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Abstract 

X-ray imaging has become one of the most pervasive and effective means of diagnosis in medical clinics 

today. As more imaging systems transition to digital modes of capture and storage, new applications of x-

ray imaging, such as tomosynthesis, become feasible. These new imaging modalities have the potential to 

expose patients to large amounts of radiation so the necessity to use sensitive imagers that reduce dose 

and increase contrast is essential. 

An experimental design that utilizes laterally oriented detectors and amorphous semiconductors 

on crystalline silicon substrates has been undertaken in this study. Emphasis on fabricating a device 

suitable for medical x-ray imaging is the key principle throughout the design process. This study 

investigates the feasibility and efficiency of a new type of x-ray imager that combines the high speed, low 

noise, and potential complexity of CMOS circuit design with the high responsivity, large area uniformity, 

and flexibility of amorphous semiconductors.  

 Results show that the design tradeoffs made in order to create a low cost, high fill factor, and high 

speed imager are realistic. The device exhibits good responsively to optical light, possesses a sufficient 

capacitive well, and maintains CMOS characteristics. This study demonstrates that with sufficient 

optimization it may be possible to design and deploy real time x-ray system on chip imagers similar to 

those used in optical imaging. 
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Chapter 1 

X-Ray Imaging Theory and Applications 

This chapter details the physical phenomena of x-rays and their uses. It starts with a detailed description 

of the properties of electro-magnetic radiation (EMR) that are commonly classified as x-rays. Then, 

common modern methods of x-ray generation are described along with the resultant properties of the x-

rays. The properties of different x-ray radiation then determine their applicability to different types of 

radiography, which is the detection and interpretation of x-ray radiation. X-ray imaging modalities, or the 

different modes of uses x-ray imaging, are discussed in addition to the areas of medical imaging that this 

thesis will cover. Metrics and requirements having to do with each of these x-ray imaging areas are 

established which determine the market segments available for real time x-ray digital imaging systems. 

Finally, an outline of the goal and scope of this thesis are given in addition to the design criteria used, 

characterization tools developed and used, and the experience gained in order to design more efficient and 

effective real time x-ray imagers. 

1.1 The History of Electromagnetic Radiation and X-rays 

In 1861 James Maxwell published "On Physical Lines of Force" [1] which set out to define, quantify, and 

establish a mathematical basis for the forces observed that were caused by negative and positive charges 

moving through space. In this first of four major papers looking to formulate equations that described the 

movement of charges Maxwell noted that light, when moving in a free medium such as air, not only 

propagated at a fixed speed but also that light consisted of both magnetic and electrical transverse 

oscillations. Using this assumption Maxwell was able to define the property of wavelength,    and 

periodic time or frequency,   as:  

  
 

 
         (1.1) 

 It was not until Maxwell’s third paper, “A Dynamic Theory of the Electromagnetic Field” [2], 

however, that this relationship was extended to all electromagnetic waves, of which visible light Maxwell 

was convinced was just one narrow band of frequencies. In addition to new modeling of EM waves 

Maxwell posited that the energy of a volume of light was inversely proportional to the wavelength which 

would now represent a broad spectrum of potential energetic radiation that was predicted by the math 

although never observed. He posited that waves of sufficiently high energy should be able to interact with 

matter with a type of mechanical force. Although his exact numerical formula was quantitatively wrong, 
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due to the fact that the quantum nature of photons and light would not be discovered for another thirty 

years, it was qualitatively right in that he predicted that the energy of an electromagnetic wave was 

inversely proportional to the wavelength or linearly proportional to the frequency, which is now known to 

be given by the relationship: 

E = h * v       (1.2) 

Where h is Plank’s constant, equal to 4.13566733×10
15

 eV·s, v is the frequency in Hertz, and E represents 

the energy in eV. Using equations 1.1 and 1.2 Figure 1 can be constructed to map out the entire 

electromagnetic spectrum. The spectrum is commonly broken up and referred to in terms of bands that 

roughly correspond to how the EM fdwaves interact with matter. As the frequency of an EM waves 

increases it possesses more energy and gains the ability to change the electrical composition, or ionize, 

atoms by interacting and altering the electron distribution that surrounds the atom with specific types of 

high energy exchange mechanisms. Radiation that can remove an electron from a host atom is referred to 

as ionizing radiation and starts with the ultraviolet band, including the x-ray and gamma radiation band 

names as well, encompassing roughly any EM wave that possesses more than 5eV. 

 

 

Figure 1 : The Electromagnetic Spectrum 

 

Exploring this area of high energy radiation did not advance significantly after Maxwell’s papers until 

Wilhelm Röntgen observed fluorescence in a nearby crystal when operating a high energy electronic 

vacuum tube [3]. Almost immediately, even without understanding the physical origins of the rays he was 

experimenting with, he was able to deduce properties of the x-rays, a term he coined, and found that they 

had the ability to pass through certain objects with relative transparencies that depended on the type of 
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material the object was made of. Soon, he and many other scientists were using x-rays for non-invasive 

diagnosis and this was the largest reason he was awarded the Nobel Prize for Physics in 1901, the first 

prize ever awarded, for his discovery. Figure 2 shows the picture Röntgen sent to a colleague in order to 

demonstrate his initial findings. 

 

Figure 2 : W. Röntgen First Public X-Ray Image from 1895 [3] 

An entirely new field, coined radiography, now sprung up that offered the amazing capability of internal 

diagnoses and non-invasive observations of the human body in a cost effective manner. Within ten years 

of Röntgen’s discovery there were medical clinics offering the ability to pinpoint objects within the 

human body or diagnose potential issues with a patient’s organs or bones. General Electric had produced 

a semi-portable x-ray image closet, textbooks had been written on how to optimize image quality, and x-

rays were being used for experiments and studies without anybody understanding what was responsible 

for the rays and how they were interacting with matter. [4] 

For more than one hundred years X-ray imaging technology has been one of the most widely used 

medical diagnostic and experimental information techniques in hospitals, laboratories, and observatories 

in the world. X-ray images have been used to demonstrate the double helix nature of DNA [5] and other 

proteins, for security scanners, mass spectroscopy, crystallography, and even for space based imagery [6], 

3D-reconstruction, structure analysis, and modeling. The advance in the usage, applications, and 

interpretations of x-ray radiation has always been tied to the technology capable of generating and 
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capturing x-rays. As both aspects, the production and detection aspects of x-rays become more precise 

new applications can always be found and older ones can be made safer or less invasive. 

1.2 X-Ray Physics and Generation 

Modern x-ray generation is the result of the rapid evolution of more than a hundred years of trial, 

experiment, and quantum physics. In order to fully understand limitations and constraints that are inherent 

to x-ray imaging it is important to understand where x-rays come from and how they can interact with 

matter. 

X-rays derive their energy from a moving electron’s direct interactions with an atom. An atom is 

the basic unit of matter and consists of a positively charged nucleus and surrounding negatively charged 

electrons which are arranged around the atom. The arrangement of the electrons around the atom adhere 

to electrostatic attraction and repulsion forces that form well quantized arrangements around the nucleus 

in a stable manner. To simplify the orbital arrangements typically a Bohr model of the atom is used that 

shows the levels of electrons that are electrically bound to the electron as shown in Figure 3.  

 

Figure 3 : Bohr Model of Tungsten Atom with Labeled Nucleus and Electron Orbitals 

Electrons are classified in terms of orbital energies by the letters used to classify the orbits and electrons 

that are further out in the diagram represent energy orbitals that possess less electrostatic attraction to the 

atom. In Figure 3 the red nucleus represents a positively charged nucleus that is most strongly attracted to 

the K shell electrons and least bound to the O shell electrons. 
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1.2.1 X-Ray Production 

When a high speed electron, with energies between 100eV to 100keV for the topic related to this thesis, 

passes near an atom there are three main ways in which the moving electron can react. The first involves 

elastic scattering in which the kinetic energy of the electron is reduced without radiation when the 

momentum is transferred to the atom in vibrational form. This is the most common high energy 

interaction and is responsible for most of the heat generated in x-ray tubes.  

The second type of interaction is known as “bremsstrahlung” radiation, or literally braking rays. 

In this interaction the mobile electron gets significantly close to the atom nucleus and is induced by the 

atom to change its direction via electrostatic, or Coulombic, forces. Once the electron changes directions 

it emits a photon to balance the change of momentum. The energy of the emitted photon is directly 

proportional to the change in momentum that the electron experiences so the closer an electron passes to 

the nucleus the higher energy a photon will be emitted with a direct collision and full stop of the electron 

corresponding to the highest energy x-ray possible being emitted. As the incident electron interacts with 

other atoms the amount of kinetic energy available for this radiation decreases which results in lower 

amounts of radiation being emitted at higher energies. This is why the maximum x-ray spectrum occurs at 

the peak of the applied voltage that accelerates the electron. 

The third and final way an electron can interact with an atom to produce x-rays is referred to as 

characteristic ionization. In this scenario the high energy electron physically collides with an electron in 

one of the orbitals of the atom. This collision transfers energy of the incoming electron to that of the 

electron of the atom. The atom’s electron is energized so that it either is totally removed from the atom or 

is elevated to a higher energy state within the atom. In order to relax and return the atom to a ground, or 

unenergized, state an electron from a higher energy orbital will drop down to fill the vacancy created by 

the energized electron and simultaneously emit a photon to compensate for the change in energy. The 

energy of the photon emitted is exactly the difference between the energy of the vacant atom orbital that 

is being filled minus the electron’s current orbital binding energy. This radiation, therefore, will be related 

to the binding energies of the atom used in x-ray production; specifically important are the K orbital 

electron energies which comprise the inner electron orbitals of the atom. Table 1 shows binding energies 

for common materials used in x-ray production and for other elements related to medical imaging. Notice 

that higher binding energies are present in atoms with higher atomic numbers and the low binding 

energies are present in organic material. 
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Table 1 : Electron Binding Energies for Specific Elements and Associated Orbitals [7] 

 Element Binding Energy (eV) 

Orbital Hydrogen Carbon Oxygen Molybdenum Rhodium Tungsten 

K 13.6 284.2 543.1 20000 23220 69.525 

L - - 41.6 2866 3412 12100 

M - - - 506.3 628.1 2820 

N - - - 63.2 81.4 594.1 

O - - - - - 75.6 

 

These high binding energy reactions produce the x-ray photons that will be considered for the topic of 

medical and scientific imaging. The next section will describe the limitations and methods of generating 

x-rays in modern imagers. 

1.2.2 X-Ray Generators 

Much like the automobile has slowly and steadily been refined but has remained fundamentally the same 

x-ray generators have remained functionally the same for almost a hundred years. Modern x-ray 

generators are designed to deliver high rates of x-ray flux while cooling the structure to deal with the 

large amounts of power required and heat generated by the high speed electron collisions required. The 

typical x-ray system consists of a voltage control unit that is capable of generating voltages in excess of 

140kV and an x-ray tube that converts accelerated electrons into x-ray radiation using the mechanisms 

described in the previous section. 

Modern x-ray tubes, an example shown in Figure 4, use a rotating anode hot cathode design. This 

design increases the life of an x-ray tube and helps with the regularity of emitted photons that result from 

the high energy exchanges that occur in x-ray production. The main product of x-ray production is heat 

[8], with more than 95% of the energy being used directly being converted to, and therefore lost, as heat. 
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The hot cathode is the component that is heated with large currents to encourage thermionic 

emission. Thermionic emission describes a state of electron energies where, due to high amounts of 

atomic vibrational energy, electrons can easily be ejected from a material when a voltage is applied to the 

target. This is the same principle used in incandescent bulbs to produce visible light. An x-ray tube 

commonly has two filaments in the cathode of two different sizes. The larger filament produces a larger 

amount of electrons for emission, and therefore a higher x-ray concentration, but introduces image 

blurring. Where fine, focused, and more controlled doses are required the smaller focal spot is used but 

this introduces heat and lifetime constraints on the anode target [9]. 

 

Figure 4 : X-Ray tube showing (left) rotating anode and (right) electron focal filaments [10] 

Once the filament has been heated to a specified temperature the rotating anode is spun at high speeds 

before a large voltage is applied between the two. The magnitude and duration of the high voltage is 

dependent on the type of image being made which will be discussed in section 1.4. The typical x-ray 

spectrum produced by this method using a tungsten target can be seen in Figure 5.  
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Figure 5 : Spectrum from a Tungsten Target at various kVp showing continuous and characteristic 

spectrums 

It consists of a combination of the characteristic peaks and the continuous spectrum of the anode target 

minus the attenuation and filtration of the x-ray tube housing itself. In addition to this, filters can be added 

shift or accentuate certain x-ray energies based on their attenuation constants, as will be discussed in 1.3. 

 

1.3 X-ray Image Contrast Capturing Physics and Image Generation  

When a photon of sufficient energy passes through a physical medium there are two ways the photon can 

be accounted for. The photon can pass through the medium totally uninterrupted, referred to as 

penetration, or there is a finite probability that the photon will interact with an atom or an atom’s 

electrons and be removed from its original path, referred to as attenuation, denoted by the term µ. The 

type of interactions that occur and their probabilities are tied to the energy of the photons and the density 

of the physical medium. The three main types of interactions x-ray photons have with matter are Raleigh 

scattering, Compton scattering, and photoelectric absorption. These three interactions can be seen in 

Figure 6. 



 

 9 

 

Figure 6 : X-ray interaction showing (a) Raleigh Scattering, (b) Compton Scattering, and (c) 

Photoelectric Effect 

In Raleigh scattering the photon is absorbed by the atom in vibrational form and then almost immediately 

ejected again in the form of a photon of similar energy and direction as the incident photon. This type of 

scattering contributes to decreased contrasts in images because the photon experiences roughly no change 

in energy but can experience a change in direction. Raleigh scattering is more prominent in low energy x-

rays in the area of 10kVp to 50kVp, such as fluoroscopy and mammography, but negligible at higher x-

ray energies 50kVp and up [8]. Raleigh scattering attenuation is denoted with the term µR. 

 In Compton scattering the photon collides with an electron to ionize an electron and changes 

direction based on the amount of energy transferred to the ejected electron. The total momentum of the 

incident photon is conserved when the ejected electron is accounted for but the scattered photon will have 

an energy and direction different than the initial photon. Compton scattering increases with increased x-

ray energy and accounts for almost all the attenuation in high energy x-rays [8]. This scattering is denoted 

µC and contributes to a lowering of image contrast if the scattered photon cannot be filtered or 

distinguished from unscattered or penetration x-ray photons. 

 Finally, in photoelectric absorption a photon ejects an electron from an atom by completely 

transferring its incident momentum to the electron. The electron is then emitted into the surrounding 
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medium where it is absorbed or can transfer its momentum to the surrounding material through collisions 

or Coloumbic interactions. Due to the small atomic numbers involved in organic tissue, as shown in Table 

1, the probability of producing further x-ray photons is almost zero which means that photoelectric 

absorption produces no scattering artifacts other than high speed electrons and lower energy photons. 

However, photoelectric absorption probability decreases with increasing x-ray energy and the amount of 

energy transmitted to the x-ray target, referred to as dose, is the largest for a photoelectric interaction. The 

probability of this interaction is closely tied to the density of the material as well, so this mechanism is the 

dominant source of contrast in most images that involve bone or contrast agents in the body. Photoelectric 

absorption is denoted with the subscript µP. 

 The total attenuation of a material is the linear sum of all the attenuation mechanisms described 

above, yielding 

                   (1.3) 

X-ray images are formed when the material and energy dependant factors of for different parts of the 

body are exposed to an x-ray source allowing the penetrating radiation to be captured correlated to the 

attenuation coefficients present in the body by the formula: 

      
          (1.4) 

Where N is the incident number of x-ray photons and x is the distance travelled through the image target. 

Note that the transmission of x-rays through matter is inherently an exponential process with respect to 

the distance, usually a fixed value in medical imaging, but a linear relationship to the incident photons. A 

good x-ray detector should capable of maintaining this linear relationship even at low photon incidence 

levels, called fluence levels when referring to EM radiation, in order to allow for the patient to be exposed 

to as low amount of x-ray photons as possible. This way the potentially damaging energy absorbed 

through Compton scattering and the photoelectric effect can be kept to a minimum in x-ray applications 

that involve longer exposures times. 

 Once an object has been exposed to x-ray radiation it is the job of the x-ray imager to detect the 

incident radiation amounts and record the detected flux over a given area and store it to be analyzed. The 

area of x-ray detection and capture will be the focus of this thesis.  
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1.4 X-ray Modalities and Imaging Areas 

X-rays are high energy photons that scatter when they interact with matter and therefore cannot be 

focused in a manner similar to low energy photons, such as visible light. For this very reason x-ray 

images are usually the exact same size as the imager that takes them. Therefore one thing common to all 

x-ray modalities is that they must be large enough to cover the region of interest but not too large as to be 

prohibitively expensive. 

X-ray imaging exploits the penetration and attenuation property of high energy photons through 

the human body and can be used in a wide variety of applications that require non-invasive or density 

sensitive information to be captured about the patient. The photon energy dependant factors of the 

attenuation coefficients and how they relate to different parts of the human body are what determine if 

certain energy ranges are more suitable to specific types of imaging more than others. These imaging 

areas, or modalities, can be separated in modern x-ray radiography to fit into roughly four categories; 

chest and general radiography, mammography, fluoroscopy, and x-ray computed tomography. Each type 

comes with its own set of design parameters and constraints that aim to optimize the function of the 

modality and safety of the administered dose of x-rays.  Important criteria for imaging systems are 

detector size, pixel size, readout time, x-ray spectrum sensitivity, and dynamic range. They will be 

discussed and criteria for each imager will be derived in the following sections. 

1.4.1 Chest and General Radiography 

Chest and general radiography represent the oldest and most ubiquitous mode of x-ray imaging. This area 

encompasses the images used for bone analysis, tuberculosis screens, or any other general image where 

an x-ray image is required. A diagram of a typical chest radiograph is shown in Figure 7 to illustrate the 

straightforward approach of this type of x-ray image. 
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Figure 7 : General Radiography 

Chest radio graphs require detectors that are significantly larger than other image types because of the 

large area of the average human chest. Typically, this size is around 40cm for the diagonal. Due to the 

size of the imager and the types of objects that will be imaged, such as bones or body lesions, an 

acceptable resolution of 200um is often required [11] in addition to an x-ray energy that offers acceptable 

contrast for bones and dense tissue, usually between 80 kVp and 120kVp on a tungsten target tube.  

All stationary radiographs exhibit increased noise performance due to the presence of collimators 

between the subject and imager that reduce the probability of detecting a scattered photon due to 

Compton or Raleigh scattering that causes the x-ray to change direction. In static radiography the detected 

scattered to primary penetrating photon ratio is about 0.05 to 0.15. Further improvements to reduce this 

number would involve incorporating the ability to distinguish photon energies from each other [12]. 

Traditionally these types of radiographs were taken one at a time with a radiologist repositioning 

the patient between each image and setting up the x-ray generator as needed. This translates into an image 

time requirement that is not really defined. However, if the radiologist would like an opportunity to 

quickly grade the quality of the captured image than something on the order of a few seconds is required. 
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1.4.2 Mammography 

Mammography involves the specific imaging of breast tissue. Due to the size and composition of the 

human breast this imposes different requirements than general radiography. A diagram depicting a typical 

mammographic setup can be seen in Figure 8. 

 

Figure 8 : Mammography 

In mammography the lesions and calcifications being sought require that the minimum resolution to be 

much smaller than general radiography, usually on the order of 50um, but over a smaller area, usually 

around 25cm in diagonal [13]. In addition to a different minimum resolution, the energy used in 

mammography is lower because this generates higher contrast through larger absorption in the breast, 

roughly 40kVp on a molybdenum target tube. 

Due to the pressure and alignment of the breast while this image is being taken the image time 

has no hard limitation imposed by the speed of the imager itself, but something on the order of a few 

seconds is preferred as well. 

1.4.3 Fluoroscopy 

Fluoroscopy is real time x-ray imaging that is used for surgery or internal observations that aid in delicate 

operations or diagnosing a condition with a patient that simply cannot be described in a static image. Due 
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to the requirement of real time display fluoroscopy represents one of the fastest and difficult areas to 

design for. In fluoroscopy, the patient usually lies on a table in between the x-ray source and the imaging 

device as shown in Figure 9. The x-ray source, table, imager, and screen are usually comprised of a single 

dedicated housing that the patient is inserted into for the duration of the operation. 

 

Figure 9 : Fluoroscopy 

Important metrics for this type of imaging are the sensitivity, readout speed, image distortion, and low 

flux noise performance of the imaging device. The limitations in fluoroscopy come from the x-ray energy 

absorbed by a body when exposed. Fluoroscopy typically uses a 70kVp exposure with more than 300 

times less x-ray flux than chest radiography [13]. The reason that the rate is lower is because the doctor 

and patient will be exposed to the x-ray beam for a prolonged duration which can be up to tens of 

minutes. While being exposed to x-rays, the imager needs to be capable of displaying a corresponding x-

ray intensity picture in real time to the doctor. In order for this image to appear natural and relevant to the 

doctor a frame rate of roughly 30 Hz is necessary with any increase over that rate an added benefit that 

enables quicker and more precise operations to take place [13]. 

Ideally, fluoroscopic imagers are operated in a region where the device now becomes quantum 

noise limited. A quantum noise limitation is imposed by quantum mechanics and deals with the 

probabilities of photon emission, interaction, and detection on an individual basis which results in random 
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variations in photon flux that cannot be avoided. Dealing with the low flux of x-rays is often overcome by 

using larger pixel sizes that allow for more photos to be collected in the same area or a higher 

concentration of photons which reduces the fluctuation amount due to this effect. In digital imaging, 

however, there are ways to correct for quantum noise limitations in some situations by methods such as 

frame averaging and smoothing. This reduces the need for such large pixels and allows for smaller pixels 

to be used that will improve the resolution of the detector without being overcome by noise at the low x-

ray levels used [13]. 

1.4.4 X-Ray Computed Tomography 

The ability to perform mathematical analysis on x-ray image data has was actually invented and 

completed in theory even before the first digital imager was made but it was only the computer and digital 

flat panel detector that made 3-D reconstruction possible for medical applications [12]. In X-ray 

computed tomography (CT) the x-ray source and detector are rotated around an object while continuously 

capturing image data as shown in Figure 10. 

 

Figure 10 : Computed Tomography 

Once the data is recorded a mathematical technique, called the Radon transform, can be used that allows 

depth and attenuation data to be computed and reconstructed onto a 3-D model that represents a depth and 
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density mapping of the object being imaged. Modern CT scanners are capable of rotating in a helical 

fashion while high speed imagers record the X-ray data. This allows for the image to be taken faster 

which has the effect of increasing image resolution due to smaller patient movements during the imaging 

process and lowering the patient dose, as the time required capturing the image, and therefore the time the 

subject is exposed to radiation, is reduced as well. The lower time required for each scan also saves 

money due to the x-ray tube having to be operated for less time. 

 The drawback to the speed, however, is that the noise in each pixel is increased due to the lack of 

collimation. In static radiography collimators can be used to filter out Compton and Raleigh scattered 

photons. CT cone beam scanners can not use collimation which raises the scatter to primary ratio to 

roughly 0.4-2 [12]. This fact usually leads CT scanners to use higher x-ray energies, in the range of 

70kVp to 140 kVp, which have lower attenuation for human tissue but are more damaging due to the 

sheer amount of images that are needed to be taken in a scan.  The ability to filter and distinguish between 

scattered and primary photons would enable a CT scanner to increase resolution and decrease noise with 

no additional modifications. 

 As an additional piece on CT scanners, the concept of 3-D reconstruction based on images from 

multiple angles has spread to conventional radiography as well in a mode called tomosynthesis. In 

tomosynthesis a sequence of images is taken, usually two or three, with a slight spatial and angular 

separation between each image. The images are then combined offline to help create an additional depth 

based contrast that gives certain body parts more definition making observations, and diagnosis, easier for 

a radiologist to make [14]. Tomosynthesis is more focused on traditional radiography and mammography, 

however, than where CT scanners are typically used and so the requirements for this modality will be 

imposed on the imaging devices for those modes. For an imaging device to adapt to this new modality a 

fast framerate is required in order to minimize patient movements which can destroy any gains in image 

quality. 

1.5 High speed X-ray imagers 

From the criteria related to each of the imaging modalities above design criteria can be summarized in 

Table 2 shown below. In addition to the descriptive limitations discussed previously additional 

requirements are now listed that detail the mean exposure and noise levels that are considered tolerable 

for each modality and how they translate into circuits. 
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Table 2 : Specifications for Digital X-Ray Imaging Systems [13] 

 General Mammography Fluoroscopy CT 

Detector Size 35cmx43cm 18cmx24cm 25cmx25cm 20cmx20cm 

Pixel Size (square) 200um 50um 250um 80um 

Readout Speed 2 Hz 2 Hz 30 Hz 10 Hz 

X-ray Spectrum 120 kVp 40 kVp 70 kVp 80-140 kVp 

Mean Exposure 300uR 12mR 1uR 500mR 

Photon Fluence 

(photons/mm
2
/mR) 

2.3x10
5
 4.77x10

4
 1.98x10

5
 2.5x10

5
 

Noise Level 6uR 60uR 0.1uR 100uR 

Using the values in the table as design parameters an imaging device can be designed and optimized for 

each modality. With the introduction of digital tomosythesis techniques the need to create high speed 

imagers that can be used for standard radiography images in addition to being fast and flexible enough to 

capture the necessary images in a short period of time represents a new market. The imagers that fill these 

requirements should also be able to be more sensitive and efficient with the x-ray radiation the patient is 

exposed to so that the administered dose can be lowered without compromising image quality.  

 Not mentioned in this introduction is an area of x-ray imaging that directly benefits from the 

advances in medical x-ray imaging, namely security, industrial, and scientific x-ray imaging that includes 

fields such as space imaging, x-ray crystallography, automatic defect analysis, patent infringement law, 

and national security [6]. These areas represent a discussion that would warrant an entire chapter for 

themselves, would create different criteria with a different focus than those discussed in Table 1, and so 

while of interest to the author will not be covered in this thesis.  

1.6 Summary and Thesis Organization 

This chapter presented a history of x-rays and a physical understanding of how they are created, captured, 

and used to create images. Different medical x-ray techniques were detailed that represent different areas 

in radiography. The different radiographic modalities result in different specifications that determine what 
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constitutes a satisfactory or excellent imaging device with respect to its minimum pixel size, noise 

resolution, and x-ray spectrum response. Finally, the new market segment created by tomosynthesis 

represents a new area of x-ray imaging devices that can filled by a new type of imaging device that offers 

high speed, low noise, and high resolution.  

 This thesis will be to investigate and optimize a novel x-ray circuit for low noise and fast 

operation for radiography or real time imaging modalities.  

Chapter 2 will discuss the components that comprise an x-ray imaging system and explain the 

design decisions made early on in the design process. These factors include the conversion mechanism, 

pixel architecture, and circuit materials. 

Chapter 3 will discuss the design and simulation of the circuit including parameters that were 

optimized or altered. It will also include issues associated with the electronics and material interfacing 

between the circuit and extra processing required. 

Chapter 4 presents test data of the chip including tests designed and carried out solely for the 

course of this thesis.  

Chapter 5 will discuss lessons and experience learned that should go into designing an imager for 

future use. The issues and workarounds will be discussed and contrasted with mechanisms designed to 

avoid them and suggestions will be given, along with how they would be implemented, that will allow for 

this research to be more commercially viable.  

 With these factors in place the next chapter will cover how x-rays are converted into a measurable 

signal to meet the criteria established in this chapter when forming a medical image.  
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Chapter 2 

Detector Structures, Amorphous Photoconductors and Backplanes 

for Large Area Imaging 

This section will give an overview into the components that make a digital x-ray imaging device and 

provide rational into why one choice was taken when developing the imager over another. A system 

overview will break down the system into three main components that are present in every imager; x-ray 

conversion, signal detection, and readout section will be described and compared. All focus will be placed 

on digital mechanisms for achieving these actions as a digital system is the only feasible approach to the 

computerized modalities described in 1.4. 

 Different modes of x-ray conversion will be discussed that will give insight into optimizations 

that can be implemented in this first stage. The two types of x-ray conversion will be compared in 

addition to a discussion on amorphous selenium which represents a new material in this field that is the 

material of focus for this thesis.  

 Next, a discussion on two types of semiconductors will highlight differences and similarities 

between amorphous and crystalline semiconductors. This information will be used to decide between 

proper applications of one over the other. 

Finally, detector structures and back planes responsible for signal detection will be detailed and 

compared. Vertical and horizontal layouts are discussed along with the applications and merits for each. 

CMOS and amorphous backplanes are compared for speed, noise performance, compatibility, and cost. 

2.1 Large Area Imaging Systems 

An imaging system is a system that contains the necessary components to detect incident radiation, 

convert the radiation to an intermediate exchange mechanism, and then transmit the information to an 

external source. Digital imaging systems contain multiple components that must cooperate and work 

together in order to produce an image. The basic diagram of an imaging system can be seen in Figure 11. 
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Figure 11 : Basic digital imaging system [15] 

 

Whether large or small area all digital imaging systems have the same basic block diagram as shown. The 

active matrix flat panel portion of the imaging system will be the focus of this thesis as the logic circuits, 

amplifiers, and timing required to operate the imager itself have constituted many other works. Selecting 

appropriate components and optimizing the timings of the peripheral circuits will be assumed and instead 

the focus of design will be given to the active matrix flat panel portion of this system. A further 

breakdown of this component can be summarized in Figure 12, which details the components common to 

all digital active matrix flat panels, whether large area or single pixel [16]. 

 

Figure 12 : Imager System Components 
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Large area imagers systems are unique in the problems they face are problematic to deal with in each step 

of the system. Due to the sizes of the imagers required as described in Table 2, converting incident 

radiation uniformly over the entire panel is crucial to producing a meaningful x-ray image. Due to the 

need to keep radiation doses low and exposure time short, efficient and reliable conversion of the data 

collected is equally as important. In addition to these issues the need to be able to transmit the data 

quickly becomes an additional constraint when the speed requirements of real time x-ray imaging or 

tomosynthesis are factored in. For these reasons an understanding and analysis of the three system areas is 

necessary to design an x-ray imager, starting with the radiation conversion. 

2.2 Indirect and direct detection 

Radiation conversion mechanisms for digital imaging can be roughly separated into two categories that 

describe how x-rays are transduced into a detectible signal. The first category is called indirect 

conversion. This mode uses a phosphor that, when exposed to x-ray radiation, produces photons of a 

different wavelength using the same mechanisms described in section 1.3. The second category is called 

direct conversion due to the generation of electron-hole pairs when exposed to x-ray radiation. Direct and 

indirect conversion mechanisms are both shown Figure 13. 

 

Figure 13 : Direct conversion (left) vs indirect conversion (right) 

The choice of conversion mechanism depends on the desired response and speed characteristics that the 

imager requires. Currently, for the high speed operation required in tomosythesis and fluoroscopy the use 

of indirect conversion detectors is common due to the speed and leakage challenges associated with direct 

conversion materials and interfacing them to the electronics [17] [18]. For this reason a focus will be 
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placed on indirect conversion mechanisms and parameters will be optimized to design a detector using 

indirect detection. 

2.2.1 Indirect Conversion 

Indirect conversion, as shown in Figure 13, involves the use of a scintillating phosphor as the initial x-ray 

radiation conversation mechanism into visible light before another layer, usually a photoconductor, is 

used to convert the light into a measurable signal. There are two main issues encountered when using this 

approach. The first is that photoluminescence, or the emission of photons due to the relaxation of 

electrons caused by the absorption of the incident x-ray, is an inherently randomly oriented process with 

respect to the direction of the emitted photon that causes the light to scatter. The second problem is that 

the decay time of a scintillator, or the amount of time it takes for the photoluminescence to stop, can be on 

the order of seconds when high energy x-rays are used.  Both of these problems cause motion artifacts, 

blurring, and reduced image quality when high speed images need to be captured [19]. 

 Selecting a scintillator therefore involves making sure that these effects are reduced. To 

accomplish this, the first stage in the imaging device will involve coupling a suitable scintillator to a 

photodetector. X-ray scintillators have been refined over time, but a current state of the art single crystal 

type is made of thallium doped cesium iodide (CsI:TI). This material has a rod type structure that, when 

properly grown, can extend hundreds of microns long as shown in Figure 14 with the rod only being a 

few microns in diameter.  

 

Figure 14 : SEM of CsI rods [20] 

This growth serves two purposes; it allows for the scintillator to be of sufficient thickness for 

mammographic x-rays so that the x-rays are totally absorbed, a term called the absorbtion depth that’s 
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related to the attenuation coefficient for a material that was discussed in 1.3 [21], and the cone rod like 

structure serves as a fiberoptic taper that channels most of the generated photons either up to the top of 

the scintillator where they can be reflected or down to the underlying photoconductor where they can be 

detected. This mechanism acts to reduce the blurring caused by the omni-directional photon generation at 

the point where the x-ray is absorbed [19]. For the energies used in mammography it is recommended that 

the scintillator be at least 150um thick. 

  In addition to utilizing crystal growth to reduce blurring and increase absorption efficiency the 

CsI:TI can also be optimized to improve the speed by codoping with samarium (Sm) [20] or europium 

(Eu) [22]. Doping with these elements has been shown to reduce the afterglow present in CsI:TI when 

made to absorb high energy radiation such as x-rays to less than half a millisecond without changing the 

photon emission spectra and quantities by significant amounts from an undoped crystal [20]. This meets 

the speed criteria discussed earlier and will allow for CsI:TI to be the scintillator material used in a high 

speed imager. The selection of a scintillating film for the imager converts x-rays into lower energy 

photons and still requires a mechanism to convert photons into a quantifiable signal. The output of a 

doped CsI:TI crystal is well documented for use in mammographic applications [19] and a graph showing 

the output spectrum of a scintillator of this type is shown in Figure 15. 

 

Figure 15 : Output spectrum of doped CsI:Ti scintillator [19] 
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 Because it is not the focus of the STAR research group and therefore beyond the scope of this thesis, the 

choice of a Cs:TI scintillator film will be assumed to be sufficient for the first stage of radiation 

conversion and for purpose of this thesis while the second part of the radiation converter, the amorphous 

photoconductor, will be covered in 2.2.2 in much more detail. 

2.2.2 Amorphous materials as Photoconductors 

One of the difficulties in large area imaging is the uniformity of response that is required across the entire 

flat panel. In order to generate effective large area imagers amorphous semiconductors are commonly 

employed as photoconductors and have been widely used since Xerox pioneered the technology in the 

early 1980’s for use in photocopiers. Since then, amorphous semiconductors have been used in 

applications such as cameras, televisions, scanners, and even direct x-ray detectors [23]. Amorphous 

materials have advantages related to cost and ease of integration with other materials and substrates 

because the processing temperatures, contamination conditions, and facilities required for the deposition 

and use of these materials is much lower than polycrystalline or crystalline materials.  

The choice of utilizing a CsI:TI scintillating film for a high speed x-ray imager means that the 

choice of photoconductor must be optimized and understood as well so that the efficiency of the two can 

be maximized. This is due to the linear property of imaging systems, which can also be applied to x-ray 

imagers, which allows you to model each stage in your design as a linear transfer function with the 

resultant signal being the product of each the individual stages [24]. Matching and maximizing each step 

in the chain of imaging components will therefore give the best result. 

 Utilizing this modeling property we can then develop a strategy that integrates an understanding 

of amorphous semiconductors with the scintillating film that will result in a higher quality imaging 

device. Also, because the discussion of amorphous semiconductors will be of focus when designing the 

backplane, or circuitry, of the imager it is important that amorphous materials be given an overview. 

2.2.3 Material Arrangement and Properties of Amorphous Semiconductors 

The most thorough and relevant framework for understanding amorphous materials can be approached by 

applying a quantum mechanical analysis to the arrangement of atoms and orbital electrons as understood 

earlier in section 1.2. The result of this theory, initially applied to crystalline conducting, insulating, or 

semiconducting materials results in a band theory that is capable of predicting electron distributions and 
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functional aspects of the material such as band gaps and carrier mobility. The band theory relies on the 

well ordered structure and electron orbitals of the crystalline material to separate any material into three 

distinct bands that can be quantified by a function called the density of states, g(E), which defines the 

number of electron states that can be occupied per unit energy. This function separates the available 

energy states of a solid into three bands called the conduction band, where electrons are free to move 

along in the crystal at a speed determined by crystal lattice and electron affinity properties, the valence 

band, where electrons are covalently bound to the atoms in the crystal, and the band gap, the space in 

between the two bands that specifies the energy an electron has to obtain or lose before changing bands. 

A diagram of well ordered crystal and the band theory representations of a conductor, insulator, and 

semiconductor are shown in Figure 16. 

 

Figure 16 : Diagram of (a) crystalline solid and resultant density of states for (b) insulators, (c) 

semiconductors, and (d) conductors. The zero crossing on the Y axis denotes the Fermi level. 

This figure can also be used to roughly explain how semi-conduction occurs in the crystalline case. At a 

given temperature, T, for a semiconducting material it can be said that the material exists at the ground 

state, a state in which all the valence band is occupied and the conduction band is empty. This ground 

state is usually demarcated with a line called the Fermi energy level that represents roughly, at T = 0*K, a 

midpoint between each band. When a free electron is generated, that is to say some event causes an 
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electron from the valence bond to be sufficiently energized and motivated to cross the band gap present in 

the semiconductor, a hole is also created in the valence bond where the electron used to be creating two 

charged carriers, one in each band. 

In this charged condition an electric field can be applied across the semiconductor that draws the 

conduction band electron toward the cathode, the positively biased terminal, and moves the hole toward 

the anode, the negatively biased terminal. This is the idealized model in which crystalline semiconductors 

operate. Conductors, in which no band gap exists so carriers are free to move in either direction without 

having to be generated, and insulating materials, where the band gap is so large that practically no carriers 

are ever generated, are extensions of this band model to either extreme where the bands touch or grow 

further apart. 

It has been shown that amorphous materials possess many of the same properties and 

characteristics of their crystalline counterparts when analyzed for short range order [25] and a model to 

extend this useful density of states equation has been developed that allows for many of the crystalline 

design and simulation techniques to be carried over into amorphous material analysis and characterization 

[26]. In this model the assumption is that short range order is present in the solid and that disturbances in 

the bonding network can be classified as overcoordinated or undercordinated.  

Overcoordinated bonds represent bonds that have a more tightly spaced bonding arrangement 

than it would have in a normal crystalline structure whereas undercoordinated bonds have a looser 

bonding arrangement than they would in a crystalline solid. Starting from this, and then factoring in other 

defect states such as dangling bonds and material impurities, the extended the DOS model that is created 

contains localized tails, that is to say extensions of the conduction and valence bands that are randomly 

present only over small areas in the amorphous solid, in which one band appears to have crossed into the 

other but the material does not behave as a conductor due to the fact that these bonds are highly localized 

and do not provide the energy free barrier present in conductors. Figure 17 shows this modified DOS 

graphically when taking into account the different bond coordinations, dangling bonds, and impurities in 

amorphous solids. 
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Figure 17 : Diagram of (a) amorphous coordination and (b) amorphous density of states. The zero 

crossing on the Y axis denotes the Fermi level. 

This figure shows that when an amorphous semiconductor possesses a carrier, either an electron in the 

conduction band or a hole in the valence band, the charged carrier can move along the lattice under an 

applied field. While moving, however, it faces a finite probability of moving to an atom or location in the 

amorphous solid where its energy would be lowered, or raised, sufficiently that the carrier would not be 

energetically coerced by the applied field to move further along either of the bands, in essence becoming 

trapped. Locations in a material where carriers can essentially become stuck, and no longer contribute to 

the current flow in the semiconductor, are called traps. The presence of traps is the prime material 

differentiator that can be used to explain many of the lower mobility and metastable properties of an 

amorphous semiconductor that change over time when compared to crystalline semiconductors. 

 In these explanations it was assumed that the semiconductor materials were not affected, or 

limited, by the presence of the generated charges or other carriers present at temperatures above absolute 
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zero. Temperature, being an actual measure for the amount of vibrational energy in a system, has the 

effect of generating free carriers as it increases. In all semiconductors this has the effect called thermal 

recombination in which the conduction band and the valence band are constantly filled with carriers that 

exist for a time period, called the carrier lifetime τ, before becoming annihilated by re-crossing the band 

gap to join with a nearby hole; a consequence of Columbic attractions between the opposite carriers and 

the desire of the material to return to the ground state.  

There can exist conditions, whether due to large temperatures, excessive traps, or large currents, 

where the conduction bands and valence bands become space charge limited. In space charge limited 

operations the presence of too many carriers in each band begins to actually effect the mobility and shape 

of the bands locally. This has the effect of saturating either band causing the mobility of that band to be 

reduced. This can happen to the conduction band, the valence band, or both bands simultaneously but has 

the same consequence of lowering the amount of current the semiconductor is capable of carrying by 

modulating the transport properties of the band that become space charge limited [27]. In amorphous 

semiconductors traps directly contribute to space charge limited situations because they saturate the bands 

without contributing to the device current. This has the effect of lowering the gain, sensitivity, speed, and 

ultimately the usefulness of amorphous semiconductors in certain applications. 

2.2.4 Stabilized Amorphous Selenium as a Photoconductor 

Amorphous selenium (a-Se) has served as photoconductor for the photocopying industry for decades and 

represents a viable material for integration with a large flat panel imager. Selenium itself is a group VI 

element, with an atomic number of 34, which has an electron arrangement that leaves two open bonding 

sites on the outer orbital that occur at 105° bond angles to each other on one face of the atom [28]. 

In the crystalline arrangement these bond angles alternate with the next selenium atom creating a 

uniform chain with stable inter-atomic distances to the other atoms in the chain in a left hand, right hand 

bonding arrangement. However, in the amorphous case, these bond angles deviate slightly from 105° and 

no longer alternate in an order manner, instead they twist to distort any stable lattice and occur randomly. 

Also, the selenium bonding orbitals can form a covalently linked third bonding site, called an interstitial, 

to further distort any apparent lattice structure. This results in inter-atomic distances that are not fixed and 

selenium chain structures that can occur in sequenced rings, chains, or any combination of the two.  
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Se as a photoconductor must occur in the amorphous state because once the material crystallizes 

it loses the photoconductive properties associated with it. To maintain the amorphous structure, then, 

precautions and steps are taken during the design, deposition and handling of the material. Pure a-Se itself 

is unstable and crystallizes, due to ambient conditions, in periods that can range from days, months, to 

years. Precautions taken to insure that the selenium does not crystallize include alloying the material with 

known compounds to restrict or reduce crystallization, restrictions on processing temperatures, and 

restrictions on substrates for deposition.  

To deposit an a-Se photoconductive layer the desired alloy - usually a mixture of selenium, 

arsenic (~0.5% by weight), and chlorine (~40 parts per million) – is placed inside a vacuum chamber that 

operates as a resistive evaporation chamber as shown in Figure 18. The exact composition of the a-Se is 

unknown as it is sourced from a proprietary supplier that wishes to keep this information a trade secret. 

 

Figure 18 : a-Se Deposition 

The sample holder is heated to a temperature, usually between 50°C and 65°C while the chamber is 

totally evacuated to near vacuum pressure. The temperature control on the substrate is essential because 
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the glass transition temperature, or the temperature at which selenium begins to transition into a 

crystalline material, is known to be roughly just above this region. Also, it is known that the temperature 

of the substrate affects the electrical and optical properties of a-Se during the operation of the device [29]. 

 The selenium alloy is then heated to 250°C and melts into a gas that evaporates onto the substrate 

suspended overhead. This a-Se layer grows depending on the current supplied, vacuum pressure, and 

exposed solid angle of the substrate to the a-Se boat. Typical evaporation rates are in the area of 2um / 

minute. 

 Once the desired thickness of a-Se has been deposited the sample is usually annealed at the 

substrate temperature for a number of hours before being processed further. After this stage additional 

processing and deposition can be done to the sample if the requirements of not raising the temperature 

past the glassing point and not introducing stress to the selenium interface can be met. The difficult 

requirements attached to post processing a-Se for use in circuits is one of the problems this thesis aims to 

address and will be discussed in 2.3. 

2.2.4.1 Electrical and Photoconductive Properties of a-Se 

When operating in dark conditions and under a DC bias a-Se behaves as a highly resistive material. This 

property is beneficial for photo-detectors as it leads to a low dark current which is necessary for low noise 

and high dynamic range imagers. The conductivity of a-Se increases significantly when exposed to light 

due to the absorption of the light and generation of electron hole pairs, which is what makes a-Se a 

photoconductive material.  

The band gap of a-Se is known to be roughly 2.1 eV, which corresponds to an optical wavelength 

of 592nm. This means that incident light below this energy is exponentially less likely to be absorbed and 

that incident light above this energy has a probability of being absorbed that is modeled by the absorption 

coefficient, α. Stabilized a-Se has an absorption coefficient that can be seen in Figure 19. The absorption 

coefficient is a number that states for a given wavelength what the probability incident light intensity will 

be absorbed to 36% of its original intensity. 
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Figure 19 : a-Se absorption coefficient data [30] 

This absorption coefficient can be used to determine an appropriate thickness of material so that the 

emitted light of the CsI:Ti scintillator will be fully absorbed. The peak emission of the scintillator in 

Figure 15 is roughly 550nm, so this wavelength will be used to determine the thickness. To solve for the 

appropriate thickness required a concept known as the absorption depth is used, which is defined as: 

   
 

 
       (2.1) 

Using the values absorption coefficient values for a-Se we can calculate an appropriate absorption depth 

to be 1.65um. If 95% absorption is required the attenuation relationship described by equation   

    (1.4 so that the thickness can be increased to 2um, increasing the 

sensitivity of the device. The thickness of the photoconductive layer cannot be made arbitrarily thick, 

however, because absorption of photons and the generation of electron-hole pairs is a competing process 

with the phenomenon known as recombination. In recombination, if an electron hole pair cannot be 

collected in a certain amount of time after being generated it will either become trapped or recombine, 
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effectively wasting the absorbed photon. The ratio of capture and separation of the electron-hole pair is 

referred to as the quantum efficiency, η, of a material.  

a-Se exhibits an extremely strong dependence of the quantum efficiency to the applied electric 

field which can be explained by the Onsager theory for disassociation of photo-generated charges [30]. In 

this model, the charges must be pulled apart and separated quickly so that the Coloumbic attraction can be 

overcome before recombination occurs. The factors that help determine appropriate thickness of a-Se are 

the carrier mobility, µ, and lifetime, τ. When these two factors are multiplied we get something called the 

effective carrier range which is an approximate measure as to how far a carrier can move in a material 

before recombining. Table 3 shows the hole and electron mobilities along with the associated ranges 

typically found in a-Se and a-Si:H, a material that will be discussed in section 2.2.5 [29][32]. 

Table 3 : Mobility, Lifetime, and Range of a-Se and a-Si Carriers 

Property a-Se a-Si:H 

Hole mobility (µh) 

(cm
2
 / V * s) 

0.13 0.3 

Electron mobility (µe) 

(cm
2
 / V * s) 

0.008 2 

Hole lifetime (τh) 

(µs) 

~100 ~15 

Electron lifetime (τe) 

(µs) 

~500 ~2 

Hole range (µh*τh) 

(cm
2
 / V) 

13x10
-6

 4.5x10
-6

 

Electron range (µe*τe) 

(cm
2
 / V) 

4x10
-6

 4x10
-6

 

From the table we can see that in order to keep the probability of recombination low in the 

photoconductor at a given field bias that the collection distances should be kept under a maximum 

amount. Also subtly disclosed in this table is that a-Se is more suited as a p-transport material in which 

the motion of holes is preferred to the motion of electrons.  

For a-Se, which is typically biased at values above 5 V/um we see that the value for the a-Se 

thickness chosen as 2um is much less than the 13um as the hole range and 4um as the electron range. 
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2.2.5 Amorphous Silicon as a Photoconductor 

Much like the development of a-Se, hydrogenated amorphous silicon (a-Si:H) has been studied and 

developed extensively since the 1970’s as a semiconductor and photoconductor [33]. Silicon itself, atomic 

number 14, is one of the most abundant materials on earth and has four valence electrons which lead to 

four potential bonding sites for each atom. This lends itself to the ability to be doped by a variety of 

materials in order to alter the properties of the a-Si layer but also leads to the creation of many defect and 

unbound states. In order to tie these loose ends a-Si is commonly passivated with hydrogen gas to become 

a-Si:H. 

 The restrictions that were present on the handling and ambient conditions with a-Se are not 

problems for a-Si:H due to the fact that unlike a-Se, a-Si:H does not experience degraded performance 

when crystallized and also that a-Si has a glass temperature that occurs in excess of 600°C. The method of 

depositing a-Si:H is also different and is referred to as a plasma enhanced chemical vapour deposition 

process (PECVD). A diagram of this process is shown in Figure 20. 

 

Figure 20 : PECVD chamber used for the fabrication of a-Si:H 

In PECVD the substrate is heated to a temperature around 300°C and held to a ground potential while 

gases, usually SiH4 and H2 are fed into a vacuum chamber. A high powered RF source then energizes, 
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reducing the gas to ions, and deposits the silicon onto the target substrate. Parameters such as substrate 

temperature, RF power, and SiH4 to H2 ratios are all parameters that can be adjusted to fine tune the 

properties of the thin film a-Si:H that is grown onto the substrate in this process, but those are beyond the 

scope of this thesis. 

Once the desired thickness of a-Si:H has been deposited the sample is usually annealed at an 

elevated temperature for a number of hours before being processed further. After this stage the sample is 

usually passivated which involves the deposition of an inert layer on top to protect the a-Si:H. One 

restriction which does exist on a-Si:H, however, is that the material is kept relatively shielded from UV 

light if it is to be used as a photoconductor. This is because UV light is of sufficiently high energy that it 

can ionize and dislodge the hydrogen atoms that are used to passivate the dangling bonds. This has the 

negative property of creating excessive defects in the silicon lattice structure and lowering the stable 

electrical performance of the a-Si:H over time. This is known as the Straebler-Wronski effect and can 

only be reversed by annealing the material at high temperatures [34]. 

2.2.5.1 Electrical and Photoconductive Properties of a-Si 

The bandgap of a-Si:H is approximately 1.7eV corresponding to an absorption edge of 730nm. Contrary 

to crystalline silicon, a-Si:H is a direct band-gap material so that the absorption of a photon of this 

wavelength or higher generates a free carrier without the need for phonons, or lattice vibrations, to be 

present. Using the same reasoning as with the a-Se thickness calculations and the absorbtion coefficient 

data that can be seen in Figure 21, an optimal value for the thickness required to absorb the CsI:Ti 

emission is found to be 550nm for 65% or 625nm for 95% absorption. 

 Proceeding to check the range of carriers in a-Si:H, using the values in Table 3 the range can be 

found to be 4.5um and 4um for holes and electrons. 
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Figure 21 : a-Si absorption coefficient data [35] 

2.2.6 Summary  

This section has gone through how amorphous materials can be modeled, integrated, and deposited as 

photoconductors onto a given substrate. These photoconductors can be optimized to give large area, 

uniform, and effective absorption for a given optical target spectrum. Finally, the appropriate travel path 

length for each photoconductor before running into recombination concerns. 

2.3 Detector Structure 

When implementing a photodetector there are many ways that the material can be incorporated into a 

photoconductive detector. This section provides a quick overview into novel aspects of detector design 

for two types of detector alignment. Motivation and simulations are given for a vertical design in 

comparison to a lateral structure when amorphous photoconductors are used. 
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2.3.1 Vertical Detectors 

The vertical detector stands as the basic method of implementing photoconductive films. This style of 

detector remains popular because it offers simple ways to optimize the design in addition to large area, 

simple fabrication techniques, maintains the ability to grow the thick detector layers for directly absorbing 

x-rays or targeting specific wavelengths of light, and provides virtually 100% fill factor if designed 

properly. In the normal vertical arrangement the photoconductor is sandwiched between two metal 

contacts as shown in Figure 22  

 

Figure 22 : Comparison of (a) basic MSM and (b) enhanced MSM vertical detectors 

Incoming radiation, incident from the direction of the on the top contact, passes through the top contact 

and is absorbed in the photoconductor where an electron-hole pair is generated. Due to the DC biases 

applied between the top and bottom contacts the charged carriers separate and generate a current as they 

travel to the appropriate electrode. 

 Modifications to the basic MSM structure involve the addition of carrier blocking layers – either 

hole blocking layers at the anode or electron blocking layers at the cathode – that can still be deposited in 

a similar fashion to the film. These layers act to decrease the dark current present when biasing an 

amorphous semiconductor while preserving or enhancing the gain associated with placing a large electric 

field across the photoconductor.  

The disadvantage to this structure is that it makes extensive post processing and optimization 

necessary in order to get a working structure. The top contact, being a metal, must be designed to be 

transparent or thin enough so that it does not absorb incident radiation. The metal must also be compatible 

with the scintillating film and must not present any electrical incompatibilities with it when biased to high 

voltages necessary for high gain. ITO, a soft metal usually made into the bottom contact where it can be 

deposited on glass first, is not a suitable metal for post processing as an evaporated or sputtered metal on 

top of an amorphous material which means available metals must be thin and therefore brittle to bond to. 
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Also, each layer in the structure represents a possible point of contamination and failure if the device is 

being prototyped rapidly.  

2.3.2 Lateral Detectors 

The lateral detector represents a compromised approach to the vertical MSM detector structure that aims 

to maintain the fill factor but decrease the post processing. Lateral detectors solve the shortcomings of 

vertical detectors at the expense of the symmetry, simplicity, and dark current that were advantages in a 

vertical MSM design. In a lateral detector both contacts are laid down in the same plane and the 

photoconductor is deposited in between and on top of them, as shown in Figure 23. 

 

Figure 23 : Comparison of lateral detectors for (a) basic and (b) enhanced pixels 

Incoming radiation approaches undisturbed from the top generates the electron hole pair in the space 

between the two electrodes. The charged carriers are then drawn apart and their motion is sensed as 

photocurrent as they traverse the gap between the electrodes.  

Lateral detectors can run into aspect ratio step coverage issues when deposited to account for the 

acceptable carrier length discussed in Table 4. This means that to prevent the a-Se from crystallizing after 

being deposited onto the array the gap between the two electrodes should be sufficiently large. The space 

between the two electrodes cannot be made too large, however, because this requires a large bias to be 

applied which will increase the dark current. 

If this issue can be controlled, however, lateral detectors can potentially be designed into fine 

comb like structures allowing for high fields to exist in the photoconductor when only small voltages are 

applied.  

Lateral detectors suffer, however, from high dark current because there is no insulator or doped 

material that can reduce the DC current by insulation or diode parasitic effects. To get around this 

detrimental issue enhanced lateral detectors can be designed in which only one electrode is exposed to the 
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deposition of the photoconductor while the other contact is covered by an insulator. This, however, 

requires an extra processing step and introduces alignment and step coverage issues that make reliable 

and simple detectors difficult to fabricate. 

2.3.3 Detector Structure Summary 

Vertical and horizontal detector structures were contrasted with emphasis on ease of fabrication, 

efficiency, reliability, and ability to be integrated with the overall imager. A summary of these findings 

can be found in  

Table 4 : Comparison of Vertical and Horizontal detector structures 

 Vertical Lateral 

 Detector Thickness Adjustable Limited by top metal 

Dark Current Low High 

Process Ease Requires extra steps Single step 

Fill factor 100% ~100% 

Circuit integration More difficult Simple 

 For the calculated thicknesses and electrical lengths of photoconductors in section 2.2.6, and based on the 

work of a previous group member [36] we decided to try and integrate a lateral style detector in this 

design. This approach represents a new and novel aspect of this thesis and should be able to provide the 

desired fill factor and dark current levels necessary for a good imager. 

2.4 Detector Circuits and Analysis 

The next stage in the design of an imager involves integrating the radiation conversion stage with the 

proper circuit mechanism to quantify the signal, and then transmitting the signal to where the data can be 

read out. This means setting up a circuit capable of reading charge from the amorphous semiconductor 

and also a circuit that ties the amorphous material to the readout circuit. In reference to Figure 12, this 

represents the last two stages of an imaging device. 
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This section will detail two circuit architectures commonly used in modern active matrix devices, 

passive pixel sensing and active pixel sensing, and properties of each one. Also, lateral and vertical 

methods of integrating the amorphous semiconductor with the circuit will be discussed along with the 

advantages and disadvantages associated with each. 

 

2.4.1 Passive Pixel Sensing 

The passive pixel sensor (PPS) remains one of the most widely used and oldest methods of reading data 

from a two dimensional array. Ever since it was introduced in 1967 this pixel architecture has proven 

robust and flexible to be used in static image devices and high frame rate applications [15]. The PPS 

contains a detector sensing element, a capacitive storage element, and a switchable element that can be 

actuated to pass a charge stored on the storage element to a data line; hence the name passive pixel sensor. 

A diagram of a PPS can be seen in Figure 24. 

 

Figure 24 : Basic Passive Pixel Sensor (PPS) Circuit 
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The passive pixel sensor operates by switching between two modes controlled by the read line; integrate 

and read / reset. In integrate, the switch is turned off and the detector deposits collected charges onto Cpix, 

the pixel capacitance, proportional to the incident photon generated current in the detector, I. This current 

is the combination of two components. 

                       (2.2) 

Where Iphoto is the current due to detected photons and Idark is the quiescent current component that flows 

through the detector due to the voltage bias applied on the detector. Dark current in a PPS sensor has the 

effect of lowering the dynamic range of the detector because the relationship for a given frame time, tint 

that determines the voltage accumulated onto Cpix is: 

   
 

    
 

       

    
      (2.3) 

In a PPS sensor the voltage that is accumulated has a maximum value determined by the dielectric that is 

used in fabricating the active matrix circuit or the breakdown voltage related to the passive switch 

transistor. This value can be adjusted to suit the available readout circuitry by changing  Cpix which is 

equal to the sum of the material capacitance of the detector, the drain capacitance of the switch transistor, 

and any fringe and stray wire capacitances in the circuit. This value cannot be made arbitrarily large, 

however, because it can be shown that both the speed and the thermal noise level in the PPS architecture 

are affected with capacitances. The thermal noise generated by the pass transistor can be written as: [37] 

             
   

          

  
      (2.4) 

This component, called reset noise, when combined with the integration period time tint , forms a total 

thermal noise voltage on the charge amplifier that can be approximated by [15]: 

     
     

  

  
    

 

 
      

            

    
           

          

          
   (2.5) 

Where Ct is the total data read line capacitance including the pixel capacitance and amplifier, Ron 

represents the transistor resistance that is seen between the pixel and the dataline. This noise can be 

reduced by reducing the total capacitances in the system or minimizing the resistance of the pass 

transistor. 
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Once data is requested and the read line is activated and the switch is turned on the pass transistor 

transfers the stored charge to the readout electronics. The readout rate of the PPS array is governed by the 

readout transistor. It can be shown that the saturated on resistance of a transistor can be approximated to 

be roughly (15) 

      
 

 
                  

  
    (2.6) 

Where W/L is the width to length aspect ratio of the transistor, ueff is the carrier mobility of the transistor, 

(Von – Vt) is the transistor saturation voltage in operation, and Cg is the effective gate capacitance formed 

in the transistor channel when the gate voltage, Von is applied. The finite on resistance and load 

capacitance of the pixel create an RC circuit that can have its time constant approximated with: 

                     (2.7) 

Roughly five time constants are necessary to fully transfer the accumulated charge onto the data line. 

Note that the readout of a PPS pixel is destructive in that the charge on the capacitor is transferred to the 

data line and cannot be restored. Also, note that current leakage through the transistor to the data line, 

parasitic capacitances that contribute to the data line load, and cross coupling due to switching in the array 

are all factors that can hinder the speed and low noise performance of an imager with a destructive charge 

based readout. 

 The data line itself also presents a voltage thermal noise to the PPS sensor circuit and can be 

modeled as [37]:  

    
   

          
 

          
      (2.8) 

Showing that that the thermal noise scales quadratically for increasing data-line capacitance, which is a 

function of the size of the imaging device and the interconnects needed to connect the data lines to the 

charge amplifiers, and inversely proportional to time of integration which depends on the imaging 

modality. This means that PPS sensors to not scale particularly well to extremely large area arrays if the 

capacitances and resistances of the interconnects cannot be kept low. 

The total noise of the PPS sensor would be the quadrature sum of the thermal noise in the pass 

transistor, Nth, the thermal noise of the dataline, ND, and the noise of the charge read out amplifier, Namp,  

  
      

     
         

       (2.9) 
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Ignored in this noise total are the current leakages of the detector, although it can be shown that for 

materials such as a-Se and a-Si:H the current noise from these sources is negligible compared to the other 

noise sources covered here [37]. 

Common values for precision charge amplifiers designed to operate on such low signals provide 

noise floors in the area of ~1000 electrons [15]. Note that this amplifier noise represents the noise of 

discrete components. The scope of this thesis will not look at optimizing this noise so that value is 

assumed to be fixed, although the potential to drop this noise value does exist if the amplifiers can be 

implemented into the imager itself, a topic that will be discussed in 2.5.2.  

2.4.2 Current Mode Active Pixel Sensing 

Active pixel sensing (APS) represents an approach to addressing problems associated with the PPS sensor 

in areas such as scaling to larger arrays, faster speeds, and lower noise performance that were discussed in 

2.4.1. Two main modes of APS circuits exist, one that transmits the data to the data line as a voltage, V-

APS, and one that transmits data to the data line as a current, C-APS. Only C-APS circuits will be 

analyzed here because V-APS circuits are not suitable to the fast sensor modalities that are involved in 

tomosynthesis, CT-scans, and fluoroscopy [15]. 

 In a C-APS circuit a source following amplifier passes a current to the data line proportional to 

the photocurrent generated by the detector on the pixel capacitance, Cpix. This circuit serves two purposes. 

First, it decouples the collected radiation conversion data from the data line. Secondly, the source 

following circuit converts the detected charge into a current that can be read out by an attached charge 

amplifier. A diagram of the C-APS can be seen Figure 25. 
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Figure 25 : Current Mode Active Pixel Circuit Schematic 

The C-APS circuit operates in three modes controlled by the Treset and read transistor in the circuit. In 

reset mode, Treset is turned on to raise Cpix to a known value, Vreset, while the read line is kept low. Cpix 

represents the detector capacitance, gate capacitance of Tamp, and source capacitance of Treset.The value of 

this capacitance forms an RC time constant with the source-drain resistance that must be given time to 

settle. 

Once the value Vreset has been reached, the pixel enters integration mode where Treset is turned off 

and the incoming photocurrent from the detector acts to discharge the stored charge Cpix causing the 

voltage to change by the same relationship described in equation      (2.3. 

After a specified frame time, tint, the read line is actuated allowing the voltage stored at Cpix to 

cause Tamp to pass a current onto the data line capacitance, Cdata, where this current can be collected and 

converted to a voltage by a ratio determined by the feedback capacitance, Cf, using a charge amplifier. 

Due to the non-destructive readout the current can be sampled before the integration period and after the 

integration period, a technique known as double sampling, and the change in current due to the photo-

generation that is read by the charge amplifier can then be extracted as [38]: 
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       (2.10) 

Where k is the mobility capacitance gain, ueff * Cox, associated with the transistor process. We can see that 

lower resistance transistors help by providing larger changes in output current in addition to a higher 

voltage reset value which are crucial to the operation of this circuit. This current is then integrated onto 

the feedback capacitor, Cf, using a charge amplifier that will provide a gain, G, that is equal to [38]: 

   
    

           
    

 

                        
       (2.11) 

What is also notable about the gain in the circuit is that it is dependant on the frame time, t int, so that the 

read limitation of this circuit has no minimum time akin to the RC time constant in the PPS but rather a 

minimum time associated with the gain needed in each pixel. 

Much like the PPS circuit, then, smaller values of both load and pixel capacitance result in higher 

gains. This is important because it can be shown that the input referred total noise of the C-APS depends 

on both the gain and pixel capacitances by the relationship: 

  
    

     
           

         
 

 

      (2.12) 

Where Vout is the output voltage as labeled in Figure 25. In the C-APS circuit the noise levels can be 

designed for as follows: 

 increased with increasing pixel or feedback capacitance but is data line load independent, and 

therefore suited to larger arrays 

 decreased by reducing voltage swings, 

 Decreased by increasing the gain in exchange for dynamic range 

 Decreased by lengthening the frame time, but this also increases gain and loses dynamic range 

The current modulation that takes place at the gate of Tamp can only remain linear if the amplifier 

remains in saturation. For this to be ensured, a restriction is placed on the allowable drop on the gate 

voltage such that: 

    
            

    
                    (2.13) 
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Where Itotal consists of the summed photocurrent and dark current of the detector. This has the effect of 

limiting the integration time, which has the direct consequence of increasing the noise and the dynamic 

range in high dose modalities. These properties make C-APS circuits suitable for low dose applications 

where contrast is not achieved through high energy x-rays but not higher dose modalities such as CT 

scans.  

Another limitation occurs with the charge amplification scheme. Due to the presence current 

sourced signal the amplifier must be designed to ensure that the feedback capacitance, Cf, of the amplifier 

does not saturate due to the saturated current data passed by Tamp. In order to counter this and preserve the 

large gain associated with a small Cf, a current sink is usually placed at the input of the charge amplifier 

to eliminate a large portion the DC current signal not associated with the detector. This has the effect, 

however, of increasing the noise levels of the circuit overall if not designed properly. Otherwise, the 

charge amplifier in this circuit can be optimized for lower noise performance than in the PPS case 

because the low input signal constraint has been removed. 

2.4.3 Circuit Summary 

This section gave a summary of pixel architectures suitable for high speed x-ray imaging. Either of these 

circuits would fulfill the second stage of imager optimization choices necessary for signal quantification 

in an imager. Each type of circuit exhibits different noise characteristics and is capable of operating at 

different speeds. Table 5 summarizes the results 

Table 5 : Comparison of Pixel Architectures for Real Time Imaging 

 PPS C-APS 

Dynamic Range Large Smaller 

Gain Unity Adjustable 

Readout time Ron * Ct Gain dependant 

Relative Noise High Low 

Complexity Simple Complex 
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It was decided that in order to be able to rapidly design and test the array that a PPS design should be 

chosen. The imager designed in this thesis would be a smaller design so the capacitive loading effect 

inherent in PPS designs would be avoided. This design still met the minimum requirements for the imager 

and would offer the quickest turn-around time and past experiences in the STAR research group involving 

prototyping active pixel circuits into arrays has proven problematic [39]. 

The PPS array design would also allow for testing to take place on a readout circuit developed in 

house with the STAR group. The presence of existing expertise and optimization into the readout circuit 

cannot be underestimated or underutilized and so this is another factor in the selection of a PPS array 

design. 

2.5 Backplane Selection 

The backplane of a circuit represents an important aspect of any electronic device, especially imagers. 

This is because the backplane selection is what determines the circuit properties and process available, 

sensor size, and vertical integration available with the imager. Two types of backplanes will be analyzed; 

a common 5um amorphous silicon (a-Si) and the industry standard 0.18um complementary metal oxide 

semiconductor (CMOS). 

Vertical integration describes the ability to integrate and design as much as possible on the sensor 

backplane itself without having to utilize external discrete components, which reduces the overall price of 

the imager and can be shown to reduce the noise, increase the readout speed, and give imagers more 

flexibility [37][40]. Looking at Figure 11, this means translating all the peripheral electronics onto the 

AMFPI itself. While the concept of vertical integration will play a role in selecting the backplane the 

design of the vertically integrated components is beyond the scope of this thesis and will not be covered.  

2.5.1 Amorphous Silicon Thin Film Transistor Process 

Amorphous silicon thin film transistors represent a widely used large area electronic process that has been 

deployed successfully in areas such as x-ray imaging, document scanning, solar cells, and liquid crystal 

displays [15]. The success of a-Si in this wide range of applications has to do primarily with the cheap 

cost, low process temperature, high material flexibility, large area process compatibility, and adequate 

electrical performance for these areas. 
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 The standard a-Si backplane usually involves a sheet of glass as the substrate on which the thin 

film transistors are deposited on. The TFT itself includes gate metalization, insulating layers, 

semiconducting, and the source / drain data lines deposited on top of the glass. The basic a-Si substrate 

and inverted staggered TFT process is shown in Figure 26.  

 

Figure 26 : Typical Inverted Staggered TFT Process 

Where the a-Si process falters is that the deposition process allows for only one type of dopant during the 

fabrication process, depicted in Figure 20, which restricts the resulting circuit varieties, speed, and 

versatility. Due to the higher electron mobility of a-Si in comparison to hole mobility as seen in Table 3 

which restricts applications to NMOS only logic circuits, the relatively large feature sizes of a-Si 

compared to other technologies, and the larger circuit parasitic capacitances typical cutoff frequencies on 

the order of 1MHz [41] are feasible on a-Si:H backplanes. While this has been shown to be more than 

sufficient for the basic readout circuits covered in section 2.4 [15], it is insufficient to provide the gate 

driving, charge amplifiers, and readout electronics that include correlated double sampling, real time 

noise filtering and removal, and photon counting can potentially be implemented if the pixel area is 

reserved for electronics and the detection layer deposited on top. 

 In addition to this shortcoming, the amorphous nature of this material means that it is a highly 

resistive material. While this was a good feature for designing the photoconductive layer due to the 

benefit of low dark current, direct band gap, and low leakage a highly resistive material not only increases 

noise of the entire circuit based on the equations in section 2.4 but also decreases the speed. Table 6 

shows the difference between a CMOS and a-Si:H backplane resistance and speed of a PPS sensor. 
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Table 6 : Comparison of 0.18um CMOS and a-Si TFT MOSFET parameters 

 

2.5.2 CMOS 0.18um Process 

Crystalline silicon (c-Si) represents the scientific and industry standard high speed digitally integrated 

circuit backplanes in use today [42]. There are many reasons that have contributed to the adoption of c-Si 

for most general circuit building applications today. Due to the ability to grow well characterizable oxides 

it is compatible with a variety of physical and chemical patterning processes. Due to defect free 

crystalline substrates, substrates with large carrier lifetimes and few traps help produce lower noise floor 

operation. The large wafer sizes compared to the minimum feature sizes that can be patterned on the 

surface, referred to as the specific “process node”, allow for dense systems of circuits that can be made 

on a single die. Due to the compatibility with a variety of dopants regional conductivity can be tailored to 

form CMOS circuits This CMOS capability becomes important when you factor in the high carrier 

mobilities allowing for high speed and complex circuitry that can only be implemented in an 

economically feasible manner on c-Si today [42]. 

 The fabrication of CMOS circuits is a very detailed and involved process that will not be 

described here, but will be grouped into two main areas. Firstly, there is the fabrication of the actual c-Si 

wafer. Wafer growth technology currently produces circular c-Si wafers with a maximum diameter of 

300mm which would allow for the minimum panel size requirements listed in Table 2 to be produced on a 

single wafer. This is important because, unless tiling is used where sensors are stitched together, a c-Si 

circuit is limited in size to the wafer size. Recently, the price of wafers has plummeted and industry 

capacity has made the utilization of CMOS electronics in more areas cheaper, and therefore more 

attractive to engineers [44]. One of the prime motives of this thesis is to take advantage of the drop in 

CMOS circuit costs to build a cost effective, high speed, low noise x-ray imager. 

 Parameter 

Technology k’ (nA/V2) VGS (V) Vt (V) W/L (um) Ron (Ω) τon (s) 

0.18um CMOS 387000 1.8/3.3 0.5 10 / 5  1k 5n 

a-Si TFT 12.5 12 – 15 2 10 / 5 4M 4m 
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 Secondly in the CMOS circuit manufacturing process is the processing of the wafer. In this stage 

the wafer is cleaned, doped, metalized, and passivated to form the circuits specified in photolithographic 

masks. This fabrication process involves high temperatures, in excess of 600°, and is largely automated 

from start to finish. The steady process research, process refinement, process improvement, and process 

experience with c-Si wafers has made defect rates plummet and the costs of the wafer itself less of a 

factor now than they have ever been before. This has led to higher overall yields and less variations when 

using slightly older and more developed process nodes [45]. 

 For most large area cases the TFT process cannot be replaced. However, with lower c-Si costs 

and increased wafer sizes the ability to make an imager of sufficient size becomes attractive. Table 7 

summarizes the two processes considered as backplanes for this circuit. 

Table 7 : Comparison of Substrate Technologies 

 CMOS TFT 

Circuit Area 21cm x 21cm >100cm x 100cm 

Cost Higher Low 

Circuit Complexity High (CMOS) Low (NMOS only) 

Circuit Speed > 1GHz ~1MHz 

Feature size 0.18um 5um 

When the choice of substrate was considered the novelty of integrating an amorphous semiconductor with 

a high speed crystalline substrate was decided upon. This would allow for pixels to be built with near 

100% fill factor while retaining the high speed and low noise operation of the imager. The imager size 

could also be made sufficiently large while the components that make a digital imaging system shown in 

Figure 11 could be developed and deployed on the same substrate 
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2.6 Summary 

This section has given an overview only the system overview and design considerations of building a 

large x-ray imaging device. We have discussed the merits of indirect conversion that reduces design and 

integration concerns. Then, a discussion on how amorphous photoconductors can be used to give large 

area uniform photo response resulted in optimum thicknesses for absorbing the light emitted by a CsI:Ti 

scintillator. 

 Two main imaging circuit architectures and two main circuit substrates were detailed and 

compared for their speed, noise performance, and ease of design and integration. This resulted the choice 

of a PPS sensor array on a CMOS process as a new type of imager design that would allow for sufficient 

speed and low noise for tomosynthesis.  
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Chapter 3  

Design of an 8x8 array 

This section goes through the design and simulation of an 8x8 array of pixels on a 0.18um CMOS 

process. Considerations and compromises are detailed in relation to meeting the minimum requirements 

established for the active matrix imager earlier. Issues in design and fabrication are also discussed along 

with the methods used to accommodate the CMOS substrate with the amorphous photoconductor. Finally, 

the finished array is qualitatively assessed before testing. 

3.1 Process Considerations 

Before detailing the actual design of the array it is important to discuss the tools, environment, and 

process that were used. These are important factors as they determine some of the limitations in trying to 

integrate the photoconductor with the substrate.  

The 0.18um CMOS process from TSMC was a given as this was the process that was available to 

the STAR group during the implementation of this idea. This process comes with properties that are fixed 

and so must be accounted for. The actual design documents that detail most of these limitations are 

supplied confidentially and so cannot be attached or shown but they can be discussed.  

An example of a limitation for the 0.18um process is the 1.8V maximum that can be applied 

between any two parallel conductors before the dielectric between them breaks down. Although there is a 

high voltage (HV) process available that allows for voltage levels up to 50V, it was not used. 

 When any of these fixed process parameters are encountered they will be mentioned and 

alternatives that are available to improve the design will be mentioned and discussed further in 0. 

3.2 Lateral Pixel Considerations 

In Table 2 the minimum pixel size for mammography and CT scanners was given as 50um and 80um. In 

order to meet both of these requirements at the same time pixel binning can be used if certain criteria are 

met. To do this you need to design for the lowest pixel size requirement. If larger pixels are desired for a 

different modality or lower noise then they can be formed by addressing groups of pixels in a PPS system 

and the charge for each pixel will be read in sum and averaged as the reading for one pixel when read out. 

A diagram of this can be seen in Figure 27 demonstrating the tradeoff. 
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Figure 27 : Example of (a) high resolution array and (b) pixel binned array 

This let the minimum pixel size be set to half of the largest one, 40um. This 40um pixel size is much 

larger than the calculated electron and hole range calculated for both a-Se and a-Si:H listed in table Table 

3, so to minimize the recombination of carriers and maximize the photo-response. To solve this problem 

the lateral electrodes on the surface should be combed so that the distance between them is less than the 

minimum electrical length, 4um. 

 This value of 4um conflicted with the safe step coverage size for a-Se evaporation in the G2N lab. 

The top metal layer, which is where the photoconductor would be deposited, has a metal height of 1um. 

With only 2um of a-Se to be deposited on top the aspect ratio was lower than was considered safe to 

avoid crystallization and ensure good contact with the metal at both electrodes. Most deposition lab work 

had gone to vertical detectors which don’t have step coverage issues and there was no established 

minimum value that had been established. Instead, a safe value was set instead at 8um. After inclusion of 

a guard ring to reduce pixel crosstalk and dark current [46] the final pixel structure is as depicted in 

Figure 28 which shows the drain for the pass transistor, the cathode biasing electrodes, and the anode 

collecting electrodes. 
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Figure 28 : Enhanced CMOS micrograph of lateral electrodes in a pixel 

To ensure that the electric field was uniform throughout the structure, which aids in achieving a uniform 

photo-response for any absorbed photon in the pixel, Centaurus Medici was used to simulate the electric 

field weighting potential for the lateral electrodes with a-Se deposited on top. The result can be seen in 

Figure 29. The e-field distribution remains fairly constant with only minor fringing on top of the 

electrodes indicating that the pixel should run into few non-uniform response issues for any photons 

absorbed at the top or at the edges of the electrodes. 
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Figure 29 : Medici E-Field Simulations for Lateral Pixel Electrodes 

3.3 PPS Array Considerations 

The passive transistor was designed to meet the minimum timing resolution of the readout board of 20ns 

minimum. The readout board is developed and detailed in the work of a previous group member [36] and 

can be seen in Figure 30. This readout board demonstrates the complex circuitry required to drive a PPS 

array and is a motivation to use a c-Si substrate as all the components on this board are able to be 

implemented on the CMOS process itself. 

 

Figure 30 : Original PPS Readout Array Electronics [36] 
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When the load capacitance of the 8 readout metal lines and charge feedback amplifier are considered a 

transistor width and length of 10um by 5um was simulated to be sufficient. 

 In order to implement the 1pF capacitance required due to the low a-Se intrinsic capacitance and 

a small parasitic capacitance on such a small pass transistor it was necessary to utilize the metal layers 

available in the 0.18um CMOS process. This was done for two reasons. Firstly, the usual capacitor layer, 

called MIMCAP, designed for building capacitors was not available because it had to be utilized in order 

to provide the routing for the bias electrodes in the lateral pixel. Secondly, if on chip circuits are to be 

implemented then the silicon substrate should be kept relatively bare to leave room for those future 

circuits.  

 The approximated complexity for circuits that can be implemented in a 40um x 40um pixel can 

be calculated to roughly require only two layers for most routing [47]. This led to fingered capacitors 

being implemented on metal layers 2, 3, and 4 which would leave the poly layer and metal layer 1 open to 

perform routing for any CMOS electronics below. A diagram of this can be seen in Figure 31 along with 

the micrograph of the pixel cell when completed. 

 

Figure 31 : (left) Micrograph and (right) diagram of pixel routing and capacitor design 

The capacitance was simulated by extracting the parasitic of the fingered metal lines in Cadence using 

supplied models for the 0.18um process and found to be 0.977pF, sufficient for a-Se imaging. 
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 The imager was then formed by tiling the pixels 64 times in a column and row fashion to get an 

8x8 array of pixels. This was easy to accomplish because each pixel was designed with routing in and 

routing out methods for both the gate and drains of the transistor, along with a daisy chain routing 

structure for the biasing electrodes. This means that while all pixels share a common biasing connection 

for the whole array they each contain two biasing electrodes per pixel. The final array structure can be 

seen in Figure 32. 

 

Figure 32 : 8x8 Array arrangment with internal pixel routing 

The top metal layer had a ground-able guard ring designed to surround the array. This array guard ring is 

designed to reduce the external noise and potential interference from any absorbed photons that occur 

outside the array itself. The pixels were then routed to bond-pads designed to make the PPS array 

compatible with the previous read electronics. The bonding pads needed for this array are 8 gate lines, 8 

readout lines, a bias pad, a guard ring bias pad, and two ground pads. A final micrograph of the entire 

chip can be seen in Figure 33. 
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Figure 33 : Micrograph of final 8x8 array chip with bondpads 
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3.4 Issues in fabrication 

In order to deposit the photoconductor on the top of the array the passivation layers deposited during 

fabrication have to be omitted. In Figure 33 the area at the top of the area shaded in green represents the 

area to be omitted from the passivation process.  

 When an area is omitted it is still subjected to the remainder of the fabrication process, however. 

For the final few hours in the 0.18um TSMC process this means that the substrate is annealed in an oven 

at 600°C which has the effect of stabilizing the electrical and mechanical properties of a normal device. 

Without the passivation layer to protect the top layers, however, any exposed layers are subject to heat 

induced stress and strain which has a particularly large effect on small, thin runs of metals like the biasing 

and collecting electrodes in the lateral pixel design.  

 In order to combat this effect known as thermal peeling, multiple vias were put underneath the 

electrodes to try and anchor them firmly into place. This also prevents from a single electrode, which is 

daisy chained in the case of the bias electrodes, from peeling off and disabling the entire row of pixels 

because routing is maintained underneath the top layer between pixels at all times. This did not have the 

effect of fully stopping some of the electrodes from peeling off, however. When viewed under an optical 

microscope the exposed array looks like that seen in Figure 34. Initially it can be difficult to spot if thin 

metal electrode layers have peeled off or even what effect the peeling may have on the integrity of the 

array. 

To examine the detrimental effect of peeling samples of chips were analyzed using a SEM and 

high powered optical microscope available at the G2N lab. The array results can be observed in Figure 35 

and seen to occur across the chip at random locations. When viewed under an SEM the defects are much 

clearer and easier to spot, revealing that some of the electrodes of both the bias and collector portions 

have been peeled off. 
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Figure 34 : Optical Microscope Zoom of Active Pixel Area 

 The peeling of an electrode has the effect of introducing non-uniform electric field distribution in 

the pixel and reducing the effective fill factor of the pixel but, due to the vias and routing underneath the 

peeled electrode, should not actually result in a dead pixel itself. There is no way to observe or account 

for the peeled electrodes other than with visual inspection before and after deposition, so this factor must 

be accounted for in future revisions and will be discussed in 5.3. 



 

 60 

 

Figure 35 : (left) SEM and (right) Optical image of array electrode peeling 

3.5 Issues in Photoconductor Integration and Chip Handling 

In addition to the issues encountered during the tape out and fabrication of the substrate there are issues 

that warrant discussion related to the deposition of the amorphous photoconductor. As mentioned in 

sections 2.2.4 and 2.2.5, both a-Se and a-Si:H are deposited using different mechanisms, thermal 

evaporation and PECVD respectively. Either of these steps represents a further point of contamination or 

failure in the production of the detector. 

 The dangers in the evaporative process are crystallization of the a-Se and the handling of the chip. 

Crystallization has been discussed previously in 2.2.4 and so will not be covered here. Figure 36 

demonstrates what the 2um a-Se deposition looks like before and after crystallization on a CMOS die. 
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Figure 36 : (left) Amorphous vs (right) Crystallized 2um Layer of a-Se 

The input gates of the PPS array was not designed with electro-static discharge (ESD) protection 

in mind and this was a major oversight and barrier that will be discussed further in Chapter 4 and 0. In 

essence, handling of the electronics by inexperienced or personnel that are not careful with maintaining 

proper grounding for their bodies and clean-room procedures can expose the bond pads of the chip to 

voltages as high as 10,000 V without the user being aware of anything [48]. 

 In the PPS circuit of Figure 24 this causes the extremely high voltage to be applied to the gate or 

source of the pass transistor. With no other diode like structures or methods of discharging elsewhere, this 

extremely high voltage burns through the gate oxide and effective destroys the oxide creating a short 

circuit through the gate to the source and drain of the transistor, which is irreversible. After this has 

happened it’s possible that all of the 8 gates connected to that bond pad have been destroyed and so the 

entire row of pixels is effectively dead. This happened to a fair amount of test chips in which a-Se was 

deposited and proved a major issue in trying to get a working array. 
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 For a-Si:H the dangers are due to two different sources of ESD. The handling of the chip still 

remains a potential point of failure in the gates due to ESD shock but there is also a new ESD source, the 

PECVD chamber used for the deposition. The PECVD chamber using an RF power source that can 

potentially resonate with metal electrodes in the circuit that happen to be properly shaped, exposed, and 

un-grounded. This can cause a large voltage to build up on the metal trace, referred to as the antenna 

effect, which can cause the same dielectric breakdown seen in the gates [49], but this time localized to the 

fingered capacitors that were implemented on metal layers 2, 3, and 4 which were connected to the 

collecting electrode exposed on the top surface.  

 The last ESD issue involves dielectric breakdown caused by errant operation of the chip. In the 

PPS structure the dark current integrates onto Cpix to create a voltage at the drain node of the pass 

transistor, Vpix. If the cathode is biased higher than 1.8V than Vpix can build up past the safe limit for the 

source-drain-gate present in the 0.18um CMOS process and break down the dielectric. Using the 

relationship between collected charge due to total current, It, and the maximum allowed safe voltage of 

the process, Vmax, the maximum time that a PPS sensor can be left without being reset can be calculated 

as: 

      
 

    
 

       

    
       

          

  
    (3.1) 

Based on the expected total current in the sensor the integration time should be selected accordingly to 

avoid potential breakdown in any PPS pixel. 

 The next issue encountered with the a-Si:H integration was the non-uniform deposition that 

results in subtle bumps, defects, and variable thickness in the resulting photoconductive layer. This can be 

seen in Figure 37 which shows the speckles due to particle contamination and the thickness gradient 

which can be seen by the change in colour due to the different absorption depths that results in colour 

selectivity. 
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Figure 37 : Array Coated in ~500nm of a-Si:H Showing Non-uniform Deposition 

This was due to the lack of a standard set of masks for the chip for use in the PECVD chamber. Masks 

were fashioned from old silicon wafers that had been bored out to provide a proper opening for the 

deposition but did not guarantee that the sample substrate was flat itself. The non-uniform deposition will 

manifest itself as a change in a pixel’s response to certain wavelengths of light, effectively reducing the 

total photo-response. This will not be an issue of the loss of response is outside the scintillating film’s 

spectral output.  

3.6 Modifications to Test Read Board 

During the fabrication and troubleshooting of the detector circuit the readout electronics that would be 

used to drive the PPS transistors and provide the charge amplifier readout were unable to be finished. Due 

to this setback an adapter was made that allowed for the imager to be tested from a standard DIP package. 
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Although this would not allow for real time image readout as originally planned, it would allow 

for the rows and columns to be addressed which would allow for pixel readout using standard lab test 

bench equipment such as DC power supplies, function generators, and an oscilloscope for the output. The 

adapter consists of a voltage step down converter so that the PPS transistors can be driven by common 5V 

MC14007 digital logic inverters, accessible bias and ground wires, and short source readout wires to 

minimize parasitic capacitances all on a low noise Vector Proto-PCB. The DIP adapter can be seen in 

Figure 38. 

 

Figure 38 : DIP Adapter for Modified Readout Circuit 

3.7 Summary 

This section has detailed the designs and modifications required to fabricate a photodetector and interface 

a 0.18um CMOS process to a lateral structured amorphous photoconductor. Issues with the circuit 

fabrication, post-processing deposition, and readout circuits have been detailed. The final design 

specifications of the array can be summarized in Table 8. 
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Table 8 : Final Array Properties 

Criteria Designed Value 

Array size 8 x 8 

Pixel size 40 umx40um 

Drive / Readout PPS (externally controlled) 

Max Voltage 1.8V 

ESD Protection None 

Cpix 0.977 pF 

Fill Factor 79.6% 

Detector 

Thickness 

2um (a-Se) 

625nm (a-Si:H) 



 66 

Chapter 4 

Testing 

This section will detail the methods and results used to characterize the fabricated chip.  First, PPS 

functionality will be verified using DC IV curves and C-V measurements. Finally, the photo-response of a 

pixel will be tested using QE measurements. 

4.1 PPS Functionality 

The PPS cell depicted in Figure 31 represents a compromise between trying to fit a topside 

photoconductor onto a standard 0.18um CMOS process. In order to verify that these compromises have 

been met with acceptable trade-offs the implemented cell must be characterized. To do this current, 

voltage, and capacitance relationships must be extracted from a test chip that has had the array shorted 

with conductive paste. Once this is done the chip is mounted onto a DIP package and wire bonded so that 

the bond pads can be used to turn the pass transistor into a basic three terminal device. Figure 39 shows a 

photo of a device that has had the array portion shorted with silver paste. 

 

Figure 39 : Silver Paste Shorted PPS Array 
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Once this has been done the chip was carefully subjected to DC testing. This has the effect of 

permanently destroying the test chip. When combined with the ESD issues discussed in 3.5 

4.1.1 Transistor Performance 

To test the transistor performance two tests were performed. First, the capacitive well could be tested to 

ensure the storage capacitor was around 1pF. This was done using an RC time constant method. 1.8V was 

applied to the gate pad of a column of pixels and a 1MΩ resistor was placed in series with one of the 

source pads. Using an active probe with known loading the rise time response was measured to a square 

wave input of 5KHz 1.8V peak to peak. 

The capacitance of the cables and package were measured separately and subtracted to account 

for setup parasitics The capacitance of the selected source column includes every pixel in the row, 

however, so 8 pixels were measured at a time and the measurements were averaged before being divided 

by 8. A value of 1.243pF was calculated. This value is larger than the original design value 0.977pF and 

so represents an overcompensation 

The next test involved getting IV curves from the device. For these measurements the device was 

connected to an HP4156 and the Agilent 16422 test Fixture as shown in Figure 40.  



 

 68 

 

Figure 40 : HP 4156 Parameter Analyzer 

To obtain the saturation MOSFET curves a single transistor was swept from 0 to 1.8V at increasing steps 

of 0.2V on the gate. The results of these curves can be seen in Figure 41. 
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Figure 41 : Ids vs Vds for various Vgs of PPS Transistor 

We can extract a saturation current of 2.5mA and a linear region Ron of 300Ω and a saturation region Ron 

of 727 Ω. This represents a lower on resistance than previously predicted and will serve to decrease the 

readout noise of the device and increase the speed. To extract the leakage and threshold values of the 

transistor Vds was swept while Vgs remained constant. The drain current of the transistor was measured 

and the results of this can be seen in Figure 42. 
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Figure 42 : Ids vs Vgs for Various Vds of PPS Transistor 

From this graph the threshold voltage of the transistors can be seen to be ~0.6V, which is higher than for 

the 0.18um CMOS process. This could be attributed to the high resistance of the silver paste that was 

used which would effect the effective voltage drop across the transistor contaminating this measurement. 

The effective mobility was also extracted from this graph to be 1100mA/V
2
. For the purpose of a PPS 

sensor which acts a digital switch this is sufficient. 

The full bias leakage, where Vds is 1.8V and Vgs was set to zero gave an off current of 11.3uA, 

resulting in an on / off ratio of 22750. This leakage current is higher than reported for a-Si:H transistors 

which are in the order of nA when voltages this low are being applied [15]. If a high dark current exists 

than this leakage value will serve to increase the total noise of the circuit and degrade the readout image. 
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4.2 Effective Quantum Efficiency 

The Effective Quantum efficiency (EQE) is a measure of a device’s ability to detect incident photons 

which includes absorption and readout. This is in contrast to just the quantum efficiency (QE) which is 

simply a function of absorption depth for a given wavelength which describes the ability of a material to 

generate a e-h pair for an absorbed photon which has, in effect, already been designed for by targeting a 

specific absorption depth for the photoconductive material. A higher EQE will be directly correlated to an 

imager’s ability to generate a larger SNR. EQE is a ratio of detected photons to incident photons and so, 

in the absence of gain, will be less than one. The EQE of both a-Si:H [50] and a-Se is known to be a 

function of the bias applied across the photoconductor because this determines the ability to separate the 

charged carriers created in an absorption event. The EQE was calculated using the formula [51]: 

     
            

         
      (4.1) 

Where Iphoto is the photocurrent, h is Plank’s constant, co the speed of light in a vacuum,   the wavelength 

of light, e the charge of an electron, Pi the incident power per unit area and A the unit area. To maximize 

the EQE then the only factor in a detector is to increase the photo-current. In a PPS sensor with no gain, 

this can be accomplished by minimizing recombinations and maximizing absorbtion. 

To measure the EQE a Jovin & Yyves H1010 monochromator was setup and calibrated to sweep 

through a range of frequencies for a set period of time. The output power of the monochromator 

determines the density of incident photons which represents the signal level. The imager had a single 

source bond pad connected to an HP4156 inside an Keithley 8008 text fixture. Light was then directed 

onto the device for a period of time while the current was measured. The dark current was measured and 

subtracted from the measured current to get the photocurrent. The electrode biases were varied to see if 

they had any effect on the efficiency. A setup of the test bench can be seen in Figure 43. The samples 

were given two minutes to rest between measurements in which the source and bias electrodes were 

shorted while light was still incident on the sample. This is to reduce the effect of traps and stress that are 

inherent in amorphous semiconductors. 
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Figure 43 : EQE Setup 

An issue when running this test is that the biases were limited to voltages that are unable to provide high 

electric fields across the photoconductor for efficient collection. Also, both these materials are capable of 

a phenomena called avalanche gain when biased sufficiently high that was not able to be used which is 

capable of providing EQE of greater than one. This was due to the dielectric breakdown between the 

routing layers of the high voltage metal lines, collection lines, and other routing done on the chip. The 

lack of blocking contacts also leads to higher dark currents than is preferred. 

The amorphous selenium EQE measurements can be seen in Figure 44. 
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Figure 44 : EQE of a-Se Detector 

We can see that the EQE results depend on bias, with negative biases, or the collection of holes at the bias 

electrode, yields a higher EQE. The peak EQE at -0.5V/um bias is 27.9% and the EQE at 550nm, which is 

the peak emission of the CsI:Ti scintillator, is 10%. 

 Based on the EQE at 550nm and the dark current present at a specific bias, contrast ratios and 

maximum frame times can be calculated which determine the dynamic range of the imaging array, or the 

greatest difference between no detected photons and the maximum that can be stored on Cpix safely using  

    (2.3. The -0.5V/um case of a-Se this yields a frame time of 1.3s, 

showcasing the low dark current which makes a-Se an attractive photoconductor. The contrast ratio of if 

using imager at 30Hz, or for a frame time of 33ms, is 1.22. 
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The results of the test on an a-Si:H sample are graphed in Figure 45 at the 4 biases tested. 

 

 

Figure 45 : EQE of a-Si:H Detector 

Again we can see that the EQE results depend on bias but this time with positive biases, or the collection 

of electrons at the bias electrode, yields much higher EQE. This is due to the electron mobility which is 

significantly higher in a-Si:H than the hole mobility, as shown in Table 3. The peak EQE at a 0.5V/um 

bias is 18.2% and the EQE for 550nm is 8.6%. 

  The 0.5V/um case of a-Si:H this yields a frame time of 57ms 

which is sufficient for real time applications such as fluoroscopy [15]. The contrast ratio of if using 

imager at 30Hz, or for a frame time of 33ms, is 1.96. 
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4.3 Transistor Noise Performance 

The noise performance of the transistor was measured and calculated based on the equation 2.9. For the 

thermal dataline noise a single pixel was hooked up to an Agilent 4952 Spectrum analyzer and a Perkin 

Elmer 5182 ultra low noise amplifier. The thermal noise was measured and averaged for 1024 readings 

over 1 hour in an isolated Faraday cage with the PPS transistor both on and off for separate readings.  

In order to generate values in terms of electrons the following formula was used: 
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                (4.2) 

Where the first term accounts for the reset noise, the second term accounts for the dark current shot noise 

taken from the EQE testing, the third term accounts for the photocurrent shot noise taken from the 500nm 

EQE test, and the last term accounts for the thermal noise that was measured. The noise values are then 

added in quadrature and the square root of this value is the RMS noise contribution of the imager to the 

final output value.  

 For the a-Si:H detector the RMS noise value was 1280 electrons and for the a-Se detector it was 

700 electrons. The large discrepancy has to do with the much larger dark current present in the a-Si:H. 

The limiting factor for the noise in this circuit was the reset noise, which accounts for 420 electrons RMS 

itself. The noise voltage per pixel can be found from equation 2.3 and is equivalent to 90.2 uV for the a-

Se detector and 165 uV for the a-Si:H detector. 

4.4 Summary 

This chapter has detailed methods used to characterize and test the imager that was designed and 

fabricated in 0.18um CMOS technology. The imager was tested for capacitance, IV characteristics, EQE, 

and noise. Table 9 shows a summary of the results. 
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Table 9 : Summary of Results for CMOS Lateral Imagers 

Criteria Value  

 a-Se a-Si:H 

Storage Capacitance 1.243pF 1.243pF 

PPS On Resistance 727Ω 

Max Frame Time 1.3s 57ms 

EQE @ 550nm 10% 8.6% 

30Hz Contrast Ratio 1.22 1.96 

PPS Noise (e-) 700 1280 
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Chapter 5 

Summary and Future Research 

This chapter summarizes the thesis citing the applications of high speed x-ray detectors and compromises 

made to integrate them with CMOS technology along with test results and suggestions for future research. 

5.1 Summary 

A laterally oriented passive pixel sensor array was designed and fabricated in an industry standard 0.18um 

CMOS process to gauge the feasibility of integrating large fill factor, high absorption, and lower noise 

readout than available in competing large area TFT technology.  

 The chip was tested for functionality based on compromises that had to be made with standard 

design rules in the conventional process. Two amorphous materials, hydrogenated amorphous silicon and 

amorphous selenium, were deposited  

5.2 Thesis Contributions 

This thesis has stepped through the design of a laterally oriented imaging array for medical X-ray 

imaging. It has shown that a standard 0.18um CMOS process can be interfaced to amorphous 

semiconductors that allow for high speed circuitry to be combined with high efficiency photodetectors. 

The final imagers possess lower noise than TFT equivalents and have the capability to integrate 

electronics underneath the array at an extremely small additional design cost. 

Steps and methodology to optimize an imager were developed and utilized in creating the imager. 

This process will allow for imagers to be created that target different modalities that possess different 

criteria. These steps also go through issues that can arise when using a standard process to produce a tool 

not intended for that original process including photoconductor crystallization, step coverage, ESD 

protection, and sufficient readout electronics to properly characterize the imager. 

Finally, test criteria and measurement techniques were setup and employed to characterize the 

imager. These tests will allow for a standard platform to compare different imagers designs and 

fabrication techniques in the future. 
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5.3 Future Recommendations and Research Paths 

This project presented itself with various tradeoffs and areas to continue to optimize the area of 

amorphous semiconductor – CMOS hybrid detectors. The three main areas of potential optimization are 

the photoconductive layer, the photo-conversion circuit structure, and the readout electronics. 

 The photoconductive layer in this circuit suffered from high dark currents due to the absence of 

blocking layers and contamination. Although this was mitigated by the limited lower voltage biases, the 

reduced field across the photo-conductor resulted in poor EQE which had the effect of diminishing the 

contrast ratio and frame time of the device. To improve this layer without any major changes it is 

recommended to decrease the electrode gap on the surface and switching to a high voltage process which 

allows up to 50V [52] to be collected at Cpix before being limited by insulator punch-through about and 

for the bias applied to be significantly higher per micron of photoconductor, which should result in higher 

gains for both these materials [23][25]. Also, UWSTAR group members have proposed depositing a 

unipolar organic blocking layer compatible with an organic photoconductor that is compatible with a 

large area evaporation process similar to a-Se. This would allow for small dark currents when reverse 

biased and adequate charge collection in a lateral configuration. As group members get more comfortable 

with the deposition process as well tighter aspect ratios should be possible and it may be possible to 

create the advanced lateral pixel architecture seen in Figure 23 with wider electrodes, instead of the 

combed structure, so that they do not peel off during the annealing stage of the fabrication. 

The photo-conversion circuit structure can be improved by implementing more complicated 

circuitry designed to compensate for large dark currents and to isolate the readout signal from the readout 

electronics. Such circuits include a switchable APS / PPS structure with correlated double sampling. This 

prospect of higher vertical integration at the pixel level has already been demonstrated in larger a-Si:H 

TFT pixels [53] and could provide similar flexibility, speed, and lower noise in a CMOS process. 

Finally, the readout electronics can be optimized to be more compatible with the electronics. This 

may include the vertical integration aspect of the circuit structure, in that charge amplifiers and output 

buffers can be directly created on the CMOS circuit that simplifies the readout altogether. Also, designing 

to protect against type of ESD breakdown involves creating diode structures or using the built in ESD 

structures in the provided 0.18um CMOS process. These were originally overlooked and are capable of 

being combined with the high voltage CMOS process to create shock resistant bond-pads that result in 
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less defective dies. By analyzing each node in the circuit ESD structures, such as diode connected FETS, 

can be placed strategically to create fault tolerant pixels and pixel circuits that allow for handling and 

processing under less stringent conditions. The difficulty in obtaining reliable and low noise readout 

electronics should be a prime motivator of future research as it often represents the weakest link in 

quantum noise limited situations. 
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