. We are interested in model-

ing the impact of uncertain scores on the semantics and processing of ranking queries.

In the following, for two tuples ti and tj, we denote with (ti > tj) the preference of ti

over tj in the computed ranking of query results.

We adopt a general representation of uncertain scores, where the score of tuple

ti is modeled as a probability density function fi whose domain is a real interval

[loi, upi]. The density function fi can be obtained directly from uncertain attributes

(e.g., a uniform distribution on possible apartment’s rent values as in Figure 1.2).

Alternatively, fi can be computed by density estimation using the predictions of

missing/incomplete attribute values that affect tuples’ scores [74], or constructed from

histories and data correlations as in sensor networks [21]. A deterministic (certain)

score is modeled as an interval with equal bounds. For two tuples ti and tj with
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tID Score Interval Score Density

t1 [ 6 , 6 ] f1 = δ(x− 6)
t2 [ 4 , 8 ] f2 = 1/4
t3 [ 3 , 5 ] f3 = 1/2
t4 [ 2 , 3.5 ] f4 = 2/3
t5 [ 7 , 7 ] f5 = δ(x− 7)
t6 [ 1 , 1 ] f6 = δ(x− 1)

Figure 3.5: Modeling score uncertainty

deterministic equal scores (i.e., loi = upi = loj = upj), we assume a tie-breaker τ(ti, tj)

that gives a deterministic tuples’ relative order. The tie-breaker τ is transitive over

tuples with identical deterministic scores (i.e., [(ti > tj) ∧ (tj > tk)]⇒ (ti > tk)).

The score intervals shown in Figure 3.5 can simply be the values of an uncertain

attribute (e.g., apartment’s rent in Figure 1.2), or they can be the result of applying a

user-defined scoring function to uncertain attributes (e.g., 0.7× rent+ 0.3× deposit).
For simplicity of presentation, the score densities in Figure 3.5 are assumed to be

uniform. Hence, fi = 1/(upi − loi) (e.g., f2 = 1/4). For tuples with deterministic

scores (e.g., t1), we have an impulse density fi = δ(x − loi) (effectively, the score

density of a tuple ti with a deterministic score is an impulse function with infinite

value at x = loi or, equivalently, at x = upi).

Our interval-based score representation induces a partial order over database tu-

ples, which extends the following definition of strict partial orders:

Definition 3 [Strict Partial Order] A strict partial order P is a 2-tuple (R,O),

where R is a finite set of elements, and O ⊂ R × R is a binary relation with the

following properties:

(1) Non-reflexivity: ∀i ∈ R : (i, i) /∈ O.

(2) Asymmetry: If (i, j) ∈ O, then (j, i) /∈ O.

(3) Transitivity: If {(i, j), (j, k)} ⊂ O, then (i, k) ∈ O. 2

Strict partial orders allow the relative order of some elements to be left undefined.
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A widely-used depiction of partial orders is Hasse diagram (e.g., Figure 1.3(b)), which

is a directed acyclic graph whose nodes are the elements ofR, and edges are the binary

relationships inO, except relationships derived by transitivity. An edge (i, j) indicates

that i is ranked above j according to P. The linear extensions of a partial order are

all possible topological sorts of the partial order graph (i.e., the relative order of any

two elements in any linear extension does not violate the set of binary relationships

O).

We define a strict partial orders that encodes uncertainty in tuple scores based on

the following definitions.

Definition 4 [Score Dominance] A tuple ti dominates another tuple tj iff loi ≥
upj. 2

The deterministic tie-breaker τ eliminates cycles when applying Definition 4 to

tuples with deterministic equal scores. Based on Definition 4, Property 1 immediately

follows:

Property 1 Score Dominance is a non-reflexive, asymmetric, and transitive relation.

2

For clarity of presentation, the ranking model we present in this section assumes

a single relation under the assumption of independent score densities of individual

tuples. This means that there are no constraints or dependencies that determine which

combinations of tuple scores co-exist together in a possible world. We address the

relaxation of this assumption in Section 6.3, where we show that the score densities of

intermediate join results are dependent, which triggers different evaluation techniques.

Under the assumption of independent score densities, the probability that tuple ti

is ranked above tuple tj, denoted Pr(ti > tj), is given by the following 2-dimensional

integral:
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Pr(ti > tj) =

∫ upi

loi

∫ x

loj

fi(x) · fj(y)dy dx (3.1)

When neither ti nor tj dominates the other tuple, [loi, upi] and [loj, upj] are

intersecting intervals, and so Pr(ti > tj) belongs to the open interval (0, 1), and

Pr(tj > ti) = 1 − Pr(ti > tj). On the other hand, if ti dominates tj, then we have

Pr(ti > tj) = 1 and P(tj > ti) = 0.

We say that a tuple pair (ti, tj) belongs to a probabilistic dominance relation iff

Pr(ti > tj) ∈ (0, 1).

We next give the formal definition of our ranking model:

Definition 5 [Probabilistic Partial Order (PPO)] Let R = {t1, . . . , tn} be a

set of real intervals, where each interval ti = [loi, upi] is associated with a density

function fi such that
∫ upi

loi
fi(x)dx = 1. The set R induces a probabilistic partial order

PPO(R,O,P), where (R,O) is a strict partial order with (ti, tj) ∈ O iff ti dominates

tj. Moreover, P is the probabilistic dominance relation of intervals in R. 2

Definition 5 states that if ti dominates tj, then (ti, tj) ∈ O. That is, we can

deterministically rank ti above tj. On the other hand, if neither ti nor tj dominates

the other tuple, then (ti, tj) ∈ P . That is, the uncertainty in the relative order of ti

and tj is quantified by Pr(ti > tj).

Figure 3.6 shows the Hasse diagram and the probabilistic dominance relation of

the PPO of tuples in Figure 3.5. We also show the set of linear extensions of the

PPO.

The linear extensions of PPO(R,O,P) can be viewed as tree where each root-to-

leaf path is one linear extension. The root node is a dummy node since there can be

multiple elements in R that may be ranked first. Each occurrence of an element t ∈ R
in the tree represents a possible ranking of t, and each level i in the tree contains all

elements that occur at rank i in any linear extension. We explain how to construct

the linear extensions tree in Section 5.1.
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Figure 3.6: Probabilistic partial order and linear extensions

Due to probabilistic dominance, the space of possible linear extensions is viewed

as a probability space generated by a probabilistic process that draws, for each tuple

ti, a random score si ∈ [loi, upi] based on the density fi. Ranking the drawn scores

gives a total order on the database tuples (score ties are usually resolved using a

deterministic tie-breaker). The probability of such order is the joint probability of the

drawn scores. For example, we show in Figure 3.6, the probability value associated

with each linear extension. We show next how to compute these probabilities.

Probability Space. The probability of a linear extension is computed as a nested

integral over tuples’ score densities in the order given by the linear extension. Let ω =

〈t1, t2, . . . tn〉 be a linear extension. Then, Pr(ω) = Pr((t1 > t2), (t2 > t3), . . . , (tn−1 >

tn)). The individual events (ti > tj) in the previous formulation are not independent,

since any two consecutive events share a tuple. Hence, For ω = 〈t1, t2, . . . tn〉, Pr(ω)

is given by the following n-dimensional integral with dependent limits:

Pr(ω) =

∫ up1

lo1

∫ x1

lo2

...

∫ xn−1

lon

f1(x1)...fn(xn)dxn... dx1 (3.2)

Since we assume independent tuple scores, Equation 3.2 integrates the product of

the score densities of different tuples. If, alternatively, tuples’ scores are dependent,
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a joint score density function needs to replace the product. We discuss this point in

Section 6.3.

Monte-Carlo integration (cf. Section 2.3) can be used to compute complex nested

integrals such as Equation 3.2. For example, the probabilities of linear extensions

ω1, . . . , ω7 in Figure 3.6 are computed using Monte-Carlo integration.

In the next theorem, we prove that the space of linear extensions of a PPO induces

a probability distribution.

Theorem 1 Let Ω be the set of linear extensions of PPO(R,O,P). Then, (1) Ω

is equivalent to the set of all possible rankings of R, and (2) Equation 3.2 defines a

probability distribution on Ω. 2

Proof. We prove (1) by contradiction. Assume that ω ∈ Ω is an invalid ranking of

R. That is, there exist at least two tuples ti and tj whose relative order in ω is ti > tj,

while loj ≥ upi. However, this contradicts the definition of O in PPO(R,O,P).

Similarly, we can prove that any valid ranking of R corresponds to only one linear

extension in Ω.

We prove (2) as follows. First, map each linear extension ω = 〈t1, . . . , tn〉 to its

corresponding event e = ((t1 > t2) ∧ · · · ∧ (tn−1 > tn)). Equation 3.2 computes Pr(e)

or equivalently Pr(ω). Second, let ω1 and ω2 be two linear extensions in Ω whose

events are e1 and e2, respectively. By definition, ω1 and ω2 must be different in the

relative order of at least one pair of tuples. It follows that Pr(e1∧e2) = 0 (i.e., any two

linear extensions map to mutually exclusive events). Third, since Ω is equivalent to

all possible rankings of R (as proved in (1)), the events corresponding to elements of

Ω must completely cover a probability space of 1 (i.e., Pr(e1 ∨ e2 · · · ∨ em) = 1, where

m = |Ω|). Since all ei’s are mutually exclusive, it follows that Pr(e1 ∨ e2 · · · ∨ em) =

Pr(e1)+ · · ·+Pr(em) =
∑

ω∈Ω Pr(ω) = 1, and hence Equation 3.2 defines a probability

distribution on Ω. 2

Based on the formulated probability space, we show in the next example that

ranking tuples based on their expected scores can produce unreliable ranking.
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Example 4 Expected Scores under Attribute Uncertainty. Assume 3 tuples, t1, t2,

and t3 with score intervals [0, 100], [40, 60], and [30, 70], respectively. Assume that

score values are distributed uniformly within each interval. The expected score of each

tuple is thus 50, and hence all permutations are equally likely rankings. However,

based on Equation 3.2, we compute the probabilities of different rankings of these

tuples as follows: Pr(〈t1, t2, t3〉) = 0.25, Pr(〈t1, t3, t2〉) = 0.2, Pr(〈t2, t1, t3〉) = 0.05,

Pr(〈t2, t3, t1〉) = 0.2, Pr(〈t3, t1, t2〉) = 0.05, and Pr(〈t3, t2, t1〉) = 0.25. That is, the

rankings have a non-uniform distribution even though the score intervals are uniform

with equal expectations.

As illustrated in the previous example, the problem with ranking based on ex-

pected scores is that for uncertain scores with large ranges, arbitrary rankings that

are independent from how the score ranges intersect may be produced. These rank-

ings can be unreliable in some cases. For example, for score intervals that are uniform

with equal expectations, the space of possible rankings may have a non-uniform dis-

tribution, which is not captured by the equal expected scores.

3.3 Combining Tuple and Attribute Uncertainty

The uncertainty models presented in the previous two sections can be combined to

create a more general ranking model capturing both tuple and attribute uncertainty.

For example, consider Figure 3.7 which shows a relation of 5 tuples, where each

tuple has both probabilistic score and membership probability. We represent the

order relationships among tuples using a partial order, where each node in the Hasse

diagram is annotated with the membership probability of its corresponding tuple.

Under the previous model, the space of possible rankings can be generated by

adopting a two-steps process:

1. Generate different tuple subsets representing the different possible worlds in-

duced by tuple uncertainty.
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t5 [1,1] 1.0 

Figure 3.7: Space of possible rankings under tuple and attribute uncertainty

2. For each possible world, generate the set of possible tuple permutations induced

by score uncertainty.

To illustrate, Figure 3.7 shows the possible worlds induced by tuple uncertainty.

We assume independent tuple events, and hence worlds’ probabilities are given by

multiplication of tuple probabilities. For the possible world PW 3, we generate the set

of possible tuple permutations by restricting the partial order to only the tuple set

{t2, t3, t4, t5} (i.e., we remove t1 since it is not included in PW 3). The result is a set

of 3 possible permutations (linear extensions), whose probabilities can be computed

as we show in Equ 3.2. Note that the probability given by Equ 3.2 in this case is

conditioned on the corresponding possible world. In order to obtain the marginal

probabilities of possible rankings, we multiply the linear extension probability by the

probability of its corresponding possible world.

While our proposed query semantics (discussed in Section 3.4) are generic and ap-

ply to any uncertainty model that can be interpreted under possible worlds semantics,

the processing techniques we introduce are dependent on the underlying type of un-

certainty. In this dissertation, we focus on evaluating ranking queries on uncertainty
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Figure 3.8: Ranked possible worlds under (a) tuple uncertainty (b) attribute uncer-
tainty

models that support either tuple or attribute uncertainty separately. In Section 7.3.1,

we discuss potential extensions for handling both uncertainty types conjointly.

3.4 Semantics of Ranking Queries on Uncertain

Data

In this section, we present our proposed semantics of top-k queries on uncertain data.

We abstract the details of the uncertainty model (which can be either tuple-level

or attribute-level uncertainty model) by formulating query semantics on a finite set

of possible worlds W = {w1, . . . , wn}, where each world wi ∈ W is a valid ranked

instance of the database. We elaborate on the ranking requirement of worlds in W

using the example given by Figure 3.8.

Under tuple level uncertainty, each world wi ∈ W is a subset of database tuples

ranked based on the scores given by a query-specified scoring function. For example,

Figure 3.8(a) shows the possible worlds of the Readings relation in Figure 2.1, ranked

on the Speed attribute. In this example, W = {PW 1, . . . , PW 8}.
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Under attribute level uncertainty, each world wi ∈ W is a permutation of all

database tuples corresponding to a possible linear extension of the PPO induced by

uncertain scores. For example, Figure 3.8(b) shows the ranked possible worlds (linear

extensions) of the PPO in Figure 3.6. In this example, W = {ω1, . . . , ω7}.

We identify two important distinctions between ranked possible worlds generated

under each of the tuple level and attribute level uncertainty models:

• Under tuple level uncertainty, for two tuples ti and tj, where score(ti) >

score(tj), we have (ti > tj) in all ranked possible worlds containing both ti

and tj. On the other hand, under attribute level uncertainty, if ti dominates tj,

then (ti > tj) in all ranked possible worlds. Otherwise, (ti > tj) in a subset of

possible worlds, while (tj > ti) in the remaining possible worlds.

• Ranked possible worlds under tuple level uncertainty represent subsets of

database tuples, while ranked possible worlds under attribute level uncertainty

represent permutations of all database tuples.

As we show in the following, the previous distinctions influence the applicability

of some query semantics to each of the two uncertainty models.

We build our proposed query semantics on possible worlds semantics, where we

obtain the probability of a query answer by summing the probabilities of possible

worlds supporting that answer. Intuitively, we would like to obtain answers that

are strongly supported in the space of possible answers. In general, we adopt two

formulations to define such answers:

• F1: Query answer is the most probable answer in the space of all possible query

answers.

• F2: Query answer is a consensus answer with the minimum average distance to

all possible answers.
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In F1, we are given a probability distribution of all possible query answers, and the

goal is to find the query answer with the highest probability (i.e., the distribution’s

mode).

In F2, we view possible worlds as weighted voters with possibly different opinions

regarding the ranking of tuples, and the weight of each voter is the probability of the

corresponding possible world. The goal is to aggregate the opinions of such voters in

order to find query answer.

An orthogonal construct to the two previous formulations is an answer’s granu-

larity. We project the space of possible worlds on different granularity levels, namely,

tuple vectors, tuple sets, tuples appearing in a range of ranks, and full tuple orderings.

Answering ranking queries at these different granularity levels can be useful to a wide

class of applications, as we show at the end of this section.

The input to each of the following query definitions is the set of ranked possible

worlds represented as orderings of tuple IDs, while the output is a sequence/set of

tuple IDs satisfying a given condition.

We start by defining query semantics under F1, where we compute the most

probable query answers in the space of all possible answers.

Definition 6 [Uncertain Top Prefix (UTop-Prefix)] A UTop-Prefix(k) query

returns the most probable top-k vector. That is, UTop-Prefix(k) returns

argmaxp(
∑

w∈W(p,k)
Pr(w)), where W(p,k) ⊆ W is the set of possible worlds having

p as the top-k vector (i.e., the k-length prefix). 2

UTop-Prefix query returns the tuple vector with the highest probability of being

the top-k vector across all worlds. That is, UTop-Prefix query answer is the mode

of the distribution of possible top-k answers. For example, in Figure 3.8(a), a UTop-

Prefix(2) query returns 〈t1, t2〉 with probability 0.28, since 〈t1, t2〉 is the top-2 vector

in PW 1 and PW 2 whose probability summation is 0.28, which is the maximum prob-

ability among all possible top-2 vectors. Similarly, in Figure 3.8(b), a UTop-Prefix(3)

query returns 〈t5, t1, t2〉 with probability Pr(ω1) + Pr(ω2) = 0.438.
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Definition 7 [Uncertain Top Set (UTop-Set)] A UTop-Set(k) query returns the

most probable top-k set. That is, UTop-Set(k) returns argmaxs(
∑

w∈W(s,k)
Pr(w)),

where W(s,k) ⊆ W is the set of possible worlds having s as the top-k set. 2

Unlike UTop-Prefix query, UTop-Set query ignores the order within query answer.

This allows finding query answers with a relaxed within-answer ranking. However,

UTop-Set and UTop-Prefix query answers are related, since the top-k set probability

of a set s is the summation of the probabilities of all k-length prefixes involving the

same tuples in s. Under tuple level uncertainty, the relative order of any two tuples is

fixed across all possible worlds, and hence UTop-Set and UTop-Prefix queries return

identical answers. On the other hand, under attribute level uncertainty, UTop-Set and

UTop-Prefix query answers are not necessarily identical.

For example, in Figure 3.8(a), a UTop-Set(2) query returns {t1, t2} with proba-

bility 0.28, which is the same as UTop-Prefix(2) query answer. On the other hand,

in Figure 3.8(b), the query UTop-Set(3) returns the set {t1, t2, t5} with probability

Pr(ω1) + Pr(ω2) + Pr(ω4) + Pr(ω5) + Pr(ω6) + Pr(ω7) = 0.937. Note that {t1, t2, t5}
appears as Prefix 〈t5, t1, t2〉 in ω1 and ω2, appears as Prefix 〈t5, t2, t1〉 in ω4 and ω5,

and appears as Prefix 〈t2, t5, t1〉 in ω6 and ω7.

Definition 8 [Uncertain Top Rank (UTop-Rank)] A UTop-Rank(i, j) query,

for i ≤ j, returns the ID of the most probable tuple to appear at any rank i . . . j

(i.e., from i to j inclusive) in possible worlds in W . That is, UTop-Rank(i, j) returns

argmaxt(
∑

w∈W(t,i,j)
Pr(w)), where W(t,i,j) ⊆ W is the set of possible worlds having t

ranked at a position r for i ≤ r ≤ j. 2

UTop-Rank query returns the ID of the tuple that appears in a given range of

ranks with the highest probability. For example, in Figure 3.8(a), a UTop-Rank(1, 2)

query answer is t2 with probability 0.7, since t2 appears at rank 1 in PW 5 and PW 6,

and appears at rank 2 in PW 1 and PW 2, where Pr(PW 1) + Pr(PW 2) + Pr(PW 5) +

Pr(PW 6) = 0.7. Similarly, in Figure 3.8(b), a UTop-Rank(1, 2) query returns t5 with
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probability Pr(ω1)+· · ·+Pr(ω7) = 1.0, since t5 appears at all linear extensions at either

rank 1 or rank 2. It also follows from possible worlds semantics that UTop-Rank(i, j)

probability of a tuple t is the summation of the UTop-Rank(r, r) probabilities of t for

r = i . . . j.

The three above query definitions can be extended to rank different answers on

probability. We define the answer of l-UTop-Prefix(k) query as the l most probable

prefixes of length k. We define the answer of l-UTop-Set(k) query as the l most

probable top-k sets. We define the answer of l-UTop-Rank(i, j) query as the IDs of

the l most probable tuples to appear at a rank i . . . j. We assume a tie-breaker that

deterministically orders answers with equal probabilities.

We next define query semantics under F2, where we compute consensus query

answers that minimize the average distance to all possible query answers.

Definition 9 [Uncertain Rank Aggregation Query (URank-Agg)] A URank-

Agg query returns an ordering w∗ of all tuple IDs such that 1
|W |

∑
w∈W Pr(w) ·d(w∗, w)

is minimized, where d(., .) is a measure of the distance between two orderings. 2

URank-Agg query returns an ordering that has the minimum average distance to

all ranked possible worlds. The definition of URank-Agg query involves a function d

that measures the distance between two orderings. The most common definitions of

such functions assume orderings of exactly the same set of elements (we discuss widely-

adopted distance functions in Section 5.6). Such assumption applies to possible worlds

generated under attribute level uncertainty, since these orderings are permutations of

all database tuples. On the other hand, under tuple level uncertainty, the orderings

may involve different subsets of database tuples. We thus restrict our evaluation

techniques for URank-Agg query to only the attribute level uncertainty model.

We show in Section 5.6 that URank-Agg query can be mapped to a UTop-

Rank query under a specific definition of distance measure. We also derive a cor-

respondence between this query definition and the ranking query that orders tuples

on their expected scores.
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Applications. Our proposed query semantics can be adopted in the following ap-

plication scenarios:

• A UTop-Prefix query can be used in market analysis to find the most probable

product ranking based on evaluations extracted from users’ reviews, which may

contain uncertain information. Similarly, a UTop-Set query can be used to find

a set of products that are most likely to be ranked above all other products.

• A UTop-Rank(i, j) query can be used to find the most probable athlete to

end up in a range of ranks in some competition, given a partial order over

competitors’ strength. A UTop-Rank(1, k) query can be used to find the most

likely location to be in the top-k hottest locations based on uncertain sensor

readings represented as intervals.

• The semantics of rank aggregation are widely adopted in many applications re-

lated to combining votes from different voters to rank a given set of candidates

in a way that minimizes the disagreements of voter’s opinions. A typical ap-

plication is building a meta-search engine (a search engine that aggregates the

rankings of multiple other engines) as discussed in [23]. An example applica-

tion of URank-Agg query is preference management in social networking sites,

where different users rate objects of interest (e.g., photos, videos, products, etc.)

inducing a range of possible scores per object. The ratings can be compactly en-

coded as a PPO. In these settings, finding a consensus ranking can be important

for computing recommendations and planning ad campaigns.
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Chapter 4

Ranking with Tuple Level

Uncertainty

In this chapter, we describe the techniques we proposed in [64, 65] to support top-k

queries in probabilistic databases under tuple level uncertainty model. We start by

giving a general query processing framework in Section 4.1. We present the details

of our query processing techniques in Section 4.2. We discuss different relaxations of

our processing framework assumptions, and their impact on processing techniques, in

Section 4.3. We finally present our experimental study in Section 4.4 and summarize

this chapter in Section 4.5.

4.1 Processing Framework

Figure 4.1 shows the architecture of our processing framework. The framework is

based on two main design principles:

• DP1: To build on top of an RDBMS as our tuple access layer. We use an

underlying RDBMS to store and process probabilistic data and uncertainty in-

formation. Our processing framework leverages RDBMS storage, indexing and
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Figure 4.1: Processing framework

query processing capabilities to compute probabilistic top-k queries. Similar

arguments are made in the design of the TRIO system [73, 9].

• DP2: To leverage current top-k query processing algorithms in deterministic

databases. In particular, our framework takes advantage of rank-aware query

processing (if supported by the underlying DBMS) to minimize the number of

needed-to-access tuples. The framework also adopts the upper-bounding prin-

ciple, used in several proposals, e.g.,[34, 44], to limit the size of the materialized

space.

Tuple Access Layer. Tuple retrieval, indexing and query processing (including

filtering and score-based ranking) are the main functionalities of the Tuple Access

Layer. This layer executes an incoming query, which acts as the tuple source of the

upper layer. We show in Section 4.2.1 that sorted score access for output tuples of

the Tuple Access Layer is necessary for efficient processing.
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While our techniques can benefit largely from efficient support to ranking in the

Tuple Access Layer, our framework is still valid if such support is limited or lacking.

However, in that case more tuples would need to be accessed to realize query answers.

For example, a complete sorting of Boolean query results may be required if rank-

aware processing is not supported.

Rule Engine. This module is responsible for computing the probabilities of ar-

bitrary combinations of tuple events. We assume an interface to the Rule Engine

receiving, as input, an arbitrary combination of tuple events, and producing, as out-

put, the joint probability of such combination. The details of the Rule Engine is not

the focus of our study, since they vary according to how sophisticated the underlying

uncertainty model is, as discussed in Section 3.1. To illustrate, [20] shows how to

generate safe plans for some class of SPJ queries, where the independence of tuple

events is exploited to efficiently compute the probability of query output tuples. A

simple Rule Engine that maintains the membership probabilities of base tuples can

be sufficient in this case. Alternatively, [58] uses factored representation of the con-

ditional probability distribution of dependant tuples, allowing for encoding arbitrary

dependencies. A much more sophisticated Rule Engine needs to be built in this case to

compute the probabilities of arbitrary combinations of tuple events. Hence, treating

the Rule Engine as a black box adds versatility to our framework, and does not restrict

our techniques to a specific implementation of the underlying uncertainty model.

In our URank prototype [66], we experimented with three different implemen-

tations of the Rule Engine module: (1) a simple engine that supports probability

computation over independent tuple events; (2) an engine compliant with the x-tuple

model [56, 9], where tuple dependencies are formulated as exclusiveness rules only;

and (3) a more complex engine that implements and indexes a Bayesian network that

is lazily constructed during query processing to load relevant dependency information

on demand, and compute the probabilities of tuple combinations through Bayesian

inference techniques.

Probabilistic Ranking Layer. This layer retrieves tuples from the Tuple Access

Layer, and navigates the space of possible worlds to compute query answers. The
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components of this layer are the State Formulation module, which formulates search

states as combinations of tuple events; and the Space Navigation module, which uses

search algorithms to partially materialize the possible worlds space, while searching

for query answers. We give a formal definition of the problem space of probabilistic

top-k queries in Section 4.2.1.

Assumptions. We make several assumptions in our framework design. We relax

many of these assumptions in [65], and discuss some of these relaxations in Section 4.3.

• Tuple Access: We assume tuples are consumed incrementally, i.e., one by one,

from the output of a query executed by the relational engine in the Tuple Access

Layer. That is, the Probabilistic Ranking Layer does not have random access

to some tuple t unless produced by the Tuple Access Layer. This assumption

is generally reasonable since random access to arbitrary query output tuples is

usually not available, unless query output is fully computed. Full evaluation of

top-k queries should be avoided, if possible, since only a small fraction of query

output suffices to get query answer. Moreover, our problem space is exponential

in the number of accessed tuples (cf. Section 4.2.2). Hence, minimizing the num-

ber of needed-to-see tuples is crucial for efficient processing. In our framework,

the relational engine incrementally computes the tuples of query answer, and

pipelines these tuples to the Probabilistic Ranking Layer upon request through

an iterator interface, which is widely used in RDBMS’s. We relax the Tuple Ac-

cess assumption in Section 4.3.2, by considering special cases that allow random

access to the underlying database.

• Available Dependency Information: We assume the dependencies among query

output tuples are only known when these tuples are consumed by the Prob-

abilistic Ranking Layer. That is, we do not know if the currently consumed

tuples are dependent on other future tuples until these future tuples are actu-

ally consumed by the Probabilistic Ranking Layer. This assumption is justified

by the incremental tuple computation in the Tuple Access Layer. Dependency

information is built incrementally as tuples are produced and pipelined to the
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Probabilistic Ranking Layer. Hence, no dependency information, relating tuples

currently consumed by the Probabilistic Ranking Layer with other future tuples,

is available. We note, however, that in some cases complete dependency infor-

mation can be directly available. For example, a query that involves a single

relation with independent tuples is known to generate no dependencies among

all query output tuples. We address this case in Section 4.3.1, where we relax

our assumption by exploiting more available information on tuple dependencies.

• Event Probability Computation: We assume the Rule Engine responds with ex-

act probabilities to the submitted questions (joint probabilities of tuple events’

combinations). However, since exact probability computation can be expensive

for some query types/plans, particularly projections under set semantics [20],

we discuss in [65] relaxing this assumption by dealing with approximate output

from the Rule Engine in the form intervals enclosing the exact probability value.

4.2 Query Evaluation

In this section, we present our techniques for computing top-k queries over uncertain

tuples with deterministic score values. Our query evaluation techniques compute a

tuple ranking under each of the query semantics given in Section 3.4. As we discuss in

Section 3.4, we do not discuss evaluating URank-Agg queries under tuple uncertainty

since possible worlds may not be full permutations of all tuples.

Our techniques are generally based on processing tuples in the order of their scores.

Relational processing (e.g., filtering and joining) are conducted in the underlying

Tuple Access layer, so that we can incrementally consume qualified tuples in the

order of their scores (cf. Section 4.1).

The main idea of our approach is to model top-k query as a search problem over

the space of all possible query answers (Sections 4.2.1 and 4.2.2). In order to nav-

igate such space efficiently, we identify the tuple retrieval order that can be used

to construct the space incrementally (Section 4.2.1). Based on the identified order,
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we design A∗-like search mechanisms to compute query answers from partial space

materialization by correctly bounding the probability of different search paths in the

space. The search terminates when finding an answer whose probability is not below

the probability upper-bound of all unexplored search paths (Section 4.2.3). We show

that our algorithms minimize the number of consumed tuples, and the size of the

materialized space to evaluate our queries (Section 4.2.4).

4.2.1 Problem Space

We start our space formulation by defining the search state:

Definition 10 [Top-l State] A top-l state sl is a prefix of length l in one or more

possible worlds ordered on a scoring function F . 2

That is, a top-l state represents an l-length tuple vector ranked on a user-defined

scoring function F , and appearing as the top-l vector in at least one possible world.

A top-l state sl is complete if and only if l = k. Based on possible worlds semantics,

the probability of state sl is equal to the summation of the probabilities of all worlds

having sl as a prefix, i.e., a top-l answer. Our search for query answers starts from

an empty state (with length 0) and ends at a goal complete state with the maximum

probability.

We next formulate state probability. We assume an uncertain databaseD following

the tuple level uncertainty model. We use the notation ¬X, where X is a tuple

set/vector, to refer to the conjunction of the negation of tuple events in X. Let F(sl)

be the minimum tuple score in sl. Let Isl
be the set of tuples not in sl but have

higher scores than F(sl), i.e., Isl
= {t|t ∈ D, t /∈ sl,F(t) > F(sl)}. The probability of

state sl, denoted P(sl), is equal to the joint probability of the existence of sl tuples

and the absence of Isl
tuples, i.e., P(sl) = Pr(sl ∧ ¬Isl

), which gives the probability

that sl tuples are the top-l vector in the possible worlds space. For example consider

Figure 2.1, where the scoring function F is simply the Speed attribute. For a state
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s2 = 〈t1, t5〉, we have Is2 = {t2} and hence P(s2) = Pr((t1.e∧ t5.e)∧ (¬t2.e)) = 0.4×
0.6×0.3 = 0.072. This probability is the same as Pr(PW 4), which is the only possible

world having 〈t1, t5〉 as the top-2 tuples. In general, state probability is computed by

the Rule Engine component of our framework based on tuple probabilities, and their

dependencies (Section 4.1).

Due to the overwhelming number of possible states, an efficient search mechanism

needs to avoid materializing the states that do not lead to query answer, as we discuss

next.

Tuple Retrieval Order. Based on our Tuple Access, and Available Dependency

Information assumptions (Section 4.1), we show that retrieving tuples in sorted score

order is necessary and sufficient to get non-trivial bounds on the probabilities of

possible complete states. Such bounding is crucial for early query termination, i.e.,

termination without checking every possible query answer. The next examples il-

lustrate why tuple orders, different from sorted score order, fail in bounding state

probabilities under our assumptions.

Example 5 [Arbitrary Order] Consider Figure 2.1. Assume that we retrieved t1

and t6 from the Tuple Access Layer, based on a random tuple retrieval order. Let

s2 = 〈t1, t6〉 be a state in our search space (recall that a state is a score-ordered prefix

of one or more worlds). At this point, P(s2) cannot be computed precisely since we

are unaware of Is2 (all other tuples with scores higher than the minimum score in s2).

Moreover, we cannot lower-bound P(s2) by a value greater than 0, since Is2 might

contain a tuple t independent of s2 tuples, and having a probability of 1, which would

make P(s2) = 0. Clearly, we cannot conclude the search goal early, i.e., without

fully inspecting all space states, if we cannot compute non-trivial (greater than 0)

lower-bounds on states’ probabilities.

Example 6 [Probability Order] Consider Figure 2.1. Assume that we retrieved t6

and t2 from the Tuple Access Layer, based on tuple probability order. Let s2 = 〈t2, t6〉
be a state in our search space. Here, we have more information than Example 5
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since we know that no tuple in Is2 has a probability greater than 0.7 (the probability

of t2). However, we still cannot compute a non-trivial lower-bound for P(s2). The

reason is that the set Is2, which is not completely known at this point, may contain

a tuple t dependent on tuples in s2 such that Pr(t2.e ∧ t6.e ∧ ¬t.e) = 0, and hence

P(s2) = 0. Based on our Available Dependency Information assumption, we do not

know whether such dependencies exists or not, since t is not retrieved yet from the

Tuple Access Layer.

Example 7 [Score Order] Consider Figure 2.1. Assume that we retrieved t1 and

t2 from the Tuple Access Layer, based on tuple score order (the Speed attribute). Let

s2 = 〈t1, t2〉 be a state in our search space. Since all non-retrieved tuples have scores

less than t2, the set Is2 is known to be empty, and we can precisely compute P(s2) =

0.4 × 0.7 = 0.28. Hence, retrieving tuples in score order gives perfect information

on each state sl and its corresponding Isl
set, allowing for computing precise state

probabilities.

Based on the above examples, we conclude that under the assumptions discussed

in Section 4.1, retrieval orders different from score order do not effectively bound

state probabilities, necessitating fully materializing the state space to locate query

answer. Hence, we adopt score-based order in retrieving tuples from the Tuple Access

Layer. Rank-aware query processing techniques can be used in the Tuple Access

Layer to incrementally provide tuples in score order by exploiting score indexes and

rank-aware query operators [34, 45]. Theorem 2 formally proves the superiority of

score-based retrieval.

Theorem 2 Under the Tuple Access, and Available Dependency Information as-

sumptions, retrieving query output tuples in score order is (i) sufficient; and (ii)

necessary to compute non-trivial bounds on state probabilities.

Proof. Let X be a non-empty subset of tuples retrieved in score order. For any

state sl whose tuples form a subset of X, we also have Isl
⊆ X. That is, the set Isl
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is completely known based on X. Hence, X is sufficient to precisely compute P(sl),

and thus (i) follows.

We prove (ii) by showing that a tuple order, different from score-based order, fails

to provide non-trivial bounds on state probabilities. Let Y be a non-empty subset of

tuples retrieved in any order different from the score order. For any state sl whose

tuples form a subset of Y , the set Isl
is not completely known based on Y . Assume

a yet non-retrieved tuple t /∈ Y , such that t ∈ Isl
, and Pr(sl ∧ ¬t) = 0. If such tuple

exists, we would have P(sl) = 0. Hence, based on Y , the only safe lower-bound on

state probability is 0, and thus (ii) follows. 2

Relaxing the assumptions of Theorem 2 makes other tuple retrieval orders useful

in evaluating our queries. We discuss such orders in Section 4.3.2.

4.2.2 Generating the Search Space

In this section, we show how to use score-ordered tuple retrieval to build the search

space.

A top-l state is a combination of tuple events. In possible worlds semantics, the

probability of any combination of tuple events is the summation of the worlds’ proba-

bilities where this combination is satisfied. For example in Figure 2.1, the probability

of the tuple event combination (t1.e ∧ ¬t2.e) is the same as Pr(PW 3) + Pr(PW 4) =

0.12. We next explain an important property of our space states.

Property 2 [Probability Reduction] When extending any combination of tuple

events by adding another tuple existence/absence event, the resulting combination will

have at most the same probability. 2

Property 2 follows from set theory, where a set cannot be larger than its intersec-

tion with another set. This holds in our uncertainty model, since for any two sets of

tuple events En and En+1 (with lengths n and n+ 1, respectively), where En ⊂ En+1,

the set of possible worlds where En+1 is satisfied ⊆ the set of possible worlds where

En is satisfied.
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Search states are generated as follows. Assume a current state sl, call it a parent

state. After retrieving a new tuple t from the Tuple Access Layer in score order, we

would like to generate two states from sl representing the two possibilities of including

and excluding t at position (l + 1) in possible top-k answers generated from sl. We

thus extend sl into two child states: (1) sl+1: a state composed of the tuple vector of

sl appended by t, where Isl+1
= Isl

; and (2) śl: a state with the same tuple vector as

sl, where we define Iśl
= Isl

∪ {t} †. Based on Property 2, both P(sl+1) and P(śl)

cannot exceed P(sl). In addition, P(śl) + P(sl+1) = P(sl).

For example, assume a state s2 = 〈t1, t2〉, where Is2 = {t3}. Hence, P(s2) =

Pr((t1.e ∧ t2.e) ∧ (¬t3.e)). Upon retrieving t4, the next tuple in score order, we

extend s2 into (1) s3 = 〈t1, t2, t4〉, where Is3 = {t3}, and hence P(s3) = Pr((t1.e ∧
t2.e ∧ t4.e) ∧ (¬t3.e)); and (2) ś2 = 〈t1, t2〉, where Iś2 = {t3, t4}, and hence P(ś2) =

Pr((t1.e ∧ t2.e) ∧ (¬t3.e ∧ ¬t4.e))

We illustrate state generation using the interaction of our framework compo-

nents depicted by Figure 4.2, which describes UTop-Prefix query processing over the

database in Figure 2.1. Three tuples are produced by a (score-based) top-k query plan,

running in the Tuple Access Layer, and submitted to the Space Navigation module,

which generates possible states based on the three seen tuples. Each state is extended

by newly retrieved tuples, to create new candidate top-l states. In order to compute

the probability of each state, the State Formulation module contacts the Rule Engine.

For example, for state s2 = 〈t1, t5〉 with Is2 = {t2}, the State Formulation module

formulates the event combination ((t1.e∧ t5.e)∧ (¬t2.e)), and request its probability

from the Rule Engine, which responds back with the value 0.072. These computed

probability values are used to guide the search in the space in order to locate the most

†The state śl is the parent state of all possible top-k answers having a tuple different
from t at position l+ 1. Hence, we can think of the tuple vector of śl as the tuple vector of
sl appended by a yet unknown tuple t′ following t in score order, which will make setting
Iśl

= Isl
∪ {t} consistent with our previous definition of the set I. Moreover, since t′

is unknown at this point, computing P(śl) as Pr(sl ∧ ¬Iśl
) correctly upper bounds the

probability of any top-k answer generated from sl and having a tuple different from t at
position l + 1.
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Figure 4.2: Interaction of framework components

probable ranking of query results. In Section 4.2.3, we give efficient search algorithms

that partially materialize the problem space by retrieving the least possible number

of tuples, and materializing the least possible number of search states.

Cost Metric. Based on our problem definition in Section 3.4, the number of

possible top-k answers that can be obtained from n retrieved tuples is bounded by

(
n

k
), which is in O(nk/k!). Since k is a query parameter with typically small value,

our primary cost metric is n, the number of consumed tuples from the Tuple Access

Layer. Additionally, since we aim at searching the space of possible answers, we would

like to minimize the size of the materialized space.

4.2.3 Navigating the Search Space

In this section, we give the details of our probability-guided search algorithms for

computing UTop-Prefix and UTop-Rank queries. Note that UTop-Set and UTop-

Prefix queries return identical answers under tuple level uncertainty (cf. Section 3.4).
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Processing UTop-Prefix Query. We describe Algorithm OPTU-Topk, our pro-

cessing algorithm for UTop-Prefix(k) query. The details of OPTU-Topk are given in

Algorithm 1. The general idea is to buffer retrieved score-ordered tuples, and adopt a

lazy space materialization scheme to extend the state space, i.e., a state might not be

extended by all retrieved tuples. At each step, the algorithm extends only the state

with the highest probability. State extension is performed using the next tuple drawn

either from the buffer or from the underlying Tuple Access Layer. The algorithm

terminates when it reaches a complete state with the highest probability among all

possible states.

We now discuss the details of Algorithm 1. We overload state definition sl to be

sl,i, where i is the position of the last seen tuple by sl,i in the score-ordered tuple

stream. Note that i can point to a buffered tuple or to the next tuple to be retrieved

from the Tuple Access Layer. We define s0,0 as an initial empty state of length 0, where

P(s0,0) = 1. The probability of the empty state upper-bounds the probability of any

non-materialized state, since any non-materialized state is an extension of the empty

state (cf. Property 2).

Let Q be a priority queue of states based on probability, where ties are broken

using deterministic tie-breaking rules. We initialize Q with s0,0. Let d be the number

of retrieved tuples. OPTU-Topk iteratively retrieves the top state in Q, say sl,i, extends

it into the two next possible states (Section 4.2.2), and inserts the resulting two states

back to Q according to their probabilities. Extending sl,i leads to consuming a new

tuple from the Tuple Access Layer only if i = d, otherwise sl,i is extended using the

buffered tuple pointed to by i+ 1.

OPTU-Topk terminates when the top state in Q is a complete state. If a complete

state sk,n is on top of Q, then both materialized and non-materialized states (which

are upper-bounded by the empty state) have smaller probabilities than sk,n. This

means that there is no way to generate another complete state that will beat sk,n,

based on Property 2.

In addition to extending the space lazily, i.e., only the top Q state is extended

at each step, Algorithm 1 also applies a pruning criterion to significantly cut down
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Algorithm 1 OptU-Topk

UTop-Prefix (source : Score-ordered tuple stream, k : result size)

1 Q ← empty p-queue of states ordered on probabilities ; d← 0 ; maxp ← 0;
2 Insert s0,0 into Q {initialize Q with an empty state}
3 while (Q is not empty)
4 do
5 sl,i ← dequeue (Q) {get the state with the highest probability}
6 if (l = k)
7 then return sl,i {highest probability state is complete, then terminate}
8 else
9 t← NULL

10 if (i = d )
11 then
12 if (source is not exhausted)
13 then
14 t← get next tuple from source ; d← d+ 1
15 else
16 t← tuple at pos i+ 1 in seen tuples buffer
17 if (t is not NULL)
18 then
19 Extend sl,i using t into sl,i+1, sl+1,i+1 {See Section 4.2.2}

{ prune loser states}
20 if (l + 1 = k AND P(sl+1,i+1) > maxp) then maxp ← P(sl+1,i+1)
21 if (P(sl+1,i+1) ≥ maxp) then Insert sl+1,i+1 into Q
22 if (P(sl,i+1) > maxp) then Insert sl,i+1 into Q

the size of Q (line 20): The algorithm maintains a variable maxp representing the

maximum probability of a complete state reached so far. Any other reached state

with probability smaller than maxp can be safely pruned (i.e., not inserted in Q),

based on Property 2.

In Section 4.2.4, we analyze the complexity and performance guarantees of Algo-

rithm OPTU-Topk.
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Algorithm 2 OptU-kRanks

UTop-Rank (source : Score-ordered tuple stream, k : Result size)

1 Initialize {answer1 . . . answerk} as {null, . . . , null}
2 Initialize (ubound1, . . . , uboundk) as (1, . . . , 1) {bounds of unseen tuples}
3 reported← 0 ; depth← 1; space← ∅ {current set of materialized states }
4 while ( source is not exhausted AND reported < k)
5 do
6 t← next tuple from source
7 Extend all states in space based on t
8 for (i=1 to min(k, depth))
9 do

10 Set uboundi ←
∑

j<i Zj based on space

11 if (answeri is previously reported)
12 then Continue
13 Compute Pt,i
14 if ( (answeri is null) OR

(answeri is not null AND Pt,i > answeri.prob) )
15 then {found a better answer at rank i}
16 answeri ← t
17 answeri.prob← Pt,i
18 if (answeri.prob ≥ uboundi)
19 then {termination condition satisfied at rank i}
20 Report answeri
21 reported← reported+ 1
22 depth← depth+ 1

Processing UTop-Rank Query. We describe OPTU-kRanks, our query processing

algorithm for UTop-Rank(i, i) query, for i = 1 to k (extending the algorithm to

compute UTop-Rank(i, j) query answer, where 1 ≤ i ≤ j ≤ k is straightforward). Let

t be the nth tuple in score-ordered stream. Let Pt,i be the probability that tuple t

appears at rank i. It follows from our state definition that Pt,i is the summation of

the probabilities of all states with length i whose tuple vectors end with t. In other

words, we can compute Pt,i, for i = 1 . . . n, as soon as we retrieve t from the Tuple

Access Layer. Algorithm OPTU-kRanks builds on this observation by extending all
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maintained states on retrieving each new tuple t, causing all possible ranks of t to

be identified. An upper-bound is maintained for the probability of an unseen tuple

being at rank i = 1 . . . k. The algorithm reports an answer t∗ at rank i, when Pt∗,i

is greater than both the probability of any retrieved tuples being at rank i, and the

upper-bound on the probability of any non-retrieved tuple being at rank i.

Algorithm 2 describes the details of OPTU-kRanks. For each rank i, the algorithm

remembers only the most probable answer obtained so far. This is because an unseen

tuple u cannot change Pt,i of a seen tuple t, since u can never appear before t in

any possible world, as u has a smaller score than t. In order to conclude an answer

for rank i, the algorithm upper-bounds the probability of any unseen tuple to be

at rank i as follows. Let ωj be the current set of states with length j, and let Zj =∑
sj∈ωj

P(sj). For any rank i, the value of
∑

j<i Zj can never increase when new tuples

are consumed. Therefore, the maximum probability of an unseen tuple u being at rank

i is
∑

j<i Zj (we formally prove this bound in Theorem 5). Let t∗ be the current UTop-

Rank(i, i) query answer. The termination condition of Algorithm OPTU-kRanks, for

rank i, is thus Pt∗,i ≥
∑

j<i Zj.

We analyze the complexity and performance guarantees of Algorithm OPTU-kRanks

in Section 4.2.4.

4.2.4 Analysis of Search Algorithms

In this section, we give optimality proofs and complexity analysis for our algo-

rithms. We start by showing that Algorithm OptU-Topk reduces to an instance of

A∗ search [30] over the space of all possible top-k answers. We start by giving a

description of the A∗ algorithm [30]. We then show how OptU-Topk is effectively an

instance of A∗.

A∗ Search Algorithm. Assume a finite non-empty set of states S that is repre-

sented by a weighted directed graph, where each graph node denotes a state s ∈ S,

and the weight of the edge connecting two states s and s′ represents the cost of moving
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from s and s′. Let s0 ∈ S be a designated start state, and Sg ⊆ S be a non-empty

set of designated goal states. The objective of Algorithm A∗ is to find the path with

the least cost from s0 to a goal state sg ∈ Sg, where path cost is the summation of the

weights of the edges involved in the path.

A∗ applies a best-first search strategy by traversing the states based on a cost

function f(s) = g(s) + h(s), where g(s) is the cost of the path from s0 to s, while

h(s) is an estimate for the cost of the path from s to the best goal state sg reachable

from s. The state with the least f(·) value is visited next, until the goal is reached.

It was proven in Theorem 1 in [30] that if the function f is admissible, i.e., it does

not overestimate actual path cost, the A∗ algorithm is also admissible, which means

that it is guaranteed to find the path with the least cost by correctly bounding other

unexplored paths. Moreover, given available domain knowledge about the problem’s

space, if A∗ uses the tightest possible estimate h(·) to cost the search paths †, then

all admissible algorithms that are no more informed than A∗ have to visit the same

states visited by A∗. This means that A∗ is optimal in the number of visited states.

Reducing OptU-Topk to A∗ Search. Similar to A∗ search, OptU-Topk starts from

an empty (initial) state, and terminates at a complete (goal) state with the maximum

probability. The state space in Algorithm OptU-Topk can be represented as a tree

whose root is the initial state, and leaves are the complete states (i.e., states with

length k). For example, Figure 4.3 shows the state space corresponding to the given

score-ordered tuple stream (we show the probability of the existence event correspond-

ing to each tuple). We assume independent tuple events to simplify the computation

of state probabilities, which are given by the number beside each state. For k = 2, the

shaded tree nodes show two possible complete states. Other possible complete states

can be reached by completing the generation of the space. Such full generation of the

space can be avoided in OptU-Topk by early pruning of tree paths, as we show next.

†For example, if states represent cities, and the cost of moving from one state to another
is the traveling distance, the tightest possible estimate h(s) is given by the smallest airline
distance from s to a goal state [30].
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Figure 4.3: State space of Algorithm OptU-Topk (For k = 2, the order of opening a
state is given by the square beside each node, and complete states are represented by
shaded nodes)

Algorithm OptU-Topk opens a non-complete state sl by extending sl using the next

tuple from the score-ordered input stream (cf. Section 4.2.2), and closes (i.e., prunes)

a non-complete state sl if a complete state sk is reached, where P(sk) > P(sl) (cf.

Section 4.2.3). The selection of which state to open next is based on computed upper-

bounds of the probabilities of possible complete states. For example in Figure 4.3,

the algorithm opens the states in the order shown in the square beside each node, and

terminates with 〈t2, t3〉 as the most probable top-2 answer. We next illustrate, using

the constructs of A∗ search, computing the probability upper-bounds of a given state.

The probability of state sl represents the cost of reaching sl from the initial state.

Our objective is to find a complete state with the highest probability among all

possible complete states. Let A(sl) be the conjunction of tuple events on the tree

path from the initial state to sl. Let B(sl) be the conjunction of tuple events on

the tree path from sl to the most probable complete state sk reachable from sl.

Based on the principles of probability theory, it follows that P(sk) = Pr(A ∧ B) ≤
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min(Pr(A),Pr(B)).

In the terminology of A∗, for a state sl, let g(sl) = P(sl), and h(sl) be an upper-

bound on the probability of the conjunction of tuple events on the path from sl to a

complete state (i.e., h(sl) is the maximum cost incurred in reaching a complete state

from sl). Further, define f(sl) as f(sl) = min(g(sl), h(sl)) = min(P(sl), h(sl)). It

follows that f(sl) is an upper-bound on the probability of a complete state reachable

from sl.

The remaining point is choosing an admissible upper-bounding function h(sl). A

clear choice is to set h(sl) = 1 for any state sl, which means that we have f(sl) = P(sl).

We further show in Lemma 1 that, under our assumptions, such choice of f(sl) is the

tightest upper-bound on the probability of a complete state reachable from sl.

Lemma 1 Under the Tuple Access, and Available Dependency Information assump-

tions, P(sl) is the tightest upper-bound on the probability of a complete state reachable

from sl.

Proof. Based on Property 2, P(sl) ≥ P(sk) for any complete state sk reachable from

sl. Hence, P(sl) is admissible since it does not underestimate the probability of the

most probable complete state reachable from sl.

Further, we show that P(sl) is the tightest bound. That is, the probability of the

most probable complete state reachable from sl can be exactly the same as P(sl).

Under the Tuple Access and Available Dependency Information assumptions, assume

that there exist k − l non-retrieved tuples that can extend the state sl, where each

tuple has a probability 1, and is independent of all other tuples. In this case, the

probability of a complete state reachable from sl is the same as P(sl). It follows that

the tightest upper-bound on the probability of a complete state reachable from sl is

P(sl). 2

Correctness Proof. Based on the admissibility of using non-complete state prob-

abilities to upper-bound the probabilities of reachable complete states, we next give

a formal proof of correctness of Algorithm OptU-Topk.
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Lemma 2 At any point during Algorithm OptU-Topk operation, the most probable

complete state is reachable from some opened state.

Proof. We need to show that any closed state by Algorithm OptU-Topk does not

lead to the most probable complete state.

Assume that a non-complete state x is closed by Algorithm OptU-Topk where

x leads to the most probable complete state x∗. Hence, at this point there exists

a complete state y∗ with P(y∗) > P(x). However, based on Property 2, we have

P(x) ≥ P(x∗), and thus we also have P(y∗) > P(x∗). This contradicts the initial

assumption that x∗ is the most probable complete state. 2

Theorem 3 Algorithm OptU-Topk correctly finds the most probable complete state.

Proof. The proof is similar to the correctness proof of the A∗ algorithm ([30], Theo-

rem 1). We prove the stated claim by eliminating three possible cases:

[Case 1] Termination is at a non-complete state. This case contradicts the ter-

mination condition of OptU-Topk, which requires reporting a complete state (i.e., a

state of length k). Hence, we can eliminate this case.

[Case 2] Termination is not reached. This case can be eliminated based on

how OptU-Topk generates the search space. Let t(1), t(2), . . . , t(n) be the input tu-

ples in score order. A state that is opened (extended) using the tuple t(i) results in

two new states to be later extended using the tuple t(i+1). Hence, each state is opened

exactly once (i.e., there are no cycles among states). The set of opened states can

thus be organized in a tree (e.g., Figure 4.3) whose maximum depth is n (the number

of tuples), and leaves are either complete or closed states. In the worst case, the full

tree needs to be constructed. Since the number of tuples in the underlying database

is finite, Algorithm OptU-Topk must reach termination in a finite time.

[Case 3] Termination is at a complete state that is not the most probable complete

state. Assume that Algorithm OptU-Topk terminated at a state x∗, while the most

probable complete state is another state y∗ 6= x∗. Hence, based on Lemma 2, there
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exists some opened state y such that y∗ can be reached from y, which means that

P(y) ≥ P(y∗) (cf. Property 2). However, based on the termination condition of

Algorithm OptU-Topk, we have P(x∗) > P(s) for any opened state s. It follows that

P(x∗) > P(y) ≥ P(y∗), which contradicts the assumption that y∗ is the most probable

complete state. 2

Similarly, we prove the correctness of Algorithm OPTU-kRanks in Lemma 3.

Lemma 3 Algorithm OPTU-kRanks correctly finds the most probable tuple to appear

at each rank i in 1 . . . k.

Proof. Based on the goal of the algorithm, we need to eliminate two cases:

[Case 1] Termination is not reached. Similar to the proof of Theorem 3, this case

can be eliminated based on the finite number of input tuples, and the tree structure

of the search space.

[Case 2] Termination for rank i is at a tuple that is not the most probable tuple

to appear at rank i. From possible worlds semantics, we have for a tuple t, Pt,i =∑
si
P(si), where si is any possible state (i.e., a prefix of at least one possible world)

with length i and having t as the tuple ranked last. Based on the admissibility of

using P(sl) as an upper bound on the probability of any child state generated from sl

(Lemma 1), it follows that or any non-retrieved tuple t, we have Pt,i ≤
∑

j<i Zj . . .(‡),

where Zj is the summation of the probabilities of currently opened states with length

j. Assume that Algorithm OptU-Topk reports tuple t∗ as the most probable tuple to

appear at rank i. Hence, based on the algorithm’s termination condition, we have

Pt∗,i ≥
∑

j<i Zj. Let u be a non-retrieved tuple with Pu,i > Pt∗,i. However, this means

that Pu,i >
∑

j<i Zj, which is a contradiction with (‡). 2

Performance Guarantees. We next analyze the performance guarantees of our

proposed search algorithms.

We first define a class of search algorithms C to which we compare our proposed

algorithms. Let C be the class of algorithms that search the problem space defined in
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Section 4.2.1 under the assumptions given in Section 4.1 to correctly find a complete

state with the highest probability (i.e., members of C can open states in any order,

not necessarily based on state probability, until reaching the most probable complete

state).

Theorem 4 Any algorithm A ∈ C must open all the states opened by OptU-Topk.

Proof. The proof is similar to the optimality proof of the A∗ algorithm ([30], Theo-

rems 2 and 3).

We consider two possible cases, and give the proof by contradiction:

[Case 1] State probabilities have no ties. Assume that some state sl is opened

by OptU-Topk but not by A. Let the answer reported by A be x∗, and the answer

reported by OptU-Topk be y∗. Since both A and OptU-Topk are correct and we

have no ties in state probabilities, it follows that x∗ = y∗. Since sl is opened by

OptU-Topk, then we know that, at some point, sl was the most probable state among

all opened states, and that y∗ is either an extension of sl or an extension of another

non-complete state with a smaller probability. It follows that P(sl) > P(y∗). Hence,

we have P(sl) > P(x∗) . . .(†). However, since A has not opened sl, and A is correct,

it follows that P(sl) < P(x∗) . . .(‡). By contradiction of (†) and (‡), Theorem 4 is

proven for [Case 1].

[Case 2] State probabilities can have ties. Let OptU-Topk∗ be the set of algorithms

identical to OptU-Topk, but each algorithm resolves ties in state probabilities (when

picking the next state to open) in a different way, such that members of OptU-Topk∗

cover all possible tie-breaking rules. In the following, we show that there exists some

member T ∗ ∈ OptU-Topk∗ such that any algorithm A ∈ C must open all the states

opened by T ∗. Assume A opens the same states as T ∗, until some state sl that is

opened by T ∗ but not by A. Let the next state opened by A be śl. Since, at this point,

sl is the most probable state in the space, we have two possibilities: (i) P(śl) < P(sl);

and (ii) P(śl) = P(sl). However, possibility (i) contradicts with A being correct as

proven in [Case 1]. Hence, we only consider possibility (ii). Let T ∗ = T ∗1 , where
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T ∗1 ∈ OptU-Topk∗, and T ∗1 picks śl as the next state to open. By repeating the above

procedure at each state opened by T ∗ but not by A, we can show that there exists a

member T ∗ ∈ OptU-Topk∗, such that any state opened by T ∗ must be opened by A
as well, and hence Theorem 4 is proven for [Case 2]. 2

It follows from Theorem 4 that A must consume at least the same number of

tuples as OptU-Topk (or a member of OptU-Topk∗ in case of probability ties) since A
opens at least the same states as OptU-Topk.

The performance guarantees of Algorithm OPTU-kRanks are defined in terms of

the number of retrieved tuples, since OPTU-kRanks materializes all space states based

on the retrieved tuples. Our result is given in Theorem 5 below. The assumptions on

the class of search algorithms C are the same as stated in our previous definition of C,
however the goal is to find the most probable tuple to appear at each rank in 1 . . . k.

Theorem 5 Any algorithm A ∈ C must retrieve at least the same number of tuples

retrieved by Algorithm OPTU-kRanks to compute UTop-Rank(i, i) query answer, for

i = 1 to k.

Proof. We prove the stated claim by showing that the computed probability upper

bound on Pu,i, for a non-rerieved tuple u, is tight, and hence each retrieved tuple by

OPTU-kRanks is necessary for termination.

At any step during OPTU-kRanks processing, let ωj be the set of opened states

with length j, and let Zj =
∑

sj∈ωj
P(sj). Assume OPTU-kRanks reports t as the

UTop-Rank(i, i) query answer, while the termination condition is not satisfied, i.e.,

Pt,i <
∑

j<i Zj. Assume the next i tuples, non-retrieved yet, are u1, . . . , ui, such that

uj is implied by each state in ωj−1, and exclusive with any other state sl, for l 6= j−1.

It follows that uj extends all states in ωj−1 into states of length j with exactly the

same probabilities, and no state sj−1 will be remaining. Additionally, the probability

and the length of any other state sl for l 6= j − 1 does not change. Hence, it follows

that Pui,i =
∑

j<i Zj. Then,
∑

j<i Zj upper-bounds Pu,i for a non-retrieved tuple u.

Further, assuming a higher upper-bound would be loose, based on Property 2 and the
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fact that Pu,i depends only on states with length < i. Hence,
∑

j<i Zj is the tightest

upper-bound of Pu,i.

Assume an algorithm A ∈ C that reports UTop-Rank(i, i) query answer, while

retrieving less number of tuples than OPTU-kRanks. At the point A terminates, the

termination condition of OPTU-kRanks is not reached based on the set of tuples re-

trieved by A. Since OPTU-kRanks is correct (Lemma 3) and A is correct, then they

must return identical answers. However, we can construct a case, similar to the above,

in which a non-retrieved tuple u is the UTop-Rank(i, i) query answer that is reported

by OPTU-kRanks. Since A terminates before reaching u, it must have reported a

different answer u′ 6= u, which contradicts A being correct. 2

Complexity Analysis. We next give time and space complexity analysis. We de-

note with space complexity the size of the materialized search space. In the following,

we assume the cost of computing a state probability by the Rule Engine is bounded

by some constant cost. We denote with n the number of tuples retrieved from the

Tuple Access Layer to compute query answer.

According to our Tuple Access assumption in Section 4.1, we focus on analyzing the

space search algorithms implemented in the Probabilistic Ranking Layer by assuming

that the Tuple Access Layer indexes the tuples qualified by relational processing (e.g.,

filtering and joining) in the order of their scores. Rank-aware query processing (cf.

Section 2.1) can efficiently provide incremental score-ordered retrieval of these tuples.

In the absence of such tuple access methods, a complexity of O(m log(m)), where m

is the total number of qualified tuples in the Tuple Access Layer, needs to be added

to our complexity bounds in order to account for the cost of sorting tuples on score.

Algorithm OPTU-Topk. Since OPTU-Topk is an instance of optimal A∗ search, we

expect its worst-case complexity bounds to be exponential similar to A∗. We next

analyze the complexity bounds. Based on algorithm description in Section 4.2.3,

the lower-bound time complexity of OPTU-Topk is Ω(klogk), and the corresponding

space complexity is Ω(k). These bounds are achieved when the algorithm always

extends the state with the largest length at each step (iteration). This allows the

algorithm to terminate in exactly k steps. At each step, OPTU-Topk generates two
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new states that replace their parent state in the priority queue, which costs O(logk)

time. The upper-bound (worst case) time complexity of OPTU-Topk is O(n
k

k!
log(n

k

k!
)),

and the corresponding space complexity is O(n
k

k!
). These bounds are achieved under

the extreme case, where all possible score-ordered prefixes of the retrieved n tuples,

i.e., prefixes with lengths 0 . . . k, are fully materialized before concluding query answer

(the number of possible score-ordered prefixes of length m out of n tuples is in O(n
m

m!
)).

We note, however, that on the average and for practical values of k, the algo-

rithm efficiently computes query answers by exploiting its probability-guided search,

and space pruning criteria. We demonstrate this behavior in Section 4.4 through

experiments conducted on different data distributions and tuple dependencies.

Algorithm OPTU-kRanks. The lower-bound time complexity of OPTU-kRanks is

Ω(k2k), and its corresponding space complexity is Ω(2k). These bounds are achieved

when the algorithm terminates in k steps, where in each step the whole space is ex-

tended by the new retrieved tuple. The upper-bound time complexity is O(n
k+1

k!
) and

the corresponding space complexity is O(n
k

k!
), since all possible score-ordered prefixes

of the retrieved n tuples are maintained and extended by each retrieved tuple.

Based on our experimental evaluation, the main factors that affect the average

case performance of our algorithms are the following:

1. Score-probability correlation: In general, positive correlation between the distri-

butions of tuple scores and probabilities leads to finding high-probability tuples

early in the score-ordered tuple stream, which allows for early termination.

2. Complexity of tuple dependencies: Complex dependencies negatively affect the

performance by increasing the probability computation cost in the Rule Engine.

For example, a dense set of dependencies may entail tracking tuple dependencies

on a long chain of parent tuples, which negatively affects the performance.

3. Distribution of tuple probabilities: Distribution of tuple probabilities affects

the performance of the algorithms. For example, an exponential distribution of

tuple probabilities with a fast rate of decay negatively affects the performance

since many tuples will have small probabilities.
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We empirically demonstrate the effect of these different factors in our experimental

study in Section 4.4.

4.3 Relaxing Framework Assumptions

Our framework assumptions, discussed in Section 4.1, can be relaxed in some cases,

where additional information on the problem space is available. In this section, we

show how to exploit such information for more efficient processing. In Section 4.3.1, we

discuss the effect of relaxing the Available Dependency Information assumption, where

we assume all tuples are known to be independent. In Section 4.3.2, we discuss the

effect of relaxing our score-ordered Tuple Access assumption, where we use different

tuple orders.

4.3.1 Exploiting Known Tuple Dependencies

Under general tuple dependencies, top-l states are generally incomparable even if

they have the same length. This is because each state could be extended in a different

manner to a complete state. For example, the tuples in one state might imply all other

unseen tuples. The materialized states could be reduced significantly if we have an

ability to prune looser states from our search space early. In general, an incomplete

state sl can be pruned if there exists a complete state sk with P(sk) > P(sl). Hence,

for an incomplete state sl, if we can compute the maximum probability of a valid

complete state generated from sl, denoted pmax(sl), we can safely prune all states with

probability less than pmax(sl). The Rule Engine may be able to compute pmax(sl)

of a given state sl. However, this operation is sensitive to the complexity of tuple

dependencies, and the Rule Engine design. We show in the following how to conduct

such pruning for the case of independent tuples.
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UTop-Prefix Query under Independence. In some cases, the given query and

the underlying dependency model may provide additional (free) information on po-

tential dependencies among query output tuples before query evaluation starts. For

example, a simple selection query that involves a single relation with independent

tuples does not generate dependencies among query output tuples.

Under the independence of tuples’ existence events (tuple independence, for short),

we can aggressively prune incomplete states, early in our search, to keep only the states

that can lead to query answer. The pruning criterion is formulated in Lemma 4.

Lemma 4 Under tuple independence, a state ym can be safely pruned if there exists

another state xn with P(xn) > P(ym), where xn and ym are both maintained after

seeing the same set of score-ranked tuples and n ≥ m.

Proof . Let tnext be first unseen tuple by xn and ym. Let Λx be the set of all possible

sequences of tuple existence/absence events, where each sequence in Λx starts from

tnext, and contains exactly k−n existence events with the last event being an existence

event. That is, appending the events of a sequence λ ∈ Λx to the state xn gives a

complete state of length k. Based on tuple independence, we have Pr(λ) =
∏

e∈λ Pr(e),

for any sequence λ ∈ Λx. Let λx = argmaxλ∈ΛxPr(λ). Similarly, define Λy and λy for

the state ym.

Let px and py be the probabilities of the most probable complete states reachable

from xn and ym, respectively. It follows that px = P(xn) · Pr(λx), and similarly

py = P(ym) · Pr(λy). We give the lemma proof by considering two cases:

[Case 1] n = m. In this case we have Λx = Λy, and hence λx = λy. Since we have

P(xn) > P(ym) as a given, it follows that px > py.

[Case 2] n > m. In this case we have ∀λ ∈ Λy there exists a sequence λ′ ∈ Λx such

that λ′ is part of λ. The reason is that in order to generate a sequence with k −m
existence events, we must first obtain some sequence with k − n existence events. It

follows that ∀λ ∈ Λy there exists a sequence λ′ ∈ Λx with Pr(λ′) ≥ Pr(λ). Hence, we

have Pr(λx) ≥ Pr(λy), and it follows that px > py.
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In the two previous cases, since px > py, we can safely prune ym since the most

probable complete states reachable from ym is smaller in probability than the most

probable complete state reachable from xn. 2

Lemma 4 formulates a setting where an incomplete state can be early pruned

from the search space. The reason is that, based on the conditions in Lemma 4, the

most probable complete states derived from each of the states xn and ym are obtained

using the same set of unseen tuples. Due to tuple independence, xn and ym would

use exactly the same sequence of existence/absence events of unseen tuples to reach

complete states. However, xn will reach a complete state at most in the same number

of steps as ym, because n ≥ m. Since P(xn) > P(ym), and based on Property 2,

we conclude that the complete state derived from xn would have a higher probability

than the one derived from ym, and we can thus prune ym early from our search space.

Algorithm IndepU-Topk exploits Lemma 4 by grouping states into equivalence

classes based on their lengths. Algorithm IndepU-Topk keeps at most one state for

each length 0 . . . k in a candidate set. The candidate set is extended upon retrieving

each new tuple. IndepU-Topk terminates when at least k tuples have been retrieved,

and the probability of any current state is not above the probability of the current

complete candidate.

Consider for example the score-ranked tuple stream in Figure 4.4 (fractions in-

dicate probabilities, and scores are omitted for brevity), where we are interested in

UTop-Prefix(3) answer. We represent each state sl with its tuple vector, and dis-

tinguish tuples seen but not included by sl with the ¬ symbol. In step (a), after

retrieving the first tuple t1, we construct two states 〈¬t1〉 and 〈t1〉 with lengths 0 and

1, respectively. In step (b), the candidate set is updated based on the new tuple t2,

where two possible candidates with length 1, 〈t1,¬t2〉 and 〈¬t1, t2〉, are generated.

However, we keep only the candidate with the highest probability, since the other

candidate is pruned based on Lemma 4.

Step (c) continues in the same manner by updating the candidate set based

on tuple t3, and pruning the less probable candidate from each equivalence class.

Note that the candidate 〈¬t1,¬t2,¬t3〉 is pruned because there is another candidate
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t4:0.2t3:0.8t2:0.3t1:0.2 …Score-ranked stream
(a) (b) (c) (d)

probcandid.length

0.8¬t10

0.2t11

0.56¬t1, ¬t20

0.24¬t1, t21

0.14t1, ¬t21

0.06t1,t22

probcandid.length

0.112¬t1,¬t2,¬t30

0.048¬t1,t2,¬t31

0.448¬t1,¬t2,t31

0.192¬t1,t2,t32

0.012t1,t2,¬t32

probcandid.length

0.358¬t1,¬t2,t3,¬t41

0.15¬t1,t2,t3, ¬t42

0.09¬t1,¬t2,t3, t42

probcandid.length

0.048t1,t2,t33

0.04¬t1,t2,t3, t43

0.048t1,t2,t33

Figure 4.4: IndepU-Topk processing steps

〈¬t1,¬t2, t3〉 with a larger length and higher probability. In step (c) we have con-

structed the first complete candidate, 〈t1, t2, t3〉, and the first termination condition

is met. In step (d) we update the candidate set based on t4. Notice that we cannot

stop after step (d) because the second termination condition is not met yet – there

are candidates with higher probabilities than the current complete candidate – and so,

there is a chance that 〈t1, t2, t3〉 will be beaten. Applying the space pruning criterion

given in Lemma 4 results in significant performance improvements as we illustrate in

our experiments in Section 4.4.

Complexity Analysis. Let n be the total number of consumed tuples. For each

tuple, Algorithm IndepU-Topk extends at most k states. The time complexity is thus

in O(nk), while space complexity is in O(k).

UTop-Rank Query under Independence Under tuple independence, a UTop-

Rank query exhibits the optimal substructure property, i.e. the optimal solution of the

larger problem is constructed from solutions of smaller problems. This allows using

a dynamic programming algorithm. We now describe IndepU-kRanks, a dynamic

programming algorithm to answer UTop-Rank query under the independence of tuple

events.

Consider the example depicted by Figure 4.5, where we are interested in UTop-

Rank(i, i) query answer, for i = 1 to 3. In the shown table, a cell at row i and column
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Figure 4.5: IndepU-kRanks processing steps

x contains Px,i (the probability of tuple x to be at rank i). For a scoring function F ,

the rank 1 probability of a tuple x is computed as Pr(x.e) ×
∏

z:F(x)<F(z)

(1 − Pr(z.e)),

which is the probability that x.e is true and all tuple events with higher scores are

false. The computation of the probabilities in the remaining rows is based on the

following property:

Property 3 [Recurrence of Rank Probability] Under tuple independence and

for i > 1,

Px,i = Pr(x.e)×
∑

y:F(y)>F(x)

Py,i−1 ×
∏

z:F(x)<F(z)<F(y)

(1− Pr(z.e))

2

The rationale of Property 3 is that under independence for tuple x to appear at

rank i, we need only to consider the probability that x is consecutive to every other

tuple y at rank i−1. This probability is computed using the probability that x exists,

each tuple z that appears at an intermediate rank between x and y does not exist,

and y appears at rank i− 1.

For example, in Figure 4.5, Pt2,2 = 0.9 × 0.3 = 0.27, while Pt3,2 = (0.6 × 0.63) +

(0.6 × 0.1 × 0.3) = 0.396. The shaded cells indicate the UTop-Rank(i, i) answer, for

i = 1 to 3. Notice that the summation of the probabilities of each row will be 1 if we

completely exhaust the tuple stream. This is because each row actually represents a
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horizontal slice in ranked possible worlds. This means that we can report an answer

from any row whenever the maximum probability in that row is greater than the row

probability remainder. Notice also that the computation in each row depends solely

on the row above.

The above description gives rise to the following dynamic programming formu-

lation. We construct a matrix M with k rows, and a new column is added to M

whenever we retrieve a new tuple from the score-ranked stream. Upon retrieving a

new tuple t, the column of t in M is filled downwards based on the following equation:

M [i, t] =



Pr(t.e)×
∏

z:F(t)<F(z)

(1− Pr(z.e)) if i = 1

Pr(t.e)×
∑

y:F(y)>F(t)

M [i− 1, y]×
∏

z:F(t)<F(z)<F(y)

(1− Pr(z.e)) if i > 1

(4.1)

For example in Figure 4.5, M [2, 3] = Pr(t3.e) × (M [1, 2] + (1 − Pr(t2.e)) ×
M [1, 1]). Algorithm IndepU-kRanks returns a set of k tuples {t1 . . . tk}, where

ti = argmaxx M [i, x].

Complexity Analysis. The size of matrix M is in O(nk), where n is the number

of consumed tuples. For each consumed tuple, the algorithm scans the matrix rows

to compute tuple probability at each rank. The time complexity is thus in O(n2k).

4.3.2 Using Other Tuple Retrieval Orders

Our previous algorithms retrieve tuples in score order, which is necessary to compute

non-trivial lower-bounds on state probabilities for general tuples dependencies, as we

show in Section 4.2.1. We show in this section two settings where probability order

can be used to bound states probabilities, when tuples are independent.

Combining Score and Probability Orders. We describe an adaptation of our

algorithms in Section 4.3.1 to combine score and probability orders in a threshold
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algorithm-like fashion. Threshold Algorithm (TA) [24] aggregates multiple ranked

lists for the same set of objects based on a monotone score aggregation function.

TA finds the top-k objects by scanning the ranked lists in parallel, computing the

aggregated score of seen objects, and bounding the scores of unseen objects.

We assume two ranked lists sorting tuples in descending score and probability

orders. The aggregation function is not explicit in our settings. However, based on

Property 2, state probability is monotone in the number of state tuple events, i.e.,

adding a tuple event to some state does not increase its probability. We thus use

score list to construct states, and probability list to further shrink state probabilities

by upper-bounding the probabilities of non-retrieved tuples in the score list. A high-

level description of our TA-adaptation of Algorithm IndepU-Topk is the following:

1. Retrieve a tuple t from the score list, use random access to the probability list

to get the probability of t. Update search states based on t, as described in

Algorithm IndepU-Topk.

2. Retrieve a tuple t́ from the probability list. If t́ is not retrieved before in the

score list, let p be the probability of t́. Hence, p upper-bounds the probability

of any non-retrieved tuple in the score list. We do not need to probe the score

list with t́ since it comes out of score order.

3. For each state sl materialized by IndepU-Topk, the maximum probability of a

complete state reached from sl is U(sl) = P(sl)×p(k−l). We use U(sl), instead of

P(sl), to decide on pruning loser states in IndepU-Topk using the same pruning

criteria discussed in Lemma 4.

4. Repeat from step (1) until the termination condition of IndepU-Topk is met.

In step (3), U(sl) is computed by optimistically assuming that sl extends to a

complete state by appending k− l tuples to sl, each has a probability p. This bound is

correct since it assumes the maximum probability that can be achieved by a complete

state derived from sl, based on the largest possible probability of the non-retrieved tu-

ples. Since U(sl) ≤ P(sl), using probability order allows further reduction in the prob-

abilities of incomplete states, which can lead to faster termination of IndepU-Topk.
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When arbitrary tuple dependencies exist, probability order can give a tighter

upper-bound for the probability of any complete state derived from a state sl as

U(sl) = min(P(sl), p), since the probability of an event conjunction is bounded by

the minimum probability of the conjuncted events. However, incomplete states cannot

be early pruned by comparing their bounds, since a lower-bound on state probability

is still trivially 0 (e.g., consider the case of a non-retrieved tuple in score order whose

event is mutually exclusive with one event in the incomplete state).

Using Probability Order Only. When further information is available, probabil-

ity order can be used by itself to compute probabilistic top-k queries, while possibly

providing early query termination. Specifically, knowing N , the total number of tuples

in query output, and that all tuples are independent, we can compute non-trivial lower

bounds on state probabilities. For example, assume the two top tuples in probability

order are t1 and t2 with probabilities 1.0 and 0.1, and scores 1 and 10, respectively.

Then, a state s2 = 〈t2, t1〉 has a probability lower-bound of 0.1× 1.0× (1− 0.1)(N−2),

which is computed pessimistically by assuming all non-retrieved tuples have the high-

est possible probability (0.1), and higher scores than t1. Hence, s2 is pessimistically

the top-2 in all worlds that exclude all the remaining tuples. Note that the knowledge

of N is essential to compute this bound, since otherwise the absence probability of

non-retrieved tuples cannot be bounded. Non-trivial lower-bounds of state probabili-

ties clearly allow for early query termination.

We note that, in practice, the lower-bounds computed using probability order can

be very loose, i.e., they heavily underestimate actual probabilities, since the lower-

bound is polynomial in the number of non-retrieved tuples which is usually a large

number.

4.4 Experiments

Our experiments are conducted on a 3GHz Pentium IV PC with 1 GB of memory,

running Debian GNU/Linux3.1. We built our framework on top of RankSQL [45],
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which provides rank-awareness support. We used synthesized datasets generated by

R [53]. Space navigation algorithms, and a rule engine prototype were implemented

in C. We created a customized set of rules for each dataset to control the generation

of possible worlds.

The main performance metrics to evaluate probabilistic top-k query processing

techniques are: (1) query execution time, and (2) tuple scan depth (the number of

consumed tuples from D). In all experiments we used rank-aware plans to efficiently

report tuples in score order. We emphasize, however, that our techniques are inde-

pendent of the underlying source of score-ranked tuples as we discuss in Section4.1.
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The Näıve Approach

We illustrate the infeasibility of applying the näıve approach of materializing possible

worlds space, sorting each world individually, and merging identical top-k answers.

Due to space explosion, we applied this approach to small databases of sizes less than

30 tuples with different sets of generation rules. The materialization phase was the

bottleneck in this approach consuming, on the average, one order of magnitude longer

times than the merging phase. For example, processing a database of only 28 tuples

with exclusiveness rules yielded 524,288 possible worlds, and top-k query answer was

returned after 1940 seconds of which 1895 seconds were used to materialize the space.

Effect of the Distribution of Tuples Probabilities

We evaluate here the effect of the distribution of tuples probabilities on execution time

and scan depth. We used datasets with the following (score,probability) distribution

pairs: (1)uu: score and probability are uniformly distributed, (2)un (mean x): score

is uniformly distributed, and probability is normally distributed with mean x, where

x = 0.5 or 0.9, and standard deviation 0.2, and (3)uexp (x): score is uniformly

distributed, and probability is exponentially distributed with mean x, where x = 0.2

or 0.5.

Figures 4.6 and 4.7 show the time and scan depth of IndepU-Topk, respectively,

while Figures 4.8 and 4.9 show the time and scan depth of IndepU-kRanks, respec-

tively, for k values up to 1000. The best case for both algorithms is to find highly prob-

able tuples frequently in the score-ranked stream. This allows obtaining strong can-

didates to prune other candidates aggressively, and thus terminate the search quickly.

This scenario applies to un(mean 0.9) distribution pair where a considerable number

of tuples are highly probable. The counter scenario applies to uexp(0.2) where the

exponential rate of decay in probabilities results in a small number of highly-probable

tuples. IndepU-Topk execution time is under 10 seconds for all data distributions,

and it consumes a maximum of 15,000 tuples for k=1000 under exponentially-skewed

distribution. The maximum scan depth of IndepU-kRanks is 4800 tuple, however the
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execution time is generally larger (a maximum of 2 minutes). This can be attributed

to the design of both algorithms where bookkeeping and candidate maintenance are

more expensive operations in IndepU-kRanks than IndepU-Topk.

Score-Probability Correlations

We evaluate the effect of score-probability correlations. We generated bivariate Gaus-

sian data on score and probability dimensions, and controlled the correlation coef-

ficient by adjusting the bivariate covariance matrix. Positive correlations result in

large savings since in this case highly-scored tuples have high probabilities, which

allows reducing the number of needed-to-see tuples to compute query answers. Fig-

ures 4.10 and 4.11 show the effect of the correlation coefficient on the scan depth of

IndepU-Topk and IndepU-kRanks, respectively. Increasing the correlation coefficient

from 0.1 to 0.8 reduces the scan depth of IndepU-Topk and IndepU-kRanks by an

average of 20% and 26%, respectively. Negative correlation degrades the performance

since it leads to consuming more tuples. For example, decreasing the correlation coef-

ficient from -0.5 to -1 results in an increase, with an average of 1.5 orders of magnitude,

in scan depth for IndepU-Topk, and 1 order of magnitude for IndepU-kRanks. The

effect on execution time is similar.
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Evaluating Algorithms Performance

We evaluate the performance of OPTU-Topk. We used data sets with exclusiveness

dependencies and uncorrelated, positively correlated, and negatively correlated score

and probability distributions. Figures 4.12 and 4.13 show the scan depth and execu-

tion time of the OPTU-Topk algorithm. The execution time is under 100 seconds for

values of k reaching 30. The time is consumed by the algorithm in maintaining the

materialized states in the priority queue before concluding an answer. However, for

positively correlated distributions, the time is only under 1 second for all k values.

The scan depth of OPTU-Topk increases by an average of 1 order of magnitude when

going from positively to negatively correlated distributions. This can be explained

based on the fact that for positive correlation, highly-probable states are reached

quickly after retrieving a small number of tuples, while for negative correlation, more

tuples need to be retrieved before concluding an answer, which leads to materializing

more states.

Rule Set Complexity

We evaluate the effect of potential complexity of model rules on the performance.

Since the study of efficient rule evaluation techniques is beyond the scope of this

dissertation, we implemented a Rule Engine prototype that computes the probabilities

of partial states under tuple exclusiveness. We experimented with different rule sets

with different XOR degrees; which is the number of tuples that are exclusive with a

given tuple. Figure 4.14 shows the execution times of OPTU-Topk and OPTU-kRanks

with different XOR degrees. Increasing the XOR degree results generally in increasing

the execution time with an average of one order of magnitude when going from XOR=2

to XOR=4, or from XOR=4 to XOR=8 at the same value of k. Increasing the XOR

degree raises the cost involved in each request to the Rule Engine since it increases the

possibility that a newly seen tuple is exclusive with other tuples in currently processed

states, which leads to larger computational overhead.
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4.5 Summary and Lessons Learned

This chapter presents the first work that studies formulating and processing top-k

queries under tuple level uncertainty model. The presented work provides insights

on the interplay between the score and probability dimensions in this query type and

gives efficient mechanisms to aggregate probabilities across possible worlds.

We modeled the problem as a state space search, and described several query pro-

cessing algorithms with guarantees on the number of accessed tuples and the size of

materialized search space. Our processing methods integrate tuple retrieval, ranking,

and uncertainty management in the same framework, while leveraging existing ca-

pabilities of RDBMSs. We also studied several relaxations of our assumptions, and

discussed other problem variants.

Lessons Learned. Based on the study and the experiments presented in this chap-

ter, we make the following high level observations:

• The correlation between score and probability distributions impact the perfor-

mance of top-k query evaluation algorithms. Positive correlation usually leads to

a small scan depth in the tuples’ score order, while negative correlation usually

leads to consuming a large number of tuples before termination. The number

of consumed tuples has a direct impact on the size of materialized space.

• In practice, the sources of data uncertainty and preference scores may be inde-

pendent, and hence we do not expect to see clear correlation between score and

probability distributions in many cases.

• Incremental materialization of the dependencies among intermediate query re-

sults is an effective approach for processing probabilistic top-k queries. The

reason is that the number of needed-to-see tuples is usually small, and all of

their dependencies can be indexed in memory (e.g., using factor graphs). We

observe reasonable performance by adopting this approach in our URank re-

search prototype [66].
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• The main performance bottleneck of our space search algorithms is the size of

materialized answers space. Materializing a large portion of the space is infea-

sible in many cases. Developing techniques that lazily materialize the answers

space guided by probability achieves the goal of early termination. Extending

these techniques to compute tighter bounds on the probabilities of unexplored

search paths clearly improves the performance. For example, by knowing that

tuple events are independent, we can reduce the computation cost immensely by

heavily pruning the search space, going from exponential worst-case complexity

to polynomial worst-case complexity.

• Processing tuples in score order is both necessary and sufficient for early query

termination under the assumption of incremental tuple access of the output of

the relational query engine. This assumption fits query processing environments

that pipeline query results as soon as they are ready. The argument for the opti-

mality of score order cannot be made if we drop these assumptions. Using other

tuple retrieval orders requires making different assumptions such as knowing the

total number of tuples in query result beforehand.

• It is possible to combine both score and probability orders in a TA-like top-k

algorithm. However the lack of a clear aggregation function in this case does not

make the properties of the TA algorithm carry over smoothly to the probabilistic

ranking problem, which motivates finding different evaluation techniques.

• Many variations of the probabilistic ranking problem have optimal substructure

properties that allow designing efficient dynamic programming solutions.
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Chapter 5

Ranking with Attribute Level

Uncertainty

In this chapter we describe our proposal in [62, 63] to support ranking queries under

attribute level uncertainty. We give a baseline exact evaluation algorithm in Sec-

tion 5.1. We show how to early-prune tuples that are not part of query answer in

Section 5.2. Next, we give a set of query evaluation algorithms in Sections 5.4 and 5.5.

We discuss the problem of computing consensus ranking in Section 5.6. We present

our experimental study in Section 5.7, and summarize the contents of this chapter in

Section 5.8.

5.1 A Baseline Exact Algorithm

We describe a baseline algorithm that computes the queries in Section 3.4 by ma-

terializing the linear extensions space (we discuss computing URank-Agg query in

Section 5.6). Algorithm 3 gives a simple recursive technique to build the linear ex-

tensions tree (Section 3.2). The first call to Procedure Build Tree is passed the

parameters PPO(R,O,P), and a dummy root node. A tuple t ∈ R is a source if no

other tuple t́ ∈ R dominates t. The children of the tree root will be the initial sources
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Algorithm 3 Build Linear Extension Tree

Build Tree (PPO(R,O,P) : PPO, n : Tree node)
1 for each source t ∈ R
2 do
3 child← create a tree node for t
4 Add child to n’s children
5 ´PPO← PPO(R,O,P) after removing t
6 Build Tree( ´PPO, child)

in R, so we can add a source t as a child of the root, remove it from PPO(R,O,P),

and then recurse by finding new sources in PPO(R,O,P) after removing t.

The space of all linear extensions of PPO(R,O,P) grows exponentially in |R|. As

a simple example, suppose that R contains m elements, none of which is dominated

by any other element. A counting argument shows that there are Σm
i=1

m!
(m−i)! nodes in

the linear extensions tree.

When we are only interested in tuples occupying the top ranks, we can terminate

the recursive construction algorithm at level k, which means that our space is reduced

from complete linear extensions to linear extensions’ prefixes of length k. Under our

probability space, the probability of each prefix is the summation of the probabilities

of linear extensions sharing that prefix. We can compute prefix probabilities more

efficiently as follows. Let ω(k) = 〈t1, t2, . . . , tk〉 be a linear extension prefix of length

k. Let T (ω(k)) be the set of tuples not included in ω(k). Let Pr(tk > T (ω(k))) be

the probability that tk is ranked above all tuples in T (ω(k)). Let Fi(x) =
∫ x

loi
fi(y)dy

be the cumulative distribution function (CDF) of fi. Hence, Pr(ω(k)) = Pr((t1 >

t2), . . . , (tk−1 > tk), (tk > T (ω(k)))), where

Pr(tk > T (ω(k))) =

∫ upk

lok

fk(x) · (
∏

ti∈T (ω(k))

Fi(x))dx (5.1)

Hence, we have
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Figure 5.1: Prefixes of linear extensions at depth 3

Pr(ω(k)) =

∫ up1

lo1

∫ x1

lo2

...

∫ xk−1

lok

f1(x1)...fk(xk) · (
∏

ti∈T (ω(k))

Fi(xk)) dxk . . . dx1 (5.2)

Figure 5.1 shows the prefixes of length 3 and their probabilities for the linear

extensions tree in Figure 3.6. We annotate the leaves with the linear extensions that

share each prefix. Unfortunately, prefix enumeration is still infeasible for all but the

smallest sets of elements, and, in addition, finding the probabilities of nodes in the

prefix tree requires computing an l dimensional integral, where l is the node’s level.

Algorithm Baseline. The algorithm computes UTop-Prefix query by scanning

the nodes in the prefix tree in depth-first search order, computing integrals only for

the nodes at depth k (Equation 5.2), and reporting the prefixes with the highest

probabilities. We can use these probabilities to answer UTop-Rank query for ranks

1 . . . k, since the probability of a node t at level l < k can be found by summing

the probabilities of its children. Once the nodes in the tree have been labeled with

their probabilities, the answer of UTop-Rank(i, j), ∀i, j ∈ [1, k] and i ≤ j, can be

constructed by summing up the probabilities of all occurrences of a tuple t at levels

i . . . j. This is easily done in time linear to the number of tree nodes using a breadth-

first traversal of the tree. Here, we compute m!
(m−k)!

k-dimensional integrals to answer

both queries. However, the algorithm still grows exponentially in m. Answering

UTop-Set query can be done using the relationship among query answers discussed

in Section 3.4.
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Algorithm Baseline exposes two fundamental challenges for efficient query eval-

uation:

1. Database size: The näıve algorithm is exponential in database size. How to make

use of special indexes and other data structures to access a small proportion of

database tuples while computing query answers?

2. Query evaluation cost: Computing probabilities by straightforward aggregation

is prohibitively expensive. How to exploit query semantics for faster computa-

tion?

In Section 5.2, we answer the first question by using indexes to prune tuples that

do not contribute to query answers, while in Sections 5.3, 5.4 and 5.5, we answer the

second question by exploiting query semantics for faster computation.

5.2 k-Dominance: Shrinking the Database

We denote with D, an uncertain database following the attribute level uncertainty

model (cf. Section 3.2). We call a tuple t ∈ D “k-dominated” if at least k other tuples

in D dominate t. For example in Figure 3.6, the tuples t4 and t6 are 3-dominated. Our

main insight to shrink the database D used in query evaluation is based on Theorem 6.

Theorem 6 Let D = {t1, . . . , tn} be a set of tuples with uncertain scores. Let T be

the set of tuples in D, where each tuple in T is dominated by less than k tuples. Let

t(k) ∈ D be the tuple with the kth largest score lower bound. Then, ∀ti ∈ D we have:

1. (upi > lo(k))⇒ ti ∈ T

2. [(up(k) = lo(k) = upi = loi) ∧ (τ(ti, t(k)) = ti)]⇒ ti ∈ T . 2

Proof. If (upi > lo(k)), then the number of score intervals with lo scores ≥ upi is less

than k. Then, ti ∈ T , and hence (1) follows.
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If ti and t(k) have equal single-valued scores and the tie breaker τ favors ti to t(k),

then ti must appear before t(k) in the order of D on lo scores. Hence, there are less

than k tuples with lo scores ≥ upi , and hence (2) follows. 2

Based on Theorem 6, k-dominated tuples do not occupy ranks ≤ k in any linear

extension, and so they do not affect the probability of any k-length prefix. Hence,

k-dominated tuples can be safely pruned from D.

In the following, we describe a simple and efficient technique to shrink the database

D by removing all k-dominated tuples. Our technique assumes a list U ordering tuples

in D in descending score upper-bound (upi) order, and that t(k), the tuple with the kth

largest score lower-bound (loi), is known (e.g., by using an index maintained over score

lower-bounds). Ties among tuples are resolved using our deterministic tie breaker τ

(Section 3.2).

Algorithm 4 gives the details of our technique. The central idea is to conduct a

binary search on U to find the tuple t∗, such that t∗ is dominated by t(k), and t∗ is

located at the highest possible position in U . Based on Theorem 6, t∗ is k-dominated.

Moreover, let pos∗ be the position of t∗ in U , then all tuples located at positions

≥ pos∗ in U are also k-dominated.

Complexity Analysis. Since Algorithm 4 conducts a binary search on U , its

worst case complexity is in O(log(m)), where m = |D|. The list U is given by sorting

D on upi in O(m log(m)), while t(k) is found in O(m log(k)) by scanning D while

maintaining a k-length priority queue for the top-k tuples with respect to loi’s. The

overall complexity is thus O(m log(m)), which is the same complexity of sorting D.

In the remainder of this chapter, we use D́ to refer to the databaseD after removing

all k-dominated tuples.

5.3 Overview of Query Processing

There are two main factors impacting query evaluation cost: the size of answer space,

and the cost of answer computation.
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Algorithm 4 Remove k-Dominated Tuples

Shrink DB (D: database, k: dominance level, U : score upper-bound list)

1 start← 1; end← |D|
2 pos∗ ← |D|+ 1
3 t(k) ← the tuple with the kth largest loi
4 while (start ≤ end) {binary search}
5 do
6 mid← start+end

2

7 ti ← tuple at position mid in U

8 if (t(k) dominates ti)
9 then

10 pos∗ ← mid

11 end← mid− 1
12 else {t(k) does not dominate tuples above ti}
13 start← mid+ 1
14 return D\ {t: t is located at position ≥ pos∗ in U }

The size of the answer space of a UTop-Rank query is bounded by |D́| (the number

of tuples in D́), while for UTop-Set and UTop-Prefix queries, it is exponential in |D́|
(the number of tuple subsets of size k in D́). Hence, materializing the answer space for

UTop-Rank queries is feasible, while materializing the answer space of UTop-Set and

UTop-Prefix queries is very expensive (in general, it is intractable).

The computation cost of each answer can be heavily reduced by replacing the

straightforward probability aggregation algorithm (Section 5.1) with Monte-Carlo in-

tegration exploiting the query semantics to avoid enumerating the probability space.

Let D́ = {t1, t2, . . . , tn}, where n = |D́|. Let Γ be the n-dimensional hypercube

that consists of all possible combinations of tuples’ scores. That is, Γ = ([lo1, up1] ×
[lo2, up2] × · · · × [lon, upn]). A vector γ = (x1, x2, . . . , xn) of n real values, where

xi ∈ [loi, upi], represents one point in Γ. Let ΠD́(γ) =
∏n

i=1 fi(xi), where fi is the score

density of tuple ti. Tuples with deterministic (single-valued) scores are represented

by the same score value in all possible γ’s. On the other hand, tuples with uncertain

scores can be represented by different score values in different γ’s according to the
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intervals that enclose their possible scores.

In case of a continuous fi, the component xi is assumed to be a tiny score interval

in [loi, upi], and fi(xi) is the result of integrating fi over xi. We assume that the

components xi’s of any possible vector γ = (x1, x2, . . . , xn) can always be totally

ordered based on their values.

We next discuss the details of our Monte-Carlo integration method.

5.4 Computing UTop-Rank Query

We start by defining tuple’s rank interval, which is the range of possible ranks that

can be occupied by some tuple.

Definition 11 [Rank Interval] The rank interval of a tuple t ∈ D́ is the range of

all possible ranks of t in the linear extensions of the PPO induced by D́. 2

For a tuple t ∈ D́, let D́(t) ⊆ D́ and D́(t) ⊆ D́ be the tuple subsets dominating t

and dominated by t, respectively. Then, based on the semantics of partial orders, the

rank interval of t is given by [|D́(t)|+ 1, n− |D́(t)|].

For example, in Figure 3.6, for D́ = {t1, t2, t3, t5}, we have D́(t5) = φ, and D́(t5) =

{t1, t3}, and thus the rank interval of t5 is [1, 2].

The database shrinking algorithm in Section 5.2 does not affect tuple ranks smaller

than k, since any k-dominated tuple appears only at ranks > k. Hence, given a range

of ranks i . . . j, we know that a tuple t has non-zero probability to be in the answer

of UTop-Rank(i, j) query only if its rank interval intersects [i, j].

We compute UTop-Rank(i, j) query using Monte-Carlo integration. The main

insight is transforming the complex space of linear extensions, that have to be aggre-

gated to compute query answer, to the simpler space of all possible score combinations

Γ. Such space can be sampled uniformly and independently to find the probability
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of query answer without enumerating the linear extensions. The accuracy of the re-

sult depends only on the number of drawn samples s (cf. Section 2.3). We assume

that the number of samples is large enough so that the approximation error can be

ignored. We experimentally show in Section 5.7 that we obtain query answers with

high accuracy using such strategy.

For a tuple tk, we draw a sample γ ∈ Γ as follows:

1. Generate the value xk in γ

2. Generate n− 1 independent values for other components in γ one by one.

3. If at any point there are j values in γ greater than xk, reject γ.

4. Eventually, if the rank of xk in γ is in i . . . j, accept γ.

Let λ(i,j)(tk) be the probability of tk to appear at rank i . . . j. The above procedure

describes a sampler that can be used to evaluate the following integral using the

Monte-Carlo integration method discussed in Section 2.3:

λ(i,j)(tk) =

∫
Γ(i,j,tk)

ΠD́(γ) dγ (5.3)

where Γ(i,j,tk) ⊆ Γ is the volume defined by the points γ = (x1, . . . , xn), with xk’s rank

is in i . . . j.

Complexity Analysis. Let s be the total number of samples drawn from Γ to

evaluate Equation 5.3. In order to compute the l most probable tuples to appear at a

rank in i . . . j, we need to apply Equation 5.3 to each tuple in D́ whose rank interval

intersects [i, j], and use a heap of size l to maintain the l most probable tuples. Hence,

computing l-UTop-Rank(i, j) query has a complexity of O(s · n(i,j) · log(l)), where

n(i,j) is the number of tuples in D́ whose rank intervals intersect [i, j]. In the worst

case, n(i,j) = n.
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5.5 Computing UTop-Prefix and UTop-

Set Queries

Let v be an ordered list of k tuples, and s be a set of k tuples. We denote with Pr(v)

the top-k prefix probability of v and, similarly, we denote with Pr(s) the top-k set

probability of s.

Similar to our discussion of UTop-Rank queries in Section 5.4, Pr(v) is computed

using Monte-Carlo integration on the volume Γ(v) ⊆ Γ which consists of the points

γ = (x1, . . . , xn) such that the values in γ that correspond to tuples in v have the

same ranking as the ranking of tuples in v, and any other value in γ is smaller than

the value corresponding to the last tuple in v. On the other hand, Pr(s) is computed

by integrating on the volume Γ(u) ⊆ Γ which consists of the points γ = (x1, . . . , xn)

such that any value in γ, that does not correspond to a tuple in s, is smaller than the

minimum value that corresponds to a tuple in s.

The cost of the previous Monte-Carlo integration procedure can be further im-

proved using the CDF product of remaining tuples in D́, as described in Equation 5.2.

The cost of the above integrals is similar to the cost of the integral in Equation 5.3

(mainly proportional to the number of samples). However, the number of integrals

we need to evaluate here is exponential (one integral per each top-k prefix/set), while

it is linear for UTop-Rank queries (one integral per each tuple).

In the following, we describe a branch-and-bound search algorithm to compute

exact query answers (Section 5.5.1). We also describe sampling techniques, based on

the (M-H) algorithm (cf. Section 2.3), to compute approximate query answers at a

lower computational cost (Section 5.5.2).

5.5.1 A Branch-and-Bound Algorithm

Our branch-and-bound algorithm employs a systematic approach to enumerate all

possible candidate solutions (i.e., possible top-k prefixes/sets), while discarding a
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large subset of these solutions by upper-bounding the probability of unexplored can-

didates. We discuss our algorithm by describing how candidates are generated, and

how candidate pruning is conducted. We conclude our discussion by giving the over-

all branch-and-bound algorithm. For clarity of presentation, we focus our discussion

on the evaluation of UTop-Prefix query. We show how to extend the algorithm to

evaluate UTop-Set query at the end of this section.

Candidate Generation. Based on our discussion in Section 5.4, the rank in-

tervals of different tuples can be derived from the score dominance relationships in

the underlying PPO. Using the rank intervals of different tuples, we can incremen-

tally generate candidate top-k prefixes by selecting a distinct tuple t(i) for each rank

i = 1 . . . k such that the rank interval of t(i) encloses i, and the selected tuples at

different ranks form together a valid top-k prefix (i.e., a prefix of at least one linear

extension of the underlying PPO). A top-k prefix v is valid if for each tuple t(i) ∈ v, all

tuples dominating t(i) appear in v at ranks smaller than i. For example in Figure 3.6,

the set of tuples that appear at ranks 1 and 2 are {t5, t2} and {t1, t2, t5}, respectively.

The top-2 prefix 〈t2, t1〉 is invalid since the tuple t5, that dominates t1, is not selected

at rank 1. On the other hand, the top-2 prefix 〈t5, t1〉 is valid since t1 can be ranked

after t5.

Candidate Pruning. Pruning unexplored candidates is mainly done based on

the following property (Property 4). We use subscripts to denote prefixes’ lengths

(e.g., vx is a top-x prefix).

Property 4 [Prefix Inclusion] Let vx be a top-x prefix and vy be a top-y prefix,

where vx ⊆ vy. Then, Pr(vy) ≤ Pr(vx). 2

The correctness of Property 4 follows from the definition of our probability space:

The set of linear extensions prefixed by vx includes all linear extensions prefixed by vy.

Since the probability of a prefix vl is the summation of all linear extensions prefixed

by vl, Property 4 follows.
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Hence, given a top-k prefix vk, any top-x prefix vx with x ≤ k and Pr(vx) <

Pr(vk) can be safely pruned from the candidates set since Pr(vx) upper-bounds the

probability of any top-k prefix v́k where vx ⊆ v́k.

The Overall Search Algorithm. The details of the branch-and-bound search

algorithm are given in Algorithm 5. The algorithm works in the two following phases:

• An initialization phase that builds and populates the data structures necessary

for conducting the search.

• A searching phase that applies greedy search heuristics to lazily explore the

answer space and prune all candidates that do not lead to query answers.

In the initialization phase, the algorithm reduces the size of the input database,

based on the parameter k, by invoking the shrinking algorithm discussed in Section 5.2.

The techniques described in Section 5.4 are then used to compute the distribution λ(i,i)

for i = 1 . . . k. The algorithm maintains k lists L1 . . . Lk such that list Li sorts tuples

in λ(i,i) in a descending probability order.

In the searching phase, the algorithm maintains a priority queue Q that main-

tains generated candidates in descending order of probability. The priority queue is

initialized with an empty prefix v0 of length 0 and probability 1. Each maintained

candidate vx of length x < k keeps a pointer vx.ptr pointing at the position of the

next tuple in the list Lx+1 to be used in extending vx into a candidate of length x+ 1.

Initially, vx.ptr is set to the first position in Lx+1. The positions are assumed to be

0-based. Hence, the value of vx.ptr ranges between 0 and |Lx+1| − 1.

Extending candidates is done lazily (i.e., one candidate is extended at a time).

Following the greedy criteria of A∗ search, the algorithm selects the next candidate

to extend as follows. At each iteration, the algorithm evicts the candidate v∗x at the

top of Q (i.e., Pr(v∗x) is the highest probability in Q). If x = k, the algorithm reports

v∗x as the query answer. Otherwise, if x < k, a new candidate vx+1 is generated

by augmenting v∗x with the tuple t∗ at the first position ≥ v∗x.ptr in Lx+1 such that
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Algorithm 5 Branch-and-Bound UTop-Prefix Query Evaluation

BB-UTop-Prefix (D : database, k : answer size)
1 U ← score upper-bound list {starting Initialization Phase}
2 D́ ← Shrink DB(D, k, U) {cf. Section 5.2}
3 for i = 1 to k
4 Compute λ(i,i) based on D́ {cf. Section 5.4}
5 Li ← sort tuples in λ(i,i) in a descending probability order
6 Q ← a priority queue of prefixes ordered on probability {starting Searching Phase}
7 v0 ← an empty prefix with probability 1 ; v0.ptr ← 0 {first position in L1}
8 Insert v0 into Q
9 while (Q is not empty)

10 v∗x ← evict top prefix in Q
11 if (x = k) then return v∗x {reached query answer}
12 t∗ ← first tuple in Lx+1 at position pos∗ ≥ v∗x.ptr s.t. 〈v∗x, t∗〉 is a valid prefix
13 v∗x.ptr ← pos∗ + 1
14 vx+1 ← 〈v∗x, t∗〉 ; Compute Pr(vx+1)
15 if (x+ 1 = k)
16 then
17 Prune all prefixes in Q with prob. < Pr(vx+1)
18 else
19 vx+1.ptr ← 0 {first position in Lx+2}
20 if (v∗x.ptr < |Lx+1|)
21 then {v∗x can be further extended}
22 Pr(v∗x)← Pr(v∗x)− Pr(vx+1)
23 Insert v∗x into Q
24 Insert vx+1 into Q

vx+1 = 〈v∗x, t∗〉 is a valid prefix. The pointer v∗x.ptr is set to the position right after

the position of t∗ in Lx+1, while the pointer vx+1.ptr is set to the first position in Lx+2

(only if x+ 1 < k). The probabilities of vx+1 and v∗x are computed (Pr(v∗x) is reduced

to Pr(v∗x) − Pr(vx+1)) and the two candidates are reinserted in Q. Furthermore, if

x + 1 = k (line 23), the algorithm prunes all candidates in Q whose probabilities

are less than Pr(vx+1) according to Property 4. Further, if v∗x.ptr > |Lx+1|, then v∗x

cannot be extended into candidates of larger length, and so v∗x is removed from Q.

Figure 5.2 gives an example illustrating how Algorithm 5 works. We use the PPO

in Figure 3.6 in this example. Figure 5.2 shows how the branch-and-bound algorithm
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Figure 5.2: Evaluating UTop-Prefix(3) query

computes for the answer of a UTop-Prefix(3) query, where the ordered tuples lists

L1 = 〈t5, t2〉, L2 = 〈t1, t2, t5〉 , and L3 = 〈t1, t2, t3〉. The search starts with an empty

prefix v0 with probability 1. The prefix v0 is extended using t5 (the first tuple in

L1). The algorithm then computes Pr(〈t5〉) as .75 (the probability is computed using

Monte-Carlo integration as discussed in the beginning of Section 5.5), while Pr(v0)

decreases by .75. Both prefixes are inserted into Q after updating their ptr fields to

point to the next tuple that can be used to create valid prefixes later. After three

steps, the search terminates since the top prefix in Q has length 3.

Computing UTop-Set Query by Branch-and-Bound. The Branch-and-Bound

prefix search algorithm can be extended to compute UTop-Set queries. The reason

is that Property 4 also holds on sets. That is, let sx and sy be two tuple sets with

sizes x and y, respectively. Then, if sx ⊆ sy, we have Pr(sy) ≤ Pr(sx). Hence, Pr(sy)

upper-bounds the probability of any set that can be created by appending more tuples

to sy.

The main difference between prefix search and set search is that multiple prefixes

map to the same set. For example, both prefixes 〈t2, t5〉 and 〈t5, t2〉 map to the set

{t2, t5}. We thus need to filter out prefixes that map to already instantiated sets. This

is done by maintaining an additional hash table of instantiated sets. Each generated

candidate is first looked up in the hash table, and a new set is instantiated only if the
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Figure 5.3: Evaluating UTop-Set(3) query

hash table does contain a corresponding set.

Figure 5.3 shows how the branch-and-bound algorithm computes for the answer

of a UTop-Set(3) query. The search starts by instantiating an empty set s0 with

probability 1. The set s0 is extended using t5 (the first tuple in L1), which results in

having Pr({t5}) = 1 (i.e., t5 appears in all linear extensions at ranks 1 . . . 3), and

hence Pr(s0) is set to 0, and can thus be removed from Q. After three steps, the

search terminates since the top set in Q has size 3.

5.5.2 A Sampling-based Algorithm

In this section we describe a sampling-based algorithm to compute approximate an-

swers of UTop-Prefix and UTop-Set Queries. Based on our method of eliminating k-

dominated tuples (cf. Section 5.2), the input to our sampling algorithms is a reduced

set of tuples with non-zero probabilities to appear at the top k ranks in a random

linear extension. The objective is to sample from the space of linear extensions to

approximate the most probable answers of ranking queries.

Sampling Space. A state in our space is a linear extension ω of the PPO induced

by D́. Let θ and Θ be the probability distributions of top-k prefixes and top-k sets,

respectively. Let π(ω) be the probability of the top-k prefix, or the top-k set in ω,

depending on whether we simulate θ or Θ, respectively. The main intuition of our
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sample generator is to propose states with high probabilities in a light-weight fashion.

This is done by shuffling the ranking of tuples in ω biased by the weights of pairwise

rankings (Equation 3.1). This approach guarantees sampling valid linear extensions

since ranks are shuffled only when tuples probabilistically dominate each other.

Given a state ωi, a candidate state ωi+1 is generated as follows:

1. Generate a random number z ∈ [1, k].

2. For j = 1 . . . z do the following:

(a) Randomly pick a rank rj in ωi. Let t(rj) be the tuple at rank rj in ωi.

(b) If rj ∈ [1, k], move t(rj) downward in ωi, otherwise move t(rj) upward. This

is done by swapping t(rj) with lower tuples in ωi if rj ∈ [1, k], or with upper

tuples if rj /∈ [1, k]. Swaps are conducted one by one, where swapping

tuples t(rj) and t(m) is committed with probability P(rj ,m) = Pr(t(rj) > t(m))

if rj > m, or with probability P(m,rj) = Pr(t(m) > t(rj)) otherwise. Tuple

swapping stops at the first uncommitted swap.

The (M-H) algorithm is proven to converge with arbitrary proposal distribu-

tions [31]. Our proposal distribution q(ωi+1|ωi) is defined as follows. In the above

sample generator, at each step j, assume that t(rj) has moved to a rank r < rj. Let

R(rj ,r) = {rj − 1, rj − 2, . . . , r}. Let Pj =
∏

m∈R(rj ,r)
P(rj ,m). Similarly, Pj can be

defined for r > rj. Then, the proposal distribution q(ωi+1|ωi) =
∏z

j=1 Pj, due to inde-

pendence of steps. Based on the (M-H) algorithm, ωi+1 is accepted with probability

α = min(π(ωi+1).q(ωi|ωi+1)
π(ωi).q(ωi+1|ωi)

, 1).

Computing Query Answers. The (M-H) sampler simulates the top-k pre-

fixes/sets distribution using a Markov chain (a random walk) that visits states biased

by probability. Gelman and Rubin [28] argued that it is not generally possible to use

a single simulation to infer distribution characteristics. The main problem is that the

initial state may trap the random walk for many iterations in some region in the target
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distribution. The problem is solved by taking dispersed starting states and running

multiple iterative simulations that independently explore the underlying distribution.

We thus run multiple independent Markov chains, where each chain starts from an

independently selected initial state, and each chain simulates the space independently

of all other chains. The initial state of each chain is obtained by independently

selecting a random score value from each score interval, and ranking the tuples based

on the drawn scores, resulting in a valid linear extension.

A crucial point is determining whether the chains have mixed with the target dis-

tribution (i.e., whether the current status of the simulation closely approximates the

target distribution). At mixing time, the Markov chains produce samples that closely

follow the target distribution and hence can be used to infer distribution character-

istics. In order to judge chains mixing, we used the Gelman-Rubin diagnostic [28], a

widely-used statistic in evaluating the convergence of multiple independent Markov

chains [18]. The statistic is based on the idea that if a model has converged, then

the behavior of all chains simulating the same distribution should be the same. This

is evaluated by comparing the within-chain distribution variance to the across-chains

variance. As the chains mix with the target distribution, the value of the Gelman-

Rubin statistic approaches 1.0.

At mixing time, which is determined by the value of convergence diagnostic, each

chain approximates the distribution’s mode as the most probable visited state (sim-

ilar to simulated annealing). The l most probable visited states across all chains

approximate the l-UTop-Prefix (or l-UTop-Set ) query answers. Such approximation

improves as the simulation runs for longer times. The question is, at any point during

simulation, how far is the approximation from the exact query answer?

We derive an upper-bound on the probability of any possible top-k prefix/set

as follows. The top-k prefix probability of a prefix 〈t(1), . . . , t(k)〉 is equal to the

probability of the event e = ((t(1) ranked 1st) ∧ · · · ∧ (t(k) ranked kth)). Let λi(t) be

the probability of tuple t to be at rank i. Based on the principles of probability theory,

we have Pr(e) ≤ minki=1 λi(t(i)). Hence, the top-k prefix probability of any k-length

prefix cannot exceed minki=1(maxnj=1 λi(tj)). Similarly, Let λ1,k(t) be the probability
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of tuple t to be at rank 1 . . . k. It can be shown that the top-k set probability of any

k-length set cannot exceed the kth largest λ1,k(t) value. The values of λi(t) and λ1,k(t)

are computed as discussed in Section 5.4. The approximation error is given by the

difference between the top-k prefix/set probability upper-bound and the probability

of the most probable state visited during simulation.

We note that the previous approximation error can overestimate the actual error,

and that chains mixing time varies based on the fluctuations in the target distribution.

However, we show in Section 5.7 that, in practice, using multiple chains can closely

approximate the true top-k states, and that the actual approximation error diminishes

by increasing the number of chains.

Caching. Our sample generator mainly uses 2-dimensional integrals (Equation 3.1)

to bias generating a sample by its probability. Such 2-dimensional integrals are shared

among many states. Similarly, since we use multiple chains to simulate the same dis-

tribution from different starting points, some states can be repeatedly visited by dif-

ferent chains. Hence, we cache the computed Pr(ti > tj) values and state probabilities

during simulation to be reused at a small cost.

Combining MCMC method with Branch-and-Bound Search. The MCMC

method and branch-and-bound search are two alternative techniques for computing

prefix/set-based probabilistic top-k queries. The need of both techniques is justified

by the traditional tradeoff between efficiency and accuracy. The MCMC method is an

efficient sampling technique that produces approximate query answers, while branch-

and-bound is a more expensive A∗ search that produces exact query answers. However,

it is also possible to think of ways to combine the benefits of the two methods. In the

following, we give a high level description of two possible combination possibilities:

• A quick MCMC simulation can be initially run to reach some state s∗ with a

high probability. Then, we can prune incomplete paths, with probabilities below

Pr(s∗), in the search tree constructed by the branch-and-bound algorithm.
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• Pruned paths in the branch-and-bound search tree are used to constrain the

MCMC simulation. For example, if we know that the most probable prefix does

not start with tuple t (because the tree branch starting with t is pruned), we

constrain the MCMC simulation by rejecting all proposed states with t posi-

tioned at rank 1. We thus constrain the simulation to other parts of the space

where more probable states may exist.

5.6 Computing URank-Agg Query

Rank aggregation is the problem of computing a consensus ranking for a set of can-

didates C using input rankings of C coming from different voters. The problem has

immediate applications in Web meta-search engines [23].

While our work is mainly concerned with ranking under possible worlds semantics

(Section 3.4), we note that a strong resemblance exists between ranking in possible

worlds and the rank aggregation problem. To the best of our knowledge, we give the

first identified correspondence between the two problems.

Measuring the distance between two rankings of the set of candidates C is central to

rank aggregation. Given two rankings ωi and ωj, let ωi(c) and ωj(c) be the positions

of a candidate c ∈ C in ωi and ωj, respectively. Two widely used measures of the

distance between two rankings are the Spearman footrule distance and the Kendall

tau distance.

The Spearman footrule distance is the summation, over all candidates, of the

distance between the positions of the same candidate in the two lists, formally defined

as follows:

F(ωi, ωj) =
∑
c∈C

|ωi(c)− ωj(c)| (5.4)

On the other hand, the Kendall tau distance is the number of pairwise disagree-

ments in the relative order of candidates in the two lists, formally defined as follows:

K(ωi, ωj) = |{(ca, cb) : a < b, ωi(ca) < ωi(cb), ωj(ca) > ωj(cb)}| (5.5)
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The optimal rank aggregation is the ranking with the minimum average distance

to all input rankings. It is well known that optimal rank aggregation under Kendall

tau distance (also known as Kemeny-optimal aggregation) is the only aggregation that

satisfies the following intuitive properties [23, 41]:

• Neutrality: if two candidates switch their positions in all input rankings, then

their positions must be switched in the aggregate ranking.

• Consistency: if the set of input rankings is split into two sets A and B, such

that the aggregate rankings of both A and B prefer candidate c1 to candidate

c2, then the overall aggregate ranking must also prefer c1 to c2.

• Extended Condorcet Criterion: for two candidate sets C1 and C2, if for every

ci ∈ C1 and cj ∈ C2, the majority of input rankings prefer ci to cj, then the

aggregate ranking must prefer C1 to C2.

Unfortunately, rank aggregation under Kendall tau distance is NP-Hard in general.

The optimal aggregation under Spearman footrule distance is a 2-approximation of

the Kendall tau aggregation [23, 41]. That is, if ω(K) is the optimal Kendall tau

aggregation of full lists ω1, . . . , ωm, and ω(F ) is the optimal footrule aggregation, then∑m
i=1 K(ω(F ), ωi) ≤ 2 ·

∑m
i=1 K(ω(K), ωi).

In the following sections we discuss evaluating URank-Agg query, based on our

probabilistic partial order model, under each of the Spearman footrule distance (Sec-

tion 5.6.1) and the Kendall tau distance (Section 5.6.2).

5.6.1 URank-Agg with Footrule Distance

Optimal rank aggregation under footrule distance can be computed in polynomial

time by the following algorithm [23]. Given a set of rankings ω1 . . . ωm, the objective

is to find the optimal ranking ω∗ that minimizes 1
m

∑m
i=1 F(ω∗, ωi). The problem is

modeled using a weighted bipartite graph G with two sets of nodes. The first set has a

node for each candidate, while the second set has a node for each rank. Each candidate
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Figure 5.4: Bipartite graph matching

c and rank r are connected with an edge (c, r) whose weight w(c, r) =
∑m

i=1 |ωi(c)−r|.
Then, ω∗ (the optimal ranking) is given by “the minimum cost perfect matching” of G,

where a perfect matching is a subset of graph edges such that every node is connected

to exactly one edge, while the matching cost is the summation of the weights of its

edges. Finding such matching can be done in O(n2.5), where n is the number of graph

nodes [23].

In our settings, viewing each linear extension as a voter gives us an instance of the

rank aggregation problem on a huge number of voters. The objective is to find the op-

timal linear extension that has the minimum average distance to all linear extensions.

We show that we can solve this problem in polynomial time, under footrule distance,

given λi(t) (the probability of tuple t to appear at each rank i, or, equivalently, the

summation of the probabilities of all linear extensions having t at rank i).

Theorem 7 For a PPO(R,O,P) defined on n tuples, the optimal rank aggregation

of the linear extensions, under footrule distance, can be solved in time polynomial in

n using the distributions λi(t) for i = 1 . . . n. 2

Proof. For each linear extension ωi of PPO, assume that we duplicate ωi a number of

times proportional to Pr(ωi). Let Ώ = {ώ1, . . . , ώm} be the set of all linear extensions’

duplicates created in this way. Then, in the bipartite graph model, the edge connecting

tuple t and rank r has a weight w(t, r) =
∑|Ώ|

i=1 |ώi(t) − r|, which is the same as∑n
j=1(nj × |j− r|), where nj is the number of linear extensions in Ώ having t at rank

j. Dividing by |Ώ|, we get w(t,r)

|Ώ| =
∑n

j=1(
nj

|Ώ| × |j− r|) =
∑n

j=1(λj(t)× |j− r|). Hence,
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using λi(t)’s, we can compute w(t, r) for every edge (t, r) divided by a fixed constant

|Ώ|, and thus the polynomial matching algorithm applies. 2

The intuition of Theorem 7 is that λi’s provide compact summaries of voter’s

opinions, which allows us to efficiently compute the weights of graph edge without

expanding the space of linear extensions. The distributions λi’s are obtained by

applying Equation 5.3 at each rank i separately, yielding a quadratic cost in the

number of tuples n.

Figure 5.4 shows an example illustrating our technique. The probabilities of the

depicted linear extensions are summarized as λi’s without expanding the space (Sec-

tion 5.4). The λi’s are used to compute the weights in the bipartite graph yielding

〈t1, t2, t3〉 as the optimal linear extension.

5.6.2 URank-Agg with Kendall Tau Distance

Optimal rank aggregation under Kendall tau distance is known to be NP-Hard in

general by reduction to the problem of minimum feedback arc set [41]: Construct a

complete weighted directed graph whose nodes are the candidates, such that an edge

connecting nodes ci and cj is weighted by the proportion of voters who rank ci before

cj. The problem is to find the set of edges with the minimum weight summation

whose removal converts the input graph to a DAG. Since the input graph is complete,

the resulting DAG defines a total order on the set of candidates, which is the optimal

rank aggregation.

The hardness of the rank aggregation problem gives rise to approximation methods

similar to the Markov chains-based methods in [23] to find the optimal rank aggrega-

tion. Spearman footrule aggregation is also known to be a 2-approximation of Kendall

tau aggregation [41].

However, under our settings, we identify key properties that influence the hardness

of computing optimal Kendall tau rank aggregation. We show that optimal rank

aggregation can be computed in polynomial time depending on the properties of the

underlying PPO, summarized as follows:
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1. If the PPO is induced by tuples with non-uniform score densities, and the PPO

is weak stochastic transitive (see Definition 12 below), then query computation

cost is polynomial in n (the database size).

2. If the PPO is induced by tuples with uniform score densities, then the PPO is

guaranteed to be weak stochastic transitive, and a polynomial time algorithm

to compute Kendall tau aggregation exists. Moreover, by exploiting score uni-

formity, the complexity can be further reduced to O(nlog(n)).

We start our discussion by defining the property of Weak Stochastic Transitivity

in the context of probabilistic partial orders.

Definition 12 [Weak Stochastic Transitivity] A PPO induced by a database D
is weak stochastic transitive iff ∀ tuples x, y, z ∈ D : [Pr(x > y) ≥ 0.5 and Pr(y >

z) ≥ 0.5]⇒ Pr(x > z) ≥ 0.5. 2

The property of weak stochastic transitivity is formulated and used in many prob-

abilistic preference models. We refer the reader to [71] for a detailed discussion. We

briefly contrast our interpretation of probabilistic preference against current interpre-

tations in the following.

In many probabilistic preference models [71, 39, 25], for a pair of alternatives x and

y, Pr(x > y) is interpreted as the probability that x is chosen over y. The origin of such

probabilistic preferences can be related to changes in the internal state of the selecting

agent (e.g., as a result of learning), to noise in the preferences obtained from users, or

to the process of condensing users’ votes into pairwise comparisons among candidates.

In our settings, however, the origin of probabilistic preferences is the uncertainty in

attribute values in the database, which in turn induces uncertainty in tuples’ scores

that we use for comparison and ranking. Our underlying probability space gives a

concrete interpretation of Pr(x > y) as the summation of the probabilities of linear

extensions (possible ranked instances of the database) where x is ranked above y.
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Given an input PPO, the property of weak stochastic transitivity can be decided

in O(n3), where n is the database size, since the property needs to be checked on

tuple triples.

URank-Agg on a PPO with Non-uniform Score Densities

Let Ω = {ω1 . . . ωm} be the set of linear extensions of a PPO. The members of Ω

represent voters associated with probabilistic weights. Hence, our objective is to find

the optimal rank aggregation ω∗ that minimizes 1
m

∑m
i=1 Pr(ωi) · K(ω∗, ωi).

Let Ω(ti>tj) ⊆ Ω be the set of linear extensions where ti is ranked above tj. Then,

Pr(ti > tj) =
∑

ω∈Ω(ti>tj)
Pr(ω). Hence, ω∗ is the ranking that minimizes the proba-

bility summation of pairwise preferences violating the order given by ω∗. That is, ω∗

is the ranking that minimizes the following penalty function:

pen(ω) =
∑

ti,tj∈D:i<j,ω(tj)<ω(ti)

Pr(ti > tj) (5.6)

If the property of weak stochastic transitivity holds on the underlying PPO, then

ω∗ can be efficiently computed based on Theorem 8:

Theorem 8 Given a weak stochastic transitive PPO induced by a database D, the

optimal rank aggregation ω∗ under Kendall tau distance is defined as: ∀ tuples

x, y ∈ D : [ω∗(x) < ω∗(y)] ⇔ [Pr(x > y) ≥ 0.5] while breaking probability ties

deterministically. 2

Proof. Since the underlying PPO is weak stochastic transitive, then ω∗ is a valid

ranking of D, since the definition of ω∗ does not introduce cycles in the relative order

of tuples in D.

Assume a rank aggregation ώ that is identical to ω∗ except for the relative order

of two tuples x and y. We consider the following three possible cases:
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1. [Pr(x > y) = p > 0.5] In this case we have ω∗(x) < ω∗(y) while ώ(x) > ώ(y).

Hence, pen(ω∗) = pen(ώ)− (2p− 1).

2. [Pr(x > y) = p < 0.5] In this case we have ω∗(y) < ω∗(x) while ώ(y) > ώ(x).

Hence, pen(ω∗) = pen(ώ)− (1− 2p).

3. [Pr(x > y) = p = 0.5] In this case assume that the deterministic tie-breaker

τ(x, y) states that (x > y). Then, ω∗(x) < ω∗(y) while ώ(x) > ώ(y). Hence,

pen(ω∗) = pen(ώ). The same result also holds if τ(x, y) states that (y > x).

Moreover, for any other rank aggregation ´́ω that is different from ω∗ in the relative

order of more than two tuples, we have pen(´́ω) ≥ pen(ώ) ≥ pen(ω∗). It follows that

ω∗ is the optimal rank aggregation. 2

Query Evaluation and Complexity Analysis. The result given by Theorem 8

allows for an efficient evaluation procedure to find the optimal rank aggregation in

a weak stochastic transitive PPO. The procedure computes Pr(x > y) for each pair

of tuples (x, y), and uses the computed probabilities to sort the database. That is,

starting from an arbitrary ranking of tuples of D, the positions of any two tuples x

and y need to be swapped iff Pr(x > y) ≥ 0.5 and x is ranked below y. Based on the

weak stochastic transitivity of the PPO, this procedure yields a valid ranking of D
since transitivity does not introduce cycles in the relative order of tuples. Hence, the

overall complexity of the query evaluation procedure is O(n2), where n = |D|, which

is the complexity of computing Pr(x > y) on each pair of tuples (x, y). If it is not

apriori known if the property of weak stochastic transitivity holds on the PPO, then

the overall complexity becomes O(n3) since the PPO needs to be checked for being

weak stochastic transitive first.

URank-Agg on a PPO with Uniform Score Densities

When tuples’ uncertain scores have uniform densities, the cost of computing URank-

Agg query drops considerably. We first prove in Theorem 9 below an important
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property that holds on the PPO induced by uniform score densities. In the following,

we denote with E[fi] the expected value of the score density fi.

Theorem 9 Given a PPO induced by tuples with uniform score densities in a

database D, then ∀ tuples ti, tj ∈ D : (E[fi] ≥ E[fj])⇔ (Pr(ti > tj) ≥ 0.5). 2

Proof. First, we prove that (E[fi] ≥ E[fj])⇒ (Pr(ti > tj) ≥ 0.5). We first compute

the integral that defines Pr(ti > tj) as follows. Pr(ti > tj) = 1
(upi−loi)×(upj−loj)

×∫ upi

loi

∫ x

loj
dydx. By solving the integral we get Pr(ti > tj) = 1

upj−loj
× (upi+loi

2
− loj) =

1
upj−loj

× (E(fi)− loj). We rewrite the given (E[fi] ≥ E[fj]) as E[fi] = E[fj] + ε, where

ε ≥ 0. Then, Pr(ti > tj) = 1
upj−loj

× ((E(fj) − loj) + ε) = 1
2

+ ε
upj−loj

, which means

that Pr(ti > tj) ≥ 0.5.

Second, we prove that (Pr(ti > tj) ≥ 0.5) ⇒ (E[fi] ≥ E[fj]). Assume that

E[fi] − E[fj] = ε, where ε is an arbitrary (positive/negative) real number. Since we

have Pr(ti > tj) = 1
2

+ ε
upj−loj

, and based on the given (Pr(ti > tj) ≥ 0.5), we get
1
2

+ ε
upj−loj

≥ 1
2
, which means that ε ≥ 0. It follows that E[fi] ≥ E[fj], which concludes

the proof. 2

Based on Theorem 9, for tuples ti, tj, tk ∈ D, if Pr(ti > tj) ≥ 0.5 and Pr(tj >

tk) ≥ 0.5, then we have E[fi] ≥ E[fj] and E[fj] ≥ E[fk]. It follows that E[fi] ≥ E[fk],

which also means that Pr(ti > tk) ≥ 0.5. Hence, a PPO that is induced by uniform

score densities is weak stochastic transitive.

Query Evaluation and Complexity Analysis. Since the PPO is weak stochas-

tic transitive, we do not need to conduct the transitivity checking step. We can

compute URank-Agg query using the polynomial algorithm we described previously

for weak stochastic transitive PPO’s. However, based on Theorem 9, we can further

optimize the computation cost. Specifically, for any two tuples ti and tj, we have

(E[fi] ≥ E[fj]) ⇔ (Pr(ti > tj) ≥ 0.5). Hence, we can avoid computing Pr(ti > tj)

for all tuple pairs (ti, tj), and sort the database based on the expected tuples’ scores,

which results in the same sorting based on Pr(ti > tj) values. Computing E[fi] for

116



every tuple ti requires a linear scan over D, which has a complexity of O(n), while

the subsequent sorting step has a complexity of O(nlog(n)). It follows that the query

evaluation procedure has an overall complexity of O(nlog(n)).

5.7 Experiments

All experiments are conducted on a machine with two Dual Core 2.2GHz processors,

2GB of RAM, and 80GB of disk space. We used both real and synthetic data to

evaluate our methods under different configurations. We experiment with two real

datasets: (1) Apts: 33,000 apartment listings obtained by scraping the search results

of apartments.com, and (2) Cars: 10,000 car ads scraped from carpages.ca. The rent

attribute in Apts is used as the scoring function (65% of scraped apartment listings

have uncertain rent values), and similarly, the price attribute in Cars is used as the

scoring function (10% of scraped car ads have uncertain price).

The synthetic data sets have different distributions of score intervals’ bounds:

(1) Syn-u-p: bounds are uniformly distributed, (2) Syn-g-p: bounds are drawn from

Gaussian distribution, and (3) Syn-e-p: bounds are drawn from exponential distri-

bution. The parameter p represents the proportion of tuples with uncertain scores

in each dataset is (default is 0.5). The size of each dataset is 100,000 tuples. In

all experiments, unless otherwise is specified, the score densities (fi’s) are taken as

uniform.

For synthetic data, the bounds of the score interval of each tuple ti is generated

by drawing a random interval starting point loi from the dataset corresponding dis-

tribution (uniform, Gaussian(µ = 0.5, σ = 0.05), or exponential(µ = 0.1)) defined on

the score range [0,1]. The width of the interval is uniform in [0,1]. The main intuition

is to create different patterns of filling the score range with uncertain scores of differ-

ent tuples. For example, while uniform distribution distributes the uncertain scores

uniformly over the score range, exponential distribution creates a skewed pattern in

which a few tuples have high scores, while the majority of tuples have low scores.
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Shrinking Database by k-Dominance

We evaluate the performance of the database shrinking algorithm (Algorithm 4).

Figure 5.5 shows the database size reduction due to k-dominance with different k

values. The maximum reduction, around 98%, is obtained with the Syn-e-0.5 dataset.

The reason is that the skewed distribution of score bounds results in a few tuples

dominating the majority of other database tuples.

We also evaluate the number of tuple accesses used to find the pruning position

pos∗ in the list U (Section 5.2). The logarithmic complexity of the algorithm guar-

antees a small number of tuple accesses of under 20 accesses in all datasets. The

time consumed to construct the list U is under 1 second, while the time consumed by

Algorithm 4 is under 0.2 second, in all datasets.
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Accuracy and Efficiency of Monte-Carlo Integration

We evaluate the accuracy and efficiency of Monte-Carlo integration in computing

UTop-Rank queries. The probabilities computed by the Baseline algorithm are

taken as the ground truth in accuracy evaluation. For each rank i = 1 . . . 10, we

compute the relative difference between the probability of tuple t to be at rank i,

computed as in Section 5.4, and the same probability as computed by the Baseline

algorithm. We average this relative error across all tuples, and then across all ranks

to get the total average error. Figure 5.6 shows the relative error with different space

sizes (different number of linear extensions’ prefixes processed by Baseline). The

different space sizes are obtained by experimenting with different subsets from the

Apts dataset. The relative error is more sensitive to the number of samples than to

the space size. For example, increasing the number of samples from 2,000 to 30,000

diminishes the relative error by almost half, while for the same sample size, the relative

error only doubled when the space size increased by 100 times.

Figure 5.7 compares (in log-scale) the efficiency of Monte-Carlo integration against

the Baseline algorithm. While the time consumed by Monte-Carlo integration is

fixed with the same number of samples regardless the space size, the time consumed

by the Baseline algorithm increases exponentially when increasing the space size.

For example, for a space of 2.5 million prefixes, Monte-Carlo integration consumes

only 0.025% of the time consumed by the Baseline algorithm.

Scalability with respect to k

We evaluate the efficiency of our query evaluation for UTop-Rank(1, k) queries with

different k values. Figure 5.8 shows the query evaluation time, based on 10,000

samples. On the average, query evaluation time doubled when k increased by 20

times. Figure 5.9 shows the time consumed in drawing the samples.

The difference in sampling and ranking times for different datasets is attributed

to two main factors:
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• The variance in the reduced sizes of the datasets based on the k-dominance

criterion. For example, the majority of tuples in Syn-e-0.5 dataset are pruned

using k-dominance, while a much smaller number of tuples are pruned in Syn-

u-0.5 dataset. This happens due to the different distributions of the bounds of

score intervals. In general, the dataset size is inversely proportional to processing

time.

• The percentage of tuples with uncertain scores. For example, the percentage of

tuples with uncertain scores in Apts is 65%, while it is only 10% in Cars. tuples

with uncertain score results in longer processing times since space size (number

of possible rankings) increases with score uncertainty.

Markov Chains Convergence

We evaluate the Markov chains mixing time (Section 5.5). For 10 chains and k = 10,

Figure 5.10 illustrates the Markov chains convergence based on the value of Gelman-

Rubin statistic as time increases. While convergence consumes less than one minute

in all real datasets, and most of the synthetic datasets, the convergence is notably

slower for the Syn-u-0.5 dataset. The interpretation is that the uniform distribution

of the score intervals in Syn-u-0.5 increases the size of the prefixes space, and hence

the Markov chains consume more time to cover the space and mix with the target

distribution. In real datasets, however, we note that the score intervals are mostly

clustered, since many tuples have similar or the same attribute values. Hence, such

delay in covering the space does not occur.

Markov Chains Accuracy

We evaluate the ability of Markov chains to discover states whose probabilities are

close to the most probable states. We compare the most probable states discovered

by the Markov chains to the true envelop of the target distribution (taken as the

30 most probable states). After mixing, the chains produce representative samples

from the space, and hence states with high probabilities are frequently reached. This
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behavior is illustrated by Figure 5.11 for UTop-Prefix(5) query on a space of 2.5 million

prefixes drawn from the Apts dataset. We compare the probabilities of the actual 30

most probable states and the 30 most probable states discovered by a number of

independent chains after convergence, where the number of chains ranges from 20 to

80 chains.

The relative difference between the actual distribution envelop and the envelop

induced by the chains decreases as the number of chains increase. The relative dif-

ference goes from 39% with 20 chains to 7% with 80 chains. The largest number

of drawn samples is 70,000 (around 3% of the space size), and is produced using 80

chains. The convergence time increased from 10 seconds to 400 seconds when the

number of chains increased from 20 to 80.

Branch-and-Bound Search

In this experiment, we evaluate the Branch-and-Bound techniques we propose in Sec-

tion 5.5.1 to evaluate UTop-Prefix and UTop-Set queries. Figures 5.12 and 5.13

compare the processing time of Branch-and-Bound prefix search (Algorithm 5) and

the MCMC sampling method (using 5 chains) for the datasets Syn-u-0.5 and Syn-

g-0.5, respectively. The Branch-and-Bound search shows smaller running times with
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small k values, as it does not have the overhead of proposing states as in the MCMC

method. As the value of k increases, the number of materialized candidates by the

Branch-and-Bound search increases, which negatively impacts the running times.

The MCMC method is, on the average, one order of magnitude faster than the

Branch-and-Bound search. The savings in processing time in MCMC method comes

with the price of giving approximate answers. The average absolute error in the prob-

ability of the answer reported by the MCMC method, with respect to the Branch-and-

Bound exact search, is 0.0012 and 0.0007 for Syn-u-0.5 and Syn-g-0.5, respectively.

The error decreases as the number of MCMC chains increases as we show in Sec-

tion 5.7. Figures 5.14 and 5.15 show similar result for Apts dataset.

We next evaluate the effectiveness of the greedy criteria adopted by Branch-and-

Bound search. Figures 5.16 and 5.17 compare the processing times of Branch-and-

Bound search against the Baseline algorithm using Apts dataset for UTop-Prefix and

UTop-Set queries, respectively. The Baseline algorithm shows an exponential in-

crease in running time as space size (number of prefixes) increases (we omit running

times that are significantly large). On the other hand, Branch-and-Bound search

locates query answer in times below 30 seconds for both query types. Figure 5.18

compares the memory requirements (computed as the number of materialized can-

didates) of Branch-and-Bound and Baseline algorithms. The Baseline algorithm

has, on the average, 3 orders of magnitude larger number of materialized candidates,
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which illustrates the effectiveness of the pruning techniques adopted by Branch-and-

Bound search.

Score Uncertainty

In this experiment, we evaluate the effect of score uncertainty on algorithms perfor-

mance. Figures 5.19 and 5.20 show the effect of the parameter p (the proportion of

tuples with uncertain scores) on the running times of MCMC and Branch-and-Bound

search in different datasets. Increasing p results in linear increase in the running times

of both algorithms. On the average, as p doubled by 3.5 times, the running time of the

MCMC method doubled by 5 times, while the running time of the Branch-and-Bound

search doubled by 2.5 times.

We next evaluate the effect of the width of score interval on algorithms perfor-

mance. We create synthetic data with different score interval width, where the interval

width is represented as a percentage of the whole score range. As the score interval

width increases, the number of tuples with incomparable scores increases. This results
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in limiting the effect of pruning by score dominance, and hence increasing the overall

running times. Figure 5.21 shows linear increase in the running times of MCMC and

Branch-and-Bound search as the score interval width increases.

5.8 Summary and Lessons Learned

We build on the probabilistic model in Section 3.2 that extends partial orders to

represent the uncertainty in the scores of database tuples. The model encapsulates a

probability distribution on all possible rankings of database tuples. In this chapter, we

present evaluation techniques for new formulations of several types of ranking queries

under such model.

We design novel branch-and-bound and sampling-based query processing tech-

niques to compute query answers. We also give polynomial time algorithms to solve
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the rank aggregation problem in the context of probabilistic partial orders. Our ex-

perimental study on both real and synthetic datasets demonstrates the scalability and

accuracy of our techniques.

Lessons Learned. Based on the study and the experiments presented in this chap-

ter, we make the following high level observations:

• For top-k queries with uncertain scores, exploiting k-dominance is a key opti-

mization for efficient processing. Our experiments show that, on the average,

the size of the database to be considered for top-k processing can be reduced

by around 90% when exploiting k-dominance optimization. The main reason is

that for the typically small values of k, many tuples can be pruned based on

their score ranges before applying any probabilistic ranking techniques.

• The MCMC and branch-and-bound methods are alternative algorithms for com-

puting prefix/set-based top-k queries. The need of both techniques is justified

by the traditional tradeoff between efficiency and accuracy. The MCMC method

provides a faster alternative whose cost can be controlled by selecting the sam-

pling budget and the number of chains that are used to simulate the top-k

prefix/set distribution. However, the answer reported by the MCMC method is

only approximate, and we provide an upper bound of the involved approximation

error which can act as a conservative stopping criterion of the MCMC simula-

tion. On the other hand, the branch-and-bound method is an exact method

that gives the most probable answer in the space by lazily generating the search

space, and upper-bounding the probabilities of unexplored search path.

• The cost of the branch-and-bound method is usually higher than the cost of the

MCMC method with typical parameter selection. We note that by increasing k,

the required prefix/set size, the performance of the branch-and-bound method

is negatively impacted in a more tangible way compared to the MCMC method.

The main reason is that increasing k contributes linearly to the cost of sample

generation in the MCMC method, while it adds more levels to the search tree of
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the branch-and-bound method, leading to an exponential growth in the search

space. This observation favors the MCMC method for relatively large k values,

at the cost of obtaining only approximate answers.
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Chapter 6

Uncertain Rank Join

In this chapter we discuss the methods we propose in [67] to handle uncertain scores

when computing rank join queries. We present in Section 6.1 a new formulation for

rank join queries on uncertain data. We give in Section 6.2 an uncertain rank join

algorithm, and show how it can be implemented as a pipelined query operator. We

discuss integrating join operation with probabilistic ranking in Section 6.3. Then, we

discuss in Section 6.4 the technical details of MashRank prototype, where we apply

our proposed techniques in Web mashup scenarios. We give our experimental study

in Section 6.5, and summarize the contents of this chapter in Section 6.6.

6.1 Uncertain Rank Join Problem

Under our proposed score uncertainty model (Section 3.2), we present a formulation

for top-k join queries on uncertain data.

We assume a process that joins a number of input relations based on a given

deterministic join condition (e.g., join hotel and restaurant relations based on the

traveling distance being smaller than 1 mile). That is, given a set of input tuples (one

from each input relation), the join condition evaluates to either true or false. The

result is a set of output tuples representing all the join results (e.g., hotel-restaurant
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joined tuples). For each join result, a score is computed based on a user-defined scoring

function F (e.g., hotel.stars+restaurant.rating). The scoring function is assumed to

be a monotone function (i.e., F(x1, . . . , xn) ≥ F(x́1, . . . , x́n) whenever xi ≥ x́i for

every i). Typical scoring functions, such as summation, multiplication, min, max, and

average, are monotone functions. We are interested in obtaining the k join results

that maximize the value of F .

When the scoring function F is defined on deterministic attributes, the top-k join

results are obtained by sorting the join results on F , and returning the top-k results.

Many top-k join techniques [35, 51] address the interaction between computing the

join results and producing the top-k answers. The main insight of these methods is

exploiting pre-sorted input relations as well as the scoring function monotonicity to

avoid complete sorting of the join results before producing the top-k joins.

We consider a different variant of the problem, where the scoring function F is

defined on uncertain attributes, and hence there is a space of possible rankings of the

join results. The objective is to integrate the join operation with the computation of

a ranking of join results under our proposed ranking semantics in Chapter 3. We start

by formulating the uncertain rank join problem under the score uncertainty model

described in Section 3.2.

Definition 13 [Uncertain Rank Join (URankJoin)] Let R be a set of relations

{R1, . . . , Rm}, F : R1 ./ . . . ./ Rm → I be a monotone scoring function, where I is the

domain of all possible sub-intervals of [0,1], and k be an integer ≤ |R1 ./ . . . ./ Rm|.
The query URankJoin(R,F , k) computes a total order ω∗ under some probabilistic

ranking semantics (described below) of tuples in the set Jk ⊆ R1 ./ . . . ./ Rm, where

|Jk| ≥ k, and

∀ti ∈ Jk: |{tj ∈ R1 ./ . . . ./ Rm : tj > ti}| < k, and

∀tj /∈ Jk: |{ti ∈ Jk : ti > tj}| ≥ k. 2

That is, URankJoin returns an ordering of tuples that have less than k other

dominating tuples. To illustrate, consider Figure 6.1. URankJoin({R, S}, (R.a1 +
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Figure 6.1: URankJoin example

S.a1)/2, 3), where the join condition is equality of attribute ‘jk’, returns a total or-

der of join tuples in J3 = {(r1, s2), (r3, s1), (r2, s2)}, since all join tuples in J3 are

dominated by less than 3 join tuples, and all join tuples not in J3 (only (r4, s3) in

this example) are dominated by at least 3 tuples. Based on the monotonicity of

F , the lo and up scores of join tuples are given by applying F to the lo and up

scores of the corresponding base tuples. For example, the score of (r1, s2) is given by

[F(.7, .3),F(.8, .4)] = [ .7+.3
2
, .8+.4

2
] = [.5, .6].

Computing Jk does not require knowledge of fi’s (the score densities of individual

tuples) of base or join tuples, since Jk is based on score dominance only. However,

computing ω∗ requires knowledge of fi’s.

We view computing ω∗ as a sophisticated tie-breaking rule that maps tuples with

overlapping score distributions to a total order. Total order is a widely accepted

means for presenting a ranking (e.g., on the Web, results are usually totally ordered

based on relevance to user’s query). We thus assume total order as an easier to

grasp presentation of results. Nevertheless, computing a total order is an added

feature of the techniques we propose, since we can stop at computing Jk if results

incomparability is not a concern.

Let Ω be the set of all possible orderings of tuples in Jk, and ω[t] be the rank of t in

an ordering ω ∈ Ω. An intuitive requirement in the total order ω∗ is that it complies

with score dominance (i.e., (ti > tj) ⇒ (ω∗[ti] < ω∗[tj])). To illustrate, consider
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Figure 6.2: Space of possible orderings for tuples with uniform scores

Figure 6.2 which shows a relation R with uniform uncertain scores. The relation R

has 7 possible orderings {ω1, . . . , ω7}. Similar to our discussion in Section 3.4, multiple

query semantics can be adopted to order tuples in Jk in a way complying with score

dominance. We list some examples of these semantics in the following:

(1) Expected Scores. Let E[ti] =
∫ upi

loi
x · fi(x)dx. Then, ω∗[ti] = 1 + |{tj : E[tj] >

E[ti]}|, while resolving ties deterministically. For example in Figure 6.2, based on

expected scores, ω∗ = 〈t5, t1, t2, t3, t4, t6〉, assuming that the tie between t1 and t2 is

resolved in favor of t1.

(2) Expected Ranks. Let ER[ti] =
∑

ω∈Ω ω[ti] · Pr(ω). Then, ω∗[ti] = 1 + |{tj :

ER[tj] < ER[ti]}|, while resolving ties deterministically. In Figure 6.2, based on

expected ranks, ω∗ = 〈t5, t2, t1, t3, t4, t6〉. The same definition is used in [17] with the

addition that tuples can be excluded from some orderings due to their membership

uncertainty.

(3) Most Probable Ordering. Similar to the UTop-Prefix query semantics (Defi-

nition 6), ω∗ is defined as argmaxω∈ΩPr(ω), where Pr(ω) is computed using Equ 3.2.

For example in Figure 6.2, ω∗ is the ordering ω1 = 〈t5, t1, t2, t3, t4, t6〉.

Contrasting the properties of different semantics of ω∗, and studying their potential

applications have been addressed in [17, 62, 64, 76]. We focus, however, on building an
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infrastructure that incrementally computes both Jk and ω∗ under multiple semantics

in the context of URankJoin queries.

6.2 Computing the Top-k Join Results

Current rank join methods [36, 37, 51, 57] build on using sorted inputs to incrementally

report ranked join results by bounding the scores of non-materialized join results. The

proposed techniques mainly differ in the maintained state of partial joins (i.e., joins

that may lead to valid join results), which can either be a lightweight state that gives

loose score bounds (e.g.,[37]), or a dense state, of all partial joins, that gives tight

score bounds (e.g.,[57]). The scoring model in all of these methods is deterministic

(i.e., each record has a single score), and hence they cannot be applied to settings

with uncertain scores.

The objective of top-k queries is to produce the set of top-ranked tuples based on

computed scores. Under the attribute level uncertainty model in Section 3.2, tuples

dominated by ≥ k tuples can be safely pruned from the answer space of top-k queries.

This is done by finding t(k), the kth largest tuple based on score lower bounds (cf.

Theorem 6). When computing top-k join queries, we would like to integrate the join

operation with such k-dominance criterion such that we produce the top-k join results

as early as possible. In the following, we describe how to compute and sort join results

incrementally (as needed) using a rank join algorithm that early prunes all dominated

tuples.

A common interface to most rank join algorithms, is to assume input relations

sorted on per-relation scores, while output (join) relation is generated incrementally

in join scores order. We show how to use a generic rank join algorithm RJ, complying

with the previous interface, as a building block to compute Jk (the set of join results

dominated by less than k join results) incrementally.

Our algorithm Compute-Jk assumes two sorted inputs (e.g., indexes) Lilo and

Liup, for each input relation Ri, giving relation tuples ordered on lo and up scores,
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Algorithm 6 Compute Top-k Join Results

Compute-Jk(L1
lo, L

1
up, . . . , L

m
lo , L

m
up:Ranked Inputs, k:Answer Size, F :Scoring

Function)

1 RJlo← an instance of RJ (L1
lo, . . . , L

m
lo , k,F)

2 RJup← an instance of RJ (L1
up, . . . , L

m
up,∞,F)

3 activelo ← TRUE ; activeup ← TRUE

4 Tup ← 1 {initialize score upper bound in RJup}

5 count← 0 {number of results reported by RJlo}

6 while (activelo OR activeup) do
7 if (activelo) then
8 t← get next result from RJlo
9 count← count+ 1

10 if (count = k) then activelo ← FALSE

11 Tlo ← score of t
12 while ( Tup > Tlo) do
13 Report results available in RJup with scores > Tlo
14 Tup ← score upper bound in RJup
15 if (NOT activelo AND Tup < Tlo) then
16 activeup ← FALSE

respectively. By processing the lo and up inputs simultaneously, Compute-Jk incre-

mentally computes Jk. This is done by using two instances of RJ, denoted RJlo and

RJup, where RJlo rank-joins tuples on their overall lo scores to find exactly k join

results, while RJup rank-joins tuples on their overall up scores to find all join results

with up scores above the kth largest score reported by RJlo (cf. Theorem 6). The

execution of RJlo and RJup is interleaved, such that, at any point during execution,

RJup reports all tuples whose up scores are above the last lo score reported by RJlo.

Tuples in Jk are reported in up scores order to allow for incremental ranking (cf.

Section 6.3).

Algorithm 6 gives the details of our method to compute the set of top-k join results

Jk.

Pipelined Operator. We design pipelined URankJoin query plans by wrapping

Compute-Jk into a query operator. For clarity of presentation, we focus on 2-way
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joins plans. However, our techniques can also handle multi-way joins. A pipelined

operator implementation of Compute-Jk requires making the algorithm indepen-

dent of k. The knowledge of k is only available to the query plan root that drives

plan execution, while the operator only responds to incoming requests of join results

ordered on either lo or up scores.

A URankJoin plan is rooted by ULIMIT, a new operator we propose to drive

URankJoin plan execution. The operator takes two inputs Ilo and Iup represent-

ing two streams of query output tuples ordered on their lo scores and up scores,

respectively. One GetNext implementation is to consume k tuples from Ilo and

to report tuples in Iup with scores above the kth score in Ilo. An alternative Get-

Next implementation is to interleave drawing tuples from Ilo and Iup, similar to

Algorithm Compute-Jk.

Algorithm 7 gives the details of the ULIMIT operator that we use to drive the

execution of URankJoin plan under score uncertainty (cf. Section 6.2).

A URankJoin operator is a logical operator that accepts two inputs each has

two sorted access paths, corresponding to the lo and up score orders of the two input

relations. The operator produces two output tuple streams corresponding to sorted

join results based on lo and up scores.

Figure 6.3 gives an example logical URankJoin query plan. The shown plan

rank-joins three relations R, S, and T with uncertain scores x, y, and z, respectively.

The bottom URankJoin operator uses indexes on the lo and up scores in Relations

R and S as its input access paths, while the top URankJoin operator uses indexes

on Relation T and the output of the bottom URankJoin operator as its input ac-

cess paths. The ULIMIT operator consumes both lo and up inputs from the top

URankJoin operator.

URankJoin operator can have different physical implementation. One implemen-

tation is to use two regular rank join operators wrapped within a physical operator

with 4 inputs (the lo and up orders of the two input relations) and 2 outputs (the

lo and up orders of the join results). This implementation requires, however, making

133



Algorithm 7 ULIMIT Operator

Open(Ilo: lo input stream, Iup: up input stream, k: Answer Size)

1 Ilo.Open()
2 Iup.Open()
3 Flo ← 1.0
4 count← 0

GetNext()

1 while (count < k) do
2 t← Ilo.GetNext()
3 count← count+ 1
4 if (count = k) then Flo ← lo score of t
5 t← Iup.GetNext()
6 if (up score of t > Flo) then return t else return null

Close()

1 Ilo.Close()
2 Iup.Close()

other query operators aware of the URankJoin operator input/output interface.

An alternative implementation is to use two separate rank join operators, which

allows building URankJoin plan as two parallel plans that can be optimized inde-

pendently based on available data access paths. We use this implementation in our

prototype discussed in Section 6.4. The algebra proposed in [45] can be used in these

settings to exploit properties like associativity and commutativity of rank join oper-

ators while searching for the query plan with least estimated cost. The logical design

of URankJoin operator does not restrict the physical rank join algorithm. Hence,

an arbitrary rank join algorithm can be plugged in physical URankJoin plans.
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Figure 6.3: A logical URankJoin query plan

6.3 Ranking the Top-k Join Results

A major challenge for ordering tuples with uncertain scores is managing the exponen-

tially large space of possible orderings (cf. Section 3.2). We tackle this challenge using

a sampling-based infrastructure for computing ω∗ under multiple semantics based on

two novel techniques: Join-aware Sampling and Incremental Ranking.

6.3.1 Join-aware Sampling

Join induces dependencies among join results. For example in Figure 6.1, (r1, s2) and

(r2, s2) are dependent, since they originate from one tuple s2 ∈ S and different tuples

in R. Such dependency means that the joint score density of (r1, s2) and (r2, s2)

(which produces the probability of any ordering involving (r1, s2) and (r2, s2)) is not

given by multiplying the marginal score densities of (r1, s2) and (r2, s2). That is, the

score random variables of (r1, s2) and (r2, s2) are dependent.

We handle score dependencies by associating join results with lineage representing

the keys of their origin base tuples. The main idea is to use the space with independent

score random variables (i.e., base tuples) as a generator of the space with dependent

score random variables (i.e., join results). Hence, the probability of an ordering of
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Figure 6.4: Handling score dependencies in Monte-Carlo sampling

(possibly dependent) join results is computed using independent samples drawn from

the space of base scores.

Figure 6.4 illustrates our approach. The set J3 is produced by the

URankJoin query in Figure 6.1. Each join result in J3 is associated with the keys

of its origin base tuples. To compute Pr(〈t1, t2, t3〉), we independently sample a score

value in each origin base tuple of J3 (i.e., a score value in each of {r1, r2, r3, s1, s2}).
We simply call such vector of base tuples’ score samples a base sample. Since base

tuple scores are independent, the probability of each base sample is the product of

the probabilities of its constituent score values. Applying F (the average) to score

values in a base sample gives a score sample for each join results in J3. We mark

in Figure 6.4 the base samples that correspond to the ordering 〈t1, t2, t3〉. Such base

samples are called hits.

We use Monte-Carlo integration to estimate the probability of an ordering of join

results based on the proportion of its corresponding hits with respect to the number

of samples.

Algorithm 8 shows how to use Monte-Carlo integration method to compute Pr(ω),

where ω is an ordering of join results (cf. Section 6.3). The union of the lineage of

join results in ω is first computed. Independent samples are drawn from the score

distributions of base tuples included in the lineage. The drawn scores produce an

ordering of join results. If such ordering agrees with ω, then the sample is a hit.
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Algorithm 8 Compute Probability of Join Results Ordering

MC-Probability(ω: Join results ordering, s: Number of samples)

1 sources←
⋃
t∈ω t.sources {compute lineage of ω}

2 hits← 0 {no. of samples matching ordering given by ω}

3 sum← 0 {summation of hits probabilities}

4 for i = 1 to s do
5 sample← [ ] {sample of base tuples scores}

6 for each tuple ti ∈ sources do
7 sample[ti.key]← random score value based on fi
8 ώ ← ordering of join tuples based on base scores in sample
9 if (ώ agrees with the tuple ordering given by ω) then

10 hits← hits+ 1
11 sum← sum+ Πz∈sample(Pr(z))
12 v ← volume of hypercube enclosing score combinations in ω
13 return hits

s
· v · sum

hits

The probabilities of hits corresponding to a join results ordering ω are averaged when

using Monte-Carlo integration method to compute Pr(ω).

We show how to use the previous infrastructure to compute the total order ω∗ of

tuples in Jk under expected ranks semantics.

The expected rank of a tuple ti (ER(ti)) is computed as
∑

ω∈Ω Pr(ω) · ω[ti] (cf.

Section 6.1). Computing ER(ti) can be done efficiently in our settings by rewriting

ER(ti) as
∑|Jk|

r=1 r · Pr(ti, r), where Pr(ti, r) is the probability of ti to be at rank r in

the possible orderings of Jk. The correctness of the previous rewrite follows from the

fact that Pr(ti, r) =
∑

ω(ti,r)∈Ω Pr(ω(ti,r)), where ω(ti,r) has ti at rank r.

We compute Pr(ti, r) by considering as a hit each sample of base scores that results

in the join tuple ti being at rank r. For example in Figure 6.4, to compute Pr(t3, 1),

we consider sample 3 and sample 4 as hits.

We describe how to compute an ordering ω∗ of join results under other probabilistic

ranking semantics:
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(1) The Most Probable Ordering. In Section 5.5.2, we proposed using Markov

Chains Monte-Carlo (MCMC) methods to approximate the most probable ordering

by drawing samples from the orderings space biased by probability. The main idea

is that for a current sample (ordering) ωi, and a newly proposed sample ωi+1, we

always accept ωi+1 if Pr(ωi+1) > Pr(ωi), otherwise we accept ωi+1 with probability

proportional to Pr(ωi+1)/Pr(ωi). The MCMC method provably converges to the target

distribution of possible orderings, and hence it can be used as a generator of orderings

biased by their probabilities. Algorithm 8 allows computing Pr(ω), where ω is an

ordering of join results, and hence applying the MCMC method to approximate the

most probable ordering.

(2) Other Semantics. Computing Pr(ti, r) allows computing ω∗ under other prob-

abilistic ranking semantics. For example, tuple’s probability to appear at the top

ranks only (Global Top-k [76]) is computed as Prk(ti) =
∑k

r=1 Pr(ti, r). Similarly,

pruning tuples whose probabilities to appear at the top ranks is below a given thresh-

old (probabilistic Top-k threshold [33]) can be done by testing if Prk(ti) < T , for a

given threshold T . A third example is finding the ordering with the minimum dis-

agreements with other orderings in the space (Uncertain Rank Aggregation), which

can be done in polynomial time using Pr(ti, r) values as discussed in Section 5.6.

6.3.2 Incremental Ranking

The size of Jk can be much larger than k due to score uncertainty. In many Web

application scenarios, users only inspect a small prefix of the ranked answers list

(e.g., inspecting only a few top hits returned by a search engine). Computing a full

ranking of all answers in advance may not thus be always required. We make use

of the incremental computation of Jk (cf. Section 6.2) to incrementally compute an

approximation of ω∗.

The main idea is computing bounds on Pr(ti, r) for each join result ti produced by

a URankJoin plan. The bounds of Pr(ti, r) are used to approximate a prefix of ω∗,

and are progressively tightened as more tuples are produced by the URankJoin plan.
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t1:[0.5, 0.9]

t2:[0.6, 0.8]�
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x x x 

…. 
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t3 

Case (i)
 Case (ii)


Lower-bounding Pr(t2,r)
 Upper-bounding Pr(t2,r)


Unseen tuples 

Unseen tuples …. 

Figure 6.5: Bounding Pr(t2, i)

Figure 6.5 shows a URankJoin plan that produces tuples in Jk ordered on their

up scores. The last produced tuple at this step is t3. Assume that we need to compute

Pr(t2, r). We identify two extreme cases:

• Case (i): the scores of all non-retrieved tuples are deterministic values (shown

as ‘×’ symbols in Figure 6.5) located at the largest possible unseen score (i.e.,

up3).

• Case (ii): the up scores of all non-retrieved tuples are below lo2 (shown as

shaded intervals in Figure 6.5).

Each case gives a possible configuration of unseen tuples in Jk. By applying Monte-

Carlo sampling to each configuration, we obtain a bound on Pr(t2, r). Specifically,

Case (i) gives a lower bound on Pr(t2, r), denoted Pr(t2, r), since the scores of all

unseen tuples are maximized, while Case (ii) gives an upper bound on Pr(t2, r),

denoted Pr(t2, r), since the scores of all unseen tuples are minimized. By seeing more

tuples in Jk, computed bounds are tightened (i.e., Pr(t2, r) increases and Pr(t2, r)

decreases) since the maximum score of an unseen tuple decreases. When the maximum

score of an unseen tuple is below lo2, both bounds coincide at Pr(t2, r). Note that

this bounding method is valid only if tuples in Jk are retrieved in up score order.
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The bounds of Pr(ti, r) can be used to compute rankings under multiple probabilis-

tic ranking semantics. For example, in Global top-k [76] (rank by tuple’s probability

to appear within the top k ranks), we bound Prk(ti) as Prk(ti) =
∑k

r=1 Pr(ti, r), while

Prk(ti) = min(1,
∑k

r=1 Pr(ti, r)). The Global top-k ranking of retrieved tuples from

Jk can thus be approximated as follows. We set ω∗[ti] < ω∗[tj] if Prk(ti) > Prk(tj)−ε,
where ε ∈ [0, 1) is a given acceptable error in tuples relative order. The underlying

URankJoin plan is incrementally requested for new join results until the computed

ω∗ prefix satisfies the previous error constraint.

6.4 MashRank Research Prototype

We describe the architecture and implementation details of MashRank, a research

prototype we have built to apply and experiment with our techniques in Web mashups

scenarios†.

Current mashup systems (e.g.,[1, 2, 3, 60]) allow creating data flows involving ser-

vices, sources, and operators. Most systems assume data in the form of pre-computed

structured feeds, with the exception of [61], which integrates text extractors into en-

terprise mashups. However, ranking is mostly overlooked in these works by generating

non-optimized plans (e.g., materialze-sort plans) for ranked mashups. Moreover, al-

though uncertainty is ubiquitous on the Web (e.g., missing/inexact values), current

systems do not allow querying/reasoning about such uncertainty. MashRankinte-

grates concepts from information extraction, rank-aware processing, and probabilistic

databases domains to address these problems.

6.4.1 MashRank Architecture

MashRank is a Web-accessible system (demonstrated in [68]), with client-side query

processing, and server-side data retrieval and extraction. We describe the details of

different components in MashRank architecture (given in Figure 6.6).

†Current prototype is accessible at http://prefex.cs.uwaterloo.ca/MashRank.
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Figure 6.6: MashRank architecture

Mashup Editor builds a mashup data flow, by interacting with the user, to

identify source schemas, join/filter conditions, and scoring function. A mashup data

flow is a tree whose leaves are the sources, and internal nodes are three primary

logical operators: extractors, joins, and filters†. The edges between tree nodes are

pipes indicating the flow of tuples from one logical operator to its parent.

Mashup Planner maps the mashup data flow into a rank-aware and uncertainty-

aware physical plan. A mashup physical plan needs to be rank-aware if the user

provides a scoring function to order mashup results. The physical plan needs to be

uncertainty-aware if the scoring function involves at least one uncertain attribute.

Mashup Planner exploits sorting capabilities of input sources to offload sort to

source side. For example, if the scoring function involves an attribute that has sorted

†Our framework is extensible, which allows other logical operators such as union and
intersection.
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Figure 6.7: A Screenshot for MashRank prototype

access (as provided by its corresponding source), the created mashup plan pushes

source records directly (i.e., without a sorting phase) into rank-aware mashup execu-

tion. This also allows limiting extraction on pages that are not required to compute

the top-ranked results (by upper bounding the scores of records not yet extracted).

Figure 6.7 shows a mashup data flow, constructed using MashRank editor, a cor-

responding mashup physical join plan, and a listing of computed mashup results. We

elaborate on planning and sort offloading in Section 6.4.3.

Content Wrappers bridge different data models to the relational model.
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Mashups may involve data sources of different models (e.g., XML generated by Web

API’s, raw HTML, and relational data). MashRank adopts a simple relational model

in which mashup (intermediate) results are represented as tuples.

Wrapping HTML into relational tuples is complicated by the lacking of schema in-

formation. We build HTML wrappers based on the concepts of wrapper induction [42]

in information extraction. The idea is to request user to provide a number of labeled

examples of different attributes in a sample of source pages. A wrapper inductor

learns a rule that correctly extracts all of the given examples. For example, the rule

can be maximal strings in HTML source that delimit all of the examples. Applying

the rule to other source pages, with the same structure of labeled pages, produces the

required tuples. We elaborate on wrapper induction details in Section 6.4.2

Grabber Threads grab data from mashup sources. When sources are accessible

through URLs, MashRank initiates a thread for each URL to grab contents. Each

thread forwards source response, once ready, to the appropriate wrapper. This allows

MashRank to process multiple requests in parallel, and avoid getting blocked on slow

sources. When sources are relational, a database connection is used to retrieve tuples

from remote database.

Mashup Executor executes the physical plan generated by the Planner against

live data sources, and incrementally reports mashup results to the user. We build

on the iterator model (Open-GetNext-Close), used in most DBMSs, for mashup

execution. Opening the root operator in a query plan tree recursively initializes all

tree operators. Processing the query is done by calling the GetNext method of the

root operator repeatedly until it returns an empty result. Finally, Closing the root

operator recursively shuts down all operators in the tree.

However, in contrast to relational plans that read data from tables with known

sizes residing on disks, a mashup plan may read data from remote sources of unknown

sizes filling up asynchronously as more tuples are extracted. Hence, mashup execution

needs to be (1) synchronized: to guarantee correct reads/updates, sources are locked

when wrappers attempt to append new extracted tuples, or when parent nodes in the

mashup plan attempt to read next tuple; and (2) push-based: an operator requesting
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tuples waits if no new tuples are currently available, and wrappers are not done

processing source contents. Once new records are available, they are pushed into plan

execution by notifying all waiting requesters.

Each mashup source has a dedicated synchronized buffer satisfying these two re-

quirements. Synchronized buffer owns a monitor (lock) to prevent concurrent reads

and updates. Wrappers writing to the buffer, as well as mashup plan nodes, reading

from the buffer, must obtain buffer’s lock before accessing its data. If a read/write

request is being served, all other requests are forced to wait until the request being

served completes. As soon as the request completes, a notification message is issued

to wake up all waiting requests to re-attempt accessing the buffer.

MashRank executor interleaves extraction with query processing such that none

of the two tasks blocks the other. Moreover, variance in source response times is

tolerated by allowing asynchronous updates as soon as source responds with contents,

as opposed to blocking until source responds. Hence, the execution is geared toward

early-out of mashup results, if possible, while extraction and query processing are in

progress.

6.4.2 Information Extraction

Information extraction techniques approach unstructured data from different perspec-

tives. Supervised learning methods (e.g., [6, 42]), learn extraction rules from a set of

user-specified examples by generalizing common properties in these examples. On the

other hand, unsupervised learning methods (e.g.,[19, 59]) focus on learning a gram-

mar/template describing the schema of the underlying source by exploiting repeated

structure and domain knowledge. The learned template can be used to populate rela-

tional tables out of the unstructured sources. MashRank provides a mashup authoring

tool that builds on supervised extraction methods, namely wrapper induction. We al-

low users to annotate and refine examples, during mashup data flow creation, and use

these examples to learn extraction rules. In the following, we present our adaptation

of wrapper induction techniques.
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MashRank uses wrapper induction techniques to transform unstructured sources

into relational (structured) sources. The details of the wrapper induction algorithm

are orthogonal to mashup planning and processing in MashRank. We assume an

interface to the wrapper inductor with three main functions: (1) addExample: adds a

new training example (e.g., a text node representing the value of some attribute); (2)

learn: processes the training examples using the induction algorithm to compute an

extraction rule; and (3) extract: applies the learned extraction rule to a given page,

and returns a set of extracted records.

The previous interface is generic, and applies to multiple wrapper induction pro-

posals (e.g.,[6, 42]). We elaborate on the implementation of the interface in our

adaptation of [42]. We emphasize, however, that information extraction is a black-

box in MashRank, and hence other techniques can be integrated with MashRank to

conduct more sophisticated extraction.

The inductor in [42] treats each HTML page as a sequence of characters, and learns

extraction rules in the form of string patterns. The learned rule extracts attributes

from the page source in a round-robin fashion, and binds them into records. This

method can generate erroneous records when some attribute values are missing. Since

missing values are common on the Web, we adapt this method by learning extraction

rules on attribute level, and then bind extracted values into records based on their

proximity in the HTML source. We describe our technique in the following.

For a schema 〈a1, . . . , an〉 of n attributes, the function addExample receives as

input a triple (ai, s, e), where ai is a schema attribute, while s and e are the start

and end character positions of one example value of ai in the HTML source. In

MashRank editor, this is enabled by allowing the user to highlight pieces of text

inside the page as examples for each required attribute.

The function learn computes an extraction rule for each attribute ai in the form

of a pair of strings (li, ri). The rule is interpreted as follows: all values of attribute

ai appearing in the underlying page are enclosed between two strings li and ri. For

example, one possible extraction rule for hotel name could simply be (“ < b >′′, “ <

/b >′′). The strings li and ri are computed by scanning the characters appearing
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before and after all training examples, and appending these characters to li and ri,

respectively, as long as all examples agree on the scanned character. We stop when

finding maximal patterns in the sense that by appending more characters to any of li

and ri, at least one training example is not matched.

The function extract applies the extraction rule of each attribute to extract a

set of attribute values. We align extracted values to form records based on their

proximity in the page. We process attributes in the order in which they appear in

the HTML source (e.g., name appears before price), and within each attribute, we

process extracted values in the order of their appearance in the HTML source. We

start by assigning each extracted value in the first attribute to a new record. For

each subsequent attribute ai, we assign attribute value v to the record that has an

attribute aj, with j < i, whose value is the closest value preceding v. If such record

cannot be found, v is assigned to a new record with empty values in all attributes aj

for j < i, and value v in attribute ai.

In our experimental study we evaluate extraction accuracy by counting as an error

any extracted record with wrong information (e.g., missing values that should be non-

missing, or wrongly linked values of different attributes). We manually computed a

ground truth of all correct records to be extracted, and compared the output of our

extraction technique to ground truth. Figure 6.8 shows extraction quality in precision,

recall, and F1 measures, computed on a sample of 50 pages of each Web source used

in our experiments (cf. Figure 6.11). We achieve perfect extraction in almost half of

the sources, and very high accuracy on the rest. We note that the extraction method

we adapt depends on regularity in HTML source, which may limit its applicability to

some sources. However, as we discuss in Section 6.4.1, we treat information extraction

as a blackbox, and hence other variants of extraction methods can also be plugged in

MashRank framework.
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Source  Precision  Recall  F1 

Vianet  1.0  1.0  1.0 

TvTrip  1.0  0.92  0.95 

Menus  0.97  0.96  0.97 

Epinion  1.0  1.0  1.0 

Flickr  0.92  1.0  0.96 

Pubs  1.0  1.0  1.0 

GScholar  1.0  0.94  0.97 

Apartments  1.0  1.0  1.0 

Restaurants  0.975  0.97  0.972 

Figure 6.8: Information extraction precision/recall

6.4.3 Mashup Planning

Query optimizers use statistics collected on queried relations, and query predicates,

to prune query plans that are expected to perform poorly. In our settings, we usually

have no prior knowledge about data sources, as they may be remote sources given

by the user in an ad-hoc fashion. We thus resort to exploiting the configuration of

mashup data flow to build a feasible mashup physical plan. Nevertheless, building

mashup planning on a cost model can be quite important in many other scenarios

(e.g., mashing up sources that the system has prior knowledge on, asking for user

input to characterize cost factors of mashed up sources, or sampling the sources to

compute estimates on their cost factors). We leave cost modeling as an important

future extension of this work.

Given a ranked mashup with a scoring dunction F , MashRank Planner starts by

labeling each node in the mashup data flow with its corresponding ranking attributes

(attributes that appear in F). The labeling starts with leaves (data sources), where

each source is labeled with the ranking attributes it covers. Then, moving up in the

data flow tree, the union of the ranking attributes of all children of a node p gives the

ranking attributes of p.

After labeling is done, the Planner processes the labeled data flow starting from

the root, mapping each node to one or more physical operators, and then recursing

on nodes’ children.
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A source node is mapped to a synchronized buffer (cf. Section 6.4.1). An extractor

node with empty ranking attributes is mapped to a scan operator. An extractor

node with non-empty ranking attributes is mapped to sort operator, on top of a

scan operator, so that all source tuples are sorted based on the scoring function

(ranking attributes not belonging to the source assume the largest possible score).

Since we assume monotone scoring functions, using such sort expression guarantees

tuples flowing out of the source in the right order. A join node with empty ranking

attributes is mapped to either a nested-loops join operator, or a hash join operator if

the join condition is non-equality or equality, respectively. Similarly, a join node with

non-empty ranking attributes is mapped to a nested-loops rank join operator, or a

hash rank join operator† if the join condition is non-equality or equality, respectively.

Finally, a filter node is mapped to a filter operator with the node’s Boolean condition.

We also implemented techniques to push down filtering operations to their relevant

sources, as typically done in relational query optimizers.

When the scoring function includes one or more uncertain attributes, the Planner

generates a URankJoin plan (cf. Section 6.2). The above procedure is followed to

generate two identical rank join plans, where one plan rank-joins tuples on their lo

scores, while the other plan rank-jons tuples on their up scores. A ulimit operator is

used as the parent operator of the two plans, and a probranker operator (implementing

our MC-based sampling methods) is added as the parent of ulimit.

We describe our plan generation algorithm using the following rank join query:

SELECT *

FROM vianet, tvtrip

WHERE vianet.HotelName ∼ tvtrip.HotelName

†The Hash Rank Join (HRJN) algorithm [37] iteratively selects an input relation to read
its next tuple. Each new tuple is hashed on its join attribute in a per-relation hash table to
facilitate creating join results. The join results are created by finding, for each new tuple,
the joinable tuples currently read from other relations. Join results are stored in a priority
queue ordered on score. The scores of non-materialized join results are upper-bounded by
assuming best-case joins, where tuples with the highest scores in all inputs, but one, join
with the last retrieved tuple from the excluded input.
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Figure 6.9: Generating mashup plan

ORDER BY 500-vianet.Price+ 100* tvtrip.Rating

LIMIT k

The scoring function includes two attributes price, and rating, where price is an

uncertain attribute. The join condition is approximate equality of hotel names (imple-

mented in MashRank as a thresholded edit distance similarity function). Figure 6.9

shows the data flow nodes after being labeled with ranking attributes. The generated

physical plan is a nested-loops rank join plan (since join condition is non-equality).

The Planner adds a ulimit operator to drive the execution of the lo and up rank join

plans, and a probranker operator to conduct probabilistic ranking. The sort expres-

sions (expr1, expr2, and expr3) are created by replacing ranking attributes not covered

by the underlying source with their largest possible scores.

Offloading Sort to Web Sources. In rank-aware query processing, the existence

of sorted access methods on ranking attributes is crucial for pipelining ranked results

efficiently. Implementing such access methods as a sort operator per input (e.g., as

in Figure 6.9) introduces a bottleneck in query execution due to the blocking nature

of sort. When an index on a ranking attribute already exists, a rank-aware plan

can benefit from such cheap sorted access method to pipeline ranked query results

efficiently.

149



Vianet  TVTrip 

Extractor  Extractor 

Join 

{price_up} {rating} 

{rating} {price_up} 

{price_up, rating} 

Sync Buffer1  Sync Buffer2 

NL‐RankJoin 

Sort 
(expr1) 

expr1: 1000+rating 
Data flow labeled with  
ranking attributes 

Mashup physical plan 

Scan Scan 

Sort is avoided here 

Figure 6.10: Generating mashup plan with offloaded sorting

In our settings, we build mashups on arbitrary sources selected by the user, and

hence we cannot generally assume the existence of indexes on these sources. However,

many Web sources provide sorting capabilities to view query results ordered on some

attribute. Such information is obtained from the user in the form of a special sorting

parameter that can be appended to page URLs. By offloading sort to source side, we

allow rank-aware mashup plan to pipeline sorted results, as they are extracted from

the sources.

For example, assume the following mashup query, where Vianet is declared by the

user as a source that can produce records ordered on Price up (the highest prices):

SELECT *

FROM vianet, tvtrip

WHERE vianet.HotelName ∼ tvtrip.HotelName

ORDER BY vianet.Price up+ tvtrip.Rating

LIMIT k

Fiigure 6.10 shows the mashup data flow labeled with ranking attributes, and the

corresponding physical plan generated by MashRank Planner. Note that the Planner

did not add a sort on top of the scan of Vianet, since it leveraged the fact that

records of Vianet are pre-sorted, and hence they can be directly pipelined into the

NL-RankJoin operator.
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Source  Base URL  Schema  Descrip3on 

Vianet  www.vianet.travel/search/list  Hotel, City, Price  Hotel booking 

TvTrip  www.tvtrip.com  Hotel, City, Ra>ng  Hotel reviews 

Menus  www.menus.co.nz/wining‐dining  Restaurant, City, Ra>ng  Restaurant reviews 

Epinion  www.epinions.com/
Digital_Cameras 

Brand, MegaPixels, Price  Camera offers 

Flickr  www.flickr.com/cameras  Brand, nUsers, Rank  Camera usage info 

Pubs  www.cs.uwaterloo.ca/~ilyas/
publistC.html 

PaperTitle  A publica>ons page 

GScholar  scholar.google.com/scholar?
q=author:ihab‐ilyas 

Paper, nCita>ons  Cita>ons count 

Apartments  www.apartments.com  Price  , Zip, Info, Tel  Apartment search 

Restaurants  www.restauran>ca.com  Name, Cusine, Tel, Zip  Restaurant search 

Figure 6.11: Web sources used in experiments (boxes indicate uncertain attributes)

We discuss how we modify our data grabbing module (cf. Section 6.4.1) to exploit

sorted access methods. Our multi-threaded architecture spawns a grabber thread per

page to avoid blocking on slow sources. When each thread grabs data from one of

the pages in a sorted retrieval, some of the pages can be ready for extraction before

others, due to differences in source response time. We thus need to an maintain a

page-level order to guarantee pipelining records into mashup execution in the right

order. This is done by associating each thread with an order reflecting the position of

the thread’s page in the ordered retrieval of source pages. Tuple requests are answered

while respecting such page-level order. That is, a tuple is not reported from page p

unless all tuples in pages with orders preceding p have been already reported.

6.5 Experiments

All experiments are conducted on a 2.2GHz client machine with 2GB RAM, and

80GB hard disk. The techniques we described in this chapter are implemented within
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SELECT *  
FROM Vianet v, TvTrip t,  
            Menus m  
WHERE v.Hotel ≈ t.Hotel 
              AND v.City=m.City 
ORDER BY 500-v.Price+ 100* 
(t.Rating+m.Rating)  
LIMIT k 

SELECT *  
FROM Epinion e, Flickr f 
WHERE e.Brand contains 
f.Brand 
ORDER BY e.Price+ 
                   (100-f.Rank)  
LIMIT k 

SELECT *  
FROM Pubs p, GScholar g 
WHERE p.PaperTitle ≈ g.Paper 
ORDER BY nCitations 
LIMIT k 

SELECT *  
FROM Apartments a, 
Restaurants r 
WHERE a.Zip = r.Zip 
ORDER BY a.Price 
LIMIT k 

M1  M2 

M4 M3 

Figure 6.12: Mashup examples used in experiments
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Figure 6.13: Overall execution time
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Figure 6.14: Avg source grabbing time

MashRank, a mashup authoring and processing tool that integrates information ex-

traction techniques with ranking under uncertainty. MashRank allows users to define

extraction rules to compute structured records out of unstructured HTML sources.

Users can then formulate mashups among live Web sources as relational join queries,

possibly with ranking requirements to order mashup results, and uncertainty in the

extracted attribute values. We thus use mashups as practical examples of rank join

queries under the attribute level uncertainty model. We give an overview of the

architecture and implementation details of MashRank prototype in Section 6.4.
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Figure 6.15: Sort offloading
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Figure 6.16: Sort offloading with k
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Figure 6.17: MC Convergence
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Figure 6.18: MC processing time

While many mashup examples are implementable using MashRank, we use 4 ex-

amples to show effectiveness and scalability of our solutions. Figure 6.11 gives the

details of involved Web sources, while Figure 6.12 shows (in SQL-like syntax) the

mashup examples we build. Note that Price attribute in many of the shown sources

follows the attribute level uncertainty model, since it was given as a range of possible

values. Join conditions and scoring functions are selected based on source schemas.

We assume uniform score distributions for all uncertain scores (in general, uncertain

join scores can be non-uniform even if base scores are uniform).

Our main performance metrics are (1) latency: time before returning first result,

and (2) overall time. We control values of three parameters: (1) k: number of tuples

dominating any produced result is < k (default is 1), (2) npages: maximum number

of pages per source, (default is 10), (3) nsamples: number of Monte-Carlo samples,

(default is 10,000). When changing one parameter value, we keep other parameters
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at their defaults.

Scalability with respect to Source Size

We evaluate the performance of query evaluation as npages increases. In general,

processing time increases sub-linearly with npages. Figure 6.13 shows that overall

time has increased by an average of 5.5 times, as npages increased by 10 times. Since

query evaluation is conducted on records extracted on-the-fly, most of the processing

time is consumed in grabbing data from online sources. Figure 6.14 shows the average

get time consumed in grabbing a source page. Grabbing data from multiple source

pages is parallelized in MashRank using a threaded implementation. Due to the added

overhead of grabber threads synchronization, get time increased by an average of 4.5

times as npages increased by 10 times. We also measured the average extraction time

per page, which had a value below 0.5 seconds in all sources.

Sort Offloading in Rank-aware Processing

We evaluate the performance impact of sort offloading, where we use available sorted

access methods in a Web source to pipeline its extracted records to rank-aware query

evaluation (as opposed to blocking until all records are extracted, and then applying

a sort operation). We compare the generated plan to the conventional materialize-

sort plan (i.e., compute all mashup results then sort) that does not exploit pre-sorted

records. Figure 6.15 shows that sort offloading and rank-aware processing improved

latency by an average of 66% over different npages values, while Figure 6.16 shows

that the average latency improvement is 56% over different k values.

Monte-Carlo Sampling

Figure 6.17 illustrates convergence of ω∗ under expected ranks semantics (cf. Sec-

tion 6.3). We use normalized Kendall tau distance as our convergence measure.

Kendall tau distance between two orderings is the number of pairs of items with
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disagreeing relative orders in the two orderings. We measure Kendall tau distance be-

tween each two orderings produced using two consecutive sample sizes. As nsamples

increases, the distance decreases indicating that ω∗ approaches stability. Figure 6.18

shows the time consumed in generating MC samples of join tuples. The sampling

algorithm shows linear increase in time with respect to nsamples.

6.6 Summary and Lessons Learned

In this chapter, we present evaluation techniques for the novel problem of rank join

under uncertainty given in Section 6.1. Our proposal initiates a study of the inte-

gration of relational optimizations (e.g., rank join), and the concepts of probabilistic

databases towards building a relational+probabilistic query engine. We give an im-

plementation of probability and rank-aware join operators, and an infrastructure for

uncertain rank-join under multiple probabilistic ranking semantics using Monte-Carlo

simulation.

We design a system architecture that integrates information extraction with query

processing within a push-based execution model. We also present the technical de-

tails of MashRank, a novel research prototype that addresses integrating information

extraction with joining and ranking under uncertainty in the context of Web mashups.

Lessons Learned. Based on the study and the experiments presented in this chap-

ter, we make the following high level observations:

• Building an integrated uncertainty-aware and rank-aware join operator trigger

changes in the input/output interfaces of relational operators. For example, our

logical operator design is based on consuming input tuples in two different orders

(based on the smallest and largest possible tuple scores). Physical operator

implementation can be realized as two parallel rank join operators, or as an

integrated operator with modified input/output interfaces.
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• Ranking with uncertain scores using sampling is a blocking process that needs

to be completed before ranked answers are reported. Our incremental rank-

ing algorithm proposes a possibility for pipelining the output of the sampling

process, with accuracy guarantees, in order to avoid the blocking nature of the

sampler.

• Integrating sampling methods with the execution of relational operations creates

new factors for costing a relational ranking query plan such the sampling budget

and its interaction with the accuracy of reported results.

• When processing ranked mashups against live remote Web sources, network la-

tency is a dominating performance factor. In general, minimizing the number

of needed-to-see tuples/pages is an important optimization that all of our tech-

niques build on. This optimization is highly effective for online computation of

ad-hoc mashups. In this context, the availability of sorted access methods to

Web pages in remote sources greatly improves the performance by allowing only

the needed pages to be downloaded and processed by information extraction

techniques. Indexing or caching Web sources is another important optimization

that we did not experiment with in our study. One limitation of this opti-

mization is the potential staleness of cached/indexed Web data. Building an

integrated solution that closely maintains the freshness of (uncertain) extracted

data, and efficiently supports the computation of ranking queries is an interest-

ing research problem.
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Chapter 7

Conclusions, Limitations, and

Future Work

In this chapter we conclude this dissertation, discuss the limitations of our proposal,

and present future research directions.

7.1 Conclusions

This dissertation presents our work in supporting ranked retrieval in uncertain and

probabilistic databases. Our study provides insights on the interplay between ranking

and uncertainty models, and introduces efficient mechanisms to compute ranking

queries under different types of data uncertainty.

We introduced new probabilistic formulations for top-k queries under possible

worlds semantics. Under tuple level uncertainty, we modeled the problem as a state

space search, and described several query processing algorithms with guarantees on

the number of accessed tuples and the size of the materialized search space. Our

processing methods integrate tuple retrieval, ranking, and uncertainty management in

the same framework, while leveraging existing indexing and query processing facilities

in RDBMSs.
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We proposed a new probabilistic model based on partial orders to encode uncer-

tainty in tuple scores. We formulated several ranking queries under this model, and

designed a set of efficient query evaluation techniques. We also showed that our meth-

ods can be used to compute rank aggregation queries in polynomial time under some

classes of partial orders.

Finally, we formulated the novel problem of rank join with uncertain scores. We

proposed a pipelined operator implementation that integrates joining, ranking, and

uncertainty handling in one operator that can be used in relational query plans. We

also designed and implemented MashRank, a functional research prototype that real-

izes our query formulations and processing techniques in the context of data mashups

on the Web.

7.2 Limitations

We believe that this dissertation has initiated a new line of research for understand-

ing and formulating ranking problems in the context of uncertain and probabilistic

databases. However, similar to any other work within a time frame, our proposal

has some limitations that we discuss in this section. Some of these limitations can

be handled by further analysis of the given methods or extending the experimental

study, while others are intrinsic in the design of our models and techniques, and may

be addressed by adopting different approaches and/or technical tools.

Some limitations of our query semantics have been raised by [17], which gives a

number of plausible properties of ranking semantics, and show that they are not com-

pletely covered by our proposed query semantics (cf. Section 2.4). For example, under

some configurations of tuple dependencies, it can be shown that UTop-Prefix query

answers do not satisfy the containment property (i.e., the most probable top-(k + 1)

vector does not necessarily include the most probable top-k vector). However, it is

also possible to formulate other plausible properties that are not maintained under

the query semantics proposed in other works. For example, ranking based on expected
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ranks [17] can produce answers that are easily thrown off with the existence of out-

liers. This means that we might not be able to report tuples with very high scores

and probabilities if the majority of other tuples have low scores and/or probabilities.

Hence, we believe that, at this point of time, there is no one-fits-all proposal for for-

mulating and evaluating ranking queries on uncertain data. An important challenge

to be tackled is inferring the appropriate semantics and evaluation mechanisms from

the characteristics of the underlying data and the requirements of target applications.

A related limitation is due to adopting the concept of finding the most probable

answer of a ranking query. The same concept is adopted in related AI inference

problems, where finding the Maximum A Posteriori (MAP) estimation or the Most

Probable Explanation (MPE) are highly popular questions. However, one problem

with adopting this concept is that when the distribution of possible answers is large,

and the probabilities of these answers are close to each other, finding the most probable

answer may not be as informative as adopting other aggregation-based semantics (e.g.,

the optimal rank aggregation). Finding indicative features in the underlying data,

to be used for adaptively formulating the answers of ranking queries, is a related

challenging problem.

Another limitation is related to the theoretical analysis of the error involved in

computing numerical integrals using the Monte-Carlo method. Our proposal makes

the assumption that the number of Monte-Carlo samples is selected so that the approx-

imation error of computed numerical integrals is negligible. In order to understand the

effect of such approximation error, we need to conduct deeper analysis of the behavior

of our algorithms. For example, let the estimated value of Pr(t, i) (the probability of

a tuple t to appear at rank i) using Monte-Carlo integration be P̂r(t, i). Then, based

on the guarantees of the Monte-Carlo method (cf. Section 2.3), we know that if the

number of samples is in Ω( 1
Pr(t,i)·ε2 ln(1

δ
)), for a given ε ∈ (0, 1] and δ ∈ (0, 1], we have

Pr ( |Pr(t, i) − P̂r(t, i)| ≤ ε · Pr(t, i)) ≥ (1 − δ). A crucial challenge for finding

the required number of samples that achieves the previous guarantee is to efficiently

compute a tight lower bound on Pr(t, i).

One final limitation is related to our experimental methodology. Our experiments
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mainly measure the efficiency and scalability of our methods in various contexts. How-

ever, an orthogonal and important experimental dimension that we did not explore is

user’s satisfaction with reported results. This dimension raises multiple questions that

are interesting to answer through user studies. For example, which query semantics

make more sense from user’s perspective? what classes of applications in which users

can sacrifice the guarantees of reported answers in favor of more efficient processing?

how much users can appreciate uncertainty-aware ranking compared to a traditional

ranking that eliminates uncertainty from the underlying data?

7.3 Future Work

Our future work includes studying ranking queries under more general uncertainty

models, solving the problem of aggregating multiple partial orders, and mapping the

requirements of probabilistic ranking queries into low-level modifications in query

engines. In the following, we give a high level overview on each of these extensions.

7.3.1 Ranking Under More General Uncertainty Models

The study presented in this dissertation treats tuple level and attribute level uncer-

tainty models in isolation. While our proposed query semantics are generic and apply

to any uncertainty model that can be interpreted under possible worlds semantics, the

processing techniques we introduced are dependent on the underlying type of uncer-

tainty. For tuple level uncertainty, we exploit the possibility of ordering tuples on score

values to incrementally maintain a state space representing possible query answers,

while for attribute level uncertainty, we build on Monte-Carlo methods to find the

probabilities of possible orderings by sampling from the space of score combinations.

In general, our techniques can be extended to support both types of uncertainty

conjointly. Given an uncertain database with tuples having both uncertain attributes

and membership probabilities, where the domains of uncertain attributes are discrete,

we can adopt a tuple-level uncertainty model to capture both types of uncertainty, as
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we show in Section 3.1. Specifically, each tuple is inflated into a group of exclusive

instances representing possible combinations of uncertain attributes’ values. A top-k

query in this setting is mapped to a top-k groups query, similar to our proposal in [65].

The previous approach is inapplicable when uncertain attributes have continuous

domains, e.g., ranges of values. One possible approach to handle ranking queries in

this setting is to extend the procedure of sampling from the space of score combina-

tions to reflect probabilistic tuples’ membership. Specifically, a tuple’s possible score

is included in a sample score combination with probability equal to tuple’s member-

ship probability. Exploiting other optimization opportunities, like k-dominance, is

more complicated since tuples’ probabilities need to be taken into account in these

settings.

7.3.2 Aggregation of Partial Orders

Consider a multi-agent setting where each agent specifies preferences on a set of

objects. A pair of objects can be either deterministically ordered or incomparable.

Incomparability originates from different sources including unknown relationship be-

tween objects, e.g., comparing an apartment to a house, incomplete object description,

e.g., apartments whose rent amounts are given in the form of intervals rather than

single values, or adopting multiple criteria to order the objects. Such preferences can

be often formulated as partial orders.

When multiple partial orders are available on the same set of objects, each object

has a set of different rank intervals. Our goal is to collapse the rank intervals of each

object into one rank interval that best conforms to the individual partial orders, and

to compactly encode the resulting rank intervals into a new partial order that acts as

an aggregation of the individual partial orders.

The problem of aggregating partial orders has been considered in other contexts,

where an aggregation criterion (e.g., prioritization or Pareto aggregation) is used to

compute an aggregate order. One problem with these approaches is non-closure,

(i.e., the outcome order is not guaranteed to be a proper partial order). Our goal is
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different, since we would like to compute a mean partial order that has the minimum

average distance to all input partial orders. Hence, there is no explicit aggregation

criterion in our settings, and we restrict the result to be a proper partial order.

7.3.3 Low-Level Modifications in Query Engines

We plan at integrating our algorithms with query engines by embedding the algo-

rithms in specialized query operators. A key problem that we need to address is

defining the proper inputs and outputs for such operators, which has a direct impact

on operator design and implementation. For example, under tuple level uncertainty,

since our query semantics integrate scores and probabilities as two interacting ranking

dimensions, one possibility is to feed the new operators with two tuple streams of the

same input relation(s) ordered based on scores and probabilities. We need then to

design special score aggregation methods to integrate both orders.

Regarding operators’ output, the quality requirements of query output have to

affect the order in which query results are propagated. Operators’ implementation

need to satisfy this requirement by pipelining high-quality query answers early in the

output streams. The integration of the new operators with other conventional query

operators would also induce several changes in the implementation of conventional

query operators and their input/output interfaces.
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