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Abstract

In the game of Kal-toh depicted in the television series Star Trek: Voyager, players
attempt to create polyhedra by adding to a jumbled collection of metal rods. Inspired by
this fictional game, we formulate graph-theoretical questions about polyhedral (triconnected
and planar) subgraphs in an on-line environment. The problem of determining the existence
of a polyhedral subgraph within a graph G is shown to be NP-hard, and we also give
some non-trivial upper bounds for the problem of determining the minimum number of edge
additions necessary to guarantee the existence of a polyhedral subgraph in G. A two-player
formulation of Kal-toh is also explored, in which the first player to form a target subgraph
is declared the winner. We show a polynomial-time solution for simple cases of this game
but conjecture that the general problem is NP-hard.
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Chapter 1

Introduction

1.1 The Game of Kal-toh

Kal-toh is a fictional game from the television series Star Trek: Voyager. It was first in-
troduced by the character Tuvok in the episode entitled “Alter Ego” from the show’s third
season. Tuvok belongs to an alien race known as the Vulcans, known for their superior
intelligence, mastery of logic, and highly analytical minds. The cultural impact of Kal-toh
among the Vulcans can be compared to the Human game of chess; achieving Grandmaster
status in either game requires intellect, dedication, and a lifetime of study. (However, this
comparison is viewed as somewhat insulting to Tuvok, who remarked that “Kal-toh is to
chess as chess is to tic-tac-toe.”)

Unfortunately, very few details of the game are explained to the viewer, so the following
description is largely based on personal interpretation. The game of Kal-toh is either played
alone or between two players and uses small metal rods, which appear to be connected to one
another at their endpoints. Initially the game appears as a seemingly random structure of
interconnected rods in three dimensions. One “move” consists of removing a rod and placing
it elsewhere in the structure, with the ultimate goal of forming a polyhedral structure. One
episode depicts a polyhedron being formed by using every rod in the structure, whereas
another episode depicts a player forming a polyhedron using only a subset of the rods.

This thesis considers a collection of interesting problems in algorithmic graph theory and
game theory which are inspired by the game of Kal-toh. After formulating the problems
from Kal-toh, our main goal is to provide solutions wherever possible, or at least describe
possible approaches and suggest open problems. We give a more detailed introduction to
the graph problems inspired by the one-player and two-player versions of Kal-toh in Section
1.1.1.

Following the brief review of graph theory definitions in Section 1.2, we give an overview
of related work in Section 1.3. The one-player and two-player variants of Kal-toh are studied
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in Chapters 2 and 3, respectively. Finally, Chapter 4 gives a summary of our results and
provides suggestions for future work.

1.1.1 Our Interpretation of Kal-toh

Despite a lack of details given about Kal-toh, it seems clear that the the objective of Kal-toh
is to place small metal rods at certain locations in order to create a polyhedron in three
dimensions. From the limited gameplay one can see in the Star Trek episodes, it appears
that a rod is removed and then re-added elsewhere within the game structure so that it
somehow “fits” among the others, possibly subject to gravity or a magnetic property of the
rods.

For simplicity, we ignore any physical constraints imposed by the length or weight of
the metal rods and will assume that any rod added to the configuration must be placed
exactly between the endpoints of two existing rods. This allows us to use a graph to model
any configuration of the game, using edges to represent rods and vertices to represent the
connection of two rods at their endpoints. This model also seems appropriate given Tuvok’s
comment that Kal-toh “is not about striving for balance, but about finding the seeds of
order even in the midst of profound chaos.” We will also make the assumption that a new
edge is added to the graph on each move, instead of first being removed from elsewhere in
the graph. This assumption is made in order to make a single move as simple as possible.

We can then view a configuration of the game as a simple, non-geometric graph G.
Steinitz’s Theorem states that a graph G is the edge graph of a polyhedron if and only if G
is a simple graph which is triconnected and planar. Using this theorem, we see that finding
polyhedra in three dimensions is equivalent to finding triconnected planar graphs, and can
be formalized as follows.

Let G be a graph having a fixed set of n vertices and an edge set which is possibly empty.
The graph G is modified incrementally by the addition of edges (multiple edges between two
vertices are not allowed). We are interested in the existence of any subgraph H of G such
that H is both triconnected and planar; it is not necessary for G itself to satisfy either of
these conditions. With this formulation in mind, we can ask the following questions:

• Does there exist a subgraph H of G such that H is both triconnected and planar?

• If at least one such H exists:

– Which subgraph(s) has/have the largest number of vertices?

– Which subgraph(s) is/are maximally planar (i.e., the addition of any one edge
would violate planarity)?

– Which subgraph(s) is/are minimally triconnected (i.e., the removal of any one
edge would violate triconnectivity)?
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• If no such H exists:

– Can a triconnected planar subgraph H of G be created by adding a single edge
to G?

– Can a triconnected planar subgraph H of G be created by adding l > 1 edges to
G?

– What is the minimum number of edges that must be added to G such that there
exists a triconnected planar subgraph H of G?

– What is the maximum number of edges that can be added to G without creating
a triconnected planar subgraph H of G? In other words, what number of edges
guarantees the existence of such an H?

To study the answers to some of these questions, we formulate the one-player version of
Kal-toh as the following two-parameter decision problem:

Kal-Tohl,≥k(G) Let G be a graph on a fixed set of n ≥ 4 vertices. Does there exist a
triconnected planar subgraph H of G on at least 4 ≤ k ≤ n vertices after the addition
of at most l edges?

The problem Kal-Tohl,=k(G) is used when we wish to specify the exact number of
vertices required for the triconnected planar subgraph. We will generally assume G to
be a fixed graph and hence use the notation Kal-Tohl,≥k to mean the same thing as
Kal-Tohl,≥k(G).

Our interpretation of the one-player game appears to be a mixture of problems related to
incremental planarity testing and triconnectiviy augmentation, both of which are described
in Section 1.3. But to the best of our knowledge, the Kal-Tohl,≥k(G) problem has not
previously been studied.

Chapter 2 examines various instances of this problem in further detail. Section 2.1
considers Kal-Toh0,≥4, which asks if G contains a triconnected planar subgraph H. We
show that it is NP-complete to answer this question. Section 2.2 considers the case l > 0
in which the addition of edges is allowed. In addition to some results on simple instances of
the game, we show that the addition of at most k + 1 edges to a connected graph G always
suffices to form a triconnected subgraph H with k vertices. Our result is proved by adding
edges to a spanning tree so that the resulting graph has a so-called Schnyder wood. We then
prove that any graph with a Schnyder wood and a triangle between the roots is triconnected,
a result of possible independent interest.

Chapter 3 considers the two-player variant of Kal-toh in which players add edges to the
graph in an alternating manner. To reduce the complexity, instead of attempting to create
any triconnected planar subgraph of G, we model this as a game where the first player to
create a prescribed graph H as a subgraph of G is declared the winner. We call this game
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Kal-Toh-2pn(H) (with G usually being the graph on n isolated vertices) which informally
asks which player has a strategy allowing them to be the first to create H as a subgraph
of G. A general approach to the analysis of this problem is given in Section 3.1, along
with results for simple cases. Section 3.2 looks at the cases where H is a four-cycle or a
diamond in greater depth, the analysis of which becomes surprisingly difficult. This leads us
to conjecture that there is no polynomial-time solution to Kal-Toh-2pn(H) for all graphs
H.

1.2 Background

Here we give a brief overview of some basic definitions and results in graph theory that are
relevant to this thesis. Additional details on these topics can be found in any textbook on
graph theory or graph algorithms, such as [5] or [9].

1.2.1 Graphs

A graph G = (V,E) consists of a set of vertices V and a set of edges E such that each edge
e = (v1, v2) ∈ E has two vertices v1 ∈ V and v2 ∈ V as its endpoints. In this case we say
that the vertices v1 and v2 are adjacent (or neighbours). We will assume that G is simple
unless otherwise indicated, which means that the endpoints of each edge are distinct (no
self-loops) and any two vertices are the endpoints of at most one edge (no multiple edges).
The edge e is incident to vertex v if v is an endpoint of e, and the degree of a vertex v is the
number of edges incident with v, denoted as deg(v). The Handshaking Lemma states that∑

v∈V deg(v) = 2 · |E|.
Two graphs G = (VG, EG) and H = (VH , EH) are called isomorphic if |VG| = |VH | and

there exists a bijective mapping v ↔ v′ between vertices v ∈ VG and v′ ∈ VH with the
property that (v1, v2) ∈ EG if and only if (v′1, v

′
2) ∈ EH .

Let G = (VG, EG) and H = (VH , EH) be graphs. H is said to be a subgraph of G if
VH ⊆ VG and EH ⊆ EG and a subgraph H of G is called a proper subgraph if H 6= G. Let V ′

be a subset of vertices of the graph G. Then the induced subgraph G[V ′] is the graph (V ′, E ′)
where E ′ = {(v1, v2) : v1 ∈ V ′, v2 ∈ V ′, (v1, v2) ∈ EG}. Every induced subgraph of G is also
a subgraph of G, but not every subgraph of G is an induced subgraph of G. When the term
subgraph is used, it does not necessarily refer to an induced subgraph. In this thesis, we use
the phrase G contains H to mean that H is a subgraph of G.

A path P is a list of vertices (v1, v2, v3, . . . , vk) such that vi and vi+1 are adjacent for all
1 ≤ i ≤ k−1 and vi 6= vj if i 6= j, for all 1 ≤ i, j ≤ k. P is called a k-path if it contains k+ 1
vertices (equivalently, k edges) and is said to have length k. If a path P is a subgraph of G
such that each vertex in VG appears exactly once in P , then P is called a Hamiltonian path.

A cycle C is a path (v1, v2, v3, . . . , vk) except that v1 = vk. A k-cycle Ck is a cycle on
k vertices (equivalently, k edges) and is said to have length k. The 3-cycle is often called a
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triangle. If a cycle C is a subgraph of G such that each vertex in VG appears exactly once in
C, then C is called a Hamiltonian cycle. The girth of a graph G is the length of the shortest
cycle appearing as a subgraph of G.

If each vertex in G has degree k, it is said to be k-regular. A complete graph is a special
type of regular graph having an edge between any pair of two vertices. The complete graph
on n vertices is denoted Kn. Note that a complete graph has

(
n
2

)
edges, and this gives an

upper bound on the number of edges present in any graph G.

A graph G = (V,E) is called bipartite if there exists a way to partition the vertices of G
into two disjoint sets V = A∪̇B such that v1 ∈ A and v2 ∈ B for every edge (v1, v2) ∈ E.
The complete bipartite graph contains an edge between each pair of vertices v1 ∈ A and
v2 ∈ B, denoted as Ka,b where a = |A| and b = |B|. This graph has a · b edges.

1.2.2 Connectivity

A graph G is connected if there exists a path between any two of its vertices. If there does
not exist a path between two vertices x and y, these vertices are said to be in different
components of the graph G. If the removal of a single vertex v disconnects the graph, v
is called an articulation point. If the removal of a single edge e disconnects the graph, e is
called a bridge.

A graphG is k-connected (or k-vertex-connected) if it remains connected after the removal
of any set of k−1 vertices, and it is k-edge-connected if it remains connected after the removal
of any set of k − 1 edges. Menger’s theorem states that G is k-vertex-connected (k-edge-
connected) if and only if there exist k pairwise vertex-disjoint (edge-disjoint) paths between
any two vertices in G. A 2-connected graph is also called biconnected, and a 3-connected
graph is also called triconnected. All triconnected graphs must contain at least four vertices.

1.2.3 Trees

A connected graph with no cycles is called a tree. A tree on n vertices always has n − 1
edges, and there exists a unique path between any two vertices. The removal of any one
edge will disconnect the tree (i.e. every edge is a bridge), and the addition of any one edge
will create a cycle. If a tree T = (VT , ET ) is a subgraph of a graph G = (VG, EG), then T is
called a spanning tree of G if VT = VG. A vertex v in a tree is called a leaf if deg(v) = 1. A
star is a tree on n vertices with n− 1 leaves. The general name for any graph with no cycles
is a forest ; each connected component of a forest is a tree.

In a rooted tree T , one vertex r is assigned to be the root vertex. If the length of the path
between r and another vertex v is l, then the vertex v appears at level l + 1 in T ; the root
vertex appears at level 1. The number of levels in a tree is called its height. Let u and v be
two adjacent vertices in T such that u appears at level l and v appears at level l + 1. We
say that v is a child of u and that u is the parent of v. Two vertices with a common parent

5



are called siblings. Note that all vertices have exactly one parent (except for the root), but
may have any number of children.

Let u and v be two vertices in T such that the level of u is no more than the level of v. If
the root vertex r does not appear on the path between u and v, then v is called a descendant
of u and u is called an ancestor of v. By definition, any vertex is also its own ancestor and
its own descendant.

1.2.4 Planarity

A graph G is called planar if it can be drawn on the surface of a sphere without any two of
its edges crossing. We will instead talk about graphs in R2, as any graph on the surface of a
sphere can be expressed on the plane via the stereographic projection. A specific realization
of a graph on the plane is called a drawing of the graph. This divides the plane into disjoint
regions called faces, and there is always exactly one face containing infinity called the outer-
face.

If G is a simple connected planar graph on n vertices, m edges, and f faces, then Euler’s
formula states that n−m+ f = 2. A corollary to this formula is the inequality m ≤ 3n− 6.
In an edge-subdivision of a graph G, additional vertices may be placed along any edge of
G. Kuratowski’s Theorem states that G is a planar graph if and only if it contains an
edge-subdivision of K5 or K3,3.

1.2.5 Polyhedral Graphs

A (convex) polyhedron is a finite region defined by the intersection of half-spaces in R3 (we
will not consider non-convex polyhedra in this thesis). For a polyhedron P , the corresponding
graph G = (V,E) can be constructed by defining a vertex v ∈ V for each extreme point
of P and an edge e ∈ E for each extreme line segment of P . G is called the polyhedral
graph of P . Steinitz’s Theorem states that the polyhedral graph G corresponding to a
convex polyhedron P is planar and triconnected and, furthermore, each triconnected planar
graph G is the polyhedral graph of some convex polyhedron P . For instance, the graph K4

corresponds to the tetrahedron.

Every triconnected graph must have minimum degree at least three. By the Handshaking
Lemma, 3n

2
is the smallest number of edges in a triconnected graph. Because a polyhedral

graph is also planar, we apply Euler’s formula to see that 3n
2
≤ m ≤ 3n−6 for any polyhedral

graph G on n vertices and m edges. Whitney’s theorem states that a polyhedral graph has
exactly two planar embeddings, i.e., an ordering of the edges around each vertex [8].
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1.3 Related Work

The single-player version of Kal-toh is related to the problems of planarity testing and k-
connectivity testing, both in a static environment and in an on-line environment where edge
additions are allowed. Its two-player variant also closely resembles problems of subgraph
isomorphism.

Kal-toh is an interesting problem to consider due to the differences in the properties
of planarity and k-connectivity. If G is a triconnected planar graph, then the property of
planarity is maintained for any subgraph ofG, but the same cannot be said for triconnectivity.
On the other hand, the property of triconnectivity is maintained for all supergraphs of G,
but it is not guaranteed that these graphs will also be planar.

In this section we provide a listing of some known results in each of these areas and
finish by giving an overview of results about planar c-connected subgraphs, some of which
are shown in this thesis.

1.3.1 Planarity

Recall that a winning game of Kal-toh (for a single player) is a graph G containing a tri-
connected planar subgraph H. Either a graph already contains such a subgraph, or it can
be obtained by the addition of edges. We are therefore interested in related results about
testing the planarity of a given graph and about how edge additions may violate planarity.
Note that our focus is slightly different because a game of Kal-toh does not require the graph
G to be planar.

The problem of planarity testing asks if there exists a planar embedding of a graph
G. After the original formulation of this problem was given by Goldstein [16], Hopcroft and
Tarjan showed a O(n)-time algorithm to test the planarity of a graph G [23]. Their approach
first divides the graph into its biconnected components and then tests planarity in a recursive
manner through the identification of cycles in each component. Unfortunately, this algorithm
only answers the decision problem and does not give any further information about the graph.
Mehlhorn et al. [33] modify the algorithm in order to output a combinatorial embedding if
G is planar or the location of a K5 or K3,3 edge-subdivision otherwise. It should be noted
that there are many other approaches to planarity testing; see [21] for an overview.

The incremental planarity testing problem is considered in an online environment where
the addition and removal of vertices and edges are allowed. In the context of Kal-toh,
the only operation we need to consider is the addition of edges. If G is biconnected, a
data structure requiring O(n) space is described by Di Battista et al. that supports edge
additions in O(log n) amortized time and answers the query “can the edge (v1, v2) be added
to G while maintaining planarity?” in O(log n) time [7]. If the biconnectivity requirement

on G is dropped, Galil et al. describe a data structure supporting edge insertions in O(n
2
3 )

amortized time and planarity testing in O(n
2
3 ) time [14].
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1.3.2 k-Connectivity and k-Connected Components

In addition to being planar, the target subgraph H in a game of Kal-toh must also be
triconnected. Recognizing if such an H exists is related to the problem of triconnectivity
testing. However, an important difference is that we do not require G to be triconnected.

Some of the results discussed in this thesis will require that a graph G is biconnected as a
precondition. A data structure known as a BC-tree can be used to represent the structure of
the vertex pairs whose removal disconnects a graph G (i.e, cutvertices) and the corresponding
biconnected components. The procedure for finding the biconnected components using a
depth-first search are given by Tarjan [38] and additional details of BC-trees are given by
Kant [28]. A graph G is biconnected if and only if no cutvertices appear in its BC-tree. Since
the tree can be constructed in linear time [5], it is therefore possible to test biconnectivity
in linear time.

Testing the triconnectivity of a graph G follows a similar idea. An SPQR-tree is a
data structure that stores information about the triconnected components of G. Hopcroft
and Tarjan give an O(m + n)-time algorithm to decompose a graph into its triconnected
components [22], further discussed in [19]. See [8] for further details about SPQR-trees,
or [25] for information about the related 3-block tree data structure. The SPQR-tree of a
biconnected graph can be constructed in linear time [8, 19].

1.3.3 Connectivity Augmentation

In the game of Kal-toh where we allow the addition of edges, we are interested in connectivity
augmentation problems, which ask if G is k-connected after the addition of one or more edges.
Similar variants exist when the addition of vertices are allowed, but these are not applicable
to the game of Kal-toh. As already mentioned, our problem differs from existing results
because we want to know the connectivity of a subgraph and not necessarily the entire
graph G.

Hsu and Ramachandran give a linear-time algorithm to solve the biconnectivity augmen-
tation problem, which finds a minimum set of edge additions to biconnect G [26]. The same
authors also give a linear-time algorithm to solve the triconnectivity augmentation problem,
defined similarly [25]. This result is an improvement on the previous bound of O(n(n+m)2)
by Watanabe and Nakamura [39].

However, these problems become more complicated when the planarity of G must be
maintained. Any planar graph can be made triconnected by triangulating, but the difficult
part is minimizing the number of edges needed to do so. The planar biconnectivity augmen-
tation problem (PBA) asks for a minimum set of edges that will biconnect a graph while
maintaining planarity; the planar triconnectivity augmentation problem (PTA) is defined
similarly. Both of these problems are NP-hard in general [29]. See [34] and [27] for an
alternate formulation of PBA and PTA as integer programming problems.
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An approximation algorithm for PBA with performance ratio 3
2

and an approximation
algorithm for PTA with performance ratio 5

4
is given in [29]. Unfortunately, the approxi-

mation for PBA as it appears in this paper is incorrect; a revised version with performance
ratio 5

3
appears in [20]. Furthermore, [20] also shows the NP-hardness of two weaker versions

of PBA: the case where all cutvertices belong to the same biconnected component and the
case where the SPQR-tree of this biconnected component has diameter at most two. Details
of four-connectivity augmentation problems can be found in [24].

All of the results mentioned so far in this section apply to the entire graph. A related
problem requiring only (1-)connectivity that instead applies to a subgraph was studied by
Gutwenger et al. [18]: Consider a planar graph G = (V,E), a subset W of vertices, and the
subgraph EW induced by W . A subgraph induced planar connectivity augmentation for W
is a set of F additional edges with end vertices in W such that G′ = (V,E ∪ F ) remains
planar and the subgraph induced by W is connected. Gutwenger et al. give a linear-time
algorithm (based on SPQR-trees) which tests the existence of such an augmentation and,
if one exists, returns an augmentation of minimum cardinality [18]. This does not direcly
apply to the problems we will be studying in this thesis, which require triconnectivity and
do not require the subgraph to be induced; they also do not fix the vertex set on which the
subgraph should reside.

1.3.4 Finding Subgraphs

Here we list some problems which consider the existence of certain subgraphs H within a
graph G; the two-player version of Kal-toh studied in Chapter 3 is a special case where H is
both triconnected and planar.

Given graphs G and H, the general SubgraphIsomorphism problem asks whether H
appears as a subgraph of G. Even if H is restricted to be a planar graph, this problem is
known to be NP-complete [15]. However, the problem PlanarSubgraphIsomorphism
where both G and H are restricted to be planar graphs, is fixed-parameter tractable in k,
the number of vertices of H [11, 12,10].

In the single-player version of Kal-toh studied in Chapter 2, we are not given a spe-
cific H to find as a subgraph of G. The goal is instead to check the presence of a tri-
connected planar subgraph H of G such that H has at least k ≥ 4 vertices. The related
MaximumPlanarSubgraph problem asks a similar question, but only requires H to be
planar (not necessarily triconnected), and returns a planar subgraph H of G containing
a maximum number of edges (instead of vertices). MaximumPlanarSubgraph is NP-
complete [31] and has approximation algorithm with a performance ratio of 2

5
[6]. The

problem of finding a maximal induced planar subgraph is also NP-hard [40,39,41].
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1.3.5 c-connected Planar Subgraphs

The problem Kal-Toh0,≥k(G) is a special case of the general question “Does the graph G
contain a planar c-connected subgraph H?”, possibly with a restriction on the minimum
number of vertices k in H.

We briefly list here results for smaller values of c. For c = 1, this question is solvable
in polynomial time with or without a restriction on the minimum value of k by finding a
spanning tree of G. For c = 2, the problem is easy if k = 0, i.e., if we want to find any
2-connected planar subgraph. The answer is Yes if and only if G contains any cycle, i.e., if
and only if G is not a tree.

For c = 2 and k > 0, we suspect that it is NP-hard, because it somewhat resembles the
HamiltonianCycle problem (“Does G contain a cycle of length at least k?”). However, we
only require that H is biconnected and planar, not that it is a cycle, so proving NP-hardness
remains open.

When moving from c = 2 to c = 3, the problem makes a jump from having a polynomial-
time solution to being NP-hard. Theorem 1 shows that it is NP-hard to determine if a
graph G contains a planar triconnected subgraph.

10



Chapter 2

Kal-toh for One Player

For a graph G on a fixed set of n ≥ 4 vertices, recall that Kal-Tohl,≥k(G) is the question,
“does there exist a triconnected planar subgraph H of G on at least 4 ≤ k ≤ n vertices after
the addition of at most l edges?” The problem Kal-Tohl,=k(G) is used when we wish to
specify the exact number of vertices required for the triconnected planar subgraph.

In this chapter, we look at specific parameterizations of Kal-Tohl,≥k. Section 2.1 begins
by considering Kal-Toh0,≥4: without requiring the addition of edges, does a graphG contain
any triconnected planar subgraph? We show this problem to be NP-complete and also give a
similar proof for the NP-completeness of Kal-Toh0,≥ 3n

4
. Section 2.2 then considers instances

of Kal-Tohl,=k in which edges are added to the graph. In addition to some specific results
for small values of l, we prove that the answer to Kal-Tohk+1,=k is Yes when G is connected.

2.1 Recognizing a Winning Graph

Our reduction used in proving the NP-hardness of Kal-Toh0,≥4 will be from the
NoncrossingCycle problem in an orthogonal geometric graph G, defined below.

Definition 1 (Orthogonal Geometric Graph, Crossing). An orthogonal geometric graph
is a graph drawn in the plane such that each edge is represented by a path of contiguous
axis-parallel line segments such that no two line segments have infinitely many points of
intersection, and no segment intersects a non-incident vertex. A crossing is a point that
belongs to the interior of two segments of edges.

The NoncrossingCycle problem, defined below, was shown to be NP-complete in [30].

Definition 2 (NoncrossingCycle Problem). For an orthogonal geometric graph G, the
NoncrossingCycle problem asks if there exists a cycle in G that contains no crossing.

11



Let G be an orthogonal geometric graph. Preprocess the graph G by placing a dummy
vertex at each bend, which is the common point of any two consecutive segments belonging
to the same edge. Furthermore, if two line segments l1 and l2 both cross a line segment l3,
place a vertex along l3 between these crossings. This preprocessing of G guarantees that
each crossing is surrounded by four vertices. Note that this does not change our problem;
adding the dummy vertices will neither add nor remove a non-crossing cycle from G. Figure
2.1 shows an example of an orthogonal geometric graph containing a non-crossing cycle.

������

��

�
�
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����

�
�
�
�

�
�
�
�

Figure 2.1: An orthogonal geometric graph (black vertices) with a non-crossing cycle
(in bold). White vertices are added in the pre-processing step.

From G, we construct the graph H that is the instance for Kal-Toh0,≥4 by replacing
each vertex and crossing in G by a spine in H, described in Definition 3.

Definition 3 (Vertex-spine, Crossing-spine, Spine). A vertex v ∈ G is replaced with a two-
path (s1(v), s2(v), s3(v)) ∈ H, called a vertex-spine. A crossing c ∈ G is replaced with a
two-path (s1(c), s2(c), s3(c)) ∈ H, called a crossing-spine. A spine is either a vertex-spine
or a crossing-spine.

An edge e ∈ G by our preprocessing consists of a horizontal or vertical segment with at
most one crossing and with a vertex at both ends. This edge is replaced in H as follows.
If there is no crossing along e, it is represented by a vertex-segment gadget, described in
Definition 4. If there is a crossing along e, it is represented by two crossing-segment gadgets,
described in Definition 5. A segment gadget is either a vertex-segment gadget or a crossing-
segment gadget.

Definition 4 (Vertex-segment gadget). Let (v, w) be an edge in G that does not contain a
crossing. In H, v and w are replaced with spines (defined previously) and the edge (v, w) is
replaced with the six-cycle (x3, x2, x1, y1, y2, y3) such that si(v) is connected to xi for i = 1, 2, 3
and si(w) is connected to yi for i = 1, 2, 3. See Figure 2.2.
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s (v)
2

G

H

Figure 2.2: For an edge (v, w) ∈ G without a crossing, vertices v and w are replaced
with vertex-spines in H, and these spines are connected to a common vertex-segment
gadget.

Definition 5 (Crossing-segment gadget, Opposite crossing-segment gadgets). Let (v, w) be
an edge in G that contains a crossing c. In H, v, w, and c are replaced with spines (defined
previously). We add the seven-cycle D = (x3, x2, x1, x0, y1, y2, y3) to H (called a crossing-
segment gadget) such that si(v) is connected to xi for i = 1, 2, 3 and si(c) is connected to
yi for i = 1, 2, 3. We also add the the seven-cycle D′ = (x′3, x

′
2, x
′
1, x
′
0, y
′
1, y
′
2, y
′
3) connecting

the spines for c and w in a similar manner. Finally, we add an edge between x0 and x′0. The
crossing-segment gadgets D and D′ are called opposite. See Figure 2.3.

s (v)
1

s (v)3

s (w)
1

s (w)2

s (w)
3

x1

x2

x3

y
1

y
2

y3

s (c)
1

s (c)
2

s (c)
3

x’1

x’
2

x’3

y’
1

y’
2

y’
3

wv

x
0 x’

0

s (v)
2

G

H

Figure 2.3: For an edge (v, w) ∈ G with a crossing c, vertex v, vertex w, and c
are replaced with spines in H, and these spines are connected using two opposite
crossing-segment gadgets.

A more detailed example is shown in Figure 2.4.
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w

u

v

x y

G

vertex−spine for w

vertex−spine for u

vertex−spine for v

crossing−spine

crossing−segment gadgets

crossing−segment gadgets

vertex−spine for x
vertex−spine for y

H

Figure 2.4: The graph H is constructed from the graph G using spines and segment
gadgets.

This ends the description of H. We will now show that G has a non-crossing cycle if and
only if H has a triconnected planar subgraph.

First assume we are given a non-crossing cycle C of G. We can construct a corresponding
triconnected planar subgraph H ′ of H as follows. Consider any edge (v1, v2) in C, and let
S1 and S2 be the vertex-spines of v1 and v2, respectively, in H. Then in H ′ we include S1

and S2. If (v1, v2) has no crossing, then we include its vertex-segment gadget. If it does,
we include its crossing-spine and and both crossing-segment gadgets. It is easy to see that
the subgraph H ′ is triconnected. H ′ is also planar because this graph can be drawn without
crossings, as shown in Figure 2.5.

To show the other direction, let H ′ be any triconnected planar subgraph of H. We think
of H ′ as being obtained from H by removing enough edges to achieve planarity while at the
same time maintaining triconnectivity. The following four lemmas give conditions implied
by the triconnectivity and planarity of H ′.

Lemma 1. For any segment gadget in H, either all or none of the edges incident to its
vertices are in H ′.
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Figure 2.5: A non-crossing cycle C in G corresponds to the triconnected subgraph H ′

of H. As illustrated here, there exists a drawing of H ′ without crossings.

Proof. Consider a vertex-segment gadget in H ′. Each of the vertices have degree exactly
three, so removing an incident edge from this gadget would violate the triconnectivity of H ′

by changing the degree of a vertex to two. In this case, every other edge belonging to the
gadget would need to be removed in order to guarantee no vertices of degree two. Therefore
either all or none of the edges must be present in a vertex-segment gadget in H ′. A similar
argument holds for a crossing-segment gadget.

Lemma 2. Any spine in H is connected to at most two non-empty segment gadgets in H ′.

Proof. Consider a spine in H ′ made up of vertices s1, s2, and s3 that is connected to at
least three segment gadgets. By Lemma 1, each of these segment gadgets contain all of their
edges, and also all edges to vertices s1, s2, and s3. Let a, b, and c be the vertices in the
three segment gadgets that are adjacent to s2. Then we have that the two sets {s1, s2, s3}
and {a, b, c} give an edge-subdivision of K3,3, violating planarity of H ′. See Figure 2.6.

Lemma 3. Any spine in H is connected to either 0 or 2 non-empty segment gadgets in H ′.

Proof. Using Lemma 2, we only need to argue that it is impossible for a spine to have exactly
one adjacent segment gadget that is non-empty in H ′. For a contradiction, assume that the
spine S = (s1, s2, s3) has exactly one non-empty adjacent segment gadget D. By Lemma 1,
the vertices of S are adjacent only to the vertices of D. But this means that s1 and s3 have
degree exactly two, which is a contradiction to the triconnectivity of H ′.

Lemma 4. If a crossing-spine in H is connected to two crossing-segment gadgets R1 and
R2 that are both non-empty in H ′, then R1 and R2 are opposite.

Proof. Let S be a crossing-spine connected to exactly two non-empty crossing-segment gad-
gets in H ′ which are not opposite. Consider one of these crossing-segment gadgets. Because
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Figure 2.6: An edge-subdivision of K3,3 exists (indicated using bolded edges between
{s1, s2, s3} and {a, b, c}) when a vertex-spine is adjacent to at least three other vertex-
spines.

there is no opposite crossing-segment gadget in H ′, vertex x0 of this segment gadget is
missing an edge, which contradicts Lemma 1.

So given a triconnected planar subgraph H ′ of H, we define C to be a subset of the edges
of G as follows. Consider any edge (v1, v2) in the graph G. Then the edge (v1, v2) is in the
set C if and only if and only if the segments replacing (v1, v2) in H belong to H ′ (they must
be in H ′ entirely or not at all by Lemmas 1 and 4).

We first note that the set C is non-empty. For otherwise, H ′ would be a subforest of
paths on three vertices by Lemma 1 because no two spines would be connected by a common
segment gadget. But this is a contradiction because H ′ must be triconnected. Therefore by
Lemma 3, the vertices in C all have degree two and must form a cycle in G because H ′ is
triconnected. Furthermore, Lemma 4 guarantees that C is a non-crossing cycle.

A solution to our problem can be verified in polynomial time by performing planarity and
triconnectivity tests on the graph H ′, so it is in NP. Furthermore, our reduction requires
polynomial time.

Theorem 1. It is NP-complete to determine if a graph G contains a triconnected planar
subgraph.

Note that Theorem 1 also holds if we were to replace “subgraph” by “induced subgraph”
because in no part of our proof do we ever specifically require that H ′ be a non-induced
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subgraph. Theorem 1 also holds if we were to replace “triconnected” by “having minimum
vertex-degree of 3,” or if we add the restriction that G is triconnected.

Corollary 1. Kal-Toh0,≥4 is NP-complete.

Recall that Kal-Toh0,≥k asks whether or not a given graph G has a triconnected planar
subgraph on at least k vertices. By Theorem 1, Kal-Toh0,≥k is NP-hard because it is
already NP-hard for the special case k = 4.

One might wonder whether Kal-Toh0,≥k becomes easier as the value of k gets larger.
For example, if this question were instead asked for induced subgraphs, then Kal-Toh0,≥k
for the case k = n is easily answered by running planarity and triconnectivity tests on the
input graph G.

With a very similar proof, reducing from HamiltonianCycle in 3-regular graphs, we
can show that Kal-Toh0,≥k remains NP-complete for k = 3n

4
in Theorem 2.

Theorem 2. Kal-Toh0,≥ 3n
4

is NP-complete.

Proof. Let G be an instance of the HamiltonianCycle problem for 3-regular graphs. We
define H by replacing each vertex in G by a vertex-spine and replacing each edge in G by a
vertex-segment gadget.

Given a triconnected planar subgraph H ′ of H, Lemmas 1, 2, and 3 continue to hold. So
we can define the set C using H ′ as before, which must be a cycle of G.

If G has n vertices and m edges, then it can be verified that H has 3n
2

edges and 3n+6m =
3n + 6

(
3n
2

)
= 12n vertices. We are demanding that |V (H ′)| ≥ 3

4
|V (H)| = 9n and we know

that |V (H ′)| = 9|C| ≤ 9n, which implies |V (H ′)| = 9n. So |C| = n and thus C must be a
Hamiltonian cycle of G.

For the other direction, assume we are given a Hamiltonian cycle C of G. In a simi-
lar manner to our argument for Theorem 1, it can be shown that this Hamiltonian cycle
corresponds to a triconnected planar graph H ′.

2.2 Creating a Winning Graph

We now consider the one-player version of Kal-toh in which edge additions are allowed to
create a triconnected planar subgraph H of G.

Section 2.2.1 looks at the problem Kal-Tohl,≥4, creating an instance of K4 as a subgraph
of G by adding at most l edges. After demonstrating simple polynomial-time algorithms to
solve this problem for l ≥ 3, we observe that our approaches do not work for l = 2 or l = 1.
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We suspect the problem to be NP-complete in general when H can be any planar tri-
connected subgraph, but the problem has a polynomial-time solution when G is planar and
H is any fixed graph. To solve this, we must consider the addition of at most l edges, which
corresponds to at most 2l vertices. For each of the O(n2l) possible sets of edge additions, it
then takes linear time in |H| to determine if G contains a subgraph isomorphic to H [11].

We then consider the general problem Kal-Tohl,=k for any k ≥ 4. In Section 2.2.2 we
give an upper bound for l by creating a prism as our triconnected planar subgraph H ′. In
Section 2.2.3 we use a different approach to show a second upper bound of k for l if the
graph G is connected. Finally, suggestions for future work appear at the end of the chapter.

2.2.1 Creating K4

We begin by considering the problem Kal-Tohl,≥4 on an input graph G in which we aim
to create a triconnected planar graph by adding l edges. We will actually create K4, the
complete graph on four vertices, as a subgraph of G. Throughout, we assume that G has
at least four vertices, otherwise the answer is always No. It is clear that we only need to
consider values l ≤ 6 because K4 can always be constructed as a subgraph of G by adding
up to six edges between any four vertices, which immediately implies Theorem 3.

Theorem 3. The answer to Kal-Toh6,≥4 is always Yes.

A similar argument shows that both Kal-Toh5,≥4 and Kal-Toh4,≥4 can be answered
in linear time. For l = 5, a subgraph of K4 can be constructed by adding up to five edges
between the endpoints of any preexisting edge of G and any two other vertices. For l = 4,
a subgraph of K4 can be constructed by adding four edges between the endpoints of any
two preexisting edges of G (plus another vertex if the two edges are incident to a common
vertex). Finding such vertices and edges can easily be accomplished in linear time.

Theorem 4. Kal-Toh5,≥4 and Kal-Toh4,≥4 can be answered in linear time.

Finally, we argue that Kal-Toh3,≥4 can also be answered in linear time. By finding a
subgraph of G equal to K4 having exactly three edges removed, as described in Lemma 5,
we are able to form a triconnected planar subgraph by adding (at most) three edges to G.

Lemma 5. If we can create any triconnected planar subgraph H of G by adding at most
three edges, then G must have originally contained one of the graphs seen in Figure 2.7.

Proof. For a contradiction, assume that G did not originally contain any of the graphs
seen in Figure 2.7. Then the components of G are single vertices, single edges, and 2-
paths. Let H be a triconnected planar graph formed by adding at most three edges to G,
and let G|V (H) denote the graph G restricted to the vertices of H (excluding the added
edges). The average degree of G|V (H) is at a maximum when all components are 2-paths.
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If there are t 2-paths, then the average degree of this graph is at most 2·2t
3t

= 4
3
. Therefore

|E
(
G|V (H)

)
| = 1

2

∑
v∈V (H) degG|V (H)

(v) ≤ 1
2
· 4

3
|V (H)| ≤ 2

3
|V (H)|.

We have
∑

v∈H degH(v) = 2 · |E(H)| by the Handshaking Lemma, and we also have
|E(H)| ≥ 3

2
· |V (H)| by the triconnectivity of H. If a ≤ 3 is the number of edges added to

H, then we have 3
2
|V (H)| ≤ |E(H)| = |E

(
G|V (H)

)
|+ a ≤ 2

3
|V (H)|+ a. But |V (H)| ≥ 4 by

triconnectivity, so this implies a ≥ 5
6
|V (H)| ≥ 20

6
> 3, a contradiction.

Theorem 5. Kal-Toh3,≥4 can be answered in linear time.

Proof. By Lemma 5, the answer to Kal-Toh3,≥4 is Yes if and only if G contains one of
the graphs in Figure 2.7 as a subgraph; rephrased using the contrapositive, we see that the
answer is No if and only if the components of G consist only of isolated vertices, single
edges, and 2-paths. Thus we can answer this question in O(n) time because computing all
components of G and checking each one can be accomplished in O(n) time.
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Figure 2.7: The answer to Kal-Toh3,≥4 is Yes if and only if G contains any of these
graphs as a subgraph.

Unfortunately, we are unable to use the same reasoning for the problem Kal-Toh2,≥4.
As seen in Figure 2.8, A and B are the only two possible subgraphs of K4 which contain
6 − 2 = 4 edges. If a graph G contains either of these as subgraphs, then the answer to
Kal-Toh2,≥4 is Yes. However, the claim does not hold in the opposite direction. For a
counterexample, consider the dodecahedron having any two of its edges removed; see Figure
2.8. The answer to Kal-Toh2,≥4 will be Yes for this graph, as the dodecahedron (which
is triconnected and planar) can be formed by adding the two missing edges, but this graph
contains neither A nor B as a subgraph. It is not immediately obvious how many graphs are
in the set of “desirable” subgraphs for Kal-Toh2,≥4 (or even if a finite set of such graphs
exists), but we do know that all three graphs seen in Figure 2.8 must be elements of such a
set.

However, even if we were able to demonstrate a complete set of “desirable” subgraphs for
Kal-Toh2,≥4, it is still unlikely that this problem could be solved in polynomial time. Check-
ing the existence of any of these subgraphs is equivalent to the SubgraphIsomorphism
problem, which is NP -complete in general [11]. Hence we conjecture that Kal-Toh2,≥4

(and similarly Kal-Toh1,≥4) are NP-hard.
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Figure 2.8: The answer to Kal-Toh2,≥4 is Yes if G contains A or B as a subgraph.
But the reverse is not true; the dodecahedron having any two of its edges removed
serves as a counterexample.

2.2.2 Creating a Prism

Here we show an upper bound on l for the problem Kal-Tohl,=k, in which we would like
to form a subgraph on exactly k ≥ 4 vertices after adding at most l edges. This bound is
given in Lemma 7 by creating a k

2
-prism. A k-prism is defined as the graph composed of

two disjoint cycles v1, v2, . . . , vk and w1, w2, . . . , wk where the edge (vi, wi) is added for all i.

We first look at the auxiliary result given in Lemma 6.

Lemma 6. For any k ≥ 4, there is a graph G on k vertices that is triconnected, planar,
3-regular, and contains a triangle.

Proof. For any even value of k, consider the (k
2

+1)-prism H, which is a triconnected, planar,
and 3-regular graph on k + 2 vertices. We label the vertices of H such that the prism is
composed of the two cycles v1, v2, . . . , v k

2
+1 and w1, w2, . . . , w k

2
+1 where vi and wi are adjacent

for all i. By contracting edges (v1, w1) and (v2, w2) in H, we form a graph G on k vertices
which is triconnected, planar, 3-regular, and contains a triangle. For any odd value of k,
consider the (k+1

2
)-prism H. The argument is similar, except that only a single edge is

contracted in H. See Figure 2.9 for an illustration.
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Figure 2.9: Graphs B and C are triconnected, planar, 3-regular, and contain a trian-
gle. B can be created from graph A by contracting two edges, and C can be formed
from A by contracting a single edge.
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Lemma 7. The problem Kal-Toh 3
2
k−3,=k (where k is even) [Kal-Toh 3k+1

2
−3,=k (where k

is odd)] can be answered in linear time.

Proof. We first show that Kal-Toh 3
2
k−3,=k (where k is even) [Kal-Toh 3k+1

2
−3,=k (where k

is odd)] has an answer of Yes if and only if G contains at least three edges with at most k
distinct endpoints.

Figure 2.10 shows the possible ways in which three edges on at most k vertices (i.e., on
at most k distinct endpoints) can be present in G; graphs (i)-(iii) show the possibilities
for k ≤ 4, graphs (i)-(iv) show the possibilities for k = 5, and graphs (i)-(v) show the
possibilities for k ≥ 6. Assume that the answer to Kal-Toh 3

2
k−3,=k is Yes for some graph

G. Let H be the triconnected planar subgraph created by the addition of edges to G. G
must contain at least three edges among the vertices that define H. Since these edges must
be part of the graph H on k vertices, then G must initially contain three edges with at most
k distinct endpoints.

To show the other direction, assume thatG has at least three edges e1, e2, and e3 having at
most k distinct endpoints. First consider the case where k is even. If G contains a triangle,
then we can add 3

2
k − 3 edges to create the graph described in Lemma 6. Otherwise, G

contains one of the configurations (ii)-(v) in Figure 2.10, and we can build a k
2
-prism (if k is

even) or the graph C from Figure 2.9 by adding k
2
− 3 edges to it.

We have now shown that Kal-Toh 3
2
k−3,=k (where k is even) [Kal-Toh 3k+1

2
−3,=k (where

k is odd)] has an answer of Yes if and only if G contains at least three edges with at most
k distinct endpoints. Graphs (i)-(iii) from Figure 2.10 do not appear as subgraphs of G
if and only if all components of G are single edges or two-paths. Thus we can answer this
question in O(n) time because computing all components of G and checking each one can
be accomplished in O(n) time.
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Figure 2.10: Graphs on three edges.

2.2.3 Creating triconnected planar subgraphs of connected graphs

This section shows a second upper bound for l by using a different approach. For a given
connected graph G on n vertices, we show that it is always possible to create a triconnected
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planar subgraph H of G such that H has exactly k ≤ n vertices by adding at most k + 1
edges.

We begin by finding any spanning tree T of G and then arbitrarily removing exactly n−k
leaves. This will leave us with a tree on exactly k vertices such that T is still a subgraph
of G. If T contains no vertices of degree two, then we add edges to connect the leaves of
T in a cycle to form the graph H. Such a graph is called a Halin graph, which is known to
be planar and triconnected [37]. An example of a Halin graph is shown in Figure 2.11. By
k ≥ 4, the tree T has at most k − 1 leaves (which is tight if T is a star), and so it requires
the addition of at most k − 1 < k edges.
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Figure 2.11: A Halin graph.

For the remainder of this section, assume that T has at least one vertex of degree two.
Connecting the leaves of T will not be sufficient to form a triconnected graph when T contains
a vertex of degree two, so we instead describe an alternate approach. An overview is given
below, followed by the details of each step.

1. Select a root node for T

2. Remove an extra degree-two vertex from T (if necessary)

3. Pair non-root degree-two vertices in T such that paired vertices are in different subtrees
of the root

4. Create paths between non-root degree-two vertex pairs

5. Connect the remaining leaves

6. Undo the changes done in Step 2 (if any)

Step 1: Select a root for T . If T contains exactly one degree-two vertex, then assign
this vertex to be the root (in this case, Steps 2, 3, and 4 may be skipped).

Otherwise, our goal is to select a root vertex r of T that will distribute the degree-two
vertices “evenly” among its subtrees. Assign a weight of 1 to each vertex of degree two in T

22



and assign a weight of 0 to all other vertices. We will denote the total weight of the vertices
of T as w(T ), which is equal to the number of non-root degree-two vertices in T .

An α-separator for T is a vertex v such that each component of T −v has weight at most
α|w(T )|. Using the separator theorem for trees [4], we know that there exists a 1

2
-separator

for T of size one1. In other words, there exists a vertex r such that each connected component
of T − r contains at most half of the degree-two vertices of T . We select r to be the root of
T .

For each non-root vertex v, store a reference to the parent, parent(v). For each vertex of
degree at least two, store a list of children, children(v). Each edge in the original spanning
tree T is given a direction downward from the root in order to distinguish these edges from
those to be added later. For all vertices v, we give the list children(v) an arbitrary order. If
Step 2 is not applicable, then we fix these orderings; otherwise some additional changes in
the orderings may be made in Step 2.

Step 2: Remove an extra degree-two vertex from T .

This step is only performed if there is an odd number of non-root degree-two vertices
in T . Consider the subtrees of the root vertex r (T1, T2, . . . , Ts) which contain at least one
degree-two vertex. Among these subtrees, pick the subtree Ti having the smallest index and
label one degree-two vertex in Ti as x.

Consider the path found by starting at the root vertex r and repeatedly following the
leftmost child of each vertex until a leaf is reached; we call this the leftmost leaf of the
tree T . For reasons that will be explained in Step 6, we now re-arrange the children at each
vertex in T so that x is on the path from r to the leftmost leaf2.

We now create a dummy leaf d and connect it to x such that d is the rightmost child of
x (i.e., the last child in the ordered list children(x)). Doing so makes deg(x) > 2 and thus
leaves us with an even number of non-root degree-two vertices in T , which is assumed in
each of the following steps. Step 6 explains how the vertex d is removed without changing
the planarity or the triconnectivity of the graph.

If possible, also re-arrange the order of the subtrees of r (excluding the leftmost subtree)
so that the number of vertices in the rightmost subtree of r is greater than one.

Step 3: Pair degree-two vertices in T .

In this step, we create disjoint pairs of non-root degree-two vertices in T according to
the “matching” process described below. At the end of Step 3, each non-root degree-two
vertex u in T will be paired with exactly one other non-root degree-two vertex v in T . It
will become clear why vertices have been paired in this manner once we have reached Step
4.

1The definition of a separator found in [4] uses a bound of 2
3 . By inspection, their proof of the separator

theorem also shows a weight of at most 1
2 |w(T )| for each component.

2Note that x is not required to be within the Ti having the smallest index or be on the path from r to the
leftmost leaf. These restrictions are only imposed to ensure that d does not become the leftmost leaf of T .
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Consider the subtrees of the root vertex T1, T2, . . . , Ts. We will denote the weight of a
subtree as w(Ti), which corresponds to the current number of unmatched non-root degree-
two vertices in Ti. Note that this weight value may change as non-root degree-two vertices
are matched.

In a subtree Ti, we use the term leftmost degree-two vertex to denote the first un-
matched non-root degree-two vertex found in a depth-first traversal of Ti such that the
leftmost unvisited child is selected at each step. The rightmost degree-two vertex is de-
fined similarly using a depth-first traversal such that the rightmost unvisited child is selected
at each step. A pairing is always made between the rightmost degree-two vertex in a subtree
Ti and the leftmost degree-two vertex in a subtree Tj such that i < j.

Repeat the following procedure (see Figure 2.12 for an illustration): If all subtrees Ti
have a weight of zero, stop. Otherwise, there are still α ≥ 2 unmatched non-root degree-
two vertices remaining among at least two subtrees. Select the smallest index q such that
w(T1) + w(T2) + · · · + w(Tq) >

1
2
α. Let i∗ < q be the index such that w(Ti∗) > 0 but

w(Ti∗+1), . . . , w(Tq−1) = 0 (we will soon show that i∗ exists). Pair the rightmost vertex of
Ti∗ with the leftmost vertex of Tq, update the weights of Ti∗ and Tq, and repeat.
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Figure 2.12: (Step 3) The degree-two vertex u ∈ Ti∗ is paired with the degree-two
vertex v in Tq. The number next to each subtree Ti indicates its weight (i.e., the
number of degree-two vertices in Ti).

After the Ith iteration of the above procedure has finished, let wI(Ti) be the weight of
the subtree Ti and let αI be the sum of the weights of all subtrees Ti, 1 ≤ i ≤ s. The
proof of Lemma 8 verifies that our procedure matches non-root degree-two vertices in T and
terminates only when α = 0.

Lemma 8. wI(Ti) ≤ αI

2
for all iterations I of the above procedure.

Proof. We show this by induction on I, the iteration number of the procedure. Consider the
base case of I = 0 (i.e., before the first iteration of the procedure executes). We have that
w0(Ti) ≤ α0

2
by our choice of the root node r for T .

For the inductive hypothesis, assume that wI(Ti) ≤ αI

2
holds for all 1 ≤ i ≤ s for iterations

1, 2, . . . , I. We now show that wI+1(Ti) ≤ αI+1

2
for all 1 ≤ i ≤ s. Note that αI+1

2
= αI

2
− 1
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because exactly two non-root degree-two vertices are matched at each iteration. In the cases
below, the index values i refer to the subtrees after the (I + 1)st iteration.

Case 1 (i∗ < i < q). For all index values of i in this range, wI+1(Ti) = 0 by our definition
of i∗ and q. Since αI+1 ≥ 0, we have that wI+1(Ti) ≤ αI+1

2
.

Case 2 (i = i∗ or i = q). A non-root degree-two vertex in Ti∗ is matched with a non-root
degree-two vertex in Tq at each iteration, thus we have wI+1(Ti) < wI(Ti) when i = i∗ or
i = q. By the inductive hypothesis, wI(Ti) ≤ αI

2
and thus wI+1(Ti) ≤ αI

2
− 1 = αI+1

2
.

Case 3 (i < i∗). We have wI(Ti) <
αI

2
since w(Ti∗) ≤ αI

2
and w(Ti∗) > 0. This gives

wI+1(Ti) ≤ wI(Ti) ≤ αI

2
− 1 = αI+1

2
.

Case 4 (i > q). By our definition of q,
∑q

j=1wI(Tj) >
αI

2
, and so we have wI(Ti) ≤

αI −
∑q

j=1wI(Tj) <
αI

2
. This gives wI+1(Ti) ≤ wI(Ti) ≤ αI

2
− 1 = αI+1

2
.

Note that w(Tq) > 0 at each iteration, otherwise a smaller index would have been selected
for q. Also, w(Tq) ≤ α

2
, which implies that Tq cannot have been the first subtree with positive

weight, so i∗ exists. We conclude that the above procedure will always match a pair of non-
root degree-two vertices in different subtrees at every step, and therefore no unmatched
degree-two vertex will remain when the procedure terminates.

Step 4: Create paths between non-root degree-two vertex pairs.

We now use the pairings found in Step 3 in order to add edges to T .

Let u ∈ Ti and v ∈ Tj be two paired vertices such that i < j. Consider the unique path
P from u to the root of T using only the directed edges in the original spanning tree. Let Su
be the set of all leaves that are descendants of any vertex in P (excluding the root) and that
appear to the right of the path P in Ti. Sv is defined similarly, but with the leaves appearing
to the left of the path instead. Note that we only select leaves for Su and Sv which have not
already been connected by an added edge (i.e., the vertices which still have degree 1).

Add undirected edges between the leaves in Su and Sv while maintaining their left-to-
right ordering to form an undirected path between u and v; see Figure 2.13. Note that the
edges added in this step are undirected to distinguish them from the directed edges, which
existed in the original spanning tree T .

The pairing procedure from Step 3 guarantees that the edge additions in Step 4 will
maintain the planarity of T . This is because, for any pairing between the rightmost degree-
two vertex u ∈ Ti and the leftmost degree-two vertex v ∈ Tj, i < j, we have the property that
w′(Tl) = 0 for all i < l < j (i.e. Tl would not be involved in any further pairings). The only
vertices possibly removed from the outer-face are vertices that are between u and v in the
left-first search. These vertices have degree at least three because they either had degree at
least three in the original spanning tree or they were leaves that have already been connected
with two added edges. Hence the addition of edges between a non-root degree-two vertex in
Ti and a non-root degree-two vertex in Tj can always be made such that no crossings would
be forced.
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Figure 2.13: (Step 4) An undirected path is formed between u ∈ Ti, the leaves in Su,
the leaves in Sv, and v ∈ Tj. The non-root degree-two vertices u and v were paired
in Step 2.

Step 5: Connect the remaining leaves.

We argue that there must be at least two leaves remaining in T at the end of Step 4.
If we did no pairing, then T must have at least two leaves because deg(r) ≥ 2. Otherwise,
consider the final pairing of non-root degree-two vertices u and v from Step 4. There must
be a non-empty child of each of these two vertices, which is either a leaf or a vertex of degree
at least three, which must have a leaf as a descendant, so T has at least two leaves.

Connect the remaining leaves in left-to-right order using undirected edges; if there are
more than two leaves remaining, we add another edge between the leftmost leaf xL and
rightmost leaf xR. We also add undirected edges (r, xL) and (r, xR), which guarantees that
deg(r) > 2. See Figure 2.14 for an illustration.

At the end of Step 5, we have a graph H on k vertices (or k + 1 vertices if Step 2 was
followed) that was created by adding edges to the tree T .

Step 6: Undo the changes done in Step 2 (if any)

If we added a dummy vertex d in Step 2, we must remove this vertex to preserve the
original number of vertices in H. The re-arrangements performed in Step 2 before adding the
dummy leaf d guarantee that d 6= xL and d 6= xR once the remaining leaves are connected at
the end of Step 5, thus deg(d) = 3. Let x, a, and b be the neighbours of d. Using a process
known as a Y∆-transformation (illustrated in Figure 2.15), we replace edges (a, d), (b, d),
and (x, d) with the edges (a, b), (a, x), and (b, x). A Y∆-transformation does not increase
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Figure 2.14: (Step 5) The remaining leaves are connected in an undirected path
(dashed). The three edges (xL, xR), (r, xL), and (r, xR) are also added (bolded).

the number of edges in H and also preserves the planarity and triconnectivity of H [42]. The
isolated vertex d is then discarded after this transformation.
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Figure 2.15: The dummy leaf d is connected to the non-root degree-two vertex x in
Step 2 so that there are an even number of non-root degree-two vertices in the graph
(left). At the end of Step 5, d is connected to two other vertices a and b (centre). A
Y∆-transformation removes the dummy vertex d from H while preserving planarity
and triconnectivity (right).

At the end of this section we will justify that the graph H is triconnected and planar by
the end of Step 5; we call this graph H5. Hence after Step 6 (i.e., the Y∆-transformation)
the resulting graph is triconnected and planar.

This ends the description of our six steps involved in our procedure to triconnect T while
maintaining planarity. We now make the following definitions:
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Definition 6 (leftmost path, rightmost path). Consider the graph H5 formed by adding
undirected edges to T up to the end of Step 5 in our procedure. Let v be any non-root vertex
with incoming directed edge e0 such that the counterclockwise ordering of edges incident to
v, beginning with edge e0, is C = (e0, e1, e2, . . . , e0). The leftmost path from v to xL in H5

is found by repeatedly following edge e1 in this ordering. The rightmost path from v to xR
in H5 is defined similarly, but instead using “clockwise order.”

Let e be any edge in H5. We assign a label of 1 to e if there exists a vertex v such that
e is on the unique directed path from v to r, the root of the original spanning tree T (as it
appears at the end of Step 2). In other words, e is assigned a label of 1 if it was an edge in
the original spanning tree. The undirected edges of H5 do not receive a label of 1. A label
of 2 is assigned to an edge e if there exists a vertex v such that e is on the rightmost path
from v to xR, and a label of 3 is assigned to an edge e if there exists a vertex v such that e
is on the leftmost path from v to xL. Note that some edges receive multiple labels.

Some exceptions to this general rule are that the added edges (r, xL), (r, xR), and (xL, xR)
have labels (1, 3), (1, 2), and (2, 3) respectively. Furthermore, any directed edges incident
to xL or xR in the original spanning tree do not receive a label of 1. Figure 2.16 illustrates
the labeling of edges incident to each type of vertex in H5. As argued in Lemmas 9 and 10,
every edge label contains either one or two values.
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Figure 2.16: Adding labels to the edges of H5.
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Lemma 9. Each edge in H5 contains at least one of the labels 1, 2, or 3.

Proof. By our description of the labeling procedure, we know that all directed edges contain
the label of 1 because they were part of the original spanning tree. We also know that any
edge incident with r, xR, and xL contains a label of 1, 2, and 3, respectively. This follows
from our description of the labeling procedure.

The remaining edges (v, w) to consider are undirected and were added during Steps 4
and 5 of our procedure. Each of v and w was either a leaf (not equal to xL or xR) or a
non-root degree-two vertex in the original spanning tree. By our definitions of leftmost and
rightmost paths in H5, we see that each edge (v, w) contains labels 2 and 3. Therefore each
edge in H5 contains at least one label.

Lemma 10. No edge in H5 may contain all of the labels 1, 2, and 3.

Proof. By our description of the labeling procedure, all edges incident with any of r, xL, or
xR will not have all three labels. Furthermore, any undirected edge in H5 cannot contain a
label of 1 because it was not part of the original spanning tree. So we only need to consider
directed edges (v, w) that were part of the original spanning tree such that neither v nor w
is r, xL, or xR.

Assume that there exists such an edge having all three labels 1, 2, and 3. Since v has an
outgoing directed edge, we must have that either deg(v) = 2 or deg(v) > 2 in the original
spanning tree. If deg(v) = 2 in the original spanning tree, then v must be incident to exactly
one undirected edge e. Thus (v, w) cannot contain both labels 2 and 3 because either the
rightmost path or the leftmost path originating from v must use edge e instead of (v, w).
If deg(v) > 2 in the original spanning tree, then it is impossible for both the leftmost path
and the rightmost path originating from v to use the edge (v, w), thus (v, w) cannot contain
both labels 2 and 3.

We use the notation (1, ?) to indicate that the labeling of an edge is one of (1), (1, 2),
or (1, 3). Note that a downward edge only has label (1) if it is incident to a vertex v in the
original spanning tree having at least three children and if the edge is incident to neither the
leftmost nor rightmost child of v. These edges cannot be a part of any leftmost or rightmost
paths and therefore cannot have a label of 2 or 3. The notation (2, ?) is used to indicate
that the labeling of an edge is one of (2) or (1, 2), and the notation (3, ?) is used to indicate
that the labeling of an edge is one of (3) or (1, 3).

A label on a directed edge e incident to vertex v is called an incoming label to vertex
v if it corresponds to the incoming direction to v on e. An outgoing label to vertex v on
a directed edge e corresponds to the outgoing direction from v on e. The labels of 2 and 3
on an undirected edge e are labeled as incoming or outgoing relative to an incident vertex v
according to the order in which v and e appear on a leftmost or rightmost path.

We will now show that this labeling is a triorientation of the edges of H5, i.e. a Schnyder
wood. For the remainder of this section, the indices i, i− 1, and i+ 1 are used (mod 3) + 1.
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Definition 7 (Triorientation). [13] A triorientation of a set of edges replaces each edge
with a single directed edge or with two opposite directed edges. Each direction is given one
of the labels 1, 2, or 3 and two opposite directions must have distinct labels.
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Figure 2.17: A triorientation of the edges of H5.

Definition 8 (Schnyder wood). [3] Let G be a planar graph with outer triangle {a1, a2, a3}.
A triorientation of the interior edges of G is a Schnyder wood iff the following conditions
are satisfied:

1. For i = 1, 2, 3, all incoming labels to ai are i, and ai has no outgoing edges with label
i.

2. Every internal vertex v has exactly three outgoing labels 1, 2, and 3 appearing in clock-
wise order around v.

3. If i is an incoming label to an internal vertex v, then it appears between the two outgoing
labels i− 1 and i+ 1 of v.

The necessary conditions for the edges around an internal vertex in the definition of a
Schnyder wood are illustrated in Figure 2.18. By examining all possible types of internal
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vertices within the graph as shown in Figure 2.17, we see that these conditions have been
satisfied. All incoming labels to ai are i, so we conclude that our orientation and labeling of
the graph is a Schnyder wood.

��
��
��
��
��

��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

��������������������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

1

23

1

3

3

2

2

2

3

1

Figure 2.18: The ordering of labels around an internal vertex v of a Schnyder wood.
v has exactly three outgoing labels 1, 2, and 3 in clockwise order. All incoming labels
i must appear between the outgoing labels i− 1 and i+ 1.

As we will see (we defer the proof to Section 2.2.4), every graph with a Schnyder wood
and with edges (a1, a2), (a2, a3), and (a1, a3) is triconnected. Since H5 has a Schnyder wood
and the edges (xL, xR), (r, xL, ), and (r, xR) exist, we see that H5 is triconnected. The Y∆-
transformation performed in Step 6 perserves triconnectivity [42], hence the graph that we
create by adding edges to T is planar and triconnected. All that remains to do is analyze
the number of edges.

Theorem 6. Given a tree T on k ≥ 4 vertices, it is possible to create a triconnected planar
graph H such that T is a spanning tree of H by adding at most k + 1 edges to T .

Proof. If T has no vertices of degree two, then we join its leaves in a cycle to form a Halin
graph. T will have a maximum of k − 1 leaves (if it is a star), so we have added at most
k− 1 edges. So assume that T has vertices of degree two and select a root r as described in
Step 1.

For i = 1, 2, let ki be the number of non-root vertices of degree i in T , excluding the root
node r. We apply Step 2 only if k2 is odd, and in this case k′2 = k2 − 1 and k′1 = k1 + 1
are the new bounds on the non-root vertices of degree 2 and 1, respectively, in the resulting
tree.

Let 2t and l be the number of non-root degree-2 and degree-1 vertices, respectively, after
Step 2 has been (perhaps) applied. Adding a path P having lP leaves in Step 4 will reduce
l by lP and will reduce t by 1. In total, Step 4 uses l4 + t edges, where l4 is the number of
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leaves processed in Step 4. Thus in Step 5 we have l − l4 leaves remaining and use at most
l − l4 edges for the cycle among them.

Note that the two edges (r, xL) and (r, xR) are also added to T . So the number of added
edges is l + t + 2 in Steps 4-5, plus perhaps one more from Step 2, which gives a bound of

k1 + k2
2

+ 2 if k2 is even and a bound of 1 + k′1 +
k′2
2

+ 2 = k1 + k2
2

+ 7
2

if k2 is odd.

Case 1 (k2 = 0). Here, the root vertex has degree two, otherwise we would have
connected the leaves of T to form a Halin graph. We must also have that k1 > 2 because the
total number of vertices in T must be at least four. So without loss of generality, assume
that the first vertex in children(r) has degree at least three.

If the second vertex in children(r) is a leaf, then k1 edges will be added to connect the
leaves of T in a cycle, (r, xL) will be added, but the edge (r, xR) will not be added because
these two vertices are already adjacent. In this case, k1 ≤ k − 2 and so we have added
k1 + 1 ≤ k − 1 edges to T .

If the second vertex in children(r) is not a leaf, then both (r, xL) and (r, xR) will be
added to T . In this case, k1 ≤ k − 3 and so we have added k1 + 2 ≤ k − 1 edges to T .

Case 2 (k2 = 1). In the special case where deg(r) = 2 and k1 = 2, then T is a path on
four vertices. The addition of exactly three edges is necessary and sufficient to triconnect T
(which will form K4), and because our procedure does not add multiple edges between any
two vertices, we have added a total of 3 = k − 1 edges. So for the remainder of this case we
will assume that k1 > 2 and deg(r) > 2.

When k2 = 1, no edges are added in Step 4 and k′1 edges are added in Step 5 to connect
all leaves in a cycle, and k′1 = k1 + 1. Another edge is also added in Step 2 when connecting
d to the single non-root degree-two vertex x.

Step 2 re-arranged the subtrees of the root vertex so that x is in the leftmost subtree and
the dummy vertex d does not become either xL or xR. This also implies that x is not the
rightmost child of r. Furthermore, the subtrees of the root vertex were re-arranged in Step
2 so that, if possible, the rightmost subtree has more than one vertex. If so, r would not be
adjacent to the leaf xR at the end of Step 5.

If the rightmost subtree of r is the leaf xR, then the undirected edge (r, xR) is not
added, but the edge (r, xL) is still added. In this case, k1 ≤ k − 2 and so we have added
k′1 + 2 = k1 + 3 ≤ k + 1 edges to T .

If the rightmost subtree of r is not the leaf xR, then both undirected edges (r, xR) and
(r, xL) are added. In this case, k1 ≤ k − 3 and so we have added k′1 + 3 = k1 + 4 ≤ k + 1
edges to T .

Case 3 (k2 = 2). We will have added at most k1 + 3 edges to T . Since k1 ≥ 2 and the
root node has not been counted, then k1 + 3 ≤ (k − 3) + 3 = k. So we have added at most
k edges to T in this case.

Case 4 (k2 = 3). l4 + 1 edges are added to T in Step 4, k′1− l4 edges are added to Step 5
to connect the remaining leaves in a cycle, one edge is added from Step 2, and two edges are
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added to connect r with xL and xR. This gives a total of (l4+1)+(k′1−l4)+3 = k′1+4 = k1+5
edges added to T . Here we see that k1 ≤ k − 4, which means that we have added at most
k + 1 edges to T .

Case 5 (k2 = 2t ≥ 4). If the number of non-root vertices of degree two is even, then we
will have added a total of at most k1 + k2

2
+ 2 edges to T . First observe that k2

2
+ 2 ≤ k2

and, because the root node is not counted as part of k1 or k2, we have that k1 + k2 ≤ k − 1.
Combining these inequalities gives k1 + k2

2
+ 2 ≤ k−1, so we have added at most k−1 edges

to T .

Case 6 (k2 = 2t+1 ≥ 5). If the number of non-root degree-two vertices is odd, then Step
2 adds one degree-one vertex and adds one to the degree of a single degree-two vertex, so
k′2 = k2− 1, k′1 = k1 + 1, and k′ = k+ 1. The Y∆-transformation in Step 6 neither increases
nor decreases the number of edges in the graph, but we must still count the addition of the
single edge made in Step 2.

Steps 2, 4, and 5 add 1 +k′1 +
k′2
2

+ 2 =
(
k1 + k2

2
+ 2
)

+ 1
2
≤ (k− 1) + 1

2
= k− 1

2
edges (the

inequality holds by the same argument presented where k2 ≥ 4 and was even). But since
this value must be an integer, we have that the number of added edges is at most k − 1.

Theorem 6 implies the two Corollaries listed below.

Corollary 2. Any connected graph G on at least k vertices contains a triconnected subgraph
H on exactly k vertices after the addition of at most k + 1 edges.

Corollary 3. The answer to Kal-Tohk+1,=k(G) is Yes for all k ≥ 4 if G is connected.

From our discussion of Halin graphs, we see that k−1 is a lower bound for the minimum
number of edges needed to triconnect a tree on k vertices. Notice that in most cases of the
proof of Theorem 6, the bound achieved is actually k−1; the bound of k or k+1 occurs only
if k2 ≤ 3. It seems quite likely that these special situations could be treated a bit differently
to match the lower bound of k − 1 in all cases. We leave this for future study.

2.2.4 Schnyder woods and triconnectivity

It is known that if G is a triconnected graph, then G has a triorientation which corresponds
to a Schnyder wood [13], [3]. Here we give a proof of the reverse, which is a vital ingredient
for Theorem 6. According to S. Felsner (private communication) this is “quite obvious,” but
we have not been able to find a formal proof and hence provide one here.

Theorem 7. If a graph G has a Schnyder wood and contains the edges (a1, a2), (a2, a3), and
(a1, a3), then it is triconnected.
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Before giving the proof, we need some notation and a few observations.

A triorientation of the edges of G defines the three directed trees D1, D2, and D3; the
tree Di contains exactly the directed edges from G having label i. Each tree Di is rooted at
ai and includes all vertices of G. It follows from the definition of a Schnyder wood that ai
has outdegree 0 and all other vertices have outdegree 1 in Di.

Let Pi(v) denote the unique directed path in Di from a vertex v to ai.
3 Clearly each Di

is acyclic. As argued in [13], Di ∪D−1
i−1 ∪D−1

i+1 is also acyclic, where D−1
j denotes the tree Dj

having the orientation of its edges reversed.

The following three Lemmas (11, 12, and 13) about properties of Schnyder woods were
given in [13]. The proofs of Lemmas 11 and 13 were left to the reader in [13]; we show them
here to demonstrate that they do not rely on triconnectivity.

Lemma 11. For all vertices v in H, the paths Pi(v) and Pj(v), i 6= j, have only the vertex
v in common.

Proof. Assume the opposite. Let w 6= v be a vertex on both Pi(v) and Pj(v). Then there
exists a directed cycle containing both v and w in the graph Di∪D−1

j , which is a contradiction
because each Di is acyclic.

For any vertex v, Lemma 11 implies that the three paths P1(v), P2(v), and P3(v) have
only the vertex v in common. These paths therefore divide G into three regions R1(v), R2(v),
and R3(v) where Ri(v) is the region bounded by (and including) the path Pi−1(v), the path
Pi+1(v), and the edge (ai−1, ai+1) (see Figure 2.19). Denote the open region Ro

i (v) to be
Ri(v)− (Pi−1(v) ∪ Pi+1(v)), i.e. Ro

i (v) does not include its bounding paths.

Lemma 12. If v and w are two vertices of a Schnyder wood with w ∈ Ri(v), then Ri(w) ⊆
Ri(v). If w ∈ Ro

i (v), then the inclusion is proper: Ri(w) ⊂ Ri(v).

Proof. See [13]. By inspection of the proof given there, one sees that it does not rely on
triconnectivity.

Lemma 13. Let G be a Schnyder wood, v a vertex in G, and w a vertex in Ro
i (v). If x is

the first vertex on Pi+1(w) incident with Pi−1(v) ∪ Pi+1(v), then x is on Pi+1(v) and x 6= v.
Similarly, if x is the first vertex on Pi−1(w) incident with Pi−1(v) ∪ Pi+1(v), then x is on
Pi−1(v) and x 6= v.

Proof. Consider the first statement of the lemma. Without loss of generality, assume i = 1,
so w is a vertex in Ro

1(v), and x is the first vertex on P2(w) incident with P2(v)∪P3(v). For
any vertex on the path P3(v), the incoming labels of 2 are from outside region R1(v) or on the

3Note that in our construction for Theorem 6, P1(v) corresponds to the path from v to the root r in
the original spanning tree T . Furthermore, P2(v) corresponds to the rightmost path from v in H and P3(v)
corresponds to the leftmost path from v in H.

34



��

���� ����

�
�
�
�

R
3
(v)

a
2

a
3

a
1

R
2
(v)

(v)
1

P

R
1
(v)

P
3
(v) P

2
(v)

v
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path P1(v) by the order of edges; see also Figure 2.20. So if x were on P3(v), its predecessor
on path P2(w) would have to be outside R1(v), contradicting planarity. Therefore x must
be on P2(v)− {v}. The second statement of the lemma is shown in a similar manner.
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Figure 2.20: The possible edge orientations for vertices on P2(v) ∪ P3(v).

Lemmas 11, 12, and 13 are now used in order to show Theorem 7, i.e. the graph G is
triconnected. To do so, let v and w be two vertices of G. We will show that there exist
three vertex-disjoint paths between v and w. We consider three cases, which are illustrated
in Figure 2.21. By symmetry, we may assume that w ∈ R1(v).
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Case 1: w ∈ Ro
1(v).

Let x be the first vertex on P2(w) that is incident with the path P2(v)∪P3(v). By Lemma
13, x must be on the path P2(v) and x 6= v. Define the vertex y to be the first vertex on the
path P3(w) that is incident with the path P2(v) ∪ P3(v); we have that y is on P3(v). Now
consider the path P1(w). Since P1(w) ( P1(v) by Lemma 12, and since P1(w), P2(w), and
P3(w) have only the vertex w in common, P1(w) intersects P2(v)∪P3(v) at a vertex z in the

interior of the path y
P−1

3 (v)
; v

P2(v)
; x.

If z ∈ P3(v), we have the paths v
P1(v)
; a1 → a3

P−1
3 (w)
; y

P−1
3 (w)
; w, v

P3(v)
; z

P−1
1 (w)
; w, and

v
P2(v)
; x

P−1
2 (w)
; w. The case where z ∈ P2(v) is symmetric.

Case 2: w ∈ P3(v).

Let u be the vertex adjacent to w on the path from v to w along P3(v). We now consider
two subcases based on the labels of the edge (u,w).

Case 2(a): The edge (u,w) does not contain a label of 1.

Because the edge (u,w) does not contain a label of 1, the successor q of w on path P1(w)
is in Ro

2(v). Let z be the first vertex incident with P1(v) when following the path P1(w) from
q. Note that z 6= v because otherwise v ∈ P2(w) ∩ P1(w), contradicting Lemma 11.

We have the three disjoint vw-paths v
P3(w)
; u → w, v

P1(v)
; z

P−1
1 (w)
; q → w, and v

P2(w)
;

a2 → a3

P−1
3 (w)
; w.

Case 2(b): The edge (u,w) contains a label of 1.

Because (u,w) lies on the path P3(v), then it also contains a label of 3 and thus cannot
contain a label of 2 by Lemma 10. Then the successor q of w on path P2(w) is in Ro

1(v). Let
z be the first vertex incident with P2(v) when following the path P2(w) from q. Note that
z 6= v because otherwise v ∈ P2(w) ∩ P3(w), contradicting Lemma 11.

We have the three disjoint vw-paths v
P3(w)
; u → w, v

P1(v)
; a1 → a3

P−1
3 (w)
; w, and

v
P2(v)
; z

P−1
2 (w)
; q → w.

Note that w ∈ P2(v) is symmetric to Case 2. This ends the proof that G is triconnected,
and hence finishes the proof of Theorem 6 as well.
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Figure 2.21: Illustrations for the cases in the proof that G is triconnected.
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Chapter 3

Kal-toh for Two Players

In this chapter, we give a formulation of the two-player version of Kal-toh. We had hoped
that we could find a simple, Nim-like condition to determine in O(1) time which player
will win the game. Unfortunately, for all but the most trivial target graphs H this remains
elusive. This chapter details some of the approaches that we have found, and should be
viewed as the beginning of an exploration into solving Kal-toh for two players, as many
questions remain open.

3.1 Formulating the Game

Recall our interpretation of the one-player version of Kal-toh as a graph problem, studied in
Chapter 2:

Kal-Tohl,≥k Let G be a graph on a set of n ≥ 4 vertices. Does there exist a triconnected
planar subgraph H of G on at least 4 ≤ k ≤ n vertices after the addition of at most l
edges?

We will give a similar interpretation for the two-player version of Kal-toh. The game
begins with a graph G on a set of n ≥ 4 vertices. Unless stated otherwise, it is assumed that
G initially has no edges. Two players take turns by alternately adding an edge between any
two vertices of G; multiple edges are not allowed. Note that this ignores any restrictions on
edge length or distance between vertices that may arise when the game is played in three
dimensions with metal rods.

The analysis of the game becomes more complicated with two players. If the winning
subgraph H can be any triconnected planar graph, then a player would need to consider the
answer to all of the following questions on each turn:

• Can an edge e be added such that G+ e contains a triconnected planar subgraph H?
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• If not, which edges e may be added such that (G+e)+e′ does not contain a triconnected
planar subgraph H for any edge e′ not in G+ e?

Answering these questions is likely NP-hard based on our conjectures in Chapter 2, so we
make a change to the game model in hopes of finding a polynomial-time solution for a game
instance. Unlike the one-player variant, we specify a target subgraph H in the two-player
version of Kal-toh such that the first player to create H as a subgraph of G is declared
the winner. In other words, the player who adds edge e such that G + e contains H as a
subgraph, but G does not contain H as a subgraph, will win the game.

We therefore phrase the two-player version of Kal-toh in the following way:

Kal-Toh-2pn(H) Starting with the empty graph on n ≥ 4 vertices and target subgraph
H, which player has a winning strategy for the two-player game of Kal-toh?

3.1.1 Kal-toh as an impartial game

Kal-Toh-2pn(H) is an impartial game, which means that either player would be able to
make exactly the same possible moves on any game configuration regardless of whose turn
it is to act. Chess is not an impartial game because the set of possible moves depends on
which player must act next (i.e. only white pieces may be moved on Player 1’s turn and
only black pieces may be moved on Player 2’s turn).

The most famous impartial game is Nim, where two players are presented with N piles
such that each pile contains ≤ M stones. Players alternately remove one or more stones
from a single pile at each turn. The player who is able to remove the last stone (leaving
their opponent with no stones) wins the game.

We briefly review the known results for Nim here. The analysis of Nim when played with
a single pile of stones is trivial. A pile of size k is denoted ∗k, which is called a nimber.
Player 1 has a winning strategy for a game of Nim with a single pile if and only if ∗k 6= ∗0.

In order to determine the player who has a winning strategy when Nim is played with
more than one pile, the nim-sum is computed by taking the exclusive or (XOR) of the pile
sizes represented as binary numbers. Player 1 has a winning strategy if and only if the nim-
sum of the game is not equal to zero at the beginning of their turn. As an example, consider
a game of Nim beginning with three piles containing 3 = 0112, 4 = 1002, and 5 = 1012

stones. The XOR of these values is 0102 which is equivalent to 2 in base-10, thus Player 1
has a guaranteed winning strategy.

In the above example, the nim-sum of the three piles is denoted as ∗3 ⊕ ∗4 ⊕ ∗5 = ∗2.
This implies that the game of Nim having piles of size 3, 4, and 5 is equivalent to the game
of Nim having a single pile of size 2. Because ∗2 6= ∗0, Player 1 is guaranteed to have a
winning strategy.
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Consider a game of Nim with N piles such that each pile contains ≤ M stones. By
taking the XOR of each pile size represented in binary, we can determine the nimber ∗k to
which the game is equivalent (and thus determine which player has a winning strategy) in
O(N logM) time. Further details of Nim, nimbers, and nim-addition can be found in [1].

According to the Sprague-Grundy theorem, an instance of any impartial game is equiva-
lent to a nimber ∗k such that Player 1 has a winning strategy if and only if ∗k 6= ∗0 [36,17].
One may wonder whether this leads to an algorithm to solve Kal-Toh-2pn(H) as follows:
construct the instance of Nim that corresponds to it, and then solve it. However, because the
proof of this theorem is not constructive in nature, it does not immediately give a procedure
to determine the nimber corresponding to an instance of Kal-Toh-2pn(H).

Chapter 16 of [2] gives a detailed analysis of how to find nimbers for instances of the
game dots and boxes. In this game, players alternately add axis-parallel edges to a grid of
points appearing at integer coordinates with the goal of forming 1 × 1 squares. Note that
dots and boxes can be viewed as a simplified version of Kal-Toh-2pn(H) where H is a
4-cycle and only a limited set of edges can be added. The process of assigning a nimber
to an instance of this game is done recursively and requires a non-trivial amount of case
analysis (and furthermore, this analysis only holds for grids of a specific size). No simple
procedure is given to determine the nimber corresponding to an instance of dots and boxes.
It therefore seems even less likely that there is a simple algorithm to find the nimber of
Kal-Toh-2pn(H) for any H.

Instead our analysis treats Kal-Toh-2pn(H) as an extensive game and uses the idea of
a game tree in order to find the player who has a winning strategy.

3.1.2 Kal-toh as an extensive game

The two-player version of Kal-toh is also an extensive game with perfect information. A
simplified version of the definition given in [35] requires the following four conditions for an
extensive game:

• A finite set of players.

• A set of all possible sequences of moves such that the final move in each sequence
determines the winner. For any two non-identical sequences S1 and S2, S1 cannot be
a proper subsequence of S2.

• Each player has a preference over all of these sequences.

• Given any sequence of moves made so far, it can be immediately determined which
player is next to act.

Our formulation of the two-player version of Kal-toh satisfies these four conditions of an
extensive game:
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• The game is played between two players.

• A sequence of moves is a sequence of edge additions such that the final graph G is the
first graph that contains H as a subgraph. No sequence is a proper subsequence of
another because the game stops exactly when H becomes a subgraph of G.

• If H is a subgraph of G′, then Player 1 wins the game iff G′ contains an odd number of
edges. This uniquely determines which sequences are preferred by Player 1 and Player
2.

• It is Player 1’s turn to act iff G′ contains an even number of edges.

The game is said to have perfect information because both players have full knowledge of
their opponent’s previous moves as well as the set of moves available at any given stage of the
game. Assuming that both players act rationally, it is always possible to determine which
player has a strategy that guarantees a win. Go and chess (where draws are disallowed) are
two examples of other extensive games with perfect information.

3.1.3 The game tree for Kal-toh

For any value of n and H, we can construct a game tree representing all possible sequences
of edge additions to G terminating when H appears as a subgraph of G. Figure 3.1 shows
the game tree for n = 4 and H = K4 where the last two levels are omitted (we discuss this
below). The construction of the game tree for Kal-Toh-2pn(H) is always possible because
the two-player version of Kal-toh is an extensive game with perfect information. For the
remainder of this chapter, we use G to denote the graph corresponding to the current state
of the game; initially G is the empty graph.

Consider the game tree for Kal-Toh-2pn(H) beginning with the empty graph. The
player to add an edge alternates at each level of the tree; Player 1 adds an edge to the
graphs on odd levels and Player 2 adds an edge to the graph on even levels. We will use
the term safe edge to denote an edge that may be added to G by a player such that their
opponent cannot possibly win on the following turn. On the other hand, adding an unsafe
edge gives the opponent a winning move on the following turn.

Note that the game is decided once no safe edges can be added. To simplify the game
tree, we hence make a leaf of the game tree when no safe edge can possibly be added to the
graph. A leaf appearing at an even level implies that Player 1 will win (because Player 2 will
be forced to add an unsafe edge) and a leaf appearing at an odd level implies that Player 2
will win (because Player 1 will be forced to add an unsafe edge). Once all leaves have been
marked as either P1 (indicating a win for Player 1) or P2 (indicating a win for Player 2),
the remaining nodes can be labeled by using the following dynamic programming approach
(sometimes called backwards induction in a game theory context):
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Figure 3.1: The game tree for two-player Kal-toh on n = 4 vertices with target
subgraph H = K4.

• If it is Player 1’s turn to act at node l and at least one child of l appearing at a lower
level is labeled as P1, then l is labeled as P1. Player 1 wins at l because there exists a
move which leads to a winning configuration for Player 1.

• If it is Player 1’s turn to act at node l and all children of l appearing at a lower level
are labeled as P2, then l is labeled as P2. Player 1 loses at l because all possible moves
lead to winning configurations for Player 2.

• The rules are similar if it is Player 2’s turn to act.

It is always possible to construct a game tree and label its nodes in this manner for any
extensive game with perfect information [35]. However, the choices made by the winning
player may not always be completely unique; in some instances this player may have more
than one possible move that will guarantee a win.

So the solution to Kal-Toh-2pn(H) can be determined by the label attached to the root
node of its game tree. Thus the time complexity of solving Kal-Toh-2pn(H) is determined
by the time required to construct its game tree and attach labels to its nodes. By using a
directed acyclic digraph instead of a tree, we will show in Section 3.2.1 that a polynomial-
time solution to Kal-Toh-2pn(H) exists when H is a 4-cycle. However, in Section 3.2.2
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we provide evidence that solving Kal-Toh-2pn(H) will likely take exponential time for a
general graph H using this approach.

3.1.4 Safe components

We now explore Kal-Toh-2pn(H) for some very simple graphs H. First consider the case
where H is a path of a given length. For all n ≥ 3, Player 1 always wins if H is a path
of length one (i.e. a single edge), and Player 2 will always be able to win if H is a path of
length two. If H is a path of length three, then a player can win by either adding an edge
between two 1-paths or by adding an edge to an endpoint of a 2-path. Thus Player 1 always
has a winning strategy, as Player 2 must either create a second 1-path or a 2-path on his or
her first turn.

The analysis becomes more complicated when H is a longer path. For instance, a player
could add an edge to a 2-path to form a triangle in order to avoid creating a longer path;
such a strategy would be used if the existence of such a path would guarantee a win on the
opponent’s next turn. The value of n will also have an effect on the game’s analysis because
the number of vertices places a bound on the number of possible edges and components.

For an arbitrary graph H, this illustration makes it clear that we must approach the
analysis of Kal-Toh-2pn(H) in a more systematic manner. For reasons explained below,
we will assume that H contains no bridge and that H does not contain a vertex of degree one.
By placing these restrictions on H, we see that the final edge e added to G must be between
two vertices belonging to the same component in G. In other words, if H is a subgraph of
G+ e but is not a subgraph of G, then the graphs G+ e and G must have the same number
of components.

Define AH to be the set of components a player must “avoid”. The members of this set
are all non-isomorphic graphs that can be obtained by removing any one edge from H. If a
player were to add an edge e on their turn such that G+ e contains any element of AH as a
subgraph, their opponent would have a guaranteed win on the next turn. Because we have
made the assumption that H is bridgeless and contains no vertex of degree one, it follows
that every graph in AH must be connected. Thus we have made this restriction to simplify
the specification of AH and the analysis of the game in general.

We can also define SH , the set of components which are “safe” for a player to create. This
is the set of all connected graphs that do not have any graph in AH as a subgraph. Recall
that all graphs in AH are connected. So if a player adds edge e such that all components of
G + e are members of SH , it is guaranteed that their opponent will not be able to win on
the next turn.

Finally, we list all “safe combination rules” for the elements of SH . These rules describe
all possible ways to add an edge to G, either within the same component or between two
different components, such that all components of G+ e remain in SH . If a player is unable
to follow any of these rules on their turn, then any edge they add will create an element of
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AH as a subgraph of G+ e, securing a win for their opponent. The only winning strategy for
Kal-toh is therefore to trap one’s opponent in a situation where no safe rule can be applied.

Given the target subgraph H, a summary of our approach appears below:

1. Determine AH , the components to avoid. This set contains connected graphs such that
one edge can be added to form H.

2. Determine SH , the safe components. This set contains connected components not
containing any of AH as a subgraph.

3. Determine the set of safe combination rules for the components in SH .

Consider using this approach to analyze the game Kal-Toh-2pn(C3), where C3 is a
3-cycle:

1. The only element of the set AH is a 2-path.

2. The set SH contains two elements: an isolated vertex and a 1-path. These are the only
two connected graphs that do not contain a 2-path.

3. The only safe move that can be made using the components in SH is the addition of
an edge between two isolated vertices.

The game will continue as long as it is possible to add an edge between two isolated ver-
tices; the first player forced to add another edge will lose. Thus Player 1 wins Kal-Toh-2pn(C3)
if bn

2
c is odd, and Player 2 wins if bn

2
c is even.

3.2 Strategies

We extend on our analysis of H = C3 by first looking at the game Kal-Toh-2pn(C4) in
Section 3.2.1. Our approach allows us to determine the winner by constructing the game
tree for any n. It is shown in Theorem 5 that it is possible to create the game tree and
determine the winner for Kal-Toh-2pn(C4) in O(n3) time.

This approach is then applied to Kal-Toh-2pn(H) where H is a diamond. In Section
3.2.2 we demonstrate that even less is known about this game as compared to the 4-cycle vari-
ant, suggesting that it is likely not possible to find a general solution to Kal-Toh-2pn(H)
where H = K4 (or H is a more complicated planar and triconnected graph) by examining
its game tree; a 4-cycle and a diamond were selected to study initially because they are a
few edges away from K4.
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3.2.1 Kal-toh on a 4-cycle

Safe components and rules for 4-cycles

Let H be a 4-cycle. In order to avoid losing the game, a player would not want to create any
component containing a 3-path, otherwise their opponent will be able to win on the next
turn. Removing a single edge from a 4-cycle will always result in a 3-path, thus the only
element of the set AH is a 3-path.

From this we can list the graphs in SH : a singleton vertex, a single edge, a 2-path, a
triangle, and K1,t where t ≥ 3 (i.e. a star on at least four vertices). To see that there are
no other graphs in the set SH , consider the maximum degree of such graphs S ∈ SH . If S
contains a vertex v of degree at least three and is not a star, then there exists an edge not
incident to v and therefore S must contain a 3-path. So S is either a star, or the maximum
degree of S must be two. The 3-path is on four vertices, two of which have degree two. If S
were to have at least two vertices of degree two, it must be on fewer than four vertices; the
only graph to satisfy these conditions is the triangle. Finally, the only possible connected
graph with exactly one degree-two vertex is the 2-path, and the only possible connected
graphs with no degree-two vertices are the 1-path and singleton vertex.
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Figure 3.2: The elements of SH , the safe components when H is a 4-cycle.

Each of these safe components are assigned a label A, . . . , E as shown in Figure 3.2. Note
that components A, B, C, and D are fixed graphs, while E represents the set of all stars
on at least four vertices. Using these labels we define the following set of safe combination
rules:

1. A, A → B

2. A, B → C

3. C → D

4. A, C → E

5. A, E → E

For instance, the rule A, A → B says that an edge may be safely added between two
isolated vertices (A, A) to create a component containing a single edge (B). The rule C →
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D says that one edge may be safely added to the endpoints of a two-path (C) to form a
triangle (D).

In order to show that these are the only possible combination rules, we work backwards
and consider the effect of removing a single edge e from the components B, C, D, and E.
The graph B − e consists of two isolated vertices (A, A), the graph C − e consists of an
isolated vertex and a single edge (i.e., A and B), and the graph D − e is a 2-path (i.e., C).
If E is a star on four vertices, then the graph E − e consists of an isolated vertex and a
2-path (A and C). Finally, if E is a star on t > 4 vertices, then the graph E − e consists of
an isolated vertex and a star on t− 1 vertices (A and E).

Recall that we only have the safe components A, B, C, D, and E in any configuration of
the game tree. To simplify the notation, we will represent the configuration as a string of the
form AnABnBCnCDnDEnE where each exponent represents the number of safe components
of that type currently present in the graph. Symbols having an exponent of zero will be
omitted. For example, the string A3B2D represents the graph having three isolated vertices,
two single edges, and one triangle (six components in total).

We will call a configuration terminal if no safe rules can be applied. In this case, G
contains no C component and if it contains an A component then it contains neither a B
nor an E component, nor another A component.

A sequence of edge additions to G can be represented by a series of combination rules
applied to the current configuration of the graph. As an example, consider the graph A4.

One possible sequence of combination rules is A4 (1)−→ A2B
(2)−→ AC

(3)−→ AD, where the
rule applied is shown in parentheses; see Figure 3.3. We will call such a sequence of rules
A4 ; AD a derivation.
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Figure 3.3: A derivation from A4 to AD using the rules listed in parentheses.

Starting with some configuration of G, we can show all possible derivations in a game
tree and apply the analysis previously described, at which point the root of the game tree
will indicate the player who has a strategy that guarantees a win. Therefore, the winner of
any game of Kal-Toh where H is a 4-cycle can be determined by constructing its game tree.
The example in Figure 3.4 shows the game tree with the starting configuration A6, the graph
with six vertices and no edges. Note that we will eventually combine repeated configurations
by using a directed acyclic graph (DAG) instead of a game tree (the DAG for A7 is given in
Figure 3.5).
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Figure 3.4: The game tree rooted at A6 for Kal-Toh-2p6(C4).

The height of the game tree

If all leaves of the game tree for Kal-Toh-2pn(C4) (for some fixed value of n) appeared
only at even-numbered levels or only at odd-numbered levels, then we would easily be able
to determine the winner of the game. However, the example seen in Figure 3.4 shows that
this is not always the case.

The following lemma gives the height of the game tree for Kal-Toh-2pn(C4). While
this result does not seem to provide any additional information about the winner of the
game, it does give an upper bound on the number of edges that can be added to G before
the addition of an unsafe edge is forced.

Lemma 14. Let T be the game tree for Kal-Toh-2pn(C4) where n ≥ 4. Then the height
of T is n (if n ≡ 0 (mod 3)) and n− 1 otherwise.

Proof. We first make the observation that there exist derivations from A3 and A4 to a

terminal configuration in three steps: A3 (1)−→ AB
(2)−→ C

(3)−→ D and A4 (1)−→ A2B
(2)−→

AC
(4)−→ E. Furthermore, there exists a derivation from A5 to a terminal configuration in

four steps: A5 (1)−→ A3B
(2)−→ A2C

(4)−→ AE
(5)−→ E.

Using these observations, we show a lower bound on the height of T in the following three
cases.
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Case 1 (n = 3k). The game beginning with An = A3k = (A3)k has a derivation
A3k ; Dk. Each derivation of A3 ; D uses three steps, hence A3k ; Dk uses 3k steps.
Therefore the height of T is at least 3k = n.

Case 2 (n = 3k + 1). Consider the game An = A3k+1 = A4 · A(3k+1)−4 = A4 · (A3)k−1.
The derivation A4 ; E uses three steps and the derivation (A3)k−1 ; Dk−1 uses 3(k − 1)
steps. Therefore the height of T is at least 3 + 3(k − 1) = 3k = n− 1.

Case 3 (n = 3k+2). Consider the game An = A3k+2 = A·A4 ·A(3k+2)−5 = A·A4 ·(A3)k−1.
The derivation A5 ; E uses four steps, and the derivation of (A3)k−1 ; Dk−1 uses 3(k− 1)
steps. Therefore the height of T is at least 4 + 3(k − 1) = 3k + 1 = n− 1.

We now argue that these values also act as an upper bound on the number of edges in
the graph G, which is equivalent to the height of T . Let G be a graph on n vertices with m
edges such that no further derivation rule can be applied. Thus, G is the graph at a leaf of
the game tree, does not contain any 3-path, and any component of G is A, B, C, D, or E.
Because G is terminal, it is either ADnD or BnBDnDEnE (where nB, nD, nE = 0 is possible).

Any component of G with l vertices has l − 1 edges except for D, which has l edges. If
n = 3k, then m is at a maximum if G consists of k triangles (D components), in which case
m = n. In all other cases, G has at least one component that is not D, and hence has at
most n− 1 edges.

Corollary 4 is the contrapositive of Lemma 14, which is of possible independent interest.

Corollary 4. Let G be a graph on n vertices and m edges. If m > n when n ≡ 0 (mod 3)
or m > n− 1 otherwise, then it is possible to add an edge e to G such that G+ e contains a
4-cycle.

Solving Kal-Toh-2pn(C4)

Recall that our ultimate goal is to determine the winner of Kal-Toh-2pn(C4) beginning
with an arbitrary graph G in O(1) time without needing to construct the game tree. Doing
so would require us to find some sort of pattern based only on the number of each component
present in the initial game configuration. Lemma 15 gives an example of a O(1)-time method
to solve a simple instance of the game.

Lemma 15. In the game Kal-Toh-2pn(C4), n ≥ 4, with G = CnCB∗D∗E∗, Player 1 wins
if nC is odd and Player 2 wins if nC is even.

Proof. The only rule that can be applied is C
(3)−→ D. Therefore, the only possible derivation

is B∗CnCDnDE∗ ; B∗C0DnD+nCE∗ via a sequence of nC applications of Rule 3. The
terminal configuration appears at level nC + 1 of the game tree, so Player 1 wins if nC is odd
and Player 2 wins if nC is even.
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An O(1)-time solution to the general problem unfortunately remains unknown for the
general game, but we can show that it is possible to obtain an answer in polynomial time.

Theorem 8. For any configuration AnABnBCnCDnDEnE having n vertices total, we can
determine in O(n3) time which player can be the first to create a 4-cycle.

Proof. Consider the game tree for Kal-Toh-2pn(C4) beginning with the arbitrary config-
uration AnABnBCnCDnDEnE . Because there are at most five rules that can be applied to
any configuration, and because the game tree has height at most n by Lemma 14, the game
tree will have O(5n) nodes in the worst case. This means that determining the winner of the
game by constructing the game tree could possibly take exponential time.

In order to reduce the space needed to represent the possible game configurations, we
use a directed acyclic digraph (DAG) having unique nodes instead of a game tree; the DAG
corresponding to the game A7 is shown in Figure 3.5. Any configuration has nA ≤ n, nB ≤ n

2
,

and nC ≤ n
3
. Furthermore, the value of nD is irrelevant because D components do not appear

on the left-hand side of any derivation rule; we therefore contract these configurations into
a single node where the value of nD can be anything. The exact value of nE is irrelevant
because we only need to know if the value of nE is either 0 or at least one, so we apply a
similar contraction to these configurations. In total, there are at most n · n

2
· n

3
· 2 ∈ O(n3)

configurations of interest in the DAG, where we group together nodes having the same
configuration. Thus the winner of the game can be determined in O(n3) time by using the
dynamic programming approach explained below.
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Figure 3.5: The DAG rooted at A7 for Kal-Toh-2p7(C4).
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Let S be a table indexed by all configurations where nA ≤ n, nB ≤ n
2
, nC ≤ n

3
, and where

nE = 0 (there are no components of type E) or nE = 1 (there is at least one component of
type E). We would like to set the value of S[i] to be 0 if the current player will lose or 1 if
the current player will win. This means that Player 1 has a winning strategy if and only if
S[i0] = 1, where i0 is the configuration AnABnBCnCDnDEnE .

To fill the entries of S, we first assign a value of 0 to each entry corresponding to ter-
minal configurations, i.e., configurations of the form A0B∗C0D∗E∗ and A1B0C0D∗E0. The
remaining entries in S are filled by recursively applying backwards induction ending with
configuration i0. The time to compute each S[i] is O(1) because there are only five rules,
thus each entry has at most five outgoing arrows in the corresponding DAG. Because the
value S[i] is computed once for each of the O(n3) possible configurations i, it will take O(n3)
time to fill all of the entries of S.

Corollary 5. Kal-Toh-2pn(C4) can be solved in O(n3) time.

Improvements to this bound may be possible. In light of Lemma 15, we suspect that
it may be sufficient for nC to only represent “even or odd” instead of the actual number
of components of type C. This simplification would reduce the running time to O(n2), but
would fall short of the ultimate goal of an O(1)-time rule to determine which player has a
winning strategy.

3.2.2 Larger Forbidden Subgraphs

In Section 3.2.1 we looked at Kal-Toh-2pn(H) where H was a 4-cycle. This was just a
first step towards the ultimate goal: solve this game where H is triconnected and planar,
thus representing a polyhedron.

Moving one step closer, we consider Kal-Toh-2pn(H) where H is a diamond, the graph
obtained by removing a single edge from K4. There are two elements in the set AH , the
graphs that are one edge away from H: the 4-cycle and the triangle with one extra edge.
See Figure 3.6.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

H A
H

Figure 3.6: AH is the set of graphs that can create a diamond, H, by the addition of
one edge.
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Recall that we were easily able to give a list of five safe component types, SH , when H
was a 4-cycle: a singleton vertex, an edge, a 2-path, a triangle, and any star on at least four
vertices. Although the last component type represented a family of infinitely many graphs
(i.e. stars on n ≥ 4 vertices), we were still able to give an exact description of how an edge
could be added safely between a star and another component type. Namely, an edge may
be added between a 2-path and an isolated vertex to form a star on four vertices (Rule 4),
or an edge may be added between an isolated vertex and a star on k vertices to form a star
on k + 1 vertices (Rule 5). The degree of any star’s central vertex was irrelevant.

Now consider the set of safe components SH when H is a diamond. A connected graph
is an element of this set if it does not contain any graph in AH as a subgraph. Thus three
categories of graphs will belong to SH :

• Any tree

• A triangle

• Any graph on at least four vertices with girth (i.e., the length of the shortest cycle) at
least five

No other graphs will be in SH because they will contain a 3-cycle with attached edge or
a 4-cycle. These categories include a very wide range of graphs, making it difficult to list
precisely all of the safe combination rules. For instance, it is not always possible to add an
edge between two vertices of a tree such that the resulting graph has girth five. Similarly, it
may not be possible to add an edge that maintains a girth of five to a graph already having
a girth of five. Figure 3.7 shows examples of these cases.

It is possible to store extra information about each component to determine if the addition
of a safe edge is possible. For example, the length and endpoints of a longest path of a tree
could be maintained; if this length is at least four, then one edge could be added to form
a graph having girth at least five. However, these values would need to be re-computed
each time an edge is added to join two trees. This prevents us from doing a simple dynamic
programming exploration as we did for H = C4. It remains open whether Kal-Toh-2pn(H)
can be solved in polynomial time when H is a diamond.

Now consider Kal-Toh-2pn(H) for an an arbitrary triconnected planar graph H. Com-
puting AH is easy, as there are at most m(H) graphs in this set. However, even describing SH
is nontrivial; this involves checking whether any element of AH appears as a subgraph of G,
which is equivalent to the SubgraphIsomorphism problem. This problem is NP -complete
if G is non-planar [11].

If we wanted to give a precise description of the graphs H for which Kal-Toh-2pn(H)
had a polynomial-time solution, then the following generalization of Theorem 5 would be
a worthwhile direction to investigate: Kal-Toh-2pn(H) can be solved in polynomial time
if SH can be “nicely” described by finitely many sets of components. Note that an exact
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Figure 3.7: The dashed edge can be added to the tree in the top-left to form a graph
with girth five, whereas no edge addition is possible to the tree in the top-right. The
dashed edge can be added to the graph in the bottom-left that maintains a girth of
five, whereas no edge addition is possible to the graph in the bottom-right.

description of “nicely” is unclear; the set SH can be “nicely” described when H is a 4-cycle,
but (probably) not when H is a diamond. A nice description seems to require a finite,
deterministic list of combination rules that can be blindly applied to the component types
within SH without needing to consider any additional properties of these graphs. Computing
safe combination rules appear just as difficult, hence it is reasonable to conjecture that
deciding Kal-Toh-2pn(H) is NP-hard for sufficiently complicated H, though a formal
proof of this remains to be done.
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Chapter 4

Conclusions

The topics selected for this thesis were originally motivated by the fictional game of Kal-toh
seen on the television series Star Trek: Voyager. Kal-toh is played with a jumbled collection
of small metal rods, with the ultimate goal of forming a polyhedron by using a subset of
these rods as its edges. The game is depicted as one that could either be played alone or
against an opponent. In either case, a single turn consists of adding a rod somewhere within
the existing structure.

Because the exact rules of the game were never formally explained to the viewer, it was
necessary to first give a more precise description based on our own interpretation of the
game. By having an edge represent a single rod and having a vertex represent the point of
contact between two rods, we formulated the single-player and the two-player versions of the
game.

Chapter 2 focused on the single-player version of Kal-toh. Our formulation of the decision
problem Kal-Tohl,≥k asked if it is possible to create a triconnected planar subgraph on at
least k vertices with the addition of at most l edges. We first considered instances of the
problem where no edges were to be added to the graph (i.e. when l = 0). Using a reduction
from the NoncrossingCycle problem, we showed that Kal-Toh0,≥4 is NP-hard and gave
a similar proof of the NP-hardness of Kal-Toh0,≥ 3n

4
.

We suspect that Kal-Toh0,≥k is NP-hard even for k = n but have not been able to
provide a proof of this claim. If this were false, then there would exist an efficient way to
remove edges from a non-planar triconnected graph G until planarity is achieved such that
the removal of these edges does not violate the triconnectivity of G. This would suggest
the additional open problem, “what is the smallest value of c for which Kal-Toh0,≥n−c is
NP-hard?”

Section 2.2 considered instances of Kal-Tohl,=k for which edge additions to the graph
are permitted. We started by showing a few results for small values of l and conjectured
that Kal-Toh2,≥4 and Kal-Toh1,≥4 are both NP-hard, but have not been able to prove
either of these. By specifically creating a prism as our triconnected planar subgraph, we
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demonstrated one upper bound for l. A second approach gives an upper bound of l ≤ k + 1
for connected graphs, which means that the answer to Kal-Tohk+1,=k(G) is Yes when G
is connected. However, showing that this bound is tight for connected graphs in general
remains open. Finally, we prove that a graph is triconnected if it contains a Schnyder wood
(along with three additional edges), which may be of independent interest.

Chapter 3 considered the two-player version of Kal-toh. We formulated this problem as
Kal-Toh-2pn(H), in which players alternately add edges to the graph; the first player to
create an instance of H as a subgraph of G is declared the winner. Our goal was to determine
if the general version of this game can be solved in polynomial time, with O(1) time being
ideal. We showed that the specific instance Kal-Toh-2pn(C4) can be solved in O(n3)
time and conjectured that there exists no polynomial-time solution to Kal-Toh-2pn(H) in
general.

Alternate interpretations of Kal-toh suggest other directions for future study. A more
restrictive interpretation of the single-player version could require H to be an induced tri-
connected planar subgraph of G. If the induced version of Kal-Tohl,≥k gives an answer of
Yes, then the original formulation of Kal-Tohl,≥k must also have an answer of Yes be-
cause every induced subgraph is a subgraph of G. The opposite direction is not necessarily
true (with K4,4 being a counterexample), but even the induced version of Kal-Toh0,≥k is
NP-hard.

However, some of our results do not continue to hold when the triconnected planar
subgraph H must be an induced subgraph of G. For instance, it is not true that any
connected graph on k vertices will have a triconnected planar induced subgraph after the
addition of at most k edges based on our proof of this claim for the non-induced case. Our
technique added at most k edges to a spanning tree on k vertices such that planarity was
maintained with each edge addition. This does not always work for the induced case because
when the initial k vertices are selected, the corresponding induced subgraph is not necessarily
a tree, and so our procedure may introduce forced crossings as edges are added.

Another possible direction of study could focus on the interpretation of Kal-toh as a
geometric graph in three dimensions. If the vertices of G are at fixed coordinates, one might
be interested in determining if it is possible to form a triconnected planar subgraph given a
set of m rods having fixed lengths l1, l2, . . . , lm. A similar problem is studied in [32]. Along
these same lines, we could also assign a thickness of t > 0 to each rod and impose the
restriction that no two rods may intersect. Similar questions could be asked in the cases
where vertices are allowed to move or where rod lengths were not prescribed before being
added to the game.

It should be mentioned that the original depiction of Kal-toh in Star Trek: Voyager
shows players moving an edge from one part of the game configuration to another on each
turn, instead of adding a new edge as specified in our formulation, which suggests another
possible variant of the game that could be studied.

All of the problems we have studied are special cases of the more general question: Is
it possible for a graph G with properties PG to contain a subgraph H with properties PH
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after the application of at most ` operations from the set Q? Future work could focus on
the solution of this problem for many different values of PG, PH , `, and Q.
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