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Abstract

The three-dimensional structure of a protein molecule is the key to understanding its
biological and physiological properties. A major problem in bioinformatics is to efficiently
determine the three-dimensional structures of query proteins. Protein NMR structure de-
termination is one of the main experimental methods and is comprised of: (i) protein
sample production and isotope labelling, (ii) collecting NMR spectra, and (7i7) analysis of
the spectra to produce the protein structure. In protein NMR, the three-dimensional struc-
ture is determined by exploiting a set of distance restraints between spatially proximate
atoms. Currently, no practical automated protein NMR method exists that is without
human intervention. We first propose a complete automated protein NMR pipeline, which
can efficiently be used to determine the structures of moderate sized proteins. Second,
we propose a novel and efficient semidefinite programming-based (SDP) protein structure
determination method.

The proposed automated protein NMR, pipeline consists of three modules: (i) an
automated peak picking method, called PICKY, (ii) a backbone chemical shift assign-
ment method, called IPASS, and (iii) a protein structure determination method, called
FALCON-NMR. When tested on four real protein data sets, this pipeline can produce
structures with reasonable accuracies, starting from NMR spectra. This general method
can be applied to other macromolecule structure determination methods. For example, a
promising application is RNA NMR-assisted secondary structure determination.

In the second part of this thesis, due to the shortcomings of FALCON-NMR, we propose
a novel SDP-based protein structure determination method from NMR data, called SPROS.
Most of the existing prominent protein NMR structure determination methods are based
on molecular dynamics coupled with a simulated annealing schedule. In these methods, an
objective function representing the error between observed and given distance restraints
is minimized; these objective functions are highly non-convex and difficult to optimize.
Euclidean distance geometry methods based on SDP provide a natural formulation for
realizing a three-dimensional structure from a set of given distance constraints. However,
the complexity of the SDP solvers increases cubically with the input matrix size, i.e., the
number of atoms in the protein, and the number of constraints. In fact, the complexity of
SDP solvers is a major obstacle in their applicability to the protein NMR problem.

To overcome these limitations, the SPROS method models the protein molecule as a
set of intersecting two- and three-dimensional cliques. We adapt and extend a technique
called semidefinite facial reduction for the SDP matrix size reduction, which makes the SDP
problem size approximately one quarter of the original problem. The reduced problem is
solved nearly one hundred times faster and is more robust against numerical problems.
Reasonably accurate results were obtained when SPROS was applied to a set of 20 real
protein data sets.
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Chapter 1

Background

1.1 NMR Physics

1.1.1 Nuclear Spin

In this section, we briefly review the physics behind the nuclear magnetic resonance (NMR)
phenomenon, without delving much into the details of quantum mechanics. The NMR
phenomenon arises from the fact that some nuclei have a property called nuclear spin;
nuclei with a nonzero nuclear spin are NMR active; so that these nuclei can be thought
of as very tiny magnets. Nuclear spin is characterized by a quantity called nuclear spin
quantity number, I (Keeler, |2010). If p is the number of protons and n is the number of
neutrons in the nucleus, then: (i) if p and n are both even, then I = 0, e.g., 2C; (i) if
p+nis odd, then I =k +1/2, for some k > 0, e.g., for 'H and N we have I = 3; and
(i74) if p and n are both odd, then nuclear spin is I = k + 1, for some k > 0, e.g., for "N
we have I = 1. Nuclei with [ > 1/2 demonstrate quadrupole moments that have a very
short lifetime; therefore, in NMR we focus only on nuclei with Spin—% (I =1/2), such as
'H, 13C, and PN (Cavanagh et al., [2006)).

Each nucleus with a nonzero nuclear spin has a corresponding vector called nuclear
spin angular momentum, I, whose magnitude is given by[}

|| = h/ (T + 1),

where £ is the Planck’s constant (h = 6.63 x 10734 m? kg s7!) divided by 27. If we assume
that the initial point of I is located at the origin, then its terminal point spans a circle

IThe italic boldface notation indicates vectors, so I is a scalar different from I, which is a vector.



m = +

N

Figure 1.1: The nuclear spin angular momentum for m = —i—% and m = —%.

with a known radius. That is, I can only be on the lateral surface of a right circular cone,
as illustrated in Fig. [I.I} Moreover, we assume that the z-axis coincides with the axis of
the aforementioned cone. We know that the projection of I on the z-axis, or I, can only

take a discrete set of values:
I, = hm,

where m € {—I,—I +1,...,1 — 1,1} is the magnetic quantum number. In our case,
ie, I =1/2, m € {—1/2,4+1/2}. The nuclear spin angular momentum is depicted for
m = +1/2 and m = —1/2 in Fig. [l.1] The magnitude of the vector I and the size of I,
are fixed, i.e., |I|| = v/3h/2 and |I.| = h/2 (Cavanagh et al., [2006).

Nuclear magnetic moment

Another property of nuclei with nonzero nuclear spin angular momentum, I, is called the
nuclear magnetic moment (magnetic moment), p, which is a vector collinear with I given
by

p =1, (1.1)

where v is called the gyromagnetic ratio and is different for each nuclide. The values of ~
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for a few nuclides of interest are listed in Table [I.I} In the next sections we focus only on
the case where v > 0.

Table 1.1: Gyromagnetic and natural abundances of selected nuclides (Hore, [1995)

Nuclide ~/10” Natural abundance (percentile)

'H 26.75 99.985
’H 4.11 0.015
13C 6.73 1.108
UN 1.93 99.63
5N -2.71 0.37

In the presence of an external homogeneous magnetic field in the z-direction of a rigid
axis attached to the NMR laboratory, B = Byk (k is the unit vector in the z-direction),
the magnetic moments of individual nuclei cannot have arbitrary orientations; their z-axis
coincides with that of the NMR laboratory. The quantum spin states have energies defined
as:

E=—-u'B=—~I.By = —ymhB,. (1.2)

The spin state with m = 1/2 is called the a-state and has energy E, = —vhB;/2 and
the spin state with m = —1/2 is called the -state and has energy Ez = +vyhBy/2. The
difference between the energy of two spin states is AE = Ez — E, = vhBy. If v > 0, the
a-state is more populated by spins than the [-state, because it has less energy and is more
stable. At a thermal equilibrium, the ratio of spins in the g-state over the a-state is given
by the Boltzman distribution:

N; AE +hB,
Ns _ AL _ 1.3
N, eXp( k:BT> eXp( kpT ) (1.3)

where kg = 1.38 x 1072 m? kg s™2 K~! is the Boltzmann constant and 7" is the absolute
temperature (Hore, [1995]). We can simplify ((1.3)) and approximate the normalized difference
in population at a thermal equilibrium as:

AN, No—Ns _ AE

~~ 1-4
N N 2kpT’ (14)

where N is the total number of spins. The overpopulation of the less energetic state is
called nuclear Zeeman splitting, which removes the degeneracy of spin states (Levitt}, 2008]).
For example, at room temperature (7' = 293° K), for a typical NMR instrument magnet



(Bo = 7 T), and for hydrogen nuclides (y = 2.675 x 10® Tt s™1), AN, /N ~ 5 x 107°.
That is, the a-state is slightly more populated than the -state. This is due to the much
smaller magnitude of AE compared to kgT', which indicates that ANy, is dominated by
the temperature.

Bulk magnetic moment

The bulk magnetic moment vector, M, or the net magnetic moment of a set of spins, is
given by the vector sum of all individual p,s:

M = Z ;. (1.5)

We decompose M into two components:
M=M,+M,,, (1.6)

where M ; is the longitudinal component or the projection on the z-axis, and M, is the
traverse component or the projection of M on the zy-plane. When no magnetic field
is applied, no quantum state is preferred and the individual u;s have random isotropic
orientations; therefore, they sum up to zero and ||M || = 0 (Levitt, 2008). When the field
is applied after equilibrium we have:

N’72h230 . ’)/h

M| ~ = —

AN, (1.7)

which indicates dependence of || M || on v and the strength of the magnetic field, By (Ca-
vanagh et al., 2006). Individual p,s’ projections on the xy-plane are random and sum up
to zero; therefore, M , ., = Mg and || M ,y.¢,|| = 0. In the special case where By = 0, then
ANgq = 0, so there is no bulk magnetic moment, as expected.

Larmor frequency

We know that magnetic moments of individual spins precesses around B on the lateral
surfaces of the aforementioned cones (see Fig. |1.1)) with the Larmor frequency given by:

Wy = —’)/BO7 (18)

the negative frequency indicates a clockwise precession (Cavanagh et al., 2006]).



Looking at the spins from a different point of view, it turns out that the difference
between the energy of two spin states is AFE = yhBy; therefore, a photon with energy AFE
can cause low- to high-energy state transition. From Planck’s law the frequency of the
photon is given by:

v - ~v By (1.9)

Note that we can change the states of the spins by simply applying an electromagnetic
radiation with frequency v, called the resonance frequency, equal to the Larmor frequency.
When B is present, we can apply a sufficiently strong electromagnetic radiation to make
the population of both states equal, i.e., N, =~ Ng; when this happens the NMR signal
fades.

1.1.2 Nuclear Magnetic Resonance

Magnetic moment vectors of all spins precess incoherently around B with the Laromor
frequency, that is, every spin has a random different phase. Consequently, the traverse
component M., ., = 0 and M., = M., In Fig. .a, the bulk magnetic moment
at equilibrium is depicted. The detector is placed in the zy-plane, because the powerful
magnetic field in the z-direction, B, would mask any signal and render it undetectable.
Since M ¢ has no traverse component, nothing is picked up by the detector.

Generally when electromagnetic radiation, B,(t), with Laromor frequency and perpen-
dicular to the static magnetic field is applied to the spins, all the spins precess coherentlyf]
(with coherent phases). Consequently, the bulk magnetic moment bends and ultimately
lies on the zy-plane; therefore, || M,,| # 0 in a phenomenon called nuclear magnetic res-
onance. After resonance, the detector in the zy-plane can detect the precession of M,,,
as depicted in Fig. [I.2]b.

Continuous wave NMR

There are several nuclei in the protein molecule, each with a different resonance frequency.
To detect and record their corresponding frequencies, either (i) the frequency of the elec-
tromagnetic radiation, called carrier frequency, must sweep a frequency range or (ii) the
strength of the magnetic field, By, must be varied to match the resonance frequency of
a nucleus with the frequency of the electromagnetic radiation. This procedure is called
continuous wave NMR, which was the prevalent technology in the early days of NMR

2An insightful animation demonstrating this phenomenon is available at http://vam.anest.ufl.edu/
forensic/nmr.html,


http://vam.anest.ufl.edu/forensic/nmr.html
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Figure 1.2: The bulk magnetic moment in the presence of B alone (a), and in the presence
of B and an electromagnetic radiation B,.(t) with Laromor frequency.

(1945-1970) (Hore, (1995)). Currently, continuous wave is obsolete and has been replaced
by pulse NMR, in which short and intense pulses are applied to the sample.

The precessing bulk magnetic moment induces a current in the detector coil; this in-
duced current is called the NMR signal or free-induction decay (FID). Detailed explanation
of NMR experiments and many of the pulse techniques are described by |Levitt| (2008]).

Relaxation

Although we have only discussed the steady state of spins, three questions arise about the
transient behavior of spins: (i) what is the transient behavior of spins? (ii); what happens
when spins are magnetically disturbed?; and (i7i) how long does it take for spins to reach
their equilibrium states? Two very important relazation processes called spin-lattice relaz-
ation and spin-spin relaxation address these questions. These relaxations are critical for
understanding the NMR phenomenon and are described by the Bloch equations (Cavanagh
et al., [2006). We focus on the solutions. Finally, to analyze the bulk magnetic moment
and its components, we assume they are functions of time:

M(t) = M ,(t) + M, ().



Spin-lattice relaxation In the absence of the magnetic field, two spin states are equally
populated, that is AN = 0 and hence | M (t)|| = 0. Assume that at ¢t = 0 the field is applied
to the spins; N, becomes larger and Ng becomes smaller and ultimately AN reaches AN,
given in . If we assume an exponential growth, then we have:

AN(t) = ANgq (1 — exp(—t/T1)),

where T7 is called the spin-lattice relaxation time (Hore, 1995) and is also called the longi-
tudinal relazation time (Withrichl 1986)). As the spins lose energy to transit to the lower
energy state, they dissipate energy to the surroundings or to the “lattice”. Since AN(t)
and M ,(t) are linearly related, we have:

IM-(0)]| = [[M | (1 — exp(=t/T1)), (1.10)

where M is the equilibrium bulk magnetic moment given in ((1.7). Equation ([1.10) is
insightful; for example, if 77 were very large, the thermal equilibrium would take very
long, rendering the process of protein NMR infeasible.

Spin-spin relaxation A more important relaxation process happens when the electro-
magnetic radiation applied to the spins (B, (t) in Fig. [L.2]b) is removed. The spins lose
their phase coherence and after some time, they return to their equilibrium states, where
|M,,|| =0, as in Fig. [[.2la. Assume that the spins are at equilibrium and phase coher-
ence; at t = 0 we remove B,.(t). The spin-spin relazation time, Ty, is defined as the time
constant in the exponential decay of magnitude of M, (¢):

My (O[] = [[M 2 (0) | exp(=/T3),

where || M,,(0)| is the magnitude of M,,(t) at ¢ = 0 (Cavanagh et al., [2006). Alterna-
tively, T is sometimes also called the traverse relazation time. We know that Ty, < T7,
more importantly, 75 increases as the molecule size increases. In fact, 75 is a limiting factor
on the maximum protein size that NMR can process (Withrich, [1986).

1.1.3 Chemical Shift

The Larmor frequency’s relation relates the strength of magnetic field to the frequency
of the precession. For single isolated nuclei, the field strength is the same as the external
field; however, in a macromolecule such as a protein, different nuclei are connected to each
other through bonds and can locally augment or oppose the static magnetic field. The effect
of the local electron density is called nuclear shielding and changes the Larmor frequency



of each nucleus as:
w=-—(1-0)By, or w=(1-0)wy,

where o is the average isotropic shielding constant of the nucleus (Cavanagh et al., [2006).
This phenomenon is the cornerstone of protein NMR and illustrates the fact that each
nucleus experiences a different effective local magnetic field:

Beff = (1 — O')Bo.

The strength of the magnetic field, By, varies from one NMR instrument to another;
therefore, resonance frequency of the same nuclide varies in different machines. To facili-
tate comparison of the frequencies recorded on different instruments, NMR spectroscopists
define a unitless normalized feature called chemical shift given by:

o W — Wref

§ = ———=x10° (ppm),
Wref

where wyt is the reference frequency for each nuclide. Chemical shift is expressed in parts
per million (ppm).

Spin-spin coupling

Another phenomenon that can affect chemical shifts of nuclei is called spin-spin coupling,
which is the isotropic magnetic interaction between nuclei that are connected with each
other through chemical bonds; it is alternatively called scalar coupling or J-coupling. If
a nucleus A has spin-spin couplings with a set of nuclei {X}, its resonance frequency is
changed to:

wr = (1 —oa)wy — ZWZ Jaxmx, (1.11)

where J4x measured in Hertz is the spin-spin coupling constant between A and X and myx
is the magnetic quantum number of X (Hore, [1995). Spin-spin coupling is notable because
it is independent of the field strength. Moreover, J4x can be both positive or negative, i.e.,
spin-spin coupling can increase or decrease the resonance frequency. Spin-spin coupling is
caused by the indirect magnetic interaction of electrons involved in the chemical bonds.
Consequently, it is negligible when two nuclei are separated by more than three bonds.

1.1.4 The Nuclear Overhauser Effect

The Nuclear Overhauser Effect or Enhancement (NOE) is undoubtedly the most impor-
tant phenomenon in the protein NMR process, because it is one of the major sources of
structural information. Before introducing NOE, we need to describe dipolar coupling.



Dipolar coupling

Two magnetic dipoles interact with each other and can increase or decrease their energies.
For example, two magnets repel each other if their north poles are close. If their opposite
poles are close, they attract each other. In contrast to isotropic spin-spin coupling, dipolar
coupling is the interaction between two spins that is dependent on both the distance and
orientation of the two spins. Dipolar coupling does not change the resonance frequencies in
liquids, because molecules in liquid collide with each other and tumble around constantly,
changing the orientation and distance of the spins with dipolar coupling. As a result, the
average dipolar coupling effect sums to zero. However, they are responsible for the NOE
phenomenon (Hore, |1995).

1.1.5 NOE

The NOE phenomenon is the interaction between two spins without spin-spin coupling and
with appreciable dipolar coupling. In NOE, the coupled spins experience cross-relazxation,
i.e., both spins simultaneously relax to their lower (or higher) energy states (simultaneous
spin-flips). To quantify NOE between two spins, a parameter 7 is used, which is defined
as the ratio of change in the intensity of the NMR signal of a nucleus, in the presence of
dipolar coupling:
1 — 1
n=——
(]

where i is the normal intensity and 7 is the intensity in the presence of the dipolar cou-
pling (Hore, |1995)). For protons ¢ can be smaller, reversed, and even zero, such that
-1 <n< % Cross-relaxation rates have a d=% dependence on the distance between two
spins; therefore, NOE is only observed when two spins are close to each other, 2 < d < 5 A.
This is the main reason for the critical importance of NOE, because in Nuclear Overhauser
Enhancement Spectroscopy (NOESY) spatially proximate protons can be identified. This
provides a rich source of structural information that can be used to determine the 3D
structure of protein.

1.2 Protein NMR Process

In this section, we briefly review the protein NMR structure determination process, focusing
mainly on the problems related to computer science. Before describing the entire pipeline,
we first present definitions of some of the terms frequently used.



1.2.1 NMR Terminology

Chemical shift In this study chemical shift or interchangeably resonance frequency is
the ID or signature of each one of the NMR active nuclei in the protein molecule. For
example wy is the resonance frequency of nucleus A, (the corresponding chemical shift is
denoted by d;). The resonance frequency of a nucleus is assumed to be identical in all
NMR experiments.

Peak Peak is a D-dimensional vector of resonance frequencies p = [wy,...,wp|" € RP
that represents a group of D nuclei {A4} that are coupled through bonds (spin-spin cou-
pling) or through space (dipolar coupling). It should be noted that resonance frequencies
and chemical shifts are used interchangeably; for example, a peak may be denoted as

P = [517--~75D]-

Spectrum Spectrum is determined by computing the Fourier transform of the time-
domain NMR signal or FID (Levitt, 2008). For a set of peaks of the same dimension D,
P = {py,...,px}, the corresponding D-dimensional continuous spectrum is a function

S :RP — R defined as: N

Sw) = Z a fu(w —pi) + 1, (1.12)

k=1

where a;, is the intensity of the signal associated with p,, n is the additive white Gaussian
noise, and w € RP. We assume that f.(.) can be factorized into functions called lineshapes:

fr(w) = [T £ (wa), (1.13)

where f,id)(-)s are called the absorption Lorentzian lineshapes (Levitt], 2008). To illustrate
lineshapes, consider a one dimensional noiseless spectrum with only one peak at wy; the
spectrum is given by:

A
N A2 + (OJ — UJO)Q

Y

S(w)

where \ = 1/T5 is called the coherence decay rate constant and is equal to the inverse of
spin-spin relaxation time (Levitt], 2008). The hypothetical spectrum S(w) is illustrated in

Fig. . Lineshapes are the same as in this spectrum, i.e., f,gd)(-) =5(").

Resonance linewidth, Av, /s, is an important property in NMR that determines the
width of lineshapes in Hz. It is defined as the full-width at half-height (FWHH) of the
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Figure 1.3: A one-dimensional spectrum with at peak at w = wqy. Linewidth is defined as
the full-width at half-height (FWHH) of lineshape, Avy/, = 2.

lineshape:
AVI/Z =2\ = 2/T27T.

As the molecule size increases, T becomes smaller and Ay, becomes larger, resulting in
wider lineshapes; this is one of the most crucial limiting factors for high-resolution NMR,
because lineshape becomes so wide and sinks so deep that it is buried under noise.

Finally, in our model, local artifacts and noisy peaks are modeled as extra fake peaks
in the peak set P that forms the spectrum and the variance of the noise term is assumed
to be uniform throughout the spectrum.

Sampled spectrum NMR signal are sampled, because computing the Fourier transform
of a continuous time-domain signal is not tractable. Because the NMR signals are sampled,
the corresponding spectra are determined by computing the discrete Fourier transform of
the time-domain signals. This is equivalent to sampling continuous NMR spectra at discrete
frequencies with resolution 6, for nuclide A, (the minimum frequency spacing is ;). The
sampled spectrum, or spectrum hereinafter, is a matrix for 2D spectra and a tensor for 3D
spectra whose elements are intensities. For example, for a 2D spectrum, the magnitude of
(7, 7)-th element is given by:

K

Sij =Y ar fel@ij — Py) + mij»

k=1

where 7;;s are the i.i.d. sampled Gaussian noise values and the sampled frequencies are
given by:
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Figure 1.4: N-HSQC spectrum of YST0336 after removal of noisy samples.

~ . (j)l . WSt Z91
wzj_|:@2:|—{w82:|+{]62:| (].].4)

In (1.14)), wsy is the start or offset frequency for nuclide A, and ¢ and j are given by:

i — {wl —WS1+¢91/2J ’ (115>
01
i \‘WQ_WS2+02/2J
«] = 8 )
2

where |-] is the floor operator. A real sampled 2D spectrum for protein YST0336 is shown
in Fig. [1.4]

Uncertainty sources There are two major sources of uncertainty in the sampled spec-
tra:

1. Sampling adds quantization errors, that is, & = |wy — @y| is the difference between
actual and quantized chemical shifts. In the worst case for w, = ws, + 6, + %94; the
quantization error magnitude is |§,| = %95. The quantization error is zero mean with a
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62 /12 variance. Consequently, the smaller the 6, the less significant the quantization
error.

2. Different NMR spectra, {S@}, might have different offset frequencies, {wsﬁq)}, and
different resolutions, {QEQ) }. As a result, a nuclide might have different resonance
frequencies in different spectra. To analyze this, consider a nucleus with an actual
chemical shift w that has the following sampled frequencies in two different spectra:

w+&  [E<0/2
JS+E <02,

It can be shown that:
- =1E=¢1<(0+90)/2,

if 0 =0 and ws = ws', then | — &’'| = 0. However, if ws # ws’, then |£ — £| can be
as large as (6 + 0')/2. For example, if 0 = 0, ws — ws’' = kO + ¢, for some integer k
and very small positive number € > 0, and w — ws = pf + 0/2, we have | — &'| = 0,
where p is an integer.

Due to the aforementioned uncertainties, observed chemical shifts are always noisy.
Moreover, a nucleus has slightly different chemical shifts in various spectra.

1.2.2 Common NMR Spectra

There are numerous NMR experiments, each designed to present information about spe-
cific sets of nuclei. We introduce only the prevalent set of spectra that are used in our
experiments and collected in most NMR labs. We use the widely adopted atom nomen-
clature (Markley et al., [1998)). Therefore, N, HN, CA, HA, CB, and C denote chemical
shifts of amide nitrogen, amide hydrogen, alpha carbon, alpha hydrogen, beta carbon, and
carbonyl carbon, respectively. Moreover, HX, X € X denotes all the hydrogens in the set
X. The subscript attached to each of the chemical shifts corresponds to the residue in the
amino acid sequence to which they belong, e.g., N; denotes amide nitrogen chemical shift
of residue 7. Last, it should be noted the peaks described here are expected to exist in the
corresponding spectra, but there is no guarantee that they actually exist. The details of
these experiments are described by (Cavanagh et al| (2006). Common spectra are listed
below.

I’N-HSQC A sensitive 2D spectrum that detects the N and HN chemical shift pair, i.e.
a peak at [N;, HN;]" for residue i and is referred to as the “root pair.” This spectrum is

sometimes referred to as a protein signature. Nuclei involved in a sample *N-HSQC peak
are depicted in Fig. [I.5]

13



R R

Residue i — 1 Residue i

Figure 1.5: Nuclei involved in a sample ’N-HSQC peak, [N;, HN,]", are shaded.

HNCO A 3D spectrum that detects the N, HN, and C chemical shifts. Ideally, it gen-
erates one peak for each residue: [N;, C;_1, HN;]T. HNCO is one of the most sensitive 3D
experiments. Nuclei involved in a sample HNCO peak are depicted in Fig. [1.6

R R

Residue 1 — 1 Residue i

Figure 1.6: Nuclei involved in a sample HNCO peak, [N;, C;_;, HN;] T, are shaded.

HNCACB A 3D spectrum that detects N, HN, CA, and CB chemical shifts. In the ideal
case, it generates four peaks for each residue: [N;, CA;, HN;]T, [N;, CB;, HN;| T, [N;, CA;_1,
HN;] ", and [N;, CB;_;, HN;]T. The sign of the intensity values can be used to differentiate
between CAs and CBs. Nuclei involved in a sample HNCACB peak are depicted in Fig. [I.7]

CBCA(CO)NH A 3D spectrum that detects N, HN, CA, and CB chemical shifts. In the
ideal case, two peaks are generated for each residue: [N;, CA;_;, HN;]" and [N;, CB;_1, HN,] .
Nuclei involved in a sample CBCA(CO)NH peak are depicted in Fig. [1.8
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Residue i — 1 Residue i

Figure 1.7: Nuclei involved in a sample HNCACB peak, [N;, CB;_;, HN;]T, are shaded.

R R

Residue 1 — 1 Residue i

Figure 1.8: Nuclei involved in a sample CBCA(CO)NH peak, [N;, CA;_1, HN,] ", are shaded.

HNCA A 3D spectrum that detects N, HN, and CA chemical shifts. Ideally, it generates
two peaks for each residue: [N;, CA;, HN;]" and [N;, CA;_;,HN;]". Nuclei involved in a
sample HNCA peak are depicted in Fig. [1.9]

H(CCO)NH-TOCSY A 3D spectrum that detects N, HN, and HX chemical shifts,
where:

X = {« hydrogen U all hydrogens on the side chain} of residue i — 1. (1.16)

In the ideal case, it generates peaks in [N;, HX, HN,]T format. The number of peaks for
each residue depends on the type of preceding residue and the number of its side chain
hydrogens. Nuclei involved in a sample H{CCO)NH-TOCSY peak are depicted in Fig.|1.10]
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Residue i — 1 Residue i

Figure 1.9: Nuclei involved in a sample HNCA peak, [N;, CA;, HN,]", are shaded.

R R

Residue 1 — 1 Residue i

Figure 1.10: Nuclei involved in a sample H(CCO)NH-TOCSY peak, [N;, HA; 1, HN,]T, are
shaded.

I'N-NOESY A 3D spectrum that detects dipolar (through space) coupling between
protons. It detects N, HN, and HX chemical shifts, such that

X = {X | d(HX,HN) < 5A}, (1.17)

where d(A, B) is the distance between atoms A and B in the molecular structure. Ideally,
it generates peaks in [N;, HX, HN;]" format for all close protons with appreciable dipolar
coupling. The N-NOESY spectrum is critical in the protein NMR process, since HX could
be anywhere in the protein chain, even from a residue far from residue ¢ in the sequence
(long-range contact). The number of peaks varies from residue to residue and depends on
the molecular structure of the protein. Nuclei involved in a sample >’N-NOESY peak are
depicted in Fig. [1.11]
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Figure 1.11: Nuclei involved in a sample " N-NOESY peak, [N;, HN;, HN;]", are shaded.
HN,; and HN; have dipolar coupling (dashed line) and they are not chemically bonded.
Only the HN of residue j is shown.

1.2.3 Protein NMR Steps

Here, we briefly review the major steps of protein NMR structure determination. The
most prominent strategy used by most spectroscopists is proposed by Wiithrich| (1986]),
which includes isotope labeling, data collection and processing, peak picking, chemical
shift assignment, NOE peak assignment, and finally, structure calculation. The protein
NMR process flowchart is depicted in Fig.

Isotope labeling and collecting NMR spectra

NMR active isotopes such as *N and '3C are not abundant (see Table [L.1). Therefore,
most proteins contain NMR inactive/unsuitable nuclides such as ?C and N. In the
absence of N and '3C isotopes, only 'H is NMR active. The number of hydrogen atoms
and the linewidth grow (approximately) linearly with the size of the protein, resulting in
severe overlapping of peaks. Consequently, the NMR methods that only use 'H are limited
to proteins with the molecular masses 10-12 kDa (Cavanagh et al.l 2006). To resolve
degeneracy of chemical shifts, NMR inactive nuclides are replaced with their expensive
NMR active isotopes in a process called isotope labeling, in an NMR laboratory. After
labeling, the protein sample is put in an NMR instrument and a set of different spectra are
recorded. This is a costly procedure that takes two to three weeks to be completed. This
step is not the focus of automated NMR methods, because it is not a computer science
problem.
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Figure 1.12: Protein NMR steps.

Peak-picking

After NMR spectra are recorded, they are analyzed by an NMR, spectroscopist for identi-
fication of the corresponding peaks in a process called peak-picking. This is a cumbersome
and labor-intensive procedure that takes around one week to be carried out, because visu-
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alizing 3D and 4D spectra is not straightforward, not withstanding the problem of finding
the location of peaks. In this process, multiple spectra are cross-referenced simultaneously
to distinguish between fake (noisy) and real peaks.

Chemical shift assignment

Chemical shift assignment is the process of labeling NMR active nuclei with their corre-
sponding chemical shifts. Peaks from different spectra are considered and are superimposed
based on their common nuclides. Chemical shift assignment is usually divided into two
steps: (7) backbone resonance assignment and (iz) side chain resonance assignment. As-
signment is error-prone due to missing peaks, artifacts, and degeneracy of chemical shifts,
and is mostly done by using semi-automated interactive software. Assignment is mostly
done in one week; however, in some cases it could take weeks or even months.

NOE assignment and generating distance constraints

With knowledge of chemical shifts of nuclei, NOE information obtained from NOESY
spectra can be used to generate distance constraints. That is, we can extract structural
information from NMR experiments. Due to their intrinsically vague nature, NOE peaks
usually generate ambiguous distance constraints; therefore, they should be rigorously in-
spected and verified by an NMR expert to discard the contradicting or false constraints.
This process usually takes one to two weeks.

Structure calculation and refinement

The final step in protein NMR is structure calculation. The existing methods exploit (i) the
set of ambiguous distance constraints, (i) domain knowledge about protein structures (for
example the chainlike arrangement of amino acids in the protein or the planar structure of
peptides), and (iii) the set of approximate torsion angle restraints obtained from chemical
shifts of fragments of protein. All of this information is used to generate a bundle of
structures in an iterative process. For example, a hypothetical 2D chainlike molecule with
seven atoms is depicted in Fig. (left). From NOE experiments, we know that atom
pairs (1,7), (2,5), and (4,6) are close to each other. These constraints can be used to
generate the structure or fold of the chain as depicted in Fig. (right).

Finally, if a set of structural quality constraints are not satisfied, then the assignments
are inspected, the distance constraints are refined, and the procedure is repeated. This
procedure usually takes one to two weeks to finish.
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Figure 1.13: The process of using NOE constraints: Three NOE constraints in a hypothet-
ical 2D molecule with seven atoms (left). The molecule after being folded to satisfy the
constraints.

1.3 Protein NMR Automation

There are two major experimental protein structure determination methods: X-ray crystal-
lography and protein NMR structure determination. The X-ray crystallography method
has been successfully automated and the need for an “expert” is removed. Therefore,
the X-ray method is faster and cheaper than before. Moreover, experts can devote their
time to more challenging problems (Chandonia and Brenner, 2006). However, the X-ray
method automation is more straightforward than NMR, because using X-ray, there is a
single “correct” method to analyze the data and infer the structure, while in NMR, every
laboratory uses its “own” data analysis and processing tools and methods (Jahnke, 2007)).
To make matters even worse, most of the existing methods require human intervention,
which introduces irreproducible bias and subjectivity.

The protein NMR structure determination process has been widely adopted; it accounts
for nearly 15% of deposited structures in the PDB (Spronk et al.,[2004)). Moreover, modern
stable isotope labeling techniques enable collection of NMR spectra for RNAs which are
longer than a hundred nucleotides. For example, NAPSS uses unassigned NMR RNA
spectra to assist a dynamic RNA folding algorithm (Hart et al.,|2008). Although the global
fold of the structures determined by NMR is the same as the structure determined by the
X-ray method, at the local level there are appreciable differences (Andrec et al., 2007)).
The most notable weakness of NMR is low sensitivity of spectra (Billeter et al., 2008]),
meaning that many peaks are missing (due to fast conformational changes or relaxation
problems) or are buried in the noise (Williamson and Craven, 2009). Therefore, every
attempt must be made to extract as much information as possible from spectra, while the
methods involved should be designed with robustness and error-tolerance in mind.
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Protein NMR automation can be very beneficial: it can make the protein NMR process
fast and feasible and can remove the expert subjectivity from the process and make it
“repeatable.” Moreover, it can create valuable research time for NMR experts, similar to
the X-ray method (Williamson and Craven, [2009). Protein NMR automation, or at least
some modules of it, have received much attention during the past few years. There have
been numerous research attempts to automate the protein NMR structure determination
process (Jung et al. 2004; Huang et al., 2005} Lopez-Méndez and Guntert, |2006; Shen|
et al., 2008, 2009a)). Especially, FLYA (Lopez-Méndez and Giintert|, 2006]) has succeeded
in determining the structures of several small proteins fully automatically, except this
method nonetheless requires manually set parameters, such as noise ratio thresholds in
the peak picking step. In general, most of the existing methods require different levels of
human expert intervention, which, again, incorporates expert experience and subjectivity.
Some recent extensive reviews have been done by Huang et al.| (2005)), Guntert| (2009), and
‘Williamson and Craven, (2009).
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Chapter 2

Backbone Resonance Assignment

2.1 Introduction

The backbone resonance assignment, also known as the chemical shift assignment, plays
a vital role in the entire NMR protein structure determination process. This step of
the protein NMR process has attracted the most computational attention over the last
decade (Bartels et al, [1996; Zimmerman et al.;|1997; Gronwald et al.,|1998; Bailey-Kellogg
et al, 2000; [Guntert et all, [2000; [Tian et al., 2001; Xu et al. 2002} [Hus et all, 2002}
Erdmann and Rule, 2002; Pristovsek et al.] [2002; |Coggins and Zhou, 2003; Morris et al.|
2004 [Jung and Zweckstetter], [2004}; [Langmead and Donald, [2004; Langmead et al., [2004}
Masse and Keller], 2005} [Eghbalnia et al., 2005; Bailey-Kellogg et al., 2005} [Vitek et al.]
2005t [Pristovsek and Franzoni, 2004; [Wu et al., 2006; Wan and Lin, 2007} [Lemak et al.|
2008t [Volk et al. [2008; [Xiong and Bailey-Kelloggl, 2007; Xiong et al.l 2008} Stratmann et al.)
2009; [Apaydin et all 2011} [Donald and Martinl [2009} |Crippen et al. [2010; [Apaydin et al.]
. The goal of resonance assignment is to assign the picked peaks from NMR spectra
to their corresponding nuclei of the target proteins. A thorough review of assignment
methods has been done by Williamson and Craven| (2009)) and |Guntert| (2009).

Typically, the backbone resonance assignment is divided into three sub-problems, as
mentioned by Moseley and Montelione! (i) forming spin systems, (i¢) linking spin systems
into fragments, and (ii7) mapping the fragments to the target sequence. A “spin system”
denotes a group of coupled nuclei that can be observed as cross-peaks in one or more spec-
tra. Usually, spin systems contain both inter-residue and intra-residue information. The
existing methods can be classified into two groups: assignment methods that require spin
systems (Coggins and Zhou, 2003; [Jung and Zweckstetter, [2004; Masse and Keller| 2005}
Lemak et al., [2008) and assignment methods that do not require spin systems (Zimmerman
et al., |1997; [Wu et al, |2006; Wan and Lin, [2007; Volk et al., 2008). However, the latter
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assignment methods always require high quality peak lists with a very small number of
missing or false peaks and little difference in the chemical shift of the same nucleus in dif-
ferent spectra. Therefore, for most cases, the experiments carried out in such studies, are
based on either manually (or semi-automatically) picked and refined peak lists by spectro-
scopists, or on synthetic peak lists formed by assigned chemical shifts in a known protein
database such as BioMagResBank (BMRB) (Seavey et al.; [1991)). It should be noted that
most of the “spin-system-free” methods are flexible with the input spectra set, provided
that the spectra contain enough CA, CB, and/or C connectivity information.

The AUTOASSIGN method (Zimmerman et al.,|1997)) is a multi-stage constraint-based
expert system. The idea of AUTOASSIGN is the best first search, which assigns the
strongest fragment matches first, and then gradually relaxes restrictions to assign weaker
matches. The AUTOLINK method (Masse and Keller, 2005) is an attempt to mimic
human logic by a fuzzy logic and relative hypothesis prioritization method. AUTOLINK
extracts spin system connectivity information from the NOESY data. Wu et al.[(2006]) later
proposed a weighted maximum independent set formulation for the assignment problem.
They provided a comprehensive summary of the different sources of the spectra errors in
the lab experiments, and further simulated these errors on perfect datasets, synthesized
from BMRB database.

MARS (Jung and Zweckstetter, 2004)), one of the widely acknowledged assignment
methods, is different from its ancestors in that it applies the consensus idea to multiple runs
of assignments, where each run is carried out to optimize different objective functions. For
the local assignment, MARS uses the best first search to find the local fit of the fragments,
comprising as many as five spin systems. For global assignment, however, MARS optimizes
the global pseudo-energy function, which measures how well a spin system matches a
residue in the target protein. The pseudo-energy is based on the likelihood of observing a
certain chemical shift for an amino acid type in the BMRB database.

Lemak et al.| (2008) and |Volk et al. (2008) proposed two sophisticated methods to
solve the resonance assignment problem on the most up-to-date NMR spectra. The ABA-
CUS method (Lemak et al., [2008)) takes unassigned peaks from NOESY, COSY (corre-
lation spectroscopy), and TOCSY (total correlation spectroscopy), as well as database-
derived likelihoods, as the input. A multi-canonical Monte Carlo procedure, Fragment
Monte Carlo (FMC), is used to perform sequence-specific assignments. In the MATCH
method (Volk et al.; 2008]), both the global and local optimization strategies merge, where
the six-dimensional APSY spectrum (Hiller et al.| 2005; [Fiorito et al., [2006)) is the input.

The SAGA method (Crippen et al., 2010), is a recent algorithm that provides three
search algorithms, which can be selected by the user. It solves the assignment problem
using three different techniques: (7) finding the largest clique, (ii) performing a greedy
search, and (iii) performing a branch-and-bound method for searching the assignment
space. The SAGA method needs at least a clean (well-edited) HN(CO)CA peak list and
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generously-picked HNCACB and HNCA peak lists.

To fully automatically determine the structures from raw NMR data, the backbone
resonance assignment method should not be designed and tested in isolation from other
steps. Such an assignment algorithm must be designed to take sufficiently noisy input
data (generated fully automatically) and to output the assignments with sufficient quality
to allow automatic structure determination. Although most of the previously proposed
assignment methods were designed to deal with noisy peaks, most were only tested on either
synthetic peaks, which were simulated from the deposited chemical shifts from BMRB, or
from real peaks, which were manually or semi-automatically picked and refined. Therefore,
none of those methods works well on fully automatically picked peaks, which contain
significantly higher levels of noise and artifacts than manually or semi-automatically picked
peaks.

Here, we present an error-tolerant assignment method, IPASS (Alipanahi et al.; 2011a),
that processes automated peak-picking results to enable a fully automatic NMR protein
structure determination process. The ITPASS method is an Integer Linear Programming
(ILP) based assignment method. It also contains a new spin system forming algorithm,
an improved probabilistic spin system typing model, and a novel connectivity extraction
method. The performance of IPASS is evaluated on the noisy automatically-picked peak
lists of four real proteins by PICKY (Alipanahi et al| 2009). The success of IPASS on
these real proteins is mainly due to its more robust ILP module, the more error-tolerant
spin system forming module, and the more capable spin system typing module, as well as
its capability to use additional but commonly available data, such as ’N-NOESY cross
peaks.

2.2 Proposed Method

2.2.1 Problem Formulation

Given an amino acid sequence of a protein with n residues as riry...7,, define R =
{ri,r9,...,rn}. Spin systems are given as S = {s1,..., 8.}, where s; is a vector of the
chemical shifts. Then, the assignment problem is finding the correct mapping between spin
systems and residues, expressed as f: & — R. Due to the imperfect NMR spectra, peak
picking, and spin systems forming, the number of spin systems can be smaller, larger, or
equal to the number of residues, and some spin systems might not be assigned. If s; is
assigned to 7;, then, in the ideal case it is defined as:

S_j == [N27 HN’LJ CAZ; CBZ7 CAi*l? CBi*l]Ty (21)

In practice, it is possible that some of the chemical shifts are missing or incorrect.
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Figure 2.1: TPASS flowchart.

2.2.2 The General Strategy

IPASS has several modules which run in a sequence, as depicted in Fig. 2.1} The IPASS
method can be summarized as follows:

Forming Spin Systems This is a pre-processing step for resonance assignment. A
new graph-based method is developed to group chemical shifts from the peaks of different
spectra into spin systems. The core idea is to apply a two-stage clustering method and
use self-adapted thresholds to manage the experimental errors, chemical shift errors. The
input to the spin system-forming module is the set of picked peaks of ’N-HSQC, HNCACB,
CBCA(CO)NH, and/or HNCA spectra, and the output is a set of spin systems.

Typing Spin Systems Estimating the potential amino acids that can generate the
observed chemical shifts in a spin system is called typing. Spin systems are typed in a
probabilistic framework by using the statistics collected from a large protein dataset. The
IPASS method uses both the protein sequence and the secondary structure prediction to
type spin systems. Rather than finding the probability of mapping a spin system to a single
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residue, IPASS uses both the information from the current and the preceding residues, and
thus computes the probability of mapping a spin system to two consecutive residues. The
output of this step is a set of potential spin systems and their probabilities, associated with
each residue.

Connectivity Information Extraction Two spin systems are connected if they can
be mapped to two consecutive residues. The connections are detected by inter-residue
and intra-residue chemical shift information. Chemical shifts within spin systems are
noisy, such that a low threshold results in many undetected true connections. However,
a large threshold results in many false connections, making the ILP problem intractable.
In TPASS, two sets of connections are defined: a set of highly reliable connections based
on the CA and CB chemical shifts and the information extracted from the *N-NOESY
peaks. Furthermore, a set of less-reliable connections are detected by a larger threshold.
By using reliable connections, a set of fragments is determined and their combinations are
enumerated. Fixing the fragments eliminates many false connections and renders solving
the ILP problem feasible.

Integer Linear Programming At this step, there are a few spin system candidates,
and their probabilities for each residue. The assignment is formulated as an ILP problem
to find the globally optimal assignment. Instead of solving one large ILP problem, IPASS
solves many small tractable ILP problems. After fixing fragments, the ILP problem size is
dramatically reduced and can be easily solved within a few seconds. The ILP is solved for
all combinations of the fragments, and the one with the best score is picked as the final
assignment.

2.2.3 Forming Spin Systems

The goal of this step is to group the chemical shifts that are determined from different
NMR spectra into spin systems. Each spin system corresponds to nuclei within a small
vicinity, usually associated with a residue of the target protein. During the spin system
forming process, the chemical shifts are grouped in relation to their local environments
and are not assigned to a certain residue in the protein sequence. Here, spin systems are
viewed as the building blocks of the backbone resonance assignment process.

The problem of finding spin systems is modeled as a graph theoretical problemﬂ [deally,
the chemical shifts should be the same for each nucleus in the NMR spectra. In practice, a
perfect peak set is not available due to experimental errors, artifacts, biases, and resolution

!The spin system forming module is developed by E. Karakoc and F. Balbach.

26



differences. Typically, an error as high as 0.5 ppm is expected to exist in the °N and 3C
chemical shifts, and a shift as high as 0.05 ppm in the 'H chemical shifts. Therefore, an
exact match algorithm is not possible for comparing the different experimental NMR data.
To overcome this problem, each peak is represented as a point in the multi-dimensional
space, where each dimension corresponds to a certain type of nuclei, such as ?N, 'H, or
13C. Initially, all the peaks are represented in the nuclei space. In practice, the peaks
that belong to the same residue will not coincide at the same HN and N position, but are
clustered nearby.

Stage I

In the first stage, the peaks within each 3D spectrum are connected according to their N
and HN (root pair) chemical shifts. Each spectrum provides multiple peaks for the same
residue (see , and these peaks should be in the small vicinity of each other. The peaks
that have similar root pairs are grouped by using a weighted Euclidean distance function.
For example, the distance between root pairs of p, = [N,, C,, HN,]" in CBCA(CO)NH
spectrum and p, = [N, C,, HN,]" in HNCACB spectrum is defined as:

Dip(Psp,) = 1/ (Ng = Ny)? + 42(HN, — HN, )2 (2.2)

where 7 is the scaling factor for the compensation of the difference in the resolution between
HN and N. Usually, HN chemical shifts are 10 times more sensitive than the N chemical
shifts, and so the default value of v is 10. According to the distance defined in (2.2,
each peak, p, in a given spectrum is associated with its nearest neighbor, p,,. An edge
is created between p, and all the peaks that are closer to it than 2 x D,,(p,p,,). Thus,
IPASS does not have a preset threshold for forming spin systems. The edges between the
peaks are directional, and the source is the reference peak, p. The peaks connected to each
other represent the peaks from the same root pair.

Stage 11

The second step of generating the peak graph is to connect the peaks from different spectra.
For example, the distance metric between the aforementioned peaks is defined as:

D(p,.p,) = \/(No = N,)2 + (C, = C,)2 + w2(HN, — HN,)2

Similar to the aforementioned process, edges are created between p and its close vicinity
peaks in other spectra, which are closer to than 2 x D(p, p,,,). All of the created edges
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are directional. If there are two edges in both directions between two nodes, two edges are
replaced by a non-directional edge. The remaining directed edges are removed.

After these two steps, each connected component represents a cluster that corresponds
to a spin system in the resulting general peak graph. Some clusters might be incomplete
as a result of missing peaks or over-crowded as a result of degenerate chemical shifts. The

primary advantage of this approach is its generality. It can be applied to any set of available
NMR spectra.

Last, a brute force approach is applied that searches all the possible combinations
of the chemical shift values for different CA and CB nuclei in each cluster. If a unique
combination of the chemical shifts exists and does not conflict with the peaks in the cluster,
a spin system is generated.

2.2.4 Typing Spin Systems

The next step involves typing spin systems. Initially, any of the m spin systems can be
mapped to any of the n residues. The objective of this step is to reduce the number of
candidate spin systems for each residue, based on the chemical shift information. A sta-
tistical analysis of the deposited chemical shifts in the BMRB database reveals correlation
among the chemical shifts, the amino acid types, and the secondary structure (see Ta-
ble . These statistics are used to find the probability that one spin system is mapped
to a certain residue.

Collecting Statistics

All the BMRB entries with a matched PDB entry were downloaded as of December 15,
2008. Then, 1168 protein sequences were clustered by using CD-HIT (Li and Godzik,
2006)) with a 40% sequence identity level. From each cluster, only the longest sequence was
retained, resulting in a data set of 805 non-redundant proteins. The DSSP method (Kabsch
and Sander} [1993) was applied to compute the secondary structure types for all the residues.
From 88,436 collected residues, for all the amino acids except Gly, 68,028 CA and CB
chemical shift pairs were extracted. For Gly (which does not have a CB chemical shift)
6,577 CA chemical shifts were extracted. The mean vectors and covariance matrices were
estimated for each amino acid and secondary structure type (see Table .

Probabilistic Typing

The TPASS method uses a novel probabilistic model for calculating the probability that spin
system s; can be mapped to residue r;, Prr; | s;], for the n residues and m spin systems.
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Table 2.1: Mean and standard deviation values of CA and CB chemical shifts (p, and
pp) divided based on amino acid and secondary structure type. p,s is the correlation
coefficient between CA and CB chemical shifts in each case. C, S, and H denote coil,
[-strand, and a-helix, respectively. The second column is the relational abundance of each
amino acid type in our data set (in percentile). Distinct statistics of Ala, Gly, Ser, and
Thr are shown in bold.

Mo Hp Pa,p
AA. p (%)  C S H C S H c s H

Ala 7.5 52.4£1.6 50.9£1.3 54.7£14 19.3+2.1 21.7+24 18.2+14 -0.07 -0.06 -0.17
Arg 5.0 56.1+£1.9 548414 59.0£1.5 30.8+2.3 32.8£3.0 29.9+1.1 -0.14 -0.18 0.21
Asn 6.0 53.1£1.6  52.3£1.3 55.4£1.5 38.6+2.7 40.3£3.0 383x1l.5 -0.01 0.12 0.16
Asp 4.1 54.1£1.7  53.4+£1.5 56.8£1.3 41.1+£2.7 425£1.9 404+1.3 0.04 0.09 0.12
Cys 1.6 57.242.7 56.2£19 62.0£3.1 33.6£6.5 33.9+£6.8 30.1+£5.3 -0.58 -0.43 -0.65
Glu 7.9 55.84+1.8 54.4+1.3 58.4+1.4 294425 31.4£2.6 284+1.1 -0.16 -0.07 0.00
Gln 4.2 56.7£1.7  55.1£1.3  59.0£1.3 30.2+£2.5  32.4£2.7 29.3+2.0 -0.13 -0.11 0.05
Gly 73 45.3+1.4 45.0+2.0 46.7+1.1 - - - - - -

His 2.2 56.0£1.8  54.8+1.7 58.7£2.5 30.2+2.3 32.0£2.2 29.9+1.6 0.07 0.15 0.00
Ile 5.4 60.7£2.1  59.9£1.5 64.4£1.8 38.8+£3.3 40.1+2.9 37715 -0.07 -0.08 0.21
Leu 8.9 54.8+1.7  53.8+£1.3 57.5%£1.2 424423 443£2.6 41.5+1.2 -0.06 -0.12 0.08
Lys 7.1 56.3£1.8 55.1£1.3 59.0£1.5 329426 34.94+2.8 32.2+1.0 -0.09 -0.08 0.16
Met 2.1 55.4+1.6  54.2+£1.2 57.9£1.8 33.1+£2.6 35.3£3.3 32.2+1.7 0.01 0.09 0.49
Phe 3.7 57.4+£2.0 56.4£1.5 60.7£2.0 39.8424 41.7+2.7 389+1.4 -0.01 0.05 0.30
Pro 4.2 63.1+£1.7 62.6£1.0 65.4+1.3 32.1+1.7 32.1£1.1 31.44+1.0 0.06 0.31 0.20
Ser 6.3 58.3+£1.7 57.1£1.3 61.0£1.5 63.9+1.4 65.1+1.4 62.9£1.4 -0.13 0.09 -0.02
Thr 5.4 61.5+1.9 61.0£1.5 65.6+2.2 69.8£1.7 70.5+1.6 68.5+2.4 -0.20 -0.18 -0.09
Trp 1.2 56.9+2.1  56.1£1.6 59.9£2.0 30.2+5.3 31.5£1.9 29.1+1.3 0.00 -0.10 -0.05
Tyr 3.0 57.5+£2.0 56.6£1.5 60.8£1.9 39.1£2.8 41.24+3.2 38.1+1.3 -0.09 0.05 0.33
Val 6.9 61.9+2.1  60.7£1.7 65.9£1.8 32.7+23 34.0£2.1 31.5+1.0 -0.23 -0.31 -0.09

Two vectors are defined for spin system s;: ¢; := [CA;,CB;]" and ¢&; := [CA;_1,CB;_4]".
They contain the chemical shift information about the residue which s; is mapped to, 7;,
and its preceding residue, r;_1, respectively. Furthermore, since the N and HN chemical
shifts exhibit similar statistics for all amino acids, they are discarded. Therefore, Pr[r; | s;],
the probability that ¢; and ¢&; are mapped to r; and r;_;, respectively, can be written as
in . If it is assumed that ¢; and é; are independent?, then can be simplified to
(2.4]). By using the Bayes’ rule, we can rewrite as (2.5)), where a,,a, € A, and A is

2We need to assume this independence, because otherwise there will be (20 x 3) x (20 x 3) = 3600
different combinations of amino acid and secondary structure types, with only a few of chemical shift data
pairs for each combination. The independence assumption between ¢; and €; does not affect the accuracy
noticeably.
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the set of twenty amino acids.

Pr[r; | s;] = Prri = ap, 121 = a4 | ¢, €]
= Pr[r; = a, | ¢;] X Prri_y = a, | ¢
Pric; | r; = a,|Pr[r; = a,]  Pr[é; | ri1 = ay|Pr[riy = ag]

- Prlc, . Prle, (25)

In (2.5)), we assume that Pr[r; = a,] only depends on a, and not on the position in the
protein sequence, i. Therefore, Pr[r; = a,] can be estimated by the proportional abundance
of amino acid a,. In addition, by using the total probability law,

Prie;] = Za@GA Prle; | i = aPr[r; = a4 (2.6)

Pr[éj] = Za,_,eA Pr[éj | 7521 = ag|Pr[ri_y = a4

It should be noted that in proline, N and HN do not resonate and no spin system is
mapped to it, Pr[e; | r; = Pro] = 0. Furthermore, the chemical shifts depend on both the
amino acid type and the secondary structure type. To incorporate the secondary structure
information, the total probability law is used again and Pr[c; | r;] is reformulated as:

3

Prle; | ri = a] =) Prle; | ri = ag, v = o] Prlyi = o, (2.7)
k=1

where ~; denotes the secondary structure state of r;. For k = 1,2, and 3, o, denotes
random coil, S-strand, and a-helix, respectively. The PSIPRED method is used to estimate
Pr[y; = ox] values (McGuffin et al., 2000). It is assumed that Pr[c; | r;, ;] exhibits a joint
Gaussian distribution due to the observed strong correlation between the CA and CB
chemical shifts. By using the estimated covariance matrices, 3, and mean vectors, p, ,
we can write:

1 1 _
Prlc; | ri = ap, vi = o%] = IS 2 P (—5(03‘ — b)) Zip(e - Hz,ﬁ) . (28

Therefore, when one of *C chemical shifts is missing, the one-dimensional version of the
Gaussian distribution is used. By substituting in ([2.7), Prle; | ri = a] is computed.
After computing Pr[e;] by using , the mappings that are very unlikely should be
discarded. Therefore, if the condition in holds for ay, Prc; | 7; = ay] is set to zero:

Prle; | mi = aPrr; = a4
Prlcj]

<e=Pricj|ri=a]=0 (2.9)
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The omission threshold, ¢, is chosen as 0.001 similar to the approaches cited in the liter-
ature (Grishaev et al., |2005). This helps to reduce the number of candidate spin systems
for each residue. After this step, the Pr[r; | ¢;] values fori=1,...,nand j=1,...,m are
established. The next step is to find the connections among spin systems.

2.2.5 Connectivity Information Extraction

Connectivity information is extracted from the CA and CB chemical shifts, as well as
from the "»N-NOESY peaks information. Two sets of connections, reliable and loose,
are defined. Although the spin system typing step can significantly reduce the number
of candidate spin systems for each residue, this number remains large. Therefore, some
highly reliable fragments are found and fixed.

Links

Consider two spin systems s; and s;, defined as:

S; = [NZ, HNZ, CA“ CBZ, CAi_l, CBz_l]T (210)
s = [Ny, HNy, CAy, CByr, CAy_1,CBy_4] .
These two spin systems are called connected or linked if i’ = i + 1. In the ideal case
for two linked spin systems |CA; — CAy_1| = 0 and |CB; — CBy_;| = 0, because i =
t + 1. However, CA; and CA;_; may have originated from different spectra with different

resolutions (see [1.2.1]), so they may slightly differ. If s; and s, satisfy at least one of the
following two conditions without violating the other, then they are linked:

1. |CA; — CAy_y| < 64
2. |CB; — CBy_4| < 65

In the first phase of finding connection, the goal is to find all potential links; therefore, we
set 0, = 03 = 0.5, which is a loose threshold.

Connectivity graph

In this step, a directed graph called a connectivity graph, H = (W, F), is constructed that
indicates if two spin systems are linked. As mentioned earlier, two spin systems s, and
sy are linked if s; — r; and s; — r;41, so that they are mapped onto two consecutive
residues. The graph is constructed as follows:
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1. For each spin system put a node in H, i.e., W+ S

2. If s; and s;, are linked, then fj, € F

3. For each edge fji, its reliability g;i, is computed (details to follow)

4. For two conflicting edges, e.g., fjr and fj, the less reliable edge is discarded. That
is, if gy < gjk, then F < F\ fi

A sample connectivity graph is depicted in Fig. 2.2

Sj+1

Figure 2.2: A sample connectivity graph; only a subset of nodes are shown. For clarity,
only two edges are labeled.

Reliability of connections Initially, the reliability of all of the edges (links) is set to
one:

gjk = 1, \V/f]k S f (211)
Then, the edge reliabilities are updated as follows:
o [f |CLAZ — CAZ'/_1| < (5&, then 9ik < Gjk + 10.

o If [N;, HNy, HN;]" and [Ny, HN;, HNy|" peaks exist in the "'N-NOESY spectrum,
then g;, < g;i + 5.
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Since we want to elucidate more reliable connections, we set d,, = 65 = 0.05 ppm. Moreover,
if two spin systems are assigned to two adjacent residues on the target protein sequence,
their hydrogen atoms in the amide groups should be close in the molecular structure,
providing mutual peaks in the »’N-NOESY spectrum. We assign a lower score for mutual
I5’N-NOESY peaks, because of the degeneracy in HN chemical shifts.

After refining the connectivity graph (step 4), all the edges with g;; > 10 are extracted
and put in the reliable edge set, Fr. These reliables edges are used to form the fragments.

Fragment enumeration

All the reliable edges are searched for possible fragments. For example, if fj, fry € Fr,
then s; is linked to s and sy is linked to s, so that F' = (s, si, 8,) is a fragment of length
three. After all fragments are found, we then find the possible mapping positions for each
reliable fragment. Assume that p fragments, Fi, ..., F,, are found, with lengths ¢y,..., 0,
respectively. Each fragment is shown as F, = (8., Sey,- - -, s%), where s, is linked to
8¢, for j=1,..., 4, — 1. Fragments shorter than three spin systems, or fragments that
are the substrings of other fragments, are discarded. For fragment Fj, a mapping score is
defined for the i-th position in the target sequence, such that:

£y

Si) == log(1 = Prlrisp | Se,]), 1<i<n—{,+1. (2.12)
k=1

If S,(7) > £,e (e in (2.9)), then 7 is added to the set of possible mappings of F,, denoted
M, If M, = 0, then F, is discarded. After all the possible mappings are found, all
combinations of fragments are enumerated. In each combination, no two fragments should
be in conflict, i.e., they should not share any spin systems, and their mapped positions in
the sequence should not overlap. Then, all the fragments within the combination are fixed.
When spin system s; is fixed to residue r;, then:

Pr(r;|s;] =0, 7 # 7, (2.13)
PI‘[TZ'/ | Sj] = 0, i’ 7& 1. (214)

That is, s; is removed from all other candidate sets. After fixing all combinations, the ILP
model (described in section is called for each combination. From another point of
view, this step can be interpreted as performing a local optimization to make the global
optimization feasible.

The number of combinations is limited to 20000. In our experiments, no more than
200 combinations are discovered, because a strict threshold is used for finding the reliable
fragments. If the number of combinations exceeds the upper bound, the fragments four in
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length are discarded and so on. This process continues until the number of combinations
becomes fewer than the predefined upper bound. After ILP is solved for each combination,
the one with the highest score is selected as the final assignment.

2.2.6 Integer Linear Programming-based Assignment

Originally, all the m spin systems can be mapped to any residue r;. However, in spin
system typing and in the fragment fixing step, many Pr[r; | s;] values are set to zero.
Adapting a similar notion by |Crippen et al.| (2010)), we introduce the matching graph. It
is a bipartite graph, where nodes are sets of spin systems and residues. There is an edge
between s; and r; if Pr[r; | s;] # 0, that is, s; can be assigned to r;. There are also two
sets of auxiliary edges defined for better understanding of the problem. There is an edge
between r;,_; and 7; and an edge between s; and s, if they are connected, i.e., fj € F. A
sample matching graph is depicted in Fig. 2.3] The edges from the connectivity graph are
depicted in Fig. and are used to plot the auxiliary edges in the spin systems (bottom)
row.

L T2 T3 Ti—1 Ti Ti+1 Tn—1 Tn

81 82 Sj—1 85 Sj41 Sm—1 Sm

Figure 2.3: Illustration of the matching graph. Residues are put on the top row and the
spin systems on the bottom row; a solid edge indicates that the corresponding spin system
can be assigned to the residue it is connected to. Dashed edges are auxiliary edges not in
the graph edge set.

The assignment problem is not a simple matching problem, because the edges cannot be
picked independently. For example in Fig. 2.3] edges (s;,r;-1) and (s;_1,7;) conflict with
each other, because s; is not connected to s;_;. Therefore, this is an invalid combination.
To rectify this, a new graph called assignment graph G = (V, ) is defined. Each node in V
corresponds to an edge in the matching graph, and the edges in £ represent the connections
between the corresponding spin systems. The graph is constructed as follows:
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1. If Prr; | s;] # 0, then v; ; € V, and variable v; ; is created in the ILP

2. If v j,vis1 € V and fj, € F (s; is connected to si), then e; ;;, € £, and variable
€i ji 1s created in the ILP

3. All nodes with degree zero are deleted, because IPASS only assigns spin system pairs
to residue pairs

Notice that a spin system can potentially be mapped to multiple residues with different
probabilities, and multiple copies of the spin systems (which are differentiated according
to their mapped location) exist. Fig. illustrates the assignment graph for the matching
graph in Fig.[2.3] In the depicted assignment graph, the (ss,7;) edge in the matching graph
has no corresponding node, since it is not connected to any spin systems in the candidate
set, neither r;_; nor r; ;.

If each residue has m; candidate spin systems in the assignment graph, then:
|V|:Zmi§m-n, |5|§Zmi_1-m,~<m2-n, (2.15)
i=1 i=2

where |£| reaches its maximum in the unlikely case that all the candidate spin systems of
r;—1 are connected to those of r;_1, for « = 2,... n. TPASS’s assignment graph is signif-
icantly smaller than similar methods. For example, Crippen et al.| define an assignment
graph in their method, SAGA, that has the same nodes; however, there is an edge between
every two non-conflicting nodes (Crippen et al., 2010)). In their graph, we have:

2
- 1 (< 1
|V| = E m;, |5| < 5 ( g mi) < §m2-n2, (2-16)
i=1 i=1

which indicates the dramatic large size of |E]. Moreover, the bound in (2.16]) is much
tighter than the one defined in ([2.15]), mainly because the connectivity graph is sparse.

ILP formulation

The two defined sets of variables in the ILP are:

1. v;; €{0,1}, it is 1 if and only if s; is assigned to r; and 0 otherwise;

2. e;jx € {0,1}, it is 1 if and only if s; is assigned to r; and sy, is assigned to r;1;, and
0 otherwise
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V2.1

S Vi-1,j Cij—1,j+1
Sit1 : . O Un—1,j+1
Vij+1 - Vit1,j+1
Sm—1 Un,m—1

Sm Un=1,m

Figure 2.4: Illustration of the assignment graph for the matching graph in Fig. [2.3] There
is a node v; ; (shown by the gray circles), corresponding to r; and s;, only if Pr[r; | s;] # 0.
For clarity, only two edges are labeled.
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For each edge, a weight corresponding to the probability of mapping two spin systems
to two adjacent residues is defined as:

wi,j,k = log (PI‘[Ti, i1 | Sj, Sk])
= log (Pr(r; [ s;]) + log (Pr[riy1 | sk]) (2.17)

where {r; | s;} and {r;;; | sx} are assumed independent. Now, the task is to find the
assignment which maximizes the total weight of the chosen edges. Inherently, each spin
system can be assigned to, at most, one residue in the protein sequence. For each residue,
there can be, at most, one spin system assigned. After the backbone resonance assignment
problem is formulated, the ILP model is written as follows:

max E (Wijk + ) €ijks (2.18)
€.k
€ij k€L

subject to Ve, jr € B €ijr < Vij; €ijk < Viglk, (
Vi € {1,...,77,}, E;ﬂ:l’l}i’j S 1, (220

(

(

Vj € {1, Ce ,m}, Z?:l /Ui,j S 1,
and v;; € {0,1}, e, € {0,1}.

Since the logarithm of probabilities is non-positive, the objective function adjusts all the
edge weights to positive values by adding the A = —min, j;(w; ;%) term, which is equiv-
alent to scaling the probabilities such that they are all larger or equal to one. Then, the
maximization is meaningful. Constraint ensures that an edge can be selected, only
if both of its ends (the corresponding spin systems) are selected. Constraint (2.20]) ensures
that a spin system can be assigned to, at most, one residue, and constraint ([2.21|) ensures
that only one spin system is assigned to a residue.

As the result of the fragment fixing step, the size of the problem, i.e., V|4 |€]| plus the
number of constraints, is substantially reduced, which makes the ILP problem tractable.
The ILOG CPLEX 9.1 program is used for solving the aforementioned ILP problem. More-
over, the GNU Linear Programming Kit (GLPK) is also capable of solving the formulated
ILP. For each enumerated fragment combination, an ILP instance is generated and the
solution is attained. The objective function of the assignment represents the score of that
configuration. The assignment with the highest score is reported as the final assignment.

NP-hardness
We prove that the backbone resonance assignment problem, under our formulation, is NP-
hard. Please note that NP-hardness has also been shown on different formulations of the

assignment problem (Eghbalnia et al., 2005; [Bailey-Kellogg et al.; [2005; Xu et al., 2002).
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Theorem 1 Backbone resonance assignment problem, under the proposed graphical repre-
sentation 1s NP-hard.

Proof 1 The NP-hardness of the backbone resonance assignment problem is established
under the graph representation through a reduction from the Hamiltonian path problem
which is known to be NP-hard. The Hamiltonian path problem is defined as follows: Given
a graph, H = (W, F) (the connectivity graph), decide whether there exists a path in H
that visits each node exactly once. For an instance of the Hamiltonian path problem, a new
graph G(V, &) (assignment graph) is constructed for which V = {1,2,...,n} x W, where
n = |W| . The new graph, G, has nodes of (i,w), where w € W and 1 < i <n, and edges
between (i,w) and (i + 1,w’), if an edge between w and w' exists in H. Here, the edge
weights are defined as 1 for all edges in G.

H has a Hamiltonian path, if and only if there exists a perfect assignment for the
backbone resonance assignment problem. For each i, the nodes are connected to their
adjacent nodes in the graph with the weight 1. A perfect backbone resonance assignment
corresponds to a mapping, where each spin system is used once, and each residue is assigned
to a single spin system with a total cost of n — 1. FEach node (i,w) in G corresponds to
a spin system w assigned to residue i. As a result, the perfect assignment that visits each
node once corresponds to a Hamiltonian path. Similarly, if there is a Hamiltonian path
visiting nodes wi, Wa, ..., Wy, it corresponds to an assignment between w; and residue 1.
Consequently, this problem is NP-hard.

2.3 The Proposed Pipeline

The ultimate goal of any automated protein NMR method is to determine the protein
structure when the input data is imperfect but sufficient. We propose a protein NMR
pipeline which is both fully-automated and robust. The flowchart of the proposed automa-
tion pipeline is depicted in Fig. 2.5 The input of the pipeline is the NMR spectra and
the protein sequence, and the output is a bundle of structures, all determined with abso-
lutely no human intervention, whatsoever. The proposed pipeline has a fully automated
peak-picking module, PICKY (Alipanahi et al., 2009), an error-tolerant robust resonance
assignment method, IPASS (Alipanahi et al., 2011a), a structure determination method,
FALCON-NMR, built on top of FALCON (Li et al.,|2008) and RAPTOR (Xu et al., 2003),
and a novel scoring scheme for choosing the best structures.

The proposed pipeline provides an alternative approach to FLYA (Lépez-Méndez and
Guntert} [2006]). Given the target protein sequence and the backbone resonance assignment,
done by TPASS, FALCON-NMR first searches for close homologs by RAPTOR. If there are
close homologs, they are used to build the initial structural models for the target protein.
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If no close homolog is found, the target protein is considered as an ab initio target, and
FALCON-Abinitio, the ab initio module of FALCON, is called to generate the initial
structural models for the target. RAPTOR and FALCON-Abinitio generate hundreds of
structures (decoys), but they are unable to identify the best decoy. Therefore, we developed
a novel NOE contact-based scoring function to select the best decoys. Such decoys are
selected and fed into FALCON-Refinement to conduct an all-atom level refinement. The
refinement process is iterated by selecting the best decoys by the NOE contact-based
scoring function at each iteration, and feeding them back to FALCON-Refinement for
further model refining, until convergence, i.e., until the contact score no longer increases.

2.3.1 FALCON-NMR

The FALCON-NMRP| method uses ideas similar to CS-ROSETTA (Shen et al., [2008) for
selecting fragments using chemical shift information; while it differs from CS-Rosetta in
that it uses the NOESY contact information (a more recent version of CS-Rosetta, called
CS-RDC-NOE-Rosetta (Raman et al., [2010), uses only backbone NOE contacts for sam-
pling more accurate structures). Moreover, FALCON-NMR uses the fragments to train
a position specific Hidden-Markov Model (HMM) modeling the backbone torsion angle
space. This enables FALCON-NMR to refine the determined structure using the structure
of the last iteration.

2.3.2 Contact-based scoring function

A common bottleneck of FALCON-NMR and any other protein structure prediction method
is that they are not able to select the best decoys from the large number of generated decoys.
The most commonly used clustering-based decoy selection methods are usually trapped in
popular but low-quality models. We developed an NOE contact-based scoring function to
pick the best decoys. The core concept is that a “good” decoy must comply with most
distance restraints inferred from NOE peaks.

For the query protein, PICKY is called to pick peaks for both the »'N-NOESY and
H(CCO)NH-TOCSY spectra. Proton chemical shifts, determined by H({CCO)NH-TOCSY
peaks, are mapped to their corresponding residues, according to the consistency between
[N, HN]" values of H(CCO)NH-TOCSY peaks and those assigned by IPASS. After this
process, each residue, r;, has a corresponding proton chemical shift set, H;, that in the
ideal case contains amide proton, alpha proton, and all side chain proton chemical shifts.
Then, for each *N-NOESY peak, p, = [N;, H;, HN,] "

3FALCON-NMR is designed and developed by S.C. Li and G. Feng. For more details, please refer
to (Alipanahi et all 2011a).
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Figure 2.5: Flow chart of the proposed automated protein NMR structure determination
pipeline.
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1. All the residues with close N and HN chemical shifts to p, are found and added to
set Ry

2. All residues, 7y, such that 3 H € H; : |H—H;| < 0.05 are added to set T;

3. Set of all possible contacts for p, is defined as Cartesian product of R, and 7;:

Co=RexTy

There should be at least one correct contact pair, (r;,ry), in each Cy. For each decoy,
first the contact matrix of all residues is computed. Second, for all >’N-NOESY peaks, its
set of possible contacts, or C,, is compared against the decoy’s contact matrix, and if the
decoy satisfies at least one of the contacts in the set, its contact score is increased by one.
All decoys are ranked according to their contact scores, and the top ranked models are
selected as the input for the iterative refinement process. If the top contact score no longer
increases two consecutive rounds, the refinement process is considered to be converged and
the top-ranked model is output as the final structure.

2.4 Experimental Results

To evaluate the performance of IPASS, two performance measures are used: precision and
recall. Precision measures the ability to reject false assignments, whereas recall measures
the ability to discover true assignments. Assume that for the target protein, N., out of n
residues are manually assigned. Even in NMR labs, several residues may not be assigned,
i.e, Npax < n. This is mainly due to fast chemical exchange (conformational changes
in some parts of the protein structure) that makes some parts of the protein practically
invisible (Hore, 1995). In assessing the performance of assignment methods, we assume
that the best any automated assignment method could do is to perform as good as a human
NMR expert. Assume that the resonance assignment method assigns N, residues, where
T, of them are assigned correctly. Then, recall and precision are defined as Tp/N__ and
Tp/N,, respectively.

In NMR labs, the spectroscopists usually conduct the whole NMR process all together.
Therefore, the final peak lists provided by NMR labs are always “almost perfect,” and do
not represent the original peaks picked by spectroscopists. Most of the previous assign-
ment studies thus conducted the experiments on either manually or semi-automatically
determined peak lists, or on synthetic peak lists. However, to enable automatic NMR
protein structure determination, an assignment method must be able to work with im-
perfect automatically-picked peaks. In fact, the automatically-picked peak lists contain
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various sources of errors, such as the chemical shift differences of the same nucleus in dif-
ferent spectra, and a large number of false or missing peaks, which are caused by the peak
picking step. Therefore, an assignment method is practical only if it works on “low qual-
ity” real noisy input data sets. We evaluate the performance of IPASS on both synthetic
(simulated) and real data sets.

2.4.1 Performance on Simulated Data Sets

Although our goal is to develop an error tolerant backbone resonance assignment method
which works on realistic data sets, here, a comparison between IPASS and other programs
is provided by using prior benchmark data. Such simulated data sets can demonstrate
the performance of IPASS on manually or semi-automatically formed spin systems, and
manually or semi-automatically picked peaks because manual analysis is usually of high
quality.

Simulated spin sytems as input First, IPASS’s performance is evaluated on a simu-
lated data set, used by [Wan and Lin| (2007)), which contains 12 proteins. For each protein,
the spin systems are simulated, based on the BMRB deposited chemical shift assignments
of proteins, and are used as the input for all of the methods. Each spin system contains
N;, HN;, CA;, CB;, CA,_;, and CB;_; chemical shifts. Since RANDOM and CISA are
not available, the precision and recall values are adapted from Wan and Lin| (2007). The
accuracies of RANDOM, MARS, and CISA are calculated according to two different sets of
threshold values, to which these programs are sensitive. Note that in these experiments, the
spin system forming step is not used. Furthermore, it should be noted that AUTOASSIGN
was not available at the time and so could not be included in our experiments.

As shown in Table IPASS performs very well and better than any other program
regardless of the set of threshold settings. The average precision of IPASS is 99%, and
IPASS achieves a 100% precision on seven out of the 12 target proteins. Meanwhile, IPASS
can also achieve a high recall value of 96%. It is noteworthy that MARS performs well on
this data set as well. However, compared to IPASS, MARS has a relatively low recall value.
Table demonstrates that RANDOM and CISA are sensitive to the threshold settings.
For this simulated data set, in which all chemical shifts and the connectivity graph are
perfect, a smaller threshold value can produce more accurate results. In contrast, IPASS
does not rely on any parameter settings and its parameters are set without using any
special data set.

Simulated peak lists as input The IPASS performance is tested on the same afore-
mentioned data set, but with simulated peak lists. All four steps of IPASS are tested in
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Table 2.2: Accuracies (precision/recall) of RANDOM, MARS, CISA, and IPASS for 12
protein data set (simulated spin systems) in percentile.

0o = 0.2 ppm, 63 = 0.4 ppm 0o = 0.4 ppm, 63 = 0.8 ppm
Prot. ID n  Npax RANDOM MARS  CISA RANDOM MARS CISA IPASS

bmrd391 66 59 67/63 100/76  97/97  58/55 100/75  91/91  93/90
bmrd752 68 66 40/35 100/97  96/94  36/30 100/97  90/88 100/94
bmrdldd 78 68 36/33 100/91  100/99  33/31 100/69  100/99  98/85

bmrd579 86 83 54/51 99/98  98/98  34/32 96/90  80/80 100/98
bmrd316 89 85 42/36 100/100 100/99  35/30 99/91  83/83  99/98
bmrd288 105 94 62/55 100/99  98/98  42/38 98/97  91/91 100/98

bmr4929 114 110  68/63 100/100  93/91  46/43 100/99  96/94 100/100
bmrd302 115 107  66/64 100/100  96/95  47/45 100/100  91/91 100/99
bmrd670 120 102 67/62 100/100  96/95  43/39 100/100  88/87  98/97

bmrd353 126 98 48,43 95/55  96/95  47/43 95/55  90/90  99/93
bmrd027 158 148 43/32 100/99  100/99  40/30 100/99  88/85 100/97
bmrd318 215 191  40/38 99/99  87/84  25/22 100/95  74/70 100/98
Average 112 101 53/48 99/93  96/95  41/37 99/89  88/87 99/96

These 12 proteins are selected by [Wan and Lin|in the CISA paper (Wan and Lin| [2007)). The spin systems
are simulated based on BMRB deposited chemical shift assignment of these proteins and are used as input
for all of these programs.

Since RANDOM and CISA were unavailable at the time of testing, here we use precision and recall values
reported in (Wan and Lin| [2007).

The accuracy of RANDOM, MARS, and CISA is calculated based on two sets of thresholds.

The third column indicates number of residues that are manually assigned in the BMRB file.

these experiments. However, Wan and Lin/ (2007) do not provide such a comparison on
RANDOM, MARS, and CISA. Furthermore, RANDOM and CISA are unavailable. As a
result, IPASS is compared with the two available programs: MARS and RIBRA. MARS
takes only formed spin systems as the input and RIBRA takes the peak lists as the input.
RIBRA is used directly, and IPASS’s spin system forming method is applied to form spin
systems for MARS. Table shows that both MARS and IPASS perform well on the
simulated peak lists and both are better than RIBRA. The MARS method achieves higher
precision and lower recall values than IPASS.

2.4.2 Performance on Real Data Sets

We developed a peak picking system, PICKY (Alipanahi et al., 2009)), which specializes
on automatic peak picking. PICKY is tested on 32 noisy spectra, provided by our collab-
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Table 2.3: Accuracies (precision/recall) of RIBRA, MARS, and IPASS on 12 protein data
set (simulated peak lists) in percentile.

Prot. ID n  Npax spins Gly/Pro RIBRA MARS-I MARS-II IPASS

bmrd391 66 59 55 6/1 01/76  93/43  94/46  91/85
bmrd752 68 66 65 6/1 91/90 100/94  100/94  100/92
bmrdl44 78 68 63 3/5 62/45 100/58  100/41  93/85
bmrd579 86 83 80 5,/2 87/67  99/87  99/83  100/94
bmr4316 89 85 80  13/3 09/88  99/83  99/73  88/79
bmrd288 105 94 93 5/10 100/97  99/95  100/97  99/97
bmr4929 114 110 108  10/2 82/78 100/83  99/68  99/93
bmr4302 115 107 107  5/2  100/92 100/96  99/97  96/95
bmrd670 120 102 92 9/5 08/86  99/87  100/87  93/79
bmrd353 126 98 97 8/10  98/93  99/90  100/91  97/90
bmrd027 158 148 146  11/8 00/82  99/94  99/92  97/94
bmrd318 215 191 188  9/12  74/63  99/93  99/86  98/90

Average 112 101 98 5/8 89/80 99/84 99/80 96,/90

These 12 proteins are selected by CISA paper (Wan and Lin, 2007). The peak lists are simulated based on
BMRB deposited chemical shift assignment of these proteins. RIBRA directly accepts peak lists whereas
IPASS’s spin system forming module is used to generate spin systems for MARS and TPASS.

The third column indicates the number of residues that are manually assigned in the BMRB file.

The fourth column indicates the number of correct spin systems discovered by IPASS’s spin system forming
module.

RIBRA’s performance is measured with '°N and '3C threshold values of 0.5 and 'H threshold value of
0.05 for both grouping and connecting. Those parameters are set according to IPASS for fair comparison.
MARS-I is run with the first set of default parameters: §, = 0.2 ppm and dg = 0.4 ppm.

MARS-II is run with the second set of default parameters: é, = 0.5 ppm and dg = 0.5 ppm, which is the
same as TPASS.

orators. The average RCL and PRC values are 88% and 74%, respectively. As a result,
the peak lists generated by PICKY are used to evaluate the performance of IPASS on real
data sets.

The TPASS method is tested on the peak lists generated automatically by PICKY
for four proteins, i.e., TM1112, CASKIN, VRAR, and HACS1. Protein TM1112 from
Thermotoga maritima is provided by the Arrowsmith Lab at the University of Toronto (Xia
et al., [2002)) whereas CASKIN, the SH3 domain of the CASKIN neuronal signaling protein,
VRAR, S. aureus VraR DNA binding domain (Donaldson), 2008), and HACS1, the SH3
domain of the HACS1 human myeloid /hemopoetic signaling protein, are provided by the
Donaldson Lab at York University.
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Table summarizes the performance of RIBRA, MARS, and IPASS on the four real
proteins. Since MARS does not contain a spin system forming step, it takes IPASS spin
systems as the input. The performance of MARS and IPASS are compared on the same set
of spin systems. RIBRA takes the peak lists of >'N-HSQC, CBCA(CO)NH, and HNCACB
as the input, so the performance of RIBRA and IPASS are compared on the same peak
lists. Table shows that TPASS performs significantly better than RIBRA and MARS
on all four proteins. When the input peak list is high quality as in TM1112, IPASS can
generate assignments that are almost as good as the manual assignment. In Table [2.4] the
number of Gly and Pro residues are shown. The Pro residues disrupt the fragments and
make the assignment more challenging. The Gly residues are favorable because they can
be easily types; however, they also disrupt the fragments, because they do not have any
CB chemical shifts.

Table 2.4: Performance of RIBRA, MARS, and IPASS on target proteins TM1112,
CASKIN, VRAR, and HACS1.

Protein 7 Npax spin systems Gly/Pro CB RIBRA MARS-I MARS-II IPASS

TM1112 89 83 81/85 4/5 78  40/54  6/45 55/63  T1/72
CASKIN 67 54 47/48 7/4 42 12/21  23/25  23/25  29/39
VRAR 72 60 A7/47 1/0 41 4/13  6/17 6/17  30/37
HACS1 74 61 48/61 7/5 37 5/11  15/16  15/16  37/50

The first and second column show the target protein name and length, respectively.

The third column shows the number of manually assigned residues by the Arrowsmith and the Donaldson
labs, which is considered the upper bound for an automated method.

The Fourth column shows the number of correct/total spin systems discovered.

The Fifth column denotes the number of Pro/Gly in the sequence and the sixth column denotes number
of available CB values in the spin systems.

Starting from the seventh column, for each protein, the performance of each method is shown in “number
of correctly assigned residues/total number of assigned residues” format.

RIBRA’s performance with N, 3C threshold values of 0.5, and 'H threshold value of 0.05, for grouping
and connecting thresholds. No residue can be assigned if the default values are used. The parameters are
set according to IPASS, which makes the comparison fair.

MARS-I: with the first set of default parameters: §, = 0.5 ppm and dg = 0.5 ppm.

MARS-II: with the second set of default parameters: J, = 0.2 ppm and dg = 0.4 ppm.

2.4.3 Determined Structures

To determine the structures of four target proteins, TM1112, CASKIN, VRAR, and
HACS1, FALCON-NMR method is used. For the purpose of testing, the initial struc-
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tures of TM1112 and VRAR are determined by FALCON-Abinitio, whereas the initial
structures of HACS1 and CASKIN are determined by the RAPTOR method, since they
have close homologs in the database. For HACS1 and CASKIN, the initial models are
built by RAPTOR based on the alignments between the target proteins and their ho-
mologs. For each of the two ab initio targets, FALCON-Abinitio generates 10,000 initial
structural models (decoys) based on a fragment-HMM trained by fragments selected us-
ing various features, including chemical shifts information generated by IPASS. The NOE
contact-based scoring function is applied to pick the best decoys. The best decoys are
then fed into the FALCON-Refinement method to iteratively refine the structures until
convergence.

The final structures for TM1112, CASKIN, VRAR, and HACS1 have RMSDs of 1.25 A,
0.88 A (core regions), 1.49 A, and 0.67 A (core regions) to the native reference structures,
respectively. Among them, only TM1112 has a solved X-ray structure, while CASKIN,
VRAR, and HACSI1 only have NMR structures in PDB. Since the solved NMR structures
for CASKIN and HACS1 indicate that both of them have long flexible loops, we only
compare our final models with the reference NMR structures on core regions for these two
target proteins. The superimposition of the final models and the reference native structures
for TM1112, CASKIN, VRAR, and HACS1 are depicted in Fig. It can be seen that
all the models align well to their reference structures, except in the variable loop regions,
which do not have a fixed conformation.

2.5 Discussion

We now turn to the question whether even without NMR data, i.e., chemical shifts informa-
tion and NOE contacts, FALCON or ROSETTA themselves could generate high-resolution
structures for the target proteins. To answer this question, three more experiments were
performed:

1. To verify how much the automatically assigned IPASS chemical shifts were inferior
to the manually assigned chemical shifts, we ran FALCON-NMR with the manually
or semi-automatically solved chemical shift assignments from the Arrowsmith Lab
at the University of Toronto and the Donaldson Lab at York University. The NOE
contact-based scoring function is used again for picking the best decoys.

2. To evaluate the role of the chemical shifts and the NOE contacts information, we ran
FALCON without any chemical shifts information, and picked the top decoy by the
default clustering-based decoy selection method of FALCON.
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(c) VRAR (d) HACS1

Figure 2.6: The superimposition between the final structures of FALCON-NMR (shown
in cyan) and the experimentally determined structures (shown in magenta) of TM1112,
CASKIN, VRAR, and HACSI1, respectively. TM1112 has a crystal structure while
CASKIN, VRAR, and HACS1 have NMR structures. The backbone RMSDs are 1.25 A,
0.88 A (core regions), 1.49 A, and 0.67 A (core regions), respectively.
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3. Moreover, we ran ROSETTA 2.3.0 (Bradley et al| |2005)) without any chemical shifts
information, and picked the top decoy selection by the default clustering-based decoy
selection method of ROSETTA.

Experimental results indicate that running FALCON with perfect assignments gen-
erates slightly better models for the target proteins, whereas simply running FALCON
or ROSETTA with their default clustering-based decoy selection methods results in low-
resolution models, especially for the ab initio targets. For example, the RMSDs for TM1112
for the three experiments are 1.17 A, 11.84 A, and 12.13 A, respectively. Similar results
are obtained on other targets as well.

These findings imply that: (i) replacing chemical shifts automatically assigned by
IPASS does not affect the accuracy of the final structure noticeably and (i7) without the
chemical shifts and NOE contacts information, neither FALCON nor ROSETTA are able

to generate high quality structures.

Implemented in C++, IPASS takes less than five minutes to achieve its results for a
practical noisy data set of a medium size protein (70-150 residues in length). In addition, it
takes TPASS five seconds for a simulated data set with up to 215 residues. The difference in
speed stems from the fact that for the simulated data sets most of the fragments are fixed
and consequently the integer linear programming problem size is very small. The entire
process, from peak picking by PICKY to the structure calculation by FALCON-NMR,
takes one day on a cluster of 100 CPUs.

The combination of the novel spin system forming, the improved spin system typing,
and the integer linear programming, results in a robust and error-tolerant protein NMR
structure determination system. The ILP problems were solved efficiently, because the
fragment fixing and spin system typing steps had reduced the original problem size signif-
icantly, which enables CPLEX to find the globally optimal solution.
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Chapter 3

From Distance Constraints to
Structure by SDP

Computing three-dimensional protein structures from their amino acid sequences has been
one of the most widely studied problems in bioinformatics. Any protein’s structure is a key
to understanding its physical, chemical, and biological properties. Myoglobin was the first
protein whose structure was solved in 1958 by the X-ray Crystallography method (Kendrew),
1958). Until 1984, X-ray method was the only experimental method for protein structure
determination. The NMR method came into use 27 years later: the first protein structures
determined by NMR were proteinase inhibitor ITA from bull seminal plasma (Williamson
et al., [1985) and the Lac repressor headpiece (Kaptein et al., [1985). The introduction of
protein NMR was a breakthrough, enabling the identification of the protein structure in
the aqueous solutions, which is closer to the native states of the proteins.

We briefly review the basics of protein structures and the principles of Euclidean dis-
tance geometry and then describe the protein NMR structure determination problem, re-
viewing the existing methods and the history behind them. Finally, our proposed method
is presented and the experimental results are demonstrated.

3.1 Basics

We review all the material necessary for describing the protein NMR problem, starting
with the notation and the terminology used throughout this chapter.

49



3.1.1 Notation

Scalars, vectors, sets, and matrices are shown in lower case, lower case bold italic, script,
and upper case italic letters, respectively. We define the following notations:

RP space of real p-dimensional vectors
RP*4 space of real p X ¢ matrices
SP the space of symmetric p x p matrices
St the set of symmetric positive semidefinite p x p matrices
P the set of symmetric positive definite p x p matrices
I, p X p identity matrix
1, all-ones vector of size p
e; the 2-th column of identity matrix
|B| cardinality of set B
For a matrix A € RP*?
A (4, 7)-th entry of A
AT transpose of A

rank(A) rank of A
range(A)  range space of A
null(A) null space of A

For a square matrix A € RP*P

trace(A)  sum of its diagonal elements
diag(A) a vector containing its diagonal elements

3.1.2 Protein Structure Representation

We assume the target protein has [ amino acid residues rq, ..., ;. Moreover, we assume it
has n atoms, {ay,...,a,}, each with its van der Waals radius v;, the so called “ball and
stick” model. If a nucleus a; is NMR active and has a corresponding assigned chemical
shift, its chemical shift is denoted by w;. There are two major models for representing a
protein molecule:

Cartesian Coordinate Space

The easiest method to represent the structure of a protein molecule is using the Cartesian
coordinate space, in which the protein structure is represented by X = [x1,...,x,], @; €
R3. This is the method used in the Protein Data Bank (PDB) (Bernstein et al., [1977).
All information about the query protein, bond length, bond angle, torsion angles, among
others, can be extracted from these coordinates.
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Figure 3.1: Schematic diagram of a dihedral angle.

Torsion Angle Space

If the minuscule fluctuations in the bond lengths and the bond angles of the protein
molecule in the room temperature are ignored, a more efficient representation of the struc-
ture is possible in the torsion angle space, in which the degrees of freedom are the rotations
about single covalent bonds. Every torsion angle is a dihedral angle that involves four
points (atoms) in R3. For example, in Fig. the dihedral angle, 6, is defined as the
rotation angle about the &5 — x3 bond. The dihedral angle is defined as the angle between
the plane passing through @, x5, and x3 and the plane passing through x5, 3, and x4.

We define the normal vectors of the two involved planes as:

n, = (V12 X va3)/(||v12 X Va3]|)

Ny = (Va3 X v34)/(||V23 X v34]|)

where v 11 = ;41 — x;, i = 1,2, 3 is the vector connecting x; to x;;1 (see Fig. .b). The
value and the sign of the dihedral angle is determined by the following relation:

0 = atan2(||vas||viynn, ||vie X vas||n, ny),

which can be further simplified to
0 = atan2(u|,ny, sin(az)n, ny),

where w11 = vii11/]|Viit1|| (normalized v;;41) and «s is the angle between v12 and a3 (see
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Figure 3.2: The method of finding the fourth point in a dihedral angle.

Fig[3.1la). In the dihedral angle depicted in Fig. [3.1}c,  ~ +135 (figure is not to scale);
the dihedral angle is positive, because looking in the direction of vs3, 1, must to be rotated
counterclockwise to align with n,.

Any four points in R3 form a dihedral angle; given the first three points, x;, x5, and
x5, the length of vs4, and the angle between vo3 and v34 (o in Fig.[3.1]a) we can uniquely
determine the fourth point, x,.

If we find v34, then we find the fourth point as x4 = x5 + v3y. We know that wis,
U3, and n, span R3, as depicted in Fig. [3.2l Therefore, we can decompose w3, into its
components as

V3q4 = Cp, Ny + Cu, U12 + Cuqs W23,



where the components could be found by considering Fig. [3.2}

Cn., = +|[vaa] sin(ay) sin(9),

, cos(0)
Cury = —||V3d Sm(%)m,
sin(6)
Cugy = +||va4| cos(aua) + Hv?"‘”tan(a@'
Considering the aforementioned method, given {x;}, x; € R®, i = 1,..., n, if we intend

to add «,1, we could store its Cartesian coordinates (three values), or we could compute
the dihedral angle, 0,1, of (,_2,®,_1,%,, X, y1) and store the following three values:

1. the dihedral angle, 6,1,
2. the length of the vector connecting the last two points, ||x,+1 — @,]|, and

3. the angle between x,, 1 — «, and T, — T,,_1, W1

For an arbitrary set of points, this results in no reduction in the problem size; however, in
proteins bond lengths, ||,11 — @/, and bond angles, a,, .1, are already known. Conse-
quently, the torsion angle space is more appropriate for modeling proteins.

Proteins have a unique property which makes the torsion angle space even more appeal-
ing: they consist of rigid subunits. That is, there are cliques of atoms where all the distances
within each clique is fixed. Covalent bonds are very stable and for our proposes can be
assumed to be rigid. For example, a tetrahedral carbon bonds to four other atoms and
the group of five atoms (including the carbon itself in the center) form a three-dimensional
rigid clique of size five.

Protein Structure Model

The backbone of polypeptide chains do not conform arbitrarily; it is observed that the
backbone is made of peptide planes, as illustrated in Fig.|3.3] There are six atoms from two
consecutive residues in each plane, three from the preceding and three from the proceeding
residue. For example, the lower peptide plane in Fig. m contains CA;_1, C,_1, O;_1,
N;, HN;, and CA;. The two connected planes cannot orient arbitrarily with respect to
each other, since the distance between N; and C; is fixed (they are part of CA tetrahedral
carbon). The two degrees of freedom are:

1. The dihedral angle ® about the N-CA bond, consisting of (C;_1,N;,CA;,C;)
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2. The dihedral angle ¥ about the CA—C bond, consisting of (N;,CA;,C;,N;;1)

There is also a third torsion angle w defined within each peptide plane about the C-N
bond, which consists of (CA;_1,C;—1,N;,CA;). In most cases, w is very close to 180° (trans)
and in rare cases it is close to 0° (cis).

Dihedral angles are defined for the amino acid side chains as well, denoted x,, where ¢
can be as large as five, e.g, for Lysine. Since each amino acid has a different side chain, their
number of side chain dihedral angles is different (see Table . Last, a vector containing
all of the torsion angles, @ = [0y,...,6;]", can be used to uniquely determine the protein
structure (up to a rotation and translation).

Figure 3.3: Peptide planes involving residues ¢ — 1, ¢, and ¢ + 1 are shown.

Ramachandran Plot Proteins are made up of atoms; atoms not covalently bonded
cannot arbitrarily penetrate each other. That is, for two atoms a; and a; with coordinates
x; and x; and van der Waals radii v; and v;, respectively, the simplified steric constraint
for the two atoms is defined as:

dij = ||z — x| > (vi +v5),
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where d;; denotes the Euclidean distance between the two corresponding atoms. A large
amount of energy is required to make d;; smaller than v; +v;. According to the Lennard-
Jones potential, the energy is proportional to 1/ d%jz when the two atoms are very close.
Strictly enforcing all of the steric constraints, |Ramachandran et al. generated a plot which
has been useful in studying protein structures, called the Ramachandran plot
dran et al.| [1963). A Ramachandran plot is depicted in Fig. it is observed that ® > 0
half-plane is sparsely populated. Moreover, most of the (®, ) combinations are forbidden;
they rarely occur and sometimes mistakenly occur in the structure calculation process.
In fact, the compliance of a new structure’s (®, ¥) values to the Ramachandran plot is a
popular method for verifying the correctness of the new structures (Chen et al., 2010).

With the deposition of thousands of new high resolution proteins in the PDB, more
recent versions of the Ramachandran plot have been generated; for example, Lovell et al.
provide a more accurate plot (Lovell et al., 2003)).

General case
180

Beta-sheet ———

Psi

% ’ Left-handed

alpha-helix
< |
/

Figure 3.4: The regions enclosed by light blue lines indicate “allowed” combinations of
(P, W) that result in no steric clashes. The regions enclosed by dark blue lines indicate
combinations of (®, V) that are allowed if the steric constraints are slightly relaxed. The
(¢, ¥) combinations for the the structure of Cellobiose phosphorylase from Clostridium
thermocellum in complex with phosphate (PDB ID: 3QDE) for non-glycine and non-proline
residues are shown (plot is generated by MolProbity (Chen et al., 2010))).

Right-handed
alpha-helix
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Amino Acids

Amino acids differ only in their side chain groups (shown by R in Fig. . The side chains
have different tendencies in interacting with water molecules and other side chains (Petsko
and Ringe, [2003). Amino acids’ characteristics are dominated by their side chains. For
example, some amino acid side chains are hydrophobic and only engage in van der Waals
interactions, mainly with other hydrophobic residues and are usually buried in the core of
the protein structure.

In contrast, amino acids with hydrophilic or water-loving side chains are able to make
hydrogen bonds to the other hydrophilic residues, to the surrounding water molecules, to
peptide backbone, and to polar organic molecules (Petsko and Ringe, 2003)). They are
more abundant on the surface of the protein that is exposed to the outside environment,
and that usually contains water molecules. Last, amphipathic side chains exhibit both
polar and non-polar features, making them ideal interfaces that can connect to both of the
aforementioned types of residues. More detailed information about different amino acids
is given by [Branden and Tooze (1999), [Betts and Russell (2003), and |Creighton| (1992]).

We use the [IUPAC-IUBMB-IUPAB atom nomenclature recommendations for represen-
tation of protein structures (Markley et al., [1998)).

3.1.3 Protein NMR Structural Information
The ultimate goal in de novo protein NMR structure determination is to compute the

protein structure from the set of experimentally inferred information. We review these
sources of structural information here.

NOE-derived upper bounds

The main source of structural information is in the form of NOE cross peaks. We delve
deeper into the information extracted from the NOESY experiments.

NOE cross peak assignment Assume we are given a 2D ['H, 'H-NOESY peak, p, =

[wél), wt@]T. For a preset matching tolerance of Aw, the assignment process is as follows:

1. Find all protons such that |w; — w§1)| < Aw, put these protons in the set Py;

2. Find all protons such that |w; — wéz)] < Aw, put these protons in the set Qy;
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3. The set of all possible assignments for p, is C; = P, x Q, (the Cartesian product
of the two sets), where C; = {(H;,H,)} contains the pairs of supposedly spatially
proximate protons. If |Cy| > 1, then the peak assignment is called ambiguous. That
is, there is more than one assignment for the corresponding peak.

The NOE peak assignment process for 3D NOESY experiments is essentially the same
as 2D NOE assignment and a brief description is given in the Contact-based scoring
function section (see page [39).

NOE-inferred upper bounds After NOE peaks are assigned, the peak volumes are
used to estimate the actual distances between involved protons. There are several packages
that generate upper bounds from chemical shift assignments and NOE peaks, including
CALIBA (Gintert et al., [1991)), NOAH (Mumenthaler et al., 1997), CANDID (Herrmann
et al., 2002), ARTA (Nilges et all 1997 Linge et al., 2003) among others. Note that all of
these methods form upper bounds of the form:

dij = ||z — ;]| < wij,  (i,5) €U.
There are two important problems with these upper bounds:

1. Fine noise: the u;; values are approximate and noisy. If atoms a; and a; are close to
one another in the protein structure, their actual distance may be higher than u,;. If
the upper bounds cannot be slightly violated, then a feasible solution may not exist.

2. Coarse noise: due the ambiguity of NOE peak assignment, it is likely that the
assignment is incorrect and d;; > w;;. If the upper bound violations are severely
penalized, they can lock the structure and prevent correct folding.

In several recent methods, especially those simulating the NMR data rather than using
real NMR data, the coarse noise is discarded altogether, oversimplifying the problem.

Uncertainties in the NOE peak assignment There are three major challenges with
NOE peaks: (i) most NOE peaks cannot be uniquely assigned, (i7) many NOE peaks
remain undetected, due to fast relaxation (spin-spin relaxation) and/or conformational
exchange; these peaks are absent in the structure calculation, and (iii) several NOE peaks
are spurious and noisy, adding additional (possibly) incorrect contacts (Giintert, 2004)).

NOE peaks may not always be assigned uniquely; in fact, most of the peak assignments
are ambiguous. Mumenthaler et al. proposed a simple but elegant model for estimating
the percentage of ambiguously assigned NOE peaks as follows (Mumenthaler et al., [1997):
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Assume we have a simple 2D ['H, 'H]-NOESY spectrum with a total n, peaks, ny
hydrogen atoms in the protein, a tolerance of Aw for matching chemical shifts, and with
the chemical shift range of AQ2 for protons. If we assume that the chemical shifts are
distributed uniformly in a range of width A2, the probability of finding a proton with
chemical shift w € [wy — Aw, wy + Aw] around any shift wy is

_2Aw
P="Aa-

For a unique assignment of a 2D ['H, 'H]-NOESY peak, p, = [wél), wl@]T there should be
only one matchlnzg proton in each dimension. That is, there must be only one protein in
the [wz Aw,w,” + Aw], i = 1,2, intervals. The number of such peak assignments is
given by:

ND =n, (1 =p)" 1 x (1 —p)"t =n,(1 —p)* %~ n,exp(—4n,Aw/AQ).

TV NV
w) dimension  w(2) dimension

Using the typical values of AQQ = 10 and Aw = 0.025 and considering that n, is in
the range of a few hundreds for medium size proteins, the percentage of uniquely assigned
protons is negligible. Note that, this is a lower bound because the proton chemical shifts are
not truly uniformly distributed and their distribution is closer to a mixture of Gaussians.

In modern NMR spectroscopy, usually NOE peaks from *C-edited or ®N-edited 3D
['H, 'H]-NOESY experiments are used. In 3D peaks, we assume that the ambiguity in one
dimension is resolved by making use of the corresponding heterospin; therefore, N ~
n, exp(—2n,Aw/AQ). That is, the effect is similar to running a 2D NOESY experiment
on a protein half the size of the original protein. However, 3D experiments have lower
resolutions and chemical shifts are more cluttered in the center of A2 range, which makes
NOE peak assignment challenging.

NOE contact refinement The total number of NOE contacts, n. = )_,|C,| could be
very large, while we know that at most n, (number of NOE peaks) of them are correct
(assuming all NOE peaks are not spurious). Several methods have been proposed for
refining the contact sets and, thus, reducing n., making it as close to n, as possible.

One fairly successful heuristic approach is implemented in the CANDID algorithm,
which combines features from methods ARIA and NOAH, while introducing two impor-
tant new features: network anchoring and constraint combination (Herrmann et al., [2002;
Gintert, 2004). Network anchoring finds the set of most consistent NOE contacts. For

o8



example, if atom a; is in contact (close in space) with atoms a; and ay, there is a high prob-
ability that a; and a; are also in contact. Any NOE assignment must be corroborated by
some other contacts in the vicinity of the atoms involved. Network anchoring can greatly
reduce the number of spurious NOE contacts, however, there will always be ambiguous
constraints left.

Another important concept is constraint combination, where for example two con-
straints (A-B and C-D) are combined into one (A-B U C-D). If any of the constraints is
satisfied, both are considered satisfied. More complex schemes are also available in CAN-
DID (Herrmann et al., [2002)). It must be noted that not all optimization methods can
handle unions of constraints, which limits their usage.

Expected number of NOE peaks Assume the protein is a 3D sphere of radius R, and
the n;, hydrogens are uniformly distributed in this sphere. There will be an NOE cross
peak corresponding to proximate protons if their distance is less than d,,... Therefore, the
probability of two protons being closer than d,., or the probability of being in contact
(spatially proximate) is p. = (dmayx/R)®. Assuming that contacts between protons are
independent from each otheIE], the expected number of contacts is:

n. ~ np - nh(nh - 1) dmax ’
c ™~ ) Pe = 9 R .

Proteins are tightly packed, so we can say that the protein volume, V,, is linearly pro-

portional to the number of atoms, n, i.e., V, oc n. Moreover, we know R o Vp(l/?’) that
indicates p. o< 1/n. Since ny,  n, we conclude that n, € O(n). In practice, the number of
NOE-inferred upper bounds is in the range of tens of hundreds.

Hydrogen Bonds Hydrogen bonds can be identified by looking for slow hydrogen ex-
change in amides (Wagner and Wiithrich| [1982). Hydrogen bonds can also be identified
by carefully analyzing the NOE restraints; they may seem redundant; however, they can
enforce more regular secondary structure (Guntert, |1998). Each hydrogen bond introduces
two distance constraints: (i) the acceptor-hydrogen distance is bounded to 2.0 A and (i)
the distance between the acceptor and the atom covalently bonded to the hydrogen is
bounded to a maximum of 3.0 A, as depicted in Fig. .

Disulfide and salt bridges Disulfide bridges are made after the oxidation of sulfhydryl
groups on the side chains of two cysteine residues. That is, they are covalent bonds between

In reality, contacts are not independent but in our approximate analysis, this model is sufficiently
accurate.
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Figure 3.5: Distance restraints enforcing a hydrogen bond (picture reproduced
from (Glintert|, 1998)).

side chains of two cysteine residues, where two sulfide atoms are almost 2.2 A apart (Petsko
and Ringe, 2003). Salt bridges are similar to hydrogen bonds, however both the donor and
acceptor are fully charged, which makes them more stable than hydrogen bonds. The
distance constraints are similar to hydrogen bonds.

Torsion angle restraints

Chemical shifts depend on the local electron density and the local conformation of the
molecule. There are some methods such as TALOS (Cornilescu et al., |1999) and PREDI-
TOR (Berjanskii et al., 2006)) that estimate the backbone and side chain torsion angles by
searching for peptide fragments having similar sequence and chemical shifts in a database of
fragments. TALOS reports a root-mean-square difference of 15° between the predicted and
actual torsion angles, for 65% of residues with “good” predictions. An improved version,
called TALOS+ (Shen et al., 2009b), can make “good” predictions for 88.5% of residues
with a a root-mean-square difference of 13°. The PREDITOR method reports that 88%
of its backbone torsion angles predictions are within 30° of the actual values.

Torsion angle restraints are in the form of ™" < § < 6™ for good predictions and a set
of intervals for ambiguous predictions. It should be noted that although these predictions
are close to reality most of the time, they are not as dependable as are NOE upper bounds.
Consequently, they must be enforced in a flexible manner, i.e., the structure must be
allowed to (slightly) violate them.
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3.1.4 Protein NMR Structure Calculation Formulation

Assuming the Cartesian coordinates of the protein structure as X = [zy,...,x,], ; € R,
vector of torsion angles as @ = [6;,...,6,]", —7 < 6; < 7, set of upper bounds, d;; < u;;,
(i,7) € U, set of torsion angle restraints, @™ = [gnax . gmax|T gmn — [gmin - gmin]T

such that O"in < ¢; < #m* 4§ € T, we formulate the protein NMR structure calculation
problem as: .
minimizex ¢y (X, U) + ¢r(0,0™",0™) + (X)), (3.1)

where ¢y, ¢, and ¢g penalize upper bounds, torsion angles, and stereochemical restraint
violations, respectively. We delve more deeply into these penalty functions.

Upper Bound Violations

Upper bounds are the most important structural information that NMR experiments pro-
vide. These bounds include bounds derived from NOE peaks, hydrogen bonds, and disul-
fide, and salt bridges. Upper bound violations should be penalized and this is done via
¢u(X,U) that can be written as:

bu(X,U) = wi? f(di,ug),
(i,9)eU
where wz(]U ) is the weight corresponding to the bound between a; and a;. Weights are
added, because we do not need to treat all bounds equally. For example, violations of more
confident bounds are more greatly penalized. If upper bounds are treated as constraints,
then we have:

oo, if d>u
ran={ o aze

which tolerates no violation. Due to inherent noise in the protein NMR, the constrained
model is highly prone to failure.

The simplest form of the penalizing function that allows violation of upper bounds can
be written as:

f(d=w)? if d>u

which may not be a proper choice, considering that some of the upper bounds are incorrect.
The squared-error term penalizes erroneous bounds, preventing the formation of the cor-
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rect structure. However, it is differentiable and suitable for gradient-based minimization
techniques.

A more suitable approach is to penalize the absolute value of the violations:

d—u, if d>u

which is more lenient on incorrect bounds. Another compact form of this function is
f(d,u) = max(d — u,0). Some alternative penalizing functions are described by |Giintert
(1998).

Torsion Angle Violations

The term penalizing the torsion angle violations can be written as:

¢T(97 Omin’ emax) _ Z wz(T) g (0“ e?in, 0;11ax) ’
€T
which, similar to the upper bounds, if " < §; < 63 there is no penalty. The torsion
angle deviation, A, is defined as:

O —gmax if gmax <) < g
A={ gmin_g  if —g<g<gmin (3.2)
0’ if emin S 9 S emax

Using the definition of A, the simplest way to penalize deviations is to minimize ), wZ(T)A?.
Some methods use more complex penalty functions, for example, see (Gtintert, |2004).

Stereochemical restraints

Proteins exhibit certain unique structural features called stereochemical characteristics,
which should be enforced in any protein structure determination method. The two afore-
mentioned penalty terms, vary from protein to protein and rely on the experimentally
derived information; however, these restraints are protein independent. The most impor-
tant set of stereochemical restraints are:

1. Bond lengths and angles: covalent bonds are very stable. Moreover, covalent bond
length fluctuations can be assumed to be negligible, particularly because they cannot
be detected in NMR experiments. Consequently, all bond lengths and angles must be
set to ideal values computed from accurate X-ray structures; for example, the values
reported by Engh and Huber| (1991)).
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2. Steric constraints: also called van der Waals constraints prevent non-bonded atoms
from penetrating each other (see page |54)).

3. Planarity of coplanar atoms: proteins contain several coplanar atoms, such as peptide
planes, phenolic rings of tyrosine and phenylalanine, carboxyl groups of aspartic acid
and glutamic acid, §-guanido group of arginine, among others. This is also important
because nine amino acids have planar side chains (Hooft et al., 1996).

4. Chirality constraints: all amino acids have a chirality center at their CA atom except
glycine. Moreover, theronine and isoleucine also have a chirality center at their CB
atoms (Drenth) 2002). These constraints enforce the correct enantiomer from the
two stereoisomers.

These restraints are implemented differently in various methods. For example, the pro-
tein X-ray Crystallography refinement method TNT (Tronrud et al., |1987)), formulates all
of the above constraints in the Cartesian coordinates space. The CORELS program (Suss-
man, 1985) rewrites the bond length, bond angles, and the dihedral angle restraints using
only the distances between atoms, see Fig. [3.6]

bond length

bond angle

dihedral angle

Figure 3.6: The constraints used in the CORELS method: the distance between two bonded
atoms, dag, for bond length, the distance between between an atom and its second nearest
neighbor, dac, for bond angle, and the distance between the first and fourth atom, dap,
for dihedral angles (picture reproduced from Drenth) (2002)).
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In the torsion angle space, bond lengths and angles, the planarity of the coplanar atoms
and the chiralities are automatically enforced, making it appealing for protein structure
calculation problems.

Last, there are a few protein quality checking programs that check many more features
in addition to the aforementioned restraints. For example, PROCHECK and its descendant
PROCHECK-NMR (Morris et al., [1992; Laskowski et al.; 1993, 1996, compare the torsion
angles (especially ®, U, and y; angles) with the corresponding values extracted from a
dataset of proteins and search for inconsistencies.

A more recent program called MolProbity (Chen et al., 2010]) performs a comprehensive
analysis on protein and nucleic acid macromolecules. It uses the program REDUCE (Word
et al., [1999) to add the missing hydrogens, and then the program PROBE (Word et al.,
1999) finds all of the steric clashes. Moreover, torsion angle combinations are verified with
an updated Ramachandran plot and the outliers are identified. Moreover, MolProbity mea-
sures a parameter called the “CB deviation” that is an indicator of a set of abnormalities
in the protein structure (Chen et al., 2010).

Quality Assessment of the Computed Structures

Performance evaluation of protein structure determination methods is critical. We de-
scribed some of the important stereochemical properties of the proteins; however, a method
might produce a structure that satisfies all of these restraints and at the same time its
structure significantly deviates from the actual structure.

Any new method, before being applied to data from unknown proteins, must be tested
with some datasets for which the structure is already known. One of the most important
and popular quality assessment measures is the Root Mean Square Deviation (RMSD)
between the computed and the reference structures, which is a measure of disparity between
the two conformations.

RMSD Let X, X € R®" be the reference and computed structures, respectively. Let
R C 1:n be a subset of the atoms in the structure for which we want to measure the

RMSD. First, we must perform orthogonal Procrustes to optimally align the atoms in
R. Let P = X[1,R], @ = X[;,R], and p = |R|. In addition, let p = % _ p; and

q = % P p;. Orthogonal Procrustes works as follows:

1. We move the centroid of P and @) to the origin by computing

P'=P-pl,, Q=Q-ql,.
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2. We find a rotation matrix R € R**3 that minimizes the following objective function:
p
E(R) =) |p, -4l
i=1

Let T = Q'(P")" be decomposed by SVD as T'= UXV . Then the optimal rotation
matrix is R = VU (Schénemann, 1966)).

3. Last, we compute P’ = RQ'.

After this procedure, the RMSD is calculated as follows:

1 P
RMSD = | =3 [}~ Bl A
=1

The set of selected atoms, Z, is formed depending on which parts of the two structures
are to be compared. For example, Z can contain only the indices of CA atoms, or atoms
in the backbone or it can include all of the heavy atoms in the structures. Generally, if
RMSD is less than 1.5-2 A, the structure is categorized as high-resolution, where most
atomic positions are accurate. An RMSD value of around 4 A can nonetheless be useful,
because the residue positions are nearly accurate. Even if RMSD is as high as 6 A some
structural information about the protein could be obtained (Kihara et al. 2009). As a
comparative measure, the histogram of resolution of protein structures determined by the
X-ray method is illustrated in Fig. [3.71 For some other measures of similarity between
structures, see (Wallin et al., 2003).

3.1.5 Euclidean Distance Geometry
Euclidean Spaces

As in (Krislockl 2010), we work only on real finite-dimensional Euclidean Spaces E and
define an inner product operator (-,-) : E x E — R for these spaces:

e For the space of real p-dimensional vectors, RP,

P
(@ y)=a'y=>) zy,

i=1
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Resolution Distribution - subrange from 0.0 to 5.0

Min: Max: Mean: Std. Deviation: Total Count:

0.0 5.0 2.19 1.19 65555
1] 25379

0-0.5 |

05-1 1

Figure 3.7: Histogram of resolution of protein structures determined by X-ray Crystallog-
raphy (source: http://www.pdb.org).

e For the space of real p x ¢ matrices, RP*4,

A B

1j g
1

(A, B) := trace(A'B) = Z

q
=1 j=

Given the inner-product operator, for z € E, its norm is defined as ||z| := /(z, ).
For vectors, the Euclidean or the fo-norm is defined as ||| := V& T, which is the length
of the vector. For matrices, the Frobenius norm is defined as ||A||r := y/trace(ATA).

Linear Maps

Matrix Indexing We use the MATLAB notation for matrices and vectors:

e 1in:={1,2,...,n}.

o [4:B] = [g}.

e For a matrix A € R™*" and for two sifting sets S C I:mand T C 1:n, B = A[S,T]is
a |S|x|T| matrix formed by rows and columns of A indexed by S and T, respectively.
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In addition, we define:

Al T] = All:m, T]
AlS,:] = A[S, 1:n]
A[S] = A[S, S]

Adjoint linear operator For two Euclidean subspaces E and F with inner-products
(-, g and (-, -)p, respectively, a linear map from E to F is defined as A: E — F. The
adjoint of A is defined as A*: F — [E, which satisfies

(x, A"y)g = (Az,y)p, VYreE,VyecT.

FEuclidean Distance Matrix

A matrix D € 8™ with non-negative elements and zero diagonal is called a Fuclidean
Distance Matriz (EDM), if there exists a set of points {x1,...,x,}, ©; € R", such that:

Dy = d; = ||@; — x4]%, Vi, ], (3.3)

The smallest value of r is called the embedding dimension, denoted embdim(D) = r. The
space of all n x n EDMs is denoted £". A walid EDM must satisfy three requirements:

1. Since D;; = ||@; — x;]|* > 0, all of its elements must be non-negative.

2. Since Dy; = ||@; — x;||*> = 0, all of its diagonal elements must be zero, or it should

be a hollow matrix. It immediately follows that £" C S}, where S} is the space of
hollow matrices; a matrix A € S™ is hollow if diag(A) = 0.

3. It must satisfy the triangle inequality for any three points:
dij < d;, + dkj, Vi, 7, k.
Satisfying the triangle inequality for all possible triplet of points requires O(n?)

constraints, which is not trivial.

Gram Matrix If we define X := [z, ..., @,] € R™", then the matrix of inner-products
or the Gram Matriz is given by G := X ' X, or equivalently by G;; := &, @;. It immediately
follows that G € S, because for any v € R",

v Guv=v' X" Xv=w'w= ||w|?>0,
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where w = Xv. The Gram matrix and the Euclidean distance matrix are linearly related;
expanding the right hand side of (3.3) we obtain:

D = (z; — ;) ' (z; — z),
iT:vi — Qm:azj + aij:vj,

— G“ - QGU + ij.

=X

In the matrix form, we can write:
D = K(G) := diag(G)1" — 2G + 1diag(G) ", (3.4)

where, K: §" — &" is a linear map that maps the cone of semidefinite matrices, S¥, onto
the cone of EDMs, £7, ie., £" = K(S}).

Mapping EDMs to GMs Using the K linear map, any Gram matrix can be easily
mapped to its corresponding EDM. For the reverse direction, we use the Kf: &* — S
linear map:

1
G =K/(D):= —5HDH, D €S,

where H = I — %11T is conventionally called the centering matrix. In fact, KT is a linear
map that maps the space of EDMs, £", onto the set of centered positive semidefinite
matrices, ST NSE. A matrix A € 8™ is centered if its rows (and automatically its columns)
sum to zero. The space of centered matrices is defined as Sf := {A € §" : A1 = 0}.

Schoenberg’s theorem Given a distance matrix D, its validity is in question: does the
matrix have any embedding? That is, are there a set of points {x1,...,x,}, ; € R", such
that their EDM is D? Instead of checking the EDM validity criteria, the following well-
known theorem addresses this question in a straightforward manner (Schoenberg, 1935)):

Theorem 2 A matriz D € 8% is a Euclidean distance matriz if and only if KTI(D) is
positive semidefinite.

Instead of verifying the triangle inequality constraints one by one, all of them can be
easily verified at once by checking whether Kf(D) € 8.

Embedding Dimension Assume that by using Theorem [2] we know that our distance
matrix is, in fact, a valid EDM. The next question is how to determined the embedding
dimension of D. The following theorem addresses this question (Alfakih et al., [1999).
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Theorem 3 Let D € E*. Then

embdim(D) = rank(K'(D)) <n — 1. (3.5)

While it is impossible to control the embedding dimension of D directly; Theorem
provides a mechanism to constrain it by rank(K'(D)).

Invariance to rotation and translation Given a set of points X = [xy,...,x,|, x; €
R", a rotation/reflection matrix R € R™" such that RTR = I, and a translation vector
t € R", we can write the rotated and translated version of X as:

X =RX +11,.
The Gram matrix of X can be written as:

G=X"X=X"X+X"R"t1] +1,t"RX + 1,t"¢1], (3.6)
=G + Dl(’U),

where v := X TRTt + t;—tln, and the linear map Dy : R™ — S is defined as (Alfakih et al.
1999):
Di(v):=v'1] +1,v".

We conclude from ({3.6) that:

1. If t # 0, then G # (. Moreover, when t = 0 for any rotation matrix G = G. That
is, the Gram matrix is invariant to rotation but is variant to translation.

2. Since EDMs are invariant to both rotation and translation, we have
K(G) = K(G) = K(G + D1 (v)),

which implies that Di(v) € null(K). Moreover, it can be shown that null(K) =
range(D;) (Al-Homidan and Wolkowicz, 2005).

Based on these propositions, we see that KT is the Moore-Penrose pseudoinverse of
K (Al-Homidan and Wolkowicz, |2005)), because for an arbitrary Gram matrix G one of the
four Moore-Penrose pseudoinverse conditions can be easily checked:

K(KI(K(G))) = K(KI(D)) = K(Gc) = K(G),

where G is the corresponding centered Gram matrix; verifying the remaining three is
straightforward.
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Multidimensional Scaling

At this point, we know that our EDM D is (i) a valid EDM; and (éi) has an embedding
dimension of r. To compute its embedding, i.e., X = [xy,...,@,], ; € R"?7 We can use the
popular multidimensional scaling (MDS) method (Torgerson, (1952)). It suffices to compute
the eigenvalue decomposition of Kf(D) as:

KI(D)=VAVT,

where V' € R™" is the matrix of eigenvectors of K(D) and the diagonal matrix A € 87,
holds the eigenvalues of K'(D), i.e., diag(A) = [A1,..., A\]T, such that A\; > -+ >\, > 0.
The embedding is computed as:

X =AV2yT, (3.7)

Since KT(D) is centered, we know that V"1 = 0 and consequently, X1 = 0. That is,
the embedding computed by MDS is always zero-mean, i.e., > ., &; = 0.

3.2 Literature Review

The protein NMR method is fundamentally different with the X-ray method: it is not
a “microscope with atomic resolution”, rather it provides indirect structural information.
For example, NMR cannot be used for measuring the bond lengths or angles. Instead,
it provides a network of distance restraints between spatially proximate hydrogen atoms.
Protein NMR is a de novo method: in de novo protein structure determination, the struc-
ture is computed without using any given templates. Therefore, it is used for discovering
new protein folds.

Since the NMR method only provides implicit and indirect information about the pro-
tein structure, it relies heavily on complex computational algorithms and methods. The
existing methods for protein NMR can be categorized into two major and two minor groups:

1. (major) Methods based on Euclidean Distance Matrix Completion (EDMC)F}
2. (major) Methods based on Molecular Dynamics and Simulated Annealing;

3. (minor) Methods based on Local/Global Optimization;

2Mathematical Distance Geometry is used in some older papers, e.g.,(Giintert} 1998), however, consid-
ering the nature of these methods, we believe EDMC is more appropriate.
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4. (minor) Methods originated from Sequence-based Protein Structure Predic-
tion algorithms.

These first three groups are briefly reviewed in the next section. The sequence-based
methods were briefly reviewed and our proposed method was presented in Chapter [2]

It should be mentioned that most of the existing methods, except for the most popular
ones, make these unrealistic assumptions, which we address:

1. Assuming to know the (nearly) exact distances between atoms with small bounded
perturbations,

2. Assuming to have both tight upper and lower bounds, while NOE only provides
upper bounds and the steric constraints provide merely loose lower bounds,

3. Assuming to have the distances between any type of nuclei (not just hydrogens); this
usually results in a staggering but unrealistic number of upper and lower bounds,

4. Constraining bond lengths and bond angles with upper and lower bounds similar to
NOE restraints, while these values should vary very little from their ideal values,

5. Ignoring the fact that not all hydrogens can be uniquely assigned, e.g., the hydrogens
in the methyl groups, which necessitates adding several virtual pseudo-atoms (for
example one pseudo-atom is added at the center of three hydrogens in the methyl
groups) and adjusting the corresponding upper bounds, making them even more
inaccurate,

6. Using RMSD as the only figure of merit, while RMSD is a good indicator of the com-
puted structure’s quality, withouts satisfying the stereochemical restraints and pass-

ing rigorous tests of protein quality verification programs such as MolProbity (Chen
et al., 2010)), this can be misleading,

7. Overlooking the ambiguity in the NOE restraints. Mainly because the upper bounds
are artificially synthesized from high-resolution structures in PDB, rather than being
inferred from NOE peaks.

We believe that these assumptions often lead to failure of these algorithms when they
are applied to real protein NMR data sets.
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3.2.1 EDMC-based Methods

In the EDMC-based methods, the objective is to complete an incomplete EDM D € &",
where D;; is the distance between atoms a; and a;, i.e.,

D;; = d?j = [lx; — wj||2

where x;, T; € R3 are the Cartesian coordinates of atoms a; and a;.

In EDMC problems, the input is as follows:

1. Maximum embedding dimension, r;

2. The set of equality constraints, £, such that d;; = e;;, V(i,7) € &;
3. The set of upper bounds, U, such that d;; < w;;, V(4,j) € U; and
4. The set of lower bounds, £, such that d;; > l;;, V(4,7) € L,

Any valid EDM D that satisfies the distance constraints and has embdim(D) < r is an
acceptable solution.

EDMC-based methods are well-suited for the protein NMR problem, because instead of
finding the protein conformation in the three-dimensional Cartesian space, the problem is
solved in the space of n-dimensional EDMs, £". After finding the EDM D, the embedding
of the solution is found by MDS.

EDMC is appealing because in protein NMR we have: (i) a set of equality constraints
E, (ii) a set of upper bounds U on some of the distances, derived from NOE experiments;
and (i17) a set of lower bounds L.

Methods working directly on the EDM

In the early years of protein NMR, many EDMC-based methods were proposed that nat-
urally directly worked on the corresponding EDM. The first method to use EDMC for
protein NMR was developed by Braun et al., which was based on using MDS for finding
the final embedding (Braun et al., [1981)); they solved the structure of a peptide with 109
atoms and 23 distance restraints. Their proposed method includes these steps:

1. Using bond length, bond angle, van der Waals contact distances and NMR restraints,
set some lower, and upper bounds on the distances between atom pairs. For atom
pairs without any experimental upper bounds, set an arbitrary large bound, say 40 A.
Check for the consistency of the bounds by verifying the triangle inequality and fix
possible problems.
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2. Randomly sample all the distances within the allowed ranges, l;; < d;; < u;;

3. Check the triangle inequality for all of the sampled distances and change the distances
such that there are no violations

4. Compute the Gram matrix, K'(D), and use MDS to find the best three-dimensional
embedding {x;}",, x; € R3

5. Adjust the distances, because it is possible that embdim(D) > 3. Repeat steps
three to five (usually five to 10 times)

6. Refine the structure by using a conjugate gradient-based (Powell, [1964) technique.

This method, alongside similar methods, working directly on the distance matrix, face two
major drawbacks:

1. Randomly guessing the unknown distances is ineffective, it results in a large number
of violated triangle inequality constraints. Moreover, there is no systematic method
for fixing the violated constraints. After several iterations of distance correction,
distances tend to become large (Giintert} [1998).

2. There is no way to control the embedding dimensionality. In fact, the final solution
could be of any dimension up to n; therefore, even generating a perfect EDM could
result in an impractical high-dimensional embedding.

In contrast to these limitations, |Arseniev et al.| (1984)) used this method on a simplified
model of protein molecule to compute the structure of a short globular protein, a scorpion
insectotoxin with 35 amino acid residues.

Havel et al.| (1983) proposed a similar but improved iterative EDMC method called
EMBED. Havel and Wiithrich| (1984) provided an improved version of this algorithm called
DISGEOQO, which was in use for several years. The DISGEO method runs two passes of
EMBED: the first runs on only on a subset of atoms computing a skeleton for the molecules
and the second run computes position of the remaining atoms. Williamson et al.| (1985)
used DISGEO to calculate the structure of proteinase inhibitor IIA from bull seminal
plasma with 58 amino acid residues and nearly 900 atoms. The emergence of new modern
structure calculation techniques has made these methods obsolete.

Other methods that impose unrealistic assumptions: for example, Trosset (1998)) for
dij <7 A considers upper and lower bounds of d;; +0.01 A and d;; —0.01 A, respectively.
Recently, |Grooms et al. (2009) proposed StrainMin that was tested using ezact distances
of atoms closer than 6 A.
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Methods working on the Gram Matrix

Enforcing the triangle inequality constraints for a large set of atoms (in the range of a
few thousands) is cumbersome and challenging, if not impossible. Using the Gram matrix
instead of the EDM for solving EDMC problems is more straightforward and has many
advantages:

1. The Gram matrix and EDM are linearly related and are converted to each other
using the K and the K linear maps; rendering trivial the revision of the constraints
in term of the Gram matrix.

2. Based on Theorem [2| by |Schoenberg (1935), instead of enforcing O(n?®) triangle
inequality constraints, it is sufficient to enforce that the Gram matrix is positive
semidefinite.

3. The embedding dimension and the rank of the Gram matrix are directly related (see
Theorem ; this provides a means to constrain the embedding dimension.

Semidefinite programming (SDP) is a natural choice for formulating the EDMC problem
using the Gram matrix. SDP-based EDMC methods demonstrated great success in solving
the sensor network localization (SNL) problem (Doherty et al., 2001; Biswas and Ye] [2004;
Biswas et al., 2006; Wang et al., 2008 Kim et al., [2009; Krislock and Wolkowicz, [2010). In
the SNL problem, the location of a set of sensors in R? is determined, given the short-range
distances between spatially proximate sensors. As a result, the SNL problem is inherently
similar to the protein NMR problem.

The major obstacle in extending SNL methods to protein NMR is two fold: first, the
jump from R? to R? makes the problem more difficult, and second, the O(n3 + m?) com-
plexity per iteration of SDP solvers is not tractable. To overcome this limitation, |Biswas
et al. (2008)) proposed DAFGAL, which is built on the idea of divide-and-stitch. Using a
symmetric reverse Cuthill-McKee permutation to aggregate the nonzero distances closer to
the main diagonal, the original large distance matrix is clustered into overlapping smaller
quasi-diagonal blocks of variable size The smaller problems are solved and then stitched
together using their commonly shared atoms, followed by a gradient-descent based post-
processing.

The DAFGAL method was tested on several synthetic datasets as follows: protein
structures from PDB are taken and all the distances between atom pairs with d;; < 6A are
computed. Consequently, lower and upper bounds of the form (d;; max(0,1 — |g|), d;; (1 +
|2])) are generated for each pair, where g, ~ N(0,0%). To make the tests more realistic,
only a fraction of these constraints are kept. For ¢ = 0.01 to 0.1 and for a fraction of kept
short range distances ranging from 30% to 100%, they report RMSD values in the range

74



0.1 to 2.5A. Last, DAFGAL performs poorly for large proteins, if less than 50% of short
range distances are given.

The DISCO method, a direct descendant of DAFGAL is proposed by [Leung and Toh
(2009). It is an extension of DAFGAL that can determine protein molecules with more
than 10,000 atoms. They use a divide-and-conquer technique and break the problem into
smaller subproblems. The improved methods for partitioning the partial distance matrix
and iteratively aligning the solutions of the subproblems, boosts DISCOS’s performance
in comparison to DAFGAL. They adapt a similar experimental setup to DAFGAL and
generate upper and lower bounds of the form (max(1, (1 — |g|d;;)), d;;(1 + |€])) where €,
are normal or uniform random variables. For 20%-30% of the short range distances with
the noise ranging from 10% to 20% the core structure, RMSD is 0.6-2 A, where the core
structure is defined as “the union of the likely localizable components” (Leung and Toh,
2009).

3.2.2 Methods based on Local/Global Optimization

Protein NMR can also be formulated as an optimization problem in Cartesian coordi-
nates space. For example, an objective function representing restraint violations can be
minimized. The main assumption in these methods is that the global minimum of the
optimization problem is close to the native structure of the target protein. However, the
obstacle here is the severe non-convexity of the optimization problem. As a result, it is
likely that the search algorithm is trapped in one of many local minima. Several different
minimization protocols have been proposed to overcome the local minima problem.

Global optimization of a potential energy function based solely on the amino acid
sequence is able to generate structures as close as 4.2 A RMSD (Liwo et al.| [1999). Better
results can be expected if additional structural information is also available. Moré and
Wul (1997, 1999)) presented DGSOL that formulated the protein structure determination
problem as a nonlinear least squares problem. The DGSOL method solves the problem by
a global continuation algorithm. In particular, it uses Gaussian smoothing for gradually
smoothing the original objective function, which is helpful because a smoother function
has less local minima, so increases the likelihood of finding the global optimum. They set
upper and lower bounds of the form ((1 —¢)d;;, (1 +¢)d;;), 0 < e < 0.16, on all the atoms
pairs within two neighbor residues. For a peptide fragment with only 200 atoms, DGSOL
computed a structure with a RMSD of 2.9 A.

Williams et al.| (2001) proposed GNOMAD, which takes as input a subset, e.g., 30%,
of “short-range distances” (defined as all the distances between two consecutive residues),
and distances fixing bond lengths and bond angles. For a protein with 1870 atoms (1TIM)
they defined 35201 short-range distances; using 30% of these exact distances, GNOMAD
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computed a structure with an RMSD of 1.07 .

A major breakthrough in protein NMR was the use of torsion angles instead of Cartesian
coordinates. Using torsion angles results in problem size reduction by at least one order of
magnitude, compared to using Cartesian coordinates; the average number of variables are
reduced from nearly 18.2 x 3 & 55 to 4.5 (see Table [3.3). The major obstacle at the time
was the higher complexity of computing the gradient with regard to the torsion angles.
Abe et al.| (1984)) presented a recursive O(t) method for computing the gradient in the
torsion angles space with t torsion angles for tree-like structures, such as in polypeptide
chains.

A widely-adapted method, called the wvariable target function, consists of a series of
minimizations, each with a different objective function (Braun and Go|,[1985)). The distance
restraints between distant atoms in the polypeptide chain are added as the optimization
progresses. Combining the variable target method with the fast gradient computation
technique, |Braun and Go| (1985) proposed DISMAN, which has proved to be effective for
a-helical proteins, due to their mostly short-range restraints, however; it fails for g-sheet
proteins that have many long range contacts.

3.2.3 Methods based on Molecular Dynamics

Molecular Dynamics (MD) simulation is based on classical mechanics; the molecule is
modeled as a set of connected masses each with their own positions and velocities, where
Newton’s motion equations are numerically solved and the molecule’s trajectory in the
Cartesian space is computed. The MD method has a huge advantage; the molecule has
both the potential and the kinetic energies; therefore, once trapped, the molecule may
escape from the local minima (Gtintert, [1998]).

MD was originally used for modeling motions of gases, but with emerging computer
technologies, it was also applied to larger molecules, such as proteins. McCammon et al.
used MD to simulate BPTI at room temperature (McCammon et al., [1977). It was not
until 1985 that |Kaptein et al. used NMR information and MD to compute the structure
of the Lac repressor headpiece. However, it should be noted that the authors had prior
knowledge about the structure and that the protein was modeled as three helices (Kaptein
et al., |1985).

Clore et al| developed a hybrid method; first, a roughly accurate structure was com-
puted by an EDMC-based method; then a constrained MD was run to minimize the energy
of the structure (Clore et al., [1986]). The potential energy was computed using an empir-
ical force field such as that found in CHARMM (Brooks et al., [1983) and the MD was

3Leung and Toh| (2009)) believe that the reported RMSD does not agree with the plotted structure and
the correct RMSD should be about 2-3 A.

76



run at room temperature. Conventional MD packages had two major drawbacks: (i) the
exploration of the conformation space was slow, because the MD was run at room tem-
perature, at which proteins do not change conformation drastically; (i) computation of
the empirical force field usually involved long-range interactions and as a result, all the
pair-wise distances needed to be computed rendering MD computationally expensive.

While in MD simulations the trajectory of the molecule is important (for example for
analyzing the folding pathways), in contrast, in protein NMR the objective is the final
conformation and the trajectory is irrelevant as long as the final structure is close to the
native structure. Another major breakthrough was the introduction of simpler and more
practical potential energy functions. |Nilges et al. (1988) made some improvements in
the MD-based protein NMR structure determinatios: () instead of an empirical energy
function, they proposed a simple geometrical energy function based on the NOE restraints
that asymptotically linearly penalized large violations and (ii) they combined simulated
annealing (SA) with MD. Since SA is the cornerstone of most of the modern protein NMR
structure determination techniques, we explore it in detail.

Simulated annealing

Simulated annealing is a heuristic global optimization technique originated from Statis-
tical Mechanics and it mimics the process by which solids attain their minimum energy
conformation. For example, when making glass it is initially heated to high temperatures,
the “melting” phase, and then it is slowly cooled based on an annealing schedule, until it
‘freezes’, i.e., no further change has occurred (Kirkpatrick et al., |1983; Cerny, 1985).

Assume that the state of the protein molecule s is defined as the set of coordinates of
its atoms, {x;}. For each state, an energy value is computed by the energy function E(s)
that represents the objective function to be minimized. If the next possible state is s’ with
energy F(s') = E(s) + AE, then:

Prls’ | s] = 1 if AE<O0
IS exp(—AE/kT) if AE>0

where T is the absolute temperature and kg is the Boltzman constant. The difference
between SA and most other optimization methods, e.g., gradient-based methods, is that
occasionally moves to a higher energy state, with probability exp(—AFE/kgT), which is
controlled by the temperature; this makes escaping from local minima possible in SA. When
the temperature is high, exp(—AE/kgT) is close to one, so that SA can explore most of
the search space without getting stuck in the local minima (coarse optimization). As SA
goes on, the temperature is lowered (cooled down), then exp(—AFE/kgT) becomes closer
to zero, which makes jumping to higher-energy states less likely (fine tuning) (Kirkpatrick
et al., |[1983)).
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Last, being a heuristic method, SA provides no theoretical guarantee on the convergence
speed or on the quality of the final solution, which is how far the final solution is from
the optimal state. |[Johnson et al| evaluated the performance of SA on different NP-hard
problems in a comprehensive study (Johnson et al., 1989, 1991); in some problems SA
outperformed other methods, while in some other problems it was not meritorious.

Simulated annealing by molecular dynamics simulation

SA/MD in Cartesian coordinates space Running simulated annealing by molecular
dynamics simulation was a breakthrough in protein NMR structure determination; these
methods were able to search the massive conformation space without being trapped in one
of the numerous local minima. The XPLOR method (Brunger, 1993; Schwieters et al.
2003, 2006) was one of the first successful and widely-adapted methods that was built
on the molecular dynamics simulation package CHARMM (Brooks et al. [1983)), but with
a significant difference: it was modified to specifically compute and refine the structure
(instead of doing simulation). A coarsely correct structure was calculated by an EDMC-
based method and then refined and fine-tuned by a SA/MD protocol. In practice, the
EDMC-based module was not always meritorious, since the distances randomly sampled
from the D;; € [L;; U;;] range tend to be large, considering the fact that U,;s were usually
large.

SA/MD in the torsion angles space The number of degrees of freedom in the torsion
angles space is nearly 10 times smaller than in Cartesian coordinates space, while be-
ing equivalent under mild assumptions. In the torsion angles space, high-frequency bond
length and angle fluctuations are absent (they are assumed to be fixed); consequently, the
integration time steps are much longer and the MD can be run in higher temperatures.
In MD in Cartesian coordinates space, Newton’s equations of motion are solved in O(n);
while in the torsion angles space, Lagrange equations of motion must be solved, which
requires computing the Hessian matrix (the second derivative of the potential energy with
regard to torsion angles) and requires solving a system of linear equations, which takes
O(t?), where t is the total number of torsion angles.

Molecular dynamics in the torsion angles space or torsion angle dynamics (TAD), be-
came popular after (Jain et al., [1993)) proposed a recursive linear time, O(t), method for
solving Lagrange equations of motions for tree like structures. The TAD method has an
appealing feature: the stereochemical restraints such as bond lengths, angles, and chirali-
ties are automatically satisfied. The torsion angle dynamics algorithm implemented in the
program CYANA (Giintert, 2004) and previously in the program DYANA (Guntert et al.
1997), is one of the fastest and most widely-used methods.
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CYANA uses a complex five-stage simulated annealing protocol: initial minimization
(100 CG steps with close restraints + 100 CG steps with all restraints), high-temperature
phase (N/5 TAD steps at T = 10,000° K), slow cooling (4N/5 TAD steps, reducing
temperature), low-temperature phase with individual hydrogen atoms (100 CG + 200
TAD at T' = 0° K), and final minimization (1000 CG steps) (Giintert, 2004), where CG
stands for conjugate gradient minimization and N is the total number of TAD steps.

3.3 The Proposed Method

We present our proposed method, called “SPROS” (Semidefinite Programming-based Pro-
tein structure determination). We review the necessary background, followed by the de-
scription of techniques used for problem size reduction. Last, we describe the different
steps used in the proposed method.

3.3.1 Background

Cones

Let E be an Euclidean space and K C [E. The set K is called a cone or nonnegative
homogeneous, if for every x € K and a > 0, ax € K. In addition, K is a convex cone, if
for any x1,29 € K and ay, a0 > 0, we have ayx; + aors € K (Boyd and Vandenberghe,
2004). The dual cone of cone K is defined as

K'={yeE: (z,y) >0,Vo e K}.

The dual cone is a cone as well, and is always closed and convex, even if the original cone
is not. A cone K is self-dual if K = K*.

Two important sets of matrices are the set of positive semidefinite and the set of positive
definite matrices:

St'={XeS" v Xv>0,YveR"}
St,={XeS" v Xv>0,YveR", v+#0}.

Note that ST is a self-dual cone, hence, it is closed and convex. Wesay A = Bif A—B € S},

similarly A = B if A — B € 8} _; this is known as the Lowner partial order.
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Faces The convex cone F' C K is a face (Ramana et al., 1997) of the cone K (denoted
F <K) if:
r,yce K, vr+yeF=uzyck.

Moreover, if F'is a face of K and F # K, then F < K.

A Simple facial reduction

Before giving the formal definition of the facial reduction, we start by presenting a simple
linear program whose domain is the nonnegative orthant cone defined as

R}y :={xeR":x;>0,i=1,...,n}.
The linear program is as follows:

minimize 2z, + 29 — Sx3 + 314 (3.8)
subject to x1 + 2o+ a3+ 14 =1
2I1—I2—$3:—1

X1,T2,T3,T4 2 0

Initially, the linear program in (3.8)) may seem to have four unknowns; however, it has only
two unknowns. If we sum the two equality constraints we arrive at:

3v1+ 24 =0, 1,24 > 0= 21 = 24 = 0;
the linear program then simplifies to:

minimize  x9 — 53 (3.9)
subject to o +1x3=1

T, T3 2 0
which is a simpler linear program. Formally, we observe that:
F={zeRi:a/z=0b, Vi} C{x €eR.: 2 =2, =0}

where F is the feasible set of the linear program in (3.8) and {x € R%: 2y = x4 = 0} is
a face of Ri. In general, faces of nonnegative orthant are formed by setting some of the
elements to zero:

{reR}:2;,=0,VieZC lin} AR} .
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Slater’s Condition

We present some background for strong duality. Consider the following optimization prob-
lem in the standard primal form:

minimize  fo(x) (3.10)
subject to  fi(x) <0, i=1,...,m

hl(ﬂ:) 0, 221,,]?

where & € R™. Moreover, assume that the domain D = (", dom(f;) N[(;_, dom(h;) is
nonempty and the optimal value of the optimization problem is p*. Now, consider the dual

problem of (3.10) as:

maximize  g(A,v) (3.11)
subject to A\, >0, i=1,...,m,
where A = [A\i,..., \n]", v = [v1,...,1,)", and the dual function g: R™ x R? — R is
defined as

g\ v) = :};Ielg (fo(az) - Z Nifi(x) + Z Vz-hi(w)) )

Moreover, assume the optimal value of is d*. For the optimization problems in (3.11])
and , note that weak duality, p* > d*, always holds. However, if d* = p*, that is
both the primal and the dual problems attained their optimal values and these values are
the same, the duality gap, p* — d*, is zero and we say that strong duality holds (Boyd and
Vandenberghe, 2004)).

Strong duality does not hold in general, but if the primal form in (3.10]) is convex, that
is:

minimize  fo(x) (3.12)
subject to  fi(x) <0, i=1,...,m
Ax = b,
such that fy,..., f,, are convex, then strong duality usually (but not always) holds.

One simple constraints qualification condition, that guarantees strong duality for convex
optimization problems, is called Slater’s condition or strict feasibility: there exists & €
relint(D) such that:

filx) <0, i=1,...,m, Az = b,
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such a point @ is called strictly feasible. This is because the inequalities are held as strict

inequalities. However, if fi,..., f,, are affine, strict inequality is not required (Boyd and
Vandenberghe, |2004)).

A question arises: what happens if there is no such strictly feasible point available?
barrier methods (also called interior point methods) require a strictly feasible starting
point. If the given starting point is not strictly feasible, they solve the Phase I optimization
problem to find one such point or declare infeasibility if they fail; one example of the Phase
I optimization problem is formulated as:

minimize s (3.13)
subject to  fi(x) <s, i=1,...,m
Ax = b,

where s can be interpreted as a bound on the maximum possible infeasibility of the in-
equalities (Boyd and Vandenberghe, 2004). Let p* be the optimal value of . If p* > 0,
then is infeasible and if p* < 0, then is strictly feasible. It is worthwhile to
note that when p* = 0, this indicates is feasible but is not strictly feasible.

It has been shown that convex problems with convex inequalities and linear equalities
are solved efficiently using barrier methods if a strictly feasible point is available. However,
if the problem is close to the feasibility /infeasibility boundary, solving the problem can
take an extremely long time. If the problem falls exactly on the boundary, i.e., p* = 0,
then solving time is theoretically unbounded (Boyd and Vandenberghe, [2004)).

In some types of convex optimization problems, when the Slater’s condition is not
satisfied, facial reduction can both: (7) reduce the problem size and, more importantly, (iz)
make it strictly feasible and thus efficiently solvable by barrier methods.

Faces of the the semidefinite cone

In the linear programming example in (3.8]) note that, in the nonnegative orthant cone, a
face is formed by setting a subset of elements to zero. Here, we show that a face of the
semidefinite cone is made by setting a subset of eigenvalues to zero. Finding the faces of
the semidefinite cone is called semidefinite facial reduction. Some early studies of faces of
convex cones are done by Barker| (1973)); [Barker and Carlson| (1975); Barker (1977). Later,
Borwein and Wolkowicz (1981a,bllc) introduced facial reduction as a mean for regularization
of convex programming problems.

We review the faces of the cone of semidefinite matrices.

Background For any arbitrary U € R™**, we have (Krislock, [2010):
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1. Y e USLU" if and only if Y > 0 and range(Y) C range(U)

2. If U is full column rank, then Y € US. U" if and only if Y > 0 and range(Y) =
range(U)

These two results are important to defining the faces of 8. If we can find a full column
rank matrix U, such that range(Y) = range(U), then the n x n positive semidefinite
matrix Y can be decomposed into Y = UZU ", for some Z € St .. If t < n, this results in
a significant reduction in the matrix size.

Proposition 1 (Krislock| (2010)) For orthogonal Q = [U V] € R™*", if

F=USU" = {Q [ﬁ 8} Q- BeSi},

then we have
1. F<a8m.
2. F={Y € 8§} :range(Y) C range(U)} = {Y € &} : range(V) C null(Y)}.
3. relint(F) =US, , UT ={Y € 8" : range(Y) = range(U)}.

Moreover, if F' <487 and Y € relint(F), then F = USLUT, where U € R™* is full column
rank and range(U) = range(Y'). It can be seen that the face of the semidefinite cone is
made by setting n — ¢ of the eigenvalues of Y € ST to zero (Krislock], [2010).

Semidefinite programming

Semidefinite optimization or, more commonly, semidefinite programming (SDP), is a class
of convex optimization methods that attracted much attention in the optimization com-
munity and has found numerous applications in different science and engineering fields.
Notably, several diverse convex optimization problems can be formulated as SDPs (Van-
denberghe and Boyd, (1996). While the research on SDP started long ago (Bellman and
Fanl, [1963}; |Craven), (1981} |[Shapiro|, (1985} [Fletcher, [1985; |Allwrightl, (1988}, Wolkowicz, [1981;
Kojima et al., [1997), it was the break-through discovery by Nesterov and Nemirovski| that
made solving SDP problems feasible (Nesterov and Nemirovski, [1988)). They proved that
any convex optimization problem, including SDP problems, can be solved in polynomial
time using the interior point methods (Nesterov and Nemirovskil, 1988|1990, (1991, 1994]).

Current state of the art SDP solvers are based on primal-dual interior point methods,
which are variations of Newton’s method applied to modified KKT equations (Boyd and
Vandenberghe| [2004), specifically, as in the widely-used HKM method (Helmberg et al.,
1996; Kojima et al.| [1997; Monteiro, [1997).
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SDP Formulation In the primal form, we formulate the SDP problem as:

minimize (C, K) (3.14)
subject to A(K)=1>
K eS8}

where C' € 8™, b € R™, and A: 8" — R™ is a linear map defined as:

<A17K>
<A27K>

A(K) = A €S i=1,...,m. (3.15)

?

(Am, K)
The adjoint linear map of A is A*: R™ — 8" given by
i=1

which can be used to define the dual form of (3.14) as:

maximize (b, y) (3.16)
subject to Q =A*(y) —C
Qe St

SDP complexity The complexity of solving SDP problems is dominated by three fac-
tors: (7) the positive semidefinite (PSD) matrix size, n; (i¢) the number of constraints, m;
and (iii) the structure (sparse, dense, block diagonal, low rank, among others) of the con-
straint matrices, {A4;}. When analyzing the complexity of the SDP solvers, typically the
complexity per iteration is considered, because the number of iterations grows slowly with
the problem size for a given accuracy (Borchers and Young, 2007). In practical problems,
the number of iterations is usually less than fifty and rarely more than one hundred .

In SDP solvers based on the HKM method, such as SeDuMi (Sturml) 1999)), CSDP
(Borchers, 1999)), and SDPT3 (Tiitiincii et all, 2003)), the complexity is O(mn?) + O(m?n?)
O(m3) + ©(n?) per iteration. The most complex step is computing the dense positive
semidefinite Schur compliment matrix (Borchers and Young, [2007):

0 = [AQ'AK), AQ'AK),..., AQ'A,K)], Oes8m (3.17)

Finding Q! takes ©(n?®). Moreover, for dense and high-rank {A;} computing O in (3.17))
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takes O(mn® + m?n?), while for sparse matrices with O(1) nonzero entries or low-rank
{A;}, computing O takes O(mn?+m?n). After O is formed, its factorization takes ©(m?),
because it is dense.

Slater’s condition for SDP For the SDP in (3.14]) the Slater’s condition can be stated
as (Ramana et al., 1997):

JK € S, such that A(K) = b and K > 0.

We use K = 0 to show the analogy with strict feasibility. We see that K € ST, so that
K must be full-rank. If Slater’s condition is not satisfied, there is no guarantee that the
HKM-based SDP solvers will succeed.

A face of the semidefinite cone Here, we present and solve a problem called Two
DissoinT CLIQUES that is an example of semidefinite facial reduction defined as follows:
Assume that for n unknown points, @1, ..., x, € R", instead of having the coordinates, we
posses only their partial (incomplete) Euclidean distance matrix:

ni n2

Dy - ng _
|: ‘ D2:|, D, e&™ (=1,2,

D="

n2

where only the block diagonal elements are known (and shown). Imagine a graph G =
(V, E), whose nodes are indices of the points, V = {1,...,n}, and its edge set is defined as

1,7) € £ if D;; is specified.
(4, ) J

It is straightforward to see that GG has two disjoint cliques: C; and Cs such that C;UCy = 1:n
and C; N Cy = (). The first ny points are in C; = {1,...,n1}, and the last ny points are in
Co={n—ny+1,...,n}. Moreover, for £ = 1,2, all of elements of D, = D[C,| are known.
We now show how to compute the face of {K € St : K(K[C/]) = Dy, € =1,2}.

As noted, formulating this problem in terms of the Gram matrix, K € S, eases

handling. For ¢ = 1,2, let r, = embdim(D;); since we have D,, we can use MDS to find
(0) (0)

the corresponding embeddings, P, = [p;’, ..., Dn/ ], pz(g) € R"™ such that:
I — p®|? = (D), VirjeCr, £=1,2.

Let X = [X; X5] such that X; = [z,...,@,,| and Xo = [®y_pnyt1,...,%,], Where
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x; € R", i€ {l,...,n}. Since X; and X are rigid patches of points, we write:

Xe=RP+t1), (=12, (3.18)
where Ry, € R™*" is a rotation/reflection matrix, such that R R, = I, and ¢, € R" is the
translation vector (Khajehpour et al. 2011). Transposing (3.18) and rewriting it we have

R}

X =P'R] + 1wt;r = [PZT 1n,j [t}

:| :nsea 621727

where Y, € R™*"t+! is a known and S, € R™T'*" is an unknown matrix. Now, we can

rewrite X | as:
xT= [N = P O 5] —ys
- X2T 10 Y| |Se| ’

where again Y € R™* is a known and S € R¥*" is an unknown matrix with k = r; +7y+2.
Now, we can form the Gram matrix:

G=X'X=Y2Y", Z=(SST)eS".

Finally, since it is likely that Y'Y # I, to satisfy the requirements of Proposition , we
need to make columns of Y orthogonal, achieved by computing the QR decomposition of

Y as:
R

0
Let @ = [U V}, then the Gram matrix is defined as

Y =[U V] { 1 U'U=1I, V'V=1I,,, ReRH™,

B 0
G:YZYT:Q[O 0] Q'

where B = (RZR") € S_Iﬁ. Since all requirements of Proposition [1| have been met, we see
that F = USYU" is a face of St If k < n, this result indicates that the set of all possible
Gram matrices for D is a small face of the cone of semidefinite matrices, and is termed
semidefinite facial reduction.

The same facial reduction can be achieved by finding a U such that range(U) =
range(G) (Krislock, [2010; Krislock and Wolkowicz, [2010)).
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3.3.2 Problem Formulation

The protein structure determination problem is formulated as an instance of the EDMC
problem; and due to many advantages of working on the Gram matrix, the problem is
solved using semidefinite programming.

In the EDMC problem, a partial distance partial EDM D € £" is given; only a subset of
elements are known and there are some upper and /or lower bounds on some other elements.
In the protein NMR structure determination, the ultimate objective is to complete the
missing elements of D such that (i) it is a valid EDM, (i) embdim(D) = 3, because
ultimately, we are looking for the actual coordinates of atoms, @, ..., x, € R3, and (i)
it satisfies the corresponding upper and lower bounds.

We consider the protein structure determination formulation in (3.1)); noting that this
optimization must be solely reformulated in terms of distances between atoms, D;; =
(e;—e;)" K(e;—e;), where K is the corresponding Gram matrix. The general formulation

1S:

minimize (C, K) (3.19)
subject to (A, K) = E;j, (i,5) € &€

(Aij, K) < Uy, (1,5) €U

(Aij, K) > Lij, (i,5) € L

Ki1,=0

rank(K) =3

K eSSt

where A;; = (e;—e;)(e;—e;)" and £, U, and L are the set of equality constraints and upper
and lower bounds, respectively. Moreover, the centering constraint K1,, = 0, ensures that
the embedding of K is zero-mean. That is, if K = XX, X = [zy,...,x,], ; € RP, then
> x; = 0. The optimization problem in (3.19)) can also be cast as an instance of feasibility
problem, with the goal being to find a K € S that satisfies all of the constraints.

Rank constraint is NP-hard The optimization problem in is not convex due to
the rank constraint (rank(K) = 3). In fact, adding the rank constraint makes this problem
NP-complete. For example, Saxe| (1979) showed that the graph embeddability problem (a
problem similar to EDMC), with integer edge weights in one and two dimensions, is NP-
complete. They proved the NP-completeness by reduction from the PARTITION problem,
which is one of the 21 fundamental NP-complete problems introduced by [Karp (1972).

Another explanation can be given by reducing the MAX-CUT problem, which, again,
is one of the most famous NP-complete problems (Karp|, |1972)). Let G = (V, ) be a graph
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with the corresponding edge weights W such that W;; = 0if (4,7) ¢ £. A cut is defined as
a partitioning of the n = |V| nodes into two disjoint sets, V; and Vo = V \ V;. The weight
of the cut, w, is defined as the sum of the weights of the edges crossing the cut, i.e.,:

We = Z VVZ]

1€V1,JEV:

The MAX-CuUT problem is defined as follows: Given G = (V,€) and W, determine
if there is a cut such that w. > k7 We can solve MAX-CUT by solving the following
optimization problem:

. 1
maximize - Z Wi;(1 — z;x5) (3.20)
subject to x; € {-1,1}, i=1,...,n,
where z;,7 = 1,...,n are indicator variables such that x; = 1 and x; = —1 indicate that

node i belongs to V; and Vs, respectively. After solving the optimization problem in (3.20)
and finding its optimal value w*, we can check whether £ > w* or not, in polynomial time.

In the matrix form, if we define = [z1,...,z,] and the graph Laplacian as L :=
Diag(WW1,) — W, the optimization problem in (3.20)) can be rewritten as

maximize x' Lx

subject to xf =1, +1=1,...,n,

which can be formulated as an instance of the SDP problem as

minimize  — (L, K)

subject to K; =1, i=1,...,n
rank(K) =1
K e §Y,

because rank(K) =1 and K € S8}, imply that K = za' or K;; = z,z;, for some x € R".
Last, it has been shown that even the rank minimization problem is NP-hard (Vanden-
berghe and Boyd, 1996)).

Rank constraint relaxation The rank-constraint EDMC problem is non-convex and
NP-hard. As a result, the rank constraint is relaxed, producing a convex optimization
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problem as follows:

minimize (C, K) (3.21)
subject to (A, K) = Eyj, (i,j) € €

<Aij,K> S Uij7 (ZJ) cU

(Aij, K) > Lij, (i,5) € L

K € 8%,

where the rank constraint is removed. To find X, compute the eigendecomposition of K
as:
K=VAV', VeR”™ V'V=1I, AeS,,,

where A = Diag(\y,..., ;) is a diagonal matrix holding the eigenvalues of K, such that
A1 > -+ >\, > 0. The embedding is found as X = AY2VT.

Since the rank constraint is removed, there is no guarantee that the embedding dimen-
sion, p, is the same as the required embedding dimension, r. It is likely that p > r, in
which case we need to project the embedding, X, onto the R". We discuss this process in
the post-processing section (page .

Rank reduction heuristics Rank of the Gram matrix determines the embedding di-
mension. Moreover, as we will demonstrate the projection error depends on the eigen-
values of the Gram matrix. In positive semidefinite matrices, all of the eigenvalues are
non-negative; also note that for any square matrix, its trace is equal to the sum of its
eigenvalues. Therefore, for a Gram matrix we have:

p
trace(K) =» X = |Al;, K €87,

=1

where for € R, ||z|j; = >, |z;] is its ¢;-norm, rank(K) = p and XA = [A,...,\)]" €
RP? is a vector holding eigenvalues of K. The fact that minimizing the ¢;-norm tends to find
sparse solutions, is a widely known and used heuristic (Boyd and Vandenberghe, 2004).
Since trace(K) is the ¢;-norm of its eigenvalues, it appears that minimizing trace(K)
produces a sparse A vector, where most of its elements are zero, i.e., K is low-rank. This
is also corroborated by the nuclear norm rank reduction heuristic that has received a
great deal of attention in the past few years, especially for solving the matriz completion
problem (Fazel, 2002; Recht et al., |2008; |Candes and Recht} 2009; Recht et al., 2010;
Candes and Plan|, 2010; |Ames and Vavasis|, 2011)).
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For a matrix A € R™*", the nuclear norm is defined as:

P
Il =)o,
i=1

where rank(A) = p and o; > 0 is the i-th largest singular value of A.We see that for
K € 87, we have | K|, = > | \; = trace(K). Since minimizing the nuclear norm tends
to produce low-rank solutions, minimizing trace(K’) is supposed to minimize rank(K)
and consequently, the embedding dimension. However, it is notable that, in the EDMC
problem, it has the exact opposite effect and, produces high-rank solutions instead, for
example, see (Goring et al) [2011). This is an example that demonstrates that heuristic
approaches do not work in every situation. We provide an informal explanation for this
observation in the following.

The sum of all of elements of the EDM D can be written as:

S Dy =1"D1
= 1" (diag(K)1" — 2K + 1diag(K)")1
= 2(1"diag(K))(1"1)
= 2n trace(K),

where we used the fact that 1T K1 = 0, because the Gram matrix is centered, i.e., K1 = 0.
So, trace(K) is linearly proportional to the total distances between all points. However,
K;; is the distance of x; from the origin and trace(K) is the sum of distances of all points
from the origin. Therefore, minimizing the trace is equivalent to pushing all the points
towards the origin and forcing them to be as close to each other as possible. Imagine
that all points lie on a plane in R? in the ideal solution; minimizing the trace pushes
all of the points close together, analogous to crumpling a piece of paper and making it
three-dimensional.

It is surprising that the counter-intuitive idea of maximizing trace(K), proved to be
one of the most effective yet simplest heuristic techniques for rank reduction. [Weinberger
and Saul (2004) proposed maximizing the trace of the Gram matrix for unfolding manifolds
as an effective method for dimensionality reduction. Their proposed method is called Max-
imum Variance Unfolding (MVU), because the eigenvalues of the centered Gram matrix
and the covariance matriz of the points, C' € S¥, are essentially the same:

K=X"X, C=XX", given X1=0,

Therefore, maximizing the trace is equivalent to maximizing the variance of the data.
MVU received much attention and originated, or influenced, several similar approaches
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(Weinberger and Saul, [2006; [Shaw and Jebara, 2007; Weinberger et al., 2007; Shaw and
Jebara, [2009)). It was also successfully applied to the sensor network localization (Biswas
et al., [2006) and molecular conformation (Biswas et al., 2008; |Leung and Toh| 2009)) prob-
lems.

An upper bound on the diameter of the structure For a set of points, the diameter
is defined as the distance between farthest points in the set. To find an upper bound for
the diameter and the sum of all distances, we reuse the idea of building a graph for the
EDMC problem: Imagine a graph G = (V,H), whose nodes are indices of the points,
V ={1,...,n}, and its edge set is defined as:

(i,7) € H if D;j is specified, or upper—bounded.

Since we want to build an upper bound graph, ignoring the lower bounds, we further
assume that the weight associated for the edge (i, j) is:

VE; it (i,j) €€
L — \Y; Uij if (Z7j>€u
Wi = 0 if i=j

o0 0. W.

Note that G must be connected; otherwise, we can divide the problem into two or more
smaller problems (connected components of G). Let A € 8" be the matrix containing the
squared geodesic distances between nodes, such that A;; contains the squared weight of
the path with least total weight from node 7 to j, which can be computed using Dijkstra’s
algorithm for example. Due to the triangle inequality, for any two points we have A;; > D;;,
where D € £" is the actual EDM. We conclude that d,,.x = max(A) is an upper bound
on the diameter of the set of nodes in G. Moreover, if 6 = 1/n?Y" A;; is the average of A,
then for any feasible solution we have:

Z D;; = 2ntrace(K) < n?§ = trace(K) < gg

2,j=1

In addition, since the distance of any point from the origin is less than the diameter, we
have Kj; < dpax, 2 =1,...,n.

Upper bounds

NOE-derived upper bounds are the most important source of structural information in the
protein NMR. From the NOE cross peak assignments, hydrogen bonds, and disulfide and
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salt bridges, we have upper bounds of this form:
dij = ||zi — ;| < ugj.

These upper bounds can easily be reformulated as constraints in (3.19)) in terms of the
Gram matrix:

Dij == <A”,K> S Uij = ’LLZQJ
However, these upper bounds could be inaccurate or even completely incorrect. Therefore,
we need to allow violations, but must penalize them. In SDP solvers, inequalities are

implemented by using some positive unpenalized slacks:
(Aij, K) + & = Uij, & € Ry,

these slacks are unpenalized because they do not appear in the objective function. We add
penalized slacks and rewrite the upper bounds as:

(Ai, K) + & = Uij + Gij,  &ij» Gij € Ry

the objective function is changed to (C, K) + v >_,; wi;Cij, where v > 0 is the scaling
factor. Since we use a linear penalty function for upper bound violations, incorrect bounds
cannot “lock” the structure (preventing correct folding), or worse, make the optimization
problem infeasible. In addition, looking closely at the penalized slacks we see that (;; =
max(D;; — U;;,0).

Let ¢ € R be a vector containing all of the slacks. Since (;; € Ry, assuming that all
the weights are the same, i.e., w;; = w, we have

w Gy =wl[¢]-

In our problem, ¢;; = 0 implies no violation; consequently, SPROS tends to find a solution
that violates a minimum number of upper bounds. In contrast, minimizing the ¢s-norm,
that is 3. (% = |IC[]?, tends to find dense solutions. If only a few upper bounds are
incorrect and the />-norm of violations are minimized, to compensate for the large penalties
imposed by the wrong bounds, many correct bounds will be slightly violated. If the number
of incorrect bounds is relatively large, they can completely lock the structure and prevent
correct folding.
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Torsion Angle Restraints

Another source of structural information in protein NMR is the set of torsion angle re-
straints defined as @™ = [gax  gmax]T gmin — [gmin  gmin] T gych that 0" < 0; <
o ¢ € T. In EDMC, we only can constrain the distances between atoms meaning that
the sign of the torsion angle cannot be detected. That is, given four atoms with torsion
angle 6, if we find the reflection of the atoms, their distance matrix does not change while
their torsion angle becomes —f. However, we can constrain the magnitude of the torsion
angles.

In the CORELS method (Sussman, 1985, the distance between the first and the fourth
atom in a dihedral angle is used for fixing the torsion angles (see Fig. . We extend
this idea and define upper and lower bounds on the torsion angles based on the distance
between the first and the fourth atom in the torsion angle. For constraining the ® angle
(made of C;_1, N;, CA;, and C;), we constrain ||C; — C;_1]|. Similarly, for constraining the
U angle (made of N;, CA;, C;, and N;;1), we constrain |[N; — N;;1||. The ||C; — C;—|| VS.
® and the |[N; — N;_1]| VS. ¥ curves are depicted in Figs. and [3.9] respectively; it can
be seen that both are even functions.

Given a range for ® as ®,,;, = —120° and P,,,, = —60°, we observe the curve and see
that the distances corresponding to these two values are 3.5 A and 3 A, respectively, as
depicted in Fig. In general, if 0, X 0. > 0, i.e., both of the bounds are on the
same half plane, we have one upper and one lower bound for each torsion angle restraint.
If not, we only have one upper bound. To facilitate computing the bounds, we computed
very close approximations for the actual distance curves (see Figs. and :

|C; — Ci_1]| =~ 3.221 — 0.4866 cos(1.044®), —7 < P < 4,
N — Ny || & 3.157 — 0.5022 cos(1.046%), —71 < W < -+,

Similar to the upper bounds, these constraints are not always accurate. They might
be slightly inaccurate or, in some cases, completely incorrect. Therefore, we add slacks for
both the upper and lower bounds, but we penalize them more severely, because their range
of violations is much smaller than those found NOE upper bounds (1 A VS. 15-25 A).

Stereochemical constraints

Proteins exhibit particular structural features that make them different from other types
of molecules. Therefore, atoms in the protein molecule are not analogous to sensors in
the sensor network localization (SNL) problem. No domain knowledge exists in SNL, any
embedding of sensors that satisfies the given spatial constraints is acceptable and valid,
which is not the case for proteins.
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Figure 3.8: The blue curve is the actual distance, computed for two consecutive alanine
residues; the red line is the approximation that is almost identical to the actual curve.

Also the corresponding lower and upper distance bounds are shown for ®,,;, = —120° and
D = —60°.

Recall that, the set of stereochemical constraints are added to the protein structure
determination problem to enforce the validity of the protein. These constraints include:
bond lengths and angles, planarity of coplanar atoms, steric constraints, and chirality
constraints.

Bonds length and angle constraints are written in terms of the distance between an atom
and its immediate neighbor and an atom and its second nearest neighbor, respectively (see
Fig. |3.6). For preserving the planarity of the coplanar atoms, three bonded non-collinear
atoms from the plane are randomly chosen and the distances between all other atoms in
the plane and the selected atoms are fixed. That is, the plane is treated as if it is a rigid
clique.

Steric constraints can be written as lower bounds on the distances between any two non-
bonded atoms, which are not in the same clique. However, chirality constraints cannot be
formulated in terms of the distances between atoms. Therefore, the chiralities are verified
after the EDMC problem is solved and corrections are made in the post-processing stage.
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Figure 3.9: The blue curve is the actual distance, computed for two consecutive alanine
residues; the red line is the approximation that is almost identical to the actual curve.

Preliminary Problem Formulation

At this point, all the constraints are formed and we can solve the EDMC problem in (3.21)).
The constraints are:

1. Equality constraints are the union of bond lengths (B), bond angles (A), and pla-
narity (P) equality constraints:

E=EgUE4UEp.

2. Upper bounds are the union of NOE-derived (IV), hydrogen bonds (H), disulfide and
salt bridges (D), and torsion angle (T") upper bounds:

U=UyUUg UUp UlUr.

3. Lower bounds are the union of steric or van der Waals (V) and torsion angle lower
bounds:

L=LyVULrp.

95



After forming these sets, we ensure that ENU = E N L = (. Tt is possible that the set
of upper and lower bounds are not disjoint, for example, when van der Waals constraints
are added.

The preliminary problem formulation is given by:

minimize  — (I, K) + >, Wi;Gj (3.22)
subject to  (A;;, K) = Eyj, (i,5) € €

(Aij, K) + & = Uij + Gy, (4,5) €U

(Aij, K) + Gij = Lij + &j, (i,)) € £

Gij» &ij € Ry, (4,5) e LUU

K1,=0

K e S8Y,

The rank reduction heuristic term, —v(I, K),v > 0, in the objective function, produces
lower-rank solutions. In addition, the total number of constraints is m = |E| + |U| + |L].

Solving the optimization problem in is challenging and the reason is two fold:
(1) for small to medium size proteins, the number of atoms, n, is 1,000-3,500. Current
HKM-based SDP solvers cannot solve problems with n > 2, 000 efficiently; and (ii) the
optimization problem in does not satisfy Slater’s condition. As we have shown in
the EDMC example, with just two cliques (see page , whenever there are cliques in the
EDM, the Gram matrix is rank deficient; that is rank(K) < n. Yet, it is notable that
proteins are practically made of cliques, as we will discuss.

To overcome the limitations of the SDP solvers, (Biswas et al. [2008) proposed di-
viding the protein molecule into smaller overlapping sub-structures, solving the smaller
and tractable problem, and then stitching back together the solved sub-structures. Later,
(Leung and Toh| 2009)) improved upon this idea by presenting more efficient dividing and
stitching techniques. Both of these approaches treat bond lengths and bond angles unrealis-
tically as loose lower and upper bounds, and consequently, they do not face rank deficiency
of the Gram matrix. Moreover, there is no guarantee that the non-convex stitching method
can find the optimal alignment of the sub-structures.

3.3.3 Cliques in a Protein Molecule

A protein molecule can be divided into several cliques. For example, peptide planes, or
aromatic rings, are 2D cliques or tetrahedral carbons form 3D cliques. A protein with ¢
amino acid residues has ¢ 4+ 1 planes in the backbone: ¢ — 1 full peptide planes and two
half-planes at the N- and C-terminals:
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Py = {N;,HN;, CA, },
P; ={CA;,C;,0;,Niy1, HN; 1, CA4 ), 1 <0<,
Py = {CA., Cp, Oy}

For proline residues, HN is simply replaced with CD from their side chains.

Each amino acid has a different side chain with a different structure; therefore, the
number of cliques in each side chain varies (see Table for the number of cliques in each
amino acids side chain). We assume that the i-th residue, r;, has s; cliques in its side chain,

denoted by Sl-(l), o ,Si(si) . For all amino acids (except glycine and proline), the first side
chain clique is formed by the tetrahedral carbon CA:

SV = {N;,CA; HA,; CB;, C;},
which intersects with P;_; and P; in two atoms:

SYnP, = {N;, CA;},

(2

SV NP, ={CA;,C).

(2

Side chain cliques for all twenty amino acids are listed in Table |3.1} see Figs. and
[3.11] for atom nomenclature.

There is a total of g = ¢ + 1 + Zle s; cliques in the distance matrix of any protein.
To simplify, let C; = P;_y, 1 <i < L+ 1, and Cpop = S, Crpp =SSP, ..., C, = 8. In
addition, since for cliques D[C,] is entirely known, for i = 0,..., ¢, let r; = embdim(DI[C;]).
The following properties hold:

1. P,NPy =0, given |i — | > 1.

2. PiNSY =0, given i #1i,i + 1.
3. 89 ﬂSZ-(/j/) = (), given ¢’ # i.

4. |C;| > ri + 1.

5.3 < |Ci| < 16.

6. Vi, ', |C; N Cy| < 2.

7. Ai such that Vi’ # i, C;NCy = ).
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Table 3.1: Cliques in the side chains of amino acids. If S®) is not listed, it is the same as
Ala; if S® 2 <4 < s (s is the number of cliques in the side chain) is not listed, it is the
same as Lys. 2D cliques are marked by an ’x’.

AA s Side Chain Cliques

Ala 2 S ={N,CA,HA,CB,C}
S® = {CA,CB, OB, HB1, HB2, HB3}

Arg 5  S®W ={CG,CD,HD2,HD3,QD, NE}
S®) = {CD, CE,HE, CZ,NH1, HH11, HH12}x

Asn 3 SO ={CB,CG,0D1,ND2,HD21,HD22, QD2}*
Asp 3 SB)={CB,CG,0D1,0D2}*

Cys 3  S® ={CA,CB,HB2,HB3,QB,SG}
S®) = {CB,SG,HG}
Glu 4 S%W={CG,CD,OEl, OE2}*
Gln 4  S%W={CG,CD,OEl,NE2, HE21, HE22, QE2}x
Gly 1  SM ={N,CA HA2 HA3,QA,C}
His 1  S® ={CB,CG,NDI1,HD1,CD2,HD2, CE1,HE1, NE2}*
e 5 S® ={CA, CB,HB,CCl,CGC2}

SB) = {CB, CG2,HG21,HG22, HG23, QG2}
S® = {CB,CG1,HG12,HG13,QG1,CD1}
S®) = {CG1,CD1,HD11,HD12, HD13, QD1}

Lew 5 SG ={CB,CG,HG,CD1,CD2,QQD}
SW = {CG,CD1,HD11,HD12,HD13,QD1}
S®) = {CG, CD2,HD21, HD22, HD23, QD2}

Lys 6  S® ={CA,CB,HB2,HB3,QB, CG}
S®) = {CB,CG,HG2,HG3,QG, CD}
S®W = {CG,CD,HD2, HD3, QD, CE}
S®) = {CD, CE, HE2, HE3, QE, NZ}
S = {CE,NZ,HZ1,HZ2, HZ3, QZ}*

Met 5  S® ={CB,CG,HG2,HG3,QG,SD}
S®W = {CG,SD,CE}*
S®) = {SD, CE, HE1, HE2, HE3, QE}

Phe 3 SO ={CB,CG,CDI1,HDI,CEl, HE1, CZ, HZ, CE2, HE2, CD2, HD2, QD, QE, QR }*
Pro 1 S ={N,CD,CA, HA, CB,HB2, HB3, QB, CG,HG2, HG3,QG, HD2, HD3, QD, C}
Ser 3 SG) = {CB,0G,HG}*

Thr 4  S8® = {CA,CB,HB,0G1,CG2}

SG) = {CB,0G1,HG1}*

S®W = {CB, CG2,HG21,HG22, HG23, QG2}
Tp 3  S8® ={CB,CG,CD1,HD1,CD2, CE2, CE3, HE3, NE1, HE1, CZ2, HZ2, CZ3, HZ3, CH2, HH2}
Tyr 4  S®) ={CB,CG,CDI1,HDI,CEl, HE1, CE2, HE2, CD2, HD2, CZ, OH, QD, QE, QR }

S®W = {CZ,OH, HH}«
Val 4  S® ={CA,CB,HB,CG1,CG2,QQG}

SG) = {CB,CG1,HG11,HG12,HG13,QG1}

S®W = {CB, CG2,HG21,HG22, HG23, QG2}
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Figure 3.10: Side chains of amino acids (part I).
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His Gln
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Figure 3.11: Side chains of amino acids (part II).
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. If Il = {Z, : Cl M Ci/ 75 @}, then VZ, |Iz| S 4.
9. ngl Cl = 1:n.

It is clear that the protein molecule is entirely made up of cliques that if not treated
properly, can cause problems (Slater’s condition) and make solving the corresponding
EDMC problem challenging.

Simplifying Side chains

In this section, considering the nature of the protein NMR problem, we propose a side-chain
simplification scheme.

Pseudo-atoms The hydrogens in the methyl groups cannot be uniquely assigned; there-
fore, upper bounds involving these hydrogens are ambiguous (this is different from the
ambiguity in assigning NOE peaks). To overcome this issue, pseudo-atoms are intro-
duced (Gintert, 1998)). They are called pseudo-atoms, because they do not really exist,
rather they are virtual entities put there to facilitate handling ambiguous constraints. For
example, consider the methyl group in the side chain of alanine depicted in Fig. [3.12} the
pseudo atom is placed at the centroid of the hydrogens, along the CA-CB bond.

Given an ambiguous constraint between one of the hydrogens and atom A, by using
the triangle inequality, we modify the constraint as follows:

|HBz — Al < b, z € {1,2,3} = |QB — A| < b+ ||HBz — QB

where |[HBz — QBJ| is the same for z = 1,2,3. Pseudo-atoms are named corresponding
to the hydrogens they represent; only H is changed to Q and the rightmost number is
dropped. For example, in leucine, QD1 represents HD11, HD12, and HD13.

In addition to hydrogens in the methyl group, the hydrogens in the methylene groups,
e.g., HB2 and HB3 in serine (see Fig. , are some times ambiguously assigned. A
pseudo-atom is placed at the center of the line connecting the two hydrogens. Generally,
the need for adding pseudo-atoms arises when there is symmetry in hydrogens. Asparagine,
glutamine, and lysine each have one pseduo-atom in their side chain amino groups. More-
over, glycine has a pseudo-atom between its HA2 and HA3.

Leucine and valine have two similar and interesting pseudo-atoms: leucine has a pseudo-
atoms, called QQD, placed between its CD1 and CD2 atoms and valine has a pseudo-atom
placed between its CG1 and CG2 atoms, called QQG. These two pseudo-atoms are used
if the pro-R and pro-S methyl groups are not assigned.
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Figure 3.12: The pseudo-atom QB is shown at the centroid of the hydrogens, collinear with
the CA-CB bond.

Furthermore, tyrosine and phenylalanine have a pseudo-atom, called QR, at the center
of their phenolic rings. In addition, they have two more pseudo atoms, QD and QE, which
are used if the hydrogens in the ring are not uniquely assigned.

Side chain simplification scheme Many hydrogens do not play an important role in
structure prediction. For example, in methyl groups the C—H bond length is approximately
1.08 A, while the van der Waals radii of carbon and hydrogen are 1.6 A and 1.0 A, respec-
tively. This means that more than 75% of the volume of the hydrogen is in the carbon. In
fact, hydrogens can be viewed as small bumps on the surfaces of larger atoms. This is why,
in most of the protein structure determination programs, such as Cyana (Guntert], 2004]),
the hydrogens are discarded in the early stages of the program and are later on added.

We adapt this idea to our model of protein as a set of rigid cliques, we only discard
hydrogens if they make our problem smaller. Note that we do not omit all the hydrogens.
For example, the phenolic ring of tyrosine is a large two-dimensional clique and omitting
the hydrogens in the ring does not proivde simplification. Omitting the hydroxyl hydrogen
in tyrosine, however, removes S®) = {CZ, OH, HH} from its side chain cliques.

In the side chain simplification process, we temporarily discard (i) all of the methyl
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hydrogens, (i7) all of the methylene hydrogens, (iii) hydroxyl hydrogens of tyrosine and
serine, (iv) amino hydrogens of arginine and threonine, and (v) sulfhydryl hydrogen of
cysteine. This simplification results in a significant reduction in the problem size: the
average number of side chain cliques is reduced from 3.6 to 2.7, but more importantly,
the average number of three-dimensional cliques is reduced from 3.0 to 1.3, see Table (3.3
(page . The simplified side chain cliques are listed in Table . After the EDMC
problem is solved, the omitted hydrogen atoms are put back in the protein and are present
in the post-processing stage.

3.3.4 Computing the Face of Protein Molecules

Previously, we modeled the protein as a set of rigid intersecting cliques, similar to the core
idea in torsion angle dynamics. We showed how to compute the face of a Gram matrix that
contains two disjoint cliques (see page . While extending that method to intersecting
cliques, may be intuitive, it poses challenges. Therefore, we follow a different path, that
proposed by (Krislock and Wolkowicz, |2010)).

The face of a cingle clique

Here, we solve the SINGLE CLIQUE problem, which is defined as follows: Let D € £" be a
partial EDM, and G = (V, ) be its corresponding graph of specified distances. Suppose
the first ny points form a clique in G, such that for C; = {1,...,ny}, all distances are
known. That is, D; = D[Cy], is completely specified. Moreover, let 1 = embdim(D;).
We now show how to compute the face of the {K € 8} : K(K[Ci]) = D;}.

This is a simpler version of the Two DisJOINT CLIQUES problem; however, we solve
the problem using a different approach, beginning by stating the following theorem:

Theorem 4 (Krislock (2010)) In the SINGLE CLIQUE problem, let U, € R (—mitritl)
be defined as follows:

e let Vi € R"*™ be a full column rank matriz such that range(V;) = range(K'(D,));

o let Uy := [V} 1] € Rmxnt,

ri+1 n—nmq
- [Ul 0

o let U := 0 It

:| c Rnx (n—n14r1+1) )

n—ni
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Table 3.2: Cliques in the simplified side chains of amino acids. If S® 2 < i < & (s is
the number of cliques in the simplified side chain) is not listed, it is the same as Lys. 2D
cliques are marked by an "x’.

AA. & Side Chain Cliques
Ala 1 S = {N,CA,HA,CB,QB,C}
Arg 5 SW={CG,CD,NE}x
S®) = {CD, CE, HE, CZ,NH1, HH11, HH12}x
Asn 3 S®) = {CB, CG,0D1,ND2, HD21, HD22, QD2}x
Asp 3 S®) = {CB, CG,0D1, 0D2}x
Cys 2 S® = {CA,CB,SG}x
Glu 4  S¥W={CG,CD,OEl, OE2}x*
Gln 4 S® = {CG, CD, OE1,NE2, HE21, HE22, QE2}*
Gly 1 SM = {N,CA,HA2,HA3,QA, C}
His 3 S®) = {CB,CG,ND1,HD1,CD2, HD2, CE1, HE1, NE2}«
e 3 S® = {CA,CB,HB, CG1,CG2,QG2}
SG) = {CB,CG1,CD1, QD1 }x
Leu 3 SG) = {CB, CG,HG,CD1, CD2,QD1,QD2,QQD}
Lys 5 SM = {N,CA,HA,CB,C}
S® = {CA,CB,CGC}*
SG) = {CB,CG,CD}«
SW = {CG,CD,CE}*
S®) = {CD, CE,NZ, QZ}*
Met 4 S®) = {CB, CG,SD}*
S® = {CG,SD, CE QE}*
Phe 3 SG) = {CB, CG,CD1,HD1, CE1,HE1, CZ, HZ, CE2, HE2, CD2, HD2, QD, QE, QR }*
Pro 1 SM = {N,CD, CA,HA, CB, HB2, HB3, QB, CG, HG2, HG3, QG, HD2, HD3, QD, C}
Ser 2 S® = {CA,CB, OG}«
Thr 2 S® = {CA,CB,HB, 0G1,CG2,QG2}
Trp 3 S®) = {CB, CG, CD1,HD1, CD2, CE2, CE3, HE3,NE1, HE1, CZ2, HZ2, CZ3, HZ3, CH2, HH2}*
Tyr 3 S®) = {CB, CG, CD1,HD1, CE1, HE1, CE2, HE2, CD2, HD2, CZ, OH, QD, QE, QR }
Val 2 S® = {CA,CB, HB, CG1,CG2,QC1,QG2,QQG}
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Then U has full column rank, 1 € range(U), and
face{K € 8" : K(K[C,]) = D[C,]} = UST ™ +n+yT,
where K is the Gram matrix corresponding to D.
We give an informal proof for Theorem . Let Gy = Ki(D,) € 8 NS} that is,

let G be the centered Gram matrix corresponding to D;. In general, Gram matrices are
not centered; however, we can formulate K; = K|C;] using the centered Gram matrix as

(see (B.6)):

K, =G, +D;i(v), for some v € R™,

where, as a reminder Dy(v) := vl + 1,v". Since range(V;) = range(G;), we can
conclude that:

range(K,) C range([G; 1]) = range([V; 1]) = range(U),
and, consequently, we see that (Krislock, 2010, Lemmas 2.14 and 4.2):
face{K,} < U,SH'U;.

This indicates that the K has a face, in which case, the entire Gram matrix K has also a
face, defined as (Krislockl 2010, Lemma 4.3):

face{K € 8" : K(K[C]) = D[C,]} <USIU ",
where k =n — ny +r; + 1. The rank of any feasible Gram matrix is reduced from n to k.

If ny > ry, this increases the speed for solving an EDMC problem, for example.

Computing the V matrix In Theorem[d] it is assumed that such a V; is given. One way
to obtain such a matrix is to use the idea mentioned in the Two D1sJOINT CLIQUES (see
page . We must find the low-dimensional embedding of D|[C;], we do so by computing
the eigendecomposition of KT(D;) as:

KI(D[Ci]) = ViA V)T, Vi e R™ A € ST
It can be seen that V} has full column rank (columns are orthonormal) and also:
range(K'(D[C1])) = range(V).

We form U, as:
0, = [Vl %ﬁln] , (3.23)
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where we scale the all-one vector by \/+Tl to make the columns of U; orthonormal (further

discussion of why this is important will follow). For comparison, in the Two DISJOINT
CLIQUES, instead of directly using Vi, we used:

U= [P 1,]=[ViAY? 1,],

which differs with the U; in (3.23)) only in the norm of its columns; their ranges are the
same, because for any A € RP*? and I' = Diag(v1,...,7,), 7 > 0, Vi, we have:

range(A) = range(AT).

The Intersection of two faces

To find the face of a protein molecule, we need to find the intersection of a set of faces
(one face for each clique). We start by considering the problem of TWO INTERSECTING
CLIQUES, which is defined as follows: for ¢ = 1,2, let C, C 1:n be two intersecting cliques
of points such that |C;| = ni, |Co| = ng, |C1 NCs| = a, and C; UCy = 1:n; we see that
n = ny +ng — . In addition, for £ = 1,2, let D, = D|C,] and embdim(D,) = r,. We show
how to find the face of {K € 8" : K(K[C/]) = D, ¢ =1,2}.

For ¢ =1,2, let F, = UgSﬁ*"””“UKT be the face, computed by assuming that only C,
is present in the EDMC graph, G = (V, ). For example for ¢ = 1, no information about
the points in Cy \ C; is specified. If U; and U, are given by:

ri+1 ‘CQ\C:[|
el [ O 0]
U, =
"ol | 00T
|C1\C'2| ro+1
e [T 0 |
U, = =
T el |0 Oy |

then we need to compute a U € R™* that satisfies:
range(U) = range(U;) N range(Us);

where the value of k depends on ny, ny, 71, 79, and « (size of the intersection); we discuss
finding & shortly. If we can find such a U, then FF = US¥UT is the intersection of two
faces, i.e., F' = F1 N F;. We find the intersection of faces by intersecting the corresponding
subspaces, as follows.
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Algorithm 1: Finding principal angles and vectors between two subspaces
input : A€ R"™? and BER™ (p>q>1)
output: Orthonormal matrices U,V € R™*? and cos(;)

Compute the following QR factorizations

A=QaRx QiQa=1I, RyeR?
B =QpRp Q;QB =1,, RpeR™

C=QiQs

Compute SVD of C as C =YX Z"
[cos(6y),...,cos(0,)]" = diag(2)
U=QaY[;,1yq]

V = QBZ

Intersection of subspaces

For two matrices, A € R™*? and B € R™*? (p > ¢q > 1), each with linearly independent
columns, let F' = range(A) and G = range(B) be two subspaces in R™. It can be seen
that their dimensions satisfy:

p = dim(F) > dim(G) = ¢ > 1.

The principal angles (Golub and Van Loan, 1996)) between F' and G, 6y, ...,0, € [0 7/2],
are recursively determined by solving:

cos(br) = max max u'v = ulv
ue ve
subject to  ||ul| = [|v|| =1

w'u; =0 i=1k—1

v'v,=0 i=1k—1.

Due to the recursive procedure, we have 0 < 0y < --- <6, < 7/2. The vectors {uy,...,u,}
and {vy,...,v,} are called the principal vectors between F' and G.

Golub and Van Loan (1996, Algorithm 12.4.3) proposed a systematic algorithm to
compute the principal angles and vectors: Algorithm [I| computes the orthogonal matrices
U=luy,...,uj and V = [vy,...,v,] and cos(6,), ..., cos(d,), where 0 and uj, and vy, are
the corresponding principal angles and vectors, respectively, between F' and G.
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Using Algorithm [I} an orthonormal basis for range(A) N range(B) can be found as
indicated in the following theorem:

Theorem 5 (Golub and Van Loan| (1996))) Let {cos(0y), ux, vi}i_, be defined by Al-
gorithm/[1 If the index s is defined such that 1 = cos(6y) = - -+ = cos(6s) > cos(fs41), then
we have

range(A) Nrange(B) = span{uy, ..., us} = span{vy,..., v }.

Recalling the TwWO INTERSECTING CLIQUES problem, if U; and U, are computed, we
can use Theorem |5 to compute a U satisfying:

range(U) = range(U;) Nrange(Us),

which concludes our semidefinite facial reduction for the two cliques. If U; and U, have
orthonormal columns, then two QR decompositions in Algorithm [I] are not needed. This
led us to make some changes in forming U; in (3.23]).

Last, we use the subspace intersection method to solve the TwWO DiSJOINT CLIQUES
problem. Let the corresponding U; and U; be defined as:

ri+1  no

~m [ Ul O
U=, 0 I, |

ni ro+1
o [ Ly, 0]
U2 o ng L 0 UQ ] .

If Algorithm [I] is applied to these matrices, because both of them have orthonormal
columns, there is no need for QR decomposition:

ni ro+1
. T o ri+1 UlT 9
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We find the SVD decomposition of C' =YX ZT as:

ri+1  ro+1
Y o ri+1 ] 0
na O U2
ri+1  ro+1
ni U]_ 0
7/ =
ro+1 0 ]

Y= ri+re+2
Therefore, as expected, the intersection of subspaces U; and U, is the range of the following
matrix: _
U, 0
U= [ 0 UQ] ’

which is identical to the one obtained earlier, up to the scaling of the columns.

Dimension of the of the intersection We showed how in the the TWO INTERSECTING
CLIQUES problem, a proper face of {K € S} : K(K[C|) = Dy, ¢ = 1,2} can be found as
Us fﬁ U, but no insight was provided about the value of k. Here, we present insight about
k that works only for two intersecting cliques. Later, we present the general framework.

Let P =[p,...,p, ], p; € R and Q = [q,, .. .,4q,,], ¢; € R™, be the low-dimensional
embeddings of D[C;] and D|Cy], respectively. Moreover, let X; = X[:,C;] and Xy = X[:, Gy
be the high-dimensional embedding of the points in the cliques, which can be written as:

Xl — R1P+t11nl
Xo = RrQ + 21,

where for ¢/ = 1,2, R, € R" and t, € R" are the rotation matrices and translation
vectors. If the intersection of cliques is defined as Z = C; N Cy, then o = |Z| is the size of
the intersection. Moreover, without loss of generality, assume Z = {1,...,a} if @ > 1 and
T = (), if otherwise. In general, we have:

Xql5, i) = Xof:yd], Viel.
Therefore, for ¢« = 1, we have

Rip, +t, = Roqy + 12 = to = Rip; — Raq, + 4, (3.24)

109



which indicates that the translation of the points in Cy is not arbitrary anymore. Similarly,
for 1 < i < «, by substituting £, from the above, we write:

Rip; +t1 = Roq; +ty = Ri(p; — py) = Ra(q; — qy).
In general, if P = [p,,...,p,] —p,1. , and Q = [q,,...,q,] — q,1}_,, we have
RiP = R,Q = P = R] R,Q,

which implies that R; and R, are not arbitrary and should satisfy the above constraint.
In fact, for & > min(ry + 1,79+ 1), assuming that r; > rq, the above equation simplifies to
Ry = Ry PQ7!, that is, Ry is completely expressed in terms of R;. |[Krislock and Wolkowicz
(2010)) call the case where & > min(ry,72) + 1 a rigid intersection, because one clique is
completely expressed in terms of the other. For rigid intersections, where the problem
reduces to the Orthogonal Procrustes if r1 = ry, we have k = max(ry, ) + 1. In general,
for a < min(ry,re) + 1 we have k = r; + ro + 2 — o, which for o = 0 (disjoint cliques)
reduces to k = ry + ry + 2, as expected.

Algorithm for Finding the Face of the Structure
The protein molecule is made of ¢ cliques, {Cy,...,C,}, such that D[C;] is known and we

have r, = embdim(D[C)]). For [ =1,...,q, let n; = |C)|. Let F be the feasible set of the
EDMC problem. If for each clique C;, we define F; := {K € 8" : K(K|[C]) = D[C]}, then

q
FC <ﬂ E) NSE.
=1

Forl=1,...,q, let F; := face{F;}, such that F; = Uleﬁ”ﬁ”HUlT and U; is computed by
solving the SINGLE CLIQUE problem, as mentioned earlier. We have (Krislock, |2010)):

face{F} < (ﬁ F> NSE
(0

l
1
— 1
U, Sttt Uﬁ) NSy
=1

= (USLUT)NSE,
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where U € R™* ig a full column rank matrix that satisfies:

range(U) = ﬂ range(U;).

=1

To find such a U matrix, we need to use Theorem 5, ¢ — 1 times: C; and C, are intersected
and a new clique is formed as A = C; U Cy, such that the product of intersecting U; and
U, is its U4. Then, A is intersected with Cs, and this process iteratively continues until all
cliques are intersected. However, this process can be inefficient and numerically inaccurate
for these reasons:

1. Suppose we plan to find the intersection of U; and Us,:

41 |C\C1| n—|C1UCs]
e [ U0 0 ]

U= |e\a 0 1 0
n—|C1UCs| 0 0 I ]
IC1\Ca| 7o+l mn—|C1UCs|

IC1\C2| I 0 0

U27 |Ca| 0 UQ 0
n—|C1UCa| 0 0 I ]

because both of these matrices have orthonormal columns, the C' matrix in Algo-
rithm [l is:

|C1UC2‘ n—|ClLJC2|
C = UTU . |C1UC2| C/ 0
— v U2 — 9
n—|C1UC2| 0 I

where C’ is not computed, because it is not needed for our purpose here. If we
compute SVD of C, it contains n — |C; U Cy| trivial and non-informative singular
values equal to one. It can be seen that the U; and U, are unnecessarily enlarged. To
avoid a large matrix SVD calculation for intersecting U; and Us,, it suffices to shrink
the matrix sizes by deleting the rows and columns indexed by 1:n\ C; U Cy, creating
two new shrunk matrices U7 and Uy . A new clique is formed as A = C; U Co;
however, this time the product of intersection is U4, not Uy.

. As the intersection process progresses, A and U, grow larger. Suppose p < ¢ cliques
have been processed so far, i.e., A = [JI_;C. For the next clique, if p is close
to ¢, then |Ci11| < |AUCyq]. Consequently, its shrunk matrix U, will be very
sparse and the SVD calculation of C' = U,"U% will be inaccurate. We propose the
hierarchical bottom-up intersection method, listed in Algorithm [2 Any two cliques
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Algorithm 2: Hierarchical bottom-up intersection

input : Set of cliques {C;} and their matrices {U;}, [ =1,...,q
output: Matrix U such that range(U) = (;_, range(U,)

// Initialization
for 1 + 1 to ¢ do

Ql(l) U // Q?: U of the subtree rooted at the node j, level i

.Al(l) «~C // A;i): points in the subtree rooted at the node j, level i
end
v« |log(q)] +1 // number of levels in the tree
P q // number of cliques in the current level
P p // number of cliques in the lower level
for i < 2 to v do

p < [P'/2]

for j « 1 to pdo
(27— +1
A A
QY QY

if /1 < p' then

QW Intersect(Q('i) giil))
end

end
pep
end

U+ QE”)

// For the root .A(v) =1
1

being intersected in this approach are of nearly equal size (at least for the cliques in
the protein structure, where cliques have similar sizes).

We now have an efficient method for computing the face of the feasible set.

Constraints for preserving the structure of the cliques In the absence of semidefi-
nite facial reduction, the set of equality constraints preserving the structure of the cliques,
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i.e., preserving D|[C], can be formulated as:

q
e=Je&.
=1

where & is the set of constraints fixing each clique. If we find a base set of points, B;, for
each clique C; such that B; C C; and embdim(D[B;]) = r;, then by fixing the distances
between points in the base set and then by fixing the distances between points in C; \ 5;
and points in B;, the entire clique is kept rigid. Therefore, for each clique we have:

Sl:i(i,j)Zi,jEBl,i>j}JU{(Z',j)CiEBl,jECZ\Bl}J;

-~

£®) £©)

SI(B) fixes the distances between the base points and El(c) fixes the distances between all
other points and the base points. We see that:

1
&P = Snir+ 1),
|EI(C)| =(n—r —1)(r+1).

By using the rule of sum we find the following upper bound:

q q
1
]S\g E 57"[(7"[4‘1)4’ E (nl—rl—l)(rl—i—l);
=1

I=1
this is an upper bound because some cliques may share some equality constraints.

Semidefinite facial reduction removes only the redundant clique-preserving constraints,
but does not remove all of them. For example, consider face{K € 87 : KI(K|[C]) =
D[C)]} < USEUT, the all-zero matrix 0 is in any face, which is apparently an incorrect
solution. To keep the structure of the cliques intact, it suffices to enforce K'(K[Bj]) =
D[B)] (Alipanahi et all [2011b). We are required to fix only the distances between base
points (only SI(B) part of &). After facial reduction, the total number of equality constraints
is bounded by:

q
1
|Err| < Z 57“1(7“1 + 1),
=1

where, in comparison to the original problem, it lacks the second term in the bound. In
proteins, r; < 3, so |Epr| < 6¢, while for the original problem |E| < 4n. Considering the
typical values of ¢ and n, this is nearly a three- to four-fold reduction.
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A method for finding the value of £ Here, we present a simple method for finding
the value of k, listed in Algorithm [3] To explain this method, we use an example made of
three cliques, as depicted in Fig.|3.13] The algorithm works as follows: Preserving the first
clique, Cy, requires fixing the distances between 3 atoms, of which we select CA;, Cy, and
Oq, hence k = 3. We move on to the next clique, Cy (a 3D clique), where CAy and Ny are
already fixed. Therefore, we only need to add two more atoms: HA5 and Cy; k is increased
by two to five. Finally, in C3, we add only O to fix this clique, resulting in & = 6. The
atoms added during this process are colored red.

Table contains the increase in the value of k by adding each type of amino acid
to the peptide chain. For each peptide plane k is increased by two that is on par with
the increase in the problem size of torsion angle dynamics (two more torsion angles). On
average, by adding each amino acid, the number of atoms, n, is increased by 18.2, while
the SDP matrix size, k, is increased by 5.0, a 3.6 fold difference.

. Cs (3D)

Figure 3.13: A simple example for finding the value of k. The atoms added at each step
are colored red.
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Algorithm 3: Finding the value of k

input : EDM D, set of cliques {C;} and their embedding dimensions, r;, I =1,...,q
output: Number of columns in the matrix U, &

A~ C

k+r+1

for i +— 2 to ¢ do
L%Aﬂcl
k<« k+ (r,+1— embdim(DI[Z)]))
A(—AUCZ

end

3.3.5 Solving and Refining the Reduced SDP Problem

The SPROS method flowchart is depicted in Fig. [3.14l In it, we describe the blocks for
solving the SDP problem and for refining the solution. We showed how to reduce the
original Gram matrix, K € S, into a much smaller one by using the semidefinite facial
reduction technique, such that:

face{ K € ST : K(K[C)]) = D[C)],Vl € 1:,q} SUSKUT, U € R™¥,

therefore, we can decompose the Gram matrix as K = UZU", Z € S*. It may seem that
the reduced optimization problem satisfies the Slater’s condition; however, it does not.
The centering constraint, K'1,, = 0, or, equivalently K € Sf, reduces the rank by one, i.e.,
rank(K) < k—1. Finding the new face is straightforward: If V' € R***~1 has full column
rank and satisfies range(V) = null(1, U), then we have (Krislock, 2010, Theorem 4.13)

face{ K € ST NS : K(K[C)]) = D[C)], VI € 1:¢} < (UV)SEH(UV)T,
because (UV)'1, = UV 1, = 0. We can find V by first applying the QR decomposition

on UTlvn that results in U1, = QR, Q € R** and then forming V = Q[:,2:k]. We
define U = UV.

We formulate the reduced optimization problem as follows:
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Table 3.3: Table summarizing properties of different amino acids: p denotes abundance of
amino acids in percentile, ¢t denotes the number of torsion angles (excluding w), a denotes
the total number of atoms and pseudo-atoms, s denotes the total number of atoms and
pseudo-atoms in the side chains, ¢ denotes the number of cliques in each side chain (the
number in the parenthesis is the number of 3D cliques), and k denotes the increase in the
SDP matrix size. The values in the Reduced column denote the same values in the side
chain simplified case. The weighted average (w.a.) of quantity x is computed as ), , piz;,
where A is the set of twenty amino acids.

Complete side chains Simplified side chains
AA. P t a S q k a s q k
Ala 7.3 3 11 5 2 (2) 5 8 2 1(1) 3
Arg 5.2 6 29 23 5 (4) 10 20 14 5 (1) 7
Asn 4.6 4 16 10 3(2) 6 13 7 3 (1) 5
Asp 5.1 4 13 7 3(2) 6 10 4 3 (1) 5
Cys 1.8 4 12 6 3(2) 5 8 2 2 (1) 4
Glu 4.0 5 20 14 4 (3) 8 14 8 4 (1) 6
Gln 6.2 5 17 11 4 (3) 8 11 5 4 (1) 6
Gly 6.9 2 8 2 1(1) 3 8 2 1(1) 3
His 2.3 4 18 12 3(2) 6 15 9 3 (1) 5
Ile 5.8 6 22 16 5(5) 11 13 7 3(2) 6
Leu 9.3 6 23 17 5(5) 11 14 8 3(2) 6
Lys 5.8 7 27 21 6 (6) 13 12 6 5 (1) 7
Met 2.3 6 20 14 5 (4) 10 11 5 4 (1) 6
Phe 4.1 4 24 18 3(2) 6 21 15 3 (1) 5
Pro 5.0 1 17 12 1(1) 3 17 12 1(1) 3
Ser 7.4 4 12 6 3(2) 6 8 2 2 (1) 4
Thr 5.8 5 15 9 4 (3) 8 11 5 2 (2) 5
Trp 1.3 4 25 19 3(2) 6 22 16 3 (1) 5
Tyr 3.3 5 25 19 4 (2) 7 21 15 3 (1) 5
Val 6.5 5 19 13 4 (4) 9 13 7 2 (1) 5
w.a. - 45 182 122 36(30) 7.6 128 6.8 2.7(1.3) 5.0
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minimize  — (I, Z) + >, Wi;Gj (3.25)
subject to (A, Z) = Ejj, (i,7) € Err

)
(Aijs Z) + & = Uy + Gy, (i,5) €U
(Aij, Z) + Gj = Lij + &, (i,5) € L
Gij» &ij € Ry, (4,5) € LUU
ZeshH,

where for the constraint matrices we have
<Aij, UZUT> = <UTAZ‘]‘U, Z> == Aij = UTA”U

The equality constraints set, Epg, is the set of constraints fixing the structure of the cliques,
hence, preserving all of the bond lengths and angles, and the splanarity of the coplanar
atoms.

Weights and the regularization parameter For each type of upper and lower bound,
we define a fixed penalizing weight for constraint violations. For example, for upper bounds
(similarly for lower bounds) we have V(i,j) € Ux, W;; = wx. We set wy = 1 and wy =
wp = wy = 10 because upper bounds from hydrogen bonds and disulfide/salt bridges are
assumed to be more accurate than are NOE-derived upper bounds.

Setting the regularization parameter, v, is a bit more challenging. If it is set too high,
then the bounds can be arbitrarily violated and if it is too small, the rank reduction
heuristic fails. We may use the upper bound on the trace term derived from the geodesic
distances graph; or we can use this analysis:

Let R be radius of the protein, clearly trace(K) < nR (protein molecule is assumed
to be spherical with its center at the origin). For the upper bounds, let 0 < a < 1 be the
fraction of violated constraints. The maximum violation is 2R; therefore, for the sum of
the slacks we have ) (;; < 2amy R, where my, = |U|. Discarding the role of lower bounds,
with the goal of approximately balancing the two terms, a suitable ~ is:

2awm,
ynR ~ 2awmyR = v = “
n

In practice a = 0.01 —0.15, and 4 &~ myw/50n works well. Last, note that the optimization
problem is not very sensitive to the value of  and that a wide range of values, v € [7/5 57],
produce good results.
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Figure 3.14: SPROS flowchart. Dashed lines indicate non-default routes.
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Post-processing

Let Z* € S§™! be the optimal positive semidefinite matrix that minimizes (3.25). Then,
the optimal Gram matrix is K* = UZ*U". To find the embedding, there is no need to
compute the eigendecomposition of K*; instead, it suffices to find the eigendecomposition
of Z*, which is a much smaller matrix:

z* :VzAVZ, A:Diag()\l,...,)\p) ES_I:__H

where p = rank(Z*). Then, we have K* = VAV, where V = UVy. Let Y = AY2VT =
(Y1, -5 Y,], Y; € RP be the embedding that corresponds to K*; if p > 3; we need to project
Y onto R3.

Let W € RP*P_ be a rotation matrix, such that:

w, V[p/
N N 1
W - .T p—3 |: W2 :|7
wp

where w, € RP. Since W is a rotation matrix, Y and WY have the same Gram matrix
and EDM. We need to find W; € R3**? such that X = W,Y contains as much information
from Y as possible.

The first observation we make is that for any pair of points, |z; — ;| < [y, — y;/,
because:

|
[M]

s — a5 (w, y; —w, y,)°

~
I

1

NE

(w)y; —w, y;)?

~
Il

1
Y, _yj||2a

where in the last line we have used the fact that EDM is invariant to rotation. The projec-
tion always shortens the pair-wise distances (Mardia et al., |1980). One way to formulate
the lost ‘information content’ is to measure the distortion in the distance matrices. Let
DY =K(Y"Y) and DX = K(X T X). We define the following loss function:

v=2_2 (D5~ D),

i=1 j=1
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which is always nonnegative, since D}; > D}

ij» Vi, j. Because both X and Y are centered,
the loss function can be simplified to:

¢ = 2n (trace(Y'Y) — trace(X ' X)).

The above loss function is minimized if Y is projected onto its top three principal compo-
nents (Mardia et al., 1980]). Because rows of Y are already its principal coordinates, X is
just the first three columns of Y or equivalently, X = Y[1:3,:]. For this choice of X, the

loss function is:
p 3 p
i = 20 (zxi-zxi) 203"
=1 =1 =4

where \; is the i-th largest eigenvalue of Z* (Mardia et al., [1980). We define the average
normalized pair-unse distance shrinkage as:

T
f:l Ai
where 0 < n < 1 is a projection loss measure; the larger the 1, the more severe the
distortion. In our experiments, n > 0.01 is an indication of large projection errors. To
improve the quality of the protein structure, we perform a three-phase post-processing on
it.

BFGS-based refinement We perform a BFGS-based refinement on the raw structure
determined by the SDP solver. The BFGS method only requires the value of the objective
function and its gradient at each point and is considered to be one of the best quasi-
Newton nonlinear unconstrained optimization methods (Bertsekas and Bertsekas| 1999;
Nocedal and Wright, 2000)). Compared to the conjugate gradient method, it is generally
faster and less sensitive to the accuracy of the line search.

Let X© = Xgpp, we iteratively minimize the following objective function:

(X)) =wp > (lzi -zl —ey)’ +wo Y f (| — x| —wy)?

()€€ (i.d)eU
2
+wp > g (e — @l — 1) +we > [l (3.26)
(ig)ec i=1

where f(a) = max(0, «) and g(«) = min(0, —«). We set wg = 2, wy = 1, and wy = 1. In
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addition, to balance the regularization term, we set wg as follows:

OOz S

a .
25 A(X O =10 p—wp—wp—0 255", ||$z(0)||2

WR =

where —1 < o < 1 is a parameter controlling the regularization. If a < 0, the distances
between atoms are maximized, because, after projection, some of the distances have been
shortened. In the process of projecting data to R3, this term helps to compensate for that
error. However, if o > 0, the distances between atoms are minimized, resulting in better
packing of atoms in the protein molecule. In practice, different values for o can be used to
generate slightly different structures, thus creating a bundle of structures.

Finally, computing the gradient of ¢(X) is straightforward:

Ve, 0(X) = 2wg Z (x; — ;) (1 — HQJ“TW%H> + 2wy Z (i — ;) f (1 - M)

(¢,9)€€ (4,9)eU
(i.5)eL i — wj” i=1

which in turn is used to update x; by the BFGS method. In our experiments, running the
gradient descent for 250 iterations was enough and virtually no improvement is gained for
more than 1,000 iterations. Last, it should be noted that: (i) a large majority of the terms
in the objective function are zero, because their corresponding constraints are not active
(especially lower and upper bounds), (ii) this step can be extensively parallelized to make
it run much faster.

Fixing incorrect chiralities After termination of the gradient descent, we check the
sign of ® torsion angles, because as can be seen from the Ramachandran plot (see Fig.|3.4]),
the large majority of ® torsion angles lie in the & < 0 half-plane. It is possible that the
distances in the structure are perfect, but that the structure is the reflection of the actual
one. One method for verifying this is to calculate the fraction of residues with positive ®
angles as:

i, 0.5(1 + sign(®:))
No / ;

if ng < 0.5, we flip the structure by negating the first row of X.

Chirality constraints cannot be enforced using only distances. Consequently, some
chiral centers may have the incorrect enantiomer. In this step, SPROS checks the chiral
centers and if it finds any problems, fixes it. For example, all amino acids except glycine
have a chiral center at their CAs. The correct enantiomer called L-form (the incorrect
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one is called the D-form) is found by the CO-R-N rule: as depicted in Fig. [3.15] looking
through the HA-CA bond, the order of atoms clockwise should be CO, R, and N.

Figure 3.15: The CO-R-N rule: looking through the HA-CA bond, the order of atoms
clockwise should be CO, R, and N.

One method for checking the CO-R-N rule is to measure the virtual dihedral angle
made by (CA, N, C, CB) (Morris et al.,[1992). If the angle is positive, chirality is correct, if
not, it should be fixed. To fix an incorrect enantiomer, we flip the side chain and HA with
regard to the plane, P, which passes through N, CA, and C. The method is illustrated in
Fig. .16} Let v = @y — @1, we are looking for the reflection of @; with regard to P or .
Decompose v as v = v’ + v”. Then, we write:

rho=x1+tw=x, +v —v".

Using this technique, we fix all incorrect chiralities.

Improving the stereochemical quality |Williamson and Craven| (2009)) have described
the effectiveness of explicit solvent refinement of NMR structures and suggest that it
should be a standard procedure. For protein structures that have regions of high mobil-
ity /uncertainty due to few or no NOE observations, we have successfully employed a hybrid
protocol in XPLOR-NIH that incorporates thin-layer water refinement (Linge et al., 2003])
and a multidimensional torsion angle database (Kuszewski et al., 1996, |1997). This final
step typically takes two to five minutes to complete.
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Figure 3.16: The method for fixing an incorrect chirality; the x, is reflected with regard
to the plane P.

3.4 Results

We tested the performance of SPROS on 20 proteins: 16 protein data sets from the DOCR
database in the NMR Restraints Grid (Doreleijers et al.l 2003, [2005) and four real protein
data sets from Donaldson’s lab at York University. We picked proteins with different sizes
and topologies, as listed in Table From the empirical CDF of all protein entries in
PDB, solved by NMR with sequence similarities less than 90%, as of September 20, 2011,
nearly 98% of these proteins are shorter than 200 amino acids (see Fig. . Moreover,
only less than 0.4 of proteins are longer than 300 amino acids. Therefore, we select proteins
that are shorter than 300 amino acids.

In Table 3.5 we provide a comprehensive analysis of test proteins:

1. The total number of atoms and pseudo-atoms, n, this is the original PSD matrix
size, and the original number of equality constraints, mg

2. The reduced PSD matrix size, n’, and the number of equality constraints, my, in the
reduced problem

3. The total number of cliques with the number of 2D and 3D cliques
4. The total number of upper bounds, my,

5. The fraction of different upper bound types in percentile, that is, intra-residue, |i —
j| = 0, sequential, |i — j| = 1, medium range, 1 < |i — j| < 4, and long range,
i—jl>4
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Figure 3.17: Histogram and CDF of sequence length of proteins solved by NMR. Nearly
98% of proteins are shorter than 200 amino acids.

6. The mean number of upper bounds, per residue, together with the corresponding
standard deviation, note that m,, = 2my, /¢, where ¢ is the number of residues

7. The number of upper bounds derived from NOE peaks, torsion angle restraints, and
hydrogen bonds, disulfide and salt bridges

8. The ratio of the pseudo-atoms’ presence in upper bounds. Pseudo-atoms add to the
uncertainty of the bounds (they can add up to 4 A to the bounds if both atoms
involved are pseudo-atoms)
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Table 3.4: Proteins selected from the DOCR database from the NMR Restraint Grid and
proteins from Donaldson’s lab at York University (last four rows). Molecular weights, fifth
column, are in kDa.

ID  Description topology residues  size
1G6J  Ubiquitin a+b 76 8.58
1B4R PKD domain 1 from human polycystein-1 B 80 7.96
2KT6  Outer membrane usher protein papC B 85 9.07
2E80 SAM domain A 103 11.40
1CN7  Yeast ribosomal protein L30 a/b 104 11.30
2KTS  Heat shock protein hslJ a/b 117 12.85
2K49 UPF0339 protein SO3888 a+b 118 13.10
2K62  Liver fatty acid-binding protein B 125 15.10
2L30 Murine interleukin-3 A 127 14.30
2GJY Tensin 1 PTB Domain a+b 144 15.67
2KTE  Bacillus subtilis a/b 152 17.21
1XPW  Human protein HSPCO34 B 153 17.44
2K7H  Stress-induced protein SAM22 a/b 157 16.66
2KVP  Vinculin Binding Site A 165 17.28
2YTO  Amyloid beta A4 protein a+b 176 19.17
2L7B  Apolipoprotein E A 307 35.30
171V STE50 protein (Kwan et al., 2006]) A 80 9.31
HACS1 SH3 domain of HACS1 (unpublished) B 87 9.63
2KIV  SAM1 and SAM2 domains (Kurabi et al., [2009) A 148 16.67
2LJG PTB domain of AIDA-1 (unpublished) a+b 153 17.03
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3.4.1 Implementation

The SPROS method has been implemented and tested in MATLAB 7.13 (apart from the
water refinement, which is done by XPLOR-NIH). For solving the SDP problem, we used
the SDPT3 method (Tutuncu et al., [2003)), because it is arguably numerically more stable
and it accepts rank-one constraint matrices. The SDPT3 solver uses MATLAB’s built-in
Cholesky decomposition and LU decomposition functions, which are not as fast as the state-
of-the-art implementations (such as those using GotoBLASjﬂ routines). For minimizing
the post-processing objective function , we implemented the functions for calculating
objective and the gradient in MATLAB’s C MEX (functions written in C that are
called from MATLAB). We used the BFGS implementation by Lewis and Overton, (2009),
which we found to be more stable and efficient than are other implementations. All the
experiments were carried out on an Ubuntu 11.04 Linux PC with a 2.8 GHz Quad-Core
processor and 8 GB of memory.

3.4.2 Determined Structures

The SPROS method was run on the test proteins and the final structures were generated.
The superimposition of the determined structures and the reference structures are depicted
in Figs. [3.19] |3.20, 3.21} [3.22] and [3.23| In Table [3.6] we list them:

1. Run times: run times of SDP solver, water refinement, and the total run time

2. RMSD: the mean and the standard deviation of the backbone and the heavy atoms
RMSD. For each structure, we computed the mean and standard deviation of RMSDs
between the SPROS structure and all structures in the reference bundle

3. CB deviation: the total number of residues with a CB deviation larger than 0.25 A;
“CB deviation” is an indicator of a set of abnormalities in the protein structure (Chen
et al., 2010

4. Upper bound violations: upper bound violations larger than 0.1 A and 1.0 A for
the determined and reference structures in percentile

5. Ramachandran: the fraction of residues with torsion angles in the favored and
allowed regions, together with the outliers, in percentile

From the 20 test proteins, nine of them have backbone RMSDs less than or equal to 1 A,
and 17 have backbone RMSDs less than 1.5 A. Only two structures have backbone RMSDs

4 Available from http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.
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larger than 2 A: the largest test protein, 2L7B, which has 307 residues, and 2KIV, which
has the least mean number of upper bounds per residue and no torsion angle restraints.

We define a residue-level contact map as a matrix C' € R>* C;; € {0,1}, such that
C;; = 1 if there is at least one upper bound between an atom in residue ¢ and an atom
in residue j, and C;; = 0 otherwise. We compare the residue-level contact maps of the
protein with the highest mean number of contacts per residue, 2KVP, with the contact map
of 2KIV in Fig[3.18 It can be seen that the contact map of 2KIV is much sparser, and in
the linker of 2KIV, there are virtually no upper bounds, which makes finding the correct
fold practically impossible.
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Figure 3.18: Comparison of residue-level contact maps of 2KIV and 2KVP. The linker in
2KIV has virtually no upper bounds (shown by a red dashed square in the contact map).

3.4.3 SPROS Analysis

To evaluate the role that different factors play in the quality of determined structures, we
have performed a series of experiments.
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(c) 2KT6 (d) 2E80

Figure 3.19: Superimposition of structures determined by SPROS in blue and the reference
structures in red.
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(c) 2K49 (d) 2K62

Figure 3.20: Superimposition of structures determined by SPROS in blue and the reference
structures in red.
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Figure 3.21: Superimposition of structures determined by SPROS in blue and the reference
structures in red.
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Figure 3.22: Superimposition of structures determined by SPROS in blue and the reference
structures in red.
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(a) 121V (b) HACS1

(c) 2KIV (d) 2LJG

Figure 3.23: Superimposition of structures determined by SPROS in blue and the reference
structures in red.
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Figure 3.24: RMSD curves for full and simplified side chain cases.

Side chain simplifications
Simplifying side chains reduces SDP matrix size by a factor of two thirds. We solved the

structures with full side chains to evaluate the effect of side chain simplification. The

RMSDs in two different scenarios is illustrated in Fig. It can be seen that the side
chain simplification not only speeds up the process, but also generates more accurate
structures in most cases. This may be due to the fact that smaller SDP problems are

solved more accurately.

Sensitivity to weights
To test the sensitivity of SPROS to the weights used, we ran two experiments: (i) we set
all of the weights equal to one; the resultant RMSDs are plotted in Fig. [3.25 and (ii) we
varied the o parameter of the regularization weight (see page [120]) from -10 to 10. Note

that SPROS was designed with a € [-1 + 1]. The resultant RMSD curves are depicted

in Fig. [3.260, It can be seen that SPROS is not sensitive to the weights.
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Figure 3.25: RMSD curves when all weights are equal to one.
Constraints

Finally, we tested the roles of torsion angle restraints and intra-residue upper bounds.
In Fig. [3.27, the RMSD curves with and without inclusion of torsion angle restraints is
plotted. Note that except for a few proteins, there are no noticeable differences between

the two scenarios.

In Fig.[3.28, the RMSD curves with and without inclusion of intra-residue upper bounds
are plotted. In most cases, there are no notifiable differences in the accuracy of the deter-

mined structures. That is, these constraints could be eliminated, which would, on average,

cut the SDP solving time in half.
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Figure 3.26: RMSD curves for different values of o (wg coefficient).
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Chapter 4

Conclusions and Future Work

We have designed and developed: (i) a fully-automated protein NMR structure deter-
mination pipeline that can, in less than one day, generate the final structure, starting
from NMR spectra and (i7) an SDP-based protein structure determination method, called
SPROS, that works on real noisy data and generates accurate structures which are on par
with, or better than, existing methods.

The combination of a robust peak-picking method, PICKY, the novel spin system
forming, the improved spin system typing, the integer linear programming in IPASS, and
the novel contact scoring scheme implemented in FALCON-NMR, together result in a
robust and error-tolerant protein NMR structure determination system. The automated
pipeline was tested on four real protein data sets and it generated reasonably accurate
results.

We adapted and extended the semidefinite facial reduction technique, which not only
significantly reduces problem size, but also facilitates solving the SDP problem by enforcing
strong duality. The reduced SDP problem size is nearly a quarter of the original problem
and is solved more efficiently. The post-processing and the water refinement steps fix minor
problems in the raw structure, determined by SDP, and improve its stereochemical quality.

We believe that no synthetic protein NMR data set is capable of capturing the intrinsic
complexities and uncertainties of real data sets. Therefore, the SPROS method was only
tested on real protein NMR data sets of amino acid sequence lengths ranging from 76-
307 (weights ranging from 8 to 35 KDa) and, for most proteins generated accurate results.
Note that existing programs have been under continuous development for more than twenty
years and contain complex iterative protocols. The SPROS method, in its current state
can manage many incorrect upper bounds and can efficiently generate structures in only
one iteration. We tested SPROS on 20 real protein data sets and it determined structures
of the test proteins in a few minutes (the majority in the 3-7 minutes range). Note that
water refinement must be run on proteins solved by other methods as well.
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4.1 Future Work

1. The SPROS method must be re-implemented in C++ and the SDP problem should
be solved by using advanced BLAS packages, such as GotoBLAS2. Moreover, the
SPROS must be parallelized and must make use of all available CPU cores. We
estimate the speedup factor to be in the range of 50-500, which makes the SPROS
method of wider appeal.

2. The SPROS method must be made iterative and, more importantly, it must be
merged in the entire protein NMR pipeline. Currently, no NOE peak assignment
verification and reassignment, or upper bound calibration is performed. Moreover,
all NOE-inferred upper bound violations are weighted equally, while some bounds
are more accurate than others. An adaptive violation weight mechanism must be

added to SPROS.

3. Because SPROS can manage a large number of incorrect upper bounds, it is an
efficient and suitable alternative to FALCON-NMR in the automated protein NMR
pipeline. However, SPROS needs reasonably accurate side chain proton chemical
shifts; therefore, a side chain assignment method and an NOE contact refinement
method should be developed and added to the pipeline. That is, these two methods
connect IPASS to SPROS, making a fully-automated protein NMR. pipeline.

4. The reduction methodology developed for SPROS is an ideal choice for ligand docking
applications. For example, in semi-flexible docking most of the molecular structure
of the target protein is assumed to be rigid, and only the side chains of the residues in
the active site are flexible and can change conformation. Applying the semidefinite
reduction technique results in an SDP matrix size of nearly less than 100, which can
be solved in only a few seconds. Therefore, a modification of SPROS can be used for
fast, automated screening of ligand libraries.
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