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ABSTRACT 

Isotopic tracen have been used in hydrogeologic investigations for over forty years with 

a relativeIy recent increase in the use of radioactive, cosmogenically-produced nuciides. It has 

been the practice by hydrogeologists to assume that the major source of these radionuclides in 

ground water is meteoric, with anaiytical detection as the only Iimiting factor in utilizing these 

tracen to describe hydrogeologic processes. However, in many environments, subsurface 

production as well as anthropogenic sources of these isotopes dominate. This is particularly t . e  

of radioactive chlorine-36 (36~1) .  

To understand and quanti@ the sources of 16cl in the environmen& this research was 

undertaken in the eastern Snake River Plain aquifer system near the Idaho National Engineering 

and Environmental Laboratory (NEEL). The environment at and near the iNEEL has significant 

inputs of 16cl fiorn nuclear-fuel and nuclear-waste processing that can be orders of magnitude 

larger than meteoric, weapons-tests, or in situ production. The MEEL is Iocated in southeastern 

Idaho and is among the U.S. Department of Energy's (DOE) largest nuclear testing facilities. 

Between 1953 and Febmary 1984, low-Ievel radioactive wastewater containing tritium, iodine- 

129, and 'vl, among other radionuclides, was discharged to the eastern Snake River Plain aquifer 

through a 183-meterdeep disposal well at the Idaho Nuclear TechnoIogy and Engineering Center 

(INTEC). Additionaily, wastewater has been discharged to the environment through infiltration 

ponds at the Test Reactor Area since 1952 and at the MTEC since February 1984 (Cecil and 

others, 1992). 

Since 1966, the U.S. Geological Survey (USGS) routinely has archived at l es t  one suite 

of ground and surface water samples collected quarterly at the NEEL each year. The sarnples 

are available for research purposes. The new data generated fiorn the archived sarnples, 

associated historical database, and the capability to detect 3 6 ~ 1  at small environmental 



concentrations by accelerator mass spectrometry (AMS), should aliow determination of large- 

scaie aquifer hydrogeologic properties and quantification of the sources of this isotope. 

The main area of research documented in this dissertation was the quantification of 3 6 ~ ~  

inputs to the environment at and near the WEEL. This information was then used to begin to 

describe the hydmgeology in the far field from the 3 6 ~ 1  source at the INTEC, up to 28 km 

downgradient. The first research objective was an evaluation of the archived water samples in 

terms of 3 6 ~ ~  concentrations and possible chloride isotope fractionation through time. Secondly, 

concentrations of 3 6 ~ ~  in the environment fiom meteoric, weapons-tests, and in si& production 

were established and compared to reieases from nuclear-fiel and nuclear-waste processing at the 

INEEL. Finally, these 3 6 ~ ~  inputs to the environment were used to determine first arriva1 times at 

- downgradient observation weils and one-dimensional hydraulic dispersivities in the far field. 

To evaluate the suitabiiity of the archived sarnples as an indicator of historical 

radionuclide concentrations, water samples from six USGS monitoring weIls colIected during 

1969-93 and one surface water site from 1970 were analyzed for stable chlorine isotopic ratios, 

chlorine-37khlorine-35 ( 3 7 ~ 1 / 3 S ~ ~ ) .  These ratios were measured in water samples and were 

compared to 3 7 ~ ~ 3 s ~ ~  in standard mean ocean chloride ( 6 3 7 ~ ~ )  to determine if fiactionation of 

chlorine isotopes had occurred during storage or along apparent flowpaths in the aquifer. This 

information was used to evatuate if 3 6 ~ 1  concentrations measured in water from the archived 

samples in the 1990s were representative of the historical concentration at the tirne of sample 

collection. The results of this evaiuation indicated that no detectabie fractionation of chlorine 

36 isotopes had taken place during storage. Therefore, Cl concentrations measured today in the 

archived water sarnples, are representative of the concentrations at the time of sample collection. 

Additionally, the results suggest an inverse correlation between ij3'cl and radioactive 3 6 ~ ~  

concentrations in some of the water samples fiom this aquifer that warrants further research. 

Quantification of 3 6 ~ 1  in the environment at and near the INEEL included calculation of 

meteoric input, fallout fiom atmospheric nuclear-weapons tests conducted in the 1950s-60s, and 



natural in situ production in the aquifer system. After accounting for 3 6 ~ 1  h m  these three 

sources, any remaining quantifiable concentration was concluded to originate from nuciear 

facilities at the INEEL. From the data presented in this dissertation, it was deterrnined that 

concentrations of 3 6 ~ 1  larger than 1  x 10' storns per liter ( a t o m d )  in the environment at the 

INEEL were a result of nuclear-waste disposa1 practices. Releases of 3 6 ~ 1  to the environment at 

the INEEL as a result of site operations are on the order of 10" to 1012 a t o m a  in ground water 

near the INTEC source. 

To determine first--val times of fiom site-disposal practices, analyses were 

performed on archived ground water samples from selected downgradient observation weils. 

Estimated first arriva1 times fiom 3 6 ~ 1  data in the archived water samples fiom observation wells 

indicate minimum ground water flow velocities of 1 to 3 m/day with velocities as large as 6 

d d a y .  Using the results of this research, hydrodynamic dispersion was analytically modeled 

using a one-dimensional convolution integral in a computer spreadsheet. The results of the 

system-response rnodeling suggest one-dikensional dispersion (equivalent to longitudinal 

dispersion) of less than 5 m. This further suggests that ground water flow in this system may be 

along preferential flow corridors. 
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PREFACE 

The research discussed in this dissertation is based on information and data pubIished in 

journal articles, professional papers, conferences and symposia, and USGS publications over the 

1 s t  1 1 years (Cecil, 1989; Cecil and others, 1989, 1991, 1992, 1997, 1998, 1999, 2000a, and 

2000b). Additionally, five other pubiications in the References that l i s t  me as the second author 

were an integrd part of the research conducted for this dissertation. Those five references are: (1) 

Beasley, Cecil, and others, 1993; (2) Davis, CeciI, and others, 1998; (3) Knobel, Cecil, and 

Woods, 1995; (4) Mann and Cecil, 1990; and (5) Orr and Cecil, 1991. For the research 

documented in a11 of these references, 1 wrote (or CO-authored) the proposais and obtained (or 

assisted in obtaining) the fiinding, was involved in the major portion of the planning and carrying 

out of the experimental work, and the interpretation of the data and reporting of the results. For 

the sarnple resuIts discussed in this dissertation, I coltected and/or processed the samples for 

analysis, was an integral part of the devetopment of techniques for extracting the chloride from 

the sampies, and prepared most of the targets for the acceIerator mass spectrometry 

measurements. 
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CHAPTER 1 

INTRODUCTION 

The Idaho National Engineering and Environmental Laboratory (INEEL) is located in 

southeastem Idaho and is one of the largest of the United States Department of Energy's (DOE) 

nuclear testing facil ities, covering about 2,3 00 square kilometers (km) (figure 1 -1). The MEEL 

was established in 1949 and is used by the DOE to constnrct and test nuclear reactors and to 

participate in various defense programs. There have been 52 different reactors constructed and 

tested at this site since 1952 and thirteen of the reactors are still operable. 

The DOE requires information about the mobility andlor retardation of radiochernical and 

chemical wastes reIeased to the environment at the iNEEL. In 1949, the DOE (then calied the 

Atomic Energy Commission) requested the United States Geological Survey (USGS) to describe 

the geology and water resources of the eastern Snake River Plain, Since the comptetion of that 

initial site characterization. the USGS has maintained a network of monitoring wells to determine 

hydrologic trends and to describe the fate of contaminants contained in wastewater released to the 

environment. 

Radiochernical and chemical wastes generated at the NEEL and other DOE facilities 

have been buried in the subsurface at the site since 1952. Additionally, from 1952-84, 

wastewater containing tritium ( H )  iodine-129 (Iz9 1). and chlorine-36 ( 3 6 ~ ~ ) ,  among other 

radiochemical and chemical constituents. was discharged to the eastern Snake River Plain aquifer 

through a 183-meter-deep disposal well at the Idaho Nuclear Technology and Engineering Center 

(PJTEC). Since 1984 at the fNTEC. and from 1952-93 at the Test Reactor Area, these wastes 

also were discharged to disposal ponds (fie. 1.2). The wastewater discharged to ponds at these 

two facilities rnust travel through about 150 m of aIluvium, sedirnentary interbeds, and basalt 

before reaching the aquifer. Historicaily, the distribution of 'H has been used to define the extent 

that the Snake River Plain aquifer has been influenced by wastewaterdisposal practices (Du@ 
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and Hamison, 1987). However, the relatively short (1226-year) haIf-life of 'H and the detection 

capability that is used at the PEEL in routine monitoring, 500 picocuries per Iiter (pCi/L), limit 

the utility of this radionuclide for hydrologie sîudies. Due to the short half-Iife and the analytical 

method utilized 'H detection in the far field (201 kilometers downgradient from the MTEC 

source) is not possible. However, even if a more sensitive analytical method were employed, the 

short travel time fiom iNTEC and the 12-26 year half-life seriously cornplicate any attempt to 

distinguish 'H in ground water as a result of disposal practices fiom 3~ as a result of natural or 

weapons-tests production in the far field. 

Pior to 1990, concentrations of 3 6 ~ 1  (half-iife is 301,000 years) at the MEEL were 

determined by beta-counting methods and 1 2 9 ~  (half-life is 15.7 million years) concentrations were 

determined by neutron activation analysis. Ground water samples analyzed by accelerator mass 

spectmmetry (AMS) in 1990 and 199 1 contained concentrations of 16cl and 1 2 9 ~  that previously 

were not detectable. Therefore, a more accurate description of the area influenced by wastewater 

disposa1 can be made because the analytical rnethod detection limit for AMS is several orders of 

magnitude Iower than that for either the beta-counting rnethod or neutron-activation analysis. 

Since 1966, the USGS has routinely archived at least one suite of quarterly ground- and 

surface water samples each year. The samples and a large associated geochernical database are 

avai lable for research purposes. These archived samples, the historical chernical database, and 

the capability to detect radionuclides such as 3 6 ~ ~  at srna11 environmental concentrations by AMS 

should allow determination of large-scale aquifer hydraulic flow properries. 

Releases of anthropogenic 3 6 ~ 1  to the environment at the MEEL, as a result of nuclear- 

fuel and nuclear-waste processing operations, have been welI documented (Cecil and others, 

1992; Beasley and others, 1993). This 3 6 ~ 1  was produced by neutron activation of stable 

chlorine-35 (35~1) present as impurities in nuclear fuel bundles, reactor-cooling water, and other 

process wastes. Rsdioactive chlorine (%l) is then re1eaKd to the environment in liquid and 



gaseous effluents as chlorine gas, nitrosyl chloride, and/or hydrochloric acid. One possible 

reaction during the waste processing is: 

HN03 i- 3H 3 6 ~ ~  -> 3 6 ~ ~  3 5 ~ ~  + ~ 0 ~ ~ ~ 1  + 2 HzO 

There are three possible sources of 3 6 ~ 1  in the environment at the MEEL in addition to 

the releases made during nuclear waste-disposai operations. These three sources are rneteoric 

input of cosmogenically produced 3 6 ~ 1  in wet and dry deposition, produced during nuclear- 

weapons tests in the 1950s-60s and transported globally in the upper atmosphere or released 

during nuclear accidents, and in situ production of 3 6 ~ ~  in rocks and soils by nuclear particle 

interactions with stable elements (fig. 1-3). Until the research reported here was completed, 

meteoric input, flux fiom nuclear-weapons tests, and in situ production for this nuclide had only 

been estimated at the MEEL (Cecil and others, 1992; Beasley and others, 1993). In this 

dissertation, the first measurernents and quantitative estimates of meteoric input, weapons-tests 

production, and Ni situ production for 3 6 ~ ~  at and near the MEEL are presented and are compared 

to 3 6 ~ 1  concentrations in the environment as iresult of nuclear-waste processing. 

To aid in deterrnining meteoric input to the environment, 32 surface water and two spring 

samples collected during 1969-95 were selected frorn sites on and nea. the eastem Snake River 

Plain for 3 6 ~ ~  analyses (table 1.1). Eighteen of these samples were selected fiom the archive- 

sample library maintained by the USGS at the WEEL. In addition to the surface water samples, 

four snow and seven ground water sarnples(a subset of al1 ground water sarnples, table 1 . l)  were 

collected at and near the MEEL and analyzed for "CI. These sarnples were selected on the basis 

of areal distribution, availability of additional historical analytical records, and whether or not 

they were representative of area1 recharge to the eastern Snake River Plain aquifer system. 

Chlorine-36 produced during nuciear weapons tests in the 1950s-60s has been identified 

in polar ice and in the ice sheet in Greenland (Finkel and others, 1980; Elmore and others, 1982). 

However, ice-core traces of climate, as suggested by the isotopic record in glaciers, have been 

considered unsuitable for temperate locations such as the continental United States due to the 
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effects o f  thawing and refieezing and subsequent mekwater percolation. However, in 199 1, a 

research team from the USGS collected a continuous 160-meter ice core fiom the Upper Fremont 

Glacier in the Wind River Range of Wyoming in the western United States (fig. 1.4). From this 

core, the first successfiil reconstruction of an isotopic record of  paIeoclimate fiom a mid-latitude 

North American glacier was reported (Naftz and others, 1996). Na* and others (1996) 

established a global linkage of the delta oxygen-18 (6"0) Standard Mean Ocean Water series 

between the Upper Fremont Glacier and two ice-core records fiom the Quelccaya Ice Cap in 

South Amerka. In the research presented here, the first measurements of mid-latitude '%l failout 

archived in glacial ice in North America are presented, 

From the Upper Fremont Glacier ice-core, Nafiz and others (1996) identified the 1963 'H 

bomb peak at a depth of 29 meters (m) below the surface of the glacier. The 'H concentration at 

this depth in 199 1 was 365 tritium "nits (TU). Based on this 'H record, eighteen sections of ice 

core were selected for "CI analyses. The core. measuring in length from 0.4 to 0.7 m, was from 

various depths below the surface of the Upper Fremont Glacier. These sections of  ice core were 

selected to include the peak bomb production of %l that occurred during 1957-58. This 16cl 

peak should be slightly deeper in the ice core than the 1963 'H peak. Additional sections of ice 

were selected to be representative of pre- and post-bomb "CI concentrations. A sarnple of 
- 

relatively recent glacial mnoff from Galena Creek Rock Glacier, 180 km north of the Upper 

Fremont Glacier, was analyzed for cornparison purposes. 

The information gathered frorn the archive sample evaluation, the quantification of 3 6 ~ ~  

inputs to the environment. and the ground water sample results were used to mathematically 

mode1 one-dimensional ( 1  -D) aquifer dispersivity. Additionally, input from disposal 

practices was reconstmcted from 'H input records and used to de ten ine  fint arriva1 times at 

downgradient observation wells and for curve-marching in the modeling process. 

1.1 Puruose and S c o ~ e  

The purpose of the research reported here is to understand and quantify the sources o f  
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radioactive 3 6 ~ ~  in the environment at and near the INEEL. This information was then applied to 

an evaluation of 1-D hydrodynamic dispersion in the eastern Snake River Plain aquifer system. 

The type and number of samples collected to accomplish the purpose and scope of this research 

are given in table 1.1. These data were used to reconstruct the historical development of 

wastewater migration in the Snake River Plain aquifer with particular emphasis on w l .  

Reconstruction permitted the definition of first arriva1 times of wastewater containing at 

monitoring wells up to 26 km downgradient fkom the MTEC. A n  attempt was also made to 



Table 1 -1. Type, number, and purpose of environmental samples collected for this study. 

[A subset of the ground-and surface water samples was selected for evaluating the suitability of 
the archived samples for this research. See Chapter 4 for a discussion of this analysis.] 

- 

Type of Sample Number of Sarnples Purpose of Samples 

Determination of ambient andor 

Ground Water 

Surface Water 

Ice Core 

Snow 

Rock Core 

Glacial Meltwater 

70 background concentrations, 1 -D 
aquifer dispersivity, archive-sarnple 
evaluation, CI-EJr- ratios 

Determination of meteoric and 
anthropogenic in ut, effects of 
evaporation on "&I concentrations, 
archive-sample evaluation, Cl'/Br' 
ratios 

Determination of meteoric andor 
anthropogenic 3 6 ~ i  input, Cl-/Br- 
ratios 

Detemination of meteoric and/or 
anthropogenic input 

Determination of whole-rock 
geochemistry (22 eiernents) for in 
situ ' k l  production calculations 

Determination of meteoric and/or 
1 anthropogenic 3 6 ~ ~  input, C1-Br- 

ratios 

Determination of meteoric andor 
Spring 2 anthropogenic 3 6 ~ ~  input, Cl-/Eh- 

ratios 

establish 1-D aquifer dispersivities to help constrain future 2-D and 3-D modeling efforts. To 

accomplish the purpose of the overall study, an evaluation of selected water sampfes from the 

USGS archive library for the period 1966-1994 was performed to detennine if there was CI 

isotope fractionation and thereby establish confidence in utilizing chloride (Cl-) isotopic data 

generated from these historical water smples. The evaluation covered the historical record 

- available from selected sites at the MEEL and included, (1) an assessrnent of paper and cornputer 

records for each sample; (2) a determination of 3 7 ~ ~ 3 5 ~ ~  ratios; and (3) a determination of %I 



concentrations. These assessments and analyses were performed to ascertain if Cl isotope 

hctionation might have occurred during storage. This information is essential in detemining the 

suitability of using 3 6 ~ 1  concentrations in the archived water sarnples to aid in determining aquifer 

hydraulic propert ies. 

Most 3 6 ~ ~  produced in the atmosphenc environment originates fiom cosmic radiation 

interacting with atmospheric gases. Additionally, large amounts of 3 6 ~ 1 ,  orders of magnitude 

greater than naturally produced atrnospheric inventories, have been released to the environment 

during nuclear-weapons tests, nuclear-reactor operations, and nuclear-waste processing. TO 

better determine the inventories of 3 6 ~ ~  at the MEEL, ground and surface water, snow, and 

glacial- ice and -runoff sarnples were analyzed to establish inputs fiom meteoric sources and 

- nuclear-weapons tests. These measurements were perfomed on sarnples collected at and near the 

iNEEL in southeastern Idaho and western Wyoming (fig. 1.4). 

Additionaily, calculations were perfomed to determine the contribution of 3 6 ~ ~  from in 

situ production in subsurface rocks and ground water in the eastem Snake River Plain aquifer. 

These concentrations were then compared to ground water concentrations as a result of site 

disposai practices at the MEEL. The scope included isotopic and chernical analyses and 

associated 3 6 ~ 1  in situ production calculations on 25 whole-rock samples from six major water- 

bearing rock types found in the eastern Snake River Plain. The rock types investigated were 

basait, rhyolite, Iirnestone, dolomite, shale, and quamite. The calculated contribution included 

the estimation of neutron production rates based on the elemental composition of the rock 

samples and the proportion of the resultant neutrons that may be captured by 3 5 ~ ~  atoms within 

the rock to produce 3 6 ~ ~ .  

Finally, a 1-D system response mode1 was constructed in the far field (up to 26 km fiom 

the source) to determine aquifer dispersivity. Assuming that tracer arriva1 times at domgradient 

observation welis are controIled by preferential flow, the mode1 was used to detemine aquifer 



dispersivity by comparing the shape of predicted 36~l-concentration curves to the shape of 3 6 ~ 1 -  

concentrations measured in archived water fiom these observations wetls. 

1.2 Hvdrogeolopic Setting 

The eastem Snake River Plain (fig. 1.1) is a structural basin defined by faulting and 

downwarping on the southeast and faulting on the northwest. It is predominantly filled with 

Quaternary basait of the Snake River Group that is generally'covered by up to3 m of ailuvium at 

land surface (Garabedian, 1992; Whitehead, 1992). This stnicturaI basin was created by 

Cenozoic tectonic stresses and is a zone of transition between the northern Rocky Mountain 

geologic province to the north and east and the Basin and Range province to the northwest, west, 

north, east, and southeast. Unconsoiidated sediments overlie the margins of the basin aiid are 

interbedded with the basalts and pyroclastics at depth. The basalts are several hundred to as 

rnuch as 1,500 m thick, underlie most of the basin, and constitute the major water-bearing rock 

units of the eastem Snake River Plain aquifer. 

Fractures and vesicular zones occur near the surfaces of the basalt flows and may be 

highly transmissive of ground water. Reported transmissivities for the eastern Snake River Plain 

aquifer range fiom 0.1 to more than 70,000 m2/day, a range of nearly six orders of magnitude 

(Ackerman, 1991). Depth to ground water at the MEEL varies in the basalt aquifer from about 

60 m below land surface in the northern part to more than 275 m in the southern part. The 

hydraulic gradient at the CNEEL is about 1 mlkm and horizontal ground water flow velocity 

ranges from 1 to 6 rn/day. This range is based on the distribution of 'vl through time as 

determined from analyses of archived samples presented later in this dissertation. 

Aquifers at the INEEL consist of layered sequences of basaltic-lava flows and cinder 

beds intercalated mainly with fluvial and lacustrine sedimentary deposits. Individual lava flows 

typically are 6 to 7.5 m thick and 130 to 260 square kilometers in areal extent, providing potential 

for relatively large regional flow systems within individual volcanic-extnisive episodes. Rubble, 



clinker zones, fractures, and vesiculv zones are prevalent near the surfaces of flows and rnay 

serve as preferential pathways for ground water inovement. Subsequent lava flows or sedimentary 

deposits may partly fil1 fractures and vesicles and thereby restrict ground water flow. The centers 

of individual flows, especially thick flows, are typically less vesicular and more massive and may 

be characterized by vertical fractures fürther complicating the interpretation of the ground water 

flow system. Well yields can be large because of the highly transmissive nature of the fractured, 

vesicular interflow zones. The aquifer fiamework results in a complex, heterogeneous and 

anisotropic medium. 

The geology and hydrology of the Snake River Plain at the INEEL describe a water-table 

aquifer of large areal extent with overlying perched aquifers near waste-disposa1 ponds (Cecil and 

others, 199 1). Ground water levels have been relatively stable at the iNEEL since measurements 

began in 1949. However, water levels do respond to climatic trends, and locally, to recharge from 

intermittent streams. Regional ground water flow is from the northeast to the southwest (fig. 1.1). 

Perched aquifers form when downward flow from waste ponds is impeded by silt and clay in 

sedimentary deposits or by dense sections at the interiors of basalt flows. 

Long-tenn (1 950- 1988) average precipitation in the vicinity of the MEEL is 22 cdyear 

(Clawson and others, 1989, table D-I ). About 40 percent of the long-term average preci1;itation 

on the eastern Snake River Plain is rainfall between April and September. However, as a result of 

evapotranspiration (ET), Iess than 5 percent of the long-term annual average precipitation 

infiltrates the surface locally on the eastem Snake River Plain (Cecil and others, 1992). As 

36 illustrated later, ET can significantly affect meteoric CI concentrations measured in 

environmenta! water sampies from the eastem Snake River Plain aquifer system. Recharge to the 

eastem Snake River Plain aquifer is from snowmelt in the mountains to the east, West, and north, 

and from irrigation return fiow and surface water. The five watersheds that recharge the northern . 

portion of the eastern Snake River Plain aquifer are the Big Lost River, Little Lost River, Birch 

Creek, Camas CreekMud Lake, and the main Snake River drainage (fig. 1.1). 



13 Re~ortinp of Radionuclide Data 

Three mesures for the presence of 3 6 ~ ~  are used in this dissertation. They are, ratios of 

atoms of 3 6 ~ ~  to atoms of total CI- in the samples ("cI/cI), concentrations expressed in atoms/L 

(Appendix Table C-1), and atmospheric flux of "CI in atoms per area per time calculated fiom 

concentrations in ice and snow samples ( a t o d )  and precipitation flux (&m$) (Appendix 

Table C-2). The ratios are reported by the accelerator facilities. The concentrations and fluxes 

were calculated fiom the data generated in this research and were used to compare with data sets 

from other studies reported in the literature. Additionally, concentrations of the radionuclide 3 6 ~ ~  

are reported with an estimated sample standard deviation, s, which is obtained by propagating 

sources of analytical uncertainty in measurements. The following guidelines for interpreting 

analyticai results are based on a rnethod proposed by Currie (1984) and were subsequently 

prepared as guidelines for the USGS, Water Resources Division (Cecil, 1989). 

In the analysis for a particular radionuclide. laboratory measurernents are made on a 

target sample and a prepared blank. Instrument signals for the sample and the blank Vary 

randomly. Therefore. it is essential to distinguish between two key aspects of the problem of 

detection. First, the instrument signal for the sample must be larger than the signal observed for 

the blank before the decision can be made that the radionuclide was detected. Second, an 
. 

estimation must be made of the minimum radionuclide concentration that will yield a suficiently 

large observed signal before the correct decision can be made for detection or non-detection of 

the radionuclide. The first aspect of the problem is a qualitative decision based on an observed 

signal and a definite criterion for detection. The second aspect of the problem is an estimation of 

the detection capabilities of a given rneasurement process. 

In the laboratory, instrument signals must exceed a critical level of 1.6s before the 

qualitative decision can be made as to whether the radionuclide was detected. At 1 . 6 ~ ~  there is 

about a ninety-five percent 

Given a large number of 

probabitity that the correct conclusion, not detected, will be made. 

samples, as many as 5 percent of the samples with measured 



concentrations larger than or equal to 1 . 6 ~ ~  which were concluded as being detected, might not 

contain the radionuciide. These measurements are referred to as false positives and are errors of 

the first kind in hypothesis testing. 

Once the critical level of 1.6s has been defined, the minimum detectable concentration 

may be detennined. Concentrations that equal 3s represent a rneasurement at the minimum 

detectable concentration. For true concentrations of 3s or Iarger, there is a 95 percent or larger 

probability that the radionuclide was detected in a sample. In a large nurnber of samples, the 

conclusion, not detected, will be made in 5 percent of the samples that contain tnie concentrations 

at the minimum detectable concentrations of 3s. These measurements are referred to as false 

negatives and are errors of the second kind in hypothesis testing. 

True radionuclide concentrations between 1.6s and 3s have larger errors of the second 

kind. That is, there is a larger-than-five-percent probability of false negative results for samples 

with true concentrations between 1.6s and 3s. Although the radionuclide might have been 

detected, such detection may not be considered reliable; at 1 . 6 ~ ~  the probability of a false negative 

is about 50 percent. If sample results between 1.6s and 3.0s are reported as non-detects, 

approximately 50 percent of these results will have true radionuclide concentrations. These 

reported non-detects, results between 1.6s and 3.0s, are false negatives. 

The critical level and minimum detectable concentration are based on counting statistics 

alone and do not include systematic or random errors inherent in laboratory procedures. The 

values 1.6s and 3s Vary slightly with background or blank counts, with the number of gross 

counts for individual analyses, and for different radionuclides. In this dissertation, radionuclide 

concentrations less than 3s are considered to be below a "reporting level." The critical levei, 

minimum detectable concentration, and reporting level aid the reader in the interpretation of 

analytical results and do not represent absolute concentrations of radioactivity that rnay or may 

not have been detected in an environmental smple. With the exception of one snow sample 



(Copper Basin, fig. 1.1 ), al1 analytical results reported here for radionuclides exceeded three 

sample standard deviations. 

1.4 Previous Investipations 

This dissertation is a compilation of work conducted as an employee of the USGS, Water 

Resourccs Division, at the MEEL fiom 1988 until the present. In particular, this work is a 

summary of a series of USGS publications on which 1 was senior author (Cecil, 1989, Cecil and 

others, 1992, 1998, 1999, and 2000). Additionally, the portion of this research dealing with 

weapons-test f l ues  of "k~ archived in glacial ice has been published in, Cecil, L.D., and Vogt, 

S., 1997, "Identification of bornb-produced 3 6 ~ ~  in mid-latitude glacial ice of North America" 

(Nuclear Instruments and Methods in Physics Research, B 123, p. 287-289). 

Many investigators have described the geology and hydrology of the eastem Snake River 

Plain at the NEEL in a continuing series of reports published by the USGS. Robertson and 

others ( 1  974) described the regional hydrogeology and the influence of wastewater disposal on 

ground water geochemistry for 1952-70, Barraclough and others (1976) described hydrologie 

conditions during 197 1-73, Barraclough and others (1 982) for 1974-78, Lewis and Jensen (1 985) 

for 1979-8 1, Pittman and others (1 988) for 1982-85, Orr and others (199 1) for 1986-88, and 

Barthoiomay and others (1995) for 1989-9 1. Cecil and others (1991) also described the 

hydrogeology and influence of wastewater disposa1 in perched ground water zones for 1986-88. 

Several studies have also been made to mathematicatly mode1 waste plumes in the 

fractured basait. Robertson (1 974) was the first to describe the construction of a computer model 

to represent the transport of radioactive and chernical wastes in the eastem Snake River Plain 

aquifer at the INEEL. Robertson calibrated a two-dimensional (2-D) flow and transport model 

using data from the USGS for 1952-72 and predicted solute spreading in the Snake River Plain 

aquifer at the INEEL to the year 2000. The calibrated longitudinal (ad and transverse (aT) 

dispersivities were about 90 and 140 m respectively. This characteristic, a~ > ab is not expected 



theoreticaIly and is still unique among field-scale investigations. Gelhar and others (1992) 

critically reviewed investigations of 59 different fieid sites on field-scale dispersion in aquifers 

and found that for 24 values of horizontal transverse dispersivities reported, al1 but those by 

Robertson were one to two orders of magnitude Iess than IongitudinaI values. Subsequent 

reevaluation of Robertson's work and new attempts at modeling flow and transport at the MEEL 

has not resolved this apparent discrepancy ( D u e  and Harrison, 1987, Fryar and Domenico, 

1989, and Goode and Konikow, 1990). 

Pre-weapons tests 3 6 ~ 1 / ~ ~  ratios have been predicted for the continental United States 

(Bentley and others, 1986). These researchers used calcufations done by La1 and Peters (1967) 

for meteoric 3 6 ~ ~  fallout with latitude divided by CI- deposition h m  Eriksson (1960). Similar 

-ratios as those predicted by Bentley and others for the latitude of the MEEL (300 to 600 x  IO-'^, 

fig. 1.5) have been reported by Cecil and others (1 992) for pre-weapons tests soil water extracted 

from the shallow ahvium at the Radioactive Waste Management Complex (RWMC). It was 

detemined that soil water representative of pre-weapons tests 3 6 ~ 1 / ~ ~  ratios h m  depths ranging 

fiom 2.4 to 5.6 m below land surface had values near 300 x 10-"; 290I14 x 10-", 260k12 x 10"~  

and 28021 5 x 1 O-''. Chlorine-36 concentrations and estimated fluxes have also been reported for 

the eastern United States (Hainsworth and others, 1994) and for the central United States (Knies 

and others, 1994). The values reponed in these studies for pre- and post-weapons tests fluxes 

were nearly the same as the vaIues reported here. Cecil and Vogt (1997) reported the first 

identification of bomb-produced  CI in glacial ice of North America. 

Recently, Moysey (1999) and Sterling (2000) reevaiuated the meteoric fallout of 3 6 ~ ~  

across the continental United States using total chloride data in precipitation fiom the National 

Atmospheric Deposition Program. The results of their work for southeastern Idaho and western 

Wyoming are similar to the results of the research presented here and will be discussed in section 

5.1 "Meteoric Production". Appendix D-1 is a comprehensive list of global research h m  the 



literature conceming studies in various geologic and hydroiogic environrnents. 

Bentley and others (1982) initially demonstrated the feasibility of using the bomb-%l 

pulse in ground water near Borden, Ontario, to identiw recharge. Since then, numerous studies 

have been conducted to identiQ ground water that has been recharged since 1954 (Bentley and 

others, 1986a; Phillips and others, 1986; Andrews and others, 1994; Purdy and others, 1996; 

Herczeg and others, 1997). In contrast to such application of 3 6 ~ 1  to identifi recharge, little use 

has been made of the b ~ r n b - ~ ~ ~ ~  peak, or other anthropogenic %I sources, as tracen to determine 

ground water hydraulic properties. 

Although an evaluation of sampling and preservation methods for strontium-90 has been 

performed at the mEEL (Cecil and others, I989), no previous investigations on variations in 

stable CI isotopic ratios have been reported for the. eastern Snake River Plain aquifer. 



Figure 1.5. Cnlculated rhloRne-J6/chlorine (x 1 ~ ~ 5 )  ratios in precipitation and dry 
dallout over the United States. 

Note: This figure was modified from Bentley and others, 1986. 



CHLORINE ISOTOPES 

Fifieen isotopes of Cl are known to exist; two are stable and thirteen are radioactive. Of 

35 the stable isotopes, Cl is the most cornmon in nature with 75.77 percent abundance and an 

37 atomic weight of 34.9689 g (CRC Handbook, 1991). The remaining stabIe isotope, Cl, has an 

abundance in nature of 24.23 percent and an atomic weight of 36.9659 g. Of the thirteen 

radioactive isotopes, only "CI has a half-iife greater than one hour; the half-life for 3 6 ~ 1  is 

301,000 years (Walker and others, 1989). Several oxidation states for Cl isotopes are found in 

nature but with the exception of a few rare instances, the -1 oxidation state as the Cl' ion is 

dominant, Oxidation states of +VI1 for perchlorates (CIO4-) and +I for hypochlorites (HOCI) 

have been reported (Erickson, 198 1; Sienko and Plane, 1966). Once the Cl- ion is dissolved in the 

ground water, sinks for removing this ion from solution do not exist due to the highly hydrophilic 

nature of this element (Eggenliamp. 1994). 

Absolute isotopic ratio measurements of elements are dificult to perform because 

variations in isotopic composition are small. Therefore. the isotopic ratio of 3 7 ~ ~ 3 5 ~ ~  is measured 

relative to the same ratio in a standard sample and expressed in the delta chlorine-37 ( 6 3 7 ~ ~ )  
. 

permil notation defined as: 

where: R-pk = ratio o f f ' ~ 1 / " ~ l  in the sample, and 

RsmM = ratio of "CI/~'CI in the standard. 

Variations in 6 3 7 ~ 1  in ground waters may be a result of diffusion, ion-filtration, mixing, 

dissolution of evaporites along a flow path, andor temperature and pressure effects in geothennal 



systems. Diffusion has been suggested to be a process that may cause significant variations in Cl- 

isotopic ratios (Desaulniers and others, 1986). Additionally, Eggenkamp (1994) showed 

significant 6 3 7 ~ 1  variations in geothermal water and possible significant variations through 

difision modeling. None of these processes are expected to be an effective means of 

fiactionation of Cl- isotopes in water from the eastem Snake River PIain aquifer system because: 

(1) difision is unlikely with ground water flow velocities ranging from 1 to 6 d d a y  

(Desaulniers and others, 1986); (2) there are no significant ion-filtration processes operabIe along 

the flowpath such as large-scafe ground water flow through clay beds; (3) regional ground water 

mixing is minimal; (4) there are no significant deposits of evaporites along the flowpath fkorn 

recharge to discharge; and (5) geothermal effects are minimal. Additionally, the archived 

samples have been in temperature- and light- controlled storage since the date of sample 

collection. Measurements of were made on selected samples to document possible 

variations through time and to ensure that "CI concentrations measured in the 1990s, for water 

sarnples collected in the l96Os-9Os, were representative of the concentration at the time of sarnple 

collection. 

The internationally accepted standard for 6 3 7 ~ 1  is Standard Mean Ocean Chloride 

(SMOC) as defined by Kaufmann and others (1984); the ratio of "C~P~CI was shown to be 

constant in fifieen ocean water samples worldwide. The standard for the research reported here 

was collected near Fairfax, Nova Scotia, and was compared with rneasurements pedormed on the 

same standard at the University of Arizona. The measured a3'cl SMOC for the sarnple collected 

near Fairfax, Nova Scotia, was 0.00+_0.18 indicating that this standard is the same as SMOC 

measured at the University of Arizona. 

Chlorine-36, a beta-particle emitter, is cosmogenically produced in the atmosphere by 

two major processes; (1) spallation (cosrnic-ray interaction with 4 0 ~ r ) ,  and (2) neutron activation 

of 3 6 ~ r  according tu the following reactions (Andrews and Fontes, 1992): 



' O A ~  (p, n a) 3 6 ~ ~  (67 percent of total natural atmospheric production), and 

3 6 ~ r  (n, p) *CI (33 percent of total natural atmospheric production) 

Another significant source of 3 6 ~ ~  in the environment is the neutron activation of stable 

3 S ~ 1 :  

"CI (n, y) 3 6 ~ 6 .  

This reaction is the source of 3 6 ~ ~  produced during atmospheric weapons tests conducted by the 

United States and Great Britain over the Pacific Ocean during 1952-58 (Schaeffer and others, 

1960). This reaction may also produce significant 3 6 ~ 1  in situ in certain subsurface environrnents 

that have a neutron source in reasonably close proximity to stable 3 S ~ l .  In basaIt, rhyolite, 

sandstone, and carbonate rocks, the following reactions on potassium-39 ( 3 9 ~ )  and to a Iesser 

extent, on calcium-40 roca), can contribute to in situ production: 

"K (n, a) 3 6 ~ ~  

40 Ca (ri, a) 3 6 ~ ~ .  

Chlorine-36 can be produced at detectable concentrations in both the deep and shallow 

subsurface. However, the "CI (n, y) reaction is the only one that produces significant 3k1 in 

the subsurface at a depth greater than 10 m (Andrews and others, 1989; Davis and others, 1998; 

and Fabryka-Martin, 1988). Later in this dissertation, the factors that determine in situ production 

of 3 6 ~ ~  in the deep subsurface at the MEEL will be discussed in detail. 

Bentley and others (1986) predicted pre-weapons test 3 6 ~ 1 / ~ ~  ratios for the continental 

United States (fig. 1.5). These predictions are based on long-term deposition of both wet 

precipitation and dry fallout and represent integrated ratios expected for ground water that has not 

been exposed to anthropogenic or significant in situ produced 3 6 ~ ~ .  This mode1 assumes that ET 

processes increase the absolute concentration of Cl- isotopes in ground water but do not affect 

meteorically denved ratios. In many ground water environments, the Cl- concentration increases 

along a flow path (Davis and others, 1998) and the meteoric input of '=CI may be diluted by the 
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Figure 2.1. Mechanisms that can change "CI concentrations and (or) " ~ V C I  ratios. 

Note: This figure was modified from Davis and others, 1998. 
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addition of Cl- containing no measurable radioactive Cl' from the aquifer rnatrix or fiom the un- 

saturated zone that recharge must travei through (fig. 2.1). This type of total CI- would have a 

3 6 ~ ~ / ~ 1  ratio that is in equilibriurn with the in situ activated stable 3 5 ~ ~  and would not fit the 

integrated box mode1 postulated by Bentley and others. 

Bentley and others (1986) predicted that spallation of 4 0 ~ r  produces a global ' k l  fallout 

of 11 atoms/m2/sec and neutron activation of 3 6 ~ r  produces 5 atoms/m2/sec. However, Hossain 

(1988) published new data on the capture cross section of the 3 6 ~ r  (n, p) 3 6 ~ 1  reaction that 



indicate that the probability of this reaction is reduced to less than 1.5 rnillibams as opposed to 

1.83 barns as was used for the calculations of Bentley and others. This complicating factor was 

pointed out by Andrews and Fontes, 1992, p. 247. They suggested that the global fallout values 

used in this box model should be reduced by 11/16 because neutron activation of 3 6 ~ r  appears to 

be an insignificant meteoric source. This apparent reduction of the significance of neutron 
ZL 

activation of 3 6 ~ r  is important to establishing pre-bomb "CWCI ratios because the values in the 

model are modified by prevailing winds and orographic effects (as one moves away fiom coastal 

to continental areas) and latitudinal variations. It is the latitudinal variations that are most 

affected by the differences in the probability of the neutron activation of 3 6 ~ r .  Another even 

more complicating factor in attempting to determine the meteoric input fiinction is the fact that 

calculations of the 3 6 ~ ~  content of an ice core from Greenland, collected at the Dye 3 site, show 

that the fallout rate from ' O A ~  spallation is larger than the value originally calculated by La1 and 

Peters (1967). The significance of these dificulties in determining the atmospheric flux of 3 6 ~ 1  

from natural production will be discussed with the results of the ice-core analyses later in this 

dissertation. 

Chlorine-36 can be produced at detectabie concentrations in both the deep and shallow 

subsurface. In the deep subsurface, neutron activation of "CI and "K are the dominant sources 

for the production of %I. The neutrons required for these reactions are produced by the 

interaction between a-particles, generated from the radioactive decay of U and Th series isotopes, 

and stable nuclei of lighter elements such as oxygen (O), sodium (Na), aluminum (AI), and 

silicon (Si) (Faure, 1986). An estimate can be made of in situ produced 3 6 ~ 1  for a given ground 

water system if the following contributing factors are known: 1) the U and Th content of the 

aquifer matrix; 2) the total CI' content of both the aquifer matrix and the water in the aquifer; 3) 

the irradiation time of the target nuclei; and 4) proximity of targets to neutrons. Andrews and 

others (1989) made such calculations for ' k l  production in the Stripa granite. The Siripa results 

will be discussed in detail in Chapter 5, section 5.3.5. Using the Stripa study as a model, Beasley 



and others (1993) calculated a theoretical in sifu produced 3 6 ~ ~ / ~ ~  ratio of 1 x IO-'* for ground 

water rnoving through the basait aquifer of the eastern Snake River Plain in southem Idaho. 

Because this ratio is not measurable even with AMS, in situ production within the ground water 

was detemined to be inconsequential. 

Thermonuclear explosions conducted during atmospheric tests over the Eartti's oceans 

produced levels of 3 6 ~ ~  that exceeded naturai atmospheric production by up to three orders of 

magnitude at Long Island, New York (BentIey and others, 1982). This puIse is analogous to 

bornb-produced 'H and can be used to trace and date ground water or determine net water- 

infiltration rates through the unsaturated zone in semi-arÏd areas. Peak bomb production of '%I 

was in t 958 and BentIey and others (1986) modeled the fallout using data fiom a series of n u c h  

tests conducted during 1952-58. 

As early as 1957, Begemann and Libby (1957) recognized the importance of 'H input to 

the hydrologic environment as a result of weapons tests. However, this bomb pulse of 'H is only 

a ternporary tool to hydrogeologists due to the relatively short half-life of 12-26 yexs. The use of 

bomb-produced 'H to identifi water introduced into the hydrologic cycle during 1955-70 has 

become common practice and a review of studies of this type would be a major undertaking and 

is beyond the scope of this dissertation. 

Chlorine-36, on the other hand, is a conservative tracing tool available with similar 

attributes as 'H but with a much longer half-life. Advantages of using ' k l  over 'H in rhese kinds 

of studies include: 1) 3 6 ~ ~  was produced by a limited number of tests between 1952-58 over 

oceans; 2) "CI was washed out of the atmosphere relatively rapidly as opposed to bomb- 

produced 'H; and 3) the weapons tests that produced 3 6 ~ ~  were concentrated around the equator 

and global fallout was symmetrical in both hemispheres, whereas 'H fallout was predorninately in 

the northem hemisphere due to the location of the tests that produced it (Bentley and others, , 

1986). 

An additional source of '%I to the environment is the disposal of wastes from nuclear 



facilities. At the MEEL, ground water concentrations up to 1012 atomsL have been measured in 

sampies near the INTEC (table 2.1). These concentrations are six orders of magnitude larger than 

calculated natural meteoric concentrations that will be presented in Chapter 5. 





Table 2. i . Total chloride concentrations, corrected chlorine-36khioride ratios, and 
chlorine-36 concentrations with uncertainties in atomslliter (atoms/L) for ground water 
collected at the Idaho National Engineering and Environmental Labora to~ont inued .  

[See text for expianation of uncertainties. Symbols: T, indicates thief samples; P, indicates 
pumped samptes. See figure 3.1 for weIl locations.] 

WeIl Number & Total Chloride Corrected "CUC~ 3 6 ~ 1  Concentration 
Date of collection (mg.&) Rntio (x Io* '~  atomsn (xi03 

USGS 20 (10-19-93) P 23* 1 903,00OI26,300 3,SOWI O0 
USGS 20 (4-4-94) P 23* 1 792,000I3 6,400 3,10&I40 
USGS 44 (4-30-67) T 8.3I0.5 76,30W3,720 1 lM5 
USGS 44 (5-25-68) T 8.l~t0.5 26,OOW 1,300 36*1 
USGS 44 (5-849) T I B l  2 1 ,SOW4,OOO 44*8 
USGS 44 (4-12-83) T 53*5 553,00&20,000 5,50&200 * 
USGS 44 (4-9-88) T 1 7*2 54,10&2,000 140IS 
USGS 44 (1 1-1-93) P 2W2 57,6OO=t4,680 2OW 14 
USGS 57 (5-8-69) T 47*5 2,l OO,OOW58,000 18,000I490 
USGS 57 (1 0-9-7 1) T 86*3 787,000I2 1,700 12,000I320 
USGS 57 (9-5-77) T 9 2 3  1,36O,OOW60,000 20,000I940 
USGS 57 (4-12-83) T 1122t11 1,000,00&46,000 22,00&860 
USGS 57 (3-3 1-88) P 6W7 1,93O,OOCk64,000 28,000I9 1 O 
USGS 57 ( 1  0-1 2-93) P 18W7 560,000I12,OOO 17,000I360 
USGS 77 (5-10-68) T 65*3 1 ,45O,OOW2O,OOO 16,000I220 
USGS 77 (4-25-69) T 73*3 1,530,000I74,OOO 19,OOOM 10 
USGS 77 (4-2 1-7 1) T 7 1*3 1-4 1 0,00&46,000 17,000I560 
USGS 77 (9-6-77) T 7W3 
USGS 77 (1 1-1 -93) P 12WS 
USGS 85 (5-10-68) T 2Wl 
USGS 85 (4-25-69) T 21k2 
USGS 85 (4-15-7 1) T 23* 1 
USGS 85 (4-29-72) T 28* 1 
USGS 85 (4-17-74) T 3B1  
USGS 85 (9-28-77) T 34*2 1,49O,OOW39,000 8,600s220 
USGS 85 (4-13-83) T 34*3 846,00&20,000 5,300I 130 
USGS 85 (1 1-4-93) P 74*3 240,000*27,000 3 ,OOW34 
SITE 14 (9-7-77) P 9 2 1  801h2 0.058*0.003 
SITE 14 (10-15-93) P 8 2 1  1,60ih=9 0.4410.0 1 

*Note: The steel casing on the MTEC disposa1 weii began to leak excessively in 198 1 (Fromm, 
1995). This elevated 3 6 ~ 1  concentration in water fiom well USGS 44 may be a result of 
additional contaminant reaching this well due to the casing teaks. USGS 44 is approximately 500 
meters downgradient fiom the iNTEC disposal well (fig. 1.2) 



CHAPTER 3 

METEODS AND QUALITY ASSURANCE; WATER, SNOW, AND ICE SGMPLES 

Discussions of the methods used to collect, process, anaIyze, and quality assure the water, 

snow, and ice sarnples follow. Some of the methods are standard but rnany are not and therefore, 

it is necessary to document the methods in some detail. The methods utilized to collect, process, 

and anaIyze the whole-rock samples are different fi-om the rnethods described in this chapter and 

will be discussed later in sections 5.3.1, 5.3.2, and 5.3.3. 

3.1 Sam~le  Collection and Handline Methods 

For the archived sampIe evaluation (Chapter 4), water samples were selected from the 

USGS sarnpIe archive library for sites within the eastem Snake River Plain aquifer system near 

and downgradient from the MTEC (fig. 3.1 and table 3. I), and were analyzed for  CI and 3 6 ~ ~ .  

AdditionalIy, water samples were collected from selected existing surface and ground water 

sarnpling locations for determination of 3 6 ~ ~  concentrations. At the time of collection, two 

methods were used to obtain water from the wells. If a well was equipped with a dedicated 

submersible or turbine pump, it was pumped and the samples were collected at the end of the 

discharge pipe or at a spigot in the discharge pipe. A remoteiy operated thief sampier was used to 

obtain water sarnples from ground-water monitoring wells not equipped with dedicated purnps. 

Since sampling for ground water began in 1960, the proportion of weIIs with dedicated pumps has 

increased significantly. From the 1960s to the mid 1980s, thief samplers were used to collect 

most water samples. By the Iate l98Os, rnost weIls were equipped with dedicated pumps. 

Wells equipped with dedicated submersible or turbine pumps were pumped until the 

temperature, pH, and specific conductance of the water stabilized as described by Wood (1981) 

and Claassen (1982). When these properties of the water stabiIized, suggesting that a steady-state 

water chemistry had been reached, a water sampie was collected, provided an ample volume of 
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On the basis of drillers' geophysicaI and fluid-conductivity logs, fiacture zones have k e n  

identified in the basaltic rocks opposite perforations in the casing or in uncased intervals (table 

3-1). For example, figure 3.2 fiom Morris and others (1964) illustrates the relation between 

ground water circulation, specific conductance, and we1I construction for well USGS 28. Water 

likely moves through the Fracture zones, between about 77-83 meters below land surface for 

USGS 28 (figure 3.2), at a high velocity when compared with the vefocity in unfractured zones. 

Each thief sarnple for al1 wells was taken at predetermined leveis to obtain sarnples that 

represented water moving through the aquifer rather than water that may have stagnated in the 

wellbore and casing opposite unfractured zones. The thief sarnpler was cleaned and rinsed with a 

pressurized spray of deionized water prior to and afier use at each well. 

For surface water sampies, pre-cleaned polypropylene bottles were submersed into the 

water-body and filled. All pre-cleaned bottles were rinsed with sample water an additional three 

times before filIing. During the collection process, powderless plastic gloves were wom to 

minimize sample contamination. 

The ice sarnples used in this research were processed for analyses at the National Ice 

Core Laboratory (NICL) in Denver, Colorado. Thanks are due Dr. Dsve Naftz of the USGS for 

providing access to the glacial-ice sarnples used in this study. Thanks are due also to Dr. Joan 

Fitzpatrick and Geoffrey Hargreaves of the USGS for their heIp in processing portions of the ice 

core at the  NICL. 

The ice cores were cut from sections archived at the NICL using a band saw operated in a 

walk-in freezer where the air temperature is maintained at less than -10°C. Sections of the ice 

core selected for  CI analysis were scraped with a stainless steel microtome and then rinsed with 

ultrapure (18 rnega ohm (Mohm)) deionized water. The ice cores were then slowly melted in a 

microwave oven. A Iaboratory blank of the deionized water and a process blank (PRIME B-1, . 

table 3.2) were prepared by the staff at PRIME Laboratory and analyzed with the melted ice 

cores. There was no 3 6 ~ 1  in either of these bianks (table 3.1). The "CYCI ratios measured in the 
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Note: This figure was modified from Morris and others, 1964. 



Table 3.2, Dissolved-chloride concentration, amount of chlorine-36 fiee chloride carrier 
added, and measured chlorine-36khiorine ratios in setected quality-assurance samples. 

Site or sample Date Chloride concentration 3 6 ~  1-fkee 
of chloride 

Measured 3 6 ~ ~ ~ ~  

identifier mm carrier (mg) ( 1 O*") 

Deionized 1995 <O.O 1 1-71 16I16 
Water 

PRIME B-1 1995 (0.0 I 1.01 121 
PRIME B-2 1993 <O.O 1 3.83 1 2 s  

PB- 1 1991 <O.O 1 24 O+f O 
PB-2 1991 <0.01 24 OI10 
PB-3 1991 (0.0 1 24 l S t l 0  
PB-4 1991 <O.O 1 24 24+16 

melted ice-core samples were corrected for the small 3 6 ~ ~  concentration found in process blank B- 

2 (table 3.2). Chlorine was separated from the melted ice by precipitation as silver chloride 

(AgCl) and analyses for 3 6 ~ i  were perfomed as described by below. The rock-sample collection 

methods are described in section 5.3.1. During the field and Iaboratory work performed for this 

dissertation, conditions for each sample were documented and a chain-of-custody record was 

maintained from the time of collection and processing until the sarnple was delivered to the 

analytical Iaboratory. The field books, laboratory books, and chain-of-custody records are not 

included in the appendices in this dissertation but are available for inspection at the USGS's 

MEEL Global Research [ce-Core Project Office. 

3.2 Analvtical Methods 

The foiIowing sections describe the analytical rnethods used for the determination of 

dissolved CI-. 3 6 ~ ~ / ~ ~  ratios, and "CII"'CI ratios. 

3.2.1 Dissolved Chloride 

Dissolved Cl' analyses presented in this dissertation were performed by three 

laboratories: DOE's Radiological and Environmental Sciences Laboratory (RESL); the University 

of Waterloo's Environmental Isotope Laboratory (EXL); and the USGS's National Water Quality 

Laboratory (NWQL). Methods of chloride determination included; 1) silver nitrate titration 



(ASTM, 1982); 2) ion-selective electrode (ASTM, 1982); and 3) ion chromatography (Fishman 

and Friedman, 1989). 

RESL performed al1 analyses listed in table 3.3 for dissolved CI- at date of sarnple 

collection. For those sarnpies coIlected prior to May 1975, the method used was a silver-nitrate 

titration. In this method, a water sample was adjusted to a pH of 8.3 and then titrated in the 

presence of potassium chromate indicator solution. The end point in the titration was indicated 

by a red-brick silver chromate solution. For those analyses performed for CI' after May 1975, 

RESL staff used the iort-selective electrode rnethod. In this method, the Cl' ion concentration is 

determined potentiometrically with a CI- ion-selective electrode in tandem with a double-junction, 

sleeve-type reference electrode. Potentials were then read with either a selective-ion rneter with a 

concentration scale for Cl-, or a pH meter with an expanded millivolt scaIe. The electrodes were 

cal ibrated to traceable standards. 

The Cl- analyses in table 3.3 by EIL and the NWQL were determined by the ion 

chrornatography method. Both laboratories employed a standard two-colurnn ion 

chromatography technique. Water samples were piaced in a Iiquid mobile phase (eluant) and 

purnped at a constant flow rate through two ion-exchange colurnns in tandem. Chloride ions were 

separated from solution in the first colurnn on the bais  of their affinity for exchange sites on an 

anion-specific resin. The second column decreased the background conductivity of the eIuant to 

a minimal level to suppress interference, Separated Cl' ions then were quantified with a specific- 

conductance ce11 and an anion chromatogram was produced. Al1 sther CI' results presented in 

this dissertation were performed by the NWQL using the ion chrornatography method. 

3.2.2 Accelerator Mass Spectrometrv 

Until 1979, "CI in environmental samples was measured by counting beta-particle 

emissions during radioactive decay, These kinds of measurements were difficult due to the 

relatively long half-life of 301,000 years and the resultant small specific radioactivity of 3 6 ~ 6 .  

Muller (1 977) postulated that by using particle accelerators as rnass spectrometers, radionuclides 



Table 3.3. Stable chlorine isotope results, dissolved chloride, and chlorine-36 concentrations 
for archived ground water sarnples collected from selected wells and the Little Lost River. 

[These samples were selected to evaluate the archive-sample integrity.  CI, indicates delta 
chlorine-37, see text for explanation of uncertainties; CI-, indicates dissolved chloride; 3 6 ~ ~ ,  

indicates chlorine-36; NA, indicates not applicable: R, analyses performed by Radiological and 
Environmental Sciences Laboratory; W, iinalyses performed by University of Waterloo 
Environmental Isotope Laboratory; N, analyses performed by USGS's National Water Quaiity 
Laboratory; P, analyses performed by Purdue University's PRIME Laboratory; NR, indicates 
blind replicate analyzed by the USGSts National Water Quality Laboratory; CRL, indicates blind 
replicate analyzed by Chaik River Laboratory. Symbol: -, indicates no data available; *, 
indicates uncertainties estimated using equation 3.3-1 in text.] 

Site 
identifier 

Date 
Sample 

collected 

s3'c 1 
50.2 perrnil 
unless noted 

Dissolved 
Cl' at date 
sampled 
OwL)  

Dissolved CI' 
in 1993 

(mg/L) f 10 
percent 

unless noted 

Corrected 
( 3 6 ~ ~ c ~ )  x I O-l3 

USGS 14 04fi5/1982 +0.47+0.0 1 

USGS 19 

USGS 20 

USGS 44 

USGS 57 

USGS 85 

Little 
Lost 
River 



with relatively long half-lives (such as carbon-1 4 ("c) and beryllium-10  O OB^)) could be 

measured at environmental concentrations. Researchers at McMaster University in Canada and 

the University of Rochester in the United States reported AMS measurernents of "C later in 

1977. In 1979, the first successful rneasurernents of " k l  in ground water samples were carried 

out at the University of Rochester on a tandem Van De Graaff acceterator system, although the 

first such use of accelerators had been for heliurn-3 (.'Fie) measurernents in 1939 by Alvarez and 

Cornog (Elmore and others, 1979). Since 1979, thousands of environmental samples have been 

rneasured for their "CI content at more than twenty accelerator facilities worldwide. In addition 

to ' k l ,  AMS is now routinely used to measure I4c, 2 6 ~ ~ ,   OB^, and 1 2 9 ~ .  

With conventional beta decay counting methods, tens of g ram of chloride were required 

and counting times as long as a week were common. With AMS, sarnple size has been reduced to 

as linle as 1.0 mg/L total Cl' and counting times of thirty minutes with 10 percent precision. 

Sensitivity has also improved with AMS; beta-counting methods have a sensitivity of about one 

36 CI atom in 1012 CI atoms, and AMS rnethods have a sensitivity of about five atoms of ' k l  in 

IO*' CI atoms. For a typical arnbient 3 6 ~ ~  concentration in the eastem Snake River Plain, this 

AMS sensitivity corresponds to about one beta-particle emission every two years and this 

radioactivity is not detectable by scintillation counting (Appendix Table C-3). 

AMS operates the same as conventional mass spectrometry by using the fact that al1 

charged atomic and molecuIar species have unique masses. Just as in m a s  spectrometry, AMS is 

made up of four steps; (1) formation of a charged atomic or molecular species; (2) acceleration of 

this species through an electrostatic potential (ES); (3) separation of ions based on their rnass-to- 

charge ratios; and (4) determination of the number of ions or atoms in a detector systern. With 

AMS, acceleration is through ES of millions of volts of energy in contrast to ES of thousands of 

volts of energy found in conventional mass spectrornetry. 

Because particle accelerators are operating at these high energies, molecular ions are 

removed from the analytical line by gas-filled magnets; only target atoms (or atoms of the same 



mass as the target, Le. interferhg atoms) remain at the detectors (Elmore and Phillips, 1987). In 

the case of ' k t ,  interferences fiom isobars are removed by selecting charge states that have no 

common factor with 36; for exarnple, charge states 5,7, 1 1, 13, or 17. Because the most common 

interference for 3 6 ~ 1  measurements is from sulfur-36 ('%), elimination of sulfate from water 

samples and selection of the correct charge state for 3 6 ~ ~  analyses are crucial to obtaining 

meaningfiui results. Sulfate in ground water at the lNEEL is a potential interference probIem for 

' k l  anaiyses. In October 1995, sulfate concentrations in 66 ground water sarnples collected at 

the [NEEL ranged from I I  to 230 mg/L (Bartholomay and others, 1995). These sulfate 

concentrations are representative of ground water at the NEEL since site operations started in 

1953. Therefore, sulfate was rernoved from the water samples used in this research as outlined 

Iater in this section. 

Water sarnples frorn the sample archive library and new sarnples collected for this 

research were analyzed for I6cl using Tandem Accelerator Mass Spectromeq (TAMS) at 

PRIME Laboratory, Purdue University. Ground and surface water sarnples, the glacial-runoff 

sample, the melted ice-core samples, and the deionized water and PRIME blanks B-1 and B-2 

(table 3.2) also were analyzed for 3 6 ~ ~  at PRIME Laboratory. The process blank water samples 

designated PB-1 through P B 4  in table 3.2 and the four snow samples (table 5-1) were analyzed 

for 3 6 ~ ~  at the TAMS facility at the University of Rochester's Nuclear Structure Research 

Laboratory (NSRL) in New York. The PRIME TAMS facility is based on an upgraded 8-million 

volt tandem accelerator with a high intensity ion source, a 150-thousand volt ion-source injecter, 

and a beam line and detector system. The 150 kV ion source is a cesium gun used to sputter 

chloride ions from a AgCl target. The accelerator at the NSRL is of the same configuration. The 

negative ions are focused and passed through a 9O0-inflection magnet and accelerated toward a 

fixed positive potential located inside the tandem sccelerator. At the rnidpoint of the tandem . 

acceierator line, the negative ions pass through carbon foi1 that strips off valence electrons and 

breaks apart unwanted molecular species. The positive ions are accelerated away fiom the 



positive teminal toward ground potential and continue through a series of rnasdcharge analyzers 

and a gas-ionization detector. 

The Cl isotope laboratory within the  EIL at the University of Waterloo was used to 

prepare some of the samples for TAMS analysis and the remaining samples were prepared at 

36 either PRIME Laboratory or the NSRL. Sample preparation for Cl analysis includes 

preconcentration of CI- in solution, precipitation of AgCI, and purification of the AgCl target. As 

previously mentioned, because 'OS is an interfering isobar, care must be taken to remove as much 

sulfate fiom the water sarnple as possible. 

Before using the CI isotope lab at EIL for TAMS target preparation, a laboratory swipe 

was taken fiom the countertops and overhead iarnps on Januaxy 7, 1993. Approximately 1.2 g of 

material were dissolved in 20 rnt of 18-Mohm deionized water. This solution was analyzed for 

Cf at the EIL and for ' 6 ~ 1  at the NSRL. The results are presented in table 3.4. Subsequent to 

receiving the results of the first lab swipe. al1 surfaces in the CI- lab were cleaned with an 

Alconox soap solution. followed by a ?-percent ultrapure nitric acid solution with a final rinse 

with 18 Mohm deionized water. A second laboratos. swipe was taken on ApriI 15, 1993 and 

approxirnately 0.2 g of material were dissolved in 20 mL of 18-Mohm deionized water. The 

swipe taken afler cleaning the CI' laboraton was analyzed for CI- at the EIL and for 3 6 ~ ~  at NSRL 
- 

and at PRIME Laboratov. The results of the dissolved CI- and 3 6 ~ ~  analyses showed a reduction 

in CI- concentration frorn 282228 to 101 1 mg/L and a reduction in 3 6 ~ 1 / ~ 1  fiom 263+2 1 x 1 0'15 to 

5+10 x lû'" (table 3.4). The CI- lab at the EIL was then ready to be used to prepare AgCl targets 

for 3 6 ~ 1  analyses. 

The fint step in sample preparation for 'OC! analysis was preconcentration of CI- as 

necessary. Because al1 the gound water samples in this research contained a minimum of 

8.1k0.5 mg/L of CI- (table 2.1 ), it was determined that no preconcentration was necessary to 

ensure 8 to 1 O mg of AgCl for a target in these samples. Alternativdy, if the CI- concentration in 



Table 3.4. Results of laboratory swipes taken at the University of Waterloo Environmental 
Isotope Laboratory before and afier cleaning of the laboratory. 

[EE, analyses performed by the University of Waterloo Environmental Isotope Laboratory; 
NSRL, analyses performed by the University of Rochester NucIear Structures Research 
Laboratory; PRIME, analyses performed by Purdue University's PRIME Laboratory-] 

Sam ple Labo ratory Dissoived chloride ( x ~ ~ ~ ~ )  x l ~ "  
concentration (mg/L) 

Swipe before 
cleaning 

EiL 
NSRL 

Swipe afier cleaning EIL 
NSRL 
PRIME 

a sarnple was srnall (less than one part per million, Le. the melted ice-core samples) then 'kl-free 

carrier was added to ensure ampie target mass. This method also was employed for samples 

suspected to have elevated "CI concentrations to ensure no contamination of AMS ion sources 

during analyses. The next steps in preparing targets for TAMS measurements were precipitation 

and purification of AgCl targets. 

Sarnples were acidified to pH 2 using ultrapure HN03. Chioride was then precipitated 

from the acidified samples as AgCl by the addition of 15 mL of O. 1 molar (M) ultrapure AgN03. 

The precipitate WES filtered using a Milli~ore 250-mL filtering systern with 0.45-mm cellulose 

nitrate fdters, Afier filtration, the AgCl preci pitate was washed several times with dilute ultrapure 

HN03. A few drops of ultrapure AgN03 were added to an aliquot of the filtrate to test for any 

remaining, unprecipitated CI-. The AgCI was dissolved by the addition of 10 to 20 mL of 4-M 

ultrapure NH40H to the filter cup. Several rinses with 4-M N h O H  ensured that al1 of the Cl- was 

transferred to the test tube. 

To remove sulfate frorn the AgCl precipitate, an ultrapure Ba(N03)2 solution was 



prepared by adding 

(approximately 25 g). 

100 rnL of 1 M ultrapure HN03 to an excess of ultrapure BaC03 

A few drops of Ba(NO3k solution then were added to the sampIe to remove 

sulfate according to the following reaction: 

Ba(N03)2(aqueous) + S04'(aqueous) -> Bas0.1 (solid) + 2 NO3- (aqueous) 

The sarnple was allowed to stand overnight to ensure cornplete precipitation of the BaS04. The 

sarnple was then gravity filtered, and the precipitate was washed and discarded. The sarnple was 

acidified to pH 1 by the addition of concentrated ultrapure HN03. This resulted in the 

reprecipitation of AgCL The AgCl precipitate was isolated by centrifugation. Afier three washing 

and recentrifugation steps for purification, the final product was dried ovemight in an oven at 

90°C. Samples rhen were stored in amber g l a s  vials to prevent photodecomposition of the AgCI. 

3.2.3 Delta Chlorine-37 

The a3'cl of a sample was determined by measurement of the 3 7 ~ ~ / 3 5 ~ ~  ratio of methyl 

chIoride (CH,CI) on a mass spectrometer. The addition of silver nitrate (AgNO3) at pH less than 

two precipitated the CI' ions in solution by the following reaction; 

CI- (aqueous) + AgN0, (aqueous)- > AgCl (solid) + NO,' (aqueous) 

The 6 to 1 O mg of AgCl was transferred to a reaction vessel that was then evacuated, and 

an excess (30 mL) of rnethyI iodide (CH,[) was added. Afier 40 to 48 hours at 90°C, CH3CI was 

formed by the following reaction:. 

AgCl (solid) + 2CH31 (aqueous)- > CH3C1 (gas) + Ag1 (soIid) + CHJ (aqueous) 

The reaction vessel was then attached to a preparation line where the CH,Cl/CHJ mixture was 

pushed with ultrapure helium through a gas chromatograph (Shimadzu-Porapak Q column). The 

methyl compounds were separated and the purified CH3Cl was placed in a vessel for analysis cn 

a VG SIRA 9 triple-collecter mass spectrometer. The results were compared to commercial 

CH3Cl gas. As no international standards for S-"CI are available, al1 results were reported relative 

to SMOC. (The EIL and other laboratories where stable CI' isotopes are deterrnined in 



environmental samples, have analyzed SMOC extensively). For. the FO CI values listed in table 

3.3, the associated uncertainties were calculated fiom dupkate and triplicate analyses as noted. 

Otherwise, an associated uncertainty of 2 0.2 p e r d  was detennined from al1 measurements 

made during 1993 and was assigned to those values determined fiom a single analysis. 

3 3  Qualitv Assurance 

In addition to the rneasures described in section 3.2, quality assurance and reproducibility 

of measurernents for 637~1, dissolved CI- and 3 6 ~ 1  concentrations were tested in six ways: (1) 

National Institute of Standards and Technology (NIST) standard reference materials were used to 

calibrate the accelerators for m a s  spectrometn'c measurements at NSRL, PRIME, and Chalk 

River Laboratory; (2) two prepared blank water samples were rneasured for 3 6 ~ 1 / ~ ~  at Chalk 

River Laboratory; (3) five blind replicate samples were analyzed for dissolved Cl- at the NWQL 

and one blind replicate sample was analyzed for 3 6 ~ i  at Chalk River Laboratory; (4) one 

laboratory blank was analyzed for 3 6 ~ 1 / ~ ~  at PRIME laboratory and a prepared spike sample was 

analyzed for CI* at EIL; (5) SMOC was measured once for 3 7 ~ ~ / 3 S ~ l  for each six to eight water 

samples and NIST standard 975 was measured periodically; and (6) the SMOC used at the 

University of Waterloo was analyzed at the University of Arizona's laboratory for cornparison. 

The NSRL, PRIME, and Chaik River Laboratory facilities calibrate their respective AMS 

system with prepared solutions of 3 6 ~ ~  traceable to NIST. Each AMS facility uses a solution 

prepared with 3 6 ~ 1  of koown radioactivity with the addition of an appropriate amount of %I-free 

CI' carrier. Coritrol charts and documentation of the results of the catibrations are available at 

each facility for review. 

Two AgCl targets were prepared using 36~l-free potassium chloride supplied by Chalk 

River Laboratory using the precipitation method outlined in section 3.2.2. One AgCI target was 

prepared using reagent-grade chemicals; a second target was prepared using ultrapure-grade 

chemicals. The "CUCI ratio for the sample prepared with ragent-grade chemicals- was 18.9I6.7 



x 1 O-''. The 3 6 ~ ~ ~ 1  for the sample prepared with ultrapure-grade chernicals was 1 -4k0.99 x 1 O-''. 

Based on these results, the decision was made to use ultrapure-grade chernicals for al1 AgCl target 

preparation for AMS. Dn. Gwen Milton and Jack Comett of Chalk River Laboratory in Ontario, 

Canada are thanked for their assistance on these quality-assurance samples. 

Results of the blind replicate analyses performed by NWQL for C f  concentrations are 

given in table 3.5. AH replicate and primary analyses agree at the 95 percent confidence level 

using equation 4.2-1 (page 56) with the exception of the sample h m  USGS 14 collected on 

October 1, 1993. However, the resutt of the blind replicate anatysis for the sample collected on 

this date was within 6.6 percent of the result of the primary-sample analysis. Therefore, it was 

concluded that the primary analyses were acceptable as being representative of the Cl' 

concentration in water from USGS 14 collected on this date. Additionally, one blind replicate 

sample was submitted to Chalk River Laboratory for comparison to the primary sarnple submitted 

to PRlME lab for 3 6 ~ ~  analyses. The 3 6 ~ ~ / ~ ~  for the primary sample was 580f60 x IO-" and for 

the replicate the 3 6 ~ 1 / ~ 1  was 705+70 x 1 O-''. These two analyses were in statistical agreement at 

Table 3.5. Statistical comparison of chloride concentrations in primary- and blind-replicate 
water samples collected from selected wells, Idaho National Engineering and Environmental 
Laboratory, Idaho. 

[See figure 3.1 for location of wells. Analytical uncertainties expressed as one sample standard 
deviation estimated using equation 3 in this dissertation. Al1 analyses performed by the U.S. 
Geological Survey National Water Quality Laboratory, Arvada. Co.] 

Test statistic, if AwB, 
Concentration and analytical analytical results are 

in milligrams per s~tisticilly dilfcrcnt; tex< Results are 
Site Date ssmpled liter statisticaIly Identifier for explanation different 

Primary Rep ticate A B 

USGS 13 1 O/O 1 /1993 18+1 21I3 3 2.8 YES 

USGS 19 1 010 1 /1993 1 lf0.7 1 1i0.7 O 1.7 NO 

USGS 44 11/01/1993 2011 1*1 1 2.8 NO 

USGS 57 10/12/1993 1 SOI7 19ûi8 1 O 20.8 NO 

USGS 85 1 1/04/199. 7433 73I7 1 8.3 NO 



the 95 percent confidence Ievel. 

One prepared b h k  and one prepared spike sampie were analyzed as part of the quality 

assurance for this research. A water sarnple was prepared at the PRME lab with %-fiee CI' 

carrier and analyzed with the submitted samples. The 3 6 ~ ~ / ~ 1  in that prepared blank waç 1 2 e  x 

IO-'' which was insignificant when compared to the results in table 3.3. However, this ratio was 

used to blank correct the 3 6 ~ ~ / ~ ~  ratios presented in table 3.3 for evaluation of the archive 

samples. Additionally, both AMS facil ities used in this research routineIy prepare interna1 blanks 

used to correct a11 reported results. A spike sample with 10W4 m a  CI' was prepared and 

submitted to EIL for analysis. The dissolved CI' result for this sample reported by EIL was 

1 l8+ l2  mg& which was in acceptable agreement with the spike concentration. 

The Cl' concentrations in the snow and glacial ice and ninoff samples were determined 

using a low-level ion chrornatography (IC) system consisting of a Dionex AI4500 IC, AS4A 

(4x250 mm) and AG4A (4x50 mm) coiumns. and a computer interface that downIoaded the data 

directly to an IBM-compatible computer (Fishman and Friedman, 1989). A 1.8-mM sodium 

carbonate or 1 -70-mM sodium bicarbonate eluant with a flow rate of 1 .O mL per minute was used- 

The concentration of the analytes was then determined using an anion micromembrane suppressor 

and a conductivity detector. 

Eight hundred microliters of the sample were loaded ont0 the column. The anions were 

extracted on the stationary phase resin of the column. The anions were eluted off of the column at 

specific times and in a specific order using the carbonate/bicarbonate eIuant. The sampIe stream 

passed through a suppressor that lowered the baseIine conductivity, thereby lowering the method 

detection limit. The stream was then routed past a conductivity detector that showed increased 

conductivity when the number of ions in the stream increased. The timing of these peaks revealed 

which analyte was present and the magnitude of the peak revealed the amount of analyte in the - 

sarnple. 



Fifty percent of each group of ice-core samples were quality control (QC) samples. These 

consisted of Standard Reference Water Samples (SRWS), blanks, calibration standards and blind 

QC samples. Two separate blind sample programs submit samples to the Production Program of 

the NWQL. The NWQL1s Quality Assurance Unit and the Branch of Technical Development and 

Quality Systems (BTD&QS, formerly BQA) administer these programs. Charts of the blind QC 

output are available from each of these groups. These charts indicate that this IC Iine was 

operating with no shifis in trends, no significant bias, and al1 data were within the acceptance 

limits. The QAIQC data and chans are available for inspection at the USGS, GIobal Ice-Core 

Research Project Office at the MEEL. 

Based on reference samples, the CI- analysis performed by the NWQL on the ice-core 

samples had a standard deviation of 0.0 14 mg/L at concentrations of 0.07 mg/L. This standard 

deviation was calculated from on-line quality control data collected from 25 separate analyses of 

Standard Reference Water Sample (SRWS) P- 13. The values used were collected from January 

1996 to May 1996 and are similar to data collected from previous years. SRWS P-13 was made 

by the BTD&QS and is regularly used as a quality controt sample on the analytical instrument 

used for this study. The on-line values for this SRWS are similar to values obtained by both the 

blind sample programs; one administered by BTD&QS, one administered by the Quality 

Assurance Unit of the NWQL. 

With the exceptions noted earlier in this dissertation for some of the archived samples, 

the ground water. surface water, and snom samples also were analyzed for dissolved CI' by the 

ion-chromatography method (Fishrnan and Friedman, 1989). As in the low-leve1 CI- 

measurements of glacial ice and runoff. interna1 standards were analyzed to ensure that al1 data 

were within acceptance limits. Both labs employed a standard two-column ion chromatography 

technique. Water samples were piaced in an eluant and purnped at a constant flow rate through 

two ion-exchange colurnns in tandem. Chloride ions were separated fiom solution in the first 

coIumn on the basis of their afflnity for exchange sites on an anion-specific resin. The second 



column decreased the background conductivity of the eluant to a minimal level to suppress 

interference. Separated Cl- ions then were quantified with a specific-conductance cell and an 

anion chrornatograrn was produced. 

The results of CI- analyses performed by NWQL and presented in this dissertation were 

not reported with a sample standard deviation; therefore, sample standard deviations were 

estimated, The USGS Branch of Quality Assurance conducts a Blind SampIe Prograrn (BSP) in 

which reference samples disguised as environmental sarnples are submitted to the NWQL for 

analyses (Maloney and others, 1993). These BSP data are stored in the USGS database 

(QADATA) and are accessible throuph the USGS computer system (Lucey, 1990). The statistical 

analyses generated through the QADATA program include eqüations generated by using linear- 

least-squares regression of a most probable value for a given analyte fiom the USGSs standard 

reference water sample prograrn during the previous seven years against a corresponding sarnple 

standard deviation for that analyte. These linear-regression equations facilitate the calculation of a 

most probable deviation (MPD) at most conceritrations for most analytes. The following equation 

from Maloney and others (1993) was used to estimate the sample standard deviations, or MPD, in 

tables 3 -3 and 3 -5 for CI- concentrations reported by the NWQL: 

where: 

x is the reported CI' concentration in mg/L, and 

y is the calcuIated sample standard deviation in mgL.  

As part of the QA/QC for this dissertation, several water sarnples were measured for 

3 6 ~ 1 / ~ 1  ratios at both PRIME Laboratory and the NSRL. There was statistical agreement between 

the results fiom the two iaboratories on blind duplicate samples and on duplicates of the sarne 

sample analyzed over several months (Beasley and others, 1993, table 1). 



Table 3.6. Reproducibility of "CVCI ratios for selected monitoring well waters at the Idaho 
National Engineering and Environmental Laboratory. 

modified fiom Beasley, Cecil, and others, 1 993 -1 

Sample Identifier Date analyzed AMS facility' 
ROC heste rb Purduec 

USGS 1 1 
USGS I I  
USGS 14 
USGS 14 
CFA- 1 
Weil 39 

February 1990 1670 I IO* - 
Apri1 1990 1689* 104 - 
February 1990 2030 * 100 - 
April 1990 2017* 105 - 
May/September 199 1 " 2164* 105 2090 * 170 
May/September 199 1 1207 * 89 1089 * 74 

Well4 1 May/September 199 1 536 * 29 567 * 35 
" Each value represents the average of two separate AMS measurements, 

Nuclear Structure Research Laboratory (NSRL). 
PRIME. 
Samples were analyzed in May at NSRL and September at PRIME Lab. 



EVALUATION OF ARCHIVED GROUND WATER SAMPLES 

To determine the quaiity and quantity of the archived samples, a complete inventory of 

the thousands of ground and surface water sarnpIes collected from 1966 through 1990 was 

conducted during February and March 1991. Samples were discarded that had questionable 

containers or did not have a complete historical record. The historical record for each sample 

included field notes taken during collection, laboratory notes compiled during analyses, chain-of- 

custody records maintained during processing (if availabie), and results of analyses requested and 

performed. The rernaining samples were inventorïed and catalogued. This inventory has been 

updated each year since the initial inventory in 199 1 that was performed as part of this research. 

Approximately 200 of the water samples were selected for possible processing for 3 6 ~ ~  

anaIyses based on location of sampling site, place in historical record, amount of water available, 

the dissolved CI- concentration, and sarnple/record integrity, as well as results of a 3 6 ~ ~  survey of 

gound water from the Snake River Plain aquifer in 1990-9 1 (Cecil and others, 1992; md Beasley 

and others, 1993). Archived water sampies collected from six sites over a number of years were 

selected for comparison to the results for samples from 1993 at the same sites. These samples 

were forwarded to the EIL for determination of 6 3 7 ~ l .  

4.1 Cornparison of 6 " ~ l  in t his Dissertation to Previous Investipations 

A total of 430 measurements for Zi3'c1 in water and rock samples were presented by 

Eggenkamp (1994). Delta "CI values presented in that work ranged fiom -4.9 to +6.0 permil. 

However, for approximately 98 percent of the samples, 6 3 7 ~ 1  ranged from -1 -4 to +1.5 pemil and 

62 percent of the sarnples were between -0.4 and +OS permiI. The overalt average for the 430 

samples presented was -0.13 permil. The sarnples were coliected from various geologic and 



Figure 4.1. DissoIved-chloride concentration and delta chlorine-37. 
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ground water. 

The Eggencarnp (1994) review also included data from Long and others (1993) that were 

among the first such analyses perfomed. The lj3'c1 from Long and others (1993) ranged h m  

-1 -5 to +2.0 permil for a total variation of 3.5 perrnil and included sarnples from ground water and 

brines. 

The Zi3'c1 data presented in this dissertation for water collected fiom the eastem Snake 

River Plain aquifer ranged from -0.44*0.5 to +0.59=t0.16 permii with a mean of +0.15*0.27 



permil (fig. 4.1 and table 3.3). The dissolved Cl- data used in figure 4.1 were the 1993 

concentrations fiom table 3.3. The variation in 637~1  is smaller than the variation for the 430 

samples presented in the Eggenkamp review. This lack of extreme values makes it unIikely that 

measurable hctionation has occurred in these samples in siru or during storage in the USGS 

archive Iibrary. A linear regression analysis of the data presented in figure 4.1 produced a R~ 

(fraction of variance explained by the regression) value of 0.07, suggesting that there may be little 

or no linear correlation between dissolved CI-concentrations and 637~ l .  

In addition to investigating possible fractionation of Cl' isotopes in the archived water 

samples, dissolved CI' concentrations were measured again in 1993 and cornpared to the CI' 

concentration at the time of sample collection. Statistical cornparisons of CI- concentrations in 

water from each site were made for the results from the 1993 analyses to the results at the time of 

sample collection to determine if significant Cl- had been lost from the sarnple during storage. 

Water samples collected from well USGS 19 were selected as representative of arnbient 

or background ti3'c1 of the eastern Snake River Plain aquifer. Ambieni values for this study are 

those values in water not affected by iNEEL disposal practices. However, these ambient values 

may have been affected by fallout from nuclear weapons and/or irrigation practices. The 3 6 ~ ~  

concentrations listed in table 3.3 for water from USGS 19, 1 .Ifo. 1 x log to 3.5k0.4 x 108 

atoms/L, indicate that there may have been sorne influence fiom anthropogenic sources or 

evaporation. Additionally, the dissolved CI- concentration as measured in 1993 for water from 

USGS 19 that was sampled in 1969, 29.0k2.9 mg/L (table 3.3), indicates an anthropogenic or 

evaporative influence on the water because background Cl' concentrations are 10 mg& or less for 

the eastern Snake River Plain aquifer (Robertson and others, 1974). This additional Cl- may be 

due to surface flood irrigation in practice since the mid-1930s in the Little Lost River drainage 

upgradient from USGS 19 (Mundorff and others, 1963). The Zi3'c1 for USGS 19 ranged fiom 
' 

0.02I0.2 to O. 1 2I0.2 pennil, not statisticat ly different fiom SMOC, and may represent a meteoric 



6 3 7 ~ ~  for water entering the Snake River Plain aquifer from the Little Lost River drainage. The 

S-'~CI for water from the Little Lost River colIected on A p d  3, IWO, also had a  CI value 

statisticaliy the same as SMOC, +0.27I0.23 pennil (table 3.3). The site where the Little Lost 

River sample was collected is about I 8 km upgradient from USGS 19 (figure 3.1 ). 

None of the #'CI results for any of the wells Iisted in table 3.3 varied by more than 0.91 

permil. Long and others (1 993) reported ti3?c1 values of -1 -5 permil to M.8 pemil for ground 

water, or a range of only 2.3 permil. These variations are in contrast to that presented by 

Eggenkamp (1994) for a greater variety of geologic media; the variation in that review was nearly 

11 permil or almost an order of magnitude greater than the variations in water samples from the 

MEEL and vicinity and a factor of 5 compared to the ground water samples analyzed by Long 

and others (1993). The  CI results from the sarnples selected for this dissertation are consistent 

with two-thirds of the values presented by Eggenkamp. For the data presented in this 

dissertation, the largest variance was for well USGS 14, the most distant well downgradient from 

the waste Cl- source at the INTEC. The average rate of CI' disposa1 to the Snake River Plain 

aquifer system has increased from 197 1-95 (fig. 4.2). Figure 4.3 and table 3.3 show that 3 6 ~ ~  

significantly above ambient concentrations arrived in ground water at USGS 14 in 1984, the same 

year that the ti3'cl in water from this well showed a shiR from positive values to a negative value, 

suggesting waste-stream influences frorn INTEC. The rnost negative 6 3 7 ~ 1  value (-0.13*0.1 

permit) and the largest %/CI ratio (2 1.000+580 x 10"~) in water samples collected from well 

USGS 57, the well located nearest to the discharge point at INTEC, was in 1969. The next most 

negative value (-0. I-tO.0 1 permil) and the next largest 3 6 ~ ~ / ~ 1  (1 9,300I640 x 10'") for well 

USGS 57 occurred in 1988 (fig. 4.4 and table 3.3). The most positive F-'~CI values for USGS 14 

and 57 were in thief samples that also had the smallest 3 6 ~ ~  concentrations; 1982 for USGS 14, 

and 1983 for USGS 57. This suggests an inverse correlation between 63 '~1  and - ' k l  

concentrations in the waste emuent from INTEC. Water from wells USGS 19,20, 44, and 57 
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Figure4.2. Annual chloride discharge at the Idaho Nuclear Technology and 
Engineering Center, Idaho National Engineering and Environmental Laboratory, Idaho. 

showed this same inverse correlation in sarnples collected by the thief method; the largest 3 6 ~ ~  

concentrations are associated with the more negative S ~ ~ C I .  With the exception of USGS 85, al1 

pumped samples had a positive 6 " ~ l  and range fiom +0.02 to +0.42 permil; the pumped sarnple 

fiom USGS 85 was -0.05 permil. The most negative z3'cl values occurred on the same dates as 

the largest 3 6 ~ ~  concentrations in water from wells USGS 57 and 14, also suggesting an inverse 

correlation between 6 3 7 ~ ~  and 3 6 ~ ~  concentrations. Wells 19, 20, and 44 had no negative 6 3 7 ~ ~  

values in either thief or pumped samples (figure 4.5). It should also be noted that water fiom the 

well with the largest 3 6 ~ ~ / ~ ~  ratio, 21,000I580 x IO-", at USGS 57 collected on May 8, 1969, had 

the smallest dissolved Cl' concentration for this well (by a factor of 3.7), 46.w4.7 mgfL (table 

3.3). This suggests that rneasured 3 6 ~ ~  concentrations in ground water fiom the eastem Snake 

River Plain aquifer are a good indicator of waste-disposal practices at the iNTEC and that these 



Standard mean 

0.4 - ocean chloride - 
(SMOC) 

O I 
-0.4 - - 

Date Sarnpled 

Figure 4.3. Concentration of dissoived chloride, chlorine-36, and delta chlorine-37 in 
relation to time, in ground water from well USGS 14, Idaho National Engineering and 
Environmental Laboratory, Idaho. 

Note: See figure 3.1 for well location. 
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Figure 4.4. Concentration of dissolved chloride, chlorine-36, and delta chlorine-37 in 
relation to tirne, in ground water from well USGS 57, Idaho National Engineering and 
Environmental Laboratory, Idaho. 

Note: See figure 3.1 for well location. 
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Figure4.5. Chlorïne-36 and delta chlorine-37 in selected wells, Idaho National 
Engineering and Environmental Laboratory, Idaho. 



concentrations measured in archive samples were quantitative and usefil in tracer studies 

utilizing Cl- isotopic ratios. These data further suggest that processes hctionating stable Cl- 

isotopic ratios or that are adding CI* with a ratio different than SMOC in the eastern Snake River 

Plain aquifer are fiom the facilities at the INEEL ar,d that fiom the data presented here, no natural 

processes are quantifiable for Cl- isotope fractionation. Additionally, these data also suggest that 

the radiochemical reprocessing of spent nuclear fuel at the MTEC may deplete the Cl- released to 

the environment in tems of "CI as compared to SMOC. 

Evidence for this possibility cornes from the inverse correlation of tj3'cl and ''cl 

concentrations found in this evaluation and from the fact that in advective mixing of two sources 

of different concentrations, the farger concentration source (Cl* fiom waste disposa1 at the 

INTEC) dominates the isotopic signature of the mixture. To confirm this, 6 ) '~ l  measurements 

need to be performed on water from the effltient Stream at the MTEC. The US. Environmental 

Protection Agency and the State of Idaho have not permitted this to date because the presence of 

other chemica1 and radiochemical constituents in the effluent Stream dictates special sample 

handI ing. 

Bartholomay ( 1993) showed that concentrations of 'H and strontium-90 in water samples 

from welIs with purge times greater than three hours at the N E E L  are not affected measurably by 

purging one, two, or three borehoie volumes. Descriptive statistics were presented that show 

reproducibility of analytical results in al1 but two sarnple pairs with defined nurnbers. Results 

from this study indicate that it is not necessary to purge three borehole volumes fiorn wells with 

purge tirnes greater than three hours; hence, data collected from the wells not purged with three 

borehole volumes in the past are probably reliable. Additionally, Olsen (1 998) determined that 

there are no significant differences in water quality results collected by the thief method versus 

dedicated pumps in the Snake River Plain aquifer for wells that have substantial components of . 

borehole flow. Al1 of the wells selected for this research have purge times of one-half hour or 



greater and components of borehole flow. 

4.2 Statistical Com~arison of Chloride Concentrations over Time 

To detemine if total CI' concentrations in the archive sarnples had changed with time 

during storage, comparison of CI- concentrations fiom the different sets of analyses was made 

using a modification of the t-test for unequa1 variances (Helsel and Hirsch, 1992, p. 126): 

where: is the rnean of data in the first group, 

P is the mean of data in the second group, 

S,' is the sampIe variance of the first group, 

S' is the sample variance of the second group, 

n is the number of samples in the first-group, 

m is the number of sampIes in the second group, and 

t is the test statistic. 

This t-test can be used to determine if the means of two different sets of analyses are 

different. The assumption was made that the true variances for each set of Cl' analyses presented 

in this research, perforrned by di fferent methods from different laboratories, were in fact unequal. 

In this research, a modification to equation 4.2-1 was used. The following equation was used for 

the comparison where n and m from equation 4.2-1 are equal to one: 

1 X - Y 1 > 1.96 ( ( S a  + (Syz) ) '" 

where: 

X is the analytical result at the time of sample collection, 

Y is the analytical result, for the sarne sample as X, analyzed in 1993, 



S '  is the sample variance of X, 

S' is the sample variance of Y, and 

1.96 is the test statistic (t in equation 42-1) for the 95 percent confidence Iimit 

(Taylor, 1987, table C.2., p- 266). 

In equation 4.2-2, if [ X - Y 1 exceeded the calculated value on the right-hand side of the 

equation, the two anaIytica1 results were considered tu be statistically different, For this research, 

the statistical test for precision of results from the different methods was based on the sarnple 

standard deviations for reported concentrations from each laboratory. If the data were normally 

distributed and the sample standard deviations reported by the laboratones represented the true 

standard deviation, then the analytical results were considered to be statistically equal at the 95- 

percent confidence lirnit if 1 X - Y 1 was less than or equal to the rïght-hand side of equation 4.2- 

2, 

Concentrations of dissolved Cl* in the archived water samples at  time of collection ranged 

from 12f 1 to l27Il3 mg/L (table 3.3). The uncertainties were reported as one sarnple standard 

deviation and were estimated as 10 percent of the concentration by the RESL. The results of Cl- 

analyses on these same archived water samples ranged from 1 O.6+l.l to 1 12k11.2 mg/L in 1993. 

The concentrations reported by EIL for the analyses in 1993 also included uncertainties as one 

sample standard deviation, again estimated as 10 percent of the reported concentration. These 

sample standard deviations estimated as 1 O percent for the Cl- results reported by RESL and EIL 

were substituted into equation 4.2-2 for S, and Sy. Therefore, this statistical evaluation must be 

considered as only a guide in testing for non-equivalence because the sample standard deviations 

were estimated and rnay not represent the true standard deviation. 

Comparison of CI- concentrations at time of sample collection to the concentration 

determined in 1993 on the same samples indicated that the concentrations were statistically the 

same at the 95 percent level of confidence in al1 cases except for water samples from USGS 14 on 



April8, 1987 and fkom USGS 19 on April8, 1983 (table 4.1). For the "CI concentration in water 

fiom USGS 14, the smaller CI' concentration was the value at the time of sample collection. 

Therefore, the 3 6 ~ ~  concentration for the sample collected on A p d  8, 1987 at USGS 14 was a 

conservative estimate of that concentration. At USGS 19, the Iarger of the two concentrations 

listed in table 4. I was the concentration at the time of sarnple collection on April 8, 1983; 2 1k1 

r n g L  This suggests that the estimate of the '%I concentration for water collected on this date 

may be as much as 29 percent too large. 

4 3  Summaw of the Chlorine Isoto~e Evaluation 

Stable CI isotopic ratios, 3 7 ~ l / 3 S ~ ~ ,  were deterrnined on 21 ground water samples fiom six 

USGS observation wells for 1966-1993 and fiom one sudace water site for 1970 (table 3.3). The 

3 7 ~ 1 / % ~  ratio fiom the archived sarnples was measured at the EIL and was compared to the 

' 7 ~ ~ / 3 s ~ ~  of SMOC. The resultant  CI values ranged from -0.44 to +OS9 permil and had a mean 

of +O. 14 permil. The largest variation in  CI for water fiom any individual well was 0.9 1 

permil- However, because of the associated uncertainties with these measurements, the data 

suggest an even smaller range of  CI values (table 3.3). A review of available ij3'cl data 

worldwide by Eggenkamp, 1994, showed a range of -4.6 to +6.0 permil, which is nearly 1 I 

permil. Long and others (1993) analyzed ground water samples and identified a range of -1.5 

permiI to +0.8 perrnil. These ranges are up to an order of magnitude greater than the range of 

6 3 7 ~ 1  for water from the MEEL and vicinity. The 6 3 7 ~ ~  range for water from the MEEL is 

indicative of a littfe or no fractionation. If  there is any Cl isotope fractionation, it may be 

attributable to wastewater disposa1 and not to any processes operational during sample storage in 

the archive Iibrary or along the flowpath in the Snake River Plain aquifer. This is a topic to be 

pursued in future research. 

Concentrations of M~~ were also measured in the archive samples selected for this 

evaiuation. The historical 3 6 ~ ~  concentrations ranged fiom 1. IM. 1 x 10' atomsL to 28,000f9 10 



Table 4.1. Statistical cornparison of chloride concentrations at time of sampIe collection and 
in 1993 for selected, archived ground water sarnples used in this evaluation. 

[See figure 3.1 for location of wells. Analytical uncertainties expressed as one sample standard 
deviation estimated as 1 O percent of the analytical result; RESL, Radiological and Environmental 
Sciences Laboratory; EIL, University of Waterloo Environmental isotope Laborato~y.] 

Test statistic, if A>B, 
Concentration and analvtical results are 

Site Date analytieal un&rtainty, sintikically different; Results are 
Identifier sompled in milligrams per liter see text for statistically 

explanation different 

USGS 14 04/14/1982 

04/08/1 987 

USGS 19 04/08/1983 

USGS 20 O4/28/I 969 

04/12/1983 

O4/O4/ 1 98 8 

USGS44 05/08/1969 

04/12/1983 

04/09/1988 

USGS 57 05/08/1969 

04/12/1983 

O313 1/1988 

USGS 85 O4/25/ 1969 

04/13/1983 

NO 

YES 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

x 10~atornsIL. Based on the evaluation of the archived water samples in terms of P C I ,  it was 

concluded that the "kl concentrations measured in 1993 were representative of the 

concentrations at the time of sample collection. It follows, therefore, that 16cl concentrations 

measured on any of the archived samples used in this research are representative of the 

concentrations at the time of sample collection, 



CHAPTER 5 

SOCTRCES OF CHLORINE-36 IN TECE ENVIRONMENT 

To facilitate the use of '%I as a hydrogeoIogic tracer at the INEEL, measurements were 

made on water, snow, and glacial-ice samples to determine the naturally- and weapons-produced 

fluxes of 3 6 ~ 1  at mid-latitudes in North America. In addition to flux estimates, measurements 

were made for ' k l  dissolved in ground and surface waters to determine initial (ambient) 

concentrations, This information was used to estimate meteoric and weapons-tests contributions 

of this nuclide to environmental inventories at and near the INEEL. 

In addition to the determination of meteoric and weapons-tests inputs of j6cl to the 

environment, in situ neutron production rates and resultant maximum 3 6 ~ ~  production were 

estimated. The 3 6 ~ ~  concentrations from these sources are then compared to concentrations in 

ground water influenced by nuciear-waste disposa1 at the NEEL. 

Eighteen surface water samples from six sites were selected for 3 6 ~ 1  analyses fiom the 

USGS archive-sample library at the INEEL; these eighteen samples were collected during 1969- 

1995 (figure 5.1). The 3 6 ~ ~  concentrations for the archived surface water samples ranged h m  

0.2k0.02 x 10' to 2.2k0.05 x 10' atorns/L (table 5.1 ). In 1994-95, an additional 14 surface water 

sites and two Springs on the eastem Snake River Plain were sampled for 3 6 ~ 1  analyses. The "CI 

concentrations for these surface water and spring samples ranged h m  0.0 l4+O.OOl x 108 to 

6.2k0.7 x 10' atomsll, similar to the range of concentrations in the 18 archived samples. For 

cornparison, water from two monitoring wells at the MEEL had concentrations as low as 

0.06k0.003 x log atomsk for a well not influenced by site disposa1 practices (Site 14) and as 

large as 19,000k914 x 10' atoms/L for a well (USGS 77) just downgradient hydraulically fiom 

INTEC. 

To aid in establishing meteoric concentrations, four snow samples also were coIIected in 

199 1 at and near the MEEL (table 5.1, fig. 1. I ). The estimated 3 6 ~ 1  flux for the sarnple collected 
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Table 5.1. Dissolved-chloride concentration, amount of 3 6 ~ ~ - f i e e  chloride carrier added, 3 6 ~ ~  

concentration and calculated fluxes in surface water, ground water, spring, snow, and glacial-mnoff 
sarnples. 

[See figs. 1.1 and 3.1 for site locations. See text for explanation of uncertainties. SW, surface water 
sample; GW, ground water sample; SN, snow sample; SP, spring sarnpte; GR, glacial mnoff sample; 
USGS, U.S. Geological Survey; MEEL. Idaho National Engineering and Environmental 
Laboratory; "CI. chlorine-36; and ND. not detemined]. 

Chlonde 
Date of concentration 

chloride Con - *-* 

Site identifier sample carrier 

Little Lost 

Big Lost 
Rive r4  W 

Birch Creek- 
S W  

Carnas Creek- 
SW 

Fa11 River- 
sw 

Snake River 
below 

Jackson Darn- 
sw 

Blackfoot 
River-S W 

Snake River 
al Shelley- 

sw 
Snake River 
at Irwin-SW 
Snake River 

at Heise 
Bridge-S W 

Teton River- 
SW 

Henrys Fork 
at St. 

Anthony-SW 
B a v e r  

Creek-SW 

Portneuf 
River-S W 



Table 5.1. Dissolved-chloride concentration, amount of 36~1-fkee chloride carrier added, 3 6 ~ ~  

concentration and calculated fluxes in surface water, ground water, spring, snow, and glacial-runoff 
samples. 

[See figs. 1.1 and 3.1 for site locations. See text for explanation of uncertainties. S W, surface water 
sample; GW, ground water sample; SN, snow sample; SP, spring sampie; GR, glacial runoff sample; 
USGS, U.S. Geological Survey; iNEEL, idaho National Engineering and Environmental 
Laboratory; 3 6 ~ ~ .  chlorine-36; and ND, not determined]. 

Chloride '"CI-free 3 6 ~ 1  
chloride Comcted "CYCI concenvation flux 

Site identifier Date s.mple Of concentration 
cam'er ratio (x 1 O"') (atoms/cm'sec 

(mg) . (atoms~x 1 O*) x IO-') (mg) 

Near Neely- 
SW 

Snake River 
at Milner-S W 
Snake River 
at King Hill- 

SW 
Big Wood 
River-S W 

Siher Creek- 
SW 

Liddy Hot 
Spring-SP 
Medicine 

Lodge Creek 
SW 

Big Spting- 
SP 

Site 14-GW 

USGS 77- 
GW 

Marriman 
Skte Park-SN 

Copper 
Basin-SN 

MEEL # 1 -SN 
INEEL #2-SN 
Galena Creek 
Rock Glacier- 

Snake river 

GR 



in Haniman State Park, 150 km northeast of the MEEL, was 1.20M.2 x 1 U2 atooms/square 

centimeter/second (atoms/cm2sec). The estimated '%l flux for the sample collected in Copper 

Basin, 100 km northwest of the INEEL, was 2.8t1.4 x 105 atoms/cm2sec. For cornparison, two 

snow samples were collected at the MEEL during nuclear-fùel reprocessing operations 

downwind from MTEC. The estimated 3 6 ~ 1  flux for the sample collected 1 1 km to the southwest 

of the effluent stack at the INTEC was 1.0+0.03 atoms/cm2sec and for the sample 1.5 krn 

downwind, the flux was l2.Oe.4 atoms/cm'sec. The 3 6 ~ ~  concentration in the four snow samples 

ranged nearly four orders of magnitude, from 4.9S2.5 x 106 to 1.7f0.3 x 10'' atomsL. The 3 6 ~ ~  

concentrations in the snow samples not influenced by MEEL disposal practices, 4.9G.5 x 106 

and 6.3k0.9 x 106 atomsll, are w o  orders of magnitude smaller than the concentrations in the 

surface water samples. Evapotranspiration is the most probable mechanism for this apparent 3 6 ~ ~  

concentration in the surface water samples. This mechanism will be discussed in detail in section 

5.3 -6. 

A 160-m ice core was collected from the Upper Fremont Glacier (43"07N, 109O36'W) in 

the Wind River Mountain Range of Wyoming in the western United States in 199 1 (fig. 1.4)- in 

1994-95, ice from this core was processed at the National Ice Core Labontory in Denver, 

Colorado, and analyzed for 3 6 ~ l .  A 'H bomb peak identified in the ice core was used as a marker 

to estimate the depth of bomb-produced 3 6 ~ 1 .  Tritium concentrations ranged from O TU for older 

ice to more than 360 TU at 29 rn below the surface of the glacier, a depth that includes ice that 

was deposited as snow during nuclear-weapons tests through the early 1960s. Maximum ' k l  

production d u ~ n g  nuclear-weapons tests was in the late 1950s; therefore, analyses were 

performed on ice fiom a depth of 29.8 to 35.3 m. Estimated flux for 3 6 ~ ~  in ice deposited in the 

1950s ranged from 9.0202 x 105 atoms/cm2sec for ice fiom 34.2 to 34.8 m to 2.910.1 x 10-' 

- atoms/cm2sec for ice from 3 1.5 to 32.0 m. A mean global natural atmospheric production flux for 

36 CI of 1.1 x IO-' atorns/cm2sec has been reported (La1 and Peters, 1967). The peak a t o d  



concentrations fiom these estimated fluxes were 7.7k0.2 x 10' atoms/l at a depth of about 32 m. 

Ice samples from depths of Iess than 24.0 m and greater than 46.4 m were selected to 

represent pre- and post-weapons tests 3 6 ~ ~  flux. These cores had estimated f l u e s  that ranged 

from 1.1k0.2 x 10" atoms/cm2sec to 2.0k0.2 x IO-' atoms/cm2sec. For cornparison, a glacial- 

runoff sample coilected in 1995 at Galena Creek Rock Glacier, 180 km north of the Upper 

Fremont Glacier in Wyoming's Absaroka Mountains, had an estimated flux of 1.6k0.2 x IO-' 

atoms/cm2sec. The atom/L concentrations in the pre- and post-bomb sections of glacial ice and 

runoff were a11 less than 1 x 10'. It was concluded from the water, snow, and glacial-ice data 

presented below that atom concentrations of %l greater than 1 x 10' atomslL are likely a result 

of waste-disposal practices at the INEEL. 

In situ 3 6 ~ ~  production due to nuclear interactions between non-radioactive (stable) 

nuclides and alpha particles given off during the radioactive transformation of uranium (U) and 

thorium (Th) decay-series isotopes was determined for 25 whote-rock samples coilected from 

basalt, rhyoIite, limestone, dolomite, shale, and quartzite of the eastem Snake River Plain aquifer 

system, The results wilI be discussed in section 5.3. 

5.1 Meteoric Production 

The rnost direct method to determine meteoric concentrations of " k l  is the long-term 

monitoring of wet precipitation and dry fallout. However, several problems must be addressed 

before the assumption can be made that these concentrations are representative of initial meteoric 

water. For arid regions such as the INEEL, precipitation events are infrequent arid an accurate 

assessment of meteoric concentrations may take several years of measurements- Additionally, 

36 seôsonal trends in CI deposition have been documented (Hainsworth and others, 1994) and 

maximum recharge to the local ground water may not correspond in time to penods of maximum 

precipitation and runoff due to possible lag time. Therefore, an atternpt has been made in this 

dissertation, by analyzing several snow samptes and a recent glaciaf-runoff sample combined 



with rneasurements of ground and surface water fiom 1969-1994, to establish regional meteork 

inputs of 3 6 ~ 1  to the hydrogeologic environment. 

Bentley and others (1986) have calculated the pre-weapons tests 3 6 ~ ~ ~ ~  ratios in 

meteoric wet and dry deposition for the continental United States (figure 1.5). These calculations 

were for cosrnogenically produced 3 6 ~ ~  and stabie Cl; principally fiom transport of sea salts. The 

predicted pre-weapons tests 3 6 ~ ~ / ~ ~  ratios at the latitude of the INEEL average about 450 x 1 O'" 

and represent the integrated ratios expected in uncontaminated ground water. As mentioned 

earlier, Cecil and others (1992) reported pre-weapons tests 3 6 ~ ~ / ~ ~  ratios of approximately 300 x 

10"' for soi1 in the unsaturated zone near the RWMC at the INEEL. Neither ET nor the addition 

of Cl'-fkee water (fig, 2.1) will change these ratios. However, as shown in figure 2.1, the absoIute 

concentration of 3 6 ~ ~  can change by these same processes. It is assumed that these processes 

affect the stable isotopes of CI- in the same way so that even though the absolute concentration of 

36 CI can change, the meteoric ratio of 3 6 ~ ~ / ~ ~  does not. The glacial-runoff sample, the two spring 

samples, the two snow sarnples, and the ground water samples not affected by INEEL waste- 

disposal practices, al1 had corrected 3 6 ~ 1 / ~ ~  ratios less than 300 x 10-l5 (table 5.1). For 

comparison, the ground water samples from a well at the MEEL influenced by waste-disposal 

practices (USGS 77) had corrected 3 6 ~ ~ / ~ ~  ratios that ranged fiom about 600,000 x to 

1,500,000 x 1 O-", or up to four orders of magnitude larger than the meteoric ratios. 

Using the reported ambient CI- concentration for ground water at the MEEL of 6 to 10 

mg/L (Robertson and others, 1974) and the average pre-weapons tests 3 6 ~ 1 / ~ ~  ratio of 450 x 1 O-'' 

(Bentley and others, 1986), the concentration of in water should range fiom 4.6 to 7.6 x 10' 

atorns/L. (Using the larger ratio from Bentley and others (1986) for southeast Idaho of 600 x 10- 

IS results in a concentration of ' k l  in water of 9.5 x Io6 atomfi). This compares to ranges of 

measured pre-weapons tests 3 6 ~ 1  concenmitions of 1.2 to 5.2 x 106 atomdL for the Upper 

Fremont Glacier ice core and 4.0 to 6.0 x Io6 atomsR. for ground water not affected by INEEL 



disposal ptactices (Site 14). This suggests an anthropogenic or in situ component in the ambient 

CI' concentrations reported by Robertson and others (1974). Again, processes that could effect 

these concentrations are ET and the addition of CI' free ground water. Evapotranspiration is a 

significant process at and near the INEEL, a semi-arid high-plains desert environment. Extensive 

and long-term irrigation return flow wiII also influence the absolute concentrations. 

A reevaluation of the Bentley and others mode1 produced pre-bomb 3 6 ~ 1 / ~ 1  ratios for 

southeasteni Idaho that ranged fiorn 250 x  IO-'^ to 500 x 1 O-" (Sterling, 2000, page 99)- with an 

average of 375 x 10-15. Using this average 3 6 ~ ~ / ~ ~  ratio, the concentration of 3 6 ~ ~  in water would 

range from 3.8 to 6.4 x 10' atoms/L, or 17 percent smaller than the range calculated with data 

from the Bentley and others mode1 used above, 

The long-term (1980-99) precipitation-weighted average CI' concentrations at the 

National Atmospheric Deposition Program (NADP) station at Craters of the Moon National 

Monument (fig. 1.1), near the I'NEEL, is O. 19 mgL. Using this average Cl- concentration and the 

average pre-weapons tests 3 6 ~ ~ / ~ ~  ratio of 450 x the 3 6 ~ ~  concentration in precipitation at 

the MEEL and vicinity should average about 1.5 x 1 o6 atoms5. If the larger ratio from Bentley 

and othen is used (600 x 1 O*"), then the average 3 6 ~ ~  concentration should average about 1.9 x 

1 o6 atoms/L. These values are about an order of magnitude Iess than what can be measured in 

ground water uninfluenced by INEEL waste-disposal practices (table 5.1). Table 5.1 lists the 

concentrations of %I measured in glacial runoff (recent precipitation) and snow at nearly the 

same latitude as the MEEL. These concentrations range from 3.2k0.5 x 106 to 6.3k0.9 x 106 

atomsL water equivalent, in good agreement with the concentration calculated using the iong- 

terrn average NADP data for CI- in precipitation, 1.5 x 106 atomsli.. For the two snow samples 

collected at the MEEL during active calcining operations (conversion of liquid high-level 

chernical and radioactive waste to a granular solid) in 199 1, NEEL# 1 and NEEL#:! (table 5. l), 

the 3 6 ~ ~  concentrations are 14k0.4 x 10' and 1.7tO.3 x 10" atomsk, respectively. These 



concenirations are three to four orders of magnitude larger than the concentrations of '%l in snow 

and glacial runoff unaffected by INEEL disposal operations. 

For cornparison, the 3 6 ~ ~  concentration in the 32 surface water samples analyzed in this 

dissertation ranged from 0.2W0.02 x 10' to 620.7 x 10' atomsL with an average 3 6 ~ ~  

concentration of 1 -5k0.3 atoms/L. This enrichment in 3 6 ~ 1  concentrations for the surface water 

samples compared to the calculated and measured meteoric concentrations in precipitation is 

probably a result of extensive ET. The only other rnechanism shown in figure 2.1 that couId 

increase 3 6 ~ ~  atom concentrations is subsurface (in siru) production. In 1993, Beasley and others 

estimated the contribution of 3 x 10' atomslL to neutron activation of Cf in ground water fiom 

this mechanism with corresponding 3 6 ~ ~ / ~ 1  ratios on the order of 10-". Additionally, in situ 

production in al1 major water-bearing rocks in t he  eastern Snake River Plain aquifer has been 

shown to be insignificant and to have no rneasurable impact on 3 6 ~ 1  atom concentrations in 

ground water (Cecil and others. in press. and "ln situ Production" section below). 

The largest 3 6 ~ ~ / ~ ~  ratios from i ~ i  siru production (discussed in greater detail in section 

5.3), on the order of 4 x 1 O-". correspond to the largest "CI atom concentrations in surface water 

listed in table 5.1 and shown on figure 5.2. For esample, surface water fiom Beaver Creek near 

Spencer, Idaho, had the largest '"CI atom concentration of al1 the surface water sites, 6.2ic0.7 x 1 o8 

atoms/L, and the calculated in siru ratios for the geology in this area ranged fiorn 2.5 x IO'" to 3.5 

x 10-14. If al1 the dissdved CI- in water had been derived from the rnatrix in this area, then this in 

situ source at most would contribute 5.9 x I ob atoms/l. However, the water would have to be on 

the order of 1 .S million years in age to have this 3 6 ~ ~  concentration. With ground water flow 

vetocities on the order of 1 to 6 m/day and the travel distances in the Snake River Plain Aquifer, 

there is no water of this age in the effective flow systern. Additionally, CFC dating of ground 

water at the WEEL indicates that water rnoving beneath the site in the 1990s was recharged to the 

system after 1940 (Busenburg and others, 1993). It is highly improbable that surface water would 



be in contact with the rock matrix for a sufficient amount of time to produce rneasurable 3 6 ~ ~  

atom concentrations by in situ production. Additionally, this 3 6 ~ ~  atom concentration is two 

orders of magnitude less than what has been measured in surface water in this area. This Beaver 

Creek 3 6 ~ 1  a t o d  concentration, 6.2k0.7 x 1 08, is probably a result of resuspension of bomb- 

produced ancilor ET. 

The maximum in situ contribution of has been estimated for al1 the major water- 

bearing rock types in the eastern Snake River Plain aquifer system and the results will be 

discussed in detail in later in this chapter. The largest calculated contribution to 3 6 ~ ~  inventories 

from in situ production is 7.68 x io6 atornsk for rhyolite (figure 5.2). This concentration 

compares well with meteoric concentrations ( 1  o6 atornsL) presented in this chapter. 

Excluding anthropogenic input of 3 6 ~  1 to the hydrogeologic environment, the only 

enriching mechanism is ET. The ' 6 ~ ~ / ~ ~  ratios shown for these surface water sites in table 5.1 

range from 3 9O+5O x 1 0'15 to M5Ok 1 20 x 1 O-" or about an order of magnitude. Excluding the 

two snow samples collected during nuclear-fuel reprocessing at the INTEC and the gIacial-runofT 

and snow samples shown in figure 5.2, al1 the surface water concentrations are scattered about the 

Iine representing 1.5 x 1 o8 atorndl. t h e  mean concentration for the 32 surface water sarnples. 

This distribution may be representative of evaporative processes in these surface water samples. 

Chlorine-36 concentrations between I x 10' and 1 x 1 o9 atomsk on figure 5.2 may be indicative 

of resuspension of weapons-test fallout, airborne disposal fiom the NTEC, or ET. 

Additional independent data supporting the concept that evaporative processes are 

operable on recharge to the eastern Snake River Plain aquifer system were presented by Wood 

and Low (1 988, figure 1 8, page D 1 5). Oxygen- 1 8 and deuterium isotopic ratios for surface and 

ground water samples collected from the Snake River Plain aquifer system are presented. The 

delta oxygen-18 values reported show a shift to heavier oxygen values suggesting evaporation 

prior to recharge in semiarid climates. 



Figure 5.2. Chlorine-36 concentrations in spring-water, snow, ice-core, ground water, 
surface water, and glacial-runoff samples. 

Note: Error bars were not included on this figure for clarity. For associated uncertainties 
see table 2.1 for ground water samples, table 5.1 for surface water, spring, snow, and 
glacial-runoff samples, and table 5.3 for ice-core samples. 



Another usefiil geochemical selection criterion for determining meteoric "CI inputs is the 

chloride/bromide (CI-Br? m a s  ratio (Davis and others, 1998). For precipitation, this ratio is 

generally in the range of 80 to 160. Oil-field bnnes have ratios in the range 250 to 350 and brines 

produced from the dissolution of bedded salt and salt domes range fiom 1,500 to 15,000. 

Exceptions include precipitation within a few tens of kilometers fiom the coastIine that may have 

ratios approaching 290 (the ratio found in seawater). For determining meteoric 3 6 ~ 1  

concentrations, ratios in excess of 200 indicate Cl' sources other than precipitation; these waters 

should be avoided for determining meteoric inputs. 

Water h m  several surface water sites, h m  Big Spring, the glacial-runoff sampies, and 

two sections of ice from the Upper Frernont core were analyzed for CI' and Br'. The results 

-indicate that, using the criterion outlined above, only water fiom Big Spring and fiom the glacial 

runoff is suitable for quantifjing meteoric inputs at and near the MEEL (table 5.2). The 3 6 ~ ~  

concentrations in water from Big Spring and the glacial-mnoff sarnple are less than 1 x 10' 

atomsk and represent meteoric inputs on the eastem Snake River Plain. Ali the surface water 

sarnples indicate addition of CI' from sources other than meteoric. The 3 6 ~ ~ / ~ ~  ratios and atom/L 

concentrations given in table 5-1 (sampIe site locations are shown on fig. 5.1) also indicate 

enrichment of CI- in these sarnples. To date, oniy two ice-core samples have been analyzed for CI' 

Br' mass ratios from depths that include signiticant 3 6 ~ ~  concentrations. The section of ice-core 

coilected from a depth of 30.4 to 3 1.1 meters beIow the surface of the Upper Frernont Glacier 

(table 5.3) had a CI-Br- mass ratio of 45 (table 5.2) and a '%I concentration of 4.320.1 x 107 

atoms/L water equivalent (table 5.3). The section of ice collected from 3 1.1 to 3 1.5 meters below 

the glacier surface had the maximum CI-Br- mass ratio (633, table 5.2) and a concentration 

Of 6.5k0.3 x IO' atomsk water equivalent (table 5.3). The CïBrBi m a s  ratio and 3 6 ~ ~  

concentration for this section of ice indicate anthropogenic sources of excess CI'. Additional work 

is necessary to establish the Cl-/Bi mass ratios for the gIacial ice samples and to interpret the 



results. 

5.2 Weapons-Tests Production 

The calculated 3 6 ~ ~  concentrations in the sections of the Upper Fremont Glacier ice core 

are of similar magnitude to those found in Arctic and Antarctic ice cores (Synal and others, 199 1 ; 

Elmore and others, 1982). Concentrations of 1 x 10' atoms/L water equivalent are typical values 

for pre- and post-bomb 3 6 ~ ~  (figure 5.4). A direct cornparison beîween the polar results and the 

mid-latitude results presented here should be done with caution because the 3 6 ~ 1  flux depends on 

the precipitation rate that c m  Vary considerably from one geographic location to another. 

Complex atmospheric dynamics may also contribute to larger atmospheric fallout of cosmogenic 

nuclides at mid-latitudes when compared to polar regions due to stratospheric-tropospheric air 

exchange mechanisms that are different at mid-latitudes (Moysey, 1999). 

Table 5.2. Mass ratios of chloride/bromide for selected water sarnples collected near the 
Idaho National Engineering and Environmental Laboratory, Idaho and for select ice-core sarnples 
from the Upper Fremont Glacier, Wyoming. 

[Symbols: SP, spring sarnple; SW. surface water; GR, glacial runoff; and IC, ice core. CI-/Br- 
analyses for the ice-core samples performed at Los Alamos National Laboratory.] 

Site or sample Date of Chloride content Bromide content CI'/Br' mass 
identifier sample (WfL) (ml&) ratio 

Big Spring-SP 6-27- 1995 2.6k0.4 0.02+0.005 130 

Big Lost River-S W 6-28- 1995 2.3k0.4 0.006k0.002 3 83 

Birch Creek-SW 6-28- 

Camas Creek-SW 6-28- 

Little Lost River-SW 6-28- 

Galena Creek Rock 
Glacier-GR 
Upper Fremont Glacier 9g 
Ice, 30.4-3 1.1 meters, IC 
Upper Fremont Glacier 99 
Ice, 3 1.1-3 1.5 meters, IC 0 -2k0.04 0.000610.0002 633 
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Figure 5.3. Chlorine-36 concentrations in glacial-ice samples, Upper Fremont Glacier, 
Wind River Range, Wyoming. 



Table 5.3. Dissolved chloride content, arnount of chlorine-36-fiee chloride carrier added to 
sarnple, chIorine-36 content and calculated fluxes for selected ice core sections collected in the 
summer of 199 1 fiom the Upper Fremont Glacier, Wyoming. 

[Symbols; PO, post-weapons test era; PR, pre-weapons test ma.] 
Dissolved 

Depth below Core 
%CI 

chloride %-~ree  Correctcd in concentntion, %CI Flux 
glacial sudace length chloride Situ water equivalent (atoms/cmf )l 

(ml (ml * 20 carrier (mg) (X 1 0 ~ ~ ~ )  (atoms/L x 10') secx 1 O-') percent 



However, a more quantitative cornparison between the mid-latitude ice-core results and 

modern "CI deposition over the continental United States cm be made with some confidence. 

Knies and others (1994) reported an average 3 6 ~ ~  concentration in wet fallout of 1.7 x 106 

a t o m d ,  the volume-weighted average from measurements of al1 significant rainfall events 

during April 1992 and August 1993 at their field site in central Indiana. Similar 3 6 ~ ~  

concentrations in wet precipitation have been reported by Hainsworth and others (1994) for the 

e s t  coast of the United States; the average for the period from Februaq 199 1 to Januiuy 1993 

was 1 -7k0.2 x 1 o6 atomsk. These averaged concentrations for wet precipitation agree well with 

the range of 3 6 ~ ~  concentrations measured in pre- and post-bomb sections of the Upper Fremont 

Glacier ice core; 12k0.2 x 106 to 5.2k0.4 x 106 atomsL water equivalent (table 5.3, figure 5.3). 

These concentrations also compare well with the two snow sarnples collected near the MEEL in 

199 1 and the glacial-runoff sample fiom the Galena Creek Rock GIacier collected in 1995 (table 

5.1 ). The 3 6 ~ ~  concentration in the Harriman State Park snow sample was 6.3k0.9 x 1 o6 atomsL, 

the concentration in the Copper Basin snow sample was 4.9I2.5 x 106 atomsll, and the 

concentration in the Galena Creek Rock Glacier sample was 3.2k0.5 x 106 atorns/L (table 5.1). 

(The concentration of 3 6 ~ ~  in the snow sample from Copper Basin was used in this dissertation for 

cornparison purposes even though the concentration has a 50 percent associated uncertainty.) 

Mean wet deposition fluxes of "CI derived from these studies were 6.79k0.47 x 1 O" 

atorns/cm'sec (Knies and others, 1994). 3.8610.54 x 1 o5 atoms/cm2sec (Hainsworth and others. 

1994). and 8.28k0.91~ 10" atorns/cm'sec for pre- and post-bomb flux for the Upper Fremont 

GIacier. The wet-only flux determined in the central and the western United States appears to be 

about a factor of two larger than the flux for the eastern United States at similar latitudes. The 

mean non-weapons tests flux for the Upper Fremont Glacier site was deterrnined by averaging the 

- values in table 5.3 above 24.0 m and below 46.4 m in depth; this minimized the contribution of 

fallout fiom nuclear-weapons tests in the 1950-60s. The resulting mean flux was then reduced by 



30 percent to account for dry deposition of 3 6 ~ ~  (Hainsworth and-otherç, 1994). The mean flux 

for the two snow sampies collected near the INEEL in 199 1 was 7.5k0.2 x  IO-^ atoms/cm2sec and 

for the Galena Creek Rock Glacier runoff the estirnated flux was 16*2 x 1 o - ~  atoms/cm'sec. The 

average precipitation rates used to calculate the fluxes for the snow sampies and the glacial-runoff 

sample were; 58 cm/year for Harriman State Park (L.L. Jones, Idaho Department of Parks and 

Recreation, oral commun., 1996); 2) 22 cdyear for iNEEL #1 and #2 (Clawson and others, 1989, 

table D-1); 3) 18 cdyear  for Copper Basin (S.M. Spencer, U.S. Forest Service, written commun., 

1996); and 4) 160 crn/year for Galena Creek Rock Glacier (see discussion of precipitation rate for 

the Upper Fremont Glacier below). The precipitaîion rates used in calculation of 3 6 ~ 1  flux for the 

four snow samples did not account for ET. Therefore, these calculated fiuxes should be 

'considered as minimum and rnay be increased by nearly two orders of magnitude due to 

evapotranspiration (Appendix tables C-4 and C-5). These calculations are rnuch more sensitive to 

evapotranspiration rates than to average annual precipitation rates. The effects of ET on meteoric 

concentrations will be discussed in section 5.3.6, "Cornparison of In Situ Produced Chlorine-36 

with Other Sources". 

In a detailed discussion of the radionuclide contents in the Upper Fremont Glacier ice 

core, more subtle effects such as dry deposition of 3 6 ~ ~ ,  seasonal effects, and thawing-freezing 

cycles of the upper ice layer may play important roles. For instance, the total wet precipitation 

and dry fallout, 3 6 ~ 1  flux deterrnined by Hainsworth and others (1994) was 5.8Sf0.78 x IO" 

atoms/cm'sec. about 30 percent higher than the wet-only precipitation flux. Non weapons-tests 

3 6 ~ ~  fluxes derived from the Upper Fremont Glacier ice core. again, assuming a constant net 

accumulation rate of 80 cm/yr, are also of sirnilar magnitude; 4.5k0.7 x 105 to 20k2 x 10" 

atoms/cm2sec, table 5.3. Hainsworth and others (1994) showed that the dry deposition of 3 6 ~ 1  can 

account for about 30 percent of the total input as inferred fioin a direct cornparison of analyses 

performed on samples collected in open (for dry deposition) and wet-only collectors. Significant 
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Figure 5.4. Comparison of dissolved-chloride concentration in annual ice layers with the 
annual-weighted dissolved-chloride concentration at the National Atmospheric Deposition 
Program station near Pinedale, Wyoming. 

Note: This figure was modified from Naftz and others, 1991. 

seasonal effects have been reported by Knies and others (I99o) for 3 6 ~ ~  and other cosmogenic 

nuclide deposition, while recurring thawing-freezing events, resulting in downward percolation of 

meltwater in the ice core stratigraphy, wit 1 obscure any seasonal or other cyclic event preserved in 

the ice. All these variables might play a roIe in the fine structure of the resuits. However, these 

factors are of no immediate concern to the proper interpretation of the results presented in this 

dissertation as evidenced by data presented here and by related studies such as Naftz and others, 

199 1 (see below). It shouid be noted. however, that some ice- core sections analyzed here most 

likely do not cover a complete annual cycle so that any one or a combination of the eflects 

outlined above might bear some significance in the interpretation. 

In 1991, Naftz and others reported on a reconnaissance study to determine the relation 

between concentrations of selected chemical species dissolved in wet precipitation compared to 

the concentrations of the rame species dissolved in annual ice layers coilected fiom the Knife 

Point glacier in Wyoming's Wind River Range (fig. 5.3). Constituent concentrations calcalated 

fiom annual-weighted means of wet deposition samples fiom the NADP station near Pinedale, 



Wyoming (figure 1.4) for the years 1982-87 were compared to concentrations in the annual ice 

layers (fig. 5.5). The CI- concentrations in the deposition çamples and in the corresponding ice 

layers showed a significant correlation coefficient of 0.98, indicating that, for determining Cl-, 

temperate glaciers fiom the Wind River Range may not be subject to severe meltwater 

contamination problems. Additionally, these data indicate that the annual ice layers may provide 

a reliable long-term record of the chernical composition of precipitation. 

However, as show in figure 5.5, the dissolved CI' concentrations in the annual ice layers 

at Knife Point glacier were consistently larger than the Cl' concentrations in the annual-weighted 

wet deposition samples at the NADP station near Pinedale. This is fiirther evidence that dry 

deposition of Cl- may influence the dissolved concentrations in precipitation and ice as reported 

by Hainsworth and others (1994, up to 30 percent of total deposition) and by Sterling (2000, up to 

60 percent of total deposition in Idaho). 

Long-terrn records of accumulation and ablation of snow, fini, and ice were not available 

for the Upper Fremont Glacier location. Therefore, accumulation and ablation were calculated 

according to the following method to facilitate the estimation of an annual average precipitation 

flux for this site. An average annual accumulation flux of 80 @m'y- was calculated using 

average core densities reported by Nahz (written communication, 1996) of 0.65 &rn3 for the 0- 

to 14-m section and 0.89 dcm; for the rernaining core down to the rneasured bomb 3~ peak at 29 

m. An average annual accumulation flux of 76 gkrnyr was calculated using these same densities 

down to the depth of the measured 3 6 ~ ~  peak at about 32 m. This average annual accumulation 

flux was in good agreement with the flux determined fiom the 'H peak, 80 g/~rn*~r,  N a k  (1992). 

To account for al1 " k l  deposited at this high-altitude, mid-latitude site, ablation of snow, 

fini, and ice was also considered in the average annual precipitation flux for this study. Naftz and 

others (1996) reported an average ablation for 1990-91 at five sites on the Upper Fremont Glacier 

of 93 cdyr .  This cumulative ablation rate agreed well with the average annual ablation rate of 88 

cdyear calculated by Marston and others (1991) on the Dinwoody Glacier for 1958-83. 



Dinwoody Glacier is approximately 5 km north of  the Upper Frernont Glacier and is at the sarne 

altitude (fig. 5.3). 

Using the 88 cm/yr average annual rate and an assumed density of  0.5 @cm3, the average 

annual precipitation flux iost by ablation was estimated at 44 g/cm2y. The accumulated 

precipitation flux calculated from the 3 6 ~ ~  bornb peak at 32 m depth was 76 g/cm2y. Considering 

accumulation and ablation, the combined average annual precipitation flux for this site was 

approximately 120 g/~rn'~r.  This estimated average annual precipitation flux was used with the 

measured concentrations in atomsL (table 5.3) to calculate 3 6 ~ ~  fluxes. These '6Cl fluxes are 

a first approximation onIy and are based on an estimated precipitation Aux as described above. 

Estimated weapons-tests fluxes for the ten sections of ice between 29.8 and 35.3 m in depth range 

from 9.0k0.2 x IO-' to 2.9+0.1 x IO-' atoms/crn2sec (table 53). These fluxes are up to two orders 

of magnitude larger than the mean global natural-production flux for 3 6 ~ 1  (1.1 x 1 0 - ~  

atoms/cm'sec; Lal and Peters. 1967) and compared well with the weapons-tests flux reported by 

Elmore and others (1982) of 5 x 10'' atorns/cm'sec for the Dye-3 ice core fiorn Greenland, 

deposited during the same period of time as the Upper Fremont Glacier ice. This continuous 

section of ice core represents the minimum "CI produced by nuclear-weapons tests in the 1950- 

60s that was deposited at this site due to the assumption being made concerning ablation and the 

use of averages for precipitation flux. For the ice selected to represent pre-bomb tests ' v l  flux 

centered at 105.1 rn and 105.9 m. the estirnated flux was 4.510.7 x IO-' and 2.0k0.2 x 10" 

atoms/cm'sec. respectively . 

It is not understood at this time why the calculated flux of the section of ice centered at a 

depth of 105.9 m was nearly fwe times larger than the reported mean global average. The section 

of ice centered at 20.1 m had a calculated %I flux of 1.1*0.2 x IO-* atoms/cm'sec and is 

representative of post-weapons fluxes. The sections of ice between 39.6 and 46.4 rn had a range 

of calculated "CI fluxes from 4.7M.7 x 1 O-' to 5.3f 0.1 x 1 a t omd~m~sec  and most likely had a 



component of weapons-tests produced "CI. Additionally, the two sections of ice centered at 

24.25 and 24.75 m had calculated 3 6 ~ 1  fluxes of 6.MO.3 x IO-' and 5.4-tO.2 x IO-* atorns/cm2sec 

respectively; these fluxes also probably had a component of weapons-tests-produced 3 6 ~ 1 .  

in ternis of a t o d  concentrations in water equivalent, the largest value for bomb 3 6 ~ ~  

identified in the Upper Fremont Glacier ice core was 7.750.2 x 10' atomsL at a depth of about 32 

m (table 5.3). This concentration is more than an order of magnitude larger than the meteoric 

concentration in water from Big Spring (1.4*0.1 x 1 o6 atorndL), Galena Creek Rock Glacier 

(3.20.5 x 106 atomsL), the snow sarnpies at Hariman State Park and Copper Basin (6.3k0.9 x 

1 o6 and 4.9I2.5 x 1 o6 atomsll, respectively), and the calculated long-term average concentration 

in precipitation at the Craters of the Moon NADP station (1.5 x 106 atomsk). This concentration 

is about 1-5 to 2.5 orders of magnitude smaller than the concentrations in the two snow samples 

(MEEL #l, #2; table 5.1 ) collected during nuclear-fuel reprocessing operations at the INEEL and 

is nearly six orders of magnitude less than the atom concentrations in ground water from USGS 

77 near the NTEC (table 5.1). Ali of the ice samples processed from the Upper Fremont Glacier 

had atom/L concentrations of 3 6 ~ ~  that ploned below the 1.5 x 10' Iine in figure 5.2 suggesting 

that this value is the maximum for combined weapons-tests and meteoric 3 6 ~ ~  concentrations in 

environmental samples colIected in southeastern Idaho and western Wyoming. 

5.3 In Situ Production: Analvses and Calculations 

The purpose of this section is to estimate the contribution to ground water of natural, in 

sim produced "CI in the eastern Snake River Plain aquifer system and to compare these 

concentrations in ground water to measured concentrations near the MEEL. Twenty-five 

samples fiom the six major water-bearing rock types (basait, rhyotite, limestone, dolomite, shale, 

and quartzite) in the Snake River Plain aquifer system were evaluated for in sihr 3 6 ~ 1  production. 

Calculated ratios of 3 6 ~ ~ / ~ ~  in these rocks ranged fiom 1.4 x 10'" for basalt to 45 x 10'" for 



rhyolite. The amciated neutron production rates calculated for these rock types were 2.5 

neutrons per gram of rock per year ((n/g)/yr) for the basait and 29 (n/g)/yr for the rhyolite. The 

Iarger neutron production rate for the rhyolite is due to the larger U (1 1.5 ppm) and Th (22.2 

ppm) concentration of the rhyolite; for cornparison, the U and Th concentrations of the basalt 

were 0.8 ppm and 2.23 pprn, respectively. The calculated contribution included the estimation of 

neutron production rates based on the etemental composition of the rock samples and the 

proportion of the resuitant neutrons that may be captured by CI atoms within the rock to produce 

3 6 ~ ~  (Appendix tables C-6 and C-7). 

Considering the CI- concentration and minimum rock porosity with the calculated 3 6 ~ ~ ~ ~  

ratios, the estimated maximum corrected concentrations of "CI in ground waters associated with 

the rock types analyzed in this study ranged from 2.45 x 10' a t o m d  for ground water in the 

basait to 7.68 x 1o6 atomsk for ground water in the rhyolite (Appendix table C-8 and figure C-1). 

These values are six orders of magnitude smaller than concentrations measured in ground water at 

and near the MEEL. A 3 6 ~ 1  concentration of 2.8i0.09 x 1012 atomsL has been measured in a 

ground water sample collected near the INTEC (USGS 57, table 2.1). Additionally, in siru 

3 6 ~ ~ / ~ ~  ratios in ground water from rock with average compositions from this study ranged from 

4.0 x 1 0-15 to 33.3 x IO-IS.  For cornparison. the range of 3 6 ~ 1 / ~ 1  for the 70 ground water samples 

collected from the Snake River Plain aquifer for this research at and near the [NEEL was 

47.7k0.2 x 1 0-l4 to 2. IiO.06 x 1 

Determining the contribution of in situ production to 3 6 ~ ~  inventories in ground water 

facilitated the identification of the source for this radionuclide in environmental samples. Based 

on the calculations in this dissertation, in situ production of "CI was determined to be 

insignificant compared to concentrations measured in ground water near buried and injected 

nuclear waste at the MEEL. Maximum estimated 3 6 ~ ~  concentrations in ground water fiom in 



situ production are on the same order of magnitude as naturd concentrations in meteoric water. 

As described earlier in this dissertation, there are four sources of 3 6 ~ ~  in the eastem Snake 

River plain aquifer, (1) natural production by cosmic ray interaction with " ~ r  and neutron 

activation of 3 6 ~ r  in the upper atmosphere that is then transported through the hydrologic 

environment as meteoric concentrations in precipitation (Cecil and others, 1999); (2) production 

by neutron activation of stable 3 S ~ i  during nuclear-weapons tests of the 1950s-60s (Cecil and 

Vogt, 1997); (3) 3 6 ~ 1  released during nuclear-waste processing at the MEEL (Cecil and others, 

1992, 1998, 1999; Beasley and othen, 1993); and (4) natural in siru production in the aquifer 

rnatrix at depth due primarily to neutron activation of stable "CI. This section describes the 

contribution of in situ production, in the aquifer matrix at depth, to 3 6 ~ 1  inventories rneasured in 

ground water. Meteoric. weapons tests, and nuclear-waste processing contributions to 3 6 ~ ~  

inventories have aIready been described earlier in this chapter (sections 5.1 and 5.2) and in the 

open Iiterature by this author and colleagues (Cecil and othen, 1992, 1998, 1999). 

In this research, the solid-phase (rock) samples are designated SP, and their locations are 

shown on figure 1.1. The basalt flows that comprise the majority of the Snake River Plain are in 

layers of only a few meters thick and cover areas of tens to hundreds of square kilometers. 

Samples SP- 15, SP-16, SP- 18, SP- 19. SP-20, SP-2 1, and SP-22 are representative of younger 

basalts on the eastem Snake River Plain (Appendix table A-1). Large-scale basait flows, such as  

those in Oregon and Washington, have not been found in the Snake River Plain. The most recent 

volcanic eruptions on the Snake River Plain were at the Craters of the Moon National Monument 

(fig. 1 -1  ) around 2,000 years ago (Kuntz and others, 1988). 

Volcanism produced relatively thick flows of welded tuff, ash, and pumice that are 

exposed within and near the margins of the basin and are composed largely of rhyolite, latite, and 

andesite. The rhyolitic tuffs and rhyolite in this group are represented by sarnples SP-5, SP-6, 

SP-7, SP-8, SP-9, SP-1 O, SP-13, SP-17, and SP-23 (Appendix table A-1). Subsequent basalt 
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volcanism over the entire basin was predominately Iimited to outpourings of pahoehoe lava Wace 

and others, 1975). Some eruptions however, such as the ones near Craters of the Moon, were 

violent enough to create pyroctastic rocks and significant deposits of cinden. None of these 

pyroclastic deposits are major aquifers in the basin. Pre-Cretaceous sedimentary and 

metarnorphic rocks border the basin to the northwest and east and are represented in this study by 

samples SP-1, SP-2, SP-3, SP-4, SP-1 1, SP-12, SP-24, SP-25, and SP-26 (Appendix tables A-2 

and A-3). Of the six rock types studied, basalt and rhyolite comprise the majority of the aquifer 

on the Plain and limestone and dolomite, with minor shale, quartzite, and medasediments, 

comprise the recharge areas to the north, West, and east. 

The rock samples were submitted to the Idaho State University (ISU), Department of 

Geology, Geochemical Laboratory for elemental analysis. The geochemical laboratory prepared 

samples for analysis by three separate analytical methods, inductively coupled plasma-atomic 

emission spectrometry (ICP-AES), instrumental neutron activation analysis (INAA), and Ioss on 

ignition (LOI). In addition, selected solid-phase samples were submitted to the USGS, Branch of 

Geochemistry, to determine CI- concentration by ion-selective electrode potentiometry (TSEP). 

The data were received from the two laboratories and were processed into the fom needed to 

make in situ production calculations for 3 6 ~ ~ .  The processed laboratory geochemical data are 

presented in Appendix tables A- 1, A-2, and A-3. 

5.31 Field Methods for In Situ Sample Collection 

For the in situ 3 6 ~ ~  production calculations it was assumed that the dominant mechanisrn 

of production was neutron activation of stable "CI. At depths greater than about 10 m in most 

rocks, this assumption holds (Fabryka-Martin, 1988, tables h-3a through h-3h; Gifford and others, 

1985, p. 4 18, Phillips, 2000, p. 304). Although some of the whole-rock samples collected for this 

study were collected fioin the upper 2 to 5 m of the rock formation at land surface and may have 

undergone some changes due to weathering, the chemical data presented in Appendix tables A-1, 



A-2, and A-3 are assumed to be representative of the entire depth of the rock type both temporally 

and spatially. For basalt and rhyolite smples SP-15 through SP-21 (Appendix table A-l), the 

depth of collection was greater than 50 m in al1 cases; these sarnples were extracted fkom rock 

cores housed in the  USGS Lithologic Core Library at the INEEL. ALI whole-rock sampies were 

collected fiom fiesh exposures or cores using standard methods and powderless gloves to 

minimize contamination. 

5.3.2 Analvtical Methods for In Situ Sample Processing 

Sample processing for each of the following analytical rnethods began with the 

preparation of a homogeneous powdered sample. Each powdered sample subsequently 

underwent processing according to the specific analytical method to be applied. Additionally, 

rock samples sent to the ISU Geochemical Laboratory for analyses were further processed to 

insure that unweathered samples were used for al1 analyses. The analytical rnethods will be 

discussed in detail to aid in understanding how and why the resultant laboratory data were used in 

the in silu %I production calculations. 

5.3.2.1 Inductivelv Coupled Plasma-Atomic Emission Spectroscopv (ICP-AES) 

For analyses by ICP-AES, the sample rnust be prepared as a solution (Lichte and others, 

1987). There are a variety of methods to prepare the solution and each method has advantages 

that are related to sample composition. Sequential acid dissolution using hydrofluoric acid (HF), 

aqua regia, perchloric acid (HC104). and HN03 is one procedure that has the disadvantage that Si 

and B are lost because of their volatility as fluorides. Several trace minerais, including chromite, 

are not compietely dissolved by this procedure. Because of the silicic composition of volcanic 

rocks in the Snake River Basin, a fusion rnethod of preparing sample solutions was used by the 

ISU laboratory as opposed to the sequential acid dissolution method. 

The fusion method uses a flux to convert the sample to a glass bead, which is 

subsequently dissolved in dilute HN03 to prepare a solution for analysis. The specific procedure 



used by the ISU Geochemical Laboratory involved mixing 0.1 g of powdered sample and 0.3 g of 

lithium metaborate in a graphite crucible and heating in a fumace for 20 minutes at 1,050 degrees 

OC. The contents of the crucible were immediately poured into 75 mL of  3.5 percent HN03 in a 

250-mL beaker and stirred on a magnetic stirrer for five minutes or until the sample was clear. 

The contents of the beaker then were transferred to a 100-mL volumetric flask, and more dilute 

IWO3 was added to bring the volume to 100 mL. The flask was capped and gently shaken to 

thoroughty mix the contents. Sample bottles were pretreated by rinsing with 5 rnL of the sample 

solution that was then discarded, The pretreated sample bottIe then was filled with 50 mL of the 

sample sotution and was ready for anaIysis by ICP-AES. The ISU laboratov reported weight 

percent values for oxides of the following elements: Si, Na, titanium (Ti), Al, rnanganese (Mn), 

magnesium (Mg), calcium (Ca). potassium (K), and phosphorus (P). Using this method, the 

laboratory also deterrnined strontium (Sr). zirconium (Zr), and yttrium (Y) concentrations in units 

of ppm by weight. 

5.3.2.2 Instrumental Neutron Activation Analvsis {INAA) 

For analyses by INAA. a precisely known amount of powdered sample needs to be 

prepared to undergo irradiation without the loss of sarnple (Baedecker and McKown, 1987). The 

laboratory placed one g or less of powdcred sample. weighed to the nearest miIligram, into a 0.4- 

dram, reactor-safe, laboratoc-grade polyviai. kvhich then was heat-sealed. The 0.4-dram polyvial 

then was heat-sealed into a 2d tam,  rractor-safe. laboratory-grade polyvial. Preparation for 

neutron activation then was complete. For ca!ibration purposes, three reference standards were 

included with the samptes: USGS rock standards BCR-I and BHVO-1 and the National Institute 

of Science and Technology (NIST) traceable coal fly ash standard reference material (SRM) 

1633-A. 

The prepared standards and sarnples were sent to the Oregon State University Radiation 

Center for neutron activation in the TRIGA Reactor. Neutron activation lasted two hours under a 



neutron flux of 3 x 10'' (nlcm2)/sec. Once activated, the standards and sarnples were returned to 

ISU for analysis. Upon arrivai at the Iaboratory, the inner 0 .4 -dm polyvials were transferred 

into new 2dram polyvials for gamma counting. 

Activation analysis is based on rneasurement of activity fiom radioactive nuclides 

produced by nuclear reactions on naturally O C C U ~ ~ ~  isotopes of the sample elements during the 

activation process. Gamma-ray spectroscopy at the ISU Geochemical Laboratory employed 

semiconductor detectors (high-purity germanium diodes) for gamma counting. These devices 

converted a gamma- ray signal from the irradiated sarnples to electronic pulses that could be 

sorted and processed by a multichannel analyzer and supporting eiectronics. The resulting 

spectra then were processed by computer software and the results were recorded. Al1 standards 

and sarnples were counted three separate tirnes in a sequence that optimized peak-to-background 

ratios for short-, intermediate-, and Iong-lived radionuclides, respectively. The first counts were 

for determining the short-lived radionuclides of Na, samarium (Sm), lanthanum, and U, and tcok 

place about five days afier irradiation. The count periods were between 2,000 and 4,000 seconds. 

The next counts were for the intermediate-1 ived radionuclides of barium, rubidium, neodymium, 

ytterbium, and lutetiurn, and took place about 10 to 20 days afier irradiation. The count penods 

were 8,000 to 10,000 seconds. The fina1 counts were for the long-lived radionuclides of  Fe, 

scandium, chrornium, nickel, cobaIt, cesium, cerium. europium, terbium (Tb), Th, hafiiium, and 

tantalurn, and took place about 30 to 40 days afier irradiation. The count periods were 20,000 to 

40,000 seconds. Results were reported in pprn by weight, except Na and Fe, which were reported 

as oxides of the elements in weight percent. 

5.3.2.3 Loss on Ignition (LOI) 

For analyses by LOI at the ISU Geochemical Laboratory, precisely 2 g of powdered 

sample weighed to within 0.0005 of a gram was piaced in a clean ceramic crucible. The weight 

of the crucible and powder were determined and recorded. The open crucibles were heated 



overnight (or for about 12 hours) at 90 OC. The cmcibles were removed to a dessicator, cooled for 

two to three minutes, and reweighed. These raw weights were recorded and subtracted from the 

weights of the unheated crucibles and powdered sample. The difference represented the weight 

of volatile components that are not actually part of the sample. The samples were returned to a 

dessicator and a muffle firmace was heated to 950 O C .  When the mume fiirnace reached this 

temperature, lids were placed on the crucibles and they were heated for one hour. The cmcibles 

were cooled N o  minutes, then the iids were removed and the crucibles were ailowed to continue 

cooling in the dessicator until they reached room temperature (about five to seven minutes). 

After cooling, the weights of the crucibles were determined and subtracted fiom the raw weight 

of the crucible and sample determined previously. The weight difference in grarns represents the 

LOI component of the sample. The difference was divided by the original sample weight (2 g f 

0.0005 g) and multiplied by 100. This value was reported along with the elemental oxides as LOI 

in weight percent. 

53.2.4 Ion-Selective Etectrode Potentiometrv (ISEP) 

For anaIyses of Cl--by ISEP, 200 mg of powdered sample were weighed and pIaced into a 

confined area of the outer compartment of a Conway diffusion ceil constructed of Teflon 

(Aruscavage, 1990). Oxidizing and reducing solutions were prepared. The reducing soiution was 

made of 22.6 g of potassium hydroxide dissolved in 140 mL of deionized water and 1.12 g of 

anhydrous sodium sulfite. A 2.5-mL atiquot of reducing solution was pipetted into the inner 

compartment of the Conway diffusion cell. The oxidizing solution was made of 160 mL of HF 

added to a solution that contained 2.6 g of potassium permanganate (KMn04) dissolved in 50 mL 

of 15 percent sulfuric acid (H2S04), A 3-mL aliquot of the oxidizing solution was added to the 

outer compartment of the Conway diffusion cell and digested the powdered sample by mixing 

overnighr on an oscillating platform. The evolved Cl was converted to Cl- by the reducing 

solution contained in the inner cornpartment of the Conway diffusion cell. Finally, the Cl- 



concentration was measured by an ISEP. The applicable concentration range for CI' by this 

method was 0.0 1 to 2.00 percent by weight, or 100 to 20,000 ppm by weight. 

5 3 3  Data Reduction for In Situ Chlorine-36 Production Calculaîions 

The methods used to detemine the maximum in situ produced atom concentrations for 

3 6 ~ ~  in ground water have been docurnented in reports by Fabryka-Martin (1988) and Andrews 

and others (1989) and wilI be discussed in the section titled "Estimation of Neutron Production 

Rates and Chlorine-36 Production". Geochemicai data for the rock samples generated by contract 

laboratories and used in this dissertation were converted for use in the necessary in situ 

production calculations using ion-specific methods described in the following sections. 

. 533.1 Chloride 

Results generated by the USGS Branch of Geochemistry were reported as percent by 

weight Cl' with a reporting Ievel of 0.0 1 percent. These numbers were converted directly to pprn 

by weight using the following equation: 

(weight percent C1'/100) x 1.000,000 g = pprn by weight Cl- 

For example, (0.04 weight percent CI-/ 100) x 1,000,000 g = 400 pprn by weight CI-. 

Fourteen solid phase samples were selected for determination of CI' concentration. For 

the 1 1  of 14 CI' results that were Iarger than the reporting levei, the converted results were used 

directly in Appendix tabIes A-1, A-2, and A-3. The CI' concentrations for the three samples that 

were determined to be less than the reporting level and for the sampies that were not analyzed for 

Cl' (marked with an asterisk in Appendix tables A-1, A-2, and A-3) were taken frorn a report by 

Parker ( 1967, table 19, p. D 13-D 14). 

5.33.2 Gadolinium 

Gadolinium (Gd) has the largest thermal neutron absorption cross section (49,000 



barndatom, table 5.4) of al1 major and trace elements used in the in situ calculations. Therefore, 

the determination of Gd in the rocks of the eastern Snake River Plain was essential for 

determining the total cross section of the rock available for thermal neutron absorption. As an 

example, table 5.4 lists the data used to calculate the thermal neutron cross section for neutron 

absorption, total neutron production rate7 and in situ secular equilibrium 3 6 ~ ~ / ~ ~  ratio for 

sedirnentary rock sampie SP-I, a limestone. The data used for these caIculations for the 25 

whole-rock samples are given in Appendix tables B-1 (igneous rocks), B-2 (Sedimentary rocks), 

and B-3 (metamorphic rocks). The ISU Geochemical Laboratory reported concentrations of Sm 

and Tb directly in pprn; however, the laboratory did not determine Gd content. 

Because Gd concentrations were needed to calculate in situ production of and 

because the relationships between concentrations of Sm, Tb, and Gd in chondritic meteorites and 

terrestrial materials are systematic. the correlation among these three elements in chondritic 

rneteorites and the rneasured concentrations of Sm and Tb in the samples were used to estirnate 

Gd concentrations by interpolation. The Gd concentrations were calculated by normalizing the 

measured concentrations of Sm and Tb to their non-volatile mass concentrations in carbonaceous 

chondritic meteorites (designated the C I -chondrite) using values tabulated by Anders and 

Ebihara ( I  982, table 1). The values frorn Anders and Ebihara first were converted to non-volatile 

rnass concentrations by subtracting volatile elements fiom the total, then normalizing to 100 

percent. This process yielded appropriate values to which terrestrial samples were normalized 

using the following equations (Scott Hughes, ISU, written communication; 1999): 

(Sm-N) = (Sm)/O. 1 97, and 

where 

(Sm-N) = CI-chondrite normalized concentration of samarium 

(Sm) = measured concentration of samarium in ppm 



Table 5.4. Example of data used to calculate thermal neutron cross section for neutron 
absorption, total neutron production rate, and in situ secular equilibn'um 3 6 ~ ~ ~ ~  ratio for 
sedimentary rock sarnple SP- 1, Iimestone. 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
miIIion electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample parts per million (pprn) h m  Appendix table A-2; square centimeters 
per gram; c, less than. See Appendix tables A-1, A-2, and A-3 for data for these calculations for -- 
Element 

Si 
AI 
Fe 
Ca 
M g  
Na 
K 
P 
Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

nlyrig rock nlyrlg rock 
per ppm U per pprn Th 

0.69 0.339 
5.1 16 2.585 
O. 187 0.208 
0.282 0.026 
5.834 2.564 
12.535 5.959 
0.89 0.08 
4.473 0.573 
23 -86 10.54 
265.948 91.561 
62.55 1 19.779 
0.456 0.179 
41.33 16.362 
0.236 0.084 

Sample 
PP"' 
7947 
1376 
23 3 

382508 
4522 
74 
415 
87 
5 
0.5 
20 

ll82Ol 
330 

483838.35 

Weighting 
Factor 

3.61 
0.6 1 
0.08 

163.71 
2.08 
0.03 
O. 17 
0.04 
0.003 
0.0003 
0.0 1 
66.3 1 
0.16 

254.98 

Weighted Neutron Yield 

n/yr/g rock nlyrlg rock per 
Per PPm U PPm Th 

Total 999556.85 49 1.80 1 62.3 5 48-76 
Eiernent Atomic Weight Sample ppm Neutron Absorption Cross Section Thermal Neutron Cross Section 

(bsrnsfatom) (cm2@ 
Si 28.1 7947 O. 17 0.000029 
Al 27.0 1376 0.233 0.000007 
Fe 55.8 23 3 2.56 0.000006 
Ca 40.1 382508 0.43 0.002469 
Ml2 24.3 4522 0.063 0.000007 
Na 23 .O 74 0.53 0.00000 1 
K 39.1 415 2.1 0.0000 13 
P 30.97 8 7 O. 18 < 0.00000 1 
Li 6.9 5 7 1 0-00003 1 

Be 9.0 1 0.5 0.0092 C 0.00000 1 
B 10.8 20 764 0.000852 
C 12.0 II8201 0.0035 0.00002 1 
F 19.0 330 0.0096 < 0.00000 1 
H 1 .O 340.37 0.33 0.000068 
Ti 47.9 6 0 6. I 0.000005 
Mn 54.9 77 13.3 0.00001 1 
Sm 150.4 0.39 5600 0.000009 
Gd 1 57.3 0.34 49000 0.000064 
O 16.0 483838.35 0.00028 0,000005 

Total 1 OOOO34.95 0.0036 
Neutron Production Rate (nlglyr) 

(X factor = 0.330) (Total U ppm = 1.9) = 0.67 

(Y factor = 0.099) (Total Th ppm = 0.1 ) = 0.0099 Calculated 
2 3 s ~  spontaneous fission = 0.815 In Situ Sccular 

Equilibrium Y~~~~ 

Total neutron production rate (n/g/yr) = 1.5 Ratio ( x 10"q = 5.9 



0,197 = CI-chondrite total mass for samarium converted to non-volatile 

(Tb-N) = Cl-chondrite normalized concentration of terbium 

= rneasured concentration of terbium ir. ppm, and 

0.047 = CI-chondrite total mass for terbium converted to non-volatile 

mass in ppm 

The normalized concentrations of Sm and Tb then were used to calculate the nomalized 

concentration of Gd: 

where 

(Gd-N) = CI-chondrite normalized concentration of Gd 

Finally, the norrnalized Gd concentrations were converted to the estimated Gd concentrations 

shown in Appendix tables A-1. A-?. and A-3 using the following equation: 

(Gd) = 0.26(Gd-N) (5.3-5) 

where 

(Gd) = calculated concentration of Gd in pprn. and 

0.26 = CI-chondrite total mass for Gd converted to non-volatile mass in ppm 

The estimated Gd concentrations were evaluated by applying this method to an 

independent data set that contained measured concentrations of Sm, Tb, and Gd in 56 basait 

samples from the eastern Snake River Plain (Knobel and others, 1995). The measured Sm and Tb 

concentrations were used to estirnate Gd concentrations using equations 5.3-2 through 5.3-5. The 



estimated Gd concentrations were individually compared to the measured Gd concentrations to 

determine the percent differences of the estimated concentration relative to the rneasured 

concentration for al1 56 samples. Al1 56 estimated Gd concentrations were within 25 percent of 

the measured concentrations: 51 were within 15 percent, and 47 were within 10 percent. A 

portion of these differences between estimated and measured Gd concentrations may be 

attributable to the analytical uncertainty associated with the measured concentrations. 

Mean concentrations of the measured and estimated data sets were calculated along with 

the estimated uncertainties of the mean concentrations. The mean and the associated uncertainty 

for the mean of the measured Gd data set was 7.7f 1.8 ppm and 7.3k1.7 pprn for the estimated Gd 

data set (table 5.5). The good agreement between the rneans of the two data sets suggest that Gd 

concentrations estimated using equations 5.3-2 through 5.3-5 are reasonable approximations of 

the true rneasured concentrations. 

Another means of testing the acceptabiiity of the estimated Gd concentrations is to plot 

the laboratory-measured results with the estimated Gd concentrations. If equations 5.3-2 through 

5.3-5 produce exact estimates of the measured Gd concentrations, a straight iine with a dope of 

one and a y-intercept of O should result. The data are plotted on figure 5.5 and a Iinear regression 

analysis gives a straight line with a dope of 0.87 and a y-intercept of 0.59. The correlation 

coefficient is 0.9 1, which suggests an acceptable match between the measured and estimated Gd 

concentrations. These cornparisons suggest that equations 5.3-2 through 5.3-5 provide acceptable 

estimates of Gd concentrations in rocks from the eastern Snake River Plain aquifer system. 

5.3.3.3 Lithium, bervllium, boron, carbon, and fluorine 

The ISU Geochemical Laboratory did not measure the concentrations of these light 

elements in the samples listed in Appendix tables A-1, A-2, and A-3. Because these elernents 

were needed for the calculation of in situ 3 6 ~ ~  production, concentrations equivalent to average 

concentrations in the appropriate sample rock type were included in this analysis. These concen- 



Figure 5.5. Cornparison of the measured and estimated gadolinium concentrations for 
56 basalt samples from the eastern Snake River Plain (95 percent confidence interval). 



Table 5.5. Measured and estimated Gd concentrations for - 56 basalt sarnples fiom the 
eastern Snake River Plain aquifer. 

peasured Gd concentrations taken fiom Knobel and others, 1995. Estimated Gd concentrations 
calcuIated with equations 2-5 in text. ppm, parts per million.] 

- -  . - 

Measured Gd Estimated Gd Measured Gd Estimated Gd 
( P P ~ )  ( P P ~ )  ( P P ~ )  ( P P ~ )  

1 1  1 O 8.1 7.8 

11 10 7.8 7.7 

9.8 9.2 7.6 7.6 

9.2 9 7.7 7.1 

9.8 9.2 7.3 7.4 

9.2 9.1 7.8 7.6 

8.4 7.9 7.6 7.1 

7.6 6.8 14 13 

9.6 7.3 10 9.7 

7-6 8 -4 9.6 9. f 
7.4 7- 1 9.9 9.3 

7.2 7.0 1 I 9.7 

6.6 6.8 9.2 9.1 

6-7 6.3 7.6 7.2 

4.6 5.5 7.1 7.0 

5.8 4.7 5 -6 5.3 

7.4 6.2 6.6 6.3 

7 7.0 5.5 5 -3 

8 7.0 6.9 6.5 

7.2 7.5 7.2 6.5 

6.3 6.6 7.6 7.1 

6.6 6.1 6.9 6.4 

6.1 6.2 6-4 6 

6.7 6.3 6.6 6.3 
7 6.4 6.5 6.3 
6.4 6.7 6.6 6.4 
8.9 7.1 3.8 3.7 

7.8 8.1 3 -9 3.8 

Measured rnean and associated uncertainty, 7.67 + 1.8 1 ppm 
Estimated mean and associated uncertainty, 7.29 $ 1-66 ppm 



trations were taken fiom Parker's study (1967, table 19; p. D13-D14) and were marked with 

asterisks in Appendix tables A-1, A-2, and A-3. Carbon (C) concentrations in these Appendix 

tables not marked with an asterisk were calculated using other mettiods- Those methods will be 

subsequently discussed in the sections titled "Carbonate sedimentary rocks" and 'Woncarbonate 

sedimentary and rnetamorphic rocks", 

Boron (B) has the iargest absorption cross section of these five etements, 764 barndatom, 

and so has the potential to significantly affect the overall thermal neutron cross section, 

depending on the B concentration in the sample. Therefore, a sensitivity analysis was performed 

on the samples to determine the effect of various B concentrations on the "CVCI ratio. Average 

B concentrations taken fiom Parker's study ranged h m  5 ppm for basalt to as much as IO0 pprn 

for shale. A smaller B concentration in a sample generally corresponds to a larger 3 6 ~ ~ ~ 1  ratio 

because more of the neutron flux is available for activation of "CI. Therefore, the sensitivity 

anaIysis was performed under the assumption that the average B concentrations were Iower by an 

order of magnitude. 

The largest percent change in 3 6 ~ ~ / ~ 1  ratios occumed for sample SP-24, a quartzite. The 

calculated 3 6 ~ ~ / ~ ~  ratio using an average B concentration for quartzite taken from Parker's study 

( 1967) was 1.5 x 1 O-'', and the 3 6 ~ ~ / ~ ~  ratio adjusted for a smaller B concentration was 2.5 x 1 O-", 

or a 6 1-percent increase. The smallest percent change in 3 6 ~ ~ / ~ 1  ratios occurred for sample SP- 

20, a basalt. The calculated 3 6 ~ ~ / ~ 1  ratio was 1 -4 x 1 O-", and the adjusted 3 6 ~ ~ / ~ ~  ratio was 1.5 x 

1 O"', or an increase of only 0.7 percent. None of the ratios for the basalts changed by greater 

than 2.7 percent as a result of this change in 8 concentration. Ratios for the rhyolite samples, 

with the exception of SP-9, changed 8.6 percent or less. The average increases in 3 6 ~ ~ / ~ 1  ratios 

for the basalt and rhyolite samples were 2.3 and 7.5 percent, respectively. The average increases 

in 3 6 ~ ~ / ~ 1  ratios for the carbonate, opal, shale, and quartzite samples were 25, 24, 46, and 42 

percent respectively. The larger increase in the 3 6 ~ 1 / ~ ~  ratios of these samples was a result of the 



decrease in B concentration in the samples. The order of magnitude decrease in the B 

concentration increased the available thermal neutron cross section for "CI activation and, hence, 

the 3 6 ~ ~ ~ 1  ratio. 

As an example, there was a 46 percent change in the 3 6 ~ i / ~ ~  ratio for the shale sarnple (B 

concentration = 10 ppm) that was 20 times greater than the 2.3-percent ratio change for the 

average basalt sample (B concentration = 0.5 ppm). Thus, the change in the 3 6 ~ ~ ~ ~  ratio in the 

shale sample as a result of the order of magnitude decrease in the B concentration was significant 

compared to the change in this ratio in basalt samples with a corresponding change in B 

concentrations. However, as mentioned earlier, the contribution of 3 6 ~ 1  to ground water from 

shale is insignificant compared to the contribution from basalt because most of the aquifer on the 

Plain is composed of basalt. 

The difference in initial B concentrations for the rock sarnples also affected the outcome 

of the sensitivity analysis. For example, the average B concentration for rhyoiite was changed 

from 15 to 1.5 ppm. The average B concentration for basalt was changed from 5 to 0.5 pprn. 

Although al1 values were decreased by an order of magnitude, the rhyolite samples were affected 

more by the decrease in B concentration than the basalt samples were. The average change in B 

concentrations for the rhyolite samples was 13.5 pprn, and the average change in B for the basalt 

36 sarnpies was 4.5 ppm. The resultant change in CI/CI ratio was consequently 7.5 percent for 

rhyolite and only 2-3 percent for basalt. 

Regardless of the initiai B concentrations used in this sensitivity analysis, the Gd 

concentrations ultimately detennined the degree of effect that the B concentrations had on the 

resultant 3 6 ~ ~ / ~ ~  ratio. With a Gd concentration of 1 O ppm, the change in the B concentration had 

little or no effect on the 3 6 ~ ~ / ~ 1  ratio because Gd has such a large absorption cross section 

compared to B; 49,000 barndatom for Gd and 764 barndatom for B. Altematively, if the Gd 

concentration is 0.01 ppm, the Gd will have very little effect on the 3 6 ~ 1 / ~ 1  ratio, enabling a 



change in B concentration to have a significant effect. 

533.4 Samarium, terbium, uranium. and thorium 

Concentrations of Sm, Tb, U. and Th in Appendix tables A-1, A-2, and A-3 were the 

concentrations reported directly in pprn by the laboratory. 

533.5 Elements reported as oxides 

The laboratory reported the principal rock-foming elements as oxides in weight percent 

of the total sample weight. The LCP-AES and iNAA analytical methods used by the ISU 

laboratory did not account for the volatile cornponents in the sampie; for example, water (H20) 

and carbon dioxide (CO2). These constituents were measured using the LOI method, which 

provided a gross estimate of the total volatile fraction of the sample but did not distinguish 

between the component parts. The weight percent of the LOI fraction of the sample, added to 

weight percents of the major rock-forming elements. should equal 100 percent. However a total 

of 100 percent is rarely obtained because the LOI method of reporting results does not account for 

the trace-element content of the rock samples. Because selected trace elements were considered 

in this dissertation, the laboratory data were not norrnalized to 100 percent prior to conversion to 

ppm. Estimation of the volatile components of the sample required additional calculations as 

discussed in the section titled "Volatile components". 

The principal rock-forming elements are Si. Al, Fe, Ca, Mg, Na, K, P, Ti, and Mn; the 

respective oxides are Sioz. A120,. FeO. Cao. MgO. Na20, KtO, P2OS, TiOz, and MnO. (Some 

Fe203 does exist along with the FeO, but the quantity is small enough that the laboratory reported 

the total Fe concentration as FeO) Oxygen (O). which is reported as part of the oxides, also is 

considered to be a principal rock-forming element. The conversion of oxide weight percents to 

the needed units of ppm equivalent weight was done separately for each oxide. 

The conversions were accomplished by reducing the weight percent to a fractional weight 

ratio and multiplying it by 1,000,000 g. This gave a result for the oxide in ppm equivalent 



weight: 

(Weight percent oxide/100) x 1,000,000 g = ppm by weight oxide (5-3-6) 

The oxide in pprn by weight then was multiplied by the ratio of the eIemental weight to the 

motecular weight of the oxide: 

pprn by weight oxide x (elernental weight/rnolecular weight oxide) = pprn by weight 

element. (5.3-7) 

The pprn by weight of O in the oxide was detennined by subtracting the pprn by weight of the 

element from the oxide: 

ppm by weight oxide - ppm by weight element = ppm by weight O (53-8) 

For example, the reported weight percent of SiO2 for sampIe SP-15 of 45 weight percent used 

with the known elemental weight of Si (28.086 g) and molecular weight of SiOz (60.0848 g) gave 

the foIlowing: 

1. From equation 5.3-6: (45/lOO) x 1,000,000 g = 450,000 pprn by weight SiOz. 

2. From equation 5.3-7: 450,000 x (28.086/60.0848) = 210,348 pprn by weight Si. 

3. From equation 5.3-8: 450,000 - 210,348 = 239,652 pprn by weight O. 

The pprn by weight of each element was calculated from the appropriate oxide and the 

results are listed in tables Appendix tables A-1. A-2, and A-3. The pprn by weight of the eIement 

O for each oxide was summed and is listed in tables Appendix tables A-1, A-2, and A-3 as 

oxygen, rock (O,+ 

5.3.3.6 Volatile components 

The principal volatile components of the rock samples subrnitted for analysis were COz 



and H20. The importance of these two compounds in a sample depended on the amount of 

minerai material containing these compounds that was present in the samples. For exampie, the 

laboratory analyzes calcite (CaC03) in rock as C a 0  and CO2, however, CO2 is included as an 

undifferentiated component of the LOI result for the sampte. Similady, opal (Si02-nH20) in rock 

is analyzed as Sioz and H20 In the laboratory with the H20 included in the LOI result. Because 

LOI was undifferentiated, it was necessary to make sorne assurnptions about its content and these 

assumptions were made on the basis of the typical mineralogy of the type of rock sample that was 

submitted for analysis. Also, because LOI was measured with a different analytical method than 

the oxides were measured, any adjustments necessary to make the ppm by weight vaIues equal 

I,000,000 pprn were made in the volatile component of the analysis. Because these assumptions 

and the resulting caiculations depend on the rock type, they will be discussed in that way. 

Basait and Rhvolite-The extreme heat associated with the formation of basalt and 

rhyolite generally drives off rnost volatile components. Many surface samples of Snake River 

Plain basalt have coatings and void fi11ings of caliche, a mixture of calcite with clay that has been 

deposited by secondary moisture-related processes. In this case, LOI firing can remove CO? as a 

volatile, just like HzO. However, the basalt samp!es in this research, with the exception of one 

sample, were taken from depths where the major sources of COz, caliche, and CaC03, are 

assurned minimal. Therefore, al1 of the LOI for the basalt and rhyolite in this study was assurned 

to be from H20 and not COz. Some HzO is trapped in vesicIes as these rock types solidifi from 

the molten magma and hydration of some minerals takes place. Because of these characteristics, 

the assumption was made that the difference in Appendix table A-1 between the raw total (the 

sum of previously discussed elements) and the adjusted (adj.) total was the result of H20 lost 

during the analytical process. The ppm by weight oxide (H20) was calculated by subtracting the 

total raw values fkom the total adjusted values. Equations (5.3-7) and (5.3-8) were then used to 

calculate hydrogen (H) and 0. These values were designated H,w and 0 , w  and Iisted in Appendix 



table A-1. Calculations for the sampIe fiom an opal deposit in rhyolite, SP-9, are discussed under 

the subsection entitled 'Woncarbonate sedimentary and rnetarnorphic rocks". 

Carbonate sedimentarv rocks-The idealized chemical formulas for carbonate rocks 

are CaC03 (limestone) and CaMg(C03)z (dolomite). The principal volatile component in both 

rocks is COL and it was assumed in this dissertation that the LOI component of the carbonate 

samples was the result of COz volatilization. For example, doIomite undergoes a two-stage 

volatilization: 

(1) Cai~lg(CO3)~ --+ CaC03 + M g 0  + CO-, at about 800°C; and, 

(2) CaC03 + Ca0 t- CO2 at about 900°C. 

The LOI values thus were converted to ppm by weight of the oxide using equation (5.3-6). The 

remaining calculations were cornpleted using equations (5.3-7) and (5.3-8). The calculated 

results for C are listed in Appendix table A-2 and the O values were included in the summation 

represented in table A-2 by 0,r. The H,w and 0,w values in Appendix table 8-2 were calculated 

in the sarne manner as for the basaft and rhyolite samples in Appendix table A-l- 

Noncarbonate sedimentarv and rnetarnorphic rocks--The amount of carbonate 

minerals in predominately noncarbonate sedimentary rock is variable and often is mirrored afier 

the sum of Ca and Mg contained in the rock. For example, a predorninantly silica sand rnay 

contain grains of calcite and dolomite that have not been removed by weathering processes. 

Conversely, opal, which is the weathering product of some igneous rocks, shouId not contain 

much carbonate materiai but should contain significant amounts of water. 

Calcium and Mg in clays and shales generally are in the lattice of the complex 

aluminosilicate minerals contained in clay, and the presence of carbonate minerals should be 

limited in most cases. On the other hand, clay minerals commonly contain significant quantities 

of water. The average ppm by weight of carbon in clay and shales was taken fiom Parker's study 



(1967, table 19) to represent the value listed in Appendix table A-2 for sample SP-25. The 

corresponding O value was calculated by first converting the elernent pprn by weight to the 

number of moles of the element. This was accomplished by dividing the sample elemental mass 

in grams (ppm by weight) by the elemental gram formula weight (gfw): 

element de l emen t  = eIement,,,,i, (5.3-9) 

For exarnple, the pprn by weight for carbon in SP-25 is 10,000 g and the moles of C are 

calculated with equation (5.3-9) as follows: 

10,000g/12.0 1 1 1 5 grnole = 832.56 moles 

The chemical formula for carbon dioxide (COz) requires two moles of O for each mole of C (2 x 

832.56 moles C) = 1,665.12 moles O for sample SP-25. Equation (5.3-9) was then modified to 

calculate the pprn by weight value for oxygen. 

Therefore, O pprn by weight in grams = I,665.I2 motes x 15.9994 glmole = î6,64 1 g of O. This 

O nurnber was included as part of the sum of O listed as O,r in Appendix table A-2 for sample 

SP-25. 

For the opal sample (SP-9) and the two quartzite sarnples (SP-1 I and SP-24), the 

assumption was made that the number of moles of C was equai to the surn of the number of moles 

of Ca and Mg. Equation (5.3-9) was used to calculate the number of moles of calcium and 

magnesiurn- The pprn by weight of C was then calculated by using equation (5.3-8). These 

results were listed in Appendix tables A-1 and A-3. Once the moles of C were known, the moles 

of O were given by the relation = (2) (CmOi,). The pprn by weight of O then was calculated 

with equation (5.3-8) and was summed into the appropriate 0 , r  results listed in Appendix tables 

A-l and A-3. The H,w and 0 ,w values in Appendix tables A-1 and A-3 were calculated the sarne 



way as for the basalt and rhyolite samples- 

53.3.7 Anomalous data 

Silica weight percents for sarnples SP-17 and SP-24 were outside the calibration range of 

the analytical instrument at the time the samples were analyzed, giving results that were larger 

than possible. Consequentiy, these two values were reduced so that the laboratory weight-percent 

totals equaled 100 percent- 

The LOI weight percents for sarnples SP-16, SP-18, SP-19, SP-20, and SP-21 were 

reported as negative values because of analytical interferences by Fe in the samples. These 

values were adjusted so that the total (adj) value equaled 1,000,000 ppm by weight. 

5.3.4 Estimation of Neutron Production h t e s  and Chlorine-36 Production 

For the estimation of in situ neutron production rates and resultant j6c1 production, 

calculations were restricted to the deep subsurface (greater than 10 m), under the assumption of 

rock-unit geochemical homogeeneity. Additionally, as discussed in Chapter 2, the 3 5 ~ 1  (n, y) "CI 

reaction is the only one that produces significant 3 6 ~ 1  in the subsurface at a depth greater than 

about 10 m. Shailow subsurface sources for in situ produced 3 6 ~ 1  were assurned to be minimal 

because seasonal ground water recharge rnoves rapidly through the shallow subsurface relative to 

the half-life of "CI. Thus, concentrations of in siru produced 3 6 ~ ~  do not have tirne to accumulate 

to levels that are significant when cornpared to the atrnospheric fluxes. 

36 To further support the assumption that CI production resulting from the neutron 

activation of 3 9 ~  is negligible compared to the production from "CI, in situ secular equilibrium 

36 CVCI ratios from the reactions 39~(n , a )  3 6 ~ ~  and 35~l(n,y) 3 6 ~ ~  were calculated for each of the 25 

rock samples (table 5.6 and Appendix table C-9). The ratios resulting from the activation of 3 g ~  

range from 1 x 1 oe2' to 5 x 1 O-", or three to six orders of magnitude smaller than the ratios due to 

the activation of 'Yi. Thus the production of 3 6 ~ ~  due to "K is negligible, and, since muon 



activation of " ~ a  yields an even srnaller 3 6 ~ ~  production rate, these production mechanisms are 

insignificant compared to the neutron activation of "CI. 

In review for the neutron production rate calculations, the neutrons required for activation 

of "CI and "K are produced by the interaction between alpha (a) particles, generated h m  the 

radioactive decay of U and Th series isotopes, and stable nuciei of Iighter elements such as F, O, 

Na, Al, and silica (Faure. 1986). An estimate can be made of in situ produced 3 6 ~ ~  for a given 

ground water system if the following contributing factors are known; (1) the U and Th content of 

the aquifer matrix; (2) the concentrations of target elements for (a,n) reactions; (3) proximity of 

the target elements to the neutrons: and (4) the concentration of target elements for neutron 

capture. Because of the heterogeneous nature of the eastern Snake River Plain aquifer, the 

proximity of target elements was not determined. Therefore, maximum equilibrium 

concentrations reported in this dissertation for "CI in ground water were calculated with the 

assumption that al1 in situ produced atoms in the aquifer matrix were transferred to the fluids 

flowing through the aquifer. These masimum "CI concentrations were used to determine the 

associated total CI' concentration transferred to the ground water. 

Additionally. for the calculations of in siru produced 3 6 ~ ~ ,  the following assumptions 

were made: (1) ail neutrons were thennalized in al1 rocks below about 10 rn in depth; (2) thermal 

neutron fluxes were directly proportional to neutron production rates at ait depths (Fabryka- 

Martin, 1988, page 42); (3) al1 the U and Th decay series nuclides were in secular equilibrium and 

were homogeneously distributed throughout the rock; (4) a11 target nuclides were homogeneously 

distributed throughout the rock: and (5) al1 rocks were saturated with water. The thermal neutron 

flux and 3 6 ~ ~  production are reduced in unsaturated rock due to neutron capture by other elements 

in addition to the "CI and 3 9 ~  in the aquifer matrix. Therefore, in situ production in the deep 

unsaturated zone will be reduced by as much as 70 percent compared to the saturated zone 

(Fabryka-Martin, 1988). Applying these assurnptions maximims the in situ "CI production 

calculations presented in this dissertation. 



The total transferred rock-to-ground water Cl' concentrations were compared to 

maximum ambient measured values and the maximum 3 6 ~ ~  concentrations were adjusted 

accordingly. For example, for sampte SP-1, the estimated maximum total transfer value for CI' 

was about 25 fi. However, the maximum average ambient ground water concentration was 15 

mg& or 0.059 percent of the estimated total CI' transfer concentration, Therefore, the associated 

maximum 3 6 ~ ~  concentration of 2.52 x 109 atomsL was reduced by this method to 1.49 x 106 

atornsk to more accurately reflect the possible contribution to ground water concentrations fiom 

in sim production (Appendix Table C-7). Because of the assumptions made in these calculations, 

these corrected 3 6 ~ ~  concentrations should be considered as maximum. Additionally, these 

maximum CI' concentrations in ground water would have to be supplied solely by rocks in the 

aquifer and fiom no other source. 

As previously discussed, t he  dominant source of neutrons in the deep subsurface (betow 

about 10 m) that are available for activation of stable "CI and 3 9 ~  is the interaction of alpha- 

emitting progeny from the U and Th decay series and light nuclei. The neutron production rate 

from this interaction and from the spontaneous fission of naturally O C C U ~ ~ ~  can be 

calculated from the following equation rnodified from Fabqka-Martin (1 988, pages 37 to 40): 

Pn = X [U] + Y[Th] + 0.429 [U] (53-10) 

where 

Pn = neutron production rate, in (n/g)/yr; 

X = production of secondary neutrons due to a decay of the U series [(n/g)/yr per pprn U]; 

[U] = U concentration of the rock, in pprn; 

Y = production of secondary neutrons due to a decay of the Th series [(n/g)/yr per pprn Th]; 

[Th] = Th concentration of the rock, in ppm; and 



0.429 [Ul = neutrons produced by spontaneous fission of 2 3 8 ~  [(n/g)/yr per pprn U]. 

The X and Y factors are determined from the Iight-element composition of each different 

rock type in the study area. For example, X for Iimestone sarnple SP-1 was determined by 

dividing the total calcufated (n/g)/yr per pprn U by the total weighting factor (table 5.4). The 

factor X is then muItiplied with the U concentration in pprn to determine the neutron production 

rate fiom or-particle emissions fiom the U decay series. The Y factor is calculated in the same 

manner and multiplied with the Th concentration to determine the neutron production rate due to 

a-particle emissions from the Th decay series. The factor 0.429 W'J in equation (5.3-10) 

accounts for neutrons produced by the spontaneous fission of uranium-238 (='u) and includes, 

(1) the atom concentration of a gram of U 8 ~ ;  (2) the decay constant for spontaneous fission half- 

life for U 8 ~  (8.49I0.14 x IO-'' yi'); (3) the average number of neutrons produced per 

spontaneous fission of Z 3 8 ~ ;  and (4) the fractional concentration of U in the sample in pprn 

(Fabqka-Martin, 1988, pages 39,40). 

Twenty-five sarnpIes of six different rock types were analyzed for this research. Table 

5.6 lists the results for each of the samples. The calculated thermal neutron cross sections ranged 

from 0.0029 of rock in dolomite (SP-4, fig. 1.1) to 0.01 65 crn2Ig of rock in basalt (SP-20, 

fig, 1.1)- The total neutron production rate for each of the rock types ranged from 0.32 (n/g)/yr in 

dolomite (SP-4, fig. 1) to 29 (n/g)/yr in rhyolite (SP-17, fig. 1.1). The total neutron production 

rates were used in combination with the total reaction cross sections to calculate the in silu 

secular equilibriurn 3 6 ~ ~ / ~ ~  ratios due to the two primary reactions that produce 3 6 ~ ~  in the rock 

matrix at depth. For the reaction " ~ l ( n , ~ )  3 6 ~ ~ ,  the ratios ranged from 1.4 x 1 O-'' in basalt (SP-20, 

fig. 1.1)  to 45 x 1 O-'' in rhyolite (SP- 17, fig. 1.1). The larger neutron production rate for the 

rhyolite is due to the Iarger U (1 1 -5 ppm) and Th (22.2 ppm) conceniration of the rhyolite; for 

. cornparison, the U and Th concentrations of the basalt were 0.8 and 2.23 ppm, respectively. 

For the reaction " ~ ( n , a )  3 6 ~ ~ ,  the ratios ranged from O in limestone (SP-26, fig. 1.1), to 



2 x 1 O-'* in an opal deposit in rhyolite (SP-9, fig. 1.1) (table 5.6). The "CI production by neutron 

activation of stable "CI was at least one order of magnitude greater than production by neutron 

activation of "K for al1 samples analyzed. Table 5.6 also lists the calculated equilibrium 3 6 ~ 1  

content in the rock matrix. The 3 6 ~ ~  content was smallest in quartzite (SP-24, tig. 1. l), 0.007 x 

10' atorns/cm3. The largest potential 3 6 ~ 1  production was in rhyolite (SP-8, fig. 1.1) at 12 x 10' 

atorns/cm3. 

Table 5.4 shows an example of the thermal neutron cross section, the total neutron 

production rate and the in situ secular equilibnum %I/CI ratios calculated for sedimentary rock 

sarnple SP-1, a lirnestone. The sarnple was analyzed for the elements shown in table 5.4 and a 

sarnple pprn was calculated using the methods outlined above. The weighting factors listed in 

table 5.4 were calculated by rnuitiplying the mass stopping power for each element by the 

corresponding sample pprn expressed as a decimal fraction of the total pprn (J.T. Fabryka-Martin, 

written commun. 1995). The weighted neutron yields were calculated by multiplying the 

weighting factor by the original calculated neutron yields. The thermal neutron cross section for 

each of the anaIyzed elements was calculated by multiplying the sample pprn, as a decimal 

fraction of the total, by the absorption cross section in cm2 and dividing by the atomic weight. 

The individual thermal neutron cross sections were then added to attain a total thermal neutron 

cross section. 

The X and Y factors were calculated as  discussed previously. The X and Y factors were 

then rnultiplied by the corresponding total U and Th sample pprn to arrive at a neutron production 

rate due to U and Th decay-series alpha emissions. In addition, the neutron production rate 

caused by U 8 ~  spontaneous fission was calculated by multiplying the total U sample pprn by the 

factor of 0.429, as explained in equation 5-3-10. The individual neutron production rates were 

then added to give a total neutron production rate. To arrive at a 3 6 ~ ~ ~ 1  ratio, the following 

equation was used (Fabryka-Martin, 1 988, page 208): 



Table 5.6. Calculated thermal neutron cross sections for neutron absorption, total neutron 
production rate, in situ secular equilibrïum 3 6 ~ 1 / ~ ~  ratios, and equilibrïum ' k l  concentrations in 
the rock matrix. 

[See figure 1.1  for location of sampling sites. Note: Sample SP-26 had O ppm K as reported by 
the ISU Laboratory.] 

i 

Sample identifier Thermal Total neutron In  Situ secular In Situ secular Equiiibrium 
and neutron cross production equilibrium equilibrium %CI in rock 

rock type section rate (neutrond "CUCI ratio 3 6 ~ ~ ~ ~  ratio matrix 
(x104crn21g) gramof due to due to ( x  los 

rocklyear) ' '~ l (n ,~ )  3 6 ~ 1  39~(n42) %CI aat~rns~crn~) 
( io43 ( w 10''~) 

Igneous, SP-5. rhyolite 0.0085 19 32 0.6 3.3 
Igneous, SP-6, rhyolite 0.0084 19 32 0.7 
Igneous, SP-7. rhyolite 0.0080 20 3 7 
Igneous, SP-8. rhyolite 0.0078 22 4 1 
Igneous, SP-9, opal deposit in 
rhyolite 0.0069 13 26 2 

Igneous. SP-IO. rhyoIite 0.0082 20 3 8 0.8 
lgneous, SP-13. rhyolite 0.0072 16 3 3 0.7 
Igneous, SP-15. basalt 0.0094 2.9 4.5 O. t 
Igneous, SP-16, basalt 0.0077 2.3 4.2 0.02 
igneous, SP-17, rhyolite 0.0093 29 45 0.8 
Igneous, SP- 1 8, basalt 0.0069 1.7 3.7 0.03 
Igneous, SP- 19, basalt 0.0077 1.7 3 -3 0.02 
Igneous. SP-20, basalt 0.0 165 2.5 1.4 0.004 

Igneous, SP-2 1, basalt 0.01 13 . 8.2 1 O 0.08 
Igneous, SP-22, basal t 0.0076 4.7 9.1 0.5 
Igneous, SP-23, rhyolite 0.0083 19 3 4 0.6 

Sedimentary. SP-I , limestone 0.0036 1 -5 5.9 0.003 
Sedimentary. SP-2, limestone 0.003 7 1 -9 7.5 0.003 
Sedirnentary. SP-3, limestone 0.003 7 2.2 8.6 0.002 
Sedimentary, SP-4. dolomite 0.0029 0.3 1.6 0.0003 

Sedirnentary. SP-12. limestone 0.0037 1.8 7.1 0.004 
Sedimentary. SP-25, shale 0.0 1 20 7.5 9.0 0.008 
Sedimentan., SP-26. Iimestone 0.0042 3.2 1 I O 

Metamorphic. SP-11, quartziti: 0.0048 2.1 6.4 0.06 0.30 
Metamorphic. SP-24. auartzite 0.003 5 0.4 1.5 0.04 0.007 

where Pn is the total neutron production rate, N is the 3 5 ~ 1  isotopic abundance, a35a is the thermal 

neutron absorption cross section of "CI, 9 is the total thermal neutron cross section and &J is 



the decay constant for "CI. The "CI thermal neutmn absorption cross section is 4.4 x IO-= 

cm2/atom, the percent isotopic abundance of "CI is 0.7577 (Walker and othen, 1989), and the 

3 6 ~ ~  decay constant is 2 3  x 1 O' yr" [(ln2)/3O 1,000 years]. 

The 3 6 ~ ~ ~ ~  ratios estimated for the 25 samples used in this study represent rock types of 

specific composition as opposed to average composition. Therefore, to arrive at values for rock 

types of average composition, the samples were grouped together into the categories of basalt, 

rhyolite, limestone and dolomite (carbonates), shale, and quamite (table 5.7). The U and Th 

contents were averaged for each category, as were the thermal neutron cross sections, the total 

neutron production rates, and the in siiu secular equilibriurn 3 6 ~ 1 / ~ 1  ratios. The average values 

are compared in table 5.7 and figure 5.5 to average values taken fiom Parker (1967). The U and 

Th content, the themai neutron cross section, and the total neutron production rates for al1 rock 

types compare well with the calculations performed with data h m  Parker. Additionally, the 

histogram shown in figure 5.5 shows good correlation between both data sets fbrther supporting 

the methods outlined here for the calculated in situ secular equilibrium 3 6 ~ ~ ~ ~  ratios for rocks of 

average composition frorn the eastern Snake River Plain. 

5.3.5 Cornparison of  In Situ Chlorine-36 Production to Previous Studies 

Andrews and others (1989) performed the calculations for j6cl production in the Stripa 

granite using the sarne rnethods outlined in this dissertation for in situ production of 3 6 ~ ~ .  The 

Stripa granite is composed of small amounts of neutron-absorbing elements and has a relatively 

large natural radio- element content. Thus the neutron flux generated within this granite is among 

the largest known for crustal rocks (Andrews and others, 1989). The theoretical flux for the 

Stripa granite was calculated to be 4.07 10-4 n/cm2/sec, while the theoretical neutron flux for 

the surrounding leptite was 0.80 ' 10-4 n/crnS/sec. These values agree to within 15 percent or - 

better of the experimental neutron flux values measured by Andrews and others (1986). 



Table 5.7. Caiculated thermal neutron cross sections for neutron absorption, total neutron 
production rates, and in situ secular equilibriurn 3 6 ~ 1 / ~ 1  ratios for rock types of average 
composition. 

C+, the values for the Snake River Plain shale represent only one sample and are not an average. 
*, data not available fiom Parker (1 967).] 

Rock Type Piumbcr U Content Th Content Thermal Tom1 Neutron In Siar Seculnr 
of ( P P m  (ppm) Neutron Cross Production Rate Equilibrium 

Snmplcs Section (cm2/g) (neutrond gram of x C ~ C l  Ratio 
rock/ ycar) ( x l w U )  

Basalt: Average 
Composition Snake 7 1.14 3.03 0.0096 3 -44 5 -23 
Rivcr Plain. this Study 

BasaIt: Average 
Composition &rn Parker . 1 .O0 4-00 0.0073 3 -68 
( 1967) 

Rhyolite: Average 
Composition. Snake 
River Plain. this Study 9 5.96 24.0 1 0.008 1 19.64 33.34 

Rhyolite: Average 
Composition frorn Parker . 
for felsic granite (1967) 3 -5 18 0.0069 14.62 30.71 

Carbonate: Average 
Composition Snake 
Rivcr Plain. this Study 

Carbonate: Average 
Composition. from Parker --- 7 7 1.7 0.0039 2.46 9.14 
( 1967) 

+ Shale: Snake Rivcr Plain. 
this Study I 2.6 9.07 0.0 120 7.49 9.05 

Shate: Average 
Composition. frorn Parker 3 2 11.0 0.0098 9.27 
(1967) 
Quartzite: Average 
Composition. Snake 2 0.85 2.16 0.0042 1-26 3 -97 
River Plain. this Studi 

Quartzite: Average 
Composition from Parker 
for sandstone (1967) 0.45 1.7 0.006 1 0.73 1.73 



In situ secular equilibrium 
?a CUCl ratio (X 10-'3, this study 
In situ secular equilibrium 

"CUCI ratio (X 1u13, 
data from Parker (1 967) 

- 
I 

- 

Basalt Rhyolite Carbonate Shale Qua rtzite 

production rate, this study 
Total averaged neutron production 
rate, data from Parker (1967) 

Basalt Rhyolite Carbonate Shale Quamite 

Figure 5.6. Neutron production rates (a) and in situ secular equilibrium chlorine- 
36khloride ratios (b) for rocks of average composition presented in this study and for rocks 
of average composition from Parker (1967). 

Note: The results from this study for shale represent only one sample and are not, therefore, 
a true average. 



The theoretical flux value was used to calculate neutron-induced production rates of eight 

isotopes within the Stripa granite, the fracture minerals, and the surrounding leptite. These 

isotopes include helium-3 ( l ~ e ) ,  "c, '"1, 3 7 ~ r ,  3 9 ~ r ,  krypton-81 ( "~r ) ,  and " ~ r .  In 

calculating the production rates, two assumptions were made. The first assumption was that al1 of 

the radioisotopes produced within the rock matrïx were transferred to the fluids in the rock pore 

spaces. The second assumption was that the minimum observed porosity for crystalline rocks is 

one percent, an assumption independent of the micro-distribution of radionuclide production in 

relation to the aqueous phase. The estimated equilibrium number of atoms of 3 6 ~ 1  in one cm3 of 

the rock matrix was 1.5 x 106 for the reaction " ~ l ( n , ~ )  16cl and 0.04 x 106 for the 1 9 ~ ( n , a )  3 6 ~ 1  

reaction. For the fracture fluid, the equilibrium nurnber of atoms in one cm3 was 2.5 x 1 o6 for 

neutron absorption by 3 5 ~ 1  and was negligible for neutron activation of "K. For the surrounding 

leptite rock matrix, the equilibrium number of atoms is 0.19 x 106 and 0.0067 x 106 for the two 

reactions, respectively. As was the case for the rocks fiom the Snake River PIain aquifer 

investigated in this dissertation, the production of 16cl via activation of "K in the Stripa Granite 

was insignificant. 

The equilibrium 3 6 ~ ~ / ~ 1  ratio that results from the experimental neutron flux in the rock 

matrix for the Stripa granite is 2 1 5 x 1 O-'' after 1 -5 million years. The equil ibrium 3 6 ~ ~ / ~ ~  ratio 

for the surrounding Ieptite is 41 x 1 O-''. Although the 3 6 ~ f / ~ l  ratios in the ground water may not 

reach the sarne equilibrium ratio as in the aquifer matrix due to the smaller residence times, an 

increase in salinity during transport through the fracture system could result in a Cl' concentration 

and 3 6 ~ 1 / ~ ~  ratio signature characteristic of the Stripa granite (Andrews and others, 1989). Due to 

the similarity in granitic and rhyolitic geochemistry, this 3 6 ~ 1 / ~ ~  ratio h m  the Stripa Granite is 

comparable to the 3 6 ~ 1 / ~ !  ratio for rhyolites fiom the eastern Snake River Plain. The estimated 

equilibrium in situ 3 6 ~ 1 / ~ 1  ratio for the nine rhyolite samples used in this saidy ranged fiom 26 x 

1 O-'' to 45 x 10' '~ with a mean of 3515.5 x IO-" (table 5.6). The slightly larger 3 6 ~ 1 / ~ 1  ratio from 



the Stripa granite is due to the larger U and Th content of this granite compared to the average 

rhyolite fiom the e-em Snake River Plain; U is 44.1 ppm and Th is 33 pprn in the Stripa granite 

and U is 5.96 pprn and Th is 24-1 ppm for average rhyolitic composition from the eastern Snake 

River Plain (table 5.7). 

If al1 of the CI- in the Stripa granite were transferred fiom the rock to the ground water, a 

36 Cl concentration of 1.5 x 10' ' atoms/L would be produced with an associated fluid chlorinity of 

43 g/L. However, the maximum chlorinity present in ground water from the Stripa granite was 

only 700 mg&, corresponding to 1.6 percent of the matrix Ci- transferred to the pore fluids. The 

resultant corrected 3 6 ~ ~  equilibrium concentration is 2.4 x 1 O' atoms5 and is on the same order of 

magnitude as measured ground water concentrations in the Stripa granite. 

The ' k l  content of Stripa gmund water was determined to be a result of in situ 

production because it is much larger than what could be derived from cosmogenic or nuclear- 

fallout sources. Therefore. the input of 3 6 ~ ~  into the ground water system from cosmogenic and 

nuclear-fallout sources was determined to be much less significant than the production of 3 6 ~ ~  by 

neutron capture within the granite. Although this ultimately lirnits the use of concentrations 

for the estimation of ground water residence times in the Stripa granite, Andrews and others 

estimated residence time based on the rate of buitdup of in the water. 

Using the Stripa study as a model, Beasley and others (1993) calculated a theoretical in 

situ produced 3 6 ~ ~ / ~ ~  ratio of 1 x for the basalt aquifer of the eastern Snake River Plain. 

This ratio is not measurable by any analytical techniques and in situ production was determined 

to be inconsequentia1. However, data presented here suggest that the maximum estimated in situ 

"CI/CI ratios in basalt rocks of the eastern Snake River Plain range fiom 1.4 x 10"' to 1 x 

(table 5.6) or three to four orders of magnitude larger than the theoretical ratio reported by 

Beasley and others. 

This large difference in estimated 3 6 ~ ~ / ~ 1  ratios is due to the method of calculation. 



Beasley and others (1993) estimated the in situ contribution for neutron activation of "CI 

dissolved in ground water only. In the present study, possible neutron activation of "cl in the 

aquifer matrix with complete transfer to the ground water also was considered. Therefore, the 

ratios calculated in this mariner are expected to be orders of magnitude larger due to increased 

neutron production rates and Cl- concentrations in the rock compared to the ground water. 

In situ production of 3 6 ~ ~  h a  been estimated in kar-surface environments for a re- 

evaluation of cosmogenic production rates in terrestrial rocks (Phillips and others, 1996); this 

evaluation inciuded 17 basalt samples collected fiom surface exposures on the eastern Snake 

River Plain. The in situ 3 6 ~ ~ / ~ 1  atom ratios for the 17 samples ranged fiom 2252 x 10"~  to 

24Wl6 x  IO-'^ with a mean of i25k 17 x 1 O? For cornparison, the estimated in situ secular 

equilibrium 3 6 ~ ~ / ~ ~  ratios for the 7 basalt samples used in this study ranged fiom 1.4 x 1 o~" to 10 

x IO-" with a mean of 5.223.3 x 1 0 " ~  (table 5.6). The 17 basalt sarnples collected on the Snake 

River Plain by Phillips and others (1 996) were al1 from surface outcrops. Only one of the seven 

basalt samples evaluated was an outcrop sample; the remaining six were fiom depths of 118 to 

728 rn beiow the surface. Therefore, the 17 measured 3 6 ~ ~ / ~ ~  atom ratios compare well with the 

seven estimated in siru ratios, since the surface ratios are expected to be larger by an order of 

magnitude or more due to enhanced surface production of 3 6 ~ ~  by the interaction of cosmic rays 

with elements in the rocks. However, it is assumed in this dissertation that the contribution to 

ground water from this rnechanism is insignificant for reasons outlined in the next section. 

5.3.6 Com~arison of In Situ Produced Chlorine-36 with Other Sources 

In this section, meteoric. weapons-tests, and in situ 3 6 ~ ~  results are compared to 

concentrations in ground water as a result of waste disposal practices at the MEEL. Earlier in 

this chapter, concentrations in water, snow, and glacial-ice samples collected at and near the 

NEEL were discussed. In southeastem Idaho and western Wyoming, meteoric concentrations 



were determined to be less than i x 10' atornsk for recharge and concentrations between 1 x 10' 

and 1 x 10' atoms/L were indicative of a nuclear weapons-tests component from peak 3 6 ~ 1  

production in the late 1950s. Chlorine-36 concentrations in ground water and sufiace water 

between 1 x 10' and 1 x lo9 were determined to be representative of re-suspension of weapons- 

test fallout from the Iandscape, airbome disposal from nuclear-waste processing at the INTEC, or 

ET. Chlorine-36 concentrations larger than 1 x 10' were attributable to nuclear-waste disposa1 

practices in the area. 

Ground water samples collected just downgradient (within 1000 meters) from the NTEC 

have "CI concentrations that range from 36kl x 10' to 2.8kO. 1 x 1012 atoms/L (table 2.1). The 

associated total Cl- concentrations ranged from 75 to 220 mgL. Maximum estimated 3 6 ~ 1  

concentrations from in situ production for al1 rock types, corrected to ambient measured CI- 

concentrations, ranged from 2.45 x 10' to 7.68 x Io6 atomsk, or six to seven orden of 

magnitude smaller than concentrations in ground water near the NTEC (table 5.8). The 3 6 ~ ~  

concentrations in ground water near the INTEC were also three to four orders of magnitude larger 

than peak weapons-tests fallout for southeastern Idaho and Wyoming (Cecil and others, 1999). 

Additionally, in situ 3 6 ~ ~ / ~ ~  ratios for average rock compositions ranged fkom 4.0 x 10"' to 33.3 

x 10-". For comparison, the range of "CI/CI for the 70 ground water samples collected from the 

Snake Rive; Plain aquifer at and near the INEEL was 47.7k0.2~ 1 O-" to 2.1k0.06~ lo9 (table 

2.1 ). 

In situ produced j6cl concentrations compare well with meteoric inputs that may be 

unaffected by evapotranspiration. For example, using calculated fallout rates for 3 6 ~ 1  for 

precipitation presented in this dissertation, a range of possible meteoric concentrations in snow 

can be calculated. The fallout rates determined fiom separate snowfall events at two 

different stations during 199 1 were 0.0 12i0.002 atoms/cm2/sec at Harriman State Park near the 



Table 5.8. Maximum calculated equilibnurn "CI and associated total chloride 
concentrations in ground water fiom in sim production due to neutron activation of stable '%l for 
six rock types fiom the eastern Snake River Plain aquifer. 

[See figure 1.1 for location of sarnpling sites. Source of data: percent porosity fiom Freeze and 
Cherry (1979); rock chloride content from U.S- Geological Survey Isotope Laboratory except 
values marked with an asterisk (*), which are from Parker (1967, table 19, p/ D13-14); maximum 
measured chloride content of ground water fiom L,L, KnobeI (written commun., 1999). atomsL, 
atoms per Mer, glcm3, grams per cubic centimeter; gL, grams per Mer, mgkg, milligrams per 
kilogram; mg&, milligrarns per Mer. See text for explanation of the total transfer of 3 6 ~ ~  and CI- 
from rock to ground water and maximum corrected in situ % contribution to ground water.] 

RockType and Sample Rock Percent Chloride Total Transfer Total Maximum Maximum 
Identifier Density Porosity Content in of Y ~ t  from Transfcr o f  Ambicnt Correctcd In 

(@cmJ) (min) rock Rock to CI' from Cr Content Situ *Cl 
(mukg) Ground Water Rock to of Ground Contribution 

(atoms/L) Ground Water to Ground 
Water (gm f W L )  Watcr 

lgntous 
SP-5, rhyolite 
SP-6, rhyolite 
SP-7, rhyolite 
SP-8. rhyolite 
SP-9. opal deposit in rhyolite 
SP-IO. rhyolite 
SP-13. rhyolite 
SP-15. basait 
SP- 1 6. basait 
SP-17, rhyolite 2.5 1 1 *24O 4.81E+lO 62.64 IO 7.68E+06 
SP-18. basait 2.6 1 5 '50 . 1.6SE+08 2.6 1 10 6.32E+05 
SP-19. basalt 2.6 1 5 1 O0 2.90E+08 5 -22 10 5.56Ei-05 
SP-20. basalt 2.61 5 200 2-55E+O8 10.44 10 2.45E+05 
SP-2 1. basalt 2.6 1 5 200 1.84E+09 10.44 10 1.77E+06 
SP-22. basait 261 c '50 4.03E+08 2.6 1 10 1.55E+06 
SP-23. rhyolire 2 51 1 '240 3.58E+IO 62.64 10 5.7 1 E+06 

Sedirnentary 
SP- 1. limestone 2.54 I 100 2.52E+09 25.40 15 1.49EiO6 
SP-2. limestone 2 54 1 2W 6.50E+09 50.80 15 1.92EM6 
SP-3. limcstone f 54 I 150 5.54E+û9 38.10 15 2.1 8 E+06 
SPA, dolomite 2 7  1 400 2-76E+O9 101.60 15 4.08E+05 
SP- 12. limestone t 54 1 200 6.12E+O9 50.80 15 1.8 1 E+06 
SP-25. shalc t -12 I '3000 I.I7E+I I 762.00 15 2.3 1 E+06 
SP-26. limesrone 2.54 I 150 7.18E+09 38.10 15 2.83 E+06 

Metarnorphic 
SP-1 1. quamite 1.74 I 100 2.98E+09 27.40 15 1.63 E+06 
SP-24. quamite 2.74 1 10 7.12E+07 2.74 15 3.90E+05 



Wyoming border and 0.003+0.0015 atoms/cm2/sec at Copper Basin in south central Idaho (fig. 

1.1). Meteoric ' k 1  concentrations can b e  approximated using the 3 6 ~ 1  faIlout rate and a range of 

possible ET rates for the eastern Snake River PIain using the following equation: 

meteoric 36 cl conc. = 
natural 36 Cl fallout rate ((atoms/cm2 )/sec)) 

5.4-1 
(average annuai precip. (cm/yr)) - (average annual ET (crn/yr)) 

where ET is the evapotmnspiration rate; ranges of rates were used in these calcuIations in an 

atternpt to accourit for differences in seasonal distributions of precipitation and ET. 

Using the larger fallout rate for the Harriman site, 0.012I0.002 atoms/cm2/sec, and ET 

rates of O and 95 percent. the range of meteoric concentrations is 6.5 x 106 atomsL to 1.3 x 10' 

atomsn. Cecil and othen (1999) report a surface water mean ' k 1  concentration for 32 samples 

collected in southeastem Idaho of 1.5 x Io8 arornsk, indicating the effects of 95 percent or 

36 greater ET. In contrast, CI concentrations for average precipitation for the east coast of the 

United States where there is little or no E T  have been detemined to be 1.7k0.2 x 1o6 atomsk for 

the period February 1997 through Januay 1993 (iiainsworth and others, 1994). This average is 

the same as for the calculzted j6c1 fallout rate presented here for precipitation not affected by ET 

in southeastem Idaho. Additionally. meteoric %l ground water concentrations from the eastem 

Snake River Plain aquifer range from I .O x 10' to 5.0 x 106 atomsn, supporting the idea that no 

significant " k l  is being picked up in the shallow subsurface by rapidly infiltrathg recharge that 

would not be significantly affected by ET. This is in contrast to the average 3 6 ~ 1  concentration in 

the 32 surface water samples, 1.5 x 10' atoms/L. that would be expected to be influenced by ET 

processes. 

For cornparison to the measured concentrations in surface water presented in this 

dissertation, an average concentration of "CI produced in surface water worldwide was 



determined, Turekian (1969) compiied the average composition of surface water for nearly al1 

the elements and these data were used to calculate an average in situ produced concentration for 

"CI. An average in situ equilibrium 3 6 ~ 1  concentration of 1.83 x lo4 atornsh was calculated. 

Although this relatively small 3 6 ~ 1  concentration calculated in this manner is a first-order 

approximation, it suggests that the in situ contribution fiom surface water of average composition 

is insignificant compared to the contributions fiom weapons-tests fallout, natural atmospheric 

production, overland mnoff containing near-surface produced 3 6 ~ 1 ,  and concentrations as a result 

of nuclear-waste disposa1 at the NEEL. 

Two snow samples were collected at the MEEL (MEEL #I and MEEL#2, fig. 1 . l) 

during nuclear-waste reprocessing operations and resultant "CI fallout rates were detemined for 

cornparison to possible meteoric concentrations. The largest fallout rate, l2I2.4 atoms/cm2/sec 

for INEEL #2, was used to calculate a contribution of 3 6 ~ ~  to the earth's surface from the [NTEC 

(Appendix Table C-9). Again, using equation 5.4-1 and ET rates of O and 95 percent, the 

possible contribution to ground water concentrations in precipitation affecred by waste-processing 

operations at the INEEL ranged fiom 1.7 x 10'' atoms5 for no ET to 3.8 x 10" atomsh for 95 

percent ET. These concentrations are from four to five orders of magnitude larger than estimated 

natural meteoric contributions to ground water 3 6 ~ ~  concentrations in the eastem Snake River 

Plain aquifer. Considering ground water residence time and rapid infiltration of recharge in the 

eastem Snake River Plain aquifer, it is highly unlikely that significant 3 6 ~ ~  concentrations from in 

situ production occur. 

5.4 Summary of In Situ Chlorine-36 Production 

Twenty-five whoIe-rock samp les were collected from basalt, rhyol ite, Iimestone, 

dolomite, shale, and quartzite rock types in the eastem Snake River Plain aquifer. In situ 

production of 3 6 ~ 1  in the rock samples resuiting fiom nuclear interactions between stable nuclides 

and particles given off during the radioactive transformation of U and Th decay-series isotopes 



was determined. Calculated ratios of 3 6 ~ ~ ~ 1  in these rocks ranged fkom l.4xl0'" for basalt to 

4 5 x l 0 " ~ o r  rhyolite. The associated neutron production rates calculated for these rock types 

were 2.5 (n/g)/yr for the basalt and 29 (n/g)/yr for the rhyotite. The Iarger neutron production rate 

for the rhyolite is due to the larger U (1 f -5 ppm) and Th (222 ppm) concentration of the rhyolite; 

for comparison, the U and Th concentrations of the basalt were 0.8 and 2.23 ppm, respectively. 

Corrected concentrations of  3 6 ~ ~  in ground water were estirnated by taking into account 

Cl' concentration, minimum rock porosity (to maxirnize ' k l  production), and the calculated 

3 6 ~ ~ / ~ ~  ratios. In basalt and rhyolite, the maximum ' k l  concentrations were 2 . 4 5 ~  10' and 

7 . 6 8 ~  1 o6 atoms5, respectively. These maximum estimated "CI concentrations in ground water 

from in situ production are on the same order of magnitude as natural concentrations in meteoric 

water. In contras, the maximum 3 6 ~ ~  concentration measured in ground water collected near the 

INTEC was 2B0.1 x10" atornsll. six orciers of magnitude larger than in situ or meteoric 

concentrations. In situ 3 6 ~ ~ / ~ 1  ratios in ground water from rock with average compositions in this 

research ranged from 4 . 0 ~  1 O-" to 3 3 . 3 ~  1 d5. For comparison, the range of 3 6 ~ ~ / ~ ~  for the 70 

ground water samples collected from the Snake River Plain aquifer at and near the INEEL was 

17.7t0.2~ 1 O-'' to 2.1 kO.06~ 1 O" (table 2.1 ). Based on these results, in situ production of is 

insignificant compared to concentrations measured in ground water near buried and injected 

nuclear waste at the CNEEL. 



ESTIMATION OF SELECT AQUIFER ENDRAULIC PROPERTIES FROM 
ENVIRONMENTAL CHLORINE-36 DATA 

The purpose of this dissertation is to determine the sources of '%l in the eastern Snake 

River Plain aquifer system and to describe the implications of using this isotopic tracer for 

estimating the environmental impact of waste disposal practices near a nuclear facility (INEEL). 

In chapter 5, the contributions to environmental concentrations of 'vl from al1 major sources in 

the study area were established. In this chapter the ' k l  data are used in a 1-D system-response 

model to estimate select aquifer hydrauIic properties. The selected aquifer hydraulic properties 

estimated are ground water flow velocities and effective longitudinai hydrodynamic dispersion. 

The fiow velocities will be estirnated from the apparent fint-amival times of '%I in water fiom 

far-field monitoring wells (USGS I l  and USGS 14, fig. 6.1) downgradient from the NI75C. 

Additionally, the 1 -D system response model will be utilized to estimate hydrodynamic 

dispersion. It is not the purpose of this research to construct a computer model that represents 

ground water flow, therefore, the purpose of this chapter is to utilize the knowiedge gained in 

establishing the origin of 3 6 ~ 1  in the eastern Snake River Plain to estimate select aquifer hydraulic 

properties. Special thanks are due to Dr. John A. Welhan, Idaho Geological Survey, for his 

insights of the ground-water flow in the eastern Snake River Plain aquifer system and his 

assistance and guidance on constructing and implementing the system-response mode1 described 

here. 

6.1 Conceptual Model of Ground water Movement 

A brief review of the geologic fiamework presented in Chapter 1, section 1.2, is 

necessary to explain the conceptual model from which the aquifer-hydraulic properties wilI be 

estimated. The eastern Snake River Plain is a 28,000-km2, downwarped, linear structure filled 

with basalt and sediment (fig. 1.1). Basalt-flow contacts in the subsurface typically are broken, 
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Figure 6.1. Construction diagram for wells USGS 11 and USGS 14. 

Note: See Figure 3.1 for well locations. 



and these zones rnay be highly transmissive of ground water. Reported transmissivities for the 

eastem Snake River Plain aquifer range from 0.1 to over 70,000 m2/day, nearly six orders of 

magnitude (Ackerman, 199 1 ). Depth to ground water at the MEEL in the basalt aquifer ranges 

fiom 60 m below land surface in the north to over 275 m in the south. The hydraulic gradient at 

the INEEL is about one mkm, and estimated horizontal ground water flow velocities are between 

I and 6 dday ,  Regional ground water flow is from the northeast to the southwest (fig. 6.2). 

Several attempts have been made to mathematically model waste plumes in the fraçtured 

basalt at the INEEL. The first report on cornputer-simulated transport of radionuclide and 

chemical waste in the Snake River Plain aquifer at the INEEL was published by Robertson 

(1974). That report documented the calibration of a 2-D computer model using data fiom the 

USGS for the period 1952 to 1972 and presented predictions of solute spreading in the aquifer at 

the iNEEL to the year 2000. The calibrated longitudinal (aL) and transverse (ar) dispersivities 

were 90 and 140 m, respectively- This characteristic, aT> al, is not expected theoretically and is 

still unique among field-scale investigations. A critical review of 59 published investigations of 

field-scale dispersion in aquifers showed that for 34 values of transverse dispersivity reported, al1 

but those reported for the eastern Snake River Plain aquifer were one to two orders of magnitude 

less than the longitudinal values (Gelhar and others. 1992). Subsequent reevaluations of the 

simulation by Robertson (1974) and new attempts at modeling flow and transport have not 

resoived this apparent discrepancy (Duff? and Harison, 1987; Goode and Konikow, 1990). ln 

light of the vertically stratified and inhornogeneous nature of this aquifer, an evaluation of its 

dispersive characteristics with a 2-D. vertically-averaged model, as was done by Robertson 

(1974), may not be fully representative of this complex aquifer system. 

Previous work with isotopic tracers in the eastem Snake River Plain aquifer system 

suggest that first arrivals of 3 6 ~ ~  and Iz91 indicate that wastewater fiom the INTEC was detected in 

wells at the southem boundary of the MEEL as early as 1983 (Cecil and others, 1999,2000b). 
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Figure 6.2. Altitude of the water table in the Snake River Plain aquifer in the vicinity of 
the Idaho National Engineering and Environmental Laboratory, March-May 1995. 



This represents contaminant movement of about 13 km in 30 years, corresponding to an 

estimated minimum linear flow velocity of 1.2 d d a y .  Iodine-129 was detected in well USGS- 

1 1, about 24 km downgradient From the MTEC (fig. 3.I), at a concentration above background in 

199 1, corresponding to a linear flow veiocity of 1.8 m/day (Mann and Beasley, 1994). Data 

presented in this dissertation indicates that the "CI from MEEL operations was detectable at 

wells USGS 1 1 and USGS 14, about 26 km downgradient fiom the INEEL as early as 1977 (table 

2.1). This represents contaminant rnovement of up to 26 km in 24 years and corresponds to an 

estimated minimum linear flow velocity of 3 d d a y .  The ' k l  concentration in water from wells 

USGS 1 1 and USGS 14 in 1977 was 2.7kO. 1 x 1 0' and 3.6M.I x 10' atomsk, respectively. 

These concentrations represent the minimum first arriva1 of wastewater containing ' k l  fiom 

[NEEL disposa1 to the aquifer and are nearly three to four times the estimated maximum 

background (including weapons-test contributions) of 1 x 10' atoms/L (Chapter 5). The peak 3 6 ~ ~  

concentrations in water from wells USGS 1 1 and USGS 14 (1 6M.8 x 1 o8 and 19kO.2 x IO', 

respectively, table 2.1) are an order of magnitude Iarger than concentrations reported for 

combined meteoric and weapons-test concentrations. This suggests that 3 6 ~ ~  derived fiom 

nuclear-waste processing at the MTEC lias been detected in water from far-field observation 

wells, and that the peak concentrations measured in water from these wells represent the 

maximum releases that occurred at the deep disposal well in 1958 (table 6.1). 

Additionally, a calculation was performed to determine if the necessary arnount of 

activated "CI could have been processed at the INTEC to see the signature of 3 6 ~ ~  measured in 

the ground water samples at the MEEL (Appendix table C-IO). The amount of "CI necessary for 

that signature is 35 gramdyear. There is more than this amount of stable chlorine processed at 

the MTEC on a monthly basis (Steve Fernandez, MEEL, oral communication, 1997). This 35 

grams of 3 6 ~ 1  activated per year is equivalent to 1.2 curies per year. Over the period of nuclear 

fuel and nuclear-waste processing at the MTEC (1953 to 1991), the total 3 6 ~ ~  inventory from 



Table 6.1. Input of tritium and calculated input of chIorine-36 to ground water through a 
deep-disposa1 well, Idaho Nuclear Technology and Engineering Center. 

LSee figure 1.2 for disposal well location.] 
Year Tritium Estimated Volume of water Chtonne-36 

(curies) chlorine-36 discharged (atoms/L) 
(curies) ( X  lo9 L\ fx 10'4 

1953 456 O. 15 1.5 5070 
1954 608 020 0.87 1 1600 
1955 808 O -27 1.5 9 120 
1956 1,543 0.51 1.3 19900 
1957 969 0.32 0.87 18600 
1958 3,504 1 2  1 .O 60800 
1959 2,565 0.85 1.2 36900 
1960 679 022 0.72 15500 
1961 590 0-19 0.7 1 13600 
1962 361 O. 12 0.99 6140 
1963 1,084 0.36 0.97 18800 
1964 1,768 0.58 1.3 22600 
1965 97 0.032 1.6 IO10 
1966 250 0.083 1 -4 3000 
1967 96 1 O -28 1.1 12900 
1968 510 O. 17 1 .O 8610 

- 1969 125 0.04 1 1.2 1730 
1970 75 0.025 1 .O 1270 
1971 59 0.0 19 1 .O 963 
1972 298 0.098 1.3 3 820 
1973 32 0.0 1 1 1.3 429 
1974 455 O. 15 1.5 5070 
1975 43 0.0 14 1 .O 709 
1976 43 0.0 14 1 -4 507 
1977 734 O -24 1.6 7600 
1978 316 0.10 1.6 3170 
1979 225 0.074 1.5 2500 
1980 1 09 0.036 1.5 1220 
1981 359 0.12 2.0 3040 
1982 209 0.069 2.0 1750 
1983 436 O. 14 2.1 3380 
! 984 12 0.0040 2.1 96.5 
1985 393 0.13 2.0 3290 
1986 25 1 0.083 2.2 19 1 O 
1987 215 0.07 1 2.2 1640 
1988 89 0.029 2.1 700 
1989 O O 1.7 O 
1990 1 0.00033 2.3 7.27 
199 1 - 7 0.00066 2. 1 15.9 
1992 0 -2 0.00007 2.4 1 -48 
1993 O O 2.7 O 
1994 O O 2.1 O 
1995 O. 1 0.00003 1.7 0.894 

Tritium total E 21,000 
Chlorine-36 total 7 



neutron-activated 3 5 ~ 1  would be about 46 curies, This mount  is more than six times the 

calculated amount of " k l  disposed to the environment at the INTEC (7 curies, table 6.1). 

Therefore, the concentrations of measured in the ground water samples at the [NEEL could 

easily be fiom the MTEC (if assumptions used in Appendix table C-10 are correct). 

The "k1 signal in wells USGS 1 1 and USGS 14 is similar and is characterized by 

relatively early arrivals of significant tracer activity, suggesting ground water velocities that are 

even iarger than the minimum estimate of 1 to 6 d d a y  discussed previously. The 1958 peak in 

these monitoring wells is fairly sharp, with steep shoulders. However, the maximum 3 6 ~ 1  activity 

observed in these wells is six orders of magnitude lower than the mean annual 3 6 ~ ~  activity 

estimated in the MTEC disposai well during the 1958 releases. It would appear that the 3 6 ~ ~  

signal has been attenuated significantly through dilution, yet the sharpness of the peaks points to 

low effective dispersivity or an absence of significant mixing, 

These two seemingiy contradictory observations may be reconciled within a preferential- 

flow scenario. It has long been realized that a 3-D modeling approach may be required to 

adequately describe and predict flow and transport in the Snake River Plain aquifer system. 

However, the amount of detailed hydraulic and geoiogic information available to describe the 

vertical and lateral heterogeneity in the system is inadequate to construct and calibrate such a 

model. Work is in progress on a stochastic representation of 3-D flow arising fiom IithologicalIy- 

controlled preferentia1 flow-paths in the systern (Gego and others, in press). Work started by 

Knutson and others (1990) and continued by Welhan and others (in press) supports the concept 

that the spatial distribution of high-conductivity zones may be localized along, and of the length 

scale of, rubble-encrusted and fissured basalt lava flows. Therefore, a conceptual model of 

preferential flow in which ground water is able to travel significant distances in highly 

conductive, subhorizontal conduits without significant lateral mixing, has been adopted for this 

application of 3 6 ~ ~  tracer data to describe select hydraulic properties. 

The evidence presented in this dissertation supports the concept that 3 6 ~ 1  derived nom 
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Figure 6.3. Modeled and measured chlorine-36 concentrations in grouod water from 
monitoring wells USGS 11 and USGS 14. Note: See figure 3.1 for location of wells. Data 
from tables 2.1 and 6.1. 

nuclear-\vaste processing at the [NTEC was detected at wells USGS 1 1 and USGS 14, and that 

the peak concentrations observed in these wells represent the maximum releases that occurred nt 

the INTEC deep-disposa1 well in 1958 (fig. 6.3). Recent measurements of CFCs support this 

concept. Busenburg and others (in review) presented CFC analytical results for water collected 



from USGS 11 and USGS 14 in 1995 (USGS 11) and 1994 (USGS 14). The CFC-11 results 

indicate that these sarnpIes were in equilibrîum with 1968 and 1970 air, respectively. Therefore, 

it is probable that water collected from USGS 11 and USGS 14 in the mid-1980s could represent 

water that passed the MTEC in 1 9%. 

In Iight of the vertically stratified and complex nature of the aquifer, an evaluation of its 

dispersive characteristics with a 2-D (vertically averaged) model, as was done by Robertson 

(1974), may be misleading. Robertson's fitted longitudinal dispersivity was of the order of 90 rn, 

and appears to be reasonable for the scale and complex nature of the flow system. The transverse 

dispersivity was on the order of 140 m. However, this very high transverse/longitudinal 

dispersivity ratio has not been observed in any other aquifer system and has not been 

satisfactorily explai ned. For example. Goode and Konikow (1 990) concluded that transient 

recharge normal to the regional flow direction could not account for these anornaIous transverse 

dispersivities. Data presented by Goode and Konikow (1990) suggested that transients in the 

ground water flow field caused by episodic recharge in the Big Lost River channel near the 

MTEC (figure 1.2) made estimation of UT and a~ ambiguous. They recalibrated Robertson's 

rnodel using data from the USGS penerated afier 1972 and found that predictions of the shape of 

contaminant plume in the ground water downgradient frorn the INTEC were verj insensitive to 

changes in dispersivities in both steady-state and transient simulations. 

6.2 Transport Mode1 Deveiopment 

A 1-D, Iurnped-parameter, systern-response mode1 was chosen to interpret the tracer 

arriva1 record in terms of the tracer signal transformation characteristics of the system (i.e. the 

preferential flow path) between the point of injection and the point of monitoring. The dispersive 

impulse function of Matoszewski and Zuber (1982) was used for modeling the dispersive 

characteristics along a single assumed preferential flowpath, by fitting the predicted output 

response to the observed tracer record at given monitoring wells. 

A system-response approach has not seen wide application in ground water studies 



because of a lack of adequate records for temporal variations in tracer concentrations and 

primarily because of the need to assume steady flow. On a local scaie, where tracer data are more 

likely to be available over the time scale of interest, the hydrologie steady state is a poor 

approximation of reality, but the steady-state assurnption becomes Iess restrictive on a regional 

scale. However, it has not seen wide applicability in regional studies because the requisite input 

and output tracer data usually are not available over the time scales of interest. Despite its 

limitations, the method has been used successfully in the analysis of residence times and mixing 

in shallow soi1 and ground water flow and surface water w o f f  (MaIoszewski et al., 1983; 

Stewart and McDonnel, 199 1)- 

Because the total tracer (in this case, %l) injected at the MTEC disposal well is assurned 

to split into multiple, divergent preferential flow paths, each individual flow path carries a 

fraction of the total tracer input. This implicitly preventç fitting of absolute tracer concentrations 

since a 1-D mode1 cannot account for flow spiitting. Instead, the analysis presented in this 

dissertation focuses on the shape of tracer break~hrough cwves to constrain the magnitude of the 

dispersion process. Although parameter fitting to peak shape and arriva1 times will limit overall 

accuracy, neither the arnount of available tracer data nor the lirnited knowledge of the complexity 

of the flow processes operable in the eastem Snake River Plain aquifer system justif?y a more 

rigorous approach. However. as discussed in section 6.3 of this chapter, this fitting approach 

appears to be capable of constraining the magnitude of the apparent dispersion, based solely on 

the shape of the %I tracer arriva1 curves at wells USGS 1 1 and USGS 14 (fig. 6-31. 

6.3 Model Construction 

The intent is to examine the implications of preferential flow on the transport of 

contaminants over tens of kilometers in this complex aquifer. Since the necessary information for 

constraining a 2-D or 3-D transport mode1 was lacking, a simple 1-D mode1 was used to evaluate 

the dispersive characteristics associated with preferential flow in this system using 3 6 ~ 1  tracer 



records at wells USGS 1 1 and USGS 14 (fie. 3.1). Construction characteristic for wells USGS 1 1 

and USGS 1 4  are shown n figure 6.1. 

The arnount of 3~ and the volume of wastewater discharged at the MTEC are shown in 

table 6.1. From 1 9 5 3  to 1995 the amount of 3~ in wastewater discharged at the MTEC ranged 

from O to 3,504 curies per year (Ci/yr) and averaged about 500 Cilyr. The arnount of 3 6 ~ ~  

discharged annually is not known. However. an activity ratio of 3 6 ~ ~ 3 ~  for a typical high-yield 

nuclear fuel reprocessed at the MTEC was used to calculate the annual amounts of listed in 

table 6.1; the activity ratio is 3.3 x 1 o4 (Steve Fernandez, MEEL, oral communication, 1997). 

Because this 3 6 ~ 1 / 3 ~  ratio is representative of a high-yield nuclear fuel, the inventory of 3 6 ~ ~  

calculated using this value should be considered as maximum. Using this method, the total 3 6 ~ ~  

estimated to have been discharged to the environment at the NTEC is about 7 Ci (table 1). This 

amount is comparable to an estimate of 65 percent of the total MEEL discharge of IO Ci of 3 6 ~ ~  

attributable to the lNTEC (Cecil. unpublished data. 1999). These estimated 3 6 ~ ~  source 

concentrations compose the tracer-input signal used in the 1 - D  system-response model for 

estimating a coefficient of dispersion. The ' b ~ l  concentrations over time for wells USGS 1 1  and 

USGS 14 are given in table 2.1. 

The path length (s) along an individual flowline within this preferential-flow mode1 is . 

believed to be tortuous. However. untiI the results of stochastic flow modeling are available to 

impose constraints on the effective tonuosit'.. a straight-line distance between source and output 

is assumed. Therefore. the dispersivit' derived from the x/v (mean flowpath lengthhean 

velocity) fitting parameter represents a minimum estimate. The effect of flowpath tortuosity is 

countered by the fact that this model docs not account for mixing at the intersections of 

flowpaths- Thus, the fitted dispersivity should provide a reasonable estimate of the magnitude of 

the dispersion process along a singie preferential flowpath. 

The resuIts of model fits to the 3 6 ~ 1  arrivals in USGS 11 and USGS 14 are shown in 

figure 6.3. As discussed previously. the tracer arrivals demonstrate very low concentrations 



relative to the disposa1 well and are distinctly peaked, reflecting the 1958 disposa1 event. The 

3 6 ~ 1  concentrations in both wells are much less than that of the 1958 peak in the disposal well, 

suggesting dilution or loss of tracer m a s  by other than longitudinal dispersion. Because matrix 

diffùsion is a second-order attenuation mechanism in flow systems dominated by advection and 

dispersion (such as suggested in this dissertation for the Snake River Plain aquifer) this process 

was assumed negligible and was not considered (Knox and others, 1993). In future research on 

the preferential flowpath scenario invoked here, a more rigorous analysis and discussion of matrix 

diffusion as a possible 3 6 ~ 1  peak attenuation mechanism in the far tield is warranted. 

Maloszewski et al (1 983) analyzed the annuaI variation of deuterium in precipitation and 

in an aipine Stream using a systems-response approach, to characterize the distribution of runoff 

routing times. Welhan and others (in press) utilized stable oxygen-isotope variations in a shallow 

ground water flow system to constrain flow and transport parameters. In that work, a steady-state 

system response model was used to constrain tracer transport conditions in a shallow ground 

water flow system by rnodeling 6180 variations with a transit-tirne distribution model 

incorporating dispersion. By considering a range of possible isotope recharge signals, the range of 

effective dispersivity and the effective distance from the recharge zone were constrained for use 

in subsequent distributed-parameter numerical modeling. 

The availability of "CI disposal rates at the MTEC well, the spatial scale of flow 

involved in the Snake River Plain aquifer south of the INTEC, and the availability of temporal 

records of 3 6 ~ 1  variability in observation wells which span the time scale of interest make it 

likely that the method can be successfully applied in this hydrogeologic setting. 

In a system-response model, transformation of an input signal, C,&, traveling through a 

system at hydrologie steady-state is described by the convolution integral: 



where C,,(i',J is the concentration at a specific location and time, and f(t) is a dispersive iùnction 

used here to represent 1 -D transport of a tracer along a path of infinite length under steady-state 

ground water flow. Because 3 6 ~ 1  has a half-life of 3Ol,OOO years and this analysis was conducted 

over a relatively short time interval of 40 years, a radioactive decay tenn was not included in 

equation 6.2- 1. The following equation fiom Maioszewski and Zuber (1 982) best represents the 

dispersive, or system-response, hnction for this analysis: 

where D/vx is the dimensionless dispersion parameter and r is the mean transit tirne, equal to 

system volume divided by average linear ground water velocity through the system or, in a 

homogeneous system, equal to flow path Iength (x) divided by mean velocity (v). Although this 

steady-state assumption is simplistic, it should be justifiable to first order, given the scale of flow 

(both spatial and temporal). The system-response modeling approach allows an estimate of the 

magnitude of dispersion and the flow velocity by model fitting of the observed 36~~-tracer output 

signal in downgradient observation wells to the 36~~-tracer input signal from disposa1 at the 

INTEC. 

To generate the simulated tracer arrival, the convolution integral was evaluated using a 

numerical approach (Yurtsever, 1983) based on the tracer-input data from table 6.1. The 

calcuiatioiis were implemented in a cornputer spreadsheet to maximize flexibility and interactive 

parameter fitting, In light of the uncertainties and step-like nature of the input function that was 

reconstructed at the disposa1 well, only annual or semi-annual average tracer concentrations could 

be used as input, The model's operation and output response were verified against a 1-D 

analytical model describing instantaneous injection of a sIug into a uniform-flow field (Sauty, 

. 1980). The results of comparisons between the numerical and analytical models showed that Lie 

system-response model fitting procedure was adequate for both long residence time or long travel 



path (50 years and 26 km, respectively) and small and large dispersivity (5 to 90 m). The mean 

fitting errors were two percent and seven percent for residence time and dispersivity, respectively. 

6.4. Discussion of mode lin^ Resuits 

Another significant feature of the amvai record of isotopic tracers at wells USGS 1 ! and 

USGS 14 is that 3 6 ~ ~  apparently arrives much earlier than predicted by this simple, 1-D, 

preferential-flow model (fig. 6.3). For example, the best-fit model predicts that no 3 6 ~ 1  will have 

arrived at wells USGS 1 1 and USGS 14 by 1977, whereas observed radioactivity of 3 6 ~ 1  in that 

year was 2.7f 0.1 x 10' atoms5 at well USGS -1 1 and 3.6f 0.1 x 1 o8 atomSn at well USGS I I .  As 

already discussed, these concentrations are as much as four times larger than the combined 

meteoric and weapons-test contributions described in Cecil and others (1999), implying that some 

of the tracer moved at least twice as fast as is generally accepted for ground water flow velocities 

in this system. The earliest measured arriva1 at wells USGS 1 1  and USGS 14 corresponds to 

travel times of the order of 10 to 12 years, irnplying that effective maximum advective Iinear 

velocities may be as much as two tirnes higher than velocities estimated from peak-to-peak amval 

time, or up to 6 dday .  

Mode1 fits for dispersivities of 5 and 90 m are shown in figure 6.3. Disregarding the 

36 single relatively enriched radioactivity due to CI measured in water from wetl USGS 14 

collected in 1987, a 90-m dispersivity would provide a marginaily acceptable fit. However, a 5-m 

dispersivity provides the best visual fit for data from both wells USGS 14 and USGS 1 1 when al1 

the data points are considered, and the structure of the estimated input signal is retained using this 

value (fig. 6.3). A dispersivity of 90 m is similar to the longitudinal dispersivity estimated by 

Robertson (1974) in the 2-D, regional, equivalent porous-media model calibration (aL = 90 m), 

and it plots in the middle of the spread of dispersivity values summarïzed by Gelhar and others 

(1992) for this scale of flow distance. The 5-m dispersivity is smaller than any previously 

reported dispenivity value for this scale of transport and is comparable to the only other reported 



dispersivity in fï-aciured rock, aIso estimated using an environmental tracer (Gelhar and others, 

1992). 

The implications of 3 6 ~ 1  arrivais at wells USGS 1 1 and USGS 14 are important for three 

reasons: 1) these tracer results provide quantitative constraints on residence time or flow velocity 

and on dispenivity; 2) these constraints aid in refining the working conceptual model of 

preferential flow in this aquifer system. For example, the very early appearance of 16cl in water 

fiorn wells USGS I l  and USGS 14 may be due to relativeiy fast flow in one or more flow 

conduits intersecting the open intervals in these wells, Such a conceptual model is consistent with 

the observation of spatially correlated transmissivities on the areal scale of individual basdt flows 

and consistent with known geologic or lithologic controls on preferential flow in t!%s aquifer 

system (Welhan and others, in press); and 3) these results also suggest that high-conductivity 

interfiow zones and lava tubes within individual basait flows may be separated by Iower 

conductivity sediment beds and massive basalt zones such that a range of preferential flowpaths 

and degrees of interconnection and effective velocities exist (fig. 6.1). This information also may 

provide a means for mapping preferential flowpaths within the eastem Snake River Plain aquifer. 



Chapter 7 

SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH 

To facilitate the use of 3 6 ~ 1  as a hydrogeologic tracer near a nuclear facilty in 

southeastem Idaho (the Idaho National Engineering and Environmental Laboratory (MEEL)), 

accelerator m a s  spectrornetrk (AMS) mûasurements were made for 3 6 ~ ~  on 127 samples of 

ground water, surface water, snow, glacial ice and runoff, and spring water. From the AMS 

rneasurements of the 3 6 ~  1/CI ratios, atom concentrations of  3 6 ~ 1  were calculated. The results of 

these analyses were used to determine meteoric, nuclear weapons-tests, and nuclear waste- 

processing contributions of this nuclide to inventories in the environment at and near the INEEL. 

An additional 25 rock samples were collected and processed for geochemical analyses for 23 

elernents to calculate in situ neutron production rates and resultant 3 6 ~ ~  concentrations. 

Beginning in 1966. the US. Geological Survey (USGS) has archived a suite of quarterly 

water samples collected at the INEEL each year. Samples were selected from the USGS Iibrary 

to evaluate the suitability of using these historical archives for determining changes in "CI 

concentrations with time in water from the eastern Snake River Plain aquifer at and near the 

INEEL. Water samples from six monitoring wells and one surface water site covering the period 

1966-1993 were selected for analysis of stable chlorine isotopic ratios ( 3 7 ~ ~ / 3 5 ~ l ) .  This 

information was used to determine if "C 1 concentrations measured in the archived water samples 

in the 1990s are representative of the concentrations at the time of sample coilectior?. 

The 3 7 ~ ~ / 3 5 ~ ~  ratio of the archived samples was rneasured at the Environmental Isotope 

Laboratory at the University of Waterloo, Ontario, Canada, and was compared to the 3 7 ~ ~ 3 S ~ ~  of 

Standard Mean Ocean Water. The resultant delta "CI (637~1) data ranged from -0.44I0.5 to 

+0.59I0.16 permil and had a mean of 0.1 5k0.27 pemil. The largest variation in 6 3 7 ~ ~  for water 



fiom any individual well was 0.9 1 pennil. However, considering the associated uncertainties 

with these data, this range is even smaller than this value. A review of avilable Zi3'cl data 

collected worldwide from a variety of geologic and hydrogeologic environments, showed a range 

of -4.9 to +6.0 permil, which is nearIy 1 1 permit and is an order of magnitude greater than the 

range for water deterrnined in this research. The range of ti3'cl rneaured in water from the 

INEEL is indicative of little or no fractionation. Based on the results of this evaluation of ti3'cl in 

water collected from the eastem Snake River Plain aquifer at and near the MEEL, it was 

concluded that "CI concentrations measured in the 1990s for samples collected from 1966-1993 

were representative of the concentration at the time of sampIe coIlection. 

Chlorine-36 concentrations in the archived water sarnples plus additional samples 

collected for this research were deterrnined. The results of these analyses suggest a meteoric 

36 source of the CI for environmental sampIes collected in southeastem Idaho and western 

Wyoming if the concentration is l e s  than 1 x 10' atoms/L (table 7.1). Additonally, 

concentrations in water. snow. or glacial ice berween i x 10' atornsn and 1 x 1 o8 atoms/L may 

be indicative of a weapons-tests cornponent from peak 3 6 ~ i  production in the late 1950s. 

Chlorine-36 concentrations bet\veen 1 r 10' atorns/L and 1 x 1 o9 atomsk may be representative - 

of resuspension of weapons-tests failout. airbome disposal of "CI from the NEEL, or of 

concentration by evapotranspiration. Additionally. the calcuiation of maximum 3 6 ~ ~  

contributions from in siru production in the aquifer matrix were less than 1 x 107 atorns/L, or the 

same as meteoric concentrations (table 7.1 ). It was concluded that only concentrations of 3 6 ~ ~  

larger than 1 x 1 o9 atoms/L measured in the environment at and near the MEEL can be attributed 

with confidence to waste disposai at the site. (Table 7.1 Iists the threshold values for the major 

' k l  sources at and near the INEEL determined from the analyses presented in this dissertation. 

These threshoId values are specific to the sources iisted in table 7.1 rather than ranges presented 

in this paragraph.) 



This information was then used to construct a l-D system response modei to estimate 

aquifer dispersivity on the field scale out to 26 kilometers downgradient fiom the disposai source 

at the MEEL. Histoi-ical 3 6 ~ 1  concentrations for monitoring wells USGS 11 and USGS 14 were 

measured in archived samples for the period 1966-1995. Chlorine-36 disposa1 to the aquifer was 

reconstructed h m  detailed tritium disposa1 records and a knowledge of the ratio of tritium and 

chlorine-36 for a high-yietd fuel that was processed at the Idaho Nuclear Technology and 

Engineering Center, a nucIear fuel and waste processing facility at the PJEEL. A 1958 disposa1 

peak reconstructed from the ' 6 ~ ~  input function for the I-D mode1 was identified in the historical 

data from weIls USGS 1 1 and USGS 14 based on the threshold concentrations established fkom 

the 3 6 ~ ~  souces identified through this research (table 7.1). 

A preferential flowpath scenario was adopted for the flow in the aquifer and simple curve 

rnatching was applied to the mode1 input and output to visually determine the best-fit dispersivity. 

!t was deterrnined thzt an effective longitudinal dispersivity of 5 m provided the best visual fit for 

data from both USGS 1 1 and USGS 14 when considering ail data points. The structure of the 

estimated input signal also is best retained using this value. 

Concentrations of the isotopic tracer 3 6 ~ 1  have been established for al1 of the known 

sources in the environment at and near the INEEL. It is now understaod that 3 6 ~ ~  concentrations 

in ground water measured by AMS may provide an extremely sensitive far-field detection 

capability for certain types of contaminant plumes in certain geologic terrains. Additonally, 

based on the research presented here. it may now be possible to fully quanti@ the concentrations 

and fluxes of ' k l  from nuclear-weapons tests archived in mid-latitude glacial ice in North 

America and to gain a better undentanding of the distribution at mid-latitude of 3 6 ~ 1  and other 

cosrnogenic isotopes such as carbon- 14, iodine- 129, and beryllium-l 0. A list of additional 

research topics to be pursued as a result of this research follows: 



(1) Additional spatial and temporal measurements of 3 6 ~ 1  in both wet precipitation and 

dry deposition are needed to gain a better understanding of 3 6 ~ ~  deposition patterns 

and processes in the study area. 

(2) More measurements of the chloridehromide mass ratio in ice cores would be useful 

in verifying the source of the chlorine. 

(3) A transfer function needs to be developed for a more quantitative comparison of 3 6 ~ 1  

concentrations at higher altitudes (the Wind River Mountains) with concentrations 

deposited at lower altitudes (the Snake River Plain). One possibility for this 

suggestion is the measurement of the 3 6 ~ ~  ln7cs ratios in ice and snow in the Wind 

River Mountains for comparison to the ratios in soils on the Snake River 

Plain. 

(4) Use the historical 3 6 ~ 1  data in ground water developed for this research with available 

tritium data to mode1 preferential flowpath "corridors" in the eastern Snake River 

Plain aquifer system (if they exist). 

(5) The in situ 3 6 ~ ~  production estirnates could be improved by perforrning neutron flux 

measurements directly in wells at the MEEL. Fluxes determined in this way could 

be used to veriS, the neutron production estimates presented in this research. 

(6) The monitoring well network at the MEEL needs to be improved to include nested 

piezorneters with packer sampling to isolate water-bearing zones for irnproved tracer 

detection and interpretation. 

(7) Measurements of "CI and 6 3 7 ~ 1  in the effluent Stream at the Idaho Nuclear 

Engineering and Technology Center would be useful in determining if there are 



mechanisms operable at nuclear fuel and nuclear waste processing facilities that 

ftactionate chlorine isotopes in a predictable manner. This information wouid be 

useful in understanding ground water movement at other sites throughout the DOE 

complex. 

(8) Determine ' v l  NI situ production for sedirnentary interbeds and fracture filling. 

Table 7.1. Summary of threshold chlorine-36 concentrations determined in this research. 

Type of Threshold 3 6 ~ ~  ( 3 6 ~ ~ ~ ~ )  x 1 O-'' Source of threshold 
contribution to 3 6 ~ ~  concentration concentration 
concentrations (atoms/L) 

Snow, surface water, 

Meteoric production 
c 7 x  106 300 to 600 and ground water - 

samples 

Deep in situ 
production 

Weapons-tests 
production 

Whole-rock analyses 

1.900 to 30,000 Ice-core samples 

1,300 to > 106 Al1 samples in table NEEL contribution 2 1 x lo9  f .I 

* water equivalent concentration 
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ABBREVIATIONS USED iN THE APPENDIX TABLES 

Ai Aluminum 
amu Atornic mass unit: mass of al1 isotopes relative to the m a s  of pure carbon-12 
At. Wt. Weighted average mass of al1 isotopes relative to the mas of pure carbon-12 
B Boron 
Be Beryllium 
C Carbon 
Ca Calcium 
CI ChIorine 
F Fluorine 
Fe Iron 
Gd Gadolinium 
H,w Hydrogen fiom water 
ICP-AES Inductively coupled plasma-atornic emission spectrometry 
ISEP Ion-selective elecrrode potentiometry 
WAA Instruniental neutron activation analysis 
K Potassium 
Li Lithium 
LOI Loss on ignition 
Mg Magnesium 
Mn Manganese 
n/g/~ r Neutrons per gram per year 
Na Sodium 
0.r Osygen as structural component of rock matrix 
0.w Oxygen as pan of water molecule in rock pore spaces 
P Phosphoms 
PPm Parts per million by weight 
Si Silicon 
Sm Samzrium 
Tb Terbium 
Th Thorium 
Ti Titanium 
Total (adj.) Surn of ail elements including H.w and O,w from water adjusted to equal 1,000,000 

PPm 
Total (raw) Surn of al1 elements w x p t  H.w and 0.w frorn water adjusted to equaI 1.000,000 

PPm 
U Uranium 
Z Atomic numbrr 



APPENDIX A 

ELEMENTAL DATA FOR CALCULATING TFIERMAL CROSS-SECTIONS FOR 
NEUTRON ABSORPTION 



Table A-1. Data for caiculating thermal cross-sections for neutron absorption, igneous 
rock samples. 

[Sarnple locations are shown on figure 1.1, Source of data: major rock-forming elements as 
oxides in weight percent, trace elements in ppm equivalent weight, and volatile components in 
weight percent are corn the Idaho State University, Department of Geology,. Geochemistry 
Laboratory and were determined by ICP-AES, INAA, or LOI; unmarked chlorine values in 
weight percent are fiom the US. Geologicai Survey, Branch of Geochemistry Laboratory and 
were determined by ISEP; values marked with an asterisk (*) are fiom Parker [directly for basalts 
and fiom geochemical equivalent for rhyolites (felsic grnite)] ( 2  967, table 19, p. D 13-D 14)- 
Calculations: Gd values were calculated using chondritic trace-element ratios; carbon values 
marked with an "at" symbol (@) were calculated using the assumption that the moles of carbon 
were equivalent to the sum of the moles of calcium and magnesium; values for H,w and 0,w 
were calculated using the assumption that the difference between the raw and adj. totals plus 
excess LOI values were attributable to water content (both water of hydration and pore water); 
the value for 0 ,r  was calculated fiom oxide weight-percent data. For a detailed explmation of 
calculations and conversions, see section 5.3.3 of text on data reduction. Symbols: c, less than.] 

Z Element 

Snmple identifier and type 

SP-5 SP-6 SP-7 SP-8 SP-9 SP- 1 O 

AL WL ppm, rhyolite. ppm. rhyolitc. ppm. rhyolite. 
ppm, rhyolitt, PPm* PPml 

amu outcrop outcrop outcmp dcpth, 10 opal in rbyolite, rhyolite. 
meters depth. 10 meten outcrop 

28.1 343302 3457 18 3 14633 353 104 345625 

Total (raw) 968665.45 98 1962.73 9342 16.09 982622.68 882208.98 967557.79 
Total (adj.) 1000000 1000000 1OOOOOO 1000000 1000000 1000000 



Table A-1. Data for calculating thermal cross-sections for neutron absorption, igneous rock 

Sample identifier and type 
-- - SP-15 SP-16 SP-17 SP-18 SP-19 
>Y-13 

PPm. PPm* PPm* PPm* PPm. 
Z Element AL Wiamü PP? bris~lt. basal t. rhyolite. basal t. basslt. 

rkyol'tcw depth. 728 depth. 158 depth. 136 depth, 180 depth. 118 
outcrop meters meters Mcters meters meters 

Si 28.1 346419 2 1 0348 2 12685 (353337) 222969 2 1 5490 

17 CI 35.5 240 *50 IO0 '240 *50 I O0 
Total (raw) 976936.14 936858.94 94760 1.58 999076.58 99075 1.83 987703.98 
Total (adj.) 1000000 1000000 1000000 1000000 1000000 IO00000 



Table A-1. Data for calculating thermal cross-sections for neutron absorption, igneous rock 

2 Element A t  Wt. 
amu 

Sampie identifier and type 
SP-20 SP-21 SP-22 SP-23 
PPm PPm* PPm* PP"', 

basalt. basal t basalt. rhyolite. 
dcpth. 193 mcters depth, 259 meters outcrop outcrop 
209880 2 14555 227 1 76 347775 

79388 70390 75683 60864 
98719 94055 6607 1 1 5002 
70970 57176 * 666 10 343 1 
43665 30035 45293 543 
189 17 23294 17211 26707 
5230 1461 1 26980 4 1 840 
2662 1353 2269 13 1 

*I5 *15 *15 *40 
*0.4 '0.4 *0.4 *5.5 
*5 *5 *5 *15 

100 IO0 * 1 O0 *300 
*370 '370 '370 '800 
3882.04 8489.93 524 1 -73 2813.21 

16247 15887 473 6 1259 
147 1 1549 1162 465 

7.39 13.77 5.07 14.25 
0.96 2.22 0.73 2.2 
6.50 1 3 -99 4.78 14.07 

417451 400495 4 19409 475383 
30809.68 67380.12 4 1600.8 1 22326.97 

0.8 3 .O 1.2 5.8 
2.23 6.57 5.28 23 .O 

17 CI 35.5 200 200 *50 *240 

Total (raw) 965308.28 924 129.95 953 157.46 974859.82 
Total (adj.) 1000000 1000000 1000000 1000000 



Table A-2. Data for calcuiating thennaj cross-sections for neutron absorption, sedimentaxy 
rock sarngles. 

[Sample locations are shown on figure 1-1 .  Source of data: major rock-forrning elements as 
oxides in weight percent, trace elements in ppm equivalent weight, and volatiIe components in 
weight percent are from the Idaho State University, Department of Geology, Geochemistry 
Laboratory and were detennined by ICP-AES? WAA, or LOI; unmarked chlorine values in 
weight percent are from the U.S. Geological Survey, Branch of Geochemisûy Laboratory and 
were determined by IES; values marked with an asterisk (*) are h m  Parker directly (1967, table 
19, p. D13-14). Calculations: Gd values were calculated using chondritic trace-element ratios; 
carbon was calculated using the assumption that LOI values resulted fiom volatiIization of 
carbonate; values for H,w and 0.w were calculated using the assumption that the difference 
between the raw and adj. totals plus excess LOI values was attributable to water content; the 
value for 0,r was calculated from oxide weight-percent and LOI data. For a detailed expIanation 
of calculations and conversions, see section 5.3.3 of text on data reduction. Symbol: -bd-, beiow 
detection limit; c, less than.] 

S a m ~ l c  identifier and t w e  

SP-1 SP-2 SP-3 SPA SP-12 SP-25 SP-26 
At W t  FPm* PPm* PPm* PPm* P p m  PPm* PPm* 
nmu limestone. limeStone* Iimestone, dolomite, limestone, shalc limcstone, 

outcrop dePtho Io outrrop outcrop outcrop outcrop outcrop 
mctcrs 

13 Si 28.1 7947 I 0564 8554 3085 19960 226241 -bd- 

Total (adj,) i O00000 1 O00000 1 O00000 1 O00000 I000000 1000000 1000000 



Table A-3. Data for calculating thermal cross-sections for neutron absorption, metamorphic 
rock sarnples. 

[Sample locations are shown on figure 1.1. Source of data: major rock-forming elements as 
oxides in weight percent, trace elements in ppm equivalent weight, and volatile components in 
weight percent are frorn the Idaho State University, Department of Geology, Geochemistry 
Laboratory and were determined by ICP-AES, mAA, or LOI (value in parenthesis indicates that 
the elernent's concentration was outside the calibration range of the instrument during analysis 
and that the value was reduced to make the adjusted weight percent data equal 100 percent); 
unmarked chlorine values in weight percent are from the US. GeoIogical Survey, Branch of 
Geochemistry Laboratory and were determined by IES; values marked with an asterisk (*) are 
from ~arker-  [directly for basalts and from geochemical equivalent for quartzite (sandstone)] 
(1967, table 19, p. DI3-14). Assumption: LOI values provided by the ISU Laboratory were 
assumed to resuit from volatilization of carbonate or water. Calculations: GD values were 
calculated using chondritic trace-element ratios; carbon values marked with an at (@) were 
calculated using the assumption that the moles of carbon were equivalent to the sum of the moles 
of calcium and magnesium; values for H,w and 0 , w  were calculated using the assumption that 
the difference between the raw and adj. totals plus the excess LOI values were attributable to 
water content (both the water of hydration and pore water); the value for 0 ,r  was calculated from 
oxide weight percent and LOI data. For a detailed explanation of caiculations and conversions, 
see section oftext on data reduction. Symbols: - bd-, below detection limit; c, less than.] 

Snmple identifier and type 
SP-Il SP-24 

Z Elcmrnr At. H't. srnu PPm. ppm, quartzite. quamite, outcrop 
outcrop 

14 Si 28.1 - 342353 (4635 13) 
13 Al 27.0 16883 -bd- 
26 Fr. 55.8 544 1 155 
20 Ca 40.1 69969 O 
12 h{€ 24.3 5126 181 
I l  Na 23.0 37 1 148 
19 K 39.1 8966 2657 
15 f ' 30.97 524 13 1 
3 Li 6.9 '15 i 5 
4 I 3 s  9.0 1 '0.5 *O S  
5 E3 I U.8 *35 *35 
6 c' 12.0 2350 1 a 8 9  
9 f-- IV 270 *270 
1 l Lw I .O 2379.16 295.54 

22 .ri 47.9 7 19 420 
25 hl n 54.9 620 155 
62 Sm 15U.4 2.0 1 0.28 
65 Tb 158.9 0.27 0.04 
64 Gd 157.3 1.81 0.26 
8 0.r 16.0 503836 529578 
8 0 .w 16.0 18882.17 2345.53 
92 U 238.0 1.4 0.3 
90 Th 232.0 3.68 0.55 
17 Ci 35.5 100 *IO 

Total (ratv) 978738.67 997358.93 
Tom1 (ad-j.) 1000000 1000000 



THERMAL NEUTRON CROSS-SECTIONS. TOTAL NEUTRON PRODUCTION 
RATES. AND INSITU SECULAR EOUILIBRI[UM %VCI RATIOS FOR ROCK TYPES 

INVESTIGATED 



Table B-la, Caiculated thermal neutron cross section for neutron absorption, total neutron 
36 production rate, and in situ secular equilibrium CVCl ratio for igneous rock sample SP-5, 

rhyolite. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yieids, and Thermal Cross. Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million eiectron volts (MeV). Mms Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; square centimeters per gram; <, less 

Element Mass Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
4 14 
43 3 
548 
529 
527 
56 1 
472 

Neutron Yield 

n/yr/g rock n/yr/g rock 
per ppm U per ppm Th 

0.69 0.339 
5.1 16 2.585 
O. 187 0.208 
0.282 0.026 
5.834 2.564 
12.535 5.959 
0.89 0.08 
4.473 0.573 
23.86 1 0.54 
265.948 91.561 
62-55 1 19.779 
0.456 O. 179 
41-33 16.362 
0.236 0.084 

Sample 
PPm 

343302 
56 153 
10649 
15223 
5549 
25223 
38935 

1 75 
40 
5.5 
15 
300 
800 

499023.1 8 

Weighting 
Factor 
155.86 
24-93 
3.74 
6.52 
2.56 

1 1 -50 
16.12 
0.08 
0.02 
0.00 
0.0 1 
0.17 
0.38 

262.99 

Weighted Neutron Yield 

n/yr/g rock n/yr/g rock per 
Per PPm U PPm Th 

107.54 52.84 

Total 995392.68 484.86 490.95 223 -62 
Element Atomic Wcight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

(anlu) Section (barndatom) Section (cm2/g) 

Neutron Production Rate (nlgyr) 
(X factor = 1 .O 13) (Total U ppm = 4.9) = 4.9637 

(Y factor = 0.46 1 )  (Total Th ppm = 25.1 ) = lI.5711 
*'u spontaneous fission = 2.102 In  Situ Sccular 

Equilibrium "CUCI 
RPtio ( x 10-'~) = 32 Total neutron production rate (n/g/yr) = 19 



Table B-Ib. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secuiar equfiibriurn 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-6, 
rhyolite. 

[See figure 1.1 for location of sampIing site. See text for explmation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
miIIion eIectron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; cm21g, square centimeters per gram; c, less 

Element 

Si 
AI 
Fe 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

n/yr/g rock 
Per PPm U 

0.69 
5.1 16 
0.187 
0.282 
5.834 

12.535 
0.89 
4-473 

23 -86 
265.948 

62.55 1 
0.456 

4 1.33 
0.236 

d y d g  rock 
per ppm Th 

0.339 
2.585 
0.208 
0.026 
2.564 
5.959 
0.08 
0,573 

10.54 
91.561 
19,779 
0-179 

16.362 
0.084 

Sample 
PPm 

345718 
644 1 0 
13137 
5503 
724 

26633 
44746 

218 
40 
5.5 

15 
300 
800 

493343.88 

Weighting 
Factor 

156.96 
28.60 
4.6 1 
2.36 
0.33 

12-14 
18-52 
0.09 
0.02 
0.00 
0.0 1 
0.17 
0.38 

259.99 

Weighted Neutron Yield 

n/yr/g rock n/yr/g rock per 
Per PPm U PPm Th 

108.30 53.21 
146.3 1 73.93 

0.80 0.96 
0.66 0.06 
1.95 0.86 

152.23 72.37 
16.49 1.48 
0.42 0.05 
0.52 0.23 
0.77 . 0.27 
0.49 O- 16 
0.08 0.03 

15.61 6.18 
61 -36 2 1.84 

Total 995593.38 506.06 23 1.62 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

Section (barnslatom) Section (cm2/g) 

Total 999728 0.0084 10 
Neutron Production Rate (n/g/yr) 

(X factor = 1.045) (Total U ppm = 4.4) = 4.598 

(Y factor = 0.478) (Total Th ppm = 25.4) = 12.1412 
t 3 8 ~  spontaneous fission = 1.888 In Situ Secular 

Equilibriurn ; W ~ ~ ~ ~  

Ratio ( x i 09 = 32 Total neutron production rate (n/g/yr) = 19 



Table B-lc. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium "CUCI ratio for igneous rock sarnple SP-7, 
rhyolite. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of  energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sarnple pprn fiom Appendix table A-1; cm2/& square centimeters per gram; <, less 

Element 

Si 
AI 
Fe 
Ca 
M g  
Na 
K 
P 
Li 

Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
4 14 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

dyrlg rock nlyrlg rock 
per ppm U per ppm Th 

0.69 0.339 
5-1 16 2.585 
O- 187 0.208 
0.282 0.026 
5.834 2.564 

12.535 5-959 
0.89 0.08 
3.473 0.573 

23-86 10.54 
265.948 91.561 
62.55 1 19.779 
0,356 O. 179 

41.33 16.362 
0.236 0.084 

Weighting 
Factor 

142.84 
26.0 1 
4.45 

15.69 
0.28 

1 1.98 
18.0 1 
0.06 
0.02 
0.00 
0.00 
0.17 
0.38 

262.29 

Weighted Neutron Yield 

n/yr/g rock nlyrlg rock per 
Per PPm U PPm Th 

98.56 48.42 
133.08 67.24 

0.83 0.93 
4.43 0.4 1 
1.62 0.7 1 

150.1 1 7 1.36 
16.03 1.44 
0.25 0.03 
0.52 0.23 
0.77 0.27 
0.16 0.05 
0.08 0.03 

15-61 6.18 
6 1.90 22.03 

Total 991901.13 482.18 483.96 2 19.34 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

Section (barnshtom) Section (cm2/g) 

Neutron Production Rate (n/g/yr) 
(X factor = 1 -004) (Total U ppm = S. 1 )  = 5.1204 

(Y factor = 0.455) (Total Th ppm = 28.8) = 13.104 
spontaneous fission = 2.188 In Situ Seculrr 

Equilibrium "CUCI 
Ratio ( x IO-'? = 37 Total neutron production rate (nlglyr) = 20 



Table B-Id. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ / ~ 1  ratio for igneous rock sample SP-8, 
rhyolite. 

[See figure 1. L for location o f  sampling site. See text for explmation o f  Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross-Sections* Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-1; cmZ/& square centimeters per gram; c, less 

Neutron Yield 

Element Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

n/yr/g rock 
Per PPm U 

0.69 
5.116 
0.187 
0.282 
5.834 

12-53 5 
0.89 
4.473 

23.86 
265.948 
62-55 1 
0.456 

4 1.33 
0.236 

nlyrlg rock 
per ppm Th 

0.339 
2.585 
0.208 
0.026 
2.564 
5.959 
0.08 
0.573 

10.54 
91.561 
19.779 

O- 179 
16.362 
0.084 

Sample 
PP'" 

353 104 
60864 
1 O338 
3859 
422 

25965 
44580 

131 
40 

5 -5 
1s 

300 
800 

495660.78 

Weighting 
Factor 

160.3 1 
27.02 
3.63 
1-65 
O. 19 

11-84 
18-46 
0.06 
0.02 
0.00 
0.0 1 
0.17 
0.38 

261.21 

Weighted Neutron Yield 

n/yr/g rock nlyrig rock per 
Per PPm U PPm Th 

110.61 54.34 
138.25 69.86 

0.68 0.75 
0.47 0.04 
1.13 0.50 

148.41 70.55 
16-43 1.48 
0.25 0.03 
0.52 0.23 
0.77 O .27 
0.49 0.16 
0.08 0.03 

15-61 6-18 
6 1 -65 2 1.94 

Total 996084.28 484.94 495.36 22637 - 
Element AtomicWeight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

(amu) Section (barndatom) Section (cmz/g) 
Si 28.1 353 104 0.17 0.00 1286 
Al 27.0 60864 0.233 0.0003 16 
F e  55.8 1 0338 2.56 0.000286 
Ca 40.1 3859 0.43 0.000025 
Mg 24.3 422 0.063 0.00000 1 
N a  23 .O 25965 0.53 0.000360 
K 39.1 44580 2.1 0.00 144 1 
P 30.97 13 1 0-18 <O.OOOOO 1 

Li 6.9 40 7 1 0.000248 
Be 9.0 1 5.5 0.0092 <0.00000 1 
B 10.8 15 764 0.000639 
C 12.0 300 0.0035 <0.00000 1 
F 19.0 800 0.0096 <0.00000 1 
H 1 .O 1944-53 0.33 0.000386 
Ti 47.9 899 6.1 0.000069 

Mn 54.9 310 13.3 0.000045 
Sm 150.4 13.6 5600 0.000305 
Gd 157.3 12.74 49000 0-002389 
O 16-0 495660.78 0.00028 0-000005 

Total 999264.16 0.007802 
Neutron Production Rate (ni&) 

(X factor = 1 .O2 1 ) (Total U pprn = 6.2) = 6.3302 

(Y factor = 0.467) (Total Th ppm = 27.7) = 12.9359 
*'u spontaneous fission = 2.660 

Total neutron production rate (dglyr) = 22 



Table B-le. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-9, opal 
deposit in rhyolite. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; cm21g, square centimeters per gram; c, less 

Element 

Si 
Al 
Fe 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

n/yr/g rock n/yr/g rock 
per ppm U per ppm Th 

0.69 0.339 
5.1 16 2.585 
O. i 87 0.208 
0.282 0.026 
5.834 2.564 
12.535 5.959 
0.89 0.08 
4.473 0.573 
23.86 10.54 
265.948 91.561 
62.55 1 19.779 
0.456 O. 179 
4 1.33 16.362 
0.236 0.084 

Sample 
PP"' 

345625 
64780 
2254 
1572 
121 
964 
7222 
175 

1s 
0.5 

3 5 
53 1 
270 

56 1772.09 

Weighting 
Factor 
156.9 1 
28.76 
0.79 
0.67 
0.06 
0.44 
2.99 
0.08 
0.0 1 
0.00 
0.02 
0.30 
0.13 

296.05 

Weighted Neutron Yield 

Tora1 985336.59 487.21 34 1 -28 158.25 
Element Atomic Wtight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

(amu) Section (barns/atom) Section (cmz/g) 
Si 28.1 345625 0.17 0.00 1259 
Al 27.0 64780 0.233 0.0003 3 7 
Fe 55.8 2251 2.56 0.000062 
Ca 40.1 1572 0.43 0.0000 1 O 
Mg 24.3 12 1 0.063 ~0.00000 1 
Na 23 .O 964 0.53 0.0000 13 
K 39.1 7222 2.1 0.000234 
P 30.97 1 75 0.18 0.00000 1 
Li 6.9 15 7 1 0.000093 
Be 9-0 1 0-5 1.1 19 <O.OOOOO 1 
B 10.8 3 5 764 0.00 149 1 
C 12.0 53 1 0.0035 <0.00000 1 
F 19.0 270 0.0096 <0.00000 1 
H 1 .O 13 180.93 0.33 0.0026 19 
Ti 47-9 1439 6.1 0.000 1 1 O 
Mn 54.9 77 13.3 0.00001 1 
Sm 150.4 4-28 5600 0.000096 
Gd 157.3 3.17 49000 0.000594 
O 16.0 56 1772.09 0.00028 0.000006 

Total 1000040.97 0.006935 
Neutron Production Rate (dg&) 

(X factor = 0.700) (Total U ppm = 5.3) = 3.71 

(Y factor = 0.325) (Total Th ppm = 20.3) = 6.5975 
2 3 8 ~  spontaneous fission = 2.274 In S a  Sccular 

Equilibrium *CVCI 
Total neutron production rate (nlglyr) = 13 Rntio ( x IO-'? = 26 



Table B-lf. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ 1 / ~ ~  ratio for igneous rock m p l e  SP-1 O, 
rhyo 1 ite. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-l; cm2/& square centimeters per gram; c, less 
than.]- 

Element 

Si 
Al 
Fe 
Ca 
M g  
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

b s  Stopping 
Powcr 

454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

nlyrlg rock 
Per PPm lJ 

0.69 
5.1 16 
O. 187 
0.282 
5.834 

12.535 
0.89 
4.473 

23.86 
265.948 
62.55 1 
0.456 

4 1.33 
0.236 

Weighttd Neirtron Yield 

nlyrlg rock 
per ppm Th 

0.339 
2.585 
0.208 
0.026 
2.564 
5.959 
0.08 
0.573 

10.54 
91.561 
19.779 

O. 179 
16.362 
0.084 

Samplc 
PPm 

338660 
64304 
14458 
443 1 
603 

27820 
44497 

175 
40 
5.5 

15 
300 
800 

498232.89 

Weighting 
Factor 

153.75 
28.55 
5.07 
1.90 
0.28 

12.69 
18-42 
0.08 
0.02 
0.00 
0.0 1 
0.17 
0.38 

262.57 

n/yr/g rock nfyrlg rock per 
Pcr PPm U PPm Th 

106.09 52.12 

Total 99434 1.39 483.88 5 10.45 233.77 - 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

(am@ Section (barndatom) Section (cmz/g) 
Si 28.1 338660 0.17 0.001 233 
Al 27.0 64304 0,233 0.000334 
Fe 55.8 14458 2.56 0.000399 
Ca 40.1 443 1 0.43 0.000029 
Mg 24.3 603 0.063 0.00000 1 
Na 23.0 27820 0.53 0.000386 
K 39.1 44497 2.1 0.00 1439 
P 30.97 175 O. 18 0.00000 1 

Li 6.9 4 O 7 1 0.000248 
Be 9.0 1 5.5 1.1 19 <O.OOOOO 1 
B 10.8 15 764 0.000639 
C 12.0 300 0.0035 <O.OOOOO 1 
F 19.0 800 0.0096 <O.OOOOO 1 
H 1 .O 3630.32 0.33 0.00072 1 
Ti 47.9 1499 6.1 0,000 1 15 

Mn 54.9 232 13.3 0.000034 
Sm 150.4 12.9 5600 0.000289 
Gd 157.3 12.3 49000 0.002307 
O 16.0 498232.89 0.00028 0.000005 

Neutron Production Rate (nlglyr) 
(X factor = 1 . O S )  (Total U pprn = 5.3 = 5.5915 
(Y factor = 0.483) (Total ni ppm = 24.9) = 12.0267 

spontaneous fission = 2.274 

Total neutron production rate (n/g/yr) = 20 

In silu Secular 
Equilibrium x~~~~ 

Ratio ( x W'3 = 35 



Table B-lg. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-13, 
rhyolite. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sarnple pprn from Appendix table A-1; cm21g, square centimeters per gram; c, less 

Element 

Si 
AI  
Fe 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
8 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
414 
43 3 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

n/yr/g rock n/yr/g rock 
per pprn U per pprn Th 

0-69 0.339 
5-1 16 2.585 
0.187 0.208 
0.282 0.026 
5.834 2.564 
12.535 5.959 
0.89 0.08 
4.473 0.573 
23.86 10.54 
265.948 91.561 
62.55 1 1 9.779 
0.456 0.179 
3 1.33 16.362 
0.236 0.084 

SampEe 
PP"" 

3464 19 
6208 1 
8550 

1 IO78 
784 

25594 
44165 

1 75 
40 
5.5 
15 

300 
800 

496338.1 1 

Weighting 
Factor 
157.27 
27-56 
3 .O0 
4.74 
0.36 

1 1-67 
18.28 
0.08 
0.02 
0.00 
0.0 1 
0.17 
0.38 

26 1.57 

Weighted Neutron Yield 

n/yr/g rock nlyr/g rock ptr 
per ppm U pprn Th 

108.52 53.32 

Total 996344.6 1 485.12 495.65 226.13 
Element AtomicWeight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

@mu) Section (barns/atom) Section (cmz/g) 
Si 28.1 346419 O. 17 0.00 1262 
Al  27.0 6208 1 0.233 0.000323 
Fe 55.8 8550 2.56 0.000236 
Ca 40.1 1 1 078 O -43 0.000072 
M g  24.3 784 0.063 0.00000 1 
Na 23 .O 25594 0.53 0.000355 
K 39.1 44 165 2.1 0.00 1428 
P 30-97 175 0.18 0.00000 1 
Li 6-9 40 7 1 0.000248 
Be 9.0 1 5.5 1.1 19 <O.OOOOO 1 
B 10.8 15 764 0.000639 
C 12.0 300 0.0035 <O.OOOOO 1 
F 19.0 800 0.0096 <0.000001 
H 1 .O 2579.75 0.3 3 0.0005 12 
Ti 47.9 480 6.1 0.000037 
Mn 54.9 310 13.3 0.000045 
Sm 150.4 9.9 1 5600 0.000222 
Gd 157.3 9.96 49000 0.00 1868 
O 16.0 496338.1 1 0.00028 0.000005 

Neutron Production Rate (n/g/yr) 
(X factor = 1.022) (Total U ppm = 5.1) = 5.2122 

(Y factor = 0.466) (Total Th ppm = 19.1 ) = 8.9006 
2 3 8 ~  spontaneous fission = 2.188 

Total neutron production rate (n/g/yr) = 16 



TabIe B-Ih. Calcuiated thenna[ neutron cross section for neutron absorption, total neutron 
production rate, and in siru secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sarnple SP-15, 
basalt. 

[See figure 1.1 for location of sampiing site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of  rock per square 
centimeter. Sample pprn from Appendix table A-1; cm2/& square centimefers per g m n ;  <, less 
than.] 

Element 

Si 
Al 
Fe 
Ca 
M g  
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Y ield 

n/yr/g rock nlyr/g rock 
perppmU perppmTh 

Sarnpie 
PP"' 

2 1 O348 
6986 1 
90945 
77545 
33291 
15727 
12369 
3710 

15 
O .4 
5 

1 O0 
3 70 

46086 1-49 

Weighting 
Factor 

95.50 
3 1.02 
3 1-92 
33.19 
15.35 
7.17 
5-12 
1.61 
0.0 1 
0.00 
0.00 
0.06 
0.17 

242.87 

Weighted Neutron Yield 

n/yr/g rock n/yr/g rock per 
Per PPm U PPm T h  

Total 975 147.89 463 -99 496.06 226.90 
Element Atomic Weight SampIe ppm Neutron Absorption Cross Thermal Neutron Cross 

m u )  Section (barÏdatom) Section (cmZlg) 
Si 28.1 2 10348 0.17 0.000766 
Al 27.0 6986 1 0.233 0.000363 
Ft: 55.8 90945 2.56 0.002512 
Ca 40.1 7754 5 0.43 0.00050 1 
M g  24 -3 3329 1 0.063 0.000052 
Na 23.0 15727 0.53 0.00021 8 
K 39. l 12369 2.1 0.000400 
P 30.97 3710 0.18 0.0000 13 

Li 6-9 15 7 1 0.000093 
BI: 9.0 1 O 4 0.009 <O.OOOOO 1 
B 10.8 5 764 0.0002 13 
C 12.0 100 0.0035 <O.OOOOO 1 
F 19.0 370 0.0096 <O.OOOOO 1 
H I .O 7065.57 0.33 0.00 1404 
Ti 47.9 16247 6. I 0.00 1246 

Mn 54.9 147 1 13.3 0.0002 15 
Sm 150.4 7.5 1 5600 0.000 168 
Gd 157.3 6.45 49000 0.001210 

O 16.0 46086 1 .J9 0.00028 0.000005 
Total 999945.42 0.009377 

Neutron Production Rare (n/g/yr) 
(X factor = 1.069) (Total U ppm = 1.1 ) = 1.1759 

(Y factor = 0.489) (Total Th ppm = 2.54) = 1.2421 
spontaneous fission = 0.472 

Total neutron production rate (n/g/yr) = 2.9 

Zn siiu Sccular 
Equilibrium x ~ ~ ~ l  

Ratio ( x IO-'? = 4 5  



Table B-li. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-16, 
basalt. 

[See figure 1.1 for location of sarnpling site. See text for exptanation o f  Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV), Mass Stopping Powet units: MeV per gram of rock per square 
centimeter. Sample ppm fiorn Appendix table A-1; square centimeters per gram; ( l e s  

Element 

Si 
AI 
Fe 
Ca 
M g  
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
414 
43 3 
548 
529 
527 
56 1 
472 
527 

n/yr/g rock 
Per PPm U 

0.69 
5.1 16 
O. 187 
0.282 
5.834 

12.535 
0.89 
4.473 

23.86 
265.948 
62.55 1 
0.456 

41.33 
0.236 

n/yr/g rock 
per ppm Th 

0.339 
2.585 
0.208 
0.026 
2.564 
5.959 
0.08 
0.573 

10.54 
9 1-56 1 
19.779 

O. 179 
16.362 
0.084 

Neutron Yield 

Sample 
PP"' 

2 12685 
77800 
85504 
73614 
49575 
17582 
3653 
1091 

12 
O -4 
5 

1 O0 
3 70 

460222.97 

Weighting 
Factor 

96.56 
34.54 
30.0 1 
31.51 
22.85 
8.02 
1-51 
0.47 
0.0 1 
0.00 
0.00 
0.06 
0.17 

242.54 

Weighted Neutron Yield 

nlyrfg rock dyrlg rock per 
Per PPm U PPm Th 

Total 9822 14.3 7 468.25 559.99 259-24 
L 

Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 
(amu) Section (barndatom) Section (cmZ/g) 

Si 28.1 2 12685 0.17 0.000775 
Al 27.0 77800 0.233 0.000404 
Fe 55.8 85504 2.56 0.002362 
Ca 40. I 736 14 0.43 0.000475 
Mg 24.3 49575 0.063 0.000077 
Na 23 -0 I7582 0.53 0.000244 
K 39.1 3653 2-1 0.000 1 18 
P 30.97 1091 0.18 0.000004 

Li 6.9 12 7 1 0.000074 
Be 9.0 1 0.4 1.1 19 <O.OOOOO 1 
B 10.8 5 764 0.00021 3 
C 12-0 1 O0 0.003 5 c0.00000 1 
F 19.0 3 70 0.0096 <0.00000 1 
H 1 -0 5863.45 0.33 0.001 165 
Ti 47.9 10491 6.1 0.000804 

Mn 54 -9 1317 13.3 0.000 192 
Sm 150.4 4.75 5600 0.000 1 O6 
Gd 157.3 3.87 49000 0,000726 

O 16.0 460222.97 0.00028 0.000005 
Total 999894.44 0.007744 

Neutron Production Rate (n/g/yr) 
(X factor = 1.196) (Total U ppm = 0.8) = 0.9568 

(Y factor = 0.554) (Total Th ppm = 1.7 1 ) = 0.9173 
spontaneous fission = 0.343 

Total neutron production rate (n/g/yr) = 2.3 

In  Si& Secular 
Equilibrium "CUCI 

Ratio ( x f O-'? = 4.2 



Table B-lj. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ / ~ ~  ratio for igneous rock sample SP-17, 
rhyolite. 

[See figure 1. I for location of sampIing site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron YieIds, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha partide of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-1; cm2/& square centimeters per gram; c, less 

Element Mass Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
4 14 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

n/yr/grock dyrlgrock 
per ppm U per ppm Th 

0.69 0.339 
5.1 16 2,585 
0.187 0.208 
0.282 0.026 
5.834 2.564 

12.535 5-959 
0.89 0.08 
4.473 0.573 

23.86 10.54 
265.948 91.561 
62.55 1 19.779 

0.456 O. 179 
41-33 16.362 

0.236 0.084 

Sample Weighting 
Factor 

160.41 
29.37 
4.53 
2.14 
0.47 

14.58 
15-81 
0.04 
0.02 
0.00 
0.0 1 
0.17 
0.38 

257.39 

Weighted Neutron Yield 

n/yr/g rock nlyrlg rock per 
Pet PPm U PPm Th 

1 10.69 54.38 
150.27 75.93 

0.85 0.94 
0.60 0.06 
2.76 1.21 

182-76 86.88 
14.07 1.26 

O. 17 0.02 
0.52 0.23 
0.77 0.27 
0.49 0-16 
0.C8 0.03 

15.61 6.18 
60.74 2 1.62 

Total 998234.59 485.32 540.39 249.17 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

Section (barndatom) 
0.17 
0.233 
2.56 
0.43 
0.063 
0.53 
2.1 
0.18 

7 1 
1.1 19 

764 
0.0035 
0.0096 
0.33 
6.1 

13.3 
5600 

49000 
0.00028 

Section (cm2/g) 
0.00 1287 
0.000344 
0.0003 56 
0.000032 
0.000002 
0.000444 
0.00 1235 

<0.00000 1 
0.000248 

~0~00000  1 
0.000639 

~0.00000 1 
<0.00000 1 

0.00002 1 
0.000076 
0.000056 
0,000346 
0-004244 
0.000005 

Neutron Production Rate (n/g/yr) 
(X factor = 1.1 13) (Total U pprn = 1 1 -5 )  = 12.7995 

(Y factor = 0.5 13) (Total Th ppm = 22.5) = 1 1.5425 
spontanmus fission = 4.934 In Siiu Secular 

Equilibrium x~~~~ 
Ratio ( x IO-'? = 45 Total neutron production rate (ir/%yr) = 29 



Table B-lk. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-18, 
basalt. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each eIement for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; cm2/& square centimeters per gram; <, less 

Element 

Si 
Al 
Fe 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Powcr 
454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

n/yr/g rock nlyrlg rock 
per ppm U per ppm T h  

0.69 0.339 
5.1 16 2.585 
0.187 0.208 
0.282 0.026 
5.834 2.564 
12.535 5.959 
0.89 0.08 
4.473 OS73 
23-86 10.54 
265-948 9 1.56 1 
62.55 1 19,779 
0.456 O. 179 
4 1.33 16.362 
0.236 0.084 

Sample 
PPm 

222969 
85739 
81618 
79332 
50359 
18250 
3736 
1397 
15 
0.4 
5 

1 O0 
370 

443085.29 

Wcighting 
Factor 
101.23 
3 8-07 
28.65 
33.95 
23 -22 
8.32 
1.55 
0.60 
0.0 1 
0.00 
0.00 
0.06 
0.17 

233.5 1 

Weighted Neutron Yield 
-- 

d y r f g  rock n/yr/g rock per 
Per PPm U PPm T h  

Total 986975.69 469.33 586.14 - 27 1.79 
EIement Atornic Weight Sample pprn Neutron Absorption Cross Thermal Neutron Cross . - 

(arnu) Section (barndatom) Section (cmz/g) 
Si 28.1 222969 0.17 0.0008 12 
AI 27.0 85739 0.233 0.000445 
Fe 55.8 81618 2.56 0.002254 
Ca 40.1 79332 0.43 0.0005 12 
M g  24.3 50359 0.063 0.000079 
Na 23.0 18250 0.53 0.000253 
K 39. f 3736 2.1 0.000 12 1 
P 30.97 1397 0.18 0.000005 
Li 6.9 15 7 1 0.000093 
Br: 9.0 1 0.4 1.1 19 <O.OOOOO 1 
B 10.8 5 764 0.0002 13 
C 12.0 100 0.0035 ~0.00000 1 
F 19.0 3 70 0.0096 <O.OOOOO 1 
H 1 .O 1034.88 0.33 0.000206 
Ti 47.9 1061 1 6.1 0.0008 13 
Mn 54 -9 13 17 13.3 0.000 1 92 
Sm 150.4 4.8 5600 0.000 108 
Gd 157.3 4.12 49000 0.000773 
O 16.0 443085.29 0.00028 0.000005 

Total 999947.49 0.006883 
Neutron Production Rate (n/g/yr) 

(X factor = 1.249) (Total U ppm = 0.6) = 0.7494 

(Y factor = 0.579) (Total Th ppm = 1.3 1 ) = 0.7585 
L 3 8 ~  sponfa~eous fission = 0.257 In Situ Secular 

Equilibrium %/CI 
Total neutron production rate (n/g/yr) = 1.8 ~ a t i o ( x 1 0 " ~ ) =  3.7 





Table B-lm. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in siîu secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sample SP-20, 
basalt 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each eIement for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; cm2/& square centirneters per gram; <, less 

Element 

Si 
Al 
Fe 
Ca 
M g  
Na 
K 
P 
Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
414 
43 3 
548 
529 
527 
56 1 
472 
527 

Neutron Yield 

nlyrlgrock nlyrlgrock 
per pprn U per pprn Th 

0.69 0.339 
5.1 16 2-585 
O. 187 0-208 
0.282 0-026 
5.834 2-564 

12.535 5.959 
0-89 0.08 
4.473 0.573 

23.86 1 0.54 
265.948 91-561 
62.55 1 19,779 
0.456 O. 179 

41.33 1 6362 
0.236 0.084 

Sample 
PPm 

209880 
79338 
987 19 
70970 
43665 
18917 
5230 
2662 

15 
0.4 
5 

1 O0 
370 

448260.68 

Weighted Neutron Yield 

Weighting 
Factor 

95.29 
3 5-23 
34.65 
3 0.3 8 
20.13 
8.63 
2.17 
1-15 
0.0 1 
0.00 
0.00 
0.06 
0.17 

n/yr/g rock 
Per PPm U 

65.75 
180.22 

6.48 
8.57 

1 17.44 
108.13 

1.93 
5.16 
0.20 
0.06 
0.16 
0.03 
7.22 

nlyrlg rock per 
PPm Th 

32.30 

236.23 55.75 19.84 
Total 978 132.08 464.09 557.07 258.08 - 

Element Atomic Weight Smmple pprn Neutron Absorption Cross Thermal Neutrqn Cross 
Section (barns/atom) 

0.17 
0.233 
2.56 
0.43 
0.063 
0.53 
2; I 
0.18 

7 1 
1.1 19 

764 
0.0035 
0.0096 
0.33 
6.1 

13.3 
5600 

49000 
0.00028 

Section (cmZ/g) 
0.000764 
0.0004 12 
0.002 193 
0,000637 
0.0001 1 1 
0.000606 
0.0006 12 
0.0000 18 
0.0 16490 

~0.00000 1 
0.0002 13 

<0.00000 1 
c0.00000 1 

0.00077 1 
0.001 246 
0.0002 15 
0.000 166 
0.001219 
0.000005 

- -  - 

Neutron Production Rate (n/g/yr) 
(X factor = 1.200) (Total U ppm = 0.8) = 0.96 

(Y factor = 0.556) (Total Th ppm = 2.23) = 1.2399 
2 3 8 ~  spontaneous fission = 0.343 In Situ Scculir 

Eauilibrium %/CI 
Total neutron production rate (nlglyr) = 23 -Ratio ( x l0-'3 = 1.4 



Table B-In. Calcuiated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ 1 / ~ 1  ratio for igneous rock sample SP-21, 
basaIt. 

[See figure 1.1 for Iocation of samphng site. See text for explmation of Mass Stopping Power, 
Weighting Factor, X and Y factors. Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particla of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn frorn Appendix table A-1; cm2/& square centimeters per gram; <, less 

Neutron Yield Weighted Neutron Yield 

Element M a s  Stopping n/yr/g rock n/yr/g rock Sample Weighting n/yr/g rock n/yr/g rock per 
Power per ppm U per ppm T h  ppm Factor per ppm U PPm T h  

Si 454 0.69 0.339 214555 97.4 1 672  1 33.02 
Al 444 5.1 16 2.585 70390 3 1-25 159.89 80.79 
Fe 35 1 O. 187 0.208 94055 33.01 6.17 6.87 
Ca 428 0.282 0.026 57176 24.47 6.90 0.64 
Mg 46 1 5.834 2.564 30035 13.85 80.78 35.50 
Na 456 12.535 5.959 23294 10.62 133.15 63.30 
K 4 14 0.89 0.08 1461 1 6.05 5.38 0.48 
P 433 4.473 0.573 1353 0.59 2.62 0.34 

Li 548 23.86 10.53 15 0.0 1 0.20 0.09 
Be 529 265.948 91.561 0-4 0.00 0.06 0.02 
B 527 62.55 1 19.7 79 5 0.00 O- 16 0.05 
C 56 1 0.456 O. 179 1 O0 0.06 0.03 0.0 1 
F 472 4 1.33 16.362 370 O, 17 7.22 2.86 
O 527 0.236 0.084 367875-1 2 246.57 58.19 20.7 1 

Total 973834-52 464.06 527.96 244.67 
Element Atomic Weight Samplc ppm Neutron Absorption Cross Thermal Neutron Cross 

(amu) Section (barndatom) Section (cm2/g) 
S i  28.1 214555 O. 17 0.00078 1 
Al 27.0 70390 0.233 0.000366 
Fe 55-8 91055 2.56 0.002598 
Ca 40.1 57 176 0.43 0.000369 
Mg 24.3 30035 0.063 0.000047 - 
Na 23 .O 23291 0.53 0.000323 
K 39.1 1461 1 2- 1 0.000472 
P 30.97 1353 O. 18 0.000005 

Li 6.9 15 7 1 0.000093 
Be 9.0 1 0.4 1.1 19 <O.OOOOO 1 
B 10.8 5 764 0.00021 3 
C 12.0 I O 0  0.0035 <O.OOOOO 1 
F 19.0 3 70 0.0096 <O.OOOOO 1 
H 1 .O 8489.93 0.33 0.00 1687 
Ti 47.9 15887 6.1 0.001218 

Mn 54-9 1549 13.3 0.000226 
Sm 150.4 13.77 5600 0.000309 
Gd 157.3 13 -99 49000 0.002624 

O 16.0 44308529 0.00028 0.000005 
Total 974998.38 0.01 1334 

Kcutron Production Rate (n/g/yr) 
(X factor = 1,138) (Total U ppm = 3.00) = 3.4140 

(Y factor = 0.527) (Total Th ppm = 6.57) = 3.4624 
spontaneous fission = 1.287 In Situ Secular 

Equilibrium x~~~~ 
Total neutron production rate (n/g/yr) = 8.2 Ratio ( x 10"5) = 10 



Table B-Io, Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, end in sim secular equilibrium 3 6 ~ ~ ~ ~  ratio for igneous rock sarnple SP-22, 
basalt. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections, Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron voIts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-1; cm2/& square centimeten per gram; <, less 

Neutron Yield Weighted Neutron Yield 

Element Mass Stopping nfyrlg rock nlyrlg rock Sample Weighting nlyrig rock d y d g  rock per 
Power per ppm U per ppm Th ppm Factor per ppm U PPm Th 

Si 454 0.69 0.339 227176 103.14 71.17 34.96 
Al 444 5.1 16 2.585 75683 33.60 171.91 86.86 
Fe 35 1 O. 187 0208 66071 23.19 4.34 4.82 
Ca 428 0.282 0.026 66610 28.5 1 8.04 0.74 
Mg 46 1 5.834 2.564 45293 20.88 121.81 53.54 
Na 456 12-53 5 5.959 17211 7.85 98.38 46.77 
K 414 0.89 0.08 26980 11.17 9.94 0.89 
P 433 4.473 0.573 2269 0.98 4.3 9 0.56 

Li 548 23.86 10.54 15 0.0 1 0.20 0.09 
Be 529 265-948 91.561 0.4 0.00 0.06 0.02 
B 5 27 62.55 1 19.779 5 0.00 0.16 0.05 
C 56 1 0.456 0.179 1 O0 0.06 0.03 0.0 1 
F 472 4 1 -33 16.362 3 70 0.17 722 2.86 
O 527 0.236 0.084 46 1009.8 1 242.95 57.34 20.4 1 

Total 988793.21 472.52 554.98 252.59 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

tamu) Section (bnrns/atom) Section (cm21g) 
Si 28.1 227 176 O. 17 0.000827 
Al 27.0 75683 0.233 0.000393 
Fe 55.8 6607 1 2.56 0.00 1825 
Ca 40.1 666 1 O 0.43 0.000430 
Mg 24.3 45293 0.063 0.00007 1 
Na 23 .O 1721 1 0.53 0.000239 

K 39.1 26980 2.1 0.000872 
P 30.97 2269 0.18 0.000008 

Li 6.9 15 7 1 0,000093 
Be 9.0 1 0.4 1.1 19 <O.OOOOO 1 
B 10.8 5 764 0.0002 13 
C 12.0 100 0.0035 <0.00000 1 
F 19.0 370 0.0096 ~0.00000 1 
H 1 .O 524 1.73 0.33 0.00 104 I 
Ti 47.9 4736 6.1 0.000363 

Mn 54.9 1162 13.3 0.000 169 
Sm 150.4 5.07 5600 0-000 1 14 
Gd 157.3 4-78 49000 0.000896 

O 16.0 46 1009.8 1 0.00028 0,000005 
Total 999942.79 0.007560 

Neutron Production Rate (dglyr) 

(X factor = 1.175) (Total U pprn = 1 -2) = 1.41 

(Y factor = 0.535) (Total T h  ppm = 5.28) = 2.8248 
2 3 s ~  spontaneous fission = 0.515 In SIIu Secular 

Equilibrium WC~Cl  
Total neutron production rate (nlg/yr) = 4.8 Rftio ( x 16'3 = 9.1 



Table B-lp. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ 1  ratio for igneous rock sample SP-23, 
rhyolite- 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
miIIion eiectron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-l; cm2/& square centimeten pet gram; <, iess 

Neutron Yitld Weighted Neutron Yicld 

Element Mass Stopping n/yr/g rock n/yr/g rock Sample Weighting n/yr/g rock n/yr/g rock per 
Powcr per ppm U pcr ppm Th ppm Factor per ppm U PPm Th 

Si 454 0.69 0.339 347775 157.89 108.94 53.52 

Total 995 160.17 484.32 497.29 227.88 - 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

@mu) Section (barndatom) Section (cm2/g) 

Neutron Production Rate (n/g/yr) 
(X factor = 1.027) (Total U ppm = 5.8) = 5.9566 

(Y factor = 0.47 1 ) (Total Th ppm = 23.0) = 10.8330 
sp~ntaneous fission = 2.488 In SILU Stcuiar 

Equilibrium x~~~~ 
Ratio ( x  IO-'^ = 34 Total neutron production rate (dglyr) = 19 



Table B-2a. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secuiar equilibrium 3 6 ~ 1 / ~ 1  ratio for sedimentary rock sarnple SP-1, 
limestone. 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Themtal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each elernent for an aipha particle of energy 8.0 
million eIectron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-2; cm2/& square centimeters per gram; <, less @.J 

Neutron Yield Weighted Neutron Yield 

Element 

Si 
AI 
Fe 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

dyrlg rock n/yr/g rock 
per ppm U per ppm Th 

Sample 
PP"' 
7947 
1376 
233 

3 82508 
4522 

70 
415 
87 
5 
0.5 
20 

II8201 
330 

483838.35 

Weighting 
Factor 

3.61 
0.6 1 
0.08 

163.71 
2.08 
0.03 
O. 17 
0.04 
0.00 
0.00 
0.0 1 
66.3 1 
0.16 

254.98 

n/yr/g rock n/yr/g rock per 
ptr  ppm U ppm Th 

2.49 122 

Total 999556.85 49 1 -80 162.35 48.76 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross - . . -  

( a m ~ )  Section (bar&atom) Section (cm2/g) 
Si 28- 1 7947 0.17 0.000029 
AI 27-0 1376 0.233 0.000007 
Fe 55.8 23 3 2.56 0,000006 
Ca 40-1 382508 0.43 0.002469 

Ml2 24.3 4522 0.063 0.000007 
Na 23 .O 74 0.53 0.000001 
K 39-1 415 2.1 0,0000 13 
P 30.97 87 0-18 <O.OOOOO 1 
Li 6-9 5 7 1 0.00003 1 
Be 9-0 1 0.5 0.0092 -=O.OOOOO I 
B 10.8 20 764 0.000852 
C 12.0 118201 0.0035 0.000021 
F 19.0 330 0.0096 <O.OOOOO I 
H t-O 340.3 7 0.33 0.000068 
Ti 47.9 60 6.1 0.000005 
Mn 54.9 77 13.3 0.0000 1 1 
Sm 150-4 0.39 5600 0.000009 
Gd 157.3 0.34 49000 0.000064 
O 16.0 483838.35 0.00028 0.000005 

Total 1000034-95 0.003598 
Neutron Production Rate (n/g/yr) 

(X factor 0.330) (Total U pprn = 1.9) = 0.627 

(Y factor 0.099) (Total Th ppm = 0.1) = 0.0099 
spontaneous fission = 0.815 In Slru Sccuiar 

Equilibrium Y ~ ~ ~ l  
Ratio ( x I W ' ~  = 5.9 

Total neutron production rate (n/g/yr) = 1.5 



Table B-2b. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and m situ secular equilibrium 3 6 ~ ~ ~ 1  ratio for sedimentary rock sample SP-2, 
limestone. 

[See figure 1.1 for location of sampling site. See text for expianation o f  Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections suppIied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an aipha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-2; cm21g, square centimeters per gram; c, less 
'BnZ1 

Neutron Yield Weightcd Neutron Yield 

Element 

Si 
Al 
Fe 
Ca 
M g  
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

n/yr/g rock niyrig rock 
per ppm U per ppm Th 

Sam ple 
PPm 
10564 
2064 
544 

381 865 
2714 

148 
83 O 
13 1 

5 
0.5 

20 
117164 

330 
483072.13 

Weighting 
Factor 

4.80 
0-92 
0.19 

1 63 -44 
1-25 
0.07 
0.34 
0-06 
0.00 
0.00 
0-0 1 

65.73 
O. 16 

254.58 

n/yr/g rock 
Per PPm U 

3.3 1 
4.69 
0.04 

46.09 
7.30 
0.85 
0.3 1 
0.25 
0.07 
0.07 
0.66 

29.97 
6.44 

60.08 

n / ~ r / ~  rock per 
PPm Th 

1-63 
2.37 
0.04 
4.25 
3.21 
0.40 
0-03 
0.03 
0.03 
0.02 
0.2 1 

1 1.77 
2.55 

21.38 
Total 99945 1.63 49 1.54 160.1 1 47.9 1 

Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 
(srnu) Section (barndatom) Section (cm2/g) 

Si 28.1 10564 0.17 0.000038 
AI 27.0 2064 0.233 0.00001 1 
Fe 55.8 544 2.56 0.0000 15 
Ca 40.1 38 1865 0.43 0.002465 
Mg 24.3 2714 0.063 0.000004 
Na 23 .O 148 0.53 0.000002 
K 39.1 830 2.1 0.000027 
P 30.97 13 1 O. 18 <O.OOOOO 1 

Li 6.9 5 7 1 0.00003 1 
Be 9.0 1 0.5 0.0092 <O.OOOOO 1 
B 10.8 20 764 0.000852 
C i 2.0 117163 0.0035 0.00002 1 
F 19.0 330 0.0096 <0.00000 1 
H 1 .O 284.27 0.33 0.000056 
Ti 47.9 60 6.1 0.000005 

Mn 54.9 77 13.3 0.0000 1 1 
Sm 150.4 0.69 5600 0.0000 15 
Gd 157.3 0.6 1 49000 0.000 1 14 
O 16.0 483072.1 3 0.00028 0.000005 

Total 999874.2 0.003674 
Neutron Production Rate (n/g/yr) 

(X factor = 0.326) (Total U ppm = 2.5) = 0.815 

(Y factor = 0.097) (Total Th ppm = 0.21) = 0.0204 
=*u spontaneous fission = 1.073 In Silu Secular 

Equilibrium l L ~ I / ~ l  
Total neutron production rate (n/g/yr) = 1.9 Ratio ( x 10"~) = 753 



Table B-2c. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibriurn 3 6 ~ 1 / ~ 1  ratio for sedimentary rock sarnple SP-3, 
limestone. 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power unis: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-2; cm21g, square centimeten per gram; <, less 

Element 

Si 
Al 
Fe 
Ca 

Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

Neutron Yield Weighted Neutron Yield 

n/yr/g rock n/yr/g rock 
per ppm U per ppm Th 

0.69 0.339 

Weighting 
Factor 

3.88 
0.54 
0.08 

164.17 
1.53 
0.03 
0.10 
0.02 
0.00 
0.00 
0.0 1 
65.93 
O. 16 

255.14 

dyrlg rock nlyrlg rock per 
Per PPm U PPm Th 

2.68 1.32 

Total 999275.82 49 1.60 158.79 47-18 
- 

Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 
(am@ Section (barndatom) Section (cm2/g) 

Si 28.1 8554 O. 17 0.00003 1 
AI 27.0 1217 0.233 0.000006 
Fe 55.8 23 3 2.56 0.000006 
Ca 40.1 383586 0.43 0.002476 

Ml2 24.3 3317 0.063 0.000005 
Na 23.0 74 0.53 0.00000 1 
K 39.1 249 2.1 0.000008 
P 30.97 44 O. 18 ~0.00000 1 
Li 6.9 5 7 1 0.00003 1 
Be 9.0 1 0.5 0.0092 ~0.00000 1 
B 10.8 20 764 0.000852 
C 12.0 117519 0.0035 0.00002 1 
F 19.0 330 0.0096 ~0.00000 1 
H I .O 569.56 0.3 3 0.000 1 13 
Ti 47.9 60 6.1 0.000005 
Mn 54.9 77 13.3 0.00001 1 
Sm !50.4 0.72 5600 0.0000 16 
Gd 157.3 0.7 1 49000 0.000 133 
O 16.0 484 127.32 0.00028 0.000005 

Tota 1 999983.8 1 0.003721 
Neutron Production Rate (n/g/yr) 

(X factor = 0.323) (Total U pprn = 2.9) = 0.9367 

(Y factor = 0.096) (Total Th ppm = 0.18) = 0.0173 
23% spontaneous fission = 1.244 

Total neutron production rate (n/g/yr) = 2 3  

In Situ Sesular 
Equilibrium x ~ ~ ~ l  

Ratio ( x 1 O-'? = 8.6 



Table B-2d. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ 1  ratio for sedimentary rock sample SP-4, 
dolomite. 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million eIectron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fram Appendix table A-2; ~ r n ~ / ~ ,  square centimeten per gram; <, Iess 

Element 

Si 
AI 
Fe 
Ca 

Mg 
Na 
K 
P 
Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
4 14 
433 
54 8 
529 
527 
56 1 
472 
527 

Neutron Yieid 

niyrlg rock 
Per PPm U 

0.69 
5.1 16 
O. 187 
0-282 
5.834 
12.535 
0.89 
4-473 
23 -86 
265.948 
62.55 l 
0.456 

4 1.33 
0.236 

n/yr/g rock 
per pprn Th 

0.339 
2.585 
0.208 
0.026 
2-564 
5.959 
0.08 
0.573 
10.54 
91.561 
19-779 

O. 179 
16.362 
0.084 

Sample 
PP'" 
3085 
1429 
1166 

2 17555 
12068 1 

223 
747 
44 
5 
O -5 
20 

128108 
330 

52459 1.32 

Weighting 
Factor 

1-40 
0.63 
0.4 1 
93.1 1 
55.63 
0-10 
0.3 1 
0-02 
0.00 
0-00 
0.0 1 
7 1-87 
0.16 

276.46 

Weighted Neutron Yield 

nfyrtg rock nlyrig rock per 
Per PPm U PPm Th 

0.97 0.47 
3 -25 1-64 
0.08 0.09 
26.26 2.42 
324.57 142.65 
1.27 0.6 1 
0.28 0.02 
0.09 0.0 1 
0.07 0.03 
0.07 0.02 
0.66 0.2 1 
32.77 12.86 
6 -44 2.55 
65.24 23.U 

Totnl 997984.82 500.12 462.00 186.8 1 
Elernent Atomic Weight Sample ppm h'tutron Absorption Cross Thermal Neutron Cross 

(amu) Section (barnshtorn) Section (cmz/g) 
Si 28.1 3085 0.17 0.0000 1 I 
AI 27.0 1429 0.233 0.000007 
Fe 55.8 1166 2.56 0.000032 
Ca 40.1 2 17555 0.43 0.00 1404 
Mg 24.3 I2068 1 0.063 0.000 1 88 
Na 23.0 223 0.53 0.000003 
K 39-1 741 2.1 0.000024 
P 30.97 44 0.18 <O.OOOOO 1 
Li 6.9 c 7 1 0.00003 1 
Be 9.0 1 0 5 0.0092 <O.OOOOO 1 
B 10.8 20 764 0.000852 
c 12.0 I 28  on 0.0035 0.000022 
F 19.0 3 30 0.0096 <O.OOOOO 1 
H I .O 1459.63 0.33 0.000290 
Ti 47.9 60 6.1 0,000005 
Mn 54.9 155 13.3 0.000023 
Sm 150.4 0.12 5600 0.000003 
Gd 157.3 0.08 49000 0,0000 15 
O 16.0 52459 1.32 0.00028 0.000006 

Total 999659.65 0.0029 17 
Neutron Production Rate (dg&) 

(X factor = 0.924) (TotaI U pprn = 0.2) = 0.9367 

(Y  factor = 0.374) (Total Th ppm = 0.1 3) = 0.0173 
sponmeous fission = 0,086 

Total neutron production rnte (n/g/yr) = 0 3  

In Situ Secular 
Equilibrium x ~ ~ ~ l  

Ratio ( x 10-9 = 1.6 



Table B-2e. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~ 1  ratio for sedirnentary rock sample SP-12, 
limestone. 

[See figure 1.1 for location of sampling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections suppiied by Fab~ka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron voIts (MeV), Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn fiom Appendix table A-2; cm2/& square centimeters per gram; -5 less 
than.]- 

Neutron Yield Weighted Neutron Yield 

M a s  Stopping 
Power 

454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

n/yr/g rock dyrlg rock- 
per ppm U ptr ppm Th 

Sampte 
l'Pm 
19960 
1747 
777 

369572 
3076 

74 
913 
218 

5 
0.5 

20 
116318 

330 
486475.03 

Weighting 
Factor 

9.06 
0.78 
027 

158.18 
1-42 
0.03 
0.3 8 
0.09 
0.00 
0.00 
0.0 1 

65.25 
0.16 

256.3 7 

---- - 

n/yr/g rock nlyrig rock per 
Per PPm PPm Th 

6.25 3.07 

Total 999485.53 492.0 1 161.82 49.19 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

@mu) Section (barndatom) Section (cmz/g) 
Si 28.1 19960 O. 17 0,000073 
Al 27-0 1747 0.233 0.000009 
Fe 55.8 777 2.56 0.000021 
Ca 40.1 369572 0.43 0.002386 
Mg 24.3 3076 0.063 0.000005 
Na 23 .O 74 0.53 0.00000 1 

K 39.1 913 2.1 0.000030 
P 30.97 2 18 0.18 0.00000 1 

Li 6.9 5 7 1 0.00003 1 
BI: 9.0 1 0.5 1.119 <O.OOOOO 1 
B 10.8 20 764 0.000852 
C 12.0 116318 0.0035 0.000020 
F 19-0 330 0.0096 <O.OOOOO 1 
H 1 .O 250.74 0.33 0.000050 
Ti 47.9 60 6.1 0.000005 

Mn 54.9 77 13.3 0.0000 1 1 
Sm 150.4 0.64 5600 0.0000 14 
Gd 157-3 0.5 49000 0.000094 
O 16.0 484475.03 0.00028 0.000005 

Total 999874.4 1 0.003607 
Neutron Production Rate (ddyr) 

(X factor = 0.329) (Total U ppm = 2.3) = 0.7567 

(Y factor = 0.100) (Total Th ppm = 0.22) = 0.0220 
238 U spontaneous fission = 0.987 

Total neutron production rate (n/g/yr) = 1.8 





Table B-2g. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ ~ ~  ratio for sedimentary rock sample SP-26, 
limestone. 

[See figure 1.1  for location of sampiing site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). M a s  Stopping Power is given for each element for an alpha particle o f  energy 8.0 
million eiectron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample pprn from Appendix table A-2; cm2/g square centimeten per gram; <, less 

Element 

Si 
Al 
Fe 
Ca 
Mg 
Na 

K 
P 

Li 
Be 
B 
C 
F 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 

Neutron Yield 

nlyrig rock n/yr/g rock 
ptr  pprn U per ppm Th 

0.69 0.339 
5.1 16 2.585 
0.187 0.208 
0.282 0.026 
5.834 2.564 
12.53 5 5.959 
0.89 0.08 
4.473 0.573 
23.86 10.54 
265.948 91.561 
62.55 1 19.779 
0.456 O. 179 
41.33 16.362 

Sample 
PP'" 
-bd- 
-bd- 
3 t t  

385939 
283 5 
148 

O 
262 
5 
0.5 
20 

II5718 
330 

Weighting 
Factor 

d 

- 
0.1 1 

165.18 
1.31 
0.07 
0.00 
0.1 1 
0.00 
0.00 
0.0 1 
64.92 
0.16 

Weighttd Neutron Yield 

nlyrlg rock n/yr/g rock per 
per pprn U pprn Th - - 

- 
0.02 0.02 
46.58 439 
7.62 3.35 
0.85 0.40 
0.00 0.00 
0.5 1 0.07 
0.07 0.03 
0.07 0.02 
0.66 0.2 1 
29.60 1 1.62 
6.44 2.55 

O 527 0.236 0.084 490636.8 1 258.57 6 1 .O2 2 1.72 
Total 996205.3 1 490.43 1 53 -44 44.29 

Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 
m u )  Section (barndatom) Section (cm21g) 

Si 28.1 -bd- O. 17 - 
Al 27.0 -bd- 0.233 - 
Fe 55.8 311 2.56 0.000009 
Ca 40.1 385939 0.43 0.00249 1 
M g  24.3 2835 0.063 0.000004 
Na 23 .O 148 0.53 0.000002 
K 39-1 O 2.1 <O.OOOOO 1 
P 30-97 262 O- 18 0.00000 1 
Li 6-9 5 7 1 0.00003 1 
Br 9.0 1 0.5 1.1 19 <O.OOOOO 1 
B 10.8 20 764 0.000852 
C 12.0 1 15718 0.0035 0.000020 
F 19.0 330 0.0096 <O.OOOOO 1 
H 1 .O 3243.86 0.3 3 0.000644 
Ti 47.9 240 6.1 0.0000 18 
Mn 54.9 155 13.3 0.000023 
Sm 150.4 0.72 5600 0.0000 16 
Gd 157.3 0.47 49000 0.000088 
O 16.0 490636.8 1 0.00028 0.000005 

Total 999845.36 0.004205 
Neutron Production Rate (dg.@) 

(X factor = 0.3 13) (Total U ppm = 4.3) = 1.3459 

(Y factor = 0.090) (Total Th ppm = 0.28) = 0.0252 
spontaneous fission = 1.845 

Total neutron production rate (nlg/yr) = 3.2 

In  Situ Stcular 
Equilibrium *CUCI 

Ratio ( x  IO-'? = 11 



Table B-3a- Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in situ secular equilibrium 3 6 ~ 1 / ~ ~  ratio for metarnorphic rock sample SP-1 1, 
quartzite. 

[See figure 1.1 for location of sarnpling site. See text for explanation of Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabxyka-Martin 
(1995). Mass Stopping Pcwer is given for each element for an alpha particie of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiorn Appendix table A-3; square centhneters per gram; c, l e s  

Neutron Yield Weighted Neutron Yield 

Element 

Si 
AI 
Fe 
Ca 

Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
O 

Mass Stopping 
Power 
454 
444 
351 
428 
46 1 
456 
4 14 
433 
548 
529 
527 
56 1 
472 
527 

nlyrlgrock nlyr/g rock 
per ppm U per ppm Th 

0.69 0.339 

Sample 
PP"' 

342353 
16883 
544 1 
69969 
5126 
371 
8966 
524 
15 
0.5 
3 5 

23501 
270 

522718.17 

Weighting 
Factor 
155.43 
7-50 
1.91 

29.95 
2-3 6 
0.17 
3-71 
0.23 
0.0 1 
0.00 
0.02 
13.18 
0.13 

275.47 

n/yr/g rock 
Pcr P P  U 

IO725 
38.35 
0.36 
8.44 
13.79 
2.12 
3.30 
1 -0 1 
0.20 
0.07 
1.15 
6.0 1 
5.27 
65.0 I 

n/yr/g rock per 
PPm Th 
52.69 
19.38 
0.40 
0.78 
6.06 
1-01 
0.30 
0.13 
0.09 
0.02 
0.36 
2.36 
2.09 
23.14 

Total 996 172.67 490.06 252.33 108.80 
Element Atomic Weight Sample ppm Neutron Absorption Cross Thermal Neutron Cross 

@mu) Section (barnslatom) Section (cm21g) 
Si 28-1 3423 53 0.17 0.00 1247 
Al 27.0 16883 0.233 0.000088 
Fe 55.8 544 1 2.56 0.000 150 
Ca 40.1 69969 0.43 0.000452 
Mg 24.3 5126 0.063 0.000008 
Na 23.0 371 0.53 0.000005 
K 39.1 8966 2.1 0.000290 
P 30.97 524 0.18 0.000002 
Li 6.9 15 7 1 0.000093 
Be 9.0 1 0.5 1.1 19 ~0.00000 1 
B 10.8 3 5 764 0.00 149 1 
C 12.0 23501 0.0035 0.000004 
F 19.0 270 0.0096 <O.OOOOO 1 
H 1 .O 2379.16 0.33 0.000473 
Ti 47.9 719 6.1 0.000055 
Mn 54.9 620 13.3 0.000090 
Sm 150.4 2.0 1 5600 0.000045 
Gd 157.3 1.8 1 49000 0.000339 
O 16.0 5227 18.17 0.00028 0.000006 

Total 999894.65 0.004837 
Neutron Production Rate (n/g/yr) 

(X factor = 0.5 1 5) (Total U ppm = 1.4) = 0.7210 
(Y factor = 0.222) (Total Th ppm = 3.68) = 0.8170 

238 U spontaneous fission = 0.601 

Total neutron production rate (nlg/yr) = 2.1 

In Slrv Secuiar 
Equilibrium Y ~ ~ ~ l  

Ratio ( x  IO-'^ = 6.4 



Table B-3b. Calculated thermal neutron cross section for neutron absorption, total neutron 
production rate, and in siîu secular equilibrium 3 6 ~ ~ ~ 1  ratio for metarnorphic rock sample SP-24, 
quartzite. 

[See figure 1.1 for location of sarnpling site. See text for explanation o f  Mass Stopping Power, 
Weighting Factor, X and Y factors, Weighted Neutron Yields, and Thermal Cross Sections. Mass 
Stopping Power, Neutron Yields, and Absorption Cross Sections supplied by Fabryka-Martin 
(1995). Mass Stopping Power is given for each element for an alpha particle of energy 8.0 
million electron volts (MeV). Mass Stopping Power units: MeV per gram of rock per square 
centimeter. Sample ppm fiom Appendix table A-3; cm2/& square centimeters per gram; <, less 

Elcment 

Neutron Yicid 

Weighting 
Factor 

2 10.43 

Mnss Stopping 
Power 
454 
444 
35 1 
428 
46 1 
456 
414 
433 
548 
529 
527 
56 1 
472 
527 

n/yr/g rock 
Per PPm U 

0.69 
5.1 16 
O. 187 
0.282 
5.834 

12.535 
0.89 
4.473 

23.86 
265.948 
62.5 5 1 
0.456 

41.33 
0.236 

n/yr/g rock 
per ppm T h  

0.339 
2,585 
0.208 
0.026 
2,564 
5.959 
0.08 
0.573 

10.54 
91.561 
19.779 
0.179 

1 6.362 
0.084 

Snmpie 
PP=' 

463513 
-bd- 
155 

O 
151. 
148 

2657 
13 1 
15 
0.5 

35 
89 

270 
53 1923.53 

Weightd Neutron Yield 

n/yr/g rock 
Per PPm U 

145.20 - 
0.0 1 
0.00 
0.4 1 
0.85 
0-98 
0.25 
020 
0.07 
1-15 
0.02 
5.27 

66- 1 6 

dyr/g rock per 
PPm T h  

71.34 

Total 999088.03 492.3 1 220-56 98.17 
Element Atomic Weight SarnpIe ppm Neutron Absorption Cross Thermal Neutron Cross 

Si 
Al 
Fr: 
Ca 
Mg 
Na 
K 
P 

Li 
Be 
B 
C 
F 
H 
Ti 

Mn 
Sm 
Gd 
O 

Section (barndatom) 
0.17 
0.233 
2.56 
0.43 
0.063 
0.53 
2.1 
0.18 

7 1 
1.1 19 

764 
0,0035 
0.0096 
0.33 
6.1 

13.3 
5600 

49000 
0.00028 

Section (cm21g) 
0.00 1688 - 
0.000004 

~0.00000 1 
~0.000001 
0.000002 
0.000086 

~0.00000 I 
0.000093 

~0.00000 1 
0.00 149 1 

~0.00000 1 
~0.00000 1 

0,000059 
0.000032 
0.000023 
0.000006 
0.000049 
0.000006 

Total 999989.1 1 0.003539 
Neutron Production Rate (dm) 

(X factor = 0.448) (Total U ppm = 0.30) = 0.1344 

(Y factor = 0.199) (Total Th ppm = 0.55) = 0.1095 
2 3 8 ~  spontaneous fission = 0.129 

Totni neutron production rate (n/g/yr) = 0.4 

In Silu Seculir 
Equilibrium % / ~ i  

Ratio ( x IO-'? = 1 5  



APPENDlX C 

EXAMPLES OF CALCULATIONS PERFORMED IN THIS RESEARCH 



Table C-1. Sarnple calculation for determining atoms of 3 6 ~ ~  per liter for archived ground 
water sample USGS 14 (coIlection date = 04-08-1 987)- - 

USGS 14 (collection date = 04-08-1 987) 

Total dissolved Cl- as rneasured by RESL, 1993 = 21*1 .O rn-e/L 

Voiume of water sarnpie = 400 mL 

C 1- = (400mVI 000mL)x(2 1 mg/L) 

= 0.0084gL 

Measured 3 6 ~ ~ / ~  1 ratio = 525&50 x IO-'' 

Atoms of chIoride added: 

atoms Ci' = (6.023 x l O= atomsi g atom) = O 
(35.453 g/ g atom) 

Calculated atoms of native chlorideL: 

atoms Cl' = (0.0084'0-4L3 (6.023 x KI2' atomsl atorn)= 3.57~10"  
(35.453 g/ g atom) 

Calculated atoms of 3 6 ~ 1 / ~ :  

atoms " C I  = (3.57 x 10" atorns native ~ l - b 2 5 0  x IO-")= 1 8 . 7 ~  108 ntoms / L 



Table C-2. Calculation of average precipitation flux at the Upper Fremont Glacier, 
Wyoming, USA. 

Depth of weapons-tests produced 3 6 ~ 1  peak r 32 meters 

Densities (fiom Na* 1992): 

0- 1 4 meter depth 0.65 g/crn3 (snow, firn, and ice mixed) 
14-32 meter depth 0.89 glcm3 (ice) 

(1 4,000 cm) x (0.65 &m3) + (1,800) x (0.89 @cm3) = 2,152 g/cm2 - - Total accumulation rate of 
"wet" precipitation. (Can't 
measure the dry deposition here, 
only can estimate it.) 

3 6 ~ ~  peak at 32 m depth produced in about 1958. Ice core was coilected in 199 1. 

33 years 

Average accumulation rate is: 

2,s 12 g/cm2 
= (76 g/cm ) / year 

33 years 

For ablation, long-tem average from Marston and others (1991) is 88 cdyear. Assumed density 
for the ablated portion of "wet" precipitation is 0.5 g/cm3 (Nafkz, 1992). Average ablation rate is 
therefore. 14 (g/cm2)lyr. It follows that, 

76 (g/cm2) / year (accumulation flux) 

+ 44 (g/cm2) / year (ablation flux) 
Total " Wet" precipitation flux = 

1 20 (gkm 2)/year 

Note: These calculations may have as much as a 50 percent associated uncertainty. 



Table C-3. Cornparison of accelerator mass spectrometry and conventionai decay counting 
method sensitivities. 

The following information applies to an arhbient "CVCI ratio calculated for a representative (1 

liter) ground-water sample fiom the eastern Snake River Plain aquifer. The accelerator mass 

spectrometry (AMS) measurement is accomplished with a 5 mg silver chloride (AgCI) target for a 

half-hour count. The conventional beta-decay counting method, for the same ambient ground 

water sample, requires grams of AgCI and no detection of the 3 6 ~ ~  is accomplished because of the 

extrernely long counting time required for a single beta-particle emission (about 2 years). 

AMS MEASUREMENT 

Chlorine-36: Half life = 301,000 years 

Sampie Size: 5 mg of AgCl (1 -25 mg Cl') 

Ratio Measured: 1 1 0-l4 

Calculated atoms of J 6 ~ l :  2 x 1 0' 

Calculated Radioactivity: 9.8 x 1 O-' disintegrations per minute (dpm) 

COh'VENTIONAL DECAY COUNTING 

Calculated disintegrations from the ambient sarnple with a measured ratio of 1 x 1 

for a ground water sample from the eastern Snake River Plain, Idaho 

(9.8 x 10" dpm)(S25,600 rnin/yr) = 0.52 disintegrations per year 

On average, this is one beta-particle decay every 2 years, this is not detectable by 

conventional counting methods 



Table C-4. Meteoric 3 6 ~ 1  concentration in the Hamiman State Park snow sample. 

narural 3 6 ~ 1  faIlout rate otorns/cm yr 
mereoric 3 6 ~ 1  concentration = ( 1 

(merage annuai precip in cm/yr) - (average annual ET in cmSr) 

Exampie #1: Harriman State Park (data from Cecil and others, 1999) 

Fallout Rate = 0.0 1 20.002 atoms/cm2sec 
= 3.8 x 1 0' atorns/cm2yr 

Average annual precip = 58 crn/yr 
Estimated annual ET = 29 cdyr  (lR guess, 50 percent ET rate) 

(50 percent ET) 3.8 x IO* atorn~/ctn~~r 
Y = (58 c m / y ~ )  - (29 c d y r )  

(95 percent ET) 



Table C-5. Anthropogenic chlorine-36 concentration in INEEL snow sample #2. 

Fallout Rate = 122.4 atoms/cm2sec (water equivalent) 
= 3 -8 x 1 0' atoms/~rn'~r 

Average annual precip = 22 c d y r  
Estimated annual ET = 2 1 c d y r  (95% estimated ET fiom Ceci1 & others, 1992) 

(95 percent ET) 3.8 x 1 O aromdcm 2 yr 
y = (22 cm/"r) - (2 I cmIyr) 

(50 percent ET) 



Table C-6. Calculation of chlorine-36/chIorine as a result of in situ production for sample 
SP-1, limestone. 

The following is modified from equation 5.3-1 1 ,  page 107: 

(isotopic ab~ndance)(~ '~~ cross sectionktherd neufronjlur) 
Ratio = 

d e c q  constant 

3 Thermal neutron flux for SP-I = P, (neutron production rate)/ o~ (neutron absorption cross 

section) 

= ( 1 -45 [n/gJ/yr)/(0.003 598 cm2/@ 

= 404 n/cm2/y 

isotopic abundance - - 0.7577 for 3 S ~ l  

3 5 ~ ~  cross section - - 44 barns!atom = (4.4 x 10-~~cm'/atorn) 

thermal neutron flux - - 404 nlcrn' yr 

decay constant - - 1.3 x lo4 Iyr 



Table C-7. Sample calculation to determine atoms of chlorine-36 in solution in ground water 
fiom in situ production. 

Example: SP- 1, Limestone 

CI- (USGS lab) - - 100 mg/kg = 0.1 mg/g 

3 6 ~ ~ / ~ ~  (calculated) = 5.9 X I O - ' ~  

Iimestone density - - 2.54 &rn3 

Cl- (g/cm3) - - (O. 1 x 1 05)(2.54 g/cm3) 
- - 0.254 x lo5 g/cm3 

Total transfer from rock to fluid using 1% porosity: 

Total Tranrjer = (2.55 x I moms/cm3 11 00) = 2.55 x 1 O* a t o d  

2.55 x 1 O' arams/crn 
Associated Fhid Chlorinir), = = 4.32 x Ioz3 atoms Cl-/L 

x(g'LI (6.013 x 1 d3 oroms/garom) = -1.3 2 x 1 oZ3 a m s  C(- /L 
35.453 g& arom 

Ambient dissolved CI- (maximum for ground water from limestone in the eastern Snake 
River Plain aquifer) is 1 5 rn L. or 0.059 percent of the associated chlorinity for complete 5! transfer of in situ produced CI. Therefore, the corrected 3 6 ~ 1  atoms/L is; 

2.55 x 10' atomsL (total transfer)(0.00059) = 1.49 x 106 atoms 3 6 ~ l / L  

(maximum 3 6 ~ ~  atomdL in ground water) 



Table C-8. Calculations to determine atorns of chlorine-36 per cubic centimeter (atoms/cm3) 
of rock that is transferred fiom the rock matrix to the availabIe pore space within the aquifer 
matrix. 
[See figure C. 1 for conceptual mode1 of these calculations.] 

[The following calculations were performed to determine the number of atorns of chlorine-36 that 
could be transferred to the aquifer pore spaces for a given rock unit. The calculations are 
performed for various percentages of porosity and an assumed initial 3 6 ~ ~  concentration of one 
million atoms per cubic centimeter of rock (1 x 106 atoms of 3 6 ~ 1  /cm3) produced in siru.] 

1. Consider a one cubic meter section of rock: 

1 m3 = 1 x 106cm3 
2. Maximum 3 6 ~ ~  atoms available for transfer to the pore spaces in the rock: 

( I x ~ ~ ~ a t o r n s / c r n ~ ) x ( ~ x ~ ~ ~ c r n ~ )  = 1 x I 012 atoms 

Therefore: Oniy a portion of the maximum 1 x 1 012 atoms will be tnuisferred into pore spaces of 
the aquifer matrix. 
3. For an aquifer matrix with one percent porosity; 

1 percent of 1 m3 of rock is, 0.0 I m3 = 10,000 cm3 
It follows that the number of atoms of ' k l  that c m  be transferred to the pore spaces is: 

( 10,000 cm3) x (X atoms/cm3) = 1 x 1 o ' ~  atoms 
X - - 100 x 106 atorns 

For an aquifer matrix with 5 percent porosity; 
5 percent of 1 m3 of rock is. 0.05 m3 = 50,000 cm3 
(50,000 cm3) x (X atoms/cm3) = I x 1012 atoms 

X - - 20 x 1 o6 atoms 

For an aquifer rnatrix with 1 0 percent porosity; 
10 percent of 1 m3 of rock is, 0.1 m3 = 100,000 cm3 
(100,000 cm3) x (X atoms/cm3) = 1 x I oi2 atoms 

X - - 10 x 106 atoms 

For an aquifer matrix with 50 percent porosity; 
50 percent of 1 rn3 of rock is, 0.5 rn3 = 500,000 cm3 
(500,000 cm3) x (X atoms/cm3) = 1 x 1 012 atoms 

X - - 2 x 1 o6 atoms 

For an aquifer rnatrix with 75 percent porosity; 
75 percent of 1 m3 of rock is, 0.75 m3= 750,000 cm3 
(750,000 cm3) x (X atoms/crn3) = 1 x 1 012 atoms 

X - - 1 -33 x 1 o6 atoms 



Rock 
Matrix 

c 1 m3 of rock 
matrix with 1 
percent porosity 

1 percent 

Transfer of 3 6 ~ ~  

atoms from rock 
matrix to pore 
spaces 

1 percent 
pore space 

Figure C.1. Conceptual mode1 of the transfer of 3 6 ~ 1  atoms in the rock matrix to the 
pore spaces within the rock matrix. 



Table C-9. Contribution to " ~ l f ~ l  ratio from the in situ reaction 3 9 ~ ( n , a ) 3 6 ~ ~ .  

Sample SP-5, rhyolite 

Atorn concentration of potassium ion (K') in sample SP-5, rhyolite: 

K' = 3 8,93 5 Crg/g = 3 8,93 5 rng/kg = 38.9 mg/g 

Rhyolite densiv = 2.6 1 g/cm3 

(38.9 mg/g)(2.6 1 g/cm3) = (0.0389 &)(2.6 1 g/cm') = O. 1 O2 g/cm3 

atom concentration o f  CI- in SP-5: 

CI- = 240 pg/g = 0.24 mg/g = 034  x 10" g/g 

(0.24 x 1 0-3 g/g)(2.6 1 @cm3) = 0.62 x 1 o5 g,,crn3 

neutron production rate = 18.63 n/yr/g 

absorption cross section = 8478 x 1 o4 
isotopic abundance = 0,9326 four 3 9 ~  

Using equation 5.3- 1 1, page 107: 



Table C-IO. Calculation of amount of "CI that is activated per year at the MTEC to produce 
the chlorine-36 inventory estimated to be in the environment at the INEEL. 

The following equation is from West and others, 1958, Nuclear Engineering Handbook, 1" 
edition, McGraw-Hill, New York, NY 

Where N = number of atoms 

1 = decay constant of chIorine-36 

cp = neutron flux (estimated) 

o = thermal neutron absorption cross sectional area of '*CI, and 

t = tirne, note: if t is short compared to the half-life of the product 

nucl ide, then 1 -e-h is approximately equal to 1* 

- - 6 x IO" atorns/yr (one gram atom of 3 5 ~ ~ )  

- - 3 5 grams "CI or 57 grams NaCVyear 

AI1 chloride in the target sarnple is "CI and al1 "CI is neutron activated 
100 percent of the neutron flux is thermal 
irradiation time is 2 years 
3 6 ~ 1  atoms per year concentration is based on measurements of ground water near MEEL 



APPENDIX D 

COMPREHENSIVE LIST OF GLOBAL RESEARCH CONCERNING CHLORINEL-36 
STUDIES IN VARIOUS GEOLOGIC AND EYDROLOGIC ENVIRONMENTS 



Table D-1. Comprehensive list of global research cmcerning 3 6 ~ ~  studies in various geologic 
md hydrotogic environrnents. 

Type of 
Application Study Area Aut hor(s) Date of 

Publication 

Vadose Zone 
Tracing 

Socorro, New Mexico 
Socorro, New Mexico 
Southeasteni New Mexico 
Nevada Test Site 
Nevada Test Site 
Nevada Test Si te 
West Texas 
[NEEL, Idaho 
Central Washington 
South Australia 
South Australia 
Southwest U.S.A, 
Southern Nevada 

Trotman 
Phillips and others 
Phillips and others 
Fabryka-Martin and others 
Gifford 
Norris and others 
Scanlon 
Cecil and others 
Prych 
Cook and others 
Walker and others 
Phillips 
Plummer 

Southem Nevada Tyler and others 1996 
Borden, Ontario Bentley and others 1982; 1986a 
Milk River Aquifer, Canada Phillips and others 1986 
East Midlands Triassic sandstone Andrews and others 1994 
aquifer, UK 
Aquia aquifer, Maryland Purdy and others 1996 
South Australia Herczeg and others 1997 

3 6 ~ ~  bomb Sturgeon Falls. Ontario Milton and others 1997b 
puise in WEEL. Idaho Cecil and others 1992 
ground water Wyoming. U.S.A. 
and ice 

NEEL. Idaho 
Cecil and Vogt 
Cecil and others 

Wyoming, U.S.A. Cecil and others 1998b 
iNEEL, Idaho Cecil and others 1999 
ENEEL, Idaho Cecil and others 2000a 
INEEL, Idaho Cecil and others 2000b 
Wyoming, U.S.A.; Nepal Green and others 2000 
INEEL Idaho Beasley and other 1993 

kl as a Jordan River Paul and others 1986 
tracer for Jordan River 
~alinity Jordan River 
balances 

North America 

Magaritz and others 1990 
Yechieli and others 1986 
Milton and others 1997a 

Victoria Land, Antarctica Carlson and others 1990 
Victoria Land, Antarctica Lyons and others 1998 



Type of 
Application Study Area 

Date of 
Pu biication 

East Afiican Rift Kaufman and others 1990 
Southem Great Basin, U.S.A. Phillips and others 1993 
Southem Great Basin, U.S.A. Jannik and others 1991 
Western Great Basin, U.S.A. Phillips and others 1995 

Decay Dating 
of Ground 
Water using 
=cl 

Great Artesian Basin, Australia 
Great Artesian Basin, Australia 
MiIk River Aquifer, Alberta, 
Canada 
MiIk River Aquifer, Alberta, 
Canada 
Murray Basin, Australia 
Murray Basin, Australia 
Nevada Test Site 
Columbia Plateau flood basalts 
Aquia aquifer, Maryland 
Aquia aquifer, Maryland 
Carrizo Aquifer, southem Texas 
Switzerland 
Midlands Triassic sandstone 
aquifer, England 
Dead Sea 
Mazowsze Basin, Poland 
East Africa Rift Zone 
Stripa site, Sweden 
Germany 
Australia and Canada 
Canada 
Switzerland 

Bentley and others 1986b 
Torgersen and others 1991 
Phillips and others 1986 

Nolte and others 1991 

Davie and others 
Kellet and others 
Rose and others 
Gifford and others 
Purdy 
Purdy and others 
Bentley and others 
Pearson and others 
Andrews and others 

Yechieli and others 1996 
Dowgiallo and others 1990 
Kaufman and others 1990 
Andrews and others 1986 
Lodemann and others 1997 
Fabryka-Martin and others 1987; 1988 
Comett and others 1996 
Pearson and others 1990 

36 CI in Valles caldera, New Mexico Phillips and others 1984a 
Geothermal VaIles caldera, New Mexico Rao and others 1996 
Systems New Zealand ff edenquist and others 1990 

Long Valley, California Phillips and others 1995 




