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ABSTRACT 
 
The high incidence of falls and fall-related injuries among Canadians over the age of 65 

continues to be a key public health issue. As the current proportion of individuals within 

this cohort of the population is predicted to double by the year 2031, the absolute number 

of individuals experiencing falls, fall-related injuries and subsequent hospitalization will 

increase dramatically. While a fall in any direction can lead to injury and reduced quality 

of life, lateral falls have been shown to be prevalent and can be particularly devastating 

because of the increased probability of hip fracture. Forward stepping tasks, whether 

initiated volitionally or by external perturbation, pose a challenge to stability, as they 

require the precise regulation of the spatial and temporal characteristics of the whole 

body centre of mass (COM) in relation to a changing base of support (BOS). Despite our 

understanding of both proactive and reactive mechanisms for balance control at 

movement initiation during such stepping tasks, there appears to be little understanding 

or consensus regarding the origins of age-related decline in mediolateral stability, which 

can manifest during the restabilisation phase, at movement termination. From this, the 

global objective of this thesis was to develop further understanding regarding such age-

related differences in mediolateral dynamic stability control during the restabilisation 

phase of forward stepping. Notwithstanding the well documented differences between 

volitional and perturbation-evoked stepping until the time of foot-contact, we have 

proposed the control of the COM during the restabilisation phase of such stepping tasks 

to be a central determinant of age-related differences in mediolateral dynamic stability, 

common to both forms of stepping. We quantified the COM kinematics during the 

restabilisation phase and calculated the magnitude of incongruity between the peak and 
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final, stable, COM position, in addition to the intertrial variability of this incongruity. 

Further, we analysed the orientation of the net ground reaction force (GRF) with respect 

to the COM, which allowed us to draw conclusions regarding the mechanisms that may 

be responsible for the age-related differences in the COM kinematics. To vary the 

challenge to control, we included conditions in which individuals were required to step 

with altered step width. In addition, we attempted to probe the extent and means by 

which individuals could alter the dynamics of stepping over time, with trial repetition. In 

general, we found that overshoots of the final COM position were common to all forms 

of stepping and may serve the functional role of simplifying reactive control during the 

restabilisation phase. The magnitude and intertrial variability of incongruity, however, 

were greater among the older adults during all forms of stepping. We believe such 

increased COM incongruity is likely indicative of greater instability within this group, 

which may be associated with the increased time required to reorient the net GRF in a 

manner necessary to oppose the total body angular momentum that developed during the 

swing phase. Particularly interesting was the use of proactive strategies by older adults, 

which may have the potential to offset instability that arises due to difficulty with reactive 

control during the restabilisation phase. The present work provides support for previous 

studies, which have suggested that the control of mediolateral stability may be 

particularly challenging for older adults. Further, our work provides evidence that the 

challenges associated with mediolateral stability control have important links to the 

restabilisation phase and are common to both volitional and reactive stepping. This work 

highlights the need to further explore the control of mediolateral stability and develop 

therapeutic interventions to reduce such incidence of instability among older adults. 
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Introduction 
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1.1 GENERAL OVERVIEW 

The ability to habitually stand and walk upright on two legs is characteristic of the human 

lineage (Vaughan, 2003; Sockol, Raichlen & Pontzer, 2007). This distinction, however, 

introduces inherent instability, as two thirds of the body mass is located two thirds of the 

body height above the ground (Winter, Patla, Frank & Walt, 1990). As a result, the 

control of upright stability is non-trivial, requiring continuous muscle activation and 

modulation to compensate for both internal and external perturbations. To further 

complicate this control, intersegmental coupling allows inertial forces to be transmitted 

across segments, such that a muscle can accelerate segments far removed from the joint 

or joints it spans (Zajac, 1993). Despite this, while balance control does require 

attentional resources (Lajoie, Teasdale, Bard & Fleury, 1993; Shumway-Cook & 

Woollacott, 2000; Woollacott & Shumway-Cook, 2002), upright stability can be 

maintained in healthy systems with little conscious effort. Problems do, however, arise 

with age or various medical conditions, whereby the ability to maintain dynamic stability 

is challenged and the risk of falls increases (Tinetti, Speechley & Ginter, 1988; Nevitt, 

Cummings, Kidd & Black, 1989; O’Loughlin, Robitaille, Boivin & Suissa, 1993; 

McIlroy & Maki, 1996; Maki & McIlroy, 2006). Such challenges to stability control in 

these special populations have prompted significant scientific investigation. 

 

Dynamic tasks, such as gait initiation or termination, rapid limb withdrawal, or reactive 

stepping in response to external perturbations, pose a challenge to stability because they 

require the precise regulation of the spatial and temporal characteristics of the centre of 

mass (COM) in relation to a changing base of support (BOS). A particularly interesting 
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feature of both volitional and perturbation-evoked forward stepping is the development of 

mediolateral instability, which is orthogonal to the intended or induced direction of 

motion. Such instability is not directly related to the internal or external perturbation 

itself, but arises as an indirect consequence of the shift from bipedal to unipedal stance. 

As a result of the change in BOS configuration during the initial aspect of the swing 

phase, the line of action of the gravitational force acting at the COM falls lateral to the 

ankle joint of the stance limb, resulting in an external moment that tends to accelerate the 

COM away from the stance limb. In volitional movements, such mediolateral instability 

is pre-emptively countered, to a varying extent, by mediolateral anticipatory postural 

adjustments (APA), which serve to accelerate the COM toward the stance limb before the 

initiation of swing phase, thereby reducing the external gravitational moment and 

subsequent acceleration toward the contralateral side (Fig. 1-1a). In compensatory 

stepping reactions, however, this APA is often absent or insufficient to have a marked 

effect on the COM kinematics (McIlroy & Maki, 1993b; McIlroy & Maki, 1999; Rogers 

et al., 2001), which leads to an increased external gravitational moment in the frontal 

plane at the onset of stepping (Fig. 1-1b) and may complicate subsequent mediolateral 

dynamic stability control during the restabilisation phase, after foot-contact (Fig. 1-2). 
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Figure 1-1. Frontal plane configuration of the body at the onset of stepping during a volitional (panel A, 
left) and perturbation-evoked step (panel B, right). The frontal plane external gravitational moment (M = 
mg * d) is typically smaller during volitional stepping because of the influence of the ML APA, which 
tends to move the line of action of the gravitational force (mg) closer to the supporting ankle. 
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Figure 1-2. Displacement of the net COP (solid line) and COM (dotted line) for a representative trial 
within each the volitional (top) and perturbation-evoked (bottom) stepping conditions (Studies 2 and 3). 
Data begin at cable-release (perturbation-evoked) or presentation of auditory tone (volitional). ML Asym. = 
onset of ML asymmetry; Onset unload = onset of ML unloading; T.O. = Toe-off; F.C. = Foot-contact; ML 
Restabilisation = point of ML restabilisation. Positive values indicate displacement toward stepping limb; 
negative values indicate displacement toward stance limb. 
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There has been a substantial body of work regarding age-related changes in balance 

control during quiet standing (Fernie, Gryfe, Holliday & Llewellyn, 1982; Shumway-

Cook, Woollacott, Kerns & Baldwin, 1997), perturbed standing (Lin, Woollacott & 

Jensen, 2004) gait initiation (Chang & Krebs, 1999) and steady-state gait (Winter et al., 

1990), with inferences regarding a relationship to falls risk. In addition, considerable 

research exists on the control of anteroposterior stability upon anteroposterior 

perturbation to standing balance (Do, Breniere & Brenguier, 1982; McIlroy & Maki, 

1996; Thelen et al., 2000; Wojcik, Thelen, Schultz, Ashton-Miller & Alexander, 2001; 

Hsiao-Wecksler & Robinovitch, 2007; Karamanidis, Arampatzis & Mademli, 2008). 

Taken together, this work has revealed that older adults are not able to recover from as 

large a maximal perturbation magnitude as are younger adults (Thelen, Wojcik, Schultz, 

Ashton-Miller & Alexander, 1997; Wojcik, Thelen, Schultz, Ashton-Miller & Alexander, 

1999). Such differences have been largely attributed to reductions in swing limb velocity, 

step length, or sagittal plane lower limb intersegmental moments at foot-contact (Hsiao-

Wecksler & Robinovitch, 2007; Karamanidis, Arampatzis & Mademli, 2008). 

 

In contrast, studies employing a sub-maximal perturbation magnitude have not found 

age-related differences in the initial temporospatial parameters of the response (McIlroy 

& Maki, 1996; Thelen et al., 1997; Rogers, Hedman, Johnson, Cain & Hanke, 2001; 

Rogers & Mille, 2003). This work has, however, found older adults to have greater 

mediolateral instability at the time of foot-contact, as evidenced by greater lateral step 

placement (Rogers et al., 2001; Schulz, Ashton-Miller & Alexander, 2005) or greater 

number of laterally directed steps (McIlroy & Maki, 1996), which suggests that the 
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development of mediolateral instability occurs during the stepping phase or 

restabilisation phase after foot-contact. Similar evidence of mediolateral instability has 

been found during unplanned and unplanned gait termination (O'Kane, McGibbon & 

Krebs, 2003; Tirosh & Sparrow, 2005).  

 

Despite our understanding of the proactive and reactive mechanisms for balance control 

at movement initiation, such as anticipatory postural adjustments in volitional stepping or 

early automatic postural responses in reactive stepping, respectively, there appears to be 

little understanding or consensus regarding the origins of age-related mediolateral 

instability that can occur, and manifest, at movement termination during such stepping 

tasks (McIlroy & Maki, 1996; O'Kane, McGibbon & Krebs, 2003; Tirosh & Sparrow, 

2005). Notwithstanding the well documented differences between volitional and 

perturbation-evoked stepping until the time of foot-contact, we believe that the challenges 

for effectively controlling and arresting the lateral progression of the COM within the 

base of support have important links to the restabilisation phase, and are common to both 

forms of stepping. 

 

From this, it is proposed that research with a more direct focus on mediolateral stability 

control, specifically at foot contact during volitional and reactive stepping, will lead to a 

more complete understanding of the challenges faced by older adults in the maintenance 

of dynamic stability. Further, we hope that insight gained during such single step 

responses can be used to direct subsequent study into mediolateral dynamic stability 

during steady-state gait. The current work sets out to provide new insight to help 
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understand the factors that influence age-related changes in dynamic stability control 

during stepping. 

 

1.2 RELEVANCE AND SIGNIFICANCE 

The high incidence of falls and fall-related injuries among Canadians over the age of 65 

continues to be a key public health issue. Although this cohort represents approximately 

14% of the Canadian population (as of 2006), they accounted for 51% of all unintentional 

fall cases requiring hospitalization during the 2007 fiscal year (Canadian Institute of 

Health Information, 2010) and totalled 46% of health care costs for falls in 2004 

(SMARTRISK, 2009).  

 

Many authors have suggested that measures of mediolateral stability may be good 

predictors of falls (Maki, Holliday & Topper, 1994; Lord, Rogers, Howland & 

Fitzpatrick, 1999; Brauer, Burns & Galley, 2000; Hilliard et al., 2008; Schrager, Kelly, 

Price, Ferrucci, Shumway-Cook, 2008). While a fall in any direction can lead to injury, 

increased fear of falling, reduction in physical activity levels and quality of life, lateral 

falls have been shown to be prevalent (Maki et al., 1994) and can be particularly 

devastating because of the increased probability of impact to the lateral aspect of the 

pelvis or leg, which increases the likelihood of hip fracture and subsequent 

hospitalisation (Nevitt & Cummings, 1993; Hayes et al., 1996; Robinovitch, Inkster, 

Maurer, Warnick, 2003).  
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Both the rate of fall related hospitalization and the length of stay per case have been 

found to be positively related with age. This trend rises sharply when examining the 

subset of individuals above the age of 85. With this hospitalization comes the risk of 

comorbidity and subsequent reduction in physical activity levels, which may give rise to 

increased fall risk and reduced quality of life (Nevitt et al., 1989; Bloem, Steijns & Smits-

Engelsman, 2003). Unfortunately, as the current proportion of the population over the age 

of 65 is predicted to double by 2031 (Statistics Canada, 2007), the absolute number of 

individuals experiencing falls, fall-related injuries and subsequent hospitalization will 

increase dramatically. As a consequence, without a better understanding of the factors 

responsible for falls and subsequent evidence-based interventions, so too will the social 

and economic burdens on Canadian society. 

 

1.3 RESEARCH OBJECTIVES 

The global objective of the following studies was to elucidate the factors responsible for 

age-related decline in the control of mediolateral dynamic stability, which are potentially 

linked to fall risk. To this end, this work focussed on the recovery of upright dynamic 

stability on, and after, foot contact when stepping was evoked either volitionally or 

reactively by applied whole-body perturbation.  

 

As a foundation for subsequent studies, the first study in this series sought to better 

understand the control of the centre of mass during voluntary stepping, by quantifying the 

trajectory of the COM and the intertrial variability during the restabilisation phase of self-

initiated single steps. The intention of this study was to characterise the COM kinematics 
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in young adults under ideal conditions, in which there was an opportunity to plan and 

self-initiate the movement. The second study in this series sought to extend our previous 

work of voluntary stepping in young adults to address mediolateral stability control in 

healthy older adults, again under conditions where there was the opportunity to pre-plan 

appropriate movement parameters for maximal stability. As it was possible that older 

adults would mask difficulty in stability control by altering their movement speed, we 

included rapid-stepping trials initiated in response to an auditory cue. Again, we 

quantified COM kinematics to reveal age-related differences in incongruity magnitude 

and intertrial variability. Further, we analysed the timing and magnitude of the waveform 

representing the difference between the inclination angles of the net ground reaction force 

and COP-COM, to aid in the clarification of the underlying mechanisms responsible for 

any age-related differences in the abovementioned kinematic variables. The third study 

extended the aforementioned methodology to understand the mechanisms responsible for 

previously reported age-related declines in mediolateral dynamic stability during reactive 

stepping, by examining the restabilisation phase following a cable-release perturbation to 

standing balance. 
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CHAPTER 2 
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2.1 FALL RISK 

Early investigations attempting to uncover a principal cause of falls in community-

dwelling older adults have instead revealed a complex interaction of intrinsic and 

extrinsic factors, which combine to influence fall risk. Intrinsic factors include both 

biological and behavioural mechanisms such as reduced muscle strength, physical fitness, 

visual, vestibular or cognitive impairments, fear of falling, depression and falls history 

(Tinetti et al., 1988; Campbell, Borrie & Spears, 1989; Maki et al., 1994; Graafmans et 

al., 1996; Lord & Dayhew, 2001). Extrinsic factors tend to compound the effect of any 

intrinsic components and have been found to include the use of assistive devices (Bateni 

& Maki, 2005) and the physical environment of both the home and community. 

Interestingly, investigations have proposed that, with specific interventions, the impact of 

many of these risk factors can be diminished – especially those of an extrinsic nature. 

Due to the complexity of intrinsic factors, however, a large fraction of research has been 

aimed at understanding how these elements relate to fall risk. More specifically, much 

emphasis has been placed on uncovering the role of the balance control system. 

 

Several clinical tests of balance have been used, with varying success, to predict fall risk 

in older adults. For example the ‘functional reach’ test is a clinical measure of balance, 

tested for reliability and construct validity, which has been suggested to reflect the limits 

of stability (Duncan, Weiner, Chandler & Studenski, 1990). A subsequent study by 

Duncan, Studenski, Chandler and Prescott (1992) evaluated this test in its utility as a tool 

for identifying older adults at risk for recurrent falls. While these authors indicated that 

the test demonstrated predictive validity, other authors (Jonsson, Henriksson & 
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Hirschfeld, 2002) have questioned the construct validity of this tool, as it relates to an 

individual’s stability limits, as they found a low correlation between centre of pressure 

(COP) displacement measures and reach distance and argue that an individual’s choice of 

movement pattern may be more highly correlated to reach distance. 

 

The Berg Balance Scale (BBS) has also been evaluated in its predictive validity for falls, 

in comparison to older adults’ self-reported fall rate. Shumway-Cook, Baldwin, Polissar 

and Gruber (1997) have reported that this instrument demonstrated high sensitivity and 

specificity in dichotomously classifying fall risk. In contrast, Bogle Thorbahn and 

Newton (1996) performed a similar retrospective study and found the BBS to have 

sufficient specificity to classify non-fallers, but low sensitivity in identifying individuals 

prone to falling. Interestingly, Muir, Berg, Chesworth and Speechley (2008) have 

asserted that the BBS was developed as a clinical tool to evaluate functional balance in 

older adults and, as such, was not intended to provide a dichotomous, predictive, measure 

of fall risk. Because of its wide use as a predictive tool, these authors performed a 

prospective evaluation of the predictive validity of the BBS and found this tool to have 

insufficient sensitivity to justify its use as a dichotomous scale to predict fall risk (Muir et 

al., 2008). While the functional reach test, BBS and similar clinical tests of balance can 

provide an indication of global balance capabilities, the resolution of such instruments in 

detecting small changes in balance performance is not known. In addition, although 

clinical tests are generally intended to evaluate balance during functional tasks, it is not 

clear which elements of balance control are being probed. While clinical scales of 

balance performance may reduce the need for time and equipment resources and have a 
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clear role as evaluative tools in the assessment of a patient’s general functional balance 

capability, quantitative experimental analyses may provide more detailed information 

regarding the underlying mechanisms governing balance control.  

 

2.2 STATIC- AND PERTURBED-STANCE BALANCE CONTROL 

An idealized rigid body at rest will remain passively stable when subjected to a transient 

unbalancing force, so long as the line of action of the gravitational force, acting at the 

COM, does not exceed the geometric limits of the BOS. In contrast, humans are 

comprised of a system of linked segments, which is inherently unstable during standing. 

This is largely due to the numerous degrees of freedom and continuous internal sources 

of perturbation, such haemodynamics and respiration (Conforto, Schmid, Camomilla, 

D’Alessio & Cappozzo 2001; Schmid, Conforto, Bibbo & D’Alessio, 2004). The 

understanding of stability control in a human system is further complicated by the fact 

that the relationship between the COM and BOS is not only governed by constraints 

related to BOS geometry, but also by the functional limits of the BOS, which may be 

related to the capacity of the sensory and motor systems or fear of falling (King, Judge & 

Wolfson, 1994; Binda, Culham & Brouwer, 2003; Holbein-Jenny, McDermott, Shaw & 

Demchak, 2007). As a result of such factors, the maintenance of upright standing stability 

requires the continuous generation and modulation of muscular forces to oppose internal 

and external destabilising forces - essentially, necessitating active control of the COM. 

 

This concept has formed the foundation for numerous studies seeking to understand how 

humans maintain standing, or ‘static’, balance. Traditionally, researchers focussed on 
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global measures of balance, such as the location of the net centre of pressure (COPnet) in 

both mediolateral and anteroposterior directions, using a single force plate. While 

measurement of the time-varying displacement of the COPnet has, at times, been termed 

‘postural sway’, Winter (1995) asserts that this term describes the movement of the 

COM, rather than the COP. Nevertheless, while the COP and COM are independent 

signals, displacement of the COP reflects the generation of active muscular forces to 

control the position of the COM and, as such, can be used to make inferences about 

postural control. Winter (1995) further highlights the fact that authors who have 

incorrectly interpreted the COP displacement as ‘postural sway’ likely overlooked the 

earlier work of Murray, Seirig and Scholz (1967), who may have been the first to 

concurrently quantify both the COP and COM and identify the interaction between these 

two variables. Moreover, Murray et al. (1967) may have also been the first to indicate 

that the variations in the position of the COP were much larger than those of the COM 

and were indicative of muscular contractions, which, during quiet standing, served to 

accelerate the COM to regulate its position within the area of the BOS. 
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Figure 2-1. Centre of mass (grey) and centre of pressure (black) trajectories for mediolateral (top) and 
anteroposterior (bottom) directions. Fifteen seconds of data are presented from one participant, performing 
the 60 second quiet standing trial required for studies 2 and 3 from this thesis. Positions of the centre of 
mass and centre of pressure are plotted with respect to the origin of the global coordinate system. 
 

Early studies of age-related differences in postural control have focussed on the 

measurement of the COP as a global indicator of the spontaneous postural activity that 

occurs during standing balance. It is believed that the COP signal contains information 

pertaining to the underlying control response to COM displacement. As such, an 

increased magnitude of displacement-based measures of the COP, such as peak-to-peak 

amplitude, root-mean-square deviation, ‘sway’ area or path length, have been presumed 

to reflect an impaired ability to control the COM, as greater COP displacement implies 

increased active muscular involvement in COM control – presumably in response to 

increased COM displacement. Indeed, older adults have been found to have increased 

COP displacement (Era & Heikkinen, 1985) and velocity (Fernie et al., 1982; Prieto, 
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Myklebust, Hoffmann, Lovett & Myklebust, 1996), however, Patla, Frank and Winter 

(1990) and Maki and McIlroy (1996) emphasize that an increase in COP displacement 

and/or velocity, in isolation, may not be sufficient to deduce deterioration of the postural 

control system or instability. As such, a more complete understanding of the capacity of 

the postural control system may be gained from concurrent analysis of both the control 

(COP) and controlled (COM) variables. To further emphasise this point, Patla et al. 

(1990) and Hof, Gazendam and Sinke (2005) have proposed hypothetical experiments – 

involving either a mannequin or broom handle balanced on end on a force platform – 

during which the measured time-varying COP displacement would clearly be nil, but 

these systems could not be assumed to be stable. Accordingly, studies in humans have 

revealed that displacement-based COP measures can be reduced as a function of 

neurological disorder (Horak, Nutt & Nashner, 1992), or perceived threat to stability 

(Carpenter, Adkin, Brawley & Frank, 2006; Laufer, Barak & Chemel, 2006). Further, to 

provide a more complete understanding of the underlying control, displacement-based 

COP measures could also be supplemented with frequency-based measures, such as the 

mean (or median) power frequency of the COP or COM-COP error signal, which could 

provide information regarding the stiffness of the muscles governing COM control.  

 

In contrast to quiet standing, falls are more likely to result from self-imposed internal or 

unexpected external perturbations, which disrupt the relationship between the COM and 

BOS. Consequently, early studies of perturbed standing balance emerged as a simple 

means to safely probe the balance control system. Nashner (1977) has observed that, in 

response to an unexpected platform translation, postural responses were functionally 
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organized, whereby there was generally an orderly sequence of muscle activation from 

distal to proximal. This distal-to-proximal temporal sequencing of postural muscle 

activation has also been elicited in an anticipatory manner, prior to the onset of focal 

muscle activity, when young adults were asked to exert force through the hand upon a 

manipulandum, while maintaining a standing position (Cordo & Nashner, 1982). 

 

In addition to this distal-to-proximal response, which has been termed an ‘ankle strategy’ 

when elicited in response to external postural perturbation, Horak and Nashner (1986) 

also observed another strategy, termed a ‘hip strategy’, in which abdominal/lumbar and 

anterior/posterior thigh musculature were activated in response to unexpected 

posterior/anterior platform translations, respectively. Relative to the ‘ankle strategy’, this 

functional coupling of muscle activation was believed to occur in response to platform 

translations of higher displacement or velocity or in situations where the generation of 

ankle moments is ineffective in altering the acceleration of the COM, such as when 

standing on narrow or compliant surfaces. While ‘ankle’ and ‘hip’ strategies can occur as 

distinct responses, they have been observed to most often emerge in various 

combinations (Horak & Nashner, 1986). 

 

Age-related changes in muscle onset timing, organization, antagonist co-activation and 

even the choice of ‘strategy’ have been noted by some authors examining external 

perturbations to stance (Woollacott & Shumway-Cook, 1990; Lin & Woollacott, 2002). 

More specifically, these authors have found that older adults can display a delayed onset 

of the ankle musculature and an increased likelihood of a proximal-to-distal organization 



 19 

of muscle activation, ultimately leading to the emergence of a ‘hip strategy’ under 

conditions that would otherwise evoke an ‘ankle strategy’ in young adults. Studies 

examining anticipatory control in response to focal arm movements have also been 

performed in samples of older adults, in which increased onset latencies in postural 

muscles, relative to the onset of focal muscle activation, have been observed (Stelmach, 

Populin & Muller, 1990; Rogers, Kukulka & Soderberg, 1992). While such evidence of 

disordered control likely results in instability, Patla et al. (1990) suggest that the 

ineffectiveness of these altered responses can only be inferred unless supported by kinetic 

analyses and measurement of the COM. 

 

2.3 COMPENSATORY STEPPING RESPONSES 

Historically, ‘fixed-support’ strategies have been believed to lie on a continuum, where 

‘ankle’ and ‘hip’ strategies are used in response to small and large amplitude 

perturbations, respectively. Stepping, or ‘change-in-support’, strategies were generally 

assumed to lie at the far end of the continuum and were employed only when the vertical 

projection of the COM travelled outside of the BOS (Horak & Nashner, 1986).  

 

While the maintenance of ‘static’ upright stability requires the maintenance of the 

position of the COM within the BOS, this is not a necessary condition for the 

maintenance of ‘dynamic’ postural control. Murray et al. (1967) observed, during 

jumping and sit-to-stand tasks, that the COM was positioned well outside the BOS and 

presented this as evidence that “should dispel the concept that the line of gravity must 

constantly remain within the supporting area to avoid falling”(p. 837). This reasoning has 
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been formalized by Pai and Patton (1997), who have indicated that isolated measurement 

of the position of the COM relative to the BOS is insufficient to infer stability. Rather, 

measurement of both COM position and velocity, in relation to the BOS, are required. 

Using a reductionist approach, these authors used a two-segment sagittal plane model to 

demonstrate that stability can be maintained even if the position of the COM is outside 

the BOS, given that the velocity is directed toward the BOS. Conversely, it may be 

impossible to maintain stability when the COM is within the BOS, if the velocity is of 

sufficient magnitude and is directed away from the BOS. This work has given rise to a 

dynamic model of stability, based on both the position and velocity of the COM within 

the BOS, which has been better able to predict the need for stepping after postural 

perturbation (Pai, Rogers, Patton, Cain & Hanke, 1998; Pai, Maki, Iqbal, McIlroy & 

Perry, 2000). This research has provided support for the earlier work of McIlroy and 

Maki (1993c), who proposed that change-in-support reactions may not be at the end of a 

continuum of responses to postural perturbation, but may occur even when the COM is 

well inside the BOS (Pai et al., 1998; Pai et al., 2000; Mille, et al., 2003). Accordingly, 

the predominance of previously reported fixed-support strategies may have been the 

result of instructions given to the participants to regain balance without the use of a step 

(McIlroy and Maki, 1993c). In addition, this concept reveals the possibility that 

experiments examining age-related differences in postural control using ‘fixed-support’ 

strategies may lack ecological validity. Given findings that healthy older adults are more 

likely, relative to young adults, to initiate a stepping response at a given level of 

perturbation (Jensen, Brown & Woollacott, 2001), previously reported age-related effects 

may have occurred because older adults were required to use a non-preferred strategy for 
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restabilisation. Investigations of stepping behaviour, whether driven volitionally or by 

perturbation, may provide better insight into the age-related mechanisms responsible for 

balance dyscontrol and falls. 

 

2.3.1 Early Automatic Postural Responses 

Although compensatory stepping reactions to postural perturbation are more common 

than previously believed, early automatic postural responses, such as the generation of 

ankle moments, typically precede the onset of stepping. This can present a conflict 

between responses, as stepping would require the generation of an ankle moment, 

resulting in COP movement in a direction opposite to that which would be elicited by the 

early automatic response. In an attempt to understand this conflict, McIlroy and Maki 

(1993a) performed a study using forward platform translations to determine the influence 

of prior planning of a step on the characteristics of the early postural responses (viz. 

magnitude of tibialis anterior EMG activity). These authors found that the automatic 

postural responses were always elicited, with the same onset latency, irrespective of 

whether subjects initiated a stepping response. Steps that were pre-planned, however, 

exhibited a reduced magnitude of tibialis anterior activity when compared to either feet-

in-place- or unplanned stepping responses. Taken together, the authors suggest that the 

early responses are either immutable, but can be attenuated as a function task demands, or 

may serve a functional benefit by reducing the COM velocity prior to stepping.  

 

Further support for both the immutability of the early automatic postural responses and 

their potential functional role has been provided by Weerdesteyn, Laing and Robinovitch 
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(2008), who asked subjects to either recover their balance or fall onto a mattress, after 

release from a backward lean. Given minimal differences in tibialis anterior onset 

latency, yet significantly reduced amplitude of EMG activity in ‘fall’ trials, the authors 

suggest that these two tasks require the activation of the same motor program but with 

down-regulated gain in the ‘fall’ trials. Similar results regarding the consistency of the 

timing of early automatic postural responses have also been observed in response to 

release from varying forward lean angles (Do et al., 1982), with and without constraints 

on the use of stepping strategies (McIlroy & Maki, 1993c) and when participants are 

repeatedly exposed to the same perturbation magnitude (McIlroy & Maki, 1995).  

 

2.3.2 Onset of Step Initiation 

Despite the general consensus regarding consistent onset latencies of the early automatic 

postural responses, there is some disparity between studies examining the onset timing of 

stepping. These discrepancies, however, may be largely due to differences in perturbation 

method (i.e. moving platform or cable-release), recovery method (i.e. number of steps) 

and variation in the means by which step onset was identified.  

 

A study by Do et al. (1982), in which participants were released from an initial forward 

lean and instructed to recover balance by walking, found that the time to stepping limb 

toe-off (denoting the onset of the stepping phase) was not affected by the magnitude of 

the lean angle. This is somewhat contradictory to the results of McIlroy and Maki 

(1993c) who found that the time to onset of intra-limb vertical force asymmetry (denoting 

the onset of the step initiation phase) was reduced with increasing magnitude of platform 
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perturbation. While the aforementioned measures used to identify the onset of stepping 

are slightly different, it is perhaps more important that the study by Do et al. (1982) 

featured a predictable direction of perturbation and allowed subjects to pre-plan multiple 

consecutive alternating steps of self-selected length as a means to recover balance. As a 

result, subjects may not have been forced to generate a rapid-onset first step, since the 

forward COM velocity could be controlled in subsequent steps.  

 

Supporting evidence for this notion has been presented in a subsequent study by Do, 

Schneider and Chong (1999) using a similar methodology to their previous study. 

Specifically, relative to self-selected step length trials, participants reduced the time to 

stepping limb toe-off when they were forced to take an initial step of reduced length. This 

suggests that the reduction in the latency of step onset could be related to the risk of 

falling, since a short step would require a more rapid onset of response to bring the 

stepping foot ahead of the COM, for the generation of an external moment to reverse the 

polarity of the COM acceleration. Similar findings regarding an inverse relationship 

between time to stepping limb toe-off and perturbation magnitude have been reported 

within studies by Thelen et al. (1997) and Thelen et al. (2000), both using the cable-

release method.  

 

Interestingly, both McIlroy and Maki (1993c) and Rogers, Hain, Hanke and Janssen 

(1996) suggest the trigger for the rapid onset of stepping, and its coupling to perturbation 

magnitude, could be based on sensory information relating to platform acceleration, since 

displacement- or velocity-based variables would not peak until well after the onset of 
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stepping. This view has been indirectly supported by studies examining the attenuation 

and facilitation of plantar foot surface cutaneous sensation (Maki, Perry, Norrie & 

McIlroy, 1999; Perry, McIlroy & Maki, 2000), which have found increased and reduced 

latency in the onset of step initiation, respectively, which is likely related to the ability to 

detect the onset of platform acceleration. Similarly, Jensen et al. (2001) suggest that 

stepping is triggered as a function of the platform-induced accelerations, as they are 

propagated up the linked system of segments. For cable-release experiments, however, 

the necessity for a more rapid onset of response with increasing lean angle could be 

related to the opportunity to form a detailed internal representation of the initial positions 

of the COM and BOS during the interval before cable-release. The ultimate trigger for 

the onset of instability and, hence, the necessity for response initiation could be related to 

sensory information conveying a change in (or removal of) pressure from the cutaneous 

surface beneath the harness used to restrain the subject in the initial lean position. 

 

2.3.3 Swing Phase: Step Length and Step Time 

In theory, a wide array of combinations of step length and step time could be used to 

recover balance from a given magnitude of perturbation, ranging from short duration 

steps of minimal length to long duration steps of maximal length. A short length step 

response could be completed in a short time, which could allow for the execution of 

additional steps, should the initial step prove to be ineffective (Maki & McIlroy, 1999). 

Moreover, the execution of multiple-steps may reduce the biomechanical demands of 

each step, such that each step demands a smaller joint range of motion, peak swing phase 

moments and AP impulse (King, Luchies, Stylianou, Schiffman & Thelen, 2005). Larger 
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step lengths, however, can maximize the stability margins associated with the initial step 

by extending the BOS length well beyond the position of the COM at the time of foot-

contact, which would allow ample distance and time to decelerate the COM before 

reaching the stability limits (Maki & McIlroy, 1999). In general, studies have found that 

an increase in perturbation magnitude is associated with an increased step length and 

reduced step time (Do et al., 1982; Thelen et al., 1997; Hsiao & Robinovitch, 1999; 

Wojcik et al., 1999). 

 

Using displacement- and velocity-based estimates of stability margins, Maki and McIlroy 

(1999), indicated the existence of a trade-off between the rapidity of response execution 

and anteroposterior stability when executing stepping responses. Briefly, reductions in 

the latency of step contact, marked by reductions in step length, were predicted to result 

in reduced stability. Conversely, increases in step contact latency, and subsequent 

increases in step length and swing duration, were predicted to result in increased stability. 

Within anatomical constraints, step length may largely determine the degree of 

anteroposterior restabilisation afforded by the step, as it is the determinant of the distance 

over which the COM can be decelerated before reaching the physical limits of the BOS 

and is related to the magnitude of the restorative moment created by the vertical 

component of the ground reaction force, since step length would dictate the length of the 

moment arm. Comparing their model predictions to experimental data (McIlroy & Maki, 

1996), these authors concluded that stability took precedence in single step responses, 

whereas reductions in the latency of step contact, at the expense of stability, was favoured 

in responses consisting of multiple anterior steps. 
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Wu, Ji, Jin and Pai (2007) extended their previous work and modelling approach (Pai et 

al., 2000) to examine the minimal step length required to regain stability following a 

forward perturbation. These authors revealed that a greater anterior COM position or 

velocity at the instant of toe-off required an increase in the minimal step length necessary 

for balance recovery. Moreover, the model predicted an inverse relationship between 

ankle strength and step length, such that an inability to produce a large magnitude ankle 

moment required a corresponding increase in the minimal step length for balance 

recovery. It should be noted, however, that the authors used a four-segment sagittal plane 

model and did not include the contribution of hip or knee moments or the effect of swing 

time. When matching their initial conditions and anthropometric data to experimental 

data from McIlroy and Maki (1996), Wu et al. (2007) noted that the experimentally 

derived minimal step length for single-step responses was longer than the predicted 

value. Conversely, the experimentally derived minimal step length was shorter than the 

predicted value when multiple anterior steps were executed. This may indicate that single 

step responses reflect an attempt to maximize the stability margin at the expense of 

increased biomechanical demand, while multiple anterior step responses may occur 

because of reduced strength, an attempt to reduce peak loads, or an inability to generate 

rapid leg movement required to execute a step of increased length. Thus, it appears that 

multiple anterior step responses may emerge because of actual instability during the first 

step (Maki & McIlroy, 1999), which may be linked to either a pre-planned strategy or an 

inability to meet the biomechanical demands of the task. 
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2.3.4 Age-Related Effects 

A number of studies examining age-related differences in compensatory stepping 

behaviour have focussed on differences in the ability to recover anteroposterior stability 

as a function of perturbation magnitude. Studies of both men (Thelen et al., 1997) and 

women (Wojcik et al., 1999) have found that the maximum lean angle from which older 

adults were able to recover was significantly smaller than that of younger adults. These 

authors have suggested this difference to be primarily associated with age-related 

declines in the speed with which the lower extremity segments could be moved, rather 

than with issues associated with response initiation, such as reaction time or time of step 

onset. This theory has been supported by the authors’ subsequent work, which has 

observed no age-related difference in the onset latency of muscular activity (Thelen et al., 

2000). 

 

Hsiao-Wecksler and Robinovitch (2007) have used a slightly different approach, whereby 

step length was manipulated and its effect on the maximum recoverable lean angle was 

noted. As with previous studies, there was a positive relationship between step length and 

the maximum lean angle. Interestingly, at a given step length, younger women were able 

to recover balance at a greater lean angle, largely due to an increased swing limb speed 

and ability to generate sagittal plane lower limb moments at step contact. These results 

correspond well with the work of Karamanidis et al. (2008) who suggested that the 

mechanism responsible for the age-related reduction in maximum recoverable lean angle 

was the inability of older adults to effectively reduce their anteroposterior COM velocity, 
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resulting from lower muscle strength and consequent reductions in anteroposterior 

braking force.  

 

Studies that have tested balance recovery abilities in response to non-maximal 

anteroposterior perturbation have generally failed to find significant age-related 

differences in many temporospatial parameters of the response. McIlroy and Maki (1996) 

have noted that older adults less frequently employ a mediolateral APA before stepping, 

but exhibit no differences in the onset of swing limb unloading, foot-off time, swing time, 

or foot contact time, relative to younger adults. Despite the ability of the younger adults 

to execute a mediolateral APA before stepping, which could reveal an ability to more 

rapidly discriminate the onset of perturbation, there were no differences in step length, 

step width, AP or ML COM displacement or velocity at the time of foot contact. This is 

consistent with later research, which has indicated that the mediolateral APAs that may 

emerge during compensatory step initiation have little influence on the subsequent 

mediolateral COM dynamics (McIlroy & Maki 1999; Rogers et al., 2001). 

 

Despite the similarity in many initial movement parameters, older adults have been found 

to use a greater number of steps to recover balance (McIlroy & Maki, 1996; Schulz et al., 

2005), which is believed to be indicative of fall risk (Maki et al., 2001), since each step, if 

not executed correctly, presents an additional opportunity for instability. In addition to 

the number of steps required for restabilisation, older adults have also been found to 

either place the initial step more laterally (Rogers et al., 2001; Schulz et al., 2005) or to 

include a lateral component in the subsequent steps (McIlroy & Maki, 1996), despite the 
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fact that the primary instability triggered by these perturbations was in the sagittal plane. 

Notwithstanding the differences in the manifestation of mediolateral instability, which 

may be related to the predictability of the perturbation and the ability to pre-plan a 

response,  both results suggest that older adults may have trouble regulating mediolateral 

dynamic stability when responding to anteroposterior perturbations. When considering 

this in concert with the temporospatial and kinematic similarities in the initial movement, 

it appears likely that mediolateral instability may arise from problems with on-line 

control of the swing phase or with the control of applied forces on, and after, foot-

contact. 

 

2.4 SUMMARY 

Although there is a considerable body of literature concerning the risk factors for falls, 

the identification of individuals at risk for falling and the potential underlying 

mechanisms associated with both balance control and dyscontrol, the prevalence of falls 

among older adults continues to be a significant public health concern. Most falls have 

been found to occur during dynamic activity, whether self-initiated or evoked by external 

perturbation. A number of studies have stressed the association between mediolateral 

stability, falls and subsequent hip fracture. Interestingly, little attention has been given to 

the identification of mechanisms responsible for the observed age-related differences in 

the ability to recover mediolateral dynamic stability at movement termination, either 

during self-initiated or perturbation-evoked stepping. A better understanding of such age-

related differences could lead to improved evidence-based interventions, with the goal of 

reducing the incidence of falls and fall-related injuries in the population. 
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CHAPTER 3 
 

Dynamic Stability Control during Volitional Stepping: A Focus 
on the Restabilisation Phase at Movement Termination 

 

Reprinted from Gait and Posture, 35/1, Singer, J.C., Prentice, S.D., & McIlroy, W.E., 

Dynamic stability control during volitional stepping: A focus on the restabilisation phase 

at movement termination, 106-110., Copyright (2012), with permission from Elsevier. 
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3.1 OVERVIEW 

This work sought to advance the understanding of dynamic stability control during 

stepping. The specific intention was to better understand the control of the centre of mass 

(COM) during voluntary stepping, by characterizing its trajectory and intertrial 

variability. Young participants (n=10) performed five different stepping tasks to vary the 

challenge to COM control: 1) preferred step, 2) long step  3) wide step, 4) long and wide 

step and 5) rapid step. The trajectory of the total body COM during the restabilisation 

phase was assessed by quantifying the magnitude of incongruity between the peak and 

final COM position. The intertrial variability of incongruity and the extent to which 

incongruity was reduced with trial repetition were also evaluated. Interestingly, 

incongruity was typical during preferred stepping, with a strong bias toward overshoot. In 

the frontal plane, the magnitude of incongruity and the incidence of overshoot were 

greater in trials with increased step width. The variability of incongruity did not vary by 

condition nor was there evidence of adaptive changes. Together, these results suggest that 

overshoots may represent a strategy linked to gait initiation or to the simplification of 

reactive control during the restabilisation phase. Further insight into these mechanisms 

will be gained by examining the kinetic determinants of dynamic stability control. 
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3.2 INTRODUCTION 

The regulation of the relationship between the centre of mass (COM) and base of support 

(BOS) is a complex control problem, which is essential for the maintenance of upright 

stability. Various pathological conditions or advancing age, however, can affect the 

ability to maintain dynamic stability, thereby increasing the risk of falls (McIlroy & 

Maki, 1996; Maki & McIlroy, 2006). The challenges to dynamic stability are manifest in 

tasks such as voluntary gait initiation (Breniere & Do, 1991; Brunt et al., 1991; Jian, 

Winter, Ishac & Gilchrist, 1993; Elble, Moody, Leffler & Sinha, 1994; Halliday, Winter, 

Frank, Patla & Prince, 1998), termination (Jian et al., 1993; O’Kane et al., 2003), turning 

(Cao, Ashton-Miller, Schultz & Alexander, 1997) and perturbation-evoked stepping 

(McIlroy & Maki, 1993c; Rogers et al., 2001) – all of which have been studied 

extensively. 

 

The control of stepping involves several important phases: initial preparation, step 

initiation, limb unloading, swing phase, followed by foot-contact and restabilisation. Few 

studies have focussed specifically on the restabilisation phase of movement, which occurs 

subsequent to foot contact. This phase is particularly important for the maintenance of 

dynamic stability, as it may have the most direct influence on the kinematics of the COM 

after movement initiation. Challenges to control during the restabilisation phase may be 

evident from the occurrence of multiple step responses when individuals attempt to 

regain balance by stepping (Luchies, Alexander, Schultz & Ashton-Miller, 1994; McIlroy 

& Maki, 1996; Maki et al., 1999; Perry et al., 2000). Similarly, older adults have been 

found to require additional steps during unplanned gait termination (Tirosh & Sparrow, 
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2004), which may arise from difficulty in regulating the position and velocity of the 

COM within the BOS after foot contact.  

 

We suggest that the capacity for effectively regulating the kinematics of the COM during 

the period subsequent to foot-contact to be a central determinant of dynamic stability 

during both voluntary and reactive stepping. This initial study is focussed on the 

kinematics of the COM during the restabilisation phase of a voluntarily-initiated single 

step.  

 

The primary hypothesis was that when participants stepped with self-selected step length 

and width, there would be little incidence of incongruity between the peak COM position 

and the final, stable, COM position, when examined in either the anteroposterior (AP) or 

mediolateral (ML) direction (Fig. 3-1). Operationally, during the restabilisation phase, we 

expected that the peak COM position would remain within a 95% confidence band 

around the mean final COM position.  

 

In contrast, it was anticipated that increasing and constraining step length or width would 

increase the challenges in stability control after foot contact. Correspondingly, we 

hypothesized that we would observe an increase in incongruity magnitude, an increased 

proportion of trials in which the COM overshot its final position, and greater intertrial 

variability of incongruity magnitude. Lastly, with practice during non-preferred stepping 

conditions, we hypothesized we would observe a reduction in the corresponding AP and 

ML incongruity over the course of consecutive trials, as individuals became familiar with 
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the movement dynamics during the restabilisation phase. We view this initial work 

examining dynamic stability control during voluntary stepping in a sample of healthy 

young adults to be an important precursor to subsequent studies focussed on age-related 

or disordered control. 

 
Figure 3-1. Representative centre of mass (COM) velocity-time (top) and position-time (bottom) 
waveforms depicting the three possible incongruity forms: no incongruity (left), overshoot (centre) and 
undershoot (right). Restabilisation signifies the point of restabilisation. The restabilisation phase occurs 
between heel-contact (HC) and the point of restabilisation. 
 
 
3.3 METHODS 

3.3.1 Participants 

Ten healthy young male participants (age 24.1 (2.9) years), without balance impairment 

or history of falls, were recruited from the University population. Male participants were 

recruited based on ease of anatomical landmark determination and marker placement for 

the upper body. There is no current evidence that we should expect a difference in 

stability control between healthy young males and females (Hsiao-Wecksler, 2008).  
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3.3.2 Instrumentation and Set-Up 

Six Vicon MX-3+ cameras (Vicon Motion Systems, Los Angeles, CA) were used to 

record kinematic data (64 Hz). Four force platforms (Advanced Mechanical Technology, 

Inc., Watertown, MA.), embedded in the laboratory floor in a rectangular array, were 

used to measure the reaction forces and moments (512 Hz). 

 

Retroreflective calibration markers, of 1 cm diameter, were placed on the participant over 

anatomical landmarks similar to those described by Hamill and Selbie (2004) for the 

lower limbs and pelvis. Additional calibration markers were placed bilaterally on the 

upper body, to define local coordinate systems for the trunk, head, upper and lower arms 

and hands. Rigid clusters containing four markers, placed on the sacrum and trunk, and 

bilaterally on the feet, legs, thighs, upper and lower arms were used to track the position 

and orientation of each respective segment.  

 

3.3.3 Protocol 

Participants took part in four different task conditions, which required a single voluntary 

step with the preferred leg. Ten consecutive trials were collected in each condition:  

 

1. Preferred AP step length/width (AP and ML preferred) (PREF1);  

2. Increased AP step length (ML preferred) (AP);  

3. Increased ML step width (AP preferred) (ML);  

4. Increased AP step length, increased ML step width (AP&ML); 
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Conditions with preferred step length and width were performed as the first trial block 

(PREF1) and again as the last trial block (PREF2) to assess long-term adaptive changes. 

The order of the remaining three task conditions (AP, ML and AP&ML) was randomized 

across subjects. An additional block was conducted in which participants were instructed 

to step as “rapidly as possible” with preferred step length and width (RAPID). This was 

included after the completion of all other task conditions to avoid task instruction 

carryover that may influence speed of stepping in the other task conditions. 

 

Due to constraints on force plate positioning, an absolute target point was prescribed 

(rather than standardized across subjects), which maximized step length and/or width. 

Two lengths of adhesive tape were placed on the force platform, parallel and/or 

perpendicular to the sagittal plane. Average step lengths were increased to 0.73 m; 

average step widths were increased to approximately 0.50 m, depending on the initial 

stance width.  

 

Participants began by standing with their feet side-by-side, shoulder-width apart, on 

separate force platforms. The initial stance width and foot position was standardized 

within participants. After an auditory command, participants initiated a single step with 

their preferred leg and, upon landing, remained in a stable position until the end of the 

trial (approximately 5 seconds). To counter the possibility of anticipating the auditory 

command, the intervals at which the next command was given were varied. 
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3.3.4 Data Analysis 

The lower extremity was modelled as a rigid system of independently tracked segments. 

Segment masses were estimated using Dempster’s segment parameters and segment 

COM positions were estimated using the geometrical model proposed by Hanavan (1964) 

(cited in Robertson et al., 2004). The total body COM was calculated as a weighted 

average of all body segments, where each segment was weighted according to its mass 

proportion. 

 

The COM restabilisation point was defined as the time point after the first zero-crossing, 

at which the COM velocity waveform entered and remained inside an amplitude 

bandwidth bordered by +/- two standard deviations of the mean velocity during the last 

two seconds of the trial. The incongruity magnitude was assessed by calculating the local 

maximum COM position after foot contact and subtracting the mean of the stable region 

of the waveform, bound by a two second window beginning at the restabilisation point. 

The trial was considered to contain overshoot or undershoot if it exceeded upper or lower 

boundaries defined by the 95% confidence interval of the stable region. These 

calculations were carried out independently for AP and ML directions (Fig. 3-1). 

 

3.3.5 Statistical Analyses 

To assess the first hypothesis, the percentage of trials in which there was no incongruity 

was calculated for each participant for the PREF1 condition. These values were entered 

into a one-sample t-test, to determine if trials without incongruity occurred at greater than 

a 50% occurrence rate.  
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To assess the second hypothesis, the mean absolute incongruity magnitude and the 

between trial variability were computed for both the AP and ML directions for each 

subject in each condition. Separate one-way repeated-measures ANOVAs were run on 

mean and variability measures for AP and ML data. Subsequent comparisons were made 

using Bonferroni-adjusted paired-samples t-tests (p=0.01). Measures of effect size were 

calculated using the formula for Cohen’s d, using the original standard deviations. 

Cochran’s Q test was used to determine if a larger proportion of trials containing 

overshoot occurred in conditions with unfamiliar step task conditions. Subsequent pair-

wise tests were run with adjusted Wilcoxon signed ranks tests. Effect size, r, was 

calculated by dividing the z-score by the square root of the total number of observations.  

 

To address the third hypothesis, trial-to-trial adaptations within each condition were 

assessed using separate ANOVAs, with ‘trial’ as the within-subjects factor. Planned 

polynomial contrasts were performed to test for the presence of linear, quadratic and 

cubic trends in the data. The potential for long-term adaptation was assessed in the 

comparison between PREF1 and PREF2 included in the analyses used to evaluate the 

second hypothesis. 

 

3.4 RESULTS 

3.4.1 Incongruity Magnitude – Trials with Preferred Step Characteristics 

Contrary to our first hypothesis, less than 30% of trials contained no incongruity between 

the peak and final COM position (t(9) = -7.72, p < 0.001, d = 2.44 [AP]; t(9) = -4.13, p = 
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0.003, d = -1.30 [ML]). Interestingly, overshoots of the final COM position were most 

prevalent, occurring in 77% (AP) and 68% (ML) of all trials in the PREF1 condition. 

Undershoots occurred in 8% (AP) and 4% (ML) of these trials. The average magnitude of 

incongruity was 0.019 m (SD = 0.019 m) in the AP direction and 0.013 m (SD = 0.012) in 

the ML direction (Fig. 3-2). 

 

 
Figure 3-2. Centre of mass (COM) incongruity magnitude (AP vs. ML) for all participant data within the 
PREF1 condition. Positive values represent overshoot; negative values represent undershoot. Note: data 
points represent individual trials. 

 
3.4.2 Task Differences 

Across task conditions, statistically significant differences in absolute incongruity 

magnitude emerged only in the mediolateral direction, F(5,45) = 10.14, p < 0.001, ηp
2 = 

0.530. Adjusted t-tests indicated that there was an increased absolute magnitude of 

incongruity in ML trials, as compared to the PREF1 trials, t(9) = 4.42, p = 0.002, d = 1.51 

(Fig. 3-3a). There was also increased ML absolute incongruity in the AP&ML trials 

relative to the PREF1 trials, but this difference was not statistically significant at the 
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alpha level set for subsequent comparisons, t(9) = 2.64, p = 0.027, d = 1.06. There were 

no statistically significant differences in the standard deviations of the incongruity 

magnitude between conditions (Fig. 3-3b). 

 
Figure 3-3. Absolute centre of mass (COM) incongruity magnitude (a) and variability of incongruity (b). 
Central box represents the lower to upper quartiles, with midline at the median. Whiskers extend to 
minimum and maximum values. Task conditions include: preferred stepping (PREF1 and PREF2); long 
step (AP); wide step (ML); long and wide step (AP&ML); rapid stepping (RAPID). 
 

Significant differences in the proportion of trials with overshoot, again, emerged only in 

the mediolateral direction, Q(5) = 29.62, p < 0.001 (Fig. 3-4). The ML condition had an 

increased proportion of trials with overshoot, as compared to the PREF1, Z = 2.96, p = 

0.003, r = 0.21. There were no differences between conditions when examining data in 

the anteroposterior direction. 
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Figure 3-4. Average proportion of trials in each task condition containing each of the three forms of centre 
of mass incongruity (overshoot, no incongruity, undershoot). Task conditions include: preferred stepping 
(PREF1 and PREF2); long step (AP); wide step (ML); long and wide step (AP&ML); rapid stepping 
(RAPID). 
 

3.4.3 Trial-to-Trial and Long-Term Adaptations 

When comparing across trials within each separate condition, no linear, quadratic or 

cubic trends were found for absolute incongruity in either the ML or AP direction for any 

condition (Fig. 3-5). Similarly, there were no long-term adaptive changes from the 

PREF1 to PREF2 condition when examining the magnitude, intertrial variability or 

proportion of trials with overshoot (Fig. 3-3, 3-4). 
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Figure 3-5. Variations in ML incongruity magnitude over the course of ten trials for each condition. Data 
are from one representative subject. Task conditions include: preferred stepping (PREF1 and PREF2); long 
step (AP); wide step (ML); long and wide step (AP&ML); rapid stepping (RAPID). 
 

3.4.4 Secondary Analyses 

It was possible that COM incongruity was a product of improper planning or execution of 

the initial movement characteristics: ML APA amplitude, instantaneous COM velocity at 

foot-off, step length, width or time or the instantaneous COM velocity at foot contact. As 

such, we performed a correlation analysis and determined that such associations did not 

exist for any condition, in any direction. Similarly, COM incongruity could have been 

related to anthropometric parameters, such as body mass, height or leg length. 

Correlation analyses again failed to reveal such a relationship between anthropometrics 

and COM incongruity for any condition in any direction. Additionally, a paired-samples 

t-test was used to determine if the difference in increased absolute incongruity between 

the PREF1 and ML conditions persisted when the peak ML COM position was expressed 

a function of BOS width. No difference was found between PREF1 and ML conditions 

when peak ML COM position was normalized to step-width t(9) = 0.805, p = 0.442, d = 

0.23.  
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3.5 DISCUSSION 

The present work focussed on the restabilisation phase of stepping that occurs subsequent 

to foot contact, as difficulties in dynamic stability control during stepping may arise 

during this movement phase (Luchies, et al., 1994; McIlroy & Maki, 1996; Tirosh & 

Sparrow, 2004). Surprisingly, the data did not support our first hypothesis, as only a 

small percentage of trials occurred without incongruity. The data did, however, partially 

support our second hypothesis, as both the magnitude of ML incongruity and the 

incidence of ML overshoot were significantly larger in trials with increased step width. 

Interestingly, the variability of these incongruities was not larger in conditions with non-

preferred step placement. Lastly, there was no reduction in the incongruity magnitude, 

variability of incongruity or in the proportion of trials with overshoot in the PREF2 trials 

relative to PREF1. Similarly, the magnitude of incongruity was not reduced over the 

course of repeated trials within any condition. 

 

The question emerges as to why there is incongruity under conditions of well-learned, 

voluntary stepping with self-selected step length and width. The observed AP and ML 

incongruity during the restabilisation phase is likely unrelated to errors in 

planning/executing the prior phases of stepping or to the damping afforded by the 

musculoskeletal system, as incongruity was not correlated to any initial movement 

characteristic or to the instantaneous velocity of the COM at foot contact, respectively. 

Further, the considerable bias toward overshoots in this healthy, young sample suggests 
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that, contrary to our initial belief, this form of COM incongruity may not be “error” 

whatsoever, but may exist to serve a functional role.  

 

One possible explanation is that overshoots could represent a strategy linked to gait 

initiation and the regulation of momentum during steady-state gait. If the gait cycle were 

to be continued after the first step, anterior progression of the COM toward the stepping 

limb – expressed as AP overshoot – would moderate the additional mechanical energy 

input required to propel the COM forward and upward over the stance limb for the 

subsequent step (Donelan, Kram & Kuo, 2002). In the ML direction, a sinusoidal COM 

trajectory that approaches the medial border of the stepping foot would reduce the frontal 

plane gravitational moment about the supporting foot and the subsequent acceleration 

toward the forthcoming swing limb, which could modify the mechanical energy 

requirements for medially redirecting the COM during the successive step (Donelan, 

Kram & Kuo, 2001).  

 

Alternatively, overshoots may serve as a strategy to simplify reactive control after foot 

contact, whereby a greater anterior or lateral progression of the COM could place 

emphasis on the stepping limb to achieve restabilisation. In theory, difficulties in COM 

control, resulting in a larger than expected forward or lateral COM excursion after foot 

contact, would only require an increase in applied force by the stepping limb and/or the 

initiation of an additional forward or lateral step to regain stability – typical features of 

stepping responses to anterior postural perturbation among older adults (McIlroy & Maki, 

1996). In contrast, large AP or ML undershoots would necessitate the generation of 
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additional propulsive force by the support limb, a subsequent posterior or medial step, or 

potentially a step with the support limb, which could be more challenging if increased 

interlimb interaction is required.  

 

When stepping with non-preferred step placement, there was no change in the variability 

of incongruity across conditions nor was there any reduction in incongruity magnitude 

over repeated trials, as would be expected if these novel conditions presented challenges 

to dynamic stability control. Together, this evidence provides additional support for the 

notion that COM overshoot in this sample of healthy, young participants did not result 

from errors in anticipatory or reactive control. As inability to modify step placement 

would heighten the importance of reactive control on foot contact, these data may suggest 

that, during a single self-initiated step, foot placement and COM kinematics may be pre-

planned and may not be modified online in response to the COM kinematics (Lyon & 

Day, 1997). This differs from steady-state gait, whereby lateral stability has been 

suggested to be regulated, in part, by variations in ML foot placement (Bauby & Kuo, 

2000; Donelan, Shipman, Kram & Kuo, 2004). There is continued uncertainty, however, 

concerning the extent to which ML foot placement is used to preserve ML stability 

during reactively-generated forward stepping evoked by postural perturbation (McIlroy & 

Maki, 1996; Rogers et al., 2001).  

 

While the magnitude of ML overshoot did increase in trials with increased step width, 

these differences did not persist when the incongruity was referenced to the BOS, which 

suggests that there may be an attempt to scale the peak ML COM displacement to step 



 46 

width. This supports the hypothesis that overshoot may be an attempt to take advantage 

of the passive dynamics, with implications for either gait initiation or dynamic stability 

control during the restabilisation phase of movement termination. With the challenges 

faced by older adults in the maintenance of ML dynamic stability (McIlroy & Maki, 

1996; Lord et al., 1999; Rogers et al., 2001; Rogers & Mille, 2003), particular interest 

lies in understanding the role of ML overshoot in simplifying ML stability control during 

forward stepping. ML overshoot could be a means to simplify balance control under the 

specific task requirement that individuals terminate stepping with a single step, resulting 

in a forward stance configuration. Further insight into this matter will be gained by 

examining the relationship between the COM and BOS in older adults during a variety of 

stepping conditions, both volitional and reactive. Relative to younger adults, we propose 

that older adults will exhibit a larger peak COM displacement toward the stance limb and 

greater variability of incongruity, which may be brought about by difficulties in 

regulating the magnitude, direction or timing of applied force during the restabilisation 

phase. For such future studies, we suggest increasing the sample size to benefit the 

external validity of the results. 
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CHAPTER 4 
 

Age-Related Differences in the Control of Mediolateral Dynamic 
Stability during the Restabilisation Phase of Volitional Stepping 
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4.1 OVERVIEW 

Our previous work (Singer, Prentice & McIlroy, 2012) has suggested that COM 

incongruity during volitional stepping may arise as a means to simplify reactive control 

during the restabilisation phase. The purpose of the present study was to extend this work 

to examine age-related differences in the control of mediolateral dynamic stability during 

volitional stepping. Healthy young (n=20) and older (n=20) participants performed 

voluntarily-initiated single-step trials at their preferred speed and step placement. In 

attempt to reduce the influence of anticipatory control prior to step-onset, we included a 

condition of rapid-stepping, cued by an auditory tone. To further increase the challenge 

for mediolateral stability control, we also included a condition of cued rapid-stepping 

with narrow step width. The magnitude of incongruity between the peak and final COM 

position was quantified along with the intertrial variability of incongruity. To aid in the 

determination of the mechanisms responsible for age-related differences in the kinematic 

variables, the timing and magnitude of the waveform representing the difference between 

the inclination angles of the net ground reaction force and COP-COM were analysed. As 

with our previous work, the current results revealed that overshoots of the final COM 

position were common across all stepping conditions, however, COM incongruity was 

greater among older adults. Older adults also exhibited greater variability of incongruity. 

Overall, results from the present study suggest that while COM overshoot may aid in the 

simplification of reactive control, increased overshoot among older adults may arise from 

difficulty in reactive control during the restabilisation phase. We propose that COM 

incongruity during volitional stepping is likely governed by reactive control during the 

restabilisation phase, but can be offset to some degree by anticipatory postural control 
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prior to step-onset, which serves to minimize ML instability until stepping foot-contact. 

More specifically, age-related differences in COM incongruity may be primarily linked to 

the time lag in active reorientation of the ground reaction force after foot-contact. Further 

study of COM incongruity and its underlying mechanisms during perturbation-evoked, 

reactive, stepping will be helpful in clarifying the role of the restabilisation phase in the 

absence of anticipatory control. 



 50 

4.2 INTRODUCTION 
 
Falls among older adults continue to present a major public health concern in Canada 

(Canadian Institute of Health Information, 2010). Despite substantial scientific study, our 

understanding of specific mechanisms related to the age-related increase in fall risk has 

been complicated by the both complexity of the balance control system and the 

multifactorial nature of falls. There is general consensus, however, that falls emerge from 

a complex interaction of variables pertaining to both the individual and the environment. 

Nevertheless, the occurrence of a fall ultimately results from an internal or external 

perturbation to the balance control system, coupled with subsequent inability of the 

individual to generate an effective response to restore static or dynamic stability (Maki & 

McIlroy, 1996).  

 

Of particular importance for older adults is the control of mediolateral stability, as 

declines during both gait and compensatory stepping have been associated with fall risk 

in older adults (Maki et al., 1994; Lord et al., 1999; Brauer et al., 2000; Hilliard et al., 

2008; Schrager et al., 2008). Moreover, falls in a lateral direction have been associated 

with an increased probability of hip fracture (Nevitt & Cummings, 1993; Hayes et al., 

1996; Robinovitch et al., 2003), which can lead to reduced independence and higher risk 

of mortality. Transitions during movement or between movement states present a 

particular problem for stability control, as these tasks require the generation of 

appropriately directed, timed and scaled forces to move the COM outside the BOS (e.g. 

gait initiation, turning), to decelerate and return the COM to a position within the BOS 

(e.g. sit-to-stand, gait termination, compensatory stepping responses) or to regulate the 
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position and velocity of the COM with respect to a changing BOS (e.g. step-to-step 

transitions during gait).  

 

Research exploring age-related differences in the control of dynamic stability during 

stepping tasks, such as unplanned gait termination, have found that older adults tend to 

require an increased number forward steps to regain stability (Cao, Schultz, Ashton-

Miller & Alexander, 1998; Tirosh & Sparrow, 2004). Stability modelling algorithms (Pai 

& Patton, 1997) employed by Tirosh and Sparrow (2004), along with subsequent 

electromyographic studies (Tirosh & Sparrow, 2005), have provided evidence to support 

the suggestion that the additional forward steps employed by older adults may actually 

aid in the preservation of mediolateral stability. Similar ideas have been put forth by 

researchers examining perturbation-evoked anterior stepping reactions, who have also 

reported lateral instability subsequent to foot contact (McIlroy & Maki, 1996). 

 

Particularly interesting, and common to both voluntary and reactive stepping, is that 

lateral instability occurs subsequent to the initial sagittal plane instability. While the exact 

source of such instability is still somewhat unclear, the lack of age-related differences in 

initial temporospatial and kinematic movement parameters have led some researchers to 

propose that mediolateral instability may arise from events that occur during the swing 

phase or at foot-contact (McIlroy & Maki, 1996; Rogers et al., 2001; Rogers & Mille, 

2003).  
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Notwithstanding this suggestion, few studies have focussed specifically on the control of 

mediolateral stability during the restabilisation phase, after foot-contact. O’Kane et al. 

(2003) have performed one such study, which examined the kinetic energy of the head-

arms-trunk segment during planned gait termination in two patient populations, relative 

to healthy controls. Individuals with cerebellar damage or bilateral vestibular 

hypofunction (BVH) were noted to have an excessive conversion of forward to lateral 

kinetic energy. A study from the same laboratory, comparing steady-state gait in older 

adults with BVH to age-matched healthy controls, provides complementary information 

regarding mediolateral stability control (Kaya, Krebs & Riley, 1998). The authors noted 

that both groups reduced sagittal plane momentum by reducing forward gait velocity, but 

BVH patients had particular difficulty controlling frontal plane momentum during gait.  

 

More recent research has continued to highlight the importance of the regulation of 

angular momentum by the central nervous system for stability control during walking. 

Specifically, dynamic stability appears to be enhanced by directing the resultant ground 

reaction force at or near the total body centre of mass, thereby minimizing changes in 

angular momentum (Kaya et al., 1998; Neptune & McGowan, 2011). Further, differences 

in the ability to regulate angular momentum have been suggested to have important 

implications with respect to dynamic stability and falls during walking (Simoneau & 

Krebs, 2000) and recovery from a trip (Pijnappels, Bobbert & van Dieen, 2004). While 

the majority of such studies have focussed on momentum and stability in the sagittal 

plane, age-related differences in mediolateral dynamic stability could arise from an 
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altered ability to regulate frontal plane momentum via the direction of the resultant 

ground reaction force vector relative to the COM. 

 

Our previous work (Singer, Prentice & McIlroy, 2012) aimed to characterise the 

trajectory of the COM during self-initiated single stepping within a sample of healthy 

young adults, to reveal the magnitude and trial-to-trial variability of incongruity between 

the peak and final COM position during the restabilisation phase. Contrary to our 

hypotheses, COM incongruity was apparent during trials in which step placement was 

self-selected. The magnitude of incongruity increased in trials with increased step width, 

while the variability of incongruity did not change across stepping conditions, which 

consisted of combinations of increased step length and width. Further, frontal plane 

incongruity was biased toward overshoots of the final COM position. Together, these 

results suggested that COM incongruity in this sample of young participants was unlikely 

the result of difficulty with anticipatory or reactive control, but may represent an attempt 

to simplify balance control on foot contact.  

 

Despite the conclusions of this study, it remains to be determined exactly how these 

variables relate to age-related decline in stability control. From this, the purpose of the 

current study was to extend our previous work of voluntary stepping in young adults to 

address mediolateral stability control after foot contact in healthy older adults when there 

was the opportunity to pre-plan appropriate movement parameters for maximal stability. 

More specifically, we sought to quantify COM kinematics in a sample of healthy older 

adults to determine whether the magnitude and variability of COM incongruity were 
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reduced, to provide an increased margin of safety, or increased, which may indicate a 

deficit in control. We operated under the premise that the greatest opportunity for 

mediolateral dynamic stability control during stepping occurs during double support – 

either by anticipatory control prior to step-onset or by reactive control during the 

restabilisation phase, after foot-contact. As such, we included a condition of cued, rapid 

stepping with self-selected step placement, which we believed would shift the burden of 

ML stability control to the restabilisation phase, by reducing the potential for anticipatory 

ML stabilisation during the step-initiation phase. In addition, we included a condition of 

cued, rapid stepping with narrow step width, which, in addition to placing emphasis on 

the restabilisation phase for ML stability control as previously described, we believed 

would pose a further challenge for ML restabilisation after foot-contact due to imposed 

constraints on BOS width. In light of previous research highlighting the importance of the 

regulation of angular momentum for stability control, we analysed the timing and 

magnitude of the waveform representing the difference between the inclination angles of 

the net ground reaction force and COP-COM, to aid in the clarification of the underlying 

mechanisms responsible for any age-related differences in the abovementioned kinematic 

variables. 

 

Three specific hypotheses were tested in the present study: 

1) Incongruity magnitude (Fig. 4-1): 

a) We hypothesized that we would find no difference between younger and older 

adults in the magnitude of COM incongruity, when age-groups were compared at 

their preferred stepping speed. This was based on our previous work in young 
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adults, which suggested that the bias toward overshoot of the final COM position 

was representative of a strategy to simplify COM control after foot contact. We 

believed this would arise because older adults would likely elongate the duration 

over which the step was executed (i.e. alter movement velocity), as a means to 

compensate for difficulties in controlling dynamic stability (Dingwell & Marin, 

2006).  

b) In contrast, during rapid speed stepping with preferred step placement, we believed 

that older adults would not utilize this simplification strategy, but would attempt to 

constrain the COM within a smaller area after foot contact. Specifically, we 

believed that, on average, older adults would exhibit an incongruity magnitude near 

zero (i.e. neither overshoot nor undershoot), which would be significantly less than 

their own preferred speed stepping trials and relative to younger adults performing 

rapid speed stepping. Under this condition we did not expect to find differences 

among younger adults, relative to their preferred stepping condition.  

c) Lastly, we believed we would observe similar reductions in mediolateral COM 

incongruity among older adults during trials in which step width was reduced. 

Given our previous work, which suggested that overshoot was scaled with step 

width as a means to simplify reactive control, we believed younger adults would 

reduce incongruity magnitude in trials in which step width was reduced. Further, we 

believed that under such conditions, age-related differences would persist. 
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Figure 4-1. Hypothetical mediolateral incongruity magnitude for older (solid line) and younger adults 
(dotted line), averaged within condition. Actual data from younger adults, for PREF and PRER_RAPID 
conditions, is from Singer, et al. (2012). Error bars represent the 95% confidence interval for the mean, 
observed in the abovementioned study. Task conditions include: preferred speed stepping with preferred 
step placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid 
speed stepping with narrow step width (ML_RAPID). 

 

2) Trial-to-trial variability (Fig. 4-2): 

a) As we believed that older adults would increase the time over which the step was 

executed, to offset difficulty with dynamic stability control during the 

restabilisation phase, we hypothesized that we would find no age-related differences 

in trial-to-trial variability at participants’ preferred stepping speed. 

b) In contrast, during rapid stepping, it was hypothesized that increased instability in 

older adults would be revealed by increased trial-to-trial variability of incongruity 

relative to their own preferred stepping trials and to younger adults performing 

rapid speed stepping. 

c) Lastly, we anticipated that such age- and task-related differences hypothesized to 

occur for rapid stepping with preferred step width would be greater under 

conditions requiring a narrow step width. 
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Figure 4-2. Hypothetical trial-to-trial variability of incongruity magnitude for older (solid line) and 
younger adults (dotted line), averaged within condition. Actual data from younger adults, for PREF and 
PRER_RAPID conditions, is from Singer, et al. (2012). Error bars represent the 95% confidence interval 
for the mean, observed in the abovementioned study. Task conditions include: preferred speed stepping 
with preferred step placement (PREF); rapid speed stepping with preferred step placement 
(PREF_RAPID); rapid speed stepping with narrow step width (ML_RAPID). 

 
 

3) Root-mean-square deviation (RMSD) of the GRF inclination angle relative to the 

COM (Fig. 4-3): 

a) We hypothesized that, during preferred speed stepping, there would be no 

differences between age groups in the orientation of the frontal plane GRF vector 

with respect to the COM during the period from heel-contact to the point of 

restabilisation. 

b) During rapid speed stepping, we believed that older adults would exhibit increased 

RMSD of the GRF inclination angle, when compared to their preferred speed 

stepping trials and to younger adults performing rapid speed stepping. 

c) Lastly, we believed that that the abovementioned age- and task-related differences 

hypothesized to occur for rapid stepping with preferred step width would be greater 

when tested during conditions requiring a narrow step width. 
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Figure 4-3. Hypothetical frontal plane RMSD of the net GRF inclination angle, with respect to the 
inclination angle of the line from COP to COM, for older (solid line) and younger adults (dotted line) 
adults, averaged within condition. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). Please note that error bars and vertical axis scale are not 
shown, as this data is completely hypothetical and not based on previous work. 

 

4.3 METHODS 

4.3.1 Participants 

Twenty healthy young (age 24 (5) years) and twenty community-dwelling healthy older 

adults (age 71 (5) years) were recruited for inclusion within the study (10 male, 10 female 

per age-group). Participants were free from anatomical, neurological, or cognitive 

impairments. All participants were able to stand and walk unaided, had no previous 

history of falls and were not using psychoactive medications at the time of the study 

(specifically for pain control or management of mental or emotional disorder).  

 

4.3.2 Instrumentation and Set-Up 

Six Vicon MX-3+ cameras (Vicon Motion Systems, Los Angeles, CA) were used to 

record kinematic data (100 Hz). Four force platforms (Advanced Mechanical 

Technology, Inc., Watertown, MA.), arranged in a rectangular array and embedded in the 

laboratory floor, were used to measure the reaction forces and moments (2000 Hz). In 
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conjunction with a differential amplifier (Bortec Biomedical, Calgary, AB), disposable, 

self-adhesive Ag/AgCl electrodes were placed bilaterally on the tibialis anterior and 

soleus and were used to record electromyographic activity from these sites (2000 Hz). All 

motion capture data and analogue-to-digital converted signals were synchronously 

recorded by Vicon Nexus software (Vicon Motion Systems, Los Angeles, USA). 

 

Retroreflective calibration markers, of 1 cm diameter, were placed on the lower limbs of 

the participant at anatomically relevant locations, in a similar fashion to the marker set 

used by the National Institute of Health and described by Hamill and Selbie (2004). To 

define segment endpoints for the pelvis, trunk, head and upper limbs, additional 

calibration markers were placed bilaterally on the iliac crests, anterior and posterior 

superior iliac spines, acromioclavicular joints, anterior to the external auditory meatus, 

greater and lesser tubercles of the humerus, medial and lateral epicondyles of the 

humerus, radial and ulnar styloid processes and the head of the 3rd metacarpal. Rigid 

clusters containing four markers, placed on the sacrum and trunk, and bilaterally on the 

feet, legs and thighs were used to determine the 3D kinematics of each respective 

segment during the experimental trials. Positive x-,y- and z-axes for the laboratory 

coordinate system were oriented laterally to the right side of the participant, anteriorly 

and upward, respectively. 

 

4.3.3 Protocol 

A standing reference trial was collected prior to the collection of the experimental trials. 

Participants were asked to stand in a neutral position, roughly aligned to the laboratory 
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coordinate system. These data were used to determine the segment endpoints, segment 

embedded local coordinate systems, as well as the transformation matrices between the 

local and global coordinate systems for each segment. Following collection of the 

standing reference trial, markers used solely for calibration were removed. 

 

Participants were asked to stand with their feet side-by-side on separate force platforms. 

Foot position was standardized across all participants to a width of 0.17 m, with an offset 

of 14 degrees between the longitudinal axis of the foot and the anteroposterior axis of the 

laboratory coordinate system, as per McIlroy and Maki (1997). Adhesive foam 

weatherstripping was placed on the force platform, along the medial and posterior 

borders of each foot, to ensure consistent foot placement between trials. Two quiet 

standing trials, of 60-second duration, were collected to obtain kinematic and 

electromyographic variables necessary for post-processing. The first trial was collected 

with the feet in the abovementioned standardized side-by-side configuration. For the 

second trial, the participant was asked to start with their feet in the standardized position, 

take a single step forward and remain in this forward-stance configuration for the 

duration of the trial. 

 

Participants took part in three different task conditions, which required a single voluntary 

step with the preferred leg. Ten experimental trials were performed within each 

experimental condition. 
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It was possible that changes in incongruity magnitude that may occur with task 

familiarity – and the potential for a differential effect by age – may help to inform us 

about the role or cause of such incongruity. To address this, the ten experimental trials in 

each condition were split into two blocks of five trials. The effect of ‘time’ was 

incorporated into the omnibus ANOVA model used to address each dependent variable, 

as described below. The order of all blocks of trials was randomized across subjects in 

each group.  

 

The following experimental conditions were performed: 

1. Preferred step length/width and speed (PREF);  

2. Preferred step length/width, rapid speed stepping (PREF_RAPID); 

3. Reduced step width, rapid speed stepping (preferred step length) (ML_RAPID);  

 

Participants were asked to begin each trial by standing with their feet side-by-side on 

separate force platforms, using the abovementioned standardized foot position. To ensure 

symmetrical mediolateral weight distribution, the vertical force under each foot was 

monitored before cue onset. In addition, the anterior position of the COP under each foot 

was monitored, while the bilateral electromyographic activity of the soleus and tibialis 

anterior was monitored and recorded to ensure minimal pre-perturbation activity. As a 

reference, we attempted to ensure that the level of activity observed during the 

experimental trials did not exceed that which was recorded during quiet upright standing. 

During the PREF condition, participants were presented with an auditory tone, which 

signified the beginning of the trial. At any point thereafter, they were to initiate a single 
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step with their preferred leg at a self-selected speed and, upon landing, come to rest and 

remain in the final, stable position until the end of the trial. Participants were asked to 

remain in this position for approximately ten seconds after completing the step, to allow 

sufficient data for post-processing. In the remaining two conditions (PREF_RAPID and 

ML_RAPID), participants were to minimize the time between the presentation of the 

auditory tone and step-initiation in addition to executing the step as rapidly as possible. 

Additionally, during the ML_RAPID condition, participants were asked to step onto a 

length of adhesive tape placed on the force platform, 5 cm lateral (toward the stepping 

limb side) to the median plane. To counter the possibility of participants anticipating the 

timing of the auditory command, the intervals at which the auditory cue was presented 

were varied. 

 

4.3.4 Data Analysis 

Force platform data were lowpass filtered using a zero-lag, fourth-order, Butterworth 

filter with a cut-off frequency of 15 Hz. As the Butterworth filter is underdamped, there 

was a possibility using such a filter could induce artefact in individual marker trajectories 

during rapid transitions, which could lead to artefact in the computation of the total body 

COM position. Marker data were lowpass filtered using a zero-lag, twentieth-order 

critically damped filter, with a cut-off frequency of 6Hz, which should prevent marker 

over/undershoot as a result of filter artefact and also provide an equivalent roll-off to that 

of the Butterworth filter (Robertson & Dowling, 2003). A linear envelope (LE-EMG) was 

calculated from raw EMG data, after initial removal of dc-bias, full-wave rectification 
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and lowpass filtering using a second-order Butterworth filter, with a cut-off frequency of 

3 Hz.  

 

The entire body was modelled as a rigid system of independently tracked segments. For 

the older adults, segment masses were estimated using Dempster’s segment parameters 

and segment centre of mass positions were estimated using the geometrical model 

proposed by Hanavan (1964) (cited in Robertson et al., 2004). Segments of the 

appendicular skeleton were modelled as conical frusta; the pelvis and trunk were 

modelled as elliptical cylinders and the head as a sphere. As Dempster’s segment 

parameters are not representative of younger adults, segment masses and centres of mass 

were estimated for this group using segmental mass proportions and relative segmental 

centre of mass locations from a sample of young, male and female undergraduate 

students, initially reported by Zatsiorsky, Seluyanov and Chugunova (1990) and 

subsequently modified by de Leva (1996). The trunk segment was modelled as a hybrid 

of the upper- and middle-trunk segments, defined by de Leva (1996). The proximal and 

distal endpoints for the trunk segment for the present study were the iliac crests and 

acromia, respectively, and the lengths of upper and middle trunk segments for each 

subject, as defined by de Leva (1996), were not known. Average segment lengths of a 

sample of males and females from Zatsiorsky et al. (1990) (as cited in de Leva, 1996), 

were used to calculate the lengths of the upper- and middle-trunk segments, as 

proportions of the total trunk length. These scale factors, in conjunction with the relative 

segmental COM locations and measured total trunk length (from marker coordinates), 

were used to compute the hybrid trunk COM location, which was assumed to lie on the 
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longitudinal axis running from the midpoint between iliac crest and acromial markers, 

respectively. The total body centre of mass position was calculated as a weighted average 

of all body segments, where each segment was weighted according to its mass 

proportion. 

 

The COM restabilisation point was defined as the time point at which the COM velocity 

waveform entered and remained within an amplitude bandwidth bordered by +/- two 

standard deviations of the mean velocity during the initial quiet standing trial with 

forward-stance configuration. Velocity, rather than position, was chosen for 

determination of the COM restabilisation point, as this allowed for calculations that were 

less affected by low frequency oscillations or drift of the COM position-time waveform 

after restabilisation.  

 

COM incongruity was defined as the difference between the local maximum COM 

position after foot contact and the mean of the stable region of the waveform, which was 

a two second window beginning at the restabilisation point. Overshoot was defined as 

positive incongruity; undershoot was defined negative incongruity. Trial-to-trial 

variability was assessed by computing the standard deviation of the mean COM 

incongruity over each block of 5 repeated experimental trials for each condition. 

 

The ground reaction forces from all force platforms were combined to yield a single force 

vector. The frontal plane inclination angle of this net force was calculated, with respect to 

the x-axis (ML) of the global coordinate system. The frontal plane inclination angle of 
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the line joining the COP and COM was also determined, relative to the x-axis (ML) of 

the global coordinate system. In theory, if the inclination angle of the GRF is equal to the 

inclination angle of the COP-COM, there should be no external moment about the COM 

caused by the net GRF and, hence, no change in angular momentum (Fig. 4-4). To 

provide a single metric for characterization of this compound kinetic variable, the RMSD 

of the frontal plane GRF inclination angle with respect to the frontal plane COP-COM 

inclination angle was computed, for the interval from foot-contact to the restabilisation 

point.  

 
Figure 4-4. Orientation of the net ground reaction force with respect to the centre of mass during the 
restabilisation phase (double support), after foot-contact. Panel A: the inclination angle of the net ground 
reaction force (arrow) is coincident with the COP-COM inclination angle (dashed line), resulting in zero 
external moment about the centre of mass; Panel B: the net ground reaction force is oriented such that a 
clockwise external moment results, in this case toward the stance limb; Panel C: the net ground reaction 
force is oriented such that an anticlockwise moment results, in this case toward the stepping limb 
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4.3.5 Statistical Analyses 

The statistical analyses are described in reference to each of the three hypotheses: 

1. COM incongruity values for each trial were averaged within-subject for each 

block of 5 trials and were subsequently analysed with a three-factor ANOVA, 

with repeated measures [2 within group factors (step – 3 levels)(time – 2 levels); 1 

between group factor (age – 2 levels)]. Sphericity was evaluated using Mauchly’s 

test. Violations of the sphericity assumption were corrected using the 

Greenhouse-Geisser method, unless otherwise indicated. If the omnibus ANOVA 

revealed a significant main effect of step or significant interaction effects, follow-

up independent and paired samples t-tests were used, as appropriate, to localize 

the differences. Measures of effect size were estimated using the formula for 

Cohen’s d, using the means and standard deviations for each group. To counter 

the effect of alpha-inflation due to multiple subsequent comparisons, we 

employed a Bonferroni correction whereby the alpha level for a family of follow-

up analyses was divided by the number of comparisons within that family. 

 

2. Standard deviations, representing within-subject trial-to-trial variability, were 

computed for each subject in each age group and were analysed with a three-

factor ANOVA, with repeated measures. Sphericity was evaluated using 

Mauchly’s test. Violations of the sphericity assumption were corrected using the 

Greenhouse-Geisser method, unless otherwise indicated. Main effects of step or 

interaction effects were analysed with Bonferroni-corrected independent and 
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paired samples t-tests. When appropriate, measures of effect size were calculated 

using the formula for Cohen’s d, as above. 

 

3. RMSD values were averaged within-subject and were analysed with a three-factor 

ANOVA, with repeated measures. Sphericity was evaluated using Mauchly’s test. 

Violations of the sphericity assumption were corrected using the Greenhouse-

Geisser method, unless otherwise indicated. Main effects of step or interaction 

effects were analysed with Bonferroni-corrected independent and paired samples 

t-tests. When appropriate, measures of effect size were calculated using the 

formula for Cohen’s d, as above. 

 

4.3.6 Secondary Analyses 

It remained possible that differences in the initial temporospatial parameters of the 

stepping response between young and older adults may have existed and may have 

partially explained any potential differences in the variables of interest. To expose this 

possibility, secondary analyses were performed to assess age-related differences in the 

AP COP position with respect to the vertical projection of the COM during the interval 

before cue presentation, ML APA amplitude, lateral COM displacement prior to step-

onset, onset of ML asymmetry and unloading, step length, step width, step time, peak AP 

swing foot velocity, AP and ML COM velocity at foot-contact, and the position of the 

COM with respect to the lateral aspect of the BOS at the instant of foot-contact. 
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Additionally, as noted previously, while we hypothesized that the direction of the 

resultant ground reaction force exerts a large influence on an individual’s ability to regain 

stability after foot contact, the timing of such force application may be of equal 

importance. The timing of key time points of the waveform representing the difference 

between the inclination angles of the COP-COM and the net GRF vector were analyzed, 

in addition to the magnitude at these time points. 

 

4.4 RESULTS 

4.4.1 Incongruity Magnitude – Effect of age, step condition, and trial repetition 
 
A main effect of age indicated that older participants had a greater magnitude of 

incongruity than the younger participants, F(1,38) =  4.87, p = 0.033, ηp
2 = 0.11. There 

was also a main effect of step condition, F(2,76) = 4.24, p = 0.018, ηp
2 = 0.10. Follow-up 

paired-samples t-tests indicated that there was no difference between PREF_RAPID and 

ML_RAPID trials, while there was greater COM incongruity in PREF_RAPID relative to 

PREF trials, t(39) = 2.83, p = 0.007, d = 0.45 (Fig. 4-5). 

 
Figure 4-5. Mediolateral incongruity magnitude for older (solid line) and younger adults (dotted line), 
averaged within condition. Error bars represent the 95% confidence interval for the mean. Positive 
values indicate overshoot. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). 
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4.4.2 Trial-to-Trial Variability of Incongruity - Effect of age, step condition, and 

trial repetition 

A main effect of age indicated that older adults exhibited greater trial-to-trial variability 

of incongruity relative to the young, F(1,38) =  12.11, p = 0.001, ηp
2 = 0.24. There was 

also a main effect of step condition, F(1.71,64.94) = 3.67, p = 0.030, ηp
2 = 0.09 

(sphericity not assumed). Follow-up paired-samples t-tests indicated that there was no 

difference between PREF_RAPID and ML_RAPID trials, while there was greater trial-

to-trial variability of incongruity in PREF_RAPID relative to PREF trials, t(39) = 3.24, = 

0.002, d = 0.61 (Fig 4-6).  

 
Figure 4-6. Trial-to-trial variability of mediolateral incongruity for older (solid line) and younger adults 
(dotted line), averaged within condition. Error bars represent the 95% confidence interval for the mean. 
Task conditions include: preferred speed stepping with preferred step placement (PREF); rapid speed 
stepping with preferred step placement (PREF_RAPID); rapid speed stepping with narrow step width 
(ML_RAPID). 

 
 
4.4.3 RMSD of the Ground Reaction Force Inclination Angle with Respect to the 

COM – Effect of age, step condition, and trial repetition 

A main effect of age revealed that young participants had increased RMSD relative to the 

older participants, F(1,38) = 7.12, p = 0.011, ηp
2 = 0.16, which was qualified by an 
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interaction between age and time, F(1,38) = 6.81, p = 0.013, ηp
2 = 0.15 (Fig. 4-7). 

Follow-up independent samples t-tests revealed that younger adults had greater RMSD 

than the older adults during the first block of trials, t(38) = 2.94, p = 0.006, d = 0.93. 

While this trend persisted during the second block of trials, the difference was not 

significant at the alpha level for follow-up analyses, t(38) = 2.15, p = 0.038, d = 0.68. 

Paired-samples t-tests did not reveal alterations with practice within older adult group. 

While there was a reduction in the RMSD within the younger adults group during the 

second block of trials, relative to the first, this difference was not significant at the alpha 

level for follow-up analyses, t(19) = 2.58, p = 0.019, d = 0.29. The omnibus ANOVA 

revealed a main effect of step condition, F(1.48,56.23) = 31.03, p < 0.001, ηp
2 = 0.45 

(sphericity not assumed). Follow-up paired-samples t-tests indicated that there was no 

difference between PREF_RAPID and ML_RAPID conditions, while RMSD was greater 

in the PREF_RAPID condition than in the PREF condition, t(39) = 7.33, p < 0.001, d = 

0.94 (Fig. 4-8).  

 
Figure 4-7. Root-mean-square deviation of the inclination angle of the net ground reaction force with 
respect to the inclination angle formed by a line joining the centre of pressure and centre of mass, 
averaged within blocks of repeated trials. Data are depicted for older (solid line) and younger adults 
(dotted line), during the first (t1) and second (t2) time blocks. Error bars represent the 95% confidence 
interval for the mean.  
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Figure 4-8. Root-mean-square deviation of the inclination angle of the net ground reaction force with 
respect to the inclination angle formed by a line joining the centre of pressure and centre of mass. Data 
are depicted for older (solid line) and younger adults (dotted line), averaged within condition. Error bars 
represent the 95% confidence interval for the mean. Task conditions include: preferred speed stepping 
with preferred step placement (PREF); rapid speed stepping with preferred step placement 
(PREF_RAPID); rapid speed stepping with narrow step width (ML_RAPID). 

 
 
4.4.4 Secondary Analyses 

4.4.4.1 Initial Conditions 
 
Analysis of the AP distance between the vertical projection of the COM and the position 

of the COP during the pre-cue interval revealed main effects of age, F(1,38) = 22.92, p < 

0.001, ηp
2 = 0.39, and step condition, F(1.42,54.06) = 4.53, p = 0.026, ηp

2 = 0.11 

(sphericity not assumed), which were qualified by an interaction between age and step 

condition, F(1.41,54.06) = 7.72, p = 0.003, ηp
2 = 0.17 (sphericity not assumed). Follow-

up independent-samples t-tests provided information consistent with the main effect of 

age. Specifically, the older group exhibited a more posterior COM position relative to the 

COP for the PREF_RAPID, t(38) = -5.13, p < 0.001, d = 1.62, ML_RAPID, t(38) = -

5.10, p < 0.001, d = 1.61, and PREF conditions, t(28.93) = -3.91, p = 0.001, d = 1.31 

(equal variances not assumed). Paired-samples t-tests, performed separately for each age 

group, did not reveal a statistically significant differential trend by age group, across step 

conditions.  
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4.4.4.2 Initial Movement Parameters 
 
When examining the mediolateral anticipatory postural adjustment (ML APA), there was 

no significant main effect of age. There was, however, a main effect of step condition, 

F(1.45,54.94) = 109.98, p < 0.001, ηp
2 = 0.74. Follow up paired-samples t-tests indicated 

that the ML APA was larger in the ML_RAPID condition relative to the PREF_RAPID, 

t(39) = 6.34, p < 0.001, d = 0.57, and PREF conditions, t(39) = 12.72, p < 0.001, d = 

2.41, and in the PREF_RAPID condition relative to the PREF condition, t(39) = 9.20, p < 

0.001, d = 1.82. There was also a main effect of time, as there was a larger ML APA 

amplitude in the second block of trials relative to the first, F(1,36) = 9.81, p = 0.003, ηp
2 

= .21. 

 

Despite the lack of a significant main effect of age on the ML APA amplitude, there was 

a main effect of age on the influence of the ML APA on the peak lateral COM 

displacement of the COM toward the stance limb, F(1,38) = 4.17, p = 0.048, ηp
2 = 0.10, 

as the older participants exhibited a greater lateral COM displacement. Additionally, 

there was a main effect of step condition, F(1.49,56.85) = 125.73, p < 0.001, ηp
2 = 0.77 

(sphericity not assumed). Follow-up paired-samples t-tests indicated that the lateral 

deviation was greatest in the PREF condition relative to the PREF_RAPID, t(39) = 13.42, 

p < 0.001, d = 2.85, and ML_RAPID conditions, t(39) = 9.40, p < 0.001, d = 1.91, and 

also in the ML_RAPID condition relative to the PREF_RAPID condition, t(39) = 7.51, p 

< 0.001, d = 1.12 (Fig. 4-9). 
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Figure 4-9. Peak mediolateral displacement of the centre of mass, referenced to the initial COM 
position prior to movement initiation. Negative values indicate displacement along the negative x-axis 
of the global coordinate system, toward the stance limb. Data are depicted for older (solid line) and 
younger adults (dotted line), averaged within condition. Error bars represent the 95% confidence 
interval for the mean. Task conditions include: preferred speed stepping with preferred step placement 
(PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with 
narrow step width (ML_RAPID). 

 

Consistent with the task requirements, there was a main effect of step condition when 

examining the time to onset of ML asymmetry, F(1.04,39.62) = 25.45, p < 0.001, ηp
2 = 

0.40 (sphericity not assumed). Follow-up paired-samples t-tests indicated that there was 

no difference between PREF_RAPID and ML_RAPID conditions, while the time to onset 

of ML asymmetry was longer in the PREF condition relative to both the PREF_RAPID 

and ML_RAPID conditions, t(39) = 5.04, p < 0.001, d = 1.07 (t-values identical for both 

comparisons). This main effect of step condition persisted when examining the time to 

onset of ML unloading, F(1.16,43.81) = 57.26, p < 0.001, ηp
2 = 0.60 (sphericity not 

assumed). Follow-up paired-samples t-tests revealed that there was no difference between 

PREF_RAPID and ML_RAPID conditions, while the time to onset of ML unloading was 

greater in the PREF condition than in either the PREF_RAPID or ML_RAPID 

conditions, t(39) = 7.87, p < 0.001, d = 1.70, t(39) = 7.18, p < 0.001, d = 1.62, 

respectively. 
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To confirm that both age groups were performing the stepping conditions in accordance 

with the requirement that step width be reduced in the ML_RAPID condition, we 

performed an analysis of both step length and step width. As expected, there were no 

main effects of age or interactions when examining step length. There was a main effect 

of step condition, F(1.43,54.48) = 6.23, p = 0.003, ηp
2 = 0.14 (sphericity not assumed). 

Follow-up paired-samples t-tests revealed no differences when comparing PREF_RAPID 

to ML_RAPID or PREF conditions. Step length in the ML_RAPID condition was, 

however, greater than that in the PREF condition, t(39) = 2.98, p = 0.005, d = 0.46. 

Consistent with the task conditions, there was only a main effect of step condition when 

examining step width, F(2,76) = 52.94, p < 0.001, ηp
2 = 0.58. Follow-up paired-samples 

t-tests indicated that step width was reduced in the ML_RAPID condition, as compared to 

either the PREF_RAPID, t(39) = -9.29, p < 0.001, d = 2.13, or PREF conditions, t(39) = -

5.93, p < 0.001, d = 1.36. Interestingly, step width was greater in the PREF_RAPID 

condition, as compared to the PREF condition, t(39) = 4.25, p < 0.001, d = 0.63. There 

was a main effect of time, F(1,38) = 4.67, p = 0.037, ηp
2 = 0.11, whereby individuals 

further reduced step width in the second block of trials, irrespective of step condition. 

Analysis of the swing foot path length did not reveal significant main effects of age or 

interactions. There was a main effect of step condition, F(1.43,54.29) = 9.70, p = 0.001, 

ηp
2 = 0.20 (sphericity not assumed). Follow-up paired-samples t-tests indicated that swing 

foot path length was greater in the ML_RAPID condition than either the PREF_RAPID, 

t(39) = 3.31, p = 0.002, d = 0.26, or PREF conditions, t(39) = 3.72, p = 0.001, d = 0.58. 
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To evaluate if individuals were performing the tasks in accordance with the instructions 

to step as rapidly as possible, we evaluated the peak anteroposterior (AP) swing foot 

velocity during the swing phase. This analysis revealed main effects of age, F(1,38) = 

16.34, p < 0.001, ηp
2 = 0.30, and of step condition, F(1.48,56.24) = 259.37, p < 0.001, ηp

2 

= 0.87 (sphericity not assumed), which were qualified by an interaction between age and 

step condition, F(1.48,56.24) = 4.96, p = 0.02, ηp
2 = .12 (sphericity not assumed). In 

accordance with the task demands, follow-up paired-samples t-tests revealed that both the 

older and younger adults increased the anteroposterior swing foot velocity in the 

PREF_RAPID and ML_RAPID conditions relative to the PREF condition, t(19) = 14.53, 

p < 0.001, d = 2.60, t(19) = 14.12, p < 0.001, d = 2.75 (older group), t(19) = 10.57, p < 

0.001, d = 2.63, t(19) = 12.36, p < 0.001, d = 2.97 (younger group), respectively. While 

the younger adults further increased swing limb velocity in the ML_RAPID condition, as 

compared to the PREF_RAPID condition, t(19) = 3.04, p = 0.007, d = 0.35, there was no 

significant difference between these two conditions among the older adults. Further, 

follow-up independent-samples t-tests indicated that the younger group had greater 

anteroposterior swing foot velocity during both PREF_RAPID, t(38) = 3.61, p = 0.001, d 

= 1.14, and ML_RAPID conditions, t(38) = 4.52, p < 0.001, d = 1.43. Differences 

between age groups for the PREF condition, however, were not significant at the post hoc 

alpha level, t(38) = 2.26, p = 0.030, d = 0.71. Interestingly, the main effect of age in AP 

swing limb velocity did not persist when analysing swing time. There was a main effect 

of step condition, F(1.29,49.11) = 187.84, p < 0.001, ηp
2 = 0.83 (sphericity not assumed). 

Follow-up paired-samples t-tests revealed no difference between PREF_RAPID and 

ML_RAPID conditions, while swing time was reduced in both PREF_RAPID, t(39) = -
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14.30, p < 0.001, d = 2.87, and ML_RAPID conditions, t(39) = -14.74, p < 0.001, d = 

2.85, relative to the PREF condition. 

 

Given the age-related differences in the peak lateral deviation of the COM as a result of 

the ML APA, we performed an analysis of the AP and ML COM velocity at foot-contact 

to determine if these differences persisted after the swing phase. Analysis of the AP 

COM velocity at foot-contact revealed a main effect of age, F(1,38) = 15.22, p < 0.001, 

ηp
2 = 0.29, as the older adults had a reduced AP COM velocity across all step conditions. 

There was also a main effect of step condition, F(1.19,45.41) = 26.19, p < 0.001, ηp
2 = 

0.41. Follow-up paired-samples t-tests indicated that there was no significant difference 

between PREF_RAPID and ML_RAPID conditions, while AP COM velocity was greater 

in both the PREF_RAPID and ML_RAPID conditions relative to the PREF condition, 

t(39) = 5.36, p < 0.001, d = 0.88, and t(39) = 5.33, p < 0.001, d = 0.85, respectively. The 

omnibus ANOVA for the analysis of the ML COM velocity at foot-contact revealed a 

main effect of age, F(1,38) = 4.58, p = 0.039, ηp
2 = 0.11, with older adults having a 

reduced magnitude. There was a main effect of time, F(1,38) = 16.66, p < 0.001, ηp
2 = 

0.29, revealing a reduction in the second block of trials. Lastly, there was a main effect of 

step condition, F(1.72,65.32) = 48.52, p < 0.001, ηp
2 = 0.56 (sphericity not assumed). 

Follow-up paired-samples t-tests indicated that the ML COM velocity at foot-contact was 

reduced in the ML_RAPID condition relative to both the PREF_RAPID, t(39) = -8.10, p 

< 0.001, d = 1.12, and PREF conditions, t(39) = -7.97, p < 0.001, d = 1.66. There was 

also reduced ML COM velocity at foot-contact within the PREF_RAPID condition 

relative to the PREF condition, t(39) = 2.63, p = 0.012, d = 0.42 (Fig. 4-10).  
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Figure 4-10. Mediolateral instantaneous velocity of the centre of mass at the time of foot-contact. 
Positive values indicate velocity consistent with the positive x-axis of the global coordinate system, 
toward the swing limb. Data are depicted for older (solid line) and younger adults (dotted line), 
averaged within condition. Error bars represent the 95% confidence interval for the mean. Task 
conditions include: preferred speed stepping with preferred step placement (PREF); rapid speed 
stepping with preferred step placement (PREF_RAPID); rapid speed stepping with narrow step width 
(ML_RAPID). 

 

With the abovementioned age-related differences during both the step-initiation and 

stepping phases, it was necessary to put the age-related differences in COM incongruity 

in the context of the ML position of the COM with respect to the lateral border of the 

BOS (i.e. the stepping limb) at the instant of foot-contact. Analysis revealed a main effect 

of age, F(1,38) = 5.69, p = 0.022, ηp
2 = 0.13, as older adults had a greater mediolateral 

distance between the COM and stepping foot. There was also a main effect of step 

condition, F(2,76) = 85.33, p < 0.001, ηp
2 = 0.69. Follow up paired samples t-tests 

indicated that the distance between the COM and stepping foot was greatest in the PREF 

condition relative to the PREF_RAPID condition, t(39) = 4.02, p < 0.001, d = 0.67, and 

in the PREF_RAPID condition relative to the ML_RAPID condition, t(39) = 8.45, p < 

0.001, d = 1.46 (Fig 4-11).  
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Figure 4-11. Mediolateral distance between the centre of mass and lateral aspect of base of support at 
the instant of foot-contact. Data are depicted for older (solid line) and younger adults (dotted line), 
averaged within condition. Error bars represent the 95% confidence interval for the mean. Task 
conditions include: preferred speed stepping with preferred step placement (PREF); rapid speed 
stepping with preferred step placement (PREF_RAPID); rapid speed stepping with narrow step width 
(ML_RAPID). 

 
 
4.4.4.3 Kinetics 
 
As the examination of the RMSD of the GRF inclination angle relative to the COP-COM 

inclination angle revealed an age-related difference in a direction opposite to our 

hypotheses, we analysed the mean and variability in the amplitude and timing (with 

respect to foot-contact) of what were believed to be three key peaks in the waveform 

representing the divergence between the GRF inclination angle and the COP-COM 

inclination angle (Fig 4-12).  
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Figure 4-12. Representative trial from one subject (right-footed stepping), displaying the divergence 
between the GRF inclination angle and the COP-COM inclination angle. Positive values indicate a net GRF 
orientation that would tend to cause angular acceleration toward the stance limb side. Data begin at cue 
onset and end at the ML restabilisation point. ML Asymm. = onset of ML asymmetry; Onset Unload = 
onset of swing limb unloading; T.O. = toe-off; F.C. = foot-contact; P1 = peak of the first positive (passive) 
phase, immediately following foot-contact; P2 = peak of the second positive (active) phase, following foot-
contact.  
 

Examination of this waveform revealed a consistent pattern with three distinct peaks at, 

and after, foot contact. We proposed that the first negative peak at foot contact signifies a 

net GRF vector orientation that would result in an external moment and angular 

acceleration toward the swing limb (right-footed stepping: positive moment, 

anticlockwise about an anterior axis with origin at the whole body COM; left-footed 

stepping: negative moment, clockwise about an anterior axis with origin at the whole 

body COM); the magnitude of this peak is likely influenced the by the anticipatory 

postural adjustments and swing phase dynamics. The subsequent two positive peaks (P1 

and P2) denote a net GRF orientation that would result in an external moment and 

angular acceleration toward the side of the stance limb (right-footed stepping: negative 

moment, clockwise about an anterior axis with origin at the whole body COM; left-footed 

stepping: positive moment, anticlockwise about an anterior axis with origin at the whole 

body COM), thereby countering the angular momentum that would develop during the 

swing phase. We propose the magnitude and timing of the first positive peak (P1) to be a 

consequence of stepping limb stiffness on foot-contact, since reduced limb compliance 
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would increase the rate of axial loading and would more rapidly increase the ratio 

between the axial and mediolateral GRF components, thereby resulting in an earlier peak. 

We also propose that stepping limb stiffness and, hence, the timing of this peak, are pre-

planned parameters, since the average time to peak (0.061 s) is too brief to be modulated 

by afferent sensory information upon foot-contact. The magnitude and timing of the 

second positive peak is, however, likely modulated by sensory information regarding the 

state of the COM at the onset, and throughout, the restabilisation phase. 

 

Analysis of the amplitude of first negative peak, at heel-contact revealed main effects of 

age, F(1,38) = 9.01, p = 0.005, ηp
2 = 0.19 – the magnitude was reduced (less negative) 

among older adults. There was also a main effect of step condition, F(1.48, 56.20) = 

29.47, p < 0.001, ηp
2 = 0.44 (sphericity not assumed). Follow-up paired-samples t-tests 

revealed that the amplitude at heel-contact was larger (more negative) in the 

PREF_RAPID condition than the ML_RAPID, t(39) = 4.32, p < 0.001, d = 0.48, or PREF 

conditions, t(39) = 7.87, p < 0.001, d = 1.08, and was also larger in the ML_RAPID 

condition than in the PREF condition, t(39) = 3.30, p = 0.002, d = 0.62 (Fig. 4-13). 

Examination of the variability revealed no main effects of age. There was, however, a 

main effect of step condition, F(2,76) = 14.81, p < 0.001, ηp
2 = 0.28. Follow-up paired-

samples t-tests indicated that there was no significant difference between PREF_RAPID 

and ML_RAPID conditions, while trial-to-trial variability was greater in both 

PREF_RAPID and ML_RAPID conditions than the PREF condition, t(39) = 4.98, p < 

0.001, d = 0.93, and t(39) = 4.00, p < 0.001, d = .82, respectively. There was also a main 
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effect of time, F(1,38) = 6.70, p = 0.014, ηp
2 = 0.15, as the trial-to-trial variability was 

reduced in the second block of trials. 

 
Figure 4-13. Magnitude of divergence between the inclination angles of the net ground reaction force 
and the COP-COM at the instant of foot-contact. Data are depicted for older (solid line) and younger 
adults (dotted line), averaged within condition. Error bars represent the 95% confidence interval for the 
mean. Task conditions include: preferred speed stepping with preferred step placement (PREF); rapid 
speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with narrow step 
width (ML_RAPID). 

 

Evaluation of the magnitude of the first positive peak after foot-contact revealed no 

interactions or main effects of age or time. There was a main effect of step condition, 

F(1.37, 52.09) = 37.76, p < 0.001, ηp
2 = 0.50 (sphericity not assumed). Subsequent 

paired-samples t-tests indicated that there was no significant difference between 

PREF_RAPID and ML_RAPID conditions. The magnitude of this peak was larger in 

both PREF_RAPID and ML_RAPID conditions as compared to the PREF condition, 

t(39) = 6.23, p < 0.001, d = 0.88, and t(39) = 6.87, p < 0.001, d = 0.99, respectively (Fig. 

4-14). Similarly, analysis of the trial-to-trial variability in the magnitude of this peak 

revealed only a main effect of step, F(2,76) = 18.94, p < 0.001, ηp
2 = 0.33. Again, there 

was no difference between the PREF_RAPID and ML_RAPID conditions, while trial-to-

trial variability was larger in both PREF_RAPID and ML_RAPID as compared to the 
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PREF condition, t(39) = 5.62, p < 0.001, d = 1.14 and t(39) = 4.886, p < 0.001, d = 0.89, 

respectively. 

 
Figure 4-14. Magnitude of divergence between the inclination angles of the net ground reaction force 
and the COP-COM at the first positive peak following foot-contact (P1). Data are depicted for older 
(solid line) and younger adults (dotted line), averaged within condition. Error bars represent the 95% 
confidence interval for the mean. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). 

 

Evaluation of the time from foot-contact to P1 revealed a main effect of step condition, 

F(1.44, 54.67) = 5.85, p = 0.010, ηp
2 = 0.13 (sphericity not assumed), which was 

qualified by an interaction between age and step condition, F(1.44, 54.67) = 5.09, p = 

0.017, ηp
2 = 0.12. Follow-up independent-samples t-tests did not reveal age-related 

differences by step condition. Paired-samples t-tests did not reveal effects of step 

condition within the younger adult group, however an increased time to peak was 

observed in the PREF condition relative to both the PREF_RAPID, t(19) = 3.21, p = 

0.005, d = 0.71, and ML_RAPID conditions, t(19) = 3.29, p = 0.004, d = 0.89, within the 

older adult group (Fig. 4-15). Analysis of the trial-to-trial variability revealed a main 

effect of step, F(2.76) = 6.93, p = 0.002, ηp
2 = 0.15. Follow-up paired-samples t-tests 

indicated that there was no difference between PREF_RAPID and ML_RAPID 

conditions, while variability was higher in the PREF condition than in both the 
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PREF_RAPID, t(39) = 2.95, p = 0.005, d = 0.59, and the ML_RAPID conditions, t(39) = 

3.14, p = 0.003, d = 0.61. 

 
Figure 4-15. Timing of the first peak divergence (P1) between the inclination angles of the net ground 
reaction force and the COP-COM following foot-contact. Data are depicted for older (solid line) and 
younger adults (dotted line), averaged within condition. Error bars represent the 95% confidence 
interval for the mean. Task conditions include: preferred speed stepping with preferred step placement 
(PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with 
narrow step width (ML_RAPID). 

 

Analysis of the second positive peak after foot-contact (P2) revealed a main effect of age, 

F(1,38) = 14.44, p < 0.001, ηp
2 = 0.28, with the younger participants exhibiting a greater 

magnitude. There was a main effect of step, F(1.69, 64.21) = 13.49, p < 0.001, ηp
2 = 0.26 

(sphericity not assumed). Paired-samples t-tests indicated that there was no difference 

between the rapid stepping conditions, while the magnitude of P2 was greater in 

PREF_RAPID, t(39) = 3.66, p = 0.001, d = 0.48, and ML_RAPID, t(39) = 4.37, p < 

0.001, d = 0.66, relative to the PREF condition (Fig. 4-16). A main effect of time 

indicated that reductions in magnitude occurred in the second block of trials, relative to 

the first, F(1,38) = 4.78, p = 0.035, ηp
2 = 0.11. There was a main effect of step condition 

for the trial-to-trial variability of the P2 peak, F(1.66, 63.03) = 8.51, p = 0.001, ηp
2 = 0.18 

(sphericity not assumed). Follow-up paired-samples t-tests indicated that there was no 

significant difference between the PREF_RAPID and ML_RAPID conditions, while the 
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PREF_RAPID, t(39) = 2.74, p = 0.009, d = 0.58, and ML_RAPID conditions, t(39) = 

3.69, p = 0.001, d = 0.86, had larger variability than that which occurred within the PREF 

condition. There was also a main effect of time, F(1,38) = 6.40, p = 0.016, ηp
2 = 0.14, 

which was qualified by an interaction between age and time, F(1,38) = 6.54, p = 0.015, 

ηp
2 = 0.15. Follow-up independent-samples t-tests did not reveal significant effect of age 

at either block of trials. Paired samples t-tests indicated that there were no significant 

differences between the first and second block of trials among the older participants. The 

younger participants, however, reduced the trial-to-trial variability in the second block of 

trials, t(19) = 3.18, p = 0.005, d = 0.56.  

 
Figure 4-16. Magnitude of divergence between the inclination angles of the net ground reaction force 
and the COP-COM at the second positive peak following foot-contact (P2). Data are depicted for older 
(solid line) and younger adults (dotted line), averaged within condition. Error bars represent the 95% 
confidence interval for the mean. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). 

 

Examination of the time from foot-contact to P2 revealed a main effect of age, F(1,38) = 

41.15, p < 0.001, ηp
2 = 0.52, as older adults had a longer time to peak than did the 

younger group. There was also a main effect of step condition, F(1.40,53.33) = 10.38, p = 

.001, ηp
2 = 0.22. Follow-up paired-samples t-tests indicated that there was no difference 

between the PREF_RAPID and ML_RAPID conditions, while the time to the P2 peak 
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was longer in the PREF condition than in either the PREF_RAPID or ML_RAPID 

conditions, t(39) = 3.47, p = 0.001, d = 0.57, t(39) = 3.33, p = 0.002, d = 0.57, 

respectively (Fig. 4-17). Analysis of the trial-to-trial variability of the time to P2 peak 

also revealed a main effect of age, F(1,38) = 30.62, p < 0.001, ηp
2 = 0.45. Older adults 

had greater trial to trial variability in the time to peak than did the young (Fig. 4-18). 

 
Figure 4-17. Timing of the second peak divergence (P2) between the inclination angles of the net 
ground reaction force and the COP-COM following foot-contact. Data are depicted for older (solid line) 
and younger adults (dotted line), averaged within condition. Error bars represent the 95% confidence 
interval for the mean. Task conditions include: preferred speed stepping with preferred step placement 
(PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with 
narrow step width (ML_RAPID). 

 

 
Figure 4-18. Trial-to-trial variability in the timing of the second peak divergence (P2) between the 
inclination angles of the net ground reaction force and the COP-COM following foot-contact. Data are 
depicted for older (solid line) and younger adults (dotted line), averaged within condition. Error bars 
represent the 95% confidence interval for the mean. Task conditions include: preferred speed stepping 
with preferred step placement (PREF); rapid speed stepping with preferred step placement 
(PREF_RAPID); rapid speed stepping with narrow step width (ML_RAPID). 
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4.5 DISCUSSION 

The purpose of the present study was to extend our previous work in young adults to 

examine age-related differences in the control of mediolateral dynamic stability during 

volitional stepping. As with our previous work, the current results revealed that 

overshoots were common across all stepping conditions. Differences by age-group and 

step condition, however, were in direct opposition to our hypotheses, as incongruity was 

greater among older adults, particularly within the two rapid stepping conditions. 

Analyses of trial-to-trial variability were consistent with our hypotheses. Older adults 

exhibited greater variability of incongruity and this variability was increased in the two 

rapid stepping conditions. Results concerning the RMSD of the GRF inclination angle 

relative to the COP-COM inclination angle were consistent with our hypotheses that 

RMSD would be larger in the rapid stepping conditions. Contrary to our hypothesis, 

however, the younger adults exhibited increased RMSD of the GRF inclination angle in 

relation to the older adults.  

 

4.5.1 Initial Conditions and Initial Movement Parameters 

Although the goal of the current study was to examine the restabilisation phase of 

stepping, we felt it would be imprudent to attempt to do so in isolation, without analyses 

of the prior phases of the movement. In contrast to reactive stepping, volitionally initiated 

stepping affords the potential for anticipatory control of mediolateral stability, prior to 

step onset. Lyon and Day (1997) have proposed that the state of the COM at toe-off 

largely influences the COM kinematics at foot-contact, as the COM falls laterally under 

the influence of gravity during the stepping phase. Further, forward simulations of 
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sagittal plane balance control have suggested that the precise selection of foot-contact 

position, consistent with the forward COM velocity, can restore static stability simply by 

the passive conversion of kinetic- to potential energy (Wight, Kubica & Wang, 2008; 

Millard, Wight, McPhee, Kubica & Wang, 2009). Although it is not known if the latter 

mechanism applies to frontal plane stability control, these studies would suggest that the 

execution and scaling of anticipatory postural adjustments prior to step onset may impact 

subsequent mediolateral stability and the necessity for active regulation of applied forces 

for stability control during the restabilisation phase. From this, age-related differences in 

anticipatory control could either mask or exacerbate instability during the restabilisation 

phase, perhaps independent of the capacity for reactive control. 

 

Within each age group, the ML APA appeared to be scaled in proportion to the potential 

for forthcoming mediolateral instability during the restabilisation phase; however the 

effect of the APA on the lateral displacement of the COM was reduced within the rapid 

stepping conditions. Interestingly, while there were no age-related differences in the 

mediolateral COP excursion, the older adults exhibited a larger lateral displacement of 

the COM toward the stance limb, which may have resulted from increased linear or 

angular impulse generation during the step initiation phase. Regardless of the means by 

which this was achieved, increased lateral COM displacement prior to step-onset would 

minimize the gravitational moment about the stance limb and the potential for subsequent 

COM acceleration toward the stepping limb during the stepping phase, which may have 

the effect of simplifying mediolateral stability control during the restabilisation phase, if 

step placement is chosen accordingly. Consistent with the abovementioned observation, 
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we found that the mediolateral COM velocity at the instant of foot contact was reduced 

across all conditions among the older adults. In addition, upon foot-contact, the older 

adults exhibited an increased distance between the COM and lateral border of the BOS. 

These alterations in initial movement parameters among older adults could be viewed as 

planned strategies, beneficial for offsetting mediolateral instability that may emerge 

during the restabilisation phase.  

 

4.5.2 Incongruity Magnitude, Variability and their Potential Origins 

Consistent with our previous work in younger adults, we found that overshoots of the 

final COM position were common during the restabilisation phase. We had previously 

proposed that overshoots were unrelated to COM velocity and, as such, were not a simply 

a consequence of the underdamped nature of the musculoskeletal system, but were a 

reflection of the underlying control (Singer et al., 2012). This appears to be supported by 

the present data, as the largest magnitude of COM incongruity occurred within conditions 

with the lowest mediolateral COM velocity at foot-contact. In contrast to our hypotheses, 

however, the older adults exhibited greater COM incongruity than did the young, which 

was most pronounced within the two rapid stepping conditions. We propose that such 

increased overshoot among older adults and within the rapid stepping conditions could 

arise due to one of three means: (a) increased reliance on reactive control during the 

restabilisation phase, due to minimization of the potential for anticipatory postural 

control; (b) simplification of reactive control by reduction of the frontal plane 

gravitational moment about the stepping limb; (c) exploitation of passive mechanical 
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energy conversion, for minimization of joint loading. Each of these options is considered 

for discussion in the following text. 

 

We believe the most plausible explanation, due to its consistency with the kinetic data, is 

that COM incongruity during volitional stepping is likely governed by reactive control 

during the restabilisation phase, but can be offset to some degree by anticipatory postural 

control prior to step-onset, which serves to minimize the development of ML instability 

during the stepping phase, until stepping foot-contact. Even when movement speed and 

step placement are self-selected and there is the opportunity for anticipatory control, 

overshoots may be the typical response in a healthy system. Under such ideal conditions, 

overshoots may arise because of the length of time required, after foot contact, to detect 

the state of the COM and actively generate an appropriate response to arrest its forward 

and lateral progression, rather than as a result of the absence of anticipatory control or 

poorly scaled active force modulation during the restabilisation phase. In contrast, the 

task of rapid stepping appears to truncate the expression of the ML APA, which 

potentially shifts the burden of ML stability control to the restabilisation phase. Under 

these conditions, the time required to detect instability and generate active force to 

decelerate the COM is compounded by the necessity to precisely regulate the direction of 

applied force on foot contact to achieve stability, which may potentially lead to increased 

COM incongruity. 

 

In relation to the present work, we propose that the ideal control within either age group 

occurred when stepping with self selected speed and step placement. Under these 
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conditions, we observed the largest lateral displacement of the COM during the step-

initiation phase and largest lateral distance between the COM and BOS at the point of 

foot contact, which, we believe, may facilitate subsequent stability control during the 

restabilisation phase. Correspondingly, participants exhibited the smallest (least negative) 

divergence between the GRF and COP-COM inclination angles at the instant of foot 

contact. Such a reduction would indicate a greater tendency for the line of action of the 

net GRF to pass near the COM throughout swing phase, which may potentially result in a 

smaller moment about the COM and reduced generation of angular momentum toward 

the swing limb side. As such, the magnitude of this divergence may be a marker of the 

extent of lateral instability at the onset of the restabilisation phase. During the 

restabilisation phase, both age groups exhibited lesser magnitudes of the P1 and P2 peaks 

relative to the rapid stepping trials. We have suggested that the magnitudes of P1 and P2 

may be modulated in response to the state of the COM during the restabilisation phase, 

by proactive and reactive mechanisms, respectively. As such, smaller magnitudes of these 

variables may indicate that there was a reduced necessity to counteract the instability that 

developed during the stepping phase. Despite this best possible pairing between the initial 

movement parameters and those occurring during the restabilisation phase, COM 

incongruity was nonetheless apparent. We believe that, under these conditions, COM 

incongruity may be related to the time delay, after foot-contact, in reorienting the ground 

reaction force to counter lateral instability arising within the swing phase (i.e. time to P2 

peak). 
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During the rapid stepping conditions, however, we observed an increase in COM 

incongruity among both age groups. During the step-initiation phase, there was a 

reduction in the lateral displacement of the COM, which likely led to reduced dynamic 

stability at the instant of foot contact, as signified by the larger divergence (more 

negative) between the GRF and COP-COM inclination angles. Such alterations in the 

initial movement parameters associated with rapid stepping likely heightened the 

importance of the restabilisation phase for ML stability control. This is consistent with 

the increased magnitude of P1 and P2 peaks, which may serve to generate ‘restabilising’ 

moments about the COM. This is also in accordance with the increased RMSD of the 

GRF inclination angle, which may suggest that it is the regulation, rather than 

minimization, of angular momentum during the restabilisation phase that is important for 

stability control. Together, these results imply that the magnitude of incongruity and 

consequent instability may be dictated not only by the time lag to the reorientation of the 

ground reaction force, but by proper scaling of the magnitude of the restabilising moment 

about the COM. 

 

Among the older adults, we observed both an increased magnitude and trial-to-trial 

variability of COM overshoot. Interestingly, across all step conditions, increased 

incongruity magnitude was apparent among older adults in spite of the abovementioned 

alterations in initial movement parameters, which may serve to maximize stability at the 

onset of the restabilisation phase, as previously described. Given the potential that older 

adults were more dynamically stable at the onset of the restabilisation phase, yet 

exhibited an increased magnitude of overshoot, we suggest that the origin of such 
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instability most likely arises at some point during the restabilisation phase, which is 

consistent with previous research (McIlroy & Maki, 1996; Rogers et al., 2001; Rogers & 

Mille, 2003). We believe that the age-related differences in the magnitude of the P2 peak 

were unlikely the explicit cause of the age-related differences in incongruity magnitude. 

Specifically, although this peak was reduced among older adults, it may have been scaled 

correctly to the actual amount of instability that developed during the stepping-phase, 

which was signified by a reduced divergence between GRF and COP-COM inclination 

angles at foot-contact among older adults. Instead, we believe that the age-related 

increases in the timing and variability in timing of the P2 peak were most likely related to 

the increased magnitude and trial-to-trial variability of overshoot among the older adults. 

If P2 does represent an active response to the state of the COM at the onset of the 

restabilisation phase, as we propose, the increased time to peak could signify difficulties 

in detecting the position/velocity of the COM, slowing of conduction velocity (Inglis, 

Horak, Shupert & Jones-Rycewicz, 1994), impairment of central processing (Horak, 

Henry & Shumway-Cook, 1997), multisensory integration (Horak, Shupert & Mirka, 

1989), or reduced rate of force development (Chang, Mercer, Giuliani & Sloane, 2005) 

due to muscle atrophy, slowing of contractile properties or impaired coordination (Barry, 

Riek & Carson, 2005), all of which have been previously documented. This assertion is 

given some support by the fact that overshoots were not reduced with trial repetition and, 

as such, may be due to such biological factors, rather than the result of inappropriate 

movement planning, which could potentially be altered with practice to augment stability. 
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Although there was no significant interaction of age and step condition, age-related 

differences in incongruity magnitude were particularly apparent within the two rapid 

stepping conditions (Fig. 4-5). It is possible that the task of rapid stepping exposes 

underlying challenges with stability control not evident during preferred stepping, given 

the associated minimization of the potential for anticipatory ML stabilisation prior to 

step-onset and the emphasis on reactive control for ML stabilisation.  

 

What remains unclear, however, is whether the delay in the time to the reorientation of 

the ground reaction force was intended, as a means to facilitate overshoot, given the 

increased time to peak during the PREF condition relative to the rapid stepping 

conditions. In our previous work, we had suggested that overshoot of the final COM 

position may be associated with the maintenance of steady-state gait following step 

initiation and may aid in the simplification of reactive control. Specifically, minimization 

of the frontal plane gravitational moment about the supporting foot could be achieved by 

allowing the vertical projection of the COM to progress laterally to a point nearly 

coincident with ankle joint centre of the stepping limb. In such a case, the acceleration of 

the COM toward the contralateral side during the forthcoming step would be reduced. If 

paired with appropriate step placement, this could be an effective method to simplify 

stability control during the forthcoming step (Lyon and Day, 1997, Wight et al., 2008; 

Millard et al., 2009).  

 

In a similar manner, the increased magnitude of overshoot among the older adults could 

represent an attempt to preserve mediolateral stability in the event an additional step was 
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needed to arrest the forward COM velocity. This is consistent with research indicating 

that during both gait termination (Cao et al., 1998; Tirosh & Sparrow, 2004) and anterior 

compensatory stepping responses (McIlroy & Maki, 1996; Schulz et al., 2005), older 

adults are more likely to employ multiple forward steps than are younger adults. In effect, 

mediolateral COM overshoot would play an analogous role to the ML APA executed 

during the step-initiation phase. When comparing across stepping conditions, the 

increased overshoot observed during the two rapid stepping tasks, relative to the PREF 

condition, may also act as a safeguard against ML instability with subsequent forward 

steps, given the increased anterior COM velocity associated with rapid stepping. While it 

is reasonable to assume this mechanism may serve to simplify reactive control among 

older adults, who may lack sufficient strength to arrest the COM within a single step, it 

seems unlikely that this mechanism would explain the increased overshoot among the 

younger adults, who should not require multiple forward steps to regain stability. 

 

In a similar context, it is possible that overshoot may be a means to avoid high peak 

forces and joint loading by exploiting the passive conversion of kinetic to potential 

energy as the COM progresses toward the stance limb. In addition, equivalent 

deceleration impulses could be generated, without high peak forces, by increasing the 

time over which the COM velocity is arrested. This, of course, would require there to be 

a sufficient distance between the COM and the lateral stability limits over which to 

achieve this deceleration, which was observed among the older adults. 
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Although it may be reasonable to assume that such a strategy may be employed by older 

adults, who may either lack the strength to generate high peak forces or are attempting to 

moderate joint loading, allowing increased lateral COM displacement could compromise 

stability if the COM exceeded the lateral stability limits. Moreover, if the increased 

lateral COM displacement before step-onset and the reduced ML COM velocity are, in 

fact, proactive strategies to counter the potential for instability during the restabilisation 

phase, the act of deliberately allowing the COM to travel closer to the lateral BOS limits 

would likely be counterproductive to this objective. Further, as with the previously 

outlined strategy for simplification of ML stability control, this theory does not account 

for the increased incongruity among the young adults during the rapid stepping 

conditions, given that this group should not lack sufficient strength nor be attempting to 

limit the magnitude of joint loads that are incurred during a single voluntary step. 

 

4.5.3 Overall Implications 

Overall, results from the present study suggest that while COM overshoot may aid in the 

simplification of reactive control, increased overshoot among older adults may arise from 

difficulty in reactive control during the restabilisation phase. This is given some support 

by the increased trial-to-trial variability of incongruity among the older adults, which 

suggests that COM incongruity may represent some degree of disordered control. We 

propose that age-related differences in COM incongruity are primarily linked to the time 

lag in active reorientation of the ground reaction force after foot-contact. Rapid stepping 

appears to minimize the potential for anticipatory ML stabilisation prior to step-onset, 

which may shift the burden of ML dynamic stability control to the restabilisation phase. 
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Under these conditions, increased overshoot arose because of the combined effects of the 

time required to detect instability and reorient the ground reaction force and the necessity 

to precisely regulate the magnitude of divergence of the ground reaction force (i.e. 

moment), relative to the COM, during the restabilisation phase. We propose the larger 

magnitude of overshoot among the older adults during rapid stepping may signify 

increased sensitivity to minimization of the potential for anticipatory ML stabilisation as 

a means to offset subsequent instability during the restabilisation phase. 

 

Interestingly we did not observe within-group differences in incongruity magnitude or 

variability when comparing the two rapid stepping conditions. While stepping with 

reduced step width did not increase the magnitude of overshoot, it does pose a challenge 

to the maintenance of stability, as a narrower step in association with an equal magnitude 

of overshoot would tend to reduce the mediolateral distance between the COM and lateral 

stability limits. This is particularly relevant when viewed in concert with the increased 

trial-to-trial variability among the older adults and during the rapid stepping tasks. Even 

if overshoot is a mechanism to simplify mediolateral stability control, increased 

overshoot coupled with increased variability may lead to lateral instability if the COM 

exceeds the lateral stability limits. 

 

The overall aim of the present study was complicated, to some degree, by age-related 

differences in the initial movement parameters. Future research using perturbation-

evoked reactive stepping, which would reduce the potential for anticipatory control 

equally across age groups, may provide a clearer picture of age-related differences in 
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stability control during the restabilisation phase. Under such conditions, further increases 

in COM overshoot among older adults may support the idea that instability arises during 

the restabilisation phase. Moreover, by removing the influence of age-related differences 

in the initial movement parameters, we may be able to more clearly discern the origins of 

ML instability during the restabilisation phase. 
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CHAPTER 5 
 

Age-Related Differences in the Control of Mediolateral Dynamic 
Stability during the Restabilisation Phase of Stepping Evoked by 

Postural Perturbation 
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5.1 OVERVIEW  

The control of mediolateral dynamic stability has been found to be particularly 

problematic for older adults during stepping, which is particularly relevant to falls and 

fall-related injury. There is a need for better understanding of the origins of age-related 

mediolateral instability, with a specific emphasis on movement termination 

(restabilisation). The purpose of the current study was to advance our understanding 

regarding age-related changes in the control of mediolateral dynamic stability during the 

restabilisation phase of reactive stepping, evoked by postural perturbation. Healthy young 

(n=20) and older (n=20) participants took part in two experimental conditions. 

Participants were asked to regain their balance using a single step, after being 

unexpectedly released from a forward leaning position. In one condition, there were no 

constraints on step placement. We sought to further explore the effects of age by 

including an additional condition in which individuals were asked to step with reduced 

step width, which we believed would pose an increased challenge to the maintenance of 

stability. Secondary to this aim, we attempted to probe the extent and means by which 

individuals could alter the dynamics of the compensatory stepping response over time, 

with trial repetition. As such, trials in each condition were presented in blocks of 5 

repeated trials. Blocks of trials were randomly presented to participants. The magnitude 

of incongruity between the peak and final COM position was quantified along with the 

intertrial variability of incongruity. To aid in the determination of the origins of age-

related differences in the kinematic variables, the timing and magnitude of the waveform 

representing the difference between the inclination angles of the net ground reaction force 

and COP-COM were analysed. Results revealed that overshoots of the final COM 
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position were common among both age groups in all stepping conditions, but were 

subsequently reduced with trial repetition. Older adults, however, exhibited an increased 

magnitude of overshoot relative to the younger adults. Older adults also exhibited greater 

trial-to-trial variability of COM incongruity than the younger adults, which was also 

reduced with trial repetition. Examination of the kinetic data in concert with these 

kinematic variables provided support for previous work, which has suggested that 

overshoot may be a means to simplify the control of mediolateral dynamic stability 

during the restabilisation phase of stepping, should additional steps become necessary for 

balance restoration. Increased overshoot and intertrial variability in COM incongruity 

exhibited by older adults, however, was unlikely to be advantageous for stability control 

and is proposed to be a consequence of age-related differences in the timing and 

variability in timing of the reorientation of the net ground reaction force with respect to 

the COM. Together these results suggest that older adults may have particular difficulty 

with reactive control during the restabilisation phase. Reductions in overshoot and 

intertrial variability, specifically among the older adults, are proposed to occur primarily 

through the alteration of pre-planned movement parameters and swing phase dynamics. 

This work highlights the importance of exploring the restabilisation phase of stepping, 

which complements previous work on step initiation. 

 



 101 

 
5.2 INTRODUCTION 

Compensatory stepping reactions are essential responses for recovering stability 

following postural perturbation, as an increase in the area defining the base of support 

(BOS) affords a larger potential for restabilisation. Contrary to initial research indicating 

that these reactions lie at the end of a continuum of responses available to regain stability 

following a perturbation (Horak & Nashner, 1986), subsequent research has indicated 

that compensatory stepping may be the preferred response in the absence of experimental 

restrictions to the use of fixed-support strategies (McIlroy & Maki, 1993c). This assertion 

has been given support from studies employing stability modelling (Pai et al., 1998), 

which have revealed that stepping may be initiated well before the centre of mass (COM) 

reaches the limits of the BOS (Mille et al., 2003). Further, experimental studies of older 

adults have revealed an increased prevalence of stepping following an external 

perturbation to standing balance, perhaps due to either a diminished ability to attenuate 

accelerations induced by the perturbation or reduced stability limits (Pai et al., 1998; 

Jensen et al., 2001). 

 

A large number of studies have been conducted to shed light on such age-related declines 

in sagittal plane balance recovery ability (Cao et al., 1998; Chu, Tang, Chen & Cheng, 

2009; Menant, Steele, Menz, Munro & Lord, 2009; Carty, Mills & Barrett, 2011). Some 

degree of ambiguity remains, however, likely due to the multiple modalities for inducing 

sagittal plane instability and the differences between studies in the specific characteristics 

of the sample participants. For example, age related decline in volitionally generated 

lower limb joint moments have been found by some researchers (Wojick et al., 2001) to 
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be poor predictors of the maximum lean angle from which participants could successfully 

recover AP stability via stepping. Conversely, others (Karamanidis et al., 2008) have 

found a reduction in both ankle and knee maximal voluntary isometric strength and 

margin of stability (AP COM-foot distance) in older adults, concluding that muscle 

strength may be responsible for the inability of older adults to effectively increase the 

BOS length to successfully arrest the anteroposterior COM velocity. Despite the 

discrepancy, lower limb volitional strength measures in isolation may not be adequate 

indicators of available strength or the capacity to rapidly move the limbs, given the time-

sensitive nature of balance recovery responses. Moreover, it seems likely that the 

inability to recover stability may be more greatly influenced by a large number of small 

neuromuscular deficits, rather than decrements in a single faculty alone (Hsiao et al., 

1999). Notwithstanding the disagreement, there appears to be a general consensus that the 

inability for older adults to successfully regain stability is independent of many of the 

initial movement parameters, such as reaction time (Thelen et al., 1997), muscle onset 

latency (Thelen et al., 2000), foot-off time, foot-contact time and step placement 

(McIlroy & Maki, 1996). 

 

Although there has been extensive research devoted to understanding sagittal plane 

restabilisation, the current body of literature has not fully addressed the particular 

difficulty that older adults face in the control of mediolateral stability during forward 

stepping, which is particularly relevant to fall-related injury (Maki et al., 1994; Lord et 

al., 1999; Brauer et al., 2000; Hilliard et al., 2008; Schrager et al., 2008). While 

compensatory stepping reactions often lack the mediolateral anticipatory postural 
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adjustments (ML APAs) that typically precede volitional stepping (McIlroy & Maki, 

1993b), subsequent work has found these APAs, when present during reactive stepping, 

to be insufficient to affect subsequent COM dynamics (McIlroy & Maki, 1999). Even 

with the striking similarity between age groups until the time of foot contact, as 

previously mentioned, older adults have been found to have an increased instability at the 

time of foot-contact (McIlroy & Maki, 1996; Rogers et al., 2001; Schulz et al., 2005), 

which has been related to fall risk (Maki et al., 1994; Lord et al., 1999; Brauer et al., 

2000; Hilliard et al., 2008; Schrager et al., 2008). 

 

Although multiple stepping responses are clear markers of instability in older adults 

(McIlroy and Maki, 1996), the underlying origins of mediolateral instability have 

received extremely little consideration and, hence, remain somewhat elusive. Our 

previous study of volitional stepping in younger adults has examined frontal plane COM 

displacement during the restabilisation phase and suggested that incongruity between the 

peak and final COM position after foot-contact – specifically overshoot of the final 

position toward the stepping limb side – may play a functional role in simplifying 

mediolateral balance control (Singer et al., 2012). More specifically, this strategy may 

place emphasis on the stepping limb to achieve restabilisation, while reducing the 

necessity for interlimb coordination. Further, allowing the COM to move closer to the 

stepping foot could simplify mediolateral stability control for subsequent steps, should 

the initial step be insufficient to arrest the forward COM velocity. Such a reduction in the 

mediolateral distance between the COM and support limb, during the single-support 
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phase of a subsequent step, would reduce the frontal plane gravitational moment and 

subsequent acceleration toward the side of the forthcoming stepping limb.  

 

Despite the potential for simplification of mediolateral stability control, our subsequent 

work (study 2) has found an increased magnitude of incongruity among older adults, 

relative to younger adults, during rapid speed stepping. Rapid stepping reduced the extent 

of anticipatory mediolateral stabilisation prior to step-onset, which likely shifted the 

burden of ML dynamic stability control to the restabilisation phase. We believe the 

increased incongruity among the older adults during such rapid stepping conditions to be 

indicative of difficulty with reactive control during the restabilisation phase of stepping. 

More specifically, older adults exhibited an increased time to reorient the net ground 

reaction force with respect to the COM during the ‘active’ phase of the restabilisation 

phase, which may delay the generation of angular impulse necessary for frontal plane 

angular deceleration during double support. 

  

Similarly, regulation of whole-body angular momentum is one factor that has been 

suggested to be an important determinant of dynamic stability during walking (Simoneau 

& Krebs, 2000; Herr & Popovic, 2008) and balance recovery following a trip (Pijnappels 

et al., 2004). It has been suggested that the stance limb plays a role in sagittal plane 

balance recovery during stepping, by generating intersegmental moments appropriate for 

regulating the direction of the GRF with respect to the COM (i.e. angular momentum) 

(Pijnappels et al., 2004). While the stance limb no doubt aids in sagittal plane 

restabilisation, the complete recovery of mediolateral stability likely occurs after 
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stepping-limb foot contact, given that there may be insufficient time during single 

support for the stance limb to generate forces of large enough magnitude to appreciably 

alter the mediolateral COM velocity. More likely, it is the double limb support phase in 

which external forces and moments are generated with sufficient magnitude and duration 

to play a more considerable role in balance recovery. Along these lines, Herr and Popovic 

(2008) have suggested that, during level walking, the net ground reaction force and centre 

of pressure trajectory are regulated throughout the gait cycle in such a way as to 

minimize the net external moment about the total body COM. From this, it is proposed 

that the generation of a net ground reaction force with a line of action through the COM 

may have an important relationship with the control of mediolateral COM displacement 

during compensatory stepping. In addition, age-related differences in the ability or 

execution of such control may lead to the increased instability often observed during 

compensatory stepping. 

 

From this, the purpose of the present work was to advance our understanding of 

mediolateral dynamic stability control during compensatory stepping, throughout the 

restabilisation phase – a phase of the movement that may represent the earliest 

opportunity to substantially alter ML COM trajectory and velocity. More specifically, the 

aim of this study was to examine age-related differences in the control of mediolateral 

dynamic stability during the restabilisation phase, following a cable-release perturbation 

to standing balance.  
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Four specific hypotheses were tested in the present study: 

1) Incongruity magnitude (Fig. 5-1): 

a) We hypothesized that older adults would exhibit greater incongruity magnitude 

(i.e. overshoot) than younger adults, when stepping without restrictions on foot 

placement. This is consistent with our previous research (study 2), in which we 

observed an increased magnitude of overshoot during rapid speed stepping due to 

the reliance on reactive control during the restabilisation phase. 

b) We also hypothesized that, among the older adults, incongruity magnitude would 

increase when individuals were forced to step with a narrow step width, as step 

responses with constrained step width would reduce the potential to move the COP 

lateral to the COM to generate a net moment about the COM, while also reducing 

the potential to generate a mediolateral force component with sufficient magnitude 

to arrest the lateral linear COM velocity. We did not expect to find differences 

between step conditions within the young adults.  
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Figure 5-1. Hypothetical mediolateral incongruity magnitude for older (solid line) and younger adults 
(dotted line), averaged within condition. Task conditions include: preferred step placement (PREF); 
narrow step width (ML). Please note that error bars and vertical axis scale are not shown, as this data is 
completely hypothetical and not based on previous work. 
 

 

2) Trial-to-trial variability (Fig. 5-2): 

a) We hypothesized that we would observe a greater amount of trial-to-trial 

variability among the older adults, when step width was not constrained. 

b) We believed that we would observe further increases in trial-to-trial variability 

among the older adults when forced to step with a narrow step width, in relation to 

both their own preferred-width stepping trials and trials among the younger adults. 

We did not expect to find differences between step conditions within the young 

adults. 
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Figure 5-2. Hypothetical trial-to-trial variability of incongruity magnitude for older (solid line) and 
younger adults (dotted line), averaged within condition. Task conditions include: preferred step 
placement (PREF); narrow step width (ML). Please note that error bars and vertical axis scale are not 
shown, as this data is completely hypothetical and not based on previous work. 
 

 

3) RMSD of the GRF inclination angle relative to the COM (Fig. 5-3): 

a) In our previous work (study 2), we observed an increased RMSD among younger 

adults. Such differences, however, were believed to occur because younger adults 

made fewer modifications to the initial movement parameters to offset subsequent 

instability during the restabilisation phase, leading to a greater necessity to regulate 

total body angular momentum during the restabilisation phase. We anticipate that 

the cable-release perturbations employed within the current study will nullify the 

potential to make modifications to the initial movement parameters prior to step-

contact. As such, we believe that there will be no difference in RMSD between age-

groups during trials with preferred step placement, as both will be required to 

equally regulate the orientation of the net GRF on foot contact to achieve 

restabilisation. 
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b) Further, without the potential to offset subsequent instability by modifications of 

the initial movement parameters, as we observed during our previous work of 

volitional stepping (study 2), we expected to observe equal reductions in RMSD 

within each group when stepping with reduced step width, relative to trials with 

preferred step placement.  

 
Figure 5-3. Hypothetical frontal plane RMSD of the actual GRF inclination angle, with respect to the 
inclination angle of the line from COP to COM, for older (solid line) and younger adults (dotted line) 
adults, averaged within condition. Task conditions include: preferred step placement (PREF); narrow 
step width (ML). Please note that error bars and vertical axis scale are not shown, as this data is 
completely hypothetical and not based on previous work. 
 

 
4) Time to ‘active’ reorientation of the net GRF (time to P2 peak) (Fig. 5-4): 

a) We hypothesize that older adults will exhibit a longer time to achieve the peak 

divergence of the net GRF inclination angle with respect to the COP-COM 

inclination angle (P2 peak) than younger adults when stepping with preferred step 

placement. 

b) We believe that the differences in the timing of the P2 peak will be unaffected by 

step placement. Specifically, we hypothesize that there will be no change in timing 

within either group with constraints on step placement. Further, we believe that the 
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differences between age groups observed in the condition with preferred step 

placement, will persist when step width is reduced. 

 
Figure 5-4. Hypothetical timing of the peak divergence between the inclination angles of the net ground 
reaction force and the COP-COM at the second positive peak following foot-contact (P2). Data are 
depicted for older (solid line) and younger adults (dotted line), averaged within condition. Task 
conditions include: preferred step placement (PREF); narrow step width (ML). Please note that error 
bars and vertical axis scale are not shown, as this data is completely hypothetical and not based on 
previous work. 

 

5.3 METHODS 

5.3.1 Participants 

Twenty healthy young (age 24 (5) years) and twenty community-dwelling healthy older 

adults (age 71 (5) years) were recruited for inclusion within the study. Participants were 

free from anatomical, neurological, or cognitive impairments. All participants were able 

to stand and walk unaided, had no previous history of falls and were not using 

psychoactive medications (specifically for pain control or management of mental or 

emotional disorder).  
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5.3.2 Instrumentation and Set-Up 

Six Vicon MX-3+ cameras (Vicon Motion Systems, Los Angeles, CA) were used to 

record kinematic data (100 Hz). Four force platforms (Advanced Mechanical 

Technology, Inc., Watertown, MA.), arranged in a rectangular array and embedded in the 

laboratory floor, were used to measure the reaction forces and moments (2000 Hz). 

Participants were anchored to a rigid frame, via an adjustable cable and chest harness, 

which was in series with a force transducer. In conjunction with a differential amplifier 

(Bortec Biomedical, Calgary, AB), disposable, self-adhesive Ag/AgCl electrodes were 

placed bilaterally on the tibialis anterior and soleus and were used to record 

electromyographic activity from these sites (2000 Hz). All motion capture data and 

analogue-to-digital converted signals were synchronously recorded by Vicon Nexus 

software (Vicon Motion Systems, Los Angeles, USA). 

 

Retroreflective calibration markers, of 1 cm diameter, were placed on the subject over 

anatomically relevant locations in a similar fashion to the marker set used by the National 

Institute of Health and described by Hamill and Selbie (2004). Additional calibration 

markers were placed bilaterally on the iliac crests, anterior and posterior superior iliac 

spines, acromioclavicular joints, anterior to the external auditory meatus, greater and 

lesser tubercles of the humerus, medial and lateral epicondyles of the humerus, radial and 

ulnar styloid processes and the head of the 3rd metacarpal. Rigid clusters containing four 

markers, placed on the sacrum and trunk, and bilaterally on the feet, legs and thighs were 

used to determine the 3D kinematics of each respective segment during the experimental 
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trials. Positive x-,y- and z-axes for the laboratory coordinate system were oriented 

laterally to the right side of the participant, anteriorly and upward, respectively. 

 

5.3.3 Protocol 

A standing reference trial was collected prior to the collection of the experimental trials. 

Participants were asked to stand in a neutral position, roughly aligned to the laboratory 

coordinate system. These data were used to determine the segment endpoints, the 

segment embedded local coordinate system, as well as the transformation matrices 

between the local and global coordinate systems for each segment. Following collection 

of the standing reference trial, markers used solely for calibration were removed. 

 

Participants were asked to stand with their feet side-by-side on separate force platforms. 

Foot position was standardized across all participants to a width of 0.17 m, with an offset 

of 14 degrees between the longitudinal axis of the foot and the anteroposterior axis of the 

laboratory coordinate system, as per McIlroy and Maki (1997). Adhesive foam 

weatherstripping was placed on the force platform, along the medial and posterior 

borders of each foot, to ensure consistent foot placement between trials. Two quiet 

standing trials, of 60-second duration, were collected to obtain kinematic and 

electromyographic variables necessary for post-processing. The first trial was collected 

with the feet in the abovementioned standardized side-by-side configuration. For the 

second trial, the participant was asked to start with their feet in the standardized position, 

take a single step forward and hold this forward-stance configuration for the duration of 

the trial. 
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For experimental trials, an initial forward lean was established, standardized to a cable 

load of 10% body weight, and was monitored during the trial. During pilot testing, this 

lean magnitude was found to evoke stepping in 100% of trials in young adults while also 

failing to evoke multiple forward steps in older adults. To ensure symmetrical 

mediolateral weight distribution, the vertical force under each foot was monitored before 

cable release. The anterior position of the COP under each foot was also monitored. 

Electromyographic activity was monitored and recorded bilaterally from the soleus and 

tibialis anterior, to ensure minimal pre-perturbation activity. As a reference, we attempted 

to ensure that the level of activity observed during the experimental trials did not exceed 

that which was recorded during quiet upright standing. This ensured that the participant 

had fully committed to the use of the cable and harness to maintain the forward lean. To 

discourage anticipation of cable release onset, the cable was released at random intervals 

after the participant had adopted the forward lean and the initial conditions had been 

established. Furthermore, 1/3 of experimental trials (5 trials) consisted of ‘catch trials’ in 

which no perturbation was administered. These trials were randomly presented 

throughout the course of testing. Participants were asked to regain their balance following 

the perturbation by using a single step, if necessary. Further, participants were told that, 

regardless of whether a step was needed, they should remain in the final position for 

approximately 10 seconds once they regained stability. This allowed sufficient data for 

examination of the restabilisation phase of stepping.  
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Participants were asked to take part in two experimental conditions. The first condition 

placed no restriction on step placement (PREF). The second condition was used to further 

explore the potential for age-related differences in mediolateral stability control, by 

requiring participants to regain balance by using a step of narrow width (ML). 

Participants were asked to step onto a length of adhesive tape placed on the force 

platform, parallel to, and 5 cm lateral to the median plane (toward the stepping limb side).  

 

We believed it was possible that reductions in incongruity magnitude may occur with 

task familiarity, as individuals learned to take advantage of the predictable features of the 

perturbation to augment stability control. Such changes, and the potential for a 

differential effect by age, may have helped to inform us about the role or cause of COM 

incongruity. To address this, the ten experimental trials in each condition were split into 

two blocks of five trials (PREF1, PREF2, ML1, ML2). The effect of ‘time’ was 

incorporated into the omnibus ANOVA model used to address each dependent variable, 

as described below. The presentation of these four blocks of trials was randomized for 

each participant. Subsequent analyses were limited to successful single-step balance 

recovery responses. 

 
 
5.3.4 Data Analysis 

Force platform data were lowpass filtered using a zero-lag, fourth-order, Butterworth 

filter with a cut-off frequency of 50 Hz. As the Butterworth filter is underdamped, there 

was a possibility using such a filter could induce artefact in individual marker trajectories 

during rapid transitions, which could lead to subsequent artefact in the computation of the 
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total body COM position. Marker data were lowpass filtered using a zero-lag, twentieth-

order critically damped filter, with a cut-off frequency of 6Hz, which should prevent 

marker over/undershoot as a result of filter artefact and also provide an equivalent roll-off 

to that of the Butterworth filter (Robertson & Dowling, 2003). A linear envelope (LE-

EMG) was calculated from raw EMG data, after initial removal of dc-bias, full-wave 

rectification and lowpass filtering using a second-order Butterworth filter, with a cut-off 

frequency of 3 Hz.  

 

The entire body was modelled as a rigid system of independently tracked segments. For 

the older adults, segment masses were estimated using Dempster’s segment parameters 

and segment centre of mass positions were estimated using the geometrical model 

proposed by Hanavan (1964) (cited in Robertson et al., 2004). Segments of the 

appendicular skeleton were modelled as conical frusta; the pelvis and trunk were 

modelled as elliptical cylinders and the head as a sphere. As Dempster’s segment 

parameters are not representative of younger adults, segment masses and centres of mass 

were estimated for this group using segmental mass proportions and relative segmental 

centre of mass locations from a sample of young, male and female undergraduate 

students, initially reported by Zatsiorsky, Seluyanov and Chugunova (1990) and 

subsequently modified by de Leva (1996). The trunk segment was modelled as a hybrid 

of the upper- and middle-trunk segments, defined by de Leva (1996). The proximal and 

distal endpoints for the trunk segment for the present study were the iliac crests and 

acromia, respectively, and the lengths of upper and middle trunk segments for each 

subject, as defined by de Leva (1996), were not known. Average segment lengths of a 
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sample of males and females from Zatsiorsky, Seluyanov and Chugunova (1990) (as 

cited in de Leva, 1996), were used to calculate the lengths of the upper- and middle-trunk 

segments, as proportions of the total trunk length. These scale factors, in conjunction with 

the relative segmental COM locations and measured total trunk length (from marker 

coordinates), were used to compute the hybrid trunk COM location, which was assumed 

to lie on the longitudinal axis running from the midpoint between iliac crest and acromial 

markers, respectively. The total body centre of mass position was calculated as a 

weighted average of all body segment COM locations, where each segment was weighted 

according to its mass proportion. 

 

The COM restabilisation point was defined as the time point at which the COM velocity 

waveform entered and remained inside an amplitude bandwidth bordered by +/- two 

standard deviations of the mean velocity during the initial quiet standing trial with 

forward-stance configuration. Velocity, rather than position, was chosen for 

determination of the COM restabilisation point, as this allowed for calculations that were 

less affected by low frequency oscillations or drift of the COM position-time waveform 

after restabilisation.  

 

COM incongruity was defined as the difference between the local maximum COM 

position after foot contact and the mean of the stable region of the waveform, which was 

a two second window beginning at the restabilisation point. Overshoot was defined as 

positive incongruity; undershoot was defined negative incongruity. Trial-to-trial 
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variability was assessed by computing the standard deviation of the mean COM 

incongruity over experimental trials in each block of 5 repeated trials for each condition. 

 

The ground reaction forces from all force platforms were combined to yield a single force 

vector. The frontal plane inclination angle of this net force was calculated, with respect to 

the x-axis (ML) of the global coordinate system. The frontal plane inclination angle of 

the line joining the COP and COM was also determined, relative to the x-axis (ML) of 

the global coordinate system. In theory, if the inclination angle of the net GRF is 

coincident with the inclination angle of the COP-COM, there should be no external 

moment about the COM caused by the net GRF and, hence, no change in frontal plane 

angular momentum. To provide a single metric for characterization of this compound 

kinetic variable, the RMSD of the frontal plane GRF inclination angle with respect to the 

frontal plane COP-COM inclination angle was computed, for the interval from foot-

contact to the restabilisation point.  

 

Examination of this waveform revealed a characteristic pattern (Fig. 5-5) with three 

distinct peaks at, and after, foot contact. We proposed that the first negative peak at foot 

contact signifies a net GRF vector orientation that would result in an external moment 

and angular acceleration toward the swing limb (right-footed stepping: positive moment, 

anticlockwise about an anterior axis with origin at the whole body COM; left-footed 

stepping: negative moment, clockwise about an anterior axis with origin at the whole 

body COM); the magnitude of this peak is likely influenced the by the anticipatory 

postural adjustments and swing phase dynamics. The subsequent two positive peaks (P1 
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and P2) denote a net GRF orientation that would result in an external moment and 

angular acceleration toward the side of the stance limb (right-footed stepping: negative 

moment, clockwise about an anterior axis with origin at the whole body COM; left-footed 

stepping: positive moment, anticlockwise about an anterior axis with origin at the whole 

body COM), thereby countering the angular momentum that would develop during the 

swing phase. We propose the magnitude and timing of the first positive peak (P1) to be a 

consequence of stepping limb stiffness on foot-contact, since reduced limb compliance 

would increase the rate of axial loading and would more rapidly increase the ratio 

between the axial and mediolateral GRF components, thereby resulting in an earlier peak. 

We also propose stepping limb stiffness and, hence, the timing of this peak, to be pre-

planned parameters, since the average time to peak (0.045 s) is too brief to be modulated 

by afferent sensory information upon foot-contact. The magnitude and timing of the 

second positive peak is, however, likely modulated by sensory information regarding the 

state of the COM at the onset, and throughout, the restabilisation phase. 

 
Figure 5-5. Representative trial from one subject (right-footed stepping), displaying the divergence 
between the GRF inclination angle and the COP-COM inclination angle. Positive values indicate a net 
GRF orientation that would tend to cause angular acceleration toward the stance limb side. Data begin 
at the instant of cable release and end at the ML restabilisation point. Onset Asymm. = onset of ML 
asymmetry; Onset Unload = onset of swing limb unloading; T.O. = toe-off; F.C. = foot-contact; P1 = 
peak of the first positive (passive) phase, immediately following foot-contact; P2 = peak of the second 
positive (active) phase, following foot-contact.  
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5.3.5 Statistical Analyses 

The statistical analyses are described in reference to each of the four dependent variables: 

1. COM incongruity values for each trial were averaged within-subject for each 

block of 5 trials and were subsequently analysed with a three-factor ANOVA, 

with repeated measures [2 within group factors (step – 2 levels)(time – 2 levels); 1 

between group factor (age – 2 levels)]. If the omnibus ANOVA revealed a 

significant interaction effect, follow-up independent and paired samples t-tests 

were used, as appropriate, to localize the differences. Measures of effect size were 

estimated using the formula for Cohen’s d, using the means and standard 

deviations for each group. To counter the effect of alpha-inflation due to multiple 

subsequent comparisons, we employed a Bonferroni correction whereby the alpha 

level for a family of follow-up analyses was divided by the number of 

comparisons within that family (p = 0.0125, for evaluation of interaction effects). 

  

2. Standard deviations, representing within-subject trial-to-trial variability, were 

computed for each subject in each group and were analysed with three-factor 

ANOVA, with repeated measures [2 within group factors (step – 2 levels)(time – 

2 levels); 1 between group factor (age – 2 levels)]. Interaction effects were 

analysed with Bonferroni-corrected independent and paired samples t-tests (p = 

0.0125). When appropriate, measures of effect size were calculated using the 

formula for Cohen’s d, as above.  
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3. RMSD values were averaged within-subject and were analysed with three-factor 

ANOVA, with repeated measures [2 within group factors (step – 2 levels)(time – 

2 levels); 1 between group factor (age – 2 levels)]. Interaction effects were 

analysed with Bonferroni-corrected independent and paired samples t-tests (p = 

0.0125). When appropriate, measures of effect size were calculated using the 

formula for Cohen’s d, as above.  

 

4. Values representing the time from foot-contact to the P2 peak were averaged 

within-subject and were analysed with a three-factor ANOVA [2 within group 

factors (step – 2 levels)(time – 2 levels); 1 between group factor (age – 2 levels)]. 

Interaction effects were analysed with Bonferroni-corrected independent and 

paired samples t-tests (p = 0.0125). When appropriate, measures of effect size 

were calculated using the formula for Cohen’s d, as above. 

 

5.3.6 Secondary Analyses 

Although bilateral EMG activities of the medial and lateral gastrocnemius were 

monitored during the period preceding cable release, we compared the mean of the LE-

EMG during each experimental trial against that which was obtained during quiet upright 

standing trial. We assumed equivalence in EMG activation if the mean LE-EMG of the 

perturbation trial did not exceed two standard deviations above of the mean of the quiet 

upright standing trial. This analysis was performed on a trial-by-trial basis for each 

experimental trial. 
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It remained possible that, despite previous work indicating similarity between young and 

older adults in the initial temporospatial parameters of the stepping response (i.e. until 

foot contact), differences between young and older adults may have existed and may have 

partially explained any potential differences in the variables of interest. To expose this 

possibility, post-hoc tests were performed to assess between-group differences in the AP 

distance between the COP and vertical projection of the COM at the instant before cable-

release, ML APA amplitude (if present), effect of the ML APA on the peak lateral 

displacement of the COM prior to step onset, time to onset of ML asymmetry and 

unloading, step time, length and width, peak AP swing foot velocity, in addition to the 

AP and ML COM velocity at the instant before foot-contact. 

 

As noted previously, we hypothesized that the direction of the resultant ground reaction 

force itself exerts a large influence on an individual’s ability to regain stability after foot 

contact. From our previous work (study 2), we believe the magnitude of the divergence 

between the GRF and COP-COM inclination angles and the ability to reorient the net 

ground reaction force at the appropriate time may be of equal importance. The timing and 

magnitude of key time points of the waveform representing the difference between the 

inclination angles of the COP-COM and the net GRF vector were analyzed. 

 
 
5.4 RESULTS 

5.4.1 Incongruity Magnitude – Effect of age, step condition, and trial repetition 

The omnibus ANOVA for the analysis of incongruity magnitude revealed a main effect 

of age, F(1,38) =  22.10, p < 0.001, ηp
2 = 0.37, with older adults exhibiting an increased 
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incongruity magnitude (Fig. 5-6). There was also a main effect of time, F(1,36) = 21.59, 

p < 0.001, ηp
2 = 0.36, whereby the incongruity magnitude was reduced in the second 

block of repeated trials, relative to the first (Fig. 5-7). There was no difference between 

preferred or reduced step width conditions.  

 
Figure 5-6. Mediolateral incongruity magnitude for older (solid line) and younger adults (dotted line), 
averaged within condition. Error bars represent the 95% confidence interval for the mean. Positive 
values indicate overshoot. Task conditions include: preferred step placement (PREF); narrow step width 
(ML). 

 

 
Figure 5-7. Mediolateral incongruity magnitude for older (solid line) and younger adults (dotted line), 
averaged within first (t1) and second (t2) blocks of repeated trials. Error bars represent the 95% 
confidence interval for the mean. Positive values indicate overshoot.  
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5.4.2 Trial-to-Trial Variability of Incongruity - Effect of age, step condition, and 
trial repetition 
 
As hypothesized, a main effect of age indicated that older adults had greater trial-to-trial 

variability of incongruity than did the young adults, F(1,38) = 26.49, p < 0.001, ηp
2 = 

0.41 (Fig. 5-8). Additionally, a main effect of time indicated that there was greater trial-

to-trial variability of incongruity in the first block of trials relative to the second, F(1,38) 

= 24.20, p < 0.001, ηp
2 = 0.39. These main effects were qualified by an interaction 

between age and time, F(1,38) = 9.02, p = 0.005, ηp
2 = 0.19. Follow-up independent- and 

paired-samples t-tests revealed that while older adults had greater variability than the 

young during both the first, t(38) = 5.06, p < 0.001, d = 1.60, and second, t(38) = 2.92, p 

= 0.006, d = 0.92, time blocks, only the older adults exhibited a reduction in trial-to-trial 

variability from the first to the second group of trials, t(19)=4.832, p < 0.001, d = 1.35 

(Fig. 5-9). There were no main effects of step condition. 

 
Figure 5-8. Trial-to-trial variability of mediolateral incongruity for older (solid line) and younger 
adults (dotted line), averaged within condition. Error bars represent the 95% confidence interval for the 
mean. Task conditions include: preferred step placement (PREF); narrow step width (ML). 
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Figure 5-9. Trial-to-trial variability of mediolateral incongruity for older (solid line) and younger 
adults (dotted line), averaged within first (t1) and second (t2) blocks of repeated trials. Error bars 
represent the 95% confidence interval for the mean. Positive values indicate overshoot.  

 
 
5.4.3 RMSD Ground Reaction Force Inclination Angle with Respect to the COM – 
Effect of age, step condition, and trial repetition 
 
There were no age-related differences in the direction of the net GRF vector with respect 

to the COM, as was quantified by examining the RMSD of the difference between the 

GRF inclination angle and the COP-COM inclination angle. There was no effect of step 

condition, however there was a main effect of time, F(1,38) = 4.31, p = 0.045, ηp
2 = 0.10, 

as the second block of trials had a reduced RMSD with respect to the first block (Fig. 5-

10). 
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Figure 5-10. Root-mean-square deviation of the inclination angle of the net ground reaction force with 
respect to the inclination angle formed by a line joining the centre of pressure and centre of mass. Data 
are depicted for older (solid line) and younger adults (dotted line), averaged within the first (t1) and 
second (t2) blocks of repeated trials. Error bars represent the 95% confidence interval for the mean. 

 
 
5.4.4 Timing of ‘Active’ Reorientation of the Net Ground Reaction Force (P2) – 
Effect of age, step condition, and trial repetition 
 
Examination of the time from foot-contact to P2 revealed no effects of step condition or 

time. There was a main effect of age, F(1,38) = 9.69, p = 0.004, ηp
2 = 0.20, with older 

adults exhibiting a longer time to peak than did the younger adults (Fig. 5-11). 
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Figure 5-11. Timing of the second peak divergence between the inclination angles of the net ground 
reaction force and the COP-COM following foot-contact (P2). Data are depicted for older (solid line) 
and younger adults (dotted line), averaged within condition. Error bars represent the 95% confidence 
interval for the mean. Task conditions include: preferred speed stepping with preferred step placement 
(PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with 
narrow step width (ML_RAPID). 

 
 
5.4.5 Secondary Analyses 
 
5.4.5.1 Initial Conditions 
 
Independent-samples t-tests did not reveal significant between-group differences in body 

mass, height, or lean angle in either the PREF or ML condition (Table 5-1). Nevertheless, 

the (non-significant) between-group difference in body mass, in isolation, would not alter 

the initial lean angle and the initial destabilizing moment about the ankle upon cable 

release, as the pre-perturbation cable load was standardized to body weight. Although 

there was particular attention paid to ensuring equivalence between groups in pre-

perturbation parameters, analysis of the pre-perturbation LE-EMG magnitudes revealed 

that five of the twenty older adults performed trials in which the pre-perturbation LE-

EMG magnitude exceeded two standard-deviations from the mean LE-EMG magnitude 

during the quiet standing trial performed before the experimental trials. This accounted 
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for 18.5% of trials in the PREF condition and 17% of trials in the ML condition. In 

contrast, only two younger adults performed such trials, which accounted for only 2.5% 

of trials in each the PREF and ML conditions. Correspondingly, a three-factor ANOVA 

used to analyse the AP distance between the vertical projection of the COM and the 

position of the COP during the pre-perturbation interval revealed a main effect of age, 

F(1,38) = 11.19, p = 0.002, ηp
2 = 0.23, with older adults having a reduced AP COM-COP 

distance by 0.011 m, on average.  

 

Table 5-1. Participant and lean-angle characteristics. 
 
 Younger Adults  Older Adults  
 Mean SD  Mean SD           p* 
Mass (kg) 68.11 10.31  76.98 16.76 0.051 
Height (m) 1.71 0.081  1.70 0.050 0.763 
θlean (deg) [PREF] 10.11 1.11  9.86 1.41 0.541 
θlean (deg) [ML] 10.16 1.31  10.01 1.43 0.724 
* p-values are reported for the independent-samples t-test, comparing the mean of each 
variable between age-groups. 
 

5.4.5.2 Initial Movement Parameters 
 
There were main effects of step condition, F(1,38) = 70.52, p < 0.001, ηp

2 = 0.65, and of 

age, F(1,38) = 7.58, p = 0.009, ηp
2 = 0.17, when examining the mediolateral anticipatory 

postural adjustment (ML APA), with increased amplitudes in the ML step condition and 

in the younger adults, respectively. These main effects were qualified by a step condition 

by age interaction, F(1,38) = 11.15, p = 0.002, ηp
2 = 0.23. Follow-up paired-samples t-

tests indicated that both the younger, t(19) = 6.61, p < 0.001, d = 0.92, and older groups, 

t(19) = 5.51, p < 0.001, d = 0.61, increased the amplitude of the ML APA during the ML 

stepping condition. The relative increase, however, was greater for the younger adults, as 
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the independent-samples t-tests revealed a difference within the ML stepping condition, 

t(38) = 3.32, p = 0.002, d = 1.05 (Fig. 5-12).  

 
Figure 5-12. Mediolateral displacement of the centre of pressure prior to step-onset, referenced to the 
initial centre of pressure position prior to step initiation. Positive values indicate displacement along the 
positive x-axis of the global coordinate system, toward the swing limb. Data are depicted for older 
(solid line) and younger adults (dotted line), averaged within condition. Error bars represent the 95% 
confidence interval for the mean. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). 

 

The age-related differences in ML APA amplitude did not result in a main effect of age 

when examining the effect of the ML APA on the ML COM trajectory prior to step 

initiation. There was, however, a main effect of step condition, F(1,38) = 57.61, p < 

0.001, ηp
2 = 0.60, as all participants exhibited increased COM movement toward the 

stance-limb before step initiation in the ML step condition (Fig. 5-13). There was also a 

main effect of time, F(1,38) = 10.55, p = 0.002, ηp
2 = 0.22, with increases noted in the 

second block of trials, irrespective of age or step condition (Fig. 5-14). 
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Figure 5-13. Mediolateral displacement of the centre of mass prior to step-onset, referenced to the 
initial COM position prior to movement initiation. Negative values indicate displacement along the 
negative x-axis of the global coordinate system, toward the stance limb. Data are depicted for older 
(solid line) and younger adults (dotted line), averaged within condition. Error bars represent the 95% 
confidence interval for the mean. Task conditions include: preferred speed stepping with preferred step 
placement (PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed 
stepping with narrow step width (ML_RAPID). 

 

 
Figure 5-14. Mediolateral displacement of the centre of mass prior to step-onset, referenced to the 
initial COM position prior to movement initiation. Negative values indicate displacement along the 
negative x-axis of the global coordinate system, toward the stance limb. Data are depicted for older 
(solid line) and younger adults (dotted line), averaged within the first (t1) and second (t2) blocks of 
repeated trials. Error bars represent the 95% confidence interval for the mean. 

 

There were no interactions or main effects of age, step condition or time when examining 

the time to onset of ML asymmetry. The time to onset of ML unloading was delayed in 

the second block of trials, relative to the first, irrespective of age or step condition, 

F(1,36) = 13.25, p = 0.001, ηp
2 = 0.26. 
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There was no main effect of age or step condition on step length. There was a main effect 

of time, F(1,386) = 12.60, p = 0.001, ηp
2 = 0.25, with increased step lengths observed in 

the second block of trials, irrespective of step condition. Similarly, there was also no 

main effect of age on step width. A main effect of time was noted, F(1,38) = 6.53, p = 

0.015, ηp
2 = 0.15, with individuals reducing step width in the second block of trials, 

relative to the first. There was also a main effect of step condition on step width, which 

emerged as a direct consequence of the reduced step width required by the experimental 

protocol, F(1,38) = 155.60, p < 0.001, ηp
2 = 0.80. 

 

There were no main effects of age or time on the peak AP velocity of the swing foot. 

There was a main effect of step condition, F(1,38) = 9.34, p = 0.004, ηp
2 = 0.20, as there 

was a greater AP foot velocity observed in the ML step condition. There were no main 

effects or interactions when examining step time. Correspondingly, there were no main 

effects or interactions when examining swing foot path length. 

 

Despite the small number of age-related differences in initial movement parameters up to 

the point of foot-contact, there were no main effects of age when examining either the AP 

or ML COM velocity just prior to foot-contact. All participants exhibited a reduced 

lateral (towards the stepping limb) COM velocity at foot-contact in the ML stepping 

condition, F(1,38) = 130.95, p < 0.001 ηp
2 = 0.78. There was also a main effect of time 

for both the AP and ML COM velocity prior to foot-contact, with an increased AP 

magnitude, F(1,38) = 5.51, p = 0.024, ηp
2 = 0.13, and reduced ML magnitude, F(1,38) = 

4.36, p = 0.044, ηp
2 = 0.10 ,  in the second block of trials, relative to the first. 
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5.4.5.3 Kinetics 
 
As the RMSD of the net GRF inclination angle relative to the COP-COM inclination 

angle did not explain the observed age-related differences in COM incongruity 

magnitude, we analysed the mean and variability in the amplitude and timing (with 

respect to foot-contact) of what were believed to be three key peaks in the waveform 

representing the divergence between the GRF inclination angle and the COP-COM 

inclination angle (Fig. 5-5).  

 

There were no main effects of age, step condition or time when examining the amplitude 

of the first negative peak, at foot-contact. There was a significant age by time interaction 

effect, F(1,38) = 8.62, p = 0.006, ηp
2 = 0.19. Follow up paired-samples t-tests indicated 

that only the older adults reduced the divergence between two inclination angles from the 

first block to the second block of trials, t(19) = -3.85, p = 0.001, d = 0.43, which also 

resulted in a reduced magnitude of divergence relative to the young adults during the 

second block of trials, t(38) = -2.58, p = 0.014, d = 0.82 (Fig. 5-15). There were no age-

related effects when examining the variability in the magnitude of this peak. 
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Figure 5-15. Magnitude of divergence between the inclination angles of the net ground reaction force 
and the COP-COM at the instant of foot-contact. Data are depicted for older (solid line) and younger 
adults (dotted line), averaged within the first (t1) and second (t2) blocks of repeated trials. Error bars 
represent the 95% confidence interval for the mean. 

 

Evaluation of the magnitude of the first positive peak after foot-contact revealed no 

interactions or main effects of age or time. There was a main effect of step condition, 

F(1,38) = 23.13, p < 0.001, ηp
2 = 0.38, as this peak had a greater magnitude in the ML 

step condition. There were also no effects of age, step condition or time when evaluating 

the variability in the magnitude of this peak. 

 

Evaluation of the time from foot-contact to P1 revealed that there was a main effect of 

age, F(1,38) = 5.50, p = 0.024, ηp
2 = 0.13, that was qualified by interactions between age 

and step condition, F(1,38) = 5.83, p = .021, ηp
2 = 0.13, and age and time, F(1,38) = 4.89, 

p = 0.033, ηp
2 = 0.11. Follow-up independent-samples tests for the interaction between 

age and step condition indicated that there was no difference between the younger and 

older adults during the PREF stepping condition, while the older adults had reduced time 

to peak during ML stepping, t(38) = 3.23, p = 0.003, d = 1.02. Paired-samples t-tests did 

not reveal differences by step condition within either age group (Fig. 5-16). Further, 

independent-samples t-tests for the interaction between age and time revealed no 
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difference between the younger and older adults during the first block of trials, while the 

older adults exhibited a reduced time to peak during the second block of trials, t(38) = 

3.04, p = 0.004, d = 0.96. Paired-samples t-tests did not reveal differences by time block 

within either age group (Fig. 5-17). There were no effects of age, step condition or time 

when examining the variability in timing of this peak. 

 
Figure 5-16. Timing of the first peak divergence between the inclination angles of the net ground 
reaction force and the COP-COM following foot-contact (P1). Data are depicted for older (solid line) 
and younger adults (dotted line), averaged within condition. Error bars represent the 95% confidence 
interval for the mean. Task conditions include: preferred speed stepping with preferred step placement 
(PREF); rapid speed stepping with preferred step placement (PREF_RAPID); rapid speed stepping with 
narrow step width (ML_RAPID). 
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Figure 5-17. Timing of the first peak divergence between the inclination angles of the net ground 
reaction force and the COP-COM following foot-contact (P1). Data are depicted for older (solid line) 
and younger adults (dotted line), averaged within the first (t1) and second (t2) blocks of repeated trials. 
Error bars represent the 95% confidence interval for the mean. 

 

Analyses of the magnitude of the second positive peak after foot-contact (P2) only 

revealed a main effect of time, F(1,38) = 37.28, p < 0.001, ηp
2 = 0.50, as all participants 

had a reduced the magnitude of this peak in the second block of trials, relative to the first. 

There were no other main effects or interactions in either amplitude or variability.  

 

Examination of the variability time from foot-contact to P2 revealed a main effect of age, 

F(1,38) = 7.14, p = 0.001, ηp
2 = 0.16, as older adults had greater variability in the timing 

of this peak than did the younger adults (Fig. 5-18). 
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Figure 5-18. Trial-to-trial variability in the timing of second peak divergence between the inclination 
angles of the net ground reaction force and the COP-COM following foot-contact (P2). Data are 
depicted for older (solid line) and younger adults (dotted line), averaged within condition. Error bars 
represent the 95% confidence interval for the mean. Task conditions include: preferred speed stepping 
with preferred step placement (PREF); rapid speed stepping with preferred step placement 
(PREF_RAPID); rapid speed stepping with narrow step width (ML_RAPID). 

 
 
5.5 DISCUSSION 
 
The purpose of the current study was to examine age-related differences in the control of 

mediolateral dynamic stability during the restabilisation phase of perturbation-evoked 

stepping. We sought to further explore the effects of age by including trials in which 

individuals stepped with reduced step width, which we believed would pose an increased 

challenge to the maintenance of stability. Secondarily, we attempted to probe the extent 

and means by which individuals could alter the dynamics of the compensatory stepping 

response over time, with trial repetition. Results revealed that overshoots of the final 

COM position were common among both age groups in all stepping conditions, but were 

subsequently reduced with trial repetition. Older adults, however, exhibited an increased 

magnitude of overshoot relative to the younger adults. Older adults also exhibited greater 

trial-to-trial variability of COM incongruity than the younger adults, which was also 

reduced with trial repetition. Examination of the kinetic data in concert with these 

kinematic variables provided support for previous work, which has suggested that 
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overshoot may be a means to simplify the control of mediolateral dynamic stability 

during the restabilisation phase of stepping. Increased overshoot and intertrial variability 

in COM incongruity exhibited by older adults, however, is proposed to be a consequence 

of age-related differences in the timing and scaling of the ground reaction force, which 

may be indicative of difficulties with reactive control during the restabilisation phase. 

Reductions in overshoot and intertrial variability, specifically among the older adults, are 

proposed to occur primarily through the alteration of pre-planned movement parameters 

and swing phase dynamics. 

 
5.5.1 Initial Conditions and Initial Movement Parameters 

Despite the utmost attempts to ensure the equivalence of initial conditions before 

perturbation onset, results of the secondary analyses indicated that there were group 

differences in these variables. Specifically, the older adults exhibited increased soleus 

LE-EMG amplitude during the period before perturbation onset, which likely resulted in 

the reduced AP distance between the COM and COP (1.1 cm, on average, between 

groups). Furthermore, the younger participants exhibited a larger amplitude APA, but this 

did not result in group differences in peak lateral COM displacement toward the stance 

limb. There were no age-related differences in the time to onset of ML asymmetry, time 

to onset of ML unloading, step length, step width or step time. Despite the 

abovementioned differences in a small number of initial movement parameters, there 

were no age-related differences in the AP or ML COM velocity at the instant of foot 

contact. As a result, we believe that subsequent analyses of age-related differences in 

dynamic stability control during the restabilisation phase would not be confounded by 

group differences in initial movement parameters. 
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5.5.2 Incongruity Magnitude 

As per our previous work (Singer et al., 2012), we found that overshoots were 

predominant among both age groups. During volitional stepping, overshoot during the 

restabilisation phase has been suggested to play an important role in the simplification of 

mediolateral dynamic stability control, in that it may limit the frontal plane gravitational 

moment about the stepping limb and the subsequent acceleration. Similarly, during 

steady-state gait, such a reduction of the frontal plane gravitational moment may have 

important implications for simplifying mediolateral stability control during single limb 

support and step-to-step transitions (Donelan et al., 2002; Donelan et al., 2004). This 

strategy may also be beneficial during compensatory stepping, in the event that the 

forward COM velocity cannot be arrested within the first step and an additional step with 

the stance limb becomes necessary to achieve stability. Such multiple alternating step 

responses have been shown to be common among older adults (Luchies et al., 1994; 

McIlroy and Maki, 1996; Maki & McIlroy, 1999; Rogers et al., 2001; King et al., 2005; 

Schulz et al., 2005) and were also employed by older adults in early trials of the present 

study. From this, the larger magnitude of overshoot among the older adults may have 

emerged to ensure mediolateral stability, given the increased potential for sagittal plane 

instability and consequent multiple alternating step responses. Subsequent reductions in 

overshoot with practice may suggest that this strategy was modified once individuals 

learned that the perturbation magnitude was unlikely to result in sagittal plane instability 

subsequent to the first step. 
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Alternatively, while overshoot could be generally advantageous, the increased overshoot 

exhibited by the older adults may be maladaptive, as the COM would be displaced to a 

greater extent toward the lateral stability limits. This is especially true when considering 

the trials with reduced step width, since step width reduction, in concurrence with the 

equality of the magnitude of overshoot between stepping conditions, would place the 

COM even closer to the support limb at the point of peak lateral COM displacement. This 

could be considered somewhat beneficial, as it would considerably reduce the frontal 

plane gravitational moment in the event of subsequent steps. In contrast, the reduction of 

step width, per se, would have little bearing on the necessity for such additional forward 

steps, assuming equality of step length and step time, as the anterior perturbation 

magnitude was equivalent across step conditions. Given this, such a strategy to further 

limit the frontal plane gravitational moment when stepping with reduced step width 

would have little practical value. Previously reported reductions in stability limits among 

older adults (Pai et al., 1998; Jensen et al., 2001) – either real or perceived – would 

suggest that the most prudent strategy for the maintenance of mediolateral stability would 

be to maintain the COM at a safe distance from the lateral border of the BOS. Further, 

both age groups reduced the magnitude of overshoot with practice: the older group 

exhibited nearly twice the reduction as the young, while the young reduced the magnitude 

to values approaching those observed in our previous work on volitional stepping (study 

1). This was unlikely to have occurred if the increased overshoot exhibited by the older 

adults was advantageous for dynamic stability control. From this, we propose that the 

initial increased magnitude of overshoot was unintentional, but that overshoot in general, 

and the reduced magnitude exhibited in later trials, may have a practical function. 
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5.5.3 Origins of Increased Incongruity Magnitude: Reactive Control 

Of particular interest, when exploring the origin of increased mediolateral COM 

incongruity, was the increased time to P2 exhibited among older adults. While it is 

possible that these individuals deliberately increased the time to peak, which may permit 

greater overshoot and aid in mediolateral stability control, as previously outlined, we do 

not believe this to be the case. Rather, if P2 does represent an active response to the state 

of the COM during the restabilisation phase, as proposed, the increased time to peak 

could signify difficulties in sensing the position/velocity of the COM, slowing of 

conduction velocity (Inglis et al., 1994), impairment of central processing (Horak et al., 

1997), multisensory integration (Horak et al., 1989), or reduced rate of force development 

(Chang et al., 2005) due to muscle atrophy, slowing of contractile properties or impaired 

coordination (Barry et al., 2005), all of which have been previously documented.  

 
Such difficulty in stability control among older adults was also signalled by the increased 

trial-to-trial variability in incongruity magnitude. While early research attributed 

movement variability to random equipment or physiological noise, more recent research 

is beginning to suggest that variability represents the underlying neural control and may 

result from a lack of coordination between the components of the control system (Brach, 

Berlin, VanSwearingen, Newman & Studenski, 2005; McGibbon, Krebs & Wagenaar, 

2005; Hausdorf, 2005; Hausdorf, 2007). For the current study, we believed that increased 

intertrial variability in COM incongruity would result from difficulty with reactive 

control during the restabilisation phase. The finding of increased intertrial variability in 

the time to the P2 peak among older adults provides support for this hypothesis and for 
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previous studies, which have suggested that challenges to mediolateral stability control 

arise after stepping foot contact (Pai et al., 1998; Maki and McIlroy, 1999). 

 
5.5.4 Reductions in Incongruity and Variability: Augmented Movement Planning 

Because of the potential difficulty with reactive control during the restabilisation phase, 

practice-related reductions in COM incongruity and intertrial variability among older 

adults may have arisen from augmented movement planning and reduced reliance on 

reactive control during the restabilisation phase. Such a suggestion is given support by 

the kinetic data, as both age groups also exhibited practice-related reductions in the 

magnitude of the second peak (P2) after foot contact in addition to the RMSD. If P2 is 

indeed modulated in response to the state of the COM during the restabilisation phase, 

this finding may indicate that there was a reduced need to counteract the angular 

momentum that developed during swing phase.  

 
Such a reduction may have arisen from either of two mechanisms. Firstly, individuals 

may have become more adept at directing the GRF at the COM with trial repetition, as 

was evidenced by the reduction of RMSD values. Alternatively, it is more likely the 

practice-related reduction in COM overshoot occurred because individuals became 

familiar with the predictable features of the perturbation and relied less on reactive 

control during the restabilisation phase. Specifically, the older adults exhibited practice-

related reductions in the magnitude of divergence between GRF- and COP-COM 

inclination angles at the instant of foot-contact, in addition to a reduction in the time to 

P1 peak – variables that we have proposed to be modified by the mediolateral 

anticipatory postural adjustment and swing phase dynamics and limb stiffness on foot-
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contact, respectively. This is consistent with studies of standing balance and downward 

stepping, in which increased coactivation and limb stiffness were thought to represent 

strategies employed by older adults to compensate for impaired neuromotor function 

(Hortobagyi & DeVita, 2000; Benjuya, Melzer & Kaplanski, 2004; Cenciarini, Loughlin, 

Sparto & Redfern, 2009; Cenciarini, Loughlin, Sparto & Redfern, 2010). As these 

variables are regulated by events that occur before foot-contact, is possible that the 

observed changes represent a proactive strategy in attempt to offset instability during the 

restabilisation phase, which may be linked to the increased time to achieve the second 

‘active’ peak divergence between the net GRF and COP-COM inclination angles (P2). 

While these results suggest that practice-related improvements in older adults may arise 

from the alteration of pre-planned movement parameters, it remains possible that such 

improvements were also gained by the enhancement of sensory-based feedback control or 

sensory re-weighting, as proposed by Mansfield, Peters, Liu and Maki (2010). Future 

research should attempt to disentangle the origins of practice-related augmentations in 

stability control, perhaps by determining whether improvements acquired at one 

perturbation magnitude are transferable to other magnitudes. 

 
5.5.5 Overall Implications 

In general, the results of this study suggest that while overshoot may help to simplify 

mediolateral stability control during the restabilisation phase, the increased overshoot 

observed among the older adults and in early trials may arise because of difficulties in 

reactive control after foot contact. While stepping with reduced step width did not 

increase the magnitude of overshoot, it does pose a challenge to the maintenance of 

stability, as a narrower step in association with an equal magnitude of overshoot would 
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tend to reduce the mediolateral distance between the COM and lateral stability limits. 

While reductions in COM incongruity and variability with trial repetition may occur 

because of augmentation of reactive control, the results of the current study suggest that 

such reductions were brought about predominantly by alterations in pre-planned 

movement parameters. 

 
The increased trial-to-trial variability among older adults does have particularly important 

implications with respect to the potential for the development of mediolateral instability 

after foot contact. This is especially apparent when viewed in concert with the 

abovementioned increased magnitude of overshoot relative to the younger adults, and the 

relationship between the COM and BOS in trials with reduced step width. Despite its 

utility as a mechanism for simplification of mediolateral stability control, increased 

overshoot coupled with increased variability may occasionally lead to compensatory 

stepping responses in which the COM exceeds the lateral stability limits. Such lateral 

instability after foot contact is consistent with previous research examining older adults 

(Maki et al., 1994; McIlroy & Maki, 1996; Lord et al., 1999; Rogers et al., 2001; Rogers 

& Mille, 2003; Tirosh & Sparrow, 2004; Schulz et al., 2005; Tirosh & Sparrow, 2005). 

As instability and falls are intermittent events, measures of variability may provide a 

more sensitive measure of stability and fall risk. Future studies should be directed toward 

examining this potential. 
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CHAPTER 6 
 
 

General Discussion 
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6.1 SUMMARY OF RESEARCH FINDINGS  

The global objective of this thesis was to develop further understanding regarding 

mediolateral stability control during the restabilisation phase of stepping. More 

specifically, we sought to uncover age-related differences in COM kinematics and 

applied force generation during the restabilisation phase of both volitional and reactive 

stepping, which may elucidate factors associated with instability and fall risk. Despite the 

differences between the two forms of stepping, we believed that the challenges for 

effectively controlling and arresting the lateral progression of the COM within the base of 

support may have important links to the restabilisation phase and would be common to 

both volitional and reactive stepping.  

  

To date, much of the research exploring voluntary gait- or step-termination in healthy 

adults has focussed on the sequence of lower limb muscle activation (Hase and Stein, 

1998; Bishop, Brunt, Pathare & Patel, 2002; Bishop, Brunt, Pathare & Patel, 2004; Chu et 

al., 2009), ground reaction forces (Jaeger & Vanitchatchavan, 1992; Crenna, Cuong & 

Breniere, 2001) or the relationship between the COP and COM necessary to arrest the 

forward progression of the COM (Jian et al., 1993; Oates, Patla, Frank & Greig, 2005). 

Further, studies of age related differences in the ability to control the COM, during either 

voluntary or reactive stepping, have restricted analysis to either the sagittal plane (Cao et 

al., 1998; Chu et al., 2009; Menant et al., 2009; Carty et al., 2011) or to the initial phase 

of movement, until the time of foot contact (McIlroy & Maki, 1996). Given the evidence 

suggesting that control of mediolateral stability may be particularly problematic for older 

adults (Maki et al., 1994; McIlroy et al., 1996; Lord et al., 1999; Rogers et al., 2001; 
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Rogers & Mille, 2003; Tirosh & Sparrow, 2004; Schulz et al., 2005; Tirosh & Sparrow, 

2005) and those with balance disorders (Kaya et al., 1998; O’Kane et al., 2003), coupled 

with the suggestion that instability may arise independently of many of the initial 

movement parameters prior to foot-contact (McIlroy & Maki, 1996; Thelen et al., 1997; 

Thelen et al., 2000; Rogers et al., 2001), we proposed that the control of the COM during 

the restabilisation phase of stepping was likely a central determinant of age-related 

differences in mediolateral dynamic stability. 

 

We initiated this line of inquiry by quantifying the kinematics of the COM during the 

restabilisation phase of a voluntarily initiated-single step in a sample of healthy young 

adults. At the outset of this initial work, we believed that we would observe no COM 

incongruity during conditions where stepping was executed with preferred speed and step 

placement, as individuals had the opportunity to plan movement parameters for maximal 

stability. We believed that stepping with non-preferred step placement would increase the 

challenges associated with COM control and would lead to increased mediolateral 

incongruity and trial-to-trial variability. We also believed that, when afforded the 

opportunity to practice under non-preferred stepping conditions, we would observe 

subsequent reductions in incongruity, as individuals became familiar with the necessary 

movement dynamics during the restabilisation phase to achieve stability without under- 

or overshoot. Contrary to our hypotheses, mediolateral COM incongruity was common 

among all trials, with a bias toward overshoot. Non-preferred step placement did lead to 

increased incongruity, however there was neither a change in trial-to-trial variability nor 

were there reductions in COM incongruity with trial repetition. Together, these results 
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suggested that overshoots likely served the functional role of simplifying reactive control 

during the restabilisation phase. 

 

With this knowledge, we sought to determine how the abovementioned kinematic 

variables were associated with age-related declines in stability control. Further, we 

analysed the orientation of the net ground reaction force vector with respect to the COM 

to help clarify the mechanisms responsible for any age-related differences in the COM 

kinematics. We initially believed that effective control of the COM would be achieved by 

directing the line of action of the net ground reaction force through the COM to minimize 

the net external moment about the COM, and consequent changes in angular momentum. 

In this regard, it was possible that under- and overshoot of the final COM position may 

be linked to the polarity of the net external moment about the COM. Contrary to our 

hypotheses, we found that the magnitude of overshoot and the trial-to-trial variability of 

incongruity were greater among the older adults. This was particularly true during rapid 

stepping conditions, which minimized the potential for anticipatory ML stabilisation prior 

to step-onset and likely shifted the burden of COM control to the restabilisation phase. 

While increased COM incongruity could be a means to simplify reactive control, as 

previously proposed, we believed that such age-related differences were likely related to 

a reduced divergence between the inclination angles of the GRF and the COP-COM 

during the restabilisation phase and/or to the increased time to ‘actively’ reorient the 

GRF, which was necessary to oppose the angular momentum about the COM that 

developed during the swing phase. Such mechanisms would increase the time necessary 

to arrest the lateral progression of the COM as it approached the lateral stability limits, 
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which could account for the greater overshoot. Particularly interesting was the fact that 

older adults appeared to make alterations to the initial movement parameters, which may 

represent an attempt to offset subsequent mediolateral instability that may emerge after 

foot-contact. Despite this, increased incongruity did manifest within this group during the 

restabilisation phase.  

 

When the potential for mediolateral anticipatory postural adjustments was further 

minimized during perturbation-evoked stepping, we observed further increases in both 

COM incongruity and trial-to-trial variability among the older adults, as hypothesized. 

With trial repetition, however, we observed a reduction in incongruity within both 

groups. Such reductions among the older adults occurred in company with a reduction in 

the divergence of the net GRF inclination angle with respect to the COM at foot-contact 

and an earlier time-to-peak divergence immediately following foot-contact. As these 

variables may be related to the ML APA, swing phase dynamics and limb stiffness at 

foot-contact, it is possible that reductions in incongruity with trial repetition arose from a 

proactive strategy to offset difficulties with ML stability control during the restabilisation 

phase, as individuals learned the predictable features of the perturbation. 

 

6.2 SIGNIFICANCE  

The present work provides support for previous studies, which have suggested that the 

control of mediolateral stability may be especially challenging for older adults (Maki et 

al., 1994; McIlroy & Maki, 1996; Lord et al., 1999; Rogers et al., 2001; Rogers & Mille, 

2003; Tirosh & Sparrow, 2004; Schulz et al., 2005; Tirosh & Sparrow, 2005; Perry, 
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Radtke, McIlroy, Fernie & Maki, 2008). Further, our work provides evidence that the 

challenges associated with ML stability control have important links to the restabilisation 

phase and are common to both volitional and reactive stepping. We suggest that the 

orientation of the net ground reaction force with respect to the COM to be an important 

variable for effective control of the COM during the restabilisation phase. Specifically, 

the deviation of the line of action of the net ground reaction force with respect to the 

COM serves to generate an external moment about the COM to reverse the polarity of the 

angular momentum, which developed during the swing phase. As such, and contrary to 

our hypotheses, we suggest that it is likely the regulation, rather than minimization, of 

changes to angular momentum that is highly important in effecting restabilisation. This is 

in contrast to the “zero moment” control scheme for dynamic stability in the robotics 

literature (Popovic, Goswami & Herr, 2005), but is consistent with experimental studies 

quantifying angular momentum in humans, as angular momentum is manipulated to 

achieve a particular state of motion (Pijnappels et al., 2004; Herr & Popovic, 2008; 

Mathiyakom, McNitt-Gray, 2008; Pijnappels, Kingma, Wezenberg, Reurink & van 

Dieen, 2010). Of chief importance, then, is the ability to direct angular momentum to 

zero, when necessary. 

 

The particular difficulty older adults face during restabilisation from either internal or 

external perturbation appears not to be centred on the magnitude of the deviation of the 

line of action of the net GRF with respect to the COM (i.e. external moment), but with 

the time required to carry out such net GRF reorientation. As such, healthy older adults 

appear to make balance corrections of appropriate magnitude to restabilise, but do so with 
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inappropriate timing to limit the lateral progression of the COM. The increased overshoot 

exhibited by older adults during reactive stepping, relative to younger adults and to 

volitional stepping trials, suggests that the ability to effectively time the components of 

the restabilisation response becomes especially important during the time-sensitive nature 

of recovery from an external perturbation. 

 

Despite the importance of reactive control during the restabilisation phase, one cannot 

overlook the role of anticipatory control or proactive strategies, which, given prior 

knowledge regarding the nature of the postural disturbance, would alter the state of the 

COM at foot-contact to augment mediolateral stability. The modification of proactive 

strategies with task exposure has been well documented, and has been observed to occur 

during slip-related loss of balance (Pavol & Pai, 2002; Pavol, Runtz, Edwards & Pai, 

2002; Pai, Wening, Runtz, Iqbal & Pavol, 2003) and platform perturbations (Laessoe & 

Voigt, 2008). In regard to the present work, we observed the use of proactive strategies 

for mediolateral stability control among older adults during both volitional and reactive 

stepping. During volitional stepping, older adults more greatly increased the displacement 

of the COM toward the stance limb during step-initiation, which reduced the lateral COM 

velocity and increased the distance between the COM and lateral BOS limits at foot-

contact. During reactive stepping, older adults may have modified swing phase dynamics 

and increased stepping limb stiffness at foot-contact, which may have served to limit 

changes in angular momentum during the swing phase and caused an earlier onset of the 

external moment about the COM, respectively. Both of these mechanisms may have the 

potential to offset instability which may stem from difficulty with reactive control during 
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the restabilisation phase. It is important to note, however, that while increased muscle 

coactivation and limb stiffness may be a common strategy among older adults to 

compensate for altered neuromotor function (Hortobagyi & DeVita, 2000; Benjuya et al., 

2004; Cenciarini et al., 2010), such a strategy may impair the ability to make subsequent 

corrective responses should the initial step be insufficient to restore stability (Huang & 

Ahmed, 2010). From this, it is possible that increased limb stiffness to bring about an 

earlier onset of the P1 peak, may in fact hamper the ability to make subsequent 

modifications to the orientation of the net GRF (viz., timing of P2 peak). Moreover, the 

previously reported association between multiple step responses and fall risk (McIlroy & 

Maki, 1996; Maki et al., 2001; Schulz et al., 2005) may in fact stem from such increased 

limb stiffness, in that coactivation may alter the amplitude and timing characteristics of 

the P2 peak, while also impeding upon the ability to effectively reposition the limb for 

subsequent steps, should the initial step be insufficient to restore stability. 

 

6.3 IMPLICATIONS FOR IMPROVING STABILITY CONTROL  

Given the potential ramifications of falls among older adults, there has been considerable 

work toward developing interventions effective in reducing instability and falls (Bieryla, 

Madigan & Nussbaum, 2007; Mansfield, Peters, Liu & Maki, 2007; Perry et al., 2008; 

Mansfield et al., 2010). While generalized exercise programs have potential to attain such 

an end (Sherrington et al., 2008; Sherrington, Tiedemann, Fairhall, Close & Lord, 2011), 

interventions that affect the specific components underlying balance dyscontrol may have 

greater effectiveness. Recently, perturbation-based training programs (Mansfield et al., 

2007; Mansfield et al., 2010) have demonstrated some success in reducing the frequency 
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of specific features of stepping reactions believed to be associated with fall risk, such as 

multiple step reactions (McIlroy & Maki, 1996, Schulz et al., 2005), laterally-directed 

steps in response to anterior perturbation (Rogers et al., 2001; Schulz et al., 2005), and 

foot collisions during lateral perturbations (Maki, Edmondstone & McIlroy, 2000).  

 

What remains somewhat unclear, however, are the specific biological components of the 

stepping reactions that are affected by training, although enhanced feedback from the 

plantar surface of the foot or sensory re-weighting have been suggested (Mansfield et al., 

2010). If the timing of the active peak reorientation of the net GRF with respect to the 

COM is indeed a principal factor governing effective mediolateral stabilisation, it is 

possible that afferent somatosensory information, specifically from the plantar foot 

surface, may be augmented or better integrated with practice. Indeed, Perry et al. (2008) 

have found that older adults using a balance-enhancing insole, designed to facilitate foot-

sole sensation, exhibited increased lateral stability during gait (quantified as a increase in 

the distance between the COM and lateral BOS at the time of peak lateral COM 

displacement) and reduced incidence of falls. It is also a possibility that the timing of the 

net GRF reorientation is a function of age-related differences in muscle contractile 

properties, resulting in a reduced rate of force development. From this, interventions that 

seek to increase the ability to generate lower limb power may be effective in reducing 

age-related mediolateral instability (Skelton, Kennedy & Rutherford, 2002; Rogers and 

Mille, 2003). Further, while there are differences between volitional and reactive stepping 

until the time of foot-contact (McIlroy & Maki, 1993a; McIlroy & Maki, 1993b; McIlroy 

& Maki, 1995; Maki & McIlroy, 1997; Maki & McIlroy, 2005), there appears to be 
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similarity in the challenges associated with mediolateral stability control during the 

restabilisation phase of both forms of stepping. As such, it is possible that rapid step 

training could provide a similar benefit to the aforementioned perturbation-based training 

programs, provided stepping was executed as rapidly as possible. A distinct advantage of 

rapid step training would be the ability to perform such a program in a typical clinical 

environment without complex or expensive equipment to deliver balance perturbations. 

 

6.4 LIMITATIONS 

It is important to note the limitations that should be considered when interpreting the 

preceding outcomes. Firstly, a number of sources of error exist, which are inherent to 

current three-dimensional motion analysis techniques. Photogrammetric error (i.e. 

random error affecting accuracy of individual marker reconstruction) (Thornton, 

Morrissey & Couts, 1998), errors in model calibration and anatomical landmark 

determination (Della Croce, Cappozzo, Kerrigan & Luchetti, 1997), each affect the 

accuracy of the segment endpoints and anatomically-based segmental coordinate systems 

(Ramakrishnan & Kadaba, 1991) in addition to the location of segment centres of mass. 

As the total body centre of mass is the weighted average of individual segment centres of 

mass, it is sensitive to positional errors related to any of the individual segments. 

Although tracking markers were placed on rigid clusters to eliminate relative marker 

movement, photogrammetric error may itself induce relative error, which may affect the 

validity of the rigid body assumption. Absolute marker movement, related to the degree 

to which the rigid clusters represent the motion of the underlying skeletal structures, may 

have an influence on the calculation of the position of individual segment centres of mass 
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and, hence, on the total body centre of mass. Correct determination of the total body 

centre of mass is also dependent on the anthropometric data used to characterize the 

individual segment mass proportions, geometry and relative centre of mass position as a 

proportion of segment length. Further, error in defining the position and orientation of 

each force plate within the kinematic reference frame may affect the calculation of 

compound variables derived from kinematic and kinetic data. 

 

With the abovementioned sources of error in mind, extreme care was taken to minimize 

their influence before embarking upon data collection. To minimize the influence of 

photogrammetric error, Vicon cameras were positioned such that their optical axes 

intersected at an angle greater than 30 degrees and were placed as close to the participant 

as possible while retaining the ability to view all retroreflective markers. Random error, 

due to variation in marker centroid estimation, was reduced by filtering individual marker 

trajectories. Marker placement was performed by the same investigator (JS) for each 

participant, which would eliminate concerns regarding inter-examiner precision in 

landmark definition (Della Croce, Cappozzo & Kerrigan, 1999). Absolute marker 

movement has been suggested to induce the largest errors for rotations about the 

longitudinal axis of a segment. Such error was further minimized by adhering to the 

recommendations of Manal, McClay, Stanhope, Richards and Galinat (2000), who have 

suggested the use of large, rigid clusters of 4 markers, located distally on the segment of 

interest and held in place with elastic wrapping. To reduce error induced by the choice of 

anatomical data set, we used anthropometric data specific to each age-group and sex, 

when possible (Dempster, 1955; Hanavan, 1964, as cited in Robertson et al., 2004; de 
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Leva, 1996). Lastly, the spatial synchronization of kinematic and kinetic reference frames 

was quantified during pilot testing by examining the position of the total body COM and 

the COP during 60 seconds of quiet standing, under the assumption that over the course 

of the trial the average positions of the COM and COP would be equal. 

 

From a methodological perspective, we chose to standardise the cable force for the tether-

release protocol to 10% of the participant’s body weight, as this magnitude had been 

found to evoke stepping in 100% of trials in young adults (Singer, Prentice & McIlroy, 

2010), while also failing to evoke multiple forward steps. Such a method serves to 

standardize the magnitude of the anterior perturbation, at the instant of cable release, due 

to the net external moment about the ankle joint (i.e. the difference in moments caused by 

the gravitational force acting at the COM and the net GRF acting at the net COP), thereby 

accounting for between-trial variations in the position of the COP. Between-subject 

differences in body mass alone (i.e. assuming equal net COP position) have no influence 

on the anteriorly-directed angular acceleration upon cable release, as the moment caused 

by the gravitational force acting at the COM scales in proportion to the mass moment of 

inertia about a mediolateral axis passing through the ankle joint. Between-subject 

variations in body height, however, will have an effect on the angular acceleration, as 

changes in body height will alter the mass moment of inertia to a greater extent than the 

moment caused by the gravitational force acting at the COM (due to body height induced 

changes in the length of the moment arm of the gravitational force). Interestingly, there 

were no between-group differences in body height (Table 5-1). As a result, it is unlikely 

that the observed between-group differences were a result of differences in perturbation 
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magnitude. Despite the potential such confounds of between-group differences in body 

height on perturbation magnitude, the present method of standardisation was chosen over 

one in which we would titrate the perturbation magnitude for each participant to a level 

that would be scarcely large enough to evoke a forward step (i.e. standardizing relative to 

the individual), as doing so could expose participants to a differing number of trials 

before testing began. Additionally, on account of time efficiency while participants were 

in the lab, the chosen method was also favoured over one in which we would estimate, or 

precisely calculate, the vertical position of the COM.  

 

There are some limitations inherent to cable-release perturbations over other forms of 

perturbation. While the timing of perturbation onset can be altered and catch trials 

included in attempt to reduce predictability, both the direction and the relative magnitude 

can be deduced by the participant before perturbation onset. As such, it is possible that 

the conclusions reached during our examination of perturbation-evoked stepping, 

specifically those regarding the role of limb stiffness at foot-contact in reorienting the net 

GRF (P1) and the subsequent effect on the P2 peak may be related, in part, to age-related 

differences in arousal state, central set or fear. 

 

We chose to standardize initial foot placement, as per McIlroy and Maki (1997). While 

this may have forced some participants to adopt an unnatural stance width, we felt it was 

a necessary compromise to ensure that the potential differences in the choice of stance 

width did not bias the effect of the ML APA in displacing the COM toward the stance 

limb prior to step-onset. 
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Participants were asked to “try to use only a single step, if necessary” to regain their 

balance. We acknowledge that without constraints on the number of steps, it is possible 

that some individuals, especially some older adults, would prefer the use of multiple steps 

to restore stability (McIlroy & Maki, 1996; Hsiao & Robinovitch, 1998: Hsiao & 

Robinovitch, 2001). While there is some debate as to whether multiple step responses are 

a planned strategy for restabilisation following an external perturbation (Luchies et al., 

1994; McIlroy & Maki, 1996; Rogers et al., 2001; Maki & McIlroy, 2006), we believe it 

is the characteristics of initial step that have the largest role. The function of the initial 

step for arresting the COM may be particularly important if each successive step is 

considered to be an opportunity for the development of further instability, if not scaled 

correctly. In addition, there are instances where environmental constraints would restrict 

the response to a single step. Ultimately, the approach utilised within this series of studies 

allowed us to quantify the biomechanical variables that may be associated with age-

related instability during the initial step, without the confounding influence of individual 

differences in the number of steps taken to restore stability. 

 

Arm movement was not restricted during any of the tasks. Although not quantified, the 

older adults were observed to exhibit larger arm abduction after step initiation than did 

the young. It is possible that such arm movement during the stepping phase, and the 

corresponding increase in the moment of inertia about the anteroposterior axis, could 

moderate frontal plane angular acceleration caused by the gravitational force, which may 

simplify stability control during the restabilisation phase. Had arm use been restricted, it 
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is possible that older adults would have exhibited either a larger magnitude of divergence 

of the line of action of the net GRF with respect to the COM, or an increased magnitude 

of overshoot. Such an outcome, however, would likely only further amplify the observed 

age-related differences. 

 

We quantified both kinematic and kinetic variables in a lab-fixed coordinate system, 

rather than a body-fixed coordinate system (e.g. a local coordinate system aligned with 

the mean foot progression angle during the restabilisation phase). While such lab-centric 

calculations for the total body centre of mass are common practice, large axial rotations 

of the body could invalidate the anatomical meaning of ‘lateral’ when calculated with 

reference to the frontal plane of a lab-fixed coordinate system. Nevertheless, in the 

context of balance control, lateral instability has referred to that which occurs in direction 

orthogonal to the initial perturbation (McIlroy & Maki, 1996; Huang & Ahmed, 2011). 

As such, we believe the conclusions drawn from the preceding studies continue to have 

value, as anterior perturbations were aligned with the AP axis of the lab.  

 

Although we quantified the divergence of the frontal plane inclination angles of the net 

GRF and COP-COM, we did not quantify the net external moment about the COM. We 

initially chose to quantify the divergence between the two inclination angles because we 

believed ML instability to be the result of a control challenge rather than limitations in 

the ability to generate muscle force. As such, we were specifically interested in how the 

vertical and ML components of the net GRF were modulated to direct the line of action 

through the total body COM during the restabilisation phase. As we found that the line of 



 158 

action of the net GRF was not directed through the COM, it was possible that our 

interpretations concerning the effect of the P1 and P2 peaks on the total body angular 

acceleration could be incorrect if the magnitude of the net frontal plane GRF at these 

instances was small. We quantified the frontal plane external moment about the COM in 

a subset of participants. The waveform representing the net external moment has the 

same shape as the divergence between the inclination angles of the net GRF and COP-

COM, but its amplitude is modulated by the magnitudes of the net GRF and the COP-

COM position vector. As a result, we believe our conclusions would be consistent with 

those arising from an analysis of the net external moment. 

 

6.5 FUTURE DIRECTIONS 

The results of this thesis form the foundation for several lines of inquiry which could 

further progress our current understanding of age-related differences in mediolateral 

dynamic stability control. In the near future, it will be necessary to perform additional 

work utilizing electromyography and inverse dynamics, coupled with the quantification 

of the COM kinematics, to more deeply probe the purpose and underlying mechanisms 

governing the deviation of the net GRF line of action with respect to the COM. 

Specifically, such work would elucidate the role of anticipatory control in regulating the 

timing of the P1 peak; the role of muscle activation, subsequent to foot contact, in 

altering the timing of the P2 peak; whether such timing is affected by the magnitude of 

preparatory muscle activity during the swing phase; the role of instability subsequent to 

foot-contact for modulating the amplitude of the P2 peak. Following this, work should be 
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directed at determining the influence of variables at the level of individual joints, which 

are associated with ML instability. 

 

In the longer term, we are also interested in exploring a number of avenues that diverge 

from the present work. Firstly, the studies within this thesis examined the orientation of 

the net GRF line of action, given the selected foot placement. An alternative approach 

would be to use techniques similar to Wight et al. (2008) and Millard et al. (2009) to 

determine if differences in actual, as opposed to optimal, foot placement can account for 

age-related differences in stability control. In addition, despite the suggestion that ML 

stability control has important links to the restabilisation phase, the influence of the swing 

phase cannot be overlooked. Future work employing segmental mechanical energy 

analysis will help to elucidate age-related differences in energy transfer to the trunk at the 

end of the swing-phase, which may influence mediolateral stability. Finally, we hope to 

apply the techniques utilized within this thesis to the analysis of steady-state gait. 

Through prospective studies, we hope to explore the relationship to fall risk. 

 

6.6 CONCLUSIONS 

This thesis sought to develop further understanding regarding age-related differences in 

mediolateral stability control during the restabilisation phase of volitional and reactive 

stepping. Greater ML COM incongruity was observed among older adults, independent 

of the means by which stepping was initiated. We believe such increased COM 

incongruity is likely indicative of greater instability, which may be associated with the 

timing of reorientation of the net GRF to reverse the polarity of angular acceleration 
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about the COM. This work highlights the need to further explore the control of lateral 

stability and develop therapeutic interventions to reduce the incidence of lateral 

instability among older adults. 



 161 

REFERENCES 

Barry, B. K., Riek, S., & Carson, R. G. (2005). Muscle coordination during rapid force 

production by young and older adults. J Gerontol A Biol Sci Med Sci, 60(2), 232-

240. 

 

Bateni, H., & Maki, B. E. (2005). Assistive devices for balance and mobility: benefits, 

demands, and adverse consequences. Arch Phys Med Rehabil, 86(1), 134-145. 

 

Bauby, C. E., & Kuo, A. D. (2000). Active control of lateral balance in human walking. J 

Biomech, 33(11), 1433-1440. 

 

Benjuya, N., Melzer, I., & Kaplanski, J. (2004). Aging-induced shifts from a reliance on 

sensory input to muscle cocontraction during balanced standing. J Gerontol A Biol 

Sci Med Sci, 59(2), 166-171. 

 

Bieryla, K. A., Madigan, M. L., & Nussbaum, M. A. (2007). Practicing recovery from a 

simulated trip improves recovery kinematics after an actual trip. Gait Posture, 

26(2), 208-213. 

Binda, S. M., Culham, E. G., & Brouwer, B. (2003). Balance, muscle strength, and fear 

of falling in older adults. Exp Aging Res, 29(2), 205-219. 

 

Bishop, M., Brunt, D., Pathare, N., & Patel, B. (2002). The interaction between leading 

and trailing limbs during stopping in humans. Neurosci Lett, 323(1), 1-4. 

 

Bishop, M., Brunt, D., Pathare, N., & Patel, B. (2004). The effect of velocity on the 

strategies used during gait termination. Gait Posture, 20(2), 134-139. 

 

Bloem, B. R., Steijns, J. A., & Smits-Engelsman, B. C. (2003). An update on falls. Curr 

Opin Neurol, 16(1), 15-26. 

 



 162 

Bogle Thorbahn, L. D., & Newton, R. A. (1996). Use of the Berg Balance Test to predict 

falls in elderly persons. Phys Ther, 76(6), 576-583; discussion 584-575. 

 

Brach, J. S., Berlin, J., VanSwearingen, J., Newman, A., & Studenski, S. (2005). Too 

much or too little step width variability is associated with a fall history only in older 

persons who walk at or near normal gait speed. J Am Geriatr Soc, 53(4), S133-

S134. 

 

Brauer, S. G., Burns, Y. R., & Galley, P. (2000). A prospective study of laboratory and 

clinical measures of postural stability to predict community-dwelling fallers. J 

Gerontol A Biol Sci Med Sci, 55(8), M469-476. 

 

Breniere, Y., & Do, M. C. (1991). Control of gait initiation. J Mot Behav, 23(4), 235-240. 

 

Brunt, D., Lafferty, M. J., McKeon, A., Goode, B., Mulhausen, C., & Polk, P. (1991). 

Invariant characteristics of gait initiation. Am J Phys Med Rehabil, 70(4), 206-212. 

 

Campbell, A. J., Borrie, M. J., & Spears, G. F. (1989). Risk factors for falls in a 

community-based prospective study of people 70 years and older. J Gerontol, 44(4), 

M112-117. 

 

Canadian Institute of Health Information (2010). National Trauma Registry 2009 Report: 

Major Injury in Canada (Includes 2007–2008 Data). Ottawa: CIHI.  

 

Cao, C., Ashton-Miller, J.A., Schultz, A.B., Alexander, N.B. (1997). Abilities to turn 

suddenly while walking: effects of age, gender, and available response time. J 

Gerontol A Biol Sci Med Sci, 52A(2), M88-M93. 

 

Cao, C., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. (1998). Sudden turns 

and stops while walking: kinematic sources of age and gender differences. Gait 

Posture, 7(1), 45-52. 



 163 

 

Carpenter, M. G., Adkin, A. L., Brawley, L. R., & Frank, J. S. (2006). Postural, 

physiological and psychological reactions to challenging balance: does age make a 

difference? Age Ageing, 35(3), 298-303. 

 

Carty, C. P., Mills, P., & Barrett, R. (2011). Recovery from forward loss of balance in 

young and older adults using the stepping strategy. Gait Posture, 33(2), 261-267. 

 

Cenciarini, M., Loughlin, P. J., Sparto, P. J., & Redfern, M. S. (2009). Medial-Lateral 

Postural Control in Older Adults Exhibits Increased Stiffness and Damping. Embc: 

2009 Annual International Conference of the Ieee Engineering in Medicine and 

Biology Society, Vols 1-20, 7006-7009. 

 

Cenciarini, M., Loughlin, P. J., Sparto, P. J., & Redfern, M. S. (2010). Stiffness and 

damping in postural control increase with age. IEEE Trans Biomed Eng, 57(2), 267-

275. 

 

Chang, H., & Krebs, D. E. (1999). Dynamic balance control in elders: gait initiation 

assessment as a screening tool. Arch Phys Med Rehabil, 80(5), 490-494. 

 

Chang, S. H. J., Mercer, V. S., Giuliani, C. A., & Sloane, P. D. (2005). Relationship 

between hip abductor rate of force development and mediolateral stability in older 

adults. Arch Phys Med Rehabil, 86(9), 1843-1850. 

 

Chu, Y. H., Tang, P. F., Chen, H. Y., & Cheng, C. H. (2009). Altered muscle activation 

characteristics associated with single volitional forward stepping in middle-aged 

adults. Clin Biomech, 24(9), 735-743. 

 

Conforto, S., Schmid, M., Camomilla, V., D'Alessio, T., & Cappozzo, A. (2001). 

Hemodynamics as a possible internal mechanical disturbance to balance. Gait 

Posture, 14(1), 28-35. 



 164 

 

Cordo, P. J., & Nashner, L. M. (1982). Properties of postural adjustments associated with 

rapid arm movements. J Neurophysiol, 47(2), 287-302. 

 

Crenna, P., Cuong, D. M., & Breniere, Y. (2001). Motor programmes for the termination 

of gait in humans: organisation and velocity-dependent adaptation. J Physiol, 

537(Pt 3), 1059-1072. 

 

de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J 

Biomech, 29(9), 1223-1230. 

 

della Croce, U., Cappozzo, A., Kerrigan, D. C., & Luchetti, L. (1997). Bone Position and 

Orientation Errors: Pelvis and Lower Limb Anatomical Landmark Identification 

Reliability Gait Posture, 5(2), 156-157. 

 

della Croce, U., Cappozzo, A., & Kerrigan, D. C. (1999). Pelvis and lower limb 

anatomical landmark calibration precision and its propagation to bone geometry and 

joint angles. Med Biol Eng Comput, 37(2), 155-161. 

 

Dingwell, J. B., & Marin, L. C. (2006). Kinematic variability and local dynamic stability 

of upper body motions when walking at different speeds. J Biomech, 39(3), 444-

452. 

 

Do, M. C., Breniere, Y., & Brenguier, P. (1982). A biomechanical study of balance 

recovery during the fall forward. J Biomech, 15(12), 933-939. 

 

Do, M. C., Schneider, C., & Chong, R. K. (1999). Factors influencing the quick onset of 

stepping following postural perturbation. J Biomech, 32(8), 795-802. 

 

Donelan, J. M., Kram, R., & Kuo, A. D. (2001). Mechanical and metabolic determinants 

of the preferred step width in human walking. Proc R Soc B, 268(1480), 1985-1992. 



 165 

 

Donelan, J. M., Kram, R., & Kuo, A. D. (2002). Mechanical work for step-to-step 

transitions is a major determinant of the metabolic cost of human walking. J Exp 

Biol, 205(Pt 23), 3717-3727. 

 

Donelan, J. M., Shipman, D. W., Kram, R., & Kuo, A. D. (2004). Mechanical and 

metabolic requirements for active lateral stabilization in human walking. J 

Biomech, 37(6), 827-835. 

 

Duncan, P. W., Studenski, S., Chandler, J., & Prescott, B. (1992). Functional reach: 

predictive validity in a sample of elderly male veterans. J Gerontol, 47(3), M93-98. 

 

Duncan, P. W., Weiner, D. K., Chandler, J., & Studenski, S. (1990). Functional reach: a 

new clinical measure of balance. J Gerontol, 45(6), M192-197. 

 

Elble, R. J., Moody, C., Leffler, K., & Sinha, R. (1994). The initiation of normal walking. 

Mov Disord, 9(2), 139-146. 

 

Era, P., & Heikkinen, E. (1985). Postural sway during standing and unexpected 

disturbance of balance in random samples of men of different ages. J Gerontol, 

40(3), 287-295. 

 

Fernie, G. R., Gryfe, C. I., Holliday, P. J., & Llewellyn, A. (1982). The relationship of 

postural sway in standing to the incidence of falls in geriatric subjects. Age Ageing, 

11(1), 11-16. 

 

Graafmans, W. C., Ooms, M. E., Hofstee, H. M., Bezemer, P. D., Bouter, L. M., & Lips, 

P. (1996). Falls in the elderly: a prospective study of risk factors and risk profiles. 

Am J Epidemiol, 143(11), 1129-1136. 

 



 166 

Halliday, S. E., Winter, D. A., Frank, J. S., Patla, A. E., & Prince, F. (1998). The 

initiation of gait in young, elderly, and Parkinson's disease subjects. Gait Posture, 

8(1), 8-14. 

 

Hamill, J., & Selbie, W. S. (2004). Three Dimensional Kinetics. In D. G. E. Robertson, 

G. E. Caldwell, J. Hamill, G. Kamen & S. N. Whittlesey (Eds.), Research methods 

in biomechanics (pp. 145-160). Champaign, Ill. ; Leeds, U.K.: Human Kinetics. 

 

Hase, K., & Stein, R. B. (1998). Analysis of rapid stopping during human walking. J 

Neurophysiol, 80(1), 255-261. 

 

Hausdorff, J. M. (2005). Gait variability: methods, modeling and meaning. J Neuroeng 

Rehabil, 2, 19. 

 

Hausdorff, J. M. (2007). Gait dynamics, fractals and falls: finding meaning in the stride-

to-stride fluctuations of human walking. Hum Mov Sci, 26(4), 555-589. 

 

Hayes, W. C., Myers, E. R., Robinovitch, S. N., Van Den Kroonenberg, A., Courtney, A. 

C., & McMahon, T. A. (1996). Etiology and prevention of age-related hip fractures. 

Bone, 18(1 Suppl), 77S-86S. 

 

Herr, H., & Popovic, M. (2008). Angular momentum in human walking. J Exp Biol, 

211(4), 467-481. 

 

Hilliard, M. J., Martinez, K. M., Janssen, I., Edwards, B., Mille, M.-L., Zhang, Y., et al. 

(2008). Lateral balance factors predict future falls in community-living older adults. 

Arch Phys Med Rehabil, 89(9), 1708-1713. 

 

Hof, A. L., Gazendam, M. G., & Sinke, W. E. (2005). The condition for dynamic 

stability. J Biomech, 38(1), 1-8. 

 



 167 

Holbein-Jenny, M. A., McDermott, K., Shaw, C., & Demchak, J. (2007). Validity of 

functional stability limits as a measure of balance in adults aged 23–73 years. 

Ergonomics. 50(5), 631-646. 

 

Horak, F. B., Henry, S. M., & ShumwayCook, A. (1997). Postural perturbations: New 

insights for treatment of balance disorders. Phys Ther, 77(5), 517-533. 

 

Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: 

adaptation to altered support-surface configurations. J Neurophysiol, 55(6), 1369-

1381. 

 

Horak, F. B., Nutt, J. G., & Nashner, L. M. (1992). Postural inflexibility in parkinsonian 

subjects. J Neurol Sci, 111(1), 46-58. 

 

Horak, F. B., Shupert, C. L., & Mirka, A. (1989). Components of Postural Dyscontrol in 

the Elderly - a Review. Neurobiol Aging, 10(6), 727-738. 

 

Hortobagyi, T., & DeVita, P. (2000). Muscle pre- and coactivity during downward 

stepping are associated with leg stiffness in aging. J Electromyogr Kinesiol, 10(2), 

117-126. 

 

Hsiao, E. T., & Robinovitch, S. N. (1998). Common protective movements govern 

unexpected falls from standing height. J Biomech, 31(1), 1-9. 

 

Hsiao, E. T., & Robinovitch, S. N. (1999). Biomechanical influences on balance recovery 

by stepping. J Biomech, 32(10), 1099-1106. 

 

Hsiao, E. T., & Robinovitch, S. N. (2001). Elderly subjects' ability to recover balance 

with a single backward step associates with body configuration at step contact. J 

Gerontol A Biol Sci Med Sci, 56(1), M42-M47. 

 



 168 

Hsiao-Wecksler, E. T. (2008). Biomechanical and age-related differences in balance 

recovery using the tether-release method. Journal of electromyography and 

kinesiology : official journal of the International Society of Electrophysiological 

Kinesiology, 18(2), 179-187. 

 

Hsiao-Wecksler, E. T., & Robinovitch, S. N. (2007). The effect of step length on young 

and elderly women's ability to recover balance. Clin Biomech (Bristol, Avon), 

22(5), 574-580. 

 

Huang, H. J., & Ahmed, A. A. (2011). Tradeoff between stability and maneuverability 

during whole-body movements. PLoS One, 6(7), e21815. 

 

Inglis, J. T., Horak, F. B., Shupert, C. L., & Jones-Rycewicz, C. (1994). The Importance 

of Somatosensory Information in Triggering and Scaling Automatic Postural 

Responses in Humans. Exp Brain Res, 101(1), 159-164. 

 

Jaeger, R. J., & Vanitchatchavan, P. (1992). Ground reaction forces during termination of 

human gait. J Biomech, 25(10), 1233-1236. 

 

Jensen, J. L., Brown, L. A., & Woollacott, M. H. (2001). Compensatory stepping: the 

biomechanics of a preferred response among older adults. Exp Aging Res, 27(4), 

361-376. 

 

Jian, Y., Winter, D. A., Ishac, M. G., & Gilchrist, L. (1993). Trajectory of the body COG 

and COP during initiation and termination of gait. Gait Post, 1(1), 9-22. 

 

Jonsson, E., Henriksson, M., & Hirschfeld, H. (2002). Does the functional reach test 

reflect stability limits in elderly people. J Rehabil Med, 35(1), 26-30. 

 



 169 

Karamanidis, K., Arampatzis, A., & Mademli, L. (2008). Age-related deficit in dynamic 

stability control after forward falls is affected by muscle strength and tendon 

stiffness. J Electromyogr Kinesiol, 18(6), 980-989. 

 

Kaya, B. K., Krebs, D. E., & Riley, P. O. (1998). Dynamic stability in elders: momentum 

control in locomotor ADL. J Gerontol A Biol Sci Med Sci, 53(2), M126-134. 

 

King, G. W., Luchies, C. W., Stylianou, A. P., Schiffman, J. M., & Thelen, D. G. (2005). 

Effects of step length on stepping responses used to arrest a forward fall. Gait 

Posture, 22(3), 219-224. 

 

King, M. B., Judge, J. O., & Wolfson, L. (1994). Functional base of support decreases 

with age. J Gerontol, 49(6), M258-M263. 

 

Laessoe, U., & Voigt, M. (2008). Anticipatory postural control strategies related to 

predictive perturbations. Gait Posture, 28(1), 62-68. 

 

Lajoie, Y., Teasdale, N., Bard, C., & Fleury, M. (1993). Attentional demands for static 

and dynamic equilibrium. Exp Brain Res, 97(1), 139-144. 

 

Laufer, Y., Barak, Y., & Chemel, I. (2006). Age-related differences in the effect of a 

perceived threat to stability on postural control. J Gerontol A Biol Sci Med Sci, 

61(5), 500-504. 

 

Lin, S. I., & Woollacott, M. H. (2002). Postural muscle responses following changing 

balance threats in young, stable older, and unstable older adults. J Mot Behav, 

34(1), 37-44. 

 

Lin, S. I., Woollacott, M. H., & Jensen, J. L. (2004). Postural response in older adults 

with different levels of functional balance capacity. Aging Clin Exp Res, 16(5), 

369-374. 



 170 

 

Lord, S. R., & Dayhew, J. (2001). Visual risk factors for falls in older people. J Am 

Geriatr Soc, 49(5), 508-515. 

 

Lord, S. R., Rogers, M. W., Howland, A., & Fitzpatrick, R. (1999). Lateral stability, 

sensorimotor function and falls in older people. J Am Geriatr Soc, 47(9), 1077-

1081. 

 

Luchies, C. W., Alexander, N. B., Schultz, A. B., & Ashton-Miller, J. (1994). Stepping 

responses of young and old adults to postural disturbances: kinematics. J Am 

Geriatr Soc, 42(5), 506-512. 

 

Lyon, I. N., & Day, B. L. (1997). Control of frontal plane body motion in human 

stepping. Experimental brain research Experimentelle Hirnforschung 

Experimentation cerebrale, 115(2), 345-356. 

 

Maki, B. E., Edmondstone, M. A., & McIlroy, W. E. (2000). Age-related differences in 

laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci, 

55(5), M270-M277. 

 

Maki, B. E., Edmondstone, M. A., Perry, S. D., Heung, E., Quant, S., & McIlroy, W. E. 

(2001). Control of rapid limb movements for balance recovery: do age-related 

changes predict falling risk? Paper presented at the International Society for Posture 

and Gait Research.  

 

Maki, B. E., Holliday, P. J., & Topper, A. K. (1994). A prospective study of postural 

balance and risk of falling in an ambulatory and independent elderly population. J 

Gerontol, 49(2), M72-84. 

 

Maki, B. E., & McIlroy, W. E. (1996). Postural control in the older adult. Clin Geriatr 

Med, 12(4), 635-658. 



 171 

 

Maki, B. E., & McIlroy, W. E. (1997). The role of limb movements in maintaining 

upright stance: The ''change-in-support'' strategy. Phys Ther, 77(5), 488-507. 

 

Maki, B. E., & McIlroy, W. E. (1999). The control of foot placement during 

compensatory stepping reactions: does speed of response take precedence over 

stability? IEEE Trans Rehabil Eng, 7(1), 80-90. 

 

Maki, B. E., & McIlroy, W. E. (2005). Change-in-support balance reactions in older 

persons: An emerging research area of clinical importance. Neurologic Clin, 23(3), 

751. 

 

Maki, B. E., & McIlroy, W. E. (2006). Control of rapid limb movements for balance 

recovery: age-related changes and implications for fall prevention. Age Ageing, 35 

Suppl 2, ii12-ii18. 

 

Maki, B. E., Perry, S. D., Norrie, R. G., & McIlroy, W. E. (1999). Effect of facilitation of 

sensation from plantar foot-surface boundaries on postural stabilization in young 

and older adults. J Gerontol A Biol Sci Med Sci, 54(6), M281-287. 

 

Manal, K., McClay, I., Stanhope, S., Richards, J., & Galinat, B. (2000). Comparison of 

surface mounted markers and attachment methods in estimating tibial rotations 

during walking: an in vivo study. Gait Posture, 11(1), 38-45. 

 

Mansfield, A., Peters, A. L., Liu, B. A., & Maki, B. E. (2007). A perturbation-based 

balance training program for older adults: study protocol for a randomised 

controlled trial. BMC geriatr, 7, 12. 

 

Mansfield, A., Peters, A. L., Liu, B. A., & Maki, B. E. (2010). Effect of a perturbation-

based balance training program on compensatory stepping and grasping reactions in 

older adults: a randomized controlled trial. Phys Ther, 90(4), 476-491. 



 172 

 

Mathiyakom, W., & McNitt-Gray, J. L. (2008). Regulation of angular impulse during fall 

recovery. J Rehabil Res Dev, 45(8), 1237-1247. 

 

McGibbon, C. A., Krebs, D. E., & Wagenaar, R. (2005). Stepping stability: effects of 

sensory perturbation. J Neuroeng Rehabil, 2, 9. 

 

McIlroy, W. E., & Maki, B. E. (1993a). Changes in early 'automatic' postural responses 

associated with the prior-planning and execution of a compensatory step. Brain Res, 

631(2), 203-211. 

 

McIlroy, W. E., & Maki, B. E. (1993b). Do anticipatory postural adjustments precede 

compensatory stepping reactions evoked by perturbation? Neurosci Lett, 164(1-2), 

199-202. 

 

McIlroy, W. E., & Maki, B. E. (1993c). Task constraints on foot movement and the 

incidence of compensatory stepping following perturbation of upright stance. Brain 

Res, 616(1-2), 30-38. 

 

McIlroy, W. E., & Maki, B. E. (1995). Adaptive changes to compensatory stepping 

responses. Gait Post, 3(1), 43-50. 

 

McIlroy, W. E., & Maki, B. E. (1996). Age-related changes in compensatory stepping in 

response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci, 51(6), 

M289-296. 

 

McIlroy, W. E., & Maki, B. E. (1997). Preferred placement of the feet during quiet 

stance: development of a standardized foot placement for balance testing. Clin 

Biomech (Bristol, Avon), 12(1), 66-70. 

 

 



 173 

 

McIlroy, W. E., & Maki, B. E. (1999). The control of lateral stability during rapid 

stepping reactions evoked by antero-posterior perturbation: does anticipatory 

control play a role? Gait Posture, 9(3), 190-198. 

 

Menant, J. C., Steele, J. R., Menz, H. B., Munro, B. J., & Lord, S. R. (2009). Rapid gait 

termination: Effects of age, walking surfaces and footwear characteristics. Gait 

Posture, 30(1), 65-70. 

 

Millard, M., Wight, D., McPhee, J., Kubica, E., & Wang, D. (2009). Human foot 

placement and balance in the sagittal plane. J Biomech Eng, 131(12), 121001. 

 

Mille, M. L., Rogers, M. W., Martinez, K., Hedman, L. D., Johnson, M. E., Lord, S. R., 

et al. (2003). Thresholds for inducing protective stepping responses to external 

perturbations of human standing. J Neurophysiol, 90(2), 666-674. 

 

Muir, S. W., Berg, K., Chesworth, B., & Speechley, M. (2008). Use of the Berg Balance 

Scale for predicting multiple falls in community-dwelling elderly people: a 

prospective study. Phys Ther, 88(4), 449-459. 

 

Murray, M. P., Seireg, A., & Scholz, R. C. (1967). Center of gravity, center of pressure, 

and supportive forces during human activities. J Appl Physiol, 23(6), 831-838. 

 

Nashner, L. M. (1977). Fixed patterns of rapid postural responses among leg muscles 

during stance. Exp Brain Res, 30(1), 13-24. 

 

Neptune, R. R., & McGowan, C. P. (2011). Muscle contributions to whole-body sagittal 

plane angular momentum during walking. J Biomech, 44(1), 6-12. 

 



 174 

Nevitt, M. C., & Cummings, S. R. (1993). Type of fall and risk of hip and wrist fractures: 

the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research 

Group. J Am Geriatr Soc, 41(11), 1226-1234. 

 

Nevitt, M. C., Cummings, S. R., Kidd, S., & Black, D. (1989). Risk factors for recurrent 

nonsyncopal falls. A prospective study. JAMA, 261(18), 2663-2668. 

 

Oates, A. R., Patla, A. E., Frank, J. S., & Greig, M. A. (2005). Control of dynamic 

stability during gait termination on a slippery surface. J Neurophysiol, 93(1), 64-70. 

 

O'Kane, F. W., McGibbon, C. A., & Krebs, D. E. (2003). Kinetic analysis of planned gait 

termination in healthy subjects and patients with balance disorders. Gait Posture, 

17(2), 170-179. 

 

O'Loughlin, J. L., Robitaille, Y., Boivin, J. F., & Suissa, S. (1993). Incidence of and risk 

factors for falls and injurious falls among the community-dwelling elderly. Am J 

Epidemiol, 137(3), 342-354. 

 

Pai, Y. C., Maki, B. E., Iqbal, K., McIlroy, W. E., & Perry, S. D. (2000). Thresholds for 

step initiation induced by support-surface translation: a dynamic center-of-mass 

model provides much better prediction than a static model. J Biomech, 33(3), 387-

392. 

 

Pai, Y. C., & Patton, J. (1997). Center of mass velocity-position predictions for balance 

control. J Biomech, 30(4), 347-354. 

 

Pai, Y. C., Rogers, M. W., Patton, J., Cain, T. D., & Hanke, T. A. (1998). Static versus 

dynamic predictions of protective stepping following waist-pull perturbations in 

young and older adults. J Biomech, 31(12), 1111-1118. 

 



 175 

Pai, Y. C., Wening, J. D., Runtz, E. F., Iqbal, K., & Pavol, M. J. (2003). Role of 

feedforward control of movement stability in reducing slip-related balance loss and 

falls among older adults. J Neurophysiol, 90(2), 755-762. 

 

Patla, A., Frank, J., & Winter, D. (1990). Assessment of balance control in the elderly: 

major issues. Physiotherapy Canada, 42(2), 89-97. 

 

Pavol, M. J., & Pai, Y. C. (2002). Feedforward adaptations are used to compensate for a 

potential loss of balance. Exp Brain Res, 145(4), 528-538. 

 

Pavol, M. J., Runtz, E. F., Edwards, B. J., & Pai, Y. C. (2002). Age influences the 

outcome of a slipping perturbation during initial but not repeated exposures. J 

Gerontol A Biol Sci Med Sci, 57(8), M496-M503. 

 

Perry, S. D., McIlroy, W. E., & Maki, B. E. (2000). The role of plantar cutaneous 

mechanoreceptors in the control of compensatory stepping reactions evoked by 

unpredictable, multi-directional perturbation. Brain Res, 877(2), 401-406. 

 

Perry, S. D., Radtke, A., McIlroy, W. E., Fernie, G. R., & Maki, B. E. (2008). Efficacy 

and effectiveness of a balance-enhancing insole. J Gerontol A Biol Sci Med Sci, 

63(6), 595-602. 

 

Pijnappels, M., Bobbert, M. F., & van Dieen, J. H. (2004). Contribution of the support 

limb in control of angular momentum after tripping. J Biomech, 37(12), 1811-1818. 

 

Pijnappels, M., Kingma, I., Wezenberg, D., Reurink, G., & van Dieen, J. H. (2010). 

Armed against falls: the contribution of arm movements to balance recovery after 

tripping. Exp Brain Res, 201(4), 689-699. 

 



 176 

Popovic, M. B., Goswami, A., & Herr, H. (2005). Ground reference points in legged 

locomotion: Definitions, biological trajectories and control implications. Int J Robot 

Res, 24(12), 1013-1032. 

 

Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Myklebust, B. M. 

(1996). Measures of postural steadiness: differences between healthy young and 

elderly adults. IEEE Trans Biomed Eng, 43(9), 956-966. 

 

Ramakrishnan, H. K., & Kadaba, M. P. (1991). On the Estimation of Joint Kinematics 

during Gait. J Biomech, 24(10), 969-977. 

 

Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2004). 

Research methods in biomechanics. Champaign, Ill. ; Leeds, U.K.: Human Kinetics. 

 

Robertson, D. G., & Dowling, J. J. (2003). Design and responses of Butterworth and 

critically damped digital filters. J Electromyogr Kinesiol, 13(6), 569-573. 

 

Robinovitch, S. N., Inkster, L., Maurer, J., & Warnick, B. (2003). Strategies for avoiding 

hip impact during sideways falls. J Bone Miner Res, 18(7), 1267-1273. 

 

Rogers, M. W., Hain, T. C., Hanke, T. A., & Janssen, I. (1996). Stimulus parameters and 

inertial load: effects on the incidence of protective stepping responses in healthy 

human subjects. Arch Phys Med Rehabil, 77(4), 363-368. 

 

Rogers, M. W., Hedman, L. D., Johnson, M. E., Cain, T. D., & Hanke, T. A. (2001). 

Lateral stability during forward-induced stepping for dynamic balance recovery in 

young and older adults. J Gerontol A Biol Sci Med Sci, 56(9), M589-594. 

 

Rogers, M. W., Kukulka, C. G., & Soderberg, G. L. (1992). Age-related changes in 

postural responses preceding rapid self-paced and reaction time arm movements. J 

Gerontol, 47(5), M159-165. 



 177 

 

Rogers, M. W., & Mille, M.-L. (2003). Lateral stability and falls in older people. Exerc 

Sport Sci Rev, 31(4), 182-187. 

 

Schmid, M., Conforto, S., Bibbo, D., & D'Alessio, T. (2004). Respiration and postural 

sway: detection of phase synchronizations and interactions. Hum Mov Sci, 23(2), 

105-119. 

 

Schrager, M. A., Kelly, V. E., Price, R., Ferrucci, L., & Shumway-Cook, A. (2008). The 

effects of age on medio-lateral stability during normal and narrow base walking. 

Gait Posture, 28(3), 466-471. 

 

Schulz, B. W., Ashton-Miller, J. A., & Alexander, N. B. (2005). Compensatory stepping 

in response to waist pulls in balance-impaired and unimpaired women. Gait Posture, 

22(3), 198-209. 

 

Sherrington, C., Tiedemann, A., Fairhall, N., Close, J. C. T., & Lord, S. R. (2011). 

Exercise to prevent falls in older adults: an updated meta-analysis and best practice 

recommendations. New South Wales public health bulletin, 22(3-4), 78-83. 

 

Sherrington, C., Whitney, J. C., Lord, S. R., Herbert, R. D., Cumming, R. G., & Close, J. 

C. T. (2008). Effective Exercise for the Prevention of Falls: A Systematic Review 

and Meta-Analysis. J Am Geriatr Soc, 56(12), 2234-2243. 

 

Shumway-Cook, A., Baldwin, M., Polissar, N. L., & Gruber, W. (1997). Predicting the 

probability for falls in community-dwelling older adults. Phys Ther, 77(8), 812-819. 

 

Shumway-Cook, A., & Woollacott, M. (2000). Attentional demands and postural control: 

the effect of sensory context. J Gerontol A Biol Sci Med Sci, 55(1), M10-16. 

 



 178 

Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of 

two types of cognitive tasks on postural stability in older adults with and without a 

history of falls. J Gerontol A Biol Sci Med Sci, 52(4), M232-240. 

 

Simoneau, G., & Krebs, D. (2000). Whole-body angular momentum during gait: a 

preliminary study of non-fallers and frequent fallers. J Appl Biomech, 16, 1-13. 

 

Singer, J. C., Prentice, S. D., & McIlroy, W. E. (2010). Evaluation of the stepping limb 

centre of pressure on foot contact during volitional and perturbation-evoked 

stepping. Paper presented at the XVI Conference of the Canadian Society for 

Biomechanics.  

 

Singer, J. C., Prentice, S. D., & McIlroy, W. E. (2012). Dynamic stability control during 

volitional stepping: A focus on the restabilisation phase at movement termination. 

Gait Posture, 25, 106-110. 

 

Skelton, D. A., Kennedy, J., & Rutherford, O. M. (2002). Explosive power and 

asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. 

Age Ageing, 31(2), 119-125. 

 

SMARTRISK (2009). The Economic Burden of Injury in Canada. (2009). Toronto: 

SMARTRISK. 

 

Sockol, M. D., Raichlen, D. A., & Pontzer, H. (2007). Chimpanzee locomotor energetics 

and the origin of human bipedalism. Proc Natl Acad Sci U S A, 104(30), 12265-

12269. 

 

Statistics Canada (2007). Portrait of the Canadian Population in 2006, by age and sex. 

(Catalogue no. 97-551-XIE). Ottawa: Statistics Canada. 

 



 179 

Stelmach, G. E., Populin, L., & Muller, F. (1990). Postural muscle onset and voluntary 

movement in the elderly. Neurosci Lett, 117(1-2), 188-193. 

 

Thelen, D. G., Muriuki, M., James, J., Schultz, A. B., Ashton-Miller, J. A., & Alexander, 

N. B. (2000). Muscle activities used by young and old adults when stepping to 

regain balance during a forward fall. J Electromyogr Kinesiol, 10(2), 93-101. 

 

Thelen, D. G., Wojcik, L. A., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. 

(1997). Age differences in using a rapid step to regain balance during a forward fall. 

J Gerontol A Biol Sci Med Sci, 52(1), M8-13. 

 

Thornton, M. J., Morrissey, M. C., & Coutts, F. J. (1998). Some effects of camera 

placement on the accuracy of the Kinemetrix three-dimensional motion analysis 

system. Clin Biomech, 13(6), 452-454. 

 

Tinetti, M. E., Speechley, M., & Ginter, S. F. (1988). Risk factors for falls among elderly 

persons living in the community. N Engl J Med, 319(26), 1701-1707. 

 

Tirosh, O., & Sparrow, W. A. (2004). Gait termination in young and older adults: effects 

of stopping stimulus probability and stimulus delay. Gait Posture, 19(3), 243-251. 

 

Tirosh, O., & Sparrow, W. A. (2005). Age and walking speed effects on muscle 

recruitment in gait termination. Gait Posture, 21(3), 279-288. 

 

Vaughan, C. L., Langerak, N. G., & O'Malley, M. J. (2003). Neuromaturation of human 

locomotion revealed by non-dimensional scaling. Exp Brain Res, 153(1), 123-127. 

 

Weerdesteyn, V., Laing, A. C., & Robinovitch, S. N. (2008). Automated postural 

responses are modified in a functional manner by instruction. Exp Brain Res, 

186(4), 571-580. 

 



 180 

Wight, D. L., Kubica, E. G., & Wang, D. W. L. (2008). Introduction of the Foot 

Placement Estimator: A Dynamic Measure of Balance for Bipedal Robotics. J 

Comput Nonlinear Dynam, 3(1). 

 

Winter, D. A. (1995). Human balance and posture control during standing and walking. 

Gait Post, 3, 193-214. 

 

Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking 

pattern changes in the fit and healthy elderly. Phys Ther, 70(6), 340-347. 

 

Wojcik, L. A., Thelen, D. G., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. 

(1999). Age and gender differences in single-step recovery from a forward fall. J 

Gerontol A Biol Sci Med Sci, 54(1), M44-50. 

 

Wojcik, L. A., Thelen, D. G., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. 

(2001). Age and gender differences in peak lower extremity joint torques and 

ranges of motion used during single-step balance recovery from a forward fall. J 

Biomech, 34(1), 67-73. 

 

Woollacott, M. H., & Shumway-Cook, A. (1990). Changes in posture control across the 

life span--a systems approach. Phys Ther, 70(12), 799-807. 

 

Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and 

gait: a review of an emerging area of research. Gait Posture, 16(1), 1-14. 

 

Wu, M., Ji, L., Jin, D., & Pai, Y. C. (2007). Minimal step length necessary for recovery 

of forward balance loss with a single step. J Biomech, 40(7), 1559-1566. 

 

Zajac, F. E. (1993). Muscle coordination of movement: a perspective. J Biomech, 26 

Suppl 1, 109-124. 



 181 

APPENDIX A: ELSEVIER COPYRIGHT LICENSE 



 182 

 
 
 
 
 
 
 



 183 

 
 
 
 
 
 
 



 184 

 
 
 
 
 
 
 



 185 

 
 
 
 
 
 
 



 186 

 


	© Jonathan C. Singer 2012
	AUTHOR’S DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	Introduction
	1.1 GENERAL OVERVIEW
	1.2 RELEVANCE AND SIGNIFICANCE
	1.3 RESEARCH OBJECTIVES

	CHAPTER 2
	Background Literature
	2.1 FALL RISK
	2.2 STATIC- AND PERTURBED-STANCE BALANCE CONTROL
	2.3 COMPENSATORY STEPPING RESPONSES
	2.3.1 Early Automatic Postural Responses
	2.3.2 Onset of Step Initiation
	2.3.3 Swing Phase: Step Length and Step Time
	2.3.4 Age-Related Effects

	2.4 SUMMARY

	CHAPTER 3
	Dynamic Stability Control during Volitional Stepping: A Focus on the Restabilisation Phase at Movement Termination
	3.1 OVERVIEW
	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Participants
	3.3.2 Instrumentation and Set-Up
	3.3.3 Protocol
	3.3.4 Data Analysis
	3.3.5 Statistical Analyses

	3.4 RESULTS
	3.4.1 Incongruity Magnitude – Trials with Preferred Step Characteristics
	3.4.2 Task Differences
	3.4.3 Trial-to-Trial and Long-Term Adaptations
	3.4.4 Secondary Analyses

	3.5 DISCUSSION

	CHAPTER 4
	Age-Related Differences in the Control of Mediolateral Dynamic Stability during the Restabilisation Phase of Volitional Stepping
	4.1 OVERVIEW
	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 Participants
	4.3.2 Instrumentation and Set-Up
	4.3.3 Protocol
	4.3.4 Data Analysis
	4.3.5 Statistical Analyses
	4.3.6 Secondary Analyses

	4.4 RESULTS
	4.4.1 Incongruity Magnitude – Effect of age, step condition, and trial repetition
	4.4.2 Trial-to-Trial Variability of Incongruity - Effect of age, step condition, and trial repetition
	4.4.3 RMSD of the Ground Reaction Force Inclination Angle with Respect to the COM – Effect of age, step condition, and trial repetition
	4.4.4 Secondary Analyses
	4.4.4.1 Initial Conditions
	4.4.4.2 Initial Movement Parameters
	4.4.4.3 Kinetics


	4.5 DISCUSSION
	4.5.1 Initial Conditions and Initial Movement Parameters
	4.5.2 Incongruity Magnitude, Variability and their Potential Origins
	4.5.3 Overall Implications


	CHAPTER 5
	Age-Related Differences in the Control of Mediolateral Dynamic Stability during the Restabilisation Phase of Stepping Evoked by Postural Perturbation
	5.1 OVERVIEW
	5.2 INTRODUCTION
	5.3 METHODS
	5.3.1 Participants
	5.3.2 Instrumentation and Set-Up
	5.3.3 Protocol
	5.3.4 Data Analysis
	5.3.5 Statistical Analyses
	5.3.6 Secondary Analyses

	5.4 RESULTS
	5.4.1 Incongruity Magnitude – Effect of age, step condition, and trial repetition
	5.4.2 Trial-to-Trial Variability of Incongruity - Effect of age, step condition, and trial repetition
	5.4.3 RMSD Ground Reaction Force Inclination Angle with Respect to the COM – Effect of age, step condition, and trial repetition
	5.4.4 Timing of ‘Active’ Reorientation of the Net Ground Reaction Force (P2) – Effect of age, step condition, and trial repetition
	5.4.5 Secondary Analyses
	5.4.5.1 Initial Conditions
	5.4.5.2 Initial Movement Parameters
	5.4.5.3 Kinetics


	5.5 DISCUSSION
	5.5.1 Initial Conditions and Initial Movement Parameters
	5.5.2 Incongruity Magnitude
	5.5.3 Origins of Increased Incongruity Magnitude: Reactive Control
	5.5.4 Reductions in Incongruity and Variability: Augmented Movement Planning
	5.5.5 Overall Implications


	CHAPTER 6
	General Discussion
	6.1 SUMMARY OF RESEARCH FINDINGS
	6.2 SIGNIFICANCE
	6.3 IMPLICATIONS FOR IMPROVING STABILITY CONTROL
	6.4 LIMITATIONS
	6.5 FUTURE DIRECTIONS
	6.6 CONCLUSIONS
	REFERENCES

	APPENDIX A: ELSEVIER COPYRIGHT LICENSE

