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Abstract 

Today‟s automotive industry is undergoing significant changes in technology due to economic, 

political and environmental pressures.  The shift from conventional internal combustion 

vehicles to hybrid and plug in hybrid electric vehicles brings with it a new host of technical 

challenges.  As the vehicles become more electrified, and the batteries become larger, there are 

many difficulties facing the battery integration including both embedded control and 

supervisory control.  A very important aspect of Li-Ion battery integration is the state 

estimation of the battery.  State estimation can include multiple states, however the two most 

important are the state of charge and state of health of the battery.  Determining an accurate 

state of charge estimation of a battery has been an important part of consumer electronics for 

years now [1]. In small portable electronics, the state of charge of the battery is used to 

determine the time remaining on the current battery charge.  Although difficult, the estimation 

is simplified by the relatively low charge and discharge currents (approximately + 3C) of the 

devices and the non-dynamic duty cycle.  Hybrid vehicle battery packs can reach much higher 

charge and discharge currents (+ 20C) [2]. This higher current combined with a very dynamic 

duty cycle, large changes in temperature, longer periods without usage and long life 

requirements make state of charge estimation in Hybrid Electric Vehicles (HEV) much more 

difficult.  There have been a host of methods employed by various previous authors.  One of 

the most important factors in state of charge estimation is having an accurate estimation of the 

actual capacity (depending on state of health) of the battery at any time [3].  Without having an 

understanding of the state of health of the battery, the state of charge estimation can vary 

greatly.   

This paper proposes a state of charge and state of health estimation based on a dual Extended 

Kalman Filter (EKF). Employing an EKF for the state estimation of the battery pack not only 

allows for enhanced accuracy of the estimation but allows the control engineer to develop 

vehicle performance criteria based not only on the state of charge estimation, but also the state 

of health.    
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1 Introduction 

There are environmental, political and automotive market forces that are leading to a much 

greater electrification of passenger cars in today‟s society. Coupled with some recent 

developments in high power, high energy automotive battery systems, automotive 

manufacturers have begun extensive development of testing of highly electrified cars [4]. 

There are no more prevalent examples than the soon to be released Chevrolet Volt extended 

range electric vehicle and the Nissan Leaf full function electric vehicle. Both vehicles use a 

version of Lithium Ion battery technology to power its wheels for the majority of the vehicle‟s 

operational time.  

Hybrid electric vehicles have already made their way into the market. Specifically the Toyota 

Prius, Honda Insight and General Motors 2-Mode Hybrid vehicles have been on the market for 

years now. These vehicles all utilize Nickel Metal Hydride (NiMH) batteries as on-board 

electrical energy storage. Furthering the step toward electrification, newer vehicles will begin 

to utilize electricity from the common electrical grid to displace petroleum in an attempt to 

increase efficiency and lower the demand on petroleum energy [5]. These Plug-in Hybrid 

Electric Vehicles (PHEV) will be utilized in both a blended manner and an all electric manner, 

depending on the intent and cost. Lithium Ion batteries have been considered the main 

contender for use in PHEVs [6]. 

Now that PHEVs have become an inevitable part of the automotive landscape in the nearer 

term, battery technology has become increasingly important. For years now consumer 

electronics have been utilizing some form of Lithium Ion battery technology, allowing 

electronics manufacturers to downsize batteries for energy and increase available power. The 

benefits of Lithium Ion batteries are that they have the potential for higher specific energy and 

energy density as well as higher power density and specific power [7]. 

One of the disadvantages of lithium ion batteries is the cost of materials and manufacturing [8]. 

Therefore, battery lifetime becomes increasingly important. Targets for OEMs are in the 
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300,000 cycle range for HEVs [9]. Current targets show lithium ion battery systems costing 

between $200 and $700 per kWh [10,11]. As a vehicle‟s battery energy utilization increases, 

the battery lifetime is decreased depending highly on the battery‟s Depth of Discharge (DOD).  

It‟s of paramount importance to manufacturers that the amount of electrical energy storage on 

board be weighed with the benefit to longer charge depleting range. It is important to 

understand the advantages and disadvantages of battery utilization in the vehicle in order to 

make educated decisions regarding vehicle operation. 

1.1.1 Project Objective 

This project‟s objective is to generate a battery state estimator for the University of Waterloo‟s 

battery test station. The work focuses on the specifics of the battery and chemistry that are 

currently utilized by the University of Waterloo, and discusses extensions and tuning 

capabilities for other chemistries.  

The battery test station has been used recently for lifetime testing of LiFePO4 battery cells. 

Prior to the completion of this research, the test stand cycle testing has been limited to constant 

current cycles based on voltage limits and not on State of Charge (SOC). The goal of this 

project is to enable real time estimation of SOC and battery capacity to enable further lifetime 

testing of battery cells based on real world scenarios and drive cycles.  

This thesis will explore some of the pressures that are forcing Original Equipment 

Manufacturers (OEMs) to increase the depth of discharge of battery packs at the expense of the 

battery‟s life that is requiring accurate battery state estimation. Accurate battery state 

estimation will reduce the required battery pack capacity and increase the ability to adjust to 

changing battery characteristics. 

The Battery State Estimator has three main goals: 

Provide Accurate SOC estimation over a degradation cycle 

Be simple enough for future students to understand the philosophy and theory 

Provide an estimation of the error of the SOC 
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The estimator was rigorously tested with both real data and simulation showing good accuracy 

and precision. Several SOC algorithms were developed in Simulink and tested against each 

other as well as two capacity estimation algorithms. The most accurate algorithm was chosen. 
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2 Background 

2.1.1 Vehicle Technologies and Fuel Consumption 

Electrification of the automobile continues to bring with it a new powertrain design space for 

engineers. With the increased level of system integration the combinations of possible energy 

optimization techniques seems endless. In order to understand the optimization landscape, the 

efficiency of the vehicle must be split into the vehicle itself and the drive cycle of operation. 

First, the drive cycles that the vehicles will be tested upon will be reviewed and then some 

possible methods to improve a conventional vehicles powertrain will be discussed. 

2.1.2 Drive Cycles 

Since so much of the vehicle force requirement (and therefore energy) is driven by the vehicle 

speed, it is important to consider the vehicle drive cycle when discussing the effects on fuel 

consumption. It is clear that drive cycles that have lower speeds will require less energy to 

overcome aerodynamic drag as the road load on a vehicle is proportional to the speed squared. 

However, drive cycles with lower speed will also have more dynamic behaviour, leading to 

more changes in vehicle speed and increasing the acceleration changes needed to achieve the 

cycle. The tradeoff of these is the purpose for testing vehicles on both a city or urban cycle and 

a highway cycle. The United States Environmental Protection Agency (EPA) regulates every 

vehicles urban  and highway fuel economy over various drive cycles, the two most famous 

being the Urban Dynamometer Drive Schedule (UDDS) and Highway Fuel Economy Test 

(HWFET). Figure 1 shows the Federal Test Procedure (FTP) which is a UDDS followed by the 

first 505 seconds of the UDDS repeated. From these two tests, the EPA determines the vehicles 

sticker fuel economy. There is also a combined fuel economy that comes from a weighted 

average of 55% urban and 45% highway fuel economy.  
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Figure 1: Federal Test Procedure Speed Trace [12] 

 

Figure 2: Highway Federal Emission Test Speed Trace [12] 

As can be seen from the figures, the FTP has much lower speeds, leading to a much lower 

effect to overcome aerodynamic drag, but much more speed dynamics leading to more required 
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energy to overcome inertial forces. The HWFET has a lot fewer speed dynamics; however a lot 

of energy is required to overcome the aerodynamic drag.  

Figure 3 shows a plot of amount of time at each acceleration and speed on the FTP (cruising 

neglected to show a reasonable scale). Theoretically, any drive cycle that matches this exact 

surface should give the same fuel economy results for conventional vehicles. Acceleration at a 

certain speed is tied directly back to engine loading in a conventional vehicle, assuming a static 

transmission shift schedule.  

 

 

Figure 3: FTP Speed, Acceleration, Time Surface 

 

Drive cycle parameterization has been a topic of concern for years now. The FTP was 

developed in the early 1970s to simulate combined city and highway driving in Los Angeles 

[13]. The top speed of the FTP is 57 mph and the maximum acceleration is 3.3 mph per 

second. Both the top speed characteristic and the maximum acceleration were set due to the 
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limitations of dynamometers at the time [13]. To date there has been no accepted, systematic 

characterization of drive cycles for either criteria tailpipe emissions or fuel efficiency despite 

numerous attempts [14].  

El-Shawarby [15] utilized a method of splitting the drive cycle into vehicle cruise speed and 

acceleration, analyzing the affects of each constituent. Holmen extended this philosophy and 

analyzed the proportion of the drive cycles high cruise, low cruise, medium cruise, 

acceleration, deceleration, and idle [16].  Ericsson developed a system of determining a fuel 

consumption factor based on the street‟s function, type of environment (neighborhood, 

highway, etc), speed limit, density of traffic lights, traffic-calming measures, and traffic flow 

[17]. The analysis deconstructed the drive cycle and summed the fuel consumption factor for 

each segment. Later, Brundell-Freji and Ericsson expanded on the same concept expanding to 

seventeen parameters [18]. Fuzzy logic has also been used to create drive cycle parameters 

Langari for use in hybrid vehicle control strategies [19]. 

 

2.1.3 Vehicle Road Load 

Based on the drive cycle chosen, the road load of a vehicle quantifies the forces required to 

propel the vehicle down the road and are shown in the following free body diagram: 
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Figure 4: Vehicle Forces Free Body Diagram [20]  

 

The road load is broken up into four main parts including the aerodynamic drag, the rolling 

resistance, the inertial vehicle force and the rotational force required to spin the tires. For the 

purposes of this analysis, the rotational forces are neglected in order to simplify the scenario. 

Essentially the road load equation is as follows: 

                   equation 1 

 
 

where: 

R is the force due to rolling resistance 

D is the force due to aerodynamic drag 

Finertial is the force due to acceleration of the vehicle 

The rolling resistance is a function of the vehicle mass and tire resistance as in equation 2. 

        equation 2 

 
 

where: 

r0 is the coefficient of rolling resistance for the tire 

M is the vehicle mass 

g is acceleration due to gravity 

It is important to note that the vehicle speed does not have an effect on the rolling resistance of 

the vehicle. Aerodynamic drag, however, is dependent on vehicle speed squared as can be seen 

in equation 3. 

 

 



9 

 

 
     

   

 
 

equation 3 

 
 

where: 

Cd is the coefficient of drag 

A is the effective frontal area of the vehicle 

V is the vehicle speed 

ρ is the air density 

The Inertial force is simply the force required to accelerate or decelerate the vehicle (with 

rotational forces neglected) based on the vehicle mass and current speed as shown in equation 

4. 

 
            

  

  
  

equation 4 

 
 

Therefore, the forces due to rolling resistance and aerodynamic drag are never negative, 

however the intertial forces can be either negative or positive.  

 

2.1.4 Powertrain Losses 

The rest of the fuel consumption equation for a vehicle come from inefficiencies of turning the 

liquid fuel into the forces required to propel the vehicle. In general, the major inefficiency 

comes from the primary fuel converter, typically a gasoline engine. A gasoline engine 

efficiency is generally accepted to be approximately 30% on average, however is highly 

variable based upon engine loading and engine speed as shown in Figure 5. 
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Figure 5: Representative Operating Map for Contemporary Gas Engines [21] 

 

Engine efficiencies can vary based upon fuel selection and combustion strategy (ie. Diesel, 

compression ignition or gasoline/ethanol spark ignition), however the above graph is a typical 

pattern for most engines.  

The other losses in a vehicle come from drivetrain losses and parasitic losses. Drivetrain losses 

are relatively similar for most vehicles as are parasitic losses, depending on things such as air 

conditioning and are less powertrain dependent. 

2.1.5 Hybrid Electric Vehicles 

2.1.5.1 Hybrid Electric Vehicle Philosophy 

Hybrid electric vehicles take advantage of three main theories: 
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 The energy converted to heat during braking (when Finertial < 0) can be captured 

and stored on-board the vehicle. 

 The supplemental power capability of an electric motor can enable the primary 

energy converter to operate in more efficient areas of the efficiency map 

 Downsizing of the main energy converter can take place since the motor can 

provide supplemental power to meet the demands of the drive cycle[22]. 

Essentially, hybrid vehicles recover energy utilizing regenerative braking; a technique in which 

an electric motor is used as a generator to slow the vehicle and convert the mechanical energy 

of the vehicle into electrical energy. Then, when excess power is required to propel the vehicle, 

the electric motor utilizes energy from the battery to provide torque to the wheels. 

2.1.5.1.1 Series Hybrid Electric Vehicles 

A series vehicle is an HEV that utilizes a primary fuel converter to charge a battery that powers 

an electric motor. Figure 6 shows the power flow of a series hybrid electric vehicle.  

 

 

Figure 6: Series HEV Architecture 

 

The main advantage of a series hybrid vehicle is the ability to run the primary energy converter 

at a very constant rate. The main disadvantage of a series hybrid vehicle is that the motor must 
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be powerful enough to meet the entire power demand of the drive cycle. As one would expect, 

as motor power increases, so does cost. 

 

2.1.5.1.2 Parallel Hybrid Electric Vehicles 

Parallel HEVs have the ability to power the wheels with either the engine or motor or both. 

Although they come in different configurations (Parallel through the road, pre-transmission 

parallel, post-transmission parallel), a lot of the benefit remains the same. Figure 7 shows the 

power flow of a parallel HEV. 

 

Figure 7: Parallel HEV Architecture 

 

The advantage of a parallel HEV is that the either the motor or engine can provide power to the 

wheels, depending on which will give the vehicle the most efficient power moding. It gives the 

control engineer more degrees of freedom for optimization of the hybrid control strategy. Also, 

the motor and engine can both be relatively small since peak power can come from a 

combination of the two, rather than a single source. The downside of the parallel is that often 

the electric only operation of the motor is limited due to power limitations. 
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2.1.5.1.3 Powersplit Hybrid Electric Vehicles 

Powersplit vehicles are vehicles that can operate in a series mode or parallel mode depending 

on the hybrid control strategy. They are very advantages in that they can operate as an 

electrically variable transmission giving the vehicle the ability to operate at nearly any speed 

ratio through the transmission [23].  The main disadvantage of powersplit vehicles is the cost 

and packaging room required. However, Toyota‟s Prius has been able to package the one-mode 

transmission and market it for a reasonable cost. Recently General Motor‟s 2-Mode 

transmission has integrated a more complex system into the size of a standard automatic 

transmission. The 1-Mode and the 2-Mode have different advantages, the main disadvantage 

between the two being cost. 

1 Mode (Input Split) 

The 1 mode system is utilized by Toyota and Ford in their hybrid vehicles. This is the most 

common hybrid transmission on the market. The philosophy of the transmission is that the 

engine is operated at an efficient point on the map, the power is transmitted to the final drive 

through the planetary gearset. Any additional power, unneeded for vehicle propulsion is used 

by the first motor/generator to charge the battery or power the second motor/generator. It 

should be noted that there will be one point when the speed of the engine is equal to the speed 

of the output shaft times the planetary gear reduction. This is called the transmissions 

“mechanical point” [23] and is the fundamental difference between the 1-mode and 2-mode 

transmission. Operating at the mechanical point is very efficient since none of the power needs 

to be converted to electricity and back into mechanical power. 
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Figure 8: 1-Mode Powerspilt Architecture 

 

Figure 9: 1-Mode EVT Light Power Chart [23] 

2-Mode (Compound Split) 

The compound split transmission employs two planetary gearsets, on the output of the engine 

and the input to the final drive. The advantage of this transmission is that it can operate as a 1-
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mode input split transmission or a compound split transmission. This gives the 2-Mode three 

distinct mechanical points [23]. 

 

Figure 10: 2-Mode Powersplit Architecture 

Figure 10 shows the light power chart of a 2-Mode vehicle and how it has two EVT modes 

based on the states of the two planetary gearsets. 

 

Figure 11: 2-Mode EVT Light Power Chart [23] 
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2.1.6 Plug-In Hybrid Electric Vehicles (PHEV) 

PHEVs are vehicles that utilize energy from the electricity grid to propel the vehicle and can 

also operate like a hybrid vehicle once the vehicle battery is depleted. There are various levels 

of PHEVs differentiated by charge depleting operation strategy and charge depleting range. For 

example, a vehicle may drive all electrically for the charge depleting portion of the vehicle 

operation and then switch to charge sustaining mode. An example of the SOC tracked over the 

drive cycle is shown in Figure 12. 

 

 

Figure 12: All Electric Charge Depleting Range 

 

A different vehicle may continually blend electrical and fuel energy while charge depleting 

prior to charge sustaining mode in order to extend the charge depleting range of the vehicle. An 

example of a blended vehicle showing how SOC tracks as a function of distance travelled on a 

certain drive cycle is shown in Figure 13. 
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Figure 13: Blended Charge Depleting Range 

 

The question that a manufacturer needs to answer is what the optimal charge depleting range 

for a specific vehicle is. 

2.1.7 Extended Range Electric Vehicles (EREV) 

An EREV is a version of a PHEV that can operate all-electrically over a specific drive cycle 

[24]. The EREV must be able to meet the power demands of the drive schedule with its 

electrical powertrain, much like a series vehicle, however does not necessarily need to be a 

series vehicle. The Chevrolet Volt is the only example of an EREV being developed by an 

OEM. 

2.2 Fuel Efficiency Considerations 

The fuel consumption characteristics of a vehicle have become an increasingly important topic 

over recent years due to the increased focus on the environment, specifically, global climate 

change. A reduction in fuel consumed is generally tied to a reduction in greenhouse gas 

emissions, for conventional gasoline vehicles and also a reduction in petroleum usage. It is 
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important to understand the constraints on reducing fuel consumption in vehicles prior to 

understanding the benefits of electrified vehicles.  

2.2.1 Fuel Consumption Considerations for HEVs 

Hybrid vehicles present unique challenges for fuel consumption certification compared to 

conventional vehicles. The biggest differentiator is that a hybrid vehicle is more time or 

sequence dependent than a conventional vehicle since the battery‟s state of charge (SOC) can 

vary in the duration of a drive. For example during a trip starting with high SOC, the vehicle 

first drives on electricity and does not require any engine use. At some point the SOC drops 

and the engine kicks on. After returning home and the HEVs SOC has likely dropped during 

the drive. The next trip may be identical however it starts with a lower SOC. During the first 

drive, some fuel energy was replaced with electrical energy.  However, during the second drive 

the fuel was used to recharge your battery instead of propelling the vehicle.  In short, the first 

drive yielded significantly better fuel economy than the second. This is unique to hybrids over 

conventional vehicles.   

Theoretically, identical trips should yield identical fuel economy in a conventional vehicle. 

This range of operation makes it difficult to determine what the average vehicle would do 

when sold to the fleet of Americans with just one test.  Therefore, the fuel economy is 

corrected based on the electrical energy used and an estimated efficiency of what it takes for 

the vehicle to recharge itself.   

2.2.2 Fuel Consumption Considerations for Charge Depleting Vehicles 

PHEVs and EREVs continue to complicate things. The core obstacle is their two discrete 

modes of operation.  The first mode is referred to as charge depleting, which is when the 

battery is being depleted to propel the vehicle, and the second mode is when the vehicle is 

charge sustaining, like a regular hybrid. Depending on how long it has been since the vehicle 

has been charged, the vehicle may either be in charge depleting or charge sustaining mode. At 

the end of the day, we want to determine what the fleet of vehicles will do in the hands of the 
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public so we take new things into consideration, like the range that the vehicle can deplete for 

and the length of any driver‟s trip, not just the type of driving they are doing. The process to 

determine fuel consumption for charge depleting vehicles has been proposed by the Society of 

Automotive Engineers (SAE) J1711 standard [25]. The philosophy of the standard is outlined 

below. 

The National Household Transportation Survey (NHTS) is periodically taken in the U.S., 

which tracks many things including how many highway miles and how many city miles each 

vehicle travels in a day.  This information helps determine how a vehicle would be operated by 

the fleet, so the next step is to calculate the percentage of the more than 3 million daily miles 

travelled would be travelled in each mode. This ratio is called the Fleet‟s Utility Factor and by 

using it the fuel consumption during charge depleting can be weighted with the fuel consumed 

while charge sustaining.  Mathematically, it breaks down as follows: 

                     equation 5 

 
 

where: 

UF is utility factor 

FCD is charge depleting fuel consumption 

FCS is charge sustaining fuel consumption 

This is what the average fuel consumption will be among the public. Note that the above 

equation is using fuel consumption, not fuel economy.  Fuel economy is defined as the distance 

you can travel for a fixed volume of fuel (e.g. miles per gallon). Fuel consumption is the 

amount of fuel it takes to go a fixed distance (e.g. liters per 100 kilometers).  The main reason 

fuel consumption is used here is because the vehicle may run 100% electric during the charge 

depleting range. Therefore, zero liters of fuel are consumed.  Inversely, during charge depleting 

range, drivers do not use any fuel and are still going places, so they travel an infinite number of 

miles per gallon used.  Anything added to infinity is still infinity, so your fuel economy would 

be infinite if calculated that way.  Certification tests are also computed using fuel consumption 
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and then converted for the American public. Since the upcoming certification tests are likely to 

be based on J1711, the vehicle manufacturer‟s charge depleting strategy is of upmost 

importance. 

The vehicle manufacturer‟s decision on charge depleting strategy is mainly based on a three 

factors: 

 Cost to manufacture the vehicle 

 Consumer Appeal 

 Corporate Average Fuel Economy (CAFE) 

Of utmost importance is CAFE. In the United States every manufacturer must conform to 

CAFE, which is a law upheld by the National Highway Traffic Safety Administration 

(NHTSA) under the Department of Transportation (DOT). CAFE is important because it is a 

driver for what kind of vehicles a manufacturer can sell. CAFE is the regulation that has the 

intention of improving fuel economy, on average, across the US. Vehicles are tested on the 

UDDS and HWFET and their fuel economy is certified by the EPA. The average fuel economy 

of the manufacturer must be above the CAFE required fuel economy or the manufacturer is 

fined. 

Currently, vehicles are tested based on the results from the UDDS and HWFET. However, 

PHEVs must be tested differently. Basically, when testing a conventional vehicle, the 

important drive cycle characteristics are accelerations at speed. These points in general tie back 

directly to engine loading points on the efficiency map. Theoretically, a completely new drive 

cycle could be constructed of the same accelerations at speed and the fuel consumption results 

should be very close. When HEVs are tested, the order of these points makes a big difference 

based on the battery‟s SOC at the time. When considering PHEVs it makes an even bigger 

difference because it is dependent on whether the vehicle is charge depleting or charge 

sustaining. Therefore a new test method had to be developed to certify vehicles that need to be 

considered under CAFE. At the time of this writing, the EPA had not finalized the test 
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specifics to be utilized for charge depleting vehicles. However, SAE J1711 offers some 

insights into what may be enacted. 

To adequately evaluate the fleet average fuel consumption and electrical energy usage of 

charge depleting hybrids, the utility factor method is used.  The following UF equation is taken 

from J1711. UF results are valid from 0-400 miles and were found using a modified least 

squares approach which ensures the fits are monotonic and minimize the relative errors in the 

fit to the raw data. The allowable error was made to be less than 0.5%, providing a UF 

certainty with rounding errors within 0.01 throughout the equation range (the normalized 

distance). 

                                                              

                   

equation 6 

 
 

Table 1: 2001 NHTS Utility Factor Equation Terms [26] 

Term Fleet UF  

norm_dist   399.9 

C1 10.52 

C2 -7.282 

C3 -26.37 

C4 79.08 

C5 -77.36 

C6 26.07 

 

It should be noted that this Utility Factor is for a combined city and highway driving cycle. 
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The final utility factor curve up to 400 miles is shown in Figure 14. 

Figure 14: Fleet Utility Factor Curve 

 

2.2.3 Optimizing Fuel Economy Based on J1711 

The reason it is important for OEMs to understand J1711 is because the manufacturer will want 

to maximize a PHEVs impact on CAFE. As CAFE regulations are increasing, the manufacturer 

must respond. Therefore, an analysis on the optimum fuel economy per vehicle will be carried 

out by the manufacturers and a similar analysis is carried out here. 

The first thing to consider is that every hybrid vehicle has an operating efficiency line for a 

drive cycle due to road load and powertrain efficiencies. An example efficiency line is 

presented in Figure 15. 
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Figure 15: PHEV Efficiency Curve 

 

During charge depleting the vehicle will operate with some net electrical consumption. If the 

vehicle is operating all electrically, the results of that particular drive cycle will be at the 

intersection of the x-axis. Once charge sustaining, the vehicle will operate at the intersection of 

the y-axis. All blended operation will happen somewhere along the line depending on the 

blending strategy (neglecting cold start effects). At a minimum, as cycles are repeated, each 

vehicle will have at least one point on the line that is the transition cycle between charge 

depleting and charge sustaining. 

The vehicle efficiency can be altered by two factors other than the drive cycle that it was tested 

on. The first factor is the vehicle road load. The road load of the vehicle will affect how far the 

curve is away from the origin, but will not affect the slope of the line itself, as shown in Figure 

16. 
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Figure 16: PHEV Efficiency Curve Road Load Factors 

 

The slope of the curve can only be changed by changing efficiency of the fuelled powertrain 

(engine/transmission) relative to the electrical powertrain. For example a diesel engine will 

likely be more efficient than a spark ignite engine, causing the y-intercept to move down the y-

axis. 

In order to maximize the fuel economy of a certain vehicle, the control strategy can be tuned to 

utilize more or less of the battery pack. The more the vehicle utilizes, the lower the fuel 

economy of the vehicle will be, since it will directly be replacing fuel that would have been 

used. Mathematically, the intent is to minimize the utility factor weighted fuel consumption. 

Therefore, taking the derivative of equation 5 gives: 

    

    
 

    

    
 

   

    

                        
equation 7 

 
 

where CDR is charge depleting range 
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Charge depleting range is merely a function of the charge depleting fuel consumption and the 

battery energy available. Energy available is a function of the battery energy stored on-board 

and the desired depth of discharge the OEM decides to utilize. The intent is to determine what 

depth of discharge and charge depleting fuel consumption will yield the smallest net fuel 

consumption rating. Assuming a constant battery capacity and a constant charge sustaining fuel 

consumption, an example of the resulting surface is shown in Figure 17. 

 

Figure 17: Utility Factor Weighted Fuel Economy Optimization Surface 

 

Clearly, from Figure 17 it is obvious that the most beneficial fuel consumption metric would be 

at the point of 100% depth of discharge (DOD) and 0 charge sustaining fuel consumption. 

There is a possibility that the same fuel consumption will be realized by utilizing some fuel 

consumption and increasing the depth of discharge. For example, there is a possibility that 50% 

DOD and 0 charge sustaining fuel consumption could give the same net fuel consumption as 
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100% DOD and 2.4 l/100km, depending on the efficiency curve of the vehicle. In this case, a 

manufacturer will likely utilize the reduced depth of discharge and run all-electrically to begin, 

since the reduction in DOD will yield longer battery life and shorter charge times for the 

consumer. The decision for the OEM then becomes mainly based on the lifetime of the battery 

pack, to receive the best possible fuel consumption rating. 

2.2.4 Battery Technology 

2.2.5 Battery Materials 

There are several battery chemistries that have been investigated for use in HEVs and PHEVs.  

Historically lead acid batteries have been used due to their inherent robustness, high power 

density, ease of manufacturing and relatively low cost. However, their low specific energy, low 

energy density and short cycle life have lead to their ultimate demise for use in higher energy 

applications. 

2.2.5.1 Ni Cd 

Nickel cadmium batteries were briefly investigated due to their improved specific energy and 

energy density over lead acid batteries. Ultimately there were several reasons why NiCd 

batteries are not utilized in HEV or PHEV applications.  Specifically, the memory effect was 

the biggest reason.  Essentially the NiCd memory effect is a phenomenon where the battery 

capacity is artificially reduced due to a change in the crystalline structure of the battery 

creating large crystals as opposed to the desired small crystals [27]. The memory effect along 

with the dangers associated with cadmium and only a marginal improvement in specific energy 

and energy density make NiCd impractical for the applications in HEVs and PHEVs [10]. 

2.2.5.2 NiMH 

Nickel Metal Hydride batteries are currently the most prevalent battery in HEVs. Their 

improved specific energy and relatively high energy density make them a more attractive 

option than either Pb-Acid or NiCd.  In hybrid applications, their low manufacturing cost, high 
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level of safety and high power density make them a plausible chemistry [28].  Appearing in 

most of today‟s hybrids including the Toyota Prius, the Ford Escape and Fusion, and the 

General Motors 2Mode Hybrids they are clearly the current choice of the industry for hybrid 

applications. Where NiMH batteries weaknesses come in to play is in charge depleting 

applications such as PHEVs and EREVs.  In these applications, NiMH cycle life is a serious 

detriment. The mechanism of degradation in the NiMH cell is mainly the corrosion of the MH 

particles during the absorption and release of hydrogen atoms [29, 30]. Finally, SOC 

determination is difficult in NiMH packs due to a flat Open Circuit Voltage (OCV) curve and a 

large hysteresis voltage [31]. 

2.2.5.3 Li Ion 

Often Lithium Ion batteries are grouped into one big group; however, it is important when 

reviewing chemistries to investigate the pros and cons of each lithium ion chemistry. Although 

there are several common characteristics, they vary greatly on issues of safety, specific energy, 

energy density and cycle life.  The most common characteristic is the intercalation of lithium in 

a carbon based anode material. Also, the electrolyte material is most commonly lithium 

hexaphosphoflourate (LiPF6) combined with a cyclic alkyl carbonate and a linear alkyl 

carbonate [32]. A common separator is a polypropylene and/or polyethylene membrane 

structure. The most common difference is the cathode chemistry makeup.  The cathode 

material is the most influential part of the battery when it comes to the characteristics of the 

cell. Since the energy capacity of the battery is limited to the capacity of the cathode, the 

material is extremely important [7].  Also the cathode composition typically dictates the cycle 

life and abuse tolerance of the cell. Until the last few decades, Lithium batteries had not been 

practical despite the fact that lithium is the lightest and most electronegative metal.  It is 

reactivity with water as well as the reactivity with common solvents in battery electrolytes 

made lithium batteries prohibitively unsafe. The realization that the lithium intercalates with 

carbon based anodes was one major breakthrough. The other breakthrough is the development 

of the solid-electrolyte interface (SEI) that forms on the anode the first time the battery is 

charged.  
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Finally, another main advantage of Lithium based batteries is the higher voltage. Typical 

Lithium-Ion cells with a graphitic anode have a nominal voltage of about 3.7 V, three times 

that of NiMH cells (1.2 V) [7]. This higher voltage has many inherent advantages. The first 

advantage is that a higher cell voltage leads to fewer batteries in series in order to get the 

voltage up to the potential operating voltages of the rest of a vehicle powertrain. Battery pack 

designers can now integrate shorter strings of cells in parallel which each share the current load 

of the system. This sharing leads to lower currents in each cell and the battery pack is not 

nearly as power limited. Also, the higher voltage can be a major advantage to power converters 

on the vehicle. Power converter sizing and mass increases with current commands, therefore 

having a higher voltage reduces the size of all of the power electronics on the vehicles high 

voltage bus. These advantages have already been realized in consumer electronics.    

Figure 18 is a Ragone Plot showing the benefits of Lithium Ion batteries over other 

chemistries. 

 

Figure 18: Ragonne Plot [22] 
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2.2.5.4 Lithium Ion Mechanisms 

In the early 1970‟s research began to show the ability to place an electrochemically active 

species into an electrically conductive host. The process, known as intercalation, is practical 

assuming the conductive host structure does not change as lithium is added and removed, 

which leads to the reversibility of the reaction. The intercalation process is very important on 

both the anode and cathode side. The anode is typically a graphitic carbon; however more 

research has been done recently with lithium titanate oxides, the benefits of which will be 

discussed later. The cathode material has received the most attention of late. There are 

essentially two groups of cathode materials available today: 

Layered compounds 

In the layered compounds, the structure is an anion close-packed lattice in which layers 

alternate between basically empty layers and redox-active transition metals. Lithium 

intercalates between the metal layers. 

 

 

Figure 19: Layered Electrode Structure [33] 
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Open structures 

The second group has more open structures that, when properly ordered, create tunnels 

between the transition metals. The lithium inserts itself into the tunnels.  

 

Figure 20: Open Electrode Structure [33] 

The layered cathode has an inherently higher volumetric energy density since it is able to pack 

more lithium per unit volume. The second group has the potential to be much lower cost 

materials and could possibly have a power density advantage depending on the material.  

No matter which group the cathode is part of, it is desirable for the material to have a high free 

energy of reaction when combined with the lithium. The higher the free energy, the higher the 

voltage of the cell (up to approximately 4 V before it is limited by the stability of the 

electrolyte) which benefits the battery once arranged in a battery pack as described earlier.  

2.2.5.5 Lithiated Cobalt - LiCoO2 

Lithiated cobalt oxide cells are the main cells utilized in consumer electronics.  First introduced 

in 1991 by Sony, they are the first lithium ion cells developed with the graphitic anode 

material, replacing the metallic Li anode and providing a safer lithium cell structure. LiCoO2 is 

a layered anion lattice structure that is highly conductive which benefits both the energy and 
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power capabilities on a volume basis. A LiCoO2 cathode has decent storage capacity of lithium 

ions with adequate chemical stability. The main problems with this cathode are the expense of 

cobalt ($30-$40/kg) and the safety issues associated with tolerating over charge and internal 

shorting leading to fires. LiCoO2 cells are still widely used in consumer electronics that have 

very predictive and constant charge and discharge characteristics, but their safety and expense 

issues make them impractical for automotive use. 

2.2.5.6 Lithium Manganese Spinel - LMS 

Lithium manganese spinel (LiMn2O4) addresses the cost issue of the LiCoO2 cells by 

replacing with the manganese crystalline structure. This structure is also much safer due to the 

crystalline structure and requires very little excess lithium for full charge. The lower energy 

capacity of the LMS over the LiCoO2 is countered by the higher specific power. Although 

initially thought to have a low calendar life, some literature indicates that new additives have 

helped in this area. Finally, the LMS battery has good low temperature power capabilities 

which have been making it a major choice for some automotive manufacturers.  LMS is 

currently offered by the LG Chem / Compact Power packs and is being used in the Chevrolet 

Volt program. 

2.2.5.7 Li NCA 

This cathode material Li(Ni0.85Co0.1Al0.05)2, approaches the benefits of the LiCoO2 cell, 

however reduces the cost due to the reduced concentration of cobalt. NCA cells tend to have 

significant cycle life issues that are currently under development for improvement [34]. 

However, the same safety issues are present and therefore must be very well controlled. 

Currently Johnson Control Systems (JCS) and GAIA (a division of Lithium Technology) are 

exploring its use in automotive applications.  
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2.2.5.8 Li NCM 

This cathode material (eg. Li(Ni1/3Co1/3Mn1/3)O2) has similar characteristics to NCA 

however is less expensive. A main advantage is that it can be manufactured to be charged to 

two different voltages (either 4.1V or 4.7V). Voltages up to 5 V have been observed, however, 

capacity fade becomes a major factor at the higher voltage. Although other cells have shown 

the potential to be charged to various voltages, the NCM cathode material has stable products 

at full discharge for these voltages. The two voltages lead to a high power variant and a high 

energy variant of the cell. Mainly manufactured by Kokam and Lamillion, this cathode has 

shown recent promise for use in automotive applications, due to its relatively good safety on 

overcharge. Li NCM cathodes can have other formulae and concentrations of Ni Co or Mn, but 

this “333” compound appears to be the compound most under consideration. Cost is a major 

drawback for this chemistry, despite the fact that it is lower cost than NCA, as well as 

uncertainty of cycle life based on various sources. 

 

2.2.5.9 LiFePO4 Lithium Iron Phosphate 

This cathode material has been very attractive of late. Initially thought that the Fe would block 

Lithium sites in the cathode intercalaction tunnels [33], A123‟s nano architected materials have 

improved conductivity in the cathode, increasing power capability. The inherent stability 

during charge and discharge make the cell very safe and highly tolerant to abuse. Of upmost 

interest is the possible change of structure when the orthorhombic LiFePO4 phase changes to a 

more quartz like tetrahedral FePO4 during charge. Although the FePO4 tetrahedral structure 

can lead to a safe over charge condition since it is electrochemically inactive, it also leads to 

irreversible capacity fade. The FePO4 can have either a tetrahedral or orthorhombic structure 

depending on synthesis and temperature. On discharge, the LiFePO4 shows great thermal 

stability increasing the ability to safely charge the battery to 100% state of charge. Since the 

tunnel structure of the LiFePO4 is inherently of lower volumetric density that the close-pack 

anion structures, the ability to utilize 100% of the lithium on discharge is attractive to decrease 
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the volume for the same cylcable lithium. Another safety benefit of the tunnel based structure 

is that there is no loss of oxygen during charge like there can be during the charge of the 

layered anions in the other chemistries. The trade-off between the safe over discharge and 

lower cycle life are a main consideration during LiFePO4 batteries. The thermal stability of 

LiFePO4 is very high which also protects the cells during over discharge.  Of note, other 

metals with a higher potential compared to pure lithium have been investigated (specifically 

LiMnPO4) but do not have the benefits of tolerance abuse and low cost observed with the 

LiFePO4 cathodes. 

2.2.6 Battery Degradation Mechanisms 

The SEI limits the reactivity of the lithium with the organic electrolyte, however it lets lithium 

ions pass through during charge/discharge cycling.  Limiting the reactivity made lithium 

batteries able to be utilized in consumer applications, increasing the safety by decreasing the 

dendritic nature of lithium. However, the safety comes at a cost; as the cell is cycled, the SEI 

layer builds up and cracks and more lithium is used to fill in the cracks.  This building of the 

SEI layer leads to an increase in resistance of the cell [35], resulting in power fade, and a 

decrease in cyclable lithium, resulting in capacity fade. To compensate for the initial building 

of the SEI, the cathode is manufactured with an excess of lithium.  Another major mechanism 

of degradation is characterized by a fracturing of intercalation sites due to stresses on the lattice 

during charging to high SOCs, resulting in a loss of activation sites leading to capacity and 

power fade [36]. 

In general, the initial capacity fade is attributed to the loss of cyclable lithium due to SEI film 

growth predominantly on the anode, although the cathode has a relatively thin build up of SEI 

as well [37]. As the cell ages a bigger factor than SEI growth becomes the fracturing of the 

intercalation sites on the anode [38]. Jin reported that the change in degradation mechanisms 

occurs around 200 cycles [39]. In general it is quite difficult to model the degradation 

mechanisms in Li-Ion cells. Ning presented a 1-D model of degradation methods and Tang 

expanded it to a 2-D model to understand the deposition of lithium during charge[40,41]. Both 
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models require extensive time and computing power for simulation and neither are good 

applicants for real time determination of battery capacity. 

Although cycling is the main degradation mechanism, many papers also correlate battery 

degradation directly to temperature as well [42, 43].  Battery capacity will also be function of 

temperature as shown in the figure below.  The capacity varies because at colder temperatures 

the low voltage point will be reached more quickly than at warmer temperatures as shown in 

Figure 22: Capacity as a Function of Temperature Due to Changes in Reaching Max and Min 

Voltages  

  

Figure 21: Capacity as a Function of Temperature [27] 
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Figure 22: Capacity as a Function of Temperature Due to Changes in Reaching Max and 

Min Voltages [27] 

 

2.2.7 Designing for End of Life 

In order to design and size the battery properly for automotive applications, OEMs use a 

process called “Backward Facing Component Sizing.” This method predicts what the battery 

capacity will be at End of Life (EOL) and estimates what the capacity must be at the Beginning 

of Life (BOL) to meet that metric. Figure 23 demonstrates the Backward Facing strategy. 
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Figure 23: Backward Facing Component Sizing [44] 

 

2.2.8 Hybrid Powertrain Degradation Test Stand 

How vehicle control algorithms affect battery degradation is not generally understood. 

Therefore, the University of Waterloo utilizes a Hybrid Powertrain Degradation Test Stand to 

better understand the interactions. The goal of the stand is to cycle advanced hybrid 

components and log their characteristics as they degrade. It provides a means of testing 

components and control strategies on a bench scale.  This makes testing more efficient, 

cheaper, and much safer for researchers. 

The test stand is scaled-down version of a real hybrid fuel cell powertrain.  It contains all of the 

components of a real vehicle, including a hydrogen fuel cell, battery, DC/DC converter, 

regenerative source (for simulating regenerative braking), and a load box to simulate an 

electric motor.  It also uses a controller that reads a drive cycle and then directs each of the 

components accordingly.  Each of the components can be easily removed and replaced by a 
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different model, in order that researchers can efficiently test different components.  For 

example, the batteries currently on the APTS can be removed and replaced by a different type.  

Furthermore, the controller is programmable so that researchers can test a variety of hybrid 

control strategies. 

The test stand architecture is shown in Figure 24. The test stand is a tool that researchers and 

graduate students at the University of Waterloo can use to safely and efficiently investigate 

hybrid fuel cell vehicles on a bench scale.  With component „plug and play‟ and an easily 

programmable controller, researchers can test a wide range of configurations and hybrid 

control strategies. 

 

Figure 24: Battery Test Stand Architecture 

DC/DC Converter: 

The DC/DC converter used on the test stand is a Zahn Electronics model DC6350F-SU.  Its 

purpose it to convert the fuel cell voltage to match the battery voltage.  The controller sends a 

signal to the DC/DC converter, indicating the desired output voltage, so that it matches that of 

the battery.   
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Battery: 

The second power source of a hybrid fuel cell is a rechargeable battery.  The batteries chosen 

for the test stand were lithium ion batteries produced by A123.  These batteries were obtained 

from A123 Systems at no charge to the design group.  They were selected based on availability 

and relevance to the current industry. Each battery cell has 3.3V nominal and a maximum 

continuous current of 60A (although they can supply up to 120A for peak current for 10 

seconds).   

Regenerative Source: 

A Lambda ZUP 20-40-800 model AC/DC power source was integrated.  This AC/DC power 

source plugs into the wall and uses the inlet AC current to produce a DC current output.   

Its purpose is to mimic the regenerative braking in a real hybrid fuel cell vehicle.  In a real 

vehicle, the electric motor is used for braking.  This model was selected based on its 

compatibility with the recharge requirements of the A123 lithium ion batteries. 

Load Box: 

The load box on the test stand is a TDI Dynaload RBL232 50-150-800. Its purpose is to mimic 

the load of the electric motor in the hybrid vehicle.  
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2.3 SOC Estimation Methods 

Recently, there have been many papers written on determining state of charge of Li-Ion 

batteries for vehicle applications. SOC has become a critical control metric in hybrid vehicle 

control and therefore accurate estimates of SOC are extremely important [45, 46, 47]. Also, 

there have been many techniques utilized for SOC estimation on both a cell and pack level. It 

is extremely important to note the difference between cell level and pack level state of charge 

for a couple of reasons: 

SOC for a battery pack is limited by the lowest capacity cell in the pack. Due to cycle 

life differences and manufacturing tolerances, cells can be utilized slightly differently 

in the pack relative to their own capacity. The cell with the smallest capacity dictates 

the capacity of the entire series string of batteries. Therefore, for system utilization, it is 

extremely important for the cells to be balanced properly, and manufactured at 

extremely tight tolerances. Cell balancing is typically accomplished with printed boards 

that distribute small amounts of current from one cell to another based on a voltage 

reading with millivolt resolution. Also of importance in this respect is the cooling 

system design. As stated, temperature swings can cause fracturing of the SEI layer 

which will eventually cause a loss of cyclable lithium and an increased resistance. If the 

cooling strategy allows for “hotspots” in the pack, some cells will degrade earlier than 

others, causing those cells to limit the other cell‟s ability to fully cycle. It is outside the 

scope of the research to develop adequate balancing techniques and hardware.  

 

Determining SOC on a single cell, the system is typically setup to monitor one cell, 

with one current sensor and one voltage sensor. As the cells are developed into a 

battery pack, the ability to monitor each cell to that level is limited, specifically in 

current sensing. Generally battery packs are limited to one current sensor and precision 

of the current sensors are generally limited by cost both on a sensor level and a control 

input level. For example, a highly precise current sensor is wasted if the controller input 

has a low bit resolution. A typical automotive embedded controller has 10-bit resolution 
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on its analog to digital converter. A 10 bit resolution on a system that cycles between    

-360A and 360 A, would have a reading resolution of approximately 0.7 A. As the bit 

resolution increases, so does the cost of the controller. Both current shunts and Hall 

Effect sensors have been used in the past (current shunts much more widely). 

Generally, the embedded controller must have at least 12-bit resolution (+/- 0.17 A in 

the previous example), which creates a very expensive addition to the battery‟s 

embedded controller and still barely provides adequate resolution to do adequate state 

estimation on a single cell. A main point of the work on SOC estimation in this research 

deals with a noisy, imprecise current and voltage measurement.  

The main techniques utilized in past works have been: 

OCV estimation 

Coulomb counting 

Electro-Impedance Spectroscopy (EIS) 

State Estimation Using Filters 

 

2.3.1 Open Circuit Voltage Estimation 

OCV estimation has been utilized extensively as an estimation technique for SOC. It relies on 

the basic principle that with no load applied to a battery, voltage and SOC are related based on 

a predictable relationship [48]. This relationship is highly dependent on the battery‟s 

chemistry. It is also dependent on two other parameters; temperature, and more importantly 

state of health as can be seen in Figure 25. 
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Figure 25: OCV of Fresh and Aged Battery Cells [44] 

 

OCV estimation is often very difficult due to the hysteresis of the voltage profile during charge 

and discharge [49].  Although hysteresis is not well understood, it can be thought of as a charge 

momentum that creates a condition wherein the battery voltage will not trace back along the 

same voltage profile upon reversal of current.  Also, there is a rest period that must take place 

before the battery‟s voltage will return to open circuit.  

Typically, the battery‟s open OCV is estimated utilizing a simple equivalent circuit model. The 

simple circuit model is shown in Figure 26. 
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Figure 26: Simple Thevenin Battery Model 

where:  

Vt is the terminal voltage 

Rint is the battery‟s internal resistance 

Vo is the battery‟s open circuit voltage 

This simple Thevenin equivalence model gives decent representation of the battery however 

there are some obvious omissions.  

The simplest model of open circuit voltage, then, is the following 

                   equation 8 

 
 

where: 

k is the time step 

yk is terminal voltage 

 

The internal resistance of the battery is dependent on whether the battery is being charged or 

discharged. Adding two resistors in parallel with diodes in each direction give a more accurate 
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depiction. Including the two resistances help in addressing the hysteresis issues with 

indentifying OCV. However, adding a capacitor and internal diffusion resistances address the 

rest period effects and hysteresis of the voltage. The final circuit is shown in Figure 27. 

 

Figure 27: Variable Resistance and Relaxation Battery Model 

where  

RDiff  is the resistance of mass diffusion through the electrolyte 

CDiff is the capacitance of diffusion 

R
+
 is the discharge resistance 

R
-
 is the charge resistance 

Due to the fact that RDiff is relatively small compared to the charge and discharge resistance, 

and the CDiff is nearly negligible for LiFePO4 cells, the RDiff will be included in the charge and 

discharge resistance term. 
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Equation 7 can be modified to include the hysteresis effect as follows: 

                             equation 9 

 
 

where: 

 M(SOCk) is the maximum hysteresis loop  

sk is dependent on the direction of the current with memory during resting and is defined as 

 

    

                  
               

                  

  
equation 10 

 
 

for some sufficiently small, positive value of ε 

M(SOCk) is half of the difference between the charge and discharge curves minus the effect of 

resistance. 

Resistance can be a constant, a different constant for discharge and charge, a function of 

temperature and a function of SOC, depending on the accuracy required and the data available 

for system identification. 

Utilizing OCV Estimation is made difficult with many battery chemistries that have a very flat 

OCV vs SOC curve as shown. Between 10% and 90% SOC, the voltage change is very small 

(approx 0.2 V for LiFePO4) and therefore it is difficult to utilize OCV in that area of operation. 

Also, it requires a very accurate voltage measurement to utilize this technique. 

2.3.2 Coulomb Counting 

Coulomb counting is the most common method of SOC estimation for consumer applications. 

The simple principle used in coulomb counting is that the number of electrons transferred to 

charge the battery pack is equal to the number of electrons transferred to discharge the battery 

[49]. Therefore the maximum number of electrons that are transferrable around the load is 

equal to the nominal capacity in Ampere-seconds.  



45 

 

 
         

 

  
               

equation 11 

 
 

     

SOC is essentially the percentage of available coulombs that have moved around the load from 

the anode to the cathode. A current sensor is inserted into the loop and the current is integrated 

over time. The current sensor is generally either a Hall Effect sensor or a current shunt. A Hall 

Effect sensor measures the magnetic flux around a conductor and correlates the flux to a 

current flowing through the wire since magnetic flux is proportional to the current. A current 

shunt places a very small resistance in series with the load loop and measures the voltage 

across the resistor. The voltage is directly proportional to the current due to Ohm‟s law. There 

are tradeoffs between each sensor. Typically Hall Effect sensors are lower cost than the current 

shunts. They are easier to integrate and do not require a controller to have a high voltage sensor 

reference like the current shunt. The current shunt, however, can be much more accurate and 

precise.  

Coulomb counting works well with extremely precise, very accurate, high frequency 

measurements. Generally measurements of this accuracy are impossible or near impossible to 

achieve and therefore a more robust method is needed for the required accuracy in SOC 

estimation. 

2.3.3 Impedance Spectroscopy 

Impedance spectroscopy is often used in chemical processes for determination of 

concentrations of chemical compounds. There have been many papers relating the low 

frequency a.c. impedance of a cell with the cell‟s SOC. A Nyquist plot is shown in Figure 28.  
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Figure 28: Nyquist Plot [50] 

 

Essentially the theory is that at high SOCs, the main resistance of the electrochemical reaction 

is charge transfer resistance as opposed to diffusion resistance. As the SOC drops, the charge 

transfer resistance contributions lessens and diffusion resistance controls the reactions. 

Therefore the Nyquist plot becomes more and more linear as the SOC lowers as shown in 

Figure 29. 

 

Figure 29: Nyquist Plot for Varying SOCs (Inductive Data Omitted) [50] 

The main disadvantages of Impedance spectroscopy for SOC estimations are that it is very 

temperature sensitive and it can be quite expensive. Also, there is a strong influence of cell 
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aging on the measurement of the impedance which could be strongly correlated as shown in 

Figure 30. 

 

Figure 30: Nyquist Plots for Various States of Health [1] 

The difficulty of this correlation is to split out the effect of SOC from the effect of SOH. 

Therefore, many papers have started exploring using impedance spectroscopy as an indicator 

of SOH given another form of SOC estimation [51]. 

 

2.3.4 Adaptive Methods 

More recently, adaptive methods of SOC estimation have been explored. The adaptive methods 

explored most frequently include neural networks, fuzzy logic, adaptive observers, vector 

machines and Kalman filtering.  These methods are often expensive to develop and require 

significant processing capabilities.  
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Very promising work has been done in the area of Extended Kalman Filtering since it enables 

the estimator to adapt to a cells changing characteristics over the life of the cell [52].  

 

2.3.5 Kalman Filtering 

Kalman filtering is an example of optimal state estimation. The state of a system is defined as 

variables that are not directly measurable that provide a complete representation of the internal 

condition of the system [53]. Kalman filtering is used to estimate the state of the system given 

a process model of the system and a measurement model of the system. It relies on the Markov 

assumption that the state is entirely defined by the previous belief of the state of the system and 

the current control inputs and measurement outputs.  

Although it is beyond the scope of this thesis to fully derive the equations utilized for Kalman 

filtering, the following will provide a step by step explanation of how the filter works. Initially, 

the Kalman filter will be described, which is an optimal state estimation of a linear time 

varying (LTV) system. In reality battery systems are highly non-linear, and therefore will 

require the use of an Extended Kalman Filter, describe later. It should also be noted that there 

are many forms of Kalman filtering available depending on the system under investigation and 

this work will use just one of those forms. Also, there are other state estimation filters that can 

be utilized each of which have advantages and disadvantages such as particle filtering, H-

infinity filtering and Unscented Kalman Filtering. Kalman filtering, however is the most 

common filter applied in other areas of control including target tracking and signal processing.  

A Kalman filter is a recursive least squares filter that uses a system or process model, a 

measurement model and a series of noisy measurements to formulate a belief about a system‟s 

state [2]. Since it is a recursive filter, the Kalman filter assumes that only the current 

measurements and the belief of the previous state are required to estimate the current state of 

the system. 

To begin, consider an LTV system as described in Figure 31. 
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Figure 31: Linear Time Varying System 

 

The system is described by the state space model for discrete time systems: 

                   equation 12 

 
 

      

                 equation 13 

 
 

where: 

xk is the state vector 

uk is the control input 

yk is the measurement vector 

Equation 11 is known as the process model (or state equation) of the system and equation 12 is 

known as the measurement model. The process model is setup to capture the system dynamics 

of the system. All controllability and stability are determined by the process model.  
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In the process model, wk is white process noise and is assumed to be zero-mean and Gaussian 

with covariance Qk as in: 

           equation 14 

 
 

       

Similarly, vk is the measurement noise, generally from a noisy sensor input and is also assumed 

to be zero-mean and Gaussian with covariance Rk as in: 

           equation 15 

 
 

       

Given these equations and some measurement data, the goal of the Kalman filter is to estimate 

the unmeasured state of a system. For instance, in the case of the battery, it may be state of 

charge or state of health. Since the Kalman filter is recursively minimizing the mean squared 

error between the two models, and assuming Gaussian distribution of any noise, the Kalman 

filter is considered optimal. 

The Kalman filter has two stages, a prediction stage and an update stage. The process model is 

used to predict the belief of the state and the measurement model is used to update the belief.  

During the prediction stage, an estimate of the state based on the process model is calculated 

given the control input and a prediction of the covariance is calculated. In the following 

equations    denotes the belief of the state. Prior to the update, the state belief is denoted     
  , 

after the measurement update, the state belief is denoted    
 . 
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Prediction Stage: 

State estimate update  

   

   
           

           equation 16 

 
 

Error covariance time update      
            

     
     equation 17 

 
 

 Update Stage:    

Kalman Gain calculation         
   

         
   

     
  

 equation 18 

 
 

 

State estimate measurement update

  

   
     

             
        equation 19 

 
 

 

Error covariance measurement update      
               

 
 equation 20 

 
 

    

 

This is a widely known solution to minimizing the mean squared error. For more derivation of 

the above review [53]. 
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2.3.6 Extended Kalman Filter 

The Kalman filter described the optimal solution for linear systems. In reality, battery systems 

are non-linear and therefore the Extended Kalman Filter (EKF) must be used. The EKF utilizes 

many of the same principles as the Kalman filter, however it linearizes the system at each time 

step allowing the system to be solved as a linear time varying (LTV) system.  It is important to 

understand that the EKF is no longer necessarily optimal. 

Consider the non-linear system: 

                  equation 21 

 
 

 

                equation 22 

 
 

      

At each time step the f(xk ,uk) and g(xk ,uk) are linearized using a first order Taylor series 

expansion around the point          
  for the process model and       

  for the 

measurement model. 

 
                                  

   
 
          

           
equation 23 

 
 

    

 
               

                  

   
 
        

 

         
equation 24 
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Substituting equation 23 and 24 into equation 21 and 22, and defining Ak and Ck as follows: 

 
               

   
 
          

 
equation 25 

 
 

      

 
               

   
 
        

 

 
equation 26 

 
 

      

The linearized process and measurement models become: 

                                equation 27 

 
 

   

                              equation 28 

 
 

  

To define the EKF iteration process, replace the Bk from the Kalman filter with the middle two 

terms of the process model and replace Dk with the middle two terms of the measurement 

model. The final process is much the same as the standard Kalman Filter and becomes:‟ 
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Prediction Stage: 

State estimate time update  

   

   
         

        equation 29 

 
 

Error covariance time update      
             

      
     equation 30 

 
 

 Update Stage: 

Kalman Gain calculation         
    

         
    

     
  

 equation 31 

 
 

State estimate measurement update

  

   
     

             
       equation 32 

 
 

Error covariance measurement update      
                

 
 equation 33 

 
 

There are other non-linear versions of the Kalman Filter including the unscented Kalman Filter 

that may provide similar results. 
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3 Model Development 

3.1 SOC Extended Kalman Filter Design 

Since the EKF is specifically designed to handle „noisy‟ measurements, it is the ideal process 

for estimating SOC on the battery test stand and onboard system. In designing the SOC EKF 

algorithm there are a few goals to consider: 

1. Provide accurate SOC estimation over degradation test cycles; 

2. Provide reasonable error bounds on the SOC estimation; 

3. The philosophy and theory should be understandable, and the algorithm simple 

enough for  processing speed and ease of implementation; 

3.1.1 Battery EKF Model  

The battery process model must be a function of the control input, which in this case is current. 

Recall that the state that is being estimated is „State of Charge‟ (SOC). Therefore, the ideal 

model is the same model described above, the coulomb counting model.  

Recall: 

 
         

 

  
               

equation 34 

 
 

 

Discretizing equation 33 yields the following equation: 

 
            

     

  
    

equation 35 
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Where:  

Cn is the nominal capacity of the battery in Ampere-seconds 

η is the coulombic efficiency of the battery for either charge or discharge. 

Coulombic efficiency is assumed to be 1 for discharge and 0.992 for charge [49]. The 

Coulombic efficiency of battery the ratio of the number of „charged electrons‟ that enter the 

battery during charging compared to the number that can be effectively used during discharge. 

The losses that reduce Coulombic efficiency are primarily due to secondary reactions, such as 

the electrolysis of water, plating of Li, or other electrochemical reactions in the battery. Thus 

overall cell Coulombic efficiency or charge acceptance is a measure of how much usable 

energy is available during discharging compared with the energy used to charge the cell and is 

expressed as the ratio between the discharge energy and the charging energy. This model of 

simple dynamics of the battery system will serve as a basis for the EKF model.  

The measurement model for the battery must be a function of the state and inputs. Currently 

the measured inputs available on the battery test stand are voltage and temperature. Although 

resistance is a function of temperature, the most benefit for the model comes from including 

open circuit voltage to correct the coulomb counting model around the ends of the state of 

charge vs voltage curve. Therefore, the basis for the measurement model will be the simple 

OCV model from above. 

Recall the simple model equation: 

                   equation 36 

 
 

It is assumed that the resistance is only a function of current direction (ie. there is a constant 

charge resistance and a constant discharge resistance, not dependent on temperature).  

Inclusion of impact of temperatures changes is left to future work.  Once the charge and 

discharge resistances have been determined, the hysteresis loop can be added to the model to 

form what Plett calls the “Zero State” model [49]: 
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                             equation 37 

 
 

The zero state model utilizes the resistance term from the simple model and allows for 

identification of the hysteresis term. Plett also proposes two other models for utilization on 

vehicles, the one state hysteresis model and the enhanced self correcting model. For the 

purpose of keeping the model as simple as possible, the zero state model was chosen, limiting 

the states in the process model to one. 

3.1.2 System Identification for the Zero State Model 

3.1.2.1 Charge/Discharge Curve for Open Circuit Voltage 

The first requirement for the model is to determine the open circuit voltage as a function of 

state of charge. The easiest way to determine the relationship is to slowly charge and discharge 

a battery cell to the voltage limits prescribed by the cell manufacturer. The open circuit voltage 

curve is then the difference between the charge and discharge curves.  Note, this is not 

practical in actual application because of the impact on the durability of the cells, the time 

required, equipment required, and the desire not to completely drain the battery pack. 

Figure 32 shows the charge and discharge curves at ±0.2C as well as the calculated open circuit 

voltage curve.  
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Figure 32: Charge and Discharge Curves at 0.2 C for the A123 M26650 cell tested at 

Waterloo.  

 

3.1.2.2 Generating the Parameters for the Simple Model 

The first step in identifying the system parameters is to identify the resistance term in the 

simple model. The simple model overvoltage vector is setup as follows 

 

  

 
 
 
 
 
            

            

            
 

             
 
 
 
 

 

equation 38 

 
 

     

And the matrix H is defined as: 
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equation 39 

 
 

       

Then the equality derived from the measurement model is 

       equation 40 

 
 

       

Where    is the matrix of resistances: 

      
 

    equation 41 

 
 

       

Utilizing the known Y and H matrices from the OCV curve calculation from above, the    

vector can be determined by the equation: 

               equation 42 

 
 

      

 

For the cells utilized in this work the resistance values are (in Ohms): 
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0 0332
0 0488

  equation 43 

 
 

       

Knowing the value of    , the simple model is completely defined with a lookup table being 

used for OCV as a function of SOC. 

3.1.2.3 Generating Parameters for the Zero State Model 

A similar process is used to determine the parameters in the zero state model.  The major 

hysteresis term in the zero state model is defined as half the distance between the charge and 

discharge curves minus the resistance overpotential. M(SOC) is plotted in Figure 33.  The top 

curve is for the discharge hysteresis, the bottom curve is the charge hysteresis. 

 

Figure 33: Hysteresis as a Function of SOC and Current. 
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To determine the constants for the zero state model, the H matrix is augmented as follows: 

 

  

 
 
 
 
 
  
   

   

  
   

   

  
 

 
  
 

  
 

 
  
 

  

 
   

 
 
 
 

 

equation 44 

 
 

      

Where sk is the indication of current direction as defined in equation 9. Also,    is augmented to 

include a constant for the major hysteresis loop. 

 
    

  

  

 
  

equation 45 

 
 

      

Using the same procedure as before, the    matrix is calculated, the results of which are below 

 
    

      
      
      

  
equation 46 

 
 

       

3.1.2.4 Hysteresis as a Constant or a Function 

In the zero state model, the model assumes a constant for the hysteresis loop which is 

essentially true for all SOC between 0.1-0.9, as seen in Figure 35. This model is quite good for 

the normal operation of a vehicle as the SOC is rarely utilized outside of those limits. 

However, since the hysteresis is relatively large at high and low SOC, for the purposes of the 

battery test stand, which will operate a significant amount of time in the upper and lower SOC 

ranges, the hysteresis at those points must be taken into account. 
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3.1.3 Testing the Simple Model and the Zero State Model Parameters 

In order to adequately test the parameters of both the zero state and the predicted voltage from 

the measurement models was analyzed versus the measured voltage of a slow (0.2C) full 

charge and discharge cycle on the battery test stand. 

First the simple model was used to predict the voltage. The results are shown in Figure 34. 

 

Figure 34: Simple Model Voltage Prediction 

The simple model predicts the voltage well, particularly throughout the middle part of each of 

the charge and discharge cycles. However, at the low voltage point it loses the ability to 

adequately track the measured voltage. The cycle test was setup to try and stabilize the voltage 

around 2.2 volts, which is why the measured data shows some dynamics, while the prediction 

does not try to stabilize the voltage. More importantly, the prediction does not accurately 

predict the voltage during the constant voltage part of the charge cycle. Since the actual cell is 
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rebounding from hysteresis due to being charged and the simple model does not include any 

hysteresis term, it is unable to track the voltage correctly. 

Next, the zero state model was tested over the same cycle. The results are shown in Figure 35. 

 

Figure 35: Zero State Hysteresis Model Voltage Prediction 

The zero state model accomplishes two major improvements over the simple model. First, the 

zero state model is able to more accurately predict the voltage at the end of the discharge, 

although it still has a problem accurately depicting the dynamics. Mainly average voltage that 

the zero state model predicts is closer than the simple model. Secondly, the zero state model‟s 

hysteresis term is able to trend the voltage during the constant voltage part of the charge. Since 

much of the testing on the stand will include the constant voltage charging, it is important to 

include that in the SOC algorithm.  
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4 Results and Discussion 

4.1 EKF Implementation 

The following process and measurement models were utilized for the implementation of the 

SOC EKF. 

Process Model: 

 
            

     

  
    

equation 47 

 
 

      

Measurement Model: 

                                 equation 48 

 
 

    

The zero state model has the benefit of not having complex matrix calculations since the 

process model only has a single state. Therefore, some of the implementation becomes much 

easier. Specifically, since the second term in the process model is not a function of xk, Ak-1 

equal to 1. 

Therefore, the error covariance time update is a simple step that reduces to: 

  x  k
     x k 1

     w equation 49 
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Essentially, the error covariance time update just adds the covariance of the process noise 

estimate each time. Also, since Ak and Ck are both one term matrices, all of the transposes 

required are just scalars, so the covariances are both relatively easy to compute. 

Recall: 

 
               

   
 
        

 
equation 50 

 
 

      

Since the Rik term in g(xk, uk) is not a function of SOC, the only terms in Ck are the OCV term 

and the M(SOC) term. 

To determine Ck,OCV, the OCV lookup table is used and a central differencing is carried out 

around the current SOC estimation at each time step.  

 
        

                           

                     
 

equation 51 

 
 

      

For some sufficiently small positive value   chosen to be 0.001 for this study. 

The down side of using a central differencing technique is that the effect of variance of voltage 

with respect to OCV(SOC) is reduced. However, what will become evident is that the error in 

the voltage measurement itself is dominant. 

To determine the Ck,M a hysteresis lookup table is also used. Since the table is based on the 

current, there are two central difference formulae that apply: 

 
         

                             

                     
 

equation 52 
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When current is positive (discharge) and: 

 
         

                             

                     
 

equation 53 

 
 

     

When current is negative (charge). 

The main problem with the hysteresis table is that it is discontinuous based on the direction of 

current. The discontinuous nature of the table could cause instability at low current draws and 

will require tuning of the sk term by decreasing or increasing the ε term from equation 9. 

Although this is a violation of EKF assumptions, the algorithm still works well. 

4.1.1 Determining Variances 

In order to implement the EKF, the process variance and measurement variance values must be 

properly determined.   

4.1.1.1 Determining Process Variance 

Initially, it is assumed that the process noise is entirely derived from the accuracy of the 

programmed current set point. The current on the battery test stand is determined using the 

current measurement from the load (TDI Dynaload)  minus the current measurement of the 

source (ie. the Lambda), since the control algorithm requests negative current from one and 

positive current from the other. The manufacturer of the load published a specification that the 

programmed current accuracy is ±0.5% of the current requested and a regulation of ±0.1%. The 

variance of the current set point for the load is then: 

   
           

             
  equation 54 
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Assuming the load manufacturer is quoting accuracy and regulation on a 99% confidence 

interval, the standard deviation of the accuracy and the regulation would be: 

 
          

0 5 

2 6
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equation 55 
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equation 56 

 
 

     

Using equation 53 the variance from the load is equal to 4.1X10
-2

%. 

The manufacturer of the source publishes a specification for the programmed current to be 

accurate to ±(0.4% + 40 mA). Again, assumed to be a 99% confidence interval, the standard 

deviation as derived above would be ±(0.2% + 15 mA).  

Variance in the SOC due to the variance in current is calculated utilizing the partial derivative 

of SOC with respect to current. 

By definition: 

 
            

   
     

   
 

 

         
2   

equation 57 

 
 

     

And: 

         
       

         
  equation 58 



68 

 

 
 

     

Therefore: 

 
            

   
     

   
 

 

               
                  

         
2   

equation 59 

 
 

   

And: 

 
 
     

   
 

 

 
   

  
 

equation 60 

 
 

      

Therefore, for example, a current load of 30A and a supply of 5A would yield a variance of: 

 
            

   
    

     
 

 

                     
equation 61 

 
 

    

Since the overall capacity of the battery is so high compared to the current draw at any one 

time, the current variance contributes a very small amount to the overall process error. A 

process variance of this magnitude is likely to drive the model to neglect all measurements. 

Simon discusses a method of artificially increasing the process noise to better consider the 

measurements during the final model tuning [53]. There will be more discussion on improving 

the model by increasing the process noise in a later section. 
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4.1.1.2 Measurement Variance 

For the voltage measurement error, the TDI Dynaload‟s voltage sensor is utilized. TDI 

specifications show an accuracy of 1% ±10mV. Therefore, the variance at the nominal 3.3 V 

would be: 

      
                             equation 62 

 
 

    

Applying the process and measurement noise completes the system identification of the model. 

Further model tuning will be discussed during the initial results. 

4.1.2 Model Comparison and Tuning 

For initial results analysis, the batteries underwent a series of charge/discharge cycles 

combined with some minimal dynamic behaviour. Figure 36 shows a sample of the first 20000 

seconds of a cycle. It should be noted that the cycle discharges and charges to the voltage 

limits set by the manufacturer. Also, during charge, there is a period of constant current (10 A 

in this example) followed by a period of constant voltage (3.8 V) to top off the cell to ensure 

that it reaches 100% SOC. The design of the cycling ensures by manufacturers specification 

that the cell will be cycling completely between 0 and 100% SOC. 
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Figure 36: Cycle Testing and Tuning Profile 

 

4.1.3 Comparison of SOC Methods 

4.1.3.1 Coulomb Counting 

The first test conducted was a test of coulomb counting given the cycle above. The SOC was 

graphed as a function of time. Initially the tests were carried out to ensure robustness over 

minimal dynamics. Figure 37 shows the results of the coulomb counting test over the same 

cycle up to 20000 seconds. 
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Figure 37: Coulomb Counting Test Sample Data 

Immediately it becomes clear that the coulomb counting continuously predicts a lower and 

lower full state of charge. This is likely due to the fact that the current sensors are of low 

accuracy and precision. Also, it could be due to the fact that the reporting frequency of both the 

load and source is not adequate to capture the smaller dynamics of the current measurement. 

Figure 37 depicts exactly why it is important to update the SOC algorithm with a more robust 

solution. 

4.1.3.2 OCV Estimation 

The second test conducted was to determine if OCV estimation was adequate to estimate SOC. 

Again the same test was utilized to determine the accuracy and robustness of the algorithm. 

The results are plotted in Figure 38. 
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Figure 38: OCV Estimation Test Sample Data 

It can be noticed that the OCV improves on the algorithms ability to reach the limits of the 

SOC reaching zero and one every time, despite the early dynamics. However, on closer 

inspection, it was realized that the algorithm is predicting a full state of charge, prior to the 

point that the duty cycle reaches constant voltage. This behaviour is expected since the 

algorithm will see small changes in voltage and overcompensate for them. 

Therefore, it seems that the best result would be a combination of the two, as designed in the 

EKF.  

4.1.3.3 SOC Extended Kalman Filter 

The EKF was also tested over the cycle and the results were analyzed. Figure 39 shows the 

results of the EKF. 
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Figure 39: Pre-Tuning EKF Sample Data 

As can be seen, the EKF predicts that the SOC is not fully hitting 0% shortly after the first few 

cycles. The reason for the inaccuracy here is that the process noise was initialized at such a 

small value that the voltage measurements at lower SOCs were not considered in the EKF. 

Therefore, to improve the voltage sensing at lower SOCs, the process noise was incrementally 

adjusted higher until the SOC reached 0 for each of the first 100 cycles. After 100 cycles, the 

capacity degradation could be the cause of the filter not reaching the lower SOCs. The filter 

could be artificially set to compensate, if the voltage measurement noise was significantly 

reduced, however, as the measurement noise is reduced, the filter performs poorly through the 

middle range of SOCs which is where much of the dynamic cycling will occur, requiring a 

highly accurate SOC estimation. 

The final process noise variance was set to 4.4 X 10
-6

 and the filter was retested. Figure 40 

shows the results with the new process noise variant. 
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Figure 40: EKF Sample Data After Noise Tuning 

 

Immediately it becomes clear that the EKF does a much better job of predicting the state of 

charge over the cycles. Combining the three graphs shows a good example of how the EKF is 

combining the strengths of the two models to better represent the battery SOC. 
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Figure 41: Comparison of SOC Algorithms Sample Data 

 

The EKF was tested over 950000 seconds of data (1000 cycles) to ensure robustness and over 

several different dynamic cycles and various current draws. It was observed that as more cycles 

were completed, the EKF tends to lose the ability to correctly estimate SOC. Figure 42 

compares the 140
th
 cycle with the 550

th
 cycle.  
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Figure 42: Cycle 550 and Cycle 140 Overlay Showing Effect of Capacity Degradation on 

SOC Estimation 

 As the figure shows, the algorithm is no longer reaching zero SOC and quickly reaches full 

SOC compared to the same cycle from earlier in the testing. This is because the process model 

utilized is using a constant for battery capacity at the manufacturers rated 8280 As. The 

problem is of utmost concern since the battery test stand will be used as a test station to test 

battery degradation over long periods of time and many cycles. Therefore, a dynamic estimate 

of battery capacity must be included to compensate. 

An alternative method could be to increase the dependence on the measurement model; 

therefore the EKF would use more voltage data during the test. This method was tested and the 

model did, in fact reach 0% SOC each time. However, the result of artificially decreasing the 

measurement noise was a less confident (higher error bounds) estimation of SOC during the 

middle range of SOC (80%-20%). Since most operation occurs in the middle range of SOC, it 

was decided that the capacity estimate must be included. 
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4.1.3.4 Hysteresis Stability 

Due to the fact that the hysteresis is not a continuous function, care has to be taken during 

tuning to ensure that as the SOC current reaches very low values that the value of skM(SOCk) 

does not become unstable. Recall that from equation 7, sk changes with current based on the 

value of ε. It is important to ensure stability by using a sufficiently small value of ε. By 

reducing the value, the model tends to be stable despite the discontinuous nature of the 

hysteresis function. Figure 43 shows the hysteresis function as the current switches from 

positive to negative values.  

 

 

Figure 43: Sample of Hysteresis Voltage During Cycling 
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4.2 Capacity Considerations 

As defined in the background review, battery state of health (SOH) can change rapidly over the 

life of a battery due to a number of reasons including, but not limited to, calendar life, cycle 

life, temperature, stored voltage, etc. The main degradation mechanism that is of concern here 

is the battery‟s cycle life and trying to estimate it during operation. State of health is broken 

into two parameters; battery capacity and battery power availability. Capacity fade is of 

primary concern in LiFePO4 since power availability is generally quite high [44].  Therefore, a 

capacity estimator is required on-board the battery test stand in order to better approximate 

state of charge over the life of the batteries being tested. 

Ning has proposed a generalized capacity model[40]. The model developed was a 1-D 

analytical model of capacity fade under light loads (1C and 0.5C). The model was complicated 

and time intensive to compute, so in 2008 Stevens utilized test data to develop a 0-D empirical 

model based on the Ning generalized model that includes accelerating factors for temperature 

and SOC swings while minimizing computing time [44]. The result was a model that could be 

used with a duty cycle to estimate cycle life. The model developed has the following form: 

    
         

    
  

   
 

equation 63 

 
 

      

Where: 

    
    is the concentration of lithium at the anode at time N 

   is the volume-average loss of cylable  lithium 

F is Faraday‟s number = 96487 
 

       

and    is the volume fraction of the solid phase in the anode 

Steven‟s model includes accelerating factors for both SOC swings and temperature changes 

and also a power fade mechanism based on the increase of resistance due to a build up of the 
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SEI layer. The important mechanism for the purpose of this work is the loss of cyclable lithium 

due to swings in SOC. It should be noted that temperature will also play a role in the loss of 

capacity, to a lesser degree, and can be added in for an increase in model fidelity.  Note that 

capacity does change significantly with temperature, but this is not a permanent change in 

capacity and thus not considered a change in state of health (but still could be accounted for).   

Therefore, from Ning 

 
                

       

   

  
equation 64 

 
 

     

Where: 

jpara is the flux caused by the parasitic reaction (A/m
2
) 

     is the specific interfacial area of the porous, negative electrode (m
2
/m

3
) 

The discrete version of the above equation is as follows assuming rectangular integration (zero 

order hold): 

            
              equation 65 

 
 

      

Stevens work focussed on the jpara term in the above equation. jpara follows a Tafel relationship 

as shown in equation 66. 

 
           

     
   

  
   

equation 66 
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Where: 

      
  is the base parasitic flux 

  is the overpotential of the cell 

The overpotential can be determined by subtracting the OCV at the current SOC from the 

voltage measurement from the SOC EKF. 

Stevens adapted the model to be: 

 
          

          
          

     
   

  
   

equation 67 

 
 

    

For the purposes of modeling degradation due to cycling, only the SOC accelerating factor will 

be utilized. The SOC accelerating factor is defined as follows: 

 

     
                     

              
       

 equation 68 

 
 

    

And: 

 
    

      
    

            
  

equation 69 

 
 

      

With the model fitting parameters in the following table: 

Table 2: Stevens Model Fitting Parameters 
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Parameter Value 

   2 

   4 

     
  0.00000008 

   0.5 

 

Therefore, the Stevens model is undefined when SOC = 60%. In order to ensure that the model 

is stable, a small value is added to the SOC in the instance that SOC == 60%. The value chosen 

here was 0.1%. Since the function has such a long time constant, a difference of 0.1% for the 

one time step will not create a noticeable effect. Figure 44 shows the value of Qs as the SOC 

passes through 60%. 

 

 

Figure 44: Sample of Volume Average Capacity Loss Through 60% SOC 
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4.2.1 Dual EKF vs 2 State EKF 

Plett suggested in [54] that the capacity EKF be a separate EKF than the SOC EKF to avoid 

large matrix calculations. Plett‟s original idea was to utilize the SOC as a measurement in the 

measurement model for capacity. The idea presented here is that the SOC can be used as a 

control input for the second EKF and the error estimation is based on the error associated with 

the SOC estimation and the measurement model is driven by construction to be zero based on 

the capacity update and SOC estimation. Figure 45 shows a modification of what Plett 

suggested.  

 

Figure 45: Schematic Representation of Dual Extended Kalman Filter 

 

4.2.2 EKF using Stevens Model 

In order to develop an EKF for the Stevens model, the process model and measurement model 

must be defined. 

4.2.2.1 Process Model 

The process model of interest here is the reduction in capacity of the cell which is directly 

related to the loss of lithium due to the parasitic reaction. The process model then is: 
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                              equation 70 

 
 

    

Where  

mk is the process noise, assumed to be zero mean, white noise with a Gaussian distribution. 

V is the volume of the solid anode 

4.2.2.2 Measurement Model 

The measurement model is the same measurement model that Plett used and is a modification 

of the SOC model, constructed to drive the measurement to zero in order to allow for the slow 

dynamics of the capacity change. 

 
               

     

         
    

equation 71 

 
 

     

Where: 

hk is the measurement noise, assumed to be zero mean, white noise with a Gaussian 

distribution. 

For the EKF implementation, the Stevens model employs just one state, again making the 

implementation of the EKF relatively straight forward. Specifically, since the process model 

loss of lithium term is not a function of capacity, Ak-1 reduces to 1. Therefore, the error 

covariance time update is a simple step that reduces to: 

      
          

       equation 72 
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Essentially, the error covariance time update just adds the covariance of the process noise 

estimate each time.  Also, since Ak and Ck are both one term matrices, all of the transposes 

required are just scalars, so the covariances are both relatively easy to compute. 

Recall: 

 
               

   
 
        

 
equation 73 

 
 

      

Since the only term that is a function of capacity is the SOC tracking term in the measurement 

model, Ck reduces to: 

 
    

        

           
 

equation 74 

 
 

      

4.2.3 EKF Using Plett Model 

Plett also proposes a model for generic battery capacity estimation. The measurement model 

for the Plett model is the same as with the Stevens model, however the process model is simply 

a pass through of the capacity from the time step before. Therefore, all of the change in 

capacity is due to the white noise estimation, or the error covariance. The general framework 

from the Stevens model still applies for the Plett model, however, the QsV term is removed. 

Therefore the Plett process model is: 

                          equation 75 
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Although the model considers the long time constant of the battery degradation, it considers 

little regarding the main degradation factor (swings in SOC). The benefit of the Plett model is 

that it is very easy to implement. 

4.2.4 Stevens Model Process Noise Implementation 

The variance of the capacity with respect to process noise of the Stevens Model is difficult to 

determine given the non-linearity of the model. Since there are two sources of process noise in 

the Steven Model, SOC and the voltage measurement associated with the overvoltage 

calculation, the variance estimation is quite difficult. The variance would be: 

  

 
         

   
    

    
 

 

     
    

    

  
 

 

   
   

equation 76 

 
 

    

Looking at the variation due to SOC: 

     

    
    

   

    
 

equation 77 

 
 

      

And: 

    

    
       

      

    
 

equation 78 

 
 

      

       

    
      

      
   

  
  

     
     

    
     

      

    
     

   

  
     

equation 79 
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First, the derivative of     
     

 with respect to SOC is determined. Since     
     

 contains the  

|60-SOC|, the derivative will be computed twice, once for the case that the SOC>60 and once 

for the case that the SOC<60.  

 
      

     

    
 
      

 
 

         
         

    

      
  

 

    
    

      
  

equation 80 

 
 

  

And 

 
      

     

    
 
      

 
  

         
         

    

      
  

 

    
    

      
  

equation 81 

 
 

  

For the case that SOC = 60% exactly, the SOC will be incremented by 0.1% so that the 

derivative will exist. Since this is an estimate of process noise and the time constant is so long, 

the small error in SOC when it hits 60% can be neglected.  

For the derivative of     
   

  
   with respect to SOC, the overpotential equation needs to be 

substituted into equation 78: 

  

    
     

   

  
               

         

    

   

  
                

   

  
              

equation 82 

 
 

      

The derivative of OCV(SOC) can be determined using central differencing.  

Determining the 
    

  
 derivative: 
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equation 83 

 
 

       

And: 

    

  
 

 

  
       

        
equation 84 

 
 

     

  

  
       

      
        

  
                

   

  
              

equation 85 

 
 

  

With all of the derivatives substituted into equation 84, the final process variance model is 

completed. Now the process variance can be estimated in real time using data from the SOC 

EKF. The final process noise will use the above model for estimation and then tune to fit the 

lifetime data.  

The above noise was simulated using data from the SOC EKF testing and the variance was 

logged. After compiling the data, the variance was averaged as the mean process data. The 

mean process variance was           . In order to reduce complexity and to improve 

computational efficiency, the average value was used as a constant in future testing and 

simulation. 

4.2.5 Tuning the Stevens Model Capacity EKF 

The capacity EKF tuning process differs slightly from the SOC EKF tuning process, since the 

measurement model is constructed to always measure zero. Therefore, the process noise will be 

set to the value determined above, and the measurement noise will be tuned to fit the known 

capacity degradation rate and to ensure convergence of the model. 
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4.2.6 Estimating Measurement Noise 

The initial measurement noise estimate can be determined by calculating the variance in the 

SOC estimation from the SOC EKF. As previously discussed, the variance in the SOC was 

calculated to be 1.5%. Therefore, to determine the variance in the variable dk can be completed 

as follows: 

   
          

              
  equation 86 

 
 

      

Recall: 

             
            equation 87 

 
 

      

Therefore, the variance becomes: 

   
                              equation 88 

 
 

      

This variance was placed in the model and the model was tested to ensure convergence. 

Results of the testing are shown in the error analysis section. 
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4.2.7 Tuning the Plett Model Capacity EKF 

The Plett model EKF requires a slightly different tuning process. As discussed, the 

measurement model is the same as the Stevens Model EKF. It is important to understand is that 

the Plett measurement model will drive most of the degradation since the process model 

attempts to set the capacity to the previous capacity estimate and is allowed to change due to 

the noise associated with it. Therefore, the measurement model is initially set the same as the 

Stevens model and the process noise is increased or decreased to ensure convergence and to fit 

the model to the measured data. 

4.3 Capacity Testing and Tuning 

The EKF was tested over 900  cycles of 30A discharges and 10A charges. Figure 46 shows the 

final capacity degradation curve from the Stevens Model.   

 

Figure 46: Stevens Model Capacity Test Data 
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The Plett model was also simulated over the same cycles and the results are shown in Figure 

47. 

 

 

Figure 47: Plett Model Capacity Test Data 

The actual capacity tests completed during cycling were analyzed and have been plotted next 

to both the Plett model and the Stevens model on Figure 48. 
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Figure 48: Comparison of Capacity EKF Algorithms 

 

It can be seen that the Stevens model corresponds much more closely to the actual data than the 

Plett model. This is due to the fact that the Plett model has a much slower response since it is 

relying completely on the measurement model as opposed to having a predictive process model 

like the Stevens model. 

After the Stevens model was properly tuned, the full dual EKF was tested to ensure that it was 

properly compensating for the reduced capacity in the SOC EKF. Figure 49 shows how the 

inclusion of the capacity EKF has strengthened the robustness of the SOC EKF over the 

lifetime of the cycles. 
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Figure 49:  Cycle 550 and Cycle 140 Overlay Showing SOC Estimation with Capacity 

Adjustment 

 

It can be seen from Figure 49 that although the cycle is shorter due to the capacity degradation, 

the SOC model now accurately predicts that the high and low SOC. 
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4.4 Simulation of Certification Drive Cycles 

The final EKF algorithm was simulated versus a battery model with introduced Gaussian noise 

to determine its ability over an FTP cycle to track actual SOC. The simulation enables an 

understanding of what “true” SOC is for the battery as well as “true” current and voltage 

measurements. 

For the simulations, a battery was sized appropriately for a midsize car and then an electric 

only FTP was simulated to test for accuracy. The battery was based on the same cells tested 

and sized by the following procedure: 

In general the voltage of motors for vehicles is between 300 V – 400 V. For the purposes of 

this simulation the voltage was set to 363 V (110 cells in series). A midsize car utilizes 

approximately 2.4 kWh over an FTP schedule. Each string of 110 series cells would yield 

0.835 kWh of energy. 

Therefore, the battery pack was designed to have 4 parallel strings of 110 cells each for a total 

of approx 3.3 kWh. It is important to understand that the battery pack design considerations 

here are merely an estimate and do not require accuracy to any real battery pack. The purpose 

is to simply come up with a reasonable estimate of current and voltage measurements on one 

cell over the course of an FTP cycle.   Also a battery management system within an actual pack 

will be further complicated with cell voltage balancing, and thermal effects of the pack 

configuration.  

A standard road load was used with a 1Hz FTP drive cycle to determine the power required by 

each parallel string of cells. It is assumed that there is perfect voltage balancing between cells 

and that each cell sees the exact same current load. A PI model was used and tuned to meet the 

power requirements. Each time step the model uses the power divided by the voltage from the 

previous time step to determine a current request based on the PI parameters. The current 

request is fed into the coulomb counting model to determine the true SOC at the time. The 
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SOC is then passed to the voltage model and based on the current and SOC, a voltage 

(including hysteresis) is output for the current calculation from the next time step. 

On the output of the current and voltage signals from the model, there is a Gaussian noise 

generator block that is included in Simulink. The block is set to have the noise calculated in the 

process and measurement variance above. The Excel sheet model parameters are included in 

Appendix D and the code for the battery model is included in Appendix E. The current 

required by the cell for the FTP test is included in Figure 50 showing the actual current. 

 

Figure 50: FTP Current Cycle per Battery Cell 

Figure 51 shows the results of the FTP test (SOC Actual is derived from the plant model, SOC 

Estimate is the result of the EKF) 
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Figure 51: Simulated SOC Tracking During an FTP Cycle 

As shown, the model estimates SOC well through the entire dynamic cycle with some error in 

the middle of the SOC range. Since the process noise was artificially increased in order to 

stabilize the SOC as discussed previously, it is expected that there would be some error in the 

mid-range SOC. 
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4.5 Error Analysis 

4.5.1 SOC Error Analysis 

One of the benefits of using the EKF is that the error bounds for the model are readily available 

for analysis. Every iteration of the EKF updates a process covariance, or in the case of only one 

state, a variance of the system. Therefore, the variance can be used to determine a confidence 

interval for the EKF itself. Determining the confidence interval is relatively straight forward 

using the assumption that errors in the state have a Gaussian distribution.  

The square root of the process variance is equal to the standard deviation of the process by 

definition. Therefore, the confidence interval can be setup based on how many standard 

deviations from the mean (or the estimate in this case) the error bounds are set up for.  

For the SOC tracking, a confidence interval of 95% was used, which corresponds to 2.6 

standard deviations from the mean. The square root of the variance was taken at each time step 

and was multiplied by 2.6. Figure 52 shows the estimate of SOC for a 30 discharge and 10A 

charge cycle graphed with the upper and lower error bounds for the 95% confidence interval. 
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Figure 52: Representative SOC Error Estimation for Constant Current Charge and 

Discharge 

As the figure shows, the error is at a maximum in the range of approximately 30% to 60% 

SOC. This is due to the fact that the measurement model is so inaccurate during the mid-range 

SOC since the open circuit voltage curve varies so little with SOC. The error maximum is 

approximately 1.5% for the entire charge/discharge cycle. This is an acceptable error for the 

mid-range SOC since there is minimal control impact throughout the middle of the SOC range. 

As noted above regarding tuning the measurement noise, the maximum of 1.5% error was 

sought after as an accuracy goal, which is what made the capacity model necessary. 

4.5.2 Dynamic Cycle SOC Error Analysis 

Since the hysteresis term used in the model is not a function of the change of SOC with respect 

to the change in time, of utmost concern is the operation of the filter over dynamic cycling. The 

constant current charge and discharge are not prone to instability due to the discontinuous 
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nature of the hysteresis loop. Therefore, the error analysis on the dynamic cycles is very 

important. 

Figure 53 shows the operation of the filter over the FTP cycle with error bounds of a 95% 

confidence interval.  

 

Figure 53: Simulated SOC Error Estimation Over FTP Cycle 

 

The filter shows very good performance through the very dynamic cycle with the biggest errors 

appearing through the middle of the SOC range and during the most dynamic parts of the 

cycle, which happen to be the start and the end of the cycle.  

Figure 54 shows the first 150 seconds of the cycle where the error bounds quickly converge on 

the correct SOC. 
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Figure 54: Close Up of Initial Error Convergence 

 

The quick convergence proves that the filter is tuned adequately to handle large initial 

disturbances. The convergence means that there is rejection of the prior uncertainty in favour 

of the measured uncertainty, which is much smaller. 

4.5.3 Capacity Error Analysis 

A similar analysis is done on both capacity models. First, the Plett model shows that the error 

initially grows quickly since the model does not react well to the initial degradation, due to a 

lack of process model. The error then converges over a long period of time, however the 

overall error is quite high. Figure 55 shows the result of the simulation. 
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Figure 55: Plett Capacity EKF Error Estimation 

It should be noted that Plett also mentions that the SOC needs to be very accurate in order for 

this model to be used. It is possible that the SOC is not accurate enough to catch the slight 

changes from cycle to cycle when relying so heavily on the measurement model.  

Figure 56 shows the Stevens model with error bounds.  
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Figure 56: Stevens Model EKF Error Estimation 

It is immediately clear the Stevens model error bounds are much smaller than the Plett error 

bounds.  
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5  Conclusions  

5.1 Conclusions 

This thesis describes the development of a dual Extended Kalman Filter for battery state 

estimation (SOC)of a single LiFePO4 cell load and capacity cycled on a test stand at the 

University of Waterloo. The ability to track state of charge and capacity over the entire life of a 

battery enables the University of Waterloo to do dynamic lifetime testing on the battery test 

stand. The first goal of the state estimator was to provide accurate SOC estimation of the 

battery cell which was accomplished through the use of the EKF. The estimator tracks through 

continuous cycling and dynamic goals. The second goal of the estimator was to include error 

bounds for the SOC and capacity estimation for safety and reliability. The dual EKF estimates 

maximum and minimum errors at each time step to ensure the reliability of the estimator. 

Lastly a goal was to be simple enough for fast processing and ease of understanding. Since the 

state estimator includes just one state for SOC and one state for capacity, along with the 

description in this thesis, one should be able to understand the estimator and how it works for 

future tuning purposes, and application in vehicle models.  

5.2 Recommendations 

For future work, the University of Waterloo should do the following: 

 Implement the estimator in the control of the hybrid test stand. The estimator so far has 

not been utilized for hybrid control on the test bench but in parallel utilizing data from 

the bench. 

 Test the estimator over many urban and highway cycles to demonstrate robustness. 

Testing over many cycles with full depletion cycles in between will further demonstrate 

the robustness of the estimator. 

 Implement new current and voltage sensors to improve filter errors. The sensor 

currently on the bench could be replaced with a current shunt and higher accuracy 

current sensor to improve the measurement noise contribution. The battery model 
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should be tuned to prismatic cells which have more potential in a vehicle.  The battery 

model could also be improved with better temperature response.   Including 

temperature in the battery model, the capacity of the cell can be tuned with respect to 

temperature.   There is a realization that this may have only a marginal impact in a pack 

with a well designed thermal management system, as the cells will remain in a narrow 

range of temperature for most of their operation.  

 Improve the voltage model to include an estimation of diffusion capacitance and charge 

transfer resistance which could potentially allow for a decrease in the voltage 

measurement noise model and improve the robustness of the model over life. 

 In the long term an sigma-point or Unscented Kalman Filter (UKF)could be developed 

for a more accurate estimate of SOC.  
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Appendix A: Dual EKF Code for Test Stand 

Implementation 

 

High Level EKF Algorithm 
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SOC Time Update 

 

SOC Measurement Update 
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Hysteresis Code 
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Ck Code 
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Central Difference For dOCV/dSOC 

 

 

 

 

Central Differencing for dM/dSOC 
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SOC Kalman Gain Code 

 

 

 

 

Capacity Time Update Code 
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jpara Code 

 

AlphaSOC Code 
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Capacity Measurement Update 

 

 

Capacity Measurement Update 
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ddk/dCap  for Ck of Capacity Model  

 

Capacity Kalman Gain Code 
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Appendix B: Open Circuit Voltage Curve Data 

 

SOC Voltage 

 

SOC Voltage 

0.00 2.09 

 

0.52 3.35 

0.00 2.60 

 

0.54 3.35 

0.01 2.78 

 

0.56 3.35 

0.02 2.90 

 

0.58 3.36 

0.03 2.98 

 

0.60 3.36 

0.05 3.08 

 

0.62 3.36 

0.06 3.12 

 

0.64 3.36 

0.07 3.15 

 

0.66 3.37 

0.08 3.19 

 

0.68 3.37 

0.10 3.23 

 

0.70 3.37 

0.12 3.25 

 

0.72 3.37 

0.14 3.26 

 

0.74 3.37 

0.16 3.26 

 

0.76 3.38 

0.18 3.28 

 

0.78 3.38 

0.20 3.29 

 

0.80 3.38 

0.22 3.30 

 

0.82 3.39 

0.24 3.30 

 

0.84 3.39 



114 

 

0.26 3.31 

 

0.86 3.40 

0.28 3.32 

 

0.88 3.40 

0.30 3.32 

 

0.90 3.41 

0.32 3.33 

 

0.92 3.41 

0.34 3.33 

 

0.94 3.43 

0.36 3.33 

 

0.96 3.47 

0.38 3.34 

 

0.98 3.61 

0.40 3.34 

 

1.00 3.80 

0.42 3.34 

   0.44 3.34 

   0.46 3.34 

   0.48 3.34 

   0.50 3.35 
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Appendix C: Hysteresis Curve Data 

SOC 

Hysteresis 

Voltage 

 

SOC 

Hysteresis 

Voltage 

 

SOC 

Hysteresis 

Voltage 

0.000 0.011 

 

0.310 0.005 

 

0.640 0.005 

0.010 0.005 

 

0.320 0.005 

 

0.650 0.005 

0.020 0.005 

 

0.330 0.005 

 

0.660 0.005 

0.030 0.006 

 

0.340 0.005 

 

0.670 0.005 

0.040 0.006 

 

0.350 0.005 

 

0.680 0.005 

0.050 0.005 

 

0.360 0.005 

 

0.690 0.005 

0.060 0.005 

 

0.370 0.005 

 

0.700 0.005 

0.070 0.005 

 

0.380 0.005 

 

0.710 0.005 

0.080 0.005 

 

0.390 0.005 

 

0.720 0.005 

0.090 0.005 

 

0.400 0.005 

 

0.730 0.005 

0.100 0.005 

 

0.410 0.005 

 

0.740 0.005 

0.110 0.005 

 

0.420 0.005 

 

0.750 0.005 

0.120 0.005 

 

0.430 0.005 

 

0.760 0.005 

0.130 0.005 

 

0.440 0.005 

 

0.770 0.005 

0.140 0.005 

 

0.450 0.005 

 

0.780 0.005 

0.150 0.005 

 

0.460 0.005 

 

0.790 0.005 

0.160 0.005 

 

0.470 0.005 

 

0.800 0.005 

0.170 0.005 

 

0.480 0.005 

 

0.810 0.005 
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0.180 0.005 

 

0.490 0.005 

 

0.820 0.005 

0.190 0.004 

 

0.500 0.005 

 

0.830 0.005 

0.200 0.005 

 

0.510 0.005 

 

0.840 0.005 

0.210 0.005 

 

0.520 0.005 

 

0.850 0.005 

0.220 0.005 

 

0.530 0.005 

 

0.860 0.006 

0.230 0.005 

 

0.540 0.005 

 

0.870 0.006 

0.240 0.005 

 

0.550 0.005 

 

0.880 0.005 

0.250 0.005 

 

0.560 0.005 

 

0.890 0.006 

0.260 0.005 

 

0.570 0.005 

 

0.900 0.006 

0.270 0.005 

 

0.580 0.005 

 

0.910 0.006 

0.280 0.005 

 

0.590 0.005 

 

0.920 0.006 

0.290 0.005 

 

0.600 0.005 

 

0.930 0.007 

0.300 0.005 

 

0.610 0.005 

 

0.940 0.007 

   

0.620 0.005 

 

0.950 0.008 

   

0.630 0.005 

 

0.960 0.009 

      

0.970 0.010 

      

0.980 0.010 

      

0.990 0.005 

      

1.000 0.017 
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Appendix D: Vehicle Model 

In order to approximate the battery current, a simple vehicle model was utilized to generate a 

power requirement over the FTP. The vehicle was a simple road load model with the following 

parameters: 

Vehicle Parameters 

    

 

F0 21 lbf 93.45 N 

 

F1 0.36 lbf/mph 3.583893 N/(m/s) 

 

F2 0.019 lbf/mph2 0.423154 N/(m/s)2 

 

massveh 3750 lb 1704.545 Kg 

 

The road load equation utilized was as follows: 

                
        

A 1Hz FTP was used to provide a speed trace. The tractive power required is then: 

        

 

To model the power required through the one cell, the total tractive power was divided by 0.85, 

an estimated efficiency of an electric motor, inverter and battery. The final power was divided 

by 4, due to the 4 parallel strings of cells, in order to determine the final power requirement 
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Appendix E: Battery Model for Simulation 

In order to simulate the current through the FTP, the power is fed into a PI controller that uses 

a voltage to determine a current. The current is then utilized to determine a voltage of the cell 

based on a voltage model and SOC from the perfect, coulomb counted battery model. The 

voltage is then multiplied by current to determine the delta of power. 

The embedded Simulink PI controller was utilized and tuned by the embedded PI tuner. Below 

is the Simulink code for the simulation. 

 

Gaussian Noise Addition Code 

 

Battery Model 
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