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Abstract 

Vortex-induced vibrations of a pivoted circular cylinder and control of these vibrations were 

investigated experimentally. A novel experimental setup was employed to reproduce orbiting response 

observed in some engineering applications. An adaptive pendulum tuned-mass damper (TMD) was 

integrated with the cylindrical structure in order to control the vortex-induced vibrations. All experiments 

were performed at a constant Reynolds number of 2100 for a range of reduced velocities from 3.4 to 11.3 

and damping ratios from 0.004 to 0.018. For the experiments involving TMD, the TMD mass ratio was 

0.087 and the TMD damping ratios investigated were 0 and 0.24. 

The results of the experiments performed without the TMD show that, in the synchronization 

region, the frequencies of transverse and streamwise vibrations lock onto the natural frequency of the 

structure. The cylinder is observed to trace elliptic trajectories. A mathematical model is introduced to 

investigate the mechanism responsible for the occurrence of the observed elliptic trajectories and figure-8 

type trajectories reported in previous laboratory investigations. The results show that the occurrence of 

either elliptic trajectories or figure-8 type trajectories is governed primarily by structural coupling 

between vibrations in streamwise and transverse directions. Four types of elliptic trajectories were 

identified. The results show that the occurrence of the different types of elliptic trajectories is linked to 

phase angle between the streamwise and transverse vibrations of the structure, which depends on 

structural coupling. 

The results of the experiments performed to investigate effectiveness of the TMD in controlling 

vortex-induced vibrations show that tuning the TMD natural frequency to the natural frequency of the 

structure decreases significantly the amplitudes of transverse and streamwise vibrations of the structure. 

Specifically, the transverse amplitudes of vibrations are decreased by a factor of ten and streamwise 

amplitudes of vibrations are decreased by a factor of three. The results show that, depending on the value 

of the TMD damping ratio, the frequency of transverse vibrations is either characterized by the natural 

frequency or by two frequencies: one higher and the other lower than the natural frequency of the 

structure, referred to as fundamental frequencies. Independent of TMD damping and tuning frequency 

ratios, the frequency of streamwise vibrations matches that of the transverse vibrations in the 

synchronization region, and the cylinder traces elliptic trajectories. The phase angle between the 

streamwise and transverse vibrations is nearly constant when the pendulum is restrained. However, with 

the TMD engaged and tuned to the natural frequency, the phase angle fluctuates significantly with time. A 

mathematical model was utilized to gain insight into the frequency response of the structure. The results 

of the modeling show that the frequency of transverse vibrations is characterized by the fundamental 

frequency or frequencies of the structure and the frequency of streamwise vibrations is characterized by 

the fundamental frequency or frequencies as well as the first harmonic of the fundamental frequency or 

frequencies of the structure. 
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 1 

1 Introduction 

Vortex shedding from flexible cylindrical structures placed in uniform flow can excite the structures to 

undergo vibrations if the vortex shedding frequency is close to the natural frequency of the structure, e.g., 

Parkinson (1971) and Skop & Griffin (1973). Such vortex-induced vibrations (VIV) commonly occur in 

many engineering applications, e.g., offshore and civil engineering structures. Amplitudes of VIV can 

reach several cylinder diameters, which may impede system operation and, in extreme cases may lead to 

system failure, e.g., Dailey et al. (1987) and Huse et al. (1998). In the past several decades, laboratory 

studies have been performed to explore VIV of cylindrical structures, see, for example, review papers by 

Bearman (1984) and Williamson & Govardhan (2004). Also, a number of methods have been proposed to 

mitigate VIV, e.g., Kareem (1983). 

 Most of the previous studies of VIV were performed on cylinders free to vibrate in either 

transverse direction to the flow, e.g., Feng (1968) or both transverse as well as streamwise directions, e.g., 

Blevins & Coughran (2009). In most of the previous studies in which models were free to vibrate in both 

directions, experimental setups were designed to produce uniform amplitudes of vibrations along the 

cylinder span, e.g., Jauvtis & Williamson (2004) and Sanchis et al. (2008). However, in order to create a 

more realistic physical model of VIV of circular cylinders, a few studies have been conducted to 

investigate VIV of pivoted rigid circular cylinders, in which the transverse and streamwise amplitudes of 

vibrations vary linearly along the cylinder span, e.g., Flemming & Williamson (2005) and Leong & Wei 

(2008). These studies indicate that cylinders undergoing VIV trace figure-8 type trajectories. Although 

this finding agrees with field observations in many engineering applications, field measurements of VIV 

in civil structures, e.g., Ishizaki (1967) and Gamble (2009), and offshore structures, e.g., Vandiver et al. 

(2005), indicate that cylindrical structures may also trace elliptic trajectories. The occurrence of elliptic 

response in VIV of cylindrical structures is yet to be investigated in laboratory settings. 
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 Several investigations have been performed to devise efficient methods for mitigating vortex-

induced vibrations. These methods can be classified into two categories: (i) fluid dynamics methods, 

which are based on disrupting the vortex shedding process (Zdravkovich, 1981), and (ii) structural 

methods, which are based on modifying the dynamics of structures by adding vibration absorbers 

(Kareem et al., 1999). Implementation of helical strakes, perforated shrouds, surface bumps, and splitter 

plates are examples of fluid dynamics methods widely used for mitigating vortex-induced vibrations.  The 

tuned-liquid damper (TLD) and tuned-mass damper (TMD) are examples of structural methods used to 

mitigate vortex-induced vibrations. TMD is a mass attached to a structure via a spring and a damper. The 

mechanical energy of the structure is dissipated by the damper. TMDs have been widely used for 

vibration absorption in different applications, e.g., in automotive, aircraft, and ship engines. Over the past 

few decades, these devices have been implemented to control VIV of tall buildings, e.g., Kareem et al. 

(1999). A limited number of laboratory investigations, e.g., Xu et al. (1992) and Tanaka & Mak (1983), 

have been performed to study the effectiveness of one degree-of-freedom (DOF) TMDs for the mitigation 

of VIV of one DOF structures. Although these studies provide invaluable insight into the effectiveness of 

TMDs, to the best of author’s knowledge, no experimental study has been performed to investigate the 

effect of tuned-mass dampers on VIV of two DOF structures. 

 The present study is motivated by the need for uncovering the mechanism that causes the 

occurrence of elliptic response of two DOF cylindrical structures, and the need for the mitigation of VIV 

of two DOF structures. The main objectives of the study are as follows: 

(i) Recreate elliptic response of cylindrical structures in laboratory environment. 

(ii) Investigate the mechanism behind the elliptic response of two DOF cylindrical structures. 

(iii) Evaluate the effectiveness of a novel adaptive pendulum TMD in mitigating VIV of a two 

DOF structure. 
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 The thesis is divided into seven chapters including this introduction. Chapter 2 provides a review 

of previous studies concerned with vortex-induced vibrations of circular cylinders, as well as methods for 

the mitigation of these vibrations. In Chapter 3, the experimental setup employed in the present 

investigation is characterized using experimental measurements and a mathematical model. The results of 

the investigations are presented in Chapters 4 and 5. In Chapter 4, VIV of the cylinder are analyzed. In 

Chapter 5, first, a mathematical model is used to provide a baseline for the response of one DOF 

structures equipped with one DOF TMDs. Then, experimental results illustrating the effect of a two DOF 

TMD on two DOF VIV are presented. Finally, Chapters 6 and 7 contain main conclusions and 

recommendations, respectively. 
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2 Literature review 

2.1  Flow over a stationary circular cylinder 

Numerous studies have been performed to investigate flow over a stationary circular cylinder, see, for 

example, reviews by Roshko (1954), Berger & Wille (1972), Lin & Pao (1979), Bearman (1984), Oertel 

(1990), Williamson (1996), and Choi et al. (2008). Different flow regimes were identified based on the 

Reynolds number (Re) (Williamson, 1996). For Re ≈ 50, a global instability in the wake of the cylinder 

leads to periodic shedding of vortices known as vortex shedding phenomenon (Provansal et a1., 1987). 

For 50 ~<  Re ~<  200, the vortex shedding in the wake of the cylinder is laminar and the associated regime 

is called laminar vortex shedding regime (Williamson, 1996). For 200 ~<  Re ~<  400, transition to 

turbulence occurs in the wake of the cylinder, and this flow regime is related to as wake transition regime 

(Zdravkovich, 1997). For 400 ~<  Re ~<  200,000, transition to turbulence occurs in the separated shear 

layers developing on both sides of the cylinder. This regime is known as shear layer transition regime 

(Norberg, 1994). For Re ~>  200,000, transition to turbulence occurs in the boundary layers developing on 

both sides of the cylinder (Zdravkovich, 1997). The present study is concerned with the shear layer 

transition regime, which is common to many industrial applications (Williamson, 1996). 

2.2  One DOF uniform amplitude VIV 

Due to periodic nature of the vortices shed from cylindrical structures, the fluid forces exerted on the 

structures have an oscillatory nature (Bishop & Hassan, 1963) and may cause vortex-induced vibrations. 

Vortex-induced vibrations occur mainly in the direction transverse to the flow (Skop & Griffin, 1975). 

Thus, early laboratory studies of VIV of circular cylinders have been performed primarily on the 

cylindrical structures with one degree of freedom (DOF) transverse to the flow (e.g., Feng, 1968; 



 

 5 

Bearman, 1984; Khalak & Williamson, 1999). These studies were focused on the structural response as 

well as its relation to the vortex shedding patterns. 

2.2.1  Amplitude response and vortex shedding patterns 

The amplitude of response is commonly defined as half the peak-to-peak amplitude of steady state 

vibrations of the structure. Following the dimensional analysis discussed by Sarpkaya (2004), it can be 

shown that, for one DOF structures, the normalized amplitude of response depends primarily on the 

following four dimensionless parameters: 

(i) Reduced velocity (U
*
 = U/fnD, where U is the free-stream velocity, fn is the natural frequency 

of the structure, and D is the cylinder diameter). 

(ii) Mass ratio (m
*
 = m/md, where m is the mass of the structure and md is the mass of the 

displaced fluid). 

(iii) Damping ratio (ζ, ratio of the damping coefficient of the structure to the critical damping 

coefficient). Damping ratio can be estimated using free vibration tests. 

(iv) Reynolds number (Re = UD/υ, where υ is the kinematic viscosity) 

 Feng (1968) studied the effect of reduced velocity on the normalized amplitude of vibrations for a 

high mass ratio (m
*
 = 320) and high mass-damping parameter (m

*ζ ~ 1) cylinder. A plot that shows the 

variation of the normalized transverse amplitude of vibrations with reduced velocity is classically referred 

to as amplitude response plot. Feng’s amplitude response plot is shown in Fig. 2.1 (diamonds). His results 

show that significant amplitudes of vibrations occur for 5 < U
*
 < 8. The plot features two distinct 

branches, namely, initial and lower branches, with a hysteretic transition between the branches. Khalak & 

Williamson (1999) investigated the effect of U
*
 on the normalized amplitude of vibrations for relatively 

low (m
*
 = 2.4) and moderate mass ratios (m

*
 = 10.3 and 20.6) cylinders with low mass-damping 

parameter (m
*ζ ~ 0.01). Their results are reproduced in Fig 2.1 for three mass ratios. The results of 
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Khalak & Williamson (1999) show that the range of reduced velocities for which significant amplitudes 

of vibrations occur narrows with increasing the mass ratio. Specifically, increasing the mass ratio from 

2.4 to 10.3, and 20.6, decreases the range of reduced velocities associated with significant amplitudes of 

vibrations from about 2.5 < U
*
 < 13, to 3.5 < U

*
 < 12, and 4 < U

*
 < 10.5, respectively. 
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Figure 2.1 Amplitude response plot: ◊, results of Feng (1968) and ○, □, and ∆, results of Khalak & Williamson 

(1999). 

 Khalak & Williamson (1999) indicate that, in comparison with high mass ratio and high mass-

damping parameter cylinders, the amplitude response plot for low and moderate mass ratios and low 

mass-damping parameter cylinders (Fig. 2.1) features three branches of response, namely, initial, lower, 

and upper branches, where the upper branch of response is associated with relatively high amplitude of 

vibrations ( *
yA  ~ 1). Khalak & Williamson (1999) show that transition between the initial and upper 

branch is hysteretic, however, the transition between the upper and lower branches is intermittent. 
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 Khalak & Williamson (1999) performed flow visualization to study the relation between vortex 

shedding patterns and the branches of response in the amplitude response plot. Their flow visualization 

results indicate that the transition between the initial and lower branches of response is attributed to a 

change in the vortex shedding pattern in the wake of the cylinder. They showed that the initial branch of 

response is associated with the shedding of two counter rotating vortices in the wake per cycle of cylinder 

vibrations, referred to as 2S vortex shedding pattern. The 2S pattern is similar to the von Karman type 

vortex shedding in the wake of a stationary circular cylinder. The upper branch of response is linked to 

the formation of two pairs of counter rotating vortices per cycle of oscillations, referred to as 2P vortex 

shedding pattern. The transition between the 2S and 2P patterns is associated with the transition between 

the initial and upper branches of response. In contrast, the transition between the upper and lower 

branches is not associated with a change in vortex shedding pattern. The lower branch is associated with 

either the 2P vortex shedding pattern or a “non-synchronized” pattern of shedding. Other possible vortex 

shedding patterns associated with the vortex-induced vibrations of the uniform one DOF cylinders have 

been investigated using controlled oscillations, e.g., Williamson & Roshko (1988), with the results 

compiled into a well-known Williamson-Roshko map. The updated map based on subsequent studies, 

Morse & Williamson (2009), is shown in updated map Fig. 2.2. 

2.2.2 Frequency response 

Results of Khalak & Williamson (1999) and Govardhan & Williamson (2000) show that both the mass 

ratio and the reduced velocity can significantly affect the frequency response. Results of Govardhan & 

Williamson (2000) indicate that there exists a critical mass ratio of m
*
 = 0.54 below and above which 

frequency response plots are distinctly different. For m
*
 < 0.54, the frequency of transverse vibrations (fy) 

increases linearly with increasing the reduced velocity. For m
*
 > 0.54, two different regions in the 

frequency response can be identified, namely, synchronization and non-synchronized regions. For a range 

of reduced velocities corresponding to the synchronization region, the frequency of transverse vibrations  
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Figure 2.2 Map of vortex shedding regimes reproduced based on Morse & Williamson (2009). 

locks onto a constant frequency (fcom) more than or equal to the cylinder model natural frequency, e.g., 

Govardhan & Williamson (2000) and Sarpkaya (2004). Results of Govardhan & Williamson (2000) 

indicate that increasing the mass ratio narrows the synchronization region. For example, for m
*
 = 2.4, 

10.3, and 320, the synchronization region is within 7 < U
*
 < 12.5, 5 < U

*
 < 9, and 5 < U

*
 < 8.5, 

respectively. Govardhan & Williamson (2000) proposed the following relation for fcom, 

 
54.0m

Cm
ff

*

A
*

ncom
−

+
=  (2.1) 

where CA is the added mass coefficient (CA = 1 for circular cylinders; Leonard & Roshko, 2001). 

Equation 2.1 shows that fcom/ fn approaches unity with increasing the mass ratio. 

Outside of the synchronization region, i.e., in the non-synchronized region, the frequency of 

vibrations depends on the reduced velocity (Feng, 1968; Khalak & Williamson, 1999). For reduced 
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velocities lower than those within the synchronization region, the frequency response is characterized by 

fn and the vortex shedding frequency of a stationary circular cylinder (fs). For reduced velocities higher 

than those within the synchronization region, the frequency response is characterized by fcom and fs. 

2.3  Two DOF uniform amplitude VIV 

Although one DOF freedom studies provide invaluable insight into the vortex-induced vibrations of 

circular cylinders, in most engineering applications, structures can respond in streamwise as well as 

transverse directions to the flow. Several investigations have been performed to study the effect of adding 

the streamwise degree of freedom on VIV of circular cylinders, e.g., Jauvtis & Williamson (2004), 

Blevins & Coughran (2009), Gharib (1999), Jeon & Gharib (2001), Sarpkaya (1995), and Sanchis et 

al. (2008). In this section, literature related to the two DOF uniform amplitude VIV of circular cylinders is 

reviewed. 

2.3.1  Amplitude response and vortex shedding patterns 

Jauvtis & Williamson (2004) investigated the effect of both mass ratio and reduced velocity on two DOF 

VIV of circular cylinders. Their results show that, for m
*
 > 6, the freedom of the cylinders to vibrate 

streamwise as well as transverse to the flow does not significantly change the transverse amplitude of 

vibrations. Thus, they concluded that the transverse amplitudes of response obtained for one DOF VIV 

can be used to estimate the transverse amplitude of response for two DOF cylinders with m
*
 > 6. A 

comparison of the results of Jauvtis & Williamson (2004) for m
*
 = 7 and those of Blevins & 

Coughran (2009) for m
*
 = 17.1 shows that, similar to one DOF studies, the range of reduced velocities 

associated with significant amplitudes of vibrations narrows with increasing the mass ratio. Specifically, 

increasing the mass ratio from 7 to 17.1 narrows the range from about 4 < U
*
 < 11 to 5 < U

*
 < 8.5, 

respectively. 
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 For m
*
 < 6, the results of Jauvtis & Williamson (2004) and Blevins & Coughran (2009) show that 

the addition of the streamwise degree of freedom can significantly affect the transverse amplitude of 

vibrations. Their results indicate that the amplitude response plot for a two DOF cylinder contains three 

branches of response, namely, initial, lower, and supper-upper branches, with a hysteretic transition 

between the supper-upper and lower branches. The supper-upper branch is associated with relatively high 

transverse and streamwise amplitudes of vibrations, i.e., *
yA  ≈ 1.5 and *

xA  ≈ 0.3, respectively. Jauvtis & 

Williamson (2004) argue that the occurrence of high amplitudes of vibrations in the supper-upper branch 

is associated with a distinct wake vortex pattern, named 2T, where two triplets of vortices form in each 

cycle of oscillations of the cylinder. The vortex shedding patterns observed by Jauvtis & Williamson 

(2004) for the initial and lower branches of response were similar to the patterns observed for these 

branches for one DOF low mass-damping ratio cylinders (e.g., Khalak & Williamson, 1999), i.e., 2S for 

the initial branch, and 2P and non-synchronized patterns for the lower branch 

2.3.2  Frequency and trajectory of response 

Results of Jauvtis & Williamson (2004), Sanchis et al. (2008), and Blevins & Coughran (2009) indicate 

that both the reduced velocity and the mass ratio significantly affect the frequency response of two DOF 

cylinders. Their results show that, within the synchronization region, the frequency response of two DOF 

cylinders is similar to that of one DOF cylinders. However, in the non-synchronized region, the frequency 

response is different from that of one DOF studies. In the synchronization region, Jauvtis & Williamson 

(2004) proposed the following correlation for fcom.  

 
52.0m

Cm
ff

*

A
*

ncom
−

+
=  (2.2) 

Similar to Eq. 2.1, Eq. 2.2 shows that fcom/fn approaches unity with increasing the mass ratio. In the non-

synchronized region, the results of Jauvtis & Williamson (2004) indicate that, for m
*
 > 6 and for reduced 
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velocities higher than those within the synchronization region, the frequency response is similar to that of 

one DOF studies. However, for reduced velocities lower than those characterizing the synchronization 

region, the frequency of transverse vibrations matches fs (cf., frequency response of one DOF cylinders 

for which the frequency of transverse vibrations is characterized by fs and fn, Khalak & Williamson, 

1999). For m
*
 < 6 and reduced velocities higher than those within the synchronization region, the results 

of Jauvtis & Williamson (2004) show that the frequency of transverse vibrations is higher than fcom (cf., 

frequency of transverse vibrations of one DOF cylinders that locks onto both fs and fcom). However, for m
*
 

< 6 and  reduced velocities lower than those characterizing the synchronization region, the results of 

Jauvtis & Wiliamson (2004) and Blevins & Coughran (2009) indicate that the frequency of transverse 

vibrations only is lower than fs (cf., frequency of transverse vibrations of one DOF cylinders which is 

characterized by fs and fn). 

 Previous laboratory investigations of two DOF VIV of circular cylinders, e.g., Jauvtis & 

Williamson (2004), Blevins & Coughran (2009), Gharib (1999), Jeon & Gharib (2001), Sarpkaya (1995), 

and Sanchis et al. (2008), indicate that the frequency of streamwise vibrations is almost twice that of the 

transverse vibrations for the range of mass ratios and reduced velocities investigated; therefore, the 

cylinders were observed to trace figure-8 type trajectories. 

2.4  One DOF linear amplitude VIV 

Allowing the uniform circular cylinders to vibrate streamwise as well as transverse to the flow serves to 

create a more realistic model of VIV occurring in practical engineering applications. However, in most 

engineering applications, the amplitudes of vibrations vary along the span of the structure, e.g., Brika & 

Laneville (1993) and Huera-Huarte & Bearman (2009). As the first step of simulating VIVs in which 

amplitude varies along the cylinder span, some investigations were performed for one DOF cylinders with 

linear variation of amplitude along the cylinder span, e.g., experimental studies of Fujarra et al. (2001) 
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and Voorhees et al. (2008) as well as analytical investigations of Skop & Griffin (1975). A comparison of 

the results presented in Fujarra et al. (2001) and Voorhees et al. (2008) with those for one DOF uniform 

amplitude VIV, e.g., Govardhan & Williamson (2000) shows significant differences in the amplitude 

response plots at similar mass ratios and damping ratios. Specifically, the results of Fujarra et al. (2001) 

show that the upper branch of response is absent in the amplitude response plot, with only initial and 

lower branches being present. In addition, for 12 < U
*
 < 21, Fujarra et al. (2001) observed that increasing 

the reduced velocity increases the amplitude of vibrations; whereas, in the case of uniform amplitude 

vibrations, Govardhan & Williamson (2000) observed that the amplitudes of vibrations decreases with 

increasing the reduced velocity in this range of U
*
.  

 The frequency response plots presented in Fujarra et al. (2001) and Voorhees et al. (2008) are 

similar to that presented in Khalak & Williamson (1999) within the synchronization region and for 

reduced velocities higher than those within the synchronization region. However, for reduced velocities 

lower than those characterizing the synchronization region, the frequency of transverse vibrations of the 

one DOF cylinder with linear amplitude variation locks onto fs (Fujarra et al., 2001); whereas, the 

frequency of transverse vibrations is characterized by both fs and fn in the case of uniform amplitude VIV 

(e.g., Khalak & Williamson, 1999). 

2.5  TWO DOF linear amplitude VIV 

Adding the streamwise degree of freedom to pivoted circular cylinders can significantly affect the 

response of the structure. Flemming & Williamson (2005) and Leong & Wei (2008) investigated vortex-

induced vibrations of a pivoted circular cylinder free to vibrate in streamwise and transverse directions. In 

this section, these two studies are discussed. 
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2.5.1  Amplitude response and vortex shedding patterns 

The results of Flemming & Williamson (2005) indicate that the mass ratio and the inertia-damping 

parameter (I
*ζ) can significantly affect the amplitude response. Their results show that, similar to the case 

of one and two DOF uniform amplitude VIV of circular cylinders, the range of reduced velocities for 

which significant amplitude of transverse vibrations occur narrows with increasing mass ratio. 

Specifically, for m
*
 = 1.03, 2.68, and 7.69 tested by Flemming & Williamson (2005), the ranges were 2.6 

< U
*
 < 19.6, 3.5 < U

*
 < 14, and 3.5 < U

*
 < 11.5, respectively. Their results show that the amplitude 

response plot features initial and lower branches of response for moderate values of the inertia-damping 

parameter (I
*ζ ~ 0.1). For low values of this parameter (I

*ζ ~ 0.001), the plot features initial, lower, and 

upper branches of response. The results of Flemming and Williamson (2005) also show a hysteretic 

transition between the initial and upper and an intermittent switching between the upper and lower 

branches of response for low-inertia damping parameter cylinders. 

 The flow visualization results of Flemming & Williamson (2005) indicate that, for moderate and 

low values of inertia-damping parameter, vortex shedding patterns at a given spanwise location agree 

with those expected from Williamson-Roshko map (Fig. 2.2) based on local transverse amplitude of 

vibrations for initial and lower branches of response. However, for the upper branch of response, their 

results do not agree with the Williamson-Roshko map. Flemming and Williamson (2005) show that the 

upper branch of response is associated with the formation of two co-rotating vortices along the span of the 

cylinder, named 2C vortex shedding pattern. 

 Leong & Wei (2008) investigated two DOF VIV of a pivoted circular cylinder with very low 

mass ratio (m
*
 = 0.45) and moderate moment of inertia-damping parameter (I

*ζ = 0.08). Their results 

show two branches of response, initial and upper branches. Leong & Wei (2008) performed flow 

visualization studies at mid span of their pivoted cylinder. They observed vortex shedding patterns similar 

to those predicted from Williamson-Roshko map based on transverse amplitude of vibrations measured at 
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the mid span of the cylinder for U
*
 < 6.2. Specifically, they observed 2S and 2P vortex shedding patterns 

for 1.1 < U
*
 < 2.6 and 2.6 < U

*
 < 6.2, respectively. However, for U

*
 > 6.2, they observed formation of a 

pair of vortices and a single vortex per cycle of oscillation, known as P+S pattern; whereas the non-

synchronized pattern is to be expected from the Williamson-Roshko map. 

2.5.2  Frequency and trajectory of response 

Flemming & Williamson (2005) investigated the effect of reduced velocity on the frequency response of a 

pivoted circular cylinder with m
*
 = 1.03. Their results show that, for U

*
 < 8.2, the frequency response is 

similar to that for two DOF uniform amplitude VIV of low mass ratio cylinders. Their results indicate 

that, for U
*
 < 5.5, fy locks onto the vortex shedding frequency of a stationary circular cylinder and, for 5.5 

< U
*
 < 8.2, fy varies between 0.8fn and 1.1fn. However, for U

*
 > 8.2, the frequency response is different to 

that observed for two DOF uniform amplitude VIV. For 8.2 < U
*
 < 21, the results of Flemming & 

Williamson (2005) show that fy increases from 1.4fn to 2fn with increasing reduced velocity; whereas for a 

matching mass ratio, fy locks onto 1.4fn in the case of uniform amplitude VIV (Jauvtis and Williamson, 

2004). 

 Leong & Wei (2008) investigated the effect of reduced velocity on the frequency response for a 

very low mass ratio cylinder (m
*
 = 0.45). Their results show that fy increases linearly with increasing 

reduced velocity, similar to the results presented in Govardhan & Williamson (2000) for very low mass 

ratio cylinders undergoing uniform amplitude VIV. Specifically, the results of Leong & Wei (2008) 

indicate that increasing U
*
 from 1.1 to 8.3 increases fy from 0.4fn to 1.4fn, respectively. 

 Flemming & Williamson (2005) and Leong & Wei (2008) show that the frequency of streamwise 

vibrations is approximately twice that of the transverse vibrations. Consequently, figure-8 type cylinder 

tip trajectories were observed in both studies, similar to the results for two DOF uniform amplitude VIV 
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of circular cylinders, e.g., Jauvtis and Williamson (2004), Blevins and Coughran (2009), and Sanchis et 

al. (2008). 

2.6  Mitigation of vortex-induced vibrations 

Vortex-induced vibrations of cylindrical structures are usually undesirable in engineering applications. 

Amplitudes of these vibrations can be as high as several peak-to-peak cylinder diameters and may result 

in fatigue and, consequently, failure of structures (Every et al., 1982 and Dailey et al., 1987). A number of 

methods have been proposed for suppression of vortex-induced vibrations, e.g., Zdravkovich (1981); 

Every et al. (1982); and Modi et al. (1995). Modi (1981) classifies these methods into two categories: (i) 

fluid dynamics methods and (ii) structural methods. 

2.6.1  Suppression of vortex-induced vibrations using fluid dynamics methods 

The fluid dynamics methods for mitigating VIV rely on disrupting wake vortex shedding of circular 

cylinders (Zdravkovich, 1981; and Every et al, 1982). This is usually performed either by modifying the 

surface of the cylinders, known as surface protrusion methods, or by implementing devices in the near 

wake of the cylinders in order to stabilize the wake, known as near wake stabilizers (Zdravkovich, 1981 

and Every et al., 1982). 

 Several studies have been performed to investigate the effectiveness of surface protrusion devices 

in suppressing vortex-induced vibrations. These devices perform based on creating streamwise 

disturbances in the flow and, as a result, reducing the regularity of spanwise vortex shedding in the wake 

of the cylinder (Zdravkovich, 1981). Figure 2.3 shows three examples of surface protrusion devices, 

namely, helical strakes, perforated shrouds, and surface bumps. Vickery & Watkins (1964), Price & 

Thompson (1956), and Owen et al. (2001) investigated the use of helical strakes, perforated shrouds, and 

surface bumps, respectively, for suppression of VIV of circular cylinders. All of these devices were 

shown to be effective in suppressing VIV. 
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Figure 2.3 Surface protrusion devices: (a) helical strakes (Every et al, 1982); (b) perforated shrouds (Price & 

Thompson, 1956); and (c) surface bumps (Owen et al., 2001). 

Near wake stabilisers, such as splitter plates, have also been shown to be effective in suppressing 

VIV of circular cylinders, e.g., Sallet (1970), Fischer (1979), and Assi (2009). These devices prevent 

interaction between the shear layers developing on both sides of the cylinder and, as a result, suppress the 

alternate vortex shedding in the wake of the cylinder (Zdravkovich, 1981). Fixed, free to rotate, and 

flexible splitter plates have been shown to suppress vortex-induced vibrations. Sallet (1970) showed that 

fixed splitter plates with a length of about three cylinder diameters can successfully suppress VIV of 

circular cylinders. Similarly, Assi (2009) showed that free to rotate splitter plates with length of one 

cylinder diameter suppress VIV. Fischer et al. (1979) showed that flexible splitter plates can be used to 

reduce amplitude of vortex-induced vibrations to about 5% of that for a plain cylinder. 

2.6.2 Suppression of vortex-induced vibrations using structural methods 

The structural methods involve adding an auxiliary vibration absorber device to the main structure (Modi 

et al., 1995). Tuned-liquid dampers (TLD) and tuned-mass dampers (TMD) are examples of structural 

methods widely used for the mitigation of vortex-induced vibrations of towers, masts, and chimneys. 

TLDs are internally partitioned tanks, filled with liquid, usually water, and positioned on top of buildings 
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(Kareem et al., 1999). The mechanical energy of the buildings equipped with TLDs is dissipated by the 

movement of the liquid through the partitions inside the tank (Chang & Gu, 1999). The effectiveness of 

TLDs for the mitigation of vortex-induced vibrations is discussed in detail in Modi et al. (1995), Modi & 

Seto (1997), and Chang & Gu (1999). In this section, previous studies involving TMDs are discussed due 

to their relevance to the present investigation. 

 A tuned-mass damper was invented by Frahm (1911) as a vibration absorber device (Sun et al., 

1995). Figure 2.4 shows a schematic of a one DOF TMD attached to a one DOF main structure. As the 

main structure undergoes vibrations, a phase shift develops between the vibrations of the main structure 

and the TMD (Kwok & Samali, 1995). The resulting relative motion between the TMD and the main 

structure allows for the energy of the main structure to be dissipated in the damper installed between the 

TMD and the main structure (Fig. 2.4). 

 

 

Figure 2.4 Schematic of a one DOF main structure equipped with a one DOF TMD. 

The equations of motion of the main structure and the TMD, shown in Fig. 2.4, are given by Eqs. 2.3 and 

2.4. 

 F(t)(t)]X(t)k[X(t)KX(t)]X(t)Xc[(t)XC(t)XM MTMDMMTMDMM =−−+−−+ &&&&&  (2.3) 

 0)]t(X)t(X[k)]t(X)t(X[c)t(Xm MTMDMTMDTMDTMD =−+−+ &&&&  (2.4) 

F(t) 
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Tanaka & Mak (1983) showed that the vibrations of the main structure depend on the following six 

governing parameters: 

(i) Forcing frequency band width (B), which can vary from infinity, i.e., white noise excitation, 

to zero, i.e., single harmonic excitation. 

(ii) Normalized dominant forcing frequency ratio ( ne
*
e f/ff =  , where fe is the peak frequency of 

the power spectral density function of the forcing and fn is the natural frequency of the main 

structure equipped when the TMD is restrained to vibrate). 

(iii) TMD mass ratio (µ = mTMD/M), where mTMD is the mass of the TMD, and M is the mass of 

the main structure. 

(iv) Tuning frequency ratio ( nTMD
*
r f/ff =  , where fTMD is the TMD natural frequency). 

(v) Main structure damping ratio (ζ). 

(vi) TMD damping ratio (ζTMD). 

 Tanaka & Mak (1983) investigated the influence of the governing parameters on the main 

structure vibrations for ζ = 0.01 and 1f *
e = . Their results show that the vibrations of the main structure are 

minimized for optimal values of tuning frequency, TMD mass ratio, and TMD damping ratio. Tanaka & 

Mak (1983) made the following conclusions: 

(i) The optimal value of tuning frequency ratio, for white noise excitations, i.e., B = ∞, does not 

depend on µ and ζTMD and occurs at 1f *
r ≈  . 

(ii) Under tuned condition, i.e., 1f *
r = , the amplitude of vibrations decrease with increasing the 

TMD mass ratio. 

(iii) The optimal value of TMD damping ratio, at 1f *
r =  , depends on both B and µ. For B > 0.1, 

the optimal ζTMD increases with increasing µ. For example, at B = ∞, increasing µ from 0 to 

0.12 increases the optimal ζTMD from 0 to 0.16. For B < 0.1, increasing µ first increases and 



 

 19 

then decreases optimal values of ζTMD. For example, at B = 0.05, increasing µ from 0 to 0.02 

increases optimal value of ζTMD from 0 to 0.03; however, further increase of µ from 0.02 to 

0.12 decreases optimal value of ζTMD from 0.03 to 0. 

 Tuned-mass dampers have long been used in different industries, e.g., in automotive and aircraft 

engines for vibration absorption (Xu et al., 1992).  During the past few decades, TMDs have been 

deployed in tall buildings to mitigate seismic as well as vortex-induced vibrations, e.g., Kareem et al. 

(1999), Sadek et al. (1997), Lin et al. (1999), and Gerges & Vickery (2005). The effectiveness of TMDs 

for the mitigation of vortex-induced vibrations of one DOF structures has been investigated in several 

experimental studies, e.g., Tanaka & Mak (1983), Xu et al. (1992), and Kim et al. (2008) have been 

performed to investigate. 

 Xu et al. (1992) performed wind tunnel studies to investigate the effect of reduced velocity on 

VIV of a 1/400 rectangular model equipped with three different TMDs. Their model was free to respond 

only in streamwise or transverse directions to the flow. Experiments were conducted for two building 

orientations, with the incident wind normal to the narrow face of the model and to the wide face of the 

model. The reduced velocity, )bf(UU 1n
* = , was varied between 4 and 18, corresponding to 

3
b

3 1086Re1019
1

×<<× , where b1 is the width of the narrow face of the model and U is the mean wind 

velocity measured at the top of the model. The model aspect ratios, L/b1 and L/b2, were 4.1 and 6.2, where 

L and b2 are the height of the model and the width of the wide face of the model, respectively. The model 

had the structural mass ratio (m
*
) of 180 and damping ratio (ζ) of 0.01. Three different TMDs with µ = 

0.024, ζTMD = 0.032; µ = 0.033, ζTMD = 0.04; and µ = 0.044%, ζTMD = 0.042 were investigated. The tuning 

frequency ratios of all three TMDs were set to unity, i.e., 1f *
r = . The main results of Xu et al. (1992) can 

be summarized in as follows. 
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(i) The time averaged vibrations of the structure in the streamwise direction was not reduced 

using any of the three TMDs when the wind was either normal to the wide face of the model 

or to the narrow face. 

(ii) For all the cases investigated, the maximum reduction of vibrations was observed for the third 

TMD, which had the highest mass and damping ratios. Xu et al. (1992) indicate that none of 

the TMD damping ratios tested was a match to the theoretically obtained optimal values of 

ζTMD presented in Tanaka & Mak (1983). 

(iii) The rms streamwise vibrations of the main structure were reduced by up to 40% for both 

model orientations investigated. 

(iv) With the incident wind normal to the wide face of the model, the rms transverse vibrations 

were reduced by up to 30% for U
*
 < 10. For U

*
 ≥ 10, the maximum reduction was about 50%. 

(v) With the incident wind normal to the narrow face of the model, the rms transverse vibrations 

were reduced by up to 30%. 
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3 Experimental methodology 

3.1  Water flume facility 

All of the experiments were conducted in a water flume facility at the University of Waterloo. The test 

section of the flume is 2.4 m long and has a 120 cm × 120 cm cross section. Throughout the experiments, 

the water level was maintained at 80 cm, resulting in a uniform free-stream velocity of 87 ± 1.5 mm/s, 

with an attendant free-stream turbulence intensity of less than 1%. Further details on the facility and flow 

characteristics can be found in Morton (2010). 

3.2 Vibration measurements 

Two Hoskin CP24MHT80 laser-based displacement sensors were used to measure the streamwise and 

transverse vibrations of the cylinder (Fig. 3.1). The sensors have a 120-mm working range corresponding 

to ± 2.36 cylinder diameters. Each sensor was calibrated using a high precision milling machine, with 

details provided in Appendix A. Experimental uncertainties associated with displacement measurements 

in the streamwise and transverse directions are estimated to be ±0.02D and ±0.015D, respectively, with 

details provided in Appendix B. Analog signals from the displacement sensors were acquired using NI 

6323 PCIe board at a sampling frequency of 600 Hz. This sampling frequency is sufficient to adequately 

resolve temporal variations in cylinder displacement observed in the present study and is recommended 

by the sensor manufacturer because it results in optimum linearity of the sensor. 

3.3 Frequency and phase angle analyses 

Spectral analysis of displacement signals was performed to determine characteristic 

frequency/frequencies of vibrations. Each displacement signal was discretized into eight segments, with  
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Figure 3.1 Laser sensors. 

each segment containing 108,000 data points. Power spectral density (PSD) function of each segment was 

obtained using the fast Fourier transform (FFT) algorithm and the average PSD was then computed. 

To investigate temporal variations in the frequency of vibrations, spectrograms of vibrations were 

computed using the short-time fast Fourier transform (SFFT) algorithm. A spectrogram presents variation 

of PSD of a signal in a frequency-time domain. In this study, the width of a time window utilized in the 

SFFT technique was approximately ten cycles of cylinder oscillations. The overlap between the time 

windows was approximately one cycle of oscillations. The time window and the overlap between the time 

windows were selected to resolve expected variations in the frequency of vibrations. 

To estimate the phase angle between the streamwise and the transverse vibrations of the structure, 

the Hilbert transform was utilized. The Hilbert transform of a signal x(t) is given by Eqs. 3.1 and 3.2. The 

phase of a signal x(t) is equal to the phase of a complex function h(t) given by Eq. 3.2. Further details on 

the Hilbert transform can be found in Khalak & Williamson (1999). 

 ∫
∞

∞−
−π

= dt
st

)t(x1
)x(H   (3.1) 
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 )]t(x[iH)t(x)t(h −=  (3.2) 

3.4 Experimental setup 

A steel circular cylinder was placed in the water flume as an inverted pendulum (Fig. 3.2). One end of the 

cylinder was tapered in order to create a low-friction pivot point at the bottom of the flume. The cylinder 

was supported with two pairs of springs (Fig. 3.2), one pair aligned parallel and the other orthogonal to 

the flow direction. The cylinder had a diameter (D) of 25.4 mm and a length (L) of 1.64 m. The total mass 

(m) and the moment of inertia (I) of the cylinder were 6.42 kg and 5.8 kg× m
2
, respectively. A technical 

assembly drawing of the cylinder setup is provided in Appendix C. 

 

 

Figure 3.2 Model setup. 

To eliminate any Reynolds number effects, the free-stream velocity was maintained constant, 

corresponding to Re = 2100. The reduced velocity (U
*
) was adjusted by varying the natural frequency of 

the structure (fn). The natural frequency was determined via spectral analysis of free vibrations of the 

structure in quiescent water. For all of the cases examined, the natural frequency of the structure in the 
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streamwise direction was equal to that in the transverse direction. Figure 3.3 shows spectra of transverse 

and streamwise free vibrations in quiescent water, illustrating that the natural frequency is the same in 

both directions. 
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Figure 3.3 Spectra of free vibrations: (a) in the transverse, and (b) streamwise directions. 

Three different springs (24.5, 35, and 79.9 N/m) were used throughout the experiments. By 

changing the stiffness and/or the distance between the springs and the pivot point (b), the natural 

frequency was varied between 0.31 and 1 Hz, corresponding to 3.4  ≤  U
*
 ≤  11.3. Figure 3.4 shows the 

variation of fn with b for the three different springs utilized in the study. 

3.5 Free vibrations 

In order to estimate the structural characteristics of the experimental setup, free vibrations in air were 

considered. Figures 3.5a and b show experimentally measured free vibrations of the cylinder released  
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Figure 3.4 Natural frequency and locations of the springs. 

from rest at y/D = 1 and x/D = 0. The observed oscillatory and damped response suggests the existence of 

moderate damping in both directions. Also, since the structure was initially excited in the transverse 

direction, the presence of vibrations in the streamwise direction indicates structural coupling. To quantify 

structural damping and coupling from the experimental measurements, a mathematical model of free 

vibrations was introduced. The model is based on the Newton’s second law of motion of the structure 

(Eqs. 3.3 and 3.4), with the free-body-diagram shown in Fig 3.6. 

 0)Ly(bK)Lx)(2LmgbK()Lx(
dt

d
Cb)Lx(

dt

d
I 2

c
2

e
2

2

2

=+−++  (3.3) 

 0)Lx(bK)Ly)(2LmgbK()Ly(
dt

d
Cb)Ly(

dt

d
I 2

c
2

e
2

2

2

=+−++  (3.4) 

For both the streamwise and transverse directions (x and y, respectively), the structural stiffness is 

modeled using a linear spring at z = L-b, with an effective stiffness of Ke, and the structural damping is 

modeled using a linear viscous damper at z = L-b, with a damping coefficient of C. The effect of  
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Figure 3.5 Free vibrations of the structure in quiescent air: (a) and (b) experimental data, (c) and (d) 

corresponding predictions from Eqs. 3.3 and 3.4 with ζ = 0.004 ± 0.0014 and fc / fa = 0.110 ± 0.014. 

 

Figure 3.6 Free-body-diagram of the cylinder model in free-vibrations. 
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aerodynamic forces is neglected. The coupling between vibrations in the x and y directions is modeled 

using the cross-stiffness term (Kc), similar to the approach proposed in Wardlaw et al. (1975). Introducing 

the in-air natural frequency, I)2/mgLbK()]2(1[f 2
ea −π= , structural damping ratio, 

])2/mgLbK(I2[Cb 2
e

2 −=ζ , and coupling frequency, IK])2(b[f cc π= , Eq. 3.3 and 3.4  can be 

reduced to the following non-dimensional form: 

 0Dy)ff(4Dx4Dx4Dx 2
ac

22 =π+π+πζ+ &&&   (3.5) 

 0Dy)ff(4Dx4Dx4Dx 2
ac

22 =π+π+πζ+ &&&  (3.6) 

where )(⋅  denotes differentiation with respect to the normalized time t
*
 (t

*
= t×fa). For fc/fa < 1 and ζ

2
 << 1, 

verified to be the case in the present study, these equations can be solved analytically. With the initial 

conditions (x/D = 0, y/D = y0/D), the solution is given by: 

 )t2sin(]t)ff(sin[e)Dy(D)t(x **2
ac

t2
0

* *

ππ−= πζ−  (3.7) 

 )t2cos(]t)ff(cos[e)Dy(D)t(y **2
ac

t2
0

* *

ππ= πζ−  (3.8) 

Details of the analytical derivation of Eqs. 3.7 and 3.8 are provided in Appendix D. The natural frequency 

of the structure in air was determined via spectral analysis of the free vibrations of the structure in 

quiescent air, with the uncertainty estimated to be less than about 2%. Details of the uncertainty analysis 

are provided in Appendix B. Similar to the free vibration tests in water the natural frequency in the 

streamwise direction was equal to that in the transverse direction for all the cases examined. The damping 

ratio and the coupling frequency were determined using Eqs. 3.7 and 3.8 and experimental data. 

Specifically, it can be inferred from Eq. 3.8 that the classical logarithmic decay of the amplitude occurs at 

the onset of free vibrations in the y direction (t
*
 → 0). Thus, the damping ratio can be estimated as: 
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For a given fa and ζ, the coupling frequency can be estimated from Eqs. 3.7 and 3.8 using experimental 

free-vibrations data. To minimize the uncertainty, the following approach is employed. Based on the 

experimental data, the normalized time ( *
mt ) at which the amplitude of streamwise vibrations attains its 

maximum value is determined (Fig. 3.5b). From Eq. 3.7, the two conditions that must be satisfied at 
*

mt  

are given by Eqs. 3.10 and 3.11. 

 { } 0]t)ff(sin[e
dt

d
*
m

*

*

tt

*2
ac

t2

* =π−
=

πζ−

 (3.10) 

 { } 0]t)ff(sin[e

dt

d
*
m

*

*

tt

*2
ac

t2

2*

2

<π−
=

πζ−

 (3.11) 

The derivatives in Eqs. 3.10 and 3.11 can be readily evaluated, and then the coupling frequency (fc) can 

be determined numerically for the known fa, ζ, and *
mt . 

Figures 3.5c and d depict the results obtained using Eqs. 3.5 and 3.6 to model free vibrations of the 

structure shown in Figs. 3.5a and b. The analytical and experimental results are in close agreement, 

suggesting that Eqs. 3.5 and 3.6 provide a reasonable dynamic model for the structure under investigation. 

3.6 Flow visualization 

A Laser-Induced-Fluorescence (LIF) technique was used to visualize the wake vortex shedding patterns at 

two different planes perpendicular to cylinder axis (Fig. 3.7). The planes were located inside the uniform 

region of the incoming flow at z/L = 0.65, and 0.84. A 2.5 mm diameter probe (Fig. 3.8) was used to 

inject dye into the flow. Two types of dye were used, namely, a 1000 ppm solution of Rhodamine 6G and 

a 24 ppm solution of Fluorescein Sodium salt. The probe was positioned about one diameter upstream of 
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the cylinder. The Reynolds number based on the probe diameter was such that vortex shedding occurred 

in the wake of the probe. Thus, to minimize any adverse effect on the flow a bent probe was utilized (Fig. 

3.8).  

 

Figure 3.7 Planes of flow visualization. 

 

 

Figure 3.8 Dye injection probe. 

Planes of flow visualization 
Flow 
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The flow was illuminated with a laser sheet. A laser beam with a wavelength of 570 nm was 

produced using a continuous wave Ion-Argon laser (Spectra-Physics stabilite 2017). The beam was 

passed through a concave lens to generate the laser sheet used to illuminate the injected dye in the wake 

of the cylinder. The spanwise location of the sheet was adjusted using a manual traversing system. 

Flow visualization images were acquired using a Nikon D300 camera, at an average rate of 6 

frames per second. Also, video recordings were made to allow a more detailed analysis of the vortex 

shedding patterns. 

3.7 Tuned mass damper setup 

A novel adaptive pendulum tuned-mass damper used in this study is shown in Fig. 3.9. The TMD was 

built by Mr. Richard Lourenco based on a larger scale model developed for suppressing forced vibrations 

(Lourenco, 2011). The TMD was integrated with the cylindrical structure in order to investigate the 

capabilities of this novel design for mitigating vortex-induced vibrations. The technical drawing of the 

cylindrical structure equipped with the TMD is provided in Appendix C. 

 The investigated pendulum tuned-mass damper can autonomously adjust its natural frequency as 

shown in Fig. 3.9. The TMD setup consists of a supporting frame, a pendulum, two dampers, and tuning  

components. The supporting frame is mounted on top of the cylinder model. The frame consists of two 

base supports, two guiding rails, and a top supporting plate. 

 The pendulum consists of a 0.7 kg mass suspended on a 1-m-long steel cable. The length of the 

pendulum can be adjusted so as to control TMD natural frequency (fTMD). This is done by varying the 

position of a tuning platform sliding on the guide rails, thereby varying the effective length of the 

pendulum. A Portescap 42M048C1B-Z36 bipolar stepper motor is used to position the tuning platform 

along the guide rails. A Micro-Epsilon WPS-150-MK30-P25 string potentiometer was utilized to acquire 

position of the tuning platform. 
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Figure 3.9 Tuned-Mass Damper. 

Two Airpot 2K160 dashpot dampers were utilized in order to absorb vibrations of the cylindrical 

structure. One damper is aligned parallel and the other orthogonal to the flow direction (Fig. 3.9). One 

end of each damper is connected to the suspended mass using a ball joint. The other end of each damper 

is attached to the base supports. Each damper is equipped with a control valve. Calibration experiments 

presented in Lourenco (2011) indicated that the damping coefficient of each damper (CTMD) depends on: 

(i) position of the control valve, and (ii) suspended mass vibration frequency. All of the experiments were 

performed with the control valves fully opened. As will be shown later, at the lock-in condition, the 

pendulum mass vibration frequency is equal to the natural frequency of the structure. Thus, for a given 

position of the control valves, the damping coefficient of the dampers depends only on the natural 

frequency at the lock-in condition. From the calibration results presented in Lourenco (2011), it can be 

inferred that CTMD = 2.128fn. Thus, 24.0
fm4
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The adaptive TMD was controlled using a dSPACE 1104 board. Also, the board was used to 

simultaneously acquire data from laser displacement sensors and the string potentiometer. The detailed 

description of the TMD control algorithm is provided in Lourenco (2011). 

 



 

 33 

4 Vortex-induced vibrations of a pivoted circular cylinder 

This chapter presents results characterizing VIV of the model without a TMD. For the experimental setup 

utilized in the present investigation (Fig. 3.2), dimensional analysis was employed to show that the 

vortex-induced vibrations depend on the Reynolds number (Re), moment of inertia ratio (I
*
), mass ratio 

(m
*
), aspect ratio (AR), reduced velocity (U

*
), damping ratio (ζ), and coupling-frequency-based reduced 

velocity, ( )Df(UU
c

*

c
= ). The values of the governing parameters investigated in the present study are 

tabulated in Table 4.1. 

4.1 Amplitude of response 

The amplitude response is defined as half peak-to-peak amplitude of cylinder tip undergoing steady state 

oscillations. Figure 4.1 shows the variation of the normalized transverse amplitude of vibrations (
*
yA ) 

with reduced velocity. The results are presented for the three different spring sets utilized to support the 

cylinder. Figure 4.1 shows that the extent of the region with relatively high amplitudes of vibrations does 

not change significantly by changing the spring stiffness. However, within this range, the amplitude of 

transverse vibrations can vary substantially with varying spring stiffness for a given reduced velocity. For 

example, at U
*
 = 6.6, increasing the spring stiffness from 25.4 to 35 N/m decreases 

*

y
A  by about 33%. It 

should be noted that, no hysteresis in the amplitude of response was observed in the present study. As 

discussed in Khalak and Williamson (1999), the hysteresis occurs when U
*
 is varied by adjusting the free-

stream velocity; whereas, in the present investigation, the free-stream velocity was kept constant 

throughout all of the experiments. 

 Figure 4.2 shows the variations of deflection angle (δ) with the reduced velocity for the present 

investigation as well as the studies of Flemming & Williamson (2005) and Leong & Wei (2008). The 

deflection angle is defined as the maximum angle that the projection of cylinder axis on the z-y plane 
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Table 4.1 Governing non-dimensional parameters. 

Parameter Description Value 

Re Reynolds number, UD/υ 2100 

I
*
 Moment of inertia ratio, I/Id 66.8 

m
*
 Mass ratio, m/mt 15.9 

AR Aspect ratio, L/D 64.6 

U
*
 Reduced velocity, U/(fnD) 3.4 – 11.3 

ζ Damping ratio, C/(4πmfn) 0.004 – 0.011 

*

cU  Coupling-frequency-based reduced velocity, U/(fcD) 13.8 – 47.7 

 

makes with the z axis, which is given by )L/A(tan y
1−=δ . Since Ay/L is very small (Ay/L ~ 10

-2
), the 

deflection angle can be estimated as: AR/A*
y=δ . It should be noted that the results from the three 

investigations, shown in Fig. 4.2, were obtained for different Re, I
*
, m

*
, ζ, and AR. Thus, the differences 

between the three data sets are attributed to the differences in the governing experimental parameters. The  
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Figure 4.1 Transverse amplitude of response. The uncertainty is accommodated by the size of the data 

legends. 

results of the present investigation show that the region with relatively high amplitudes of vibrations 

extends over 5 ≤ U
*
 ≤ 8.2. However, the results of Flemming & Williamson (2005) show that substantial 

amplitudes of vibrations are observed over a wider range, i.e., 4.6 ≤ U
*
 ≤ 10.9. This is speculated to be 

due to the mass ratio in the present investigation being higher than that of Flemming & Williamson 

(2005). In contrast to the trends observed in the present investigation and that of Flemming & Williamson 

(2005), the results of Leong & Wei (2008), presented in Fig. 4.2, indicate that the deflection angle 

increases with increasing the reduced velocity beyond U
*
 ≈ 5. The results of Leong & Wei (2008) pertain 

to m* = 0.45, which is lower than the critical mass ratio. The trend observed in the results of Leong & 

Wei (2008) is similar to that reported for one DOF very low mass ratio cylinders by Govardhan and 

Williamson (2000). 

The results presented in Fig. 4.1 show that distinctly different normalized transverse amplitudes 

of response can occur for the different springs utilized in the study. Since the Reynolds number, moment 

of inertia ratio, mass ratio, and aspect ratio were kept constant throughout the experiments, the differences 

observed between the amplitudes of response pertaining to different springs in Fig. 4.1 are attributed to 

the effect of ζ and/or *

c
U . The effect of damping ratio, which is of particular practical importance, is  
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Figure 4.2 Variation of the transverse deflection angle with the reduced velocity. Data labeled L & W (2008) 

and F & W (2005) correspond to studies of Leong & Wei (2008) and Flemming & Williamson (2005), 

respectively. 

illustrated in Fig. 4.3, where the normalized amplitudes of response pertaining to *

c
U = 35.7±1.3 are 

presented. Agreeing with Sarpkaya (1995) and Blevins and Coughran (2009), the results show that the 

damping ratio can influence significantly the transverse amplitude of vibrations. For example, comparing 

the transverse amplitude of response at U
*
 = 7.6 shows that increasing the damping ratio by about 50% 

reduces the transverse amplitude of vibrations by about 25%. The results in Fig. 4.3 also show that the 

amplitude of streamwise vibrations is relatively low ( *

x
A  < 0.2) compared to the transverse vibrations and 

does not exhibit a well defined maximum. 

4.2 Frequency of response 

Figure 4.4 shows the variation of the normalized frequency of transverse vibrations ( ny
*
y f/ff = ) with the 

reduced velocity. The frequency values shown were obtained via spectral analysis of transverse 

oscillations, with representative spectra depicted in Fig. 4.5. Distinct regions of frequency response can be  



 

 37 

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.5

1

0

0.01

0.02
 

U∗

 

A∗

ζ

A∗

y

A∗

x

 

Figure 4.3 Transverse and streamwise amplitudes of response at *

cU = 35.7±1.3 . 

identified in Fig. 4.4. For 4.9 < U
*
 < 8.6, spectra of transverse vibrations, depicted in Fig. 4.5a, display a 

single dominant peak centered at the natural frequency, similar to the results for uniform amplitude VIV 

of one and two DOF cylinders with moderate to high mass ratios (m
*
 > 6), e.g., Jauvtis & Williamson 

(2004) and Blevins & Coughran (2009). A comparative analysis of the present results and those of 

Flemming & Williamson (2005) and Leong & Wei (2008) indicates that, in the synchronization region, 

decreasing the mass ratio causes the frequency of transverse vibrations to deviate from the natural 

frequency, with more significant deviations occurring at lower mass ratios. Outside of the synchronization 

region, i.e., for 3.4 < U
*
 < 4.9 and 8.6 < U

*
 < 11.3, spectra of transverse vibrations, depicted in Figs. 4.5b 

and c, feature several peaks centered at the vortex shedding frequency of a stationary circular cylinder 

(fs), the natural frequency, and the harmonics of the natural frequency. 

Figures 4.6a-c show the spectrograms of transverse vibrations at U
*
 = 6.6, 3.4, and 11.25, corresponding 

to the results presented in Figs. 4.5a-c. The results show that, in the synchronization region (Fig. 4.6a), 

the energy content associated with the dominant frequency of vibrations (fn) does not vary with time. In 

contrast, in the non-synchronized region (Figs. 4.6b and c), noticeable temporal fluctuations are observed 

in the energy content of the two dominant frequencies, i.e., fn and fs. 
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Figure 4.4 Frequencies of transverse vibrations. 
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Figure 4.5 Spectra of transverse vibrations. 
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Figure 4.6 Spectrograms of transverse vibrations. 

Spectral analysis of streamwise vibrations showed that the frequency of streamwise vibrations 

locks onto the natural frequency of the structure in the synchronization region, as illustrated in Fig. 4.7. 

Thus, in the synchronization region, the frequencies of both the streamwise and transverse vibrations 

match the natural frequency of the structure, so that the cylinder traces elliptic trajectories which will be 

discussed in detail in section 4.3. Although such a response has been observed in vortex-induced 

vibrations of cylindrical structures, e.g., Ishizaki (1967) and Vandiver et al. (2005), in laboratory 

investigations involving pivoted circular cylinders, e.g., Flemming & Williamson (2005) and Leong & 

Wei (2008), the classical figure-8 response was observed, with streamwise frequency of oscillations being 

twice that of the transverse oscillations. Thus, it is of interest to investigate a mechanism responsible for  



 

 40 

0.1 1 10
−30

−25

−20

−15

−10

−5

0

5

10

fx(Hz)

PSD(dB)

U∗ = 6.6

fn

 

Figure 4.7 Spectrum of streamwise vibrations. 

the occurrence of either figure-8 or elliptic trajectories for cylindrical structures undergoing VIV. To 

facilitate this, the following simplified mathematical model based on the equations of motion of the 

structure is considered: 

 )t(M)Ly(bK)Lx)(2Lgm2LmgbK()Lx(
dt

d
Cb)Lx(

dt

d
I x

2
c0d

2
e

2

2
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=++−++  (4.1) 
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2
e

2

2

2

=++−++  (4.2) 

The model is similar to the mathematical model proposed in Flemming & Williamson (2005). However, 

the proposed model incorporates the effect of coupling observed in the free-vibration tests, which is 

modeled utilizing the same approach as that employed in the free-vibration model. The structural 

moments in Eqs. 4.1 and 4.2, i.e., the inertial, damping, restoring, and cross-stiffness moments, are 

balanced by the fluid moments exerted on the structure, i.e., Mx(t) and My(t). As suggested by Flemming 

& Williamson (2005), the fluid moments can be decomposed into the total instantaneous fluid forcing 

moment and the fluid inertia moment as follows: 
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where Fx(z,t) and Fy(z,t) are the instantaneous local forces per unit length exerted from the fluid to the 

structure in the streamwise and transverse directions, respectively, and IA is the added moment of inertia. 

Following Jauvtis & Williamson (2004) and Flemming & Williamson (2005), it is assumed that, in the 

synchronization region, the forcing frequencies in the transverse and the streamwise directions are equal 

to the natural frequency (fn) and twice the natural frequency (2fn) of the structure, respectively. Thus, 

incorporating a phase difference (ψ) between the forcing in the streamwise and transverse directions, the 

forces per unit length in the x and y directions can be modeled as )t2sin()z(DCU5.0)t,z(F nx
2

x ψ+ωρ=  

and )tsin()z(DCU5.0)t,z(F ny
2

y ωρ= , respectively. As shown in Jauvtis & Williamson (2004), force 

coefficients Cx and Cy are proportional to the local amplitude of oscillations in the streamwise and 

transverse directions, respectively. With the linear variation of the amplitudes of vibrations along the 

cylinder span, the force coefficients can be expressed as 0Dx L)zL(C)z(C −=  and 

0Ly L)zL(C)z(C −= . Introducing )II()2/gLm2/mgLbK()]2(1[f A0d
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r += , where CA is the added mass coefficient, 

Eqs. 4.1 and 4.2 can be cast in a non-dimensional form as follows: 
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where )( ′  denotes the differentiation with respect to t
**

 (t
**

 = tfn). For fc/ fn < 1  and ζ2
 << 1, the steady 

state solution of Eqs. 4.3 and 4.4 can be obtained analytically and is given by Eqs. 4.5 and 4.6.  
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where A, B, a1, a2, a3, and, a4 are presented in Table 4.2 for conciseness. Detailed derivations are provided 

in Appendix E. 

Although due to its simplified formulation the proposed mathematical model is not expected to 

provide accurate estimates of VIV characteristics, it allows analyzing important trends in the frequency 

response. In particular, Eqs. 4.5 and 4.6 suggest that the frequency response in the x and y directions 

involve the natural frequency of the structure (fn) and its first harmonic (2fn). To determine the dominant 

frequency in each direction, the ratio of the amplitude associated with fn and that associated with 2fn can 

be evaluated from Eqs. 4.5 and 4.6 for the streamwise and transverse vibrations, respectively. These 

ratios, Rx and Ry, are given in Eqs. 4.7 and 4.8. 
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where A, B, a1, a2, a3, and, a4 are presented in Table 4.2. 

It can be shown that: 
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Table 4.2 Coefficients in Eqs. 4.5 - 4.8. 
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Thus, Rx and Ry, given by Eqs. 4.7 and 4.8, are independent of ψ and depend on U
*
, *

c
U , ζ, CL/CD, fa/fn, 

and I
*
. Using the results of Jauvtis & Williamson (2004) to estimate CL/CD, a parametric analysis of Eqs. 

4.7 and 4.8 showed that, for a range of influencing parameters feasible in practical applications, Rx and Ry 

depend primarily on *

c
U  and ζ in the synchronization region. Representative results for Rx are depicted in 

Fig. 4.8. Two distinct regions can be identified in the data presented: (i) a region corresponding to Rx > 1 

and (ii) a region corresponding to Rx <1. For lower *
cU , i.e., for structures with stronger coupling, the 

mathematical model predicts Rx > 1, so that vibrations in the streamwise direction occur primarily at fx = 

fn. Thus, in agreement with the present experimental results, the frequency of vibrations in the streamwise 
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direction is expected to lock onto the natural frequency for Rx >> 1. In contrast to the experimental setup 

used in the present investigation, Flemming & Williamson (2005) and Leong & Wei (2008) mounted a 

rigid cylinder on a pin. In such an arrangement, the pin can be approximated as a Bernoulli beam (i.e., a 

beam with an aspect ratio of more than ten), and vibrations in the x and y directions are expected to be 

weakly coupled. Indeed, Flemming & Williamson (2005) did not incorporate any coupling in their 

mathematical model. Thus, for the structures investigated in Flemming & Williamson (2005) and Leong 

& Wei (2008), Kc is expected to be negligible, i.e., *
cU  → ∞. It follows from Eq. 4.7 that Rx → 0 when 

*
cU  → ∞, which implies that fx → 2fn when 

*
cU  → ∞, corresponding to the results of Flemming & 

Williamson (2005) and Leong & Wei (2008). To validate this argument, an experimental setup with weak 

coupling between the streamwise and transverse vibrations, similar to the arrangement utilized in 

Flemming & Williamson (2005), was also tested in the present investigation. In agreement with the 

results presented in Fig. 4.8 for structures with weak coupling, experimental results demonstrated that fx = 

2fn, with details provided in Appendix F. The analysis of Eq. 4.8 showed that Ry >> 1 for all the 

parameters investigated, implying fy = fn. Therefore, the mathematical model demonstrates that, for 

structures with significant coupling, vortex-induced vibrations in the streamwise and transverse directions 

lock onto the natural frequency of the structure, resulting in elliptic trajectories. On the other hand, for 

structures with weak coupling, the frequencies of streamwise and transverse vibrations lock onto 2fn and 

fn, respectively, so that the cylinder traces figure-8 type trajectories. This analysis agrees with 

experimental observations in Flemming & Williamson (2005), Leong & Wei (2008), and the present 

study and shows that either elliptic or figure-8 type trajectories can be observed depending on the 

structural characteristics, in particular, structural coupling. 



 

 45 

f x
≈

2f
n

f x
≈

fn

10 100 1000 10000
0.1

1

10

Present
Study

Rx = 1

10

100

500

0.1

0.01

∞

U∗

c

ζ (%)

0.001

0.0001

∼∼

 

Figure 4.8 Rx contours computed from Eq. 4.7 for U
*
 = 6.5, CL/CD = 0.9, fa /fn = 1, and I

*
 = 66.8. Dashed lines 

mark the region corresponding to the experimental conditions in the present study; ∆ - Leong & Wei (2008); 

○- Flemming & Williamson (2005). 

4.3 Cylinder trajectories 

Experimental results indicate that there exist four types of elliptic trajectories, with representative 

experimental results shown in Fig. 4.9. The results demonstrate that the orientation and direction of 

orbiting vary with experimental conditions. Two special cases of the observed elliptic trajectories are 

depicted in Fig. 4.10, where elliptic trajectories are stretched to straight line segments. 

Since the frequencies of streamwise and transverse vibrations were shown to lock onto the natural 

frequency of the structure in the synchronization region, the following equations can be used to represent 

the streamwise and transverse vibrations of the cylinder. 

 )tf2sin(ADx n
*
x θ+π=  (4.9) 

 )tf2sin(ADy n
*
y π=  (4.10) 
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Figure 4.9 Experimental elliptic cylinder tip trajectories. 
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Figure 4.10 Special cases of the observed elliptic cylinder tip trajectories. 

Based on Eqs. 4.9 and 4.10, Fig. 4.11 illustrates possible types of elliptic trajectories attainable for 

various phase angles (θ), with the selected values of *
xA  and 

*
yA  being comparable to those observed  
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Figure 4.11 Possible cylinder tip trajectories predicted based on Eqs. 4.9 and 4.10 for *

xA = 0.2 and 1A*

y ==== . 

experimentally. Comparing Fig. 4.11 with the experimentally measured trajectories in Fig. 4.9, it can be 

seen that the four types of elliptic trajectories presented in Figs. 4.9a, b, c, and d correspond to those 

predicted from Eqs. 4.9 and 4.10 for 0° < θ < 90°, 90° < θ < 180°, 180° < θ < 270°, and 270° < θ < 360°, 

respectively. Also, the two special cases of elliptic trajectories depicted in Figs. 4.10a and 4.10b agree 

with the predictions for θ = 0° (or 360°) and θ = 180°, respectively. The comparison of the experimental 

results and the trajectories predicted from Eqs. 4.9 and 4.10  suggest that the different orientations and 

directions of orbiting for elliptic trajectories depend on the phase angle between the streamwise and 

transverse vibrations of the cylinder. However, it should be mentioned that such an effect of θ will be 

negligible when 1AA
*
y

*
x <<  because elliptic trajectories for any value of θ will be essentially line 

segments normal to the flow (Fig. 4.12). 
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Figure 4.12 Possible cylinder tip trajectories predicted based on Eqs. 4.9 and 4.10 for *

xA = 0.02 and 1A*

y ==== . 

The Hilbert transform was employed to estimate the phase angle based on experimental data. The results 

corresponding to the experimental trajectories shown in Fig. 4.9 and Fig. 4.10 are presented in Figs. 4.13 

and 4.14, respectively. Agreeing with the predictions in Fig. 4.11, the phase angles for the trajectories 

shown in Figs. 4.9a, b, c, and d are θ = 18°, 135°, 229°, and 315°, respectively (Fig. 4.13). Also, in 

agreement with Fig. 4.11, the phase angles corresponding to the trajectories in Figs. 4.10a and b fluctuate 

about θ = 360° and 180° (Fig. 4.14), respectively. The higher fluctuations in θ in Fig. 4.14 are attributed 

to the relatively low amplitudes of streamwise vibrations observed in the corresponding trajectories in 

Fig. 4.14. It should be noted that, in contrast with the results shown for the synchronization region (Figs. 

4.13 and 4.14), random phase angle fluctuations occur in the non-synchronized region, as depicted in Fig. 

4.15. The random fluctuations in θ are associated with irregular, low amplitude transverse and streamwise 

vibrations of the structure in the non-synchronized region. 
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Figure 4.13 Variation of the phase with time for elliptic trajectories in the synchronization region. 
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Figure 4.14 Variation of the phase with time for line segment trajectories in the synchronization region. 
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Figure 4.15 Variation of the phase with time in the non-synchronized region. 

It can be inferred from the results presented in Figs. 4.13 and 4.14 that changing the experimental 

conditions can significantly affect θ, thereby affecting the orientation and direction of orbiting for the 

elliptic trajectories. Figure 4.16 shows the variation of the phase angle with reduced velocity and damping  

ratio, and Fig. 4.17 illustrates the effect of *
cU  on θ for all the experiments conducted in the 

synchronization region. Note that higher error bars associated with several data points in Figs. 4.16 and 

4.17 are attributed to higher fluctuations in the phase angle estimates due to low streamwise amplitudes of 

vibrations observed for the corresponding experimental conditions. Examining the results in Figs. 4.16 

and 4.17 suggests that the four types of elliptic trajectories are governed primarily by structural coupling 

( *
cU ). For example, Fig. 4.17 shows that increasing *

cU  from 16.1 to 19.8 or from 31.6 to 35.7 shifts the 

phase angle by about 180°, resulting in drastic changes in the orientation and the direction of orbiting 

motion. In contrast, despite having a measurable effect on θ, Fig. 4.16 shows that changing the reduced 

velocity or damping ratio does not appear to be sufficient to switch between the four types of elliptic 

trajectories. For example, for 28.3 < *
cU  < 31.6, increasing the reduced velocity from 5.4 to 7.6 and 

damping ratio from 0.65% to 1.1% decreases the phase angle from 157° to 105°. Although the resulting 

change in the phase angle is about 50%, θ remains between 90° and 180°, associated with the same 

distinct type of elliptic trajectory. The results presented in Figs. 4.16 and 4.17 suggest that each of the 

four identified types of cylinder trajectories corresponds to a distinct range of *
cU , with approximate 

boundaries of such ranges shown in Fig. 4.17 by vertical dashed lines. 
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Figure 4.16 Phase angle variation with reduced velocity and damping ratio. Note that, unless shown 

otherwise, the uncertainty is accommodated by the size of the corresponding data legends. 
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Figure 4.17 Phase angle variation with *

cU . Note that, unless shown otherwise, the uncertainty is 

accommodated by the size of the corresponding data legend. 
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4.4 Wake vortex shedding 

The forgoing discussion of the experimental results suggests that the structural response is governed by 

U
*
, *

cU , and ζ. Thus, these three parameters are expected to influence the wake development. In this 

study, the variation of the vortex pattern along the span was investigated via flow visualization. The 

experiments were performed at U
*
 = 6.6, i.e., in the synchronizations region, with the experimental 

conditions detailed in Table 4.3. The two cases investigated (A and B) correspond to two different types 

of elliptic trajectories, with cases A and B (Table 4.3) corresponding to Figs. 4.9b and a, respectively. For 

each of these two cases, flow visualization was performed at z/L = 0.65 and z/L = 0.84. 

Table 4.3 Test conditions for flow visualizations. 

Case  
*U  *

cU  ζ  z/L
 *

yA at z/L 

A1 6.6 28.8 0.007 0.65 0.32 

A 

A2 6.6 28.8 0.007 0.84 0.15 

B1 6.6 13.8 0.01 0.65 0.24 

B 

B2 6.6 13.8 0.01 0.84 0.11 

 

An analysis of flow visualization images revealed that double roll up of the shear layers occurs in 

the near wake. A representative image shown in Fig. 4.18 suggests that the flow topology is similar to the 

2P vortex shedding pattern observed for VIV of one DOF circular cylinders, e.g., Williamson & Roshko 

(1988). However, the downstream development of the wake vortices was found to depend significantly on 

the test conditions. 

Cases A1 and A2: Based on the downstream evolution of the two co-rotating vortices shed each 

half cycle, two distinct types of wake development for case A1 are depicted in Figs. 4.19d and 4.20. An 

analysis of flow visualization videos and images showed that two counter-clock-wise (CCW) vortices,  
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Figure 4.18. Flow visualization of the double roll up of shear layers for U
*
 = 6.6, z/L = 0.65, ζ = 0.007, and *

cU  

= 28.8. 

shed from the left hand side of the cylinder, merge within about four diameters downstream of the 

cylinder. The process of vortex merging is illustrated in the sequence of images shown in Figs. 4.19a-d. 

Adopting the terminology introduced by Cerretelli & Williamson (2003), the vortex merging process can 

be broken into four stages, namely, first diffusive, convective, second diffusive, and merged diffusive 

stages. The merged vortices identified in both Figs. 4.19c and d are representative of the last stage of 

vortex merging. In comparison with merging of CCW vortices, it was occasionally observed that these 

vortices remain separated in the near wake (Fig. 4.20). It should be noted that the clock-wise (CW) 

vortices shed on the right hand side of the cylinder have not been observe to merge in the near wake. 

As the elevation is decreased along the span of the cylinder (case A2), the CCW as well as the CW 

vortices merge within about ten diameters downstream of the cylinder. Comparing the results for cases 

A1 and A2 (Figs. 4.19 and 4.21a), it can be seen that vortex merging occurs within a longer region at  
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Figure 4.19 Vortex merging process for case A1, (U
*
 = 6.6, z/L = 0.65, ζ = 0.007, and *

cU  = 28.8). The cylinder 

moves to the right in (a), (b), and (c), and reaches to an almost rest in (d). 

lower elevations. For case A2, the pattern of the merged co-rotating vortices is similar to the 2S vortex 

shedding pattern (Fig. 4.21a). 

(a) (b) 

(c) (d) 



 

 55 

Cases B1 and B2: At the higher elevation (case B1), a 2P vortex shedding pattern occurs (Fig. 

4.22). In contrast, at the lower elevation (case B2), Fig. 4.21b, a vortex shedding pattern similar to that for 

case A2 (Fig. 4.21a) is observed. 

 

 

Figure 4.20 2P-like shedding pattern for case A1 (U
*
 = 6.6, z/L = 0.65, ζ = 0.007, and *

cU  = 28.8). 
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Figure 4.21 Flow visualization of: (a) case A2, (U
*
 = 6.6, z/L = 0.84, ζ = 0.007, and *

cU  = 28.8), and (b) case B2, 

(U
*
 = 6.6, z/L = 0.84, ζ = 0.01, and *

cU  = 13.8). 

Analysis of vortex shedding patterns: Comparing the wake flow development at a constant U
*
 

shows that changing *
cU  and ζ can affect the wake vortex shedding patterns. The shedding pattern is 

expected to depend primarily on the response of the structure. For example, in the case of a one DOF 

uniform amplitude cylinder vibrations (Morse & Williamson, 2009), varying the transverse amplitude of 

response can produce different shedding patterns (Fig. 4.23). Thus, the observed variation in the vortex 

shedding patterns between cases A1 and B1 is attributable to the associated changes in the amplitudes of 

response caused by the variation of *
cU  and ζ. On the other hand, the attendant change in the transverse 

amplitude is not sufficient to affect vortex shedding patterns at lower elevations (cases A2 and B2). 

 

(a) (b) 
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Figure 4.22 Flow visualization for case B1, (U
*
 = 6.6, z/L = 0.65, ζ = 0.01, and *

cU  = 13.8). 

It is of interest to investigate if wake vortex shedding patterns for two DOF linear amplitude 

cylinder vibrations can be predicted based on the results available for one DOF cylinders. In Fig. 4.23, the 

current results pertaining to cases A1, A2, B1, and B2 (Table 4.3) are overlaid onto an updated 

Williamson- Roshko map from Morse & Williamson (2009). The map predicts a 2P vortex shedding 

pattern for cases A1 and B1. Indeed, the double roll up of the separated shear layer was observed for these 

cases. However, unlike 2P shedding seen in the near wake for case B1 (Fig. 4.22), flow visualization 

shows frequent merging of CCW vortices for case A1 (Fig. 4.19). For the lower elevation, the map 

predicts an intermittent switching between the 2P and “non- synchronized” pattern for case A2 and the 

non-synchronized pattern for case B2. In contrast, for both cases, flow visualization reveals a transition 

from 2P to 2S vortex shedding pattern. The foregoing comparison suggests that the results pertaining to 

one DOF uniform amplitude VIV should not, in general, be extrapolated to the cases of two DOF linear 

amplitude VIV. A similar conclusion can be reached based on the results of Leong & Wei (2008). 
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Figure 4.23 Comparison of cases A and B with the results of Morse & Williamson (2009). Note that λ
*
 = U

*
 in 

the synchronization region. 

The present results show that the vortex shedding pattern can change along the span of the 

cylinder. Therefore, vortex dislocations, accompanied by complex vortex connections, are expected to 

occur along the span. Moreover, a simultaneous occurrence of synchronized and non-synchronized vortex 

shedding patterns at two different elevations, such as that predicted by the map in Fig. 4.23 for cases B1 

and B2, is not possible since vortex lines cannot terminate in the fluid. Thus, at a given Reynolds number, 

a new, multidimensional map needs to be composed to predict vortex shedding patterns along the span of 

a cylindrical structure undergoing two DOF variable amplitude VIV. 
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5 Effect of tuned mass damper on vortex-induced vibrations  

In this chapter a simplified mathematical model is introduced to investigate the influence of various 

parameters on the response of a one DOF structure equipped with a one DOF TMD. Then, experimental 

results characterizing the effect of a two DOF tuned-mass damper on vortex-induced vibrations of a two 

DOF pivoted circular cylinder are presented. 

5.1  Parametric study of a one DOF structure equipped with a one DOF TMD 

Figure 5.1 shows schematically one DOF structure equipped with a one DOF TMD. The motion of the 

system shown in Fig. 5.1 is governed by Eqs. 5.1 and 5.2. 

 F(t)(t)]X(t)k[X(t)KX(t)]X(t)Xc[(t)XC(t)XM MTMDMMTMDMM =−−+−−+ &&&&&  (5.1) 

 0)]t(X)t(X[k)]t(X)t(X[c)t(Xm MTMDMTMDTMDTMD =−+−+ &&&&  (5.2) 

 

Figure 5.1 Schematic of a one DOF main structure equipped with a one DOF TMD. 

The forcing was selected to be harmonic as it represents the forcing in the case of vortex-induced 

vibrations. Effects of tuning frequency ratio ( nTMD
*
r f/ff = ), forcing frequency ratio ( ne

*
e f/ff = ), TMD 

mass ratio (µ), and TMD damping ratio (ζTMD) on normalized amplitudes and frequencies of vibrations of 

the main structure were investigated by solving Eqs. 5.1 and 5.2 numerically. The investigated ranges of 

F(t) = sin(2πfet) 
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governing parameters are presented in Table 5.1. These values were selected to approximate experimental 

conditions. 

Table 5.1 Governing non-dimensional parameters investigated in the parametric study. 

Parameters Value 

*
rf/1  0 - 1.6 

*
ef  0.4 - 1.8 

µ 0.02 - 0.15 

ζTMD 0 - 1 

ζ 0.01 

 

5.1.1 Amplitude of response 

Normalized amplitude of vibrations (A
*
) is defined as the ratio of the amplitude of vibrations of the main 

structure to the static displacement of the structure subjected to a constant force of 1 N. Den Hartog 

(1956) solved Eqs. 5.1 and 5.2 and showed that the normalized amplitude of vibrations is given by Eq. 

5.3. 

 

( )

2
*
e

*
r

*
e

TMD*
r

3*
e

TMD*
r

3*
e

2

*
r

2*
eTMD2*

e

2*
e

2*
r

2*
e

2

*
r

*
e

TMD

2

2*
r

*
e

*

1

ζf
2

f

f
2ζ

f

f
2ζ

1f

ζf
21

1f

fζζ
4f1)

1

f
(

f

f

f

f
ζ4

f

f
1

A













µ+
−−+

µ+
+












+

µ+
−−−

µ+











+










−

= (5.3) 

Figure 5.2 illustrates the effect of *
rf/1  and ζTMD on the amplitudes of vibrations for the lock-in 

condition, i.e., 
*
ef  = 1, and the TMD mass ratio (µ) of 0.087, matching that in the experiments. TMD 
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damping ratios are selected to be 0, 0.1, 0.24, and 0.5, where ζTMD = 0.24 corresponds to the TMD 

damping ratio tested in the experiments. The results indicate that both *
rf/1  and ζTMD significantly affect 

the normalized amplitude of vibrations. The maximum amplitude of vibrations occurs for ζTMD = 0, and at 

*
rf/1  = 0.23. Increasing the TMD damping ratio decreases the maximum normalized amplitudes of 

vibrations and reduces *
rf/1  at which it occurs. For example, increasing ζTMD from 0 to 0.5 decreases the 

maximum of the normalized amplitude from 61 to 58 and the associated values of *
rf/1  from 0.23 to 0.19. 

The results indicate that increasing the TMD damping ratio increases the minimum A
*
 and the 

corresponding *
rf/1 . For example, increasing ζTMD from 0 to 0.5 increases the minimum A

*
 from 0 to 9.2 

and the associated values of *
rf/1

 
from 1 to 1.3. 
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Figure 5.2 Normalized amplitudes of vibrations at 
*
ef  = 1, µ = 0.087, and ζ = 0.01. 

Figure 5.3 illustrates the effect of mass ratio on the normalized amplitude of vibrations at 
*
ef  = 1 

and ζTMD = 0. The figure indicates that, for *
rf/1  ≥ 0.23, increasing the TMD mass ratio decreases the 
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normalized amplitude of vibrations. The results show that, for all mass ratios, A
*
 is minimized at  *

rf/1  = 

1. Also, there exists a range of *
rf/1  for which the normalized amplitudes of vibrations are less than the 

static displacement of the structure, i.e., A
*
 < 1. This range of *

rf/1  broadens with increasing TMD mass 

ratio. For example, increasing µ from 0.02 to 0.15 broadens the range from 0.99 < *
rf/1  < 1.01 to 0.94 < 

*
rf/1  < 1.06. 
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Figure 5.3 Normalized amplitudes of vibrations at 
*
ef  = 1, ζTMD = 0, and ζ = 0.01. 

Figure 5.4 shows the variation of A
*
 with 

*
ef  and ζTMD for the tuned condition, i.e., *

rf/1 = 1, at µ 

= 0.087. The results indicate that A
*
 increases substantially when the forcing frequency locks onto 0.88fn 

or 1.18fn. Moreover, the results show that the amplitude of vibrations decreases to below the static 

displacement of the structure for the following conditions: (i) 
*
ef  ≥ 1.53 and 0 < ζTMD ≤ 1, and (ii) 0.97 ≤ 

*
ef  ≤ 1.04 and 0 < ζTMD ≤ 0.04. 
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Figure 5.4 Normalized amplitudes of vibrations at *
rf/1 = 1, µ = 0.087, and ζ = 0.01. 

Figure 5.5 shows the variation of A
*
 with 

*
ef  and µ at *

rf/1 = 1 and ζTMD = 0. Similar to Fig. 5.4, 

the results presented in Fig. 5.5 show two branches of high normalized amplitudes of vibrations. For the 

mass ratio investigated experimentally, i.e., µ = 0.087, the highest normalized amplitudes of vibrations 

occur at two critical forcing frequency ratios of 
*
ef  = 0.88, and 1.18. The figure shows that increasing the 

mass ratio decreases the lower critical forcing frequency ratio and increases the higher critical forcing 

frequency ratio. Also, the results indicate that, at any mass ratio, lower amplitudes of vibrations (A
*
 < 1) 

are observed for two ranges of forcing frequency ratios. For example, for µ = 0.087, the amplitudes of 

vibrations are less than the static displacement of the structure for 
*
ef  ≥ 1.53 and 0.97 ≤ 

*
ef  ≤ 1.04. The 

results indicate that increasing the mass ratio narrows the first range and broadens the second range of 

forcing frequencies. 
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Figure 5.5 Normalized amplitudes of vibrations at *
rf/1 = 1, ζTMD = 0, and ζ = 0.01. 

It can be concluded from the results presented in Figs. 5.2 to 5.5 that, when the forcing frequency 

matches the natural frequency and the TMD natural frequency is tuned to the main structure natural 

frequency ( *
rf/1

 
= 1), decreasing ζTMD and/or increasing µ decreases the normalized amplitude of 

vibrations. However, relatively high amplitudes of vibrations can occur for two narrow bands of forcing 

frequencies, one centered at a frequency lower than fn and another centered at a frequency higher than fn. 

The results show that the central frequencies of these frequency bands are independent of ζTMD and 

depend strongly on µ. Increasing the TMD mass ratio decreases the central frequency of the first band and 

increases that of the second band. 
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5.1.2 Frequency of response 

The mathematical model given by Eqs. 5.1 and 5.2 was used to investigate the frequency response of the 

main structure. All parametric investigations were conducted for µ = 0.087 and ζTMD = 0 and 0.24. The 

selected parameters correspond to those in experimental tests. 

Figure 5.6 shows the variation of the normalized frequency of vibrations (
*
yf ) of the main 

structure with *
rf/1  for the lock-in condition (

*
ef = 1) and ζTMD = 0.24. The results show that the dominant 

frequency of vibrations does not depend on *
rf/1  and locks onto the natural frequency of the structure. 

However, for ζTMD = 0 (Fig. 5.7) three distinct types of frequency response can be identified, as depicted 

in Figs. 5.7b-d by spectra corresponding to *
rf/1  = 0.6, 1, and, 1.3. For 0 < *

rf/1  < 0.88, the spectra of 

vibrations of the structure feature two peaks centered at fn ( 1f
*
y = ), and a higher frequency labeled f2 (Fig. 

5.7b). For 0.88 ≤ *
rf/1  ≤ 1.02, the spectra of vibrations feature three peaks centered at fn, f2, and a 

frequency lower than fn, labeled f1 (Fig. 5.7c). Finally, for 1.02 < *
rf/1  ≤ 1.6, the spectra of vibrations 

feature two dominant peaks, one peak centered at fn and the other at f1 (Fig. 5.7d). Analysis of the results 

indicates that for the first and second types of frequency response, increasing *
rf/1  decreases *

2f = f2/ fn. 

For example, increasing *
rf/1  from 0 to 1.02 decreases *

2f  from 7 to 1.18. Similarly, for the second and 

third types of frequency response, increasing *
rf/1  decreases *

1f = f1/ fn. For example, increasing *
rf/1  

from 1.02 to 1.6 decreases *
1f  from 0.93 to 0.61 (Fig. 5.7a). 

 Figure 5.8 shows the variation of the normalized frequency of vibrations of the main structure 

with 
*

ef  for the tuned condition and ζTMD = 0.24. The results indicate that the dominant frequency of 

vibrations matches excitation frequency (
*
ef ). However, for ζTMD = 0, the results presented in Fig. 5.9a 

indicate that the spectra of vibration feature three peaks centered at 
*
ef , *

1f , and *
2f . Analyzing the results,  
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Figure 5.6 Normalized frequencies of vibrations at 
*
ef  = 1,  ζTMD = 0.24, µ = 0.087, and ζ = 0.01. 

 

 

Figure 5.7 Normalized frequencies of vibrations at 
*
ef  = 1, ζTMD = 0, µ = 0.087, and ζ = 0.01. 
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it can be seen that the values of *
1f  and *

2f  are independent of the excitation frequency and equal with *
1f  = 

0.88 and *
2f  = 1.18, respectively. 

 

Figure 5.8 Normalized frequencies of vibrations at 
*
rf/1  = 1, ζTMD = 0.24, µ = 0.087, and ζ = 0.01. 

 

Figure 5.9 Normalized frequencies of vibrations at 
*
rf/1  = 1, ζTMD = 0, µ = 0.087, and ζ = 0.01. 
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It can be concluded from the results presented in Figs. 5.6 to 5.9 that, for a relatively high TMD 

damping ratio of ζTMD = 0.24, the spectra of vibrations feature one dominant peak centered at the 

excitation frequency (fe). In contrast, for ζTMD = 0, the frequency response is characterized by three 

frequencies, namely, excitation frequency, a frequency higher than fn (f1), and a frequency lower than fn 

(f2). The results indicate that values of both f1 and f2 depend strongly on *
rf/1  and are independent of 

*
ef . 

5.2 Experimental testing of a two DOF tuned-mass damper on a two DOF pivoted circular 

cylinder undergoing VIV 

The results presented in Chapter 4 show that a pivoted cylindrical structure may undergo relatively large 

amplitudes of vortex-induced vibrations ( 1A*
y ≈ ) in the synchronization region. One of the objectives of 

the present study is to investigate the effectiveness of a novel adaptive pendulum tuned-mass damper, i.e., 

introduced in Chapter 3, in mitigating such vibrations. The effect of the TMD on the response of the 

pivoted cylinder undergoing VIV was investigated experimentally and results are presented in this 

section. 

Dimensional analysis can be employed to show that the amplitudes and frequencies of vibrations 

of the cylinder equipped with the TMD are dependent on Re, I
*
, m

*
, AR, Fr, µ, U

*
,

*
cU , ζ, *

rf/1 , and ζTMD. 

Throughout the experiments, the Reynolds number (Re), moment of inertia ratio (I
*
), mass ratio (m

*
), 

aspect ratio (AR), Froude number (Fr), and TMD mass ratio (µ) were kept constant. The experiments 

were performed for two TMD damping ratios, ζTMD = 0.24 and ζTMD ≈ 0. For ζTMD = 0.24, the dampers 

were attached to the pendulum; whereas for ζTMD = 0, no dampers were utilized. The tests were conducted 

at three reduced velocities in the synchronization region (U
*
 = 5.44, 6, and 6.48, corresponding to fn = 

0.53, 0.57, and 0.63 Hz) and one reduced velocity in the non-synchronized region (U
*
 = 4.18, 

corresponding to fn = 0.82 Hz). Changing the length of the pendulum, TMD natural frequency (fTMD) was 
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varied, allowing to investigate the range of *
rf/1  from 0 to 1.59, where *

rf/1
 
= 0 corresponds to the case 

of restrained pendulum. All relevant non-dimensional parameters are summarized in Table 5.2. 

Table 5.2 Governing non-dimensional parameters investigated in the experiments. 

parameter Value 

Re 2100 

I
*
 188.9 

m
*
 19.9 

AR 64.6 

Fr 0.17 

µ 0.087 

ζTMD  0.24 0 

U
*
 4.18 5.44 6 6.48 6 

ζ 0.018 0.055 0.01 0.004 0.01 

*
cU  21.6 53.5 19.9 51.9 19.9 

*
rf/1  0-1.6 0-1.21 0-1.1 0-1 0-1.1 

 

5.2.1 Amplitude of response 

 Figures 5.10a and b show the variation of the normalized transverse and streamwise amplitudes 

of vibrations, respectively, with the reduced velocity. The results are presented for two conditions: (i) 

*
rf/1  = 0, i.e., the restrained pendulum case, and (ii) *

rf/1  = 1, i.e., the pendulum tuned to the natural 

frequency of the structure. Within the synchronization region, i.e., U
*
 = 5.44, 6, and 6.48, the results show  
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that activating the TMD tuned to the natural frequency of the structure reduces significantly the 

normalized transverse and streamwise amplitudes of vibrations. Specifically, the transverse vibrations are 

reduced by a factor of 10 and streamwise vibrations are reduced by a factor of 3. In contrast, the results 

show that the TMD has a negligible effect on both 
*
yA  and *

xA , in the non-synchronized region, where 

vibrations of the structure are insignificant. 
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Figure 5.10 Normalized transverse and streamwise amplitudes of vibrations for restrained pendulum (
*
rf/1  = 

0) and pendulum natural frequency tuned to the natural frequency of the structure (
*
rf/1  = 1). 

 Figure 5.11 shows the variation of the normalized transverse and streamwise amplitudes of 

vibrations with *
rf/1 . The experiments were conducted by increasing and decreasing *

rf/1  over the 

investigated range. With dampers attached to the pendulum (ζTMD = 0.24), the results presented in Figs. 

5.11a-h indicate that the lowest amplitudes of vibrations occur for 0.71 < *
rf/1  < 1.1. The results show 

that, for this range, variations in 
*
yA  and *

xA  are less than the experimental uncertainty, as seen in the 

enlarged plots shown for Figs. 5.11g and h. With dampers detached (ζTMD = 0), the results in Figs. 5.11i 

and j show that the effectiveness of the TMD is more sensitive to *
rf/1  which is more pronounced for the  
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normalized transverse amplitudes (Fig. 5.11i). The results presented in Fig. 5.11i indicate that, for 0.71 ≤ 

*
rf/1  ≤ 1, increasing *

rf/1  decreases 
*
yA . Also, the results show that for this range, hysteresis exists, i.e., 

the results are sensitive to how *
rf/1  was varied in the experiments (increased or decreased). 
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Figure 5.11 Normalized amplitudes of vibrations, ●-increasing, 
*
rf/1  and  -decreasing 

*
rf/1 . 

 Comparing the experimental results presented in Figs. 5.11g and i with those from simplified 

model presented in Fig. 5.2, it can be seen that the trends identified using the simplified model agree with 

those observed in experimental results. For example, both experimental and mathematical modeling 

results indicate that relatively low amplitudes of vibrations occur when 1f/1 *
r ≈ , i.e., when pendulum is 

tuned to the natural frequency of the structure; whereas, detuning the TMD can significantly increase 
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normalized amplitudes of vibrations. The adverse effect of detuning is more pronounced at lower 

damping ratios of the pendulum. 

Figures 5.12a and b depict normalized transverse vibrations of the structure for 1.1f/10 *
r ≤≤  and 

for ζTMD = 0.24 and 0, respectively. For each value of *
rf/1  tested in the experiments, approximately fifty 

cycles of oscillations are shown to illustrate transverse vibrations observed in the experiments. Quasi-

steady vibrations for each value of *
rf/1  are shown for two cases: (i) when the corresponding conditions 

were set by increasing *
rf/1  and (ii) by decreasing *

rf/1 .  The results show that modulations of vibration 

amplitude may occur, which can be readily observed in the enlarged plots for *
rf/1  = 0.9. For ζTMD = 0.24, 

these modulations are more pronounced when the natural frequency of the pendulum is set by 

incrementally decreasing *
rf/1  (Fig. 5.12a). However, for ζTMD = 0, the modulations are more pronounced 

when *
rf/1  was set via incremental increases. 

5.2.2  Frequency of response 

Results presented in this section are grouped into two subsections. In the first subsection, experimental 

results of frequencies of transverse vibrations are presented, and in the second subsection, experimental 

results of the frequencies of streamwise vibrations are presented. 

Frequency of transverse vibrations 

Spectral analysis of the transverse vibrations showed that, when the dampers are attached to the 

pendulum, fy locks onto fn and the harmonics of fn. However, when the dampers are detached from the 

pendulum, the frequency of transverse vibrations can vary significantly. Figure 5.13 shows the variation 

of 
*
yf  with *

rf/1  for U
*
 = 6 and ζTMD = 0.24. The results presented in the figure are similar to the results of  
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Figure 5.12 Normalized transverse vibrations for (a) ζTMD = 0.24 and (b) ζTMD = 0. 

the simplified mathematical model presented in Fig. 5.6, which predicts that the frequency of vibrations 

of the structure locks onto fn. However, in comparison with the experimental results, the results of the 

simplified mathematical model did not show the presence of the harmonics of the natural frequency of the 

structure. 

 Figure 5.14 shows the variation of the normalized frequency of transverse vibrations with *
rf/1  

for U
*
 = 6 and ζTMD = 0. The results indicate that fy locks onto fn and harmonics of fn for *

rf/1  < 0.5. 

However, for 5.0f/1 *
r > , spectra of transverse vibrations feature multiple peaks centered at a frequency 

lower than fn, referred to as f1, a frequency higher than fn, referred to as f2, and harmonics of  f1 and f2. 

Note that the harmonics of fn, f1, and f2 are not shown in Fig. 5.14 for clarity. The results show that both f1  
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Figure 5.13 Normalized frequency of transverse vibrations at U
*
 = 6 and ζTMD = 0.24. (●) corresponds to 

increasing 
*
rf/1  and (□) corresponds to decreasing 

*
rf/1  . 

and f2 decrease with increasing *
rf/1 . The presence of more than one dominant frequency in the 

frequency response for these experimental conditions agrees with the results obtained from the simplified  

model (Fig. 5.7). However, in contrast to two dominant frequencies observed experimentally, the model 

predicts three dominant frequencies, i.e., f1, f2, and fn. The results presented in Fig. 5.14 indicate that 

hysteresis occurs at 5.0f/1 *
r ≈ . Specifically, when *

rf/1  = 0.52 is set by increasing *
rf/1 , the spectrum of 

transverse vibrations features dominant peaks centered at f1, harmonics of f1, and f2, with f1 = 0.96fn and f2 

= 2.12fn. However, when *
rf/1  = 0.52 is set by decreasing *

rf/1 , spectrum of transverse vibrations has 

peaks centered only at f1 and harmonics of f1. 

Temporal analysis of frequencies of transverse vibrations 

To investigate temporal variations in the frequency of transverse vibrations, spectrograms of transverse 

vibrations were computed using a short time fast Fourier transform (SFFT) technique. The width of time-

window utilized in the SFFT was approximately ten cycles of the cylinder oscillations. 
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Figure 5.14 Normalized frequency of transverse vibrations at U
*
 = 6 and ζTMD = 0. (●) corresponds to 

increasing 
*
rf/1  and (□) corresponds to decreasing 

*
rf/1 . 

Figure 5.15 shows spectrogram of transverse vibrations for ζTMD = 0.24 and 1f/1 *
r = . The results 

show that the dominant frequency of transverse vibrations, which is equal to fn, does not vary in time.  

Indeed, for all of the experiments performed for ζTMD = 0.24, temporal variations were not observed in the 

frequency response of the structure. 

 

 

Figure 5.15 Spectrogram of transverse vibrations at U
*
 = 6, ζTMD = 0.24, and 

*
rf/1  = 1. 
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For ζTMD = 0, analysis of experimental data indicate that temporal variation may occur in the 

frequency response for a range of *
rf/1 . Figures 5.16a and c show spectrograms of the transverse 

vibrations at *
rf/1  = 0 and 0.17, respectively. The results presented in Figs. 5.16a and c indicate that the 

dominant frequency of transverse vibrations is invariant in time, similar to the results presented in Fig. 

5.15. The spectra of transverse vibrations presented in Figs. 5.16b and d show that, for *
rf/1  = 0 and 0.17, 

the frequency response is characterized by the natural frequency (fn) and harmonics of the natural 

frequency. For 5.0f/1 *
r > , the dominant frequency of transverse vibrations does not match the natural 

frequency of the structure. Figures 5.17a, c, e, g, and i show spectrograms of transverse vibrations at *
rf/1  

= 0.52, 0.71, 0.86, 1, and 1.1, respectively, with the corresponding spectra of transverse vibrations 

presented in Figs. 5.17b, d, f, h, and j. The results shown in Fig. 5.17 were obtained for increasing values 

of *
rf/1 . The data in Figs. 5.17a-h show that the frequencies of transverse vibrations are centered at f1, f2, 

and harmonics of f1. For 0.52 ≤ *
rf/1  ≤ 0.86, the spectrograms (Figs. 5.17a, c, and f) indicate that f1 is the 

dominant frequency of transverse vibrations. For *
rf/1  = 1, Fig. 5.17g shows that the dominant frequency 

intermittently switches between f1 and f2. For *
rf/1  > 1, the dominant frequency of vibrations corresponds 

to f2, with lower magnitude peaks centered at f1 and harmonics of f2 also observed in the spectra (Fig. 

5.17j). 

Figures 5.18a-j show spectrograms and spectra of transverse vibrations for 17.0f/1 *
r ≥  and for 

the case of decreasing *
rf/1 . The results illustrate similar trends to those observed for the case of 

increasing *
rf/1 . However, the ranges of *

rf/1  corresponding to specific trends are affected by how the 

investigated values of *
rf/1  were set. Specifically, for *

rf/1  = 1, the results in Fig. 5.18a show that the 

dominant frequency of transverse vibrations is f2 and does not switch intermittently with f1. The 
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Figure 5.16 Spectrograms and spectra of transverse vibrations at U
*
 = 6 and ζTMD = 0: (a, b) 

*
rf/1  = 0, and (c, 

d) 
*
rf/1  = 0.17. 

 

Figure 5.17 Spectrograms and spectra of transverse vibrations for increasing values of 
*
rf/1  at U

*
 = 6 and 

ζTMD= 0. 
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intermittent switching in the dominant frequency between f1 and f2 is observed for *
rf/1

 
= 0.86 (Fig. 

5.18c). For *
rf/1  = 0.71, the energy content associated with f2 diminishes, and the dominant peak is 

associated with f1. The results pertaining to 71.0f/1 *
r ≤   (Figs. 5.18e-j) are in agreement with those 

obtained by increasing *
rf/1  (Figs. 5.16 and 5.17a-d). 

 

 

Figure 5.18 Spectrograms and spectra of transverse vibrations for decreasing values of 
*
rf/1 , at U

*
 = 6 and 

ζTMD = 0. 

Frequencies of streamwise vibrations 

Figures 5.19a and b show spectra of streamwise vibrations at U
*
 = 6, *

rf/1  = 1.1, and ζTMD = 0.24, and 0, 

respectively. Spectra of transverse vibrations are also included in the figures for comparison. Note that the 
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spectra of streamwise vibrations in both figures are increased by 20 dB for clarity. The results presented 

in both figures show that the dominant frequencies of streamwise vibrations match those of transverse 

vibrations. For example, for ζTMD = 0.24, the dominant peak occurs at the natural frequency of the 

structure in the spectra of streamwise and transverse vibrations. Indeed, for all of the cases tested in the 

synchronization region, spectral analysis of the vibrations showed that the dominant frequencies of 

streamwise and transverse vibrations match. 
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Figure 5.19 Spectra of streamwise vibrations at U
*
 = 6, 

*
rf/1  = 1.1, and for (a) ζTMD = 0.24 and (b) ζTMD = 0. 

5.2.3 Cylinder tip trajectories 

 Figures 5.20 and 5.21 illustrate the effect of *
rf/1  on cylinder tip trajectories for ζTMD = 0.24 and 

0, respectively. The results in Fig. 5.20 are presented for three reduced velocities tested in the 

synchronization region (U
*
 = 5.44, 6, and 6.48) and the results in Fig. 5.21 are presented for U

*
 = 6. The 

phase angles between the streamwise and transverse vibrations corresponding to the results presented in 
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Figs. 5.20 and 5.21 are presented in Figs. 5.22 and 5.23, respectively. Figs. 5.20a, d, and g show that the 

cylinder traces elliptic trajectories at *
rf/1  = 0, i.e., when the pendulum is restrained. The results show that 

increasing the tuning frequency ratio from *
rf/1  = 0 to 1 significantly decreases the amplitudes of 

vibrations. The results presented in Fig. 5.22 and 5.23 indicate that the phase angle is relatively constant 

for *
rf/1  = 0 and 0.2. However, at the tuned condition ( *

rf/1  = 1), the phase angle significantly fluctuates 

between -180
°
 and 180

°
. This is speculated to be linked to the very low amplitudes of transverse and 

streamwise vibrations observed at the tuned condition. 
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Figure 5.20 Cylinder tip trajectories for ζTMD = 0.24. 
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Figure 5.21 Cylinder tip trajectories for U
*
 = 6 and ζTMD = 0. 
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Figure 5.22 Phase angles for ζTMD = 0.24. 
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Figure 5.23 Phase angles for U
*
 = 6 and ζTMD = 0. 
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5.2.4 Mathematical modeling of the frequency response 

The experimental results demonstrate that the TMD damping ratio (ζTMD) and tuning frequency ratio 

( *
rf/1 ) can significantly affect the frequency response of the structure. In this section, a mathematical 

model is introduced to gain added insight into the effects of ζTMD and *
rf/1  on the frequency response of 

the structure. The results are presented for both free vibrations and vortex-induced vibrations of the 

structure. 

Figure 5.24 shows schematic of the cylindrical structure equipped with the tuned-mass damper, 

where ε and χ indicate the streamwise degree of freedom of the structure and the pendulum, respectively 

(Fig. 5.24). The transverse degree of freedom of the structure and the pendulum are φ  and γ, respectively. 

Lagrangian equations of free vibrations of the structure are presented in Eqs. 5.4-5.7. 
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£ is the Lagrangian of the system (£ = T - V); T and V are the kinetic and potential energies of the system, 

respectively; Q, T, and V are defined in Eqs. 5.8-5.10. 
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Figure 5.24 Schematic of the cylindrical structure equipped with the tuned-mass damper. 

Substituting Eqs. 5.8-5.10 in Eqs. 5.4-5.7 and introducing 
p

p*

l

L
l =  and 

2
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s
LmI

lLm
I

+
=  , the equations of 

free vibrations of the structure are obtained. 
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The values of the non-dimensional governing parameters utilized in the parametric study are selected to 

match those investigated experimentally. Specifically, values of fc/fa, ζ, and ζTMD match the corresponding 

values presented in Table 5.2 for U
*
 = 6. The values of the governing parameters are presented in Table 

5.3. 

Table 5.3 Governing non-dimensional parameters. 

Parameter Value 

fc/fa 0.3 

ζ 0.01 

ζTMD 0 and 0.24 

*
rf/1  0-1.6 

 

Equations 5.11-5.14 were solved numerically for the following initial conditions: 

01.0)0t( ** ==ε , and 0)0t()0t()0t()0t()0t()0t()0t( ************** ==γ==χ==φ==ε==γ==χ==φ &&&&  

Figure 5.25 shows the spectra of transverse free vibrations of the structure at 1.1f/1 *
r =  and for 0 ≤ ζTMD ≤ 

1. For clarity, each spectrum is stepped by 20 dB with respect to the previous spectrum obtained for a 

lower TMD damping ratio. The results show that, for 0 ≤ ζTMD ~<  0.24, the frequency response of the 

structure features two dominant peaks, one centered at a frequency lower than fn (f1) and the other 

centered at a frequency higher than fn (f2). As the TMD damping ration increases, the spectral peaks 

centered at f1 and f2 become less pronounced. For 0.24 ~<  ζTMD ≤ 1, the two peaks merge, forming a single 
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dominant peak at the natural frequency. This indicates that, for 0.24 ~<  ζTMD ≤ 1, the TMD does not 

significantly affect the frequency response of the structure in free vibrations. Similar conclusion can be 

reached using the simplified model discussed in this Chapter (section 5.1). 
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Figure 5.25 Model predictions for frequency of transverse free vibrations of the structure at 
*
rf/1  = 1.1. 

Figures 5.26a and b illustrate the effect of *
rf/1  on the spectra of transverse free vibrations for 

ζTMD = 0.24 and 0, respectively. For clarity, each spectrum is stepped by 20 dB with respect to the 

previous spectrum obtained for a lower tuning frequency ratio. The results presented in Fig. 5.26a indicate 

that, for ζTMD = 0.24, the frequency response of transverse free vibrations is characterized by the natural 

frequency of the structure, with broader peaks observed for 1f/1 *
r ≈ . In contrast, for ζTMD = 0, the results 
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presented in Fig. 5.26b show that the spectra of transverse free vibrations feature two peaks centered at 

frequencies different from fn (f1 and f2). The results show that increasing the tuning frequency ratio 

decreases both f1 and f2. Specifically, the results presented in Fig. 5.26b show that increases *
rf/1  from 

0.17 to 1.6 decreases f1 from 0.99 to 0.62 and f2 from 6.5 to 1.02. 
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Figure 5.26 Model predictions for frequency of transverse free vibrations of the structure for (a) ζTMD = 0.24 

and (b) ζTMD = 0. 

As the first step towards modeling vortex-induced vibrations, it is instructive to investigate the 

response of the structure to single harmonic forcing. The forcing frequencies in streamwise and transverse 

directions are assumed to be fe,x and fe,y, respectively. The following system of equations represents the 

equations of forced vibrations of the structure. 
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The system of Eqs. 5.15-5.18 was solved numerically. The governing parameters, fc/fa, ζ, and ζTMD, were 

selected to match those presented in Table 5.3. Figure 5.27 illustrates a general case when the frequency 

of forcing does not match the fundamental frequencies of the structure identified for free vibrations, with 

fe,x = 0.5fn and fe,y = 1.3fn. Figures 5.27a and c show the spectra of transverse and streamwise vibrations, 

respectively, for ζTMD = 0.24. The results illustrate that the frequencies of both transverse and streamwise 

vibrations are characterized by the natural frequency, the frequency of excitation in the streamwise 

direction, and the frequency of excitation in the transverse direction. Figures 5.27b and d show the spectra 

of transverse and streamwise vibrations, respectively, for ζTMD = 0. The results presented in Fig. 5.27b and 

d illustrate that the frequencies of both transverse and streamwise vibrations are characterized by f1, f2, the 

frequency of excitation in the streamwise direction (fe,x), and the frequency of excitation in the transverse 

direction (fe,y). Comparing the results presented in Fig. 5.27 and those for free vibrations (Fig. 5.26), it 

can be seen that the frequency response of the structure to forced vibrations is characterized by the 

fundamental frequencies of the structure (i.e., frequencies determined from the free vibration tests), 

frequency of excitation in the streamwise direction, and the frequency of excitation in the transverse 

direction. 
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Figure 5.27 Frequency of transverse and streamwise forced vibrations of the structure at 
*
rf/1

 
= 0.52, 

5.0f*
x,e ==== ,  3.1f*

y,e ==== ; (a,c) ζTMD = 0.24 and (b,d) ζTMD = 0. 

Clearly, proper modeling of fluid forcing is critical for creating a viable mathematical model of 

vortex-induced vibrations. Since the results presented in Fig. 5.27 demonstrated that the TMD damping 

ratio can significantly affect the frequency response of the system, it can be speculated that this parameter 

may influence the nature of fluid structure interactions in the case of vortex-induced vibrations. 

For ζTMD = 0.24, the model shows that the response of the structure with the TMD is characterized 

by a single frequency, i.e., the natural frequency (e.g., Fig. 5.26a). This is similar to the behaviour of the 

structure with the pendulum restrained (Fig. 5.26a for the case *
rf/1  = 0) or that without a TMD (Fig. 3.3). 

Thus, it is reasonable to assume that the presence of the TMD will not affect the nature of vortex-structure 

interactions in the synchronization region, where the forcing frequency is linked to the natural frequency 

of the structure. Based on this argument, fluid forcing is modeled using the same formulation as that 
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employed in Chapter 4 for VIV of a two DOF pivoted cylinder. Introducing 
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equations of vortex-induced vibrations of the structure can be represented in the following non-

dimensional form: 
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where, the terms on the right-hand-side of Eqs. 5.19 and 5.20 are non-dimensional fluid moments 

previously presented in Chapter 4. Figures 5.28a and b show spectra of transverse and streamwise 

vibrations, respectively, for ζTMD = 0.24 and 0 ≤ *
rf/1  ≤ 1.6. For clarity, each spectrum is stepped by 20 

dB with respect to the previous spectrum obtained for a lower tuning frequency ratio. The results 

presented in Fig. 5.28a show that the dominant frequency of transverse vibrations occurs at the natural 

frequency of the structure. In contrast, the spectrum of streamwise vibrations (Fig. 5.28b) features two 

peaks, one centered at the natural frequency and the other at the first harmonic of the natural frequency. 

These results are in agreement with the experimental data presented in Fig. 5.19a. Thus, it can concluded 

that, in the synchronization region, the nature of fluid-structure interactions is not affected by the presence 

of the TMD if the TMD damping ratio is relatively high. Specifically, in the synchronization region, the 
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frequency of fluid forcing in the streamwise direction is twice that in the transverse direction, and is twice 

the natural frequency of the structure. 
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Figure 5.28 Model predictions for spectra of (a) transverse vibrations and (b) streamwise vibrations at ζTMD = 

0.24. 

For ζTMD = 0, model suggests that, depending on *
rf/1 , the presence of the TMD may significantly 

influence the frequency response of the structure in free-vibrations as well as in forced vibrations. In 

particular, for *
rf/1  < 0.5, the frequency response of the structure is characterized by a single fundamental 

frequency, i.e., the natural frequency of the structure; whereas, for 0.5 < *
rf/1  ≤ 1.1, the frequency 

response of the free vibrations of the structure is characterized by two fundamental frequencies f1 and f2.  
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Thus, it can be speculated that, for *
rf/1  < 0.5, the fluid forcing can be modeled using the same 

approach as that employed for ζTMD = 0.24 (Eqs. 5.19-5.22). However, for *
rf/1  > 0.5, in the 

synchronization region, the forcing frequency should be related to the fundamental frequencies f1 and f2 

rather than fn. Indeed, a comparative analysis of the model predictions for the forced vibrations (Figs. 

5.27b and d) and the experimental results (Fig. 5.19b) suggests that the fluid forcing frequency does not 

involve fn, as no peaks are observed at fn in the spectra of experimentally measured vortex-induced 

vibrations. Thus, a different model for fluid forcing is required. It is proposed to model that the fluid 

forcing in the transverse direction as a linear combination of two sinusoidal functions with characteristic 

frequencies of f1 and f2. Then, the fluid forcing in the streamwise direction can be assumed to be a linear 

combination of two sinusoidal functions with characteristic frequencies of 2f1 and 2f2. The proper 

formulation for VIV of a two DOF pivoted circular cylinder equipped with a two DOF TMD with 

relatively low TMD damping ratios is devised in the following system of equations: 
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=∆  and Λ the weighting factor characterizing relative 

magnitudes of the fluid forcing associated with f1 and f2. Analysis of the spectra of transverse and 



 

 92 

streamwise vibrations showed that the frequency of transverse vibrations is characterized by f1 and f2 and 

the frequency of streamwise vibrations is characterized by f1, f2, 2f1, and 2f2. This is illustrated in Figs. 

5.29a and b, which depict spectra of transverse and streamwise vibrations using data obtained for *
rf/1  = 

1.1 and 0 ≤ Λ  ≤ 1. The results indicate that varying Λ does not change the dominant frequencies of 

transverse and streamwise vibrations. However, changing Λ can significantly influence the relative 

magnitude of the corresponding spectral peaks. The results presented in Figs. 5.29a and b for Λ = 1 are 

similar to the experimental results presented in Fig. 5.19b. It can concluded that, in the synchronization 

region, the frequency of fluid forcing in the transverse direction is characterized by the fundamental 

frequencies of the structure (i.e., f1 and f2), and the fluid forcing in the streamwise direction is 

characterized by the first harmonic of the fundamental frequencies (2f1 and 2f2) for relatively low TMD 

damping ratios and *
rf/1  > 0.5. The foregoing discussion presented in this section suggests that the 

definition of synchronization or lock-in, which traditionally describes matching of the forcing frequency 

and the natural frequency for one DOF structures, can be extrapolated to the matching of the forcing 

frequency to the fundamental frequencies of the higher DOF structures. 
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Figure 5.29 Spectra of (a) transverse and (b) streamwise vibrations obtained from Eqs. 5.19-5.22 for ζTMD = 0. 
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6 Conclusions 

Experimental studies were performed to investigate vortex-induced vibrations of a pivoted two DOF 

circular cylinder and to assess the effectiveness of an adaptive TMD in controlling these vibrations. A 

novel experimental setup was designed to reproduce orbiting response observed in some engineering 

applications. Vortex-induced vibrations of the model were investigated using vibration measurements and 

flow visualizations. For the control of vortex-induced vibrations, an adaptive pendulum tuned-mass 

damper was designed and integrated with the cylindrical structure. 

6.1 Vortex-induced vibrations of a two DOF pivoted circular cylinder 

Experiments were performed at a constant Reynolds number of 2100 for 3.4 ≤ U
*
 ≤ 11.3 and 0.004 ≤ ζ ≤ 

0.011. The results show that relatively high amplitudes of transverse vibrations ( 1A*
y ≈ ) occur in the 

synchronization region situated within 5 ~<  U
*
 ~<  8.2. In contrast, the streamwise amplitudes of vibrations 

were measured to be relatively low in the synchronization region ( 2.0A
*
x < ). In agreement with previous 

studies, the damping ratio was shown to have a significant effect on the amplitudes of vibrations. 

The results show that, in the synchronization region, the frequencies of transverse and streamwise 

vibrations lock onto the natural frequency of the structure (fx = fy = fn). In the non-synchronized region, 

the frequencies of transverse and streamwise vibrations match the natural frequency of the structure and 

the vortex shedding frequency of a stationary circular cylinder. Due to the frequency of transverse 

vibrations matching the frequency of streamwise vibrations, the cylinder traces elliptic trajectories. Since 

in previous laboratory studies figure-8 type trajectories were observed, with fx = 2fy, a mathematical 

model was introduced to analyze the mechanism responsible for the occurrence of either figure-8, or the 

elliptic trajectories. The model shows that, for rigid pivoted cylinders undergoing VIV in the 

synchronization region, the streamwise vibrations involve oscillations at the natural frequency and its first 
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harmonic; whereas, the transverse vibrations lock onto the natural frequency. Thus, the figure-8 or elliptic 

trajectories can occur and their occurrence is shown to be governed primarily by structural coupling. In 

particular, for weak structural coupling, figure-8 type trajectories (fx = 2fy) are observed; whereas, for 

stronger structural coupling, elliptic trajectories occur (fx = fy). 

Four distinct types of elliptic trajectories were observed experimentally in the synchronization 

region. The four types of trajectories are shown to be associated with four distinct ranges of phase angles 

between the streamwise and transverse vibrations, which define the orientation of the trajectory and the 

direction of orbiting. Although varying the reduced velocity and damping ratio can affect the phase angle, 

the four types of elliptic trajectories are governed primarily by structural coupling. Each of the four 

identified types of trajectories is shown to correspond to a specific range of 
*
cU  . 

 Flow visualization was performed in the wake of the cylinder at a single reduced velocity in the 

synchronization region and for two different sets of ζ and 
*
cU . For each set of parameters, flow 

visualization was performed at two different elevations along the cylinder span (z/L = 0.65 and 0.84). The 

results show that a double roll up of shear layers occurs in the formation region. However, the 

downstream development of the wake vortices is found to depend on the elevation at which the flow 

visualization was performed and the values of ζ and 
*
cU . For the higher elevation (z/L = 0.65), the results 

show that, depending on ζ and 
*
cU , two different vortex shedding patterns occur: (i) a 2P vortex shedding 

pattern, with counter-clock-wise vortices merging in the near wake (ii) a 2P vortex shedding pattern 

without merging of the vortices in the near wake. For the lower elevation (z/L = 0.65) and for both sets of 

ζ and 
*
cU  investigated, the counter-clock-wise and clock-wise vortices merge in the wake of the cylinder 

and form a 2S-like vortex shedding pattern. 
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6.2 Control of vortex-induced vibrations of a two DOF pivoted circular cylinder using a 

two DOF tuned-mass damper 

 Experimental studies were performed to assess the effectiveness of an adaptive TMD in 

mitigating vortex-induced vibrations of a two DOF pivoted circular cylinder. Throughout the 

experiments, the Reynolds number, moment of inertia ratio, mass ratio, aspect ratio, Froude number, and 

TMD mass ratio were kept constant. The experiments were performed for two TMD damping ratios (ζTMD 

= 0.24 and 0). Changing the length of the pendulum, the TMD natural frequency was varied, allowing to 

investigate the range of tuning frequency ratio ( *
rf/1 ) from 0 to 1.59. 

The results show that tuning the TMD natural frequency to the natural frequency of the structure 

reduces significantly the amplitudes of vibrations. Specifically, the amplitudes of transverse vibrations 

were decreased by a factor of ten and the streamwise amplitudes of vibrations were decreased by a factor 

of three. The results suggest that, for the relatively high TMD damping ratio tested (ζTMD = 0.24), 

changing the tuning frequency ratio within 0.7 < 
*
rf/1  < 1.1 does not change appreciably the transverse 

and streamwise amplitudes of vibrations. However, for ζTMD = 0, increasing the tuning frequency ratio 

from 1 to 1.1 (10 % increase) increases the transverse amplitudes of vibrations by a factor of five and the 

streamwise amplitudes of vibrations by 50 %. The results show that modulations occur in the amplitudes 

of vibrations for both TMD damping ratios tested. For ζTMD = 0.24, the modulations are more pronounced 

when the natural frequency of the pendulum is set by incrementally decreasing *
rf/1 . However, for ζTMD = 

0, the modulations are more pronounced when the natural frequency of the pendulum is set via 

incremental increases. 

The results show that the TMD damping ratio (ζTMD) significantly affects the frequency response 

of the structure. For ζTMD = 0.24, the frequency of transverse vibrations is independent of tuning 

frequency ratio ( *
rf/1 ) and is characterized by the natural frequency and harmonics of the natural 
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frequency. However, for ζTMD = 0, the frequency of the transverse vibrations depends significantly on the 

tuning frequency ratio. Specifically, for *
rf/1  < 0.5, the spectra of transverse vibrations feature peaks at 

the natural frequency (fn) and harmonics of the natural frequency (2fn, 3fn, etc.); whereas, for 0.5 < *
rf/1  ≤ 

1.1, the spectra of transverse vibrations are characterized by two frequencies, f1 and f2, with f1 being lower 

than fn and f2 higher than fn. 

Analysis of the frequency of streamwise vibrations showed that, in the synchronization region, 

the dominant frequencies of streamwise vibrations match those of transverse vibrations. As a result, the 

cylinder traces elliptic type trajectories. The results show that the tuning frequency ratio significantly 

affects the elliptic trajectories. Specifically, tuning the TMD to 1f/1 *
r ≈  scales down the elliptic trajectory 

to a point, with insignificant vibrations observed close to *
rf/1  = 1. Analysis of the phase angle between 

the streamwise and transverse vibrations of the structure showed that θ depends significantly on the 

tuning frequency ratio. The results show that for *
rf/1 < 1, the phase angle is nearly constant. However, at 

the tuned condition ( *
rf/1  = 1), the phase fluctuates with time significantly. This was speculated to be 

attributed to the very low streamwise and transverse amplitudes of vibrations of the structure at the tuned 

condition. 

 A mathematical model was proposed to gain insight into the forcing frequency and frequency of 

response for the two TMD damping ratios tested in the experiments. For the higher TMD damping ratio 

(ζTMD = 0.24), the modeling results suggest that, in the synchronization region, the frequency of fluid 

forcing in the streamwise direction is twice that of the transverse direction and twice the natural frequency 

of the structure (fe,x = 2fe,y = 2fn). For the lower TMD damping ratio (ζTMD = 0) and for *
rf/1  < 0.5, the 

modeling suggests that the same conclusion applies. However, for *
rf/1  > 0.5, the model suggests that, in 

the synchronization region, the frequency of fluid forcing in the transverse direction is linked to the 
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fundamental frequencies of the structure (i.e., f1 and f2), and the frequency of fluid forcing in the 

streamwise direction is characterized by the first harmonics of the fundamental frequencies (2f1, and 2f2). 

The modeling results imply that, independent of the value of the TMD damping ratio and tuning 

frequency ratio, the frequency of transverse vibrations is characterized by the fundamental frequency or 

frequencies of the structure. The frequency of streamwise vibrations is characterized by the fundamental 

frequency or frequencies of the structure as well as the first harmonic of the fundamental frequency or 

frequencies of the structure. 
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7 Recommendations 

A mathematical model was proposed to predict the frequency response of a two DOF circular cylinder 

with a structural coupling between streamwise and transverse vibrations. The model was shown to be 

capable of predicting the frequency response of the structure. However, it does not provide sufficient 

insight into the amplitude response of the structure. This is speculated to be linked to the simplifying 

assumptions made for the forcing functions utilized in the model. Previous analytical investigations, e.g., 

Hartlen & Currie (1970), show that a lift oscillator model can properly predict amplitude and frequency 

response of one DOF structure. It is speculated that by implementing a similar model for the forcing 

functions, further insight can be gained into the amplitude response of VIV of a two DOF cylindrical 

structures with coupling characteristic. 

The flow visualization experiments were performed at a single reduced velocity. Further 

investigations should be performed to identify different vortex shedding patterns for a range of reduced 

velocities. Moreover, it was shown that not all of the vortex shedding patterns observed in the present 

study match the map developed for one DOF cylindrical structures. Thus, it is recommended that the map 

be upgraded to a multidimensional map that accounts for the effect of the second degree of freedom. 

The experiments, performed to investigate the effectiveness of the TMD for the mitigation of 

VIV were conducted for a single TMD mass ratio and for two different TMD damping ratios. Further 

investigations should be performed to study the effect of TMD mass ratio and damping ratio on the TMD 

performance. 

In the present study, vibrations of the pendulum were not measured. Since the amplitude of 

vibrations of the pendulum is of significance in practical applications, further investigations should be 

performed to study the effect of the governing parameters, e.g., TMD mass and damping ratios, on the 

vibrations of the pendulum. 
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Appendix A: Calibration of the displacement sensors 

Both of the sensors used for streamwise and transverse vibration measurements were calibrated using a 

high precision milling machine with a displacement resolution of one micron. Figures A.1a and b show 

the sensors output voltage with the cylinder location for the sensors used to measure the streamwise and 

transverse vibrations, respectively. The least square method was used to fit a straight line to the voltage 

output of the sensors. The linearities of the sensors used for streamwise and transverse vibrations were 

obtained to be 139 and 108 microns, corresponding to ± 0.005 and  ± 0.004 cylinder diameters, 

respectively. 
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Figure A.1 Sensors calibration coefficients. 
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Appendix B: Uncertainty analysis 

The uncertainty analysis is grouped into the following three subsections: 

(i) Amplitudes of vibrations 

(ii) Frequencies of vibrations 

(iii) Governing parameters 

 

Amplitudes of vibrations 

Estimates of the uncertainties associated with amplitudes of both streamwise and transverse vibrations are 

obtained using a method outlined by Moffat (1988). Specifically, Moffat (1988) indicated that uncertainty 

associated with experimental measurements can be obtained from the following equation: 

 2
s

2
95.0 )St(BiU +=  (B.1) 

where, U0.95 represents the 95% confidence level associated with an experimental measurement, which 

indicates that the measured value is within ±U0.95 of the true value 95 times out of 100; Bi and S are bias 

and precision errors, respectively: ts is the Student’s multiplier and is equal to 1.96 for data presented in 

this study (Moffat, 1988). For the amplitudes of vibrations, the bias error (Bi) is a fixed error mainly 

associated with the calibration uncertainty. The precision error (S) is a statistical error and is estimated 

from the following equation: 

 NS σ=   (B.2) 

where, σ is the root-sum-square of the measurements and N is the number of samples (Moffat, 1988). 

Table B.1 presents the uncertainties associated with both streamwise and transverse amplitudes of 

vibrations. 
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Table B.1 Uncertainties of the amplitudes of streamwise and transverse vibrations. 

Quantity Bi S 22
95.0 )S96.1(BiU ++++====  

*
xA  0.5% 0.9% 1.9% 

*
yA  0.4% 0.7% 1.5% 

 

Frequencies of vibrations 

Uncertainties associated with the frequencies of streamwise and transverse vibrations of the structure are 

attributed primarily to the frequency resolution of the power spectra from which they were obtained. 

Here, the bias error is: 

 nFBi s=  (B.3) 

where, Fs is the sampling frequency and n is the number of data points utilized in the FFT technique. The 

estimates of uncertainties are given in Table B2. 

Table B.2 Uncertainties of the frequencies of streamwise and transverse vibrations. 

Quantity Bi S 22
95.0 )S96.1(BiU ++++====  

*
xf  0.5% 1% 2.1% 

*
yf  0.5% 1% 2.1% 

 

Governing parameters 

Uncertainties associated with the governing parameters are presented in Table B.3. Estimates of these 

uncertainties were obtained using the following equation: 
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 2
i

N

1i i

)X
X

R
(R δ
∂

∂
=δ ∑

=

 (B.4) 

where, δR is the uncertainty associated with the governing parameter, R, and δXi is the uncertainty 

associated with the variable Xi. As an example, the uncertainty of the Reynolds number ( υ= UDRe ) is 

given by: 

 

222

D

D

U

U
Re 









υ

δυ
+







 δ
+







 δ
=δ  (B.5) 

where, δU, δD, and δυ are the uncertainties associated with the free-stream velocity, cylinder diameter, 

and kinematic viscosity, respectively. 

Table B.3 Uncertainties of the governing parameters. 

Parameter Re I
* 

m
* 

AR U
*
 *

cU  µ *
rf/1  

Uncertainty 1.75% 0.1% 0.1% 0% 2.7% 12.7% 0.1% 2.1% 
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Appendix C: Technical drawings 

 

 

 

Figure C.1 Cylindrical structure. 
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Figure C.2 Cylindrical structure equipped with the TMD. 
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Appendix D: Analytical solution of the free vibration equations of the 

structure 

Free vibration equations of the structure, presented in Chapter 3, are shown in Eqs. D.1 and D.2. 

 ( ) 0Dyff4Dx4Dx4Dx
2

ac
22 =π+π+πζ+ &&&  (D.1) 

 ( ) 0Dxff4Dy4Dy4Dy
2

ac
22 =π+π+πζ+ &&&  (D.2) 

Subtracting Eq. D.2 from Eq. D.1 and introducing D)t(yD)t(x)t(r −= , Eqs. D.1 and D.2 are reduced 

to Eq. D.3. 

 ( ) 0r]ff1[4r4r
2

ac
2 =−π+πζ+ &&&  (D.3) 

Assuming ( ) 1ff
2

ac <  and 12 <<ζ , and introducing 22
ac

2 )f/f(1 ζ−−=β , the solution of Eq. D.3 can be 

obtained and is presented in Eq. D.4. 

 )]t2cos(B)t2sin(A[e)t(r **t2 *

πβ+πβ= πζ−  (D.4) 

Substituting )]t2cos(B)t2sin(A[eD)t(yD)t(x **t2 *

πβ+πβ+= πζ−  in Eq. D.1, the following equation is 

obtained: 

 ( ) ( ) )]t2cos(B)t2sin(A[eff4Dy]ff1[4Dy4Dy **t22

ac
22

ac
2 *

πβ+πβπ−=+π+πζ+ πζ−
&&&  (D.5) 

Assuming that ( ) 22

ac
2 ff1 ζ−+=η  and DyDyDy ph += , where Dyh  and Dyp  are the 

homogeneous and particular solutions of Eq. D.5, respectively, which must satisfy Eqs. D.6 and D.7. 

 0Dy][4Dy4Dy h
222

hh =ζ+ηπ+πζ+ &&&  (D.6) 

 ( ) )]t2cos(B)t2sin(A[eff4Dy][4Dy4Dy **t22

ac
2

p
222

pp

*

πβ+πβπ−=ζ+ηπ+πζ+ πζ−
&&&  (D.7) 
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Solution of Eq. D.6 is presented in Eq. D.8. 

 )]t2cos(G)t2sin(E[eD/y **t2
h

*

πη+πη= πζ−  (D.8) 

Using the method of undetermined coefficients, the solution of Eq. D.7 was obtained as, 

)]t2cos(B)t2sin(A[e
2

1
Dy **t2

p

*

πβ+πβ−= πζ− . Thus, D)t(x  and D)t(y  are given by Eq. D.9 and 

D.10: 

 )]t2cos(B)t2sin(A[e
2

1
)]t2cos(G)t2sin(E[eD/x **t2**t2 **

πβ+πβ+πη+πη= πζ−πζ−  (D.9) 

 )]t2cos(B)t2sin(A[e
2

1
)]t2cos(G)t2sin(E[eD/y **t2**t2 **

πβ+πβ−πη+πη= πζ−πζ−  (D.10) 

The initial conditions are given by Eq. D.11:  

 

0)0t(Dy

D/y)0t(Dy

0)0t(Dx

0)0t(Dx

*

0
*

*

*

==

==

==

==

&

&
 (D.11) 

Applying the initial conditions, it can be shown that the coefficients in Eqs. D.9 and D.10 are: 

( )( )DyA 0βζ−= , DyB 0−= , ( )( )Dy
2

1
E 0ηζ= , and ( )Dy

2

1
G 0= . Considering 12 <<ζ , one can 

show that 0A ≈  and 0E ≈ . Applying trigonometric identities, Eqs. D.9 and D.10 can be transferred to 

Eqs. D.12 and D.13. 

 ( ) ( ) ( )}{ **t2
0

t)(sint)(sineDyDx
*

β+ηπβ−ηπ−= πζ−  (D.12) 

 ( ) ( ) ( )}{ **t2
0

t)(cost)(coseDyDy
*

β+ηπβ−ηπ= πζ−  (D.13) 

Using Maclaurin expansion, it can be shown that: 



 

 115 

 ( ) ( ) ]ff[
2

1
1ff1 22

ac
22

ac ζ−−+≈ζ−−=β  (D.14) 

 ( ) ( ) ]ff[
2

1
1ff1 22

ac
22

ac ζ−+≈ζ−+=η  (D.15) 

Thus, ( )2

ac ff≈β−η  and 2≈β+η . Equations D.12 and D.13 were further simplified and presented in 

the form of Eqs. D.16 and D.17. 

 ( )( ){ })t2sin(tffsineDyD/x
**

ac
t2

0

*
ππ−= πζ−  (D.16) 

 ( )( ){ })t2cos(tffcoseDyD/y
**

ac
t2

0

*

ππ= πζ−  (D.17) 
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Appendix E: Analytical solution of equations of VIV of the two DOF pivoted 

circular cylinder 

The governing equations of vortex-induced vibrations of the structure, discussed in Chapter 4, are 

presented in Eqs. E.1 and E.2.  

 )t4sin(aDyU4Dx4Dxf4Dx ***
r

22
r ψ+π=π+π+′πζ+′′  (E.1) 

 )t2sin(bDxU4Dy4Dyf4Dy ***
r

22
r π=π+π+′πζ+′′  (E.2) 

Where, 










+







=

A
*

*

n

a
r

CI

I

f

f
f , 











+









=

A
*

*
2

*
c

*

r
CI

I

U

U
U , 

)CI(

U

L

L
C

2
a

A
*

2*

0

D
*

+π
= , and 

)CI(

U

L

L
C

2
b

A
*

2*

0

L
*

+π
= . Subtracting Eq. E.2 from Eq. E.1 and introducing D)t(yD)t(x)t(r ****** −= , 

Eqs. E.1 and E.2 are transferred to Eq. E.3. 

 ( ) )t2sin(b)t4sin(arU14rf4r ******
r

2
r π−ψ+π=−π+πζ+ &&&  (E.3) 

Assuming that )t(r)t(r)t(r
**

p
**

h
** += , where )t(r **

h  and )t(r
**

p  are the homogeneous and particular 

solutions of Eq. E.3, the equation can be transferred to the form of Eqs. E.4 and E.5. 

 ( ) 0rU14rf4r hr
2

hrh =−π+πζ+ &&&  (E.4) 

 ( ) )t2sin(b)t4sin(arU14rf4r
******

pr
2

prp π−ψ+π=−π+πζ+ &&&  (E.5) 

Assuming 1U r <  and 1f 2
r

2 <<ζ , one can introduce 2
r

2
rr fU1 ζ−−=β . The solution of Eq. E.4 is 

obtained and presented in Eq. E.6. 

 )]t2cos(J)t2sin(H[e)t(r **
r

**
r

tf2**
h

*
r πβ+πβ= πζ−

 (E.6) 
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The homogeneous solution, )t(r **
h , vanishes in time and therefore the steady state solution of Eq. E.3 is 

equal to the particular solution, i.e., )t(r)t(r
**

p
**

ss = . Using the method of undetermined coefficients, the 

solution of Eq. E.5 can be introduced as: 

)t2cos()t2sin()t4cos()t4sin()t(r
**

4
**

3
**

2
**

1
**

p πσ+πσ+πσ+πσ= . Substituting )t(r
**

p in Eq. E.5, the 

following system of algebraic equations is obtained for 1σ , 2σ , 3σ , and 4σ . 

 

( )

( )

( ) ( ) 0UUff2

4

b
f2U

)sin(
4

a
3Uf4

)cos(
4

a
f43U

4

2*
c

*
3na

2

*

4r3r

2

*

2r1r

2

*

2r1r

=σ−σζ

π
=σζ+σ

ψ
π

=σ−−+σζ

ψ
π

=σζ−σ−−

 (E.7) 

Introducing, 

 
( ) ( ) ]UUff4[4

b
B

4*
c

*2

na
22

*

+ζπ
=  (E.8) 

 
( )

( ) 










π++ζ

ψζ+ψ−−
=

2

*

2

r
2
r

2

rr
1

4

a

3Uf16

)sin(f4)cos(3U
r  (E.9) 

 
( )

( ) 










π++ζ

ψζ−ψ−−
=

2

*

2

r
2
r

2

rr
2

4

a

3Uf16

)cos(f4)sin(3U
r  (E.10) 

solution of Eqs. E.7 was obtained and )t(r **
ss  is presented in Eq. E.11. 

 ( ) ( ) )]t2cos(ff2)t2sin(UU[B)t4cos(r)t4sin(r)t(r **
na

**2*
c

***
2

**
1

**
ss πζ+π+π+π=  (E.11) 
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Substituting )t(rD)t(yD)t(x **
ss

**
ss

**
ss +=  in Eq. E.1, it can be shown that D)t(y **

ss  is obtainable 

from Eq. E.12. 

 ( ) )t(rU4)t2sin(bDyU14Dyf4Dy **
ssr

2***
ssr

2
ssrss π−π=+π+′πζ+′′  (E.12) 

Using the method of undetermined coefficients, the solution of Eq. E.12 can be introduced as: 

)t2cos()t2sin()t4cos()t4sin(D)t(y **
4

**
3

**
2

**
1

**
ss πκ+πκ+πκ+πκ= . Substituting D)t(y **

ss  and 

)t(r **
ss in Eq. E.5, the following system of algebraic equations is obtained for  1κ , 2κ , 3κ , and 4κ . 

 

( )
( )

( ) ( ) ( )

( ) ( ) ( )2*
c

*
44

2*
c

*
3na

2*
c

*
3*

A
*

2

*

4na3

2*
c

*

2r2r1r

1r2r1r

UUUUff2

UU
I

CI

4

b
ff2UU

U3Uf4

Uf43U

σ−=κ+κζ

σ−








 +

π
=κζ−κ

σ−=κ−+κζ

σ−=κζ−κ−

 (E.13) 

Introducing, 

 
])3U(f16][)3U(f16[4

Ua
A

2
r

2
r

22
r

2
r

22

r
*

++ζ−+ζπ
=  (E.14) 

 ( ) )sin(f24)cos(f169Ua r
2
r

22
r1 ψζ+ψζ+−=  (E.15) 

 ( ) ψζ+−+ψζ−= sinf169U)cos(f24a 2
r

22
rr2  (E.16) 

the solution of Eqs. E.13 is obtained and  D)t(y **
ss  is presented in Eq. E.17. 

 ( ) )t2cos(ff2B)]t4cos(a)t4sin(a[AD)t(y **
na

**
2

**
1

**
ss πζ−π+π=  (E.17) 

Introducing, 

 )cos(]f169U[3)sin(])3U(f16U6(f4[a 2
r

22
r

2
r

2
r

2
rr3 ψζ−−+ψ−+ζ+ζ=  (E.18) 
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 )cos(])3U(f16U6(f4[)sin(]f169U[3a 2
r

2
r

2
rr

2
r

22
r4 ψ−+ζ+ζ−ψζ−−=  (E.19) 

)t(rD)t(yD)t(x **
ss

**
ss

**
ss += , was also obtained and presented in Eq. E.20. 

 ( ) )t2sin(UUB)]t4cos(a)t4sin(a[
U

A
D)t(x **2*

c
***

4
**

3

r

**
ss π+π+π=  (E.20) 

 Having obtained the steady state response of the structure, Rx and Ry were obtained and presented 

in Eqs. E.21 and E.22, respectively. 
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( ) ( ) r

2
2

2
1

n

a

4*
c

*2

na
2

2
r

2
r

22
r

2
r

2

D

L

2
2

2
1

na
y

U

1

aa

f

f
2

UUff4

))3U(f16)()3U(f16(

C

C

aa

)ff(2

A

B
R

+

ζ













+ζ

++ζ−+ζ
=

+

ζ
=  (E.22) 



 

 120 

Appendix F: Vortex-induced vibrations of a cylinder with weak coupling 

between streamwise and transverse vibrations 

Vortex-induced vibrations of a circular cylinder mounted as a pendulum were investigated. The structure 

was designed in order to provide weak coupling between the streamwise and transverse vibrations. Free 

vibration tests were performed to obtain the structural characteristics of the cylinder. The values of the 

governing parameters are provided in Table F.1. 

Table F.1 Governing non-dimensional parameters. 

Parameter Value 

Re 2100 

I
*
 10 

m
*
 2.5 

AR 63 

U
*
 8.81 

ζ 0.022 

*
cU  285.5 

 

Figures F.1a and b show the spectra of streamwise and transverse vibrations, respectively. The 

results indicate that the dominant frequency of streamwise vibrations is the first harmonic of the natural 

frequency (i.e., fx = 2fn) and the dominant frequency of transverse vibrations is the natural frequency of 

the structure (i.e., fy = fn). This is in agreement with the results presented in Flemming & Williamson 

(2005) and Leong & Wei (2008) for VIV of a pivoted circular cylinder. 

Figure F.2a shows the cylinder tip trajectory for one hundred cycles of oscillations. Figure F.2b 

shows phase average of the trajectories presented in Fig. F.2a. The results indicate that  
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Figure F.1 (a) spectrum of streamwise vibrations and (b) spectrum of transverse vibrations. 

the cylinder traces figure-8 type trajectories similar to the results presented in Flemming & Williamson 

(2005) and Leong & Wei (2008). 
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Figure F.2 (a) cylinder tip trajectories for one hundred cycles of oscillations and (b) phase averaged 

trajectory for one hundred cycles of oscillations. 
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Using an analytical model similar to the model introduced in Chapter 4, it can be shown that the 

occurrence of the figure-8 type trajectory is linked to weak coupling between the streamwise and 

transverse vibrations of the structure. Equations of motion of the cylinder are as following: 

 )t(M)Ly(bK)Lx)(2Lgm2Lmg()Lx(
dt

d
Cb)Lx(

dt

d
I x

2
c0d

2

2

2

=+−++  (F.1) 

 )t(M)Lx(bK)Ly)(2Lgm2Lmg()Ly(
dt

d
Cb)Ly(

dt

d
I y

2
c0d

2

2

2

=+−++  (F.2) 

Introducing )II()2/gLm2/mgL(
2

1
f A0dn +−

π
=  , )
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f
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+

= , 

Eqs. F.1 and F.2 can be cast in the form of Eqs. F.3 and F.4: 

 )t4sin(
)CI(

U

L

L
C

2
DyU4Dx4Dxf4Dx

**

A
*

2*

0

Dr
22

r ψ+π
+π

=π+π+′πζ+′′  (F.3) 

 )t2sin(
)CI(

U

L

L
C

2
DxU4Dy4Dyf4Dy

**

A
*

2*

0

Lr
22

r π
+π

=π+π+′πζ+′′  (F.4) 

where )( ′  denotes the differentiation with respect to t
**

 (t
**

 = tfn). Note that Eqs. F.3 and F.4 are the same 

as Eqs. 4.3 and 4.4, previously obtained in Chapter 4. It was shown that the solution Eqs. 4.3 and 4.4, for 

fc/ fn < 1  and ζ2
 << 1, involves the natural frequency of the structure (fn) and its first harmonic (2fn). To 

determine the dominant frequency in each direction, the ratio of the amplitude associated with fn and that 

associated with 2fn was evaluated for the streamwise and transverse vibrations. These ratios, Rx and Ry, 

were analytically obtained and shown to depend on U
*
, *

c
U , ζ, CL/CD, fa/fn, and I

*
. Figure F.3 shows the 

variation of Rx with *

c
U  and ζ for the experimental conditions investigated. Two distinct regions can be 

identified in the figure: (i) a region corresponding to Rx > 1 and (ii) a region corresponding to Rx <1. The 

region corresponding to Rx > 1 represents structures with relatively strong coupling characteristic. As 
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discussed in Chapter 4, these structures are expected to trace elliptic type trajectories. The region 

corresponding to Rx < 1 represents structures with weak coupling characteristic, which should trace 

figure-8 type trajectories. The data point corresponding to the results presented in Figs. F.1 and F.2 is 

shown in Fig. F.3 (by the square symbol). The figure indicates that the value of Rx corresponding to the 

data point shown in the figure is lower than unity. Thus, the experimental results confirm that structures 

with weak coupling should trace figure-8 type trajectories (Fig F.2) and as a result the cylinder should 

trace figure-8 type trajectories. 
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Figure F.3 Rx contours, for U
*
 = 8.8, CL/CD = 0.25, fa /fn = 1, and I

*
 = 10. The symbol (□) corresponds to the 

experimental condition. 


