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Abstract 

Electrical power systems play a key role in production and services in both the industrial and 

commercial sectors and significantly affect the private lives of citizens. A major asset of any power 

delivery system is the transformer. Transformers represent extensive investment in any power 

delivery system, and because of the notable effect of a transformer outage on system reliability, 

careful management of this type of asset is critical. In North America, a large proportion of 

transformers is approaching the end of their life and should be replaced.  

In many cases, unexpected transformer outages can be catastrophic and cause both direct and 

indirect costs to be incurred by industrial, commercial, and residential sectors. Direct costs include 

but are not limited to loss of production, idle facilities and labour, damaged or spoiled product, 

and damage to equipment. For commercial customers, the effects may include damage to 

electrical and electronic equipment, and in some cases damage to goods. For residential 

customers, outages may cause food spoilage or damage to electrical equipment. In addition to 

direct costs, there are several types of indirect costs may also result, such as accidental injuries, 

looting, vandalism, legal costs, and increases in insurance rates. 

The main goal of this research was to assess the health and remaining lifetime of a working 

transformer. This information plays a very important role in the planning strategies of power delivery 

systems and in the avoidance of the potentially appalling effects of unexpected transformer outages. 

This thesis presents two different methods of assessing transformer end of life and three distinct 

methods of determining the health index and health condition of any working transformer. The first 

method of assessing transformer end of life is based on the use of Monte Carlo technique to simulate 

the thermal life of the solid insulation in a transformer, the failure of which is the main reason for 

transformer breakdown. The method developed uses the monthly average ambient temperature and 

the monthly solar clearness index along with their associated uncertainties in order to estimate the 

hourly ambient temperature. The average daily load curve and the associated uncertainties in each 

hourly load are then used to model the transformer load. The inherent uncertainties in the transformer 

loading and the ambient temperature are used to generate an artificial history of the life of the 

transformer, which becomes the basis for appraising its remaining lifetime.  

The second method of assessing transformer end of life is essentially an economic evaluation of the 

remaining time to the replacement of the transformer, taking into consideration its technical aspects. 
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This method relies on the fact that a transformer fails more frequently during the wear-out period, 

thus incurring additional maintenance and repair costs. As well, frequent failures increase during this 

period also costs related to transformer interruptions. Replacing a transformer before it is physically 

damaged is therefore a wise decision. The bathtub failure model is used to represent the technical 

aspects of the transformer for the purposes of making the replacement decision. The uncertainties 

related to the time-to-failure, time-to-repair, time-to-switch, and scheduled maintenance time are 

modeled using a Monte Carlo simulation technique, which enables the calculation of the repair costs 

and the cost of interruptions. The repair, operation, and interruption costs are then used to generate 

equivalent uniform annual costs (EUACs) for the existing transformer and for a new transformer, a 

comparison of which enables the determination of the most economical replacement year. The case 

studies conducted using both methods demonstrate their reliability for determining transformer end of 

life for assessing the appropriate time for replacement. 

Diagnostic test data for 90 working transformers were used to develop three methods of estimating 

the health condition of a transformer, which utilities and industries can use in order to assess the 

health of their transformer fleet. The first method is based on building a linear relation between all 

parameters of diagnostic data in order to determine a transformer health index, from which the health 

condition of the transformer can be evaluated. The second method depends on the use of artificial 

neural networks (ANN) in order to find the health condition of any individual transformer. The 

diagnostic data for the 90 working transformers together with the health indices calculated for them 

by means of a specialized transformer asset management and health assessment lab, were used to 

train an ANN.  After the training, the ANN can estimate a health index for any transformer, which 

can be used in order to determine the health condition of the transformer. The third method is based 

on finding a relation between the input data and the given health indices (calculated by the specialized 

transformer asset management and health assessment lab) using the least squares method. This 

relation then can be used to find the health index and health condition of any working transformer. 

The health condition determined based on these methods shows excellent correlation with the given 

health condition calculated by the specialized transformer asset management and health assessment 

lab. 
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TTF   The time to failure  

TTS   time to switch  

TTSM   the time to scheduled maintenance  

TTR   time to repair  

U  random number sequence 

UHF   Ultra High Frequency  

Vr   the maximum value of the return voltage 

V(c)  the variance in the estimate function at year c 

mT
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V(F)   the  variance of the estimate function 

Wi   weights of the linear relationship 

wk  the weighting factor for load type k 

x   mean of series of numbers (x) 

y   mean of series of numbers (y) 

Z  a standard normal random variable 

ӨHS  temperature of hot spot in 
o
C 

ӨA  ambient temperature in 
o
C 

ΔӨTO  top oil temperature rise over ambient in 
o
C 

ΔӨH  winding HST rise over top oil in 
o
C 

ΔΘTO,R   rise in top oil temperature over ambient at the rated load in °C 

ΔΘHS,R   rise in hottest spot conductor temperature over top oil temperature, at the rated load 

in °C 

ΔӨTO,U  the ultimate top oil temperature rise over ambient for load L in 
o
C, 

ΔӨTO,i   the initial top oil temperature rise over ambient for t=0 in 
o
C, 

ηTO   the top oil time constant for load L in hrs 

ΔӨTO,U  the ultimate top oil temperature rise over ambient for load L in 
o
C, 

ΔӨTO,i   the initial top oil temperature rise over ambient for t=0 in 
o
C, 

ηTO,R   the top oil time constant at rated load in hrs 

ηw  the winding time constant at hottest spot location in hrs 

ΔӨH,U  ultimate winding HST  rise over top oil in 
o
C at load L 

ΔӨH,I  initial winding HST  rise over top oil in 
o
C at at t=0 

ΔӨH,R  rated winding HST  rise over top oil in 
o
C at load L 

Δtj   time interval, hours 

θ   the latitude of the site (weather station) 

δ   the solar declination 

ωs  the main sunshine hour angle for the month 

ε(c)  the coefficient of variation at year c of the simulation 

λ(t)   the failure rate at year t 

λn   the failure rate of the normal region of the bathtub curve 

α(t)   the  exponential time-varying scaling factor 
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β   a factor that is calculated by substituting unity for α(t) at the end of the infant region 

γ    factor represent the rate of exponential increase 

αmax   the maximum value of the scaling factor at the end of the wear-out region 

μj   the mean of the normal distribution j 

ζj   the standard deviation of the normal distribution j  
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Chapter 1 

Introduction 

 

1.1 Preface 

In a deregulated/reformed environment, electric utilities are under constant pressure to reduce 

operating costs, to enhance the availability of transmission and distribution equipment, and to 

improve the quality of power and service provided to the customer. Running the system at its 

optimum limit has become a reality, and the risk involved in running the system without proper 

attention to the assets in service has therefore become very significant, as well, the probability of 

losing equipment vital to the transmission and distribution system, such as power and distribution 

transformers, is also increasing. Today, the operation scenario has changed and efforts are now being 

directed at exploring new approaches and techniques for the maintenance, life span assessment, and 

condition evaluation of power system assets.  

Because of the substantial investment in power transformers and their importance as a major factor 

that affects system reliability, transformer asset management can be assumed to be one of the most 

important areas of equipment asset management [1]. In most cases, unscheduled transformer outages 

due to unexpected failures are disastrous.  

 Existing methods for assessing the end of life for any transformer depends on the physical 

features of the asset, such as the electrical quantities and experimental measurements. However, these 

methods provide only a general overview of the health of the transformer and are used to determine 

whether the transformer has reached its end of life. They do not offer any numerical values for 

indicating the expected remaining lifetime of the transformer. The need for a clear idea of the 

remaining lifetime of the transformer is increasing because this knowledge can prevent expensive and 

unexpected outages of power transformers, which are sometimes catastrophic. Moreover, most 

existing methods for calculating the health index of a transformer do not take into consideration all 

factors that affect the health of a transformer. Furthermore, some existing methods have not been 

tested with actual working transformers in order to verify their results.  
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Consideration of asset failure is not limited to the maintenance or even the changing of the failed 

part; rather, it extends to the consequences of the failure, which are classified as consequences for the 

asset itself and consequences for the system. The consequences for the asset itself include the price of 

changing or maintaining the failed part. The consequences for the system include the cost of power 

interruptions, which may be either negligible, for residential and agricultural applications, or of 

considerable value, for large industries and commercial activities. Thus, determining dollar value for 

the asset facet of life assessments is critical. The decision-making process for any engineering system 

is based mainly on economic considerations, and as result, the economic evaluation of all physical 

and technical issues will help the decision makers make appropriate choices based on the probable 

consequences of any expected problem. This economic perspective of transformer end of life is 

completely different from that of the financial and accounting group, who identify the end of life of 

an asset as the point when its value depreciates to zero or to a very low salvage value without 

considering any of the technical aspects, such as the operating conditions or the rate of failure of the 

asset.  

1.2 Research Objectives 

This research had three main objectives. The first was to use Monte Carlo simulation technique to 

build a solid insulation thermal model so that the remaining lifetime of the solid insulation of a 

transformer can be accurately estimated and then used to determine the remaining lifetime of the 

transformer. This approach is based on the fact that determination of the solid insulation is the main 

cause of transformer failure and end of life [2-5]. The real problem in applying this insulation model 

for end of life lies in determining the correct treatment of the transformer load and the ambient 

temperature, including associated uncertainties. The model developed takes into consideration the 

loading and ambient temperature histories of an existing transformer and aslo the uncertainties 

associated with them.  

The second objective was to develop a techno-economic technique for replacing transformers. 

This technique builds a bridge between the engineering and the financial aspects of operating a 

transformer and helps business administrators make appropriate decisions, especially in the 

deregulated power market, which must operate an asset for the longest possible time without 

unexpected harmful failures. In this technique, an economic evaluation based on the technical aspects 

of both an existing transformer and a new transformer is carried out to determine the most economic 

time to replace the existing transformer with the new transformer. 
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The third objective of this research was to develop a systematic method for determining the health 

condition of any transformer. This method can be used by electrical utilities and industries to provide 

clear idea about the health of their working transformers. This goal was achieved by developing three 

methods for calculating a health index for a transformer, which is then used to classify the condition 

of the transformer (good, moderate, or bad). 

The first objective of the research was addressed through consideration of the following items: 

1. Correct estimation of the ambient temperature using the monthly average ambient temperature 

and the monthly solar clearness index. This correct estimation of the ambient temperature is 

used in thermal modeling of the transformer insulation to result in correct estimation of the 

transformer end of life point. 

2. Use of past data about the transformer load to generate an average daily load curve and to 

calculate the standard deviations of the hourly loads. 

3. Use of inherent uncertainties in the estimated ambient temperature and daily loads to build an 

artificial history of the transformer using Monte Carlo technique. The history was then used to 

determine the remaining lifetime of the insulation. 

The second objective of the research was addressed through consideration of the following items: 

1. Calculation of the present worth of existing and new transformers at each year of their useful 

lifetime. To calculate the profile of the present worth, a new depreciation model that takes into 

consideration the stages of the lifetime of the asset (infant, normal, and wear-out) was 

developed. This model differs from existing depreciation models that are built entirely from a 

financial perspective. Instead, the new model is based on the engineering and economic factors.  

2. Modeling of the transformer failure rate in all stages of the useful lifetime of a transformer 

according to a bathtub curve. The failure rate model was used in the calculation of the annual 

costs of new and existing transformers, which in turn, form the basis of a replacement decision. 

3. Development of a transformer outage model using a Monte Carlo simulation. The main sources 

of uncertainty in a Monte Carlo simulation for a transformer are the time to failure, time to 

repair, time to switch, and scheduled repair time. The outage model takes into consideration the 

following items: 

a. The planned outage of the transformer at regular intervals for maintenance. 
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b. The forced outage of the transformer. 

4. Calculation of the new and existing transformer repair costs based on the failure rate model, 

followed by the calculation of the annual costs of interruptions based on the failure rate and 

outage models, as the basis for the determination of the annual costs. 

5. Generation of a model for the equivalent uniform annual costs for new and existing 

transformers based on the calculated annual costs.  

6. Determination of the most economical replacement time based on the calculated equivalent 

uniform annual costs. 

The third objective of the research was addressed through consideration of the following items: 

1. Search for the real measurements of working transformers to use as a basis for the study. 

2.  Use of artificial intelligence (AI) techniques and other techniques to find the health index of 

any transformer and corresponding health condition. 

3. Testing of the accuracy of the developed health index and health condition. 

1.3 Motivation 

The most significant motivation that has encouraged this work in the area of transformer end of 

life and replacement assessments is the crucial role of a transformer in the efficient and reliable 

operation of a power system. Expecting end of life and making an appropriate replacement decision is 

critical for avoiding catastrophes caused by unexpected loss of transformers. The following were 

additional motivating factors: 

1. The installation of transformer assets in any power system or distribution system costs millions 

of dollars. Sudden breakdowns of power transformers can be assumed to be catastrophic due to 

the high cost of transformers coupled with the cost of interruptions to production lines, 

blackouts and accompanying robberies of commercial stores, and damage to raw materials.  

Deaths resulting from blackouts are an additional important issue. An accurate estimation of 

the time to the end of life of a transformer can reduce all of these costs and alleviate the 

negative social effects.  

2. Existing methods for assessing the end of life of transformers do not estimate the remaining 

lifetime of the transformer; rather, they give only a general indication of health of a transformer 

based on a test of part of its solid insulation. Existing end of life techniques are also based 
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mainly on a paper specimen of the solid insulation of the transformer. The very act of taking a 

paper specimen can seriously damage the transformer’s insulation system so that the 

transformer will then be damaged even if the test showed that health is outstanding. A goal of 

this research was to overcome these problems by avoiding the testing of paper specimens from 

transformer insulation.  

3. To the best of the author’s knowledge, no existing research estimates the remaining lifetime of 

a transformer based on a thermal model that takes into consideration all of the uncertainties 

associated with transformer loading and ambient temperatures. Considering these uncertainties 

during the modeling of the life of a transformer is very important for ensuring that the model is 

very close to reality. 

4. Many transformers that are working during their wear-out stage cost more because of repetitive 

outages and the repetitive maintenance and repairs they require. It is therefore economically 

beneficial in many cases to avoid extra costs by retiring these aged transformers and replacing 

them with newer versions. if the operator has large numbers of aged transformers, such extra 

costs can be assumed to be very high.  

5. No existing work on the economic evaluation of transformer end of life includes the 

consideration of effect of the technical issues on the operation of a transformer, such as 

mechanical, electrical, and thermal stresses. Because these stresses ultimately lead to 

transformer failure, the bathtub failure model can perfectly demonstrate their combined effect 

on the transformer. This issue has not been previously addressed in any research related to the 

economic end of life of any asset. For power systems, the author believes that ignoring 

technical issues in an economic evaluation of transformer end of life will result in inaccurate 

and misrepresentative model. 

6. No existing research papers related to modeling the lifetime of transformer have simulated its 

lifetime with a variety of failure rates. Moreover, they have failed to factor in the randomness 

of failure and repair rates in the calculation of the end of life point. Using Monte Carlo 

simulation, this research has developed a techno-economic model of a transformer that 

simulates the physical lifetime of the asset and that takes into consideration its physical lifetime 

pattern. Different lifetime regions were simulated based on the pattern selected. The Monte 

Carlo technique simulated increases, decreases, and consistencies of the failure rate for all 
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lifetime regions along with the associated uncertainties. The result will lead to accurate 

economic decision based on the technical aspects of the transformer.  

7. No research reported in the literature that covers the physical or economic assessment of 

transformer lifetime, taking into consideration the effects on the end of life decision of the 

surrounding networks or the loads served by the transformer. In the techno-economic technique 

developed in this study, the effect of the surrounding network was taken into consideration as 

follows: 

a. The cost of interruptions caused by transformer failure. 

b. The type of the load served by the transformer. 

8. Studies related to a transformer health index or health condition are rare, and most need 

modification. Many require review of the importance allocated to the parameters measured, 

some need to include more measurements of additional parameters, and others should use real 

measurements.  

1.4 Thesis Organization 

This thesis consists of eight chapters and four appendices. The remaining seven chapters are 

organized as follows: 

 Chapter 2 highlights transformer asset management topics and techniques, such as 

maintenance, condition monitoring, and health assessment.  

 Chapter 3 focuses on the state of the art of the assessment of transformer end of life, 

reinforcing the motivation for performing the current research as presented in chapter 1. 

Special emphasis is on the classification methods and modeling techniques for determining the 

end of life with illustrations provided for each method.  

 Chapter 4 provides a detailed explanation of the use of a Monte Carlo simulation technique for 

building a thermal model of the solid insulation of a transformer as a method of accurately 

estimating its remaining lifetime. A case study is presented to demonstrate the developed 

technique. A comparison with existing work shows the superiority of the new technique. 

 Chapter 5 offers a complete explanation of all the steps in the developed techno-economic 

replacement technique of a transformer.  
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 Chapter 6 describes the testing of the performance of the new techno-economic replacement 

technique through two case studies. The chapter also presents sensitivity analysis study that 

was performed with respect to the input variables. 

 Chapter 7 introduces three systematic methods of providing information about the health 

condition (good, moderate, bad) of a transformer. 

 Chapter 8 discusses the main contributions and the conclusions of the research along with 

suggestions for future work. 

Appendix A shows the steps used to calculate a transformer hot spot temperature. Appendices B and 

C present the data used for two case studies of Chapter 6. Appendix D shows the matrices of the 

weights of the artificial neural network used in Chapter 7. 

1.5 Summary 

This chapter has provided a general overview of the assessment of transformer end of life and a 

description of the problems that were tackled in this research. The motivations for, and the objectives 

of, the research has also been presented, along with the layout of the thesis and the organization of the 

remaining chapters. 
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Chapter 2 

Transformer Asset Management 

 

2.1  Introduction  

Transformer asset management activities are numerous and researchers tackle these issues from 

different points of view. A detailed explanation of all transformer asset management activities and 

techniques can be found in [1]. Maintenance plans and condition monitoring techniques are examples 

of the general asset management activities that can be applied to any equipment, such as transformers, 

circuit breakers, high voltage capacitors, etc. However, each asset management activity is different 

from one type of equipment to another. For example, condition monitoring techniques applied to 

transformers are different from those applied to circuit breakers or high voltage capacitors, although 

some of these techniques may have some similarities. Moreover, one quantity can be tackled from 

different asset management points of view. For example, transformer Hot Spot Temperature (HST) 

can be tackled from a transformer condition monitoring point of view, because it may represent an 

overloading or serious problem inside the transformer, and it can also be approached from the end of 

life point of view - because the higher the hot spot temperature over the normal value, the shorter the 

lifetime of the asset.  

This Chapter focuses on transformer asset management as one of the important power system 

assets. Fig. 2-1 shows the transformer main asset management activities. Transformer asset 

management can be classified into the following activities: 

1. Condition Monitoring (CM) and Condition Assessment (CA) techniques. 

2. Performing maintenance plans. 

3. Aging, health, and end of life assessments. 

In the following sections, each activity (save the third) is discussed in detail. A general overview for 

the third activity will be given in this Chapter, while a complete review of the current health and end 

of life assessments will be presented in the next Chapter. 
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Transformer  asset management
activities

Condition  Monitoring
and

Condition Assessment

Aging, health, and end
of life assessments.

Performing
maintenance plans

 

Fig. 2-1 Transformer asset management activities. 

 

2.2 Condition Monitoring (CM) and Condition Assessment (CA) Techniques 

Transformer CM is concerned with the application and development of special purpose 

equipment/methods for monitoring a condition of a parameter in a transformer, and with data 

acquisition, while CA means the development of new techniques for analyzing this data to both 

predict the trends of the monitored transformer and evaluate its current performance [1]. CM focuses 

mainly on the detection of incipient faults inside the transformer that arise from gradual deterioration. 

Some of these incipient faults may be detected during routine maintenance, while other faults may 

cause numerous problems before the routine maintenance cycle. As a result, the ability to have 

detailed information on the state-of-health of the transformer prior to carrying out maintenance work 

was unavailable. Furthermore, the diagnosis of many incipient faults in the transformer was, in many 

cases, unavailable, especially with those faults occurring after the routine maintenance cycle [6, 7]. 

CM has multiple benefits [8]: it reduces maintenance costs due to its ability to detect faults early, 

limits the probability of complete failures, and identifies the root causes of the failure. On the other 

hand, there are some obstacles which arise during the realization of CM techniques, such as extra 

added cost to the system due to the added monitoring and communication equipment, increase in the 

complexity of the control and communication system, a need for high speed processing systems for 

data processing, and a need for suitable memory storage for data base knowledge.  

In order to have information about the state-of-health of the transformer, the monitored data and 

the incipient faults detected by the CM system must be analyzed to assess the transformer condition. 

This assessment is done using the CA of the transformer. Transformer CM can be divided into five 

main categories [8]: monitoring the Hot Spot Temperature (HST); monitoring the vibration of the 

transformer wall and winding, monitoring the dissolved gases in the transformer oil; monitoring the 

Partial Discharges (PDs) in the solid and liquid insulations of the transformer; and, monitoring the 
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winding movement and deformations. In order for these monitored parameters to have meaning, the 

monitored data must be analyzed to assess the condition of the transformer. Each CM data category 

can be assessed using a specific CA technique. Fig. 2-2 shows the main categories of transformer CM 

and the corresponding CA techniques. In the following sub-sections, each CA technique will be 

discussed separately. 

2.2.1 Condition Assessment by Thermal Analysis  

Thermal analysis of a transformer can provide useful information about its condition, and can be 

used to detect inception of any fault. Most faults cause change in the thermal behavior of the 

transformer. Abnormal conditions, such as transformer overload, can be detected by analyzing the 

HST. Transformer life is affected greatly by a continuous HST of more than 110°C [3]. Predicting the 

HST can be done by two techniques. The first technique uses artificial intelligence techniques such as 

the Artificial Neural Network (ANN) [9]. The second technique develops a thermal model to predict 

the thermal behavior of the transformer [10-12]. 

 

Transformer Condition Monitoring
Parameters

Thermal analysis Vibration analysis
Partial discharges

analysis
Dissolved gas analysis

(DGA)
Frequency response

analysis (FRA)

HST
Wall and winding

vibration
Dissolved gases in

oil
Partial discharges

Winding movement and
deformations

Assessment method

 

Fig. 2-2 Transformer condition monitoring and assessment techniques. 

 

2.2.2 Condition Assessment by Vibration Analysis 

The usage of vibration signals in assessing the transformer health is a relatively new technique 

compared with other methods of transformer CA. Transformer vibration consists of core vibrations, 

winding vibrations, and on-load tap changer vibrations [13, 14]. These generated vibrations propagate 

through the transformer oil until they reach the transformer walls, at which they can be collected via 
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vibration sensors. The health condition of the core and windings can be assessed using the vibration 

signature of the transformer tank [13]. Vibration analysis is effective for assessing the health of on-

load tap changers [14, 15]. 

2.2.3 Condition Assessment by Partial Discharge Analysis 

PDs occur when the electric field strength exceeds the dielectric breakdown strength in a certain 

localized area, in which electrical discharges partially bridge the insulation between conductors. The 

dielectric properties of the insulation may be severely affected if subjected to consistent PD activity 

over a long time. This may lead to complete failure if the PD activity remains untreated [16]. PD can 

be detected and measured using piezo-electric sensors, optical fiber sensors [17], and Ultra High 

Frequency (UHF) sensors [16, 18, 19]. On-site PD measurement is often affected by strong coupled 

electromagnetic interference, which increases the difficulty of extracting PD signals without noise. 

The most common methods for PD de-noising are the gating method, and the directional sensing 

method [20]. Wavelet transform is a very powerful tool in signal processing [21, 22]. The usage of 

the Wavelet Transform for PD de-noising was successfully achieved in [23, 24]. PD measurement is 

used extensively for the condition assessment of the transformer insulation, because large numbers of 

insulation problems start with PD activity [18, 20, 25]. 

2.2.4 Condition Assessment by Dissolved Gas Analysis (DGA) 

All transformers generate different gases at normal operating temperatures. Nevertheless, the 

concentration of these gases increases in the presence of an abnormality. During internal faults, oil 

produces gases such as hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane 

(C2H6), while cellulose produces methane (CH4), hydrogen (H2), carbon monoxide (CO), and carbon 

dioxide (CO2). Each fault type produces certain combinations of the abovementioned gases [26]. 

Analyzing transformer oil for these key gases by chromatography helps to know the fault type and 

location [26, 27]. Laboratories rely upon defined critical levels of gases, rates of increase in gas level 

(on a year by year basis), or one of the ratio methodologies such as Rogers or Dornenberg ratios [26, 

28, 29] to assess the condition of oil. However, interpretation of the individual gases can become 

difficult when there is more than one fault in the transformer. 

Low temperature decomposition of mineral oil produces relatively large quantities of H2 and CH4, 

and trace quantities of C2H4 and C2H6. At medium temperatures, the H2 concentration exceeds that of 

CH4, and the amount of C2H4 increases but is still less than the amount of C2H6. At the upper end of 
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the thermal fault range, H2 and C2H4 quantities increase and traces of C2H2 may be produced [26]. 

The solid insulation begins to degrade at lower temperatures than the oil, therefore its products are 

found at normal operating temperatures in the transformer. The thermal decomposition of cellulose 

produces CO, CO2, and water vapor.  The ratio of CO2/CO is sometimes used as an indicator of the 

thermal decomposition of cellulose. Low-intensity discharges such as partial discharges produce 

mainly hydrogen, with decreasing quantities of methane and trace quantities of acetylene. The 

acetylene and ethylene concentrations increase as the intensity of the discharge increases [26]. 

The incipient faults affect the reliability of the transformer considerably if not detected and treated 

early. Paper insulation system may be damaged due to local high temperature hot spots if the thermal 

faults are left untreated. Moreover, the paper insulation properties decreased notably for sustained PD 

or arcing faults. The degradation of paper insulation can be detected using the ratio of CO2/CO 

dissolved in transformer oil, which represents the tensile strength of the paper insulation. 

2.2.5 Condition Assessment by Frequency Response Analysis 

When a transformer is subjected to high through fault currents, the windings are subjected to 

severe mechanical stresses, causing winding movement, deformations, and in some cases severe 

damage. Deformation results in relative changes to the internal inductance and capacitance of the 

winding, which can be detected externally by the Frequency Response Analysis (FRA) method [30]. 

Winding damage detection can be accomplished by comparing the fingerprints of a healthy winding 

(or the calculated response using a transformer equivalent circuit) with the fingerprints of a damaged 

winding. Changes in fingerprints can be used to estimate the degree of winding damage and its 

location [31, 32]. 

2.2.6 New Developments in Condition Monitoring and Condition Assessment  

With the development of sensor technology and communication systems, more than one parameter 

can be monitored at the same time [33]. New online CM and CA systems that monitor more than one 

parameter in the transformer are commercially available. Many parameters can be monitored online 

using these new systems, such as HST, dissolved gases, and oil temperature. Advanced technology 

sensors are used for parameter measurements in these new CM systems. All data measured are then 

collected using a data acquisition subsystem to be analysed and to provide interpretation for the 

operator. Recently, intelligent systems are used for data analysis and interpretation, such as multi 

agent systems [34, 35]. These new CM systems provide fast and accurate interpretation of any 
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problem in the transformer.  

2.3 Performing Maintenance Plans 

Carrying out maintenance plans is the second transformer asset management activity. Transformer 

outage has harmful effects on the system, and can be assumed as one of the most catastrophic 

outages, especially for high rating power transformers. Accordingly, maintenance of the transformers 

must be planned carefully to avoid harmful outages. As shown in Fig. 2-3, the maintenance types can 

be classified into corrective maintenance, preventive maintenance, and reliability centered 

maintenance. The definitions, together with the advantages and disadvantages of each maintenance 

type, will be discussed in the next sub-sections. 

 

Corrective

Maintenance

(CM)

Preventive

Maintenance

(PM)

Reliability Centered

Maintenance (RCM) or Risk

Based Maintenance  (RBM)

Maintenance

Condition Based

Maintenance

(CBM)

Time Based

Maintenance

TBM
 

Fig. 2-3 Classification of maintenance activities. 

 

2.3.1 Corrective Maintenance 

Corrective maintenance is designed to perform maintenance activity upon occurrence of a failure. 

This type of maintenance is not in a wide-spread use. Corrective maintenance may lead to repeated 

failures that cannot be maintained and, finally, to losing the asset. corrective maintenance was the 

main maintenance activity a long time ago. This type of maintenance, if used, has been reserved for 

defects that are not serious and have no great consequences, such as failure of some accessories. As a 

conclusion, the general meaning of corrective maintenance is performing maintenance upon failure 

occurrence. The advantages and disadvantages of the corrective maintenance are listed below. 
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Advantages:  

1. It is the least expensive type of maintenance. 

2. It saves manpower. 

3. It spares the system from un-necessary shutdowns. 

4. It performs the maintenance only when it is needed, saving un-necessary inspections. 

5. It is widely understood by maintenance staff. 

Disadvantages: 

1. Transformer failure becomes costly to repair and may need expensive spare parts. 

2. Some transformer failures may be irreparable if not detected early. 

3. Some transformer failures may cause complete shutdown of the production line or the power 

system for long time. This means losing revenue, which in some cases exceeds the cost of 

regular inspection. 

2.3.2 Preventive Maintenance 

Preventive maintenance aims to prevent a failure from occurring, and aims to guarantee a long 

lifetime for the asset. This can be achieved by shutting down the equipment regularly to perform 

Time Based Maintenance (TBM) or by installing a CM system to perform Condition Based 

Maintenance (CBM). 

2.3.2.1 Time Based Maintenance (TBM) 

TBM is based on examining and maintaining the transformers according to a time schedule, i.e., 

performing the inspection and maintenance activities at regular intervals. TBM is the current 

maintenance strategy for many industries and utilities. TBM may prevent many failures; however, it 

may also cause unnecessary outages, wasting manpower, time, and money, if the maintenance 

interval is too small [36, 37]. In addition, unexpected incidents may still occur in the interval between 

maintenance tasks if the maintenance interval is too large. The general meaning of TBM maintenance 

is performing maintenance at regular intervals. The advantages and disadvantages of the TBM are 

listed below.  
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Advantages: 

1. It is understood by maintenance engineers and technicians. 

2. It can detect the inception of faults to some extent, if the inspection interval is reduced. 

3. It increases the lifetime of the transformer due to regular inspections and maintenance. 

Disadvantages: 

1. It is expensive due to regular un-necessary inspections and the large number of the needed 

maintenance staff. 

2. In some cases, TBM is unable to detect faults especially when the inspection interval is large.  

3. It needs un-necessary shutdowns which add extra cost to the maintenance activity. 

2.3.2.2 Condition Based Maintenance (CBM) 

CBM relies on performing maintenance when the CM system detects an incipient fault. This 

incipient fault will change to be a complete failure if not treated early by the CBM, i.e., suitable 

maintenance must be performed after detection of the fault by the CA system. By using this 

technique, the risk of complete failure is reduced. CBM lets operators know more about the condition 

of a transformer, to know clearly when and what maintenance is needed. A transformer’s historical 

data - such as operation parameters, diagnostic tests, and environmental conditions - will identify 

which parameter/part should be monitored and the correct method of monitoring [38].   

Advanced online monitoring and assessment techniques such as dissolved gas analysis (DGA), 

partial discharge (PD), furan analysis (FA), frequency response analysis (FRA), and recovery voltage 

measurement (RVM) play a key role in developing CBM strategies [39]. The condition monitoring 

and diagnostic techniques discussed in section 2.2 are the main core of CBM. CBM may depend on 

continuous, scheduled, or on-request CM. The most widely spread CBM is the continuous one. 

Scheduled or on-request CBM aims to reduce the cost of continuous condition monitoring, which is 

the largest problem in the application of CBM. CBM depends on monitoring the parameters/parts of 

the transformer and diagnosing the incipient faults. When an incipient fault is found, the maintenance 

activity must take place to avoid the complete failure of the equipment. Thus, maintenance is only 

performed when necessary.  

Fig. 2-4 shows a block diagram of a CBM system integrated with CM and CA systems. The first 
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stage of this integrated system is the raw data stage, in which different types of sensors are used to 

collect the raw data such as thermal data, partial discharges, vibration signals, gases in oil, etc. The 

second stage is the pre-conditioning of data stage, which aims to adjust the input data, including 

removal of extreme data levels, normalizing the input data if needed, or removing the noise contained 

in the raw data. With advances in sensor technology, this stage may be included in the first stage. The 

next stage is the extraction of useful information, e.g., estimation of the hot spot temperature based on 

the top oil temperature, ambient temperature, and load current.  The pre-conditioned and pre-

processed data will be used to assess the condition of the equipment and classify the type of fault (if 

any) in the CA and fault diagnosis stage. The next stage is the output stage, in which the outputs from 

the fault diagnosis stage, either by Artificial Intelligent (AI) agents or by derived logics, are 

interpreted and sent to maintenance staff. The maintenance action is taken in the final stage according 

to the outputs stage [11, 18].  

 

Raw data
from sensors

Pre-conditioning
of data

Extracting useful
information

Condition
assessment and
fault Diagnosis

CBM action
(alarm, maintenance,

adjustment or replacement)

Output stage
(fault type and
needed action)

 

Fig. 2-4 CBM system. 

 

The general meaning of CBM is performing maintenance only upon request from the CM system. 

The advantages and disadvantages of CBM are listed below. 

Advantages: 

1. Maintenance is done when it is necessary. 

2. Reducing costly unnecessary inspections. 

3. Saving manpower. 

4. Reducing the unnecessary shutdowns of the system. 

5. Low possibility of complete failure. 

Disadvantages: 

1. Continuous condition monitoring for many parameters is expensive. 
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2. Less understood by maintenance engineers and technicians. 

3. Fast data communication and manipulation facilities are needed for successful online 

monitoring. 

4. It needs experienced people to design the monitoring system, select the suitable parameters to 

be monitored, and select the suitable frequency of data collection. 

2.3.3 Reliability Centered Maintenance (RCM)  

The RCM is a technique initially developed by the commercial airline industry. The fundamental 

goal of RCM is to preserve the function or operation of a system at a reasonable cost [40, 41]. RCM 

can be defined as a mix of more than one maintenance strategy in an optimized manner in order to 

reduce the system risk. For a successful RCM plan, the degree of risk of each fault should be 

identified in order to define the optimum maintenance actions [40, 41]. The risk index can be found as 

follows: 

 

indexesconsequencfailureofprobabiltyindexrisk                (2-1) 

 

The main items in the implementation of RCM according to (2-1) are the prioritization of the 

failure modes according to their consequences on the system, and modeling the probability of failure 

modes [42, 43]. The consequences index of each failure mode can be determined by the analysis of 

the history of failures or by experience. RCM starts with collecting data about transformer failures,  to 

model the failure modes in a probabilistic form. The information about the consequences of each 

failure can be collected from the past experience of skilled engineers. The information collected about 

the consequences of failures, together with the probability of each failure, are used to calculate the 

risk index of each failure mode. The failure modes that have low risk index are separated, and treated 

by low cost maintenance methods, such as corrective maintenance. The failure modes that have a high 

risk index can be treated by preventive maintenance such as CBM or TBM, with optimum 

maintenance interval based on the maintenance cost [44, 45]. The possibility of failures still exists in 

the system with RCM; however, the risks are minimized as high risk failures are not likely to occur.  

The general meaning of RCM maintenance is optimizing the maintenance plan based on risk 

analysis. The advantages and disadvantages of RCM are listed below. 
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Advantages: 

1. The cost of the maintenance operation is optimized based on risk. 

2. It reduces the unnecessary shutdowns for low risk failures. 

3. It saves money paid for unnecessary short interval inspections in case of TBM. 

4. It guarantees a low possibility of high risk failures. 

Disadvantages: 

1. Less understood by maintenance engineers and technicians. 

2. Complexity of building the maintenance model. 

3. Need for large amount of data about failures rates, modes, and consequences.  

 

RCM can be assumed to be the most recent maintenance strategy. More industries are converting 

from regular TBM to RCM. According to [46], routine preventive maintenance is reduced by 50% on 

11kV transformers after using RCM. Moreover, the overall maintenance cost is reduced by 30%-40% 

after converting to RCM. The challenges facing RCM are the data needed about the failure modes and 

their consequences, on both the transformer itself and the system as a whole. This data includes 

recorded information from many operating transformers, about their failure modes and failure 

consequences. Furthermore, very experienced persons are needed to prioritize the consequences of 

the failure modes on the system, and to set the consequences indices to be able to calculate the risk. 

The main aim of any asset management is to maximize the benefits of the asset. The benefits are 

maximized from the asset by performing suitable CM techniques and/or performing good 

maintenance plan to maximize the usage, reducing the outage time, and increase the lifetime of the 

asset. The lifetime issue will be discussed in the next section. 

2.4 Aging, Health, and End of Life Assessments 

Equipment aging is a fact of life in power system components. As a piece of equipment ages, it 

fails more frequently and needs more repair time until the equipment reaches its end of life [47]. 

Maintenance activities can extend the life of equipment but become very costly for equipment near 

their end of life. There are three different concepts of lifetime for power transformers: physical 

lifetime, technological lifetime, and economic lifetime [47]. 
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1. Physical lifetime: A piece of equipment starts to operate from its brand-new condition until it 

cannot be used in its normal operating state and must be retired.  

2. Technological lifetime: A piece of equipment may need to be replaced for technological 

reasons, even though it may have not reached its physical end of lifetime. For example, a new 

technology is developed for a type of equipment and manufacturers no longer produce spare 

parts.  

3. Economic lifetime: A piece of equipment is no longer economically valuable, although it may 

still be physically used. The capital value of any equipment is depreciated every year. Once the 

asset value approaches zero, it reaches the end of its economic lifetime.  

 The end of life decision in most of the cases can be divided into the physical and the economic 

decision. In the next Chapter, the existing end of life criteria for transformers will be presented and 

the economic and physical lifetime models for transformers will be discussed in detail. Furthermore, 

the existing methods that provide a health index for transformers will be highlighted. 

2.5 Summary 

An overview of transformer asset management was presented in this Chapter; the general 

classification of the asset management activities was illustrated. The three major activities of the 

transformer asset management are the application of CM techniques in the transformer operation, 

performing maintenance plans and investigating new less-cost maintenance methods, and assessing 

the health and end of life of the transformer. A detailed explanation of the first two activities of 

transformer asset management activities was provided in this Chapter.  The various CM and CA 

techniques used to monitor and assess the condition of the transformer were discussed in detail. 

Transformer maintenance techniques were highlighted, including the advantages and disadvantages of 

each type. A brief introduction to the transformer lifetime types were presented. The different end of 

life criteria from the economic and physical perspectives will be illustrated and reviewed in detail in 

Chapter 3, as well as current methods that calculate transformer health index and health condition. 

 

 

 

 



 

 20 

Chapter 3 

Transformer Health and End of Life Assessments 

 

3.1 Introduction 

Transformer life management has gained recognition in recent years for both economic and 

technical reasons [39, 48]. Due to the importance of physical and economic lifetimes over the 

technological lifetime as noted in Chapter 2, physical and economic lifetimes are discussed in some 

detail in the next subsections. The existing end of life and replacement models are reviewed and the 

disadvantages of the models are presented. Further, the current few techniques that calculate the 

health index of working transformers are reviewed, and their drawbacks highlighted. Overcoming 

these drawbacks in the existing models of transformer physical and economic end of life, and 

transformer health indexing, are the main goals of the research in the thesis. The rest of this Chapter 

is a survey of current research on transformer physical and economic end of life assessments, and on 

determination of the transformer health index and health condition.  

3.2 Physical End of Life Assessment  

Most transformer solid insulation is based on cellulose in the form of paper. In the presence of 

heat, oxygen, water, and other chemicals, the cellulose molecules undergo chemical changes cause 

electrical and mechanical degradation of the insulation paper [49], which can be considered as the 

main reason for transformer physical end of life [2, 50]. Aging can be defined as the ability of the 

solid insulating material to withstand the designed stresses - such as electrical, mechanical, and 

thermal - with the passage of time [2, 49]. The ability of insulating material to withstand the 

abovementioned stresses remains constant or decreases slightly with the passage of time until the 

wear-out of the asset, at which time this ability degrades rapidly. Abnormal operating conditions, 

such as repetitive overloading for long periods and non-sinusoidal loads, can affect transformer aging. 

Transformer physical aging assessment methods can be divided into two main categories: diagnostic 

tests and thermal evaluation. Fig. 3-1 shows a complete classification of the transformer physical 

aging assessment techniques. Next, the existing work done to assess the aging and the end of life of 

the transformer will be presented.   
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3.2.1 Physical End of Life Assessment by Diagnostic Tests 

3.2.1.1 Degree of Polymerization (DP) 

 DP is the main indication of paper health. Paper fibers are composed of cellulose. Glucose 

monomer molecules are bonded together by glycosidic bonds to form cellulose. The average length of 

the cellulose polymer, measured as the average number of glucose monomers in the polymer chins, is 

referred to as DP. It has been proven, based on the experience of previously retired transformers and 

experimental work, that a DP of 200 or less means the end of life of the solid insulation has been 

reached [50-52].  

DP is accepted measure of the degradation of solid insulation; however, the measurement of DP 

for any working transformer needs a specimen of the transformer insulation paper to perform 

measurements. The paper sample taken from any operating transformer may cause local damage in 

the winding system or may lead to complete failure of the transformer. Also, DP measurement is 

usually done by the viscometry method, which is not accurate because it is affected by the ambient 

temperature and exposure to air [53]. 

 

 

Fig. 3-1 A complete classification of the transformer physical aging mechanisms. 
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3.2.1.2 Retained Tensile Strength  

One of the main mechanical parameters for insulation paper in transformers is tensile strength. As 

the paper ages, its strength against mechanical forces decreases especially against those arising from 

inrush current or short circuits [54, 55]. According to [4], insulation paper reaches its end of life when 

it reaches 50% retention of tensile strength, and it can be left working until it reaches 40% retention 

of tensile strength, according to [56], or it can be left working until it reaches 25% retention of tensile 

strength, according to [3]. The problem of insulation damage still exists in the measurements of 

tensile strength because the measurement of the tensile strength needs a specimen of the insulating 

paper, which may damage the solid insulation system of the transformer. 

3.2.1.3 Furanic Compounds 

The paper specimen required for DP and the retained tensile strength tests limit their usage 

practically. Also, the DP is associated with many errors during measurement. These difficulties, and 

errors in measuring the DP and retained tensile strength, limit their usage for assessing the health of 

the transformer, despite their reliability in assessing the age of the solid insulation and the 

transformer.  

As the paper insulation ages, the polymer chains starts breaking and generating glucose monomer 

units that undergo further chemical reaction and become one of a family of derivatives of 2-

furaldehyde (2FAL) [55], or what are called furanic compounds, that increase in the transformer oil 

with the decrease of the DP of the insulating paper [28, 53, 55, 57, 58]. These furanic compounds 

dissolve in the insulating oil and can be detected by oil analysis. It is possible to analyze the oil for a 

number of these furanic compounds as parts per billion by weight. Chendong et al [59]  introduced a 

relationship between the total furfural content and DP. The relation holds for non-thermally upgraded 

paper but it does not apply correctly for thermally upgraded paper [55]. The amount of the furanic 

compounds corresponding to a DP of 200 units is modified in [55], in which two formulas are 

proposed to relate the DP to the amount of furanic compounds in ppb by weight (μg/kg). The first 

formula is proposed for thermally upgraded paper, in which the total furans in ppb by weight (μg/kg) 

are used to calculate the DP, is as follows:  
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According to (3-1), 2844 ppb by weight (μg/kg), total furans concentration corresponds to a DP of 

200 units. The second formula is a modification to the Chendong formula. It relates the 2FAL, 

measured in ppb by weight (μg/kg), with the DP for non-thermally upgraded paper as given below: 
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                                       (3-2) 

 

According to (3-2), 2FAL concentration corresponds to a DP of 200 at 6457 ppb by weight (μg/kg).  

Assessment of transformer aging using furanic compounds analysis is gaining more attention, 

because this method gives an acceptable indication of the solid insulation age without using any paper 

specimen. However, the absolute correlation of furanic compounds to DP varies from one transformer 

to another, and is dependent on humidity, operating temperature, type of oil and paper, and design. 

Further research on the dependency of furanic compounds on moisture and temperature is necessary.   

3.2.1.4 Dissolved Gas Analysis (DGA) 

As a transformer ages, the cellulose and oil degrade. The rate of cellulose and oil degradation is 

significantly increased in the presence of a fault inside the transformer. Low temperature thermal 

degradation of cellulose produces CO2, and high temperature produces CO [57]. A high rate of paper 

degradation is estimated when the ethylene concentration increases and the CO2/CO ratio decreases 

below a ratio of about 6 [57, 59]. At a CO2/CO ratio less than 2, the probability of failure increases 

significantly [57, 60]. However, the scatter of measurements made on service transformers is so large 

that no reliable values were found to assess the transformer end of life. Transformer service lives can 

only be estimated to within +/- 10 years using the phenomenon of generation of CO and CO2 [60]. 

3.2.1.5 Recovery Voltage Measurement (RVM) 

The rate of paper degradation depends on several parameters such as pulp composition, thermal 

upgrading, moisture content, and temperature. The higher the water content of the paper, the higher 

the degradation rate [2, 57]. The RVM technique uses the dielectric response to evaluate its condition 

with respect to moisture content [2]. 

To perform RVM, first a sample is charged from a high voltage source for a charging time (tc). 

Then, the sample is isolated from the HV source and short-circuited for a discharging time (td ), where 
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tc > td . At the end of the discharging time, the short-circuit is removed and the return voltage 

appearing at the electrodes is measured as shown in Fig. 3-2, where Vr is the maximum value of the 

return voltage, tpeak  is the time at which the maximum return voltage is occurred , and Sr is the initial 

slope of the return voltage.  

tc td

Sr

Vr

V

time (s)
 

Fig. 3-2 Charging and return voltage during RVM test [57]. 

 

A polarization spectrum can be obtained by plotting the value of Vr for different values of the tc. 

The time at maximum Vr in that polarization spectrum is called the dominant time constant. If the 

condition of the oil–paper insulation is homogeneous, and the distribution of the temperature, 

moisture, and aging in the insulation is uniform, the resulting curves will have one dominant time 

constant, otherwise; there will be many dominant time constants [57].  

3.2.1.6 Weakness of the Transformer Aging Assessment by Diagnostic Tests 

Many tests in subsection 3.2.1 that are commonly conducted to assess transformer aging have 

some difficulties in implementation. The specimen needed in the DP and the retained tensile strength 

is an example of these difficulties. Moreover, although the aforementioned tests can detect the end of 

life of the transformer at the time of testing, they do not yield any quantitative information concerning 

its life expectancy. They can provide a general assessment of the condition and the health of the 

transformer.  

Striking examples are transformers that have provided years of service and yet are found to 

contain appreciable amounts of furans in the oil. In the case of furans in oil-filled transformers, it is 

not possible to estimate their life expectancy in terms of furans amounts. Thus, although diagnostic 

tests provide useful information with respect to the state of transformers and can reveal problems, 
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they do not yield any type of definitive quantitative information concerning life expectancy that is 

required for the future planning of power systems. 

3.2.2 Physical End of Life Assessment by Thermal Evaluation 

3.2.2.1 Introduction to Thermal Evaluation of the Transformer Age 

Transformer aging can be evaluated using the hot spot temperature (HST) test. The increase in 

HST has the effect of reducing insulation life [2, 5, 49]. Abnormal conditions, such as overloading, 

supplying non-sinusoidal loads, or exposure to higher ambient temperature than normal, can 

accelerate transformer aging and accordingly accelerate the time to end of life.  

According to [3], the HST can be calculated as follows 

 

HTOAHS
                                   (3-3) 

 

where 

ӨHS: temperature of hot spot in 
o
C; 

ӨA: ambient temperature in 
o
C; 

ΔӨTO: top oil temperature rise over ambient in 
o
C;  

ΔӨH: winding HST rise over top oil in 
o
C. 

 

More details on HST calculation can be found in Appendix A. The increase of the transformer 

HST accelerates the end of the transformer lifetime, and vice versa. The average lifetime of oil-

immersed transformers based on the lifetime of the solid insulation is well defined in [3], in which the 

average lifetimes based on different end of life criteria are summarized. The standard normal lifetimes 

for oil-immersed power transformer for a continuous HST of 110
o
C based on [3] and other IEEE 

standards are summarized in table (3-1). The deviation of the transformer’s HST from 110
o
C will 

cause the lifetime of the transformer to deviate from those values mentioned in table (3-1). The 

increase of the HST will reduce the expected physical lifetime, while a reduction of the transformer 

HST will increase its lifetime.  
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Table 3-1 The standard normal lifetime for oil immersed power transformers for continuous HST of 

110
o
C 

Expected end of life criterion Expexted lifetime in hrs 

50% retained tensile strength according to IEEE std. C57.92-1981 

[4] 

65000 

25% retained tensile strength according to IEEE std. C57.91-1995 

[3] 

135000 

200 retained degree of polymerization according to IEEE std. 

C57.91-1995 [3] 

150000 

Distribution transformer functional life test data according to 

IEEE std. C57.91-1981 [61] 

180000 

 

The relationship between the HST and the transformer life consumption is governed by the 

Arrhenius reaction rate theory which states that [3, 4, 61-64]: 

 

273
 HS

B

Aelifeunitper
                                (3-4) 

 

where A and B are empirical constants. 

The constants A and B are based on material characteristics of the insulation, and are determined 

such that per unit life is unity at HST of 110
o
C. The values of A and B are (9.8*10

-18
) and (15000) 

respectively [3, 4, 61-64]. The reciprocal of (3-4) is the aging acceleration factor (FAA) which can be 

used to calculate the consumed life for a given HST over a given period. FAA has a value greater than 

unity for winding hottest-spot temperatures greater than 110°C and vice versa.  

The equivalent life (in hours or days) that will be consumed in a given time period for the given 

temperature cycle can be calculated as shown below [3, 62, 64]: 
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where 

Feq :  the equivalent aging factor for the total time period; 

TI :  the total number of time intervals (usually 24 hrs for one day or 8760 hrs for one year); 

jAA
F : aging acceleration factor for the temperature which exists during the time interval Δtj;  

Δtj :  time interval, hours. 

 

The value of Feq is higher than unity if HST for the day is higher than 110
o
C and vice versa.  

Finally, (3-6) is used to calculate the percentage consumed, or lost life from the total lifetime of the 

transformer, according to the following equation [3, 62, 64]:     

 

lifeinsulationnormal

tF
lifeofloss

eq
100

%


                             (3-6) 

 

where t is  the total time period  

Using the previously mentioned steps, the lost life of a transformer due to an increase in the HST 

can be calculated. 

3.2.2.2 Current Thermal Evaluation Techniques for Assessment of a Transformer Lifetime 

Using the aforementioned steps, the correct loss in life of a transformer can be calculated. It is 

clear that calculating transformer aging based on the HST is well understood. However, the real 

challenge in applying this insulation end of life model lies in determining the correct treatment of the 

transformer load and the ambient temperature, including the associated uncertainties, in order to 

achieve reliable values of the HST and accordingly reliable values of transformer loss of life.  

In [65], measured or estimated daily load profiles and a one-day average ambient temperature are 

used to determine the equivalent aging factor and the expected end of life of the insulation. Eleven 

curves were used to represent the daily temperature and load as well as their standard deviations. The 

main drawback of this method is that it requires a large amount of data. Furthermore, the loading of 

the transformer during its entire lifetime was assumed to follow eleven similar load curves with no 
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changes in peak time or in the shape of the curve, which does not represent the actual case. In 

addition, the same pattern of temperature variation was assumed over the entire lifetime of the 

transformer.  

In [62], the estimation of loss of life for a generator step-up transformer was calculated using 

simulated load values and daily ambient temperatures. Reference [62] assumed that the variation in 

the daily ambient temperature is sinusoidal. However, a sinusoidal curve cannot represent a typical 

temperature range over the course of a day. Assuming a sinusoidal temperature variation also implies 

that the difference between the highest and lowest temperatures is always 12 hours, which is not the 

actual case. Furthermore, the hourly load values used in [62] were selected randomly without 

conformance to any load curve pattern. 

Although the authors in [62] were determining the lifetime of the insulation in a generator step-up 

transformer, the benchmark value of the normal thermal lifetime of the insulation was used as a 

benchmark value for a distribution transformer. The load of a distribution transformer is governed by 

the end user, which therefore makes it an uncontrollable load. On the other hand, the power of a 

generator step-up transformer is controlled by the operator through the control of the generator power. 

Accordingly, the operation of a distribution transformer is completely different from that of a 

generator step-up transformer. The benchmark value for the normal insulation lifetime of the 

distribution transformer that the author used in [3] can thus not be used as a benchmark for the study 

of the transformer presented in [62].  

3.2.2.3 Drawbacks of Current Thermal Evaluation Assessment Techniques 

As mentioned in the above subsection, existing methods for assessing transformer lifetime, which 

are based on thermal evaluation, do not provide the correct treatment of the inputs of the thermal 

lifetime model in [3]. The estimation of the transformer load is not accurate enough to give reliable 

lifetime estimation. The estimated ambient temperature, which is a very important factor in the 

correct estimation of transformer lifetime based on thermal analysis, does not reflect the actual 

ambient temperature and the associated uncertainties.  

3.3 Economic End of Life Assessment 

As the asset is purchased, it losses part of its value every year until reaching zero value or its 

salvage value, where the salvage value is an estimate of the value of the asset at the time it will be 

disposed of; it may be zero. The yearly lost part of the asset cost is called the depreciation cost. The 
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lifetime of the asset ends when it depreciates to zero or the salvage value [66]. The depreciation 

concept is discussed extensively in the literature [66-68]. The main two categories of time-based 

depreciation are straight line depreciation and accelerated depreciation, with only one depreciation 

model being used throughout the lifetime. The main purpose of depreciation used by accountants is 

for the income tax purposes, because the depreciated value of the asset is deducted from taxable 

income. In this regard, accounting professionals prefer to use one of the accelerated depreciation 

methods to guarantee savings in income taxes in the early years of operation.  

It is sometimes more economical to retire and replace the equipment before its capital value 

reaches zero, and before the end of physical lifetime, rather than continue to face high operating and 

maintenance costs. This concept, together with the depreciation concepts, are discussed in the next 

subsections. 

3.3.1 Straight Line Depreciation 

Straight-line depreciation is the simplest and most often used technique, in which the asset is 

assumed to lose equal amounts of its capital cost throughout its lifetime. In other words, the annual 

depreciation cost equals the capital cost of the asset minus its salvage value divided by number of 

years of its useful lifetime (useful lifetime is the average lifetime for such an asset) [66-68]. Straight 

line depreciation can be defined as follows [66-68]: 

 

lifetime

SVC
jd


)(                                            (3-7) 

 

where 

d(j): depreciation charge for year j; 

SV: the transformer salvage value; 

C: the capital cost of the asset;  

lifetime: the asset lifetime in years. 

 



 

 30 

For example, a transformer that depreciates over 20 years, is purchased at a cost of $100,000, and will 

have a "salvage value" of $3000, will depreciate at $4,850 per year: ($100,000 - $3,000)/ 20 years = 

$4,850 per year.    

The present worth of the transformer at any point in its useful lifetime can be calculated according 

to the following formula: 
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where  

PW (k) : the transformer’s present worth at the end of year (k);  




k

j

jd

1

)(  : the accumulated depreciation charges from the first year until year (k). 

 

The present worth of a transformer under straight line depreciation is shown in Fig. 3-3(a) 

3.3.2 Accelerated Depreciation  

Accelerated depreciation assumes the asset to lose  a larger proportion of its value during the 

initial years, and a lesser proportion in the later years. It includes the reducing balance depreciation 

and sum of years digits depreciation (SOYD). The present worth of a transformer under the 

accelerated depreciation is shown in Fig. 3-3(b,c) 

3.3.2.1 The Reducing Balance Depreciation 

The reducing balance depreciation provides a steady declining balance of the depreciation cost 

over the estimated lifetime of the asset. The most common ways to calculate the reducing balance 

deprecation are 200% and 150% reducing balance depreciation [66-68]. The annual depreciation cost 

for year (k) can be calculated as follows 
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where p is the reducing balance value (1.5 for 150% and 2 for 200% reducing balance depreciation ).  
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Fig. 3-3 Asset present worth under different depreciation models with and without salvage value (a) 

linear deprecation (b) reducing balance depreciation (c) sum of years digits depreciation. 

 

3.3.2.2 The Sum of Years Digits (SOYD) Depreciation 

Like the reducing balance depreciation, SOYD depreciation also uses steadily declining periodic 

amounts. SOYD is performed by applying successively smaller depreciation amounts each year to the 

asset value at the beginning of the calculation year. The annual depreciation for year k using the 

SOYD method can be calculated as follows [66-68]: 
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where SUM is the  sum of the years digits of the lifetime, for example, If the expected lifetime is 4 

years, then, SUM=1+2+3+4= 10. 

3.3.3 Other Economic End of Life Assessment Methods 

It is sometimes economical to retire a transformer before its capital value reaches the salvage 

value (accounting end of life) and before the end of physical lifetime, rather than continue to face 

high operating costs. In this regard, the operating and maintenance costs are taken into the economic 

end of life decision by calculating the minimum Equivalent Uniform Annual Cost (EUAC) of the 

transformer [67, 68]. EUAC relies on converting all unequal annual costs of the transformer into 

equivalent equal annual costs starting from the decision year and ending at each year of the remaining 

years of the transformer’s useful lifetime. The result is a curve that represents the equivalent equal 

annual cost of maintaining the transformer in service until each year of the expected remaining 

lifetime. The curve is like the one shown in Fig. 3-4.  
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Fig. 3-4 Example EUAC curve shape for a given transformer. 

 

According to Fig. 3-4, a transformer owner pays around $7000 for leaving the transformer in 

service for one year after the calculation date, and he pays around $5500 each year for leaving the 

transformer in service two years after the calculation date and so on. For the case shown in Fig. 3-4, 
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the minimum EUAC is $1300, which represents the amount of money paid by the transformer owner 

every year for leaving the transformer in service twelve years after the calculation date. According to 

the minimum EUAC, the most economic end of life is 12 years after the decision date. Note that the 

numbers shown in Fig. 3-4 do not represent any real values or any results of any study on any 

transformer, and are for illustrative purposes only. 

3.3.4 Drawbacks of Assessment Methods for Transformer Economic Aging 

The models presented in subsections 3.3.1 and 3.3.2 are end of life assessments made on purely an 

accounting basis. No physical or technical aspects are taken into consideration in these models. 

Neither the effects of the thermal, mechanical, and electrical stresses, nor the effect of maintenance 

and operating costs, are taken into consideration in those models. Moreover, there is no evidence that 

when the present value of a transformer reaches zero, the transformer can no longer operate, or that its 

operating and maintenance cost will be higher than those of a new transformer. 

The model presented in subsection 3.3.3 tries to cover the weak points of the aforementioned 

methods [66-68]. It takes maintenance and operating costs into consideration, in order to arrive at a 

decision about the most economic lifetime of the transformer. However, this type of economic 

replacement method, as presented in [66-68], is not based on realistic parameters for this type of 

equipment (transformers). For example, the effect of transformer failure rate on operating and 

maintenance costs is not taken into consideration. As well, the economic replacement methods 

described in [66-68] do not take into account the uncertainties inherent in failure and repair rates. 

These uncertainties affect the annual unavailability of the asset (the expected annual outage time), the 

cost of interruptions, and the cost of repairs. The cost of interruptions is itself not considered, and the 

annual present worth calculated for the transformer is based on a depreciation method that does not 

incorporate the different stages in the life of a transformer (infant, normal, and wear-out). 

3.4 Transformer Health Condition 

After assessing a transformer’s end of life, the transformer may not reach the end of its lifetime. If 

the transformer does not reach its end of life, the next logical question is what the health condition of 

the transformer is. The concept of health index can answer this question. Giving the transformer a 

health index from zero to ten can provide clear information about its health condition. Insufficient 

research work has been presented as yet to evaluate the health condition of a transformer.  In [69, 70], 

clear steps are given to calculate the health index of a power transformer; however, the methods 
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presented in [69, 70] ignored an important measurement in assessing the health index, which is the 

amount of total solids in the transformer oil. The amount of total solids is a good indication about the 

condition of the insulation system of the transformer. Further, they give the measurements of total 

furans less weight than other less important factors such as the winding resistance and oil quality. It is 

known that the amount of furans is an important indicator of the degree of polymerization of the solid 

insulation [28, 53, 55, 57, 58]. The degradation of solid insulation (paper) can be considered the 

primary reason for a transformer end of life [2, 50, 51, 71, 72]. The work done in [73] includes all 

parameters affecting the health of the transformer; however, the paper did not reveal the method used 

in the calculation of the health index. The total furan in the transformer oil is ignored in the method 

presented in [74]. Further, no case studies are given to illustrate the method. 

3.5 Summary 

An overview of transformer end of life assessment methods are presented in this Chapter.  Current 

techniques used to calculate the health condition of a transformer are also presented.  The transformer 

end of life can be divided into physical end of life and economic end of life. Each category was 

highlighted. The weaknesses of each category were introduced and discussed. The weaknesses of the 

existing methods used to calculate transformer health condition were also presented. The drawbacks 

of existing end of life and replacement techniques, together with the importance of accurate 

estimation of transformer end of life, were the main motivations of the author of this thesis to present 

new transformer end of life and replacement methods as will be discussed in Chapters 4 to 6. 

Furthermore, the drawbacks of the existing methods that calculate the transformer health index and 

health condition were the reason to introduce three methods to assess the transformer health condition 

in Chapter 7. 
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Chapter 4 

A Monte Carlo Approach for Calculating the Thermal Lifetime of 

Transformer Insulation 

 

4.1 Introduction 

The degradation of solid insulation can be considered as the main reason for transformer physical 

end of life [2, 50]. This Chapter presents an accurate method for estimating the thermal lifetime of 

solid insulation in an oil-immersed transformer [75]. The method estimates the ambient temperature 

using the monthly average ambient temperature and the monthly solar clearness index, taking into 

consideration the associated uncertainties for both of them. The average daily load curve and the 

standard deviation for each hour in the daily load curve are used to model the transformer load. A 

Monte Carlo simulation is used to generate two separate artificial histories for the loading and for the 

ambient temperature by using their inherent uncertainties. The annual equivalent aging factors for 

each year are used in the Monte Carlo simulation in order to find the corresponding estimated thermal 

lifetime. The probability distribution for the estimated thermal lifetimes for all simulation years is 

then used to calculate the average lifetime of the transformer.  

The new presented method uses the model presented in [3] to estimate the lifetime of transformer 

insulation; however, the uncertainty with respect to the transformer load is batter modeled. The 

ambient temperature is more accurately estimated using the solar clearness index, and the uncertainty 

with respect to the ambient temperature is considered in the treatment of the end of life model input. 

These temperature and loading models are used to simulate the transformer lifetime, from which the 

lifetime of the transformer insulation is calculated. 

4.2 Proposed End-of-Life Estimation Technique 

The proposed approach for estimating the lifetime of transformer insulation is based on the 

simulation of transformer loss of life using a Monte Carlo technique. The approach consists of three 

steps: building an artificial history of the ambient temperature, building an artificial history of the 

transformer loading, and simulating the transformer loss of life based on the model presented in [3]. 

The Monte Carlo simulation is used in order to account for the uncertainty inherent in both the daily 

temperature and the transformer loading.  
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4.2.1 Building the Artificial History of the Ambient Temperature  

The HST value depends on the ambient temperature, the rise in the top oil temperature over the 

ambient temperature, and the rise in the winding HST over the top oil temperature [3]. The latter two 

terms can be calculated using the top oil temperature rise over the ambient at the rated load, the 

winding HST rise over the top oil at the rated load, and the load value. The first term is found by 

employing the historical ambient temperature data to calculate the equivalent past loss in transformer 

life. The ambient temperature should, however, also be estimated in order to project the future 

equivalent loss of life of the transformer. The correct estimation of the ambient temperature can be 

used to obtain a correct estimation of the transformer HST, from which a correct estimation of the 

equivalent future transformer loss of life and the remaining lifetime can be determined.   

For the purposes of this research, the estimation of the ambient temperature is based on the 

monthly average ambient temperature and the monthly solar clearness index (KTm). It was found that 

monthly average temperatures have lower standard deviations than average temperatures for the same 

day over several years [76, 77].  

The average ambient temperature for a specific hour (h) for a month (m) can be calculated as 

follows [77]: 
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where 

: the mean value of the average ambient temperature for month (m) in 
o
C; 

Am: the diurnal temperature swing (peak to peak) for month (m) in 
o
C; 

HOD: a dimensionless expression for the hour of the day. 

Am and HOD can be calculated as follows [77]: 
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where 

: the average solar index for month m; 

h: an index for the hour of the day, starting from zero at midnight.  

 

KTm is the ratio of the monthly average daily radiation on a horizontal surface (Hm) to the monthly 

average daily extraterrestrial radiation (Ho,m). Solar radiation data is commonly available in the form 

of hourly total radiation on a horizontal surface (I) for each hour for extended periods of one or more 

years [78]. The hourly total radiation on a horizontal surface (I) is used to calculate (Hm).  

The average solar index for month m, (  ), is calculated by 

 

                    (4-4) 

 

where  is the mean value of the monthly average daily global solar radiation on a horizontal 

surface for the data years. 

 

The monthly average daily extraterrestrial radiation for month (m), (Ho,m), in J/m
2 

is calculated as 

follows [76, 78]: 

 

 

   (4-5)  

 

 

where 

Gsc: the solar constant (=1367 W/m
2
); 

θ : the latitude of the site (weather station); 

δ : the solar declination; 

ωs: the main sunshine hour angle for the month; 

TmK

TmK

mo

m

Tm

H

H
K

,



mH




























 





)sin()sin(
180

)sin()cos()cos(

365

360(
cos033.01

360024
,







s

s

sc

m

mo
G

midday
H



 

 38 

middaym: the middle day of month m. 

 

The solar declination and the main sunshine hour angle in degrees for a given month are as 

follows [78]: 

  

                   (4-6) 

                  (4-7) 

 

The monthly average daily global solar radiation on a horizontal surface for any year (i), (Hm,i), 

can be calculated as follows: 

 

                  (4-8) 

 

where 

Hm,i: the monthly average daily global solar radiation on a horizontal surface for month m in year i in 

J/m
2
; 

Id,h: the hourly radiation on a horizontal service for day d at hour h for month m in W/m
2
; 

d: an index for the day of the month;  

e: an index for the end day of the month, e.g., e = 31 for Jan. 

 

After (Hm,i) is calculated for each month of the year, the mean value of the monthly average daily 

global solar radiation on a horizontal surface ( ) for multiple data years can be calculated as 

follows: 

 

                    (4-9) 
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The average ambient temperature for hour h in month m can be calculated using (4-1). However, 

(4-1) calculates the mean average daily ambient temperature for a month. The average daily global 

solar radiation on a horizontal surface (Hm) for any month m is not constant for every year. The value 

of (Hm) has a mean value ( ) and a standard deviation (SDHm). 

 To account for the uncertainty in the average daily global solar radiation on a horizontal surface 

for any month and for the uncertainty in the average daily temperature for any month, a Monte Carlo 

simulation is performed in order to generate an artificial history of the ambient temperature. To 

generate the artificial history of the ambient temperature, the value of Hm is assumed in this research 

to be a normally distributed random variable with a mean value equal to ( ) and a standard 

deviation equal to SDHm. A set of random numbers between zero and one [0,1] is generated for each 

month, with the size of each set being equal to the number of days in each month (e.g., 31 random 

numbers for January, 28 random numbers for February, and so on). Using the random numbers 

generated for each month, a normally distributed random variable is generated with an average equal 

to  and a standard deviation equal to SDHm. The result is 12 normally distributed random 

variables that represent the whole year. The mean and standard deviation values of these random 

variables are the mean and standard deviation values of the monthly average daily global solar 

radiation on a horizontal surface for each respective month.  

Using these random variables for each month provides as many values of (Hm) as the number of 

days for each month. As a result, as many values of (KTm) as the number of days in each month can be 

calculated, and accordingly, as many values of the diurnal temperature swing (peak-to-peak) for each 

month as the number of days in the month can also be determined. Using (4-1), the number of daily 

temperatures equal to the number of the days in the respective month is generated. In this way, the 

changes in the diurnal temperature swing (peak to peak) during the month are accounted for.  

To account for the changes in the average monthly temperature, 12 normally distributed random 

variables (T1-T12) are generated. Each random variable represents the respective mean value and 

standard deviation for the average monthly temperatures for each month in the available data years. 

The length of each of these random variables equals the number of days in its respective month. Thus, 

using the elements of KTm generated from the random variables of Hm and the monthly temperature 

random variables, different daily temperatures for each month can be generated. 

Typical data shows that the daily temperature increases from February 15
th
 to July 15

th
 and 

mH

mH

mH
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decreases from August 15
th
 to January 15

th
. Moreover, the average temperatures seem nearly constant 

in the periods from January 15
th
 to February 15

th
 and from July 15

th
 to August 15

th
. In the developed 

temperature model, the elements of the 12 random variables (T1-T12) are therefore sorted in ascending 

order from element 16 of T2 (February) to element 15 of T7 (July) and in descending order from 

element 16 of T8 (August) to element 31 of T12 (December) and from element 1 of T1 (January) to 

element 15 of T1. The other elements, from 16 of T1 to 15 of T2 and from 16 of T7 to 15 of T8, are kept 

without sorting. This sorting algorithm prevents unrealistic jumps in temperature from month to 

month. 

The values of the random variables (T1-T12) are then merged with the generated values for the 

diurnal temperature swings, which permit temperatures for the entire 365 days of the year to be 

generated, taking into consideration the uncertainty present in the temperatures.  

4.2.2 Building the Artificial History of the Transformer Loading  

Typical daily load data for the whole lifetime of a transformer is not easy to find. No utility 

collects load data for 24 hours, 365 days for the whole lifetime of the transformer. Even if this data 

was available, it would be past data, and a method for projecting the future load of the transformer 

would still be required. The developed approach for calculating the thermal lifetime of transformer 

insulation can be used for transformers either with or without a complete load history. It can also be 

used for transformers that have recently been put into service. 

An alternative solution for modeling transformer load is to simulate the load, or to build what is 

called an ―artificial history‖ of the transformer load. To model the artificial history of the transformer 

load, the average transformer daily load curve is used; a typical curve is shown in Fig. 4-1 [79]. The 

average load curve may differ from one transformer to another. The uncertainty with respect to the 

hourly load is used to generate multiple daily load curves (artificial history) for the transformer.  

A normal distributed random variable is constructed so that its mean value is the loading at a 

specific hour on the average daily load curve, as shown in Fig. 4-1. A set of these normally 

distributed random variables is generated thereafter for every hour on the average daily load curve 

using the above approach. The standard deviations of these generated random variables are δload% of 

the rated transformer load. This technique allows the generation of different daily load curves with 

different shapes. In this approach, the uncertainty of the average daily load curve is utilized in order 

to represent different modes of transformer operation, such as normal loading, planned loading 
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beyond nameplate, and short-time emergency loading [3].   

The next step is to construct the daily load curves for every day of the year. For any daily load 

curve, the load for each hour is selected randomly from the corresponding normally distributed 

random variable constructed for that hour. This process is repeated thereafter for the remaining days 

and years. Fig. 4-1 shows three randomly selected daily load curves generated according to this 

approach. It is clear that the three curves are different in shape. As shown in Fig. 4-1, three hours 

have been selected (hours 4, 11, and 21) in order to show the generation of the hourly load for the 

daily load curves that represent the artificial history.  From the mean load curve, the probability 

distributions of the hourly loads are used to generate each hourly load for the artificial history daily 

load curves. The loads during these hours may be larger than, less than, or equal to the mean load at 

these hours. The artificial history of the loading is then generated as follows:  

1. Find the average daily load curve for the transformer. 

2. Generate 24 vectors of random numbers between zero and one (corresponding to the 24 hours 

in a day). The length of the vector equals the number of days in a year. 

3. Generate 24 normally distributed random variables with mean values equal to their hourly 

mean values and with standard deviations equal to δload% of the normal load. 

4. Use these 24 random variables to generate different daily load curves as previously explained. 

 

 

Fig. 4-1 Generation of daily load curves. 
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4.2.3 Simulating the Transformer Lifetime  

The artificial histories of the loading and the ambient temperature are used in the Monte Carlo 

simulation in order to find the annual equivalent aging factors. To complete the artificial histories, the 

steps explained in subsections 4.1.1 and 4.1.2 are repeated in order to generate more annual data for 

the load and ambient temperature. The loading and ambient temperature artificial histories are used 

year over year in order to calculate the hourly HST, from which the hourly acceleration factor (FAA) 

[3] can then be determined.  
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The annual equivalent aging factor is thus calculated as follows: 
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where 

Feq :  the equivalent aging factor for the total time period; 

TI :  the total number of time intervals (usually 24 hrs for one day or 8760 hrs for one year); 

jAA
F : aging acceleration factor for the temperature which exists during the time interval Δtj;  

Δtj :  time interval, hours 

 

The expected lifetime is then 
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where 

ELj: the expected lifetime using the equivalent aging factor for simulation year j; 

NIL: the normal solid insulation lifetime based on 50% retained tensile strength and a continuous 

HST of 110
o 
C according to [10] (7.42 years); 

Feqj: the equivalent aging factor [3] for the simulation year (j). 

 

It should be noted that the equivalent aging factor is calculated every year and that the expected 

lifetime is calculated using (4-12), assuming that the equivalent aging factors for the whole 

transformer lifetime are the same as the equivalent aging factor for the simulation year j.  

The average expected lifetime is calculated for every year of the simulation using the following 

equation:  

 

                  (4-13) 

 

 where 

: the average expected lifetime until year c of the simulation;  

j: the index for the simulation year; 

c: the number of simulation years until year c. 

 

The simulation continues until the stopping criterion is reached. The stopping criterion used in the 

Monte Carlo simulation depends on the coefficient of variation ε(c) [3, 80], where ε(c) can be 

calculated as follows: 
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ε(c): the coefficient of variation at year c of the simulation; 

E(c): the expectation of the estimate function at year c;  
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V(c): the variance in the estimate function at year c. 

 

E(c) and V(c) can be calculated as follows: 

 

                             (4-15) 

                                       (4-16) 

 

where F is the estimate function ( here). 

 

The simulation stops when ε(c) falls below a very small tolerance level (TL). The coefficient ε(c) 

becomes very small when the annual estimated average lifetimes ( ) become very close in 

magnitude. The use of this technique enables the probability distribution of the expected age to be 

built. The most probable age (mode) and the average age can also be found from the probability 

distribution. 

4.3 Case Study 

A 2 MVA transformer is assumed for the case study. The thermal characteristics according to [4] 

are as follows: 

1) rise in top oil temperature over ambient at the rated load: ΔΘTO,R= 50 °C; 

2) rise in hottest spot conductor temperature over top oil temperature, at the rated load: ΔΘHS,R = 

30 °C; 

3) ratio of load loss at the rated load to no-load loss: R = 3.2;   

4) thermal time constant of the oil for the rated load: ηTO,R= 3.5 h. 

 

The average daily load served by the transformer in per unit notation is shown in Fig. 4-1 [79]. A 

10% standard deviation is assumed for the hourly load. Ten years of data about the hourly ambient 

temperature and hourly incident radiation on a horizontal surface (I) were collected from the weather 

station at the University of Waterloo (latitude: 43.4738 N; longitude: 80.5576 W; elevation: 334.4 m 

above sea level). Some data was missing; they were estimated using linear interpolation. The monthly 
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mean values for the temperature and their standard deviations for the 10 recorded data years are 

shown in Table 4-1. The hourly total radiation on a horizontal surface (I) for each hour in W/m
2 

is 

used in order to find the monthly average daily global solar radiation on a horizontal surface (Hm,j) for 

month (m) in year (j) using (4-8). The mean values of the monthly average global daily radiation (

) for the available data years are calculated using (4-9). ( ) values with their standard 

deviations for the 10 recorded data years are shown in Table 4-1. When (4-6) and (4-7) are applied, 

the solar declination (δ) and the main sunshine hour angle for the month (ωs) can be calculated for 

each month of the year. Because (δ) and (ωs) have been determined, the monthly average daily 

extraterrestrial radiation (Ho,m) can then be calculated using (4-5). The values of (Ho,m) are shown in 

Fig. 4-2.  

As discussed in subsection 4.1.1, the 12 monthly average global daily radiation values (H1-H12) are 

assumed to be normally distributed random variables with the mean values and standard deviations 

shown in Table 4-1. The normally distributed random variables can be built by generating 12 

uniformly distributed vectors of random numbers (U1-U12) between zero and one (0,1) that 

correspond to the 12 months of the year. The length of each vector equals the number of days in the 

respective month. The 12 normally distributed random variables can be generated using the Box-

Muller method [81]. When each element of the 12 random variables (H1-H12) is divided by its 

respective monthly average daily extraterrestrial radiation value (Ho,1-Ho,12), a number of solar indices 

are produced for each month. The number of solar indices equals the number of days in the respective 

month. The values of the solar indices for each month are substituted for  in (4-2) in order to 

generate a number of diurnal temperature swings (peak-to-peak) for each month equal to the number 

of days in the month.  

To account for the changes in the average daily temperature for each month, the average monthly 

temperatures are assumed to be normally distributed random variables with the means and standard 

deviations shown in Table 4-1.  The mean value of the average ambient temperatures ( ) for month 

(m) in (4-1) is replaced with ( ) in order to account for the daily changes in the average 

temperature, where ( ) represents (T1-T12). The simulated ambient temperature for one month (30 

days) is shown in Fig. 4-3, while the simulated ambient temperatures for one complete year are 

shown in Fig. 4-4. 
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Table 4-1 Monthly average temperature and monthly average daily global solar radiation data 

month (
o
C) SDtem    

(MJ/m
2
day)     

SDHm 

Jan. -5.73 3.09 5.18 0.53 

Feb. -5.49 2.32 8.65 0.62 

Mar. -0.92 1.95 12.6 1.76 

Apr. 6.55 1.16 16.0 1.70 

May 12.8 1.7 18.8 1.79 

Jun. 18.7 1.3 20.8 1.60 

Jul. 20.6 1.33 20.8 1.46 

Aug. 19.6 1.2 18.5 1.24 

Sep. 16.0 1.28 14.7 1.54 

Oct. 9.15 1.67 8.7 0.80 

Nov. 3.41 1.55 5.05 0.49 

Dec. -3.15 2.58 4.12 0.48 

 

 

 

Fig. 4-2 Monthly average daily extraterrestrial radiation (MJ/m
2
.day). 
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Fig. 4-3 Simulated ambient temperature for one month (30 days). 

 

 

Fig. 4-4 Simulated ambient temperature for one year. 

 

The artificial history of the transformer loading is modeled as discussed in subsection 4.1.2. 

Twenty-four random variables are generated. The mean values and the standard deviations of each 

random variable are the mean values and the standard deviations of the 24 hours of the daily load 

curve. The mean values are shown in Fig. 4-1, and the standard deviation is taken as 10% of the 

normal load. The length of each random variable is the number of hours in one year (8760 hr) 

multiplied by the number of simulation years (s). The simulated load for one month is shown in Fig. 

4-5. 
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Fig. 4-5 Simulated load for one month (30 days). 

 

A Monte Carlo simulation is then performed for the transformer using the artificial histories of the 

loading and ambient temperature. The simulation begins with the artificial histories of year one. The 

HST is calculated for every hour according to [3], using the thermal data given in this study and the 

artificial load and ambient temperature data generated. The aging acceleration factor (FAA) is 

calculated for every hour, from which the equivalent aging factor (Feq) for the total year is calculated. 

The simulation continues year over year. (Feq) is calculated for each year of the simulation, and  

is calculated according to (4-13). 

The simulation continues until the stopping criterion is reached, as shown in (4-12). The 

simulation stops when the coefficient of variation ε(c) falls below the tolerance level (TL). The TL 

should be a low value; in this case it was set to 0.0005. Because the coefficient of variation oscillates 

and may fall below the TL and then rise again for the next sample, the simulation stops if the 

coefficient of variation falls below the TL for five successive years. When the criterion was applied, 

the simulation stopped after 72 years. The mean expected age at the end of the simulation was found 

to be 43.48 years. The fluctuation in the expected age of the transformer along the simulation time is 

shown in Fig. 4-6.  Fig. 4-7 shows the coefficient of variation from the start of the simulation until the 

stopping criterion is reached.  

Fig. 4-8 shows the histogram of the expected age according to the annual aging acceleration factor 

and a fitted beta distribution using Easyfit 5.0. The boundary parameters for the beta distribution are a 

minimum value a = 40.6 and a maximum value b = 46.009. The shaping parameters are α = 2.66 and   
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β = 2.3332.  The distribution mean is 43.48 years, and the mode of the distribution is calculated as 

follows [82]: 

 

                            (4-17) 

 

 

 

Fig. 4-6 Convergence of the expected lifetime. 

 

 

Fig. 4-7 Coefficient of variation. 
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Fig.4-8 Fitted beta distribution for the expected lifetime. 

 

The mode of 43.48 years is the same as the mean. The beta distribution representing the expected 

lifetime is symmetrical so that the mean is the same as the mode (most probable event). The most 

probable value of the transformer life as calculated by the proposed analysis is close to the recorded 

retirement ages of power transformers [58, 83, 84]. Although there are other parameters that can 

affect the lifetime of the transformer beside the thermal parameter, the thermal parameter (ambient 

temperature and loading) is a major contributor in determining the lifetime of the transformer. 

However, due to the fact that these parameters are not included in this study, there is a degree of 

uncertainty in this analysis. 

4.4 Comparison with Previous Work 

In [62], an attempt was made to establish the time to failure for the insulation of a transformer.  

The method relied on the use of an equivalent aging factor in order to find the lifetime of the 

insulation. An artificial model based on probability was used to model the load. More information 

about the method can found in [62]. The data from section 4.2 was used to test this technique.  

Fig. 4-9 shows the life consumption simulation curves that result after the transformer insulation 

lifetime is simulated 50 times, as stated in [62]. The fitted Weibull distribution of the simulation 

results is shown in Fig. 4-10.  Fig. 4-9 shows that the average actual usage time in days to reach the 

insulation end of life (7500 days as stated in [62]), is 41,631 days, or 114.1 years, which is not a 

practical insulation lifetime. All recorded transformer lifetimes, which depend mainly on the lifetime 
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of the insulation, are very much shorter [58, 83, 84]. 

 

 

Fig. 4-9 The resultant life consumption simulation curves for the technique presented in [62]. 

 

 

Fig. 4-10 Weibull distribution of the simulated life consumption values shown in Fig. 4-9. 

 

In [65], load and temperature were represented by a set of curves that give, for each instant, load 

and temperature values associated with a probability value. The particular load value at any time (t) 

can be calculated as follows [65]: 

 

)()()( tsdZtmtL                          (4-18)  
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where 

L(t): the load at time (t); 

m(t): the mean of the load; 

Z: a standard normal random variable. 

 

To find the value of the standard normal random variable (z), the probability of the event should 

be known. For example, for a probability of 90%, the value of (z) is 1.28. If (z) is used as a parameter, 

a set of 11 load curves can be obtained. These curves correspond to probabilities from 2.5% to 97.5%. 

Figs. 4-11 and 4-12 show the set of 11 curves representing all 11 probabilities of the load along with 

the ambient temperature. If all combinations of the daily load and ambient temperature are applied, 

121 possible combinations can be found for every day. Because the daily load is assumed to be 

constant, 121 possible combinations can thus be found for each year. For each combination, the HST 

and the corresponding loss of life are calculated. The average loss of life is calculated as follows [65]: 

 

 

jk

jkjkeqtot
QQFLOL

,
,

                 (4-19) 

 

where 

LOLave: the average loss of life; 

Feq k,j: the equivalent loss of life for load curve (k) and temperature curve (j); 

Qk, Qj: the corresponding probability values. 

 

 

Fig. 4-11 Set of load curves. 
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Fig. 4-12 Set of ambient temperature curves. 

 

When this technique is implemented and the transformer parameters from the case study in section 

4.2 are used, the loss of life values for the 121 possible combinations are shown in Fig. 4-13. It is 

clear from Fig. 4-13 that the loss of life for the first combination is too small and the loss of life for 

the last combination is too high. The reason is that the first combination combines the lowest curves 

in Figs. 4-11 and 4-12. The resultant HST is low, and as a result, the loss of life is small. On the other 

hand, the two curves in Figs. 4-11 and 4-12 are combined in combination 121. The HST for 

combination 121 is too high, and as a result, the loss of life is too high.  

 

 

Fig. 4-13 Loss of life for the 121 combinations in (4-17). 
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The average annual loss of life is found to be 0.379. Applying the benchmark value for insulation 

life according to [4], which is 65,000 hr, the transformer insulation would be expected to last 19.58 

years: less than the common lifetime of distribution transformers [58, 83, 84]. This outcome occurs 

because of the shortcomings of the method of reference [65], as explained in the introduction of this 

Chapter. 

4.5 Conclusion  

  The technique presented in this Chapter estimates the lifetime of transformer insulation based on 

the specific loading and location of the transformer. The new approach incorporates the generation of 

two artificial histories for a transformer: one for the ambient temperature and one for the load. The 

solar clearness index and average monthly temperatures are used to generate the artificial history of 

the ambient temperature. The uncertainties inherent in both the solar clearness index and the average 

monthly temperatures are considered when the ambient temperature is determined, and variations in 

the load are taken into account when the artificial history of the load is modeled. Both artificial 

histories are used as inputs to a Monte Carlo simulation technique in order to find the average lifetime 

of a given transformer. The proposed method is compared with existing methods used to determine 

the thermal lifetime of transformer insulation. The lifetime estimated by the proposed method is 

significantly closer to the recorded statistical end of life data for power transformers than are the 

results produced by the previous methods. Further, the presented method gives quantitative 

information about the transformer estimated lifetime. This quantitative information does not exist in 

the existing aging assessment by diagnostic test. Moreover, the advantage of the results of the 

presented method over the existing aging assessment by thermal modeling methods is clear from the 

comparison subsection. The reason behind this advantage is the accurate modeling of the load and 

ambient temperature uncertainties. 
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Chapter 5 

A Techno-Economic Method for Replacing Transformers: Method 

Concepts 

 

5.1 Introduction 

Determining the expected replacement date of a working transformer represents a highly important 

asset management activity, especially in view of the current aging condition of the overall power 

system infrastructure.  

As mentioned earlier in Chapter 3, a number of tests can be performed in order to obtain 

information about the technical performance of a transformer, such as tests for moisture content, oil 

gassing tendency, and furanic compounds. Other tests, such as the degree of polymerization and the 

retained tensile strength of the paper insulation, cannot be performed because they require access to 

the insulating paper within the transformer. However, even if complete test results were available, 

while they would provide a general assessment of the condition of the transformer, they would not 

yield any quantitative information concerning its life expectancy.  

A transformer near the end of its physical lifetime costs more to maintain because of the aging of 

its components, and the likelihood of its failure is also increased, resulting in increased costs for 

power interruptions and repairs. Replacing a transformer before it reaches its physical end of life is 

therefore frequently a wise option from an economic perspective.  

The main aim of the investigation presented in this Chapter is to develop a more systematic 

approach to determining the life expectancy of transformers [85]. The approach is based on an 

economic analysis of the operational characteristics of transformers in conjunction with the technical 

issues involved in the decision process. Enhanced use of the well-known bathtub failure model, 

including repairs and scheduled maintenance, is made in order to arrive at a more economically 

oriented replacement decision [85]. This goal is achieved in part by taking into account the 

uncertainty inherent in transformer failures and the corresponding interruptions in power. In essence, 

this technique constitutes a decision support system for determining the life expectancy of a 

transformer. 
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The main challenge was to develop an approach that would address the lack of correlation 

between a diagnostic test performed on a transformer specimen and the expected life of the 

transformer. A transformer aging due to physical and chemical degradation is caused by the 

simultaneous actions of thermal, electrical, and mechanical stresses. All of these stresses ultimately 

lead to transformer failure, which is depicted as the bathtub reliability curve [86-88].  In essence, the 

bathtub curve delineates the synergistic effects of the stresses applied to the transformer as well as the 

resistance of the transformer to these stresses. The bathtub failure model is therefore used to represent 

the technical aspects of the decision to replace a transformer based on economic reasons. The effect 

of the use of the bathtub failure model on the time and cost required for repairs, the cost of 

interruptions, the uncertainty in the time-to-failure and time-to-repair, and the change in the failure 

rate throughout the expected useful lifetime, is also considered in the presented method. The 

uncertainty in the time-to-failure and time-to-repair is modeled using a Monte Carlo simulation 

technique, from which a probability distribution for transformer outage time is generated and is 

subsequently used in order to calculate the repair time and cost of interruptions. The repair and 

interruption costs together with the operating costs are then used to generate the equivalent uniform 

annual cost (EUAC) [86-88] for the existing transformer (defender) and for a new transformer 

(challenger). The EUACs for the defender and the challenger are compared in order to determine the 

most economical year in which to replace the defender.  

5.2 Replacement Model Concepts 

Fig. 5-1 is a flow chart that represents the steps in the proposed replacement method. The new 

method consists of five main stages: the data initialization stage, the calculation of the transformer’s 

present worth stage, the calculation of the annual costs stage, the calculation of the EUAC stage, and 

the decision stage. The main objective is to determine the total annual costs and the present worth for 

each year for both the challenger (new transformer) and the defender (existing transformer). This data 

is then utilized to plot the EUAC curves for the challenger and the defender, which then establish the 

replacement year, as discussed in subsequent subsections.  

5.2.1 Data Initialization Stage  

The first stage of the replacement method is to acquire the data for both the new and the existing 

transformers. This data includes the capital cost of the transformer, the failure rate in the normal 

region, the average repair time, the average switching time, the frequency and average duration of 
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scheduled maintenance (assuming time-based maintenance), the transformer rating, the losses, and 

the expected useful lifetime. The next step is to enter the load data. This data includes the size of the 

load served by the transformer and its load factor, the load type or types, and the percentage of each 

load type if it comprises several types. The next step is to input the financial data, which include the 

energy charge, the demand charge, the interest rate, and the sector customer damage function (SCDF) 

for each of the load sectors. The SCDF is explained in subsection (5.2.3.3). 

For the purposes of this study, the transformer failure rate is considered to follow the bathtub 

curve, which is considered the most acceptable failure rate model [86-88]. A bathtub curve that 

represents a transformer failure rate is shown in Fig. 5-2(a). Next, the starting point (year) of the 

wear-out stage and the end point (year) of the infant stage in the bathtub curve must be determined for 

both the new and the existing transformers. These steps are important in the calculation of the present 

worth of the transformer for each year of its remaining lifetime and in the calculation of the repair and 

interruption costs for each year of the remaining useful lifetime. This information can be determined 

from surveys of transformer failures, or through engineering experience with populations of similar 

transformers [81, 89, 90]. All of these data are used in order to calculate the   transformer’s annual 

costs and present worth, and these values are then used in order to obtain the transformer EUAC 

curves. 

5.2.2 Calculation of the Transformer’s Present Worth Stage 

The next stage involves the calculation of the present worth at each year of the useful lifetime of 

both the new and the existing transformers. A transformer’s present worth is calculated using a 

proposed depreciation method, which is different from the concept used by accounting specialists, 

which is discussed in depth in [66, 68, 91]. The two usual main types of time-based depreciation are 

straight line depreciation and accelerated depreciation, with only one depreciation method being used 

throughout a lifetime. The presented technique for calculating an asset’s present worth is based on 

using the depreciation rules in a new way. A different depreciation method is used for each stage of 

the lifetime in order to account for the changes that occur during the three different lifetime stages: 

infant, normal, and wear-out. Therefore, the present worth of the transformer for each year of its 

lifetime can be assumed to be the real market value of the transformer. 
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Fig. 5-1 Flow chart for the proposed replacement method. 
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Fig. 5-2 The proposed depreciation technique (a) Transformer failure rate model (b) Present worth of 

the asset based on the stages of the physical lifetime. 

 

According to the bathtub pattern, the lifetime is segmented into the infant, normal, and wear-out 

stages, so the suggested depreciation model is likewise divided into three stages. The depreciation 

method for each stage depends on the properties of the failure rate (constant, increasing, or 

decreasing) in the corresponding stage. Straight line depreciation is thus suitable for the normal 

region because the failure rate is constant, and the depreciation of the transformer is therefore 

constant in this stage. In the wear-out stage, the depreciation of the transformer increases due to wear 

and tear. In the later years of the wear-out region, the value of the transformer is nearly equal to its 

salvage value; i.e., the transformer operator can no longer resell the transformer. The depreciation 

charges in the later years of the wear-out region are thus less than those in the early years. Therefore, 

an accelerated depreciation method such as the sum-of-years-digits (SOYD) method is more 

appropriate for the wear-out region. For the infant region, straight line depreciation is suggested. The 

infant region is very short compared to the other stages. It normally ends in one year or sometimes in 

even less than one year, so which depreciation method is used is unimportant because the difference 

is very small.   

Fig. 5-2(a) depicts the bathtub failure model [86-88]. Fig. 5-2(b) represents a transformer’s present 

worth (market value) throughout its useful lifetime, calculated using the proposed depreciation 
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technique. After the depreciation of the transformer is modeled according to the above method, the 

present worth of the transformer at any point in its useful lifetime can be calculated according to 

formula (3-8). 

According to the proposed depreciation model, the depreciation charges d(j) in the early years of 

operation, i.e., until the starting point of the wear-out stage, are calculated according to the straight 

line depreciation method. After the starting point of the wear-out region, the sum of years digits 

depreciation (SOYD) method is used. To calculate the depreciation charges using the SOYD method, 

a value for the capital cost must be included as part of the calculation equation [66-68]. The actual 

capital cost of the transformer cannot be used because the SOYD depreciation method is used only in 

the wear-out region, not from the beginning of the transformer’s lifetime. To solve this problem, in 

the equation used to calculate the depreciation charges using the SOYD method in the wear-out stage, 

the present worth of the transformer at the end of the normal region is used in place of the actual 

capital cost. These depreciation charges are used in (3-8) to calculate the present worth of the 

transformer at the end of any year. Details about the straight line and accelerated depreciation 

methods can be found in [66, 68, 91].  

5.2.3 Calculation of the Annual Costs Stage 

The purpose of this stage is to calculate the annual cost of interruptions, the cost of repairs, and the 

operating cost for both the new and existing transformers in conjunction with their present worth in 

order to calculate the EUAC value for both the new and existing transformers. The bathtub model for 

the failure rate and the uncertainty associated with the failure rate of the transformer are both taken 

into account when the annual costs are calculated. The next subsections explain the steps involved in 

calculating the annual costs of the new and existing transformers.  

5.2.3.1 Modeling the Transformer Failure Rate 

The first step in determining the annual costs is to model the changes in the failure rate throughout 

the useful life of the transformer. The calculated failure rate values for each year of the transformer’s 

lifetime are then used to calculate the annual cost of repairs. They are also required in the Monte 

Carlo modeling of the transformer outages that is utilized in the calculation of the annual cost of 

interruptions.  

To model the changes in the failure rate during the transformer’s lifetime, a time-varying scaling 

factor is used [88]. The scaling factor is constant in the normal stage, increases in the wear-out stage, 
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and decreases in the infant stage, as shown in Fig. 5-3. The time-varying failure rate is calculated as 

follows: 

 

n
tt   )()(                                 (5-1) 

 

where  

λ(t): the failure rate at year (t); 

λn : the failure rate of the normal region of the bathtub curve;  

α(t): the  exponential time-varying scaling factor. 
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Fig. 5-3 Time-varying scaling factor. 

 

The variable (λn) represents the constant failure rate normally used for the transformer; (λn) is thus 

an input in (5-1). The scaling factor decreases exponentially towards the end of the infant region, 

where it diminishes to a scaling factor of unity in the normal region; it subsequently increases 

exponentially in the wear-out region.   

The scaling factor during the infant region is given by [88]  
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where  

k1: the maximum value of the scaling factor at the beginning of the infant period;  

β: a factor that is calculated by substituting unity for α(t) at the end of the infant region. 
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where tinfant denotes the infant period in years. 

 

During the wear-out period, the scaling factor begins to increase exponentially [88]: 
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where the k2 and  γ  factors represent the rate of exponential increase. 

 

(k2) is determined by substituting unity for α(t) at  the starting point of the wear-out region. 
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where  

lifetime: the expected useful lifetime of the transformer;  

two: the duration of the wear-out region in years. 

 

γ is the calculated scaling factor at the end of the expected useful lifetime given by 
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where αmax represents the maximum value of the scaling factor at the end of the wear-out region. 

 

The values of k1, tinfant, two, and αmax should be provided as data that are complementary to the 

initial data. By substituting for tinfant in (5-3), lifetime and two in (5-5), and two and αmax in (5-6), the 

scaling factor can be calculated for the infant and the wear-out regions of the transformer’s lifetime 

using (5-2) and (5-4). The failure rate at any year (t) can then be calculated using (5-1).  
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5.2.3.2 Modeling the Transformer Outage Probability Distribution 

The next step is to calculate the transformer outage probability distribution using the Monte Carlo 

technique. This probability distribution is used in the next step in order to calculate the annual cost of 

interruptions. The transformer failure rate is modeled year by year as mentioned before. According to 

Fig. 5-2(a), each year of the transformer’s lifetime has an average failure rate value, which can be 

calculated according to the previous step. The output of the Monte Carlo simulation is the probability 

distribution of the transformer outage time. The transformer outage is modeled using the four-state 

outage model shown in Fig. 5-4 [81, 92]. In this model, the transformer is typically in one of the 

following four states: 

(i) State (1) is the normal operating state (in service), in which the transformer is operating and 

feeding its loads. 

(ii) State (2) is the switching state (out of service), in which the transformer is transferred from the 

up state to the switching state in the case of a forced outage (failure) in order to be ready for 

repair.  

(iii) State (3) is the repair state (out of service), in which the transformer is switched out after the 

failure in order to start the repair process. 

(iv) State (4) is the scheduled maintenance state (out of service), in which the transformer is shut 

down in order to perform scheduled maintenance. 

 

According to Fig. 5-4, the transformer outage is either a forced outage or an outage due to 

scheduled maintenance. The time to failure (TTF), time to switch (TTS), and time to repair (TTR) are 

all random variables governed by specific probability distributions. The time during scheduled 

maintenance, which is called here the scheduled repair time (SRT), is also a random variable 

governed by a specific probability distribution. The Monte Carlo simulation technique is used to 

account for uncertainties in the failure rate, the TTF, the TTS, the TTR, and the SRT. The sequential 

Monte Carlo simulation is used to evaluate the transformer outage time and its probability 

distribution. A transformer is typically either in service (up state) or out of service (down state). A 

transformer is considered to be in its up state when it is operating and feeding its loads and to be out 

of service (down state) during switching, repairs, or scheduled maintenance. The parameters 1 and 0 

are assigned for the up and down states of the transformer, respectively.  
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Fig. 5-4 Transformer four-state outage model. 

 

Two artificial histories are generated for the transformer in order to simulate the forced and 

scheduled outages using the Monte Carlo simulation. The sampling technique is the state duration 

sampling (sequential sampling) [81]. The state duration sampling is based on sampling the probability 

distribution of the component state duration (up or down). In this approach, chronological component 

state transition processes for all system components are first simulated (artificial history). The 

chronological state transition process for the total system is then created by combining all of the 

chronological component state transition processes (total system artificial history) [81]. 

In the present case, the total transformer artificial history is generated from the forced outage 

artificial history and the scheduled outage artificial history based on Fig. 5-4. These two artificial 

histories are combined (multiplied) to generate the total transformer artificial history, which is then 

used in order to determine the probability distribution of the outage time per failure. 

In the scheduled maintenance process, time-based maintenance (TBM) is assumed to be the 

maintenance strategy, implying that maintenance is performed at predetermined intervals: i.e., the 

time to scheduled maintenance (TTSM) is constant. As a result, the SRT is the only random variable 

in the scheduled maintenance artificial history. The scheduled maintenance artificial history has the 

form shown in Fig. 5-5(a). The steps taken to generate the scheduled maintenance artificial history are 

as follows [81, 92]: 
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Step 1: Let the initial state of the transformer be the up state, i.e., the transformer is operating. 

Step 2: Generate a random number sequence (U1) between (0, 1) with minimal correlation.  

Step 3: Find the durations of the SRT using the following formula: 

 

)(
1

1
UFSRT


                                                (5-7) 

 

where  

SRT: the scheduled repair time random variable;  

F
-1

(U1): the inverse of a selected cumulative probability distribution function. 
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Fig. 5-5 The transformer artificial history (a) scheduled maintenance artificial history (b) forced 

outage artificial history (c) total transformer artificial history. 

 

The resulting SRT variable is a random variable that is randomly distributed according to the 

selected probability distribution. The artificial history is built by starting the history with the TTSM 

and then inserting the first element of the SRT calculated in step (3). The TTSM is then inserted again 

into the artificial history followed by another value of the SRT, and so on, until the end of the 
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artificial history is reached.  

 In the forced outage artificial history, three variables exist: TTF, TTR, and TTS. The steps for 

generating the artificial history of the forced outage are as follows [81, 92]: 

Step 1: Let the initial state of the transformer be the up state, i.e., the transformer is operating. 

Step 2: Generate three sequences of random numbers, (U2, U3 U4), between (0, 1) with the same 

specifications as previously mentioned. 

Step 3: Similarly, sample the duration of the TTF as explained above using the following formula: 

 

                                             (5-8) 

 

Step 4: Repeat step 3 for the TTS and TTR using the random number sequences U3 and U4. 

 

The resulting variables TTF, TTS, and TTR are random variables, which are randomly distributed 

according to the selected distribution types. The artificial history is built by starting the history with 

the first element of the TTF calculated from step 3 and then inserting the first element of the TTS 

calculated in step 4. The first element of the TTR calculated in step 4 is then inserted to complete one 

cycle. The next cycle starts with the insertion of the second values of the TTF, TTS, and TTR random 

variables, following the same approach illustrated above, and so on, until the end of the artificial 

history is reached. The artificial history is then as shown in Fig. 5-5(b). 

The total artificial history of the transformer looks like the one shown in Fig. 5-5(c). The total 

transformer chronological artificial history can be used for any type of reliability analysis required, 

such as calculating the outage time per year and its probability distribution, or the outage time per 

failure and its probability distribution [81]. The smallest time unit taken in this simulation is one half-

hour because smaller time units take considerable simulation time without much effect on the final 

results.  The simulation continues year after year, and the average outage time per failure is calculated 

during the simulation time using the following formula:  
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where  

ra: the average outage time per failure; 

rj: the outage time for failure (j);  

T : the total number of transformer outages during the simulation period (artificial history). 

 

The simulation of the artificial history continues until the stopping criterion is reached. The 

stopping criterion of the Monte Carlo simulation depends on the coefficient of variation (ε) [80]. The 

same equations (4-12) to (4-14) can be used here. The simulation stops when (ε) goes below a 

specific small tolerance level (TL). The estimate function is (ra) 

To obtain the probability distribution of the outage time per failure (or duration), the probability of 

outage events must be calculated for each probable duration. The probability of (x)-hour transformer 

outages is calculated using  

 

TO

TO
P x

x                              (5-10) 

 

where  

Px: the probability of transformer outage occurring for x hours;  

TOx: the total number of transformer outages of x hours during the simulation (artificial history). 

 

These procedures for calculating the outage time per failure probability distribution are performed 

on a year-by-year basis, i.e., they are repeated each year of the useful lifetime of the transformer 

because the failure rate varies during the different life stages. The result is a number of probability 

distributions for the outage time per failure equal to the number of useful lifetime years of the 

transformer. The next subsection describes how these probability distributions are used to calculate 

the annual cost of interruptions.   

5.2.3.3 Calculation of the Annual Cost of Interruptions 

The next step is to calculate the annual cost of interruptions using the probability distributions of 

the outage time per failure calculated in the previous step. Customer surveys provide interruption cost 

estimates by sector or by what is termed the sector customer damage function (SCDF) [81, 93]. A 
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cost of interruption survey was conducted in Canada to establish the SCDF for a variety of customers 

[81, 94-96]. Interruption cost data are normalized by dividing the cost of the interruption by the 

annual peak load in kW ($/kW). The SCDF represents a function of the cost of the interruption per 

unit of power and the duration of the outage in each sector. The SCDF is a curve that relates the cost 

of a power interruption in ($/kW) to outage durations of 0.33, 1, 4, and 8 hours. If the loads supplied 

by the transformer are composed of different types (sectors), a group customer damage function 

(GCDF) should be calculated in order to determine the total cost of interruptions due to the 

transformer outage [81, 94-96]. The GCDF is also a curve that relates the cost of a power interruption 

in ($/kW) to outage durations of 0.33, 1, 4, and 8 hours. To determine the GCDF, weighting factors 

are calculated (wk) for all sectors. The weighting factor for a sector is the annual energy consumption 

of that sector expressed as a percentage of the total annual energy consumption. Equation (5-14) 

illustrates the method for calculating the GCDF [81, 95]: 

 





S

k

kjkj wSCDFGCDF

1

                  (5-11) 

 

where  

SCDFjk: the sector customer damage function for load type (k) and duration index (j); 

wk: the weighting factor for load type (k);  

S: the number of load sectors.  

 

Equation (5-14) is applied on a point-by-point basis; e.g., the GCDF1 represents the value of the 

GCDF for a 0.33 hr outage duration, and GCDF1 denotes the value of the GCDF for a 1 hr outage 

duration, and so on. The resulting total cost of interruption is high if the bulk power supplied by the 

transformer is directed mainly to a high SCDF, and vice versa. 

The classic method for calculating the annual cost of transformer interruptions is based on the 

multiplication of three terms: the failure rate times the average load served by the transformer times 

the value of the GCDF that corresponds to the average outage time per failure [81, 95]. However, this 

method is not accurate because it assumes that the outage time per failure is certain, but in fact, it has 

an inherent uncertainty. In addition, the failure rate of the transformer is not constant because it is 

governed by the bathtub curve.  
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In the proposed technique, the probability distributions of the outage time per failure determined 

in subsection (5.2.3.2) are used as a means of finding the cost of interruption distribution. For any 

year, the cost of interruptions in the current year is calculated using the probability distribution of the 

outage time per failure for that particular year. The cost of interruption is calculated for each probable 

outage event by multiplying the failure rate of the year by the average load served by the transformer 

by the GCDF that corresponds to the outage time of each probable event. The result is a probability 

distribution for the cost of interruptions based on the probable outage time per failure event 

determined earlier. The cost of interruptions (Cp(t)) of a particular year (t) is the average value of this 

probability distribution. Due to the non-linearity of the SCDFs, this calculated average cost of 

interruptions for each year is not equal to the cost of interruptions that corresponds to the average 

outage per failure.  

5.2.3.4 Calculation of the Annual Cost of Repairs 

In a manner similar to that used for the annual cost of interruptions, the annual cost of repairs is 

used to calculate the EUAC. The repair and scheduled maintenance costs are assumed to be governed 

by a linear relationship. A constant amount of money (b) is assumed to be spent for any repair or 

scheduled maintenance. A variable amount (a) is assumed to be spent for each hour of the outage 

duration.  

 

)()()( tbratC ar                        (5-12) 

 

where  

Cr(t): the annual repair cost for year (t);  

a: the variable repair cost per hour; 

ra: the average outage time per failure for the particular year; 

b:  the constant repair cost per outage;  

λ(t): the average failure rate for the particular year (t). 

 

5.2.3.5 Calculation of the Annual Operating Cost 

The annual operating cost is also used in the calculation of the EUAC. The operating cost is divided 

into the energy cost and the demand cost. 
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where  

Co: the annual operating cost;  

LF: the load factor; 

tariff: the energy tariff ($/kWh);  

Pnl: the no load power losses (kW);   

Pl: the load losses (kW);  

Pau: the auxiliary losses;  

Prob.: the probability of operation of the auxiliary equipment;  

Dc: the monthly demand charge ($/kW). 

 

The main auxiliary equipments are the motors used for operating the forced air and the oil pumps. 

In large units, these motors must operate when the load exceeds a specific value. The probability of 

the operation of the auxiliary equipment is equal to the number of operating hours of the pumps 

expressed as a percentage of the number of hours in any given month. 

The three main annual costs are then calculated for the new transformer over each year of its 

useful lifetime. Similarly, the annual costs are also determined for the remaining years of the useful 

lifetime of the existing transformer. As indicated in Fig. 5-1, the next stage is to determine the EUAC 

for both the new and existing transformers, which will be utilized for arriving at a replacement 

decision.  

5.2.4 Calculation of the EUACs for the New and Existing Transformers  

The next and most important stage is to calculate the EUACs for the new and existing 

transformers. The cash flow diagram for the whole lifetime of a new transformer is shown in Fig. 5-6. 

Fig. 5-6 shows that annual costs start with high values due to the high failure rate in the infant region. 

The costs become steady in the normal region and then begin to increase in the wear-out region due to 

the increase in the failure rate, which causes the cost of interruptions and repairs to increase as well.  

The calculation of the EUAC relies on the conversion of all unequal annual costs of the 

transformer into equivalent equal annual costs, beginning with the decision year (present age of the 
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existing transformer) and terminating at each year of the remaining years of the transformer’s useful 

lifetime [67, 68, 91, 97]. The result is a curve that represents the equivalent equal annual cost of 

keeping the transformer in service each year for the duration of the expected remaining physical 

lifetime (cf. Fig. 5-7). The curve depicted in Fig. 5-7 indicates the minimum uniform annual cost 

($EUAC-min,), which represents the amount of funds expended by the transformer’s owner every year 

in order to maintain the transformer in service for a period of 12 years after the decision year (most 

economical remaining lifetime).  

 

Capital cost

Annual costs

Salvage value

 

Fig. 5-6 Cash flow diagram for the new transformer. 
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Fig. 5-7 Equivalent uniform annual cost (EUAC) for a transformer. 

 

The EUAC of the new transformer is calculated in the same way as that of the existing transformer 

except that the calculation starts from the first year of the lifetime of the new transformer. The result 
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is a curve that is nearly the same as the one shown in Fig. 5-7. However, the x-axis represents the 

total useful lifetime rather than the remaining useful lifetime. The EUAC for a specific year (the 

calculation year) is determined by calculating the future value of all transformer costs (the capital cost 

and the annual costs) preceding the calculation year minus the present worth of the transformer at the 

calculation year. The resultant value is converted into equal annual installments from the first year to 

the calculation year [66, 68]. The steps in the calculation of the EUAC for the new transformer are as 

follows.  

The first step is to calculate the future value: 

 

                                                               (5-14) 

 

where  

FVm: the future value of all transformer costs at the calculation year (m) minus the present worth of 

the transformer at year (m); 

(F/P, i, m): the single-payment future-worth factor for interest rate (i) and period equal to (m) years;  

PW (m): the transformer’s present worth at year (m);  

m: the year for which the EUAC is being calculated (the calculation year). 

 

The single-payment future-worth factor can be calculated as follows; 

 

                (5-15) 

 

The second step is to convert the net future value into equal annual installments, which are the EUAC 

from the first year until year m (calculation year). 

 

                (5-16) 

 

where  

EUACm: the equivalent uniform annual cost for year m;  
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(A/F,i,m): the sinking fund factor for interest rate (i) and period equal to (m) in years. 

 

The sinking fund factor is given by 

 

                  (5-17) 

 

The EUAC for the new transformer is calculated from the first year until the end of its useful 

lifetime; i.e., the result is a single curve. For example, the EUAC for year five on the curve is the 

expected annual cost paid by the transformer owner to keep it in service for five years. For most 

cases, the most economical lifetime for a new asset is that of the useful lifetime of the asset or very 

close to it. The minimum point of the EUAC curve for the new transformer represents the economic 

lifetime of the new transformer. 

The steps in calculating the EUAC curve points for the new transformer are repeated for the 

existing transformer. The EUAC curve in this case is plotted from the year following the present age 

of the existing transformer up to the end of its useful lifetime. Equations (5-14) to (5-17) are used for 

the case of the existing transformer except for two changes. The first change is that (m) now 

represents the calculation year starting from the present age of the existing transformer. For example, 

if the present age of the existing transformer is 22 years, then the year following the 22
nd

 year is the 

first calculation year for the existing transformer, and (m) in this case is 1 and not 23. The second 

change is that the capital cost (C) is replaced by the present worth at the present age of the existing 

transformer. The minimum point of the EUAC curve for the existing transformer is recorded. This 

point represents the economic lifetime of the existing transformer. 

5.2.5 Decision Stage 

After the EUAC is calculated for the new and existing transformers, two curves are generated. The 

first is the EUAC curve for the new transformer, which runs from the first year of the transformer’s 

lifetime until the end of its useful lifetime. The second curve is the EUAC curve for the existing 

transformer, which starts from the year following the present age of the existing transformer and ends 

at the last year of its useful lifetime. The minimum EUAC is recorded for the existing and the new 

transformers (EUAC for the most economical remaining lifetime). The minimum EUAC for the new 

transformer is compared to the minimum EUAC for the existing transformer. If the minimum EUAC 
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for the new transformer is less than the minimum EUAC for the existing transformer, then the 

existing transformer should be replaced with the new transformer in the current year. If this condition 

is not satisfied, then the existing transformer should not be replaced.  

The question now is when the existing transformer should be replaced. To solve this problem, the 

EUAC curves for the existing transformer should be plotted starting from each year subsequent to the 

present age of the existing transformer, one year at a time. The result is a family of curves equal to the 

remaining lifetime years of the existing transformer. None of these curves coincides with the 

preceding curve, because the cost calculations for each EUAC curve do not take into consideration 

the past costs of the preceding year, which is termed the non-owner viewpoint [66]. The same 

approach used in plotting the first EUAC curve for the existing transformer is used to plot the 

subsequent EUAC curves that begin in each of the years subsequent to the present age of the existing 

transformer, one year at a time. The EUAC curves for the existing transformer starting from each 

subsequent year are plotted year after year until the minimum point of the EUAC curve for the new 

transformer is less than the minimum point of the EUAC curve for the existing transformer, which 

commences at some year between its present age and its useful lifetime. This is the year during which 

the transformer should be replaced; otherwise, the operator will incur higher annual costs.   

The performance of the presented techno-economic replacement method for transformers is 

evaluated in the next Chapter. Two case studies are used to test the performance of the proposed 

method. The effect of changing parameters is also tested in the sensitivity analysis section.  

5.3 Conclusion 

A new method for determining the life expectancy of transformers, and accordingly the time to 

replacement, has been proposed. This method has the advantage of being based on both economic 

constraints and the technical parameters of the transformer. Transformer stresses are indirectly 

accounted for by the use of the bathtub model of the failure rate. The new method is, in essence, a 

reliability-based method that is supported by consideration of the economic factors in transformer 

operation; it yields the likely number of years remaining in the lifetime of a transformer before it is 

removed from service. The transformer costs used in the economic analysis are calculated based on 

the bathtub failure model, while a linear repair model is employed in order to calculate the repair 

costs. A Monte Carlo technique and the failure rate data obtained from the bathtub model are used in 

order to calculate the annual cost of interruptions. A new depreciation method is introduced for 
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determining the present worth of the transformer throughout its lifetime. This depreciation method is 

designed to mimic the differences in the failure rate represented by the bathtub model. The 

transformer’s present worth, the cost of interruptions, the cost of repairs, and the cost of operation are 

used to obtain the EUAC for both the new and the existing transformer.  The EUAC concept is 

utilized in order to determine the most economical replacement year.  

In a time of aging power system assets, it is important to plan for the retirement of equipment. The 

method presented in this Chapter provides an effective tool for estimating the life expectancy of 

power apparatus assets: a unique advantage not offered by other existing procedures, which can 

determine only whether the equipment should be replaced at the time of the assessment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 76 

Chapter 6 

A Techno-Economic Method for Replacing Transformers: Case 

Studies 

 

6.1 Introduction 

This Chapter presents the performance evaluation of the techno-economic replacement method for 

a transformer presented in the previous Chapter. Two case studies are used in this Chapter to test the 

performance of the proposed method. It is found that the proposed method gives reliable results in the 

two case studies. The effect of changing the parameters is also tested in the sensitivity analysis 

section. Moreover, a comparison is done with a thermal based technique. 

6.2 Case Study I 

6.2.1 Data Initialization 

In this case study, a 2 MVA power transformer is assumed to feed an industrial plant as shown in 

Fig. 6-1. At the end of the 21
st
 year of the defender (existing transformer) age, it is required to 

determine the best year to replace the transformer using the techno-economic replacement method. 

The transformer load is assumed to be of one type and the challenger (new transformer) capital cost is 

assumed to be constant, with no annual increase in the cost for the sake of illustration and simplicity. 

The annual increase in the challenger’s capital cost will be considered in case study II. Moreover, 

different load types with different sector customer damage functions (SCDFs) will be considered in 

case study II to represent a real situation. 

 

 

Fig. 6-1 Single line diagram for the system of case study I. 
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The technical specifications of the new and existing transformers, such as the useful lifetime, the 

infant and normal regions’ durations, the failure rate, repair times, and losses, are assumed to be 

identical for the defender and the challenger. The new and existing transformers’ technical data are 

documented in Table B-I, the load data are documented in Table B-II, and the financial data are 

documented in Table B-III in appendix B. The SCDF of the industrial load is shown in Table B-IV in 

appendix B. In this study, the existing transformer capital cost is assumed to be $150,000 and the new 

transformer capital cost is $250,000. The useful lifetime of both the challenger and the defender is 

assumed to be 35 years [83]. The transformers are assumed to start wear-out at the end of year 20 [89, 

90]. The infant mortality region is taken as one year for both transformers. The failure rates of the 

normal region of the new and existing transformers are assumed to be 0.07 failures/year [98]. The 

average transformer repair time is 24 hour/failure [98]. The mean switching time, the scheduled 

maintenance rate, and the average scheduled maintenance time are assumed to be 1 hour, 0.2 

occurrence/year, and 10 hrs/failure, respectively [81].  

According to [89], the failure rate in the wear-out region doubles in ten years. The wear-out region 

duration in this study is taken from year 21 to year 35, i.e., 15 years; as a result, the failure rate at the 

end of the transformer lifetime is taken as 0.2 failure/year, which is nearly three times the failure rate 

in the normal region. The infant region failure rate is higher than the normal region failure rate, but 

lower than the maximum failure rate in the wear-out region, so, the maximum failure rate in the infant 

region is taken as 0.105 failure/year (1.5 times the failure rate in the normal region [99]). The SCDF 

of the industrial plant is taken from [96] and is shown in Table B-IV in appendix B. The transformer 

depreciation is taken as a straight line in both the infant and the normal regions. The infant region is 

very short (one year), therefore, it is included in the normal region in the depreciation calculation. The 

accelerated depreciation method used in the wear-out region is taken as sum of the years digits 

(SOYD). The present age of the existing transformer is taken as 21 years (end of year 21). 

6.2.2 Present Worth of Existing and New Transformers  

The present worth of the existing and new transformers are calculated using the proposed 

algorithm presented in Chapter 5. The present worth of the existing and new transformers across their 

lifetimes are shown in Fig. 6-2.  
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Fig. 6-2 Existing and new transformers’ market values along their lifetimes. 

 

6.2.3 Calculation of the Annual costs  

6.2.3.1 Annual cost of Interruption 

The SCDF is used directly here as the transformer load is of one type; therefore, the calculation of 

group customer damage function (GCDF), which represents the damage function for a group of 

different loads, is not needed. The transformer outage is modeled using the Monte Carlo technique. 

The time to failure (TTF) is modeled as exponentially distributed while the time to repair (TTR), time 

to switch (TTS), and scheduled repair time (SRT) are modeled as log-normally distributed [81]. Use 

the time-varying failure rate model to find the average failure rate in all years of the useful lifetime as 

shown in Fig. 6-3. 

The TTS and SRT will have standard deviations (SD) of mean/6 while the SD of the time to repair 

is mean/2. The log-normally distributed SRT, TTR, and TTS can be generated as follows [81]: 

1. Generate four independent uniformly distributed random number sequences U1, U2, U3, and 

Utemp between zero and one (0, 1). U1 and U2 are used to generate SRT and TTR, U3 and Utemp 

are used to generate TTS. Utemp is a temporary random number sequence used to help 

generating the log-normally distributed random variates. 

2. Use the independent random numbers U1 and U2 to generate two independent normally 

distributed random variates (Z1, and Z2) using the Box-Muller method as follows: 
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3. Use the independent random numbers U3 and Utemp to generate two independent normally 

distributed random variates (Z3, and Z4) using the Box-Muller method as follows: 
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4. Calculate X1,X2, and X3 as follows: 
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Where, μj and ζj are the means and standard deviations of the normal distribution 

corresponding to the log-normal distribution. The parameters μ and ζ can be calculated as 

follows: 
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5. SRT, TTR, and TTS are log-normally distributed random variates and are calculated as 

follows: 

 



 

 80 

1X
eSRT                      (6-8)

 

         2X
eTTR                                  (6-9) 

3X
eTTS                    (6-10) 

 

 

Fig. 6-3 failure rate in the useful lifetime of case study I. 

 

The exponentially distributed can be generated as follows [81]: 

1. Generate a uniformly distributed random number sequence U4 between zero and one (0, 1).  

2. Produce the cumulative distribution function for exponential distribution F(t) to produce TTF 

as follows. 

The probability distribution (density) function for the exponential distribution is 
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Its cumulative distribution function is 
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Using the inverse transform, then X can be calculated as: 
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Where U4 is a uniformly distributed random number between (0,1). Since (1-U4) distributes 

uniformly in the interval (0,1) the same way as U4, as a result: 
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The transformer artificial history is generated as stated in section (5-2) and the estimate function is 

calculated throughout the artificial history. The Monte Carlo simulation stops when the coefficient of 

variation (ε) of the estimate function goes below TL of 0.0005. Samples of the convergence of the 

estimate function in the Monte Carlo simulation is shown in Figs. 6-4 to 6-7. 

 

 

Fig. 6-4 Convergence of the estimate function in Monte Carlo simulation in the first year. 
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Fig. 6-5 Convergence of the estimate function in Monte Carlo simulation in the normal region (year 2 

to year 21). 

 

 

Fig. 6-6 Convergence of the estimate function in Monte Carlo simulation in the year 30. 
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Fig. 6-7 Convergence of the estimate function in Monte Carlo simulation in the year 35. 

 

The time-varying failure rate model is used to find the probability distribution of outage time per 

failure in each year of the transformer useful lifetime (the probability distributions of outage time per 

failure for both new and existing transformers are the same because the reliability data is assumed to 

be the same for both). Figs. 6-8 to 6-11 are samples of the resultant probability distributions in the 

infant, normal, and wear-out stages of the transformer life. These probability distributions are used to 
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achieved by performing basic fitting for the SCDF. A quadratic fitting is a suitable choice. The 
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$270 is multiplied by 2 to represent a rough estimate of any spare parts needed. The total variable cost 

is $540 per hour. The annual repair cost is shown in Fig. 6-13. 

 

Fig. 6-8 Probability distribution of the outage duration per failure in the first year of the transformer 

life. 

 

 

Fig. 6-9 Probability distribution of the outage duration per failure in the normal region (year 2 to year 

21) of the transformer life. 
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Fig. 6-10 Probability distribution of the outage duration per failure in year 30 of the transformer life. 

 

 

 

Fig. 6-11 Probability distribution of the outage duration per failure in year 35 of the transformer life. 
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Fig. 6-12 Quadratic curve fitting of industrial SCDF 

 

 

Fig. 6-13 Annual costs of the new and existing transformers for case study I. 
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lower than 3 MVA, therefore, it does not need oil pumps or fans. The calculated annual operating cost 

according to presented technique is shown in Fig. 6-13. 

6.2.4 Calculation of the EUAC and Replacement Decision  

EUAC is a financial method to show the most economical lifetime of the equipment. The EUAC 

technique indicates how much money, spread over equal payments, will be paid annually to keep the 

equipment in service a certain number of years. EUAC is used in the proposed method to decide the 

most economical replacement time. The EUAC for the challenger is calculated starting from the first 

year. The EUAC for the defender is calculated starting from the year following the present age of the 

existing transformer. Calculation of the EUAC for the defender ignores all past costs and concentrates 

only on future costs, which is called the non-owner point of view. This is a very important concept for 

calculating the replacement year. 

In the present case study, the present age of the existing transformer is taken as the end of the 21
st
 

year of operation. According to the non-owner point of view, all costs paid for the existing 

transformer from the first year to the 21
st
 year are ignored. In this case study, the challenger and the 

defender are assumed to have the same useful lifetime, technical properties, and reliability indices. 

The only difference is the initial cost. The annual costs of the new and existing transformers, 

including the repair cost, the interruption cost, and the operating cost, are used, together with the 

present worth of the new and existing transformers, to plot the EUAC curves for the new and existing 

transformers as shown in Fig. 6-14. The minimum point for the EUAC of the new transformer is at 

the 33
rd 

year of service (the most economical lifetime). For the existing transformer, the EUAC curve 

is drawn starting from year 22; it is increasing as shown in Fig. 6-14. The increasing shape of the 

EUAC for the existing transformer is due to the increase of all transformer costs in the late years of 

service: the repair cost, cost of interruption, and depreciation cost. Also, this increase is due to 

ignoring the sunk costs, which are the costs paid prior to the decision year. The minimum point of the 

EUAC curve for the 22
nd

 year is less than the minimum point of the EUAC curve for the new 

transformer, which means that this year (the 22
nd

 year of the existing transformer age) is not the most 

economical year for replacement.  

To accurately find the most economical replacement year, the EUAC curves are plotted for the 

existing transformer starting from the 23
rd

 year until the final year of the useful lifetime. The EUAC 

curves for all years that succeed, including the decision year, are not coincidental, because the costs 
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for the preceding years are ignored for each curve. For example, for the EUAC curve that starts from 

year 23, the costs paid in the 22
nd

 year as well as years 1-21 are ignored (non-owner view point), and 

so on. As shown in Fig. 6-14, the minimum point of the EUAC in the 23
rd

 year is still less than the 

minimum point of the EUAC of the new transformer, which means that the 23
rd

 year is not the best 

year for replacement. The operation continues year after year until the minimum point of the EUAC 

of the existing transformer is higher than the EUAC for the new transformer. At this year, the 

replacement of the existing transformer by a new one is economically viable, and the new transformer 

will have an annual cost less than the annual cost of the existing transformer.  From Fig. 6-14, the 

most economic replacement year is the 30
th
 year. At the 30

th
 year, the minimum point of the EUAC 

for the existing transformer is higher than the minimum point of the EUAC for the new transformer, 

i.e., the existing transformer should be replaced after 9 years from the decision year (present age of 

the defender, which is 21 years). 

 

 

Fig. 6-14 EUACs for the new and the existing transformers for case study 1. 

 

 

If the replacement is delayed until the end of the 35
th
 year of the transformer age, the operator will 
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6.3 Case Study II 

6.3.1 Data Initialization 

In this case study [100], a 3 MVA transformer is assumed to feed a certain region. This region 

contains a residential load, an industrial load, and a commercial load as shown in Fig. 6-15 [100]. 

After 23 years of the transformer’s service, a techno-economic study is carried out starting from the 

24
th
 year to check the replacement time for the transformer. Now we want to decide, using the techno-

economic replacement method, the most economical replacement time for the existing transformer. 

The main difference between this case study and case study 1 is assuming variable capital cost for 

the challenger. The challenger cost is assumed to increase by a factor of 3% for each year delay in the 

replacement process. This increase of capital cost is due to inflation and the increase in cost of raw 

materials. The manipulation of the problem in this case study is more complicated than the first case 

study, as will be shown in subsequent sections.    

 

 

 

Fig. 6-15 Single line diagram for the system of case study II. 

 

The reliability parameters for the existing transformer and the new transformer, such as the failure 

rate, repair time, scheduled maintenance time, switching time, and durations of the infant, normal and 
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time, the scheduled maintenance rate, and the average scheduled maintenance rate are assumed to be 
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identical. Many transformers can work until 40 years of service. The useful lifetime in this case study 

is assumed to be 40 years. The infant region duration and normal region duration, are 1 and 19 years 

respectively. The transformer is assumed to start wearing out after 20 years.  

The financial data for the new and the existing transformer are shown in Table C-II in appendix C. 

In this study the existing transformer capital cost with accessories is assumed to be $200,000. The 

capital cost of the new transformer with accessories is $390,000, and is assumed to increase by 3% 

annually due to inflation and the increase in raw materials and labour costs. 

The peak load served by the transformer is 2.4 MW with load factor at 0.8 as shown in Table C-III 

in appendix C. The composition of the area system load is as follows: 

1. 25% for the residential load, 

2. 35% for the industrial load, and  

3. 40% for the commercial load. 

The SCDFs for the three load sectors are shown in Table C-IV in appendix C [81, 99]. 

6.3.2 Existing and New Transformers Present Worth 

The existing and new transformers’ present worths are calculated using the proposed algorithm. 

The straight line depreciation is used in the infant and normal regions, while the accelerated 

depreciation method used in the wear-out region is SOYD. The present worth profiles of the existing 

and new transformers are shown in Fig. 6-16. The capital cost of the new transformer is assumed to 

be $390,000 if the replacement takes place immediately, and will increase by 3% for each year of 

delay in the replacement process. As a result, the new transformer has 17 present worth profiles 

starting from the 24
th
 year of the existing transformer and ending at the 40

th
 year of the existing 

transformer. Fig. 6-16 also shows the present worth for the new transformer starting from the 24
th
 

year and ending at the 40
th
 year of the existing transformer’s lifetime. 

6.3.3 Calculation of the Annual costs  

6.3.3.1 Annual cost of Interruption 

The GCDF is calculated for the group of loads with the weighting factors mentioned in subsection 

(5.2.3.3). The GCDF is calculated at every time point using the SCDFs for the three loads. For 

example, the GCDF for a 20 minutes’ outage is calculated as follows: 
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             (6-16) 

 

The GCDF is calculated at each point of time, i.e., at 20 minutes, 1 hour, 4 hours, and 8 hours 

using the same approach as (6-16). The calculated GCDF for the group of loads of case study II is 

shown in Table C-V in appendix C. The transformer outage is modeled using the Monte Carlo 

technique, as in case study I. The time to failure (TTF) is modeled as exponentially distributed, while 

the time to repair (TTR), time to switch (TTS), and scheduled repair time (SRT) are modeled as log-

normally distributed [81]. Use the time-varying failure rate model to find the average failure rate in 

all years of the useful lifetime as shown in Fig. 6-17. TTF, TTS, and TTR probability distributions are 

modeled the same way as explained in case study I.   

 

 

Fig. 6-16 Present worth of the existing and the new transformers for case study II. 
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is calculated throughout the artificial history. The stopping criterion is when the coefficient of 

variation (ε) of the estimate function goes below a TL of 0.0005.  Convergences of the estimate 

function in the Monte Carlo simulation for years 1, 2-20, 30, and 40 are shown in Figs. 6-18 to 6-21. 

The same steps explained in case study I are used to find the probability distributions of outage 
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time per failure for both new and existing transformers are the same because the reliability data is 

assumed the same for both of them). Figs. 6-22 to 6-25 show the probability distribution for the 

outage time per failure or years 1, 2-20, 30, and 40. 

 

Fig. 6-17 failure rate in the useful lifetime of case study II. 

 

 

Fig. 6-18 Convergence of the estimate function in Monte Carlo simulation in the first year for case 

study II. 
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Fig. 6-19 Convergence of the estimate function in Monte Carlo simulation in the normal region (year 

2 to year 20) for case study II. 

 

 

Fig. 6-20 Convergence of the estimate function in Monte Carlo simulation in year 30 for case study 

II. 

0 0.5 1 1.5 2 2.5 3

x 10
4

8

9

10

11

12

13

14

15

16

17

Simulation time (years)

A
ve

ra
g

e
 o

u
ta

g
e

 ti
m

e
 p

e
r 

fa
ilu

re
 (

h
r)

0 0.5 1 1.5 2 2.5 3

x 10
4

13

14

15

16

17

18

19

20

21

22

Simulation time (years)

A
ve

ra
g

e
 o

u
ta

g
e

 ti
m

e
 p

e
r 

fa
ilu

re
 (

h
r)



 

 94 

 

Fig. 6-21 Convergence of the estimate function in Monte Carlo simulation in year 40 for case study 

II. 

 

 

 

Fig. 6-22 Probability distribution of the outage duration per failure in the first year of the transformer 

life for case study II. 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Simulation time (years)

A
ve

ra
g

e
 o

u
ta

g
e

 ti
m

e
 p

e
r 

fa
ilu

re
 (

h
r)

0 25 50 75
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Outage duration per failure (hr)

P
ro

b
a

b
il
it
y



 

 95 

 

Fig. 6-23 Probability distribution of the outage duration per failure in the normal region (year 2 to 

year 20) of the transformer life for case study II. 

 

 

Fig. 6-24 Probability distribution of the outage duration per failure in year 30 of the transformer life 

for case study II. 

 

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Outage duration per failure (hr)

P
ro

b
a

b
il
it
y

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Outage duration per failure (hr) 

P
ro

b
a

b
il
it
y



 

 96 

 

Fig. 6-25 Probability distribution of the outage duration per failure in year 40 of the transformer life 

for case study II. 

 

The probability distributions are used to find the cost of interruptions of each year in the useful 

lifetime using the same approach as case study I except for using the GCDF instead of the SCDF 

because the system is composed from different load sectors. The fitted curve for the GCDF is shown 

in Fig. 6-26. As the reliability parameters are equal for both the new and existing transformers, the 

annual cost of interruption is the same for both of them. The annual cost of interruption is shown in 

Fig. 6-27. 
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$4/kW. The annual operating cost is shown in Fig.6-27. 

 

 

Fig. 6-26 Quadratic curve fitting of industrial GCDF 

 

 

 

Fig. 6-27  Annual costs of the new and existing transformers for case study II. 
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6.3.4 Calculation of the EUAC and Replacement Decision  

The operating cost, repair cost, interruption cost, and present worth of the new and existing 

transformers are used to calculate the EUAC curves for both. Fig. 6-28 shows the EUAC curves for 

the existing transformer. The EUAC curves for the existing transformer are drawn starting from the 

24
th
 year and ending at the 40

th
 year (end of useful lifetime of the existing transformer). In case study 

I, the new transformer had only one EUAC curve because all the costs affecting the EUAC were 

assumed to be constant. In this case study, the capital cost of the new transformer is considered to 

increase annually by the amount of 3%. This increase in the capital cost means that annual 

depreciation cost of the new transformer increases year over year; this is clear from the present worth 

curves shown in Fig. 6-16. Accordingly, the EUAC curve for the new transformer at the 24
th
 year of 

the existing transformer age is lower than the EUAC curve for the new transformer at the 25
th
 year 

and so on, which means that keeping the new transformer in service costs more money if it is bought 

in the 25
th
 year of the existing transformer lifetime than if it is bought in the 24

th
 year as shown in Fig. 

6-28. Similarly, the cost of keeping the new transformer in service increases to reach the maximum 

EUAC if it is bought at the 40
th
 year of the existing transformer service. 

To find the most economical replacement year using the presented method, the EUAC curve for 

the new transformer is compared with the EUAC curve of the existing transformer at the same year, 

i.e., the EUAC curve for the new transformer at the 24
th
 year is compared with the EUAC curve for 

the old transformer at the 24
th
 year and so on. The replacement year is the year at which the minimum 

value of the EUAC curve for the new transformer (most economical lifetime) is lower than the 

minimum value of the EUAC curve for the existing transformer (most economical lifetime). The 

replacement year according to the presented replacement method is the 31
st
 year of the existing 

transformer lifetime, as shown in Fig. 6-28. 

As with case study I, if the transformer replacement is delayed until the end of the useful lifetime 

(40 years in this case), the transformer operator will face 8 years of higher costs than the costs paid if 

the transformer is replaced in the 31
st
 year of service. 

6.4 Sensitivity Analysis  

In this section, the effect of changing the magnitudes of the inputs on the replacement year is 

studied. The sensitivity study is performed for case study I because it is simple, and because it shows 

the effect of changing the inputs clearly.  
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Fig. 6-28 EUAC curves for the new and the existing transformers for case study II. 
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 year for an interest rate of 11%. 
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new and existing transformers will cause the replacement year to remain the same under various 

values for the demand and energy charges. Figs. 6-31 and 6-32 show that the replacement year of the 

transformer in case study I is still in the 30
th
 year, even with different combinations of energy and 

demand charges. However, the effect of the energy and demand charges is higher if the no- load and 

load losses for the new and existing transformers are different. The transformer with higher losses is 

affected more by an increase or decrease in the energy and demand charges. The EUAC of the 

transformer with higher no-load and load losses will reach a higher level than that of the transformer 

with lower no-load and load losses, if the energy and demand charges increase, and will decrease to a  

lower level if the energy and demand charges decrease. 

6.4.3 Effect of the Capital Cost of the New Transformer (Challenger)  

The lower the capital cost of the new transformer, the lower the EUAC of the transformer and as a 

result the replacement time becomes earlier; and the opposite is also true. Fig. 6-33 shows that 

reducing the capital cost of the new transformer of case study I from $250,000 to $220,000 changes 

the replacement year to 28 years, i.e., 2 years earlier than the replacement time of the transformer 

with the capital cost of the new transformer equal to $250,000. Fig. 6-34 shows that increasing the 

capital cost of the new transformer of case study I from $250,000 to $280,000 changes the 

replacement year to 31 years, i.e., 1 year later than the original replacement time of section (5-3). 

These observations mean that the replacement year is non-linearly proportional with the capital cost 

of the challenger.    

 

Fig. 6-29 EUACs for the new and the existing transformers at 7% interest rate. 
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Fig. 6-30 EUACs for the new and the existing transformers at 11% interest rate 

 

 

 

Fig. 6-31 EUACs for the new and the existing transformers at $1/kW demand charge and $0.02/kWh 

energy charge. 
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Fig. 6-32 EUACs for the new and the existing transformers at $0.11 /kWh energy charge and $5/kW 

demand charge. 

 

 

 

Fig. 6-33 EUACs for the new and the existing transformers at $220,000 capital cost of the new 

transformer. 
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Fig. 6-34 EUACs for the new and the existing transformers at $280,000 capital cost of the new 

transformer. 

 

6.5 Comparison with Other End of Life and Replacement methods 

To the best of the author’s knowledge, the concept of using technical data in the economic 

replacement decision of the transformer is new and has not been tackled in the literature. However, 

the transformer thermal model is used in the literature, such as the work done in [62], to estimate the 

transformer replacement time due to the end of transformer life .The work done in [62] relies on using 

the equivalent aging factor to find the transformer’s lifetime. An artificial model for the load using 

probabilities is used to model the load. More details about the technique can be found in [62]. No 

economic aspect is used in this model. 

A 2 MVA transformer is assumed for the case study. The thermal characteristics according to [4] 

are listed below: 

 

1. top-oil rise over ambient at rated load, ΔΘTO,R= 50 °C; 

2. hottest-spot conductor rise over top-oil temperature, at   rated load, ΔΘHS,R = 30 °C; 

3. ratio of load loss at rated load to no-load loss, R = 3.2; 

4. oil thermal time constant for rated load ηTO,R= 3.5 h. 
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The average daily load served by the transformer has a maximum value of 1 p.u., a minimum 

value of 0.78 p.u., and a load factor of 0.85 [79]. The standard deviation of the hourly load is 10% of 

the rated load. After simulating the transformer lifetime fifty times as stated in [62], the average 

actual usage time in days to reach the end of life is found to be 41631 days or 114.1 years, which is 

not a realistic lifetime. These types of methods that estimate the transformer lifetime based on the 

thermal models depend on the transformer’s thermal parameters and loading. These methods give 

sometimes unrealistic outcomes such as in the case under study. Comparing this result with the one 

obtained in section (5-3), the result obtained in section (5-4) seems to be more realistic.  

6.6 Conclusion   

The performance evaluation of the transformer techno-economic replacement method proposed in 

Chapter 5 was presented. Two case studies were used to examine the performance of the proposed 

replacement method. The replacement time of case study I (simple case study) was found to be 30 

years. In the second case study, the transformer was assumed to feed an area with different load types. 

Moreover, the challenger was assumed to have increasing capital costs year over year. The 

replacement time of case study II was found to be 31 years. The two case studies show that the 

transformers should be replaced before the end of the useful lifetime even though the transformers are 

still working, but they are operating at high cost. These high asset costs can be mitigated by replacing 

the transformer in the right year using the proposed method. The effect of changing different factors 

on the replacement year has been studied in this paper in the sensitivity analysis section. The 

replacement time of the transformer based on its thermal end of life was calculated and compared 

with the proposed method. It was found that the thermal models give sometimes unrealistic results as 

shown in section 5.6. 
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Chapter 7 

Determination of a Health Index for Power Transformers 

 

 

7.1 Introduction 

The limited and insufficient research conducted in the area of providing an index to represent 

transformer health was one of the main motivation for this research. Even the few research papers that 

discuss this point contain deficiencies as explained in chapter 3. Existing assessment methods that are 

based on testing of specific transformer are aimed at determining whether a transformer has reached 

its end of life point. This chapter presents the development of a health index that is appropriate for 

any power transformer and that can be used to assess the condition of the transformer.  

To develop the health index (HI), real data from the field were used. Diagnostic test data were 

taken from the distribution systems of an industrial company in the Middle East, which had 

commissioned a specialized Asset Management and Health Assessment consulting company 

(AMHA) from the UK to derive and populate a health index for the distribution transformers located 

at one of the company’s operation sites. To facilitate this process, AMHA undertook a sampling and 

test program for 90 oil-filled transformers. The data provided were the water content, acidity, break 

down voltage (BDV), hydrogen content (H2), methane content (CH4), ethylene content (C2H4), 

acetylene content (C2H2), ethane (C2H6), furans content, loss factor, and total solids in the oil for each 

transformer: a total of 990 tests for 11 data categories.  The health indices for all of the transformers 

calculated by AMHA were also provided.  

Measuring the moisture, acidity, solid contamination, and breakdown strength of the oil provides a 

good indication of the overall condition of the oil and the internal components. The quality of the oil 

is a useful indicator of the health of a transformer because it is critical in preventing premature ageing 

of the transformer and extending service life. Furfuraldehyde (furans) analysis also gives a highly 

accurate measure of the condition of the paper insulation because the furans content is correlated to 

the degree of polymerisation of the paper [1, 59]. Furans levels reaching specified values mean that 

the insulation has effectively broken down and the probability of failure is very high. Analysing the 
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levels of a variety of dissolved gases in the oil also identifies electrical discharge, arcing, and thermal 

activity within the transformer, which are further indicators of aging. 

The method used by AMHA to calculate the heath index is considered a secret and was not 

provided in the final report presented to the industrial facilities. The values of the AMHA health 

index range between zero and ten. A health index of zero represents a brand new transformer. A 

health index of ten means that the transformer should be replaced. Values between zero and ten 

correlate to good, moderate, or bad levels of transformer health: zero to 4 is good, 4 to 7 is moderate, 

and 7 to 10 is bad. For the purposes of this research, with the aid of the health indices given by 

AMHA, three methods were produced in order to determine the relationships between the 11 data 

categories and to arrive at a health index for each transformer.  

7.2 Pre-processing of the Data 

Before the data could be used for the analysis required for this research, adjustments were 

necessary. Elements that contained irregular data were removed; that is, data with attributes that were 

too high, negative or corrupted. All data were also normalized according to their respective 

maximum.  With regard to irregular data, elements 76 and 31 of the available data seemed to be 

irregular and were eliminated because the amount of total furans in element 76 was too high and the 

loss angle of element 31 was too high. These very high inputs could have affected the remaining 

values in the same category when the normalization was performed. The next step in the pre-

processing stage was the normalization of all data categories: all elements in each data category were 

divided by their respective maximum.  The health index was normalized by dividing all health index 

entries of by the maximum entry of the health index. 

7.3 Methods of Determining a Transformer Health Index 

This section presents the three methods used for calculating the health indices which were then 

used to determine the conditions of the transformers. The transformer conditions that resulted from 

each method were compared with the given transformer conditions as a measure of the accuracy of 

each method. 
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7.3.1 Method1: Calculation of HI Using the Correlation Between the Given Health 

Index and All Data Categories  

7.3.1.1 Method 1 Concepts 

This method relies on the use of all available data categories in order to find the transformer health 

index (HI). The health index is assumed to have a linear relationship with all data categories.  

 

                              

                                                          

(7-1) 

 

where Wi are the weights in the linear relationship. 

 

The weights in this linear relationship are considered to be functions of the correlation coefficients 

between the given health indices and the data categories. The correlation coefficients between the 

given health index and all data categories are calculated using Pearson’s linear correlation coefficient 

[101]: 

   

            

           (7-2) 
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corrxy: the correlation coefficient between the series of numbers (x) and the series of numbers (y); 
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y : the mean of the series of numbers (y); 

SDx: the standard deviation of the series of numbers (x); 

SDy: the standard deviation of the series of numbers (y). 

 

Figs. 7-1 to 7-11 show the correlation between the given health index and all data categories. The 

correlation coefficients between the given health index and all data categories are shown in Table 7-1.  

 

 

Fig. 7-1 Correlation between the health index and water content. 
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Fig. 7-2 Correlation between the health index and acidity. 

 

 

Fig. 7-3 Correlation between the health index and BDV. 
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Fig. 7-4 Correlation between the health index and H2. 

 

 

Fig. 7-5 Correlation between the health index and CH4. 
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Fig. 7-6 Correlation between the health index and C2H2. 

 

 

Fig. 7-7 Correlation between the health index and furans. 
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Fig. 7-8 Correlation between the health index and loss factor. 

 

Fig. 7-9 Correlation between the health index and total solids. 
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Fig. 7-10 Correlation between the health index and C2H6. 

 

Fig. 7-11 Correlation between the health index and C2H4. 
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Table 7-1 Correlation coefficients between the given health index and all data categories 

Data Category Correlation Coefficient 

water 0.417 

acidity 0.521 

BDV -0.38 

H2 0.0285 

CH2 0.124 

C2H6 0.332 

C2H4 0.345 

C2H2 -0.082 

furans 0.850 

loss angle 0.282 

total solids 0.497 

 

It is clear from Table 7-1 that the correlation coefficients between the given health index and both 

BDV and C2H2 are negative. The negative correlation between the BDV and the health index is clear 

because the higher the BDV, the better the transformer insulation and the lower the corresponding 

value of the health index (better health). However, the value of the health index would be expected to 

be proportional to the C2H2 level [102] because the correlation between the C2H2 content and the 

condition of the transformers in the given samples is unclear. Fig. 7-6 shows that the maximum value 

of C2H2 is one ppm. According to [102], if the value of the C2H2 content is less than unity, the 

transformer condition is considered to be good. A quick look at the remaining data categories for all 

transformers and at the given health index by AMHA shows many transformers to be in a moderate or 

bad condition, which means that the correlation between the C2H2 content and the condition of the 

transformers in the given samples is unclear. In addition, the condition of a transformer based on key 

gas analysis does not depend only on one key gas; instead, it depends on all gases [102].  

The basis of this method is that highly correlated data categories will have a higher contribution to 

the health index than data categories with lower correlations. The first step was therefore to determine 

an appropriate share of the attributes in the health index by calculating a weight for each.  

 

   (        )
                     (7-3) 
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where corri is the correlation between the given health index and the data category (i). 

 

To avoid negative values in the calculated health index, all values of Wi should be positive. To 

achieve this, the calculated correlation coefficients for the BDV and C2H2 were replaced by the 

correlation coefficients between the given health index and (1-BDV) and (1-C2H2). The new 

correlation coefficients are shown in Table 7-2. The new formula for calculating the health index was 

changed accordingly as follows 

 

    (7-4) 

 

 

Table 7-2 Correlation coefficients between the given health index and the modified data categories 

Data Category Correlation Coefficient 

water 0.417 

acidity 0.521 

BDV 0.38 

H2 0.0285 

CH2 0.124 

C2H6 0.332 

C2H4 0.345 

C2H2 0.082 

furans 0.850 

loss angle 0.31 

total solids 0.497 

 

In this way, highly correlated data categories have a very high influence on the health index, and 

the data categories with low correlation have very low influence. The rationale for this weighting 

system is that highly correlated data categories such as furans should be dominant in the calculation 

of the health index. Table 7-3 shows the weights calculated for the eleven data categories. 

The values of the weights shown in Table 7-3 will give very high health index values when they 

are substituted in (7-4).  To keep the range of the normalized health index between zero and one, the 
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values of the weights shown in Table 7-3 were reduced without losing the relative percentages. To 

achieve this goal, each individual weight was divided by the summation of all weights. The new 

weights are shown in Table 7-4. 

Fig. 7-12 shows the calculated health indices and the given health indices. The correlation 

coefficient between the given health indices and the calculated health indices was determined 

according to equation (7-2). The correlation coefficient was found to be 0.8925.   

 

Table 7-3 Weights of all data categories 

Attribute Weight (Wi) 

water   72.5648 

acidity   141.4948 

1-BDV    54.8768 

H2     0.0233 

CH4     1.9145 

C2H6    36.5458 

C2H4    40.9267 

1-C2H2     0.5563 

furans   614.7952 

loss angle    30.4556 

Total solids   124.2396 

 

Table 7-4 New weights of all data categories 

Attribute Weight (Wi) 

water    0.0649 

acidity     0.1265 

1-BDV     0.0491 

H2     0.0000001 

CH4     0.0017 

C2H6     0.0327 

C2H4     0.0366 

1-C2H2     0.0005 

furans     0.5497 

loss angle     0.0272 

Total solids     0.1111 
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Fig. 7-12 The calculated health indices versus the given health indices. 

 

7.3.1.2 Discussion 

The two curves representing the estimated health indices and the given health indices shown in Fig 

7-12 do not coincide.  However, it is not, in fact, essential for the estimated and target indices (given 

health indices by AMHA) to coincide. It is sufficient only to have them very close to each other. The 

main purpose of the health index is to indicate the condition of the transformer: good, moderate, or 

bad. In general terms, an asset in good condition would be expected to continue to operate 

satisfactorily for the foreseeable future, that is, to have a long remaining lifespan, and not to require 

any significant change to the current operation and maintenance. Transformers with a moderate health 

condition would not be at immediate risk but may become increasingly unreliable in the medium term 

(5-10 years). Assets in this condition are potential candidates for life extension measures, enhanced 

maintenance, refurbishment, etc. Transformers in bad condition are at risk in the short term, and this 

risk will increase relatively quickly. Significant investment (replacement) is required in order to 

prevent an unacceptable probability of failure. For electricity network assets, this condition often 

equals to effective end of life.  

The next step was to define new thresholds for differentiating between a good condition, a 

moderate condition, and a bad condition, according to the calculated health index. The thresholds 

were found to be 0.21 and 0.42, i.e., a transformer is considered to be in good condition if the 
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calculated health index is between 0 and 0.21, a transformer is considered to be in moderate condition 

if the calculated health index is between 0.21 and 0.42, and a transformer is considered to be in bad 

condition if the calculated health index is between 0.42 and 1. Thus, using the 11 previously 

discussed measurements for any transformer by employing the same normalization standards used in 

this method, and then applying (7-4) using the weights shown in Table 7-4 enables the health index to 

be determined. Using the developed threshold levels, the condition of the transformer can then be 

assessed as good, moderate, or bad. The accuracy of the calculated index with respect to the given 

index is shown in Table 7-5. The developed method correctly identified the condition of 82 of the 88 

transformers: 93.18% accuracy, which is considered good accuracy. 

Table 7-4 shows that the largest weights in all data categories are the weights for furans, acidity, 

total solids, and water content. The data categories with large weights make a greater contribution to 

the health index; in other words, they are very good measures of the age of a transformer. Levels of 

furans, acidity, and water content were expected to play a significant role in the health index because 

they are currently used for condition assessment of transformers and the determination of end of life 

[1, 2, 55, 57, 59, 103]. Total solids are also an accepted indication of the transformer degradation.  

 

Table 7-5 Accuracy of method 1 

 Good Moderate Bad Total 

Good 60 0 0 60 

Moderate 0 14 6 20 

Bad 0 0 8 8 

    

7.3.2 Method 2: Use of Artificial Intelligence 

7.3.2.1 Method Concepts 

Artificial intelligence is the term used to refer to systems that act in a way that to any observer 

would appear to be intelligent [104]. One of the most important branches of artificial intelligence is 

the artificial neural network (ANN). An ANN is an information processing paradigm that was 

inspired by the biological nervous systems in the human brain [104]. The key element of this 

paradigm is the novel structure of the information processing system, which is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to solve specific 
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problems. ANNs, like people, learn by example. An ANN is configured for a specific application, 

such as pattern recognition or data classification, through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between the neurons. This 

principle is true of ANNs as well.  

Neural networks have a remarkable ability to derive meaning from complicated or imprecise data. 

They can be used to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. A trained neural network can be thought of as an "expert" in 

the category of information it has been given to analyze. Given new situations of interest, this expert 

can then be used to provide projections and to answer "what if" questions [105]. 

An ANN was used to estimate the health index of a transformer. The data available for the 88 

transformers were used to train a feed forward artificial neural network (FFANN) in order to 

determine the health index of a transformer [106]. The measurements available for the 88 

transformers were divided into two sets: a training set and a testing set. The training set consisted of 

the data for randomly selected 59 transformers (67% of the available data). The testing set consisted 

of the data for the remaining 29 transformers (33% of the available data).  

A four-layer FFANN was used to estimate the health indices of the transformers. The FFANN is 

shown in Fig. 7-13. The neural network used consists of one input layer, one output layer, and two 

hidden layers. The input layer consists of 11 neurons; the input to the input layer are the previously 

mentioned 11 data categories for the 88 transformers. The output layer consists of one neuron 

representing the health index for the transformer under study. The output of the output layer neuron is 

in the range of zero to one: zero represents a brand new transformer and one represents a transformer 

in a very bad condition, which should be replaced. With respect to the hidden layers, it is customary 

that the number of neurons in the hidden layers be selected by trial and error, so this approach was 

employed in the development of the algorithm. The number of hidden layers was found to be two, 

with four neurons in the first hidden layer and two neurons in the second hidden layer. The weights 

matrices of the trained ANN is shown in Appendix D. 

A comparison of the given health indices for the 59 transformers used in the training of the 

FFANN and the health indices output by the FFANN for the training set is shown in Fig. 7-14. It is 

clear from Fig. 7-14 that the output of the FFANN is very close to the original health indices of the 

training set of transformers. The trained FFANN was tested using the testing set, which included 29 

transformers. The given health indices for the testing set and the output of the FFANN for the testing 
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set are shown in Fig. 7-15. Fig. 7-15 shows that the estimated health indices for the testing set are 

numerically close to the given health indices for the same set. Table 7-6 shows the given health 

indices for the testing set and the corresponding output of the FFANN.  

 

 

Fig. 7-13 FFANN configuration. 

 

Fig. 7-14 The given health indices for the 59 transformers used in the training of the FFANN and the 

health indices output by the FFANN for the same training set. 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transformer number

H
e

a
lth

 in
d

e
x

FFANN output health index 
for the training set 

Original health index 
for the training set



 

 121 

 

Fig. 7-15 The given health indices for the 29 transformers used in the testing of the FFANN and the 

health indices output by the FFANN for the same testing set. 

 

Table 7-6 Given health indices for the testing set and the corresponding output of the FFANN 

Transformer 

number 

Given health 

index 

FFANN 

output health 

index 

Transformer 

number 

Given health 

index 

FFANN 

output 

health index 

1 0.226 0.224 16 0.226 0.199 

2 0.322 0.261 17 0.387 0.259 

3 0.772 0.813 18 0.29 0.269 

4 0.377 0.398 19 0.316 0.337 

5 0.334 0.45 20 1 0.94 

6 0.29 0.19 21 0.931 0.931 

7 0.29 0.367 22 1 0.939 

8 0.701 0.81 23 0.916 0.937 

9 0.381 0.129 24 0.732 0.8156 

10 0.102 0.323 25 0.354 0.271 

11 0.274 0.189 26 0.45 0.535 

12 0.316 0.245 27 0.414 0.432 

13 0.29 0.264 28 0.291 0.339 

14 0.316 0.241 29 0.414 0.4467 

15 0.29 0.214    
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7.3.2.2 Discussion  

As mentioned in the discussion of method 1, determining the condition of a transformer is the 

main goal of the investigation. From this perspective, it can be said that the trained FFANN can 

classify the condition of the transformers with excellent accuracy. The estimated and target health 

indices for the testing set of transformers shown in Table 7-7 were converted into health conditions 

(good, moderate, or bad) according to the previously mentioned criteria. Table 7-8 shows the 

accuracy of the FFANN classifier based on the health condition criteria. 

Table 7-8 shows that the FFANN classifier correctly classified 28 of the 29 test cases: 96.55% 

accuracy. Moreover, a quick look at Table 7-6 reveals that the incorrectly classified case is case 5. 

The calculated and given health indices of case 5 are 0.45 and 0.334, respectively. The given health 

index indicates that the transformer is at the end of the good condition zone, and the calculated health 

index indicates that the transformer is in the beginning of the moderate condition zone, which means 

that the two output values are not actually widely divergent.  

 

Table 7-7 The transformer condition output by the FFANN and the target conditions of the 

transformer testing set 

Transformer 

number 

Given health 

index 

FFANN 

output health 

index 

Transformer 

number 

Given health 

index 

FFANN 

output 

health index 

1 good good 16 good good 

2 good good 17 good good 

3 bad bad 18 good good 

4 good good 19 good good 

5 good moderate 20 bad bad 

6 good good 21 bad bad 

7 good good 22 bad bad 

8 bad bad 23 bad bad 

9 good good 24 bad bad 

10 good good 25 good good 

11 good good 26 moderate moderate 

12 good good 27 moderate moderate 

13 good good 28 good good 

14 good good 29 moderate moderate 

15 good good    
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Table 7-8 Accuracy of the FFANN classifier with respect to the transformer condition 

 Good Moderate Bad Total 

Good 18 1 0 19 

Moderate 0 3 0 3 

Bad 0 0 7 7 

 

The trained FFANN can be used by utilities and industries to determine the health index for any 

transformer by feeding the 11 previously mentioned measurements for any transformer into the 

trained FFANN after normalization with the use of the same standards. 

7.3.3 Method 3: Least Squares Curve Fitting 

7.3.3.1 Method Concepts 

In method 3, the given data categories and health indices were used to find the weights for each 

data category using a least squares curve fitting. The weights (Wi) from (7-1) were calculated in order 

to minimize the square error between the calculated health indices and the given health indices.  

The data for the 59 transformers in the training set were used to find the weights, which were then 

used to determine the health indices of the testing set of 29 transformers. MATLAB


 was used to 

solve this overdetermined set of linear equations.  The calculated weights are shown in Table 7-9.  

Table 7-9 Weights calculated using method 3 

Attribute Weight (Wi) 

water  0.5213 

acidity    -0.2810 

1-BDV     0.1289 

H2     0.1024 

CH4     0.1911 

C2H6    -0.0701 

C2H4     0.2129 

C2H2    -0.0536 

FFA     0.7770 

Loss angle      0.1278 

Total solids     0.0914 

 

                                                      

 MATLAB is a trademark of Mathworks Inc. 
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Fig. 7-16 shows the given health indices for the 59 transformers used in the optimization and the 

output health indices for the same training set. Fig. 7-17 depicts the given health indices for the 29 

transformers used in the testing of the least squares output and the output health indices for the same 

testing set. 

 

Fig. 16 The given health indices for the 59 transformers used in the optimization and the output health 

indices for the same training set. 

 

Fig. 17 The given health indices for the 29 transformers used in the testing of the least squares output 

and the output health indices for the same testing set. 
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Table 7-10 shows the calculated health indices and the target health indices for the testing set of 

transformers.  

 

Table 7-10 Given health indices for the testing set and the corresponding estimates using method 3 

Transformer 

number 

Given 

health 

index 

Estimated 

health index 

Transformer 

number 

Given health 

index 

Estimated health 

index 

1 0.226 0.199 16 0.226 0.306 

2 0.322 0.176 17 0.387 0.218 

3 0.772 0.853 18 0.29 0.261 

4 0.377 0.358 19 0.316 0.419 

5 0.334 0.479 20 1 0.876 

6 0.29 0.283 21 0.931 0.790 

7 0.29 0.269 22 1 0.985 

8 0.701 0.733 23 0.916 0.778 

9 0.381 0.348 24 0.732 0.774 

10 0.102 0.258 25 0.354 0.321 

11 0.274 0.336 26 0.45 0.471 

12 0.316 0.359 27 0.414 0.401 

13 0.29 0.286 28 0.291 0.357 

14 0.316 0.37 29 0.414 0.264 

15 0.29 0.315    

 

7.3.3.2 Discussion 

Table 7-11 shows the calculated health conditions and the given health conditions for the testing 

set of transformers. The method failed to correctly classify only three of the 29 testing cases: 89.7% 

accuracy. Table 7-12 shows the accuracy of method 3. Method 3 can therefore be applied in the same 

way as methods 2 and 3. To find the health index of any transformer, the 11 previously mentioned 

measurements for any transformer are normalized using the same standards, and then are substituted 

for the 11 variables of (7-1). In this case, the weights shown in Table 7-9 are used in (7-1). 
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Table 7-11 The output transformer health conditions using method 3 and the given health 

conditions for the transformer testing set  

Transformer 

number 

Given 

health 

index 

Estimated health 

index 

Transformer 

number 

Given 

health 

index 

Estimated health 

index 

1 good good 16 good good 

2 good good 17 good good 

3 bad bad 18 good good 

4 good good 19 good moderate 

5 good moderate 20 bad bad 

6 good good 21 bad bad 

7 good good 22 bad bad 

8 bad bad 23 bad bad 

9 good good 24 bad bad 

10 good good 25 good good 

11 good good 26 moderate moderate 

12 good good 27 moderate moderate 

13 good good 28 good good 

14 good good 29 moderate good 

15 good good    

 

Table 7-12 Accuracy of method 3 

 Good Moderate Bad Total 

Good 17 2 0 19 

Moderate 1 2 0 3 

Bad 0 0 7 7 

 

7.4 Conclusion 

Three methods for calculating the health index of any transformer have been presented in this 

chapter. Actual data were used in this investigation: the measurement of the water content, acidity, 

break down voltage (BDV), hydrogen content (H2), methane content (CH4), ethylene content (C2H4), 

acetylene content (C2H2), ethane content (C2H6), furans content, loss factor, and total solids in oil for 

90 working transformers.  The first and third methods assume a linear relationship between the health 

index and all data categories. The weights of the linear relationship in method 1 were found using the 

correlation coefficients between the given health index and all data categories. The weights of the 
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linear relationship in method 3 were found using least squares curve fitting concept. The second 

method is based on the use of an ANN to calculate the health index. The results show that the errors 

in the calculation of the health index using all three methods are small. Using any of the three 

methods presented, the health condition of any working transformer can therefore be evaluated (good, 

moderate, bad). Electrical utilities and industrial plants can thus readily evaluate the health condition 

of their transformers by performing the 11 specified measurements and inputting them into the linear 

relations used in either method 1 or 3 after normalization. The trained ANN employed in method 2 

can also be used to determine the health condition of a transformer using the 11 specified 

measurements.  
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Chapter 8 

Conclusions, Contributions, and Future Research 

 

8.1 Conclusions 

The research presented in this thesis focuses mainly on the problems associated with assessing of 

end of life and replacement of power transformers. The following list summarizes the work 

completed for this thesis. 

 The thesis includes a survey of the different topics related to the management of the 

transformer assets: condition monitoring and condition assessment of the transformer, 

performing maintenance plans, and assessment of health and end of life. Methods of 

monitoring and assessing the condition of transformers were highlighted and discussed. 

Existing maintenance plans were presented, along with the advantages and disadvantages 

of each maintenance scheme.  

 Special attention was given to assessment of the health and end of life of transformers 

because these topics formed the main theme of this work. A chapter was developed to an 

analysis of all aging mechanisms, including the main ones for transformers: physical aging 

and economic aging. The techniques for assessing physical aging were discussed and their 

deficiencies highlighted. Existing methods of assessing economic end of life were 

introduced and their drawbacks presented. Existing techniques for assessing the condition 

of transformer health were introduced and their deficiencies highlighted. 

 Regarding the physical end of life, a new thermal model has been developed for assessing 

the end of life of power transformers, the main cause of which is solid insulation failure. 

The new method is based on an algorithm for determining the end of life point of 

transformer insulation. The monthly average temperature and solar clearness index are used 

to model the ambient temperature surrounding the transformer. Transformer loading is 

modeled based on the average daily load curve. A Monte Carlo simulation was used in 

order to take into consideration the uncertainties associated with the daily load and ambient 

temperature, on the basis which, the average lifetime of the transformer can be calculated. 

A case study has been presented to demonstrate the implementation and effectiveness of 

the developed method. 
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 To highlight the superiority of the new method, the developed method for assessing the 

thermal end of life was compared with existing work.  

 An additional area of investigation was economic end of life of transformers, and a new 

techno-economic method has been developed. Using this method, the transformer operator 

can implement an economical replacement decision that is based on the technical factors 

affecting the transformer. With this method, the present worth, cost of operation, cost of 

repair, and cost of interruptions are used to find the EUAC for both a new and an existing 

transformer in order to arrive at the expected time when the replacement of the transformer 

would be cost effective.  

 Two case studies demonstrated the performance of the developed techno-economic 

method. In the first case study, the challenger transformer was assumed to have constant 

capital cost. The second case study was more complex because the effect of inflation and 

increase in raw material costs were factored into the capital cost of the challenger 

transformer. The results of the two case studies show that it was most economical to retire 

the existing transformer before the end of its useful lifetime; otherwise, the transformer 

operator will be faced with higher costs. 

 The effects of changing the interest rate, the energy and demand charges, and the capitals 

cost on the final result are studied in a sensitivity analysis section. It is shown that the 

changes of transformer capital cost and interest rate have more effect on replacement year 

than the energy and demand charges. 

 The calculation of the transformer health index and corresponding health condition was 

presented in Chapter 7. Real tests of 11 parameters for 90 working transformers (total of 

990 tests) were used in order to determine a systematic approach to the calculation of the 

health index of a transformer, based on which the health condition of the transformer can 

be evaluated (good, moderate, or bad). Three methods were presented, and their accuracy 

was tested using the health indices provided by a specialized consulting company. Any of 

the presented methods can be used directly by electrical utilities and industries as a means 

of assessing the health condition of any of the working transformers in their fleet. 

8.2 Contributions 

The following is a summary of the contributions of this research: 

 A complete presentation of most transformer asset management techniques and related 
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topics.  

 A novel method of calculating the ambient temperature surrounding a transformer using the 

average monthly temperature and the solar clearness index. 

 A new method of modeling transformer loading that takes into account the average daily 

load curve and the associated uncertainty. 

 The use of a Monte Carlo simulation to determine the thermal lifetime of a transformer 

using the ambient temperature and load models. 

 The utilization of important technical information about the transformer, such as the failure 

rate, in the calculation of the most economical replacement time. 

 The use of the bathtub failure model to calculate a transformer’s present worth. 

 The calculation of the cost of repairs and interruptions in alignment with a real accepted 

deterioration model, i.e., the bathtub model. 

 Consideration of the uncertainties inherent in the failure and repair rates that are considered 

in a techno-economic replacement decision.  

 Employment of a Monte Carlo simulation technique to account for the uncertainties in the 

failure and repair rates. 

 Introduction of the cost of interruptions as an important factor among other factors in the 

techno-economic replacement decision. 

 Presentation of three systematic methods of determining a transformer health index and 

corresponding health condition. 

8.3 Suggestions of Future work 

The following are suggestions for possible future work: 

 The thesis presented a new method of calculating the thermal lifetime of regular 

transformers. Modifying this approach to enable the calculation of the thermal 

lifetime of transformers that supply non-sinusoidal loads is a possible extension of 

the work. 

 The presented techno-economic replacement method could be modified to enable the 

determination of an appropriate replacement year for circuit breakers and 

underground cables. 
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 The available data for the 90 transformers could be used as a basis for proposing 

more refined systematic methods of determining the health index of working 

transformers.  
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Appendices  

Appendix A 
Hot Spot Temperature Calculation 

 

According to IEEE STD. C57.91-1995 [3] the HST can be calculated as follows: 

 

HTOAHS
                              (A-1)

   

where 

ӨHS: temperature of hot spot in 
o
C; 

ӨA: ambient temperature in 
o
C; 

ΔӨTO: top oil temperature rise over ambient in 
o
C; 

ΔӨH: winding HST rise over top oil in 
o
C. 

 

The top-oil temperature rise at a time after a step load change is given by the following Formula [3]: 

 

iTOiTOUTOTO

TOe
,

1

,,
)1()( 






                            (A-2) 

 

where 

ΔӨTO,U: the ultimate top oil temperature rise over ambient for load L in 
o
C; 

ΔӨTO,i : the initial top oil temperature rise over ambient for t=0 in 
o
C; 

ηTO : the top oil time constant for load L in hrs. 

 

For the two-step overload cycle, the initial top-oil rise (ΔӨTO,i ) is given by the following [3]: 
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where 

ΔӨTO,R : top oil temperature rise over ambient at rated load in 
o
C; 

Ki: the initial ratio of load L to rated load, per unit; 

R: the ratio of load loss at rated load to no-load loss. 

  

The ultimate top-oil rise (ΔӨTO,U )is given by the following [3]: 
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where 

KU: the ultimate ratio of load L to rated load, per unit. 

The top oil time constant can be calculated as follows [3]: 
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Where, ηTO,R is the top oil time constant at rated load in hrs and can be calculated as [3]: 
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where 

TC : the thermal capacity of the transformer, Watt-hours/°C and it depends on the weights of  core , 

winding, and tank, and the volume of oil; 

PT,R : the total loss at rated load, watts. 

 

The winding HST rise over top oil temperature can be calculated as follows: 
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where 

ηw: the winding time constant at hottest spot location in hrs; 

ΔӨH,U: ultimate winding HST  rise over top oil in 
o
C at load L and it can be calculated as follows [3]: 
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ΔӨH,i: initial winding HST  rise over top oil in 
o
C at at t=0 and it can be calculated as follows [3]: 
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where ΔӨH,R is the  rated winding HST  rise over top oil in 
o
C at load L and it can be calculated as 

follows [3]: 

 

RTORAHRH ,,/,
                 (A-10) 

 

where ΔӨH/A,R is the winding hot spot rise over ambient at rated load in 
o
C. 

 

The variables x and y are exponents for temperature rise equations and their values depend on the 

method of transformer cooling. The values of n and m could be found in [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 136 

Appendix B 
Data for Case Study I –Chapter 6 

 

Tables B-I to B-IV show the existing and new transformers’ parameters for case study I. 

 

 

Table B-I Transformer Technical Data for Case Study I 

Transformer rating (MVA) 2 

Useful lifetime (years) 35 

Infant region duration (years) 1 

Normal region duration (years) 19 

Salvage value ($) 0 

Failure rate in the normal region (failure/year) 0.07 

Max scaling factor in the infant region  1.5 

Max scaling factor in the wear-out region 3 

Frequency of maintenance (times/year) 0.2 

Mean time of maintenance (hours) 10 

Mean time to repair (hours) 24 

Mean time to switch (hours) 1 

Transformer load losses at rated load (kW) 15 

Transformer no load losses (kW) 10 

Transformer auxiliary losses (kW) 0 

Probability of operation of auxiliary equipment 0 

 

 

Table B-II Load data Case Study I 

Maximum load (KW) 1700 

Load factor 0.8 
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Table B-III Financial Data for Case Study I 

New transformer capital cost ($) 250000 

Existing transformer capital cost ($) 150000 

Demand charge per month($/kW) 5 

Energy charge ($/kWh) 0.05 

interest rate 0.1 

Constant part of the cost of repair and maintenance ($) 250 

Variable part of the cost of repair and maintenance ($/hour) 540 

 

 

Table B-IV SCDF of the Industrial Load for Case Study I 

 

SCDF 

Interruption cost ($/kW) 

20 min 1 hr 4 hr 8 hr 

3.868 9.085 25.163 55.808 
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Appendix C 
Data for Case Study II –Chapter 6 

 

Tables C-I to C-V show the existing and new transformers parameters for case study II. 

 

Table C-I Transformer Data for Case Study II 

Transformer rating (MVA) 3 

Useful lifetime (years) 40 

Infant region duration (years) 1 

Normal region duration (years) 19 

Salvage value ($) 3000 

Failure rate in the normal region (failure/year) 0.07 

Max scaling factor in the infant region  1.5 

Max scaling factor in the wear-out region 4 

Frequency of maintenance (times/year) 0.2 

Mean time of maintenance (hours) 10 

Mean time to repair (hours) 24 

Mean time to switch (hours) 1 

Existing transformer copper losses at rated load (kW) 25 

Existing transformer no load losses (kW) 12 

New transformer copper losses at rated load (kW) 23 

New transformer no load losses (kW) 11 

Existing and new transformers auxiliary losses (kW) 4 

Probability of operation of auxiliary equipment 0.06 
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Table C-II Financial Data for Case Study II 

New transformer capital cost ($) 390000 

Existing transformer capital cost ($) 200000 

Demand charge per month($/kW) 4 

Energy charge ($/kWh) 0.04 

interest rate 0.1 

Constant part of the cost of repair and maintenance ($) 250 

Variable part of the cost of repair and maintenance ($/hour) 630 

 

 

Table C-III Load Data for Case Study II 

Maximum load (KW) 2400 

Load factor 0.8 

 

 

Table C-IV SCDF Data for Case Study II 

Load type Interruption cost ($/kW) 

20 min 1 hr 4 hr 8 hr 

Residential load 0.093 0.482 4.914 15.69 

Industrial load 3.868 9.085 25.163 55.808 

Commercial load 2.969 8.552 31.317 83.008 

 

 

Table C-V GCDF for the Combined Load 

 

GCDF 

Interruption cost ($/kW) 

20 min 1 hr 4 hr 8 hr 

2.5646 6.7211 22.5624 56.6585 
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Appendix D 
Weights Matrices for the ANN in Chapter 7 

 

Tables D-1 to D-2 show the weights of the trained ANN between the input layer and two hidden 

layers, while Table D-3 shows the weights of the trained ANN between second hidden layer and the 

out layer. 

 

Table D-1 Weights of ANN between input layer and first hidden layer 

H
id

d
en

 l
ay

er
 1

  

Input layer 

0.327 -0.101 0.038 -0.366 -0.196 0.731 -0.223 0.2048 -0.833 -0.823 -1.38 

-1.03 -0.247 -1.31 0.4138 -0.486 0.0258 0.256 -0.153 -1.052 -0.444 -0.2 

-0.35 0.0292 -0.99 -1.626 1.6625 0.0957 0.2047 -0.047 -0.611 0.0637 -0.86 

0.391 0.3208 -0.08 -0.015 0.3886 -0.732 0.6777 -0.010 0.6616 0.0631 -0.32 

 

 

Table D-2 Weights of ANN between first hidden layer and second hidden layer 

H
id

d
en

 

la
y
er

 2
 Hidden layer 1 

0.109 -0.291 0.757 -0.015 

-0.47 0.3165 -1.287 -0.145 

 

 

Table D-3 Weights of ANN between second hidden layer and output layer  

O
u

tp
u

t 

la
y

er
 2

 Hidden layer 2 

6.809 4.4417 
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