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Abstract

The in-vivo observation of the neural activities generated by a large number of closely

located neurons is believed to be crucial for understanding the nervous system. Moreover,

the functional electrical stimulation of the central nervous system is an effective method to

restore physiological functions such as limb control, sound sensation, and light perception.

The Deep Brain Stimulation (DBS) is being successfully used in the treatment of tremor

and rigidity associated with advanced Parkinson’s disease. Cochlear implants have also

been employed as an effective treatment for sensorineural deafness by means of delivering

the electrical stimulation directly to the auditory nerve. The most significant contribution

of this PhD study is the development of next-generation microprobes for the simultaneous

stimulation and recording of the cortex and deep brain structures.

For intracortical applications, millimetre length multisite microprobes that are rigid

enough to penetrate into the cortex while integrated with flexible interconnection cables are

demanded. In chronic applications, the flexibility of the cable minimizes the tissue damage

caused by the relative micro-motion between the brain and the microprobe. Although

hybrid approaches have been reported to construct such neural microprobes, these devices

are brittle and may impose severe complications if they break inside the tissue. In this

project, MEMS fabrication processes were employed to produce non-breakable intracortical

microprobes with an improved structural design. These 32 channel devices are integrated

with flexible interconnection cables and provide enough mechanical strength for penetration

into the tissue. Polyimide-based flexible implants were successfully fabricated and locally

reinforced at the tip with embedded 15 µm-thick gold micro-needles.

In DBS applications, centimetre long microprobes capable of stimulating and recording

the neural activity are required. The currently available DBS probes, manufactured by

Medtronic, provide only four cylindrical shaped electrode sites, each 1.5 mm in height and

1.27 mm in diameter. Although suitable for the stimulation of a large brain volume, to
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measure the activity of a single neuron but to avoid measuring the average response of

adjacent cells, recording sites with dimensions in the range of 10 – 20 µm are required.

In this work, novel Three Dimensional (3D) multi channel microprobes were fabricated

offering 32 independent stimulation and recording electrodes around the shaft of the im-

plant. These microprobes can control the spatial distribution of the charge injected into

the tissue to enhance the efficacy and minimize the adverse effects of the DBS treatment.

Furthermore, the device volume has been reduced to one third the volume of a conventional

Medtronic DBS lead to significantly decrease the tissue damage induced by implantation

of the microprobe.

For both DBS and intracortical microprobes, the impedance characteristics of the elec-

trodes were studied in acidic and saline solutions. To reduce the channel impedance and

enhance the signal to noise ratio, iridium (Ir) was electroplated on gold electrode sites.

Stable electrical characteristics were demonstrated for the Ir and gold electrodes over the

course of a prolonged pulse stress test for 100 million cycles. The functionality and applica-

tion potential of the fabricated microprobes were confirmed by the in-vitro measurements

of the neural activity in the mouse hippocampus.

In order to reduce the number of channels and simplify the signal processing circuitry,

multiport electrostatic-actuated switch matrices were successfully developed, fabricated,

and characterized for possible integration with neural microprobes to construct a site se-

lection matrix. Magnetic-actuated switches have been also investigated to improve the

operation reliability of the MEMS switching devices.
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Chapter 1

Introduction

Neural prostheses or neuroprosthetics provide irreplaceable therapies for many medical

conditions that other methods such as surgery or chemical therapy have failed to treat.

A comprehensive understanding of the Central Nervous System (CNS) is essential to suc-

cessfully develop these systems and enhance their functionality. In initial studies, the

activities of a single neuron were recorded to investigate the mechanisms of signal trans-

mission in nerve cells [1,2]. Although these early studies made significant contributions to

the understanding of the central nervous system, they were unable to decipher the complex

interactions between the vastly interconnected networks of neurons. The recording of mul-

tiple neurons activities attracted the attention of researchers in the early 1970s due to the

observation of inhibitory and excitatory actions of one neuron on another cell [3]. In some

cases the firing of one neuron silenced or initiated the firing of another neuron. Further-

more, it was demonstrated that by monitoring the activities of a small set of neurons in

the motor cortex of a unanesthetized monkey, it is possible to predict the arm movements

of the animal in real time [4–6].

Presently, the electrical stimulation of the CNS is employed for the treatment of abnor-

malities or even restoration of various types of sensory, motor, and cognitive functions [7].

Cochlear implants have been employed as an effective treatment for sensorineural deafness
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by means of delivering the electrical stimulation directly to the auditory nerves [8]. Also,

electrical stimulations of the retina [9] or the visual cortex [10] are intensively investigated

and possible applications are considered to assist the blind. Furthermore, the stimulation

of deep brain structures such as the Sub-Thalamic Nucleus (STN) and the internal seg-

ment of the Globus Pallidus (GPi) are effective treatments to alleviate tremor, rigidity,

and dyskinesias associated with advanced Parkinson’s disease [11]. Other possible appli-

cations of Deep Brain Stimulation (DBS) include the treatment of primary dystonia [12],

hyperkinetic disorders [13], obsessive compulsive disorder [14], and treatment-resistant clin-

ical depression [15].Many other attempts to construct brain-computer interfaces have been

reported in literature [16–19].

The efficacy of neural stimulation therapies inevitably depends on the design and func-

tionality of the implanted microelectrodes. In general, neuroprosthetics systems demand

implantable microelectrode arrays capable of stimulating a large number of closely located

neurons and at the same time monitoring their activities. The dimensions of these micro-

probes must be as small as possible to induce minimal tissue damage, while the implant

must possess sufficient mechanical strength to withstand the manipulation forces applied

during the implantation process. Three Dimensional (3D) devices are needed to adjust

the profile of the charge injected into the tissue and record the response of the neurons in

the target tissue volume. The long-term biocompatibility of the probes is also important

particularly for chronic applications such as DBS. Despite the great advances, many of

these requirements are not satisfied, thus further research is needed to enhance the current

state-of-the-art.

This research focuses on the design, fabrication, and characterization of neural micro-

probes for intracortical and DBS applications. New generations of multichannel devices

with advanced functionalities are constructed employing novel fabrication processes. The

electrical characteristics of the neural implants are presented in detail and the character-
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istics stability of the devices is discussed. Furthermore, the application potential of the

fabricated microprobes for simultaneous neural stimulation and recording are demonstrated

in saline solutions and in-vitro experiments.

1.1 Neural Microprobes

A Variety of electrodes is employed in the neurophysiological research for stimulating and

recording the neural activities. Based on the application and location of the target, the

arrays of electrodes are fabricated on flat substrates or needle-shape structures. The planar

devices include retina implants [20, 21] and the microprobes for epicranial, epidural, and

epipial recordings [22]. For intracortical and DBS applications, the electrode sites must be

located on penetrating shanks with lengths ranging from a fraction of a millimetre to a

few centimetres.

The earliest and simplest type of electrodes are encapsulated metallic microwires [23–25]

or glass micropipettes filled with an electrolyte solution [26]. These microelectrodes are 25

to 100 µm in diameter at the base and sharpened to a few micrometres at the tip by an

electrolytical etching process [7, 27]. Although Pt/Ir wires exhibit the best performance

in terms of their capability for charge delivery, other materials such as stainless steel

and tungsten have also been utilized [27, 28]. Typically, the microwires are coated with

parylene-C, epoxy, or glass except at the sites where the electrodes are exposed to the

tissue [23,27–29].

The glass or microwire electrodes are extensively used in neural studies due to the

simplicity of their construction method. However, the fabrication of these devices with

uniform geometries and identical characteristics is difficult [30]. More importantly, these

electrodes are not suitable for recording and stimulating a large number of neurons, located

in a small volume of the tissue [31]. To realize multichannel devices based on microwire
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electrodes, several insulated microwires are manually bundled together [27,32]. Therefore,

the volume of the probe and consequently the induced tissue damage imposed by the

device implantation are linearly increased with electrode count. Furthermore, the position

of the microwires inside the bundle cannot be precisely controlled, the process is extremely

time-consuming, and the associated yield is low.

The photolithography, micromachining, and thin-film processing techniques were later

employed to advance the state-of-the-art in the fabrication of neural microprobes [30,

33–44]. These electrodes can be constructed with multiple recording channels without a

significant increase in the overall size of the structure. Reproducible production, integration

of electronic circuitry, precise control over the spatial distribution of the electrode sites, and

a high density of electrodes are some advantages of these probes compared to conventional

microwire electrodes. Despite these superior properties, the electrical characteristics of the

channels are not stable in long-term experiments and the number of operational recording

sites is reduced over time [43]. In addition, most of the presented approaches are only

capable of producing intracortical microprobes with millimetre-range lengths. Indeed,

based on the thin film processing methods, the fabrication of the DBS microprobes with

a sufficient mechanical stiffness for targeting a few centimetres deep beneath the skull is

extremely challenging [33].

The next section outlines the motivation and overall objectives of this doctoral study.

A comprehensive review of the microprobe fabrication methods for both the DBS and

intracortical microprobes will be provided in chapter 2.

1.2 Motivations and Objectives

The in-vivo observation of the neural activities from a large number of closely located

neurons is believed to be crucial for understanding the central nervous system. The neu-

4



roprosthetics also require high-density multisite microprobes to enhance the efficacy of

neurostimulation therapies and reduce the associated side effects. Following the earlier

discussions, it is clearly evident that microwire bundles introduce extensive damage to the

neural tissue while the 3D distribution of electrode sites and the number of channels is

severely limited. This project aims to utilize Micro-Electro-Mechanical System (MEMS)

fabrication technologies to produce a new generation of intracortical and DBS microprobes.

However, there are several issues that need to be resolved before the widespread application

of these microprobes in neurological research and treatment.

For intracortical applications, the microprobes must be as thin as possible to appear

invisible to the tissue while possessing enough mechanical strength for penetration. Mul-

tichannel high-density microprobes have been reported over the past three decades offer-

ing advanced capabilities such as integrated electronics and embedded micro-fluidic chan-

nels [37,39,45,46]. In most devices, substrates such as silicon, metals, sapphire, and glass

have been utilized to provide the microprobe with sufficient rigidity for implantation. These

rigid devices are not suitable for chronic studies since the neural tissue is damaged over

time as a result of the relative micro-motion between the brain and the microprobe [47]. To

alleviate this issue and improve the biocompatibility of the implants, multisite microprobes

made of flexible polymers have been proposed [34,35]. The polymer-based microprobes are

integrated with an extremely flexible interconnection cable which facilitates the connection

of the implant to the external circuitry. Although such devices are favoured for long-term

applications, the flexible microprobes cannot penetrate the tissue and must be implanted

by a microsurgical tool.

Despite the great advances, only a few hybrid integration approaches has been reported

to construct rigid microprobes connected to flexible interconnection cables [48, 49]. These

microprobes are brittle and may impose severe complications if the device breaks inside

the tissue during the implantation. Non-breakable multisite microprobes with a modified
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structural design are presented offering sufficient mechanical strength for penetration into

the tissue. The flexibility of the cable allows the microprobe to move with the surrounding

tissue consequently reducing the post implantation damage. Metallic micro-needles are

embedded at the tip of the polyimide-based implants to reinforce the microprobes locally

at the tip while the device is integrated with a flexible cable. Surface micro-machining

techniques with only 3 lithography steps are employed to fabricate these devices. The

details of the fabrication process as well as the characteristics of the microprobes are

discussed in chapter 3.

For DBS applications, to enhance the benefits of the therapy, multisite microprobes

must be capable of both stimulation and recording. The currently available DBS probes,

manufactured by Medtronic [50], provide only four cylindrical shaped electrode sites, each

1.5 mm in height and 1.27 mm in diameter. The dimensions of Medtronic electrodes

are suitable for the stimulation of a large volume of the brain and not preferred for the

recording or stimulation of individual neurons. If the area of the electrode is large, the

average response of many neurons is collectively recorded. Therefore, to measure the

activity of a single neuron, recording sites with dimensions in the range of 10-20 µm

are favoured [7]. Although the advanced thin film microprobes present electrodes with

miniature dimensions, these devices are only suited for intracortical applications where the

length of the microprobes is limited to a few millimetres.

In DBS, the target region is typically located a few centimetres deep inside the brain.

This dimensional constraint severely complicates the fabrication of the DBS microprobes.

Indeed, only a few processes have been reported capable of producing sufficiently long

microprobes for DBS applications [23, 27, 33, 51, 52]. The encapsulated metal wires intro-

duced for the single site recording are the simplest and earliest type of devices that can

be constructed with lengths in excess of several centimetres [23]. One possible method of

fabricating the DBS microprobes with multisite recording / stimulation capabilities is to
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bundle several micro-wires into one ensemble [27, 51, 52]. Although this is practical, the

volume of the implants and the tissue damage induced by the insertion of the microprobe

linearly increases with the channel count. Furthermore, the rigidity of the device, the elec-

trode sites dimensions, and the position of microwires inside the bundle cannot be easily

controlled. To resolve such adversities, a method based on micro-fabrication techniques has

been proposed in [33] to construct miniature multisite DBS microprobes. Thick electro-

plated micro-needles are utilized as the structural layer supporting the thin-film electrode

traces. Even though a significant enhancement in the number and density of electrode sites

are achieved, the fabricated microprobes are not integrated with flexible interconnection

cables and the electrode sites can only be placed on a planar surface.

To enhance the efficacy and minimize the adverse effects of the DBS treatment, it

is crucial to control the spatial distribution of the charge injected into the tissue. For

this purpose, 3D microprobes with many independent electrode sites around the probe

shaft are demanded. To produce such devices using conventional fabrication methods, the

deposition, lithography, and etching must be performed over the 3D surface of a support

structure. Although lithography and laser micromachining over non-planar surfaces have

been demonstrated, the resolution and associated yields of such processes are limited. In

most cases the structure must be rotated around its axis or the deposition / lithography

equipment must rotate around the probe. Considering the small dimensions of the device,

such approaches appear to be extremely difficult if not impossible.

In this thesis, novel 3D microprobes are presented offering both stimulation and record-

ing capabilities. Independent stimulation sites are placed around the probe shaft providing

the implant with an enhanced capability to control the profile of the injected charge into

the tissue. In this method, thin-film planar devices are assembled on a flexible support

structure to construct the implants. Surface micromachining technologies are used to fabri-

cate the thin film planar devices. Consequently, the dimensions and spatial distribution of
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the electrode sites are precisely controlled by the sub-micrometre resolution of the lithog-

raphy process. The microprobes also provide flexible interconnection cable to facilitate

their connection to external circuitry. The fabrication process and characteristics of the

implants are described in chapter 4.

Integration of a site selection matrix with the signal processing circuitry of a neuro-

prosthetic system or non-implanting section of the neural microprobe is a possible solution

to reduce the complexity and power consumption of the system. A switch matrix can

be used to connect several electrode sites of the implanted neural microprobe to a sin-

gle stimulation or recording channel of the micro-controller. Therefore, a micro-controller

with a few number of channels can be effectively used for multichannel stimulation and

recording. Micro-Electro-Mechanical Systems (MEMS) technology is considered for the

fabrication of the switching matrices on the same substrate of the microprobes where the

bonding pads are located. MEMS switches provide a low On-state resistance, high Off-

state isolation, and acceptable switching speeds (2 - 40 µs) while consuming negligible

powers for operation [53]. Chapter 5 presents the fabrication processes and characteristics

of multiport electrostatic-actuated switch matrices and magnetic-actuated switches. The

proposed methods are compatible with the fabrication of flexible neural microprobes and

can be employed for system integration.

The major objectives of this PhD study are summarized as follows:

• The development of intracortical microprobes offering flexible interconnection cables

and adequate mechanical strength for implantation.

• The development of 3D multisite microelectrodes for stimulation and recording with

the capability to adjust the profile of the injected charge into the tissue.

• The development of MEMS switching elements and switch matrices for possible in-

tegration in neuroprosthetics systems.
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1.3 Thesis Outline

The development and optimization of the MEMS fabrication methods to produce multisite

neural microprobes for chronic applications is the main focus of this doctoral research. In

chapter 1, a brief introduction of neural microprobes is presented to illustrate the demand

for further research on the subject and to motivate the readers. Some of drawbacks of the

existing microprobe technologies are also pointed out.

Chapter 2 provides a review of neural microprobes presented in literature for intracorti-

cal and DBS implants. In particular, the thin film microprobes fabricated by photolithog-

raphy, micromachining, and thin film processing techniques are comprehensively discussed.

The selection criteria and materials of choice as the structural layer, insulator, electrodes,

and electrode sites are addressed. In addition, the fabrication processes, benefits, and

limitations of several types of microprobes are summarized.

Chapter 3 describes the structures, fabrication, and characteristics of proposed intra-

cortical microprobes with an improved structural design. These devices are integrated

with long flexible interconnection cables while providing enough mechanical strength for

penetration. The in-vitro characteristics and impedance stability of the electrodes are also

studied.

A novel generation of 3D microprobes for DBS applications is reported in chapter

4. Thin film microprobes are fabricated and assembled on flexible support structures to

construct the proposed implants with independent stimulation and recording sites around

the shaft. Chapter 4 elaborates on the fabrication issues and challenges, performance, and

characteristics stability of the microprobes. The possibility of simultaneous stimulation

and recording is demonstrated by in-vitro experiments in mouse hippocampus.

The MEMS switches and switching matrices for the possible integration with micro-

probes are then presented in chapter 5. The fabrication, configuration, and characteristics
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of metallic and dielectric cantilever switches, actuated by electrostatic and electromagnetic

forces are reported. Despite the reliability concerns, the excellent characteristics offered

by fabricated MEMS switch matrices are a strong motivation for the integration of these

circuitries. Finally, chapter 6 concludes the contributions of the doctoral research in the

development of the neural microprobes and addresses future works.
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Chapter 2

Literature Survey
Intracortical and DBS Microprobes

Neuroprosthetics employ implantable arrays of electrodes (neural microprobes) to deliver

the electrical stimulation pulses and/or to monitor the neural activities. The intracorti-

cal microprobes target the surface of the brain and interface with various regions of the

cortex such as the sensory or motor areas. The stimulation and recording of deep brain

structures such as the thalamus and hippocampus is performed through the so-called DBS

microprobes with lengths in the range of several centimetres. For years, the only available

devices for neurological research were metal microwires or glass electrodes. Comprehensive

reviews of these early devices have been provided in [25] and [26]. Despite their popu-

larity for single neuron or field potential studies, the extensive tissue damage induced by

microwire bundles prevents the further application of these implants in advanced neuro-

logical research and treatments.

The silicon technology and lithography technique were suggested by M. P. Lepselter in

1966 for the fabrication of a new generation of implants known as thin film microprobes [54].

The immediate benefit of such an approach is the production of multisite microprobes that

were capable of recording and stimulating closely located neurons with sizes comparable

to those of a single metal electrode. Therefore, the tissue damage introduced by the
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implantation of these microprobes can be significantly less than the injury imposed by a

bundle or array of metal electrodes.

The first reports on the fabrication of the thin film microprobes were published in the

1970s by K. D. Wise and his coworkers [55, 56]. At the time, the silicon etching processes

were not mature and these early probes did not have uniform electrical and mechanical char-

acteristics. Later advances in the microelectronic, sensor, and Micro-Electro-Mechanical

Systems (MEMS) technologies have improved the reliability, reproducibility, and produc-

tion yield of the microprobes.

Thin film probes consist of three main sections; namely, the support structure, the stim-

ulating or recording sites (electrode sites), and the encapsulated interconnection lines. The

support structure serves as the main body and determines the overall shape of the micro-

probe. The substrates employed for the fabrication of this section must be biocompatible

and provide adequate mechanical strength for the penetration into the tissue. Apart from

silicon [36–40], the microprobes have been fabricated on a variety of substrates such as met-

als [30, 33,41–43], sapphire [57], glass [31], SU-8 [58], diamond [59], and polymers [34,35].

Iridium (Ir) [37], iridium oxide (IrOx) [60, 61], Pt [62], and Ta [57] have been used as

the electrode sites of thin film microprobes. Since the neural activities are stimulated by

charge, it is important to select a material with a high capability of charge delivery. The

iridium oxide with a charge delivery capacity as high as 3000 µC/cm2 [63] is, by far the

best candidate compared to metals such as platinum that has a maximum charge delivery

capacity of 400 µC/cm2 [62]. However, it should be noted that the amount of charge

delivered to the target must neither alter the local pH nor decompose the electrode or

neural tissue (i. e., it must remain within the water window).

Polysilicon [37,64], Au [36,43], and Ta [37,57] are popular conductors for the intercon-

nection lines. The advantage of using polysilicon traces over the metal lines is the high

interface quality of the polysilicon with the insulator layers deposited by Low Pressure
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Chemical Vapor Deposition (LPCVD) technique. Consequently, the chance of insulator

delamination from the conductor and ionic diffusion into the encapsulation layer of the

interconnection lines will be eliminated. As a result, the electrical characteristics of the

microprobe channel will remain stable over the courses of long-term experiments. However,

the higher sheet resistance of the polysilicon compared to those of the metals becomes a

limiting factor for microprobes with long interconnection cables and also the multichannel

devices with large aspect ratio interconnection lines.

The insulating material encapsulates the interconnection lines to isolate them from each

other and the surrounding biological environment. The stable electrical characteristics of

microprobes in terms of the electrode’s impedance mostly depend on the resistivity of

the insulator against chemical erosion and ion migration. The commonly used dielectric

materials are silicon nitride [33], nitride/oxide stacked layers [36,37,64], polyimide [34,43],

hard-baked potoresist (PR) [41], and parylene-C [30].

The following sections concentrate on the fabrication methods of the intracortical and

DBS microprobes. The multisite intracortical devices are mostly constructed based on thin

film processing technologies while the DBS microprobes are produced mainly by conven-

tional approaches.

2.1 Intracortical Microprobes

The cerebral cortex of the brain is a highly folded layer of neurons with a typical thickness

of less than 5 mm in humans [65]. Based on MEMS and micro-fabrication technologies,

many approaches has been proposed to produce microprobes that provide short penetrating

shanks suitable for cortical stimulation and recording. Here, the silicon-based implants,

metal electrode arrays, and microprobes constructed from polymers are discussed. The

fabrication process, properties, and limitations of each type of microprobes are addressed.
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2.1.1 Silicon-based Microprobes

Biocompatibility, mature processing technology, and the possibility for the integration of

on-chip circuitry have been strong motivations for the application of silicon as the structural

layer of thin-film microprobes. The silicon-based microprobes can be grouped into three

main categories:

• Michigan Probes

• DRIE Probes

• Utah Probes

Boron diffusion and bulk etching of silicon is employed to construct the first category of

microprobes. To fabricate the second type of implants, the microprobe shanks are defined

in a Deep Reactive Ion Etching (DRIE) process. In the third category, an array of micro-

needles is created by cutting deep trenches into the bulk of a silicon substrate using a

dicing saw. The details of the fabrication process and shortcomings of each method are

discussed in the following sections.

Michigan probes

In the early 1970s, K. D. Wise and his coworkers reported the first thin film microprobe [55,

56]. The fabrication of these devices is based on the deep boron diffusion of silicon, followed

by the selective etching of the un-doped regions. It is known that a high concentration

of boron diffusion dramatically decreases the etch rate of silicon in etchant solutions such

as Ethylene-Diamine-Pyrocatechol (EDP) or potassium hydroxide (KOH). The etching of

silicon in EDP is effectively stopped when the boron concentration exceeds the approximate

values of 5 × 1019 cm-3 [66]. In the KOH etching process, the etch rate of boron-doped
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Fig. 2.1: Schematic of a Michigan microprobe.

silicon drops by three orders of magnitude for doping densities higher than 1.5 × 1020

cm-3 [67].

A typical schematic of a Michigan probe is shown in Fig. 2.1. The silicon substrate is

micromachined to create the probe shank and the support base where the output pads and

on-chip signal processing circuitry are located. The interconnection lines are formed on

the probe shank and provide connection to the stimulation/recording sites. To facilitate

the handling of the samples during the fabrication, the substrate underneath the output

pads is kept thicker than the probe shank.

Fig. 2.2 illustrates the fabrication sequence of a Michigan probe [7, 36–40]. The fab-

rication starts with the growth and patterning of a silicon oxide layer as the mask that

defines the shape of probe shanks by confining the profile of the subsequent boron doping

in the substrate. After a deep boron implantation followed by a thermal diffusion process,

the mask layer is removed and an insulator is deposited to isolate the electrodes from the

highly conductive p+ probe shanks. The chemical vapour deposited (CVD) or plasma en-

hanced chemical vapour deposited (PECVD) stacked layers of silicon nitride and silicon

dioxide films are typically used as the insulator. This is to reduce the mechanical stress in
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the insulator layer and to improve the resistivity of the material against the ionic fluids.

Next, a conducting film such as gold, tantalum, or polysilicon is deposited and patterned

to form the interconnection lines. The deposition of another insulator layer encapsulates

the interconnection lines while the via holes are dry-etched exposing the electrode sites and

the bonding pads. To enhance the electrical characteristics of the microprobes, Ir or IrOx

is deposited as the electrode sites and patterned in a lift-off process. The bottom and top

insulators are then removed from the surface of the substrate except over the microprobes.

Finally, the silicon substrate is thinned in an isotropic silicon etchant followed by releasing

the device in EDP or KOH solution. The etchant solution dissolves the n-type, undoped,

Silicon DielectricInterconnect conductor

p+ boron-doped silicon Site material

(e)

(f)

(g)

(h)(d)

(c)

(b)

(a)

Fig. 2.2: The fabrication process of Michigan microprobes.
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and lightly p-type doped silicon, but does not attack the p+ layer of the microprobe. The

backside processing has also been used to leave a thicker silicon layer under the output pads

to facilitate the microprobe handling. An important benefit of this method is the possibil-

ity to adopt standard CMOS processes for the integration of an on-chip signal processing

unit with microprobes.

Fig. 2.3(a) shows an optical micrograph of a fabricated Michigan microprobe [7]. The

holes on the probe shanks might help in chronic applications by stabilizing the probe’s

position inside the tissue. To increase the number of stimulation/recording sites, several

multi-site probe shanks can be bundled together as in Fig. 2.3(a). A shallow boron-

diffusion has been carried out to form the tapered shape of the probe tip, as illustrated

(a)

(b)
(c)

Fig. 2.3: (a) Photograph of a three-shank microprobe with 12 electrode sites. (b) and
(c) The SEM images of a probe tip shaped by shallow and deep boron diffusions [7].
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in the side view SEM images of Fig. 2.3(b) and 2.3(c) [7]. Although the second diffusion

step increases the complexity of the fabrication process, it helps to reduce the amount

of pressure needed for the penetration of the probe into the tissue. The probe thickness

can be adjusted in the range of a few hundred nanometres [68] to 15 µm or more [37] by

controlling the diffusion process. In this technique, the width of the probe shank is defined

by the implantation mask and the lateral diffusion occurring at the annealing step. To

further reduce the width of the probe, a Deep Reactive Ion Etching (DRIE) process can

be conducted to eliminate the effect of lateral diffusion.

The fabrication of 3D electrode arrays was later reported by the Michigan group [7,69].

Several multi-shank Michigan microprobes are assembled on an orthogonal platform using

spacers to hold the planar devices parallel to each other. The electrical connection between

the microprobes and the platform is produced by thick gold-plated tabs bonded to the

contact pads of the platform. A photograph of a 3-D microprobe array with 128 shanks

and 1024 electrode sites is presented in Fig. 2.4.

The Michigan probes have also been modified to offer micro-fluidic channels for drug

delivery at cellular levels [64]. A few steps must be added to the fabrication sequence for

Fig. 2.4: Optical image of a 3D Michigan microprobe array with 1024 electrode
sites [7].
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creating the micro-channels (Fig. 2.5(a)). After the patterning of the thermal oxide layer

(the mask for the p+-doping step), a shallow boron diffusion is carried out, and narrow

trenches (1 µm wide) are cut through the thin p+ layer. Then, the anisotropic etching of

the silicon substrate in the EDP solution forms the fluidic channels as seen in Fig. 2.5(b).

The sidewalls of the channel are along the <111> crystallographic planes if the channel is

aligned with the (110) direction. Next, the deep boron diffusion defines the probe thickness,

(a) (b)

(c)

(d) (e)

Fig. 2.5: (a) The summary of the process flow for the fabrication of a Michigan
microprobe with embedded micro-fluidic channels. Cross-section SEM images of a
fluidic channel after (b) EDP etch and (c) sealing the top dielectric. (d) Top-side
and (e) back-side SEM images of a microprobe. (compiled from [64])
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and the micro-channels are sealed by a 0.5 µm thermally grown oxide layer stacked with a

0.6 µm LPCVD oxide film (Fig 2.5(c)). To planarize the oxide surface, the wafer is coated

by PR and a dry etching process is performed with the same etching rate for both the oxide

and PR. The SEM images of the microprobe with three embedded micro-fluidic channels

are presented in Fig. 2.5(d) and (e). The micro-fluidic channels are extended from the back

of the device and form pipe-like structures for easy attachment to flexible micro-pipettes.

It has been demonstrated that a 4 mm long channel with an effective diameter of 10 µm

can flow 87 pl of fluorescent dye into water with a drive pressure of 10 psi applied for 100

ms [64].

The electrical and mechanical characteristics of the interconnection cable connecting

the microprobe to the external circuitry is crucial particularly in chronic applications.

The cables must be biocompatible and mechanically robust to withstand the manipulation

forces experienced by the device during the implantation process. Moreover, a flexible

cable is demanded to reduce the damage resulted from the relative micro-motion between

the tissue and the microprobe.

The silicon-based ribbon cable, fabricated with a process similar to the Michigan probes,

has been proposed to fulfill some of the requirements [70]. A shallow high-dose boron diffu-

sion, followed by an EDP etching process is used to define a thin ribbon-shaped substrate

hosting the interconnection lines. The silicon cables and Michigan probes can be integrated

in a single fabrication run conveniently providing the connection between the microprobe

and the cable. The silicon cables exhibit an out-of-plain flexibility and very low leakage

currents in the subpicoamp range even after four years of in-vitro experiments [70]. How-

ever, the silicon cables break when subjected to in-plane bending, stretching, and twisting.

Moreover, the production of centimetre-long cables is not practical and the associated

fabrication yield is low due to the high aspect ratio of the structure.

In summary, Michigan probes with multiple stimulating/recording electrodes and em-
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bedded micro-fluidic channels have been successfully produced and integrated with flexible

interconnection cables and on-chip electronic circuitry. Nevertheless, the breakable struc-

ture and rigidity of the device limit many applications particularly for long-term research

and treatments. Furthermore, the Michigan method is only capable of fabricating devices

with electrode sites placed on a single side, i.e. the top surface, of the microprobe.

DRIE probes

Deep Reactive Ion Etching (DRIE) has been alternatively employed to construct the Si

penetrating shanks of the intracortical microprobes [71–75]. In one approach, the implants

are fabricated on Silicon-On-Insulator (SOI) wafers where the buried oxide layer of the

substrate serves as the etch stop of the DRIE process. Consequently, the microprobe

thickness is defined by the thickness of the top silicon layer of the SOI wafer. The multisite

microprobes with embedded micro-fluidic channels have been successfully produced based

on this method. The fabrication process, shown in Fig. 2.6, starts with the deposition of

a dielectric film and the RIE etching of via holes in this layer. Through these openings,

the silicon is etched in an isotropic etching solution to undercut the dielectric layer. Next,

the sample is immersed in a KOH anisotropic etchant to create micro-channels with a

trapezoidal cross-section [72]. The second dielectric deposition covers the dielectric holes

and completes the fabrication of the micro-fluidic channels. Similar to the Michigan probes,

the microelectrode arrays are formed on top of the channels. Finally, the shape of the

microprobe is defined by DRIE, and the shanks are thinned by another DRIE process from

the backside of the wafer. The buried oxide layer acting as the etch stop of the backside

DRIE process is then removed in a dry-etch step to release the device.

The SEM images of a DRIE SOI-based microprobe and a 10 µm × 10 µm Ir electrode

site are illustrated in Fig. 2.7. The fabricated probes offer 8 shanks each including 4

electrode sites. The microprobes are 20 µm thick, and the length of the shank can be
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Fig. 2.6: Fabrication sequence of the DRIE SOI-based microprobes.

as long as 7 mm [71]. The fabrication of the microprobes with longer shanks is possible

by increasing the thickness of the substrate to provide sufficient mechanical strength for

implantation. Since the thickness of a DRIE SOI-based microprobe can be easily adjusted
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Fig. 2.7: SEM images of (a) a SOI-based microprobe and (b) an Ir electrode site [71].

by selecting a wafer with the desirable top silicon layer thickness, this method is preferred

for the production of longer microprobes than those produced by the Michigan process.

Furthermore, the application of DRIE for defining the shape of the structure provides an

excellent control over the device geometry such as the probe width and the tip angle.

The DRIE etching of the regular Si wafers has also been employed for the construction of
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intracortical microprobes [74,75]. This method relies on the time etching of the Si substrate

in the DRIE step; thus there is no precise control over the thickness of the shanks unlike

the SOI-based devices. Other fabrication complexities include non-uniform etching across

the wafer and an increased surface roughness of theses devices. Despite such difficulties,

advanced 3D probes with embedded micro-fluidic channels similar to the Michigan arrays

have been recently reported.

To finalize this section, a few issues associated with operation and reliability of the

DRIE microprobes are mentioned. Similar to Michigan probes, these implants are rigid

and breakable. The DRIE microporbes also have a single-sided configuration in which

the electrodes are placed only on the top surface of the device. Moreover, these devices

are not integrated with flexible interconnection cables, although it is possible to adopt

the Michigan approach or other post processing methods to produce an integrated flexible

cable.

Utah probes

Arrays of Si micro-needles for cortical stimulation and recording were developed by P. K.

Campbell and his coworkers from the University of Utah in the early 1990s [76]. The

micro-needles are constructed from a thick monocrystalline Si wafer. In the early devices,

p+ Si pillars were produced in an n-type silicon substrate in an aluminum thermomigration

process across the wafer. These p+ regions are electrically isolated from each other by the

back to back pn-diodes formed between the n-doped substrate and p+ regions. Although

functional microprobes were produced based on this method, the fabrication yield was

low and the electrical characteristics of the electrodes were non-uniform and sensitive to

the surface conditions [77]. Later, the Utah group used highly doped Si wafers for the

construction of the array and employed glass barrier regions to isolate the electrode needles

[77].
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The schematics of the sample at different stages of the Utah process for the fabrication

of an intracortical microprobe are depicted in Fig. 2.8. First, 300 µm deep orthogonal

grooves are made in the substrate using an abrasion type diamond blade dicing saw. The

substrate is then coated by a glass slurry and the sample is annealed at 1200 ◦C to melt the

Fig. 2.8: The sample schematics at different stages of the Utah fabrication process:
(a) and (b) after the formation of backside isolator grooves, (c) after glass reflow,
and (d) after Si dicing for construction of the micro-needles [77].
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glass. The glass fills inside the grooves and forms the isolating barriers. Next, the sample

is planarized and Al pads are formed over silicon islands. From the backside of the wafer,

perpendicular trenches are cut directly on top of the glass filled grooves with depth enough

to barely penetrate the glass. To sharpen the Si needles and remove the dicing damage,

a two step etching process was developed in [76]. Subsequently, gold, platinum, or Ir is

deposited at the needles’ tips as the electrode sites. Finally, the needles are encapsulated by

polyimide and the electrode sites are exposed at the tip in an oxygen plasma etching step.

To selectively mask the body of the Si needles during the metal deposition and polyimide

etching processes, the array is pushed into a thin metal foil with needle tips extruding 400

to 500 µm from the surface of the foil. For successful implementation of this procedure, a

thin metal foil is stretched over a template including grooves with the same pattern as the

needles.

Fig. 2.9 shows an SEM image of a Utah probe consists of a 10 × 10 array of needle-

shaped electrodes [78]. The needles are 1.5 mm in length and 80 µm in diameter at the

Fig. 2.9: SEM image of a Utah microprobe [78].

26



base. The parasitic impedance between the adjacent electrodes is higher than 1013 Ω with

less than a 50 fF inter-electrode capacitance. Chronic intracortical recording has been

demonstrated with Utah microprobes [77].

Despite the mature fabrication process and stable characteristics of the Utah probes,

several issues limit the application of these implantable devices. Although the microprobe

has a 3D structure, the electrode sites located at the tip of the needles on a 2D planar

array. Each needle provides a single electrode with lengths limited to a few millilitres. The

configuration of the probe is similar to a bundle of microwires and as a result the volume

of displaced tissue is large and the implantation damage is extensive. Finally, there is no

possibility for the construction of microprobes with a 3D matrix of electrode sites.

2.1.2 Metallic Microprobes

Metallic beams fabricated by photolithography process have been alternatively used as the

mechanical support structure of the microprobes. In general, there are two different types

of metallic microprobes presented in literature. In the first category, the interconnection

lines and electrode sites are constructed on an encapsulated metallic beam serving as the

support structure [41, 43]. In the second group, a metallic beam is utilized both as the

mechanical support layer and as the recording electrode [30, 42]. The former category

will be referred to as the metallic shank microprobes and the later category as the metal

microelectrode arrays.

M. Kuperstein and D. A. Whittington reported one of the first metallic shank multisite

microprobes in 1981 [41]. The microprobe was named Parallel Recording Of Neural Groups

(PRONG) by the authors and later was referred to as the MIT probe. The electrodes were

fabricated on a 17.5 µm thick molybdenum (Mo) foil sandwiched between two layers of

dielectric. PR was employed as the insulating material, while gold was used to form the
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interconnection lines, bonding pads, and electrode sites. The microprobes provided 24

rectangular electrode sites that were placed in 2 columns and 12 rows. The length of the

microprobe was 2 mm and the area of recording sites was 120 µm2.

In another attempt, Blum et al. employed 15 µm thick Mo substrates to produce

metallic shank microprobes [43]. In this method, gold was deposited on both sides of

the substrate to protect the Mo probe shank against the etching process. Instead of PR,

standard or photo-definable polyimide was used to insulate the interconnection lines. The

fabricated microprobes offered four or six square gold electrodes each 30 µm × 30 µm in

dimensions.

For the fabrication of the metal microelectrode arrays, the second category of metallic

microprobes, electroplating has been employed to produce arrays of metallic beams that

serve at the same time as the mechanical support layer, interconnection line, and the

electrode [30, 42]. The electroplating process provides excellent control over the physical

and electrical properties of the individual electrodes. Furthermore, the distance between

the two adjacent electrodes and the position of the electrode sites, can be precisely defined

by photolithography technique. To confine the electroplating metal in the lateral direction,

a plating mold is formed on top of the seed layer. Xu et al. have employed a double

electroplating process to fabricate nickel (Ni) plated microelectrode arrays on Si wafers

[30]. The microprobes consist of an array of seven microelectrodes, spaced 50 µm apart.

The SEM images of the microelectrode array and an electrode tip are illustrated in Fig.

2.10 [30].

To fabricate the microelectrodes shown in Fig. 2.10, the first electroplating process was

employed to form the electrode tips, and the second process to create the probe shanks.

The tip section was 250 µm long and had a cross section of 15 µm × 6 µm. The thickness

of the probe shank was 30 µm providing sufficient mechanical strength for the 6 mm-long

microelectrodes. PR was used to create the plating mold on top of the Cr/Cu seed layer and

28



Ni was selected as the plating material. After the electroplating, the silicon substrate was

etched in a KOH solution to release the electrodes. Since Ni is toxic, the microelectrodes

were then coated with a biocompatible metal such as Au or Pt. Next, microelectrodes were

encapsulated by a 3 µm thick layer of parylene-C using a vapour-phase deposition process

at room temperature. Finally, the oxygen plasma etching of the insulator at the tip of the

electrodes exposed the stimulation sites as observed in Fig. 2.10(b).

Despite the uniform characteristics and good mechanical properties, the metal micro-

electrode arrays that are fabricated with the electroplating processes are very similar to a

bundle of microwires. As a result, compared to the single shank microprobes, the tissue

(a)

(b)

Fig. 2.10: SEM images of (a) a metal microelectrode array and (b) the electrode site
at the tip of an encapsulated metallic beam [30].
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damage introduced during the insertion of the probe is extensive. Since every electrode site

requires an additional probe shank, the volume of the microprobe is linearly proportional

to the number of sites. Therefore, it is not practical to study a large number or closely

located neurons with this type of microprobes. The application of both families of metal-

lic microprobes is also hindered by the structural rigidity and unavailability of integrated

flexible cables. Furthermore, the integration of on-chip signal processing units with the

microprobes might not be practical. Although long-term operation is expected, limited

studies have been carried out on the stability of metallic microprobes in chronic studies.

2.1.3 Flexible Microprobes

The relative micro-motion between the neural tissue and a rigid microprobe can gradually

damage the neurons located in close proximity of the implant in long-term experiments [47].

More importantly, if the position of the microprobe is displaced from the target location,

the functionality of the implanted device is affected [79, 80]. The application of flexible

materials as the structural layer of a microprobe can alleviate some of the issues imposed

by the device rigidity. Flexible microprobes have been fabricated with shanks made of

polyimide [34, 35, 81–83] or Liquid Crystal Polymers (LCP) [84]. Fig. 2.11(a) presents an

optical micrograph of a polyimide-based implantable microprobe that consists of 2 arrays

of electrodes. Each array has three shanks and utilizes gold as the interconnection lines

and the electrode sites. The arrays are connected by a polyimide bridge that can be bent

to form a 3D structure as shown in Fig. 2.11(b) before the implantation. The thickness

and width of the microprobe shanks are ∼ 20 µm and 160 µm, respectively.

The fabrication of a polyimide-based microprobe starts with the deposition or growth

of a thin sacrificial layer on a rigid substrate such as silicon or glass. Then, polyimide

with a typical thickness of 10 - 20 µm is spin-coated and cured. Next, a metal layer is

30



(a) (b)

Fig. 2.11: Photograph of (a) a polyimide-based microprobe and (b) the planar device
bent into a 3D structure [34].

deposited and patterned to form the electrodes and interconnection lines. The second

layer of polyimide encapsulates the electrodes. In an RIE dry etching step, opening vias

to electrode sites and the bonding pads are created and the polyimide layers are etched to

define the probe shanks and interconnection cables. Finally, the sacrificial layer is removed

in a wet etching process to release the microprobe. Additional processing steps can be

added to deposit Pt or Ir over the electrode sites.

One of the key advantages of flexible microprobes is the integration of an extremely flex-

ible interconnection cable with the implant. Stable electrical characteristics of polyimide-

based microprobes have been also reported in long term experiments [85]. Despite such

superior properties, the flexible microprobes cannot penetrate the tissue and must be im-

planted by a microsurgical tool. In [86] flexible probes have been fabricated on a 5 - 10

µm thick Si layer to enhance the mechanical strength of the device. Although this method

provides a flexible joint, fabrication of a multisite microprobe integrated with a centimetre

long flexible cable has not been reported yet.
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2.2 DBS Microprobes

A microprobe with a few centimetre-long penetrating shank is demanded to interact with

the deep structures of the brain such as the thalamus and hippocampus. Furthermore, the

cross section area of the device must be as small as possible to minimize the tissue damage.

These dimensional constraints complicate the production of DBS probes to such an extent

that most MEMS and micro-fabrication technologies cannot be practically employed. By

far, fewer reports exist in literature on DBS devices and the majority of the implants

are constructed by conventional approaches. In this section, the structure, design, and

fabrication of DBS microwire bundles, Medtronic DBS leads, and 3D electroplated metal

microprobes are reviewed.

2.2.1 Microwire Bundles

The insulated metal microwires have a broad application in neurophysiological studies

thanks to their robust mechanical properties, stable electrical characteristics, and easy

production. The bundles of metal electrodes are among the rarely reported devices for

deep brain micro-stimulation and recording [27, 52]. In one approach, 8 microwires were

twisted around an Ir / Pt core and cut at one end to expose the electrode sites [52]. The

overall diameter of these so called Niotrodes can be as small as 100 µm. Alternatively,

Ir wires with diameters of 75 µm were assembled to create a multisite probe with 16

electrode sites [27]. Each wire was electrolytically sharpened into a cone shaped tip and

encapsulated with parylene-C. Next, the insulator at the tip of the electrodes was ablated

using an excimer laser and the wires were assembled in a custom fixture. The fixture aligns

the wires and serves as a mold to construct the epoxy cap that holds the electrodes. Fig.

2.12 illustrates the images of a fabricated DBS microprobe and the tip of an electrode.

This device measures 16 mm in length and 2 mm in diameter.
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Fig. 2.12: (a) Optical image of a DBS microwire bundle and (b) SEM micrograph of
an electrode tip [27].

There are several issues associated with the functionality and design of DBS microwire

bundles. Although it is possible to employ these devices in short-term studies, the chronic

application is limited by the large volume and rigidity of the microprobe. In addition,

for most treatments, the offered electrode sites with micrometre-scale dimensions are too

small for stimulating an adequate section of the tissue. Moreover, the position of microwires

inside the bundle cannot be precisely controlled, the process is extremely time-consuming,

and the fabrication yield is low.

2.2.2 Medtronic DBS Lead

The DBS for treatment of movement disorders such as advanced Parkinson’s disease and

essential tremor is currently performed by Medtronic DBS leads. These chronically im-

plantable probes are 1.27 mm in diameter and 10 - 50 cm in length offering 4 cylindrical

electrodes each 1.5 mm in height. As shown in Fig. 2.13, two versions of the Medtronic

leads are available with 0.5 mm and 1.5 mm inter-electrode spacings. The outer jacket of

these implants is made of urethane A80, and Ir / Pt alloy is used as the electrode sites and

conductor wires [50].
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Fig. 2.13: Medtronic DBS lead.

Although Medtronic lead is commercially available, limited information has been pub-

lished on the fabrication of this device. A possible method of construction has been pre-

sented in [87] and schematically illustrated in Fig. 2.14. Pt / Ir wires are wound around a

tungsten core and placed inside the mold used to shape the polyurethane outer jacket of

the implant. The structure is then released from the mold and the extruding metal wires

and polyurethane parts are cut. Next, the electrode sites are formed, the tungsten core is

Pt / Ir insulated wires 
are winded around a 
tungsten core.

Polyurethane is injected 
into the mold.

Mold is remove and the 
extruding parts are cut.

The electrode sites are 
formed and the tungsten 
core is removed. 

Polyurethane 
injection hole

Tungsten 
core

Pt / Ir insulated wires

Fig. 2.14: A possible method of fabrication for Medtronic leads compiled from [87].
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removed, and the penetrating end of the probe is capped. For implantation, a rigid stylus

can be inserted into the hollow section of the probe to guide the device into the brain.

The Medtronic DBS lead satisfies many requirements for a stimulating microprobe such

as a flexible structure and large electrode sites. Despite such desirable characteristics, it is

not possible to adjust the profile of injected charge into the tissue. Indeed, the cylindrical

shape of the electrodes can only generate symmetric electric fields and currents around

the implant. Furthermore, no recording channel is offered by the Medtronic leads thus the

DBS treatments are open loop and no feedback is collected from the response of the brain

to the stimulating pulse. The dimensions of the device are also large resulting in extensive

tissue damage.

2.2.3 3D Electroplated Metal Microprobes

P. S. Mota and J. W. Judy recently presented long microprobes for DBS based on micro-

fabrication technologies [33]. An electroplating process was developed to produce customiz-

able 3D structures in [88]. In this process, the electroplating is performed on a patterned

seed layer without employing a confinement mold. Initially, the electroplating starts on

the regions of the seed layer that are electrically connected to the power supply, and no

metal growth happens on the isolated regions. In the absence of a plating mold, the metal

growth proceeds in both vertical and lateral directions. If the plated film contacts to an

isolated seed layer, the plating also takes place on the newly connected seed layer. To em-

ploy this method for the fabrication of the microprobe structural layer, the microelectrode

array is initially constructed upside-down on a silicon wafer. On an oxide-covered silicon

wafer, nitride is deposited and patterned to define the electrode sites openings. Then, the

electrode sites, interconnection leads, and output pads are formed and encapsulated by the

second layer of the silicon nitride. Next, the electroplating process on a patterned seed
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Fig. 2.15: SEM image of a probe shank in the middle of the electroplating step. The
completed structure is shown in the inset [33].

layer completes the microprobe structure. The final step is etching the silicon wafer in

KOH and removing the oxide layer in a buffered HF solution. A SEM image of a probe

shank during and after the completion of the electroplating process is displayed in Fig.

2.15 [33]. The patterns’ dimensions and the distances between seed layer islands control

the slope of the tapered probe tip. Fig. 2.16 illustrates the back-side image of the micro-

probe where the microelectrode array is located. Platinum was selected as the site material

of the fabricated devices with penetrating shanks as long as 22 mm.

This fabrication method provides excellent control over the width, length, thickness,

and 3D shape of the microprobe. Moreover, the electrode sites’ dimensions and density

are precisely defined by a high resolution lithography process, and the device volume can

be substantially scaled. Yet again, these devices suffer from several issues commonly asso-

ciated with most metallic microprobes. Although the fabrication of long DBS microprobes

is possible by increasing the thickness of the shank, the device rigidity prevents their ap-
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Fig. 2.16: SEM image of the microelectrode array fabricated on the backside of the
electroplated shanks [33].

plication in long-term studies. A flexible interconnection cable is not integrated with the

implant and the electrode array has a planar configuration. The single side planar con-

figuration of the device is not preferred for the stimulation of a symmetric volume of the

brain and the probe is not fully capable of steering the electric field in the tissue.

2.3 Electrical Characteristics

The sensitivity and Signal to Noise Ratio (SNR) of the recorded neural activities and the

maximum charge that can be delivered to the tissue at a certain stimulation voltage are

mainly determined by the impedance of the implanted electrode. Materials such as Ir

and IrOx that have a high capacity of charge delivery and inert chemical properties are

preferred for the application as the electrode sites of the neural microprobes [7, 33]. An

equivalent circuit model for an electrode immersed in an electrolyte solution is depicted

in Fig. 2.17 [41]. The circuit consists of several frequency-dependent resistances and

capacitances. In this model, Ze, Rm, Cc, and Csh are the impedance between the recording
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Fig. 2.17: Equivalent circuit of a microelectrode.

site and the tissue, the resistance of the interconnection line, the coupling capacitance to

adjacent electrodes, and the shunt capacitance to ground, respectively. The impedances of

the stimulating and recording electrodes as a function of frequency for gold and Ir electrodes

are presented in chapters 3 and 4. In general, the impedances of the microelectrodes follow

a similar trend in frequency, although the exact value of the impedance depends on the

material used as the electrode site.

To determine the long term behavior of microelectrodes particularly in chronic neural

stimulation experiments, changes in the impedance value of the electrode are monitored

when the electrode is subjected to prolonged pulsed voltages [37]. In this study, stable

characteristics were observed for Ir sites similar to prior reported results in [37]. To enhance

the performance of the electrodes, it is possible to grow IrOx over the Ir surfaces in an

electrochemical activation process using acidic or saline solutions [89, 90]. Although a

significant reduction in the impedance magnitude has been demonstrated, the extended

range of the activation voltages results in unstable impedance behaviour. That is, the

impedance is low at the beginning and gradually increases and stabilizes at a value close to

that of an unactivated Ir electrode [37]. The SEM study revealed that during the pulse test,

the IrOx layer cracks and eventually delaminates from the underlying Ir metal. Therefore,

in chronic applications, the Ir electrodes with higher characteristics stability are preferred

over IrOx. Indeed, the electrode sites of the Medtronic DBS leads are constructed from Ir

/ Pt alloy despite the lower charge injection capacity and higher impedance values.
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2.4 Summary

Neuroprosthetics employ multisite microprobes to monitor and/or electrically stimulate the

activity of the neurons in the central nervous system. Metal microwires, glass electrodes,

and the bundle of microwires are the earliest devices used in neural studies and treatments.

Micro-fabrication technologies were later employed to construct advanced implantable de-

vices known as thin film microprobes. These devices provide an array of electrodes to

interact with many closely located neurons. Intracortical and DBS microprobes are the

main categories of invasive implants with penetrating shanks. The intracotrical devices

target the cortex while the DBS microprobes interface with the deep structures of the

brain.

Silicon substrates, metals, and flexible polymers have been employed as the structural

layer of the intracortical devices. The design, structure, and fabrication process of the

main types of implants were comprehensively reviewed. An advanced neural microprobe

must offer integrated flexible interconnection cables, on-chip signal processing circuitry,

and a high density 3D array of electrodes. A compact summary of the capabilities and

limitations of the most mature fabrication methods is provided in Table 2.1.

Microprobes with several centimetres long penetrating shanks are demanded for DBS

applications. Implantable devices with such lengths are mainly constructed with con-

ventional methods such as micro-assembly and polyurethane casting. An electroplating

method has also been reported to produce multisite microprobes with 3D structures. To

improve the efficacy of the DBS treatments, multisite 3D probes are demanded for si-

multaneous stimulation and recording with the capability to adjust the distribution of

the injected charge. Table 2.2 summarizes the features and shortcomings of several DBS

devices.

At the end of the chapter, a simplified equivalent circuit was introduced to model the
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Table 2.1: Limitation and capabilities of intracortical microprobes

Microprobe Capabilities Limitations

Michigan probes [7,64]
and

DRIE probes [71,74]

– Mature fabrication
– 3D electrode arrays
– Multisite shanks
– Integrated circuitry
– Small tissue damage

– Rigid and breakable
– Limited flexibility of the in-

terconnection cable
– Electrodes placed on single

side of the probe
Utah probes [76,77] – Mature fabrication

– Multisite
– Mechanically robust

– Not integrated with flexible
interconnection cable

– Single site per shank
– Short penetrating shanks
– Extensive tissue damage
– No on-chip circuitry
– Rigid

Metal microelectrode
arrays [30,42]

– Simple fabrication
– Excellent impedance char-

acteristics

– Single site per shank
– Not integrated with flexible

interconnection cable
– Extensive tissue damage
– No on-chip circuitry
– Rigid

Metal shank micro-
probes [41, 43]

– Multisite shanks
– Small tissue damage

– Not integrated with flexible
interconnection cable

– No on-chip circuitry
– Rigid

Polyimide-based mi-
croprobes [34, 81,82]

– Multisite shanks
– Small tissue damage
– Flexible shanks
– Integrated with a flexible

interconnection cable

– No on-chip circuitry
– Not strong for penetration

into the tissue. The de-
vice must be implanted us-
ing microsurgical tools.

frequency dependence of the microelectrode impedance. Ir and IrOx are typically selected

as the electrode sites due to the high capacity of the material for charge injection. In long

term studies, if a sufficient level of stimulation can be delivered, the stable microelectrode

characteristics is of crucial importance rather than the low impedance of the electrode. Ir

and Ir / Pt alloys are the most promising candidates and have been used in the commercially

available Medtronic DBS lead.
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Table 2.2: Limitation and capabilities of DBS microprobes

Microprobe Capabilities Limitations

Microwire bundles [27,
52]

– Provide recording sites
– Multisite

– Rigid
– Extensive tissue damage
– Not suitable for stimulation

of a large tissue volume
Medtronic DBS lead
[50]

– Mature fabrication
– Large stimulation sites
– Flexible
– Stable characteristics

– No recording capability
– Only provide 4 channels
– Unable to adjust the field

distribution inside the tis-
sue

– Extensive tissue damage
3D electroplated metal
microprobes [33]

– Provide both recording and
stimulation capability

– Multisite
– Excellent control over di-

mensions / density of the
electrodes

– Small probe volume

– Rigid
– Not integrated with flexible

interconnection cable
– Electrodes placed on single

side of the probe

41



Chapter 3

Flexible Intracortical Microprobes
with Improved Structural Design

The desirable mechanical and electrical characteristics of the intracortical microprobes were

pointed out in chapter 1 and the fabrication process, capabilities, and limitations of several

microprobes were discussed in chapter 2. The successful development of neuroprostetics

systems and brain-machine interfaces demands further progress in the technology and fab-

rication of implantable microprobes. At present, despite the great advances, non-breakable

rigid microprobes integrated with flexible interconnection cables have not been reported

and hybrid approaches are adopted to construct such devices.

This research aims to develop novel multisite microprobes for intra-cortical applica-

tions offering enhanced functionality and a high degree of biocompatibility. The proposed

multisite microprobes provide sufficient mechanical strength at the tip section for pene-

tration into the tissue while integrated with a flexible interconnection cable [91, 92]. The

fabrication method is based on surface micro-machining techniques and employs only 3

lithography steps to fabricate the device. Here, the details of the fabrication process,

design, and characteristics of the microprobes are presented.
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3.1 Structure and Design

The proposed intracortical microprobes consist of three major components: the probe tip,

the interconnection cable, and the wide substrate section where the bonding pads are

located. Fig. 3.1 presents the Three Dimensional (3D) schematics of the microprobe and

the probe tip. A flexible interconnection cable connects the electrode sites to the bonding

Reinforcement metal Polyimide

Interconnection cable

Bonding pads B

B'

A

A'

Reinforcement section

Microprobe tip

Electrode sites

Gold micro-needles

Polyimide structural 
material

Electrode sites

Electrode metal / Bonding pads

Fig. 3.1: 3D schematics of the proposed intracortical microprobe.
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pads. Polyimide is employed as the structural layer of the implant to provide a flexible

yet non-breakable interconnection cable. To enhance the rigidity of the microprobes at the

tip, metallic micro-needles are embedded in the polyimide outer shell. The micro-needles

are connected at the base to a rigid support section which facilitates the manipulation of

the device during the implantation procedure.

The cross-section schematics of the interconnection cable and microprobe tips are shown

in Fig. 3.2. At the tip, a rigid metallic section embedded in the polyimide outer shell locally

enhances the rigidity and hence provides the tip with enough strength to penetrate the

tissue. To offer the maximum possible flexibility, the interconnection cable only consists

of polyimide and thin metal traces which are employed as the addressing lines.

In this work, microprobes with 2, 4, and 8 mm-long probe shanks were constructed to

study the limitation and challenges of the proposed method of fabrication. The implants

offer as many as 32 electrode sites located on 4 parallel shanks. Table 3.1 lists the design

specifications such as the physical dimensions and the electrode count of different fabri-

Cross-section of the interconnection cable (BB')

Addressing lines

Electrode site

Reinforcement section

Tip cross-section (AA')

Addressing line

.   .   .

Fig. 3.2: Cross-section schematics of the microprobe tip and interconnection cable;
AA′ and BB′ marked in Fig.1, respectively.
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Table 3.1: Design specifications of proposed intracortical microprobes

Device
Electrode

counts

Number of

shanks

Shanks width

at base (µm)

Inter-electrode

distance (µm)

Interconnect

width (µm)

M32-8mm 32 4 120 700 700

M32-4mm 32 4 120 450 700

M32-2mm 32 4 120 200 700

M16-2mm 16 4 100 400 700

M8-8mm 8 1 120 700 400

M8-4mm 8 1 120 450 400

M8-2mm 8 1 120 200 400

cated devices. The width and interspacing of the addressing lines in the interconnection

cable of the 32-site microprobes is 10 µm and it is enlarged to 20 µm in devices with 16

and 8 electrode sites. The larger feature dimensions are typically accompanied by higher

fabrication yields. To scale the cross section area at the penetrating sections of the probe

shanks, the width and spacing of the addressing lines is reduced to 5 µm in these regions.

The dimensions of the sites are 20 µm × 20 µm in most devices while electrode sites as

small as 10 µm × 10 µm have been successfully defined.

One of the most important criteria in the mechanical design of intracortical microprobes

is the buckling critical force Pc of the probe shanks. If the applied force during the implan-

tation process exceeds Pc, it can cause permanent deformation in a metallic microprobe.

For a slender beam made of a material with the elastic modulus of E, the buckling critical

force, Pc, due to an axial force can be approximated by:

Pc =
π2Ewt3

12l2
, (3.1)

where l, w, and t are the beam length, width, and thickness, respectively [93]. As

expected, the critical force rapidly reduces for longer and thinner beams rendering them
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Table 3.2: Elastic modulus of metals and polymers

Material Elastic modulus (GPa)

Iridium (Bulk) [94] 528

Platinum (Bulk) [94] 168

Gold (Bulk) [94] 78

Gold (Electroplated) [95] 42–52

Polyimide [96] 2.45

Urethane A80 [97] 24 MPa

more susceptible to buckling. The elastic modulus of several metal and polymer materials

is given in Table 3.2.

Based on Table 3.2, materials such as iridium (Ir) and platinum (Pt) provide higher

elastic modulus values compared to gold (Au) and seem attractive candidates for the

metallic reinforcement sections of the probe. Despite better mechanical characteristics,

electroplating thick layers of Pt or Ir is often expensive and cumbersome. On the other

hand, Au can be easily electroplated at fast rates to produce low-stress thick films. This is

particularly important in the construction of long beams that can be easily deformed even if

a very low stress gradient exists across the thickness of the beam. Furthermore, it is possible

to release the residual stress in gold films at fairly low temperatures of around 360 – 400

◦C [98]. For such reasons, Au was selected as the material of choice for the reinforcement

micro-needles. Table 3.3 presents the estimated Pc for 2, 4, and 8 mm microprobe shanks

with 5, 15, and 25 µm-thick embedded micro-needles. In calculation of Pc, an average

elastic modulus of 50 GPa is used for the electroplated gold and a constant cross-section

of 15 µm × 100 µm is assumed for the reinforcement sections. The contribution of the

polyimide outer shell can simply be ignored since the elastic modulus of the polyimide is

negligible compared to that of the electroplated gold. In this work, 15 µm gold micro-

needles were embedded in the microprobe shanks to provide the approximate Pc values of

46



Table 3.3: Estimated buckling force of the electroplated gold micro-needles

Buckling critical force (mN)

Thickness of reinforcement micro-needle

Shank length 5 µm 15 µm 25 µm

2 mm 0.129 3.47 16.1

4 mm 0.032 0.87 4.0

8 mm 0.008 0.22 1.0

3.5, 0.9, and 0.2 mN for the 2, 4, and 8 mm long implants. These values are sufficient for

the penetration into the mouse cerebral cortex if dura and pia matters are removed [99].

However, it is possible to increase the strength of micro-needles or reduce the thickness of

the shanks by electroplating low stress Pt or Ir layers as the reinforcement metal.

3.2 Fabrication

Fig. 3.3 shows the sequence of a 3-mask fabrication process developed to produce the

intracortical devices. The details of the fabrication steps and the processing conditions are

presented in Appendix A.1. The microprobes were fabricated on a rigid substrate for easy

handling of the devices during the fabrication period. After cleaning the substrate, a 500

nm thick molybdenum (Mo) or chromium (Cr) was deposited as the sacrificial layer and

the first polyimide (PI) structural material (PI 2611, HD Microsystems) was spin-coated.

Both Si and glass wafers were used as the substrate and both Mo and Cr were deposited

as the sacrificial layer in different runs of the fabrication. Subsequently, the sample was

annealed for 1 hr at 350 ◦C to cure the PI film, and then a 100 nm thin layer of gold was

deposited as the electroplating seed layer.

To define the reinforcement micro-needles, an electroplating mold was created from
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polyimide. After coating the seed layer with an 18 µm thick PI layer, aluminum (Al) is

deposited (300 nm) and patterned in the first lithography step to create the mask layer.

The PI was then etched in an RIE etching step using mixtures of O2 and CF4 gasses.

The polymeric residues were then removed in an EKC 265 post etch residue remover and

a low pressure Ar sputtering process. The clean surface of the mold is essential for the

Rigid substrate

(a) Sacrificial layer deposition and PI coating

(b) Seed layer deposition and mold formation

(c) Electroplating of reinforcement micro-needles and planarization

(d) PI coating and metal deposition 

(e) Metal patterning and encapsulation 

(f) PI / seed layer / PI etching 

(g) Release 

Reinforcement micro-needles / seed layer Polyimide

Electrode sites / addressing lines Sacrificial layer

Fig. 3.3: The fabrication sequence of the intracortical microprobes viewed at the
cross-section of the device tip.
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success of the electroplating step since the polymeric residues prevent the gold from being

electroplated or properly stick to the seed layer. Next, gold was electroplated inside the

mold and the surface of sample was planarized to a final surface roughness of 500 nm.

Fig. 3.4 shows the optical images of the electroplating mold and the planarized gold layer

of a 4 mm-long microprobe. Further polishing is possible to smooth the surface of metal

layer, but not necessary since the subsequent PI coating will planarize the surface filling

the scratches imposed by the planarization procedure. The thickness of the reinforcement

micro-needles was determined to be 15 µm.

The micro-needles were isolated from the electrodes using a third layer of PI coating.

Ti (20 nm) / Au (300 nm) / Ti (20 nm) were then deposited and patterned to define the

addressing lines, the electrode sites, and the bonding pads. The recording channels were

(c)

(b)

2 mm

(a)200 µm

2 mm

Fig. 3.4: Optical images of (a) the electroplating mold at the tip of a micro-needle,
(b) the mold of a microprobe with 4 mm long penetrating shanks, and (c) the
electroplated and planarized micro-needles.
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encapsulated using a fourth layer of polyimide. Finally, the polyimide layers and the seed

layer were patterned to define the shape of microprobe and to expose the electrode sites

and bonding pads. The top Ti layer protects the electrode metal during the etching of

the seed layer. The Ti layer covering the bonding pads and the electrode sites was later

sputtered away using an Ar glow discharge. After removing the polymeric residues in EKC

265, the sacrificial layer is dissolved in the wet etchant solution (Mo: PAN at 40 ◦C for 24

to 48 hrs or Cr:CRE-473 Chromium Etch, Transene Company Inc., at 40 ◦C for 48 to 72

hrs) to release the microprobes. The fabricated devices on Si or glass wafers demonstrate

identical characteristics. The material of choice employed as the sacrificial layer (Mo or

Cr) also does not affect the properties of the microprobes.

Fig. 3.5 illustrates the optical images of the fabricated microprobes with 2, 4, and 8

mm-long probe shanks. The devices offer integrated flexible interconnection cables with

1 cm

Fig. 3.5: Optical images of released 32-site intracortical microprobes with 2, 4, and
8 mm-long shanks.
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lengths exceeding 2 cm and large bonding pads. Fig. 3.6 presents the magnified images of

the probe tip, the shanks, and a recording site. As shown in Fig 3.6(b), the centre to centre

distance of the electrode sites in a 4 mm-long design is 450 µm, although it can be easily

tailored in the second and third lithography steps. The surface roughness of the electrode

sites is below 2 nm as confirmed by the Veeco WYKO NT1100 optical profiler. Indeed,

(b)

500 µm

(c)

100 µm

(a)

4 mm

Fig. 3.6: Optical images of (a) the implants tips, (b) probe shanks of a 4 mm-long
design illustrating 3 rows of electrode sites, and (c) an electrode site.
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the surface defects and scratches of the gold micro-needles have not been transferred to

the electrodes metal layer and have been planarized by the PI intermediate layer.

Fig. 3.7 illustrates the SEM image of a 2 and 4 mm-long intracortical microprobe.

Arrays of small holes were produced in the base section connecting the shanks and the

(a)

(b)

Fig. 3.7: SEM images of intracortical microprobes with 2 and 4 mm long penetrating
shanks.
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interconnection cable to reduce the duration of the release process. Fig. 3.8(a) and (b)

show higher magnification images of the probe shanks and an electrode site located at

the tip of a shank. No polyimide residues were observed on the sidewalls of the probes.

Moreover, the surfaces of the PI insulating layer or the electrode sites have not been

(a)

(b)

Fig. 3.8: Close-up SEM images of a probe shank and an electrode site.
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damaged during the PI etching or the release of the device. Indeed, the O2 / CF4 plasma

RIE process was optimized to etch the PI layers leaving minimal amount of polymeric

residues which are soluble in IPA or EKC solutions.

To facilitate the electrical characterization of the fabricated devices, the microprobes

were connected to commercially available IDC DIP plug connectors using custom made flex-

ible adaptor boards. The adaptor boards were fabricated on Kapton sheets (500HN from

DuPont) with a thickness of 127 µm using a 50 nm Cr / 1 µm Au bilayer as the addressing

lines. The adaptor was mounted on the IDC connector and the electrical connections were

made by silver epoxy. The electrical joints were then covered with nonconductive epoxy to

increase the mechanical strength of the connection points. To connect the bonding pads of

the microprobe to the adaptor circuit, silver epoxy can be used to create elevated contact

points on either the pads of the connector or the microprobe. Fig. 3.9(a) and (b) show the

(a)

(b)

Fig. 3.9: Images of (a) the flexible adaptor board and (b) the silver epoxy covered
contact points.
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Fig. 3.10: Photograph of a 32-site microprobe attached to a 40 pin IDC connector
and a ribbon cable.

optical image of the adaptor board and the close-up image of the adaptor’s contact points

covered with silver epoxy. The microprobes were then placed over the adaptor and the

electrical connection between the contact pads was made by a mechanical force applied by

2 rectangular solid sheets pressed against each other. Fig. 3.10 presents the image of a 4

mm long microprobe integrated with a 40 pin IDC connector. A ribbon cable is attached

to the connector for easy access to the recording channels.

3.3 Impedance Characteristics

The overall impedance of a neural electrode consists of the impedance of the electrode-

electrolyte interface and the parasitic elements introduced by the addressing line. In this

section, the electrical characteristics of the interconnection cable and the custom made

connector are discussed. The experimental setup used for measuring the impedance is

described and the obtained results for electrodes with Au and Ir stimulation / recording

sites are presented.
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3.3.1 Addressing Lines

The electrode sites are connected to the external circuitry through the integrated intercon-

nection lines and the external cables. These components add parasitic series resistances

and parallel capacitances to the recording channels. The channel to ground and channel to

channel capacitances can be ignored in practical applications. These parasitic elements are

estimated to be less than 1 pF for a 10 µm-wide 3 cm-long interconnection cable encapsu-

lated by a 4 µm polyimide layer. These capacitance values translate into parallel parasitic

impedances in the MΩ-range at frequencies above 1 MHz where the channel impedance

is below 10 kΩ. On the other hand, the series DC resistance of the addressing lines may

significantly increase the impedance of the channel and severely affect the signal to noise

ratio. In this work, the addressing lines are made of gold to reduce the parasitic resistance

to below 1 kΩ. The measured resistance values ranges from 200 Ω to 260 Ω close to the

theoretical value of the 220 Ω expected for a 300 nm-thick 3 cm-long conductor. The resis-

tances of the flexible adaptor and cables are also in the range of 90 to 125 Ω significantly

below the channel impedances.

3.3.2 Experimental Setup

The impedance of an electrode is commonly measured using a tri-electrode measurement

setup illustrated in Fig. 3.11. In a two electrode setup, when the voltage of an electrode

of interest is measured against a reference electrode, a voltage drop equal to I · Rs is

included in the measured voltage. The I is the electrode’s current and Rs is the resistance

of the solution due to the ionic mass transfer. In a tri-electrode setup, the current is

passed between the working electrode and a counter electrode. The voltage of the working

electrode is monitored relative to a separate reference electrode that is placed near the

working electrode. Therefore, the voltage of the working electrode remains constant and
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Fig. 3.11: Schematic of a tri-electrode measurement setup.

equal to the open circuit value. The tri-electrode setup employed in this study consists

of an Ag-AgCl reference electrode and a platinum counter electrode. The input signal

is applied between the electrode sites and the counter electrode. The resulting current

and voltage between the electrode sites and electrolyte were recorded against the reference

electrode and employed to calculate the site impedance.

3.3.3 Impedance of Au electrodes

The impedance of the recording channels was measured in a 1M KCl saline solution. Fig.

3.12 shows the impedance magnitude and phase of a representative channel over the 10 Hz

– 300 kHz frequency range. The DC resistance of the addressing lines and the electrolyte

impedance from the reference to counter electrode was found to be negligible compared to

the channel impedance even at 300 kHz. Therefore, the recorded impedances accurately

represent the impedance of the electrode sites particularly below 100 kHz.

The impedance of an electrode site is comprised of two distinct parallel components

modeling the faradic charge transfer process to the solution and the charge / discharge

of electrode-electrolyte double layer. At low frequencies, the impedance associated with
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Fig. 3.12: (a) Impedance magnitude and (b) phase of a 20 µm × 20 µm recording
channel.

the faradic process is dominant while at high frequencies, the double layer capacitance

provides a more effective current path to the solution. As expected, the phase lag of the

site impedance rapidly rises above 30 kHz. In this frequency range, the impedance of
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the electrodes is determined by the double layer capacitance and exhibits more capacitive

behaviour as the frequency increases. A key advantage of the fabricated devices is the

low impedance of the channels particularly at high frequencies. Due to the utilization of

gold as the addressing lines, the impedance of the electrodes is not limited by the parasitic

series resistance. As a result, the high frequency features of the neurons’ action potential

can be recorded with an enhanced signal to noise ratio.

3.3.4 Impedance of Ir electrodes

The impedances of neural microelectrodes are mainly determined by the electrodes’ di-

mensions, the sites material, and the properties of the biological environment such as the

chemical compound and ionic concentration. The dimensions of the electrodes for record-

ing the single neuron’s activities are preferred to be in the range of 10 – 20 µm to avoid

measuring the average responses of the adjacent cells [7]. However, electrodes with such

dimensions demonstrate high impedances that undermine the signal to noise ratio of the

recorded signal. Materials such as platinum black [49], iridium [100], and iridium ox-

ide [101] have been widely used to enhance the capacity of the charge delivery and as a

result to reduce the impedance of the electrode. To improve the electrical characteristics

of the channels, a 200 nm thick Ir layer was electro-plated over the gold electrode sites

with details explained in chapter 4. Fig. 3.13(a) illustrates the optical image of a probe

tip with adjacent gold and Ir-plated electrode sites. The Ir-plated electrode site appears

black due to the increased surface roughness of the electrode.

Fig. 3.13(b) and (c) present the impedance magnitude and phase of the Ir-plated

electrodes over the 10 Hz – 300 kHz frequency range in a 1M KCl saline solution. As

expected, the impedances of Ir electrodes are substantially less than the corresponding

values for gold electrodes. The electrode impedances demonstrate enhanced capacitive
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Fig. 3.13: (a) Optical images, (b) impedance magnitude, and (c) phase of Au and
Ir-plated electrode sites.
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characteristics below 100 Hz due to the increased surface roughness, and an enhanced

resistive behaviour above 1 kHz as a result of the higher charge delivery capacity of the Ir

layer.

3.4 Impedance Stability

The electrical characteristics of neural microprobes drift over time when the device is

immersed in an ionic or biological environment. This characteristics drift is associated

with the corrosion of the electrode metal and the erosion of the structural layer [28].

Such reactions deteriorate the performance of the microprobes by increasing the elec-

trodes impedance and decreasing the isolation between the channels particularly when the

electrode is used for stimulation. In this study, the impedance behaviour of Au and Ir

electrodes in saline and strong acidic solutions was investigated. The Au electrode sites

were subjected to a prolonged stress test with 100 million cycles of square pulses. A 10

kHz square pulse wave with a 2 V peak-to-peak amplitude (+1 V to -1 V) and a 50% duty

cycle was applied between the channel and the reference electrode in a 1 M HCl solution.

The measured impedance magnitude and phase of an electrode sites before and after the

pulse test experiment are illustrated in Fig. 3.14.

The deviation in the impedance of the electrodes was smaller than 50% of the initial

values. The measured impedances fall rapidly during the first 10 million cycles and then

remain constant for the rest of the experiment. A possible explanation for this behavior is

the electro-chemical cleaning of the electrode surface from polymeric residues that remained

after the RIE etching of the top polyimide layer. These residues reduce the effective contact

area of the electrode site and consequently the rate of charge transfer to the solution. Upon

removal of this layer, the surface area of the electrode is enhanced resulting in a lower

impedance with increased capacitive characteristics as observed in Fig. 3.14(b). This
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Fig. 3.14: (a) Impedance magnitude and (b) phase of an Au electrode before and
after the pulse test in 1 M HCl.

speculation is also supported by a larger impedance deviation measured for microprobes

which were not rinsed in the EKC solution after the RIE etching step. Furthermore, no

signs of surface damage or metal delamination were detected in microprobes after the pulse

test (see Fig. 3.16).
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Fig. 3.15: (a) Impedance magnitude and (b) phase of an Ir electrode before and after
the pulse test in 1 M HCl.

Fig. 3.15 depicts the impedance magnitudes and phases of Ir-plated electrodes after

a 100 million cycle pulse stress test. The test was also performed in a 1 M HCl solution

employing a square pulse wave with a 2 V peak-to-peak amplitude. Other parameters of

the stress pulse were kept similar to the previous stability experiment. Stable impedance

63



Fig. 3.16: The optical images of an electrode site after the pulse test.

characteristics were observed over the course of the experiment. The Optical image of an

electrode site exposed to the pulse stress test is shown in Fig. 3.16. No sign of degradation

in the gold or electroplated Ir layer was observed. Indeed, the fabricated microprobes

demonstrate stable impedance characteristics and can be potentially employed in chronic

applications.

3.5 In-vitro Recording

A 4mm-long single shank microelectrode was employed to record the neural activities of

the whole hippocampus of a 7 day old postnatal C57BL/6 mouse. The hippocampus ex-

traction method and the configuration of the perfusion chamber will be briefly described

in chapter 4 while a comprehensive discussion on the methodology and experimental setup

has been published in [102]. The microprobe was positioned on a micromanipulation stage

and advanced into the tissue to place the electrode site approximately in the middle of

the hippocampus. Moreover, the microprobe was inserted into and retrieved from sev-

eral locations in the tissue without bending or mechanical damage. However, for a solid
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confirmation additional experiments on thicker neural tissues are necessary.

The neural signals from the electrodes were first amplified using a custom made circuitry

and captured using a HP DSO3202A digital oscilloscope with a 10 kHz sampling rate.

The amplifier circuit employs an AMP02 instrumentation amplifier (Analog Devices) with

the voltage gain set to 500 V/V. To improve the signal to noise ratio, a 10 pole low

pass Chebyshev’s filter with a cut-off frequency of 500 Hz was applied to the recorded

signal in Matlab. Fig. 3.17 illustrates the periodic field potential activity recorded from

a representative electrode site. The in-vitro experiments confirm the capability of the

fabricated microprobes to record the neural activities. To enhance the signal to noise ratio

of the recorded signal an improved packaging design, higher-gain amplifier, and shielded

interconnection cables are necessary.

3.6 Summary

The design, fabrication, and characteristics of a novel generation of multisite flexible in-

tracortical microprobes with improved structural design were described in this chapter. A

3-mask fabrication process was developed to produce the 32 channel microprobes integrated

30 mV

2 s

Fig. 3.17: Recorded periodic field activities in a C57BL/6 mouse hippocampus.
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with 2 cm-long flexible interconnection cables. The electrode sites are located on 4 parallel

shanks mechanically reinforced by embedded 15 µm-thick gold micro-needles. The micro-

probes are non-breakable and rigid enough for penetration into the tissue while connected

to the external circuitry with an extremely flexible cable. To enhance the microprobe

functionality, the impedances of the recording channels were reduced by electroplating Ir

over the gold electrode sites. The impedance characteristics and stability of the electrodes

were studied in acidic and saline solutions. The stable electrical characteristics of both

iridium and gold electrodes were demonstrated over the courses of prolonged pulse stress

tests for 100 million cycles. The functionality of the fabricated microprobes was confirmed

by successful recording of the periodic field potential activity from an intact mouse hip-

pocampus. Table 3.4 compares the properties of the proposed intracortical microprobes to

those reported in literature.

Table 3.4: Comparison of the intracortical microprobes’ properties

Microprobe
Multisite

shanks

3D

array

Integrated

flexible cable

Rigid for

penetration

Integrated

electronics

Breakable

structure

Michigan [7, 64] Yes Yes Yes a Yes Yes Yes

DRIE [71,74] Yes Yes No Yes Possible Yes

Utah [76,77] No No No Yes No No

Metallic arrays [30,42] No No No Yes No No

Polyimide-based [34,81] Yes Possible Yes No No No

Metal Shank [41,43] Yes Possible No Yes No No

Proposed microprobes Yes Possible Yes Yes No No

aOnly out-of-plane flexibility.
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Chapter 4

Multisite 3D Microprobes for Deep
Brain Stimulation and Recording

Deep Brain Stimulation (DBS) has been accepted as an effective treatment for advanced

Parkinson’s disease [11], epilepsy [103, 104], and dystonia [12]. DBS is an alternative

method for patients suffering from the complications of long-term levodopa therapy [105]

and favoured over non-reversible destructive lesioning. DBS is performed by a multisite

electrode connected to a pulse generator implanted in the chest. The electrical connection

between the components is provided by a subdermally routed interconnection cable.

The DBS settings such as the polarity of the electrode sites, current amplitude, pulse

width, and pulse frequency are adjusted to improve the efficacy and reduce the adverse

effects of the treatment [106]. The commonly employed stimulation parameters are in

the wide range of 1 to 5 V pulse amplitude, 60 to 200 µs pulse width, and 120 to 180

Hz stimulus frequency determined mainly by trial and error [107]. The trial and error

approach is mostly effective in the treatment of disorders such as tremor that respond

quickly to the stimulation. In cases such as dystonia and obsessive-compulsive disorder

where the benefits of stimulation may appear weeks later, it is crucial to understand the

therapeutic mechanism of DBS [108].

Despite the fast growth in clinical applications of DBS, the mechanism of the action still
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remains unclear [109]. To understand the effect of DBS on targeted neurons, long-term

stimulation and recording of the neural activity from a large number of closely located

neurons are necessary. Hence, chronically implantable microelectrode arrays must be de-

veloped to stimulate individual cells and monitor their response. A large number and high

density of electrode sites are demanded, while the size of the device must be scaled to min-

imize the volume of the displaced tissue and thus, the amount of damage introduced by the

implant penetration. Moreover, to enhance the efficacy and minimize the adverse effects

of the DBS treatment, the microprobe must be able to control the spatial distribution of

the charge injected into the tissue. Such requirements were described in chapter 1 and a

comprehensive review of the characteristics, designs and fabrication methods of currently

available microprobes was provided in chapter 2. The reported microprobes do not satisfy

many of the requirements such as the structural flexibility, recording capability, and 3D

configuration.

In this doctoral study, a novel approach was developed to produce 3D microprobes with

independent stimulation and recording electrodes around the probe shaft. Polyimide-based

planar devices fabricated by MEMS processing techniques were assembled on a flexible sup-

port structure to construct the implants [110, 111]. Therefore, the dimensions and spatial

distribution of the electrode sites are precisely controlled by lithography. Furthermore,

flexible interconnection cables were integrated with these devices to facilitate their con-

nections to external circuitry. The fabrication method and characteristics of the proposed

DBS microprobes are presented in this chapter.

4.1 Structure and Design

The 3D structure of the proposed DBS microprobes along with the cross-section schematics

of the probe tip are illustrated in Fig. 4.1. These implants offer independent electrodes
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Fig. 4.1: 3D schematic and the tip cross-section of a proposed DBS microprobe.

around the probe shaft with dimensions suitable for stimulation or recording. The main

component of these implants is a flexible planar microprobe wrapped around or assembled

on a cylindrical support structure. Fig. 4.2 shows the 3D schematic of a planar thin

film probe along with the device cross-section at the tip. The planar microprobes consist

of three major components; namely, the probe tip, the interconnection cable, and the

integrated connector. At the tip of the planar probe, an array of 16 stimulation and 16
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Fig. 4.2: (a) 3D schematic of a planar microprobe and (b) the cross-section of the
probe tip.

recording electrodes is fabricated. The dimensions of the stimulation and recording sites

are 100 µm × 1.5 mm and 20 µm × 20 µm, respectively. The length of the stimulation

sites was set equal to those of the Medtronic’s DBS leads to provide a large stimulation

capability. Concurrently, it is possible to monitor the single neuron’s activities using the

embedded recording sites with micrometre-scale dimensions.
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4.2 Methodology and Approach

The deposition, lithography and etching must be carried out over a 3D surface if con-

ventional approaches are employed for the fabrication of the proposed DBS microprobes.

Although one can use techniques such as 3D lithography or laser micromachining, the

resolution and associated yields for such processes are limited. The small dimensions of

the device also add to the complexity of these methods. To avoid facing such difficul-

ties, the planar microprobes are fabricated conventionally and then bonded to a support

structure using polyurethane or thermoplastic adhesive layers. Here, the fabrication of the

planar thin film probes is discussed and then the details of the micro-assembly method is

described.

4.2.1 Fabrication of Thin Film Microprobes

The fabrication sequence of the planar microprobes is shown in Fig. 4.3. The details

of the fabrication steps and the processing conditions are presented in Appendix A.2.

The 2-mask process begins with the deposition of Cr as the sacrificial layer on a rigid

substrate such as a silicon or glass wafer. The rigidity of the substrate facilitates sample

manipulation and handling throughout the fabrication process. Both Si and glass wafers

were used as the substrate in different runs of the fabrication. As the first structural layer,

polyimide (PI2611 HD Microsystems) is spin coated and cured with a final thickness of

4 µm. Subsequently, a 250 nm gold layer is E-beam deposited and patterned to form

the electrode sites, addressing lines, and bonding pads. Then, the second polyimide layer

(4 µm) encapsulates the gold patterns. To provide access to the bonding pads and the

electrode sites, an oxygen plasma dry etching step is employed. The etching of the top

polyimide structural layer does not affect the gold patterns and hence it is continued to

define the shape of the microprobe as well. Finally, the sacrificial layer is removed in a
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1) Sacrificial layer deposition and structural layer spin coating

2) Metal deposition and patterning

3) 2nd structural layer spin coating and patterning

4) Wet release 

A

A'

Interconnection cable

Stimulation sites

Recording sites

Substrate

Metal

Sacrificial layer

Structural layer

Fig. 4.3: The fabrication sequence of planar microprobes.

selective wet etchant solution to release the microprobes. The fabricated devices on Si or

glass wafers demonstrate identical characteristics.

The photograph of a fabricated microprobe and close-up images of the stimulation and

recording sites are shown in Fig. 4.4. The devices provide 16 stimulation and 16 recording

channels integrated with a 2 cm long interconnection cable. Although no adhesion layer is

employed, the gold metal layer is observed to have a proper adhesion to the bottom and

top polyimide films. To improve the adhesion of the gold to the polyimide structural layer,
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1 cm

2 mm

200 µm 40 µm

(a)

(b)

(c) (d)

Fig. 4.4: Optical images of (a) a planar device, (b) the microprobe tip, (c) a stimu-
lation site, and (d) a recording site.

an oxygen plasma surface treatment process was utilized. Hence, the application of the

adhesion layer was avoided to achieve the highest degree of biocompatibility.

The surface morphology of the stimulation and recording sites were studied using SEM.

Indeed, no cracks, defect points, or delamination were detected on the planar probes (see

Fig. 4.5). The surface roughness of the polyimide and gold layers were also less than 2

nm, as confirmed by a Veeco Dektak 8 surface profiler.
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Fig. 4.5: The close-up SEM image of (top) a recording and (bottom) a stimulation
site.

4.2.2 Micro-Assembly

Polyurethane A80 was used as the support structure or the shaft of the DBS microprobes.

Polyurethane is a rubber compound that solidifies at room temperature after mixing the

two liquid constituents. The high degree of biocompatibility and the robust mechani-

cal properties are a strong motivation for the application of polyurethane as the shaft

of the DBS probes. In fact, the commercially available DBS probes by Medtronic use

polyurethane as the outer jacket. Here, Poly 75-79 from Polytech was injected inside a
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cylindrical mold with a diameter of 700 µm. The mold is then heated to 50C for 24 hrs to

cure the polyurethane. To facilitate the release process, the faces of the mold were coated

with a thin layer of release agent, Pol-Ease 2300, prior to the injection of the polyurethane.

The planar devices were secured over the pre-made shafts using a thermoplastic film

(3M thermo-bond film 406). The thermoplastic film is an adhesive layer (80 µm) that melts

at elevated temperatures (∼ 120 ◦C) and bonds the planar devices to the polyurethane

shaft. The adhesive layer was cut to the size of the planar microprobe tip using a laser

micromachining equipment with ± 2 µm precession. To fold a planar probe around a

polyurethane shaft, a planar device was placed in the middle of a two piece cylindrical

mold. Next, the thermoplastic layer and shaft were aligned to the middle of the probe

with less than ± 5 µm positioning error and pushed inside the first piece of the mold.

Prior to this step, the cured DBS shafts were rinsed in IPA and dehydrated at 100 ◦C

for 30 min. The second mold piece is then closed folding the layers over the shaft. After

annealing the device at 120 ◦C for 2hrs, the mold is opened and the device is released.

Although this method is capable of producing 3D microprobes, the yield of the fabri-

cation is low since in the annealing step the thermoplastic layer may reflow and cover the

electrode sites. The biocompatibility of thermoplastic layer is another concern particularly

for implants used in chronic applications. To enhance the yield of the fabrication and the

biocompatibility of the device, a thin layer of polyurethane was later employed to bond

the planar probe to the support structure.

To produce a thin layer of polyurethane over the support structure, the shafts were

immersed in freshly mixed polyurethane and kept in a vertical orientation to remove the

excess liquid. This second layer of polyurethane was partially cured for 6 hrs resulting in

a total sample diameter of 740 µm. Therefore, the partially cured polyurethane layer was

as thin as 20 µm.

Fig. 4.6 and Fig. 4.7 illustrate the optical and SEM images of a completed DBS
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microprobe. The fabricated devices provide 2 cm-long interconnection cables and large

bonding pads that facilitate the connection of these devices to an external circuitry. The

probe offers 16 stimulation and 16 recording sites placed at the tip of the microprobe. The

stimulation sites are 100 µm × 1.5 mm and the recording sites measure 20 µm × 20 µm.

The tip of the probe measures 1.2 mm in length and 750 µm in diameter. As a result,

a 3-fold reduction in the volume of the device is achieved compared to a Medtronic DBS

lead. More importantly, each cylindrical stimulation site in a commercial device has been

replaced with 4 independent electrodes around the shaft of the implant. The thin film

probes wrap around the polyurethane shafts with a ∼ 240◦ solid angle. Wider solid angles

are possible to achieve by increasing the width of the planar microprobe and employing a

four piece mold for assembly.

Probe tipBonding pads

Interconnection cable

1 cm

Fig. 4.6: Optical images of a 3D DBS microprobe.
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Stimulation sites Recording sites

Fig. 4.7: SEM Images of a 3D DBS microprobe.

The close up SEM images in Fig. 4.7 confirms that the electrode sites, particularly the

large stimulating sites, have not been damaged throughout the assembly process. The sur-

face of the electrode sites is 4 µm below the top surface of the planar probe and therefore

during the assembly the electrodes are not in immediate contact with the mold. Further-

more, the flexibility of the gold and polyimide allows the planar microprobes to uniformly

bend over the shaft. No buckling in the gold electrode sites, cracks in the gold layer, or

detachment of the metal from polyimide layer is seen in the SEM images. To further re-

duce the manipulation forces and improve the yield of the fabrication, prior to folding the

devices over the polyurethane shafts, the thin film probes have been placed in a half cylin-

drical mold with diameter of 1 mm. A metal needle, 0.5 mm in diameter, has been used

to push and hold the planar probes inside this mold. The ensemble was then annealed at

200 ◦C for 2 hrs. After release, the microprobes have a curved-shape with 1mm diameter.
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The initial curvature of thin film probes significantly simplifies the alignment of the sample

with the shafts and the insertion into the final mold.

After the fabrication of the microprobes, the bonding pads of the microprobes were

connected to a commercially available IDC DIP plug connector using a custom made

flexible cable. As described in chapter 3, a Kapton sheet (500HN from DuPont) with a

thickness of 127 µm was used as the substrate of the flexible cable, and a 50 nm Cr / 1

µm Au bilayer was used to create the addressing lines. The IDC connector was mounted

on the flexible cable, and the electrical connections were made by silver epoxy. To enhance

the mechanical strength of the connection points, polyurethane were dispersed over the

connection points and cured at 50◦C for 24 hrs. The bonding pads of microprobes were

then connected to the flexible cable using silver epoxy contact points and a mechanical

force applied by 2 rectangular solid sheets screwed together. Fig. 4.8 presents the image of

a DBS microprobe integrated with a 40 pin IDC connector. A ribbon cable can be easily

attached to the connector to facilitate the electrical characterization of the fabricated

devices.

Fig. 4.8: Photograph of a DBS microprobe integrated with a 40-pin IDC connector.

78



4.3 Impedance Characteristics

The electrical characteristics of the addressing lines and electrode sites were studied em-

ploying the experimental setup described in section 3.3.2. An electroplating process was

developed to deposit Ir over Au electrode sites. The impedance characteristics of the Ir and

Au stimulation and recording electrodes are studied followed by the stability and in-vitro

measurements.

4.3.1 Interconnection Cable and Connector

The DC resistances of the addressing lines connecting the bonding pads to the stimulating

sites of the microprobe were measured using a four point probe technique. The lengths

of the 10 µm-wide interconnection lines are 3 - 4 cm depending on the position of the

site. The measured resistances are between 240 Ω to 340 Ω close to the theoretical value

of 290 Ω expected for a 10 µm-wide, 300 nm-thick, and 4 cm-long gold conductor. The

resistances of the interconnection lines for the recording sites can not be easily measured

since the recording sites are smaller than the probe tip. Nevertheless, the lines should

exhibit resistances close to those of the stimulating sites because of the similar aspect

ratios. Similar to the IDC cables used for the intracortical microprobes, the resistances of

the connector and cables are in the range of 90 Ω to 125 Ω measured between the contact

points of the flexible cable and ends of the 1 m long ribbon wires.

4.3.2 Au Electrodes

The impedance magnitudes and phases of the stimulation and recording channels were

measured in a 1M KCl saline solution using the tri-electrode experiment setup described
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in section 3.3.2. Ag-AgCl and Pt were employed as the reference and counter electrodes,

respectively. A sinusoidal input signal was applied between the electrode sites and the

counter electrode. The current and voltage between the electrode sites and the KCl elec-

trolyte were recorded against the reference electrode and employed to calculate the site

impedances.

The impedances of the stimulation and recording channels over the 10 Hz – 300 kHz

frequency range are presented in Fig. 4.9 and Fig. 4.10, respectively. The measured

impedances consist of the resistance of the connector, cables, and addressing lines (RAddress),

the electrode site impedance (Ze), and the uncompensated electrolyte impedance (ZElec).

The equivalent circuit model of a stimulating or recording channel in an electrochemical

cell is shown in Fig. 4.11. The electrolyte impedance from the reference to the counter elec-

trode was mainly resistive and found to be negligible compared to the recorded impedances

of the channels even at 300 kHz. For the recording channels, the total parasitic resistance

of the addressing line in series with resistance of flexible cable, connector, and test wires

(less than 500 Ω) is substantially smaller than the impedance of the recording channels
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Fig. 4.9: (a) Impedance magnitude and (b) phase of a 0.1 mm × 1.5 mm stimulation
channel.
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Fig. 4.10: (a) Impedance magnitude and (b) phase of a 20 µm × 20 µm recording
channel.

(higher than 10 kΩ at 300 kHz) thus can be ignored in practical applications. On the other

hand, for the stimulation channels, the series parasitic resistance is not negligible compared

to the channel impedance at frequencies higher than 10 kHz. However, for most DBS ap-

plications, the frequency of stimulus is less than 1 kHz where the channel impedance is

higher than 10 kΩ. The electrode site impedance is comprised of two distinct elements

as shown in Fig. 4.11. The impedance Zf models the faradic charge transfer process to

the solution, while the capacitance Cd is the electrode-electrolyte double layer capacitance.

At low frequencies, the impedance associated with the faradic process is dominant. For

RAddress 

ZElec

Zf

Cd

Ze

Fig. 4.11: The equivalent circuit model of the measured channel impedances and the
impedance of electrode sites, Ze.
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the recording channels, at high frequencies, the double layer capacitance provides a more

effective current path to the solution and therefore determines the overall electrode site

impedance. In this frequency range, the impedance of the electrodes should exhibit more

capacitive behaviour as the frequency increases. Fig. 4.10(b) confirms that the phase lag

of the recording site impedance rapidly rises above 30 kHz. For the stimulation site, the

high frequency impedance of the channels is mainly determined by the resistance of the

addressing lines RAddress. In Fig. 4.9(b), a substantial drop is observed in the phase lag of

the measured impedances at frequencies higher than 100 kHz. Furthermore, the impedance

magnitude of the channel is close to the values of the RAddress.

4.3.3 Ir Electrodes

To improve the electrical characteristics of the channels in terms of the impedance and

capacity of the charge delivery, the electrode sites were electroplated with iridium. The Ir

electro-deposition was performed in an aqueous solution containing 6.2 gr/l Ammonium

Chloroiridate III, 14.0 gr/l Ammonium Fluoride, 23 ml/l sulphuric acid (98%), and 20 ml/l

sodium hydroxide (20%) [112]. At a current density of 200 mA/cm2 and a temperature of

70 ◦C, a 200 nm layer of Ir was plated over the gold sites at a plating rate of 4.5 Å/s. Films

that were thicker than 500 nm or deposited at faster rates were not stable and delaminated

20 µm

Fig. 4.12: Optical images of a recording site before and after Ir plating.
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from the gold seed layer due to the presence of high residual stress in the Ir layer. Fig.

4.12 illustrates optical images of a recording electrode site before and after the Ir plating.

The Ir-plated site (right) appears black in color due to the increased surface roughness of

the electrode.

The impedances of the Ir-plated stimulation and recording channels over the 10 Hz –

300 kHz frequency range are depicted in Fig. 4.13. The measurements were performed
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Fig. 4.13: Impedance magnitudes and phases of Ir-plated stimulation ((a) and (b))
and recording ((c) and (d)) channels. The corresponding impedance values for gold
electrodes are also shown for comparison.
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at room temperature in 1M KCl saline solution. As expected, the impedances of the

Ir electrodes are substantially less than the corresponding values for the gold electrodes

at frequencies where Zf is dominant. The electrode impedances demonstrate increased

capacitive characteristics at very low frequencies such as 10 Hz. This behaviour can be

attributed to the higher charge delivery capacity of the Ir layer and the increased surface

roughness of the electrode sites. For recording electrodes, Zf rapidly becomes resistive

at higher frequencies and thus determines the overall impedance of the channel. The

same trend is also observed for the stimulation electrodes, although the resistance of the

addressing lines dominates the channel impedance at frequencies above 1 kHz.

4.4 Impedance Stability

To study the impedance stability of the stimulating and recording sites, the Au and Ir

electrode sites were subjected to a prolonged pulse test. A square wave pulse with a 4

V peak-to-peak voltage (+2 V to –2 V) was applied between the Au electrodes and the

reference electrode for 100 million cycles in a 1 M KCL saline solution. The frequency

of the stress pulse was 10 kHz with a 50% duty cycle. The electrode impedance was

measured frequently during the pulse test. At these points, the stress pulse was stopped

and a sinusoidal signal was employed for impedance measurement. Fig. 4.14 depicts the

impedance magnitude and phases of the Au stimulation and recording electrode sites before

and after the pulse stress test.

Fig. 4.15 shows the evolution of the impedance magnitudes and phases of an Au

stimulation site at 100 Hz and 10 kHz, and an Au recording site at 10 Hz and 1 kHz

during the pulse test experiment. Initially, a rapid change in impedance values occurs

followed by a saturating behaviour at longer times. At low frequencies, the phases of

the impedances increase and Zf demonstrates higher capacitive characteristics. At higher
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frequencies, the impedance magnitude of the Au stimulation sites saturates to values close

to the resistance of the addressing lines with a substantially dropped phase lag. The

observed trend for the impedance shifts suggests that the Zf is reduced due to the increase
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Fig. 4.14: Impedance magnitudes and phases of Au stimulation ((a) and (b)) and
recording ((c) and (d)) channels before and after 100 million cycle pulse test in KCl
saline.
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Fig. 4.15: (a) and (b) Impedance magnitudes and phases of an Au stimulation site
at 100 Hz and 10 kHz. (c) and (d) Impedance magnitudes and phases of an Au
recording stimulation site at 10 Hz and 1 kHz.

in the pseudo-capacitance of the faradic charge transfer process. A possible explanation

for this behaviour is the cleaning of the electrode surface in a process similar to the electro-

chemical cleaning. To expose the electrode site, the polyimide was removed in an RIE dry

etching process. The etching of polyimide in RIE is known to leave polymeric residues
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on the surface of underlying layers [113]. Although, the RIE process was optimized to

eliminate the polyimide residues, it is possible that a nanometre-thin polymer layer covers

the surface of the electrode. Such a thin trace of residues is not detected in the SEM

images but will reduce the effective area of the electrode and hinder the charge transfer to

the solution. Upon removal of this layer, the surface area of the electrode is substantially

enhanced, resulting in lower Zf and channel impedance.

A pulse stress test was also performed in a 1 M HCl solution to investigate the charac-

teristics stability of the channels in a strong acidic solution. The drift in impedance was not

as pronounced over the course of the experiment in HCl. The smaller initial impedances

measured in the HCl can be explained by the effect that the HCl solution has on the poly-

meric residues left over the surface of the electrodes. When the probe is immersed in the

solution, it is possible that the HCl solution partially dissolves or attacks the polymer layer.

Therefore, the initial measured impedance value is less than that recorded in the KCl. Af-

ter the pulse test, the electrode sites were examined under an optical microscope. No signs

of surface damage or metal delamination were detected in the microprobes demonstrating

the potential of fabricated microprobes for chronic applications.

The long term stability of Ir electrode sites under a prolonged pulse stress in a 1 M KCl

solution was studied. A square wave signal with a peak-to-peak voltage of 3 V (+1.5 V to

-1.5 V) was employed between the channel and the reference electrode in this experiment.

The frequency and pulse width of the stress signal were set to 10 kHz and 50 s, respectively.

The impedances of electrode sites were measured frequently during the pulse test. Fig. 4.16

depicts the impedance magnitudes and phases of the Ir-plated stimulation and recording

channels before and after a 100 million cycle pulse stress test. The channels demonstrate a

stable impedance over the course of the experiment. The electrode sites were then inspected

under an optical microscope and no sign of degradation in the Ir-plated layer was observed.
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Fig. 4.16: Impedance magnitudes and phases of an Ir-plated stimulation ((a) and
(b)) and recording ((c) and (d)) site before and after a 100 million cycle pulse stress
test.

4.5 In-vitro Stimulation and Recording

The in-vitro experiments were performed in a whole hippocampus prepared from 7-10

days postnatal C57BL/6 mice. To comply with the animal care standards, these mice were

housed with one to six littermates and a nursing mother in a well equipped animal facility,
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receiving artificial light for 12 hrs every day at a constant temperature of 23 ± 1 ◦C. These

animals were anesthetized with Isoflurane 2.5% MAC to extract their brains. The brains

were rapidly submerged in cold (≤ 4 ◦C) Artificial Cerebro-Spinal Fluid (ACSF) with an

osmolarity of 300 ± 10 mOsm/l and a Ph of 7.38 ± 0.05 after bubbled with carbogen

(95% O2 + 5% CO2). The ACSF solution contains 123 mM NaCl, 4.0 mM KCl, 1.5 mM

CaCl2, 1.6 mM MgSO4, 25 mM H2CO3, 1.2 mM NaH2PO4, and 10 mM D-glucose. After

approximately 2 min, the hemispheres were removed from the cold ACSF solution and the

hippocampi were extracted as described in [102]. Next, the tissues were placed for 30 min

into a 33 ◦C oxygenated ACSF bath containing 1 mM kynurenic acid. Subsequently, the

bath passively cooled down and maintained at room temperature for at least one hour

prior to the start of the experiment.

Electrical stimulation and recordings were performed in a custom made perfusion cham-

ber at a constant temperature of 34 ◦C. The chamber supplies a surrounding fast ACSF

flow of ∼ 10 cc/min for sufficient oxygenation of the submerged tissue [114]. The 3D DBS

microprobe was mounted on a micromanipulator to position the stimulation and recording

electrodes into the tissue. The neural signals from the 3D DBS microprobe and an extra-

cellular glass electrode with a resistance of 3-5 MΩ were amplified using Axoclamp 200B

amplifiers (500 gains) and digitized with a Digidata 1322A digitizer (Axon Instruments).

The signal was acquired at a sample rate of 10 kHz after passing through a lowpass filter

with a 5 kHz cut-off frequency. The post signal processing analyses were then carried out

in Clampfit 10.1 software (Axon Instruments) using a 10-pole Chebyshev bandpass filter

with 0.5 Hz and 1 kHz 3dB frequencies.

Fig. 4.17(a) and (b) demonstrate the spontaneous field activities recorded by the 3D

DBS probe and the glass electrode. A good agreement is observed between the signals

confirming the capability of the fabricated devices to record small signals from population

activity. The response of the hippocampal network circuitry to the electrical stimulation
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Glass electrode 160 µV
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Fig. 4.17: Recorded spontaneous field activities in a C57BL/6 mouse hippocampus
with 3D DBS and glass electrodes.

was also investigated by the application of a stimulus signal shown in 4.18(a). Both the

recording electrode from the 3D DBS and the glass electrode were able to record the

stimulus artifact and the biological response as illustrated in Fig. 4.18(b). The Excitatory

Post-Synaptic Potential (EPSP) was observed with an average amplitude of 20 pA and

a decay time of 7 pA/ms. The recording from the 3D DBS electrode was carried out in

current clamp configuration mode due to the incompatible impedance of the fabricated

devices with that of the input stage amplifier. However, it is possible to approximate the

voltage level of the neural activity from the recorded current and the frequency response

of the electrode impedance.
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3D DBS probe 200 pA 
Glass Electrode 2.5 mV

500 ms

Glass electrode

3D DBS probe
(a)

3D DBS probe

Glass electrode

(b)

3D DBS probe 50 pA
Glass electrode 730 µV

20 ms

Fig. 4.18: (a) The 100 Hz stimulus signal produced by the 3D DBS stimulating site
and recorded with an adjacent recording site and the glass electrode. (b) Excitatory
postsynaptic potential (EPSP) evoked by the 3D DBS probe.

4.6 Summary

This chapter elaborated on the fabrication and characterization of the proposed 3D DBS

microprobes offering independent stimulation and recording sites around the shaft. The

dimensions and density of the electrode sites are precisely controlled by the lithography

processes employed for the fabrication of thin film planar devices. These devices are then

assembled on a flexible support structure to construct the implants. The fabricated mi-

croprobes are 12 mm in length and 750 µm in diameter at the tip section and provide 16
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stimulation and 16 recording channels. The device volume has been reduced to one third

the volume of a conventional Medtronic DBS lead. The impedances of the stimulation and

recording channels with Ir and Au electrode sites were studied employing a tri-electrode

experimental setup. Both the stimulation and recording channels exhibit long term stable

characteristics in saline and acidic solutions. The spontaneous field activity and Excita-

tory Post-Synaptic Potential (EPSP) were successfully evoked and recorded employing the

proposed 3D DBS microprobes in a mouse hippocampus. Table 4.1 compares properties

of the proposed 3D DBS microprobes to those reported in literature.

Table 4.1: Comparison of the DBS microprobes’ properties

DBS probe
Stimulation

channels

Recording

channels

Cross-

section

(mm)

Precise

dimension

control

Integrated

flexible

cable

Control

field dis-

tribution

Niotrode [52] 0 9 r = 0.1 No No No

Microwire bundles [27] 0 16 r = 2 No No Limited

Medtronic’s lead [50] 4 0 r = 1.27 Yes Yes No

3D Electroplated [33] 5 0 0.3 × 0.1 Yes No No

Proposed 3D probes 16 16 r = 0.75 Yes Yes Yes
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Chapter 5

MEMS Integration

In the neural stimulation and recording with a large number of electrodes, the application

of a site selection matrix is a common solution to reduce the number of channels and to

simplify the signal processing circuitry [115, 116]. The site selection matrix is a switching

matrix comprised of several switching elements to route the stimulating or recording cir-

cuitry to the appropriate electrode site. The integration of the switching matrix with the

microprobe and the interconnection cable on the same substrate also decreases the num-

ber of connections between the probe and the external circuitry. Silicon Very Large Scale

Integrated (VLSI) circuits have been successfully used for the implementation of the site-

selection matrices and the integration with implantable devices [115–118]. Although these

circuits are attractive because of their reliable performance, small size, mature fabrication

process, and easy passivation, they cannot be fabricated on the non-silicon substrates used

for the production of flexible microprobes.

Micro-Electro-Mechanical Systems (MEMS) technology is a promising candidate for the

fabrication of switching matrices on flexible substrates. The switching matrix, the micro-

probe, and the interconnection cable can be integrated on the same substrate to improve

the reliability and reduce the cost of the device. Another advantage of the MEMS switches

over the conventional semiconductor switching elements is the good switching performance
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of the MEMS devices [53] in terms of a low on-state resistance, high off-state isolation, and

low power consumption. These attributes are very desirable for biomedical applications,

where a long battery lifetime of the implanted device is of significant importance.

This chapter involves the development of switching elements and matrices for futur-

istic integration with biomedical devices. Multiport switch matrices are introduced for

low frequency and Radio Frequency (RF) applications. A novel generation of magnetic

actuated switches is reported for enhanced operation reliability. A detailed discussion of

the fabrication, design, and characteristics of these devices are presented.

5.1 Multichannel Stimulation and Recording

The simplified block diagram of a wireless neuroprosthetics system is illustrated in Fig. 5.1.

The system consists of a multisite neural microprobe, power supply, transceiver, switching

matrix, and a microcontroller unit. The stimulation/recording channels of the micro-
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Fig. 5.1: Block diagram of a wireless neuroprosthetics.
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controller are connected to the electrode sites through the switching matrix. The functions

of the transceiver are to transmit the recorded signal and receive the stimulation program.

The micro-controller synchronizes the operation of the components, applies the stimu-

lation signal, records the neural activities, performs the digital/analog data conversion,

and carries out other necessary signal processing tasks. For instance, the micro-controller

must encrypt the transmitted signal to ensure the security of the communicated informa-

tion. The data is then transferred to a computer through a transceiver for monitoring the

recorded activities and modifying the stimulation program.

A stimulation channel consists of a Digital to Analog Converter (DAC) and a driver

circuit to generate the stimulation waveform. The main components of a recording channel

are a low noise amplifier to enhance the signal to noise ratio and an Analog to Digital Con-

verter (ADC) to digitize the recorded signal. An embedded switching matrix significantly

reduces the complexity and dc power consumption of the electronics. Fig. 5.2 illustrates

a possible design of a 32 channel conventional recording system in which each channel

has been directly connected to the micro-controller. Therefore, 32 independent recording

amplifiers and ADCs are required to construct this system. Alternatively, if a switching

ADC 1
Low noise 
amplifier 1

ADC 2
Low noise 
amplifier 2

Micro-controller channel 1

1st Recording electrode

Micro-controller channel 2

2nd Recording electrode

ADC 32
Low noise 

amplifier 32

Micro-controller channel 32

Micro-controller

32nd Recording electrode

Fig. 5.2: Configuration of a 32 channel neural recording system.
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Fig. 5.3: Configuration of a 32 channel neural recording system utilizing a switch
matrix for connecting a 4 channel micro-controller to a 32 site neural microprobe.

matrix is employed as shown in Fig. 5.3, only 4 recording amplifiers and 4 ADCs are

needed. The micro-controller channels can access the desired electrode sites by activating

the appropriate switching elements in Fig. 5.3. Consequently, each micro-controller chan-

nel can be shared between several electrode sites of the microprobe. Moreover, in the case

of a channel failure, it is still possible to record from all of the recording electrodes of the

probe by routing the electrode sites to the functional channels.

In this doctoral study, electrostatic and magnetic-actuated contact type MEMS switches

were fabricated for the application as the building block of a site selection switch matrix.

Multiport 4 × 4, 8 × 8, and 4 × 12 matrices were successfully constructed and character-

ized.
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5.2 MEMS Switching Elements

The basic principle behind the operation of MEMS switches is the displacement or de-

flection of a moving part such as a cantilever or a beam by various types of actuation

mechanisms. Typically, actuation occurs by the application of electrostatic [119–123],

electrothermal [124–127], or electromagnetic [128–130] forces. MEMS switching elements

offer exceptional characteristics such as very low power consumptions, high isolation, and

low insertion loss [131,132]. The superior performance of MEMS devices can be employed

to construct multiport switch matrices with scaled dimensions or improved characteristics

compared to those produced by mechanical or semiconductor devices. Although several

MEMS switch matrices have been reported in literature [133,134], these circuits are mostly

suited for RF applications due to their large dimensions and relatively low number of input

/ output ports.

The approach adopted here is based on the development of contact type series switches

to provide the low On-state resistance demanded in biomedical applications. In this cat-

egory of switches, a metal conductor physically connects the input and output terminals

when the device is turned On. In the Off-state, this metal conductor is disconnected from

one or both of the signal lines, eliminating the signal path. Both metal and dielectric

cantilever devices were explored in this study due to the simplicity of the design, structure,

and fabrication.

5.3 Electrostatic-Actuated Monolithic MEMS Switch

Matrices for Wide-Band Applications

Several switching cells are employed in the form of a simple array to create a 4 × 4

matrix [98,135]. The switching cells are constructed from metal cantilever switches with a
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Single Pole Single Throw (SPST) configuration. The expansion of the matrix can be easily

accomplished by adding more rows or columns of the switching cells. The fabrication

and the RF performance of the fabricated matrix is presented. The impact of the sheet

resistance of the bias lines on the RF characteristics and switching speed of the overall

switch matrix are discussed in details.

5.3.1 Structure and Design

The proposed 4 × 4 switching matrix in this work has a cross-bar structure that consists

of an array of switching units connecting the horizontally and vertically running input

and output ports (Fig. 5.3). To be able to route any of the input ports to any of the

output ports, each unit cell must offer two operating states; namely, the “Through” and

“Turn” states. In the “Turn” state, the input port is connected to the output port and in

the “Through” state, one or both of the ports are joined to the designated port(s) of the

adjacent unit(s).

The operating states of the unit cell are graphically illustrated in Fig. 5.4(a). To achieve

these operating states, three SPST switches and a crossover are employed in the structure

of the switching unit in the configuration shown in Fig. 5.4(b). In the “Turn” state, the

connection switch (S2) is On and the isolation switches (S1 and S3) are Off. Therefore, the

input and output states are connected and isolated from other ports. In the “Through”

state, either one or both of the isolation switches are On providing the transition of the

desired port(s) to the adjacent unit cell(s). To further enhance the performance of the

constructed switch matrix based on this cell, at the last row or column of the matrix, the

corresponding isolation switch is removed.

The compact size and simple structure of the metal cantilever contact type MEMS

switches render them as one of the best candidates to produce this circuit. The devices
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Fig. 5.4: (a) Operating states and (b) configuration of the switching cell proposed
for construction of the monolithic RF MEMS switch matrix.

are coupled to Co-Planar Waveguide (CPW) transmission lines since the dimensions of the

structures can be scaled below 100 µm, while, at the same time the desirable characteristics

impedance of 50 Ω is achieved for the lines. The 3D schematic of the proposed structure

is shown in Fig. 5.5. The signal and ground crossover lines are constructed using the top

metal layer of the process that is employed to form the cantilever beams. From each of

the transmission lines a shunt stub is branched toward the connection point. In fact, one

of the stubs is the connection switch S2 shown in Fig. 5.4(b). To complete the structure

of the circuit, two MEMS devices are placed in series at the end of each transmission line
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Fig. 5.5: 3D schematic of the switching cell employed as the building block of the
monolithic RF MEMS switch matrix.

to act as the isolation switches S1 and S3.

The equivalent circuit shown in Fig. 5.6 is considered to describe the design method-

ology and the reason behind the selection of the proposed structure. At the frequencies

where the signal wavelength is much larger than the sizes of the cross and MEMS ele-

ments, lumped element components can be used to model the response. In this circuit,

the signal on each port can be coupled to the ground or to the other port at the crossover

point through the signal-to-signal (Css) or signal-to-ground (Csg) capacitances. To reduce

the detrimental effects of these parasitic elements, the reduction in component sizes is

necessary. If the widths of the signal line and ground crossover are set to 20 µm, these

capacitances are approximated to be in the range of 1.5 fF. This value of capacitances

produces shunt impedances as high as 3 kΩ even at frequencies as high as 40 GHz. As a

result, compared to the values of 50 Ω for the characteristics impedance of the transmission

line, the loading effect of these capacitances can be neglected.
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Fig. 5.6: The equivalent circuit model of the switching cell.

The lengths of the connection stubs affect the performance of the unit cell especially

in the ”Through” state. In the proposed design, the connection stubs are chosen to be

shorter than 150 µm which is roughly 5% of the guided wavelength at 40 GHz (λg = 3400

µm simulated in ADS). Hence, the connection stubs will act according to the operating

state of the connection switch and produce an insignificant effect in the ”Through” state.

The widths and lengths of the MEMS switches’ cantilevers are set to 20 µm and 145

µm, respectively; based on the designed values for the widths of the signal / ground

crossovers and the lengths of the connection stubs. The MEMS switches can be modeled

by a capacitance (Co) when the switch is Off. The magnitude of the Co is similar to Csg or

Css and the same discussion applies for the loading of the MEMS switches in the Off-state.

On the other hand, in the On-state of the switch, a series resistance (Rs) is limiting the

operation. Indeed, the larger the switching matrix, the higher the demand on the contact

properties of the switches. Depending on the contact force and the contact material, Rs

values as low as 0.1 – 0.5 Ω can be achieved. In our proposed design, for each of the

operating states, there is only one MEMS switch located in the signal path. This means

the loss of the signal, which is mainly due to the contact resistance of the switches, should
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be approximately similar for all the paths. Consequently, in a 4 × 4 switch matrix, the

highest insertion loss is expected to be associated with the longest path connecting the

farthest ports that includes 7 switching elements.

The EM simulation results produced by High Frequency Simulation Software (HFSS)

are shown in Fig. 5.7 for the response of the switch cell in the “Turn” and “Through”

operating states. It is predicted that the unit cell performs satisfactory at frequencies
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Fig. 5.7: The EM Simulation results of the switching cell in (a) “Turn” and (b)
“Through” states.
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as high as 60 GHz. However, the effects of the bias lines and the contact resistances of

the switches have been ignored to simplify the simulation process. The bias lines provide

coupling paths from the signal to the ground where the bias line connects to the actuation

pads of the MEMS devices or underpass the transmission lines. The effect can be modeled

by a shunt impedance, Zb, comprised of the capacitance between the signal and bias lines

(Csb) in series with the bias line resistance (Rb) and the bias line to the ground capacitance

(Cbg). As it will be discussed in details, the application of the conventional material such

as chromium for the bias lines limits the proper performance of the device especially for

large matrices. The contact resistances also deteriorate the insertion loss of the system.

However, it will be demonstrated that the simulated results are in good agreement for a

fabricated matrix up to 40 GHz.

5.3.2 Fabrication

The fabrication of the proposed devices and switch matrices was carried out in the Center

for Integrated RF Engineering (CIRFE) laboratory at the University of Waterloo. Illus-

trated in Fig. 5.8 is a 6 mask process developed to construct the MEMS switches as well

as the bias and interconnecting transmission lines on an Alumina wafer. The details of the

fabrication steps and the processing conditions are presented in Appendix A.3.

The process begins with the deposition and patterning of a 300 nm layer of heavily

phosphorous-doped hydrogenated amorphous silicon (n+ a-Si:H) to form the bias lines and

actuation pads. Mask 2 defines the opening in the silicon oxide (500 nm) layer deposited

to passivate the bias lines. To construct the CPW lines, a thin layer of Cr/Au bilayer

will be deposited which subsequently is used as the seed layer for the electroplating of a

1 µm-thick Au film inside a PR mold. Then, the seed layer will be quickly removed in a

wet etching process. This method is employed to avoid the undercuts associated with the
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(a) Bias lines (Mask 1) (e) Sacrificial layer coating

(b) Dielectric patterning ( Mask 2) and 
seed layer deposition

(f) Anchor (Mask 4) and dimple      
(Mask 5) etching

(c) Mold patterning (Mask 3) and gold 
electroplating

(g) 2nd Gold (Mask 6)

(d) Mold and seed layer etch (h) Release   

Substrate Dielectric

Gold Sacrificial layer

Mold

Bias lines (n+ a-Si)

Fig. 5.8: Fabrication sequence of the proposed devices viewed in the cross section of
a MEMS switch.

wet etching of gold layers and to provide better agreement with the dimensions of patterns

and the designed values. To be able to perform high temperature annealing treatments

before the release of the devices, polyimide (PI2562, HD Microsystems) is employed as the
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sacrificial layer. The speed and time of the spin coating was adjusted to produce a 2.5 µm

thick polyimide layer that specifies the initial air gap of the devices. Next, the polyimide is

dry-etched in an RIE system to create the anchor and dimples of the cantilever using Mask

4 and Mask 5, respectively. The dimples (1 µm deep) are embedded in the structure of the

MEMS switches to reduce the air gap at the contact points. As a result, the contact force is

increased and the On-state resistance of the device is decreased. Finally, the electroplating

of the second gold layer (1 µm thick) completes the structure of the signal crossovers and

metal cantilever switches. Prior to release, the sample is annealed in N2 ambient for 2

hrs at 380 ◦C to eliminate the stress gradient along the thickness of the top gold layer.

The sacrificial layer is then removed in an inductively coupled oxygen plasma to release the

MEMS elements. We found the generated plasmas in the parallel plate systems not suitable

for the release process as the ion bombardment produces excessive heat that damages the

MEMS devices.

Fig. 5.9 shows the SEM image of a fabricated 4 × 4 switch matrix, switching cell

and one of the metal cantilever beams. For easy access to the bias lines, 200 × 200 µm2

bias pads are placed on two sides of the matrix opposite to the input and output ports.

However, in monolithic applications, smaller bias pads can be employed to reduce the total

size of the matrix. The matrix measures 1.45 × 1.45 µm2 in dimensions excluding the area

consumed by the bias pads. The close-up SEM image of a contact type MEMS switch is

shown in Fig. 5.9(c). The uniform air gap along the cantilever length suggests that the

stress gradient over the thickness of the top gold layer has been eliminated by the pre-

release annealing treatment. Moreover, the thickness of the cantilever over the sidewalls

of the anchor and dimple is constant. If the step coverage of the deposited material is

not sufficient especially in the anchor, the mechanical stability of the cantilever will be

compromised.
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(a)

(b) (c)

Fig. 5.9: SEM micrographs of (a) a fabricated 4 × 4 monolithic RF switch matrix,
(b) switching unit, and (c) typical cantilever beam contact switch.

5.3.3 Characteristics

DC and RF performance

The fabricated 4 × 4 monolithic RF switch matrices illustrated in Fig. 5.9(a) consist of

41 SPST MEMS devices. The widths of the signal line (S) and gap to the ground (G) are

designed to be 20 µm and 14 µm, respectively, to ensure a characteristic impedance of ∼

50 Ω for the CPW transmission lines. The MEMS devices employ 125 µm-long cantilevers

and 10 × 10 µm2 dimples and anchors. The measured actuation voltage for 1 µm-thick gold

beams is 65 – 75 V that is in good agreement with the CoventorWare simulation results
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(∼ 60 V). The MEMS switches exhibit 0.2 – 0.3 Ω DC resistance at the holding voltage

of 80 V measured using the four-point-probe technique. To facilitate the connection of the

ports to the probes, single stage transitions were used to widen the transmission lines to S

= 45 µm and G = 25 µm. The simulated return losses of the transitions are close to –20

dB at 40 GHz.

The RF response of the matrix was measured up to 40GHz using an Agilent 8722ES

network analyzer connected to CPW probes with 150 µm signal to ground terminal spacing.

As expected from the simulation results, the worst-case return loss is related to the farthest

path, i.e. S44, and that of the isolation comes from the two adjacent longest paths, S38. Fig.

5.10 illustrates the measured RF performance of the matrix in the connection configuration
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shown in the inset of Fig. 5.10(b). To bias the circuit, the corresponding bias pads are

connected using a wire bonder and the bias voltage is applied through a single DC probe.

The worst-case for insertion and return losses of the device are respectively –17 dB and

–1.8 dB up to 40 GHz. The circuit demonstrates a reasonable performance of better than

–1 dB insertion loss below 30 GHz. As it will be presented later, the return loss deviates

slightly from the designed value of –20 dB the worst-case scenario. It is believed that the

fabrication tolerances can cause a shift in the dimension of the transmission lines, hence

changing the characteristic impedance of the line. The transition sections also deteriorate

the response and more complex transitions are required to improve the performance. A

3-stage transition with better than –32 dB return loss has been designed and will be

integrated with the matrix in future attempts. As shown in Fig. 5.10(b), isolations better

than 26 dB have been achieved between ports in the frequency range of DC to 40 GHz.

Indeed, the system exhibits an excellent performance of more than 35 dB isolation below

20 GHz.

Impact of bias network on switch matrix performance

In the proposed MEMS switch matrix, a network of bias lines spreads under the RF signal

paths to address the actuation pads of the MEMS elements. A thin dielectric layer covers

the bias network to isolate them from the transmission lines. At the crossovers of bias

and transmission lines, a parasitic signal path is created through the bias line from the

signal to the ground. This loading effect can be modeled by an equivalent circuit consisting

of a capacitance between signal to bias (Csb) in series with the bias line resistance (Rb)

and bias to the ground capacitance (Cbg). At very low frequencies, the impedance of the

capacitances is much higher than the characteristic impedance (Z0) of the transmission

line. Hence, the signal coupling to the ground through the bias lines is negligible. At

higher frequencies, the impedance of Csb and Cbg will drop bellow Z0 leaving a shunt
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n+ a-Si:H and Cr bias networks.

impedance close to Rb between the signal and ground. Consequently, the application of

metals with low sheet resistances severely deteriorates the operation of this type of switch

matrix configuration.

Fig. 5.11 depicts the worst-case return loss and isolation of a 4 × 4 switch matrix

with Cr bias lines compared to the response of the fabricated system with an n+ a-Si:H

bias network. The former matrix demonstrates an acceptable response only at frequencies

below 2 GHz. The application of the n+ a-Si:H material for the bias lines and actuation

pads of the MEMS devices extends the functionality of the system to frequencies above 40

GHz. As a matter of fact, the deposited n+ a-Si:H layer (300 nm-thick) with the typical

sheet resistance of 2 – 5 MΩ/square [136] appears transparent to the RF signal.
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Switching speed

The experimental setup employed to measure the switching speed of the MEMS elements

is illustrated in Fig. 5.12(a). To be able to change the operating state of the Device Under

Test (DUT), the drain terminal of a high voltage transistor is connected to the bias pad of

the device and at the same time through a pull-up resistor to the DC bias required for the

actuation. A continuous wave RF signal at 2 GHz centre frequency with the power level

of 20 dBm is sent to the input port of the switch using an HP8510 Synthesized Sweeper.

The output port of the DUT is fed to a crystal detector (HP420A N-type Detector) that

provides a negative DC voltage proportional to the power level of the signal in the frequency

range of 0.1 – 12.5 GHz. The frequency and power level of the RF signal have been selected

to avoid the degradation of the switch at high powers and maximize the dynamic range

of the output signal from the detector. If a high to low voltage pulse (trigger signal) is

applied to the gate of the transistor, the bias pad voltage changes from 0 to VDD and the

DUT provides a signal path between the input and output ports. Therefore, the delay of

the crystal detector signal from the falling edge of the trigger signal provides the turn-on

time of the DUT.

The switching speed of the switching cell has been measured for the fabricated devices

using Cr and n+ a-Si:H bias lines. The former matrix demonstrates a 10.8 µs turn-on time

while the later has a response time longer than 570 µs. This drastic difference in switching

speed of the matrix is expected as the sheet resistance of n+ a-Si:H is close to 5 orders of

magnitude higher than Cr. Therefore, the RC delay between bias and the actuation pads is

accordingly higher for the n+ a-Si:H lines and the switching time is limited by the RC delay

rather than the mechanical response of switches. It must be mentioned that in selecting

the material for the bias network, a trade-off exists between the switching speed and RF

performance of the matrix. The application of high resistive material improves the RF

response while at the same time deteriorates the speed. However, a significant reduction in
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turn-on time, tOn, of the switching cell for the fabricated devices with (b) n+ a-Si:H,
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the RC delay and a negligible loading effect on the RF signal for a 4 × 4 switch matrix are

expected if heavily-doped hydrogenated micro-crystalline silicon (n+ µc-Si:H) is employed

as the material of choice for the bias network. The sheet resistance of n+ µc-Si:H is in the

range of 1 – 100 kΩ/square depending on the deposition conditions and thickness of the

layer [137]. Hence, the bias lines with sheet resistance of ∼ 50 kΩ/square can be made

of n+ µc-Si:H material to reduce the RC delay of the switching by a factor of 100. On

the other hand, the bias lines exhibit more than 3 orders of magnitude higher resistance

than the 50 Ω characteristic impedance of the transmission lines and consequently impose

a negligible effect on the RF response.

5.4 Electrostatic-Actuated MEMS Switch Matrices for

Low Frequency Applications

The switch matrix presented earlier employs 3 MEMS elements to provide a wide band op-

erational frequency. In the stimulation and recording the neural activities, the bandwidth

of the signal is in the 0 – 100 kHz frequency range. For these applications, the structure of

the switch matrix can be simplified to only one MEMS element at the cross-section of the

vertically running input and output terminals as shown in Fig. 5.3. The optical and SEM

images of a 8 × 8 switch matrix comprised of 64 MEMS switches are shown in Fig. 5.13.

The MEMS cantilevers are 125 µm × 25 µm in dimension with 15 × 15 µm2 dimples and

anchors. The fabrication process of these devices is similar to the monolithic RF MEMS

switch matrices with Cr bias lines. The switching resistances of the fabricated devices were

measured less than 0.5 Ω for several switching states of the matrix. Although the actuation

voltage of these devices are fairly high (65 – 75 V), the small dimensions of the cantilever

allows a high yield fabrication of these devices.

The large number of electrical connections that must be established between the micro-

112



(a)

(b)

Fig. 5.13: (a) Optical and (b) SEM images of an 8 × 8 low frequency MEMS switch
matrix.

controller and a MEMS switch matrix can severely undermine the reliability of the system.

In the earlier presented MEMS circuits, for each switching unit, at least one bias line is

required to control the switching state of the matrix. In Fig. 5.14, a 4 × 12 switch matrix

is presented with a reduced number of the actuation pads. The switching cell of the system

consists of 2 MEMS devices that must be actuated concurrently to route an input to the

output port. A horizontal bias line addresses the actuation pads of the first MEMS element

of the cells located in the same row while a vertical bias line connects the second MEMS

element of the cells in the same column. Consequently, the number of the bias pads is
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(a)

(b)

Fig. 5.14: (a) Optical and (b) SEM images of a 4 × 12 low frequency MEMS switch
matrix with 16 bias pads.

reduced from 48 to 16 by employing this configuration for the switch matrix. However, the

reduction in the number of bias pads was made possible at the cost of limiting the matrix’s

functionality. Indeed, at a certain time, only one of the input terminals can be connected

to an output port. The switching resistance between different terminals of the matrix was

measured to be less than 1.0 Ω. The other characteristics of the switch matrix such as

the actuation voltage and switching speed are in good agreement with the prior reported

results due to the similar dimensions of the MEMS elements employed in different designs.

5.5 Magnetic-Actuated MEMS Switches

The electrostatic-actuated switches operate with extremely low powers and have simple

structures that facilitate the fabrication of these devices. However, this category of switch-

ing elements demands high actuation voltages that degrade the lifetime of the device and

induce mechanical instability. Moreover, the electrostatic force rapidly reduces with the
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distance between the actuation electrodes; therefore, the large initial gaps demanded for

the high Off-state isolations of RF MEMS switches cannot be produced. In the case of

the electrothermal switches, the high power consumption and low switching speed severely

limit the application. Alternatively, the actuation can be performed using electromagnetic

force and the cantilever can be held in the Down-state by electrostatic force. The voltage

required to maintain the device in the Down-state is substantially lower than the actua-

tion voltage from Up-state as the distance between the cantilever and the actuation pad is

reduced to only a fraction of the initial gap.

Here, electromagnetic-actuated switches are fabricated with an integrated current coil

on the substrate as well as on the cantilever [138]. The substrate coil produces the magnetic

field required for actuation and also acts as the holding electrode. A key advantage of the

present design is the contribution of all the segments of the cantilever coil in the generation

of the actuation force due to the presence of a perpendicular local magnetic field. In the

previously reported devices [128,129], the direction of external magnetic field is fixed and

only segments along the width of the cantilever produce normal forces to the cantilever.

The details of the fabrication process as well as the characteristics of the MEMS switches

are reported in this section.

5.5.1 Structure and Design

A Three Dimensional (3D) schematic of the proposed switch is depicted in Fig. 5.15. The

device consists of a metal coil (cantilever coil) that is integrated on top of a dielectric

cantilever, and a contact bar at the tip of the beam to connect the input and output ports

when the switch is turned On. Another coil (substrate coil) is integrated on the substrate

to generate the required magnetic field for actuation. The substrate coil also acts as the

holding electrode to maintain the cantilever in the Down position (On-state operation of
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Fig. 5.15: The 3D schematic of the proposed magnetic-actuated RF MEMS switch.

the switch) using electrostatic force after the actuation of the device.

To actuate the device, a DC current is applied to the cantilever coil. In the presence

of a magnetic field, a Lorentz force is exerted on this coil and transferred to the cantilever

if the magnetic field is not parallel with the direction of the current. This magnetic field

is generated by an applied current running through the substrate coil located just below

the cantilever coil. With a good approximation, the field vector is perpendicular to the

current and parallel with the plane of the beam; hence, the applied force is normal to the

cantilever. If the current direction in the two coils is the same, the applied force will be

attractive, pulling down the beam to turn on the switch. In this design, the field vector

is perpendicular to each segment of the cantilever coil since it is mainly produced by the

same section of the substrate coil. Therefore, the maximum possible force normal to the

cantilever is generated. It is also possible to reverse the current in one of the coils to change

the direction of the magnetic force and move the device into the Off-state.

The RF performance of the magnetic devices is expected to be superior to that of the
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electrostatic switches. The device utilizes a dielectric cantilever that minimizes the signal

coupling between the ports. In conventional metal contact type switches, one of the ports

is connected to the metal cantilever whereas in our proposed design the contact bar is

isolated from both ports. This is also beneficial in terms of the power handling as the

self-actuation of the cantilever will be pushed to higher powers since the contact bar is not

connected to the ports.

The RF characteristics of the switch in the On and Off-states of the operation have

been simulated in HFSS. Fig. 5.16(a) illustrates the simulated insertion loss, return loss,

and isolation of the device. The configurations and dimensions of the ports and the dis-

continuity in the transmission line are presented in Fig. 5.16(b).

In
sertion

 L
oss (d

B
)

R
et

u
rn

 L
os

s 
&

 I
so

la
ti

on
 (

d
B

)

Frequency (GHz)

-50

-40

-30

-20

-10

-60

0

5 10 15 20 25 30 350 40

-4

-3

-2

-1

-5

0

Return loss

Isolation

(a)

100 µm

50 µm

100 µm

60 µm

42 µm

300 µm

250 µm

250 µm

G

S

G

Contact bar

500 µm

(b)

20 µm

50 µm

Fig. 5.16: (a) The EM-simulated RF performance and (b) the configuration and
dimensions of a magnetic-actuated MEMS switch.
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The input and output ports are Co-Planar Waveguide (CPW) transmission lines. The

signal lines’ width and gap to the ground are set to 100 µm and 42 µm respectively to

achieve a 50 Ω characteristic impedance for the transmission line on a 635 µm-thick (25

mil) Alumina substrate (εr = 9.9). The CPW topology has been considered for the device

due to its smaller dimensions compared to other types of planar waveguides. The ground

line under the cantilever has been narrowed to 50 µm in width to reduce the length of the

cantilever. A 100 µm discontinuity in the signal line is embedded to achieve the minimum

of 20 dB isolation between the ports for up to 40 GHz. The contact bar is 60 µm wide

and has a 40 µm overlap with the signal lines. In the OFF-state the distance between

the contact bar and the substrate is assumed to be 60 µm in accordance with the released

cantilever. For low frequency applications, the ground conductor can be removed and the

dimensions of the cantilever can be scaled to reduce the size of the MEMS switch.

5.5.2 Fabrication

The fabrication of magnetically actuated RF MEMS switches was carried out in the Centre

for Integrated RF Engineering (CIRFE) laboratory at the University of Waterloo. Fig.

5.17 depicts the fabrication sequence of a typical device seen from the AA′ cross section in

Fig. 5.15. The process requires only 4 lithographic steps compared to 7 masks previously

employed to produce the magnetic switches [128]. The details of the fabrication steps and

the processing conditions are presented in Appendix A.4

After an RCA cleaning of a 25 mil Alumina substrate, a thin layer of Cr/Au bilayer

will be deposited as the seed layer for the electroplating of a 1 µm-thick Au film inside a

PR mold to form the CPW lines, substrate coil and the bias pads. Although this method

involves more processing steps than the wet etching of the deposited gold, the dimensions of

the patterns are in better agreement with the designed values since there are no undercuts
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Substrate Dielectric Metal Sacrificial layer

(d) Dielectric and dimple etching  (a) 1st Gold 

(b) Sacrificial layer   

(c) Anchor etching   

(e) 2nd Gold  

(f) Release   

Fig. 5.17: The fabrication sequence of the magnetic switches viewed in AA′ cross-
section of Fig. 5.15.

associated with etching of the layer. Then, the seed layer will be quickly removed in a wet

etching process and a 5 µm-thick layer of polyimide (PI2611, HD Microsystems) is spin

coated and cured as the sacrificial layer. The thickness of the polyimide film specifies the

initial air gap of the fabricated devices. In the second photolithography step, the anchor

of the cantilever is defined. The etching of the polyimide is performed in a Reactive Ion

Etching (RIE) system in an oxygen plasma environment. Next, a 0.5 µm SiN dielectric is

deposited in PECVD and patterned to form the cantilever. Subsequently, the cantilever

is used as the mask to etch dimples in the sacrificial layer. The dimples reduce the air

gap at the contact points in order to increase the contact force, and consequently, decrease

the On-state resistance of the device. To complete the structure of the switches, a second
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gold layer with the thickness of 1 µm is electroplated to produce the cantilever coil and

the contact bar. Finally, the sacrificial layer is removed in a dry etching process to release

the MEMS devices.

In this design, there is no need for an insulator layer to cover the substrate coil. The

cantilever coil is located on top of the dielectric cantilever therefore isolated from the

substrate coil when the switch collapses to the Down-state. The contact bar is also placed

on top of the dielectric cantilever and extended below the beam through via holes over the

contact regions. This will eliminate the demand for deposition and patterning of a metal

layer to create the contact bar underneath the cantilever. Moreover, the dimples are self

aligned with the contact holes of the cantilever since the cantilever itself serves as the mask

to produce the dimples. This significantly simplifies the fabrication process.

Fig. 5.18 shows the SEM image of a released device utilizing a cantilever with dimen-

sions of 530 µm and 500 µm in length and width, respectively. A matrix of holes etched

through the cantilever facilitates the release process by providing access to the sacrificial

layer. Less than 3 hours of Inductively Coupled Plasma (ICP) at 20 mTorr pressure and

300 W of power is sufficient for the complete release of the devices.

Fig. 5.18: SEM image of a fabricated magnetic switch.
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Fig. 5.19: Suggested stress profile in gold, SiN, and stacked cantilevers (right). SEM
image of a switch with a single turn cantilever coil (left).

The presence of stress gradient in the metal and dielectric layers deforms the structure.

The deformed shape of the cantilevers suggests that metal has a tensile stress gradient

across the film thickness, and the SiN material suffers from the compressive stress profile.

This can be easily deduced from the SEM image of a switch utilizing a single turn cantilever

coil in Fig. 5.19. To confirm the stress profile of the SiN material, the cantilever coils of

several switches were removed in a wet etching solution prior to the release of the device.

The collapse of the dielectric cantilevers to the substrate was observed in the SEM images

as a result of the tensile stress gradient in the SiN material.

5.5.3 Characteristics

Actuation

The deflection of several cantilevers as a function of the applied current to the actuation

coils has been measured employing a Veeco WYKO NT1100 optical profiler. The mea-

surement setup is shown in Fig. 5.20(a) consisting of an optical profiler, current source,
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vibration isolation table, and a positioning stage. For the experiments, the two bias pads

in the middle (see Fig. 5.18) are shorted using a wire bonder and a constant current is

applied between the outer pads. This ensures the flow of equal magnitude unidirectional

currents through both coils. At each bias point, the cantilever profile is obtained using

the optical profiler and the height of the contact bar from the substrate is extracted from

the result. Fig. 5.20(b) presents the displacement of the contact bar located at the tip of

the cantilever shown in Fig. 5.19 as a function of equal magnitude unidirectional currents
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Fig. 5.20: (a) The experimental setup employed in the measurement of the cantilever
deflection. (b) The displacement of the cantilever tip vs. the actuation coil currents.
The inset shows the optical profile of a cantilever with a single-turn coil.
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applied to the coils. An example of the optical profile of the cantilever for the actuation

current of 20 mA is illustrated in the inset of Fig. 5.20(b). It must be mentioned that flow

of currents as high as 150 mA in the cantilever coil induces no change in the shape of the

cantilever when the substrate coil does not carry a current. Therefore, the possibility of

thermal actuation of the cantilever due to heat generation in the top coil is ruled out.

When unidirectional currents flow in the cantilever and substrate coils, an electromag-

netic force is applied to the cantilever. The actuation force can be approximated by

Fact = Icl ×B, (5.1)

where, Ic, l, and B are the current, total length, and the magnetic field experienced

at each section of the cantilever coil, respectively. If the air gap is small relative to the

spacing between the coils, the magnetic field seen by each section of the cantilever coil is

mainly produced by the same section in the substrate coil. Hence, the magnetic field is

perpendicular to the current, and the actuation force is normal to the cantilever. Moreover,

B is proportional to the substrate coil current, Is, and an inverse function of the coil width,

w,

B = µ0Is/w. (5.2)

At equilibrium, the actuation force is equal to the opposing force arising from the spring

constant, k, of the cantilever

Fact = k(g0 − g). (5.3)

By substituting 5.1 and 5.2 into 5.3, the deflection of the cantilever from the initial

height, g0 is expressed as

d = g0 − g =
µ0IsIcl

kw
. (5.4)
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This equation defines the actuation condition as

IcIs >
kg0w

µ0l
. (5.5)

It is important to note that for any arbitrary displacement, it is possible to find the

actuation currents which satisfy 5.4. Therefore, the impact force transferred to the can-

tilever when the switch goes to Off-state can be minimized by choosing the coil currents

slightly above the actuation condition described in 5.5. However, in the case of electro-

static switches, the solution to the height of the cantilever results in a stable position

up to approximately g0/3 and then a complete collapse to the substrate. Consequently,

both the cantilever and the dielectric covering the actuating electrode are subjected to

a substantially large impact force compared to what is needed to achieve a low contact

resistance [53]. This impact force can induce mechanical instability of the cantilever over

time as well as creation of cracks and defects in the insulator.

DC and RF Performance

The RF characteristics of the fabricated switches were measured using a 130 mA unidi-

rectional actuation current applied to the coils of a device shown in Fig. 5.18. After the

actuation, it is possible to hold the cantilever in the Down-state using a ∼ 24 V voltage

difference between the coils. The electrostatic actuation of the devices is also possible by

the application of ∼ 55 V. The devices exhibit a 0.5 – 0.6 Ω contact resistance at the

holding voltage of 40 V measured using four point probe technique. The S-parameters of

the fabricated RF MEMS switches have been measured using an Agilent 8722ES network

analyzer connected to CPW probes with a 150 µm signal to ground terminal spacing. Fig.

5.21(a) illustrates the measured RF characteristics in the On-state of operation for a switch

with a similar design of the device shown in the SEM image of Fig. 5.18. The insertion
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and return losses are lower than –0.3 dB and –24 dB, respectively, at 10 GHz. The device

also demonstrates a quite reasonable performance up to 40 GHz with a worst-case return

and insertion losses of –0.8 dB and –18 dB. Moreover, the measured results are in good

agreement with the EM simulation results presented in Fig. 5.16. The slight discrepancy

between the curves is due to deviation in geometries of the device because of the fabrication

tolerance.

In the Off-state operation, the contact bar is separated from the signal lines, therefore

the input port is isolated from the output. Fig. 5.21(b) shows the measured isolation of

the same switch used in On-state measurements. The device exhibits excellent isolation

of more than 34 dB at 10 GHz. The worst-case isolation of the switch for the frequency

range of DC to 40 GHz is also better than 24 dB.
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Fig. 5.21: The measured RF characteristics of the fabricated magnetic-actuated
switch in the (a) On-state and (b) Off-state of operation.
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5.6 Summary

The fabrication, design, and characteristics of MEMS switches and switching matrices have

been discussed in this chapter. An electrostatic-actuated 4 × 4 switch matrix employing

high resistive n+ a-Si:H bias lines were presented providing an excellent RF performance

up to 40 GHz. Miniature 8 × 8 and 4 × 12 switch matrices were also reported for low

frequency applications. The MEMS switching elements operate at actuation voltages of 65

– 75 V and offer response times faster than 11 µs and On-resistances lower than 0.5 Ω.

To enhance the reliability of the MEMS elements, actuation based on electromagnetic

force was proposed. Fully integrated magnetically-actuated dielectric cantilever MEMS

switches were developed offering current coils on the substrate and on top of the cantilever.

The device is actuated by applying a unidirectional current to the coils, and is maintained

at the Down-state by employing a potential difference between the coils. The actuation

current and holding voltage are measured to be as low as 110 mA and 24 V, respectively.

The holding voltage is substantially smaller than the actuation voltage of electrostatic

actuated devices with similar initial gaps. Moreover, it is possible to force these devices

into the Up-state using a repulsive electromagnetic force in the case of release failure.

Despite the superior characteristics, issues such as reliability, fabrication yield, large

number of bias pads, and high actuation voltages prevent the application of MEMS switch

matrices in neuroprosthetics systems. Nevertheless, the low On resistance of the circuits

and the possibility for integration with neural microprobes is attractive for futuristic ap-

plications.
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Chapter 6

Conclusions and Future Work

Novel generations of neural microprobes were developed in this doctoral study to enhance

the functionality of neuroprosthetics systems [91, 92, 110, 111]. This work concentrates on

the fabrication and characterization of chronically implantable microprobes for intracortical

and DBS applications. For neurological research and treatments, multisite 3D microprobes

capable of both stimulation and recording are demanded. These microprobes must be rigid

enough to penetrate inside the tissue while integrated with flexible interconnection cables.

In addition, the DBS implants must be capable of adjusting the distribution of the injected

charge inside the tissue to enhance the efficacy of the treatment. Here, the most significant

contributions of this research are summarized.

• A new method of fabrication was developed to produce intracortical microprobes

with improved structural design [91, 92]. These devices are integrated with 2 cm-

long flexible interconnection cables and provide adequate mechanical strength for

penetration into the tissue. Gold micro-needles are embedded in the probe shanks

to locally reinforce the implants. These microprobes offer an array of electrodes with

32 recording channels located on 4 parallel shanks with 2, 4, and 8 mm lengths. The

functionality and characteristic stability of the fabricated microprobes was confirmed

in acidic and saline solutions. The periodic field potential activity from an intact
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mouse hippocampus was successfully recorded using a fabricated device.

• Novel Three Dimensional (3D) multi channel microprobes were presented for Deep

Brain Stimulation (DBS) and recording [110, 111]. These microprobes offer inde-

pendent electrode sites around the shaft of the implant providing the capability to

control the profile of the injected charge into the tissue. The devices are comprised of

planar flexible microprobes assembled or folded over cylindrical poly-urethane shafts

with diameters as low as 750 µm. A dramatic enhancement in the density/number

of the channels and a precise control over the dimensions of the electrode sites were

achieved. The fabricated devices host 16 stimulating and 16 recording channels. The

low impedance characteristics and long term behavior of the Au and Ir electrodes

were demonstrated in acidic and saline solutions. The in-vitro experiments in a whole

hippocampus of a C57BL/6 mouse confirmed the potential application of fabricated

microprobes in simultaneous neural stimulation and recording.

In this work, the possibility of employing MEMS switches for the construction of a site

selection matrix integrated with the neural microprobe was explored. Significant progress

has been made in the development of high yield MEMS fabrication processes. A 4 × 4

monolithic RF MEMS switch matrix with exceptional RF performance and miniature di-

mensions was reported [98,135]. An 8 × 8 and a 4 × 12 matrix were successfully fabricated

for low frequency applications. To enhance the reliability of operation, a fully integrated

magnetic-actuated RF MEMS switch was proposed, fabricated, and characterized [138].

Although, the reliability and fabrication issues are of severe concern, the excellent switch-

ing properties of these matrices may be utilized to advance the functionality of future

neuroprosthetics systems.
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Future Work

Despite the extensive research carried throughout this study, many unexplored and un-

resolved issues still remain concerning the reliability and operation of neural microprobes.

A compact summary of such issues and the recommended solutions are summarized here.

• The intracortical microprobes presented in chapter 3 may be affected by the humidity

absorption in the polyimide structural layer. The impact can be the reduction in the

electrical isolation between the adjacent channels and also the delamination of the

electrodes from the microprobe. However, the developed methodology and approach

is applicable to other types of spin-coated polymers with higher resistivity against

moisture intake. Polymers such as polyurethane and PDMS along with PECVD-

deposited dielectrics may be employed to enhance the stability of these devices.

• 3D arrays of intracortical electrodes must be developed based on the proposed flexible

microprobes. A possible configuration for such an array is shown in Fig. 6.1. The

3D Intracortical 
array

2D Ribbon

2D Intracortical arrayFolding spacer

Fig. 6.1: The possible configuration of a 3D intracortical array.
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array includes several microprobes stacked together and connected to the outside

circuitry using a single flexible interconnection cable. Several low noise amplifiers

and multiplexer circuits can be bonded to individual microprobes to enhance the

signal to noise ratio of the recording and to reduce the number of conductors in the

interconnection cable.

• The thin film planar devices employed in the fabrication of DBS microprobes may

also be susceptible to moisture absorption and ionic diffusion. Polyurethane can be

used as the structural layer of these devices to extend the lifetime of the implant and

to improve the bonding strength to the shaft. Long-term accelerated stability tests

at elevated temperatures are required to confirm the durability of these devices in

biological environments for several years. The safe voltage range of the stimulation

must be also determined and the dimensions of the electrode sites must be optimized

based on the shape of the targeted tissue.

• Further research to improve the reliability, enhance the yield of fabrication, and

reduce the actuation voltages / currents of the MEMS switching elements is de-

manded. Progress in packaging and interfacing methods is required for the integra-

tion of MEMS switch matrices with neural microprobes.
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Appendix A

Fabrication Sequence and Processing
Conditions

The following sections provide the fabrication sequence and the processing conditions de-

veloped to construct the neural microprobes and MEMS switching systems presented in

this thesis.

A.1 Process Flow of the Intracortical Microprobes

The processing conditions and the details of the fabrication steps illustrated in Fig. 3.3

for the construction of the proposed intracortical microprobes are as follows:

1. Substrate Cleaning

Cleaning Process: RCA 1

Hot Wash: 15 min

2. Sacrificial Layer:

Mo Sputtering

Pressure: 10 mTorr
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Sputtering Gas: Ar

Plasma Source: DC

Power Density: 1.3 W/cm2

Deposition Rate: 1.6 Å/s

Thickness: 500 nm

or

Cr E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3 Å/s

Thickness: 500 nm

3. Structural Layer: PI Coating

PI 2611 Coating

Spin Speed: 5000 rpm

Spin Duration: 1 min

Bake 1: 2 min at 90 ◦C

Bake 2: 2 min at 150 ◦C

Cure: 30 min at 350 ◦C

Thickness: 3 µm

4. Electroplating Seed Layer: Au E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 10 Å/s

Thickness: 100 nm

5. Electroplating Mold: PI Coating

PI 2611 Coating
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Spin Speed: 1500 rpm

Spin Duration: 1 min

Bake 1: 2 min at 90 ◦C

Bake 2: 2 min at 150 ◦C

Second Coating

Process Conditions: similar to the first step

Cure: 60 min at 350 ◦C

Thickness: 18 µm

6. Electroplating Mold: Al Sputtering

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 2.7 W/cm2

Deposition Rate: 3 Å/s

Thickness: 300 nm

7. Electroplating Mold: Mask 1

AZ3330 Coating

Spin Speed: 3000 rpm

Spin Duration: 1 min

Softbake: 3 min at 90 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 2 min at 90 ◦C

Development Time: 45 – 60 s

Hardbake: 2 min at 110 ◦C

8. Electroplating Mold: Al Etching

Etchant: PAN at 40 ◦C
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Etching Time: 80 – 100 s

9. Electroplating Mold: PI RIE Etching

First RIE Etching:

Pressure: 20 mTorr

Gases and Flow Rates: O2 18 SCCM and CF4 2 SCCM

RIE Power Density: 0.39 W/cm2

ICP Power Density: 0.39 W/cm2

Time: 1800 s

EKC Rinse: 3 min

IPA Rinse: 10 min

Second RIE Etching:

Process Conditions: similar to the first step

Time: 300 s

EKC Rinse: 3 min

IPA Rinse: 10 min

10. Electroplating Mold: Al Etching

Process Conditions: similar to the previous Al etching step

Etching Time: 90 s

11. Reinforcement Micro-Needles: Au Electroplating

Solution: Techni-Gold 434, Technic Inc.

Current Density: 2.2 mA/cm2

Plating Rate: 16 – 18 Å/s

12. Reinforcement Micro-Needles: Planarization

Step 1: Diamond Lapping Film (UltraPrep, Buehler) 6 µm Abrasive Particles

Step 2: Diamond Lapping Film (UltraPrep, Buehler) 1 µm Abrasive Particles
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13. Structural Layer: PI Coating

Process Conditions: similar to the first PI coating step

14. Electrodes: Ti / Au / Ti E-beam Evaporation

Ti Deposition:

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 1.0 Å/s

Thickness: 20 nm

Au Deposition:

Deposition Conditions: similar to the previous Au deposition step

Thickness: 300 nm

Ti Deposition:

Process Conditions: similar to the previous Ti deposition step

Thickness: 20 nm

15. Electrodes: Mask 2

AZ3312 Coating

Spin Speed: 4000 rpm

Spin Duration: 1 min

Softbake: 1 min at 90 ◦C

Exposure Time: 8 s (UV Intensity: 40 mW/cm2)

Development Time: 45 – 60 s

Hardbake: 1 min at 110 ◦C

16. Electrodes: Metal Etching

Ti RIE Etching:

Pressure: 20 mTorr

Gases and Flow Rates: Ar 20 SCCM
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RIE Power Density: 0.4 W/cm2

Etching Time: 60 s

Au Etching:

Etchant: Gold Etchant TFA, Transene Company Inc. at Room Temperature

Etching Time: 40 – 50 s

Ti RIE Etching:

Process Conditions: similar to the previous Ti etching step

Etching Time: 60 s

17. Electrodes: Photoresist Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 30 min

18. Structural Layer: PI Coating

Process Conditions: similar to the first PI coating step

19. Structural Layer Patterning: Al Sputtering

Process Conditions: similar to the previous Al sputtering step

Thickness: 300 nm

20. Structural Layer Patterning: Mask 3

AZ3330 Coating

Process Conditions: similar to the previous AZ3330 patterning step

21. Structural Layer Patterning: Al Etching

Process Conditions: similar to the previous Al etching steps

Etching Time: 90s

22. Structural Layer Patterning: PI RIE Etching

First RIE Etching:
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Process Conditions: similar to the PI Mold etching step

Time: 1800 s

EKC Rinse: 3 min

IPA Rinse: 10 min

Second RIE Etching:

Time: 300 s

EKC Rinse: 3 min

IPA Rinse: 10 min

23. Structural Layer Patterning: Electroplating Seed Layer Etching

Process Conditions: similar to the previous Au etching step

Etching Time: 15 – 20 s

24. Structural Layer Patterning: PI RIE Etching

Process Conditions: similar to the PI Mold etching step

Time: 600 s

EKC Rinse: 3 min

IPA Rinse: 10 min

25. Electrodes Preparation: Ti RIE Etching

Process Conditions: similar to the previous Ti etching steps

Etching Time: 60 s

26. Release: Al Mask Etching

Process Conditions: similar to the previous Al etching steps

Etching Time: 3 min

27. Release: Sacrificial Layer Etching

Mo Sacrificial Layer:

Etchant: PAN at 40 ◦C
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Etching Time: 24 – 48 hrs

or

Cr Sacrificial Layer:

Etchant: CRE-473 Chromium Etch, Transene Company Inc., at 40 ◦C

Etching Time: 48 – 72 hrs

28. Microprobe Cleaning

IPA Rinse: 10 min for 3 times

DI Water Rinse

A.2 Process Flow of the Thin Film Planar Micro-

probes

The processing conditions and the details of the fabrication steps illustrated in Fig. 4.3

for the construction of the proposed thin film planar microprobes are as follows:

1. Substrate Cleaning

Cleaning Process: RCA 1

Hot Wash: 15 min

2. Sacrificial Layer: Cr E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3 Å/s

Thickness: 500 nm

3. Structural Layer: PI Coating

PI 2611 Coating
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Spin Speed: 4000 rpm

Spin Duration: 1 min

Bake 1: 2 min at 90 ◦C

Bake 2: 2 min at 150 ◦C

Cure: 30 min at 350 ◦C

Thickness: 4 µm

4. Electrodes: Au E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 10 Å/s

Thickness: 250 nm

5. Electrodes: Mask 1

AZ3312 Coating

Spin Speed: 4000 rpm

Spin Duration: 1 min

Softbake: 1 min at 90 ◦C

Exposure Time: 8 s (UV Intensity: 40 mW/cm2)

Development Time: 45 – 60 s

Hardbake: 1 min at 110 ◦C

6. Electrodes: Au Etching

Etchant: Gold Etchant TFA, Transene Company Inc. at room Temperature

Etching Time: 40 – 50 s

7. Electrodes: Photoresist Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 30 min
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8. Structural Layer: PI Coating

Process Conditions: similar to the previous PI coating step

9. Structural Layer Patterning: Al Sputtering

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 2.7 W/cm2

Deposition Rate: 3 Å/s

Thickness: 300 nm

10. Structural Layer Patterning: Mask 2

AZ3330 Coating

Spin Speed: 3000 rpm

Spin Duration: 1 min

Softbake: 3 min at 90 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 2 min at 90 ◦C

Development Time: 45 – 60 s

Hardbake: 2 min at 110 ◦C

11. Structural Layer Patterning: Al Etching

Etchant: PAN at 40 ◦C

Etching Time: 80 – 100 s

12. Structural Layer Patterning: PI RIE Etching

Pressure: 20 mTorr

Gases and Flow Rates: O2 18 SCCM and CF4 2 SCCM

RIE Power Density: 0.39 W/cm2
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ICP Power Density: 0.39 W/cm2

Time: 900 s

EKC Rinse: 3 min

IPA Rinse: 10 min

13. Release: Al Mask Etching

Process Conditions: similar to the previous Al etching step

Etching Time: 3 min

14. Release: Sacrificial Layer Etching

Etchant: CRE-473 Chromium Etch, Transene Company Inc., at 40 ◦C

Etching Time: 48 – 72 hrs

15. Microprobe Cleaning

IPA Rinse: 10 min for 3 times

DI Water Rinse

A.3 Process Flow of the Monolithic MEMS Switch

Matrices

The processing conditions and the details of the fabrication steps illustrated in Fig. 5.8

for the construction of the proposed monolithic MEMS switch matrices are as follows:

1. Substrate Cleaning

Cleaning Process: RCA 1

Hot Wash: 15 min
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2. Bias Lines: n+a-Si:H Deposition

Pressure: 150 mTorr

Deposition Temperature: 260 ◦C

Gases and Flow Rates: SiH4(1% PH3) 20 SCCM

Plasma Source: 13.56 MHz

Power Density: 11 mW/cm2

Deposition Rate: 2.5 Å/s

Thickness: 300 nm

3. Bias Lines: Mask 1

AZ3330 Coating

Spin Speed: 3000 rpm

Spin Duration: 1 min

Softbake: 3 min at 90 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 2 min at 90 ◦C

Development Time: 45 – 60 s

Hardbake: 2 min at 110 ◦C

4. Bias Lines: n+a-Si:H RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: CF4 30 SCCM

RIE Power Density: 0.20 W/cm2

ICP Power Density: 0.20 W/cm2

Time: 300 – 360 s

5. Bias Lines: Photoresist Ashing

Pressure: 20 mTorr

Gases and Flow Rates: O2 20 SCCM
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RIE Power Density: 0.20 W/cm2

ICP Power Density: 0.20 W/cm2

Time: 200 s

6. Dielectric: SiOx Deposition

Pressure: 900 mTorr

Deposition Temperature: 250 ◦C

Gases and Flow Rates: SiH4 20 SCCM, N2 118 SCCM, and N2O 140 SCCM

Plasma Source: 10 kHz

Power Density: 0.33 W/cm2

Deposition Rate: 9.1 Å/s

Thickness: 500 nm

7. Dielectric: Mask 2

AZ3330 Coating

Process Conditions: similar to the previous AZ3330 patterning step

8. Dielectric: SiOx RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: CF4 30 SCCM

RIE Power Density: 0.20 W/cm2

ICP Power Density: 0.39 W/cm2

Etching Time: 500 – 530 s

9. Dielectric: Photoresist Ashing

Process Conditions: similar to the previous photoresist ashing step

Time: 200 s

10. Metal 1: Electroplating Seed Layer Deposition

Cr E-beam Evaporation:
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Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3.0 Å/s

Thickness: 30 nm

Au E-beam Evaporation:

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 10 Å/s

Thickness: 100 nm

11. Metal 1: Mold Patterning (Mask 3)

AZ nLof 2035 Coating

Spin Speed: 4000 rpm

Spin Duration: 1 min

Softbake: 1 min at 110 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 1 min at 110 ◦C

Development Time: 135 – 150 s

Hardbake: 1 min at 110 ◦C

12. Metal 1: Au Electroplating

Solution: Techni-Gold 434, Technic Inc.

Current Density: 2.2 mA/cm2

Plating Rate: 16 – 18 Å/s

Thickness: 1.0 µm

13. Metal 1: Cr E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV
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Deposition Rate: 3.0 Å/s

Thickness: 30 nm

14. Metal 1: Electroplating Mold Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 60 min

15. Metal 1: Electroplating Seed Layer Etching

Au Etching:

Etchant: Gold Etchant TFA, Transene Company Inc. at Room Temperature

Etching Time: 20 – 25 s

Cr Etching:

Etchant: CRE-473 Chromium Etch, Transene Company Inc., at 40 ◦C

Etching Time: 10 – 15 s

16. Sacrificial Layer Coating

PI 2562 Coating

Spin Speed: 1400 rpm

Spin Duration: 1 min

Bake 1: 2 min at 90 ◦C

Bake 2: 2 min at 150 ◦C

Cure: 30 min at 350 ◦C

Thickness: 2.5 µm

17. Anchor: Al Sputtering

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 2.7 W/cm2
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Deposition Rate: 3 Å/s

Thickness: 300 nm

18. Anchor: Mask 4

AZ3330 Coating

Process Conditions: similar to the previous AZ3330 patterning steps

19. Anchor: Al etching

Etchant: PAN at 40 ◦C

Etching Time: 80 – 100 s

20. Anchor: PI RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: O2 30 SCCM

RIE Power Density: 0.10 W/cm2

ICP Power Density: 0.20 W/cm2

Time: 600 s

21. Anchor: Al etching

Process Conditions: similar to the previous Al etching step

Etching Time: 120 s

22. Dimple: Mask 5

AZ3330 Coating

Process Conditions: similar to the previous AZ3330 patterning steps

23. Dimple: PI RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: O2 30 SCCM

RIE Power Density: 0.10 W/cm2
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ICP Power Density: 0.10 W/cm2

Time: 240 s

24. Dimple: Photoresist Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 30 min

25. Metal 2: Electroplating Seed Layer Deposition

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 1.6 W/cm2

Deposition Rate: 5 Å/s

Thickness: 100 nm

26. Metal 2: Mold Patterning (Mask 6)

Process Conditions: similar to the metal 1 mold pattering step

27. Metal 2: Au Electroplating

Process Conditions: similar to the metal 1 Au electroplating step

Thickness: 1.0 µm

28. Metal 2: Cr E-beam Evaporation

Process Conditions: similar to the metal 1 Cr E-beam evaporation step

Thickness: 30 nm

29. Metal 2: Electroplating Mold Removal

Process Conditions: similar to the electroplating mold removal step for metal 1

30. Metal 2: Electroplating Seed Layer Etching

Process Conditions: similar to the electroplating seed layer etching for metal 1
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31. Annealing

360 – 400 ◦C for 3hrs

32. Release: PI RIE Etching

Pressure: 10 mTorr

Gases and Flow Rates: O2 20 SCCM

ICP Power Density: 0.58 W/cm2

Time: 1 – 2 hrs

A.4 Process Flow of the Magnetic-Actuated MEMS

Switches

The processing conditions and the details of the fabrication steps illustrated in Fig. 5.17

for the construction of the developed magnetic-actuated MEMS switches are as follows:

1. Substrate Cleaning

Cleaning Process: RCA 1

Hot Wash: 15 min

2. Metal 1: Electroplating Seed Layer Deposition

Cr E-beam Evaporation:

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3.0 Å/s

Thickness: 30 nm

Au E-beam Evaporation:

Base Pressure: < 10-6 Torr
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Beam Voltage: 5 kV

Deposition Rate: 10 Å/s

Thickness: 100 nm

3. Metal 1: Mold Patterning (Mask 1)

AZ nLof 2035 Coating

Spin Speed: 4000 rpm

Spin Duration: 1 min

Softbake: 1 min at 110 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 1 min at 110 ◦C

Development Time: 135 – 150 s

Hardbake: 1 min at 110 ◦C

4. Metal 1: Au Electroplating

Solution: Techni-Gold 434, Technic Inc.

Current Density: 2.2 mA/cm2

Plating Rate: 16 – 18 Å/s

Thickness: 1.0 µm

5. Metal 1: Cr E-beam Evaporation

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3.0 Å/s

Thickness: 30 nm

6. Metal 1: Electroplating Mold Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 60 min
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7. Metal 1: Electroplating Seed Layer Etching

Au Etching:

Etchant: Gold Etchant TFA, Transene Company Inc. at Room Temperature

Etching Time: 20 – 25 s

Cr Etching:

Etchant: CRE-473 Chromium Etch, Transene Company Inc., at 40 ◦C

Etching Time: 10 – 15 s

8. Sacrificial Layer Coating

PI 2611 Coating

Spin Speed: 3000 rpm

Spin Duration: 1 min

Bake 1: 2 min at 90 ◦C

Bake 2: 2 min at 150 ◦C

Cure: 30 min at 350 ◦C

Thickness: 5 µm

9. Anchor: Al Sputtering

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 2.7 W/cm2

Deposition Rate: 3 Å/s

Thickness: 300 nm

10. Anchor: Mask 2

AZ3330 Coating

Spin Speed: 3000 rpm

Spin Duration: 1 min
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Softbake: 3 min at 90 ◦C

Exposure Time: 15 s (UV Intensity: 40 mW/cm2)

Post Exposure Bake: 2 min at 90 ◦C

Development Time: 45 – 60 s

Hardbake: 2 min at 110 ◦C

11. Anchor: Al etching

Etchant: PAN at 40 ◦C

Etching Time: 80 – 100 s

12. Anchor: PI RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: O2 30 SCCM

RIE Power Density: 0.10 W/cm2

ICP Power Density: 0.20 W/cm2

Time: 600 s

13. Anchor: Al etching

Process Conditions: similar to the previous Al etching step

Etching Time: 120 s

14. Dielectric Cantilever: SiNx Deposition

Pressure: 625 mTorr

Deposition Temperature: 350 ◦C

Gases and Flow Rates: SiH4 12 SCCM, N2 200 SCCM, and NH3 10 SCCM

Plasma Source: 10 kHz

Power Density: 0.23 W/cm2

Deposition Rate: 3.3 Å/s

Thickness: 500 nm
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15. Dielectric Cantilever: Metal 2 Adhesion Layer

Cr E-beam Evaporation:

Base Pressure: < 10-6 Torr

Beam Voltage: 5 kV

Deposition Rate: 3.0 Å/s

Thickness: 30 nm

16. Dielectric Cantilever: Mask 3

AZ3330 Coating

Process Conditions: similar to the previous AZ3330 patterning step

17. Dielectric Cantilever: Cr Etching

Process Conditions: similar to the electroplating seed layer etching for metal 1

18. Dielectric Cantilever: SiNx Etching

Pressure: 250 mTorr

Gases and Flow Rates: CF4 30 SCCM

RIE Power Density: 0.20 W/cm2

ICP Power Density: 0.20 W/cm2

Etching Time: 160 – 200 s

19. Photoresist Removal

Solution: AZ KWIK Strip Remover at 60 ◦C

Time: 30 min

20. Dimple: PI RIE Etching

Pressure: 250 mTorr

Gases and Flow Rates: CF4 30 SCCM

RIE Power Density: 0.10 W/cm2
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ICP Power Density: 0.10 W/cm2

Etching Time: 240 – 260 s

21. Metal 2: Electroplating Seed Layer Deposition

Pressure: 3.5 mTorr

Sputtering Gas: Ar

Plasma Source: DC

Power Density: 1.6 W/cm2

Deposition Rate: 5.0 Å/s

Thickness: 100 nm

22. Metal 2: Mold Patterning (Mask 4)

Process Conditions: similar to the metal 1 mold pattering step

23. Metal 2: Au Electroplating

Process Conditions: similar to the metal 1 Au electroplating step

Thickness: 1.0 µm

24. Metal 2: Cr E-beam Evaporation

Process Conditions: similar to the metal 1 Cr E-beam evaporation step

Thickness: 30 nm

25. Metal 2: Electroplating Mold Removal

Process Conditions: similar to the electroplating mold removal step for metal 1

26. Metal 2: Electroplating Seed Layer Etching

Process Conditions: similar to the electroplating seed layer etching for metal 1

27. Annealing

360 - 400 ◦C for 3hrs
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28. Release: PI RIE Etching

Pressure: 10 mTorr

Gases and Flow Rates: O2 20 SCCM

ICP Power Density: 0.58 W/cm2

Time: 2 – 3 hrs
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