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Abstract

Due to the sheer volume of data involved, video coding is an important application of

lossy source coding, and has received wide industrial interest and support as evidenced by

the development and success of a series of video coding standards. All MPEG-series and

H-series video coding standards proposed so far are based upon a video coding paradigm

called predictive video coding, where video source frames X1, X2, · · · , XN are encoded in

a frame by frame manner, the encoder and decoder for each frame Xk, k = 1, 2, · · · , N ,

enlist help only from all previous encoded frames Sj , j = 1, 2, · · · , k− 1. In this thesis, we

will look further beyond all existing and proposed video coding standards, and introduce

a new coding paradigm called causal video coding, in which the encoder for each frame

Xk can use all previous original frames Xj, j = 1, 2, · · · , k − 1, and all previous encoded

frames Sj , while the corresponding decoder can use only all previous encoded frames. We

consider all studies, comparisons, and designs on causal video coding from an information

theoretic point of view by modeling each frame Xk itself as a source Xk = {Xk(i)}∞i=1. Let

R∗
c(D1, · · · , DN) (R∗

p(D1, · · · , DN), respectively) denote the minimum total rate required

to achieve a given distortion level D1, · · · , DN > 0 in causal video coding (predictive video

coding, respectively).

A novel computation approach is proposed to analytically characterize, numerically

compute, and compare the minimum total rate of causal video coding R∗
c(D1, · · · , DN)

required to achieve a given distortion (quality) level D1, · · · , DN > 0. Specifically, we first

show that for jointly stationary and ergodic sources X1, X2, · · · , XN , R∗
c(D1, · · · , DN) is

equal to the infimum of the nth order total rate distortion function Rc,n(D1, · · · , DN) over

all n, where Rc,n(D1, · · · , DN) itself is given by the minimum of an information quantity

over a set of auxiliary random variables. We then present an iterative algorithm for com-

puting Rc,n(D1, · · · , DN) and demonstrate the convergence of the algorithm to the global
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minimum. The global convergence of the algorithm further enables us to not only estab-

lish a single-letter characterization of R∗
c(D1, · · · , DN) in a novel way when the N sources

are an independent and identically distributed (IID) vector source, but also demonstrate

a somewhat surprising result (dubbed the more and less coding theorem)—under some

conditions on source frames and distortion, the more frames need to be encoded and trans-

mitted, the less amount of data after encoding has to be actually sent. With the help of

the algorithm, it is also shown by example that R∗
c(D1, · · · , DN) is in general much smaller

than the total rate offered by the traditional greedy coding method by which each frame

is encoded in a local optimum manner based on all information available to the encoder

of the frame. As a by-product, an extended Markov lemma is established for correlated

ergodic sources.

From an information theoretic point of view, it is interesting to compare causal video

coding and predictive video coding, which all existing video coding standards proposed

so far are based upon. In this thesis, by fixing N = 3, we first derive a single-letter

characterization of R∗
p(D1, D2, D3) for an IID vector source (X1, X2, X3) where X1 and

X2 are independent, and then demonstrate the existence of such X1, X2, X3 for which

R∗
p(D1, D2, D3) > R∗

c(D1, D2, D3) under some conditions on source frames and distortion.

This result makes causal video coding an attractive framework for future video coding

systems and standards.

The design of causal video coding is also considered in the thesis from an information

theoretic perspective by modeling each frame as a stationary information source. We first

put forth a concept called causal scalar quantization, and then propose an algorithm for

designing optimum fixed-rate causal scalar quantizers for causal video coding to minimize

the total distortion among all sources. Simulation results show that in comparison with

fixed-rate predictive scalar quantization, fixed-rate causal scalar quantization offers as large
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as 16% quality improvement (distortion reduction).
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Chapter 1

Introduction

1.1 Data Compression

With the explosive growth of data volume, data compression has become one of the key

driving forces to fill the data in any bandwidth/storage space available. The ultimate goal

of data compression is to pursue the best possible compression efficiency.

Data compression, which is studied under the name source coding in information the-

ory, is the science of transforming information into another “compressed” representation by

using fewer bits than the original representation would use. The task for data compression

consists of two components, an encoder that converts the original data stream into a com-

pressed binary representation, and a decoder reconstructs a data stream from the binary

representation. Any method that specifies how the encoder and decoder work is called a

data compression algorithm. We distinguish between lossless data compression algorithm

and lossy data compression algorithm in terms of whether the reconstructed data stream

is identical to the original data stream. In lossless data compression algorithm, the origi-

nal data stream is required to be reconstructed exactly; otherwise, the data compression
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algorithm is lossy.

Lossless data compression is typically used in cases where the original and the recon-

structed data streams are required to be identical. For example, text files, executable pro-

grams and source code need to be compressed without deviations from the original data

because no difference between original and reconstructed data is allowed. By contrast,

lossy data compression allows an approximation of the original data to be reconstructed,

in other words, it is a data encoding method that compresses data by discarding some of

it, in exchange for better compression rates. Typically, data streams contain more infor-

mation than is needed for a particular purpose, that is, a substantial amount of data can

be discarded before the reconstruction is intolerable or sufficiently degraded to be noticed

by users. In such practical applications, lossy data compression is usually favored.

Lossy data compression is commonly used to compress multimedia data (image, audio,

and video, etc.), where in many applications, exact reconstruction of multimedia data is

not necessary and information loss can be tolerated as long as a required perceptual quality

can be achieved. The multimedia data after lossy compression can effectively reduce the

bandwidth required for transmission via practical multimedia systems, and a widely used

criterion that reflects rate saving extent at invisible quality loss is the compression ratio, i.e.,

the size of the compressed data compared to that of the uncompressed data, of multimedia

data. For instance, the compression ratio for still image, audio and video can be achieved

as high as 10 : 1, 10 : 1, and 100 : 1 with imperceptible loss of quality, respectively. It

is observed that the compression ratio of video is always far superior to that of the other

two data types, and the emphasis of this thesis is on lossy video compression from an

information theoretic point of view.
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Figure 1.1: Evolution of video compression standards

1.2 Lossy Video Compression

1.2.1 Video Compression Standards Evolution

Due to the sheer volume of data involved, video coding is an important application of lossy

source coding, and has received wide industrial interest and support as evidenced by the

commercial success of MPEG-2 and H.264/AVC standards. MPEG-2 and H.264/AVC [32]

are highlights of the MPEG-series and the H-series standards which have been evolving

since MPEG-1/H.261 was ratified in 1988.

As shown in Fig 1.1, the development of MPEG-1 [15] standard began in May 1988 by

ISO/IEC MPEG group, and the standard was published in August 1993. MPEG-1 was

based on CD-ROM video applications, and also for making video CDs. It is a popular

standard for video on the internet even nowadays. MPEG-2 [33] was developed soon

after MPEG-1 to support digital television set-top boxes and DVD applications, and to

efficiently process interlaced video to satisfy requirements of television applications. On
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the great success of MPEG-2, the MPEG working group started to work on a new standard

MPEG-4 [32]. It was introduced in late 1998 and designated a standard for a group of audio

and video coding formats and related technology. Uses of MPEG-4 include compression of

data for web (streaming media) and CD distribution, voice (telephone, videophone) and

broadcast television applications.

Besides ISO/IEC MPEG, ITU-T VCEG is another working group whose work is es-

sentially focused on efficient video communications over telecommunication networks and

computer networks, resulting in a series of standards from H.261 to H.264.

In 2001, a joint group was formed by ITU-T VCEG and ISO/IEC MPEG to work on

MPEG-4 Advanced Video Coding (AVC) and MPEG-4 Part-10. This work finally led to

the publication of the newest video coding standard H.264, which was intent to create

a standard capable of providing good video quality at substantially lower bit rates than

previous standards, without increasing the complexity of design so much that it would

be impractical or excessively expensive to implement. An additional goal was to provide

enough flexibility to allow the standard to be applied to a wide variety of applications on

a wide variety of networks and systems.

As a successor to H.264/MPEG-4 AVC, since the formal joint call for proposals in Jan-

uary 2010, a draft video compression standard - High Efficiency Video Coding (HEVC)

has been under development by a Joint Collaborative Team on Video Coding (JCT-VC)

established based on ISO/IEC MPEG and ITU-T VCEG. HEVC aims to substantially im-

prove coding efficiency compared to AVC High Profile, i.e. to reduce bitrate of compressed

video by half at a comparable quality, probably at the expense of increased computational

complexity.
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1.2.2 Lossy Video Compression Paradigms

In view of all the existing video compression standards and proposals, they are all based on

the principles of one specific coding model called predictive video coding (PVC) as depicted

in Fig 1.2.

In Fig 1.2, source frames (pictures) are coded in a frame by frame manner. I-frame (or

intra-frame) is encoded without reference to any other frames except itself, and is always

utilized as reference for P-frames. P-frame (or inter-frame) is the predicted source frame,

where the prediction is made from all previous reconstructed frames. Typically, I-frame

requires more bits to encode than P-frame.

Figure 1.2: Video frames of predictive video coding

All MPEG-series and H-series video coding standards [32], [49] proposed so far fall into

the above PVC model; the differences among these different video coding standards lie

in how information available to the encoder of each source frame is used to generate its
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reconstructed frame.

Recently, a new video coding paradigm called causal video coding (CVC) was studied

in [55], [53], [54]. As shown on the left of Fig.1.3, Xk, k = 1, 2, · · · , N , represents a video

frame, Sk and X̂k represent respectively its encoded frame and reconstructed frame, all

frames Xk, k = 1, 2, · · · , N , are encoded in a frame by frame manner, and the encoder for

Xk can use all previous frames Xj, j = 1, 2, · · · , k − 1, and all previous encoded frames

Sj , j = 1, 2, · · · , k − 1, while the corresponding decoder can use only all previous encoded

frames. The model is causal because the encoder for Xk is not allowed to access to future

frames in the encoding order. In a special case where the encoder for each Xk is further

restricted to enlist help only from all previous encoded frames Sj , j = 1, 2, · · · , k−1, CVC

reduces to PVC, as shown on the right of Fig.1.3.
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Figure 1.3: Causal video coding (left) versus Predictive video coding (right)

From their respective definitions, it follows that CVC includes PVC as a special case

where the original video frames X1, · · · , Xk−1 are discarded at the encoder. It is expected

that future video coding standards will continue to fall into the CVC model shown in

Figure 1.3. This motivates us to investigate and gain deep insights into CVC to provide

some design guidance for a future video coding standard.
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1.3 Motivation

Causal video coding is investigated from an information theoretic point of view in this

thesis. The first part, which is the main part of the thesis, studies rate-distortion theory

for CVC, including characterization, computation algorithm, comparison and analysis; the

code design of CVC is considered from an information theoretic perspective in the second

part of this thesis. The motivation behind the research to be presented will be explained

in this section.

Rate-distortion Theory for Causal Video Coding:

Ever since digital video was invented, video compression has become an essential part

in all related applications, such as terrestrial broadcast, cable TV, video conferencing, and

mobile communications, because of the enormous volume of video data. To effectively

compress the video data with required video quality, a tradeoff between transmission

bandwidth(rate), video quality(distortion), and computation cost need to be taken into

consideration. In practice, video compression is usually categorized as lossy data compres-

sion. The theory that studies the theoretical limits for lossy data compression is called

rate-distortion theory, and the fundamental tradeoff in video compression is its entire rate-

distortion performance. In the case of CVC, its compression performance is analyzed by

its minimum total rate R∗
c(D1, · · · , DN) required to achieve a given distortion (quality)

level D1, · · · , DN > 0.

It is expected that a future video coding standard will continue to fall into the CVC

model shown in Figure 1.3. To provide some design guidance for a future video coding stan-

dard, in the first part of this thesis, we aim at investigating from an information theoretic

point of view how each frame in the causal model should be encoded so that collectively

the total rate is minimized subject to a given distortion (quality) level D1, · · · , DN ≥ 0.

7



To this end, the following questions naturally arise:

Q1 How shall we analytically characterize R∗
c(D1, · · · , DN)?

After the existence of analytical characterization is proved, it normally requires future

effort in finding an efficient way to compute the characterization, i.e., how each frame in

the causal model should be encoded so that R∗
c(D1, · · · , DN) is achieved, such that it may

have impact on practical video coding. Therefore, we are led to

Q2 Is there any algorithm to numerically compute R∗
c(D1, · · · , DN) such that this algo-

rithm converges to an optimal solution that achieves R∗
c(D1, · · · , DN)?

If we are lucky enough to find one, then with the help of this algorithm, the question is

Q3 What insights can we gain into CVC to guide practical video coding design?

In this thesis, we provide answers to all the above questions. A brief summary is as

follows.

Characterization: Question Q1 is settled in three cases:

1. The vector source (X1, · · · , XN) is jointly stationary and totally ergodic1 across sam-

ples (pixels);

2. The vector source (X1, · · · , XN) is general stationary ergodic2 across samples (pixels);

1A vector source (X1, X2, · · · , XN) = {(X1(i), X2(i), · · · , XN (i))}∞i=1 is said to be jointly stationary and
totally ergodic if as a single process over the alphabet X1 ×X2 × · · · ×XN , {(X1(i), X2(i), · · · , XN(i))}∞i=1

is stationary and totally ergodic.
2A vector source (X1, X2, · · · , XN) = {(X1(i), X2(i), · · · , XN(i))}∞i=1 is said to be general stationary

ergodic if as a single process over the alphabet X1 × X2 × · · · × XN , {(X1(i), X2(i), · · · , XN (i))}∞i=1 is
stationary and ergodic.
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3. The vector source (X1, X2, · · · , XN) is independent and identically distributed (IID)3.

As we know, information-theoretic characterizations are usually critical to analyze the

best coding efficiency that a compression method can achieve for a given information source

or system. In the case of CVC, the best coding efficiency that an order-n causal video code

(The formal definition of an order-n causal video code will be given in Chapter 3.) can

achieve is characterized by the total rate-distortion function Rc,n(D1, · · · , DN), and the

theoretic limit R∗
c(D1, · · · , DN) is equal to the infimum of Rc,n(D1, · · · , DN) over all n,

where Rc,n(D1, · · · , DN) itself is given by the minimum of an information quantity over a

set of auxiliary random variables. Having R∗
c(D1, · · · , DN), we are now clear about our

objective function to analyze the rate-distortion performance.

The three cases, under which Q1 is settled, are different assumptions of sources in

CVC. It is worthwhile to mention the motivation behind deriving the single-letter charac-

terization of R∗
c(D1, · · · , DN) when (X1, X2, · · · , XN) is IID (Case 3). Along the line of

classic information theoretic research, one of the main motivations for deriving single-letter

characterization is the hope that one day it can be computed by algorithms.

Computation Algorithm: Rate-distortion function characterization is what current clas-

sic information-theoretic research focus on, and the answer to Q1 is probably the best re-

sult one could hope for in terms of analytically characterizing R∗
c(D1, · · · , DN). However,

its impact on practical video coding will be limited if the optimization problem involved

can not be solved by an effective algorithm. To a large extent, this is also true even if

R∗
c(D1, · · · , DN) admits a single-letter characterization, and true for many other multi-

user information theoretic problems. Having single-letter characterization is only a tiny

3A vector source (X1, X2, · · · , XN ) = {(X1(i), X2(i), · · · , XN (i))}∞i=1 is said to be IID if as a single
process over the alphabet X1×X2×· · ·×XN , {(X1(i), X2(i), · · · , XN (i))}∞i=1 is IID. Note that the common
joint distribution of each sample (X1(i), X2(i), · · · , XN(i)), i ≥ 1, can be arbitrary even when the vector
source (X1, X2, · · · , XN ) is IID.
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step in the long path of pushing information theoretic results to have impact on practice.

Even the single-letter characterization is successful, it normally does not offer any clue

on how to compute the single-letter characterization. If the single-letter characterization

can not be computed by algorithms with global convergence, its insights will hardly be

gained, and its impact on practice will be further limited. In this thesis, we will develop

an iterative algorithm to compute Rc,n(D1, · · · , DN), and establish its convergence to the

global minimum.

The iterative algorithm is proposed for three purposes : first, it allows us to do numer-

ical calculations; second, the global convergence of this algorithm provides a completely

different approach to establish a single-letter characterization of R∗
c(D1, .., DN) when the

N sources are IID; and third, it allows us to do comparisons and gain deep insights into

R∗
c(D1, .., DN).

Comparisons and Analysis: To gain deep insights into CVC, equipped with our iterative

algorithm, we first compare R∗
c(D1, .., DN) among different values of N . Conventional

wisdom extrapolates that the number of frames need to be coded and transmitted is always

directly proportionate to the amount of data after encoding has to be sent. The iterative

algorithm turns out that it is not always the case, and it indeed allows us to establish

a somewhat surprising more and less coding theorem—under some conditions on source

frames and distortion, the more frames need to be coded and transmitted, the less amount

of data after encoding has to be sent!

All MPEG-series and H-series video coding standards [32], [49] proposed so far fall into

PVC. From an information theoretic point of view, it is interesting to compare CVC and

PVC which is widely used in practice. However, due to the limited information theoretic

understanding of PVC (e.g., the information theoretic performance characterization of PVC

is still unknown in general, let alone any algorithm to actually compute it.), the comparison
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between PVC and CVC is difficult and technically challenging, so it is better for us to

address this comparison in a separate chapter (Chapter 5). Note that such comparison is

of particular interest in the practice of video compression: if the rate-distortion performance

of causal video coding strictly outperforms PVC, then it implies a possible paradigm shift

from PVC to CVC in the design of future video coding systems and standards.

PVC is a coding methodology; there are many ways to do predictive coding, yielding

different predictive codecs (or video coding standards in the context of video coding), some

of which will be better than others. By using a technique called soft decision quantization

[49], [47], [48], it has been demonstrated in a series of papers [49], [50], [46] that the greedy

coding method (The formal definition of greedy coding method will be given in Section 4.4.)

offers significant gains (ranging from 10% to 30% rate reduction at the same quality) over

the respective reference codecs of these standards. The greedy coding method is a special

form of PVC. It just happens that by applying the greedy coding method to different kinds

of video coding standards, one always yields a codec better than the respective reference

codec. All existing video coding standards and proposals still progress along the greedy

coding method. Thus from a practical point of view, it is instructive to compare CVC and

greedy coding.

The rate-distortion function characterization, computation algorithm, and all insights

gained on CVC would provide a visionary guidance to future video coding standards.

Optimum Fixed-Rate Causal Scalar Quantization Design for Causal Video

Coding:

To provide more specific guidelines and directions to further improve the rate-distortion

performance of current video coding standard, we look at how to design specific codes for

CVC following the line of the first part in this thesis by modeling each frame as a stationary

source. As a starting point, we shall focus on the optimum fixed-rate scalar quantizer design
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for CVC (CSQ, which will be defined in Chapter 6.) by extending the classic Lloyd-Max

algorithm for a single source to this multiple sources case. With the help of our proposed

iterative algorithm for designing optimum fixed-rate CSQ, we demonstrate a significant

quality improvement (distortion reduction) in comparison with the optimum fixed-rate

predictive scalar quantizer for PVC. This result makes CVC more attractive, and suggests

that one could explore to further improve the rate-distortion performance of current video

coding standard on how quantization should be performed conditionally given previous

frames and coded frames.

1.4 Organization and Main Contributions

The rest of the thesis is organized as follows. In Chapter 2, we introduce some basic

concepts on information sources and rate-distortion theory. Some related works to this

thesis are also talked there. Starting with a jointly stationary and totally ergodic vector

source (X1, · · · , XN), in Chapter 3, we first analytically characterize the achievable rate

region R∗
c and show that R∗

c(D1, · · · , DN) is equal to the infimum of the nth order total

rate-distortion function Rc,n(D1, · · · , DN) over all n, where Rc,n(D1, · · · , DN) itself is given

by the minimum of an information quantity over a set of auxiliary random variables. We

further show that the analytical characterizations of R∗
c and R∗

c(D1, · · · , DN) remain valid

for general stationary ergodic sources. As a by-product, an extended Markov lemma is

established for correlated ergodic sources. Next, we develop an iterative algorithm in

Chapter 4 to calculate Rc,n(D1, · · · , DN), and further show that this algorithm converges

to an optimal solution that achieves Rc,n(D1, · · · , DN). The global convergence of the

algorithm enables us to establish a single-letter characterization of R∗
c(D1, · · · , DN) in the

case where the vector source (X1, X2, · · · , XN) is IID, by comparing Rc,n(D1, · · · , DN)
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with Rc,1(D1, · · · , DN) through a novel application of the algorithm. With the help of the

algorithm, we further demonstrate in Chapter 4 a somewhat surprising result dubbed the

more and less coding theorem—under some conditions on source frames and distortion, the

more frames need to be encoded and transmitted, the less amount of data after encoding

has to be actually sent. The algorithm also gives an optimal solution for allocating bits

to different frames. It is also shown that R∗
c(D1, · · · , DN) is in general much smaller

than the total rate Rg(D1, · · · , DN) offered by the traditional greedy coding method by

which each frame is encoded in a local optimum manner based on all information available

to the encoder of the frame. We address the comparison between CVC and PVC in a

separate chapter – Chapter 5, in which we start with the characterization of the minimum

total rate R∗
p(D1, · · · , DN) of PVC required to achieve a given distortion level D1, · · · , DN

for a general stationary ergodic vector source (X1, · · · , XN). It is then shown that if

X1, · · · , XN are general stationary and ergodic, and also form a (first-order) Markov chain

in the indicated order, then R∗
c(D1, · · · , DN) = R∗

p(D1, · · · , DN). Moreover, we prove that

in the case where N = 3, if X1, X2, X3 do not form a (first-order) Markov chain, then

Rc,n(D1, D2, D3) < Rp,n(D1, D2, D3) for any finite n ≥ 1 under mild conditions. A single-

letter characterization of R∗
p(D1, D2, D3) is derived for an IID vector source (X1, X2, X3)

where X1 and X2 are independent, and we demonstrate the existence of such X1, X2, X3

for which R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3). We consider the code design problem of CVC

from an information theoretic perspective in Chapter 6 focusing on the optimum fixed-rate

scalar quantization design, and finally in Chapter 7, we summarize the thesis and offer

some future research directions.

To conclude this chapter, the main contributions of this thesis are listed as follows.

1. Propose an iterative algorithm with global convergence to calculateRc,n(D1, · · · , DN).

Given a distortion (quality) level D1, · · · , DN ≥ 0, we have proposed an algorithm to
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compute Rc,n(D1, · · · , DN) by iteratively updating transition probability and proba-

bility functions until a stationary point is reached. We further show that from any ini-

tial point satisfying some mild condition, this algorithm converges to an optimal solu-

tion that achieves Rc,n(D1, · · · , DN). Finding optimal solutions to Rc,n(D1, · · · , DN)

is actually a non-convex optimization problem. It is therefore kind of surprising

to see the global convergence of our proposed iterative algorithm. Although there

are many other ways to derive iterative procedures, however, it is not clear whether

their global convergence can be guaranteed. Having algorithms with global conver-

gence is important to not only numerical computation itself, but also single-letter

characterization of performance.

2. Find a new approach (computational approach) to establish the single-letter char-

acterization. One of the purposes in this thesis is to demonstrate for the first

time that single-letter characterization of performance can also be established in

a computational approach via algorithms with global convergence. In the computa-

tional approach, we first show that Rc,n(D1, · · · , DN) = Rc,1(D1, · · · , DN) for any

n > 1 by running our iterative algorithm, and then the single-letter characteriza-

tion R∗
c(D1, · · · , DN) = Rc,1(D1, · · · , DN) is implied following from the definition of

R∗
c(D1, · · · , DN). On the other hand, in the classic approach, the converse proof is

quite involved; coming up with auxiliary random variables with right Markov chain

conditions is always challenging and sometimes seems impossible. Even the single-

letter characterization is successful, the classic approach normally does not offer any

clue on how to compute the single-letter characterization. In this sense, the compu-

tational approach goes beyond what the classic approach does—once it is successful,

the computational approach not only establishes single-letter characterization, but

also computes it numerically and offers additional insights into code design.
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3. Demonstrate a somewhat surprising result dubbed the more and less coding theorem.

The more and less coding theorem is really counter intuitive. It says that whenever

some mild conditions on source frames and distortion are met, the more source frames

need to be encoded and transmitted, the less amount of data after encoding has to be

actually sent! If the cost of data transmission is proportional to the transmitted data

volume, this translates literally into a scenario where the more frames you download,

the less you would pay.

4. For the first time in the literature, obtain the single-letter characterization ofR∗
p(D1, D2, D3)

for a constructed IID vector source. Despite the fact that PVC is widely used in

practice, the single-letter characterization of R∗
p(D1, · · · , DN) in the usual informa-

tion theoretic sense, if any, is unknown in general, let alone any algorithm to actually

compute it. In this thesis, a single-letter characterization of R∗
p(D1, D2, D3) is de-

rived for an IID vector source (X1, X2, X3) where X1 and X2 are independent, for

the first time, which is critical to comparing the rate-distortion performance be-

tween CVC and PVC, and demonstrating the existence of such X1, X2, X3 for which

R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3).

5. Demonstrate the existence of such sources for which R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3).

The main difficulty to compare R∗
c(D1, D2, D3) with R∗

p(D1, D2, D3) lies in the fact

that when sources do not form a (first-order) Markov chain, there is no known algo-

rithm to compute R∗
p(D1, D2, D3) even though it has a single-letter expression. To

circumvent this problem, we instead look at the computation of R∗
c(D1, D2, D3). Our

strategy is to show that any predictive code cannot be a stationary point in com-

puting R∗
c(D1, D2, D3) by using the iterative algorithm. It is indeed an example to

show the superiority of computational approach to classic approach, in the sense that
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the strict inequality R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3) is shown by computational ap-

proach where the solution is still unknown by the classic approach.

6. For the first time in the literature, propose an algorithm for designing optimum

fixed-rate causal scalar quantizers (CSQ). We first put forth a concept called causal

scalar quantization, and then investigate how to design CSQ. By extending the clas-

sic Lloyd-Max algorithm for a single source to this multiple sources case, we propose

an algorithm for designing optimum fixed-rate CSQ to minimize the total distortion

among all sources. The proposed algorithm converges in the sense that the total

distortion cost is monotonically decreasing until a stationary point is reached. Simu-

lation results show that in comparison with fixed-rate predictive scalar quantization

(PSQ), fixed-rate CSQ offers as large as 16% quality improvement (distortion reduc-

tion). Since PVC is what all previous and current video coding standards fall into,

the rate-distortion performance gain of fixed-rate CSQ for CVC over fixed-rate PSQ

for PVC would be instructive to practice.

7. We generated the Markov lemma to correlated ergodic sources. Since the vector

source (X1, · · · , XN) now is not IID, but stationary and ergodic, the Markov lemma

in its simple form as expressed in [11, Lemma 15.8.1, Chapter 15] is not valid any

more. In this thesis, we extend the Markov lemma to be more general, from IID vector

source to stationary and ergodic sources, which itself is useful for other multiterminal

problems with stationary ergodic sources.

1.5 Notations and Acronyms

We model each frame Xk itself as a source Xk = {Xk(i)}∞i=1 taking values in a finite

alphabet Xk. Together, the N frames then form a vector source (X1, X2, · · · , XN) =
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{X1(i), X2(i), · · · , XN(i)}∞i=1 taking values in the product alphabet X1 × X2 × · · · × XN .

The sources X1, X2, · · · , XN are said to be (first-order) Markov if for any 1 < j ≤ N , Xj is

the output of a memoryless channel in response to input Xj−1; in this case, we say X1 →
X2 → · · · → XN forms a Markov chain. Let X̂k = {X̂k(i)}∞i=1 denote the reconstruction of

Xk = {Xk(i)}∞i=1 drawn from a finite reproduction alphabet X̂k. The distortion between X̂k

and Xk is measured by a single-letter distortion measure dk : Xk × X̂k → [0,∞). Without

loss of generality, we shall assume that

max
x∈Xk

min
x̂∈X̂k

dk(x, x̂) = 0

for any k = 1, 2, · · · , N . For convenience, we write {Xk(i)}n
i=1 simply as Xk(1;n) for

any k and n ≥ 1, and sometimes write a sequence xmxm+1 · · ·xn as xn
m unless specified

otherwise, where m ≤ n are two integers, and xn
1 as xn or simply x if n is clear from

the context. For any N dimensional vector V = (V1, V2, · · · , VN), denote (V1, · · · , Vt−1)

by V −
t , and (Vt+1, · · · , VN) by V +

t . As such, by X−
k (1;n) we shall mean that X−

k (1;n) =

(X1(1;n), · · · , Xk−1(1;n)). A similar convention will apply to reconstruction sequences

and other vectors.
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Chapter 2

Preliminaries and Related Works

2.1 Information Sources

In source coding theory, an information source is a sequence of discrete time random

processes X = {Xi}∞i=1 ranging over a finite alphabet A defined on a probability space

(A∞,F , PX), where F is a σ-field generated by subsets of A∞. All data sequences that

have to be compressed are assumed to be emitted from some information sources. The i-th

order joint distribution of the source X is the (probability) measure P
(i)
X on Ai defined by

P
(i)
X (xi

1) = Pr{X i
1 = xi

1}, xi
1 ∈ Ai.

Definition 1 (Stationary Source) A source X = {Xi}∞i=1 is stationary if

Pr{XL
1 = xL

1 } = Pr{Xj+L
j+1 = xL

1 }

for all lengths L, all integers j, and all sequences xL
1 ∈ AL.

Definition 2 (Ergodic Source) A source X = {Xi}∞i=1 is ergodic if every P -measurable,

invariant set of sequences B has either probability one or probability zero, i.e., T−1B = B

implies P (B) = 0 or P (B) = 1, where T denotes the right-shift transformation on A∞.
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Definition 3 (Totally Ergodic Source) A source X = {Xi}∞i=1 is totally ergodic if

every P -measurable set of sequences B such that TmB = B for any integer m has either

probability one or probability zero, where Tm denotes the right-shift transformation on A∞

by m positions.

Definition 4 (Shannon Entropy) The Shannon entropy H(X1) of a discrete random

variable X1 with alphabet A and probability mass function p : A → [0, 1] is defined by

H(X1) = −
∑
a∈A

p(a) log p(a).

The entropy of a random variable is a measure of the amount of information required on

the average to describe the random variable. If the base of logarithm is 2, then the entropy

is measured in bits. If the base of logarithm is e, then the entropy is measured in nats. We

use the convention that 0 log 0 = 0, which is consistent with the limit limp→0 p log p = 0.

Definition 5 (Shannon Entropy Rate) The Shannon entropy Rate H(X) of a source

X = {Xi}∞i=1 with alphabet A is defined by

H(X) = lim
n→∞

1

n
H(X1X2 · · ·Xn) (2.1)

when the limit exists.

The limit (2.1) exists if X is stationary and ergodic.

Definition 6 (Mutual Information) The mutual information I(X;Y ) of two discrete

random variables X and Y with alphabet A and B respectively, joint probability mass

function: p : A× B → [0, 1], and marginal probability mass functions: p1 : A → [0, 1], and

p2 : B → [0, 1] can be defined by

I(X;Y ) =
∑

a∈A
∑

b∈B p(a, b) log p(a,b)
p1(a)p2(b)
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Mutual information is a measure of the amount of information that one random variable

contains about another random variable. It is the reduction in the uncertainty of one

random variable due to the knowledge of the other.

Definition 7 (Relative Entropy) The relative entropy or Kullback Leibler distance

D(p||q) between two probability mass functions p : A → [0, 1] and q : A → [0, 1] is defined

by

D(p||q) =
∑
a∈A

p(a) log
p(a)

q(a)

The relative entropy is always non-negative and is zero if and only if p = q.

The most commonly used finite alphabet sources are independent, identically dis-

tributed (IID) sources.

Definition 8 (I.I.D Source) An alphabet A source X = {Xi}∞i=1 is an IID source if

there exits a probability function p : A → [0, 1], i.e., p satisfies

∑
a∈A

p(a) = 1,

such that

Pr{Xn = xn|Xn−1
1 = xn−1

1 } = p(xn)

for all n ≥ 1 and xn ∈ An.

Typicality is an important tool to prove coding theorems. Next we review the definition

of typicality and some basic properties [11], [17].

Definition 9 A sequence xn ∈ An is said to be ε-strongly typical with respect to a distri-

bution p : A → [0, 1] if
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1) for all a ∈ A with p(a) > 0, we have

| 1
n
N(a|xn) − p(a)| < ε

|A| ; (2.2)

2) and for all a ∈ A with p(a) = 0, N(a|xn) = 0,

where N(a|xn) is the number of occurrences of the symbol a in the sequence xn.

Definition 10 A pair of sequences (xn, yn) ∈ An ×Bn is said to be ε-strongly typical with

respect to a distribution p : A× B → [0, 1] if

1) for all (a, b) ∈ A× B with p(a, b) > 0, we have

| 1
n
N(a, b|xn, yn) − p(a, b)| < ε

|A||B| ; (2.3)

2) and for all (a, b) ∈ A× B with p(a, b) = 0, N(a, b|xn, yn) = 0,

where N(a, b|xn, yn) is the number of occurrences of the symbol (a, b) in the sequence

(xn, yn).

The set of all ε-strongly typical sequences xn ∈ An with respect to p : A → [0, 1]

is denoted by A
∗(n)
ε (X), and the set of all jointly ε-strongly typical sequences (xn, yn) ∈

An × Bn with respect to p : A×B → [0, 1] is denoted by A
∗(n)
ε (X, Y ).

Lemma 1 Let Xi be drawn IID ∼ p(x). Then Pr(A
∗(n)
ε (X)) → 1 as n→ ∞.

Lemma 2 Let (Xi, Yi) be drawn IID ∼ p(x, y). Then Pr(A
∗(n)
ε (X, Y )) → 1 as n→ ∞.

Lemma 3 Let Y1, Y2, ..., Yn be drawn IID ∼ ∏
p(y). For xn ∈ A

∗(n)
ε (X), the probability

that (xn, Y n) ∈ A
∗(n)
ε is bounded by

2−n(I(X;Y )+ε1) ≤ Pr((xn, Y n) ∈ A∗(n)
ε ) ≤ 2−n(I(X;Y )−ε1) (2.4)

where ε1 goes to 0 as ε→ 0 and n→ ∞.
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Lemma 4 (Markov-Lemma) Let (X, Y, Z) form a Markov chain X → Y → Z, i.e.,

p(x, y, z) = p(x, y)p(z|y). If for a given (yn, zn) ∈ A
∗(n)
ε (Y, Z), Xn is drawn ∼ ∏n

i=1 p(xi|yi),

then Pr{(Xn, yn, zn) ∈ A
∗(n)
ε (X, Y, Z)} > 1 − ε for n sufficiently large.

Lemma 1 to Lemma 3 can be also generated to stationary and ergodic sources Xn and

Y n correspondingly, and an extended Markov lemma is established for stationary ergodic

sources in Chapter 3.

2.2 Rate-distortion Theory

Shannon originated the studies on source coding with a fidelity criterion (later coined the

term “rate-distortion theory” in [37]) in his early paper [36]. In rate-distortion theory, one

is interested in determining the minimum amount of bits with which data generated by a

given source can be compressed via a code from a class of codes, subject to a constraint on

the distortion in reconstruction of the encoded data. In this section, we present an overview

of the history and significant results of rate-distortion theory, including rate-distortion

theory emphases on the point-to-point communication system and multiterminal system,

respectively, and also the computation algorithm for calculating corresponding information

quantities.

2.2.1 Classic Rate-distortion Theory

In the early days when there was less need for communication than today, point-to-point

communication systems were the dominant. In a point-to-point system, there is only one

source at the encoder and one receiver at the decoder.

The encoder describes the source sequence Xn = {Xi}n
i=1 ∈ X n by a compact binary

representation, and the decoder reconstructs Xn by an estimate X̂n ∈ X̂ n which is not
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Encoder Decoder
nX nX̂

Figure 2.1: Source coding with one encoder and one decoder

identical to Xn from the binary representation, as illustrated in Figure 2.1.

To determine the minimum amount of bits that should be communicated over a noiseless

channel, so that the source can be approximately reconstructed at the receiver without

exceeding a given distortion, the rate-distortion function is introduced.

The simplest case to which we shall restrict attention for now, is that:

1. Xi is an IID source with distribution p(x), x ∈ X .

2. The distortion between source sequence xn ∈ X n and reproduction sequence x̂n ∈ X̂ n

is defined by

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i),

where d(·, ·) : X × X̂ → R+ is called a single-letter distortion measure. Examples of

popular distortion measures are:

(a) Hamming (probability of error) distortion. The Hamming distortion is given by

d(x, x̂) =

⎧⎨
⎩

0 if x = x̂

1 if x 	= x̂
, (2.5)

which results in a probability of error distortion, since Ed(X, X̂) = Pr(X 	= X̂).

This distortion measure is usually used for discrete alphabets.

(b) Squared error distortion. The squared error distortion is defined by

d(x, x̂) = (x− x̂)2, (2.6)
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which is the most popular distortion measure used for continuous alphabets.

3. Formally, we define an order-n rate-distortion code Cn for Xn consisting of an en-

coding function,

fn : X n → {0, 1}∗,

and a decoding function,

gn : {0, 1}∗ → X̂ n,

where {0, 1}∗ denotes a prefix set of all binary sequences of finite length. The encoded

and reconstructed sequences of Xn are given respectively by S = fn(Xn) and X̂n =

gn(S).

The distortion between Xn and X̂n is given by

d(Xn, X̂n) =
n∑

i=1

d(Xi, X̂i),

the average distortion Dx per symbol is then equal to

Dx
Δ
=

1

n
E

[
d(Xn, X̂n)

]
,

and the average transmission rate Rx per symbol is defined by

Rx
Δ
=

1

n
E|S|,

where |S| denotes the length of the binary sequence S.

Definition 11 The rate-distortion pair (R,D) is said to be achievable if ∀ε > 0,

there exists an order-n rate-distortion code (fn, gn) for all sufficiently large n such

that

Rx ≤ R+ ε and Dx ≤ D + ε. (2.7)
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Definition 12 The rate-distortion region for a source is the closure of the set of

achievable rate-distortion pairs (R,D).

Definition 13 The rate-distortion function R(D) is the infimum of rates R such

that (R,D) is in the rate distortion region of the source for a given distortion D.

Shannon defined the rate-distortion function R(D) of an IID source as follows.

Definition 14 The rate-distortion function for an IID source {Xk} with distribution

p(x) with respect to the single-letter fidelity criterion generated by d(·, ·) is defined by

R(D) = inf
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂) (2.8)

2.2.2 Multiterminal Rate-distortion Theory

In practical communications, it is always the case that not all the sources of interest are

generated in one place. If a system has more than one source and at least one user, it

is called a multiterminal system. Unlike the classic point-to-point system, the source of

multiterminal source coding problems is produced at each of several physical distinct places

(terminals). Due to the complexity and power constraints, the transmitters are often not

allowed to communicate with each other. When the source generated at one terminal is

independent of that generated at every other terminals, then the multiterminal system

degenerates into many classic point-to-point systems that are operationally independent

of each other. A non-trivial case is that a source produced at one terminal is correlated

with some other terminals, which often is possible to save a considerable amount of coding

rate by designing a more sophisticated multiterminal system than simply estimating each

source individually. The discipline that treats such situations is known as multiterminal

information theory.
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nYnY
Figure 2.2: Source coding with side information at both encoder and decoder

A seminal research on multiterminal source coding theory was launched by Slepian and

Wolf [40] in 1973, which considered separate lossless compression of two correlated sources,

and showed that the sum of the coding rates required by the two encoders is no more

than when the two sources are connected to both encoders. This work was subsequently

extended to the lossy source coding case. In 1976, Wyner and Ziv [44] considered the

situation in which one of the sources is fully available at the decoder, and it is used to

make an estimation of the other source subject to a given distortion criterion. Unlike

Slepian-Wolf coding, there is in general a rate loss1 [20][2, Sec. 6.1.1] in Wyner-Ziv coding

[44] compared to the lossy source coding problem when the encoder also has full information

on the other source, which considered lossy source coding with side information2 at both

encoder and decoder.

We illustrate the case of side information available at both encoder and decoder in

Fig 2.2. Let (Xn, Y n) = {(Xi, Yi)}∞i=1 be a sequence of independent copies of an information

source vector (X, Y ) taking values from X and Y respectively. The source X is encoded

with the help of side information Y . The decoder, which also access to Y , estimates

X within a distortion constraint D ≥ 0 for some distortion measure d(·, ·), then we use

1An exception happens when the source and side information are jointly Gaussian and the distortion
measure is mean-squared error (MSE) [43].

2Besides the message at the encoder, and the received signal at the decoder, if any type of useful
information is added to encoder or decoder’s information, it will be called side information.
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conditional rate-distortion function [20] to characterize the minimum achievable rate per

symbol for (X, Y ) under the constraint that X is recovered with distortion level no greater

than D, which is

RX|Y (D)
Δ
= min

X̂:Ed(X,X̂)≤D
I(X; X̂|Y ) (2.9)

where the minimum is taken over all auxiliary random variables X̂ ∈ X̂ jointly distributed

with (X, Y ) such that Ed(X, X̂) ≤ D.

Soon after the seminal piece of research by Wyner and Ziv, a number of papers on

multiterminal lossy source coding were presented, summarized by Berger [3] in 1977. Some

celebrated works by Berger and Tung [4][41], Chang [8], Omura and Housewright [30],

Shohara [39], and Sgarro [35] are included therein. Furthermore, some new multiterminal

rate-distortion models and problems are proposed which laid foundations that supported

new developments on both theoretical and practical fronts, including the multiple de-

scription problem [19][18] , the sucessive refinement problem [16], and the CEO problem

[6][5][31], applications of which to image, audio and video coding are currently under de-

velopment.

2.2.3 Iterative Computation Algorithms

Since 1970s, the area of computation of rate-distortion functions was rejuvenated, which

deepened the understanding of the development and research insights.

In 1972, Blahut [7] found a numerical algorithm for calculating rate-distortion functions.

The algorithm is an elegant iterative technique for numerically obtaining R(D) defined in

(2.8) of arbitrary finite input/output alphabet sources. The iterations are between marginal

distribution qX̂ and transition probability pX̂|X to minimizes the mutual information in

(2.8) subject to the distortion constraint D. Specifically, we first rewrite (2.8) as a double
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minimization, that is

R(D) = min
r(x̂)

min
p(x̂|x):

∑
p(x)p(x̂|x)d(x,x̂)≤D

∑
x

∑
x̂

p(x)p(x̂|x) log
p(x̂|x)
r(x̂)

= min
p(x)p(x̂|x)∈A

min
p(x)r(x̂)∈B

D(p(x)p(x̂|x)||p(x)r(x̂)). (2.10)

Since both of the two alternating sets– one is the set A of all joint distributions with

marginal p(x) satisfying the distortion constraints, and the other one is the set B of product

distributions p(x)r(x̂) with arbitrary r(x̂) – are convex and the distance measure between

A and B is the relative entropy, we can use the method of Lagrange multipliers to solve

the minimization problem above with a choice of λ and an initial output distribution r(x̂)

such that r(x̂) > 0 for all x̂ ∈ X̂ , and obtain

p(x̂|x) =
r(x̂)e−λd(x,x̂)∑
x̂ r(x̂)e

−λd(x,x̂)
. (2.11)

For this p(x̂|x), we then calculate the output distribution r(x̂) as

r(x̂) =
∑

x

p(x)p(x̂|x). (2.12)

This r(x̂) is used as the starting point of the next iteration. Each step in the iteration,

minimizing over p(x̂|x) and r(x̂) reduces the right-hand-side of (2.10). Thus there is a limit,

and the limit has been shown to be R(D) by Csiszar [12] in 1974, which proved the global

convergence3 of Blahut’s algorithm, i.e., starting from any initial probability distribution

pX̂ over the reproduction alphabet that has only positive components, the algorithm always

terminates at one single optimal point (D,R(D)). In the same year, Blahut [7] and Ari-

moto [1] found an analogous algorithm to compute the capacity of channels independently.

More general max-max and min-min alternating optimization algorithms are developed by

3An iterative algorithm is called convergent if the corresponding objective function value in each iter-
ation step converges for given initial points.
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Csiszar and Tusnady [13] in 1984. The alternating minimization procedure of Csiszar and

Tusnady can be specialized to many other situations as well, including the EM algorithm

[14] and the algorithm for finding the log-optimal portfolio for a stock market [10].

2.3 Conventional Optimum Fixed-Rate Scalar Quan-

tization Design

Rate-distortion theory can be applied to both discrete and continuous random variables.

Since a continuous source can not be reproduced exactly using a finite rate code, to repre-

sent such a source by using a finite number of bits, the problem is to find the best possible

representation for any given rate, that is, to design optimum quantization in the sense that

the expected distortion between the source and output representation is minimized for a

given rate.

The simplest quantization is scalar quantization which is the process of using a quan-

tization function to map a scalar (one-dimensional) input value to a scalar output value.

An L-level scalar quantizer φ is a mapping from the real line R onto a finite set consisting

of L reproduction levels y0 < y1 < · · · < yL−1 :

x ∈ R → φ(x) ∈ Y Δ
={y0, y1, · · · , yL−1}. (2.13)

Let

Ci = {x ∈ R : φ(x) = yi}, 0 ≤ i ≤ L− 1 (2.14)

Given a real random variable X, the distortion resulting from quantizing X by φ is

Dφ = E[d(X, φ(X))] (2.15)

Fix L, an optimum fixed-rate scalar quantizer φ is uniquely determined by {(Ci, yi)}L−1
i=0

such that Dφ is minimized among all fixed-date scalar quantizers with rate R = �logL�.
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To design optimum scalar quantizers, Lloyd [24] and Max [28] independently proposed

an algorithm which will converge to a local minimum of the distortion, which is called

Lloyd-Max algorithm: starting with a set of initial reproduction points Y (0), we first find

the optimal set of classifications C
(0)
i , 0 ≤ i ≤ L − 1, for each reproduction point in

Y (0), and then find the new optimal reproduction points Y (1) for every classification set

C
(0)
i , 0 ≤ i ≤ L − 1. Repeating the above iterations, the expected distortion is decreased

at each step in the algorithm until it converges to a local minimum of Dφ.

2.4 Related Works

When N = 2, the causal coding model is the same as the sequential coding4 of correlated

source proposed by Viswanathan and Berger in [42], in which they analytically characterize

the achievable rate region and minimum total rate in the usual information theoretic sense.

However, how to determine the bits that have to be allocated at different frames to minimize

the total rate remains open, and it is pointed out as one of the future works in [42].

Recently, some works of Nan and Prakash [26], [25], and [27] investigate the sequential

coding of correlated sources with different configurations of encoding and/or decoding

frame delay to see how frame delay will have impact on the performance; its focus is only

on the performance characterization for the IID case. The overlap with our work lies in

the characterization of achievable rate region and minimum total rate of 3-frame causal

coding, which is presented in the work of Ma and Ishwar [26] with an informal sketch

proof by following the classic approach, and which is contained as a special case in our

Chapter 3. However, when N > 2, which is a typical case in MPEG-series and H-series

4The name of sequential coding was used in [42] to refer to a special video coding paradigm where the
encoder for frame Xk, k > 1, can only use the previous frame Xk−1 as a helper and the corresponding
decoder uses only the previous encoded frame Sk−1 and reconstructed frame X̂k−1 as a helper.
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video coding, the causal coding model considered here is quite different from sequential

coding. In a special case where all frames are identical, which rarely happens in practical

video coding, the CVC model is reduced to the successive refinement setting considered

in [16]. Notwithstanding, when frames are not identical, CVC is drastically different from

successive refinement even though the decoding structure looks similar in both cases.
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Chapter 3

Information Theoretic

Characterization

3.1 Problem Formulation and Definitions

Recall the CVC model, as shown in Figure 3.1. The encoder of frame Xk, k = 1, · · · , N, can

use all previous frames Xj , in addition to previously encoded frames Sj , j = 1, 2, · · · , k−1

as side information, and the corresponding decoder can use only all previously encoded

frames. Each video frame Xk itself is a discrete stationary source Xk = {Xk(i)}∞i=1 taking

values in a finite alphabet Xk—that is, the N frames can be regarded as N correlated

sources taking values in the product alphabet X1 × X2 × · · · × XN .

Formally, we define an order-n causal video code Cn for X1, · · · , XN by using N encoder

and decoder pairs as follows1:

1It is worthwhile to point out that as far as CVC alone is concerned, there is no need to explicitly list
previous encoded frames S−

k as inputs to the encoder for the current frame Xk in both the CVC diagram
shown in Figure 1.3 and the formal definition of causal video code given here, and all results and their
respective derivations presented in the thesis remain the same. The reason for us to explicitly list S−

k
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Figure 3.1: Causal video coding model

1. For X1, an encoder of order n is defined by a function f1 from X n
1 to {0, 1}∗, the set

of all binary sequences of finite length, satisfying the property that the range of f1

is a prefix set, and a decoder of order n is defined by a function

g1 : {0, 1}∗ → X̂ n
1 .

The encoded and reconstructed sequences of X1(1;n) are given respectively by S1 =

f1(X1(1;n)) and X̂1(1;n) = g1(S1).

as inputs to the encoder for the current frame Xk is two-fold: (1) it makes the subsequent information
quantities more transparent and intuitive—connecting those information quantities to the diagram with
S−

k linked to the respective encoder is easier than to that without S−
k linked to the respective encoder—and

(2) more importantly it gives us a simple, unified way to describe PVC in the context of CVC and contrast
the two coding paradigms in our forthcoming work on the information theoretic performance comparison
of PVC and CVC.
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2. For Xk, k = 2, · · · , N , an encoder of order n is defined by a function

fk : X n
1 × · · · × X n

k ×
k−1 times︷ ︸︸ ︷

{0, 1}∗ × · · · × {0, 1}∗

→ {0, 1}∗

satisfying the property that the range of fk given any k − 1 binary sequences is a

prefix set, and a decoder of order n is defined by a function

gk :

k times︷ ︸︸ ︷
{0, 1}∗ × · · · × {0, 1}∗ → X̂ n

k .

The encoded and reconstructed sequences of Xk(1;n) are given respectively by Sk =

fk(X
−
k (1;n), Xk(1;n), S−

k ) and X̂k(1;n) = gk(S
−
k , Sk).

For k = 1, · · · , N , the distortion between Xk(1;n) and X̂k(1;n) is given by

dk(Xk(1;n), X̂k(1;n)) =

n∑
i=1

dk(Xk(i), X̂k(i))

the corresponding average distortion per symbol is then equal to

Dxk
Δ
=

1

n
E

[
dk(Xk(1;n), X̂k(1;n))

]

and the average rate in bits per symbol of the kth encoder is

Rxk
Δ
=

1

n
E|Sk|

where |Sk| denotes the length of the binary sequence Sk. The performance of the order-n

causal video code Cn is then measured by the N rate distortion pairs (Rxk, Dxk), k =

1, · · · , N .
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Definition 15 Let (R1, · · · , RN) be a rate vector and (D1, · · · , DN) a distortion vector.

The rate distortion pair vector (R1, · · · , RN , D1, · · · , DN) is said to be achievable by CVC

if ∀ε > 0, there exists an order-n causal video code {(fk, gk)}N
k=1 for all sufficiently large n

such that

Rxk ≤ Rk + ε and Dxk ≤ Dk + ε (3.1)

for k = 1, · · · , N .

Let R∗
c denote the set of all rate distortion pair vectors (R1, · · · , RN , D1, · · · , DN)

achievable by CVC. From the above definition, it follows that R∗
c is a closed set in the

2N -dimensional Euclidean space. As in the usual video compression applications, we are

interested in the minimum total rate R∗
c(D1, · · · , DN) required to achieve the distortion

level (D1, · · · , DN), which is defined by

R∗
c(D1, · · · , DN)

Δ
= min{R1 +R2 + · · ·+RN :

(R1, · · · , RN , D1, · · · , DN) ∈ R∗
c} .

One of our purposes in this thesis is to numerically compute, analytically characterize, and

compare R∗
c(D1, · · · , DN) so that deep insights can be gained regarding how each frame

should be encoded in order to have a minimum total rate.

3.2 Achievable Region and Minimum Total Rate

3.2.1 Totally Ergodic Sources

Suppose now that (X1, X2, · · · , XN) is jointly stationary and totally ergodic across sam-

ples (pixels). Define Rc,n to be the region consisting of all rate distortion pair vec-

tors (R1, · · · , RN , D1, · · · , DN) for which there exist auxiliary random variables Uk, k =
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1, 2, · · · , N − 1, and X̂N (1;n) such that

R1 ≥ 1

n
I(X1(1;n);U1)

Rk ≥ 1

n
I(X1(1;n), · · · , Xk(1;n);Uk|U−

k )

k = 2, 3, · · · , N − 1

RN ≥ 1

n
I(XN(1;n); X̂N(1;n)|U−

N ) (3.2)

and the following requirements2 are satisfied:

(R1) X̂1(1;n) = g1(U1) for some deterministic function g1,

(R2) X̂k(1;n) = gk(U
−
k , Uk) for some deterministic function gk, k = 2, · · · , N − 1,

(R3) for any 1 ≤ k ≤ N , 1
n
E[dk(Xk(1;n), X̂k(1;n))] ≤ Dk, and

(R4) the Markov chain conditions Uk → (Xk(1;n), X−
k (1;n), U−

k ) → X+
k (1;n), k =

1, · · · , N − 1, and X−
N(1;n) → (XN(1;n), U−

N ) → X̂N(1;n) are met.

In (3.2) and throughout the rest of the thesis, the notation I stands for mutual informa-

tion or conditional mutual information (as the case may be) measured in bits, and the

notation H stands for entropy or conditional entropy (as the case may be) measured in

bits. Although there is no restriction on the size of the alphabet of each Uk in (3.2), one

can show, by using the standard cardinality bound argument based on the Caratheodory

theorem (see, for example, Appendix A of [42]), that the alphabet size of each Uk in (3.2)

can be bounded. Let R′
c =

⋃∞
n=1 Rc,n. Denote its convex hull closure by co(R′

c). Then we

have the following result.

2Throughout the thesis, X̂k(1; n), k = 1, 2, · · · , N , represents a random variable taking values over X̂n
k ,

the n-fold product of the reproduction alphabet X̂k; on the other hand, Uk, k = 1, 2, · · · , N −1, represents
a random variable taking values over an arbitrary finite alphabet.
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Theorem 1 For jointly stationary and totally ergodic sources X1, · · · , XN , R∗
c = co(R′

c).

The positive part of Theorem 1 (i.e., co(R′
c) ⊆ R∗

c) will be proved in Appendix B by

adopting a random coding argument similar to that for IID vector sources. Here we present

the proof of the converse part (i.e., R∗
c ⊆ co(R′

c)).

Proof of the converse part of Theorem 1: Pick any achievable rate distortion pair vector

(R1, · · · , RN , D1, · · · , DN) ∈ R∗
c . It follows from Definition 15 that for any ε > 0, there

exists an order-n causal video code Cn = {(fk, gk)}N
k=1 for all sufficiently large n such that

(3.1) holds. Let Sk and X̂k(1;n) be the respective encoded frame of and reconstructed

frame for Xk(1;n) given by Cn. Let Uk = Sk, k = 1, 2, · · · , N − 1. It is easy to see that

the Markov conditions Uk → (Xk(1;n), X−
k (1;n), U−

k ) → X+
k (1;n), k = 1, · · · , N − 1, are

satisfied. However, since SN depends in general on X−
N(1;n) in addition to XN(1;n) and

S−
N , the random variables X−

N(1;n), (XN(1;n), S−
N), and X̂N(1;n) do not necessarily form a

Markov chain in the indicted order. To overcome this problem, let q denote the conditional

probability distribution of X̂N(1;n) given (XN(1;n), S−
N). Define a new random variable

X̃N(1;n) which is the output of the channel q in response to the input (XN(1;n), S−
N).

Then it is easy to see that (XN(1;n), S−
N , X̃N(1;n)) and (XN(1;n), S−

N , X̂N(1;n)) have the

same distribution, and X−
N(1;n), (XN(1;n), S−

N), and X̃N(1;n) form a Markov chain. This,

together with (3.1), implies the following distortion upper bounds:

1

n
E[dk(Xk(1;n), X̂k(1;n))] ≤ Dk + ε (3.3)

for any k = 1, 2, · · · , N − 1, and

1

n
E[dN(XN(1;n), X̃N(1;n))] ≤ DN + ε . (3.4)
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Let us now verify rate lower bounds. In view of (3.1), we have

n(R1 + ε) ≥ H(S1)

= I(X1(1;n);S1)

= I(X1(1;n);U1) (3.5)

and for k = 2, · · · , N − 1,

n(Rk + ε) ≥ H(Sk|S−
k )

1)
= I(X−

k (1;n), Xk(1;n);Sk|S−
k )

= I(X−
k (1;n), Xk(1;n);Uk|U−

k ) (3.6)

where equality 1) is due to the fact that Sk is a function of (X−
k (1;n), Xk(1;n), S−

k ). For

the last frame, we have

n(RN + ε) ≥ H(SN |S−
N)

= H(SN , X̂N(1;n)|S−
N)

≥ H(X̂N(1;n)|S−
N)

≥ I(XN(1;n); X̂N(1;n)|S−
N)

= I(XN(1;n); X̃N(1;n)|U−
N ). (3.7)

With auxiliary random variables Uk, k = 1, · · · , N − 1, and X̃N (1;n) defined above, it

now follows from (3.3) to (3.7) and the desired Markov conditions that (R1 + ε, · · · , RN +

ε,D1 + ε, · · · , DN + ε) ∈ Rc,n ⊆ R′
c. Letting ε → 0 yields (R1, · · · , RN , D1, · · · , DN) ∈

co(R′
c), which in turn implies R∗

c ⊆ co(R′
c). This completes the proof of the converse part.
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To determine R∗
c(D1, · · · , DN) in terms of information quantities, we define for each

n ≥ 1

Rc,n(D1, · · · , DN)

Δ
=

1

n
min

{X̂k(1;n)}N
k=1

[I(X1(1;n); X̂1(1;n)) +

N−1∑
t=2

I(X1(1;n), · · · , Xt(1;n); X̂t(1;n)|X̂−
t (1;n)) +

I(XN(1;n); X̂N(1;n)|X̂−
N(1;n))] (3.8)

where the minimum is taken over all auxiliary random vectors X̂k(1;n), k = 1, 2, · · · , N ,

satisfying the following two requirements

(R5) for any 1 ≤ j ≤ N , 1
n
Edj(Xj(1;n), X̂j(1;n)) ≤ Dj, and

(R6) the Markov chains X̂k(1;n) → (Xk(1;n), X−
k (1;n), X̂−

k (1;n)) → X+
k (1;n), k =

1, · · · , N − 1, and X−
N(1;n) → (XN(1;n), X̂−

N(1;n)) → X̂N(1;n) hold.

We further define

Rc(D1, · · · , DN)
Δ
= inf{Rc,n(D1, · · · , DN) : n ≥ 1}. (3.9)

Then we have the following result.

Theorem 2 For jointly stationary and totally ergodic sources X1, · · · , XN ,

R∗
c(D1, · · · , DN) = Rc(D1, · · · , DN)

for any distortion level D1 > 0, · · · , DN > 0.

To prove Theorem 2, we need the following lemma, which is also interesting on its own

right.
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Lemma 5 The function Rc(D1, · · · , DN) is convex and hence continuous over the open

region D1 > 0, · · · , DN > 0.

Proof of Lemma 5: Fix D1 ≥ 0, · · · , DN ≥ 0. In view of the definition given in (3.8), it

is not hard to show that the sequence {nRc,n(D1, · · · , DN)} is sub-additive, that is,

(n+m)Rc,n+m(D1, · · · , DN)

≤ nRc,n(D1, · · · , DN) +mRc,m(D1, · · · , DN)

for any n and m. As such, Rc(D1, · · · , DN) can also be expressed as

Rc(D1, · · · , DN) = lim
n→∞

Rc,n(D1, · · · , DN). (3.10)

Next we derive an equivalent expression for Rc,n(D1, · · · ,
DN). Define

R̃c,n(D1, · · · , DN)
Δ
= inf{R1 + · · · +RN :

(R1, · · · , RN , D1, · · · , Dn) ∈ Rc,n}.

That is,

R̃c,n(D1, · · · , DN)

=
1

n
inf[I(X1(1;n);U1) +

N−1∑
t=2

I(X1(1;n), · · · , Xt(1;n);Ut|U−
t ) +

I(XN(1;n); X̂N(1;n)|U−
N )] (3.11)

where the infimum is taken over all auxiliary random variables U1, · · · , UN−1 and X̂N(1;n)

satisfying the requirements (R1) to (R4). By comparing (3.11) with (3.8), it is easy to see

that

Rc,n(D1, · · · , DN) ≥ R̃c,n(D1, · · · , DN). (3.12)
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On the other hand, pick any auxiliary random variables U1, · · · , UN−1 and X̂N(1;n) satis-

fying the requirements (R1) to (R4). Let X̂1(1;n), X̂2(1;n) · · · , X̂N−1(1;n) be defined as in

the requirements (R1) and (R2). Then in view of the Markov conditions in the requirement

(R4), we have

I(X1(1;n);U1)+
N−1∑
t=2

I(X1(1;n), · · · , Xt(1;n);Ut|U−
t )+

I(XN(1;n); X̂N(1;n)|U−
N )

= I(X1(1;n), · · · , XN(1;n);U1, · · · , UN−1, X̂N(1;n))

≥ I(X1(1;n), · · · , XN(1;n); X̂1(1;n), · · · , X̂N(1;n)) (3.13)

where the last inequality is due to the fact that X̂k(1;n) is a function of U1, · · · , Uk for

any k = 1, · · · , N − 1. To continue, we now verify Markov conditions involving X̂k(1;n).

It is not hard to see that the first N − 1 Markov conditions in the requirement (R4),

Uk → (Xk(1;n), X−
k (1;n), U−

k ) → X+
k (1;n), k = 1, · · · , N − 1, are equivalent to the

following conditions:

(R7) for any 1 ≤ k ≤ N − 1, X+
k (1;n) and (U1, · · · , Uk) are conditionally independent

given X−
k (1;n) and Xk(1;n).

From this, it follows that for any 1 ≤ k ≤ N −1, X+
k (1;n) and (X̂1(1;n), · · · , X̂k(1;n)) are

conditionally independent given X−
k (1;n) and Xk(1;n). Applying the equivalence again,

we see that the first N − 1 Markov conditions involving X̂k(1;n) in the requirement (R6)
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are satisfied. Therefore, we have

I(X1(1;n), · · · , XN(1;n); X̂1(1;n), · · · , X̂N(1;n))

= I(X1(1;n), · · · , XN(1;n); X̂1(1;n)) +
N∑

k=2

I(X1(1;n), · · · , XN(1;n); X̂k(1;n)|X̂−
k (1;n))

1)
= I(X1(1;n); X̂1(1;n)) +

N−1∑
k=2

I(X1(1;n), · · · , Xk(1;n); X̂k(1;n)|X̂−
k (1;n))

+ I(X1(1;n), · · · , XN(1;n); X̂N(1;n)|X̂−
N(1;n))

≥ I(X1(1;n); X̂1(1;n)) +
N−1∑
k=2

I(X1(1;n), · · · , Xk(1;n); X̂k(1;n)|X̂−
k (1;n))

+ I(XN(1;n); X̂N(1;n)|X̂−
N(1;n)) (3.14)

where the equality 1) follows from the N − 1 Markov conditions involving X̂−
N(1;n). Note

that the last Markov condition in the requirement (R6) may not be valid for X̂N (1;n). To

overcome this problem, we use the same technique as in the proof of the converse part of

Theorem 1 to construct a new random vector X̃N(1;n) such that the following hold:

• (XN(1;n), X̂−
N(1;n), X̂N(1;n)) and (XN(1;n), X̂−

N(1;n), X̃N(1;n)) have the same dis-

tribution, and

• the Markov condition X−
N(1;n) → (XN(1;n), X̂−

N(1;n)) → X̃N(1;n) is met.
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Therefore, the random variables X̂−
N(1;n) and X̃N(1;n) satisfy the requirements (R5) and

(R6). This, together with (3.14), (3.13), and (3.8), implies

I(X1(1;n);U1)+
N−1∑
t=2

I(X1(1;n), · · · , Xt(1;n);Ut|U−
t )+

I(XN(1;n); X̂N(1;n)|U−
N )

≥ I(X1(1;n); X̂1(1;n)) +
N−1∑
k=2

I(X1(1;n), · · · , Xk(1;n); X̂k(1;n)|X̂−
k (1;n))

+ I(XN(1;n); X̃N(1;n)|X̂−
N(1;n))

≥ nRc,n(D1, · · · , DN). (3.15)

Note that (3.15) is valid for any auxiliary random variables U1, · · · , UN−1 and X̂N(1;n)

satisfying the requirements (R1) to (R4). It then follows from (3.15) and (3.11) that

R̃c,n(D1, · · · , DN) ≥ Rc,n(D1, · · · , DN)

which, together with (3.12), implies that

Rc,n(D1, · · · , DN) = R̃c,n(D1, · · · , DN)

and (3.11) is an equivalent expression for Rc,n(D1, · · · , DN).

In comparison with (3.8), the equivalent expression (3.11) makes it easier to apply the

well-known time-sharing argument. By applying the time sharing argument to (3.11), it is

now not hard to see that Rc,n(D1, · · · , DN) is a convex function of (D1, · · · , DN) for each

n ≥ 1. The convexity of Rc(D1, · · · , DN) as a function of (D1, · · · , DN) then follows from

its equivalent expression (3.10) and the convexity of each Rc,n(D1, · · · , DN). Since a convex

function is continuous over an open region [34], this completes the proof of Lemma 5.
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Proof of Theorem 2: In view of the positive part of Theorem 1, it is not hard to see

that

R∗
c(D1, · · · , DN) ≤ Rc(D1, · · · , DN)

for any D1 ≥ 0, · · · , DN ≥ 0. Therefore, in what follows, it suffices to show

R∗
c(D1, · · · , DN) ≥ Rc(D1, · · · , DN) (3.16)

for any D1 > 0, · · · , DN > 0.

Now fix D1 > 0, · · · , DN > 0. Pick any rate vector (R1, · · · , RN) such that

(R1, · · · , RN , D1, · · · , DN) ∈ R∗
c . From the proof of the converse part of Theorem 1, it

follows that for any ε > 0 and sufficiently large n, there exist auxiliary random variables

Uk, k = 1, · · · , N −1, and X̂N(1;n) satisfying the requirements (R1) to (R4) with each Dk

replaced by Dk + ε such that

n(R1 + · · · +RN +Nε)

≥ I(X1(1;n);U1) +

N−1∑
t=2

I(X1(1;n), · · · , Xt(1;n);Ut|U−
t ) +

I(XN(1;n); X̂N(1;n)|U−
N )

which, coupled with the equivalent expression (3.11) for Rc,n(D1, · · · , DN), further implies

n(R1 + · · ·+RN +Nε)

≥ nRc,n(D1 + ε, · · · , DN + ε)

≥ nRc(D1 + ε, · · · , DN + ε). (3.17)

In view of Lemma 5, dividing both sides of (3.17) by n and then letting ε → 0 yield

R1 + · · ·+RN ≥ Rc(D1, · · · , DN)

from which (3.16) follows. This completes the proof of Theorem 2.
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Remark 1 Theorems 1 and 2 remain valid for general stationary ergodic sources X1, · · · , XN .

However, the technique adopted in the proof of the classic source coding theorem for a single

ergodic source [17], [2] can not be applied here. As such, a new proof technique has to be

applied; this will be addressed in the next section.

3.2.2 General Ergodic Sources

In this section, we extend Theorem 1 and Theorem 2 to general stationary and ergodic

sources. Suppose throughout this section that (X1, X2, · · · , XN) is general stationary and

ergodic.

Theorem 3 For general stationary and ergodic sources X1, · · · , XN , R∗
c = co(R′

c).

The main difficulty ro prove Theorem 3 is that if the vector source is not totally ergodic,

Xi and S−
i may not be order-n ergodic, and as a consequence, Si may not be found in the

proposed coding scheme. This difficulty can be overcome by constructing sliding-block

codes instead of traditional block codes. Such strategy has been used by Kieffer in [22]

to prove some multi-terminal sliding-block source coding theorems. It was shown in [22]

that it is possible to construct the desired sliding-block codes directly without first finding

block codes. Furthermore, it follows [21, Theorem 1] that the existence of sliding-block

codes imply the existence of block codes. In this section, the same technique as in [22]

is applied to prove the sliding-block source coding theorem of CVC for general stationary

ergodic sources, and we further verify that Theorem 1 and Theorem 2 remain valid for

general stationary ergodic sources X1, · · · , XN .

Without losing generality, we will consider the case where N = 3. All results and

discussions can be easily extended to the case of N > 3. If there is no ambiguity, we write

X1(1;n), X2(1;n), X3(1;n) as X1, X2, X3 respectively. Using a similar terminology as in

45



[22], if X, Y are processes defined on the same measurable space, we write X < Y as a

shorthand for the property that X is a stationary coding3 of Y . The stationary code φ is

called a sliding-block code if there exists for some integer m a map φ′ : A2m+1 → B such

that φ(x)i = φ′(xi−m, · · · , xi+m), x ∈ A∞, i ∈ Z, where Z denotes the set of integers. We

call a process X with state A aperiodic if Pr[X = x] = 0 for every x ∈ A∞.

We write X < Y (D) if X, Y are jointly stationary and

Pr[X0 	= φ(Y )0] < D,

for some stationary code φ. That is, X < Y (D) means that we can decode Y to obtain an

estimate of X to within the distortion level D. Note that, the relation “<” is transitive.

In this proof, we extend the two-step technique in [22] to our case.

Step I: The first step of our method is similar to [22] that we replace each Ui, i = 1, · · · , N,
one by one with a sliding-block encoding Ũi of (X i

1, Ũ
i−1
1 ), so that the same rate

and distortion levels are maintained. ([22, Lemma 1 and Lemma 2] allow us to

immediately perform this step.)

Step II: The second step is to sliding-block encode each block code (Ũ1, · · · , Ũi), i =

1, · · · , N, into a process Ûi with an arbitrarily small increase in rates. Since our

encoders are cascaded, a “random punctuation” construction method specified in

[38] can be applied to convert a block code to a lossless sliding-block code so that a

small amount of additional distortion is introduced in going from Ûi back to Ũi that

maintains the original distortion levels for recovering X1, · · · , XN .

Before proving Theorem 3, we need the following theorem, which also provides a sliding-

block version of source coding theorem for causal video coding itself.

3If A, B are finite sets, a map φ : A∞ → B∞ is called a stationary code if it is measurable and if
φ(TAx) = TB(φ(x)), for all x ∈ A∞, where TA, TB denote the shifts on A∞, B∞, respectively.
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Theorem 4 For jointly stationary and ergodic sources X1, X2, X3, let X1, X2, X3, U1, U2, U3

be jointly stationary processes, and the following Markov chains are satisfied:

(R8) (X2, X3) → X1 → U1,

(R9) X3 → (U1, X1, X2) → U2,

(R10) (X1, X2) → (U1, U2, X3) → U3.

Let R1, R2, R3 and D1, D2, D3 be positive numbers such that

a) R1 > I(X1;U1), R2 > I(X1X2;U2|U1), R3 > I(X3;U3|U1U2),

b) X1 < U1(D1), X2 < U1U2(D2), and X3 < U1U2U3(D3).

Then there exist processes Û1, Û2, Û3 such that

c) Û1 < X1, Û2 < X1X2Û1, Û3 < X3Û1Û2,

d) H(Û1) < R1, H(Û2) < R2, H(Û3) < R3,

e) X1 < Û1(D1), X2 < Û1Û2(D2), and X3 < Û1Û2Û3(D3).

Proof of Theorem 4:

Case 1) H(X1) = 0, H(X2) = 0, H(X3) = 0 : take Û1 = X1, Û2 = X2, Û3 = X3.

Case 2) H(X1) = 0, H(X2) = 0, H(X3) 	= 0 : since X2X3 → X1 → U1, X3 → X1X2U1 →
U2 andH(X1) = 0, H(X2) = 0, we have I(X3;U1U2) = I(X3;U1U2|X1X2) = 0. Hence

I(X3;U3|X1X2) ≤ I(X3;U1U2U3)

= I(X3;U3|U1U2) + I(X3;U1U2)

< R3. (3.18)
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Using [22, Lemma 1 and 2] to replace U3 by deterministic encoding that Ũ3 < X3 so

that H(Ũ3|X1X2) < R3, and X3 < X1X2Ũ3(D3). We then apply Step II to encode

Ũ3 into a lossless sliding-block encoding Û3 so that the desired rate and distortion

are obtained. Setting Û1 = X1, and Û2 = X2, c) to e) hold.

Case 3) H(X1) = 0, H(X2) 	= 0, H(X3) = 0 : since X2X3 → X1 → U1 and H(X1) = 0,

we have I(X2;U1) = I(X2;U1|X1) = 0. Hence

I(X2;U2|X1) ≤ I(X2;U1U2)

= I(X2;U2|U1)

1)
= I(X1X2;U2|U1)

< R2,

where the equality 1) follows from H(X1) = 0. Using [22, Lemma 1 and 2] to re-

place U2 by deterministic encodings that Ũ2 < X2, so that H(Ũ2|X1) < R2, and

X2 < X1Ũ2(D2). Applying Step II much as the case 2) to encode Ũ2 into a lossless

sliding-block encoding Û2 with the required rate and distortion level for recovering

X2 maintained, and setting Û1 = X1, Û3 = X3, c) to e) hold.

Case 4) H(X1) = 0, H(X2) 	= 0, H(X3) 	= 0 : since X2X3 → X1 → U1 and H(X1) = 0,

we have I(X2X3;U1) = 0. Hence

I(X3;U3|X1U2) = I(X3;U3|U1U2)

< R3

I(X2;U2|X1) = I(X2;U2|U1)

= I(X1X2;U2|U1)

< R2
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Using [22, Lemma 1 and 2] to successively replace U2, U3 by deterministic encodings

that Ũ2 < X2, Ũ3 < X3X1Ũ2 so that

H(Ũ2|X1) < R2

H(Ũ3|Ũ2X1) < R3

and X2 < X1Ũ2(D2), X3 < X1Ũ2Ũ3(D3). Applying Step II to cascaded encode a block

code (Ũ2, Ũ3) into a lossless sliding-block encoding (Û2, Û3) without changing R2 and

R3 significantly, and setting Û1 = X1, c) to e) hold.

Case 5) H(X1) 	= 0, H(X3) = 0 : in this case, no matter H(X2) equals to zero or not,

we can always distinguish between two subcases: i) R2 = 0, and ii) R2 > 0. In

subcase i), repeat the discussion in Case 2) and Case 3) for X1, it is not hard to find

a Û1 < X1 so that H(Û1) < R1 and X1 < Û1(D1). Setting Û2 = X2, Û3 = X3, c) to

e) hold. In subcase ii), we observe that

I(X1;U1) < R1

I(X1X2;U2|U1) < R2.

Using [22, Lemma 1 and 2] much as in Case 4), we can successively replace U1, U2 by

deterministic encodings that Ũ1 < X1, Ũ2 < X1X2Ũ1 so that

H(Ũ1) < R1

H(Ũ2|Ũ1) < R2

and X1 < Ũ1(D1), X2 < Ũ1Ũ2(D2). Applying Step II to cascaded encode a block code

(Ũ1, Ũ2) into a lossless sliding-block encoding (Û1, Û2) so that H(Û1) < R1, H(Û2) <

R2, and setting Û3 = X3, c) to e) hold.
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Case 6) H(X1) 	= 0, H(X3) 	= 0 : in this case, no matter H(X2) is zero or not, we can

always distinguish between two subcases: i) R2 = 0, and ii) R2 > 0. In subcase i),

repeat the discussion in Case 4) for (X1, X3), it is not hard to find a Û1 < X1 so

that H(Û1) < R1 and X1 < Û1(D1), and Û3 < X3U1X2 so that H(Û3) < R3 and

X3 < Û1X2Û3(D3). Setting Û2 = X2, c) to e) hold. In subcase ii), the processes

U1, U2, U3 are stochastic encoding of the aperiodic processes X1, X1X2U1, X3U1U2,

respectively. Therefore, we can use [22, Lemma 1 and 2] to successively replace

U1, U2, U3, in that order, by deterministic encodings. Consequently, we may assume

that U1 < X1, U2 < X1X2U1, U3 < X3U1U2. The assumptions a) reduce to

a’) R1 > H(U1), R2 > H(U2|U1), R3 > H(U3|U1U2).

Applying Step II to cascaded encode (U1, U2, U3) into a lossless sliding-block code

(Û1, Û2, Û3) so that H(Û1) < R1, H(Û2) < R2, H(Û3) < R3. It is easy to verify that

c) to e) hold.

Note that the encoders and decoders in this theorem are stationary codes, however, by [9,

Theorem 3.1] they may be replaced by sliding-block codes. This completes the proof of

Theorem 4.

Proof of Theorem 3: In view of Theorem 4 and [21, Theorem 1] that sliding-block coders

can always imply the existence of block coders, it follows that (R1, R2, R3, D1, D2, D3) ∈
Rc,n ⊆ co(R′

c), which in turn implies R∗
c ⊆ co(R′

c). This completes the proof of Theorem 3

under the case N = 3. Theorem 4 can be easily extended to the case of N > 3, and

Theorem 3 remains valid.

Having Theorem 3, we see that an argument similar to that used in the proof of The-

orem 2 leads to the following result.
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Theorem 5 For jointly stationary and ergodic sources X1, · · · , XN ,

R∗
c(D1, · · · , DN) = inf{Rc,n(D1, · · · , DN) : n ≥ 1}.

For general stationary ergodic sources X1, · · · , XN , Theorem 5 is probably the best

result one could hope for in terms of analytically characterizing R∗
c(D1, · · · , DN). However,

its impact on practical video coding will be limited if the optimization problem involved

can not be solved by an effective algorithm. To a large extent, this is also true even if

R∗
c(D1, · · · , DN) admits a single-letter characterization, and true for many other multi-

user information theoretic problems. In the following section, we will develop an iterative

algorithm to compute Rc,n(D1, · · · , DN) defined in (3.8), and establish its convergence to

the global minimum.
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Chapter 4

An Iterative Algorithm

In this chapter, an iterative algorithm is proposed to calculate Rc,n(D1, · · · , DN) defined

in (3.8), which serves three purposes in this thesis: first, it allows us to do numerical cal-

culations; second, the global convergence of this algorithm provides a completely different

approach to establish a single-letter characterization of R∗
c(D1, .., DN) when the N sources

are IID; and third, it allows us to do comparisons and gain deep insights into R∗
c(D1, .., DN).

4.1 Algorithm Description

Without loss of generality, we consider the case of N = 3 and denote three sources by

{X(i)}n
i=1, {Y (i)}n

i=1, and {Z(i)}n
i=1, which in turn will be written as Xn, Y n, and Zn re-

spectively to simplify our notation for describing the iterative algorithm.

Let pXnY n and pXnY nZn denote joint distributions of random vectors (Xn, Y n) and

(Xn, Y n, Zn), respectively; and let pXn denote the marginal distribution of Xn. If there

is no ambiguity, subscripts in distributions will be omitted. For example, we may write

p(x) instead of pX(x). In order to find the random variables X̂n, Ŷ n and Ẑn that achieve
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Rc,n(D1, D2, D3), we try to find transition probability and probability functions pX̂n|Xn ,

pŶ n|X̂nY nXn , pẐn|X̂nŶ nZn, and qX̂nŶ nẐn that minimize

Fs,n(pX̂n|Xn, pŶ n|X̂nY nXn , pẐn|X̂nŶ nZn, qX̂nŶ nẐn)

Δ
=

∑
xn,yn,zn,x̂n,ŷn,ẑn

p(xn, yn, zn)p(x̂n|xn) ×

p(ŷn|x̂nynxn)p(ẑn|x̂nŷnzn) ×
log[

p(x̂n|xn)p(ŷn|x̂nynxn)p(ẑn|x̂nŷnzn)

q(x̂nŷnẑn)
] +

α
∑
xn,x̂n

p(xn)p(x̂n|xn)d1(x
n, x̂n) +

β
∑

xn,yn,x̂n,ŷn

p(xn, yn)p(x̂n|xn)p(ŷn|x̂nynxn)d2(y
n, ŷn) +

ν
∑

xn,yn,zn,x̂n,ŷn,ẑn

p(xn, yn, zn)p(x̂n|xn) ×

p(ŷn|x̂nynxn)p(ẑn|x̂nŷnzn)d3(z
n, ẑn) (4.1)

where s
Δ
=(α, β, ν), α ≥ 0, β ≥ 0, ν ≥ 0, denotes the standard Lagrange multiplier, and the

base of the logarithm is 2. For brevity, we shall denote (pX̂n|Xn, pŶ n|X̂nY nXn, pẐn|X̂nŶ nZn) by

Pn, and qX̂nŶ nẐn = qX̂nqŶ n|X̂nqẐn|X̂nŶ n by Qn. Write Fs,n(pX̂n|Xn, pŶ n|X̂nY nXn , pẐn|X̂nŶ nZn, qX̂nŶ nẐn)

accordingly as Fs,n(Pn,Qn). When there is no ambiguity, the superscript or subscript n

will be dropped. The iterative algorithm works as follows.

Step 1: Initialize i = 0 and set Q(0) Δ
=q

(0)

X̂Ŷ Ẑ
as a joint distribution function over X̂ , Ŷ ,

and Ẑ, where q
(0)

X̂Ŷ Ẑ
(x̂ŷẑ) > 0 for any (x̂, ŷ, ẑ) ∈ X̂ × Ŷ × Ẑ.

Step 2: Fix Q(i). Find P(i+1) Δ
=(p

(i+1)

X̂|X , p
(i+1)

Ŷ |X̂Y X
, p

(i+1)

Ẑ|X̂Ŷ Z
) such that

P(i+1) Δ
= arg min

P
Fs(P,Q

(i)) (4.2)

where the minimum is taken over all transition probability functions P = (pX̂|X , pŶ |X̂Y X ,

pẐ|X̂Ŷ Z). In view of the nested structure in (4.1), we solve the problem in (4.2) in
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three stages. First let us find p(i+1)(ẑ|x̂ŷz). From (4.1),

∑
ẑ

p(ẑ|x̂ŷz) log
p(ẑ|x̂ŷz)

q(i)(ẑ|x̂ŷ)2−νd3(z,ẑ)

=
∑

ẑ

p(ẑ|x̂ŷz) log
p(ẑ|x̂ŷz)

Δ(i)(z, x̂, ŷ) q(i)(ẑ|x̂ŷ)2−νd3(z,ẑ)

Δ(i)(z,x̂,ŷ)

≥ log
1

Δ(i)(z, x̂, ŷ)
(4.3)

where Δ(i)(z, x̂, ŷ)
Δ
=

∑
ẑ q

(i)(ẑ|x̂ŷ)2−νd3(z,ẑ). In the above, the last inequality follows

from the log-sum inequality, and becomes an equality if and only if

p(ẑ|x̂ŷz) = p(i+1)(ẑ|x̂ŷz) Δ
=
q(i)(ẑ|x̂ŷ)2−νd3(z,ẑ)

Δ(i)(z, x̂, ŷ)
(4.4)

for any (x̂, ŷ, z, ẑ) ∈ X̂ × Ŷ × Z × Ẑ.

We next find p(i+1)(ŷ|x̂yx). In view of (4.1) and (4.3), we have

∑
ŷ

p(ŷ|x̂yx) log
p(ŷ|x̂yx)

q(i)(ŷ|x̂)2−βd2(y,ŷ)+
∑

z p(z|yx) log Δ(i)(z,x̂,ŷ)

=
∑

ŷ

p(ŷ|x̂yx) log
p(ŷ|x̂yx)

Λ(i)(x, y, x̂) q(i)(ŷ|x̂)2−βd2(y,ŷ)+
∑

z p(z|yx) log Δ(i)(z,x̂,ŷ)

Λ(i)(x,y,x̂)

≥ log
1

Λ(i)(x, y, x̂)
(4.5)

where Λ(i)(x, y, x̂)
Δ
=

∑
ŷ q

(i)(ŷ|x̂)2−βd2(y,ŷ)2
∑

z p(z|yx) logΔ(i)(z,x̂,ŷ). In the above, the last

inequality again follows from the log-sum inequality, and becomes an equality if and

only if

p(ŷ|x̂yx) = p(i+1)(ŷ|x̂yx)
Δ
=

q(i)(ŷ|x̂)2−βd2(y,ŷ)2
∑

z p(z|yx) log Δ(i)(z,x̂,ŷ)

Λ(i)(x, y, x̂)
(4.6)

for any (x, y, x̂, ŷ) ∈ X × Y × X̂ × Ŷ .
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Finally let us find p(i+1)(x̂|x). Continuing from (4.1) and (4.5), we have

∑
x̂

p(x̂|x) log
p(x̂|x)

q(i)(x̂)2−αd1(x,x̂)+
∑

y p(y|x) log Λ(i)(x,y,x̂)

=
∑

x̂

p(x̂|x) log
p(x̂|x)

Γ(i)(x) q(i)(x̂)2
−αd1(x,x̂)+

∑
y p(y|x) log Λ(i)(x,y,x̂)

Γ(i)(x)

≥ log
1

Γ(i)(x)
(4.7)

where Γ(i)(x)
Δ
=

∑
x̂ q

(i)(x̂)2−αd1(x,x̂)2
∑

y p(y|x) log Λ(i)(x,y,x̂). An argument similar to that

leading to (4.3) and (4.5) can be used to show that (4.7) becomes an equality if and

only if

p(x̂|x) = p(i+1)(x̂|x)
Δ
=

q(i)(x̂)2−αd1(x,x̂)2
∑

y p(y|x) log Λ(i)(x,y,x̂)

Γ(i)(x)
(4.8)

for any (x, x̂) ∈ X × X̂ .

Step 3: Fix P(i+1). Find Q(i+1) = q(i+1) such that

Q(i+1) Δ
= arg min

Q
Fs(P

(i+1),Q) (4.9)

where the minimum is taken over all joint distribution functions Q over X̂ , Ŷ and

Ẑ. In view of (4.1), we see that

∑
x,y,z,x̂,ŷ,ẑ

p(xyz)p(i+1)(x̂|x)p(i+1)(ŷ|x̂yx)p(i+1)(ẑ|x̂ŷz)×

log
p(i+1)(x̂|x)p(i+1)(ŷ|x̂yx)p(i+1)(ẑ|x̂ŷz)

q(x̂ŷẑ)

= I(XY Z; X̂(i+1)Ŷ (i+1)Ẑ(i+1)) +
∑
x̂,ŷ,ẑ

q(i+1)(x̂ŷẑ) log
q(i+1)(x̂ŷẑ)

q(x̂ŷẑ)

≥ I(XY Z; X̂(i+1)Ŷ (i+1)Ẑ(i+1)) (4.10)
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where X̂(i+1)Ŷ (i+1)Ẑ(i+1) is the output of the channel P(i+1) in response to the input

XY Z, and q(i+1)(x̂ŷẑ) is the distribution of X̂(i+1)Ŷ (i+1)Ẑ(i+1), i.e.,

q(i+1)(x̂ŷẑ)
Δ
=

∑
x,y,z

p(xyz)p(i+1)(x̂|x)p(i+1)(ŷ|x̂yx)p(i+1)(ẑ|x̂ŷz) (4.11)

for any (x̂, ŷ, ẑ). The inequality (4.10) becomes an equality if and only if q(x̂ŷẑ) =

q(i+1)(x̂ŷẑ) for any (x̂, ŷ, ẑ) ∈ X̂ × Ŷ × Ẑ.

Step 4: Repeat Steps 2 and 3 for i = 1, 2, · · · until Fs(P
(i−1),Q(i−1)) − Fs(P

(i),Q(i)) is

smaller than a prescribed threshold.

4.2 Global Convergence

For any P, let

Q(P)
Δ
=arg min

Q
Fs(P,Q).

Similarly, for any Q, let

P(Q)
Δ
=arg min

P
Fs(P,Q).

The above iterative algorithm can also be described succinctly by P(i) = P(Q(i−1)) and

Q(i) = Q(P(i)), i = 1, 2, · · · . The following theorem shows that the sequence {(P(i),Q(i)) :

i ≥ 1} converges to a quadruple of distributions that achieves

F ∗(s) Δ
= inf Fs(pX̂ |X, pŶ |X̂Y X , pẐ|X̂Ŷ Z , qX̂Ŷ Ẑ) (4.12)

where the infimum is taken over all possible pX̂|X , pŶ |X̂Y X , pẐ|X̂Ŷ Z , and qX̂Ŷ Ẑ .

Theorem 6 For any initial Q(0) satisfying q
(0)

X̂Ŷ Ẑ
(x̂, ŷ, ẑ) > 0 for any (x̂, ŷ, ẑ) ∈ X̂ ×Ŷ×Ẑ,

there exists Q∗ such that Fs(P(Q∗),Q∗) = F ∗(s), and

P(i) → P(Q∗), Q(i) → Q∗, and Fs(P
(i),Q(i)) → F ∗(s)
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as i→ ∞.

Proof of Theorem 6: From the description of the iterative algorithm, it follows that

Fs(P
(1),Q(0)) ≥ Fs(P

(1),Q(1)) ≥ Fs(P
(2),Q(1)) ≥ · · · . (4.13)

To show the desired convergence, let us first verify that the algorithm has the so-called

“five-point property” (as defined in [13]), that is for any P = (pX̂|X , pŶ |X̂Y X , pẐ|X̂Ŷ Z), and

the corresponding Q = Q(P),

Fs(P,Q
(i−1)) − Fs(P

(i),Q(i)) ≥ Fs(P,Q
(i)) − Fs(P,Q). (4.14)

To this end, let us calculate both sides of (4.14). In view of Steps 2 and 3, we have

Fs(P,Q
(i−1)) − Fs(P

(i),Q(i))

≥ Fs(P,Q
(i−1)) − Fs(P

(i),Q(i−1))

1)
=

∑
x,x̂

p(x)p(x̂|x)[log
p(x̂|x)
p(i)(x̂|x) +

∑
y,ŷ

p(y|x)p(ŷ|x̂yx)[log
p(ŷ|x̂yx)
p(i)(ŷ|x̂yx) +

∑
z,ẑ

p(z|xy)p(ẑ|x̂ŷz) log
p(ẑ|x̂ŷz)
p(i)(ẑ|x̂ŷz) ]]

≥
∑
x̂,ŷ,ẑ

q(x̂ŷẑ) log
q(x̂ŷẑ)

q(i)(x̂ŷẑ)
, (4.15)

where the equality 1) follows from the following derivation:

Fs(P
(i),Q(i−1)) = −

∑
x

p(x) log Γ(i−1)(x) (4.16)
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and

Fs(P,Q
(i−1))

=
∑

x,y,z,x̂

p(xyz)p(x̂|x)[log
p(x̂|x)

q(i−1)(x̂)2−αd1(x,x̂)
+

∑
ŷ

p(ŷ|x̂yx)[log
p(ŷ|x̂yx)

q(i−1)(ŷ|x̂)2−βd2(y,ŷ)Δ(i−1)(z, x̂, ŷ)
+

D(p(ẑ|x̂ŷz)||p(i)(ẑ|x̂ŷz))]]
=

∑
x,y,x̂

p(xy)p(x̂|x)[log
p(x̂|x)

q(i−1)(x̂)2−αd1(x,x̂)
+

∑
ŷ

p(ŷ|x̂yx)[log
p(ŷ|x̂yx)

q(i−1)(ŷ|x̂)2−βd2(y,ŷ)
−

∑
z

p(z|xy) log Δ(i−1)(z, x̂, ŷ)]] +

∑
x,y,z,x̂

p(xyz)p(x̂|x)
∑

ŷ

p(ŷ|x̂yx)D(p(ẑ|x̂ŷz)||p(i)(ẑ|x̂ŷz))

=
∑
x,y,x̂

p(xy)p(x̂|x)[log
p(x̂|x)

q(i−1)(x̂)2−αd1(x,x̂)Λ(i−1)(x, y, x̂)
+

D(p(ŷ|x̂yx)||p(i)(ŷ|x̂yx))] +∑
x,y,z,x̂

p(xyz)p(x̂|x)
∑

ŷ

p(ŷ|x̂yx)D(p(ẑ|x̂ŷz)||p(i)(ẑ|x̂ŷz))

=
∑

x

p(x)[D(p(x̂|x)||p(i)(x̂|x)) − log Γ(i−1)(x)] +

∑
x,y,x̂

p(xy)p(x̂|x)D(p(ŷ|x̂yx)||p(i)(ŷ|x̂yx)) +

∑
x,y,z,x̂

p(xyz)p(x̂|x)
∑

ŷ

p(ŷ|x̂yx)D(p(ẑ|x̂ŷz)||p(i)(ẑ|x̂ŷz))

= −
∑

x

p(x) log Γ(i−1)(x) +
∑

x

p(x)D(p(x̂|x)||p(i)(x̂|x)) +

∑
x,y,x̂

p(xy)p(x̂|x)D(p(ŷ|x̂yx)||p(i)(ŷ|x̂yx)) +

∑
x,y,z,x̂

p(xyz)p(x̂|x)
∑

ŷ

p(ŷ|x̂yx)D(p(ẑ|x̂ŷz)||p(i)(ẑ|x̂ŷz)). (4.17)
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Combining (4.16) and (4.17), we immediately have the equality 1) in (4.15).

On the other hand,

Fs(P,Q
(i)) − Fs(P,Q)

=
∑
x̂,ŷ,ẑ

q(x̂ŷẑ) log
q(x̂ŷẑ)

q(i)(x̂ŷẑ)
. (4.18)

Combining (4.15) with (4.18) yields the desired “five-point property” in (4.14).

The rest of the proof is similar to that adopted in [12] to show the convergence of the

Blahut-Arimoto algorithm [7]. Suppose

Fs(P,Q) ≤ lim
i→∞

Fs(P
(i),Q(i)) = lim

i→∞
Fs(P

(i),Q(i−1)) (4.19)

for some P and Q = Q(P). From (4.14), it then follows that for any N > M ≥ 0,

0 ≤
N∑

i=M+1

[Fs(P
(i),Q(i)) − Fs(P,Q)]

≤
N∑

i=M+1

[Fs(P,Q
(i−1)) − Fs(P,Q

(i))]

≤
N∑

i=M+1

∑
x̂,ŷ,ẑ

q(x̂ŷẑ) log
q(i)(x̂ŷẑ)

q(i−1)(x̂ŷẑ)

=
∑
x̂,ŷ,ẑ

q(x̂ŷẑ) log
q(N)(x̂ŷẑ)

q(M)(x̂ŷẑ)

= D(Q||Q(M)) −D(Q||Q(N)) (4.20)

which, together with D(Q||Q(0)) <∞, implies

∞∑
i=1

[Fs(P
(i),Q(i)) − Fs(P,Q)] <∞ (4.21)

and hence

lim
i→∞

[Fs(P
(i),Q(i)) − Fs(P,Q)] = 0. (4.22)
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Note that (4.22) is valid for any P and Q = Q(P) satisfying (4.19). From this, we have

lim
i→∞

Fs(P
(i),Q(i)) = F ∗(s) = inf Fs(P,Q). (4.23)

To prove the convergence of (P(i),Q(i)), pick a convergent subsequence of Q(i), say

Q(ij) → Q∗. Then P(ij+1) = P(Q(ij)) → P∗ = P(Q∗) and

Fs(P
(ij+1),Q(ij)) → Fs(P

∗,Q∗). (4.24)

In view of (4.23), we have Fs(P
∗,Q∗) = F ∗(s); thus Q∗ = Q(P∗), and hence (4.20) applies

to Q∗ and P∗. In particular, D(Q∗||Q(i)) is a nonincreasing sequence. Since Q(ij) → Q∗

implies D(Q∗||Q(ij)) → 0, this means D(Q∗||Q(i)) → 0. Hence Q(i) → Q∗ and P(i) → P∗

as i→ ∞. This completes the proof of Theorem 6.

Remark 2 The above iterative algorithm can be easily extended to the case of N > 3, and

Theorem 6 remains valid. By setting ν = 0, it also reduces to the case of N = 2.

Remark 3 The iterative algorithm can be further extended to work for coupled distortion

measures (as defined in [42]) d′k : Xk ×X̂k ×X̂k−1×· · ·×X̂1 → [0,∞), k = 2, · · · , N , where

the distortion d′k(Xk, X̂k|X̂−
k ) depends not only on (Xk, X̂k) but also on (X̂1, · · · , X̂k−1).

The global convergence as expressed in Theorem 6 is still guaranteed.

Remark 4 Although Rc,n(D1, · · · , DN) as a function of D1, · · · , DN is convex as shown in

the proof of Lemma 5, both the optimization problems (3.8) and (4.12) are actually a non-

convex optimization problem. It is therefore kind of surprising to see the global convergence

of our proposed iterative algorithm. As shown in the proof of Theorem 6, the key for the

global convergence is the five-point property (4.14).

Remark 5 There are many other ways (including, for example, the greedy alternative al-

gorithm [56]) to derive iterative procedures. However, it is not clear whether their global
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convergence can be guaranteed. Having algorithms with global convergence is important

to not only numerical computation itself, but also single-letter characterization of perfor-

mance. One of the purposes of this thesis is indeed to demonstrate for the first time that

single-letter characterization of performance can also be established in a computational way

via algorithms with global convergence, as shown in the next section.

We conclude this section by presenting an alternative expression for Rc,n(D1, · · · , DN).

Once again, we illustrate this by considering the case of N = 3. In view of the definitions

(3.8) and (4.12), it is not hard to show (for example, by using the technique demonstrated

in the proof of Property 1 in [52]) that for any s = (α, β, ν), α ≥ 0, β ≥ 0, ν ≥ 0,

F ∗(s)
n

= inf{Rc,n(D1, D2, D3) + αD1 + βD2 + νD3 : D1 ≥ 0, D2 ≥ 0, D3 ≥ 0}. (4.25)

In other words, F ∗(s)/n as a function of s is the conjugate of Rc,n(D1, D2, D3). Since

Rc,n(D1, D2, D3) is convex and lower semi-continuous over the whole region D1 ≥ 0, D2 ≥
0, D3 ≥ 0, it follows from [34, Theorem 12.2, pp. 104] that for any D1 ≥ 0, D2 ≥ 0, D3 ≥ 0,

Rc,n(D1, D2, D3) = sup{F ∗(s)/n−αD1−βD2−νD3 : s = (α, β, ν) and α ≥ 0, β ≥ 0, ν ≥ 0}.
(4.26)

In the next section, (4.26) will be used in the process of establishing a single-letter char-

acterization for R∗
c(D1, · · · , DN) when the vector source (X1, · · · , XN) is IID.

4.3 Single-letter Characterization: IID Causal Case

Suppose now that the vector source (X1, · · · , XN) is IID. In this section, we will use our

iterative algorithm proposed in Section 4.1 and its global convergence to establish a single-

letter characterization for R∗
c(D1, · · · , DN).
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Theorem 7 If (X1, · · · , XN) is IID, then

R∗
c(D1, · · · , DN) = Rc,1(D1, · · · , DN)

for any D1 ≥ 0, D2 ≥ 0, · · · , DN ≥ 0.

Proof: We first show that for any D1 ≥ 0, D2 ≥ 0, · · · , DN ≥ 0,

Rc,n(D1, · · · , DN) = Rc,1(D1, · · · , DN) (4.27)

for any n > 1. Without loss of generality, we demonstrate (4.27) in the case of N = 3 by

using our iterative algorithm in Section 4.1. Denote three sources by X, Y, and Z. Since

the vector source (X, Y, Z) is IID, we have pXnY nZn =
∏n

i=1 pX(i)Y (i)Z(i). In view of (4.26),

we have

Rc,n(D1, D2, D3) = sup{F ∗
n(s)/n− αD1 − βD2 −

νD3 : s = (α, β, ν) and α ≥ 0, β ≥ 0, ν ≥ 0} (4.28)

for any n ≥ 1, where F ∗
n(s) is defined in (4.12). Here and throughout the rest of this

proof, the subscript or superscript n dropped for convenience for notation in Section 4.1

is brought back to distinguish between the cases of n = 1 and n > 1. Therefore, it suffices

to show that

F ∗
n(s) = nF ∗

1 (s) (4.29)

for any s = (α, β, ν), α ≥ 0, β ≥ 0, ν ≥ 0. To this end, we will run the iterative algorithm

in both cases of n = 1 and n > 1 to calculate F ∗
1 (s) and F ∗

n(s). Pick any initial positive

distribution Q
(0)
1 , and run the iterative algorithm in the case of n = 1. We then get a

sequence {(P(i)
1 ,Q

(i)
1 ) : i ≥ 1} which, according to Theorem 6, satisfies

lim
i→∞

Fs,1(P
(i)
1 ,Q

(i)
1 ) = F ∗

1 (s). (4.30)
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Now let Q(0)
n be the n-fold product distribution of Q

(0)
1 . Clearly, Q(0)

n is also positive. Use

Q(0)
n as an initial distribution and run the iterative algorithm in the case of n > 1. Then

we get a sequence {(P(i)
n ,Q

(i)
n ) : i ≥ 1} which, according to Theorem 6 again, satisfies

lim
i→∞

Fs,n(P(i)
n ,Q

(i)
n ) = F ∗

n(s). (4.31)

Since pXnY nZn is the n-fold product of pX(1)Y (1)Z(1) and Q(0)
n is the n-fold product of Q

(0)
1 ,

careful examination on (4.4), (4.6), (4.8), and (4.11) reveals that for any i ≥ 1, P(i)
n is the n-

fold product of P
(i)
1 , and Q(i)

n is the n-fold product of Q
(i)
1 . (To see this is the case, let us look

at (4.4) for example. Let us temporarily drop the subscripts indicating random variables

in all notation. When p(xnynzn) =
∏n

j=1 p(xjyjzj) and q(i)(x̂nŷnẑn) =
∏n

j=1 q
(i)(x̂j ŷj ẑj), it

can be verified that in (4.4),

q(i)(ẑn|x̂nŷn) =

n∏
j=1

q(i)(ẑj|x̂j ŷj)

and

Δ(i)(zn, x̂n, ŷn) =
n∏

j=1

Δ(i)(zj, x̂j , ŷj).

Since

d3(z
n, ẑn) =

n∑
j=1

d3(zj , ẑj)

it follows from (4.4) that

p(i+1)(ẑn|x̂nŷnzn) =

n∏
j=1

p(i+1)(ẑj |x̂j ŷjzj).

Similar argument can be applied to (4.6), (4.8), and (4.11).) Therefore, for any i ≥ 1,

Fs,n(P(i)
n ,Q

(i)
n ) = nFs,1(P

(i)
1 ,Q

(i)
1 )

which, coupled with (4.30) and (4.31), implies (4.29) and hence (4.27).
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Combining (4.27) with (3.9) yields

Rc(D1, · · · , DN) = Rc,1(D1, · · · , DN)

for any D1 ≥ 0, · · · , DN ≥ 0. This, together with Theorem 2, implies

R∗
c(D1, · · · , DN) = Rc,1(D1, · · · , DN) (4.32)

for any D1 > 0, · · · , DN > 0. Since by their definitions, both functions R∗
c(D1, · · · , DN)

and Rc,1(D1, · · · , DN) are right continuous in the sense that for any D1 ≥ 0, · · · , DN ≥ 0,

lim
ε↓0

R∗
c(D1 + ε, · · · , DN + ε) = R∗

c(D1, · · · , DN)

and

lim
ε↓0

Rc,1(D1 + ε, · · · , DN + ε) = Rc,1(D1, · · · , DN)

it follows that (4.32) remains valid for boundary points where some Di may be 0. This

completes the proof of Theorem 7.

Theorem 7 can also be proved by using the classical auxiliary random variable converse

and positive proof (hereafter referred to as “the classic approach”). Indeed, one can es-

tablish the following single-letter characterization for the achievable region R∗
c , the proof

of which is given in Appendix A.

Theorem 8 If (X1, · · · , XN) is an IID vector source, then1 R∗
c = co(Rc,1).

Remark 6 It is instructive to compare the computational approach to single-letter charac-

terization (as illustrated in the proofs of Theorems 2, 6, and 7) with the classic approach.

1Since the alphabet size of each Uk in (3.2) can be bounded, Rc,n, n ≥ 1, is actually convex and closed.
As such, co(Rc,1) = Rc,1. We leave co(Rc,1) in the statement of Theorem 8 just for the sake of consistency
with the norm in the literature [11].
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In the computational approach, the converse is first established for multiple letters (blocks);

its proof is often straightforward and the required Markov chain conditions are satisfied

automatically as shown in the proof of Theorem 2. The key is then to have an algorithm

with global convergence for computing all block terms and later show that all these block

terms are the same. On the other hand, in the classic approach, the converse proof is quite

involved; coming up with auxiliary random variables with right Markov chain conditions

is always challenging and sometimes seems impossible. Since single-letter characteriza-

tion has to be computed any way, the computational approach is preferred whenever it is

possible.

Remark 7 When N = 2, Theorems 8 and 7 reduce to Theorems 1 and 3 in [42], respec-

tively. However, the proofs in [42] are incomplete due to the invalid claim of the Markov

condition made in the proofs therein; as such formulas therein can not be extended to the

case of N > 2. Theorems 8 and 7 in a slightly different, but equivalent form were also

reported in [26], [25], and [27] by following the classic approach. The difference lies in

the extra Markov chain condition for the reconstruction X̂N(1) shown as Condition (R4).

For example, in the specific formulas shown in [26, Theorem 1] in the case of N = 3, the

Markov chain condition X̂3(1) → (X3(1), U1, U2) → (X1(1), X2(1)) is not required.

4.4 Comparisons

To gain deep insights into CVC, in this section, we use our iterative algorithm proposed

in Section 4.1 to compare: 1) CVC with greedy coding; and 2) R∗
c(D1, · · · , DN) among

different values of N .
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4.4.1 Causal vs. Greedy

All MPEG-series and H-series video coding standards [32], [49] proposed so far fall into

PVC, where at the encoder for each frame Xk, only previous encoded frames are used

as a helper. By using a technique called soft decision quantization [49], [47], [48], it has

been demonstrated in a series of papers [49], [50], [46] that the greedy coding method2

offers significant gains (ranging from 10% to 30% rate reduction at the same quality) over

the respective reference codecs3 of these standards. As such, it is instructive to compare

the performance of causal coding characterized by R∗
c(D1, · · · , DN) with the performance

of greedy coding characterized by the total rate Rg(D1, · · · , DN) offered by the greedy

coding method. In this section, we present specific examples to numerically compare

R∗
c(D1, · · · , DN) with Rg(D1, · · · , DN).

Example 1: Suppose that Xi = X̂i = {0, 1, 2, 3}, i = 1, 2, 3, and the Hamming distortion

measure is used. In this example, we consider a Markov chain: X1 → X2 → X3. The

transition probability pX2|X1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X2 0 1 2 3

X1

0 0 1 0 0

1 1
2

1
2

0 0

2 0 0 0 1

3 0 0 1
3

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2The greedy coding method is a special form of PVC; based on all previous encoded frames, it encodes
each current frame in a local optimum manner so as to achieve the best rate distortion trade-off for the
current frame only.

3Both the greedy coding method and reference codecs are special forms of PVC. At this point, the best
rate distortion performance of PVC is still unknown in general.
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and the other transition probability pX3|X2 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X3 0 1 2 3

X2

0 0 1 0 0

1 1
2

1
2

0 0

2 0 0 0 1

3 0 0 1
3

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 4.1 shows the rate-distortion curves of R∗
c(D1, D2, D3) and Rg(D1, D2, D3) versus D3

when X1 is uniformly distributed, D1 = 0.5488, and D2 = 0.3927. As shown in Figure 4.1,
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Figure 4.1: Comparison of R∗
c(D1, D2, D3) and Rg(D1, D2, D3) versus D3 for fixed D1 =

0.5488 and D2 = 0.3927 in Example 1.

when D3 = 0.4768, R∗
c(D1, D2, D3) = 0.2354, which is more than 31 percent less than

Rg(D1, D2, D3) = 0.3086.

Let us now look at another example in which X1, X2, and X3 do not form a Markov
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chain.

Example 2: Suppose that Xi = X̂i = {0, 1, 2, 3}, i = 1, 2, 3, and the Hamming distortion

measure is used. In this example, X1, X2, and X3 do not form a Markov chain, but X2 →
X1 → X3 does form a Markov chain in the indicated order. The transition probability

pX2|X1
is given by ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X2 0 1 2 3

X1

0 0 1 0 0

1 1
2

1
2

0 0

2 0 0 0 1

3 0 0 1
3

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the other transition probability pX3|X1
is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X3 0 1 2 3

X1

0 0 1 0 0

1 1
2

1
2

0 0

2 0 0 0 1

3 0 0 1
3

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 4.2 shows the rate-distortion curves of R∗
c(D1, D2, D3) and Rg(D1, D2, D3) versus

D3 when X1 is uniformly distributed, D1 = 0.5488, and D2 = 0.3927. As shown in

Figure 4.2, when D3 = 0.3927, R∗
c(D1, D2, D3) = 0.2210, which is 34.8 percent less than

Rg(D1, D2, D3) = 0.2979.

The above two examples are of course toy examples. However, if the performance

improvement is indicative of the performance of CVC for real video data, it is definitely

worthwhile to make the CVC idea materialize in video codecs.
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Figure 4.2: Comparison of R∗
c(D1, D2, D3) and Rg(D1, D2, D3) versus D3 for fixed D1 =

0.5488 and D2 = 0.3927 in Example 2.

4.4.2 More and Less Coding Theorem

To gain deep insights into CVC, in this section, we use our iterative algorithm proposed

in Section 4.1 to compare R∗
c(D1, · · · , DN) among different values of N . To be specific,

whenever we need to bring out the dependence of R∗
c(D1, · · · , DN) and Rc,n(D1, · · · , DN)

on the sources X1, · · · , XN , we will write R∗
c(D1, · · · , DN) as RX1···XN

c (D1, · · · , DN), and

Rc,n(D1, · · · , DN) asRX1···XN
c,n (D1, · · · , DN). In particular, we will compare RX1···XN

c (D1, · · · , DN)

with RX2···XN
c (D2, · · · , DN).

Without loss of generality again, we will consider the case of N = 3. All results and

discussions in this section can be easily extended to the case of N > 3. We first have the

following result.

Theorem 9 Suppose that (X1, X2, X3) is jointly stationary and ergodic, and X1, X2, and
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X3 form a Markov chain in the indicated order. Then for any D1, D2, D3 ≥ 0,

RX1X2X3
c (D1, D2, D3) ≥ RX2X3

c (D2, D3). (4.33)

Proof: We distinguish between two cases: (1) D1D2D3 > 0, and (2) D1D2D3 = 0. In

Case (1), it follows from Theorem 2 and (3.9) that it suffices to show

RX1X2X3
c,n (D1, D2, D3) ≥ RX2X3

c,n (D2, D3) (4.34)

for any n ≥ 1 and D1 > 0, D2 > 0, D3 > 0. To this end, pick any auxiliary random

variables X̂i(1;n), i = 1, 2, 3, satisfying the requirements (R5) and (R6) with N = 3. It is

not hard to verify that

I(X1(1;n); X̂1(1;n)) + I(X1(1;n)X2(1;n); X̂2(1;n)|X̂1(1;n))

+ I(X3(1;n); X̂3(1;n)|X̂1(1;n)X̂2(1;n))

= I(X1(1;n)X2(1;n)X3(1;n); X̂1(1;n)X̂2(1;n)X̂3(1;n))

≥ I(X2(1;n)X3(1;n); X̂2(1;n)X̂3(1;n))

= I(X2(1;n)X3(1;n); X̂2(1;n)) + I(X2(1;n)X3(1;n); X̂3(1;n)|X̂2(1;n))

1)
= I(X2(1;n); X̂2(1;n)) + I(X2(1;n)X3(1;n); X̂3(1;n)|X̂2(1;n))

≥ I(X2(1;n); X̂2(1;n)) + I(X3(1;n); X̂3(1;n)|X̂2(1;n)) (4.35)

where the equality 1) follows from the fact that the requirement (R6) plus the Markov

condition X1 → X2 → X3 implies that the Markov condition X̂2(1;n) → X2(1;n) →
X3(1;n) is satisfied. In (4.35), the Markov condition X2(1;n) → X̂2(1;n)X3(1;n) →
X̂3(1;n) may not be valid. However, to overcome this problem, we can use the the same

technique as in the proof of the converse part of Theorem 1 and also in the proof of Lemma 5

to construct a new random vector X̃3(1;n) such that the following hold:
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• (X3(1;n), X̂2(1;n), X̂3(1;n)) and (X3(1;n), X̂2(1;n), X̃3(1;n)) have the same distri-

bution, and

• the Markov condition X2(1;n) → (X3(1;n), X̂2(1;n)) → X̃3(1;n) is met.

Therefore, the random variables X̂2(1;n) and X̃3(1;n) satisfy the requirements (R5) and

(R6) with N = 2 with respect to X2(1;n) and X3(1;n). This, together with (4.35) and

(3.8), implies

I(X1(1;n); X̂1(1;n)) + I(X1(1;n)X2(1;n); X̂2(1;n)|X̂1(1;n))

+ I(X3(1;n); X̂3(1;n)|X̂1(1;n)X̂2(1;n))

≥ I(X2(1;n); X̂2(1;n)) + I(X3(1;n); X̃3(1;n)|X̂2(1;n))

≥ nRX2X3
c,n (D2, D3). (4.36)

Since (4.36) is valid for any auxiliary random variables X̂i(1;n), i = 1, 2, 3, satisfying the

requirements (R5) and (R6) with N = 3, (4.34) then follows from the definition (3.8). This

completes the proof of (4.33) in Case (1).

To prove (4.33) in Case (2), note that both RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3)

are right continuous in the sense that for any D1 ≥ 0, D2 ≥ 0, D3 ≥ 0,

lim
ε↓0

RX1X2X3
c (D1 + ε,D2 + ε,D3 + ε) = RX1X2X3

c (D1, D2, D3)

and

lim
ε↓0

RX2X3
c (D2 + ε,D3 + ε) = RX2X3

c (D2, D3).

The validity of (4.33) in Case (2) then follows from its validity in Case (1). This completes

the proof of Theorem 9.

Theorem 9 is what one would expect and consistent with our intuition. Let us now

look at the case where X1, X2, and X3 do not form a Markov chain, and (X1, X2, X3) is
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an IID vector source. Define for any i

Di,max
Δ
=min{Di : RXi

(Di) = 0} (4.37)

where RX(D), for any source X, is the classical rate distortion function of X. Assume that

D1,max > 0. In view of Theorem 7 and the proof of Lemma 5, bothRX1X2X3
c (D1,max, D2, D3)

and RX2X3
c (D2, D3) are convex as functions of D2 and D3 over the region {(D2, D3) : D2 ≥

0, D3 ≥ 0} . As such, they are subdifferentiable at any point (D2, D3) with D2 > 0 and

D3 > 0. (See [34, Chapter 23] for discussions on the subdifferential and subgradients of a

convex function.) From Section 4.1, they can also be computed via our iterative algorithm

through their respective conjugates. Since (X1, X2, X3) is an IID vector source, in view

of Theorem 7, we will drop the subscript or superscript n for all notation in Section 4.1

with understanding of n = 1 throughout the rest of this section. Once again, to bring out

the dependence of F ∗(s) on the source (X1, X2, X3), we will write F ∗(s) for X1, X2, X3

as FX1X2X3(s), F ∗(s) for (X1X2), X3 as F (X1X2)X3(s)—the notation (X1X2) means that

(X1X2) is regarded as a super source (see Figure 4.3)—and F ∗(s) for X2, X3 as FX2X3(s).

This convention will apply to other notation in Section 4.1 as well. In particular,

FX2X3(s) = inf{RX2X3
c (D2, D3) + βD2 + νD3 : D2 ≥ 0, D3 ≥ 0} (4.38)

for any s = (β, ν).

Condition A: A point (D2, D3) with D2 > 0 and D3 > 0 is said to satisfy Condition A

if RX1X2X3
c (D1,max, D2, D3) as a function of D2 and D3 has a negative subgradient −s =

(−β,−ν), β > 0, ν > 0, at (D2, D3) such that there is a distribution Q = {q(x̂2, x̂3) =

q(x̂2)q(x̂3|x̂2) : x̂2 ∈ X̂2, x̂3 ∈ X̂3} satisfying the following requirements:

(R11) FX2X3
s (P(Q),Q) = FX2X3(s).
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(R12) Define (as in Step 2 of the iterative algorithm)

p(X1X2)X3(x̂3|x̂2x3)
Δ
=
q(x̂3|x̂2)2

−νd(x3,x̂3)

Δ(x̂2, x3)
(4.39)

and

p(X1X2)X3(x̂2|x1x2)
Δ
=
q(x̂2)2

−βd(x2,x̂2)2
∑

x3
p(x3|x1x2) log Δ(x̂2,x3)

Γ(x1, x2)
(4.40)

where

Δ(x̂2, x3)
Δ
=

∑
x̂3∈X̂3

q(x̂3|x̂2)2
−νd(x3,x̂3) (4.41)

and

Γ(x1, x2)
Δ
=

∑
x̂2∈X̂2

q(x̂2)2
−βd(x2,x̂2)2

∑
x3

p(x3|x1x2) log Δ(x̂2,x3). (4.42)

Denote the two conditional distributions p(X1X2)X3(x̂3|x̂2x3) and p(X1X2)X3(x̂2|x1x2)

by P(X1X2)X3
(Q). Then either

F (X1X2)X3(s) < F (X1X2)X3
s (P(X1X2)X3(Q),Q)

or p(X1X2)X3(·|x1x2) depends on x1, i.e., there exist x̂2, x2, x1, and x′1 ∈ X1 with

x′1 	= x1 such that

p(X1X2)X3(x̂2|x1x2) 	= p(X1X2)X3(x̂2|x′1x2).

We are now ready to state a somewhat surprising result dubbed the more and less

coding theorem.

Theorem 10 (More and less coding theorem) Suppose that (X1, X2, X3) is an IID

vector source with D1,max > 0, and X1, X2, and X3 do not form a Markov chain. Then

for any point (D2, D3), D2 > 0, D3 > 0, satisfying Condition A, there is a critical value

D∗
1 < D1,max such that for any D1 > D∗

1,

RX1X2X3
c (D1, D2, D3) < RX2X3

c (D2, D3) (4.43)
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and for any D1 < D∗
1,

RX1X2X3
c (D1, D2, D3) > RX2X3

c (D2, D3). (4.44)

Remark 8 In Theorem 10, if D∗
1 > 0, then at D∗

1,

RX1X2X3
c (D∗

1, D2, D3) = RX2X3
c (D2, D3).

Proof of Theorem 10: Since RX1X2X3
c (D1, D2, D3) as a function of D1 is continuous over

D1 > 0 and non-increasing, it suffices to show that

RX1X2X3
c (D1,max, D2, D3) < RX2X3

c (D2, D3) (4.45)

for any point (D2, D3), D2 > 0, D3 > 0, satisfying Condition A. To this end, we consider

a new two-layer causal coding model shown in Figure 4.3, where X1 and X2 together

are regarded as one super source. Let R
(X1X2)X3
c (D2, D3) denote its minimum total rate

function. Since atD1,max, RX1(D1,max) = 0, a random variable X̂1(1) independent ofX1(1),

X2(1), and X3(1) can be constructed in such a way that Ed1(X1(1), X̂1(1)) = D1,max.

Therefore, it is easy to see that

RX1X2X3
c (D1,max, D2, D3) ≤ R(X1X2)X3

c (D2, D3) (4.46)

for any D2 ≥ 0 and D3 ≥ 0. On the other hand, in view of the definition of causal vide

codes, it is not hard to see that any causal code for encodingX1, X2, andX3 with respective

distortions D1, D2, and D3 can also be used for encoding (X1X2) and X3 in Fig 4.3 with

distortions D2, and D3 without changing the total rate. Thus

RX1X2X3
c (D1, D2, D3) ≥ R(X1X2)X3

c (D2, D3)

for any D1, D2, D3 ≥ 0. This, coupled with (4.46), implies

RX1X2X3
c (D1,max, D2, D3) = R(X1X2)X3

c (D2, D3) (4.47)
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Figure 4.3: One special case of two-layer causal coding.

for any D2 ≥ 0 and D3 ≥ 0.

To continue, we are now led to show

R(X1X2)X3
c (D2, D3) < RX2X3

c (D2, D3) (4.48)

for any point (D2, D3), D2 > 0, D3 > 0, satisfying Condition A. First note that from the

definition of causal video codes,

R(X1X2)X3
c (D2, D3) ≤ RX2X3

c (D2, D3) (4.49)

for any D2 ≥ 0 and D3 ≥ 0. Fix now any point (D2, D3), D2 > 0, D3 > 0, satisfying

Condition A. We prove (4.48) by contradiction. Suppose that

R(X1X2)X3
c (D2, D3) = RX2X3

c (D2, D3) (4.50)
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at the point (D2, D3). Let −s = (−β,−ν) be the negative subgradient ofRX1X2X3
c (D1,max, D2, D3)

at the point (D2, D3) in Condition A. From (4.47), −s is also a negative subgradient of

R
(X1X2)X3
c (D2, D3) at the point (D2, D3). This implies that for any D′

2 ≥ 0 and D′
3 ≥ 0,

R(X1X2)X3
c (D′

2, D
′
3) ≥ R(X1X2)X3

c (D2, D3) − β(D′
2 −D2) − ν(D′

3 −D3)

which, coupled with (4.50) and (4.49), in turn implies

RX2X3
c (D′

2, D
′
3) ≥ RX2X3

c (D2, D3) − β(D′
2 −D2) − ν(D′

3 −D3)

for any D′
2 ≥ 0 and D′

3 ≥ 0. In other words, under the assumption (4.50), −s is also a

negative subgradient of RX2X3
c (D2, D3) at the point (D2, D3). In view of (4.25), (4.26),

and (4.38), it then follows that

R(X1X2)X3
c (D2, D3) = F (X1X2)X3(s) − βD2 − νD3 (4.51)

and

RX2X3
c (D2, D3) = FX2X3(s) − βD2 − νD3. (4.52)

In view of the requirement (R11) in Condition A, we have

FX2X3(s) = FX2X3
s (P(Q),Q). (4.53)

From Step 2 of the iterative algorithm, it follows that

F (X1X2)X3(s) ≤ F (X1X2)X3
s (P(X1X2)X3

(Q),Q) (4.54)

≤ FX2X3
s (P(Q),Q) (4.55)

where the inequality in (4.55) is strict when P(X1X2)X3(Q) depends on X1. Therefore,

according to the requirement (R12) in Condition A, no matter which choice in the require-

ment (R12) is valid, we always have

F (X1X2)X3(s) < FX2X3
s (P(Q),Q)
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which, together with (4.51) to (4.53), implies that

R(X1X2)X3
c (D2, D3) < RX2X3

c (D2, D3).

This contradicts the assumption (4.50), hence completing the proof of (4.48) and (4.45).

Define

D∗
1 = min{D1 : RX1X2X3

c (D1, D2, D3) < RX2X3
c (D2, D3)}.

Then from (4.45), it is easy to see that D∗
1 is the desired critical value. This completes the

proof of Theorem 10.

Remark 9 Theorem 10, in particular, (4.43) is really counter intuitive. It says that when-

ever the conditions specified in Theorem 10 are met, the more source frames need to be

encoded and transmitted, the less amount of data after encoding has to be actually sent!

If the cost of data transmission is proportional to the transmitted data volume, this trans-

lates literally into a scenario where the more frames you download, the less you would pay.

To help the reader better understand this phenomenon, let us examine where the gain of

RX1X2X3
c (D1, D2, D3) over RX2X3

c (D2, D3) comes from whenever the conditions specified in

Theorem 10 are met. The availability of X1 to the encoder of X2 does not really help

the encoder of X2 and its corresponding decoder achieve a better rate distortion trade-off

(R2, D2). Likewise, the availability of X1 and X2 to the encoder of X3 does not really help

the encoder of X3 and its corresponding decoder achieve a better rate distortion trade-off

(R3, D3) either. What really matters is that the availability of X1 to the encoder of X2 will

help the encoder of X2 choose better side information X̂2 for the encoder and decoder of

X3. If the rate reduction of the encoder of X3 arising from this better X̂2 along with X̂1

is more than the overhead associated with the rate R1 and the selection of this better X̂2,

then the total rate RX1X2X3
c (D1, D2, D3) is smaller. (Here the overhead associated with the

rate R1 and the selection of this better X̂2 is meant to be the difference between the sum of
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R1 and R2 in RX1X2X3
c (D1, D2, D3) and the rate R2 in RX2X3

c (D2, D3). Depending on how

helpful X̂1 is, the rate R2 in RX1X2X3
c (D1, D2, D3) can be more or less than the rate R2 in

RX2X3
c (D2, D3).) This is further confirmed in Examples 1 and 2 at the end of this section.

Condition A is generally met at points (D2, D3), D2 > 0, D3 > 0, for which positive

bit rates are needed at both the decoder for X2 and the decoder for X3 in order for them

to produce the respective reproductions with the desired distortions D2 and D3. Such

distortion points will be called points with positive rates. By using the technique demon-

strated in the proof of Property 1 in [52], it can be shown that RX1X2X3
c (D1,max, D2, D3)

has a negative subgradient at any point (D2, D3), D2 > 0, D3 > 0, with positive rates. In

addition, the distribution P(X1X2)X3
(Q), if optimal, generally depends on X1 (except for

some corner cases) when X1, X2, and X3 do not form a Markov chain. We illustrate this

in the following theorem in the binary case.

Theorem 11 Assume that Xi = X̂i = {0, 1}, i = 1, 2, 3, and the Hamming distortion

measure is used. Let (X1, X2, X3) be an IID vector source with I(X2(1);X3(1)) > 0.

Suppose that X1, X2, and X3 do not form a Markov chain. Then for s = (β, ν) with β > 0

and ν > 0, if (P,Q) (P = (pX̂3|X̂2X3
, pX̂2|X1X2

) and Q = (qX̂2X̂3
)) achieves F (X1X2)X3(s),

i.e.,

F (X1X2)X3
s (P,Q) = F (X1X2)X3(s) (4.56)

then pX̂2|X1X2
(·|x1x2) depends on x1, i.e., there exists x2 such that the condition distribu-

tions pX̂2|X1X2
(·|x1 = 0, x2) and pX̂2|X1X2

(·|x1 = 1, x2) are different.

Proof of Theorem 11: Fix s = (β, ν) with β > 0 and ν > 0. We first derive some
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bounds on F (X1X2)X3(s). It is not hard to verify that

F (X1X2)X3(s) ≤ FX2X3(s)

= inf{RX2X3
c (D2, D3) + βD2 + νD3 : D2 ≥ 0, D3 ≥ 0}

1)

≤ inf{RX2(D2) + βD2 : D2 ≥ 0}
+ inf{RX3(D3) + νD3 : D3 ≥ 0}

= RX2(D2(β)) + βD2(β)

+RX3(D3(ν)) + νD3(ν) (4.57)

where 0 < D2(β) < D2,max is the unique value of D2 at which the derivative of RX2(D2)

is equal to β, and 0 < D3(ν) < D3,max is the unique value of D3 at which the derivative of

RX3(D3) is equal to ν. In the above, the inequality 1) is due to the fact that

RX2X3
c (D2, D3) ≤ RX2(D2) +RX3(D3) (4.58)

for any D2 ≥ 0, D3 ≥ 0. Under the condition that I(X2(1);X3(1)) > 0, the inequality

(4.58) is strict at (D2(β), D3(ν)). Therefore,

F (X1X2)X3(s) ≤ RX2X3
c (D2(β), D3(ν)) + βD2(β) + νD3(ν)

< RX2(D2(β)) + βD2(β)

+RX3(D3(ν)) + νD3(ν). (4.59)

In view of (4.56), it follows from the iterative algorithm that

P = P(X1X2)X3
(Q) (4.60)

and

Q = Q(X1X2)X3
(P) (4.61)
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where (X1X2)X3 appears as subscripts to indicate that the operations P(Q) and Q(P)

defined in Section 4.1 are for the sources (X1X2) and X3. Let (X̂2(1), X̂3(1)) be the output

of the channel P in response to the input ((X1(1)X2(1)), X3(1)). Then the joint distribution

of (X̂2(1), X̂3(1)) is Q, and (4.56) implies

F (X1X2)X3(s) = I(X1(1)X2(1); X̂2(1)) + I(X3(1); X̂3(1)|X̂2(1))

+ βE[d2(X2(1), X̂2(1))] + νE[d3(X3(1), X̂3(1))]. (4.62)

Putting (4.62) and (4.59) together, we can conclude that H(X̂2) > 0 and hence qX̂2
(x̂2) > 0

for any x̂2. Otherwise, from (4.62) we would have that

F (X1X2)X3(s)

≥ βD2,max + I(X3(1); X̂3(1)) + νE[d3(X3(1), X̂3(1))]

≥ βD2,max +RX3(D3(ν)) + νD3(ν)

> RX2(D2(β)) + βD2(β)

+RX3(D3(ν)) + νD3(ν) (4.63)

which contradicts (4.59).

We now prove Theorem 11 by contradiction. Suppose that pX̂2|X1X2
(·|x1x2) does not

depend on x1. Then for any x2 and x̂2,

pX̂2|X1X2
(x̂2|x1 = 0, x2) = pX̂2|X1X2

(x̂2|x1 = 1, x2) (4.64)

which, together with (4.60), (4.39) to (4.42), and the fact that qX̂2
(x̂2) > 0, implies

∑
x̂∗
2

qX̂2
(x̂∗2)2

−βd(x2,x̂∗
2)2

∑
x3

p(x3|x1=0,x2) log
Δ(x̂∗2,x3)

Δ(x̂2,x3) =

∑
x̂∗
2

qX̂2
(x̂∗2)2

−βd(x2,x̂∗
2)2

∑
x3

p(x3|x1=1,x2) log
Δ(x̂∗2,x3)

Δ(x̂2,x3) (4.65)
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Simplifying (4.65) yields

∑
x3

p(x3|x1 = 0, x2) log
Δ(x̂′2, x3)

Δ(x̂2, x3)
=

∑
x3

p(x3|x1 = 1, x2) log
Δ(x̂′2, x3)

Δ(x̂2, x3)
(4.66)

where x̂′2 = 1 − x̂2.

To continue, we now consider specific values of x2 and x̂2. Let us first look at the case

of x2 = 0 and x̂2 = 0. It follows from (4.66) that

∑
x3

[p(x3|x1 = 0, x2 = 0) − p(x3|x1 = 1, x2 = 0)] log
Δ(x̂∗2 = 1, x3)

Δ(x̂2 = 0, x3)
= 0 (4.67)

which implies

[p(x3 = 0|x1 = 0, x2 = 0) − p(x3 = 0|x1 = 1, x2 = 0)] log
b+ (1 − b)2−ν

a+ (1 − a)2−ν
+

[p(x3 = 1|x1 = 0, x2 = 0) − p(x3 = 1|x1 = 1, x2 = 0)] log
b2−ν + (1 − b)

a2−ν + (1 − a)
= 0(4.68)

where a = qX̂2X̂3
(x̂3 = 0|x̂2 = 0), and b = qX̂2X̂3

(x̂3 = 0|x̂2 = 1). Further simplifying (4.68)

yields

[p(x3 = 0|x1 = 0, x2 = 0) − p(x3 = 0|x1 = 1, x2 = 0)] ×
log

(b+ (1 − b)2−ν)(a2−ν + (1 − a))

(a+ (1 − a)2−ν)(b2−ν + (1 − b))
= 0. (4.69)

Since ν > 0, it can be verified that log (b+(1−b)2−ν )(a2−ν+(1−a))
(a+(1−a)2−ν )(b2−ν+(1−b))

is equal to 0 if and only if

a = b.

Next we show that a 	= b. To this end, first note that a = b is equivalent to saying that

Q = (qX̂2X̂3
) is a product distribution, i.e.,

qX̂2X̂3
= qX̂2

× qX̂3
(4.70)

By plugging (4.70) into (4.60), it follows from the Step 2 of the iterative algorithm that

in P = (pX̂3|X̂2X3
, pX̂2|X1X2

), pX̂3|X̂2X3
(·|x̂2, x3) does not depend on x̂2 and pX̂2|X1X2

(·|x1, x2)
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does not depend on x1, i.e.,

pX̂3|X̂2X3
(x̂3|x̂2, x3) = p(x̂3|x3)

Δ
=
qX̂3

(x̂3)2
−νd(x3,x̂3)

Δ(x3)

pX̂2|X1X2
(x̂2|x1, x2) = p(x̂2|x2)

Δ
=
qX̂2

(x̂2)2
−βd(x2,x̂2)

Γ(x2)
(4.71)

where Δ(x3) and Γ(x2) are the normalization factors so that the respective terms are indeed

distributions. It is easy to see that (4.70) and (4.71) imply

I(X̂2(1); X̂3(1)) = 0 (4.72)

I(X1(1)X2(1); X̂2(1)) = I(X2(1); X̂2(1)) (4.73)

and

H(X̂3(1)|X3(1)X̂2(1)) = H(X̂3(1)|X3(1)). (4.74)

Combining (4.72) to (4.74) with (4.62) yields

F (X1X2)X3(s) = I(X2(1); X̂2(1)) + βE[d2(X2(1), X̂2(1))]

+ I(X3(1); X̂3(1)) + νE[d3(X3(1), X̂3(1))]

≥ RX2(D2(β)) + βD2(β)

+RX3(D3(ν)) + νD3(ν)

which contradicts (4.59). Therefore, a 	= b.

Go back to (4.69). Since a 	= b, (4.69) is equivalent to

p(x3|x1 = 0, x2 = 0) = p(x3|x1 = 1, x2 = 0) for any x3 ∈ {0, 1}. (4.75)

Repeat the above argument for the case of x2 = 1 and x̂2 = 0. We then have accordingly

p(x3|x1 = 0, x2 = 1) = p(x3|x1 = 1, x2 = 1) for any x3 ∈ {0, 1}. (4.76)
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Putting (4.75) and (4.76) together, we have shown that (4.64) implies that X1, X2, and

X3 form a Markov chain, which contradicts our assumption. This completes the proof of

Theorem 11.

Remark 10 From Theorem 11, it follows that for any sources X1, X2, and X3 satisfying

the conditions of Theorem 11, Condition A is met at any point (D2, D3), D2 > 0, D3 > 0,

at which RX1X2X3
c (D1,max, D2, D3) has a negative subgradient.

We conclude this section with examples illustrating Theorem 10.

Example 3: Suppose that Xi = X̂i = {0, 1}, i = 1, 2, 3, and that the Hamming distortion

measure is used. Let pX1(0) = 1/3, pX2|X1
(0|1) = pX2|X1

(1|0) = 3/5, and

pX3|X1X2
=

⎛
⎜⎜⎜⎜⎜⎜⎝

X1X2 00 01 10 11

X3

0 0.97 0.03 0.03 0.97

1 0.03 0.97 0.97 0.03

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It is easy to see that X1, X2 and X3 do not form a Markov chain. We consider the following

three cases:

Case 1: D1 = 0.31 < D1,max, and D3 = 0.15;

Case 2: D2 = 0.20 < D2,max, and D3 = 0.15; and

Case 3: D2 = 0.22 < D2,max, and D3 = 0.23.

For Case 1, Figure 4.4 shows the rate-distortion curves ofRX1X2X3
c (D1, D2, D3) andRX2X3

c (D2, D3)

versus D2. Over the interval of D2 shown in Figure 4.4, it is clear that RX1X2X3
c (D1, D2, D3)

is always strictly less than RX2X3
c (D2, D3).
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Figure 4.4: Comparison of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D2 for fixed
D1 = 0.31 and D3 = 0.15.

For Case 2, Figure 4.5 shows RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 with

fixedD2 < D2,max andD3. It is observed that the critical point at which RX1X2X3
c (D1, D2, D3)

meets RX2X3
c (D2, D3) is the intersection of the two curves. Denote this critical point by

D∗
1. Then it is clear that when D1 > D∗

1, R
X1X2X3
c (D1, D2, D3) is indeed strictly less

than RX2X3
c (D2, D3). Table 4.1 shows the rate allocation across different encoders in both

cases of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) for several sample values of D1, where

Ri, i = 1, 2, 3, represents the rate allocated to the encoder of Xi in both cases, and

RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) are denoted as RX1X2X3
c and RX2X3

c , respectively

to save space. It is clear from Table 4.1 that the allocated rates confirm the explanation

mentioned in Remark 9.

When we assign different values to D2 < D2,max and D3, we observe the same phe-
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Figure 4.5: Comparison of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.20 and D3 = 0.15 in Example 3.

nomenon, as shown again in Figure 4.6 and Table 4.2 for Case 3.

Let us now look at another example with a different joint distribution.

Example 4: Suppose that Xi = X̂i = {0, 1}, i = 1, 2, 3, and that the Hamming distortion

measure is used. Let pX1(0) = 1/10, pX2|X1
(0|1) = pX2|X1

(1|0) = 1/10, and

pX3|X1X2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1X2 00 01 10 11

X3

0 0.80 0.05 0.1 0.92

1 0.20 0.95 0.9 0.08

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Once again, X1, X2 and X3 do not form a Markov chain. Fix D2 = 0.0988 < D2,max and

D3 = 0.0911. Figure 4.7 shows the two rate distortion curves RX1X2X3
c (D1, D2, D3) and

RX2X3
c (D2, D3) versus D1, and Table 4.3 lists their respective rate allocations for several
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Table 4.1: Rate allocation of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.20 and D3 = 0.15 in Example 3.

D1 = 0.3300 R1 = 0.0035 R2 = 0.3546 R3 = 0.2274 RX1X2X3
c = 0.5854

D1 = 0.3000 R1 = 0.0369 R2 = 0.3855 R3 = 0.1737 RX1X2X3
c = 0.5961

D1 = 0.2700 R1 = 0.0769 R2 = 0.4224 R3 = 0.1111 RX1X2X3
c = 0.6103

D1 = 0.2620 R1 = 0.0886 R2 = 0.4327 R3 = 0.0939 RX1X2X3
c = 0.6150

(critical point)
D1 = 0.2600 R1 = 0.0916 R2 = 0.4425 R3 = 0.0821 RX1X2X3

c = 0.6160

N/A N/A R2 = 0.2748 R3 = 0.3402 RX2X3
c = 0.6150

Table 4.2: Rate allocation of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.22 and D3 = 0.23 in Example 3.

D1 = 0.3222 R1 = 0.0115 R2 = 0.3138 R3 = 0.0602 RX1X2X3
c = 0.3855

D1 = 0.3093 R1 = 0.0260 R2 = 0.3170 R3 = 0.0486 RX1X2X3
c = 0.3915

D1 = 0.2944 R1 = 0.0440 R2 = 0.3203 R3 = 0.0359 RX1X2X3
c = 0.4002

D1 = 0.2771 R1 = 0.0668 R2 = 0.3237 R3 = 0.0212 RX1X2X3
c = 0.4119

(critical point)
D1 = 0.2730 R1 = 0.0726 R2 = 0.3243 R3 = 0.0180 RX1X2X3

c = 0.4149

N/A N/A R2 = 0.2366 R3 = 0.1753 RX2X3
c = 0.4119

sample values of D1. The same phenomenon is revealed as in Example 3 .

For all cases shown in Examples 1 and 2, in comparison with RX2X3
c (D2, D3), when

we include X1 in the encoding and transmission, we not only get the reconstruction of

X1 (with distortion ≥ D∗
1) free at the receiver end, but are also able to reduce the total

number of bits to be transmitted. In other words, we can achieve a double gain.
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Figure 4.6: Comparison of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.22 and D3 = 0.23 in Example 3.

Table 4.3: Rate allocation of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.0988 and D3 = 0.0911 in Example 4.

D1 = 0.1000 R1 = 1.3265 × 10−7 R2 = 0.2412 R3 = 0.1311 RX1X2X3
c = 0.3722

D1 = 0.0977 R1 = 0.0074 R2 = 0.2378 R3 = 0.1307 RX1X2X3
c = 0.3758

D1 = 0.0922 R1 = 0.0252 R2 = 0.2281 R3 = 0.1303 RX1X2X3
c = 0.3836

D1 = 0.0872 R1 = 0.0421 R2 = 0.2191 R3 = 0.1303 RX1X2X3
c = 0.3914

(critical point)
D1 = 0.0849 R1 = 0.0495 R2 = 0.2150 R3 = 0.1303 RX1X2X3

c = 0.3949

N/A N/A R2 = 0.2150 R3 = 0.1764 RX2X3
c = 0.3914
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Figure 4.7: Comparison of RX1X2X3
c (D1, D2, D3) and RX2X3

c (D2, D3) versus D1 for fixed
D2 = 0.0988 and D3 = 0.0911 in Example 4.
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Chapter 5

Information Theoretic Performance

Comparison of Causal Video Coding

and Predictive Video Coding

Recall Figure 1.3 for the paradigm of CVC and PVC. From their respective definitions,

it follows that CVC includes PVC as a special case where the original video frames

X1, · · · , Xk−1 are discarded at the encoder. In other words, these original video frames

can be regarded as the side information available only to the encoder of Xk. The loss

of access to original video frames in PVC has important implications. For example, de-

spite the fact that PVC is widely used in practice, the single-letter characterization of the

minimum total rate R∗
p(D1, · · · , DN) of PVC required to achieve a given distortion level

D1, · · · , DN > 0 in the usual information theoretic sense (see [54]), if any, is unknown in

general, let alone any algorithm to actually compute it. These are in contrast to CVC,

of which not only the total rate distortion function R∗
c(D1, · · · , DN) has a single-letter

characterization, but also it is computable. The fact that the total rate distortion func-
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tion R∗
p(D1, · · · , DN) of PVC is not computable makes the comparison between CVC and

PVC difficult and technically challenging. In this chapter, our purpose is to address this

issue and provide some results comparing the rate distortion performance of PVC against

that of CVC. Note that such comparison is of particular interest in the practice of video

compression: if R∗
c(D1, · · · , DN) is strictly smaller than R∗

p(D1, · · · , DN), then it implies

a possible paradigm shift from PVC to CVC in the design of future video coding systems

and standards.

Before presenting our findings, let us review some relevant results on source coding with

encoder only side information. As shown in [2, Ch. 6, Case 2, p. 180], in the case where

there are only one encoder and one decoder, the best rate distortion performance achievable

asymptotically does not improve with encoder only side information. Conveniently, one

might extrapolate that the encoder only side information in CVC does not help improve

the total rate distortion function either, or in other words, R∗
c(D1, · · · , DN) is equal to

R∗
p(D1, · · · , DN).

In this chapter, we show that such extrapolation is in general incorrect by identifying

cases where R∗
c(D1, · · · , DN) is strictly less than R∗

p(D1, · · · , DN). Specifically, by fixing

N = 3, we first show that for general stationary ergodic sources X1, X2, X3 which do not

form a (first-orer) Markov chain, the minimum total rate Rc,n(D1, D2, D3) of nth order

causal video codes is always strictly less than the minimum total rate Rp,n(D1, D2, D3) of

nth order predictive video codes for any finite n > 0 under mild conditions on source frames

and distortions. We next establish a single-letter characterization of R∗
p(D1, D2, D3) for an

IID vector source (X1, X2, X3) where X1 and X2 are independent. Finally we provide a

specific condition under which R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3) for binary sources, which

implies that CVC is an attractive framework for future video coding systems and standards.

90



5.1 Information Theoretic Characterization for Pre-

dictive Video Coding

Before characterizing the rate-distortion performance for PVC, we first define an order-n

predictive video code Cn forX1, · · · , XN by using a sequence of function pairs (f1, g1), · · · , (fN , gN)

such that

f1 : X n
1 → {0, 1}∗, g1 : {0, 1}∗ → X̂ n

1 ,

fi : X n
j ×

i−1 times︷ ︸︸ ︷
{0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗, and

gi :

i times︷ ︸︸ ︷
{0, 1}∗ × · · · × {0, 1}∗ → X̂ n

i , i = 2, · · · , N

where X n
k and X̂ n

k , k = 1, · · · , N, denote the n-fold product of Xk and X̂k, respectively, and

{0, 1}∗ denotes the set of all finite binary strings. For an order-n predictive video code Cn,

S1 = f1(X1(1;n)), Si = fi(Xi(1;n), S−
i ), X̂1(1;n) = g1(S1), and X̂i(1;n) = gi(S

−
i , Si).

To evaluate the rate distortion performance of Cn, we define the following quantities.

DCn,i
Δ
=

1

n
E

n∑
j=1

di(Xi(j), X̂i(j)) (5.1)

RCn,i
Δ
=

1

n
E|Si|, 1 ≤ i ≤ N (5.2)

where |B| denotes the number of symbols in a string B.

Fix a vector source (X1, · · · , XN). Let (R1, · · · , RN) be a rate vector and (D1, · · · , DN)

be a distortion vector. The rate distortion pair vector (R1, · · · , RN , D1, · · · , DN) is said to

be achievable by PVC if for any ε > 0, there exists an order-n predictive video code Cn for

all sufficiently large n such that

DCn,i ≤ Di + ε, and RCn,i ≤ Ri + ε (5.3)
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for i = 1, · · · , N .

Let R∗
p denote the set of all rate distortion pair vectors (R1, · · · , RN , D1, · · · , DN)

achievable by predictive source coding. As in the practice of video compression, we

are interested in the minimum total rate R∗
p(D1, · · · , DN) to achieve the distortion level

(D1, · · · , DN) required by PVC. Specifically, R∗
p(D1, · · · , DN) is defined by

R∗
p(D1, · · · , DN)

Δ
=min

{ N∑
i=1

Ri: (R1, · · · , RN) ∈ Rp(D1, · · · , DN)
}
. (5.4)

In the following, we characterize the rate-distortion performance of PVC for general

stationary and ergodic sources. To that end, let us define Rp,n to be the region consisting

of all rate distortion pair vectors (R1, · · · , RN , D1, · · · , DN) for which there exist auxiliary

random variables Uk, k = 1, 2, · · · , N − 1, and X̂N(1;n) such that

R1 ≥ 1

n
I(X1(1;n);U1)

Rk ≥ 1

n
I(Xk(1;n);Uk|U−

k )

k = 2, 3, · · · , N − 1

RN ≥ 1

n
I(XN(1;n); X̂N(1;n)|U−

N ) (5.5)

and the following requirements are satisfied:

(R13) X̂1(1;n) = g1(U1) for some deterministic function g1,

(R14) X̂k(1;n) = gk(U
−
k , Uk) for some deterministic function gk, k = 2, · · · , N − 1,

(R15) for any 1 ≤ k ≤ N , 1
n
E[dk(Xk(1;n), X̂k(1;n))] ≤ Dk, and

(R16) the Markov chain conditions Uk → (Xk(1;n), U−
k ) → X+

k (1;n), k = 1, · · · , N − 1,

Uj → (Xj(1;n), U−
j ) → (X−

j (1;n), X+
j (1;n)), j = 2, · · · , N − 1, and X−

N(1;n) →
(XN(1;n), U−

N ) → X̂N(1;n) are met.
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Let R′
p =

⋃∞
n=1 Rp,n. Denote its convex hull closure by co(R′

p). In parallel to Theorem 3, we

have the following result for PVC. The proof of Theorem 12 is similar to that of Theorem 3

and is thus not reproduced here.

Theorem 12 For general stationary and ergodic sources X1, · · · , XN , R∗
p = co(R′

p).

To determine R∗
p(D1, · · · , DN) in terms of information quantities, we define

Rp,n(D1, · · · , DN)

=
1

n
inf[I(X1(1;n);U1) +

N−1∑
t=2

I(Xt(1;n);Ut|U−
t ) +

I(XN(1;n); X̂N(1;n)|U−
N )] (5.6)

where the infimum is taken over all auxiliary random variables U1, · · · , UN−1 and X̂N(1;n)

satisfying the requirements (R13) to (R16).

In parallel to Theorem 5, we have the following result.

Theorem 13 For jointly stationary and ergodic sources X1, · · · , XN ,

R∗
p(D1, · · · , DN) = inf{Rp,n(D1, · · · , DN) : n ≥ 1}

for any distortion level D1 > 0, · · · , DN > 0.

To ease the subsequent discussions, we need the following lemma in parallel to Lemma 1.

Lemma 6 The function R∗
p(D1, · · · , DN) is convex and hence continuous over the open

region D1 > 0, · · · , DN > 0.

The proofs of Theorem 13 and Lemma 6 are similar to that of Theorem 5 and Lemma 5,

respectively, and are thus omitted here.
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5.2 Predictive vs. Causal

In this section, we compare CVC against PVC. Specifically, since it follows from their

definitions that

R∗
c(D1, · · · , DN) ≤ R∗

p(D1, · · · , DN) (5.7)

for any video source X1, · · · , XN , our comparison is focused on identifying cases of interest

in practice for which the inequality in Equation (5.7) becomes, if possible, equality or strict

inequality.

Without losing generality, we consider only the case where N = 3, and write the

three jointly stationary and ergodic sources X1(1;n), X2(1;n), X3(1;n) as Xn, Y n, and

Zn respectively. Let pXnY n and pXnY nZn denote the joint distributions of random vectors

(Xn, Y n) and (Xn, Y n, Zn), respectively; and let pXn denote the marginal distribution of

Xn. If there is no ambiguity, subscripts in distributions will be omitted. For example, we

may write p(x) instead of pX(x).

In the following discussions, Rp,n(D1, D2, D3) is defined in (5.6) when N = 3 and

Rc,n(D1, D2, D3) can be rewritten as below1:

min
U1,U2,Ẑn

[
I(Xn;U1) + I(XnY n;U2|U1) + I(Zn; Ẑn|U1U2)

]
(5.8)

where the minimization is taken over all random variables U1 ∈ U1, U2 ∈ U2 and Ẑn ∈
Ẑn satisfying the following conditions: i) there exist a function g1 such that X̂n =

g1(U1) and 1
n
Ed1(X

n, X̂n) ≤ D1; ii) there exist a function g2 such that Ŷ n = g2(U1, U2)

and 1
n
Ed2(Y

n, Ŷ n) ≤ D2; iii) (Y n, Zn) → Xn → U1 is a Markov chain; iv) Zn →
(Xn, Y n, U1) → U2 is a Markov chain; and v) (Xn, Y n) → (Zn, U1, U2) → Ẑn is a Markov

1It follows from the proof of Theorem 2 that (5.8) is equal to the right-hand-side of (3.8) when N = 3.
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chain. Define

Fc,n(s)
Δ
= inf Fc,n(pU1|Xn, pU2|U1XnY n , pẐn|U1U2Zn, QU1U2Ẑn) (5.9)

for any s = (α, β, ν), where α, β, ν ≥ 0, denotes the standard Lagrange multipliers, and

Fc,n(pU1|Xn , pU2|U1XnY n , pẐn|U1U2Zn, QU1U2Ẑn)

Δ
=

∑
xn,u1

P (xn)P (u1|xn)

[
log

P (u1|xn)

Q(u1)2−αd1(xn,g1(u1))
+

∑
yn,u2

P (yn|xn)P (u2|xnynu1)

[
log

P (u2|xnynu1)

Q(u2|u1)2−βd2(yn,g2(u1,u2))
+

∑
zn,ẑn

P (zn|xnyn)P (ẑn|znu2
1) log

P (ẑn|znu2
1)

Q(ẑn|u2
1)2

−νd3(zn,ẑn)

]]
. (5.10)

It follows (4.25) and (4.26) that

Fc,n(s)

n
= inf{Rc,n(D1, D2, D3) + αD1 + βD2 + νD3 :

D1 ≥ 0, D2 ≥ 0, D3 ≥ 0} (5.11)

and

Rc,n(D1, D2, D3) = sup{Fc,n(s)/n− αD1 − βD2 −
νD3 : s = (α, β, ν) and α ≥ 0, β ≥ 0, ν ≥ 0}. (5.12)

For brevity, let us denote (pU1|Xn , pU2|U1XnY n , pẐn|U1U2Zn) in (5.10) by Pc,n, and QU1U2Ẑn

in (5.10) by Qc,n. The algorithm computes Rc,n(D1, D2, D3) or equivalently Fc,n(s) by

finding transition probability and probability functions Pc,n and Qc,n iteratively until con-

vergence, that is, for any Pc,n, find

Qc,n(Pc,n)
Δ
=arg min

Qc,n

Fc,n(Pc,n, Qc,n),
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and for any Qc,n, find

Pc,n(Qc,n)
Δ
=arg min

Pc,n

Fc,n(Pc,n, Qc,n).

It was shown in Section 4.1 that the iterative algorithm converges globally.

We then define

Fp,n(s)
Δ
= inf Fp,n(pU1|Xn , pU2|U1Y n , pẐn|U1U2Zn, QU1U2Ẑn) (5.13)

for any s = (α, β, ν) with α, β, ν ≥ 0, and

Fp,n(pU1|Xn , pU2|U1Y n , pẐn|U1U2Zn, QU1U2Ẑn)

Δ
=

∑
xn,u1

P (xn)P (u1|xn)

[
log

P (u1|xn)

Q(u1)2−αd1(xn,g1(u1))
+

∑
yn,u2

P (yn|xn)P (u2|ynu1)

[
log

P (u2|ynu1)

Q(u2|u1)2−βd2(yn,g2(u1,u2))
+

∑
zn,ẑn

P (zn|xnyn)P (ẑn|znu2
1) log

P (ẑn|znu2
1)

Q(ẑn|u2
1)2

−νd3(zn,ẑn)

]]
. (5.14)

In order to find the random variables U1, U2, Ẑ
n that achieve Rp,n(D1, D2, D3), we try to

find the transition probability and probability functions pU1|Xn , pU2|U1Y n , pẐn|U1U2Zn, and

QU1U2Ẑn that minimize (5.14). We denote (pU1|Xn, pU2|U1Y n, pẐn|U1U2Zn) and QU1U2Ẑn in

(5.14) by Pp,n and Qp,n respectively. For any Pp,n, let

Qp,n(Pp,n)
Δ
= arg min

Qp,n

Fp,n(Pp,n, Qp,n).

Similarly, for any Qp,n, let

Pp,n(Qp,n)
Δ
= arg min

Pp,n

Fp,n(Pp,n, Qp,n).

However, the problem of computing Rp,n(D1, D2, D3) to achieve (5.13) is very challenging

and still open in general.
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In view of (5.6) and (5.13), it is not hard to show the conjugate of Rp,n(D1, D2, D3) is

Fp,n(s)

n
= inf{Rp,n(D1, D2, D3) + αD1 + βD2 + νD3 :

D1 ≥ 0, D2 ≥ 0, D3 ≥ 0}, (5.15)

for any s = (α, β, ν), α ≥ 0, β ≥ 0, ν ≥ 0. In view of Lemma 6, Rp,n(D1, D2, D3) is convex

and lower semi-continuous over the whole region D1 ≥ 0, D2 ≥ 0, D3 ≥ 0, it follows from

[34, Theorem 12.2, pp. 104] that for any D1 ≥ 0, D2 ≥ 0, D3 ≥ 0, we have an alternative

expression for Rp,n(D1, D2, D3) similar to that in (5.12),

Rp,n(D1, D2, D3) = sup{Fp,n(s)/n− αD1 − βD2 −
νD3 : s = (α, β, ν) and α ≥ 0, β ≥ 0, ν ≥ 0}. (5.16)

5.2.1 Markov Case

In this subsection, we consider the case under which the inequality in Equation (5.7)

becomes equality.

Theorem 14 If the jointly stationary and ergodic sources X1, X2, X3 form a (first-order)

Markov chain in the indicated order, then

R∗
c(D1, D2, D3) = R∗

p(D1, D2, D3) (5.17)

for any D1, D2, D3 ≥ 0.

Proof of Theorem 14: We discuss the following two cases: (1) D1D2D3 > 0, and (2)

D1D2D3 = 0. In case (1), it follows from the Theorem 13 and Theorem 5 that it suffices

to show Rp,n(D1, D2, D3) = Rc,n(D1, D2, D3) for any n ≥ 1 and D1D2D3 > 0, where

Rp,n(D1, D2, D3) is defined in (5.6) when N = 3 and Rc,n(D1, D2, D3) can be rewritten as

(5.8) satisfying condition i) to v) below it.
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In view of the definition of causal video codes and predictive video codes, it is not hard

to see that

R∗
c(D1, D2, D3) ≤ R∗

p(D1, D2, D3) (5.18)

for any D1D2D3 ≥ 0. Therefore, in what follows, it suffices to show

R∗
c(D1, D2, D3) ≥ R∗

p(D1, D2, D3) (5.19)

for any D1D2D3 ≥ 0, which, together with Theorem 13 and Theorem 5, implies that case

1) suffices to prove that

Rc,n(D1, D2, D3) ≥ Rp,n(D1, D2, D3) (5.20)

for any D1D2D3 > 0 and n ≥ 1.

To this end, pick U1, U2, and X̂3(1;n) satisfying the requirements (R5) and (R6). It is

not hard to verify that the requirement (R6) plus the Markov condition X1 → X2 → X3

implies that the Markov condition U2 → (X2(1;n), U1) → X3(1;n) is satisfied. On the other

hand, one can verify that if the Markov condition X1 → X2 → X3 holds, X1(1;n) can be

removed from the Markov chain U2 → (X2(1;n), U1) → X1(1;n)X3(1;n) in the requirement

(R10) without changing the minimum total rate of predictive video coding with respect

to the same distortion constraints. Therefore, the random variables U1, U2, X̂3(1;n) also

satisfy the requirements (R13) to (R15). This, together with (5.6), implies

nRc,n(D1, D2, D3)

= I(X1(1;n);U1) + I(X1(1;n)X2(1;n);U2|U1) + I(X3(1;n); X̂3(1;n)|U1U2)

= I(X1(1;n);U1) + I(X2(1;n);U2|U1) + I(X3(1;n); X̂3(1;n)|U1U2)

≥ nRp,n(D1, D2, D3) (5.21)
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Since (5.21) is valid for any auxiliary random variables U1, U2, X̂3(1;n) satisfying the re-

quirements (R5) and (R6), (5.19) then follows from the definition (5.6). This completes

the proof of this Theorem in Case (1).

To prove (5.19) in Case (2), note that both R∗
p(D1, D2, D3) and R∗

c(D1, D2, D3) are

right continuous in the sense that for any D1D2D3 ≥ 0,

lim
ε↓0

R∗
p(D1 + ε,D2 + ε,D3 + ε) = R∗

p(D1, D2, D3)

and

lim
ε↓0

R∗
c(D1 + ε,D2 + ε,D3 + ε) = R∗

c(D1, D2, D3).

The validity of (5.19) in Case (2) then follows from its validity in Case (1). In view of

(5.18) and (5.19), this completes the proof of Theorem 14.

Apart from the classic information theoretic approach, Theorem 14 can also be proved

by computational approach, that is, using our proposed iterative algorithm with global

convergence, and an alternative proof is provided as below. The key strategy of the com-

putational approach is to show that if sources form a (first-order) Markov chain in the

indicated order, then any causal code, which can be solved by our iterative algorithm, is

easy to be verified as a predictive code. The computational approach uses our iterative

algorithm in a novel way, not for computing, but for comparing. The computational ap-

proach sometimes shows its superiority to the classic approach. One example is to show the

strict inequality in Theorem 15 using our computational approach, however, the solution

is still unknown by using the classic approach.

Next, we provide an alternative proof of Theorem 14. The proof presented here is to

compare Rc,n(D1, D2, D3) with Rp,n(D1, D2, D3) through a novel application of the iterative

computation algorithm proposed in [54]. For convenience, in the following we shall write

X1(1;n), X2(1;n), X3(1;n) as Xn, Y n, and Zn, respectively. Note that Xn → Y n → Zn is

a Markov chain by assumption .

99



An alternative proof of Theorem 14: In view of (5.7), we see that in order to prove

(5.17), it suffices to show that

R∗
c(D1, D2, D3) ≥ R∗

p(D1, D2, D3) (5.22)

for any D1, D2, D3 ≥ 0, which, together with Theorem 2 and Theorem 13, implies that it

suffices to prove that

Rc,n(D1, D2, D3) ≥ Rp,n(D1, D2, D3) (5.23)

for any n ≥ 1.

Let us first consider the case where D1D2D3 > 0. As mentioned above, our strategy

to prove (5.23) is as follows. Since Rc,n(D1, D2, D3) or equivalently Fc,n(s) in (5.9) is

computable by using the iterative algorithm proposed in Section 4.1, where s = (α, β, γ)

denotes the Lagrange multipliers. Note thatD1D2D3 > 0 implies αβγ <∞. This allows us

to verify that if Xn → Y n → Zn is a Markov chain, the solution to Fc,n(s) with αβγ <∞
is a predictive code. Consequently, Rc,n(D1, D2, D3) ≥ Rp,n(D1, D2, D3).

Along this line, let Pc,n = (pU1|Xn , pU2|U1XnY n , pẐn|U1U2Zn) denote a vector of three

transition probability functions in PU1|Xn × PU2|Xn×Yn×U1
× PẐn|Zn×U1×U2

. Let Qc,n =

QU1U2Ẑn denote a function in PU1×U2×Ẑn derived from Pc,n as in Step 3 of the iterative

algorithm, that is,

Q(u1u2ẑ
n) =

∑
xn,yn,zn

p(xn)p(yn|xn)p(zn|yn)P (u1|xn)P (u2|xnynu1)P (ẑn|u2
1z

n). (5.24)

Suppose that (Pc,n, Qc,n) is a stationary point, i.e.,

Fc,n(Pc,n, Qc,n) = Fc,n(s). (5.25)

Note that the existence of such stationary point was guaranteed by Theorem 6. It follows

immediately that

Pc,n = Pc,n(Qc,n), (5.26)
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which implies that

P (ẑn|znu2
1) =

Q(ẑn|u2
1)2

−νd3(zn,ẑn)

Δ(zn, u1, u2)
, (5.27)

P (u2|xnynu1) =
Q(u2|u1)2

−βd2(yn,g2(u1,u2))

Λ(yn, u1)
× 2

∑
zn p(zn|yn) log Δ(zn,u1,u2), (5.28)

P (u1|xn) =
Q(u1)2

−αd1(xn,g1(u1))

Γ(xn)
× 2

∑
yn p(yn|xn) log Λ(yn,u1). (5.29)

where

Δ(zn, u1, u2)
Δ
=

∑
ẑn

Q(ẑn|u2
1)2

−νd3(zn,ẑn), (5.30)

Λ(yn, u1)
Δ
=

∑
u2

Q(u2|u1)2
−βd2(yn,g2(u1,u2)) × 2

∑
zn p(zn|yn) log Δ(zn,u1,u2), (5.31)

Γ(xn)
Δ
=

∑
u1

Q(u1)2
−αd1(xn,g1(u1)) × 2

∑
yn p(yn|xn) logΛ(yn,u1). (5.32)

It is observed that the right-hand-side of (5.28) does not depend on xn, i.e., for any

u2, u1, y
n, xn and x̃n ∈ X n with x̃n 	= xn, we have P (u2|xnynu1) = P (u2|x̃nynu1), which im-

plies the validity of an extra Markov chain Xn → (Y n, U1) → U2 besides the requirements

(R5) and (R6) for causal codes. Thus, it is not hard to see that ifXn → Y n → Zn, then any

causal codes U1, U2, Ẑ
n for encoding Xn, Y n, Zn with respective distortion D1, D2, D3 > 0

also satisfy the requirements (R13) to (R16) with respect to Xn, Y n, Zn and D1, D2, D3

respectively. Therefore

Rp,n(D1, D2, D3) ≤ Rc,n(D1, D2, D3). (5.33)

for any D1, D2, D3 > 0.

Let us then consider the cases where some distortion levels are 0.

Case 1) all D1, D2, D3 are 0: in this case, CVC does not offer any performance gain over

PVC, i.e., (5.17) is satisfied automatically.

101



Case 2) any two of D1, D2, D3 are 0: in this case, it is equivalent to encode a single

source given a positive distortion level in both causal coding and predictive coding

settings, which is not hard to verify the validity of (5.17).

Case 3) D3 = 0, D1 	= 0, D2 	= 0 : along the same line of the case D1D2D3 > 0, we

consider the computation of Rc,n(D1, D2, 0), i.e.,

min
U1,U2

[
I(Xn;U1) + I(XnY n;U2|U1) +H(Zn|U1U2)

]
, (5.34)

where the minimization is taken over all random variables U1 from a finite alphabet

U1 and U2 from U2 satisfying the following conditions: i) there exists a function g1

such that X̂n = g1(U1) and 1
n
Ed1(X

n, X̂n) ≤ D1; ii) there exists a function g2 such

that Ŷ n = g2(U1, U2) and 1
n
Ed2(Y

n, Ŷ n) ≤ D2; iii) U1 → Xn → Y nZn is a Markov

chain; and (iv) U2 → XnY nU1 → Zn is a Markov chain.

In order to calculate (5.34), we equivalently calculate Fc,n(s) with only two Lagrange

multipliers αβ < ∞ by iteratively updating pU1|Xn , pU2|U1XnY n , and QZnU1U2. Since

Xn → Y n → Zn, (5.24), along with (5.27) to (5.32) reduce to:

Q(u1u2z
n) =

∑
xn,yn

p(xn)p(yn|xn)p(zn|yn)P (u1|xn)P (u2|xnynu1), (5.35)

P (u2|xnynu1) =
Q(u2|u1)2

−βd2(yn,g2(u1,u2))

Λ(yn, u1)
× 2

∑
zn p(zn|yn) log Δ(zn,u1,u2), (5.36)

P (u1|xn) =
Q(u1)2

−αd1(xn,g1(u1))

Γ(xn)
× 2

∑
yn p(yn|xn) logΛ(yn,u1), (5.37)

where

Δ(zn, u1, u2)
Δ
= Q(zn|u2

1), (5.38)

Λ(yn, u1)
Δ
=

∑
u2

Q(u2|u1)2
−βd2(yn,g2(u1,u2)) × 2

∑
zn p(zn|yn) log Δ(zn,u1,u2),(5.39)

Γ(xn)
Δ
=

∑
u1

Q(u1)2
−αd1(xn,g1(u1)) × 2

∑
yn p(yn|xn) logΛ(yn,u1). (5.40)
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Similar to the discussion of case D1D2D3 > 0 by verifying the validity of the Markov

chain Xn → (Y n, U1) → U2 via checking (5.36), we conclude that if Xn → Y n →
Zn, then any causal codes U1, U2 for encoding Xn, Y n, Zn with respective distortion

D1 > 0, D2 > 0 and D3 = 0 also satisfy the requirements (R13) to (R16) with respect

to Xn, Y n, Zn and D1 > 0, D2 > 0, D3 = 0 respectively. Thus (5.33) also holds in

this case.

Case 4) D1 = 0, D2 	= 0, D3 	= 0 : in this case, it is equivalent to compare CVC and

PVC when N = 2, and (5.17) follows immediately.

Case 5) D2 = 0, D1 	= 0, D3 	= 0 : in this case, X̂2 is identical to X2, and it is easy to

see the equivalence between CVC and PVC.

Then following from Theorem 2 and Theorem 13, (5.33) implies (5.22), which, together

with the definition of causal video codes and predictive video codes that

R∗
c(D1, D2, D3) ≤ R∗

p(D1, D2, D3),

for any D1, D2, D3 ≥ 0, implies (5.17) valid for any D1D2D3 > 0 and Case 3) as well.

Putting all cases together, we have shown that if Xn → Y n → Zn, then (5.17) holds for

any D1, D2, D3 ≥ 0, which completes our proof.

Theorem 14 implies that all the information theoretic results and the computation

algorithm on CVC can be directly applied to PVC when sources form a (first-order) Markov

chain. However, when sources do not form a (first-order) Markov chain, the problems of

single-letter characterizing, computing, and comparing R∗
p(D1, D2, D3) are still open. In

the rest of the section, we look into the case when sources do not form a (first-order) Markov

chain, and investigate the single-letter characterization and comparison of R∗
p(D1, D2, D3)

for the first time.
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5.2.2 Non-Markov Case

In this subsection, we consider the case under which Rc,n(D1, D2, D3) is strictly less than

Rp,n(D1, D2, D3) for any finite n ≥ 1 and D1 > 0, D2 > 0, D3 ≥ 0. Again, we denote the

three jointly stationary and ergodic sources X1(1;n), X2(1;n), X3(1;n) as Xn, Y n, and Zn

respectively for brevity. In the following discussions, we distinguish between two cases:

1)D1D2D3 > 0, and 2)D1D2 > 0, D3 = 0.

Since Rp,n(D1, D2, D3) and Rc,n(D1, D2, D3) are convex as functions of D1, D2, D3 over

the region {(D1, D2, D3) : D1 ≥ 0, D2 ≥ 0, D3 ≥ 0}. As such, in Case 1), they are

subdifferentiable at any point (D1, D2, D3) with D1 > 0, D2 > 0 and D3 > 0. (See [34,

Chapter 23] for discussions on the subdifferential and subgradients of a convex function.)

From (5.12) and (5.16), the comparison between Rc,n(D1, D2, D3) and Rp,n(D1, D2, D3) can

also be made through comparing their respective conjugates.

The discussion of Case 2) is more involved due to the difficulty to deal with ν → ∞
in the conjugates of Rc,n(D1, D2, D3) and Rp,n(D1, D2, D3) (as shown in (5.11) and (5.15)

respectively). In view of (5.8), we rewrite Rc,n(D1, D2, 0) as

min
U1,U2

[
I(Xn;U1) + I(XnY n;U2|U1) +H(Zn|U1U2)

]
, (5.41)

where the minimization is taken over all random variables U1 from a finite alphabet U1

and U2 from U2 satisfying the following conditions: i) there exists a function g1 such that

X̂n = g1(U1) and 1
n
Ed1(X

n, X̂n) ≤ D1; ii) there exists a function g2 such that Ŷ n =

g2(U1, U2) and 1
n
Ed2(Y

n, Ŷ n) ≤ D2; iii) U1 → Xn → Y nZn is a Markov chain; and (iv)

U2 → XnY nU1 → Zn is a Markov chain. Define

Fc,n(s)
Δ
= inf Fc,n(pU1|Xn , pU2|U1XnY n, QU1U2Zn) (5.42)
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for any s = (α, β), where α, β ≥ 0, denotes the standard Lagrange multipliers, and

Fc,n(pU1|Xn , pU2|U1XnY n , QU1U2Zn)

Δ
=

∑
xn,u1

P (xn)P (u1|xn)

[
log

P (u1|xn)

Q(u1)2−αd1(xn,g1(u1))
+

∑
yn,u2

P (yn|xn)P (u2|xnynu1)

[
log

P (u2|xnynu1)

Q(u2|u1)2−βd2(yn,g2(u1,u2))
+

∑
zn

P (zn|xnyn) log
1

P (zn|u2
1)

]]
. (5.43)

It follows that (5.11) and (5.12) can be rewritten as:

Fc,n(s)

n
= inf{Rc,n(D1, D2, 0) + αD1 + βD2 :

D1 ≥ 0, D2 ≥ 0} (5.44)

and

Rc,n(D1, D2, 0) = sup{Fc,n(s)/n− αD1 − βD2 :

s = (α, β) and α ≥ 0, β ≥ 0}. (5.45)

For brevity, we denote (pU1|Xn , pU2|U1XnY n) in (5.43) by Pc,n, and QU1U2Zn in (5.43) by

Qc,n.

Similarly, Rp,n(D1, D2, 0) can be written as

Rp,n(D1, D2, 0) = min
U1,U2

[
I(Xn;U1) + I(Y n;U2|U1) +H(Zn|U1U2)

]
, (5.46)

where the minimization is taken over all random variables U1 from a finite alphabet U1

and U2 from U2 satisfying the following conditions: i) there exists a function g1 such that

X̂n = g1(U1) and 1
n
Ed1(X

n, X̂n) ≤ D1; ii) there exists a function g2 such that Ŷ n =

g2(U1, U2) and 1
n
Ed2(Y

n, Ŷ n) ≤ D2; iii) U1 → Xn → Y nZn is a Markov chain; and (iv)
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U2 → Y nU1 → XnZn is a Markov chain. Define

Fp,n(s)
Δ
= inf Fp,n(pU1|Xn, pU2|U1Y n , QU1U2Zn) (5.47)

for any s = (α, β) with α, β ≥ 0, and

Fp,n(pU1|Xn , pU2|U1Y n , QU1U2Zn)

Δ
=

∑
xn,u1

P (xn)P (u1|xn)

[
log

P (u1|xn)

Q(u1)2−αd1(xn,g1(u1))
+

∑
yn,u2

P (yn|xn)P (u2|ynu1)

[
log

P (u2|ynu1)

Q(u2|u1)2−βd2(yn,g2(u1,u2))
+

∑
zn

P (zn|xnyn) log
1

P (zn|u2
1)

]]
. (5.48)

We denote (pU1|Xn , pU2|U1Y n) and QU1U2Zn in (5.48) as Pp,n and Qp,n accordingly, and repeat

the same argument in Case 1), we have

Fp,n(s)

n
= inf{Rp,n(D1, D2, 0) + αD1 + βD2 :

D1 ≥ 0, D2 ≥ 0}, (5.49)

and

Rp,n(D1, D2, 0) = sup{Fp,n(s)/n− αD1 − βD2 :

s = (α, β) and α ≥ 0, β ≥ 0}. (5.50)

Accordingly, Rp,n(D1, D2, 0) and Rc,n(D1, D2, 0) are subdifferentiable at any point (D1, D2)

with D1 > 0, and D2 > 0, and the comparison between Rc,n(D1, D2, 0) and Rp,n(D1, D2, 0)

can also be made through comparing their respective conjugates.

Combine Case 1) and 2), specifically, we state the following condition to facilitate our

discussion.
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Condition B: A point (D1, D2, D3) with D1 > 0, D2 > 0, and D3 ≥ 0 is said to satisfy

Condition A ifRc,n(D1, D2, D3) as a function ofD1, D2, D3 has a negative subgradient −s =

(−α,−β,−ν), α > 0, β > 0, ν > 0, at (D1, D2, D3), D1D2D3 > 0 (or −s = (−α,−β), α >

0, β > 0 at (D1, D2), D1D2 > 0 under the case of D3 = 0) such that there is a distribution

Q = Q(u1u2ẑ
n) = Q(u1)Q(u2|u1)Q(ẑn|u1u2), where u1 ∈ U1, u2 ∈ U2, ẑ

n ∈ Ẑn (or Q =

Q(u1u2z
n) = Q(u1)Q(u2|u1)Q(zn|u1u2), where u1 ∈ U1, u2 ∈ U2, z

n ∈ Zn) satisfying the

following requirements:

(B1) Fp,n(Pp,n(Q), Q) = Fp,n(s).

(B2) Either

Fc,n(s) < Fc,n(Pc,n(Q), Q)

or pU2|U1XnY n(·|u1x
nyn) depends on xn, i.e., there exist u2 ∈ U2, u1 ∈ U1, y

n ∈ Yn,

xn ∈ X n, and x̃n ∈ X n with x̃n 	= xn such that

pU2|U1XnY n(u2|u1x
nyn) 	= pU2|U1XnY n(u2|u1x̃

nyn).

The following theorem summarizes the main result.

Theorem 15 Suppose that X1, X2, X3 are jointly stationary and ergodic sources, and

X1, X2, and X3 do not form a (first-order) Markov chain, then for any point (D1, D2, D3), D1 >

0, D2 > 0, and D3 ≥ 0, satisfying Condition B,

Rc,n(D1, D2, D3) < Rp,n(D1, D2, D3),

for any n ≥ 1.

Proof of Theorem 15 : For brevity, we rewrite three sources X1(1;n), X2(1;n), X3(1;n)

as Xn, Y n, and Zn respectively in the proof. First note that from the definition of causal
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video codes and predictive video codes,

Rc,n(D1, D2, D3) ≤ Rp,n(D1, D2, D3) (5.51)

for any D1, D2, D3 ≥ 0. Fix now any point (D1, D2, D3), D1, D2, D3 > 0, satisfying Condi-

tion B. We prove Theorem 15 by contradiction. Suppose that

Rc,n(D1, D2, D3) = Rp,n(D1, D2, D3) (5.52)

at point (D1, D2, D3). Let −s = (−α,−β,−ν) be the negative subgradient ofRc,n(D1, D2, D3)

at the point (D1, D2, D3) in Condition B. This implies that for anyD′
1 ≥ 0, D′

2 ≥ 0, and D′
3 ≥

0,

Rc,n(D′
1, D

′
2, D

′
3) ≥ Rc,n(D1, D2, D3) − α(D′

1 −D1) − β(D′
2 −D2) − ν(D′

3 −D3) (5.53)

which, coupled with (5.51) and (5.52), in turn implies

Rp,n(D
′
1, D

′
2, D

′
3) ≥ Rp,n(D1, D2, D3) − α(D′

1 −D1) − β(D′
2 −D2) − ν(D′

3 −D3) (5.54)

for any D′
1 ≥ 0, D′

2 ≥ 0, and D′
3 ≥ 0. In other words, under the assumption (5.52), −s is

also a negative subgradient of R∗
p(D1, D2, D3) at the point (D1, D2, D3). In view of (5.11),

(5.12), (5.15) and (5.16), it then follows that

Rc,n(D1, D2, D3) =
1

n
Fc,n(s) − αD1 − βD2 − νD3, (5.55)

and

Rp,n(D1, D2, D3) =
1

n
Fp,n(s) − αD1 − βD2 − νD3. (5.56)

Repeat the above arguments for any point (D1, D2, D3), D1D2 > 0, and D3 = 0, satis-

fying Condition A. In view of (5.44), (5.45), (5.49) and (5.50), we then have accordingly

Rc,n(D1, D2, 0) =
1

n
Fc,n(s) − αD1 − βD2, (5.57)
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and

Rp,n(D1, D2, 0) =
1

n
Fp,n(s) − αD1 − βD2. (5.58)

In view of the requirement (R17) in Condition B, we have

Fp,n(s) = Fp,n(Pp,n(Q), Q). (5.59)

From Step 2 of the iterative algorithm presented in Section 4.1, it follows that

Fc,n(s) ≤ Fc,n(Pc,n(Q), Q) (5.60)

≤ Fp,n(Pp,n(Q), Q) (5.61)

where the inequality in (5.61) is strict when pU2|U1XnY n depends on Xn. Therefore, accord-

ing to the requirement (R18) in Condition B, no matter which choice in the requirement

(R18) is valid, we always have

Fc,n(s) < Fp,n(Pp,n(Q), Q), (5.62)

which, together with (5.55) to (5.59), implies that for any D1D2 > 0, and D3 ≥ 0,

Rc,n(D1, D2, D3) < Rp,n(D1, D2, D3). (5.63)

This contradicts the assumption (5.52), hence complete the proof of this theorem.

To help the reader better understand where the gain ofRc,n(D1, D2, D3) over Rp,n(D1, D2, D3)

comes from, we give a high level explanation as follows. The availability of X1 to the en-

coder of X2 does not really help the encoder of X2 and its corresponding decoder achieve a

better rate distortion trade-off (R2, D2). Likewise, the availability of X1 and X2 to the en-

coder of X3 does not really help the encoder of X3 and its corresponding decoder achieve a

better rate distortion trade-off (R3, D3) either. What really matters is that the availability
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of X1 to the encoder of X2 will help the encoder of X2 choose better side information X̂2

for the encoder and decoder of X3. If the rate reduction of the encoder of X3 arising from

this better X̂2 is more than the overhead associated with the selection of this better X̂2,

then the total rate Rc,n(D1, D2, D3) is smaller than Rp,n(D1, D2, D3).

Remark 11 When sources X1, X2, X3 do not form a (first-order) Markov chain in the in-

dicated order, the single-letter characterization of R∗
p(D1, D2, D3) is still unknown. There-

fore, the strict inequality R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3) can not be inferred from Theo-

rem 15. However, Theorem 15 indeed implies that if R∗
p(D1, D2, D3) admits a single-letter

characterization, the strict inequality R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3) holds. In the fol-

lowing case study, we derive for the first time that the single-letter characterization of

R∗
p(D1, D2, D3) can be established for an IID vector source X = (X1, X2, X3) where X1 and

X2 are independent, and illustrate Condition B specifically in the binary case.

5.2.3 Case Study

In this subsection, we first derive the single-letter expression of R∗
p(D1, D2, D3) in the case

of N = 3 for an IID vector source X = (X1, X2, X3) where X1 and X2 are independent.

Theorem 16 Let X = (X1, X2, X3) be an IID vector video source such that X1 and X2

are independent. Then

R∗
p(D1, D2, D3) = min

U,X̂2,X̂3

[
I(X1;U) +

I(X2; X̂2|U) + I(X3; X̂3|UX̂2)
]
, (5.64)

where the minimization is taken over all random variables U from a finite alphabet U and

X̂2, X̂3 from X̂2, X̂3 satisfying the following conditions: i) there exists a function g such

that X̂1 = g(U) and Ed1(X1, X̂1) ≤ D1; ii) Ed2(X2, X̂2) ≤ D2; iii) Ed3(X3, X̂3) ≤ D3; iv)
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U → X1 → X2X3 is a Markov chain; v) X̂3 → X3UX̂2 → X1X2 is a Markov chain; and

vi) X̂2 → X2U → X1X3 is a Markov chain.

Proof of Theorem 16: First, we prove the converse. For brevity, we write X1X2X3 as

XY Z, X1(1;n) as Xn, X2(1;n) as Y n, and X3(1;n) as Zn. Let S1S2S3 be the output of a

length n predictive video code achieving rates (R1, R2, R3) at distortion levels (D1, D2, D3).

Then

n(R1 +R2 +R3) ≥ H(S1S2S3)

≥ H(S1S2Ẑ
n)

= I(XnY nZn;S1S2Ẑ
n)

1)
= I(Xn;S1) + I(Y n;S2|S1) + I(XnY nZn; Ẑn|S1S2)

2)
= H(Xn) −H(Xn|S1) +H(Y n) −H(Y n|S1S2)

+I(XnY nZn; Ẑn|S1S2)

=

n∑
i=1

[
H(Xi) −H(Xi|X−

i S1) +H(Yi)

−H(Yi|Y −
i S1S2) + I(XiYiZi; Ẑ

n|X−
i Y

−
i Z

−
i S1S2)

]

≥
n∑

i=1

[
I(Xi;X

−
i S1) +H(Yi) −H(Yi|Y −

i S1S2)

+I(Zi; Ẑi|X−
i Y

−
i Z

−
i S1S2)

]
(5.65)

where Ẑn denote the reconstruction of Zn. In the above, the equality 1) follows from the

fact that S1 is a function of Xn and S2 is a function of (Y n, S1); the equality 2) is due to

that Xn and Y n are independent; and the last inequality is due to the fact that mutual
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information is always non-negative. On the right-hand-side of (5.65),

H(Yi) −H(Yi|Y −
i S1S2)

= H(Yi|X−
i S1) −H(Yi|Y −

i S2X
−
i S1)

= I(Yi;Y
−
i S2|X−

i S1) (5.66)

where the first equality follows from the independence between Xn and Y n; and

I(Zi; Ẑi|X−
i Y

−
i Z

−
i S1S2)

≥ H(Zi|X−
i Y

−
i Z

−
i S1S2) −H(Zi|ẐiX

−
i Y

−
i S1S2)

= H(Zi|X−
i Y

−
i S1S2) −H(Zi|ẐiX

−
i Y

−
i S1S2)

= I(Zi; Ẑi|X−
i Y

−
i S1S2) (5.67)

where the first equality follows from verifying I(Zi;Z
−
i |X−

i Y
−
i S1S2) = 0. Putting (5.66)

and (5.67) back into (5.65), and letting Ui
Δ
=X−

i S1 and Vi
Δ
=Y −

i S2, we have

n(R1 +R2 +R3) ≥
n∑

i=1

[I(Xi;Ui) + I(Yi;Vi|Ui) +

I(Zi; Ẑi|UiVi)]. (5.68)

It is easy to verify that Ui → Xi → YiZi is a Markov chain. To see that Vi → YiUi →
XiZi is also a Markov chain, we first verify that I(Vi;Xi|YiUi) = 0 by checking

H(Vi|UiYiXi) = H(XiUiYiVi) −H(XiUiYi)

3)
= H(XiUi) +H(ViYi|XiUi) −

H(Yi|Ui) −H(XiUi)

4)
= H(ViYi|Ui) −H(Yi|Ui)

= H(Vi|YiUi). (5.69)
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In the above, the equality 3) is due to the independence between Xn and Y n; and

the equality 4) follows from verifying I(ViYi;Xi|Ui) = 0. Similarly, we can show that

I(Vi;Zi|YiUiXi) = 0.

To continue, we introduce a timesharing random variable I that is independent of XY Z

and uniformly distributed over {1, 2, · · · , n}. It follows from (5.68) that

R1 +R2 +R3 ≥ I(X;UI |I) + I(Y ;VI |UII)

+I(Z; ẐI |UIVII)

≥ I(X;U) + I(Y ;V |U) +

I(Z; Ẑ|UV ), (5.70)

where U
Δ
=(UI , I), V

Δ
=(VI , I), and we abuse the notation to use X, Y, Z, and Ẑ as random

variables.

To complete the proof of the converse, we note that the reconstruction Ŷ of Y is a

function of (U, V ). Thus

I(Y ;V |U) = I(Y ;V Ŷ |U)

= I(Y ; Ŷ |U) + I(Y ;V |UŶ ) (5.71)

and

I(Z; Ẑ|UV ) = H(Z|UV ) −H(Z|UV Ẑ)

≥ H(Z|UV Ŷ ) −H(Z|UŶ Ẑ)

= I(Z; Ẑ|UŶ ) − I(Z;V |UŶ ). (5.72)

Putting (5.71) and (5.72) back into (5.70), and invoking the inequality I(Y ;V |UŶ ) −
I(Z;V |UŶ ) ≥ 0, we obtain

R1 +R2 +R3 ≥ I(X;U) + I(Y ; Ŷ |U) +

I(Z; Ẑ|UŶ ). (5.73)
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Note that Ŷ → Y U → XZ is a Markov chain following from

I(Ŷ ;XZ|Y U) ≤ I(V ;XZ|Y U) = 0, (5.74)

and the non-negativity of mutual information. Finally observe that one can force Ẑ →
ZUŶ → XY to be a Markov chain without affecting (5.73) and thus satisfies Condition

v) below (5.64). This completes the proof of the converse of Theorem 16.

The direct part of Theorem 16 can be shown by using the standard random coding

argument, which is omitted in this thesis. This completes the proof of Theorem 16.

Theorem 15 and Theorem 16 together imply that for an IID vector video source

(X1, X2, X3) such that X1 and X2 are independent. If X1, X2, and X3 do not form a

(first-order) Markov chain, then under some mild conditions on D1, D2, and D3 (D1, D2 >

0, D3 ≥ 0 and satisfying Condition B),

R∗
c(D1, D2, D3) < R∗

p(D1, D2, D3).

Condition B is generally met at points (D1, D2, D3), D1 > 0, D2 > 0, D3 ≥ 0, for

which positive bit rates are needed at all the decoder for X1, X2, and X3 in order for

them to produce the respective reproductions with the desired distortions D1, D2, and D3.

Such distortion points will be called points with positive rates. By using the technique

demonstrated in the proof of Property 1 in [52], it can be shown that R∗
c(D1, D2, D3) has

a negative subgradient at any point (D1, D2, D3), D1 > 0, D2 > 0, D3 > 0 (or at any point

(D1, D2), D1 > 0, D2 > 0,when D3 = 0), with positive rates. In addition, the distribution

Pc(Q), if optimal, generally depends on X1 (except for some corner cases) when X1, X2,

and X3 do not form a Markov chain. In the following, we present a simple example to

illustrate Theorem 15.

Example 5: Let X = (X1, X2, X3) denote a memoryless video source with Xi =

X Δ
={0, 1}, i = 1, 2, 3. Suppose that X̂i = X̂ Δ

={0, 1}, and Hamming distortion measure,
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denoted by d, is used for all three sources. Further suppose that X1 and X2 are indepen-

dent, and X3(j) = X1(j) + X2(j) for j ≥ 1, where ‘+’ denotes modulo-2 addition. Let

p1
Δ
=P (X1 = 1) and p2

Δ
=P (X2 = 1) such that 0 < p1 ≤ 0.5 and 0 < p2 ≤ 0.5. In this

example, we would like to show

R∗
c(D1, D2, 0) < R∗

p(D1, D2, 0) (5.75)

when D1 > 0 and 0 < D2 < p2.

The main difficulty of deriving (5.75) lies in the fact that there is no known algorithm

to compute R∗
p(D1, D2, 0) even though it has a single-letter expression. To circumvent

this problem, we instead look at the computation of R∗
c(D1, D2, 0). More specifically, we

consider the computation of2

min
U,X̂2

[
I(X1;U) + I(X1X2; X̂2|U) +H(X3|UX̂2)

]
, (5.76)

where the minimization is taken over all random variables U from a finite alphabet U
and X̂2 from X̂ satisfying the following conditions: i) there exists a function g such that

X̂1 = g(U) and Ed1(X1, X̂1) ≤ D1; ii) Ed2(X2, X̂2) ≤ D2; iii) U → X1 → X2X3 is a

Markov chain; and iv) X̂2 → X1X2U → X3 is a Markov chain.

In order to calculate (5.76), we define a function Fα,β by

Fα,β(PU |X1
, PX̂2|X2

1U , QUX̂2X3
)

Δ
=∑

x1,u

P (x1)P (u|x1)

[
log

P (u|x1)

Q(u)2−αd(x1,g(u))
+

∑
x2,x̂2

P (x2)P (x̂2|x2
1u) log

P (x̂2|x2
1u)

Q(x̂2x3|u)2−βd(x2,x̂2)

]
, (5.77)

2It follows from the proof of Theorem 2 that (5.76) is equal to the right-hand-side of (3.8) for this
particular IID vector source (X1, X2, X3) when D3 = 0.
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where x3 = x1 + x2, and α and β are Lagrange multipliers. In the above, for brevity we

use the convention that xi ∈ X and x̂i ∈ X̂ are values taken by Xi and X̂i, respectively.

Thus, the summation
∑

xi,x̂i
is over all xi ∈ X and x̂i ∈ X̂ , P (xi) means PXi

(xi), P (x̂i|xi)

means PX̂i|Xi
(x̂i|xi), and so on. Such a convention will be applied whenever it does not

cause confusion. Further define

F ∗
α,β

Δ
=min

P,Q
Fα,β(P, Q),

where the minimization is take over all (PU |X1, PX̂2|X2
1U) ∈ PU|X × PX̂ |X 2×U denoted by P,

and QUX̂2X3
∈ PU×X̂×X denoted by Q.

The definition of Fα,β(P, Q) suggests that in order to find a solution to F ∗
α,β, one

can alternatively compute P and Q. Indeed, we specialize our alternating minimization

algorithm (hereafter “Algorithm A”) to compute F ∗
α,β as follows.

Step 1: Initialize i = 0 and Q(0) ∈ PX̂×X×U .

Step 2: Fix Q(i). Find P(i+1) ∈ PU|X × PX̂ |X 2×U such that

P(i+1) Δ
= arg min

P∈PU|X×PX̂ |X2×U
Fα,β(P, Q(i)). (5.78)

Specifically, P(i+1) can be further derived as follows: for any (x1, x2, u, x̂2) ∈ X 2 ×
U × X̂ ,

P (i+1)(x̂2|x2
1u) =

Q(i)(x̂2x3|u)2−βd(x2,x̂2)

Δ
(i)

x2
1u

where Δ
(i)

x2
1u

Δ
=

∑
x̂2
Q(i)(x̂2x3|u)2−βd(x2,x̂2), and x3 = x1 + x2; and

P (i+1)(u|x1) =
Q(i)(u)2

−αd(x1,g(u))+
∑

x2
p(x2) log Δ

(i)

x2
1

u

Γ
(i)
x1

where Γ
(i)
x1

Δ
=

∑
uQ

(i)(u)2
−αd(x1,g(u))+

∑
x2

p(x2) log Δ
(i)

x2
1u .
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Step 3: Fix P(i+1). Find Q(i+1) such that

Q(i+1) Δ
= arg min

Q∈PX̂×X×U
Fα,β(P(i+1), Q). (5.79)

(5.79) is solved by the following equation: for any (u, x3, x̂2) ∈ U × X × X̂ ,

Q(i+1)(x̂2x3u) =∑
x1, x2 :

x1 + x2 = x3

p(x1)p(x2)P
(i+1)(u|x1)P

(i+1)(x̂2|x2
1u).

Step 4: Increase i by 1.

Step 5: Repeat Steps 2–4 until a stationary point is reached.

Algorithm A generates a sequence of distribution pairs (P(1), Q(1)), (P(2), Q(2)), · · · such

that

Fα,β(P(1), Q(0)) ≥ Fα,β(P(1), Q(1)) ≥ Fα,β(P(2), Q(1)) · · · .

By using an argument similar to that used to prove the convergence of the Blahut-Arimoto

algorithm in [12], [13], it was shown in Section 4.2 that (P (1), Q(1)), (P (2), Q(2)), · · · indeed

converges to a solution to F ∗
α,β.

Equipped with Algorithm A, which was proven that it converges to a solution to F ∗
α,β,

we are now ready to show (5.75). Our strategy is to show that for any finite 0 < α, β <∞,

any P ∈ PX̂ |X 2×U that gives rise to a Markov chain X̂2 → X2U → X1X3 cannot be a

stationary point in computing F ∗
α,β by using Algorithm A.

Let P = (PU |X1, PX̂2|X2
1U) denote a vector of two transition probability functions in

PU|X ×PX̂ |X 2×U such that

PX̂2|X2
1U(x̂2|0x2u) = PX̂2|X2

1U(x̂2|1x2u) (5.80)
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for all (x2, u, x̂2) ∈ X × U × X̂ . Let Q denote a function in PX̂×X×U derived from P as in

Step 3 of Algorithm A, that is,

Q(x̂2x3u) =∑
x1,x2:x1+x2=x3

p(x1)p(x2)P (u|x1)P (x̂2|x2
1u). (5.81)

Suppose that (P, Q) is a stationary point. We would like to derive a contradiction from

the set of equations (5.80) and (5.81). To that end, let us initialize Q(0) as Q, and compute

P
(1)

X̂2|X2
1U

by using Algorithm A as

P (1)(x̂2|x2
1u) =

Q(0)(x̂2x3|u)2−βd(x2,x̂2)∑
x̂2
Q(0)(x̂2x3|u)2−βd(x2,x̂2)

. (5.82)

According to the assumed fact that (P, Q) is a stationary point, we have that P(1) = P.

For any u, define q
(0)
u (x̂2|x3)

Δ
=Q(0)(x̂2x3|u)/Q(0)(x3|u), q̄(0)

u
Δ
=0.5(q

(0)
u (·|0) + q

(0)
u (·|1)),

and δ
(0)
u

Δ
=0.5(q

(0)
u (0|0) − q

(0)
u (0|1)). Then

P (1)(x̂2|00u) =
q
(0)
u (x̂2|0)2−βd(0,x̂2)

q
(0)
u (0|0) + q

(0)
u (1|0)2−β

, (5.83)

P (1)(x̂2|10u) =
q
(0)
u (x̂2|1)2−βd(0,x̂2)

q
(0)
u (0|1) + q

(0)
u (1|1)2−β

, (5.84)

P (1)(x̂2|01u) =
q
(0)
u (x̂2|1)2−βd(1,x̂2)

q
(0)
u (0|1)2−β + q

(0)
u (1|1)

, and (5.85)

P (1)(x̂2|11u) =
q
(0)
u (x̂2|0)2−βd(1,x̂2)

q
(0)
u (0|0)2−β + q

(0)
u (1|0)

. (5.86)

Calculate

|P (1)

X̂2|X2
1U

(x̂2|00u) − P
(1)

X̂2|X2
1U

(x̂2|10u)|

=

∣∣∣∣∣ δ
(0)
u 21−β

(q̄
(0)
u (0) + q̄

(0)
u (1)2−β)2 − (δ

(0)
u (1 − 2−β))2

∣∣∣∣∣ . (5.87)
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Since P
(1)

X̂2|X2
1U

= PX̂2|X2
1U which satisfies (5.80), (5.87) implies that

δ(0)
u = 0 for β <∞. (5.88)

Let pu
Δ
=

p1PU|X1
(u|1)

(1−p1)PU|X1
(u|0)+p1PU|X1

(u|1) . It follows from the definition of δ
(0)
u above that

δ(0)
u =

(1 − 2pu)p2(1 − p2)(P (0|00u)− P (0|01u))

2(pu ∗ p2)(1 − pu ∗ p2)
, (5.89)

where pu ∗ p2
Δ
=(1 − pu)p2 + pu(1 − p2). Equation (5.89), together (5.88), implies that one

of the following equalities must hold

pu = 0.5; (5.90)

P (0|00u) = P (0|01u). (5.91)

In the following we argue that (5.90) cannot hold for any u with Q(u) > 0. Suppose to

the contrary there exists u with pu = 0.5. Then

p1PU |X1(u|1) = (1 − p1)PU |X1(u|0), (5.92)

which, together with Step 2 in Algorithm A, implies that the following equality must hold:

p12
−αd(1,g(u))

Γ1

=
(1 − p1)2

−αd(0,g(u))

Γ0

, (5.93)

where Γx1

Δ
=

∑
uQ(u)2−αd(x1,g(u))+

∑
x2

p(x2) log Δx2u , and Δx2u
Δ
=

∑
x̂2
Q(x̂2|u)2−βd(x2,x̂2) due to

(5.88). Without losing generality, we assume that g(u) = 0, and (5.93) reduces to

p1

∑
u

Q(u)2−α(1+d(0,g(u)))+Λu

= (1 − p1)
∑

u

Q(u)2−αd(1,g(u))+Λu , (5.94)
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where Λu
Δ
=

∑
x2
p(x2) log Δx2u. (5.94) can be rewritten as

∑
u

Q(u)2Λu [p12
−α(1+d(0,g(u))) −

(1 − p1)2
−αd(1,g(u))] = 0. (5.95)

Observe that ∀u with Q(u) > 0, we have 2Λu > 0, and

p12
−α(1+d(0,g(u))) ≤ (1 − p1)2

−αd(1,g(u))

due to that d(1, g(u)) ≤ 1 + d(0, g(u)) for any u, and p1 ≤ 0.5 ≤ 1 − p1. Therefore, (5.95)

holds if and only if

p12
−α(1+d(0,g(u))) − (1 − p1)2

−αd(1,g(u)) = 0. (5.96)

which implies that for α <∞,

p1 =

⎧⎨
⎩

0.5 if g(u) = 0

1
1+2−2α if g(u) = 1

. (5.97)

Since 1
1+2−2α 	= 0.5 whenever α > 0, the equality (5.96) cannot hold for every u. Conse-

quently, the equality in (5.95) cannot hold, which implies pu 	= 0.5 for any u with Q(u) > 0.

Since (5.90) does not hold, it follows from our argument above that (5.91) must hold for

all u with Q(u) > 0, which, together with (5.80), implies that given U , X̂2 is independent

of X2. Since X2 and U are independent, one readily sees that in this case the distortion

constraint D2 < p2 cannot be achieved. Thus (5.91) cannot hold either.

The fact that neither (5.90) nor (5.91) holds contradicts directly (5.80). We thus

conclude that (P, Q) is not a stationary point in Algorithm A, which, together with the

convergence property of Algorithm A, leads to the desired inequality (5.75).
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Chapter 6

On Optimum Fixed-Rate Causal

Scalar Quantization Design for

Causal Video Coding

Following the line of modeling each frame as a stationary source, in this chapter, we look

at how to design specific codes for CVC. As a starting point, we shall focus on scalar

quantization. To this end, we first put forth a concept called causal scalar quantization

for the CVC shown in Figure 1.3 and investigate how to design optimal fixed-rate causal

scalar quantizers (CSQ). By extending the classic Lloyd-Max algorithm for a single source

to this multiple sources case, we then propose an algorithm for designing optimum fixed-

rate CSQ to minimize the total distortion among all sources. The proposed algorithm

converges in the sense that the total distortion cost is monotonically decreasing until a

stationary point is reached. Simulation results show that in comparison with fixed-rate

predictive scalar quantization, fixed-rate causal scalar quantization offers as large as 16%

quality improvement (distortion reduction). Since PVC is what all previous and current
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video coding standards fall into, the rate-distortion performance gain of fixed-rate CSQ for

CVC over fixed-rate PSQ for PVC would be instructive to practice.

6.1 Formal Definition of Causal Scalar Quantizers(CSQ)

In this thesis, the design of CVC is considered from an information theoretic perspective by

modeling each frame Xk, k = 1, · · · , N, as a stationary information source Xk = {Xk(i)}∞i=1

taking values in the real line R.

As a starting point, in this thesis, we consider the simplest block codes: one-dimensional

block codes, which are also called scalar quantizers. Formally we define a causal scalar

quantizer (CSQ) by using N encoder and decoder pairs (ψk, gk), k = 1, · · · , N, such that

ψ1 : R → U1, g1 : U1 → R,
ψi : Πi

j=1R× Πi−1
j=1Uj → Ui,

gi : Πi
j=1Ui → R, for i = 2, · · · , N.

The encoding output of X1 is given by U1 = ψ1(X1), where U1 ∈ U1
Δ
={1, 2, · · · , L1},

and the reconstruction of X1 is defined as X̂1 = g1(U1) taking values from the reproduction

alphabet A1
Δ
={a1, · · · , aL1} ⊂ R. In addition, the encoding outputs of Xi, i = 2, · · · , N,

are given by Ui = ψi(X
−
i , U

−
i , Xi), where Ui ∈ Ui

Δ
={1, 2, · · · , Li}, and conditional on each

U−
i , the reconstruction of Xi is defined as X̂U−

i ,i = gi(U
−
i , Ui) drawn from the reproduction

alphabet AU−
i ,i

Δ
={aU−

i ,1, · · · , aU−
i ,Li

} ⊂ R. In the above, gk, k = 1, · · · , N is called a

decoder, and CSQ reduces to predictive scalar quantizers (PSQ) for PVC if ψi becomes

ψi : R× Πi−1
j=1Uj → Ui, for i = 2, · · · , N.

If we use CSQ (PSQ, respectively) to encodeN length-n stationary sourcesX1(1;n), · · · ,
XN(1;n), the corresponding encoding output is denoted by U1(1;n) = {ψ1(X1(i))}n

i=1, Uk(1;n) =
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{ψk(X
−
k (i), U−

k (i), Xk(i))}n
i=1,k = 2, · · · , N, (Uk(1;n) = {ψk(U

−
k (i), Xk(i))}n

i=1 in PSQ case,

respectively) drawn from Uj = {1, · · · , Lj}, j = 1, · · · , N , respectively. Specifically, for

every individual sequence xk = {xk(i)}n
i=1 ∈ Rn, the encoder finds an index sequence

uk = {uk(i)}n
i=1 ∈ Un

k on observing xk
1 and uk−1

1 (on observing xk and uk−1
1 in PSQ case,

respectively), and then encodes xk into a binary codeword associated with uk via some

lossless codeword compression method. Let Un
k denote the set of all sequences of length

n from Uk. A function l : Un
k → {1, 2, · · · } is called a lossless codeword length function

if for any n ≥ 1, and we have
∑

uk∈Un
k

2−l(uk) ≤ 1. It is easy to see that for any lossless

codeword length function l, there exists a prefix code φk : Un
k → {0, 1}∗ such that for

any uk ∈ Un
k , l(uk) is the length of φk(uk). In other words, φk denotes a mapping from

the range of ψn
k (denoted by uk = ψn

k (xk)) in Un
k to a prefix subset of {0, 1}∗ of finite

binary strings. After receiving the binary codeword, the decoder first recovers uk and then

outputs gk(u
−
k ,uk) = {gk(u

−
k (i), uk(i))}n

i=1 as a reproduction of xk. To convert uk into

a binary sequence, one may encode each CSQ index uk(i)
Δ
=ψk(x

−
k (i), u−k (i), xk(i)) (PSQ

index uk(i)
Δ
=ψk(u

−
k (i), xk(i)), respectively) into a binary sequence of length �log2 Lk� with

Lk being fixed; in this case, the corresponding block codes (or scalar quantizers) are called

fixed-rate CSQ (fixed-rate PSQ, respectively). The performance of fixed-rate CSQ (PSQ,

respectively) is measured by its average total rate R =
∑N

k=1�log2 Lk� among all sources

in bits per symbol and the resulting average total distortion per symbol

D =
1

n

N∑
k=1

Edk(Xk(1;n), gk(U
−
k (1;n), Uk(1;n)))

=
N∑

k=1

Edk(Xk(1), gk(U
−
k (1), Uk(1))), (6.1)

where the second equality follows from the stationarity of sources. On the other hand,

one may apply a universal lossless codeword compression algorithms such as Lempel-Ziv

coding [57], and Grammar-based coding [23] to encode the sequence uk; in this case, the
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corresponding block codes are called variable-rate CSQ (variable-rate PSQ, respectively).

The performance of variable-rate CSQ (PSQ, respectively) is measured by its average total

rate R =
∑N

k=1Rk =
∑N

k=1 E l(Uk(1;n))
n

among all sources in bits per symbol and the resulting

average total distortion D defined in (6.1). Of course, the rate Rk for encoding Xk(1;n)

depends on the lossless codeword length function l. So if l is selected to be some universal

lossless codeword length function, the remaining problem for designing variable-rate CSQ

(PSQ, respectively) is how to jointly optimize D, R, and actually Uk(1;n), which may be

regarded as variable-rate soft-decision [51] CSQ ( PSQ, respectively). It is not hard to

see that fixed-rate CSQ (PSQ, respectively) is a special case of variable-rate CSQ (PSQ,

respectively), and better compression performance can be achieved by using variable-rate

CSQ (PSQ, respectively).

Remark 12 It is worthwhile to point out the difference between CVC and the causal source

coding setup in [29], in which a source encoder is causal in the sense that the encoder for

a source frame X = {X(i)}∞i=1 can only view all past source pixels up to the current

pixel position, but not allowed to access to future ones. On the other hand, as shown in

Figure 1.3, CVC is causal in a frame-temporal sense that the encoder for Xk can only view

all previous source frames X1, · · · , Xk−1 up to the current frame without enlisting the help

from future frames in the encoder order. In other words, in [29], the number of frames N

is always equal to 1, and the code is causal in terms of the pixel position i only; while in

CVC, the code is causal in terms of the frame number index k ∈ {1, 2, · · · , N} for N ≥ 1.

As such, [29] only handles a frame-averaged expected distortion criterion as opposed to

frame-specific individual distortion constraints treated in CVC.

In this chapter, we use mean-squared error distortion criterion to evaluate D, and

only focus on designing the optimum fixed-rate CSQ such that D in (6.1) is minimized
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among all fixed-rate CSQ with Li being fixed, i.e., the average total compression rate

R =
∑N

i=1�log2 Li� being fixed. Therefore, to design the optimal fixed-rate CSQ (PSQ,

respectively), one has to solve the following problems.

Q1: For each U−
i value, how to design the decoder gi, i = 1, · · · , N, (or equivalently, the

reproduction alphabet AU−
i ,i) in an optimum way?

Q2: For each (U−
i , X

−
i ) pair in CSQ case (each U−

i in PSQ case, respectively), how to map

each source symbol Xi ∈ R to one of Li reproduction symbols from AU−
i ,i ∈ R?

Note that a real number xi will be quantized to different output levels conditional on

different (x−i , u
−
i ) pairs (conditional on different u−i values in PSQ case, respectively). Thus,

the information of (x−i , u
−
i ) (u−i in PSQ case, respectively) are conveyed in the choice of

different quantization output of xi. In this chapter, our purpose is to design an algorithm

to simultaneously solve Problem Q1 and Q2.

6.2 An iterative algorithm to design optimum fixed-

rate CSQ

In this section, we extend the well-known Lloyd-Max algorithm [24][28] for designing an

optimal fixed-rate scalar quantizer for a single source X to the multiple sources case.

The modified Lloyd-Max algorithm allows us to design the optimum fixed-rate CSQ for

CVC. The proposed algorithm converges in the sense that the total distortion (6.1) is

monotonically decreasing until a stationary point is reached. In addition, it allows us to

do comparisons between the rate distortion performance of fixed-rate CSQ and that of

fixed-rate PSQ.
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Without loss of generality, we consider the case N = 3. Three memoryless video sources

X, Y, and Z taking values from R are drawn from three random variables with the joint

distributions pXY Z(xyz). For simplicity, we write the quantization index vector (U1, U2, U3)

in response to (X, Y, Z) as U
Δ
=(I, J,K), and their realizations i ∈ {1, · · · , L1}, j ∈

{1, · · · , L2}, and k ∈ {1, · · · , L3}. In addition, we denote the codebook (X̂I , ŶI,J , ẐI,J,K) as

B, where X̂I
Δ
=g1(I), ŶI,J

Δ
=g2(I, J), ẐI,J,K

Δ
=g3(I, J,K), and their realizations x̂i, ŷi,j, and

ẑi,j,k ∈ R. In order to design the optimal fixed-rate CSQ to achieve the minimum total

distortion defined in (6.1), we try to find a (B∗,U∗) pair that minimizes

D(B,U) = E
[
(X − X̂I)

2 + (Y − ŶI,J)2 + (Z − ẐI,J,K)2
]

over all possible (B,U) pairs. The iterative algorithm works as follows.

Algorithm B: A Modified Lloyd-Max Algorithm

Step 1: Select an initial quantization index vector U(0) Δ
=(I(0), J (0), K(0)) and set the ini-

tial codebook B(0) Δ
=(X̂

(0)

I(0)Ŷ
(0)

I(0),J(0), Ẑ
(0)

I(0),J(0),K(0)) such that x̂
(0)
i = E

[
X | I(0) = i

]
, ŷ

(0)
i,j =

E
[
Y | I(0) = i, J (0) = j

]
, and ẑ

(0)
i,j,k = E

[
Z | I(0) = i, J (0) = j,K(0) = k

]
.

Step 2: Fix B(t) Δ
=(X̂

(t)

I(t), Ŷ
(t)

I(t),J(t), Ẑ
(t)

I(t),J(t),K(t)). Given U(t), update U(t+1) = (I(t+1), J (t+1), K(t+1))

that minimizes

E
[
(X − X̂

(t)
I )2 + (Y − Ŷ

(t)
I,J )2 + (Z − Ẑ

(t)
I,J,K)2

]

over all possible quantization index vectors U = (I, J,K).

Step 3: Fix U(t+1) = (I(t+1), J (t+1), K(t+1)). Find B(t+1) Δ
=(X̂

(t+1)

I(t+1), Ŷ
(t+1)

I(t+1),J(t+1), Ẑ
(t+1)

I(t+1),J(t+1),K(t+1))

to minimize

E[(X − X̂I(t+1))2 + (Y − ŶI(t+1),J(t+1))2 +

(Z − ẐI(t+1),J(t+1),K(t+1))2]
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over all codebook sets B.

Step 4: Increase t by 1. Record D(B(t),U(t)) by D(t).

Step 5: Repeat steps 2 − 4 until D(t) −D(t+1) is smaller than a prescribed threshold.

In step 3, B(t+1) can be updated as

x̂
(t+1)
i = EX

[
X | I(t+1) = i

]
,

ŷ
(t+1)
i,j = EY

[
Y | I(t+1) = i, J (t+1) = j

]
,

ẑ
(t+1)
i,j,k = EZ

[
Z | I(t+1) = i, J (t+1) = j,K(t+1) = k

]
,

where 1 ≤ i ≤ L1, 1 ≤ j ≤ L2 and 1 ≤ k ≤ L3, EV [·] denotes the expectation with

respect to the random variable V , and EV [·|A = a] denotes the conditional expectation

with respect to V given the event A = a. If there is no ambiguity, we sometimes omit

the random variables in the condition. For example, we may write EY [Y | x] instead of

EY [Y | X = x].

In step 2, fix B(t), and given U(t), we update U(t+1) as follows:

k(t+1) = arg min
k∈{1,··· ,L3}

(z − ẑi(t),j(t),k)
2; (6.2)

j(t+1) = arg min
j∈{1,··· ,L2}

[(y − ŷi(t),j)
2 + Δ(t)(x, y, i(t), j)], (6.3)

where Δ(t)(x, y, i(t), j)
Δ
= EZ

[
(Z − Ẑi(t),j,K(t+1))2 | x, y

]
, in which K(t+1) is the updated in-

dex in response to Z; and

i(t+1) = arg min
i∈{1,··· ,L1}

[(x− x̂i)
2 + Λ(t)(x, i)], (6.4)

where

Λ(t)(x, i)
Δ
=EY

[
(Y − Ŷi,J(t+1))2 +

EZ [(Z − Ẑi,J(t+1),K(t+1))2 | x, Y ] | x
]
,
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and J (t+1) is the updated index in response to Y . In the above, (6.2) is from the classic

nearest neighbor rule. In (6.3) and (6.4), think of (y − ŷi(t),j)
2 + Δ(t)(x, y, i(t), j) and (x−

x̂i)
2 +Λ(t)(x, i) as a new distortion measure respectively, and the nearest neighbor rule can

be extended to our present case. Specifically, we utilize the Monte-Carlo method to handle

the conditional expectation terms Δ(t)(x, y, i(t), j) in (6.3) and Λ(t)(x, i) in (6.4). It can be

verified that the algorithm does converge in the sense that for t ≥ 1, D(B(t+1),U(t+1)) ≤
D(B(t),U(t)), and hence, the above algorithm will produce a sequence of codebooks and

index vectors with monotonically decreasing values of the object function D(B(t),U(t))

which converges as t→ ∞.

Remark 13 Note that the optimum fixed-rate scalar quantization design method for a

single source [28] can not be applied directly to this multiple sources case, since the quan-

tization of source Xk in CVC depends on not only the current source but also all previous

sources and all previous quantization outputs.

Remark 14 Compared with the computation algorithm proposed in Section 4.1 to calculate

R∗
c(D1, · · · , DN) via finding the optimal transitional probability and probability functions,

Algorithm B finds the optimum mappings from real-value source symbols to finite sets of

output levels in a deterministic way.

The advantage of fixed-rate CSQ lies in its low implementation complexity, low time

delay and immunity to error propagation for transmission over noisy channel. Many other

advanced lossy compression methods can be built on fixed-rate CSQ, such as variable-rate

CSQ, and vector causal quantization which extends the code design from one-dimensional

block codes to n-dimensional block codes for any given dimension n ≥ 1.
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6.3 Simulation

In this section, we use specific example to numerically compare the minimum total distor-

tion of fixed-rate CSQ with fixed-rate PSQ by running Algorithm B. In the implementation,

we generate three length-n sequences {X(s), Y (s), X(s)}n
s=1 from the joint probability den-

sity function pXY Z with n = 30, 000, and {I(s), J(s), K(s)}n
s=1 represent the quantization

index in response to {X(s), Y (s), X(s)}n
s=1. Since PSQ is a special case of CSQ, we shall

assign the same initialization U(0) and B(0) to both fixed-rate CSQ and fixed-rate PSQ

cases. All updates in Algorithm B are according to the empirical distributions.

Example 6: Suppose (X, Y, Z) is jointly memoryless Gaussian sources. We consider two

different covariance matrices of XY Z as follows:

Case 1:

⎛
⎜⎜⎜⎝

1 0.1 1.1

0.1 1 1.1

1.1 1.1 2.21

⎞
⎟⎟⎟⎠ ; Case 2:

⎛
⎜⎜⎜⎝

1 0.4 1.4

0.4 1 1.4

1.4 1.4 2.8

⎞
⎟⎟⎟⎠ .

In both of the two cases, we fix L1 = 5, L3 = 3, and select L2 from 5 to 9. Table 6.3

shows the minimum total distortion D versus L2 of optimum fixed-rate CSQ and that of

optimum fixed-rate PSQ respectively for above two cases in Example 6.

L2 5 6 7 8 9

Case 1:
D of fixed-rate CSQ 0.2371 0.2048 0.1866 0.1722 0.1613
D of fixed-rate PSQ 0.2523 0.2202 0.2060 0.1931 0.1815
Case 2:
D of fixed-rate CSQ 0.2228 0.1980 0.1736 0.1642 0.1554
D of fixed-rate PSQ 0.2433 0.2163 0.1956 0.1903 0.1807

Table 6.1: Comparison of D versus L2 between fixed-rate CSQ and fixed-rate PSQ for
fixed L1 = 5 and L3 = 3
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As shown in Table 6.3, the quality improvement (distortion reduction) of optimum

fixed-rate CSQ over optimum fixed-rate PSQ is as large as 12.5 percent and 16.3 percent

for Case 1 and Case 2 respectively.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this thesis, we have investigated CVC for encoding source frames X1, · · · , XN from an

information theoretic point of view.

An iterative algorithm has been proposed to numerically compute the minimum total

rate R∗
c(D1, · · · , DN) achievable asymptotically by CVC for jointly stationary and ergodic

sources at distortion levels D1, · · · , DN ≥ 0, and analytically characterize R∗
c(D1, · · · , DN)

for IID sources (X1, · · · , XN). The algorithm has been shown to converge globally. With

the help of the algorithm, we have further established a somewhat surprising more and

less coding theorem—under some conditions on source frames and distortion, the more

frames need to be coded and transmitted, the less amount of data after encoding has to

be sent! If the cost of data transmission is proportional to the transmitted data volume,

this translates literally into a scenario where the more frames you download, the less you

would pay. Numerical comparisons between CVC and greedy coding have shown that

CVC offers significant performance gains over greedy coding. Along the way, we have
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advocated that whenever possible, the computational approach as illustrated in the thesis

is a preferred approach to multi-user problems in information theory. In addition, we have

also established an extended Markov lemma for correlated ergodic sources, which will be

useful to other multi-user problems in information theory as well.

An interesting comparison has been made between CVC and PVC from an informa-

tion theoretic point of view, where all MPEG-series and H-series video coding standards

proposed so far are without exception defined within the paradigm of PVC. We first show

that for general stationary ergodic sources X1, X2, · · · , XN , R∗
p(D1, · · · , DN) is equal to

the infimum of the nth order total rate distortion function Rp,n(D1, · · · , DN) over all n,

where Rp,n(D1, · · · , DN) itself is given by the minimum of an information quantity over

a set of auxiliary random variables. We then prove that if the general stationary er-

godic sources X1, · · · , XN form a (first-order) Markov chain, we have R∗
p(D1, · · · , DN) =

R∗
c(D1, · · · , DN). However, this is not true in general if X1, · · · , XN do not form a (first-

order) Markov chain. Specifically, we demonstrate that in the case of N = 3, if X1, X2, X3

do not form a (first-order) Markov chain, then under some conditions on source frames and

distortion, Rc,n(D1, D2, D3) is strictly less than Rp,n(D1, D2, D3) in general for any finite

n > 0. We then derive a single-letter characterization of R∗
p(D1, D2, D3) for an IID vec-

tor source (X1, X2, X3) where X1 and X2 are independent, and demonstrate the existence

of such X1, X2, X3 for which R∗
p(D1, D2, D3) > R∗

c(D1, D2, D3) under some conditions on

source frames and distortion. We also present a simple example to illustrate it.

At the end, we consider the code design problem of CVC, and propose an iterative

algorithm for designing optimum fixed-rate CSQ as a starting point. With the help of

this algorithm, we observe as large as 16% quality improvement (distortion reduction) of

fixed-rate CSQ for CVC over fixed-rate PSQ for PVC.
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7.2 Direction for Future Research

If the information theoretic analysis as demonstrated in this thesis is indicative of the

real performance of CVC for real video data, then the more and less coding theorem, the

significant performance gain of CVC over greedy coding, the strict rate reduction from

PVC to CVC, plus the quality improvement of fixed-rate CSQ over fixed-rate PSQ really

point out a bright future for CVC. In this section, we offer some interesting directions

for future research that emphases on both information theoretic perspective and practical

implementation perspective of CVC.

1. In Chapter 4, we propose an iterative algorithm to calculate Rc,n(D1, · · · , DN) for N

sources X1, · · · , XN with finite alphabet. For sources with continuous alphabet, we

can either extend our algorithm from discrete sources to continuous case with global

convergence, or obtain close-forms of R∗
c(D1, · · · , DN) in some special cases.

In [45], we have found a way to extend our algorithm to continuous sources. Instead

of using continuous reproduction alphabets, the extended algorithm in [45] utilizes

finite reproduction alphabets and iteratively updates them along with transitional

probabilities from the continuous source to reproduction letters, thus overcoming the

computation complexity problem encountered when applying out algorithm proposed

in Section 4.1 for discrete sources to continuous sources. The proposed algorithm

converges in the sense that the rate-distortion cost is monotonically decreasing until a

stationary point is reached, however, the global convergence is still unknown. Another

line is to obtain the close-form of R∗
c(D1, · · · , DN), and in some special cases, close-

forms would be solvable. One natural assumption is that N sources are jointly

Gaussian distributed. In [26], Nan and Prakash obtained the close-form for Gauss-

Markov sources when N = 3 and X1 → X2 → X3. Then what about the jointly
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Gaussian case without the Gauss-Markov sources assumption?

2. From an information theoretic point of view, what is the rate-distortion performance

of universal CVC? In the studies of CVC in this thesis, they are all based on a key

premise: that the source statistics is fully known. In some real-life situations, such a

premise is not always hold.

Universal source coding is an important research area in information theory in which

the main concern is the source coding performance and realization when source statis-

tics is unknown or insufficient. For lossless source coding, it has been proved that the

entropy rate can be achieved without using the source statistics. Algorithms such as

dynamic arithmetic coding, Lempel-Ziv coding and grammar-based coding are devel-

oped. For lossy source coding, it has also been proved rate-distortion function can be

achieved without the source statistics explicitly. For multi-user universal source cod-

ing, the situation is more involved. It is known that Slepian-Wolf universal coding is

impossible as well as in many other multi-user source coding models such as Wyner-

Ziv coding. It is very likely that the universality of CVC does not exist neither. The

reason is that the code statistics strongly depends on the source statistics, without

knowing exact source statistics, the coder cannot construct the optimal code, there-

fore the problem is no longer the optimality for a particular source, rather it becomes

a problem of selection of a coding strategy which is optimal in certain sense for a

class of sources. To this end, three immediate questions are under our consideration:

Q1) How to specify the class of sources with practical implication and meaningful

solution? Q2) How to select a way to characterize the rate-distortion performance

of such universal CVC? and Q3) Since code construction algorithm design is the key

to link the theory to applications, how to design an algorithm for computing and

gaining deep insights?
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3. To make the idea of CVC materialize in real video codecs, future research efforts

should be towards designing effective CVC algorithms. For example, in view of the

optimum fixed-rate CSQ design from information theoretic point of view in Chap-

ter 6, one could explore to further improve the RD performance of current video

coding standard on how quantization should be performed conditionally given pre-

vious frames and coded frames in real video codecs.
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Appendix A

In this appendix, we prove Theorem 8. As usual, we divide the proof of Theorem 8 into

its converse part and its positive part.

Proof of the converse part: Pick any achievable rate distortion pair vector

(R1, · · · , RN , D1, · · · , DN) ∈ R∗
c .

For any ε > 0, there exists an order-n causal video code Cn = {(fk, gk)}N
k=1 for all suffi-

ciently large n such that (3.1) holds. Let Sk and X̂k(1;n) be the respective encoded frame

of and reconstructed frame for Xk(1;n) given by Cn. It follows from the definition of

causal video codes that the Markov conditions Sk → (Xk(1;n), X−
k (1;n), S−

k ) → X+
k (1;n),

k = 1, · · · , N − 1, are satisfied, and

1

n
E[dk(Xk(1;n), X̂k(1;n))]

=
1

n

n∑
i=1

E[dk(Xk(i), X̂k(i))]

≤ Dk + ε (A.1)

for k = 1, 2, · · · , N .

Define auxiliary random variables

Uk(i)
Δ
=(Xk(i−), Sk)
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for any 1 ≤ i ≤ n and 1 ≤ k ≤ N−1, where Xk(i−) = {Xk(j)}i−1
j=1. Since (X1, X2, · · · , XN)

is an IID vector source, it is not hard to verify that the Markov chain Uk(i) → (Xk(i), X
−
k (i), U−

k (i)) →
X+

k (i) is valid for any 1 ≤ i ≤ n and 1 ≤ k ≤ N − 1. In view of (3.1), and the assumption

that (X1, X2, · · · , XN) is an IID vector source, we have

n(R1 + ε) ≥ H(S1)

= I(X1(1;n);S1)

= H(X1(1;n)) −H(X1(1;n)|S1)

=
n∑

i=1

[H(X1(i)) −H(X1(i)|X1(i−)S1)]

=

n∑
i=1

I(X1(i);U1(i)) (A.2)

and for k = 2, · · · , N − 1,

n(Rk + ε) ≥ H(Sk|S−
k )

= I(X−
k (1;n), Xk(1;n);Sk|S−

k )

= H(X−
k (1;n), Xk(1;n)|S−

k ) −
H(X−

k (1;n), Xk(1;n)|S−
k , Sk)

=
n∑

i=1

[H(X−
k (i), Xk(i)|X−

k (i−), Xk(i−), S−
k ) −

H(X−
k (i), Xk(i)|X−

k (i−), Xk(i−), S−
k , Sk)]

1)
=

n∑
i=1

[H(X−
k (i), Xk(i)|X−

k (i−), S−
k ) −

H(X−
k (i), Xk(i)|X−

k (i−), Xk(i−), S−
k , Sk)]

=

n∑
i=1

I(X−
k (i), Xk(i);Uk(i)|U−

k (i)) (A.3)

where the equality 1) is due to the Markov chain (X−
k (i), Xk(i)) → (X−

k (i−), S−
k ) →

Xk(i−).
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For the last frame, we have

n(RN + ε) ≥ H(SN |S−
N)

= H(SN , X̂N(1;n)|S−
N)

≥ I(X−
N(1;n)XN(1;n); X̂N(1;n)|S−

N)

=
n∑

i=1

[H(X−
N(i), XN (i)|X−

N(i−), XN(i−), S−
N ) −

H(X−
N(i), XN(i)|X−

N(i−), XN (i−), S−
N , X̂N(1;n))]

2)
=

n∑
i=1

[H(X−
N(i), XN (i)|U−

N (i)) −

H(X−
N(i), XN(i)|U−

N (i), XN(i−), X̂N(1;n))]

≥
n∑

i=1

[H(X−
N(i), XN (i)|U−

N (i)) −

H(X−
N(i), XN(i)|U−

N (i), X̂N(i))]

=

n∑
i=1

I(X−
N(i), XN(i); X̂N(i)|U−

N (i))

≥
n∑

i=1

I(XN(i); X̂N(i)|U−
N (i)) (A.4)

where the equality 2) is due to the Markov chain (X−
N(i), XN(i)) → (X−

N(i−), S−
N ) →

XN(i−).

To continue, we introduce a timesharing random variable J that is uniformly distributed

over {1, 2, · · · , n}, and independent of Xk, k = 1, 2, · · · , N , and hence of all random vari-

ables appearing in (A.1) to (A.4). Define Uk
Δ
=(Uk(J), J), for k = 1, 2, · · · , N − 1. Then it

is not hard to verify that the Markov chain Uk → (Xk(J), X−
k (J), U−

k ) → X+
k (J) is valid

for k = 1, 2, · · · , N − 1, and (A.2), (A.3), (A.4), and (A.1) can be rewritten respectively as

R1 + ε ≥ I(X1(J);U1(J)|J) = I(X1(J);U1) (A.5)

Rk + ε ≥ I(X−
k (J), Xk(J);Uk|U−

k ) (A.6)
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RN + ε ≥ I(XN(J); X̂N(J)|U−
N ) (A.7)

and

Dk + ε ≥ E[dk(Xk(J), X̂k(J))]. (A.8)

Note that (X1(J), · · · , XN(J)) and (X1(1), · · · , XN(1)) have the same distribution, and

X̂k(J), k = 1, · · · , N − 1, is a function of (Uk, U
−
k ). Therefore, in comparison with the

requirements (R1) to (R4) in the definition (3.2), the only thing missing is that the Markov

chain X−
N(J) → (XN(J), U−

N ) → X̂N(J) may not be valid. To overcome this problem, we

can use the same technique as in the proof of the converse part of Theorem 1 and also in

the proof of Lemma 5 to construct a new random vector X̃N (J) such that the following

hold:

• (XN(J), U−
N , X̂N(J) and (XN(J), U−

N , X̃N(J) have the same distribution, and

• the Markov condition X−
N(J) → (XN(J), U−

N ) → X̃N(J) is met.

This, together with (A.5) to (A.8) and the definition (3.2), implies that

(R1 + ε, · · · , RN + ε,D1 + ε, · · · , DN + ε) ∈ Rc,1. (A.9)

Letting ε→ 0 yields

(R1, · · · , RN , D1, · · · , DN) ∈ co(Rc,1)

and hence R∗
c ⊆ co(Rc,1). This completes the proof of the converse part of Theorem 8.

The positive part of Theorem 8, co(Rc,1) ⊆ R∗
c , can be proved by using the stan-

dard random coding argument in multi-user information theory [11], [3]. For the sake of

completeness, we present a sketch of proof below.

Proof sketch of the positive part: For convenience, we shall use bold letters to denote

vectors throughout the rest of this section. For example, Xk = Xk(1;n). Since Rc,1 is

convex and R∗
c is closed, it suffices to show that Rc,1 ⊆ R∗

c .
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Pick any rate distortion pair vector

(R1, · · · , RN , D1, · · · , DN) ∈ Rc,1.

We shall show that it is achievable. Let Uk, k = 1, 2, · · · , N − 1, and X̂N be the auxiliary

random variables in (3.2) (for the definition of Rc,1) satisfying the requirements (R1) to

(R4) with functions gk, k = 1, · · · , N −1. Denote the alphabets of Uk, k = 1, 2, · · · , N −1,

by Uk, respectively. For any ε > 0, define

Mk
Δ
=�2n(Rk+ε)�, 1 ≤ k ≤ N.

Let An
ε (X1, U1) be the set of ε-strongly jointly typical sequences of length n with re-

spect to the joint distribution of (X1(1), U1). Similarly, for any k = 2, · · · , N − 1, let

An
ε (X−

k , Xk, U
−
k , Uk) be the set of ε-strongly jointly typical sequences of length n with re-

spect to the joint distribution of (X−
k (1), Xk(1), U−

k , Uk), and let An
ε (XN , U

−
N , X̂N) be the

set of ε-strongly jointly typical sequences of length n with respect to the joint distribution of

(XN(1), U−
N , X̂N). Similar notation will be used for other sets of strongly typical sequences

with respect to other joint distributions. (For the definition of strong typicality, please

refer to, for example, [11, Page 326].) In what follows, the values of ε in different strongly

typical sets should be understood as t
√
ε multiplied by different constants for different t.

We are now ready to describe random codebooks and how encoders/decoders work.

Generation of codebooks:

1) Generate independently M1 codewords U1
1,U

2
1, · · · ,UM1

1 (the set of which is denoted

by C1), where each codeword Ul
1, l ∈ {1, 2, · · · ,M1} is drawn according to the n-fold

product distribution of pU1.

2) For 1 < k < N , for every combination (Ui1
1 ,U

i2
2|i1, · · · ,U

ik−1

k−1|i1···ik−2
), where ij ∈

{1, 2, · · · ,Mj} for j = 1, 2, · · · , k−1, generate independently Mk codewords U1
k|i1i2···ik−1

, · · · ,
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UMk

k|i1i2···ik−1
(the set of which is denoted by Ck|i1i2···ik−1

), where each Ul
k|i1i2···ik−1

, l ∈ {1, 2, · · · ,Mk}
is drawn according to the n-fold product conditional distribution of pUk|U−

k
conditionally

given (Ui1
1 ,U

i2
2|i1 , · · · ,U

ik−1

k−1|i1···ik−2
).

3) For every combination (Ui1
1 ,U

i2
2|i1, · · · ,U

iN−1

N−1|i1···iN−2
), where ij ∈ {1, 2, · · · ,Mj} for

j = 1, 2, · · · , N − 1, generate independently MN codewords X̂
1

N |i1···iN−1
, · · · , X̂MN

N |i1···iN−1

(the set of which is denoted by CN |i1···iN−1
), where each X̂

l

N |i1···iN−1
, l ∈ {1, 2, · · · ,MN}

is drawn according to the n-fold product conditional distribution of pX̂N |U−
N

conditionally

given (Ui1
1 ,U

i2
2|i1 , · · · ,U

iN−1

N−1|i1···iN−2
).

Encoding:

1) Given a sequence X1, encode X1 into the index, say s1, of the first codeword in C1

such that (X1,U
s1
1 ) ∈ An

ε (X1, U1) if such a codeword exists. Otherwise, set s1 = 1. Denote

the resulting codeword Us1
1 by C1.

2) For 1 < k < N , with the knowledge of all historical codewords Us1
1 ,U

s2

2|s1
, · · · ,Usk−1

k−1|s1···sk−2
,

denoted by C−
k , the encoder for Xk finds the index, say sk, of the first codeword in

Ck|s1s2···sk−1
such that (X−

k ,Xk,C
−
k ,U

sk

k|s1s2···sk−1
) ∈ An

ε (X−
k , Xk, U

−
k , Uk) if such a codeword

exist, and set sk = 1 otherwise. Denote the resulting codeword Usk

k|s1s2···sk−1
by Ck.

3) With the knowledge of all historical codewords Us1
1 ,U

s2

2|s1
, · · · ,UsN−1

N−1|s1···sN−2
, denoted

by C−
N , the encoder for XN finds the index, say sN , of the first codeword in CN |s1s2···sN−1

such that (XN ,C
−
N , X̂

sk

N |s1s2···sN−1
) ∈ An

ε (XN , U
−
N , X̂N) if such a codeword exist, and set

sN = 1 otherwise. Denote the resulting codeword X̂
sN

N |s1s2···sN−1
by CN .

Decoding:

1) The decoder for X1 first reproduces the codeword C1 from s1, and then calculates

X̂1 by applying the function g1 to each component of C1.
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2) Upon receiving sk, 1 < k ≤ N , the decoder for Xk reproduces the codeword Ck

from Ck|s1s2···sk−1
, and then calculates X̂k by applying the function gk to each component

of (C−
k ,Ck).

3) Upon receiving sN , the decoder for XN reproduces the codeword CN from CN |s1s2···sN−1
,

and then outputs X̂
sN

N = CN .

Analysis of bit rates, typicality, and distortions:

1) From the construction of encoders, the bit rate in bits per symbol for each Xk is

upper bounded by Rk + ε.

2) In view of the law of large numbers, standard probability bounds associated with

typicality (see, for example, [11, Lemma 10.6.2, Chapter 10]), and the Markov lemma [11,

Lemma 15.8.1, Chapter 15], [3], it follows that with probability approaching 1 as n→ ∞,

X1, · · · ,XN ,C1, · · · ,CN−1 are strongly typical, and XN and CN are strongly typical.

3) In view of Requirements (R1) to (R3) in the definition (3.2) and of the above

two paragraphs, it follows that the distortion per symbol between each Xk and X̂k,

k = 1, · · · , N , is upper bounded by Dk +O(ε) with probability approaching 1 as n→ ∞.

Existence of a deterministic causal video code with desired performance:

In the above analysis, all probabilities are with respect to both the random sources

X1, · · · , XN , and the random codebooks. By the well-known Markov inequality, it fol-

lows that there exists a deterministic causal video code (i.e., a deterministic codebook)

for which the distortion per symbol between each Xk and X̂k, k = 1, · · · , N , is upper

bounded by Dk + O(ε) with probability approaching 1 as n → ∞1. Therefore, for this

1This step is necessary since we have multiple distortion inequalities to satisfy, in which case declaring
the existence of a deterministic code immediately from several inequalities with average performance over
the codebook ensemble would fail.
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deterministic causal video code, the average distortion per symbol between each Xk and

X̂k, k = 1, · · · , N , is upper bounded by Dk +O(ε). Note that all rates are fixed.

Putting all pieces together, we have shown that

(R1 + ε, · · · , RN + ε,D1 +O(ε), · · · , DN +O(ε)) ∈ R∗
c .

Letting ε→ 0 yields

(R1, · · · , RN , D1, · · · , DN) ∈ R∗
c .

This completes the proof of the positive part of Theorem 8.
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Appendix B

In this Appendix, we prove the positive part (i.e., co(R′
c) ⊆ R∗

c) of Theorem 1. Since

R′
c =

⋃∞
m=1 Rc,m, each Rc,m is convex, and R∗

c is closed, it suffices to show that for each

m ≥ 1, Rc,m ⊆ R∗
c .

Proof of Rc,1 ⊆ R∗
c : Unless otherwise specified, notation below is the same as in the

proof of the positive part in Appendix A. Indeed, our proof is similar to the random

coding argument made for the IID case in Appendix A. However, since the vector source

(X1, · · · , XN) now is not IID, but stationary and totally ergodic, the Markov lemma in

its simple form as expressed in [11, Lemma 15.8.1, Chapter 15] is not valid any more.

To overcome this difficulty, we will modify the concept of typical sequences and make it

even stronger. With An
ε (X1, U1) and An

ε (X−
k , Xk, U

−
k , Uk), k = 2, · · · , N − 1, defined as in

Appendix A, we define for each sequence x1 ∈ X n
1 and u1 ∈ Un

1 , where for any alphabet

U , Un denotes the set of all sequences of length n from U ,

An
ε (X+

1 |x1,u1)
Δ
={x+

1 = (x2, · · · ,xN ) :

(x1,x
+
1 ,u1) ∈ An

ε (X1, X
+
1 , U1)} (B.1)
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and similarly, for each x−
k ,xk,u

−
k ,uk,

An
ε (X+

k |x−
k ,xk,u

−
k ,uk)

Δ
={x+

k :

(x−
k ,xk,x

+
k ,u

−
k ,uk) ∈ An

ε (X−
k , Xk, X

+
k , U

−
k , Uk)}.

(B.2)

We then define our modified joint typical sets as follows

Ân
ε (X1, U1)

Δ
= {(x1,u1) : (x1,u1) ∈ An

ε (X1, U1)

& Pr
{
X+

1 ∈ An
ε (X+

1 |x1,u1)
∣∣∣X1 = x1

}
> 1 − ε

}
(B.3)

and for 1 < k < N ,

Ân
ε (X−

k , Xk, U
−
k , Uk)

Δ
=

{
(x−

k ,xk,u
−
k ,uk) :

(x−
k ,xk,u

−
k ,uk) ∈ An

ε (X−
k , Xk, U

−
k , Uk)

& Pr
{
X+

k ∈ An
ε (X+

k |x−
k ,xk,u

−
k ,uk)

∣∣∣Xk = xk,

X−
k = x−

k

}
> 1 − ε

}
. (B.4)

To get our random CVC scheme in this case, we simply modify the encoding procedure

of the random coding scheme constructed in Appendix A by replacing An
ε (X1, U1) and

An
ε (X−

k , Xk, U
−
k , Uk) with Ân

ε (X1, U1) and Ân
ε (X−

k , Xk, U
−
k , Uk), respectively; the rest of the

random coding scheme remains the same. Since the rate of the encoder for each Xk is

fixed, the bit rate in bits per symbol for each Xk is upper bounded by Rk + ε. To get the

desired upper bounds on distortions, we need to analyze the joint typicality of the source

sequences and the respective transmitted codeword sequences. At this point, we invoke

the following result, which will be proved at the end of this Appendix.

145



Lemma 7 (Extended Markov Lemma) Suppose that X1, X2, · · · , XN are jointly sta-

tionary and ergodic. Let Uk, k = 1, 2, · · · , N−1, and X̂N be the auxiliary random variables

in (3.2) (for the definition of Rc,1) satisfying the requirements (R1) to (R4). Let {U1(i)}∞i=1

be the output process of the memoryless channel given by pU1|X1(1) in response to the input

X1. For any 1 < k < N , let {Uk(i)}∞i=1 be the output process of the memoryless chan-

nel given by pUk|X−
k (1)Xk(1)U−

k
in response to the inputs (X−

k , Xk) and {{Uj(i)}∞i=1 : j =

1, · · · , k − 1}. Let {X̂N(i)}∞i=1 be the output process of the memoryless channel given by

pX̂N |XN (1)U−
N

in response to the inputs XN and {{Uj(i)}∞i=1 : j = 1, · · · , N − 1}. Then the

following properties hold:

(P1) The probability Pr{(X1,U1) ∈ Ân
ε (X1, U1)}, where X1 = X1(1;n) and U1 = U1(1;n),

goes to 1 as n→ ∞.

(P2) For any 1 < k < N and sufficiently large n,

Pr
{
(x−

k ,Xk,u
−
k ,Uk) ∈

Ân√
2ε

(X−
k , Xk, U

−
k , Uk)

∣∣∣X−
k = x−

k ,

U−
k = u−

k

} ≥ 1 − 2ε−
√

2ε (B.5)

for any (x−
k ,u

−
k ) ∈ Ân

ε (X−
k , U

−
k ).

(P3) For sufficiently large n,

Pr
{

(x−
N ,XN ,u

−
N , X̂N) ∈

An
2ε(X

−
N , XN , U

−
N , X̂N)

∣∣∣X−
N = x−

N ,

U−
N = u−

N

} ≥ 1 − 2ε (B.6)

for any (x−
N ,u

−
N) ∈ Ân

ε (X−
N , U

−
N ).
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Lemma 7 can be regarded as an extended Markov lemma in the ergodic case. In view

of Lemma 7, it is not hard to see that with high probability, which approaches 1 as ε→ 0,

X1, · · · ,XN ,C1, · · · ,CN−1 are strongly typical, and XN and CN are strongly typical. The

rest of the proof is identical to the case considered in Appendix A. This completes the proof

of Rc,1 ⊆ R∗
c .

Proof of Rc,m ⊆ R∗
c : We consider a block of m symbols as a super symbol and regard

(X1, · · · , XN) as a vector source over Xm
1 ×· · ·×Xm

N . Since (X1, · · · , XN) is totally ergodic,

it is also ergodic when regarded as a vector source over Xm
1 × · · · × Xm

N . Repeating the

above argument for super symbols, i.e., for alphabets Xm
1 , · · ·Xm

N , X̂m
1 , · · · , X̂m

N , we then

have Rc,m ⊆ R∗
c for any m ≥ 1. This completes the proof of the positive part of Theorem 1.

We now prove Lemma 7.

Proof of Lemma 7: By construction, it is easy to see that {{Uj(i)}∞i=1 : j = 1, · · · , N −
1} and {X̂N(i)}∞i=1 are the output of a memoryless channel in response to the input

(X1, · · · , XN). Since X1, X2, · · · , XN are joint stationary and ergodic, it follows from [2,

Theorem 7.2.1, Page 272] that the 2N processes {{(Xj(i), Uj(i))}∞i=1 : j = 1, · · · , N − 1}
and {(XN(i), X̂N(i))}∞i=1 are jointly stationary and ergodic as well. By the ergodic theorem,

we then have

lim
n→∞

Pr{(X1,X
+
1 ,U1) ∈ An

ε (X1, X
+
1 , U1)} = 1. (B.7)

Let

an
Δ
= Pr{(X1,X

+
1 ,U1) 	∈ An

ε (X1, X
+
1 , U1)}.

Rewrite an as

an = E
[
Pr{X+

1 	∈ An
ε (X+

1 |X1,U1)|X1}
]
. (B.8)
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Applying the Markov inequality to (B.8), we get

Pr
{
(X1,U1) ∈

{
(x1,u1) : Pr{X+

1 	∈
An

ε (X+
1 |x1,u1)

∣∣∣x1} < √
an

}}
≥ 1 −√

an. (B.9)

Since an → 0 as n→ ∞, combining (B.9) with (B.7) yields Property P1 in Lemma 7.

To prove Property P2 in Lemma 7, note that given any (x−
k ,xk,x

+
k ,u

−
k ), {Uk(i)}n

i=1 is

a conditionally independent sequence. It is not hard to see that

lim
n→∞

Pr
{
(x−

k ,xk,x
+
k ,u

−
k ,Uk) ∈

An
2ε(X

−
k , Xk, X

+
k , U

−
k , Uk)

∣∣∣x−
k ,xk,x

+
k ,u

−
k

}
= 1

(B.10)

as long as (x−
k ,xk,x

+
k ,u

−
k ) ∈ An

ε (X−
k , Xk, X

+
k , U

−
k ). Furthermore, the convergence in (B.10)

is uniform. This, coupled with the definition of Ân
ε (X−

k , U
−
k ), implies that for sufficiently

large n and for any (x−
k ,u

−
k ) ∈ Ân

ε (X−
k , U

−
k ),

Pr
{
(x−

k ,Xk,X
+
k ,u

−
k ,Uk) ∈

An
2ε(X

−
k , Xk, X

+
k , U

−
k , Uk)

∣∣∣x−
k ,u

−
k

}
> 1 − 2ε. (B.11)

Applying the Markov inequality to (B.11), we get

Pr
{
(Xk,Uk) ∈

{
(xk,uk) : Pr{X+

k 	∈
An

2ε(X
+
k |x−

k ,xk,u
−
k ,uk)|x−

k ,xk} <
√

2ε
} ∣∣∣x−

k ,u
−
k

}
> 1 −

√
2ε (B.12)
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which in turn implies

Pr
{
(Xk,Uk) ∈

{
(xk,uk) : Pr{X+

k ∈
An√

2ε
(X+

k |x−
k ,xk,u

−
k ,uk)|x−

k ,xk} > 1 −
√

2ε
} ∣∣∣x−

k ,

u−
k

}
> 1 −

√
2ε (B.13)

whenever 2ε < 1. Combining (B.13) with (B.11) yields (B.5).

A similar argument can be used to prove Property (P3). The completes the proof of

Lemma 7.
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