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Abstract

Fault analysis attacks represent a serious threat to a wide range of cryp-
tosystems including those based on elliptic curves. With the variety and
demonstrated practicality of these attacks, it is essential for cryptographic
implementations to handle different types of errors properly and securely. In
this work, we address some aspects of error detection and recovery in elliptic
curve cryptosystems. In particular, we discuss the problem of wasteful compu-
tations performed between the occurrence of an error and its detection and
propose solutions based on frequent validation to reduce that waste. We begin
by presenting ways to select the validation frequency in order to minimize
various performance criteria including the average and worst-case costs and
the reliability threshold. We also provide solutions to reduce the sensitivity
of the validation frequency to variations in the statistical error model and its
parameters. Then, we present and discuss adaptive error recovery and illus-
trate its advantages in terms of low sensitivity to the error model and reduced
variance of the resulting overhead especially in the presence of burst errors.
Moreover, we use statistical inference to evaluate and fine-tune the selection
of the adaptive policy. We also address the issue of validation testing cost
and present a collection of coherency-based, cost-effective tests. We evaluate
variations of these tests in terms of cost and error detection effectiveness and
provide infective and reduced-cost, repeated-validation variants. Moreover,
we use coherency-based tests to construct a combined-curve countermeasure
that avoids the weaknesses of earlier related proposals and provides a flexible
trade-off between cost and effectiveness.
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Chapter 1

Introduction

In their 1976 paper titled “New Directions in Cryptography” [21], Whitfield Diffie and
Martin Hellman introduced a method, based on the hard problem of finding discrete
logarithms in a prime field, by which parties that have no shared secrets can establish
a shared secret over an insecure channel, effectively inventing the notion of public-key
cryptography. Since then, many public-key cryptosystems have been invented, but few
have stood the tests of time and eager cryptanalysts. Among those are the Rivest-Shamir-
Adleman (RSA) cryptosystem [61] and the Rabin cryptosystem [59], both based on the
difficulty of factoring integers with large prime factors.

Elliptic curve public-key cryptography was introduced independently by Miller [51]
and Koblitz [43]. The group of points on an elliptic curve defined over a finite field has
many interesting properties that make it suitable for cryptographic applications. Most
importantly, the discrete logarithm problem in this group appears to be significantly
harder than problems like integer factorization and finding discrete logarithms in finite
fields. As such, a comparable security level can be achieved using much smaller system
parameters, which leads to faster computations and less storage requirements. This gives
Elliptic Curve Cryptography (ECC) an advantage in terms of efficiency for both software
and hardware implementation. The most important, as well as the most computationally
intensive, operation in ECC is called the Elliptic Curve Scalar Multiplication (ECSM).
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ECSM is conceptually similar to the modular exponentiation used in RSA.

Despite their theoretical security, elliptic curve cryptosystems are vulnerable to a variety
of Side-Channel Attacks (SCAs) that target the implementation of the cryptosystem rather
than its mathematical weaknesses and exploit the information leakage during the proper or
improper use of the cryptosystem. SCAs are generally passive, i.e., the attacker observes a
working cryptosystem without influencing its operations. Examples of side-channel attacks
include timing attacks originally presented in [44] and power analysis attacks introduced
in [45].

Fault Analysis Attacks (FAAs), on the other hand, are active attacks that utilize faults
to influence the operation of the system. Faults can occur in a device either naturally or
as a result of a deliberate action, and can be caused by one of many reasons. For instance,
they can be caused by variations in standard operation conditions like supply voltage,
clock frequency or operating temperature [7]. FAAs range in complexity and effectiveness
from the simple to the highly sophisticated. In essence, they seek to expose the secret
information partially or fully using invalid outputs that result from natural or deliberate
faults. Most fault attacks on ECC attempt to move the computation from the secure
curve to another, probably weaker, curve. This can be achieved by injecting faults in the
curve parameters, base point, or during the scalar multiplication. Generally, these attacks
have to be repeated many times to reduce the uncertainty in the guesses made by the
attacker, and in most cases some exhaustive search is required. Examples of this class of
fault attacks include those presented in [10, 5, 15, 27, 22].

On the other hand, the sign change attack presented in [11] targets the sign of an
intermediate point in the scalar multiplication, and results in a faulty output point that
still belongs to the original curve. Moreover, some fault attacks like the safe-error attack
presented in [71] exploit a countermeasure against simple timing analysis. This attack
targets algorithms where dummy intermediate variables are used to thwart timing and
simple power analysis attacks, and where the output values are checked for errors. A
fault is injected during an iteration of the algorithm and then it is observed whether the
resulting error is detected or not. This reveals whether the operation that was targeted was
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a dummy operation, and consequently it exposes the corresponding bit of the key. Other
attacks exploit the validation tests [73]. Since a comparison in a decisional validation test
uses the status register, and particularly the zero flag, a fault injected in that register can
probably cause the test to malfunction and allow an invalid output to pass.

A variety of countermeasures have been proposed to handle errors caused by faults.
Some of these countermeasures attempt to prevent the injection of faults, e.g., metal
shields and tamper-resistant chips [7]. Others attempt to detect the occurrence of errors in
order to discard the faulty data, e.g., point validation [10], hardware and time redundancy
along with randomization [24], and coherency checking [25]. Some countermeasures work
by masking the faulty results and allowing valid results to pass, like infective computation
[73]. It is also possible to extend a detection technique to allow for error recovery, e.g.,
dual modular redundancy with point validation [24].

1.1 Motivation and Scope

When error detection is incorporated in an ECSM implementation using validation tests,
the test is commonly placed at the end of the scalar multiplication just before the final
result is returned. This satisfies the purpose of error detection, but it can be easily seen
that whenever an error occurs, all computations performed after the occurrence of the
error and until its detection are wasteful as they are processing faulty data. Since the
detection of an error will result in the rejection of the computation’s outcome, it is sensible
to attempt to detect an error as soon after its occurrence as possible.

A similar issue is encountered when error recovery is implemented using time redun-
dancy, i.e., recomputation. As suggested in [23], the result of the scalar multiplication is
validated at the end of the computation, and if an error is detected the whole computation
is repeated. Clearly, full recomputation requires repeating all the valid operations that
were performed before the error’s occurrence, which can again be seen as wasteful.

For both of these observations, the intuitive solution is early detection of errors,
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which implies validating the computation’s intermediate results. However, while ECSM
algorithms generally allow the validation of internal state, it is not clear how often this
validation should be performed. Moreover, it is not clear that the potential reduction in
wasteful computations will offset the incurred overhead of repeated validation testing.

In order to investigate this issue, we have constructed cost models that can be used to
select a validation frequency that minimizes the wasteful computations and the overhead
of repeated testing for both error detection and recovery. However, it became apparent
that the outcomes of these models are sensitive to the changes in the statistical error model
and its parameters. Moreover, when the overhead of frequent validation is examined, it
turns out that testing overhead constitutes a nontrivial portion of the total overhead.

In this work, we attempt to address both of these problems. We investigate approaches
to reduce or eliminate the dependency of the validation frequency on the details of the
statistical error model. Furthermore, we study ways to reduce the overhead of testing
and provide a flexible trade-off between the cost of a validation test and its effectiveness.
We limit our investigation to fault attacks and countermeasures that work at the point
arithmetic level, which provides some degree of platform independence. While the ideas
proposed and discussed in this work will probably be useful in implementing fault-tolerant
arithmetic at the field and machine levels, we consider the attacks and countermeasures
at these levels to be out of scope of our work.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the required
background for this work. It starts with an introduction to elliptic curves and their use
in cryptography. Then, fault analysis attacks that target elliptic curves are classified
and reviewed. It follows by a discussion of related countermeasures and error handling
techniques.

In Chapter 3, we address the use of fixed-block repeated validation in error detection

4



and recovery. Cost models that describe the overhead associated with repeated validation
are constructed for both error detection and recovery, and used to find optimal block
sizes in terms of the expected cost. Moreover, the issue of block size sensitivity to the
error model is addressed. In the case of error detection, we propose minimizing the block
size for the worst-case rather than the average-case cost and show that this gives a block
size that is independent of the statistical error model. In the case of error recovery, we
propose two solutions, namely, minimizing a combination of the expected overhead and
its standard deviation and minimizing the reliability threshold. Both of these solutions
reduce the variations in the block size caused by variations in the parameters of the error
model, and in effect, relax the need to know the error model accurately in advance.

In Chapter 4, we discuss the idea of using an adaptive, rather than fixed, block size. We
show that the use of a simple adaptive policy that gives preference to smaller block sizes
allows adaptive error recovery to approach the performance of the optimized fixed-block
error recovery without being tied to the error model. The two approaches are compared
under different scenarios and the advantages of the adaptive approach are confirmed with
simulation. To evaluate the use of the aforementioned adaptive policy, we model the block
size update as a statistical inference problem, and use a Bayesian inference procedure to
learn the unknown parameters from the observed, incomplete data. Using this approach
under two different statistical error models with unknown parameters, we show that an
adaptive policy that gives preference to smaller blocks agrees with the inference outcome
under both models. Moreover, this approach provides a way to fine-tune the level of
sensitivity of the adaptive policy to more recent observations.

Chapter 5 addresses a different aspect of the problem of efficient error detection and
recovery. It presents a collection of cost-effective, coherency-based tests that provide a
trade-off between the cost of testing and the effectiveness of error detection. It begins
by discussing coherency-based validation testing and then presents some alternative
coherency-based tests. Each of these tests is evaluated in terms of cost and error detection
effectiveness when used with a varying number of point validations. Moreover, it illustrates
how the use of these tests in the context of repeated validation can help reduce their
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cost by eliminating operations that are common with the underlying scalar multiplication.
Infective variants of these tests are discussed as well. Furthermore, the use of coherency-
based validation tests in a combined-curve countermeasure is discussed. The resulting
countermeasure avoids many of the shortcomings of earlier, related countermeasures.

Chapter 6 concludes this work by providing a summary of the results in the preceding
chapters and discussing some related open problems.

1.3 Summary of Contributions

In what follows, we outline the contributions of this work:

• We present detailed cost models for error detection and recovery using fixed-block
repeated testing, and illustrate the use of these models to find block sizes that are
optimized for low cost, high reliability or insensitivity to the parameters of the error
model

• We propose adaptive error recovery and illustrate its advantages relative to the
fixed-block approach under a variety of error models. We also use statistical inference
to evaluate adaptive policies and set their parameters to achieve the desired level of
sensitivity.

• We present and evaluate a collection of cost-effective, coherency-based validation
tests, and discuss their infective and reduced-cost variants. We also introduce a
countermeasure that employs coherency-based validation in the setting of com-
bined curves to provide a highly flexible trade-off between its cost and detection
effectiveness.
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Chapter 2

Background

This chapter provides the foundation on which the following chapters are built. This
includes elliptic curves and their use in cryptography, fault attacks on elliptic curve
cryptosystems, and the various known countermeasures against these attacks. Section 2.1
starts by giving a background on elliptic curves and their use in cryptography. It covers
the elliptic curve group, point arithmetic and the elliptic curve scalar multiplication. It
also briefly discusses the security of elliptic curve cryptosystems. Then, Section 2.2 reviews
fault analysis attacks targeting elliptic curve cryptosystems. After a brief overview of fault
injection methods, it discusses general techniques to detect and handle faults. Then, a
review of known fault attacks is presented. Attacks are classified into invalid-curve attacks,
the sign change attack, and attacks that target dummy or validation operations. For each
attack, a description of the attack is presented as well as an outline of its countermeasures.
Section 2.3 summarizes the known countermeasures for fault attacks on elliptic curve
cryptosystems. Countermeasures are classified into prevention, detection, masking and
recovery techniques. For each of these classes, examples are given and discussed. The
material in this chapter has appeared in [2].
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2.1 Elliptic Curves

This section aims to provide a brief overview of the mathematical concepts often referred
to throughout this document. Reference books in abstract algebra, like [54], and in
cryptography, like [32] and [16], can be consulted for a more extensive treatment of these
concepts.

2.1.1 Preliminaries

A group (G,⊕), written additively, is a set G associated with a binary operation ⊕ defined
on G such that it is closed, associative, has an identity element, and such that each
element of G has an inverse. Moreover, the group is called commutative or abelian if ⊕ is
commutative. For a finite group, the number of elements is referred to as the group order
or cardinality. On the other hand, the order of an element a in a finite group G, denoted
by ordG(a), is the smallest integer c such that

ca = a⊕ a⊕ · · · ⊕ a︸ ︷︷ ︸
c times

= 0

where 0 commonly represents the identity element of ⊕. The order of a group is divisible
by the order of any of its elements.

A ring (R,⊕,⊗) is a set R associated with two binary operations, ⊕ and ⊗, defined on
R such that (R,⊕) is a commutative group and ⊗ is closed, associative and distributive
over ⊕. Furthermore, the ring is commutative if ⊗ is commutative. In a ring R, if the
operation ⊗ has an identity element the ring is called a ring with identity. The operation
⊗ is usually written multiplicatively and its identity, if one exists, is denoted by 1. An
example of a commutative ring with identity is the set Zn = {0, 1, . . . , n − 1} under
addition and multiplication modulo n.

In a ring with identity R, if the nonzero elements form a commutative group under ⊗,
then R is a field. In other words, a field can be seen as a commutative group with respect
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to two binary operations such that one operation is distributive over the other. While the
set of rational numbers Q is an example of a field, Z is an example of a ring that is not a
field since the only elements that have multiplicative inverses are 1 and −1. A field that
has a finite number of elements is called a finite field, and can be either a prime field or
an extension field. As the name indicates, a prime field Fp has a prime cardinality p. An
extension field, on the other hand, has a cardinality of pd, where p is prime and d > 1 is
an integer. Such a field is created by extending the prime field Fp where d denotes the
extension degree. The characteristic of both Fp and Fpd , denoted by char(Fp), is p. An
interesting fact is that all finite fields of the same cardinality are isomorphic, i.e., have the
same structure even if they are represented differently. In other words, these fields can be
made identical by renaming their elements.

2.1.2 The Elliptic Curve Group

An elliptic curve E over a field F, whose algebraic closure is denoted by F, is the set of
points (x, y), x, y ∈ F that satisfy the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where the coefficients a1, a2, a3, a4, a6 ∈ F and such that the curve is nonsingular, i.e.,
the partial derivatives do not vanish simultaneously at any point. The set of points
(x, y) ∈ F×F that satisfy the curve equation, along with the point at infinity O, is denoted
by E(F).

The full Weierstrass equation can be simplified depending on the characteristics of the
underlying field, F. For prime fields, and when char(F) 6= 2, 3, (2.1) can be simplified to

E : y2 = x3 + ax+ b (2.2)

where a, b ∈ F. In a binary field, i.e., when char(F) = 2, and assuming that a1 6= 0 and
that E is non-supersingular, (2.1) can be simplified to

E : y2 + xy = x3 + ax2 + b (2.3)
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where a, b ∈ F.

The quadratic twist of an elliptic curve E(Fq) : y2 = x3 + ax+ b is a curve of the form

αy2 = x3 + ax+ b (2.4)

where α ∈ Fq is a quadratic nonresidue, i.e., an element that has no square root in Fq. The
number of points on an elliptic curve E(Fq) is denoted #E(Fq), and its value is bounded
by the Hasse theorem [66].

Theorem 1 (Hasse Theorem) Let E be an elliptic curve defined over a finite field Fq.
Then, #E(Fq) = q + 1− t, where |t| ≤ 2√q. The interval [q + 1− 2√q, q + 1 + 2√q] is
called the Hasse interval while t is called the trace of E over Fq.

The points on an elliptic curve, together with the point at infinity O, form an
abelian group under the operation of point addition, which has an intuitive geometric
interpretation illustrated in Figure 2.1. When char(F) 6= 2, 3 and P 6= −Q, we can find
R = (x3, y3) = P +Q as follows.

m =


y2 − y1

x2 − x1
, if P 6= Q

3x2
1 + a

2y1
, if P = Q

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1 (2.5)

Each point operation on an affine elliptic curve requires a field inversion, which is
significantly more expensive in general than a field multiplication. To address this problem,
various projective coordinates were introduced, e.g., [17], and are often employed to reduce
the number of field inversions at the cost of more field multiplications and storage space.
Different projective coordinates have different costs in terms of field operations. Moreover,
it has been shown that adding points represented in different projective coordinates can
be more efficient than addition of points in the same coordinate system [16].
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P

Q
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P

2P

Figure 2.1: Geometric interpretation of point addition and doubling.

The security of ECC is based mainly on the hardness of the Elliptic Curve Discrete
Logarithm Problem (ECDLP), which can be defined as finding the scalar k given P, kP ∈ E.
Since all the known solutions for this problem in general elliptic curves have an exponential
complexity, parameters should be of appropriate sizes to make the instance intractable.
Moreover, the ECDLP is easier, i.e., there exist sub-exponential solutions, for some special
elliptic curves. As such, these curves should be avoided in ECDLP-cased cryptography.

2.1.3 Elliptic Curve Scalar Multiplication

Scalar multiplication, the operation of repetitively adding a point to itself on an elliptic
curve, is the most important primitive in ECC and its execution time dominates the time
required to perform ECC operations. This operation is analogous in many ways to the
modular exponentiation operation employed in RSA and similar systems.

A naive way to perform a scalar multiplication is repeated addition, which requires
a number of group operations that is proportional to the group size. A much better
solution is the double-and-add algorithm, analogous to the square-and-multiply algorithm
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Algorithm 1 Binary double-and-add scalar multiplication
Input: P ∈ E, k = ∑n−1

i=0 ki2i

Output: kP

1: Q← O
2: for i = n− 1 downto 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q+ P

6: end if
7: end for
8: return Q

for modular exponentiation. Algorithm 1 illustrates a basic variant of the double-and-add
method. This approach requires a number of group operations that is proportional to the
logarithm of the group size.

It can be seen from Algorithm 1 that a doubling operation is required in every iteration,
while an addition operation is required only when the corresponding bit of the scalar k is
1, which is true in half of the iterations on average. It is possible to reduce the cost of the
scalar multiplication by reducing the number of point additions, which can be achieved by
recoding the scalar k. For example, the Non-adjacent Form (NAF) representation, with
the property that no two nonzero digits are adjacent, can be used to reduce the number of
1’s in the scalar. The simplest instance is the 2-NAF, which uses the digits 0, 1, and −1
and ensures that no two consecutive digits are nonzero. The use of 2-NAF representation
reduces the number of additions from n/2 to n/3 on average [53].

Double-and-Add-Always Variant. It can be easily seen that the iterations of Algo-
rithm 1 take different times for different values of ki, which can be exploited by simple
power or timing analysis attacks to determine the secret scalar k. To solve this problem,
the computations performed should not depend on the secret data and branching should
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Algorithm 2 Double-and-add-always scalar multiplication [18]
Input: P ∈ E, k = ∑n−1

i=0 ki2i

Output: kP

1: Q[0]← P

2: for i = n− 2 downto 0 do
3: Q[0]← 2Q[0]
4: Q[1]← Q[0] + P

5: Q[0]← Q[ki]
6: end for
7: return Q[0]

be avoided. This results in regular iterations as illustrated in Algorithm 2 presented in
[18]. More recently, other regular scalar multiplication algorithms have been introduced,
e.g., in [38].

Montgomery Ladder. It has been shown that, for some elliptic curves, the y-coordinate
is not essential in the point addition and doubling operations [52], so the x-coordinate of
the resulting point, P +Q, can be computed from the x-coordinates of the points P , Q,
and Q− P . In particular, let P = (x1, y1), Q = (x2, y2) and Q− P = (x3, y3) be points
on the elliptic curve E : y2 = x3 + ax+ b, then the x-coordinates of P +Q = (x4, y4) and
2Q = (x5, y5) can be computed by the following equations.

x4 = 2 (x1 + x2) (x1x2 + a) + 4b
(x1 + x2)2 − x3

x5 = (x2
1 − a)2 − 8bx1

4 (x3
1 + ax1 + b) (2.6)

It follows that the result of kP can be found by calculating a sequence of pairs (Q,H),
which has the property that H − Q = P . Algorithm 3 demonstrates the steps of a
Montgomery ladder for scalar multiplication. It can be noted from Algorithm 3 that the
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Algorithm 3 Montgomery ladder scalar multiplication [52]
Input: P ∈ E, k = 2n−1 +∑n−2

i=0 ki2i

Output: The x-coordinate of kP
1: Q[0]← P , Q[1]← 2P
2: for i = n− 2 downto 0 do
3: Q[ki]← Q[0] +Q[1]
4: Q[ki]← 2Q[ki]
5: end for
6: return Q[0]

Montgomery ladder is a variant of the double-and-add-always method, and hence can be
used as a countermeasure against simple timing attacks [37, 41]. Moreover, in [49], and
more recently in [69], it was shown that this algorithm is particularly efficient for curves
defined over binary fields.

2.2 Fault Analysis Attacks on Elliptic Curve Cryp-

tosystems

2.2.1 Faults in Digital Systems

In general, it is important for a digital system to be fault-free and consistently give the
correct results. Faults can occur for a variety of natural and artificial reasons, and various
methods have been proposed to counter their effects on the performance and reliability
of the system. Fault detection and tolerance are even more important for cryptosystems
given the existence of fault attacks that can exploit faults to discover secret information
and threaten the security of the whole system.

Faults can occur in a device either naturally or as a result of a deliberate action,
and can be caused by one of many reasons. In general, variations in standard operation
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conditions can be used effectively to inject faults in a system. For example, the variation
in the supply voltage or the clock frequency can disrupt the execution and cause the
processor to skip instructions or disrupt input/output operations. Moreover, exposing
the device to temperatures outside its operational range can cause random modifications
of the memory and inconsistencies in memory access. It is also possible to inject faults
more accurately using photoelectric effects that are inherent in all electric circuits. The
exposure to photons induces currents in the circuit that can disrupt normal operation.
In effect, targeting and timing can be made more precise using lasers in fault injection.
Faults can be injected in packaged circuits without removing the packaging using X-rays
and ion beams [7].

Faults in electronic circuits can either be permanent or transient. Permanent faults
are caused by intentional or unintentional defects in the chip. As the name indicates, they
have a permanent effect on the behavior of the circuit. On the other hand, a transient
fault does not cause a permanent change in the behavior of the circuit. Such faults are
caused by local ionization that induces a current which can be misinterpreted by the
circuit as an internal signal.

Several solutions have been devised to avoid or detect faults, or prevent the attempt
to inject them. Other solutions help to recover from the occurrence of faults and produce
a correct output in spite of their existence. Some of these methods are implemented in
hardware while some can be implemented in software. The main countermeasure against
faults and errors is the use of redundancy in the design, which makes it possible to detect
erroneous results and behaviors. It also may permit the recovery from faults. A common
form of redundancy is hardware redundancy, which entails replicating some part of the
hardware to prevent the existence of a single point of failure. Another form of redundancy
is time redundancy, which amounts to repeating the computation or a part of it to confirm
the earlier results and detect transient faults. A third form of redundancy is information
redundancy, which is commonly employed in data communication through error detecting
and correcting codes. The principle behind information redundancy is the use of more bits
to represent the data than is actually necessary. This way, some of the representable bit
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patterns do not correspond to valid data and can be used to detect and correct errors. It
is also possible to combine two or more types of redundancy in a single scheme to get the
advantages of different types of redundancy. A summary of the known countermeasures
against fault attacks in elliptic curve cryptosystems is the subject of Section 2.3.

2.2.2 Invalid-curve Fault Attacks

The choice of the elliptic curve and the underlying field is an important one as it significantly
influences the security of the system. The general aim of invalid-curve fault attacks is
to move the computation from a secure curve to a weaker one, enabling the attacker to
use known mathematical attacks against the faulty outputs. This can be achieved by
targeting either the system parameters or the running computation. In both cases, there
are known countermeasures that can be used to detect the attack and prevent the faulty
output.

2.2.2.1 Targeting the Base Point

The base point is one of the key parameters in a scalar multiplication operation. It is also
relatively easy to target as it is commonly presented to the system as an input. Various
known fault attacks target the base point. Some of which assume that the attacker knows
the faulty value of the base point while others relax this assumption.

Known or Chosen Faulty Base Point. In the attacks introduced by [10], the repre-
sentation of a point P on a strong elliptic curve E is modified as a result of a fault to
move the computation to a different, often weaker, curve E ′. The resulting faulty output
values can be used to deduce partial information about the secret key. Usually, the attack
has to be performed repeatedly since in most cases the guessed values are not unique.

Attack Description. Let E be a strong elliptic curve defined over a finite field F as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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and let P and Q = kP be two points on E. To be able to mount this attack, suppose
that the device does not check whether P and Q are actually on E.

According to the ANSI X9.63 and IEEE 1363 standards, a6 is not used in the addition
operation. It follows that for a point P ′ = (x′, y′) with x′, y′ ∈ F and P ′ 6∈ E, the
calculation of Q′ = kP ′ occurs over the curve E ′(a1, a2, a3, a4, a

′
6) where

a′6 = y′2 + a1x
′y′ + a3y

′ − x′3 − a2x
′2 − a4x

′

instead of the original curve E. If P ′ is chosen in such a way that E ′ is a cryptographically
weak curve, i.e., P ′ has a relatively small order over E ′, then the value of k modulo ord(P ′)
can be found by solving a DLP over the subgroup generated by P ′. The relatively small
size of this group enables the use of the known general DLP computation algorithms
like Shank’s Baby-step-giant-step algorithm [65], or Pollard’s rho and Pollard’s lambda
algorithms [58]. It is also possible to select P ′ such that it has a smooth order, i.e.,
composite with small factors, over E ′. In this case, Pohlig-Hellman algorithm [57] can
be used to break the bigger DLP into smaller problems in the subgroups of prime order,
which can be solved independently.

This process can be repeated until sufficient residues of k are collected, and then
Chinese remaindering is used to recover k. This attack runs in polynomial time, and has
been extended to standardized EC-based cryptographic protocols in [5].

Unknown Faulty Base Point. It is also possible to exploit a fault that results in
an unknown faulty base point. Biehl et al. [10] discussed this as an extension to their
attack presented earlier where they assume that the faulty base point has an error in one
unknown bit position. Ciet and Joye [15] extended this attack to any number of bit errors
in the base point.

Attack using a Faulty Base Point with One Bit Error [10]. Suppose that the
device checks whether the base point P lies on E before starting the computation, and
assume a fault can be injected in P in an unknown position right between the test and
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the computation. Again, the modified point P ′ will lie on a curve E ′ with different, yet
unknown, a′6 value. Using the incorrect output Q′ = kP ′, the value of a′6 can be computed.
For each of the possible values of P ′ that lie on E ′, we find k′ such that Q′ = k′P ′ by
solving a DLP on E ′. Then, we proceed to compute k as in the more basic attack discussed
earlier.

This attack applies also to the Elliptic Curve Digital Signature Algorithm (ECDSA).
Since the faulty base point can not be given as an input as it is fixed by the protocol,
the attacker injects a fault in the base point P to replace it by P ′ at the beginning
of the scalar multiplication. Then, the algorithm computes r′ = (kP ′)x mod p, where
(·)x is the x-coordinate of the point and p is the prime order of P . It then computes
s′ = k−1(H(m) + dr′) mod p where 1 < k < p− 1 is a random number, H(m) is the hash
of the message m, and d is a the secret key. The resulting signature is the pair (r′, s′).
The attacker can then find the faulty curve E ′, on which P ′ lies, and use r′ to find a
small set of candidates for (kP ′)x. Then, the corresponding y-coordinates are found using
the equation of E ′. Assuming the DLP on E ′ is weak, and given the candidates for kP ′,
the attacker solves the DLP on E ′ to find candidate values for k, and then uses those to
compute candidates for the secret key as d = r′−1(s′k −H(m)) mod p.

Attack using a Faulty Base Point with Multiple Bit Error [15]. Let E be
an elliptic curve over F and let P = (xP , y) be the base point. Faults can be assumed to
occur in either or both of the coordinates of P . For example, assume that the value stored
for the x-coordinate, x′, is corrupted in some unknown bit positions and let P ′ = (x′, y).
Then, Q′ = kP ′ can be computed and will lie as before on the curve E ′, which shares all
the parameters of E except a6. The corresponding value for E ′, a′6, can be computed from
the coordinates of Q′ as

a′6 = y2
Q′ + a1xQ′yQ′ + a3yQ′ − x3

Q′ − a2x
2
Q′ − a4xQ′

Then, we know that x′ is a root in F of

x3 + a2x
2 + (a4 − a1y)x+ (a′6 − y2 − a3y)
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since P ′ ∈ E ′.

Assuming that r, the order of P ′ in E ′, is small, the root of the above polynomial
with the least Hamming distance from the original xP can be used as a candidate for
x′. Assuming that the DLP on E ′ is weak, the Pohlig-Hellman reduction can be used to
obtain a candidate for k.

Note that this attack applies in a similar fashion when errors are injected in the
y-coordinate instead. However, when both coordinates are faulty, it becomes harder to
recover the faulty point P ′ as the attacker only knows that it lies on E ′. One way to
recover candidate values of P ′ is to perform the scalar multiplication repeatedly using
modified copies of the scalar as illustrated in more details in [15].

Attacks on the Montgomery Ladder. Fouque et al. [27] have proposed a fault
attack on the Montgomery ladder algorithm over prime fields. Their work uses the fact that
the y-coordinate is not used in the scalar multiplication, and hence, the faulty computation
can leave the original curve and move to its quadratic twist. More specifically, since the
y-coordinate is not used in the Montgomery ladder algorithm [41] the computation applies
also to the set of points (x, y) with x ∈ Fp and y ∈ Fp2 that form the twist of the original
elliptic curve E, denoted by Ẽ.

The order of an elliptic curve and of its twist are roughly the same. In practice, an
elliptic curve is chosen to have a group with an almost prime order, but the group order
of the twist is not necessarily prime. In fact, among the five NIST-recommended curves
over prime fields only the curve denoted by P-384 has a twist with a prime order. For the
remaining curves, the group orders of their twists are composite and are easier to attack.

In [27], two attacks have been presented. The basic attack is when the adversary is
able to choose the input point P and the implementation does not use point validation at
the end of the scalar multiplication. The second attack assumes that the attacker can not
select P and that the implementation validates the resulting point at the end of the scalar
multiplication. In this case, the attacker needs to inject two faults. First, the attacker
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injects a fault into the x-coordinate of the input point P . Since half of the x’s correspond
to points that lie on the original curve while the other half lies on the twist, the resulting
value will correspond to point on the twist Ẽ with probability 1

2 . Second, at the end of
the computation just before the point validation the attacker needs to inject a fault into
the x-coordinate of the result. Note that due to the missing y-coordinate, point validation
will accept any x for which x3 + ax+ b is a square, i.e., with probability 1

2 . In effect, the
point validation can be bypassed and the faulty output can be obtained by the attacker
with probability 1

4 .

A similar attack that targets the Montgomery ladder over a binary field was proposed
independently in [22]. This attack takes advantage of the fact that the parameter a in (2.3)
is not used during the scalar multiplication, and the authors adopt the same single-bit flip
fault model proposed in [13] which has been shown to be practical [67]. It can be shown
that for a fixed value of the curve parameter b there are only two isomorphic classes of
curves, one for each value of Tr(a), where Tr(·) is the trace function. It follows that it is
possible to define two elliptic curves, E0 and E1, one for each of these isomorphic classes:

E0 : y2 + xy =x3 + b

E1 : y2 + xy =x3 + x2 + b. (2.7)

It is known that the orders of E0 and E1 are roughly the same. It is not necessary,
however, that both curves are strong (in the cryptographic sense). In fact, among the ten
NIST-recommended binary curves, there is only one for which the orders of both E0 and
E1 are almost prime, namely, the curve K-283.

The key idea behind this attack is to produce an invalid result from the computation
being performed on the weaker curve of the pair E0 and E1. It is assumed that the degree
of extension is odd, i.e., Tr(1) = 1 in the field. The attack starts by injecting a fault into
the x-coordinate of the input point P = (xP , yP ) ∈ E(F2m) of a device computing the
scalar multiplication. If the resulting finite field pair after the fault injection is known
and the result Q̃ = kP̃ = (x̃Q, ỹQ) is released it is possible to obtain the full scalar with a
high probability of success. Moreover, a variant of this attack has been presented where
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the faulty finite field pair P̃ is unknown and two computations with the same scalar are
obtained. In such a case, the scalar can also be obtained.

Countermeasures. It is commonly advised to check the correctness of the input points,
i.e., whether they belong to the original curve. One way to achieve that is to compute and
verify the value of a6 using the coordinates of P . It is advisable to avoid NIST curves that
have cryptographically-weak twists. It is also important to ensure that the output points
lie on the original curve. Another countermeasure, which has been reported in [22] and
extends the approach presented in [29] for RSA, uses the invariant in the Montgomery
algorithm (Algorithm 3), i.e., Q[1]−Q[0] = P to validate the variables before results are
returned.

2.2.2.2 Targeting the System Parameters

It is also possible to target the parameters of the system, e.g., the field representation or
the parameters of the curve equation. This will generally lead to the computation being
performed on a weaker curve or a weaker curve-field combination.

Faulty Field Representation. Faults can be injected in the field parameters, either
in storage or in transit. This attack, introduced in [15], exploits this fact. Let E be a
curve defined over a prime field Fp of characteristics other than 2 and 3. Assume that a
bit error is injected in p to give the almost similar value p′ and that all field operations
will then be performed modulo p′ instead. In particular, the values of P , Q, a and b will
be represented modulo p′ as P ′, Q′, a′ and b′, respectively.

Since Q′ satisfies the equation of E ′, it follows that

b′ ≡ y′
2
Q − x′3Q − a′ ≡ b ≡ y2 − x3 − a mod p′

Hence, p′|D where D =
∣∣∣y′2Q − x′3Q − a′ − (y2 − x3 − a)

∣∣∣ and p′ can be revealed through
factoring D as the product of factors that has the shortest Hamming distance from p.
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Using these factors, the value of k can be computed by solving a set of small DLPs and
then Chinese remaindering.

Moreover, p′ can be found more efficiently when p is a (generalized) Mersenne prime.
Generalized Mersenne primes are primes of the form

p = 2ω0 +
B∑
i=1
±2ωi (2.8)

where B is typically small [68]. These primes are commonly used to enable highly efficient
field reduction and to significantly reduce storage requirements for p. For example, when
B ≤ 4, as is the case for all NIST prime curves [26], p can be written as

p = 2ω0 +
3∑
i=1

σi2ωi + σ4 (2.9)

where σi ∈ {−1, 0, 1} and σ4 6= 0. Then, p can be stored efficiently by storing the values
of the ωi’s and σi’s. Since an error injected in p will affect any of these quantities but will
not affect the form given by (2.9), the number of possible values of p′ that can result from
factoring D will significantly decrease as only candidates that satisfy (2.9) need to be
considered.

The same principle applies to binary fields [15], where pentanomials (and trinomials if
any exists) are used as they enable efficient reduction and reduced storage requirements.
It is known that, for all d ≤ 1000, there exists an irreducible pentanomial that can be
used to represent the elements of F2d [1]. Since a pentanomial can be stored efficiently by
only storing its exponents, an error will modify one or more of the exponents but will not
affect its form. It follows that all candidates for the faulty reduction polynomial that do
not have the same form can be discarded, which significantly reduces the search space.

Faulty Curve Parameters. Errors injected in one or more of the curve parameters
can be exploited in a similar way to enable a more efficient attack [15]. In general, the
parameter a6 in (2.1) is not targeted since it does not affect the final result as it is not
used during the point addition operation. Assuming that only one of the other parameters
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is modified by an error, the valid value of the point P and the faulty resulting point Q̃
can be used to solve for the value of the randomly modified parameter and the associated
ã6. In effect, E ′ is known, and if ord(P ) on E ′ is small or smooth, the DLP can be solved
on E ′ to get k modulo ord(P ).

Countermeasures. Checksums can be used to avoid faults in system parameters. For
each of the system parameters, the checksum should be computed and checked after
reading it from the memory and before outputting the resultant point.

2.2.2.3 Targeting Intermediate Variables

In addition to the attacks discussed earlier, it is also possible to exploit random faults
that occur during the scalar multiplication. In particular, faults injected in intermediate
variables lead to faulty outputs that can be used, along with the correct result, to guess
parts of the scalar. The following attack, introduced in [10], illustrates this.

Exploiting Random Faults during the Computation. Assume that E is defined
over a field Fq, and that the binary algorithm is used to perform the scalar multiplication,
as in Algorithm 1. Also, assume that the attacker can repeatedly input a point P and
induce a fault during a specific iteration of computation, and that the correct result
Q = kP is known. Let Qi denote the values of Q at the ith iteration. During the
computation, a fault is injected in a random iteration j to modify Qj to Q′j and get Q′ as
an output. Then, the values of Q, Q′ and j can be used to determine the intermediate
value Q′j, which can be used to guess the higher n− j bits of k. The process can then be
repeated going downwards through the bits of k.

It has been shown in [10] that finding a secret key of length n bits using this attack
requires O(n log n) faulty scalar multiplications and O(n log n) bit operations for subse-
quent calculations. It is also possible to decrease the accuracy of random fault injection,
i.e., inject faults in blocks of at most m consecutive iterations rather than in a specific
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iteration. The choice of the block size m presents a trade-off between the number of
register faults required and the time needed to analyze the faulty results.

Countermeasures. As seen earlier, point validation is essential when fault attacks are
considered. In particular, output points should be validated and any point that does not
belong to the original curve should be discarded.

2.2.3 Sign Change Fault Attack

Earlier fault attacks on ECC worked by inducing faults in a way that would move the
computation to a different, probably weaker, elliptic curve. This can be achieved by either
modifying the base point, an intermediate point, or a parameter of the curve. However,
this can be easily countered by verifying the correctness of the parameters and that the
resulting point belongs to the original curve.

The attack described in [11] does not move the computation to a different curve, but
rather results in a faulty point on the original curve. By collecting enough of these faulty
results, the secret can be recovered in expected polynomial time. It follows that point
validation is not an effective countermeasure against this attack. Actually, it may help
the attacker to remove useless faulty points, i.e., points that fall off the curve, and hence
it makes a less precise attack more effective.

Attack Description. As the name indicates, this attack involves changing a sign of an
intermediate variable during the scalar multiplication, which can be achieved by replacing
an intermediate point with its inverse or by changing a digit of the NAF-encoded scalar
from 1 to −1. Applying this attack repeatedly enables the attacker to recover the scalar k
starting from the least significant bit. A simpler variant of the attack, where it is assumed
that the attacker can target a specific iteration, is described here. However, the attack
can be extended to allow for uncertainty in fault injection [11].
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Suppose that basic double-and-add algorithm (Algorithm 1) is used to computeQ = kP ,
and that the attacker has the correct value for Q. It is assumed that the attacker can
inject a temporary sign change fault in the doubling step Q← 2Q so it effectively becomes
Q← −2Q. The attack starts by targeting the last iteration of the algorithm where i = 0.
This results in the following faulty output

Q̃ = −
n−1∑
i=1

2ikiP + k0P = −Q+ 2k0P

which lies on the original curve and can not be detected by point validation. Moreover,
depending on whether k0 is equal to 0 or 1, Q̃ will be equal to either −Q or −Q + 2P ,
respectively, which easily reveals k0 to the attacker. In general, if a sign change fault is
injected in iteration i, the resulting faulty point can be written as

Q̃ = −Q+ 2
i∑

j=0
kj2jP

where only one of the i+ 1 least significant bits of k is unknown, namely, ki. As a result,
Q̃ will take one of two values.

Q̃ =


−Q+ 2∑i−1

j=0 kj2jP ki = 0

−Q+ 2P + 2∑i−1
j=0 kj2jP ki = 1

The attack can be generalized to cases where the attacker may not know the precise
iteration in which the change happened. The idea is to recover the bits of k in blocks of
1 ≤ r ≤ m bits, where m is chosen to control a trade-off between the required exhaustive
search and the number of faulty results required to give a success probability of at least 1

2 .

Countermeasures. The sign change fault attack is not applicable to Montgomery’s
scalar multiplication algorithm [52] since it does not use the y-coordinate, which prevents
the attacker from changing the sign of intermediate points. Moreover, randomizing the
scalar, e.g., by splitting, is effective since the same fault at the same stage of the algorithm
would generate different result every time.
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Another countermeasure to the sign change attack has been proposed in [11], and
extends a countermeasure presented in [64] for RSA. The idea is to employ another curve
Et defined over a smaller field Ft for some prime t. Moreover, a base point Pt is chosen
to have a large order within Et. A combined curve Ept and a new base point Ppt can be
constructed using the Chinese Remainder Theorem, and then the scalar multiplication is
performed once on each of Ept and Et. If the results do not match modulo t, they are
rejected.

A similar countermeasure has been proposed in [6]. Most notably, in this countermea-
sure, the integer t, curve Et and point Pt are selected randomly and t is not necessarily
prime. However, it has been shown in [39] that this setup allows a non-negligible propor-
tion of faults to pass undetected, and that a non-random setup like the one proposed in
[11] is significantly more secure.

A countermeasure based on coherency checking is described [23]. This countermeasure
extends the coherency-based countermeasure presented in [29] for RSA signature algorithms.
As illustrated in Algorithm 4, this countermeasure is based on the right-to-left double-
and-add-always scalar multiplication algorithm. It includes within it point validation
of resulting points, and since it is a double-and-add-always algorithm, it is inherently
resistant to simple power and timing analysis attacks. It is worthy to mention, however,
that only single-fault attacks are considered in this algorithm. By tracing the iterations
in this algorithm, we notice that in an error-free run, Q1 is expected to have the value
kP , while Q0 will have the value kP , where k = 2n − 1 − k. Since Q2 has the value
2nP , it follows that Q0 +Q1 + P = Q2. As shown in [23], a sign change fault in any of
the intermediate values can be detected by checking this invariant. This countermeasure
incurs significantly less overhead than the ones based on combined curves.
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Algorithm 4 Right-to-left double-and-add-always scalar multiplication algorithm with
point validation and coherency checking. [23]
Input: P ∈ E, k = ∑n−1

i=0 ki2i

Output: kP

1: Q0 ← O, Q1 ← O, Q2 ← P

2: for i = 0 to n− 1 do
3: Qki ← Qki +Q2

4: Q2 ← 2Q2

5: end for
6: if Q0 ∈ E and Q1 ∈ E and Q2 = Q0 +Q1 + P then
7: return Q1

8: else
9: return O
10: end if

2.2.4 Fault Attacks on Dummy and Validation Operations

2.2.4.1 Safe-error Fault Attacks

A common countermeasure against simple power and timing analysis attacks is the use of
dummy operations and variables, e.g., a double-and-add-always algorithm like Algorithm
2. When a fault is injected in a dummy variable or during a dummy operation, it results
in a safe error, i.e., an error that does not affect the final result. A safe-error fault attack,
as presented in [71] and [72], works by injecting a fault resulting in a potential safe error
during an iteration of the scalar multiplication and observing the resulting output. A
correct output confirms that the targeted operation or variable was dummy, while a faulty
output indicates the opposite. In both cases, the corresponding bit of the scalar is exposed.
Note that input or output validation does not help in countering this attack.
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Countermeasures. To counter a safe-error fault attack, it is essential to eliminate the
potential of safe-errors. In particular, it should be possible to detect errors resulting from
any injected fault even when they do not affect the final result. As an example, Algorithm
4, which employs coherency checking, allows for the detection of safe-error attacks by
validating the dummy intermediate variable.

2.2.4.2 Double-fault Attacks

Most countermeasures for fault attacks, e.g., point validation, integrity checking and
coherency checking, are based on invariants that are assumed to hold in an error-free
computation. As such, they are commonly implemented as logical tests that indicate
whether the final output is faulty or not. It is possible, however, for an attacker to
influence the result of such a test by injecting a fault in the testing hardware or the status
register [73]. This leads to these validation tests becoming a single point of failure.

Countermeasures. This can be avoided using infective computation, presented orig-
inally in [73] and adapted for elliptic curves in [23]. In essence, the validation test is
replaced by a computation that allows the correct result to pass through unchanged and
masks any faulty results randomly. For example, instead of testing whether a = b and
returning a if the equality holds, the algorithm returns (a− b)r + a for a random r, so
the equality test becomes implicit and is no longer dependent on the value of a single bit.
This way, the attacker can not use the faulty result since it is no longer correlated with
the secret information.

2.3 Summary of Countermeasures for Fault Attacks

As discussed earlier, fault attacks on elliptic curve cryptosystems can be divided into
various classes, and each class has its corresponding countermeasures. Generally, these
countermeasures work by either preventing the injection of faults, detecting the resulting
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errors, or masking the faulty result randomly. It is also possible to extend some of these
techniques to recover from detected errors. While some of these techniques are only
applicable to ECC or to specific classes of faults, others apply more generally. In this
section, we briefly review the known countermeasures for fault attacks and comment on
their effectiveness and limitations.

Prevention. The occurrence of some types of faults can be prevented through physical
means like sensors and metal shields [7]. Moreover, sign change fault attacks can be
prevented using Montgomery ladder [52] since it does not use the y-coordinate, and hence
does not allow sign change.

Detection. As for detection, checksums can be used to detect errors in system parameters
or its memory [7]. Moreover, point validation can be used to detect invalid-curve errors as
the representation of an elliptic curve point has some inherent information redundancy [10].
It is also possible to use time and/or hardware redundancy, accompanied by comparison,
to detect faulty results [24]. Randomization can also be used in a variety of ways while
encoding the scalar, base point or curve parameters. Combined with hardware or time
redundancy, it prevents similar errors from generating similar faulty results thus aiding in
the detection of errors [24]. Most notably, some algorithms involve redundant computations
that allow for detecting errors by checking the coherency of the results. For example, in
Algorithm 4, intermediate variables satisfy a set of invariants that can be used to check
for coherency. These invariants allow for detection of a wide range of errors including
those resulting from the classes of FAAs discussed earlier [23]. Another approach that
uses redundant computations is the combined curve approach used in [11] and [6].

Masking. It is also possible to use some techniques that mask the faulty results. For
example, randomization is effective in masking some types of errors, particularly those
resulting from sign change faults [11]. Moreover, since a validation test is a logical test, its
outcome can be manipulated by flipping a single bit, effectively becoming a single point of
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failure. Infective computation, as presented in [73], circumvents this problem by masking
faulty results randomly.

Recovery. Error detection can be combined with time or hardware redundancy to
allow for error recovery. One such approach is the use of N-modular redundancy, e.g.,
Triple Modular Redundancy (TMR). Triple modular redundancy with a majority vote
works well when faults are limited to one block, and can detect errors when two or more
blocks produce different faulty results. However, an attacker can inject the same fault
in two or more modules and force the structure to output a faulty result. This issue has
been addressed in [24] using randomized input encoding, which results in randomized
computations and similar faults causing different faulty results.

Another method for combining hardware redundancy with information redundancy
is Dual Modular Redundancy with Point Validation (DMR-PV) [24]. This is a simple
replication with comparison scheme combined with point validation. The inputs to each of
the modules are randomly encoded and the results of each are tested by a point validation
module. This structure can recover from both natural errors and errors caused by an
invalid-curve fault attack limited to one module, and can detect them when they occur in
both modules. However, this structure can not always detect errors caused by sign change
faults since an attacker can bypass the validation tests by injecting a sign change fault in
one of the modules and a random fault in the other.

It is also possible to combine time and hardware redundancy as in the Parallel and
Recomputation (PRC) scheme [24]. This scheme is a combination of multiple types
of redundancy, namely hardware redundancy, time redundancy and randomized input
encoding. Two modules are used and their inputs are encoded, then their results are
compared. If the results are not equal, the computation is performed again with different
input encoding for both modules and the new results are compared with the old ones to
find the correct result. This structure can recover from all errors limited to one of the
modules and detect them when they occur in both modules.
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2.4 Conclusion

The use of elliptic curves in cryptography has gained a wide acceptance since it was
first proposed and has become a core component of many industry standards. This
can be attributed to the rich mathematical structure of elliptic curves that enables
novel applications and implementations, and to their apparent resistance against general
mathematical attacks.

However, elliptic curve cryptosystems are vulnerable, like other cryptosystems, to side-
channel attacks, which target the implementation weaknesses rather than the mathematical
structure. Similarly, they are vulnerable to the various classes of fault analysis attacks,
which include invalid-curve attacks, sign change attacks and attacks on validation and
dummy operations. The feasibility and effectiveness of a specific fault attack depends
on the properties of the implementation and the level of access the attacker has. Some
fault attacks are generic with relatively relaxed assumptions and simple procedures, while
others assume a sophisticated attacker and expensive apparatus.

It is essential for designers to consider and evaluate the risk of fault attacks against
their implementations and implement the necessary countermeasures to defeat these and
other side-channel attacks. It is also important to consider the interactions between
countermeasures and attacks since a countermeasure of one attack can enable another one.
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Chapter 3

Error Detection and Recovery by
Frequent Validation

3.1 Introduction

In general, all computations performed between the occurrence of an error and its detection
are corrupted and their results will be discarded. This is a significant loss of time and
power especially for an operation like ECSM. For example, if a fault occurs near the
middle of a scalar multiplication over the above mentioned EC defined over a 256-bit prime
field, then processing time and power corresponding to about 1700 field multiplication
and squaring operations will be lost, while an exhaustive error-detection test costs about
54 field operations [23]. This can be a significant concern for certain applications.

In this chapter, we propose and analyze new designs for fault-tolerant scalar multi-
plication structures. The aim here is to address the problem of random transient faults
and design more efficient and reliable elliptic curve scalar multiplication structures. In
essence, we use known validation techniques to detect errors early and reduce the wasted
computation between the error occurrence and its discovery. Also, partial recomputation is
used to allow error recovery without requiring a large amount of redundant computations.
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In our analysis, we show that our designs can be optimized when the error rate is known
and show that it can be significantly more efficient and reliable compared to known designs
especially when high error rates are prevalent. We also discuss the applicability of these
designs to cases where errors can not be conveniently modeled.

This chapter is organized as follows. In Section 3.2, we give a brief overview of the
assumptions that guide this work and the threat models considered. Moreover, we discuss
the statistical modeling of errors and review two of the most commonly used distributions.
Section 3.3 covers the use of frequent validation for error detection. We give an analysis
of the expected overhead and use it to select an optimal block size. Moreover, we offer
an alternative choice for the block size based on worst-case analysis and evaluate both
options. In Section 3.4, the use of frequent validation and partial recomputation for error
recovery is addressed. We analyze the expected overhead and show that it can be used
to select an optimal block size. Also, we propose a way to select the block size based
on given reliability requirements and compare the two choices. Section 3.5 discusses the
practical application and security implications of our approach. Most of the material in
this chapter has appeared in [3].

3.2 Assumptions and Error Models

In what follows, we describe the assumptions and threat model adopted in this work.
Moreover, we discuss the statistical modeling of errors and review the definitions and
properties of two statistical distributions commonly used in modeling the occurrence of
errors.

Throughout this chapter and the later chapters, it is assumed that the attacker can
not force a specific bit to a specific value, i.e., inject a fault in a way that is precise both
in terms of location/timing and resulting value. This is the most intrusive of fault attack
models and can only be countered with partial success using randomization [40]. In other
words, in all the attacks considered here, the attacker can not predict with certainty the
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effect of the injected faults. This is generally true for the fault attacks discussed in the
previous chapter. It is also assumed that the implementation of the validation test is
error-free. This can be achieved using modular redundancy or other hardware measures
discussed earlier. It is possible to relax this assumption when infective validation tests are
used as discussed in Chapter 5.

In order to estimate the probabilistic costs of testing and recomputation, a statistical
model that describe the occurrence of errors is generally required. The selection of the
error model and its parameters is influenced by various factors including the types of
attacks considered and the implementation details. When modeling the behavior of a
complex system under attack, a practical and effective approach is to focus on the effects
of the attacks on the system rather than the details of the attacks themselves [55]. In
other words, the attacks are modeled from the point of view of the system rather than the
point of view of the attacker. Moreover, the language and notation of reliability theory can
be effectively used to capture the operational security of a system even when the details
of a potential attack are unknown [48]. This way, even an attack that is deterministic
from the point of view of the attacker can be modeled probabilistically from the point of
view of the system.

Various statistical models can be used to estimate the occurrence times of errors. Here
we review two of the commonly used models in the area of reliability and fault tolerance.
One of the most commonly used statistical distribution in this area is the exponential
distribution, which describes the time until the occurrence of the next event when the
occurrence rate of events is constant. For example, it is widely used to describe the
occurrence of errors or failures when the constant error-rate assumption applies [46]. For a
continuous random variable X ∈ [0,∞) that is exponentially-distributed, the probability
density function is of the form

f(x;λ) = λe−λx (3.1)

where λ is the rate parameter. Its cumulative distribution function is of the form

F (x;λ) = Pr[X ≤ x] = 1− e−λx (3.2)
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Figure 3.1: Reliability vs. error rate for exponentially-distributed errors when n = 256
iterations

Moreover, the complement of F (x) is called the reliability and is denoted by Rel(x). It
describes the probability that an event will only occur beyond time x. For an exponentially-
distributed variable X, the expected value is E[X] = 1

λ
. The exponential distribution

is memoryless, meaning that when looking forward, the next occurrence always has the
same distribution as the first occurrence. More formally,

Pr[X > x+ s|X > x] = Pr[X > s] (3.3)

To find the practical range of values for λ, we find the reliability of the scalar multiplication
implementation for various values of λ. Figure 3.1 illustrates the reliability associated
with a range of error rates for n = 256 iterations, and indicates that the practical region
of error rate is λ < 0.05.

The Pareto distribution, on the other hand, was first introduced by the Italian economist
Vilfredo Pareto to model the allocation of wealth among individuals, and was later used
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to model a wide range of natural, social and economical phenomena. For example, it was
shown to capture the characteristics of network traffic [56, 19] and to model hardware
errors [63] better than other commonly used distributions like the exponential and the
Weibull distributions. The Pareto distribution has a probability density function of the
form

f(x;x0, γ) =


γxγ0
xγ+1 if x ≥ x0,

0 otherwise.
(3.4)

where x0 and γ denote the scale and shape parameters, respectively. Note that x0

represents the minimum value that can be taken by x. Its cumulative distribution function
is

F (x;x0, γ) = Pr[X ≤ x] =


1−

(
x0

x

)γ
if x ≥ x0,

0 otherwise.
(3.5)

The expected value of a Pareto distribution is E[X] = γx0
γ−1 for γ > 1.

The Pareto distribution is one of the simplest examples of a heavy-tailed distribution.
Heavy-tailed distributions are characterized by the asymptotic shape of the distribution.
More formally, a distribution X is heavy-tailed if

Pr[X > x] ∼ x−γ as x→∞, γ > 0 (3.6)

When γ ≤ 2, the distribution has an infinite variance while γ ≤ 1 implies an infinite
mean. It follows that for a heavy-tailed distribution, extreme values have a non-negligible
probability. In contrast, for thin-tailed distributions like the exponential or normal
distributions, the probability of extreme values goes to zero exponentially fast. The Pareto
distribution is also characterized by self-similarity, i.e., any part of the distribution curve
is similar to the whole curve under appropriate scaling. The combination of these two
properties, namely, the heavy-tail and self-similarity, allows the Pareto distribution to
capture long-range correlations [19].

In our use of the Pareto distribution, we set x0 = 1 since an error can only be detected
after the first iteration. In order to determine the practical range of values for γ, we find
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Figure 3.2: Reliability vs. γ for Pareto-distributed errors when n = 256 iterations

the reliability of the scalar multiplication implementation for different values of γ. Figure
3.2 illustrates the reliability associated with a range of values of γ for n = 256 iterations,
and indicates that the practical region of error rate is γ < 1.

A more extensive treatment of the Pareto distribution and heavy-tailed distributions
in general can be found in references like [50, 60, 33].

3.3 Frequent Validation for Error Detection

As discussed previously, error detection and recovery for elliptic curve scalar multiplication
operation have been achieved by testing the final result for for validity and by randomizing
the encoding of inputs, essentially treating the scalar multiplication operation as a black-
box. While that approach has its merits, particularly in that it minimizes the modifications
to existing scalar multiplication structures and the number of tests required, it has the
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disadvantage of allowing an error to propagate and corrupt all consequent iterations. In
this section, we propose the use of frequent validation as a more efficient way to achieve
error detection in elliptic curve scalar multiplication.

3.3.1 Approach

Error detection is generally achieved using a test at the end of the computation which
is designed to detect a one or more types of errors, and these tests are usually efficient.
However, when an error occurs, all computations performed after the occurrence of the
error will be affected, and performing them becomes wasteful. This is significant in terms
of time and power consumption especially for restricted environments and mobile devices.
So, it is important to design error detection structures in a way that is not only efficient,
but also limits the wasted computations after the occurrence of an error.

Our approach to reduce this problem is the use of frequent validation. We use the fact
that the state of the algorithm, i.e., intermediate results, can be tested for validity after
each iteration and that the validation tests are relatively efficient. The aim is to prevent
error propagation using multiple validation tests of intermediate results as illustrated in
Figure 3.3 rather than a single test at the end. While this approach will increase the cost
of testing, this overhead can be offset by the saving in iterations lost as a result of error
propagation.

This leads to the question of how frequent should the intermediate state be tested for
validity. The two extremes are testing once at the end of the computation and testing
after every iteration. While the former saves on the testing cost, it does not solve the
problem of wasteful computation when an error occurs. On the other hand, the latter
eliminates the loss but incurs a large overhead for testing. Clearly, there is a point between
these extremes that provides a better trade-off, and there are various criteria by which
this trade-off can be evaluated. One way to find better trade-off points is to make some
assumptions on the statistical properties of errors.
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Figure 3.3: Error detection by frequent validation

3.3.2 A Cost Model for Frequent Validation

In this section, we analyze the cost of the increased testing and the gain of preventing the
execution of faulty computation following an error. The aim is to find values for the block
size, denoted by m, that provide reasonable trade-offs between cost and saving. We use
two criteria to determine these trade-off points, namely, minimizing the expected overhead
and minimizing the worst-case overhead.

Cost measures. To describe the cost of computations and testing, we use the following
notation. Let cb be the average cost of an iteration of the base algorithm, which is assumed
to be a bare-bone scalar multiplication algorithm with no added redundancy to enable
error detection. For example, for the conventional double-and-add algorithm, cb = 3

2 point
operations on average, while for 2-NAF double-and-add algorithm, cb = 4

3 on average.
Let c be the cost of an iteration of an error-detecting algorithm, e.g., Algorithm 4 which
has c = 2 point operations. Let cv be the cost of the validation test used to detect the
occurrence of errors in the state of the algorithm. In the examples that follow, these costs
are presented in terms of point operations. However, this is not a limitation since any
other suitable computational cost unit, e.g., field or bit operations, can be used.

40



3.3.2.1 Minimizing the Expected Overhead

Let n denote the total number of iterations in the scalar multiplication algorithm, and let
X be a random variable that describes the time (in iterations) until the next error occurs.
In the following analysis, no assumptions are made about X except that it is the same for
all iterations.

The probability of m consecutive iterations without an error (i.e., an error-free block) is
given by Pr[X ≥ m], while the probability of an error or more in a block is the complement
Pr[X ≤ m]. Let Y denote a random variable that describes the number of blocks computed
when a faulty block is observed. Given the assumption that blocks are identical and
statistically independent, since a block is only started after the previous one is tested, Y
follows a geometric distribution with mean E[Y ] = 1/py, where py is the probability that
a block will have one or more errors, i.e., py = Pr[X ≤ m]. However, since the number
of blocks is finite, i.e., Y ∈ {1, . . . , n/m}, the expected value of Y has to be modified to
reflect its finite range as follows.

E[Y |Y ≤ n

m
] =

∑ n
m
i=1 iPr[Y = i]
Pr[Y ≤ n

m
] (3.7)

We can now estimate the overhead associated with the frequent validation approach
to error detection. By checking early for an error, our aim is to reduce the computation
performed after the error while limiting the testing overhead. There are two cases to be
considered: (i) no error or an error after the n

m
blocks, or (ii) an error within the n

m
blocks.

In each case we will estimate the cost of testing and the wasteful computation caused by
the occurrence of an error.

Case 1. In the first case, namely no error or an error after n
m

blocks, the number of
tests would be equal to the number of blocks, n

m
, so their cost would be cv nm . Moreover,

the overhead required to allow for error detection will be n(c− cb). There would be no
wasteful faulty computations since there was no error in the n

m
blocks. The probability
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of this case is Pr[Y > n
m

]. The contribution of this case to the total cost would then be
Pr[Y > n

m
]
(
cv

n
m

+ n(c− cb)
)
.

Case 2. In the second case, namely that an error occurred within the n
m

blocks, we
observe that a test is needed for each block until one is found faulty. So, the expected
number of tests is equal to the expected number of blocks needed to observe the first error,
E[Y |Y ≤ n

m
]. The expected overhead of the tests is then E[Y |Y ≤ n

m
]cv. Moreover, for

each of these blocks, the extra computations required for error detection is m(c− cb), so
this part of the overhead is E[Y |Y ≤ n

m
]m(c− cb). To estimate the wasteful computations

caused by the late detection of an error, we consider all iterations after the occurrence of
an error until it is detected at the end of a block. Within a block, the number of iterations
until an error occurs is described by the random variable X defined earlier. Since a block
has a finite number of iterations, the expected value of X given that an error has occurred
is

E[X|X ≤ m] =
∫m

0 xf(x)dx
Pr[X ≤ m] . (3.8)

The wasted iterations would be all iterations after an error occurred, i.e., m−E[X|X ≤ m],
and their cost is cb(m − E[X|X ≤ m]). Hence, the total cost for this case would be
E[Y |Y ≤ n

m
](cv + m(c − cb)) + cb(m − E[X|X ≤ m]). The probability of this case is

Pr[Y ≤ n
m

] and its total contribution is

Pr[Y ≤ n

m
]
(

E[Y |Y ≤ n

m
](cv +m(c− cb)) + cb(m− E[X|X ≤ m])

)

Combining case 1 and case 2. It follows that the expected total cost of error detection
with frequent validation can be expressed as a function D of n, m, X, c, cb and cv as
follows.

D(n,m,X, c, cb, cv) = Pr[Y >
n

m
]
(
cv
n

m
+ n(c− cb)

)
+ Pr[Y ≤ n

m
]
(

E[Y |Y ≤ n

m
](cv +m(c− cb)) + cb(m− E[X|X ≤ m])

)
(3.9)

42



Given this expression, it is possible to select a block size, denoted by mopt, in a way that
minimizes the expected overhead, as will be illustrated in the example in Section 3.3.3.

3.3.2.2 Cost Expressions for Specific Error Models

In this section, we substitute distribution-specific expressions in (3.9) to get cost expressions
for specific error models. In particular, we consider exponentially-distributed errors as
well as errors that follow the Pareto distribution.

Errors follow an exponential distribution. In this case, X is fully determined by
the rate parameter λ. In particular, Pr[X ≤ m] = 1− e−λm which implies that

E[X|X ≤ m] =
∫m

0 xf(x)dx
Pr[X ≤ m] = 1− e−λm (1 +mλ)

λ (1− e−λm)

= 1
λ
− m

eλm − 1
= E[X]− m

eλm − 1 (3.10)

As for Y , it can be shown using the properties of the geometric distribution that Pr[Y =
y] = e−λm(y−1)(1− e−λm). This implies that E[Y ] = 1

1−e−λm and that Pr[Y > n
m

] = e−λn.
We can then find E[Y |Y ≤ n

m
] as follows.

E[Y |Y ≤ n

m
] =

∑ n
m
y=1 y Pr[Y = y]
Pr[Y ≤ n

m
]

= e(m+n)λm+ n− emλ(m+ n)
(emλ − 1) (enλ − 1)m

= 1
1− e−λm −

n

m(eλn − 1)
= E[Y ]− n

m(eλn − 1) (3.11)

This is all that is needed to rewrite (3.9) as a function of λ instead of X and Y .
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Errors follow a Pareto distribution. In this case, X is determined by two parameters,
namely, x0 and γ, the scale and shape parameters, respectively. We set x0 = 1 since this
the minimum value of X in our scenario, i.e., an error in the first iteration. It follows that
Pr[X ≤ m] = 1− 1

mγ
which implies that

E[X|X ≤ m] =
∫m

1 xf(x)dx
Pr[X ≤ m] = γ(mγ −m)

(γ − 1)(mγ − 1)

= γ

γ − 1

(
1− m− 1

mγ − 1

)
= E[X]

(
1− m− 1

mγ − 1

)
(3.12)

Unlike E[X], this value is defined for γ < 1, while for γ = 1, its limit can be found as
follows.

lim
γ→1

E[X|X ≤ m] = m lnm
m− 1 (3.13)

With respect to Y , we can see that Pr[Y = y] = 1
mγ(y−1) (1− 1

mγ
) and that E[Y ] = mγ

mγ−1 .
Also, it can be shown using the properties of the geometric distribution that Pr[Y > n

m
] =

1
mγn/m

. As for the conditional expectation for Y , we can write

E[Y |Y ≤ n

m
] =

∑ n
m
y=1 y Pr[Y = y]
Pr[Y ≤ n

m
]

= 1 + 1
mγ − 1 −

n

m(mγn/m − 1)
= E[Y ]− n

m(mγn/m − 1) (3.14)

This is all that is needed to rewrite (3.9) as a function of γ instead of X and Y .

3.3.2.3 Minimizing the Worst-case Overhead

By examining the overhead of detection expressed in (3.9), it is clear that the value of
m that minimizes the overhead depends on the error model, and particularly on the
distribution of X. In some cases, it is preferable to find a sub-optimal m that limits
the overhead while being independent of X. This can be achieved by optimizing the
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worst-case, rather than average, overhead of detection. In this case, the worst-case scenario
is the scenario with both the highest number of validation tests and the highest loss due
to faulty computations, i.e., when a fault occurs in the first iteration of the last block.
This translates to Pr[Y ≤ n

m
] = 1, Y = n

m
and X = 1. Then, by substitution in (3.9), the

cost expression of the worst-case overhead can be written as follows.

DW(n,m, c, cb, cv) = cv
n

m
+ n(c− cb) + cb(m− 1) (3.15)

This expression can be minimized to find a sub-optimal block size, denoted by mw-opt,
that is independent of the statistical error model.

3.3.2.4 Parallel Validation Tests

In the analysis above, it has been assumed that the validation tests are performed
sequentially relative to the main computation. However, these tests can be performed
partially or completely in parallel relative to the main computation. In the case of
full parallelism, the time overhead resulting from frequent validation tests is eliminated
at the cost of an increase in the hardware requirements. On the other hand, partial
parallelism can be achieved using the idle time of the modules used to implement the
scalar multiplication, e.g., the field multiplier or squarer.

To model the total cost with full or partial parallel detection, we use a parameter ρ
to measure the amount of overlap between the scalar multiplication and the validation
tests. When ρ = 0, there is complete overlap, i.e., full parallelism, while when ρ = 1,
the operations are completely sequential. It is assumed throughout that the cost of a
validation test is not greater than the cost of a block of iterations, which is generally true.
If this is not the case, the following analysis can be modified accordingly.

In the case of fully or partially parallel validation, the validation test is performed
in parallel with the main computation. If the test determines that the result is valid,
the computation is not interrupted. On the other hand, if the test detects an error in
the result, the computation of the current block is interrupted. It follows that for all
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non-faulty blocks, the cost of validation test is ρcv, while for faulty blocks, the cost is still
cv. Hence, (3.9) can be modified to model fully and partially parallel tests by modifying
the cost of the tests associated with non-faulty blocks, except for the last block.

DP(n,m,X, c, cb, cv, ρ) = Pr[Y >
n

m
]
(
ρcv

n

m
+ n(c− cb)

)
+ Pr[Y ≤ n

m
]
(

E[Y |Y ≤ n

m
](ρcv +m(c− cb))

+ cb(m− E[X|X ≤ m])
)

+ cv(1− ρ) (3.16)

3.3.3 A Numerical Example and Evaluation

In this section, we discuss an example of error detection using frequent validation in elliptic
curve scalar multiplication. For the underlying curve, we consider elliptic curves defined
over a prime field of size n = 256. Also, we will use the conventional double-and-add
algorithm as the reference algorithm for scalar multiplication. This approach is applicable
to different curves and scalar multiplication algorithms. Moreover, it is assumed in this
example that errors are exponentially-distributed with parameter λ.

3.3.3.1 Error Detection Example

In this example, we analyze the relative advantage of a scalar multiplication unit that
performs error detection with frequent validation. We base this design on Algorithm 4,
proposed in [23] and discussed in Chapter 2. This algorithm can detect errors resulting from
invalid-curve, sign change and safe-error attacks using a combination of point validation
and consistency checking. It also has the added benefit of resisting timing and simple
power-analysis attacks.

Algorithm 4 achieves its goal of detecting errors with a simple and efficient test.
However, if we consider the fault model presented in Section 3.2, the expected number of
iterations needed to observe an error, E[X|X ≤ n], can be considerably less than n. As
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Algorithm 5 Scalar multiplication with frequent validation
Input: P ∈ E(F), k = (kn−1, kn−2, kn−3, . . . , k0), m ≤ n

Output: kP

1: Q0 ← O, Q1 ← O, Q2 ← P ,
2: for i = 0 to n− 1 do
3: Qki ← Qki +Q2

4: Q2 ← 2Q2

5: if i+ 1 mod m = 0 or i = n− 1 then
6: if Q0 6∈ E(F) or Q1 6∈ E(F) or Q2 6= Q0 +Q1 + P then
7: return O
8: end if
9: end if
10: end for
11: return Q1

an example, when n = 256 and with an error rate λ = 0.01, we have E[X|X ≤ n] ≈ 79,
while for λ = 0.001, we have E[X|X ≤ n] ≈ 122. This illustrates that if an error can be
detected early, time and power can be conserved instead of being used to compute a faulty
result.

A suitable solution is to check the validity of the intermediate values of Q0, Q1 and
Q2 in blocks of size m iterations, where m is chosen to minimize the cost function given
in (3.9). Algorithm 5 illustrates this approach. Note that in case an error is detected, this
algorithm returns the point at infinity as an error signal. Other options are to raise an
error flag or an exception condition.

We also note the following, keeping in mind that these values can be tuned for a more
accurate model:

• We assume without loss of generality that a point addition and a point doubling
have the same cost, which is a common assumption and is particularly true in the
case of curves in the Edwards form [8].
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Figure 3.4: Expected overhead of frequent validation in the error detection example

• Each iteration of Algorithm 4 costs 2 point operations, i.e., c = 2, while for the base
scalar multiplication, cb = 3/2.

• The validation test in Algorithm 4 requires two point validations and two point
additions. As such, the overall cost of testing is approximately four point operations,
i.e., cv = 4.

Given these facts and assumptions, we can substitute for n, c, cb and cv in (3.9) to get
the following cost function.

DEx1(m,λ) =
e−nλ

(
enλ − 1

) (
3 + emλ(4(2 +m)λ− 3)

)
2λ (emλ − 1) (3.17)

which can be used to find an optimal block size, denoted by mopt, for different error
rates. Figure 3.4 illustrates the expected cost associated with different block sizes at three
different error rates.
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Figure 3.5: Worst-case overhead of frequent validation in the error detection example

Also, we can substitute in (3.15) to get a function that computes the worst-case
overhead in point operations as a function of m as follows.

DW-Ex1(m) = 3(m− 1) + n

2 + 4n
m

(3.18)

Figure 3.5 illustrates how this function behaves for a range of values of m. The block size
that minimizes this expression, denoted by mw-opt can also be found.

Table 3.1 gives a summary of the expected and worst-case overhead and saving
associated with different values of λ and three values of m, namely, m = n = 256, mopt

that minimizes expected overhead, and mw-opt that minimizes worst-case overhead.

Figure 3.6 illustrates the three choices of block size m in a range of error rates. Clearly,
the maximum block size, i.e., m = n, andmw-opt are independent of λ, whilemopt decreases
with increasing error rate as expected.

We also compare the expected overhead of each of the choices of m in Figure 3.7,
which shows that the expected overhead when m = n grows very quickly as the error rate
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increases. Moreover, an interesting observation is that the expected overhead associated
with mw-opt stays close to the minimum overhead over a range of values of λ. Another way
to compare the three choices of m is the worst-case overhead, as illustrated in Figure 3.8.

3.3.3.2 Evaluation

It can be seen from this example that the use of frequent validation for error detection
has a clear advantage over the straight-forward solution. In particular, the early detection
reduces the loss caused by errors significantly, and in turn, preserves time and reduces
power consumption.

We also have shown two ways to chose the block size, namely optimizing for expected
overhead and optimizing for worst-case overhead. While the former is the natural choice
to minimize the overhead over a range of error rates, we have shown that the latter has
the advantages of being independent of the statistical model. It also gives an expected
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overhead that is close to the optimal over a wide range of values of λ.

3.4 Frequent Validation with Partial Recomputation

for Error Recovery

Error recovery is generally achieved through various forms of redundancy. In particular,
time redundancy can be effective against transient faults, while hardware redundancy is
necessary to counter permanent faults. In a recomputation-based error recovery scheme,
the computation is performed and the results are checked for validity. If the test fails, the
computation is repeated and the results are tested again. In this section, we present our
approach to error recovery which combines recomputation with frequent validation.

3.4.1 Approach

While an error recovery approach based on full recomputation is effective against errors
caused transient faults, its time overhead is potentially high. It can be readily observed
that the reason behind this large potential overhead is the unnecessary repetition of valid
computations. We propose the use of frequent validation and partial recomputation as a
low-overhead form of time redundancy to achieve efficient error recovery in elliptic curve
scalar multiplication implementations. In particular, validation tests are employed at
specific intervals to detect errors early and recompute only the faulty parts without the
need to repeat parts of the computation that proceeded correctly, as illustrated in Figure
3.9.

Similar to the earlier discussion on frequent validation in error detection, two extreme
cases can be identified when setting the frequency of the validation tests; the intermediate
results can be validated once at the end of the computation or after every iteration. This
range provides a trade-off between the deterministic cost of testing and the probabilistic
cost of recomputation. Better trade-off points can be found by making some assumptions
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Figure 3.9: Error recovery by frequent validation

on the statistical properties of errors and setting an evaluation criteria. In this work, we
use two evaluation criteria, namely, cost and reliability as will be explained later.

3.4.2 A Cost Model for Frequent Validation and Partial Recom-

putation

In our approach, when an error is detected, only the faulty block is recomputed and
the results are tested again. In this section we analyze the cost of the testing and the
time overhead of recomputation in this approach. In this context, the overhead includes
all operations that are not part of the base scalar multiplication, i.e., validation tests,
recomputation and extra point operations. This estimate of the overhead is then used
to select values of the block size based on two criteria, namely, minimizing the expected
overhead and minimizing the reliability threshold, i.e., the expected overhead associated
with a given reliability requirement.

3.4.2.1 Minimizing the Expected Overhead

To construct a model for the expected overhead, we use the conventions introduced in
Section 3.2. In particular, we recall that the probability of an error-free block of m
iterations is Pr[X ≥ m] where X is the distribution of the occurrence time of the first
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error. For a correct final result, all n
m

blocks should be error-free. Moreover, any faulty
block have to be recomputed, so the total number of blocks computed will depend on the
number of faulty blocks detected, but the number of error-free blocks will always be n

m
.

Let Z be a random variable that describes the number of faulty blocks encountered
until n

m
error-free blocks are found. It follows that Z has a negative binomial distribution.

Recall that a negative binomial distribution with parameters r and p is the probability
distribution of the number of failed trials before observing the r-th success in a Bernoulli
process with probability of success p for each trial. It has the expected value of r(1/p− 1).
In the case of Z, r = n

m
and pz = Pr[X ≥ m]. The expected value of Z is

E[Z] = n

m

(
1

Pr[X ≥ m] − 1
)

(3.19)

The total time overhead of this approach can be divided into three parts: (i) the
overhead required to allow for error detection in error-free blocks, (ii) the overhead of
block recomputations for faulty blocks, and (iii) the overhead of testing for all blocks.

The first part applies to all error-free blocks. For each iteration, an overhead of c− cb
is required to allow for error detection. It follows that for a block of m iterations, the
overhead is m(c− cb). Since this part of the overhead applies only to the n/m error-free
blocks, the total contribution of this part is n(c− cb).

For the second part, it is clear that only faulty blocks need to be recomputed. The
expected number of faulty blocks is E[Z], and each of these blocks has m iterations.
Each of these iterations costs c point operations, which covers both the basic cost of the
underlying algorithm, cb, and the overhead required for error detection, c− cb. It follows
that the overhead of recomputations is cmE[Z].

For the third part of the time overhead, it can be seen that a validation test is required
for every block, whether faulty or not. The expected total number of blocks is E[Z] +n/m,
so the time overhead of testing is cv(E[Z] + n/m).

The total overhead can then be expressed as a function R of n, m, X, c, cb and cv as
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follows.
R(n,m,X, c, cb, cv) = n(c− cb) + cmE[Z] + cv

(
E[Z] + n

m

)
(3.20)

This function can be minimized to find an optimal value of m with the least expected
overhead.

3.4.2.2 Cost Expressions for Specific Error Models

In this section, we assume that the statistical distribution of X is known, and proceed to
find the optimal value of m according to the cost expression in (3.20).

Errors follow an exponential distribution. When X is exponentially-distributed
with parameter λ, we can write E[Z] as follows.

E[Z] = n

m

(
1

Pr[X ≥ m] − 1
)

= n

m

( 1
e−λm

− 1
)

(3.21)

Then, we can substitute for E[Z] in (3.20) as follows.

R(n,m, λ, c, cb, cv) = n(c− cb) + cn
( 1
e−λm

− 1
)

+ cvn

me−λm
(3.22)

To find the value of m that minimizes this expression, we take its derivative and equate it
to zero then solve for m. This results in the following expression for m.

mopt = 2√cv
λ
√
cv +

√
λ(4c+ λcv)

(3.23)

Errors follow a Pareto distribution. When X follows a Pareto distribution, it is
determined by two parameters. Like before, we set x0 = 1. Since Pr[X ≥ m] = 1

mγ
, we

can write E[Z] as follows.

E[Z] = n

m

(
1

Pr[X ≥ m] − 1
)

= n

m
(mγ − 1) (3.24)

Then, we can substitute for E[Z] in (3.20) as follows.

R(n,m, γ, c, cb, cv) = n(c− cb) + cn (mγ − 1) + cvnm
γ−1 (3.25)

56



This expression is minimized by the following value of m.

mopt = cv(1− γ)
cγ

(3.26)

Note that this expression can be used only when γ < 1. Otherwise, the block size should
be the smallest possible, namely, m = 1.

3.4.2.3 Minimizing a Combination of the Expected Overhead and its Stan-
dard Deviation

While minimizing the expected value of the overhead assures that the resulting block
size has the minimum expected overhead, it gives no guarantees about the variability
of the overhead. In fact, as we will see later in a numerical example, minimizing the
expected overhead alone can lead to a significant variability in the result, i.e., while the
mean is minimal, some values that are relatively far from the mean have a non-negligible
probability. This problem can be addressed by optimizing for a combination of the mean
and the standard deviation of the overhead.

We start by finding the variance of the cost expression in (3.20).

Var
[
n(c− cb) + cmZ + cv

(
Z + n

m

)]
= Var [cmZ + cvZ]

= (c2m2 + c2
v)Var [Z] (3.27)

since the variance of a constant is zero and the variance of aX where a is a constant is
a2Var[X]. The variance of Z can be found as follows.

Var[Z] = r(1− p)
p2 = n(1− Pr[X ≥ m])

m(Pr[X ≥ m])2 (3.28)

The standard deviation of the overhead is the square root of its variance. We then modify
(3.20) to include the standard deviation as follows.

R(n,m,X, c, cb, cv) = n(c−cb)+cmE[Z]+cv
(

E[Z] + n

m

)
+δ

√
(c2m2 + c2

v)Var[Z] (3.29)
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where δ is a parameter that determines the number of standard deviation included in
the cost expression. For example, δ = 0 indicates optimizing for the mean alone while
δ = 3 indicates the minimization of the mean plus three standard deviation. To guide
our selection of δ, we recall the one-sided Chebyshev’s inequality [31]. For any random
variable W with mean µ and standard deviation σ, the following holds.

Pr[W ≥ µ+ δσ] ≤ 1
1 + δ2 (3.30)

for any real number δ > 0. This implies that for δ = 3, for example, less than 10% of the
distributions mass will fall beyond µ+ 3σ. In other words, minimizing the expression in
(3.29) implies minimizing a higher quantile of the overhead distribution rather than its
mean.

3.4.2.4 Minimizing the Reliability Threshold

The reliability of a component is conventionally defined as Rel(t) = Pr[T > t], where T is
the random variable representing the lifetime of the component and t is the time for which
reliability is computed, which is usually taken to be the whole time of the computation
[46]. In other words, reliability is the probability that the component will go through
the computation without a failure. For example, the reliability of a TMR structure can
be computed as RelTMR = 3Rel2ECSM − 2Rel3ECSM, where RelECSM is the reliability of a
stand-alone ECSM unit, while for both DMR-PV and PRC schemes discussed in Section
2.3, RelDMR-PV = RelPRC = 2RelECSM − Rel2ECSM [24].

This conventional expression for reliability assumes that a computation will always
terminate within a fixed, known time frame unless a failure occurs. However, this
assumption does not hold in our case since the time requirements of our approach vary
with the number of errors observed. As such, we use a more general definition of reliability
to reflect the adaptive nature of the computation’s time requirements.

In this context, we define reliability as the probability that the computation will
be completed within a given time. It follows that the more time is allowed for the
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computation, the higher the reliability of the structure since more time will be allowed
for recomputations. This presents a trade-off between the component reliability and the
allowed time overhead. However, it is essential to keep in mind that this definition applies
only to transient faults.

Setting a time threshold for the computation is useful in two ways. First, it allows
for an estimate for the reliability of the design to be computed, and second, it prevents
the system from going into an infinite loop in case of a permanent fault. We compute
reliability for our structure as the cumulative distribution function (CDF) of Z. The CDF
of a given value gives the probability that the random variable will fall on or below that
value, i.e., CDF(z) = Pr[Z ≤ z], and can be computed for a random variable that has
a negative binomial distribution with parameter r and a trial success probability p as
Ip(r, k + 1), where Ip(x, y) is the regularized incomplete beta function defined as

Ip(x, y) =
x+y−1∑
j=x

(x+ y − 1)!
j!(x+ y − 1− j)!p

j(1− p)x+y−1−j (3.31)

This allows for m to be selected in a way that minimizes the overhead at a given
reliability level rather than the expected overhead. This can be achieved by setting a
certain, typically high, value for the required reliability. Then, for a range of values of m,
one is chosen such that it achieves the required reliability with the least overhead. This
overhead can then be used as a time threshold for the computation.

3.4.2.5 Parallel Validation Tests

The validation tests can be performed in sequence with the main computation as assumed
above. Another possibility is to perform them partially or fully in parallel for a significant
reduction in the time overhead. In particular, partial parallelism can be achieved without
a significant increase in the hardware requirements using the idle cycles of the same
subunits used for the scalar multiplication. Similar to the case of error detection with
frequent validation, a parameter ρ is used to model the amount of overlap between the
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main computation and the validation tests. When ρ = 0, there is complete overlap, i.e.,
full parallelism, while when ρ = 1, the operations are completely disjoint.

In the case of full or partial parallel validation, the validation test is performed in
parallel with the main computation. If the test determines that the result is valid, the
computation is not interrupted. On the other hand, if the test detects an error in the
result, the computation of the current block is interrupted and the previous block is
recomputed. It follows that for all non-faulty blocks, the cost of validation test is ρcv,
while for faulty blocks, the cost is still cv.

Hence, (3.20) can be modified to model full and partial parallel tests by modifying the
cost of the tests associated with non-faulty blocks, except for the last block.

RP(n,m,X, c, cb, cv, ρ) = n(c− cb) + cmE[Z] + cv

(
E[Z] + ρ

(
n

m
− 1

)
+ 1

)
(3.32)

3.4.3 A Numerical Example and Evaluation

In our approach, error recovery is achieved by employing an efficient error detection scheme
and performing frequent validation tests. When an error is detected in a block, the block
is recomputed and checked again. For a block size equal to n, this means repeating the
whole scalar multiplication. However, if smaller blocks are used, less recomputation is
required.

3.4.3.1 Error Recovery Example

This example is analogous to the error detection example in Section 3.3.3. Like before,
we adopt Algorithm 4, which is able to detect errors resulting from invalid-curve, sign
change and safe-error attacks and modify it to incorporate frequent validation and partial
recomputation as shown in Algorithm 6.

Assuming that errors follow an exponential distribution, we can substitute in (3.20)
using the same parameters used in the example in Section 3.3.3, namely n = 256, c = 2,
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Algorithm 6 Scalar multiplication with frequent validation and partial recomputation
Input: P ∈ E(F), k = (kn−1, kn−2, kn−3, . . . , k0), , block size m
Output: kP

1: Q0 ← O, Q1 ← O, Q2 ← P

2: j ← 0, H0 ← Q0, H1 ← Q1, H2 ← Q2

3: for i = 0 to n− 1 do
4: Qki ← Qki +Q2

5: Q2 ← 2Q2

6: if imodm = 0 or i = n− 1 then . perform the check for blocks of size m
7: if Q0 ∈ E(F) and Q1 ∈ E(F) and Q2 = Q0 +Q1 + P then
8: j ← i, H0 ← Q0, H1 ← Q1, H2 ← Q2 . store the current state
9: else
10: i← j, Q0 ← H0, Q1 ← H1, Q2 ← H2 . restore the previous correct state
11: end if
12: end if
13: end for
14: return Q1
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Figure 3.10: Expected overhead of frequent validation in the error recovery example

cb = 3/2 and cv = 4, to get the following overhead function

REx2(m,λ) =
n
(
4emλ(2 +m)− 3m

)
2m (3.33)

which can be used to find a block size, denoted by mopt, that minimizes the expected
overhead. Figure 3.10 illustrates the overhead associated with different error rates as a
function of the block size. Moreover, the value of mopt can be given explicitly as a function
of λ as follows.

mopt =
√

2
λ

+ 1− 1 (3.34)

For every value of λ, we can find a value of m, denoted by mr-opt, that minimizes
the overhead required for a given reliability requirement. In this example, we assume
a required reliability of 99.99%. Figure 3.11 shows the values of mopt and mr-opt for a
range of values of λ. Table 3.2 gives the values of mopt and mr-opt for some values of
λ, and gives the associated overhead and reliability in every case. It also compares the
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Figure 3.12: Expected overhead and reliability threshold for mopt and mr-opt in the error
recovery example

achieved reliability with corresponding values for TMR and DMR-PV/PRC structures.
The overhead in Table 3.2 is given relative to a basic double-and-add scalar multiplication
algorithm so all extra computations, tests and recomputations are taken into account
while estimating the overhead.

Figure 3.12 shows the expected overhead and the 99.99% reliability threshold for both
mopt and mr-opt over a range of values of λ. An interesting observation in Figure 3.12 is the
shape of the gap between the expected overhead of mopt and its reliability threshold. This
gap starts considerably large at low values of λ and shrinks as λ increases. The reason for
this behavior is that the choice of mopt is based only on the expected overhead, so the
value of mopt is quite large for lower values of λ, as illustrated in Figure 3.11. Large values
of mopt significantly impact the required reliability threshold since a block recomputation
is more expensive for larger blocks.
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On the other hand, the overhead associated with mr-opt behaves differently. While the
expected overhead is higher than that of mopt, the reliability threshold is much lower,
especially for lower values of λ. This property, in addition to less variability in the block
size as λ varies, makes mr-opt a more practical choice.

3.4.3.2 Evaluation and Comparison

In this section, we evaluate the results of the preceding example and compare them to the
structures reviewed in Section 2.3.

Frequent validation with partial recomputation can be described as an adaptive time
redundancy solution, where only faulty blocks are recomputed. The effect of the limited
redundancy is clear in the low expected overhead reported in the error recovery example,
even for relatively high error rates. The allowed redundancy can be adjusted to satisfy
certain reliability requirements. Also, the block size can be chosen in a way that reduces
the reliability threshold with a limited effect on expected overhead. As illustrated in
Figure 3.12, which shows the time threshold associated with a reliability value of 99.99%,
the required threshold is relatively low even at high error rates. This is mainly because of
the smaller block sizes.

We now compare known solutions to examine the effects of frequent validation with
partial recomputation on the performance and reliability of fault-tolerant structures.
The solutions considered include triple-modular redundancy (TMR), double-modular
redundancy with point validation (DMR-PV) and the parallel and recomputation scheme
(PRC), all of which have been reviewed in Section 2.3. From the error recovery example,
we consider mr-opt, which is chosen to minimize the threshold required for a reliability of
99.99%. All of these solutions are evaluated relative to a stand-alone scalar multiplication
with no error detection or recovery capabilities.

Reliability. We begin by comparing the structure reliability of each of the methods
relative to the reliability of a scalar multiplication unit. As Figure 3.13 illustrates, the
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Figure 3.13: Reliability of various schemes in a range of values of λ

reliability of conventional redundancy schemes falls rapidly with the reliability of the
scalar multiplication unit. However, the reliability of the frequent validation with partial
recomputation scheme does not fall as quickly. In fact, it can be maintained as high as
required. This is caused mainly by the use of smaller block sizes at higher error rates and
by the limited recomputation of only the faulty blocks. Note that this reliability estimate
is limited to transient faults since recomputation can not recover from permanent faults.

Time overhead. We also compare the expected time overhead of various solutions.
TMR and DMR-PV are not included in this comparison because they are hardware
redundancy schemes and their time overhead is negligible. As Figure 3.14 illustrates, the
expected time overhead of all schemes, except for recomputation-based scheme (RC), grows
with the error rate. However, our structure is the only one that maintains a high reliability
of 99.99% over the range of values of λ, which justifies the required time overhead.
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Hardware overhead. Schemes that depend on hardware redundancy, like TMR, DMR-
PV and PRC, have the advantage of being tolerant to permanent faults. However, this
comes at the cost of doubling the hardware requirements in the case of DMR-PV and
PRC, and tripling it for TMR. On the other hand, a scheme based on frequent validation
with partial recomputation have no significant hardware overhead, and are only able to
detect, but not recover from, permanent faults. For this reason, these schemes are optimal
for environments where space is scarce and high reliability is required.

3.5 Practical Aspects and Security Implications

3.5.1 Using Frequent Validation in Practice

Frequent validation provides a trade-off between the cost of testing and the loss or overhead
incurred when faults occur. This trade-off is controlled by the selection of the block size.
We have shown earlier that the block size can be selected optimally when some assumptions
are made about the statistical properties of errors. For instance, when it is assumed
that errors follow an exponential distribution, the error rate λ becomes the controlling
parameter. This model works well when the value of λ is known with reasonable accuracy,
e.g., as the historical rate of hardware faults. However, in many real-life scenarios, it
might not be possible to give an accurate estimate of λ, or it might even be argued that
the random fault model used earlier does not apply.

Recall that, for both error detection and error recovery, we discussed two criteria to
select the block size given λ, namely, minimizing the expected overhead and minimizing
the worst-case overhead, which includes minimizing the reliability threshold in the case of
error recovery. For both criteria, we have found the optimal block size over a wide range
of error rates that represent a range of component reliabilities from the most to the least
reliable. For the first criteria, the variation in the value of the optimal block size over λ in
both error detection and recovery is significant, while for the second criteria, the range
of block sizes is much more limited. In other words, selecting the block size according
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to the second criteria, i.e., minimizing the worst-case overhead, significantly reduces the
block size sensitivity to the changes in λ, and completely eliminates it in the case of error
detection. This fact enables the use of frequent validation in cases where the statistical
distribution of errors is not fully known, e.g., λ can not be accurately determined. For
error detection, the optimal block size based on worst-case overhead is independent of
λ, and hence is independent of the statistical error model used. For error recovery, the
range of optimal block sizes corresponding to a wide variation in component reliability is
limited, and hence a near-optimal selection can be made within this range based on the
designer’s perception of the potential of faults.

3.5.2 Security Implications of Frequent Validation

When a technique that resists a side-channel attack is employed, it is essential to verify
that it does not expose the design to other attacks. In this section, we argue that the use
of frequent validation for error detection and recovery does not enable other side-channel
attacks.

3.5.2.1 Fault Analysis Attacks

When frequent validation is used in error detection or recovery, the validation test adopted
must be able to detect errors resulting from all anticipated types of faults. In our earlier
discussion, we used a validation test based on consistency checking that is known to
detect errors resulting from random faults as well as faults injected by less-sophisticated
attackers, which covers invalid-curve, sign change and safe-error attacks [23].

However, it has been assumed in our earlier discussion that the validation circuit or
routine is error-free. If the validation circuit/routine is vulnerable to errors, infective
computation can be used. In particular, all intermediate tests remain as before, while the
last one is modified to use infective computation. This way, even if the attacker can inject
faults during the computation and manipulate all the intermediate tests, the last test will
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mask the faulty result with random data and defeat the attack. Another option in the
case of hardware implementations is to replicate the testing circuit to reduce or avoid
testing errors.

3.5.2.2 Timing and Simple Power Analysis Attacks

In general, timing and simple power analysis attacks exploit the simple correlation of the
computation time or power consumption with the value of the secret information. As such,
countermeasures for this class of attacks attempt to eliminate this correlation such that
simple analysis does not reveal any secret information. For example, iterations in a double-
and-add-always algorithm have the same length regardless of values of corresponding bits
of the key.

Assuming that the underlying algorithm is immune to timing attacks, the use of
frequent validation introduces variability to the time requirements of the computation
since the time taken to abort the computation (in the case of error detection) or finish
it (in the cast of error recovery) is variable. However, this variability is independent of
the secret information, and is only correlated with the occurrence times of faults. Even
when a fault occurs, all iterations still take the same time and look similar to an attacker.
This means that no information about the secret key can be learned through timing the
computation.

3.5.2.3 Differential Power Analysis Attacks

Differential power analysis attacks are countered generally by randomizing an aspect of
the computation, e.g., the base point, the exponent, intermediate points or the underlying
curve. The designs presented above can be adapted to use any of the known randomization
schemes. Moreover, randomization can be applied to the computation as a whole or to
separate blocks. The latter can prevent an attacker from collecting a number of samples
of a single block by repeatedly injecting faults and causing recomputations of that block.
In this case, the cost of randomization can be included in the cost of validation testing.
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3.6 Conclusion

In this chapter, we have proposed the use of frequent validation in error detection and
recovery for transient faults for elliptic curve scalar multiplication systems. Earlier
proposals dealt with the scalar multiplication as a black box and considered only testing
the inputs/outputs for error detection and time or space redundancy for fault tolerance.
In our approach, we divide the scalar multiplication into equal blocks of iterations and
use efficient error detection schemes to detect errors early and reduce the loss caused by
faults. Moreover, we use the same error detection schemes with partial recomputation to
achieve efficient error recovery without requiring complete time or hardware redundancy.

In both applications, i.e., error detection and recovery, we show how the expected
overhead can be used to select an optimal block size. We also show how a sub-optimal block
size can be selected in a way that gives some advantages over the optimal choice, especially
when the statistical properties of errors are unknown. The analysis and examples given
illustrate that the use of frequent validation is considerably more efficient and reliable
than known error detection and recovery schemes especially when errors are frequent or
in the case of a fault attack. Thus, for many scenarios, the use of frequent validation in
error detection and recovery can be a promising approach.
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Chapter 4

Adaptive Error Recovery

4.1 Introduction

As discussed earlier, when a fault occurs, all computations performed between its occurrence
and its detection are corrupted and their results will have to be discarded. This is a
significant loss in time and power especially for an operation like ECSM, which has
hundreds of iterations each of which involves a relatively large number of finite field
operations on operands that are hundreds of bits in width.

This issue has been addressed in Chapter 3 where the use of frequent validation for
error detection and recovery was proposed. In essence, the scalar multiplication operation
is partitioned into equal blocks of iterations and the output of each block is validated
before starting the next one. If an error is detected in the output of a block, that block is
recomputed. Chapter 3 shows that error recovery based on frequent validation is more
reliable and has less overhead compared to conventional error detection and recovery
designs especially when errors are frequent.

However, a practical challenge to the approach proposed in Chapter 3 is that the
selection of the overhead-optimal (or reliability-optimal) block size requires the knowing
the parameters of the statistical error model. While this is acceptable in a theoretical
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setting, a more practical approach is to reduce or eliminate the need for an accurate error
model. In this work, we propose an extension to the approach presented in Chapter 3 by
which a statistical model for errors is no longer needed to achieve efficient error recovery.
Instead of fixing the block size to an optimal value set in advance, we allow the block size
to vary adaptively in a given range based on whether an error is detected or not. We
show that adaptive error recovery can approach the efficiency and reliability of optimized
fixed-block error recovery.

The remainder chapter is organized as follows. Section 4.2 discusses adaptive error
recovery and describes an analytical model that can be used to estimate the expected
overhead of this approach under the assumption of a constant error rate. These estimates
are confirmed with simulation. In Section 4.3, simulation is used to explore the performance
of adaptive error recovery under a more general error model with a variable error rate.
Then, in Section 4.4, we show how Bayesian inference can be used to select a suitable
adaptive policy under a given error model with unknown parameters. Finally, Section
4.5 discusses the effects of adaptive error recovery on the security of the ECSM design,
and how some of the known security issues can be addressed. Part of the material in this
chapter has appeared in [4].

4.2 Adaptive Error Recovery under a Constant Error

Rate

In this section, we describe adaptive error recovery and present an analytical model that
can be used to estimate its expected overhead. Then, a numerical example is presented
and used, along with simulation, to validate the analytical results. While the following
analysis assumes exponentially-distributed errors with fixed λ, it can be easily adapted to
other error models with constant parameters.
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4.2.1 Adaptive Error Recovery

While fixed-block error recovery has some advantages over comparable approaches to
fault tolerance, it has the disadvantage of requiring the optimal (or reliability-optimal)
block size to be determined prior to the computation based on the knowledge of error
model parameters. As an alternative, we propose the use of adaptive error recovery, which
employs a similar idea but where the block size is varied in response to the perceived error
rate, resulting in less validation tests when errors are rare and more tests when errors are
more frequent. While this approach can be less efficient than the fixed-block approach
for a specific, known error rate, it will require no prior knowledge of the error rate and
probably perform better in error rates different from the one for which an optimal fixed
block size was selected.

Specifically, adaptive error recovery differs from fixed-block error recovery in the
following aspects:

1. Rather than being constant, the block size, denoted by m, varies within a given
range, [ml,mh].

2. The variation of m is controlled by an adaptive policy based on whether or not an
error is detected.

As a result, the number of iterations completed successfully does not progress in regular
increments like before, but changes by an amount and probability that both depend on
the current m. Algorithm 7 illustrates the adaptive error recovery approach. Note the
use of two functions, mUp() and mDown(), that define the adaptive policy based on the
occurrence or absence of errors. Although these functions can be chosen arbitrarily, it is
generally more efficient to limit them to functions that are easily provided by a hardware
register, e.g., an increment or a shift, rather than more complex functions.

75



Algorithm 7 Scalar multiplication with adaptive error recovery
Input: P ∈ E, l = (ln−1, ln−2, ln−3, . . . , l0), [ml,mh] block size range, minit block size

initial value
Output: lP

1: Q0 ← O, Q1 ← O, Q2 ← P

2: j ← 0, H0 ← Q0, H1 ← Q1, H2 ← Q2

3: mc ← minit

4: for i = 0 to n− 1 do
5: Qli ← Qli +Q2

6: Q2 ← 2Q2

7: if i− j = mc or i = n− 1 then . test at end of block
8: if Q0 ∈ E and Q1 ∈ E and Q2 = Q0 +Q1 + P then . error-free
9: j ← i, H0 ← Q0, H1 ← Q1, H2 ← Q2

10: mc ← mUp(mc) . increase block size with an upper limit mh

11: else . error detected
12: i← j, Q0 ← H0, Q1 ← H1, Q2 ← H2

13: mc ← mDown(mc) . decrease block size with a lower limit ml

14: end if
15: end if
16: end for
17: return Q1
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4.2.2 Modeling Adaptive Error Recovery

In this section, we describe a model to calculate the time overhead associated with adaptive
error recovery. This model is similar in essence to the one presented in Chapter 3, but is
superior in that it can be used to estimate the overhead of both fixed-block and adaptive
error recovery.

4.2.2.1 A Statistical Cost Model

Recall the notation presented in the previous chapter. The random variable X represents
the time until the occurrence of the next errors, while n is the total number of iterations.
The cost estimates are given in terms of the following cost measures:

• cb: cost of an iteration in a bare-bone ECSM algorithm.

• c: cost of an iteration in an error recovery algorithm.

• cv: cost of a validation test.

These cost measures are represented using the same unit. In what follows, point operations
are used to measure the cost, but other units like field or bit operations can be used.

The overhead of error recovery using frequent validation and partial recomputation
is defined as the increase in time required relative to a bare-bone scalar multiplication
algorithm. In order to estimate this overhead, it is divided into three parts:

1. Iteration redundancy overhead: This part captures the cost of extra computations
added in each of the original n iterations to allow for validation tests. It can be
found by n(c− cb).

2. Extra iterations overhead: This part captures the cost of extra iterations, beyond
the original n, that are required for recomputation in case of an error occurrence.
It can be computed as (ñ − n)c, where ñ denotes the total number of iterations
including recomputations.
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3. Testing overhead: Each block requires a validation test. This part captures that
cost and can be computed as kcv, where k denotes the total number of blocks.

Summing up these parts, we get the following function that describes the total overhead
in point operations.

fo(ñ, k) = n(c− cb) + (ñ− n)c+ kcv

= ñc− ncb + kcv (4.1)

This expression depends on two variables, ñ and k. It follows by the linearity of expectations
that

E[fo(ñ, k)] = E[Ñ ]c− ncb + E[K]cv (4.2)

where Ñ and K denote the random variables describing ñ and k, respectively.

At block boundaries, the state of the system can be completely described by the
number of valid iterations performed so far, denoted by nd, and the current block size,
denoted by mc. Let N be a random variable representing this state as follows.

N ∈ {(nd,mc) : nd,mc ∈ Z, nd ∈ [0, n),mc ∈ [ml,mh]} ∪ {(n)} (4.3)

where (n) is the absorbing state representing the end of the computation. The total
number of states is n(mh−ml + 1) + 1. Let the sequence {Ns} be such that N0 = (0,minit)
and

Ns+1 =


(Ns(nd),mDown(Ns(mc))) if an error is detected

(Ns(nd) +Ns(mc),mUp(Ns(mc))) if mc < n− nd, error-free

(n) if mc ≥ n− nd, error-free

(4.4)

where Ns(nd) and Ns(mc) are the count of valid iterations performed so far and the current
block size at step s, respectively, while mDown and mUp are the functions that define
the adaptive policy. Since the next state depends only on the current state and whether
or not the current block has an error, this sequence is a Markov chain, and it can be used
to find E[Ñ ] and E[K].
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To describe this Markov chain we use an Augmented Transition Matrix, denoted by
A(x), which is defined as follows.

A(x) =
 A(x) A0(x)

0 1

 (4.5)

where A(x) is a square matrix with dimension n(mh − ml + 1), and A0(x) is column
vector satisfying A0(1) + A(1)1 = 1. Here, 0 and 1 represent the all-0 and all-1 vectors,
respectively, and the last row and column of A(x) correspond to the absorbing state (n).
This matrix is a more general form of the conventional transition probability matrix in
the sense that each transition probability is augmented with the corresponding transition
distance or cost as the exponent of the variable x. More formally, each element aij(x) of
A(x) is defined as follows.

aij(x) = pijx
dij (4.6)

pij = Pr[Ns+1 = (nd,mc)j|Ns = (nd,mc)i]

dij = min((mc)i, n− (nd)i)

A conventional transition probability matrix can be obtained as A(1). The transition
between any two states is determined by the adaptive policy and the error probability.
All non-terminal states belong to one of two classes:

1. (nd,mc) : mc < n− nd. These states represent all blocks except for the last one in
the computation. In this case, the next state is either (nd + mc,mUp(mc)) with
probability Pr[X ≥ mc] = e−λmc (error-free), or (nd,mDown(mc)) with probability
Pr[X ≤ mc] = 1 − e−λmc (error detected). In both cases, the power of x is the
distance, which is mc.

2. (nd,mc) : mc ≥ n−nd. These states represent the (potentially) last block. The next
state is either (nd,mDown(mc)) with probability Pr[X ≤ (n− nd)] = 1− e−λ(n−nd)

(error detected), or the absorbing state (n), with probability Pr[X ≥ (n − nd)] =
e−λ(n−nd) (error-free). In both cases, the power of x is the distance, which is n− nd.
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A probability vector, denoted by α, can be used to represent the initial conditions, e.g.,
the initial block size.

4.2.2.2 Finding E[K]

We now show how A(x) can be used to find the expected value of K, the number of blocks.
In general, for a transition matrix T of the form

T =
 T T0

0 1

 (4.7)

where T is a square matrix, T0 is a column vector and T0 + T1 = 1, the number of
steps required to reach the absorbing state follows a Discrete Phase-type distribution,
denoted by DPH(τ,T), where τ is a probability vector representing the initial distribution.
Note that when T = A(1) and τ = α, this distribution applies to K. It follows from the
properties of the discrete phase-type distribution that

Pr[K = k] = αAk−1(1)A0 (4.8)

and
E[K] = α(I −A(1))−11 (4.9)

where I is the appropriately-sized identity matrix.

4.2.2.3 Finding E[Ñ ]

The matrix A(x) can also be used to find the expected total number of iterations, E[Ñ ].
Recall that for each non-zero element aij(x) ofA(x), the coefficient represents the transition
probability from state i to j while the exponent represents the distance, i.e., number of
iterations in the transition. So, to find the expected number of iterations between any
two states i and j, we multiply the exponents by their respective coefficients and then
divide by the sum of coefficients to normalize.
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More formally, for a polynomial aij(x) 6= 0, we can find the expected number of
iterations in the transition between states i and j as a′ij(1)

aij(1) , where a′ij(1) is the first
derivative of aij(x) with respect to x evaluated at x = 1. This idea extends naturally to
powers of A(x) to find the expected number of iterations over more than one block.

To find E[Ñ ], we find the expected number of iterations from the starting state to the
absorbing state for all values of k and find their sum weighted by the probability of each
respective k. More formally,

E[Ñ ] =
∑
k∈K

Pr[K = k]E[Ñ |K = k]

=
∑
k∈K

Pr[K = k]
∑
ñ∈Ñ

ñPr[Ñ = ñ|K = k]

=
∑
k∈K

Pr[K = k]
( d
dx

(αAk)−1)(1)
(αAk)−1(1) (4.10)

where (αAk)−1 is the last element in the row vector αAk. It is important to note that
the last element in the last row of A(x) corresponding to Pr[Ns+1 = (n)|Ns = (n)] should
be set to 0 to prevent the accumulation of elements in the last column of Ak(x) between
successive values of k. This reflects the fact that no more steps are taken beyond the
absorbing state. Using (4.9) and (4.10), we can find the expected value of the total
overhead in (4.1).

Note on computational complexity. Finding E[Ñ ] requires raisingA(x) to the power
of all values of k, which will cause the number of nonzero elements to increase quickly.
This can be mitigated by using α to reduce matrix multiplications to vector-matrix
multiplications, e.g., computing αA3(x) as (((αA(x))A(x))A(x)) rather than α(A3(x)).
However, since elements are polynomials, this still allows the number of terms in each
polynomial element to increase rapidly. As such, computing the powers of A(x) can
become costly unless the number of states is limited. Here we give another representation
of A(x) that significantly reduces the computational cost of finding E[Ñ ].

Note that in (4.10), for each k, we need to raise A(x) to the power of k in order to get
a specific polynomial, denoted here by a(x), which describes the k-steps transition from
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the starting state to the absorbing state. The average distance using k steps can then be
found by a′(1)

a(1) . This value is multiplied by the probability of k and accumulated to get
the average total number of iterations required. The key here is the computation of the
value a′(1)

a(1) . Since a(x) is a dot product, we can write a(x) = ∑
i hi(x)gi(x) where h(x) and

g(x) are row and column vectors, respectively. It follows that

a′(x) =
∑
i

(hi(x)gi(x))′ =
∑
i

h′i(x)gi(x) + hi(x)g′i(x) = h′(x)g(x) + h(x)g′(x) (4.11)

So, all we need to calculate a(1) and a′(1) is to know h(1), h′(1), g(1) and g′(1). It follows
that the required powers of the polynomial matrix A(x) can be found using a pair of
purely-numerical matrices, A(1) and A′(1). This reduces the computation cost significantly
since it replaces each polynomial multiplication with three numerical multiplication, one
to obtain a(1) and two to obtain a′(1). It also leads to a significant saving in memory
requirements as it avoids the rapid growth in the size of polynomial elements.

4.2.2.4 Short- and Long-term Behavior

In the preceding analysis, it was mentioned that the probability vector α can represents the
initial distribution and can be used to select the initial block size by setting all elements to
0 except for the corresponding state, (0,minit), which is set to 1. This effectively captures
the transient behavior of the system and models the scenario where the initial block size
is reset to minit before starting each scalar multiplication.

However, it is possible not to reset the initial block size and keep the last used block
size between completed computation. This has the advantage of maintaining the acquired
information about the error rate and the suitable block size. To model this behavior, we
need to find the long-term distribution for the block sizes and use it as α. We find this
information as follows. First, we define M , which is the random variable that describes
the current block size. Then, another Markov chain, denoted by {Mi}, is constructed
which only describes the variation in block size, i.e., where states represent different block
sizes within the allowed range. In particular, for Mi = m, the next state will be either
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Mi+1 = mUp(m) with probability e−λm, or Mi+1 = mDown(m) with probability 1− e−λm.
Given the transition matrix of this chain, we need to find the associated stationary
distribution. Such distribution, denoted by π, can be computed as the normalized left
eigenvector of the transition matrix associated with the eigenvalue 1. Given π, we can set
the initial state in α to reflect the stationary distribution, and the estimated overhead
will then be the expected long-term overhead.

4.2.3 Numerical Examples

4.2.3.1 Fixed-block Error Recovery Example

We illustrate the use of the model discussed earlier and validate it by comparing its results
to the model developed earlier in Chapter 3. To enable this comparison, we use Algorithm
6 as in Chapter 3 with similar parameters, i.e., n = 256, c = 2, cb = 3/2 and cv = 4. Two
criteria were proposed in Chapter 3 to find an optimal block size. The more intuitive one
is to select the block size, denoted by mopt, to minimize the expected overhead. It is also
possible to select the block size, denoted by mr-opt, to minimize the required overhead to
achieve a given reliability requirement, e.g., 99.99%. In this example, we use the optimal
block sizes for various values of λ as computed in Chapter 3. Table 4.1 compares the
results obtained from the model described in this section to the earlier results. It can be
seen from the table that the two models produce matching results, thus confirming the
validity of the preceding analysis.

We also use simulation to validate the results the preceding analysis. For fixed-block
error recovery, Table 4.2 shows some of the simulation results and compares them with
the results obtained through analysis.

4.2.3.2 Adaptive Error Recovery Example

We also demonstrate the results that can be achieved using adaptive error recovery. This
example uses the same basic parameters used in the earlier example. Moreover, we have
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Table 4.1: Expected overhead results in point operations using the earlier model in Chapter
3 and the model in Section 4.2.2.1. Values between parentheses represent the percentage
overhead relative to a bare-bone ECSM implementation.

λ m Exp. overhead, earlier model Exp. overhead, (4.1)

0.05
mopt 5 536 (140%) 539

mr-opt 3 607 (158%) 609.8

0.01
mopt 13 289 (75%) 289.2

mr-opt 7 322 (84%) 323.4

0.001
mopt 44 175 (46%) 175.5

mr-opt 11 228 (59%) 230.6

Table 4.2: Comparison of expected overhead using the model in Section 4.2.2.1 with
the simulation results. The expected overhead from the simulation is shown with a 99%
confidence interval. Also, the reliability of the expected overhead and the overhead at
99% reliability are shown

λ m
Analysis Simulation

E[OH] E[OH] Rel at E[OH] OH at 99% Rel.

0.05
mopt 5 539 540.5 ±4.8 50% 686

mr-opt 3 609.8 609.6 ±4.3 48% 702

0.01
mopt 13 289.2 290.0 ±4.3 50% 448

mr-opt 7 323.4 322.5 ±2.5 52% 402

0.001
mopt 44 175.5 174.9 ±3.8 78% 336

mr-opt 11 230.6 230.7 ±1.1 77% 302
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to select an adaptive policy, which amounts to setting the following parameters:

1. The block size bounds, ml and mh.

2. The block size update functions, mUp() and mDown().

As shown in Chapter 3, block sizes that are optimized for reliability are smaller than
ones optimized for efficiency. Moreover, the former have an expected overhead that is
close to the latter, and the former is less sensitive to the variation in the error rate. As
such, it is sensible to give preference to smaller blocks as opposed to bigger blocks when
setting the adaptive policy parameters. It is sensible as well to increase the block size
(in the absence of error) slower than it is decreased (when an error is detected). This is
because smaller blocks generally provide a better trade-off between efficiency and reliability.
Based on this argument, a good choice for the block size modification functions can be
mUp(m) = m + 1 and mDown(m) = bm/2c, as they are both easy to implement and
satisfy the grow-slow/shrink-fast requirement. We look more closely at the selection of
the adaptive policy in Section 4.4.

As for the range of block size values, we can select a range that includes the optimal
block sizes for a range of values of λ, e.g., [5, 40]. In general, higher values of m should
be avoided as they lead to less frequent validation tests, and potentially more expensive
recomputations when errors occur.

Now that we have some values for these parameters, we can examine the results over a
range of values for the initial block size, minit, and the error rate, λ. Table 4.3 shows some
analytical results for this example while Table 4.4 shows some simulation results. Figures
4.1, 4.2 and 4.3 show the expected overhead and the 99% reliability threshold for the
short-term adaptive alternative compared to the fixed-block alternative for three values of
λ over a range of initial block sizes. These tables and figures show that adaptive error
recovery is generally more efficient than the fixed-block alternative except when the fixed
block size happens to be near the optimal block size for a certain λ. Even in this case,
the overhead of the adaptive alternative is not much higher. Moreover, while the 99%
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Table 4.3: The expected overhead for adaptive error recovery for three values of λ. The
expected overhead and expected block size are shown for three values of minit in three
error recovery scenarios, namely, fixed-block, and short- and long-term adaptive.

λ minit
Fixed-block Adaptive, short-term Adaptive, long-term

E[OH] E[OH] E[M] E[OH] E[M]

0.05
5 539.0 568.4 6.81

570.8 6.9015 845.8 587.3 7.23

40 3419.0 676.5 8.15

0.01
5 372.6 304.3 10.13

302.5 11.8315 293.5 301.2 12.45

40 408.0 338.2 17.69

0.001
5 339.6 215.6 13.00

181.3 28.3315 208.7 194.4 18.58

40 177.1 178.8 33.44

reliability threshold in the adaptive case varies with the initial block size, its variation is
limited and indicates a low sensitivity to the choice of the initial block size.

On the other hand, Figure 4.4 compares the expected overhead of long-term adaptive
error recovery to the overhead of the optimal fixed block size, i.e., one selected with the
knowledge of λ, and shows that adaptive error recovery closely matches the overhead
of optimized fixed-block error recovery in the long term. This indicates that, while the
selection of minit affects the expected overhead in the short term, the behavior in the long
term will approach that of the best choice of minit regardless of the actual initial block size.
These results lead to the conclusion that the use of adaptive error recovery alleviates both
the need to know the error rate in advance and the need to select a good value for minit.
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Figure 4.1: The expected overhead and 99% reliability threshold of adaptive error recovery
compared to the fixed-block case for λ = 0.001. Simulation results are shown within 99%
confidence interval.
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4.3 Error Recovery under a Variable Error Rate

In the previous section, the overhead associated with fixed-block and adaptive error recovery
has been estimated using an analytical model and simulation under the assumption of a
constant error rate. Both fixed-block and adaptive error recovery can perform relatively
well under a constant error rate. In particular for the fixed-block alternative, the knowledge
of the error rate is needed to optimize the block size for a particular error rate. It can be
argued, however, that the constant error rate assumption does not capture the complexity
of error occurrences in reality where the error rate is mostly either unknown or variable.
In this section, we use simulation to explore the performance of both fixed-block and
adaptive error recovery under randomly varying error rate.

4.3.1 A More General Error Model

For a more realistic error model, it is essential to address the possibility of burst errors,
i.e., sudden increases in the perceived error rate that lead to the concentration of errors
in a limited time period. This can be achieved by extending the error model discussed
earlier using a variable error rate. In particular, a range of error rates, [λlow, λhigh], is
selected and λ is picked randomly at block boundaries following a log-uniform distribution
with parameters ln λlow and ln λhigh, i.e., ln λ ∼ U(ln λlow, ln λhigh). The expected value of
λ will then be λhigh−λlow

lnλhigh−lnλlow
. This distribution has the property that most of its mass is

closer to the lower end, but that occasionally results can come from the higher end. In
effect, this represents the scenario where errors are generally rare with bursts of higher
error rate.

4.3.2 A Numerical Example

We give an example to demonstrate the effectiveness of both fixed-block and adaptive error
recovery under a variable error rate. We simulate both under the extended error model
described earlier and gather information like the average overhead, the average block size
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and the overhead threshold that provides 99% reliability. The parameters used here are
the same as earlier examples. For the range of λ, we use the conservative and relatively
wide range [0.001, 0.05]. Error rates higher than 0.05 are excluded as they amount to 0
reliability of the original design, while error rates lower than 0.001 are low and can skew
the simulation results to be more optimistic.

Table 4.5 shows the simulation results. As expected, adaptive error recovery is generally
less sensitive to the value ofminit. Moreover, it can be more efficient and offer less expensive
reliability than the fixed-block alternative. The only exception is when the fixed minit is
selected to be close to the unknown, optimal block size, which naturally results in less
expected overhead for the optimized fixed-block. However, even then, adaptive blocks
respond better to the variability of λ and give smaller reliability threshold.

Figure 4.5 shows the overhead for both short- and long-term adaptive error recovery
compared to the fixed-block approach under a variable error rate. With the exception
block sizes that happen to be close to optimal, adaptive blocks have less expected overhead
than fixed ones. Figure 4.6 shows the 99% reliability overhead for short- and long-term
adaptive error recovery compared to fixed blocks. Similar to the preceding figure, for
all block sizes except for a small near-optimal range of fixed block sizes, adaptive error
recovery offers the same reliability with significantly smaller expected overhead.

4.4 Adaptive Policy Selection

Earlier, we have observed that the use of smaller blocks results in higher reliability and
reduced recomputations especially when errors are frequent. This led us to propose
an adaptive policy that decreases the block size quickly when an error is detected and
increases it slowly otherwise. In particular, we used the policy mDown(m) = bm/2c
and mUp(m) = m+ 1 in our analysis as a specific realization that is easy to implement
in a hardware register. The numerical example given earlier shows that this simple
adaptive policy is effective in approximating the performance of an optimized fixed-block
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design while resulting in a smaller overhead variance and avoiding the need to know the
parameters of the error model in advance.

In this section, we take a closer look at the selection of the adaptive policy with the
aim of evaluating the policy proposed earlier. We achieve this by modeling the process of
updating the block size as a statistical inference procedure in which the distribution family
followed by the data is known but the parameter that identifies the specific distribution
is unknown. The goal of the inference procedure is to infer or learn the value of the
parameter using the observed data.

4.4.1 Bayesian Inference in a Nutshell

This section gives a brief introduction of Bayesian inference. A reference on the subject of
Bayesian statistics like [36] or [12] can be consulted for further details.

In the Bayesian approach to inference, newly acquired data or evidence is used to
update a prior distribution over the hypotheses space resulting in a posterior distribution
that captures the new evidence. This approach relies on the use of Bayes’ rule, which can
be stated as follows.

Pr[A|B] = Pr[B|A] Pr[A]
Pr[B] (4.12)

for any random variables A and B.

Under the assumption that a random variable X follows a known distribution with
unknown parameter θ, the inference starts by encoding the initial belief or information
about θ in a probability distribution over the domain of θ, denoted Pr[θ]. Then, when a
sample x is observed, the belief in θ is updated as follows.

Pr[θ|x] = Pr[θ] Pr[x|θ]
Pr[x] (4.13)

where Pr[x|θ] is the likelihood of observing x under θ, Pr[x] is the probability of observing
x, and Pr[θ|x] is the posterior distribution of θ given that x was observed.

Generally, any distribution can be used to describe Pr[θ]. However, for some statistical
distributions of X, the prior distribution can be selected in a way that makes the prior and
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posterior distributions belong to the same family, which is analytically and computationally
convenient. Such distributions are called conjugate priors, and their parameters are called
the hyperparameters. When conjugate priors are employed, observed data is used to
update the hyperparameters of the prior distribution to generate the hyperparameters of
the posterior. This works because the prior and the posterior belong to the same family.

For example, for a random variable X that follows an exponential distribution, θ
represents the error rate, λ. The conjugate prior of the exponential distribution is the
gamma distribution, which has two parameters, α and β. So, the prior distribution, Pr[λ],
follows a Gamma(α, β) distribution for some initial α and β. Assuming that a sample x
was observed, it can be shown that the posterior, Pr[λ|x], follows a Gamma(α + 1, β + x)
distribution. This procedure can be repeated when new samples are observed by using
the posterior as the new prior. The gamma distribution is also the conjugate prior for the
Pareto distribution, and specifically for the parameter γ. The posterior, however, has a
different form, i.e., Pr[γ|x] ∼ Gamma(α + 1, β + ln x).

The posterior distribution can be used to establish confidence intervals for the value of
the parameter. However, when a point estimate of the unknown parameter is required, it
is common to select the mode of the posterior, i.e., the value with the highest probability
as the parameter’s point estimate. This estimate is commonly called the Maximum A
posteriori Probability (MAP) estimate. MAP estimates are similar to the well-known
maximum likelihood estimates with a key difference, namely, that the MAP estimate takes
the prior distribution into account.

4.4.2 Modeling the Adaptive Policy using Bayesian Inference

As mentioned earlier, we model the block size updates using Bayesian inference. It is
assumed that the error statistical model is known and has parameter θ, and that we have
an initial block size, minit. In what follows, we discuss the general procedure, which is
illustrated in Figure 4.7. Then, we give specific steps for errors following the exponential
and Pareto distributions.
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Figure 4.7: The use of Bayesian inference to model the adaptive policy.
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4.4.2.1 General Procedure

1. Setup: We construct a prior distribution for the parameter θ.

(a) We have expressions for the optimal block size given the parameter. We use
these expressions to find the value of θ for which minit is optimal and call it
θinit.

(b) Then, we select the hyperparameters such that θinit is the mode of the prior.
The hyperparameter α acts as a counter of the number of samples observed
plus one so we set α = 2 since we have one observation that is the first block
size. The hyperparameter β can then be found directly using θinit and the mode
expression.

2. After each block: We use the observed result of the validation test to update the
hyperparameters and obtain the posterior distribution. Denote the result of the
validation test by ξ ∈ {0, 1}, 0 for error-free and 1 when an error is detected.

(a) Since the exact occurance time of an error is not known, we update the
hyperparameters using E[X|ξ] in place of the unknown x.

(b) The posterior is now known using the updated hyperparameters. We take its
mode as the new θ, and use the optimal block size expressions to find the new
m.

Issues. There are two issues that need to be addressed here. The first is the use of
E[X|ξ] in place of the missing observation x, while the second is the approach used to
accumulate the observations.

The use of E[X|ξ] in place of x effectively implies the inclusion of all values of x
weighted by their probability given the observed value of ξ. This is commonly done
when inference is performed using incomplete or censored data, e.g., in the expectation-
maximization algorithm [20]. Given that ξ = 0 and 1 implies no error and error detected,
respectively, it follows that E[X|ξ = 0] = E[X|X ≥ m] and E[X|ξ = 1] = E[X|X ≤ m].
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The second issue is the procedure for accumulating the observations. There are at
least four ways to accumulate the observed data when modifying the hyperparameters.

1. Accumulate all data with equal weights: This is a commonly-used approach in
Bayesian learning, The advantage of this approach for learning is that the effect of
new observations on the hyperparameters gets smaller and smaller as more data is
gathered, i.e., the variance of the posterior distribution decreases as more data is
collected. However, in our case, it is preferable that the posterior can adapt to recent
observations since they are relatively more informative than older observations.

2. Keep only the latest observation: On the other end of the spectrum, this approach
eliminates all past observations and uses only the most recent. This approach has
the opposite problem, namely, the behavior becomes volatile and outliers have an
exaggerated effect since all past observations are forgotten.

3. Keep a moving window of observations: This approach partially fixes the problems
with the previous two. However, the problem described in the second approach
above still occurs when the oldest observation in the window and the most recent
one have a big difference, which can lead to sudden jumps.

4. Use an exponentially-smoothed accumulation: In this approach, the new hyperpa-
rameter is a linear combination of its previous value the most recent observation.
This has the advantages of the window approach while avoiding its problem. The
preference of older vs. newer observations can be controlled by the weight used in
the linear combination, which is aptly called the smoothing coefficient. This is the
approach that is most suitable in our case.

4.4.2.2 Exponentially-distributed Errors

In this section, we tailor the general procedure given above to exponentially-distributed
errors. The parameter we need to infer or learn is the error rate λ, and as mentioned
earlier, the conjugate prior of the exponential distribution is the gamma distribution.
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The procedure for the exponential distribution is as follows. Initially, we only know
the initial block size minit.

1. Setup: Construct the prior distribution.

(a) Find λinit from minit: Since mopt =
√

2
λ

+ 1− 1, we can write this expression in
terms of m to get λinit = 2

(minit+1)2−1 .

(b) Let αinit = 2. As explained earlier, this is because we only have one data point
so far.

(c) Since the mode of Gamma(α, β) is α−1
β

, let βinit = αinit−1
λinit

.

(d) The prior distribution is then Gamma(αinit, βinit).

2. At the end of each block: Update the hyperparameters using ξ to obtain the
posterior.

(a) β ← wE[X|ξ] + (1− w)β where

E[X|ξ] =


E[X|X ≥ m] = E[X] +m for ξ = 0

E[X|X ≤ m] = E[X]− m
eλm−1 for ξ = 1

(4.14)

As an aside, note that E[X|X ≥ m] is a shifted version of E[X], which is a
consequence of memorylessness.

(b) Let λ be the mode of the posterior. λ = α−1
β

.

(c) Let m be the optimal block size for λ. m =
⌊√

2
λ

+ 1− 1
⌋
.

Note that α is not updated after each block. The reason is that observations are
combined with weights that add to one. In effect, β contains only one observation that is
a weighted average of all the past observations. Sine α tracks the number of observations,
it stays unchanged.
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Figure 4.8: The next block size as a function of the current block size for different values
of ξ and w assuming exponentially-distributed errors.

Resulting block sizes. When this procedure is applied to the current m, we get the
following expressions for the next block size mnext as a function of current block size m
and the smoothing coefficient w.

mnext =


⌊√

(1 +m)2 + 2mw
⌋
− 1 for ξ = 0⌊√

1 +m(2 +m+ w)−mw coth
(

1
2+m

)⌋
− 1 for ξ = 1

(4.15)

where coth is the hyperbolic cotangent function. Figure 4.8 illustrates these expressions
by plotting the mnext versus the current m for three values of w, namely, 0.25, 0.5 and
0.75. Moreover, Table 4.6 shows the slopes of the lines that fit the curves in Figure 4.8.

4.4.2.3 Pareto-distributed Errors

Now we tailor the general approach to Pareto-distributed errors. The parameter we need
to estimate is γ, the shape parameter. Recall that we set x0, the scale parameter, to one
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Table 4.6: Slopes of the lines that fit the curves in Figure 4.8
Value of ξ Value of w Resulting slope, mnext

m

0 (no error) 0.25–0.75 1

1 (error)
0.25 0.87

0.5 0.71

0.75 0.5

since it is the minimum value taken by X. The conjugate prior for the Pareto distribution
is again the gamma distribution.

The procedure for the Pareto distribution is as follows. Initially, we only know the
initial block size minit.

1. Setup: Construct the prior distribution.

(a) Find γinit from minit: Since mopt = 2(1−γ)
γ

, we can find γ in terms of m using
γinit = 2

minit+2 .

(b) Let αinit = 2.

(c) Since the mode of Gamma(α, β) is α−1
β

, let βinit = αinit−1
γinit

.

(d) The prior distribution is then Gamma(αinit, βinit).

2. At the end of each block: Update the hyperparameters using ξ to obtain the
posterior.

(a) β ← w ln(E[X|ξ]) + (1− w)β where

E[X|ξ] =


E[X|X ≥ m] = mγ

γ−1 = mE[X] for ξ = 0

E[X|X ≤ m] = E[X]
(
1− m−1

mγ−1

)
for ξ = 1

(4.16)

Note that E[X|X ≥ m] is a scaled version of E[X], which is a consequence of
self-similarity.
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Important observation. Recall that we assume γ ≤ 1 since a higher γ
implies a very low reliability. Since E[X|X ≤ m] is an expectation over a
bounded interval [1,m], it exists for γ < 1 unlike E[X]. When γ = 1, we can
take its limit instead. limγ→1 E[X|X ≤ m] = m lnm

m−1 .

However, this will not work for E[X|X ≥ m]. Since E[X] does not exist for
γ ≤ 1, E[X|X ≥ m] = mE[X] will not exist as well. We are not aware of any
consistent solution for this problem, and hence, we replace E[X|X ≥ m] with
eβ which implies no change to β when no error is detected. It follows that
the block size will not increase when no error is detected. This has no effect,
however, on the other part of the adaptive policy, i.e., when an error occurs.

(b) Let γ be the mode of the posterior. γ = α−1
β

.

(c) Let m be the optimal block size for γ. m = max
(
1,
⌊

2(1−γ)
γ

⌋)
.

Resulting block sizes. When this procedure is applied to the current m, we get the
following expressions for the next block size mnext as a function of current block size m
and the smoothing coefficient w.

mnext =


m for ξ = 0m− (2 +m)w + 2w ln

2
(
m−m

2
2+m

)
m

(
m

2
2+m−1

)
 for ξ = 1

(4.17)

Note that due to the nonexistence of E[X|ξ = 0] when γ ≤ 1, the block size is not modified
when ξ = 0. Figure 4.9 illustrates these expressions by plotting the new m against the
current m for three values of w, namely, 0.25, 0.5 and 0.75. Moreover, Table 4.7 shows
the slopes of the lines that fit the curves in Figure 4.9.

4.4.2.4 Evaluation

We have used Bayesian inference under two different statistical error models to determine
the next block size as a function of the current block size. Whether an error was detected
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Figure 4.9: The next block size as a function of the current block size for different values
of ξ and w assuming Pareto-distributed errors.

Table 4.7: Slopes of the lines that fit the curves in Figure 4.9
Value of ξ Value of w Resulting slope, mnext

m

1 (error)
0.25 0.76

0.5 0.52

0.75 0.28
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or not, the behavior of the inference procedure matches that of the general adaptive policy
discussed earlier, i.e., the grow-slow/shrink-fast policy. This indicates that the general
adaptive policy can track the estimated value of the unknown parameter given only the
observed occurance or absence of errors. Moreover, for some value of w under both models,
the behavior matches exactly the mDown part of the specific adaptive policy we used
earlier, i.e., mDown(m) = bm2 c. As for the mUp part, it is clear that the slower the block
size is increased the better.

Furthermore, these results provide a way to fine-tune the adaptive policy according to
the desired sensitivity to the most recent observed data. For example, assuming Pareto-
distributed errors, if it is desired to give a high weight to the most recent observation,
e.g., w = 0.75, then according to Table 4.7, the adaptive policy should divide the block
size by 4 rather than by 2 when an error is detected.

4.5 Effects of Adaptive Error Recovery on Security

Given the existence and demonstrated practicality of a variety of side-channel attacks on
the ECSM operation, it is essential to study the effect of frequent validation in general, and
adaptive error recovery in particular, on the security of an ECSM implementation. The
effects of frequent validation and partial recomputation on security have been addressed
in Chapter 3. In summary, the following issues were discussed:

1. Fault Analysis Attacks: The validation tests used in the preceding examples are
known to be immune to a wide variety of fault attacks mounted by less-sophisticated
attackers, i.e., attackers who do not have full control over the location and timing
of injected faults. On the other hand, it is essential to avoid the single point of
failure created by the validation tests being logical tests. This can be achieved using
infective computation at the end of the computation to mask any faulty results.

2. Timing and Simple Power Analysis Attacks: Both fixed-block and adaptive error
recovery introduce variability in the time required to complete the computation.
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However, this variability is dependent only on the location of errors and is independent
of the secret information. Hence, if the underlying algorithm is immune to timing
analysis, e.g., a double-and-add-always algorithm, then the use of frequent validation
will not enable timing attacks.

3. Differential Power or Timing Analysis Attacks: Randomization can be used to
counter differential attacks. Both fixed-block and adaptive error recovery schemes
allow for the randomization of the whole computation, as well as the separate
randomization of blocks, to avoid various types of differential attacks.

4.6 Conclusion

The advantage of using frequent validation with partial recomputation for error recovery
in ECC implementations has been established in Chapter 3. However, this advantage
depends mainly on identifying a good trade-off between reliability and overhead, which
requires knowledge of the parameters of the error statistical model. This can be overcome
partially by selecting smaller block sizes that generally provide higher reliability while not
increasing the overhead significantly.

In this chapter, we have introduced another approach to address this issue. Instead
of fixing the block size to an optimal value, the block size is allowed to vary adaptively
as a response to the occurrence of errors. We have shown, using an analytical model
and using simulation, that this can give near-optimal reliability and efficiency while not
requiring prior knowledge of the statistical parameters of errors. We have also discussed
the selection of the policy and used statistical inference to justify the general adaptive
policy proposed earlier. These results should motivate designers to incorporate adaptive
error recovery in their designs.
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Chapter 5

Cost-Effective Validation Tests for
Elliptic Curve Scalar Multiplication

5.1 Introduction

Earlier in this document, we have discussed ways to enhance the reliability of cryptographic
implementations using repeated validation testing. We have addressed the issue of the
selection of the validation frequency, when fixed blocks are used, and its sensitivity to
the parameters of the error statistical model. We have also proposed adaptive testing as
an alternative that relaxes the need for a precise error model. Although our proposals
require less overhead than comparable approaches, validation testing still constitutes a
significant part of the overhead. It is always desirable to reduce the testing overhead as
much as possible while maintaining the reliability gain.

A key observation is that validation tests discussed earlier aim mainly to have the
maximum coverage possible, and do not give the same weight to computational cost. This
is justified by the fact that these tests are constructed to be used once right before the
final result is provided, and hence, their cost becomes insignificant relative to that of a
scalar multiplication.
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However, when a validation test is applied frequently, the overhead of testing can
become a significant part of the total overhead. We show in this chapter that some
validation tests, and particularly those based on coherency checking, can offer a trade-
off between the cost of the test and its error detection effectiveness. As a result, the
effectiveness of error detection can be decreased in order to reduce the resulting overhead
without threatening the security of the system.

In this chapter, we propose some cost-effective validation tests and evaluate their error
detection effectiveness and the associated cost. We take two approaches to achieve this.
The first comprises the modification of the coherency-based validation test presented in [23]
in order to reduce its cost. Then, we propose two related coherency-based validation tests
that offer different cost and effectiveness trade-offs. For all of these tests, we investigate
their cost and error detection effectiveness and the impact of using a varying number of
point validations in the test. We also show how the cost of these tests can be reduced
further by using them in a repeated validation setting.

The second approach is to apply coherency-based validation tests to elliptic curves
defined over rings in order to both reduce the cost of validation tests and present a
flexible trade-off between the test cost and its effectiveness. Essentially, validation tests
are performed on the smaller curve rather than the original or the combined curve, thus
saving significantly on the testing cost while still being able to detect a high proportion of
errors. The size of the smaller curve, however, has an effect on both the computation cost
and the testing cost, so the selection of the smaller curve size has to be made with these
issues in mind.

The goal here is to make validation tests as inexpensive as possible. The corresponding
increase in the proportion of undetected errors is mitigated by both repeated testing and
a comprehensive error detection test at the end of the computation. As shown in Chapter
3, the reduction of the cost of the validation test results in smaller block sizes, which in
turn lead to a higher reliability and reduced recomputations. While our discussion will
focus on general elliptic curves defined over prime fields and on homogeneous projective
coordinates, the ideas presented here are applicable to other elliptic curves, finite fields
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and projective coordinates.

5.2 Coherency-based Validation Testing

Some scalar multiplication algorithms, e.g., double-and-add-always [18] and Montgomery’s
ladder [52], have an inherently redundant internal state that satisfies some invariants.
The occurrence of errors will generally disturb the algorithm’s internal state. As such, it
is possible to detect those errors by checking the coherency of the algorithm’s state as
illustrated in [23] and [25]. There are error detection solutions for RSA that use the same
idea like those proposed in [28] and [29]. In this section, we focus on the coherency-based
validation testing proposed by Domínguez-Oviedo and Hasan in [23], which will serve as
the foundation for countermeasures introduced in this chapter.

5.2.1 Threat Model and Assumptions

We start by describing the threat model that we consider when evaluating the counter-
measure discussed in this chapter.

A fault can result in an error either by flipping a bit or more in a register, or by
corrupting a computation resulting in a faulty output. While any variable used in the
algorithm can be corrupted by a natural or deliberate fault, we focus our discussion on
variables that result from finite field computations. Other variables, i.e., the scalar, base
point, loop counter, and field and curve parameters, can be protected by integrity checking
mechanisms like parity bits or cyclic redundancy checks. Also, it is assumed that the
attacker is not able to inject faults in a way that sets a specific bit to a specific value.
While the countermeasures we discuss can in some cases detect permanent faults, we
generally limit our discussion to transient errors. The countermeasures discussed here
cover natural and deliberate invalid-curve faults as well as sign change and safe error
attacks.
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When decisional validation tests are considered, it is assumed that the test is performed
in a way that is protected from fault injection. This assumption will be relaxed when
infective variants of decisional validation tests are discussed as countermeasures to double-
fault attacks.

In terms of notation, when there is a potential for confusing a validation test with
a statement, a question mark will be used to differentiate the two as follows. The form
a = b states that a is equal to b, while the form a

?= b indicates a decisional test that
returns true when a and b are equal and false otherwise.

5.2.2 Domínguez-Oviedo–Hasan Coherency-based Validation Test

Coherency checking can be used to validate the state of the algorithm is a variety of ways
depending on the specific algorithm and the threat model.

In [23], a collection of validation tests based on this approach have been presented.
Among these validation tests, Algorithm 4, which is discussed in Chapter 2 and is based
on an analogous test for RSA presented in [29], has some interesting properties. First, it
is based on a double-and-add-always scalar multiplication algorithm that is inherently
resistant to simple side-channel attacks. Second, it can detect a wide range of errors that
have been exploited in fault analysis attacks. Third, it can be easily modified to counter
double-fault attacks.

In Algorithm 4, the validation test has two parts, namely, point validations and a
coherency test that is based on point additions. It was shown in [23] that the combination
of these two parts is resistant to invalid-curve, sign change and safe-error attacks under
their respective models, and under the assumption that all variables other than the
coordinates of Q0, Q1 and Q2 are protected by an integrity checking mechanism.
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5.2.2.1 A Simple Modification to Domínguez-Oviedo–Hasan Validation Test

The validation test discussed above can be modified to reduce its cost. Note that Q0 is a
dummy variable and that its value is not part of the final result of the algorithm. Since
the coherency test has the form Q2

?= Q0 +Q1 + P , we can reduce its cost by initializing
Q0 to P instead of O, resulting in Algorithm 8 in which the coherency test becomes
Q2

?= Q0 +Q1. This reduces the cost of the validation test by one point addition, which
amounts to about 25% of the cost of the original test. The significance of this simple
modification is two-fold. First, when this validation test is used repeatedly, a saving of
one point addition will accumulate to result in a significantly large saving in the testing
overhead. Second, this simplified coherency test, which involves a single point addition,
enables other cost-effective validation tests that will be discussed later in this chapter.

We use Algorithm 8 as the reference point of the work presented in this chapter. In
particular, we discuss some alternative coherency tests beside point addition, and we also
discuss the use of point validations alongside the coherency test in terms of cost and
error detection. In our discussion, we will use a notation in which this test is denoted by
PA+2PV, i.e., point addition with two point validations. We will also discuss its cost and
error detection effectiveness when we discuss point-addition–based coherency tests.

5.2.3 Evaluation of Error Detection Effectiveness

Later in this chapter, we will compare validation tests according to their cost and error
detection effectiveness. In this section, we discuss how the error detection effectiveness of
a validation test can be evaluated.

When evaluating the error detection effectiveness of a validation test, two issues need
to be considered. The first issue is the ability of the validation test to detect errors used
in the sign-change and safe-error attacks. The second issue is the proportion of faulty
state vectors that can pass the test. In this context, the state vector of the algorithm
includes the coordinates of the points Q0, Q1 and Q2. The Proportion of Undetected
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Algorithm 8 Double-and-add-always ECSM algorithm with point validation and modified
coherency checking.
Input: P ∈ E, k = ∑n−1

i=0 ki2i

Output: kP

1: Q0 ← P , Q1 ← O, Q2 ← P

2: for i← 0 to n− 1 do
3: Qki ← Qki +Q2

4: Q2 ← 2Q2

5: end for
6: if Q0 ∈ E and Q1 ∈ E and Q2 = Q0 +Q1 then
7: return Q1

8: else
9: return O

10: end if

Errors (PUE) is estimated relative to the total number of state vectors. For the scalar
multiplication algorithm used here, the total number of state vectors is p6, where p is the
size of the underlying field, since each of three points has two coordinates. Estimating the
PUE helps in evaluating the validation test ability to detect invalid-curve attacks that
target the intermediate points or the field operations. If the state vectors are assumed to
be uniformly distributed, the PUE can be interpreted as the probability of an undetected
error.

The PUE is a similar concept to the code rate, which is defined as the ratio of the
effective bit length of a code to its total bit length, and is used to evaluate error control
codes [47]. The larger the code rate, the less the redundancy available on the code, and
hence, the less its error detection capability [70]. Similarly for the PUE, the larger the
proportion of undetected errors, the less the error detection capability of a validation test.

To evaluate the cost-effectiveness of a test, both its computational cost and its PUE
are taken into account. However, while the cost of a combination of tests is additive, their
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PUEs are generally multiplicative. It follows that cost-effectiveness of a validation test
can be measured by its normalized cost which can be defined as follows.

Normalized cost = Absolute cost
− logp PUE (5.1)

Another key fact that is useful when evaluating the effect of point validations on a
validation test is the number of points on an elliptic curve relative to the size of the
underlying field. As stated by Hasse’s theorem [66], the number of points on an elliptic
curve, denoted by #E, defined over a field of size p satisfies the relationship

|#E − (p+ 1)| ≤ 2√p (5.2)

which can be rewritten as

#E ∈ [p− 2√p+ 1, p+ 2√p+ 1] (5.3)

Taking the logarithm of the interval limits, we get

log(p+ 1± 2√p) = log
(
p

(
1 +

1± 2√p
p

))

= log(p) + log
(

1 + 1
p
± 2√

p

)

≈ log(p) (5.4)

since p is a large prime and hence 1
p
and 2√

p
are very close to zero. This indicates that

#E has the same bit size as p.

5.3 Approaches to Coherency Checking

In this section, we discuss three approaches to check the internal state of Algorithm 8.
The approaches covered here are:

1. Point Addition: This part expands on the coherency check presented earlier, which in
turn is a modification of the Domínguez-Oviedo–Hasan coherency-based validation
test [23].
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2. Collinearity: Here, a collinearity-based test is used in place of point addition. This
reduces both the cost of testing and its coverage as we will show later.

3. Function Evaluation: In this approach, a function is constructed such that it evaluates
to a known constant when the algorithm’s state is valid. This can be seen as a
generalization of the approaches discussed earlier, but it has a significantly higher
computational cost. However, we present this approach for the sake of completeness.

Each of these approaches is evaluated with a varying number of point validations. We
discuss the error detection effectiveness as well as the absolute and normalized cost of
each approach.

5.3.1 Coherency Checking using Point Addition

Assuming error-free operation, after the ith iteration of the right-to-left double-and-add-
always scalar multiplication illustrated in Algorithm 8, the three intermediate points Q0,
Q1 and Q2 will have the following values.

Q0 =
 i∑
j=0

kj2j + 1
P (5.5)

Q1 =
i∑

j=0
kj2jP (5.6)

Q2 = 2j+1P (5.7)

where kj is the binary complement of kj. It can be readily seen that

Q0 +Q1 =
 i∑
j=0

kj2j +
i∑

j=0
kj2j + 1

P =
 i∑
j=0

2j + 1
P = Q2 (5.8)

This is similar to the test used in [23] to check the coherency of the algorithm’s internal
state. In the modified validation test presented earlier, the cost of this test is reduced by
one point addition. This results in a test of the form “Accept Q1 if Q2 = Q0 +Q1.” We
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denote this test henceforth by the PA test, and discuss its error detection effectiveness
and cost using a varying number of point validations. Since three points are involved in
this test, there can be at most three point validations. A point validation is denoted by
PV, e.g., PA+2PV denotes a validation test that uses a point addition and two point
validations.

With respect to the sign change attack, it was shown in [23] that a sign change fault
injected in either Q1 or Q2 will break the state invariant, and hence can be detected by
coherency checking. This applies to the PA test as well since point validations are not
effective in detecting sign-change errors.

With respect to the safe-error attack, which generally targets dummy operations and/or
variables, we distinguish between safe errors that move Q0 off the curve and those that
move it within the curve. It was shown in [23] that coherency checking can detect a safe
error that moves Q0 within the curve. It was assumed, however, that a safe-error that
moves Q0 from the curve will be detected by point validation. Here, we address the case
where point validation is not used, and discuss the effect on safe-error attacks as well as
general invalid-curve attacks.

5.3.1.1 Point Addition with no Point Validations (PA+0PV)

We find the PUE for PA+0PV test, which covers both invalid-curve errors and safe errors
that move the point Q0 from the curve. As mentioned earlier, there are p6 possible state
vectors. If two of the three points are selected arbitrarily, only a single value for the third
point can pass the test. In other words, only p4 state vectors can pass the test. This will
give a proportion of undetected errors of 1

p2 .

5.3.1.2 Point Addition with One Point Validation (PA+1PV)

The use of one point validation, which can be applied to any of the 3 points, increases
both the error coverage and cost of the test. Without loss of generality, let us assume
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that Q1 is the point to be validated, which is the natural choice since it is the point to be
returned as the final result. We can see that the among the p4 state vectors that will pass
the PA test, only the ones where Q1 is on E will pass the point validation. Hence, the
proportion of undetected errors becomes(

p4

p6

)(
#E
p2

)
= #E

p4 ≈
1
p3 (5.9)

5.3.1.3 Point Addition with Two Point Validations (PA+2PV)

This case is very similar to the original test proposed in [23]. Using the same arguments
above, we can see that the proportion of undetected errors will be(

p4

p6

)(
#E
p2

)2

= (#E)2

p6 ≈ 1
p4 (5.10)

which matches the error detection capability given in [23].

5.3.1.4 Point Addition with Three Point Validations (PA+3PV)

Recall that the sum of two points on the curve is always a point that lies on the curve.
Since the coherency checking part is performed using a point addition, the third point
validation is redundant as it will only detect errors that can be detected by the other
parts of the validation test. In other words, the proportion of undetected errors is the
same as that in PA+2PV, namely, 1

p4 .

5.3.1.5 Computational Cost

Cost of Point Addition Test using the Affine Representation. While a point
addition in affine coordinates requires an inversion, this test can be performed without
the need of an inversion. That is because the coordinates of the potential resulting point
are known, and what is required is comparing the addition result with the known point.
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To find out the cost of the test Q0 +Q1
?= Q2, we write it as follows.

xQ2
?= (yQ1 − yQ0)2

(xQ1 − xQ0)2 − xQ0 − xQ1

yQ2
?= (2xQ0 + xQ1) (yQ1 − yQ0)

(xQ1 − xQ0) −
(yQ1 − yQ0)3

(xQ1 − xQ0)3 − yQ0 (5.11)

We multiply both equations by their respective denominators to get the following.

xQ2(xQ1 − xQ0)2 ?= (yQ1 − yQ0)2 − (xQ0 + xQ1)(xQ1 − xQ0)2

yQ2(xQ1 − xQ0)3 ?= (2xQ0 + xQ1)(yQ1 − yQ0)(xQ1 − xQ0)2 − (yQ1 − yQ0)3 − yQ0(xQ1 − xQ0)3

(5.12)

After some simplifications and rearrangement.

(xQ2 + xQ0 + xQ1)(xQ1 − xQ0)2 ?= (yQ1 − yQ0)2

(xQ1 − xQ0)2((yQ2 + yQ0)(xQ1 − xQ0)− (2xQ0 + xQ1)(yQ1 − yQ0)) ?= −(yQ1 − yQ0)3

(5.13)

which is an equivalent test that requires no inversion. Using these transformations, a
point addition that costs I + 3M+S is replaced by a PA test that costs 5M+ 2S, where
I,M and S denote a field inversion, multiplication and squaring, respectively.

Cost of Point Addition Test using the Homogeneous Projective Representa-
tion. Since by definition, point addition in projective coordinates does not require a
field inversion, it is not necessary to manipulate the conventional point addition formulas
to avoid the need for an inversion. In projective coordinates, point addition requires
12M+ 2S [9]. Let Q̃2 be the sum of Q0 and Q1. To test the equality of Q2 and Q̃2 it is
required to test both coordinates as follows.

XQ2

ZQ2

?=
XQ̃2

ZQ̃2

XQ2

ZQ2

?=
XQ̃2

ZQ̃2

(5.14)
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which can be rewritten as

XQ2ZQ̃2

?= XQ̃2
ZQ2

YQ2ZQ̃2

?= YQ̃2
ZQ2 (5.15)

So, it requires 4M to compare the two points in projective coordinates. The total cost for
the PA test using the homogeneous projective representation becomes 16M+ 2S.

Cost of Point Validation. Point validation can be done by applying the curve equation
to the point coordinates. In affine representation, this requires 2M+ 2S.

In projective representation, however, the use of the Z coordinate increases the cost of
point validation.

Y 2

Z2
?= X3

Z3 + a
X

Z
+ b (5.16)

which can be rewritten as
Y 2Z

?= X3 + aXZ2 + bZ3 (5.17)

This requires 6M+ 3S.

5.3.2 Coherency Checking using Collinearity Testing

Point addition is not the only way to check the coherency of the three points. We discuss
here how the collinearity of the points can be used in coherency checking. This test is
based on the fact that if the relationship Q0 +Q1 = Q2 holds, then the points Q0, Q1 and
−Q2 lie on the same line, as illustrated in Figure 5.1. The converse is not true, however,
so this test will not have the same error detection ability as the point addition test.

Let Q0 = (xQ0 , yQ0), Q1 = (xQ1 , yQ1), Q2 = (xQ2 , yQ2) and −Q2 = (xQ2 ,−yQ2). Also,
assume without the loss of generality that Q0, Q1 and −Q2 are distinct. We want to test
whether these points lie on the same line. This can be done by finding the function of the
line that passes through two of the points and testing whether it passes through the third.
Let lQ0,−Q2 be the line that connects the points Q0 and −Q2. The function defined by this
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Q0

Q1

−Q2

Figure 5.1: Collinearity testing

line evaluates to 0 for a given point if and only if that point lies on the line. So, we apply
this function to the point Q1, i.e., we find lQ0,−Q2(Q1). The three points are collinear
if and only if lQ0,−Q2(Q1) = 0. This test, denoted by the CL test, can be expressed as
follows.

lQ0,−Q2(Q1) = yQ1 −mQ0,−Q2xQ1 − bQ0,−Q2
?= 0 (5.18)

where mQ0,−Q2 = −yQ2−yQ0
xQ2−xQ0

is the slope of the line and bQ0,−Q2 = −yQ2 −mQ0,−Q2xQ2 is its
y-intercept. By substitution for bQ0,−Q2 , it follows that

lQ0,−Q2(Q1) = yQ1 −mQ0,−Q2xQ1 + yQ2 + mQ0,−Q2xQ2

= yQ1 + yQ2 −mQ0,−Q2(xQ1 − xQ2) ?= 0 (5.19)

This can be rearranged as follows.

yQ1 + yQ2
?= mQ0,−Q2(xQ1 − xQ2) = yQ0 + yQ2

xQ0 − xQ2

(xQ1 − xQ2) (5.20)

Dividing both sides by (xQ1 − xQ2), we get the following.

yQ1 + yQ2

xQ1 − xQ2

?= yQ0 + yQ2

xQ0 − xQ2

(5.21)
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In other words, if the lines lQ1,−Q2 and lQ0,−Q2 have the same slope then they are the same
line.

5.3.2.1 Collinearity Test with no Point Validations (CL+0PV)

We evaluate the error coverage of the collinearity test when no point validations are used.
With respect to sign change errors, we already know that a sign change error in any of the
intermediate points will break the state’s invariant by ensuring that Q2 6= Q0 +Q1 [23].
We also know that such an error will not move any of the points off the curve. Since the
three points lie on the curve and Q2 6= Q0 +Q1, it follows that Q0, Q1 and −Q2 can not
lie on the same line. Hence, CL test will detect sign change errors. A similar argument
indicates that safe errors that do not move point off the curve will be detected by the CL
test.

Now we find the CL test’s PUE. Assume that the points Q0 and Q1 are selected
arbitrarily, which implies p4 possibilities. Then, any point −Q2 that lies on the line
defined by Q0 and Q1 will pass the test. Since each line has p points, the proportion of
undetected errors for the CL+0PV test becomes

p5

p6 = 1
p

(5.22)

5.3.2.2 Collinearity Test with One Point Validation (CL+1PV)

The use of one point validation will guarantee that one of the three points lies on the curve.
As before, let Q1 be the validated point tested. Then, the number of combinations of Q0

and Q1 that would pass the test is reduced to #Ep2. Since any point on the line defined
by Q0 and Q1 can pass the test as −Q2, the proportion of undetected errors becomes

#Ep3

p6 ≈ 1
p2 (5.23)

The same argument applies when another point is tested, but Q1 is the natural candidate
since it will be returned as the final result.
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5.3.2.3 Collinearity Test with Two Point Validations (CL+2PV)

When two point validations are used, the proportion of undetected errors will decrease.
Assuming that Q0 and Q1 are tested, the number of valid combinations is reduced to
(#E)2. Then, any point on the line defined by Q0 and Q1 will pass the collinearity test,
so the proportion of undetected errors becomes

(#E)2p

p6 ≈ 1
p3 (5.24)

5.3.2.4 Collinearity Test with Three Point Validations (CL+3PV)

Unlike the case of point addition, the third point validation is not redundant here and
will further reduce the proportion of undetected errors. Similar to the argument above,
the number of combinations of Q0 and Q1 that will pass the test is #E2. However, only a
point −Q2 that lies on both the curve and the line will pass the test. Since a line intersects
an elliptic curve in no more than three points, and since we already know two of these
points, there is only one point that can pass the test. It follows that the proportion of
undetected errors becomes

(#E)2

p6 ≈ 1
p4 (5.25)

Note that this depends on the fact that the three point are distinct, which is implied by
the algorithm given error-free operation. As such, if two of the points are equal, this by
itself indicates an error.

5.3.2.5 Computational Cost

Cost of Collinearity Test using the Affine Representation. When the CL test is
applied in affine representation, (5.21) can be rewritten as

(yQ1 + yQ2)(xQ0 − xQ2) ?= (yQ0 + yQ2)(xQ1 − xQ2) (5.26)

to avoid field inversions. This computation requires 2M.
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Cost of Collinearity Test using the Homogeneous Projective Representation.
In projective coordinates, (5.26) can be written as follows.(

YQ1

ZQ1

+ YQ2

ZQ2

)(
XQ0

ZQ0

− XQ2

ZQ2

)
?=
(
YQ0

ZQ0

+ YQ2

ZQ2

)(
XQ1

ZQ1

− XQ2

ZQ2

)
(5.27)

which can be expanded and simplified to

(YQ1ZQ2 +YQ2ZQ1)(XQ0ZQ2−XQ2ZQ0) ?= (YQ0ZQ2 +YQ2ZQ0)(XQ1ZQ2−XQ2ZQ1) (5.28)

which requires 10M.

5.3.3 Coherency Checking using Function Evaluation

In this section, we present a way to construct a function that evaluates to a known constant
value for all valid state vectors. In order to do this, we need a working knowledge of
divisors, so we provide a cursory introduction to the subject. A reader interested in the
details can refer to a textbook like [66].

A divisor of a function f in a function field defined over an algebraic curve C is a way
to encode its zeros and poles. A function f is constant if and only if it has no zeros or
poles, which can be written as div(f) = 0, where 0 = ∑

P 0(P ) for all points P ∈ C is
the empty divisor. The coefficients in the divisor of a function indicate the order of the
function at a specific point. Positive coefficients indicate zeros while negative coefficients
indicate poles. In both cases, the absolute value of a coefficients indicates the multiplicity
of a zero or a pole. The sum of coefficients in a divisor of a function is always zero, i.e.,
it has the same number of zeros and poles. For example, let P1, P2, P3 ∈ E be such that
P1 + P2 = P3. Then, the function of the line that connects P1 and P2 has the divisor
(P1) + (P2) + (−P3)− 3(O), i.e., it has a zero of order 1 at each of P1, P2 and −P3 and a
pole of order 3 at O.

We can use this to construct a function that evaluates to a constant for all error-free
state vectors. Let E be an elliptic curve and Q0, Q1 and Q2 be points on E such that
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Q0 + Q1 = Q2. As before, let lQ0,−Q2 be the function of the line that connects Q0 and
−Q2, i.e., for a point M = (xM , yM),

lQ0,−Q2(M) = yM −mQ0,−Q2xM − bQ0,−Q2 (5.29)

where mQ0,−Q2 and bQ0,−Q2 are the slope and y-intercept of the line lQ0,−Q2 , respectively.
Define a function FQ0,Q1,Q2(M) as follows.

FQ0,Q1,Q2(M) = lQ0,−Q2(M)l−Q1,Q2(M)
lQ0,O(M)lQ1,O(M)lQ2,O(M) (5.30)

where M 6∈ {±Q0,±Q1,±Q2}. The line lQ0,O(M) is the line connecting Q0 and −Q0 and
its function is lQ0,O(M) = xQ0 − xM . The same applies to lQ1,O(M) and lQ2,O(M). Figure
5.2 illustrates the points and lines involved in this function.

The divisor of FQ0,Q1,Q2 can be written as follows.

div(FQ0,Q1,Q2) =(Q0) + (Q1) + (−Q2)− 3(O) + (−Q0) + (−Q1) + (Q2)− 3(O)

− ((Q0) + (−Q0)− 2(O))− ((Q1) + (−Q1)− 2(O))

− ((Q2) + (−Q2)− 2(O))

=0 (5.31)

Hence, if Q0, Q1 and Q2 lie on the curve and satisfy the addition condition, FQ0,Q1,Q2(M)
will evaluate to a constant c ∈ F∗p for any M ∈ E that is not in {±Q0,±Q1,±Q2}.
However, the converse is not true, i.e., F might evaluate to the same constant for other
combinations of these points.

5.3.3.1 Function Evaluation with no Point Validations (FE+0PV)

We now evaluate the error coverage of this test. Let Q0 and Q1 be selected arbitrarily,
and let M ∈ E be known and fixed. For the points Q0, Q1 and Q2 to pass the test, the
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Figure 5.2: Function evaluation on an elliptic curve

function FQ0,Q1,Q2(M) has to evaluate to the known constant c.

FQ0,Q1,Q2(M) = lQ0,−Q2(M)l−Q1,Q2(M)
lQ0,O(M)lQ1,O(M)lQ2,O(M)

= (yM −mQ0,−Q2xM − bQ0,−Q2)(yM −m−Q1,Q2xM − b−Q1,Q2)
(xQ0 − xM)(xQ1 − xM)(xQ2 − xM)

?= c (5.32)

which can be reorganized as

(yM−mQ0,−Q2xM−bQ0,−Q2)(yM−m−Q1,Q2xM−b−Q1,Q2) ?= c(xQ0−xM)(xQ1−xM)(xQ2−xM)
(5.33)

After expansion and some manipulations, we get the following.

((yM + yQ2)(xQ0 − xQ2)− (yQ0 + yQ2)(xM − xQ2))

× ((yM − yQ2)(xQ2 − xQ1)− (yQ2 + yQ1)(xM − xQ2))
?= c(xQ0 − xM)(xQ1 − xM)(xQ2 − xM)(xQ0 − xQ2)(xQ2 − xQ1) (5.34)

This can be rewritten as

y2
Q2 + a1xQ2yQ2 + a3yQ2

?= a0x
3
Q2 + a2x

2
Q2 + a4xQ2 + a6 (5.35)
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where a0, a1, a2, a3, a4 and a6 are defined in terms of xQ0 , yQ0 , xQ1 , yQ1 , xM , yM and c.
This implies that of the possible p2 values for Q2, only points that lie on this elliptic curve
curve can pass the test, i.e., approximately p points. Then, the proportion of undetected
errors using this test is approximately p5

p6 = 1
p
.

5.3.3.2 Function Evaluation with One Point Validation (FE+1PV)

The use of a single point validation will reduce the proportion of undetected faults. As
before, let the tested point be Q1. Then, the number of combinations of Q0 and Q1

becomes #Ep2. Following the above analysis for Q2, the proportion of undetected errors
will then become

#Ep3

p6 ≈ 1
p2 (5.36)

5.3.3.3 Function Evaluation with Two Point Validations (FE+2PV)

When two points are validated, the proportion of undetected errors can be reduced further.
Let the tested points be Q0 and Q1. Then, the number of accepted combinations of Q0

and Q1 will be (#E)2. By the same argument given above for Q2, the proportion of
undetected errors will then become

(#E)2p

p6 ≈ 1
p3 (5.37)

5.3.3.4 Function Evaluation with Three Point Validations (FE+3PV)

Since the function evaluation test can be passed by a point Q2 that is not on the original
curve even when Q0 and Q1 are on the curve, a third point validation will reduce the
proportion of undetected errors further. Since the three points are validated, the number
of combinations that will pass the point validation is (#E)3. Only 1

p
of these points will

pass the function evaluation test, so the proportion of undetected errors for the whole test
becomes

#E3

p7 ≈ 1
p4 (5.38)

127



5.3.3.5 Computational Cost

Cost of Function Evaluation Test using the Affine Representation. Equation
(5.34) can be applied directly in affine representation. It requires 10M to perform this
test in affine representation.

Cost of Function Evaluation Test using the Homogeneous Projective Repre-
sentation. Because we select M , we assume that we have its affine representation.
Equation (5.34) can be written as follows in projective representation.

YMZQ2 + YQ2

ZQ2

XQ0ZQ2 −XQ2ZQ0

ZQ0ZQ2

− YQ0ZQ2 + YQ2ZQ0

ZQ0ZQ2

XMZQ2 −XQ2

ZQ2

× YMZQ2 − YQ2

ZQ2

XQ2ZQ1 −XQ1ZQ2

ZQ1ZQ2

− YQ2ZQ1 + YQ1ZQ2

ZQ1ZQ2

XMZQ2 −XQ2

ZQ2

− cXQ0 −XMZQ0

ZQ0

XQ1 −XMZQ1

ZQ1

XQ2 −XMZQ2

ZQ2

XQ0ZQ2 −XQ2ZQ0

ZQ0ZQ2

XQ2ZQ1 −XQ1ZQ2

ZQ1ZQ2

?= 0 (5.39)

By expanding and manipulating the expressions, we get the following.

ZQ0ZQ1((YMZQ2 + YQ2)(XQ0ZQ2 −XQ2ZQ0)− (YQ0ZQ2 + YQ2ZQ0)(XMZQ2 −XQ2))

× ((YMZQ2 − YQ2)(XQ2ZQ1 −XQ1ZQ2)− (YQ2ZQ1 + YQ1ZQ2)(XMZQ2 −XQ2))

− cZQ2(XQ0 −XMZQ0)(XQ1 −XMZQ1)(XQ2 −XMZQ2)

× (XQ0ZQ2 −XQ2ZQ0)(XQ2ZQ1 −XQ1ZQ2) ?= 0 (5.40)

This requires 25M.

5.3.4 Summary

In this section, we have discussed three different approaches to validate the coherency of
the state of Algorithm 8. Each of these approaches has been evaluated in terms of cost
and error detection capability when used alongside a varying number of point validations.
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Table 5.1: Summary of the PUE and cost for the decisional coherency-based validation
tests.

Test PUE
Absolute cost Normalized cost

Affine Proj. Affine Proj.

CC+2PV [23] 1
p4 14M+ 8S 40M+ 10S 31

2M+ 2S 10M+ 21
2S

PA+0PV 1
p2 5M+ 2S 16M+ 2S 21

2M+ 1S 8M+ S
PA+1PV 1

p3 7M+ 4S 22M+ 5S 21
3M+ 11

3S 71
3M+ 12

3S
PA+2PV 1

p4 9M+ 6S 28M+ 8S 21
4M+ 11

2S 7M+ 2S
PA+3PV 1

p4 11M+ 8S 34M+ 11S 23
4M+ 2S 81

2M+ 23
4S

CL+0PV 1
p 2M 10M 2M 10M

CL+1PV 1
p2 4M+ 2S 16M+ 3S 2M+ 1S 8M+ 11

2S
CL+2PV 1

p3 6M+ 4S 22M+ 6S 2M+ 11
3S 71

3M+ 2S
CL+3PV 1

p4 8M+ 6S 28M+ 9S 2M+ 11
2S 7M+ 21

4S

FE+0PV 1
p 10M 25M 10M 25M

FE+1PV 1
p2 12M+ 2S 31M+ 3S 6M+ 1S 151

2M+ 11
2S

FE+2PV 1
p3 14M+ 4S 37M+ 6S 42

3M+ 11
3S 121

3M+ 2S
FE+3PV 1

p4 16M+ 6S 43M+ 9S 4M+ 11
2S 103

4M+ 21
4S

Table 5.1 summarizes the results of this section, and compares them to each other and to
the coherency test presented in [23] in terms of PUE and both absolute and normalized
cost. Recall that the normalized cost is defined in (5.1) as a function of the absolute
cost and the PUE. It can be seen that in the homogeneous projective representation, the
CL+0PV test provides the least absolute cost while PA+2PV provides the least normalized
cost.
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5.4 Repeated Validation using Coherency-based Val-

idation Tests

When the tests discussed earlier are used to implement repeated validation, it is possible
to reduce their cost significantly by reusing some of the field operations that are performed
in the original computation. This mainly applies to computations in the projective
representation. Note that this applies only for intermediate tests in the error-free case,
but the majority of performed validation tests fall under this description.

Repeated Validation using Point Addition. The idea here is to replace the addition
test Q0 +Q1

?= Q2 with either one of the equivalent tests Q2 −Q0
?= Q1 or Q2 −Q1

?= Qq

based on whether the next bit of the key is 0 or 1, respectively. This way, the test will
share most of the field multiplications needed for with the following point addition.

Let us consider the case of the next bit of k being 0, so the next addition operation
will be Q0 ← Q2 + Q0. In this case, the addition test is transformed to Q2 − Q0

?= Q1.
Note that the point addition in the test and the point addition in the regular computation
share most of the field operations since the only different inputs coordinates are YQ0 in the
main addition and −YQ0 in the validation test. A look at the explicit formulas for point
addition in homogeneous projective coordinates [9] indicates that 9M+ S operations are
common between the point addition Q2 +Q0 and the point subtraction Q2 −Q0. So, the
cost of the addition test along with the point comparison becomes 7M+ S, which is less
than half the cost of the same test when done independently, i.e., 16M+ 2S.

Repeated Validation using Collinearity Testing. For this test, a side-by-side look
at the explicit formulas and (5.28) shows that there are 4M common operations regardless
of the next bit of k, so the cost of the test become 6M.

Table 5.2 summarizes the effect of reusing the field operations on the absolute and
normalized costs of the validation tests.
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Table 5.2: The absolute and normalized costs of the PA and CL coherency tests for
projective representation when field operations are shared with the following point addition.

Test PUE Absolute cost Normalized cost

PA+0PV 1
p2 7M+ 1S 31

2M+ 1
2S

PA+1PV 1
p3 13M+ 4S 41

3M+ 11
3S

PA+2PV 1
p4 19M+ 7S 43

4M+ 13
4S

PA+3PV 1
p4 25M+ 10S 61

4M+ 21
2S

CL+0PV 1
p 6M 6M

CL+1PV 1
p2 12M+ 3S 6M+ 11

2S
CL+2PV 1

p3 18M+ 6S 6M+ 2S
CL+3PV 1

p4 24M+ 9S 6M+ 21
4S

5.5 Infective Computation Variants

Decisional validation tests are vulnerable to a class of fault attacks commonly called the
double-fault attacks, which attempt to bypass a validation test and allow a faulty value
to be observed by the attacker. Double-fault attacks are generally countered by avoiding
decisional validation test that can be easy to manipulate [73]. An effective approach to
prevent these attacks is the use of tests based on infective computation, which works
by masking invalid results randomly and letting valid results pass through unmodified.
Hence, the outcome of the test is not dependent on a single bit that represents the logical
outcome of a decisional test.

In general, any decisional test can converted to an infective test. This can be achieved
by replacing the comparison in the test with a subtraction, i.e., the two sides are equal if
and only if the result of the subtraction is zero. Then, the outcome of the subtraction
is multiplied by a random number and added to the potential final result, which is then
returned as the outcome of the test. This way, whenever the result of the subtraction is
not zero, the returned result is masked by a random number, and hence, is uninformative
to the attacker. We apply this idea to the tests discussed earlier and evaluate their
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effectiveness and cost.

5.5.1 Infective Point Validation

Point validation is performed by substituting the coordinates of a point into the curve
equation. In affine coordinates, this implies testing the validity of the equation y2 ?=
x3 + ax+ b, or equivalently,

y2 − x3 − ax− b ?= 0 (5.41)

To convert this to an infective test, a random nonzero field element r is selected and the
value T is computed as

T = y2 − x3 − ax− b (5.42)

Then, the return value of the infective test is computed as (rT + x, rT + y). Clearly, rT
is zero if and only if the point (x, y) lies on the curve. The cost of this computation is
3M+ 2S, which requires one field multiplication more than a decisional point validation.

A similar approach applies to projective coordinates. In particular, T can be computed
as

T = Y 2Z −X3 − aXZ2 − bZ3 (5.43)

and then the return value of the test becomes (rT +X, rT + Y, rT + Z). This requires
7M+ 3S, which is again one multiplication more costly that its decisional counterpart.

5.5.2 Infective Point Addition

The coherency test based on point addition can be converted to infective computation in
a similar way. The main difference between this case and the earlier discussion is that we
have more than one equality condition to be tested simultaneously.
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Let us consider the affine case where the two equality tests

(xQ2 + xQ0 + xQ1)(xQ1 − xQ0)2 ?= (yQ1 − yQ0)2

(xQ1 − xQ0)2((yQ2 + yQ0)(xQ1 − xQ0)− (2xQ0 + xQ1)(yQ1 − yQ0)) ?= −(yQ1 − yQ0)3

(5.44)

are evaluated and if they are both true then the result (xQ1 , yQ1) is accepted as valid. The
two equations above can be readily replaced by the computations

T1 = (xQ2 + xQ0 + xQ1)(xQ1 − xQ0)2 − (yQ1 − yQ0)2

T2 = (xQ1 − xQ0)2((yQ2 + yQ0)(xQ1 − xQ0)− (2xQ0 + xQ1)(yQ1 − yQ0)) + (yQ1 − yQ0)3

(5.45)

However, there are more than one way to use the values T1 and T2 in an infective
computation, and not all approaches have the same effectiveness. We will consider three
approaches here to illustrate this fact.

The first approach is a direct extension of the one used for the point validation earlier.
In particular, the two values T1 and T2 are combined by addition and then used to mask
both coordinates, i.e., the returned result is of the form (r(T1 +T2)+xQ1 , r(T1 +T2)+yQ1).
To evaluate the effectiveness of this approach, we note that T1 + T2 is equal to zero not
only when both values are zero, which is the intended test, but whenever T1 = −T2. This
is true for 1

p
of the p6 possible state vectors. For comparison, the corresponding decisional

test passes only 1
p2 of the possible state vectors. In other words, this infective test is

considerably less effective than the corresponding decisional validation test.

Instead, alternative forms like (r(T1+T2)+xQ1 , r(T1−T2)+yQ1) or (rT1+xQ1 , rT2+yQ1)
can be used. Both forms have the advantage of passing only 1

p2 of the state vectors
unmodified as it requires both T1 and T2 to be equal to zero. As such, they are as effective
as the decisional version. Both of these forms requires two multiplications in addition to
the operations required by the decisional point addition test, for a total of 7M+ 2S.

The same idea applies in the projective case. In particular, (5.15) shows that two
element comparisons are required to establish the equality of points Q2 and Q̃2. These
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two element comparisons can be replaced by subtractions and used to mask XQ1 and YQ1 .
This will require two additional multiplication compared to the decisional test for a total
of 18M+ 2S.

5.5.3 Invective Collinearity Testing

The earlier discussion applies to validation tests based on collinearity testing. In particular,
for affine coordinates, let T be as follows.

T = (yQ1 + yQ2)(xQ0 − xQ2)− (yQ0 + yQ2)(xQ1 − xQ2) (5.46)

Then, the returned result of the test is of the form (rT + xQ1 , rT + yQ1), which requires
one multiplication more than the corresponding decisional test, for a total of 3M.

Similarly, collinearity testing in projective coordinates requires one equality test, and
hence can be easily converted to an infective version. Let T be defined such that

T = (YQ1ZQ2 + YQ2ZQ1)(XQ0ZQ2 −XQ2ZQ0)− (YQ0ZQ2 + YQ2ZQ0)(XQ1ZQ2 −XQ2ZQ1)
(5.47)

Then, the returned result is of the form (rT + XQ1 , rT + YQ1 , rT + ZQ1). In total, this
requires 11M.

5.6 Validation Testing using Combined Curves

Computation over combined curves, i.e., elliptic curves defined over rings, is another
way, along with point validation, to create and use information redundancy. This section
discusses the use of combined curves in validation testing. We start by reviewing the
definition and properties of elliptic curves defined over rings. Then, we review two known
countermeasures that use this idea, one presented in [11] and the other presented in [6],
and evaluate them. After that, we present our countermeasure that uses this idea along
with coherency-based validation testing to reduce the cost of validation.
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5.6.1 Elliptic Curves over Rings

It is possible to define an elliptic curve over a ring instead of a field, but such a curve
would have some key differences, some of which will be discussed here. Let Zpt be a ring
of size pt where p and t are distinct primes greater than 3. Let apt ∈ Zpt be such that
apt ≡ ap mod p and apt ≡ at mod t, and similarly for bpt. We denote this relationship
henceforth by apt = [ap, at]. Recall that the Chinese Remainder Theorem (CRT) can be
used to compute apt from ap and at as follows.

apt = apt(t−1)p + atp(p−1)t (5.48)

where (t−1)p denotes the multiplicative inverse of t modulo p, and similarly for (p−1)t.

Let Ep(ap, bp) and Et(at, bt) be two elliptic curves defined over the fields Fp and Ft,
respectively. An elliptic curve over the ring Zpt, denoted by Ept(apt, bpt), is the set of
points (x, y) ∈ Zpt × Zpt satisfying the Weierstrass equation plus the point at infinity Opt.

According to the CRT, there exists a unique point Ppt ∈ Ept(apt, bpt)− {Opt} for every
pair of points Pp ∈ Ep(ap, bp)−{Op} and Pt ∈ Et(at, bt)−{Ot} such that Ppt ≡ Pp mod p
and Ppt ≡ Pt mod t, which we denote by Ppt = [Pp, Pt].

The set Ept(apt, bpt) does not form a group since it is not closed under the point addition
operation. This is due to the fact that it has no points of the forms [Pp,Ot] or [Op, Pt]
as they have no affine representation [39]. On the other hand, the direct product of the
groups Ep(ap, bp) and Et(at, bt), denoted by Ẽpt(apt, bpt), constitutes a group under the
point addition operation. It has all the points in Ept(apt, bpt) along with points of the form
[Pp,Ot] or [Op, Pt]. Since some of the points on Ẽpt(apt, bpt) have no affine representation,
all arithmetic on this curve has to be performed in projective coordinates. Moreover, when
performing the point addition operation, it is essential to check for special cases where
the point addition formulas do not apply. In particular, when one of the added points
is of the form [Pp,Ot], the Z coordinate of the resulting point will be equal to 0 mod t
regardless of the other point. This applies generally to all projective representations where
it is assumed that neither of the points to be added is the point at infinity. Hence, it
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is essential to check intermediate points for the case Z ≡ 0 mod t and handle this case
correctly. In particular, the addition of the points P1 = [P1,p,Ot] and P2 = [P2,p, P2,t]
should result in P3 = [P1,p + P2,p, P2,t], where the coordinates of P3 need to be computed
using the CRT from the coordinates of P1,p + P2,p and P2,t. This problem does not apply
modulo p since the scalar k is typically less than p, i.e., Op will not appear during the
computation while Ot might.

As a result of this issue, performing the addition operation correctly over Ẽpt(apt, bpt)
requires a reduction of the Z-coordinates mod t at the beginning of each point addition.
If neither or both of the points has Z ≡ 0 mod t, then addition is performed using the
addition or doubling formula over Zpt. Otherwise, the addition is performed over Fp and
the CRT is used to construct the resulting point. This requires the precomputation of
p−1 mod t and t−1 mod p in order to reduce the cost of the CRT step.

Another solution to this problem is to use a form of elliptic curves in which the
regular point addition formula applies to special cases like doubling and addition to O.
A curve that has this feature is described as a strongly-unified curve. An example of a
strongly-unified curve is the Edwards curve which was introduced in [35]. In this curve,
the point addition formula can be used to perform point doubling as well as addition to O.
Moreover, since in this setting the curve is defined over a ring, a projective representation
needs to be used. Examples of strongly-unified projective representations for Edwards
curves include homogeneous projective coordinates and inverted coordinates [8].

5.6.2 Earlier Countermeasures using Combined Curves

There are two countermeasures based on combined curves that have been proposed earlier.
Here, we review both and evaluate them.
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Algorithm 9 Combined-curve countermeasure against sign change attacks. [11]
Input: P ∈ Ep, k ≤ ord(P )
Output: kP ∈ Ep
1: Setup: Choose t, Et and Pt. Compute Ept and Ppt using the CRT.
2: Compute Rpt ← kPpt on Ept.
3: Compute Rt ← kPt on Et.
4: if Rt 6= Rpt mod t then
5: return O
6: else
7: return Rpt mod p
8: end if

5.6.2.1 Blömer et al. Combined-curve Countermeasure

In [11], the combined-curve countermeasure is presented as a way to detect sign-change
errors that can not be detected by point validation. The size of the co-curve is chosen
to achieve a high probability of detection, and as such tends to be on the same order of
magnitude as the original curve. In particular, it is recommended to select t to be a prime
of size 60–80 bits.

Let Fp and Ft be the original field and the additional, smaller field, respectively, and
let Ep and Et be the original curve and the smaller curve, respectively. Similarly, let Pp
and Pt be the base points on Ep and Et, respectively. Using the CRT, a curve Ept can be
constructed as well as a base point Ppt. Projective point arithmetic has to be used since
inversion is not defined for some of the elements of the resulting ring.

The countermeasure is illustrated in Algorithm 9. This countermeasure depends on
the fact that the injected fault will break the consistency between the scalar multiplication
on the two curves, and hence can be detected by comparing their results.

The overhead introduced by this countermeasure can be divided into two parts. First,
it requires an additional scalar multiplication over Et. While Et is significantly smaller
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than Ep, it still can not be ignored especially with the size of t being 60–80 bits. Let t
and p be of sizes 70 and 192 bits, respectively, as suggested in [11]. Assuming that the
field multiplication and squaring algorithms used have a complexity of O(n2) where n is
the bit length of the modulus, the field operations on Ft can have about 13% of the cost
of the corresponding operations on Fp. However, the number of iterations in the scalar
multiplication over Et is smaller since k can be reduced modulo t. It follows that the cost
of a scalar multiplication on Et is about 5% of the corresponding cost on Ep.

The second part of the overhead is the arithmetic over Zpt required to perform the scalar
multiplication over Ept. The modulus pt will have a length of 262 bits, so a multiplication
or a squaring in this ring will incur 186% of the cost of the corresponding operation on
Fp. So in total, this countermeasure has an overhead of about 91% relative to a scalar
multiplication over Ep.

5.6.2.2 Baek-Vasyltsov Combined-curve Countermeasure

The countermeasure presented in [6] is described as a unified countermeasure in the sense
that it is a countermeasure against both DPA and fault attacks. This countermeasure
combines the use of ring extension and point validation with a modified curve equation
that enables point validation to detect the normally undetectable sign change errors. This
idea is presented for both prime and binary curves. We focus here on prime curves since
the binary case is very similar.

The curve equation used is y2 + py = x3 + ax+ b. Note that over Fp, this equation
reduces to the more familiar y2 = x3 + ax + b. However, over Zpt, this curve has the
property that an inverse of a point is not obtained in general by negating its y-coordinate.
It follows that sign-change errors can be detected by point validation. Moreover, the cost
of the point validation is reduced by performing it on Zt rather than Zpt. Algorithm 10
illustrates the details of this countermeasure.

The main problem with this countermeasure is that it does not take care of the issue
discussed earlier regarding the special cases in point addition when performed over a ring.
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Algorithm 10 Unified combined-curve countermeasure against sign change and invalid-
curve attacks. [6]
Input: E : Y 2Z = X3 + aXY + bZ6 an elliptic curve over Fp. P (x, y) ∈ E. k a scalar.
Output: kP ∈ E(Fp)
1: Choose a small random integer r.
2: B ← y2 + py − x3 − ax mod pr
3: Let E ′ : Y 2Z + pY Z3 = X3 + aXZ4 +BZ6.
4: Compute kP over E ′(Zpr).
5: if Y 2Z + pY Z3 = X3 + aXZ4 +BZ6 mod r for kP (X, Y, Z) then
6: return (X, Y, Z) mod p
7: else
8: return O
9: end if

This problem is compounded by the proposed approach to select t as a random integer
rather than a carefully-selected prime. This results in a very high probability of failure
for the validation test even when t has a relatively large bit length. For example, it is
illustrated in [39] that for t of size 40-bits, the probability of failure of this test ranges
from 0.4–1.4%, which is much higher that 1

t
= 2−40 ≈ 10−12. Moreover, a t of size 20-bits

results in a probability of failure within the range 23–37%.

Another issue with this countermeasure is the overhead incurred by the modified
addition formula that is required to perform point arithmetic over the non-conventional
curve form. According to the authors, the modified addition formula has an overhead
of 23% relative to the addition formula over a conventional curve form. This estimate
captures only the increase in the number of primitive operations, and does not include the
overhead of doing arithmetic over Zpt compared to Fp, which can be found separately as
shown earlier when the combined-curve countermeasure by Blömer et al. was discussed.
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5.6.3 Coherency-based Combined-curve Countermeasure

As shown earlier, coherency-based tests can be used to detect a variety of errors, including
sign change errors, in a cost-effective way. Here, we aim to reduce their cost further using
the combined-curve construction.

In a similar approach to Baek and Vasyltsov, we perform the computation over the
combined curve and the validation tests over the smaller curve. However, we avoid
the overhead of the modified addition formula by the use of conventional curve forms.
Moreover, in our countermeasures, the smaller curve parameters, t, Et and Pt, are selected
carefully rather than at random to avoid the security weaknesses discussed earlier.

Compared to the countermeasure by Blömer et al., our countermeasure aims to reduce
the cost by avoiding the need for a second scalar multiplication and by using a significantly
smaller values of t. This is possible since we mainly use the smaller-curve validation tests
for testing the intermediate state of the algorithm. Before final output is returned, a
validation test can be performed in Fp to assure a very low PUE.

Algorithm 11 Coherency-based combined-curve validation.
Input: Pp ∈ Ep, k a scalar.
Output: kPp ∈ Ep
1: Initialization: Select t, Et and Pt. Find Ept and Ppt using the CRT.
2: Scalar Multiplication on Ept: Compute kPpt over Ept using Algorithm 8 and obtain
Q0,pt, Q1,pt and Q2,pt, where Q0,pt is Q0 on Ept.

3: Validation on Et: If Q0,t, Q1,t and −Q2,t are collinear then accept Q1,p as the result,
else reject.

Algorithm 11 illustrates our combined-curve countermeasure. In the initialization step,
t is selected to be a prime and Et and Pt are selected such that Pt generates a group
on Et that has a prime order of size close to t. Also, we use the CL test as a validation
test, but any of the validation tests discussed earlier will work. Note that, for the sake
of clarity, we do not show the details of the repeated testing or the final comprehensive
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validation test. The former can be performed at fixed intervals or adaptively as discussed
in Chapters 3 and 4, while the latter is similar to the validation tests discussed earlier
when performed over Ep.

Since we use coherency of the internal state of the algorithm as a basis for the validation
tests instead of the consistency between the results of two scalar multiplications, as in the
countermeasure by Blömer et al., there is no need to perform the scalar multiplication
twice. In other words, no scalar multiplication is performed on Et, and hence all the points
on Et, with the exception of Pt that is selected in the initialization step, are derived from
the corresponding points on Ept. This is the key behind using points on Et to validate
points on Ept since any error in a point on Ept will likely affect the corresponding point
on Et.

5.6.3.1 Proportion of Undetected Errors

The proportion of undetected errors depends on both p and t, and on the choice of the
validation test among the ones discussed earlier. For a validation test on the smaller curve,
we define the PUE as the proportion of undetected errors that could have been detected
by a similar test on the original curve. This measure captures the loss of effectiveness
that is incurred in order to reduce the testing cost.

Let us assume that a collinearity test without point validation, i.e., CL+0PV, is used.
In the original setting, i.e., an elliptic curve over a field of size p, we have shown that the
proportion of state vectors that can pass this test is 1

p
. In the case of an elliptic curve

over a ring Zpt, the test performed modulo p will have the same proportion of undetected
errors while the proportion of detected errors will be the complement 1− 1

p
. When the

test is performed modulo t, the proportion of undetected errors will be 1
t
by the same

argument.

Table 5.3 shows how the number of detected and undetected errors will look like
on a combined curve Ept. To obtain a proportion, any of these figures can be divided
by p6t6 − 1, i.e., the total number of invalid states. We use the proportion of errors
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Table 5.3: Number of detected and undetected invalid state vectors using the CL+0PV
test on Ep and Et. Note that the total number of invalid state vectors is p6t6 − 1 since
one of the state vectors is the valid one.

Detected on Ep Undetected on Ep Total

Detected on Et p5t5(t− 1)(p− 1) p5t5(t− 1) p6t5(t− 1)

Undetected on Et p5t5(p− 1) p5t5 − 1 p6t5 − 1

Total p5t6(p− 1) p5t6 − 1 p6t6 − 1

that can be detected on Ep but go undetected on Et as the PUE of the combined-curve
countermeasure. It can be seen from the table that this proportion is

p5t5(p− 1)
p6t6 − 1 ≈ p5t5(p− 1)

p6t6
= p− 1

pt
= (1− 1

p
)1
t

(5.49)

This can be generalized for all the tests discussed earlier as follows.

PUEpt = PUEt(1− PUEp) (5.50)

5.6.3.2 Overhead Associated with Computation on a Combined Curve

It is essential to discuss the cost aspect of using a coherency-based combined-curve
countermeasure. The overhead associated with combined curves can be divided into the
following parts:

1. Precomputation overhead: This includes the computations of p−1 mod t and t−1 mod
p as well as the use of the CRT to find Ept and Ppt. Since t, Et and Pt are selected
off-line and can be used in many scalar multiplications, this part of the overhead
can be left out from the operational overhead estimates.

2. Ring operations over Zpt versus field operations over Fp: Since the point additions
will be performed over Zpt instead of Fp, the extra bit length will increase the cost
of the primitive operations and particularly of multiplication and squaring. The
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overhead will also depend on the multiplication algorithm used. If an algorithm
of complexity O(n2) is used, where n is the bit length of the modulus, then the
overhead of multiplication over Zpt relative to Fp will be

(log p+ log t)2 − (log p)2

(log p)2 (5.51)

3. Field reductions of Zpt elements to Ft: As discussed earlier, it is required to test the
Z coordinate of each of the added points mod t. In each iteration of the algorithm,
this implies the need for two modular reductions modulo t, i.e., one for ZQ2 and one
for either ZQ0 or ZQ1 . When validation testing is used, coordinates of the modified
points need to be reduced mod t for each validation test. This implies six modular
reductions modulo t for each validation test as only two of the three points are
updated every iteration.

4. Validation testing over Ft: This covers the cost of coherency checking and point
validations that are performed using points of Et. The cost for this part follows
directly from our earlier analysis.

5.7 Conclusion

This chapter discussed the cost and effectiveness of a collection of coherency-based
approaches to validity testing as well as variants of these approaches in terms of the
number of point validations. Moreover, it discussed the further saving that can be achieved
when these tests are used is a repeated-validation setting. Beside the decisional variants
of the tests, infective variants that are resistant to double-fault attacks were introduced
and evaluated. As a way to further reduce the cost of testing and provide a flexible
trade-off between cost and effectiveness, the extension of the above mentioned tests to the
combined-curve setting has been introduced and discussed.

For the countermeasures discussed in this chapter to be effective, they need to be used
in a way that does not give the attacker an advantage compared to other countermeasures.
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In particular, a cost-effective validation test should be used frequently to increase the
reliability and reduce the potential cost of recomputation while care should be taken to
validate the output results using a low-PUE validation test to prevent any errors from
escaping the tests. Moreover, the final validation test should use infective computation to
avoid the compromise of the validation test by double-fault attacks. This setup combines
the best of both methods, namely, the reliability gain of frequent validation and the
high-probability and constant-cost of a single, comprehensive validation test.
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Chapter 6

Conclusion

6.1 Summary

This work addresses some issues in the area of error detection and recovery for elliptic
curve cryptosystems. It has been motivated by the need to reduce wasteful computations
between an error occurrence and its detection, and reduce the wasteful recomputations of
error-free iterations when error recovery is sought. An intuitive solution to this problem is
to test frequently for errors rather than test once at the end before the output is provided.
However, this simple solution introduces its own problem, namely, the increased overhead
of testing.

In Chapter 3 of this document, we have addressed the problem of the fixed-block
size selection for both error detection and recovery. In the case of error detection, we
have constructed a model that estimates the cost of repeated testing and the wasteful
computations between the occurrence of an error and its detection. This model can be
used to find a block size that minimizes the testing cost and the wasteful computations
when the statistical model of errors is fully known. However, it is not always practical to
know the error model upfront. To mitigate this, we have presented another model that
estimates the worst-case rather than the expected cost. This model does not depend on
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the statistical error model, and hence can be used to find a block size that is minimizes
the worst-case cost while being close to the optimal block size in terms of expected cost.

Then, we have discussed the case of error recovery. We started by constructing a
model that estimates the error recovery overhead, which includes cost of testing and
recomputation, as a function of the system parameters. Given a statistical error model,
this cost model can be used to find a block size that minimizes the expected overhead
of error recovery. We have also discussed alternatives to minimizing the expected value,
namely, minimizing a combination of the expected overhead and its standard deviation,
and minimizing the reliability threshold. Both of these alternatives offer the advantage of
reducing the sensitivity of the block size to the parameters of the error model. In effect,
using either of these alternatives alleviates the need to know the error model accurately in
advance. As a whole, the analysis in Chapter 3 has indicated that smaller blocks have a
relative advantage in terms of reliability and efficiency under a variety of statistical error
models.

Chapter 4 has followed by discussing the idea of error recovery using a block size
that adapts based on whether an error was detected or not. This has been presented
as an alternative to the fixed-block error recovery approach with the aim of reducing or
eliminating the need to know the parameters of the error model in advance. To evaluate
this idea, we have constructed a model that estimates the error recovery overhead as a
function of the system parameters and the adaptive policy used in changing the block
size. The results of this model, which were evaluated under a variety of error models and
confirmed by simulation, have indicated that adaptive blocks achieve their intended goal
of efficient error recovery without being tied to a specific error model. When discussing
the above-mentioned model, an adaptive policy that inherently prefers smaller blocks
was used based on the findings of Chapter 3. To evaluate this policy and help set its
parameters, we have modeled the progressive changes in the block size using a Bayesian
inference procedure that aims to learn the parameters of the statistical error model from
the observed data. By applying this procedure to two different statistical error models, we
have shown that an adaptive policy with preference for smaller blocks makes statistical
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sense. We have also provided a way to select the parameters of the adaptive policy based
on the weight given to more recent observations relative to older ones.

Chapter 5 has addressed the issue of efficient error detection and recovery from a
different angle. It has been recognized that, although Chapters 3 and 4 present solutions
to reduce the overhead of validation testing, it still can be a significant part of the total
overhead in the context of repeated testing. Chapter 5 has targeted this problem by
presenting a collection of cost-effective tests that provide a trade-off between the cost
of testing and its error detection effectiveness. We started by discussing the alternative
approaches to coherency-based validation testing. For each of the approaches presented,
we have evaluated error detection effectiveness as well as the absolute and normalized
costs when used with a varying number of point validations. Then, we have discussed
the usage of these validation tests in the context of repeated testing and shown how their
costs can be reduced by exploiting the common primitive operations between the test
and underlying scalar multiplication. Moreover, we have presented infective variants of
these tests that are resistant to errors affecting the testing implementation. To allow
for a more flexible trade-off, we have used the coherency-based testing approach in the
context of combined curves to result in a comprehensive counter measure that avoids the
problems associated with earlier, related countermeasures. The use of the validation tests
presented in Chapter 5 in the repeated testing paradigm discussed earlier results in error
detection and recovery structures that achieve high reliability without sacrificing efficiency
and without being tied to a specific statistical error model.

6.2 Open Problems

In what follows, we discuss some of the related open problems that can provide a basis for
future work.

• This work has focused solely on the point arithmetic level for both attacks considered
as well as countermeasures presented and evaluated. This provides a degree of
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platform independence which leads to wider applicability. However, it is important to
address attacks that target other layers of the implementation and their corresponding
countermeasures. It is conceivable that the ideas and models discussed here can be
applied at the field arithmetic level, or even at the machine level. Cost models that
are tailored to these level could provide a better insight and more flexible trade-offs.

• Most of the available literature on fault analysis attacks on curve-based systems
targets elliptic curve cryptosystems. This is understandable since the majority
of these attacks and countermeasures can be directly extended to systems like
hyperelliptic curve-based or pairing-based systems. It is interesting, however, to see
whether these systems have attacks that are not applicable to elliptic curves. This
will probably lead to countermeasures that are inherently different from the ones we
currently use for elliptic curves.

• In Chapter 4, and specifically when we discussed the Bayesian inference procedure
applied to Pareto-distributed errors, we faced the problem of the nonexistence of the
Pareto distribution’s expected value. While an expression that would temporarily
solve this problem could have been substituted, this is neither honest nor aesthetically
appealing. So the question remains, is there a way to estimate the occurrence time
of an error when the expected value of the error distribution does not exist?

• In Chapter 4, we have discussed the use of an adaptive policy that has only one
possible outcome depending on the result of the validation test. It is possible,
however, to have a adaptive policy with a stochastic component such that the
outcome is still influenced by the result of the test but is no longer limited to a
deterministic function of the current block size. One way to set this policy is to
use the posterior distribution resulting from the Bayesian inference step. This way,
the adaptive policy can be influenced by both the estimated value of the model
parameter as well as the system’s confidence in that estimate, which is implied by
the variance of the posterior distribution.

• While this work has addressed the issue of error detection and recovery in elliptic
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curve cryptosystems, we are not aware of any work on error-correcting elliptic curve
primitives. This can be an extension of the existing work on error-correcting field
arithmetic, e.g., [62] and [34], and algebraic geometric codes [30].
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