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ABSTRACT 

The aim of this thesis was to examine environmental covariate-related issues, the 

resolution dependency, the contribution of vegetation covariates, and the use of LiDAR 

data, in the purposive sampling design for fuzzy logic-based digital soil mapping. In this 

design fuzzy c-means (FCM) clustering of environmental covariates was employed to 

determine proper sampling sites and assist soil survey and inference. Two subsets of the 

Laurel Creek Conservation area were examined for the purposes of exploring the resolution 

and vegetation issues, respectively. Both conventional and LiDAR-derived digital elevation 

models (DEMs) were used to derive terrain covariates, and a vegetation index calculated 

from remotely sensed data was employed as a vegetation covariate. A basic field survey 

was conducted in the study area. A validation experiment was performed in another area. 

The results show that the choices of optimal numbers of clusters shift with resolution 

aggregated, which leads to the variations in the optimal partition of environmental 

covariates space and the purposive sampling design. Combining vegetation covariates with 

terrain covariates produces different results from the use of only terrain covariates. The 

level of resolution dependency and the influence of adding vegetation covariates vary with 

DEM source. This study suggests that DEM resolution, vegetation, and DEM source bear 

significance to the purposive sampling design for fuzzy logic-based digital soil mapping. 

The interpretation of fuzzy membership values at sampled sites also indicates the 

associations between fuzzy clusters and soil series, which lends promise to the applicability 

of fuzzy logic-based digital soil mapping in areas where fieldwork and data are limited. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Activities in pedology, agriculture, natural resource management, environmental 

monitoring and modeling frequently necessitate detailed soil information (Moore et al., 

1993; McBratney et al., 2003). Conventional soil surveys provide soil data in the form of 

vector-based polygon maps and are usually based on mental models. However these maps 

have been criticized for neither representing the variability of soil in a continuum nor 

quantitatively modeling soil (Burrough et al., 1997; McBratney et al., 2003; Scull et al., 

2003; Zhu et al., 2008a). In Factors of Soil Formation, Jenny (1941) elaborated five soil 

forming factors: climate (c), organisms (o), relief (r), parent material (p), and time (t) in 

order to describe the quantifiable relationship between environment and soil. Jenny’s theory 

was updated by McBratney et al. (2003) by adding two more factors: soil (s) as known soil 

property that can be used as an input, and space (n) representing spatial correlation. 

Recently this relationship between environmental factors and soil variation can be 

quantified on the use of remotely sensed data and geographic information system (GIS) 

tools which can extrapolate conventional soil maps and developing soil inference models 

(McBratney et al., 2003; Nauman, 2009; Geng et al., 2010). This field of work is broadly 

termed digital soil mapping (Geng et al., 2010), as well as predictive soil mapping, soil 

inference, or quantitative soil mapping (Scull et al., 2003). 

Digital soil mapping can be defined as “the creation and population of spatial soil 
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information systems by numerical models inferring the spatial and temporal variations of 

soil types and soil properties from soil observation and knowledge and from related 

environmental variables” (Lagacherie and McBratney, 2007). A range of environmental 

covariates have been employed to predict soil types and properties, of which land-surface 

parameters are key components (McBratney et al., 2003). Land-surface parameters are 

often derived from digital elevation model (DEM) without further knowledge of the area 

represented (Pike et al., 2009), appearing in the same structure as their source DEM while 

presenting values of descriptive measures of the surface at each point. Depending on the 

derivation process, land-surface parameters are distinguished as primary or secondary (Pike 

et al., 2009; Wilson, 2011). Primary land-surface parameters (e.g., slope, aspect, and 

curvature) can be calculated directly from DEMs, while calculating secondary land-surface 

parameters (e.g., topographic wetness index (TWI), stream power index (SPI), and 

length-slope (LS) factor) requires additional processes based on primary parameters. Both 

primary and secondary parameters are useful for characterizing hydrological and 

geomorphological processes, and may capture the association between relief (r) and soil 

(Moore et al, 1991; Wilson and Gallant, 2000; McBratney et al., 2003).  

A number of inferential tools for digital soil mapping are available, such as regression 

models (e.g., Moore et al., 1993; Odeh et al., 1994; Hengl et al., 2004), tree models (e.g., 

Bui et al., 1999; Bui and Moran, 2001), fuzzy logic (e.g., Zhu, 1994; Burrough et al., 1997). 

Under fuzzy logic, soil is considered as a spatial continuum and can be labelled as more 

than one soil series at a given point (Zhu, 1994). This method has great potential in soil 
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survey and mapping in terms of the reality that soil often varies continuously (McBratney 

and Odeh, 1997). It can also respond to the inadequacies surrounding conventional 

vector-based polygon soil maps by producing raster-based continuous soil maps (English, 

2001). For example, since the mapping units are internally uniform with respect to specific 

soil properties or types in conventional soil maps, many studies have shown that within-unit 

variance is often unacceptably high; fuzzy soil mapping can overcome this difficulty by 

producing continuous soil maps (Burrough, 1987; Odeh et al., 1992; Zhu et al., 1997; Zhu 

et al., 2008a). Among the methods under fuzzy logic, Zhu et al. (2008a) proposed a 

purposive sampling design for digital soil mapping based on fuzzy clustering. This method 

can be useful for soil mapping in Canada in that it allows the reduction of the amount of 

fieldwork where very limited efforts exist (Geng et al., 2010). As well, this method can 

bypass the acquisition of expert knowledge to some extent (English, 2001). These 

advantages of this method lend great potential to its application in Canada. Most of the 

activities in soil survey and mapping in Canada are driven by private sector companies, and 

government led surveys are very limited due to the lack of funding and surveyors 

(Anderson and Smith, 2011). However private sector soil survey data does not go into the 

public realm, so that soil information is still strongly demanded, especially for agricultural 

lands where soils are managed intensively and evolve over time (Anderson and Smith, 

2011). To overcome the difficulties in government led surveys, new techniques and 

methods in digital soil mapping are needed, especially, the purposive sampling design 

method by Zhu et al. (2008a) which is expected to greatly reduce the labour efforts.  
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The method by Zhu et al. (2008a) relies on environmental covariates, such as primary 

and secondary land-surface parameters, to design sampling sites and to infer soil variation. 

The source DEM for deriving land-surface parameters naturally plays a vital role in this 

method. Many subjects of concern in using DEM to derive land-surface parameters have 

been studied in the field of terrain analysis (Moore et al., 1991; Wilson and Gallant, 2000; 

Wilson, 2011). One of the key subjects is DEM resolution. In terrain analysis, the effects of 

DEM resolution on land-surface parameters have been investigated by a number of 

researchers (e.g., Quinn et al., 1991; Thompson et al., 2001; Wilson, 2011). Some of them 

claim that high-resolution DEM produces more accurate land-surface parameters while 

others argue that it is not necessary. Nevertheless, few available in the literature have 

investigated the effects of DEM resolution on fuzzy soil mapping, particularly, on the 

purposive sampling design. Since the resolution could have great impact on the quality of 

fuzzy soil mapping products, studies on examining the resolution issue are desirable 

(Behrens et al., 2010). 

Another interesting issue in the purposive sampling design for fuzzy soil mapping 

relates to the contribution of environmental covariates other than land-surface parameters, 

such as vegetation covariates. DEM is still the primary source of environmental covariates 

in digital soil mapping (Lagacherie 2008). It is often to employ only the relief (r) factor to 

predict soil under fuzzy logic (Zhu et al., 2008a), while the contribution of vegetation 

covariates has not been widely explored. Vegetation is a fundamental factor contributing to 

soil formation and vegetation types are sometimes able to reflect soil texture, e.g., sand and 
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clay content, pore, and organic matter content (Jenny, 1941). It is not common to find the 

exactly same soil type both at the bottom of tall trees and low grasses in nature. Adding 

vegetation covariates in the purposive sampling design is possible to improve the quality of 

the design and fuzzy soil inference as long as the area under study could show an 

association between soil and vegetation. One of the most promising vegetation covariates is 

the Normalized Difference Vegetation Index (NDVI) that has shown some correlation to 

soil water content, sand and clay content (Sumfleth and Duttmann, 2008). Examining the 

contribution of vegetation covariates such as NDVI in naturally vegetated areas bears 

importance to the improvement of fuzzy soil inference. 

In addition, a gap in the purposive sampling design for fuzzy soil mapping is that few 

studies available in the literature have employed LiDAR (light detection and 

ranging)-derived DEMs. The advantages of using LiDAR data in terrain analysis lie in their 

high-density sampling, high accuracy, and the possibility of generating a set of surface 

models from them (Wilson, 2011). At the much smaller resolution of LiDAR-derived DEM 

(e.g., <1m), the detailed terrain characteristics would be detected (Vaze et al., 2010). In 

Nelson et al. (2009), the accuracy of LiDAR data is approximately described as 0.15-1 m 

vertical accuracy and 1 m horizontal accuracy, higher than most of the other DEM sources. 

Some laser scanning systems also have the ability to provide the vegetation canopy and 

ground surface respectively, which may help with environmental modeling of heavily 

vegetated areas (Wilson, 2011). However, few in digital soil mapping have used 

LiDAR-derived DEMs, partly due to the difficulties in access to LiDAR data and in 
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detecting and correcting errors in them (Wilson, 2011). Involving LiDAR data in fuzzy soil 

inference remains to be a challenge. Particularly, it is necessary to understand the 

dependency of the purposive sampling design to the resolution of LiDAR-derived DEMs. 

The introduction of this new DEM source may have impact on terrain-based soil prediction, 

as well may challenge the available algorithms and experiences in digital soil mapping. 

With respect to the emerging popularity of LiDAR data (Nelson et al., 2009), addressing the 

topic of using LiDAR data in fuzzy soil inference will benefit the development of digital 

soil mapping. 

1.2 Research Objectives and Questions 

The aim of this study was to examine the environmental covariate-related issues in the 

purposive sampling design for fuzzy logic-based digital soil mapping, and to investigate if 

and to what degree the fuzzy clustering of environmental covariates can be employed to 

assist soil mapping. The objectives of this study can be summarized as follows: 

1) To examine the sensitivity of the purposive sampling design for fuzzy logic-based 

digital soil mapping to the resolution of DEM used in constructing environmental 

covariates database for fuzzy clustering; 

2) To explore the effect of adding a vegetation index, NDVI, into environmental 

covariates database on the purposive sampling design for fuzzy logic-based digital soil 

mapping; 

3) To analyze if the fuzzy clustering of environmental covariates can support digital soil 
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mapping by examining the associations between soil series and fuzzy clusters. 

The Laurel Creek Conservation area, located in the northwest corner of Waterloo, 

Ontario, was chosen as the study area. Fuzzy c-means (FCM) clustering of environmental 

covariates was performed at two subset units of the study area. The aim of FCM clustering 

is to find the optimal partitions of environmental covariate space. The clustering provides 

the optimal numbers of clusters and fuzzy membership value maps which could be used to 

determine optimal and limited field sampling sites. One subset area, Unit 1, was used to 

examine the effects of DEM resolution by resampling a 10 m conventional DEM into 20 m, 

30 m, and 50 m, and a 1 m LiDAR-derived DEM into 5 m, 10 m, 20 m, 30 m, and 50 m. 

Another subset area, Unit 2, was applied to examine the contribution of vegetation 

covariates through the use of a vegetation index, NDVI, based on both conventional and 

LiDAR-derived DEMs at 10 m resolution. A basic field sampling survey was conducted in 

the study area assisted by soil scientists in order to analyze the associations between fuzzy 

clusters and soil series. FCM clustering based on terrain covariates at different resolutions 

was also performed in a subset area of the Waterloo Aquifer area for the purpose of 

validation. 

The methodological framework introduced in this study may help to answer the 

following questions: 

1) How do the purposive sampling design results vary with the resolution of conventional 

DEM?  

2) How does the incorporation of NDVI into an environmental covariate database 
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influence the purposive sampling design results based on conventional DEM? 

3) Does an association between fuzzy clusters and soil series exist? 

4) What are the answers of above three questions when using LiDAR-derived DEM?  

1.3 Thesis Structure 

This thesis contains five chapters with this being the first.  

1) Chapter 1 briefly introduces the research motivation followed by addressing the 

research objectives and questions. Finally the architecture of the thesis is given. 

2) Chapter 2 reviews related literature on soil surveys in Canada, FCM clustering in digital 

soil mapping, and the environmental covariates-related issues: DEM resolution, 

vegetation covariates, and using LiDAR data. 

3) Chapter 3 details the specific study area, a basic field sampling, environmental 

covariate data collection, and the methodology employed to design sampling sites based 

on FCM clustering.  

4) Chapter 4 presents and discusses the FCM clustering results in two subset units 

addressing on issues of resolution, vegetation, and use of LiDAR data. Following is an 

interpretation of fuzzy membership values at sampling sites. Finally a validation 

experiment and its results are provided. 

5) Chapter 5 summarizes the conclusions, limitations, and recommendations for future 

studies. 

 



9 
 

CHAPTER 2 LITERATURE REVIEW 

This chapter first reviews a history of soil surveys in Ontario. Second is the 

state-of-the-art of soil survey in Canada, focusing on the fuzzy logic-based digital soil 

mapping method. Third, it outlines the theoretical basis of FCM clustering as applied in 

digital soil mapping. The major theme of the fourth section is to provide a critical review on 

environment covariate-related issues, resolution, vegetation, and the use of LiDAR data, in 

the purposive sampling design for fuzzy logic-based digital soil mapping. 

2.1 A History of Soil Survey in Ontario 

Soil surveying in Canada has a long history. The first soil survey was done by A.L. 

Galbraith in Ontario in 1914, with the expert advice provided by A. N. Coffey of the U.S. 

Bureau of Soils (Anderson and Smith, 2011). Coffey treated soils as geographic bodies that 

could be recognized as natural units (Anderson and Smith, 2011). Many efforts were made 

to identify these soil bodies (Coen, 1987; Geng et al., 2010).  

The period from 1920 to early 1930s was the beginning of systematic soil surveys in 

Canada. The initial soil survey in Ontario during this period aimed to identify and map soil 

type for agricultural development use (McKeague and Stobbe, 1978). The classification 

system of the U.S. Bureau of soil was used, including 3 levels: soil province, soil series, 

and soil type (McKeague and Stobbe, 1978). Soil province was based on general surficial 

geology features; soil series was analogous to a geological formation involving color, origin 

of material, and weathering; soil type was then based on textural divisions within each 
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series. The scope of soil series was broader than this term used now, so only nine series 

were identified in the study area in this initial soil survey (McKeague and Stobbe, 1978). In 

this period soil maps without reports in many counties in Ontario were published which 

provided information about soil series and type, area, color, texture, relief, drainage, 

reaction, land use, and fertility needs (McKeague and Stobbe, 1978).  

The following period from 1934 to 1944 was a cooperative federal-provincial soil 

survey period. In Ontario soil survey was based on a cooperative program conducted by 

federal and provincial Departments of Agriculture, and also Ontario Agricultural College at 

Guelph (McKeague and Stobbe, 1978). During this period, soil surveys were completed or 

stated in about 10 counties in southern Ontario. A numerical system for mapping soils was 

developed by G. A. Hills and symbols indicating texture were also added (McKeague and 

Stobbe, 1978).  

Soil survey during the period from 1945 to 1970 was influenced by the National Soil 

Survey Committee (NSSC). A series of meetings of NSSC aimed to define a consistent, 

national classification system for soil survey and mapping in Canada. The first Canadian 

taxonomic system of soil classification was outlined during these meetings, which is the 

basis of the Canadian soil system used today. It had six levels: order, great group, subgroup, 

family, series, and type (McKeague and Stobbe, 1978). The soil survey and mapping had 

become more standardized since then. The Canada Land Inventory (CLI) program stated in 

1963 resulted in a set of interpretive soil maps of capability for agriculture. In Ontario, 

many counties’ soil surveys were completed during this period and used soil series as 
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mapping units, for the completion of the CLI mapping. A detailed soil survey of Waterloo 

County with reports was also finished during this period, which is still being used now.  

During the period from 1970 to 1979, the re-named Canada Soil Survey Committee 

(CSSC) met several times, promoting the developments of the first edition of the Canadian 

System for Soil Classification and the Canada Soil Information System (CanSIS). 

Beginning in 1972, the first GIS in the world was developed in Canada for the purpose of 

storing soil maps and data electronically (Schut et al., 2011).  

In the glory years of soil survey in Canada from 1950s to 1990s, activities in Ontario 

was among the most important surveys, where different physiographic and climatic regions 

provided a good opportunity for Canadian soil surveyors to investigate the soil types 

(McKeague and Stobbe, 1978). A series of national meetings promoted the establishment of 

the Canadian Soil Classification System which was widely used in soil surveys in Ontario. 

Soil surveyors started by preparing their own base maps and then moved to learn the skills 

of photo interpretation to predict soil. The legacy of soil survey for Ontario included a 

series of soil maps and reports in many counties, among which Waterloo County was 

mapped in detail.  

2.2 A State-of-the-Art of Soil Survey in Canada 

Field surveys led by government agencies reached their peak around 1970s and 1980s 

(Schut et al., 2011). However, a decline in field surveys and experienced field surveyors in 

government agencies has been seen between 1990s and 2010s (Anderson and Smith, 2011), 
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which has risen the challenge to satisfy the public need of soil information. During the 

recent era since 1995 till 2010, the work of pedologists has moved to the continuing 

upgrading and refinement of existing soil data, such as the development of the Soil 

Landscapes of Canada (SLC) framework, and the product of new “seamless” provincial 

coverages from existing information (Anderson and Smith, 2011). Few efforts exist in soil 

survey operations in provincial level, some of which are also sporadic and site-specific, 

such as the ongoing efforts to update existing soil information in Ontario (Anderson and 

Smith, 2011). On the other hand, the rise of private sector soil survey is evident, mainly 

driven by regulatory environment surrounding industrial developments, such as oil and gas 

pipelines and mine sites. However most of the private sector survey work does not go into 

public use and not well match the structure of government-developed soil information 

databases, such as CanSIS. Thus, national soil information databases are still challenged by 

the aging change of soil.  

The emerging digital soil mapping provides an innovative and proactive way for soil 

mapping in Canada (Anderson and Smith, 2011). With assistance from the legacy of 

conventional soil maps and the advent of large amount of remotely sensed data and GIS 

tools, digital soil mapping may yield promising results for the public use of soil information 

in Canada (Geng et al., 2010). Geng et al. (2010) assessed the adequacy and usability of the 

legacy soil information for the applications of digital soil mapping in the near future in 

Canada. Their study revealed many challenges for incorporating soil legacy data into new 

digital soil mapping approaches, such as the various formats and scales. The methods of 
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extracting expert knowledge embedded in the existing soil data were also explored in their 

study. For example, in the National Soil Database (NSDB) within CanSIS, there could be a 

way to recover the geospatial linkage of soil classes and properties on the use of GIS to 

extract soil-landscape models for the purpose of digital soil mapping in Canada.  

Digital soil mapping methods have not been widely used in soil survey in Canada. 

Grunwald (2009) summarized recent related studies in Canada. For example, MacMillan et 

al. (2007) proposed an automated approach to predictive ecological mapping that combined 

terrain derivatives, fuzzy and hard logic in a forest area of British Columbia. Liu et al. 

(2008) evaluated soil drainage mapping using remotely sensed data, a DEM, and apparent 

soil electrical conductivity for fields in a farm south of Ottawa, Ontario. Mabit et al. (2008) 

examined soil erosion and soil organic matter content using geostatistics tools for a location 

at Boyer River watershed, Quebec. Reynolds et al. (2008) found that structural regression 

was useful for determining soil physical quality indicators in Essex County, Ontario. These 

studies show that the application of digital soil mapping in Canada is encouraging. A range 

of soil inference tools and predictors have been examined in these studies. However, among 

many inference models, fuzzy logic has not been fully explored in these studies. Fuzzy 

logic-based digital soil mapping method can be very effective when dealing with the 

uncertainty in soil map and can reduce fieldwork that costs a large amount of money and 

labour efforts. Thus soil survey in Canada may take advantage of this method. Due to the 

limited experiences in using this method in Canada, studies on its related issues are 

meaningful and strongly needed. 
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2.3 Fuzzy C-Means Clustering in Digital Soil Mapping 

In soil science, fuzzy logic is mainly used for soil classification in two perspectives: 

first, directly FCM clustering of observations in multivariate space into natural groups 

without an a priori number of clusters, and second, applying Semantic Import (SI) model 

based on imposed definitions and expert knowledge (McBratney and Odeh, 1997). In the 

first realm, the multivariate space usually refers to the multi-dimensional environmental 

covariate space, such as land-surface parameters. Examples in this realm include Odeh et al. 

(1992), Powell et al. (1991), McBratney and De Gruijter (1992), McBratney et al. (1992), 

Triantafilis and McBratney (1993), Zhu (1994), Burrough et al. (1997), De Gruijter et al. 

(1997), Lagacherie et al. (1997), Irvin et al. (1997), Burrough et al. (2000), Zhu et al. 

(2008a), Smith et al. (2010), Liu et al. (2011), and Yang et al. (2011). Burrough et al. (2000) 

conducted landform classification using FCM clustering in a farmland in Alberta. Smith et 

al. (2010) reported digital soil mapping at multiple scales using soil inference model based 

on FCM clustering of terrain covariates in British Columbia. Liu et al. (2011) used FCM 

clustering of terrain covariates along with existing soil maps to produce more accurate soil 

attribute information in a low relief area in south-central Manitoba. Yang et al. (2011) 

updated conventional soil maps based on FCM clustering of terrain covariates for an area in 

Wakefield, New Brunswick. These case studies have shown a positive sign for soil 

information users in Canada that the direct use of FCM clustering for digital soil mapping 

enables the production of continuous soil spatial information maps and overcomes the 

deficiency in fieldwork efforts and expert knowledge in soil survey and mapping. Although 
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many studies have applied fuzzy logic in the second realm that uses Semantic Import model, 

its application in Canada would be limited by its demand for the imposed definitions and 

expert knowledge. Therefore, directly using FCM clustering of environmental covariates in 

Canada is easier.  

The commonly used FCM clustering method in those studies was introduced by Dunn 

(1974) and Bezdek (1974), and originates from the theory of fuzzy sets by Zadeh (1965). 

Fuzzy logic has been applied in various fields such as image processing, control theory, and 

artificial intelligence to complement traditional crisp logic. In real world, soil is physically 

continuous (Fridland, 1974) and therefore does not typically have sharp boundaries like 

those defined in conventional soil survey based on crisp logic. In other words, soil 

classification has to deal with uncertainty. Fuzzy logic is certainly effective when dealing 

with such uncertainty. In FCM clustering, observations in multivariate space are partitioned 

into relatively stable naturally occurring but continuous classes, and these observations are 

assigned continuous class membership values ranging from 0 to 1 (McBratney and Odeh, 

1997). A membership value of 1 denotes observations that exactly match the class centroid, 

while observations that do not match the centroid receive membership values dependent on 

their degree of closeness to the centroid. FCM clustering allows an observation to belong to 

two or more clusters.  

FCM clustering is based on minimization of the following objective function (Bezdek, 

1981): 

𝐽𝑚  (  𝑈 , 𝜈  ) =  �  
𝑛

𝑘=1

 �  
𝑐

𝑖=1

 � 𝑢𝑖𝑘�
𝑚

 ‖  𝑦𝑘 −  𝜈𝑖 �� ‖ 2                                                              (2.1) 
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where, 

 𝑌 =  { 𝑦1,  𝑦2, … … , 𝑦𝑛}   ⊂  𝐑𝑛 = the data,  

c = number of clusters in 𝑌; 2 ≤ c ≤ n, 

m = weighting exponent; 1 ≤ m < ∞, 

U = fuzzy c-partition of Y, 

 𝜈 = ( 𝜈1   , 𝜈2    , … … , 𝜈𝑐   ) = vector of cluster centroids, 

𝑢𝑖𝑘 = membership of the kth object (𝑦𝑘) belonging to the ith cluster, [0, 1], 

 𝐽𝑚  = squared error clustering criterion with fuzzy partition U of y at the centroids 𝜈. 

𝐽𝑚  is a weighted measure of the squared distance between observations and cluster 

centroids. As 𝐽𝑚  decreases, the clustering improves as observations tend to be overall 

closer to their representative centroids. The squared distance between kth object (𝑦𝑘) to the 

centroid of cluster  𝜈𝑖  is any inner product induced norm:  

(𝑑𝑖𝑘)2 =  ‖  𝑦𝑘 −  𝜈𝑖 �� ‖ 2                                                                                                               (2.2)  

There are infinitely many norms available, among which the Euclidean, Diagonal, and 

Mahalanobis norms enjoy most widespread use (Bezdek et al., 1984; English, 2001). For 

most geographic and geologic applications, the Euclidean norm is considered the most 

appropriate due to its identification of hyperspherical clusters (Bezdek et al., 1984; English, 

2001). A detailed discussion of the different norms can be found in Bezdek (1981). In fuzzy 

logic-based digital soil mapping, the Euclidean norm is recommended (English, 2001).  

The fuzzy partitioning is carried out through an iterative minimization of the objective 

function (2.1) with the update of membership 𝑢𝑖𝑘 and the cluster centroids 𝜈𝑖  by (Bezdek 
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et al., 1984): 

𝑢𝑖𝑘 =   1 ��(
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which are based on the solutions of the minimization of 𝐽𝑚 . This iteration will stop when 

changes between successive iterations are below a termination criterion 𝜀, the maximum 

membership error, ranging from 0 and 1, which is expressed as: 

𝑚𝑎𝑥𝑖𝑘��𝑢𝑖𝑘
𝑗+1 −  𝑢𝑖𝑘

𝑗 �� <  𝜀                                                                                                            (2.5) 

where, j is the iteration number.  

This procedure converges to a local minimum or a saddle point of 𝐽𝑚  (Bezdek et al., 

1984). 

In FCM clustering, the weighting exponent m controls the fuzziness degree. When m is 

1, FCM clustering in fact becomes traditional hard clustering. Increasing m allows the 

partition blurring to the fuzziest state. There is no theoretical or computational approach to 

distinguish an optimal m, and the only way is to determine it experimentally (English, 

2001). Another key issue of using FCM clustering is the number of clusters c is not known 

a priori. The determination of c is termed “cluster validity” (Bezdek, 1981). The most 

popular cluster validity indices are the partition coefficient (F) and entropy (H) which are 

defined as (Bezdek, 1981):  

𝐹(𝑢) =  �  
𝑛

𝑘=1

 �  
𝑐
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where,  logarithm base 𝑎 ∈ (1,∞), 

        1
𝑐

  ≤   𝐹  ≤   1, 

        0  ≤   𝐻  ≤   log𝑎 (𝑐). 

F measures the average relative amount of overlap between clusters. H is a scalar 

measure of the amount of fuzziness (Bezdek, 1981). The optimal partition realizes the 

highest F and the lowest H. Note that F and H can reach their maximum and minimum 

values at the same number of clusters, respectively. The limitation of using F and H as 

cluster validity can be attributed to their monotonicity with the number of clusters c (Wang 

and Zhang, 2007). F decreases and H increases with the increase of the number of clusters 

monotonously, which leads to the selection of the optimal number of clusters is always at c 

= 2, the smallest c. Thus, an effective way is to examine the improvement in F or H over 

adjacent clusters (English, 2001; Zhu et al., 2008a; Yang et al., 2011). An optimal number 

of clusters c will be found where a significant improvement in F or H exists. 

The FCM clustering technique provides an opportunity for soil classification in a 

continuous form that allows partial overlap of classes in attribute space and description of 

the gradual change of soil properties (Burrough et al., 1997; Zhu, 2006). To illustrate the 

use of FCM clustering, an example is given in Figure 2.1. The data y in Equation (2.1) is 

the environmental covariates vector (e1, e2,…, ep) at Point (x, y), and FCM clustering of 

environmental covariates is conducted in p-dimensional space. The algorithm is composed 

of the following steps:  
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First, define 𝜀, fix m and c, initialize partition matrix U(0);  

Second, calculate the centroids V by Equation (2.4);  

Third, update membership matrix U by Equation (2.3);  

Forth, stop when Equation (2.5) is met, otherwise return to the second step.  

 

 
Figure 2.1 An example of the use of FCM clustering in fuzzy soil inference.  

 

An optimal partition can be determined by examining the improvements in partition 

coefficient and entropy, in which the number of clusters is denoted as c in this example. 

Centroids of all the c clusters are recorded in a vector V (V1, V2, …, Vc) in Figure 2.1. 

Fuzzy membership values to a cluster are represented in a raster map in which each cell 

assigned with its membership value to this cluster. All the c clusters have such raster maps 

which are represented as a vector U (U1. U2, …, Uc) in Figure 2.1. The soil series 

associates with the centroids and membership values. Then, the vector u (u1, u2, …, uc) 

recording membership value to each cluster at Point (x, y) is available to predict the soil 

series at this point. Since the membership values to clusters are continuous, the assigned 
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soil series at Point (x, y) will also be continuous and overlapped. For example, soil at this 

point can be soil series A with membership value of 0.2, soil series B with membership 

value of 0.7, and soil series C with membership value of 0.1. Note that the sum of 

membership values to all clusters at a given point is always 1. Thus, the soil at this point is 

in a continuous form and overlapped among different types.  

Among many applications of FCM clustering for digital soil mapping, the promising 

purposive sampling design for fuzzy soil mapping method (Zhu et al., 2008a) uses the 

results of FCM clustering of environmental covariates to design sampling sites and perform 

fuzzy soil inference. This method groups the observations in environmental covariates 

space into classes on the use of FCM clustering. Continuous fuzzy membership values to 

these classes are assigned to the observations. Each class could represent a unique 

environmental configuration. Many attempts suggest unique environmental configurations 

should beget distinctive soil types or properties (Jenny, 1941; Hudson, 1992; McSweeney et 

al., 1994; Moran and Bui, 2002; McBratney et al., 2003; Qi and Zhu, 2003; Zhu et al., 

2008a), which is the underlying hypothesis of the purposive sampling design method. 

Based on the association between environmental configurations and soil, the fuzzy clusters 

can be deemed as corresponding to soil types or properties. Observations with highest fuzzy 

membership values to a specific class are regarded as typical instances which can represent 

the corresponding unique environmental configuration of this class. These observations are 

designed as the purposive sampling sites in field. The identified soil types or properties at 

these sites then are assigned to this class. Soil variation is inferred from these sites to the 
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whole area under study by the continuous fuzzy membership values and expert knowledge 

if available. 

This purposive sampling design is a preliminary result of the digital soil mapping but 

bears great importance due to its guidance of fieldwork. An adequate soil sampling strategy 

can improve the quality of soil survey and mapping (Brady and Weil, 2000). Among many 

soil sampling strategies, such as random sampling, grid sampling, and zone sampling 

(Dinkins and Jones, 2008), the purposive sampling design could be outstanding because of 

its efficiency (Zhu et al., 2008a). This design aims at reducing field sampling sites and 

therefore reducing fieldwork to save money and time. Only the typical instances for each 

class are sampled, which may be less than those in other sampling strategies (Zhu et al., 

2008a). In addition, the sampled sites are quantitative-based and more reasonable than 

those determined by the mental models in conventional soil survey (Zhu et al., 2008a). The 

determination of sampling sites is purposive and efficient. Moreover, to some extent soil 

expert knowledge can be quantified by fuzzy membership values and thus is not needed as 

strongly as that in conventional soil survey. These characteristics of this method allow its 

application in areas with limited resources. Since soil survey in Canada is lacking 

experienced soil surveyors and funding (Geng et al., 2010), use of this purposive sampling 

method is appealing. More studies on its related issues could greatly contribute to soil 

survey and mapping in Canada. 
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2.4 Environmental Covariate Issues 

 Understanding issues related to environmental covariates used in the purposive 

sampling design for fuzzy soil inference is capable of improving soil surveying and 

mapping. Issues such as the effects of DEM resolution, the contribution of vegetation 

covariates, and the use of LiDAR data are all worthy of investigation. A deep understanding 

of these issues will allow a good construction of environmental covariates database and a 

good design of sampling sites, and eventually should improve soil survey and mapping 

products. 

2.4.1 DEM Resolution 

The most commonly used environmental covariates are land-surface parameters. A 

range of factors have influences on land-surface parameters, such as the deriving algorithms 

and resolutions of their source DEMs (Moore et al., 1991; Schmidt and Dikau, 1999; 

Wilson et al., 2000; Wilson, 2011). Land-surface parameters are heavily dependent on 

resolution and scale at which they are calculated (Gallant et al., 2000). A variety of DEM 

products are available for deriving land-surface parameters ranging from low resolution to 

high resolution (Maune, 2007). Many have examined the effects of DEM resolution on 

land-surface parameters (e.g., Chang and Tsai, 1991; Wolock and Price, 1994; Gao, 1997; 

Chaplot et al., 2000; Florinsky and Kuryakova, 2000; Schoorl et al., 2000; Wilson et al., 

2000; Thompson et al., 2001; Deng et al., 2007; Wu et al., 2008; Behrens et al., 2010; Vaze 

et al., 2010; Wilson, 2011). Some argue that a high resolution DEM is seen to produce more 
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detailed land-surface parameters that can better represent landform characteristics and assist 

in terrain analysis, while this argument is not necessary in other studies.  

Although many efforts have been made on resolution issue with respect to land-surface 

parameters, few have examined the effects of resolution on further deliverables in digital 

soil mapping, e.g., the purposive sampling design results. Previous studies employing fuzzy 

logic in soil mapping mainly worked only at the resolution of their original environmental 

covariates, ignoring the uncertainty associated with the change of resolution (Arrell et al., 

2007). Few attempts have been made to bridge this gap in the literature. Smith et al. (2006) 

and Zhu et al. (2008b) examined the combined effect of DEM resolution and neighborhood 

size on soil prediction under fuzzy logic. They concluded that DEM resolution may not be 

as important as neighborhood size at least for knowledge-based soil mapping, and that a 

high resolution DEM may not always produce high-quality digital soil mapping products. 

Nevertheless, with respect to the purposive sampling design for fuzzy soil mapping, 

previous studies have barely addressed the resolution issue. The successful application of 

this design in soil survey and mapping needs a solid understanding of its resolution 

dependency (Zhu et al., 2008b). The spatial resolution at which environmental covariates 

are derived may deviate from the spatial scale at which a set of soil forming processes 

occur in the specific area (Geng et al., 2012). How the design varies with changing in 

resolution remains to be answered, which will benefit a wise determination of the resolution 

to derive environmental covariates for designing sampling sites and also for inferring soil 

(Smith et al., 2006). Recently, more DEM products at high resolution are becoming 
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available for areas in Canada, such as the LiDAR-derived DEM in Prince Edward Island 

(Geng et al., 2012) and the South Western Ontario Orthophotography Project (SWOOP) 

2010 (http://www.swoop2010.ca/). However, whether higher resolution necessarily 

promises better sampling design and soil inference products demands careful examinations. 

The resolution dependency issue is worthy of exploration.  

2.4.2 Vegetation Covariates 

The soil forming factors presented in Jenny (1941) contain two main altering 

organisms (o): vegetation and humans (McBratney et al., 2003). Vegetation information 

(e.g., indices, biomass) can be effectively obtained from remotely sensed data which are 

widely available (McBratney et al., 2003). Combining vegetation information with 

land-surface parameters has the potential to enhance soil prediction (Campling et al., 2002; 

Sommer et al., 2003; Sumfleth and Duttmann, 2008). For example, Dobos et al. (2000) 

found using indices calculated by satellite radiometric data, namely, NDVI, combined with 

DEM derivatives was among the most promising tools for soil survey. In Liu et al. (2011), 

NDVI was used to stratify the study area into different units to control influencing factors 

on soil formation.  

However, in most previous studies on fuzzy soil inference, only land-surface 

parameters were employed as environmental covariates (Zhu et al., 1997; Burough et al., 

2000; English, 2001; Zhu et al., 2008a; Yang et al., 2011). For example, Zhu et al. (2008a) 

used elevation, slope, plan curvature, profile curvature, and topographic wetness index. The 
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missing of vegetation as an environmental covariate may be explained as the studied areas 

are always controlled mainly by human cultivation where vegetation enjoys similarity. The 

purposive sampling design for areas occupied by natural vegetation, however, has not been 

well investigated. In such areas, vegetation covariates have great potential to improve soil 

prediction due to the possible association between soil and vegetation (Dobos et al., 2000; 

McBratney et al., 2003). Soil survey and mapping in naturally vegetated areas can benefit 

from the examination on the influence of adding vegetation covariates such as NDVI into 

environmental covariate analysis. For example, a global interest in forest motivates the 

gathering of soil information in forest areas where vegetation canopy may be an effective 

indicator (Owens et al., 1999). It is much likely that vegetation covariates can improve the 

quality of the sampling design in terms of the association between soil and vegetation, 

while investigations are still needed to verify this improvement. Therefore, it is necessary to 

bridge the gap that vegetation covariates are missing in constructing environmental 

covariates database for the purposive sampling design.  

One of the most promising vegetation covariates is NDVI which has been shown to 

correlate well with soil water content, sand, and clay (Sumfleth and Duttmann, 2008). It is 

true that many new vegetation indices based on remotely sensed data have been developed, 

e.g., soil-adjusted vegetation index (SAVI), transformed SAVI (TSAVI), modified SAVI 

(MSAVI), and global environment monitoring index (GEMI) (Mulder et al., 2011). 

However, NDVI still dominates the practical applications due to its reliability, and the 

complexity and the need of additional information in calculating other new indices 
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(Rondeaux et al., 1996). In addition, the remotely sensed data for calculating NDVI are 

available almost everywhere and free of charge (Mulder et al., 2011). Thus, it is meaningful 

to evaluate the involvement of the commonly available index, NDVI, in the purposive 

sampling design for fuzzy logic-based digital soil mapping, so that many real-world 

applications may benefit for this evaluation.  

2.4.3 Use of LiDAR-derived DEM 

DEM can be created from a number of data sources, e.g., topographic maps or aerial 

photographs, ground-based survey data, interferometric synthetic aperture radar (InSAR) 

data, and airborne LiDAR data (Maune, 2007). Among these data sources, LiDAR data has 

become a very attractive source of terrain data partly because of its high accuracy and high 

cost-effectiveness (Pfeifer and Mandlburger, 2009). Producing DEM from LiDAR data now 

dominates local and regional projects everywhere and is likely to be the method of the 

future (Nelson et al., 2009). For example, Belgium and the Netherlands now have national 

LiDAR-derived digital surface models (DSM) at 2-5 m resolution (Wilson, 2011). 

Nevertheless, most studies on LiDAR data used in terrain analysis have only focused on 

comparison between LiDAR-derived land-surface parameters and those derived from 

conventional DEM (e.g., MacMillan et al, 2003; Murphy et al., 2009; Vaze et al., 2010). 

Experiences of using LiDAR data in digital soil mapping are very limited (Wilson, 2011). 

Lagacherie (2008) claimed that high-resolution DEM, such as LiDAR-derived DEM, can 

boost digital soil mapping in the near future, and thus studies on examining LiDAR data 
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used in digital soil mapping, particularly in fuzzy soil mapping, are immediately needed.  

Using LiDAR-derived DEM in digital soil mapping is not without problems. LiDAR 

data can produce very dense and detailed DEM that may result in difficulties in handling 

with a large data volume (Nelson et al., 2009). Although the level of detail in 

LiDAR-derived DEM is much higher than that in conventional DEM, the cost of improved 

accuracy is the introduction of excessive details which are difficult to characterize by 

conventional methods (Roecher and Thompson, 2010). Previous studies have also argued 

that the accuracy of LiDAR-derived DEM varies with many factors, such as land cover and 

landform characteristics (Hodgson et al., 2005). High resolution and accuracy 

LiDAR-derived DEM may not necessarily promise high quality soil inference products. 

Nevertheless, to use LiDAR data in terrain analysis and digital soil mapping is definitely a 

future trend due to the more widely development in collecting LiDAR data (Nelson et al., 

2009). Thus, attempts on employing LiDAR-derived DEM in soil inference are necessary. 

Given the potential of widely using LiDAR data in Canada in the near future (Geng et al., 

2012), it is of great meaning to examine issues in its use in digital soil mapping. Fuzzy soil 

mapping based on LiDAR data can greatly benefit from the examination on the dependency 

of the purposive sampling design to the resolution of LiDAR-derived DEM. (Zhu et al., 

2008b).  

2.5 Chapter Summary 

This chapter reviews soil surveying in Ontario, the state-of-the-art of soil survey in 
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Canada, and the principles of FCM clustering with an emphasis on the purposive sampling 

design method for fuzzy soil inference. Several issues in this method are reviewed: 

resolution, vegetation covariates, and the use of LiDAR data. Although many have 

investigated the influence of DEM resolution in terrain analysis, few of them have indicated 

its influence on the purposive sampling design results. Studies on the resolution 

dependency of the purposive sampling design are needed. In addition, previous studies on 

this method have utilized only terrain covariates, while vegetation covariates have not been 

well investigated. It is necessary to examine the contribution of vegetation covariates, such 

as NDVI, to this design. Moreover, with the popularity of LiDAR data, experiences in using 

LiDAR-derived DEM in the purposive sampling design for fuzzy soil inference are also 

needed. The challenges remaining among these issues trigger the motivation and objectives 

of this study.  
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CHAPTER 3 METHODOLOGY 

This chapter describes the study area in the first section and introduces a field sampling 

survey in the following section. The last section details the environmental covariate data 

collection and the methodology employed to determine the optimal numbers of clusters and 

purposive sampling sites. 

3.1 Study Area 

The study area was the Laurel Creek Conservation area, located in the northwest corner 

of the City of Waterloo, Ontario. This area was chosen because, first, it is an accessible 

rural area mainly covered by natural vegetation and water, which is proper for soil studies. 

Second, I was authorized to conduct a soil survey by Grand River Conservation Authority 

through the assist from two soil scientists at Agriculture and Agri-Food Canada before  

December 2011. Third, it is expected soil studies in the Laurel Creek Conservation area 

could contribute to the soil and hydrological studies on the Laurel Creek watershed, the 

Waterloo Aquifer area, and the Grand River watershed. 

The Laurel Creek Conservation Area covers an area of approximately 293.3 hectares in 

the Regional Municipality of Waterloo (Figure 3.1). Although this area is completely 

encircled by urban development, the context of it remains in nature, which provides 

opportunities for environmental studies (Laurel Creek Conservation Area Master Plan, 

2004). The main part of it is occupied by the Laurel Creek Reservoir constructed in 1960s 

for the purpose of adjusting flows of the Laurel Creek, which is a tributary of the Grand 
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River and enters the reservoir from the west and exits it from the east. The topography in 

the Laurel Creek Conservation area is characterized by the Waterloo Moraine that is a 

distinctive relief feature and an important groundwater recharge area. The elevation ranges 

from ~334 m to ~364 m. Annual average temperature in Waterloo Region is ~6.7℃ and 

total annual precipitation is ~900 mm (Laurel Creek Conservation Area Master Plan, 2004). 

Surficial geologic features in the Laurel Creek Conservation area include such as Tavistock 

Till and Ice-contact deposits (Figure 3.3), soils influenced by which are generally deep and 

permeable and have good water retention (Laurel Creek Conservation Area Master Plan, 

2004).

 
Figure 3.1 Location of the Laurel Creek Conservation area. 
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3.2 Field Survey and Sampling 

A field observation and sampling in the Laurel Creek Conservation area was conducted 

on November, 8, 2011 (from ~8 am to ~3 pm), with air temperature ranging from 10℃ to 

15℃ and high relative humidity (University of Waterloo Weather Station). The weather was 

proper for performing soil survey in field. The survey was supervised by soil scientists at 

Agriculture and Agri-Food Canada, Dr. Xiaoyuan Geng and Dr. David Kroetsch. Dr. 

Xiaoyuan Geng is a soil scientist experiencing in integration of geospatial science, soil 

science and hydrology on ecosystem modeling and decision making; Dr. David Kroetsch is 

a senior soil resource specialist in soil survey upgrades and soil re-survey techniques using 

digital information (Schut et al., 2011).  

The sampling sites were determined by soil scientists based on the soil-landscape 

relationship and also the distribution of natural vegetation. These sites were mainly selected 

along transects and possible typical soils. Soil series were identified using the three letter 

CANSIS code (http://sis.agr.gc.ca/cansis/nsdb/slc/v2.2/domsub/name.html). Soils of 

Waterloo County (Presant and Wicklund, 1971) provided detailed description of the 

expected soil series in the study area, which were used as prototypes for comparisons. 

Finger assessments were used to determine soil texture, including feel test, moist cast test, 

ribbon test, taste test and others. Feel test included graininess test, dry feel test, and 

stickiness test. Field Manual for Describing Soils in Ontario was used as reference for 

finger assessments. The field records included site location and soil code. The survey tools 

were a Dutch auger and a profile sample box (Figure 3.2 (a)). Soil was pulled out using the 
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auger (Figure 3.2 (b)) and put into the profile sample box following the layer sequence 

(Figure 3.2 (c)). A soil profile could be observed in the profile sample box. A scale on the 

two sides of the profile sample box was used to measure the horizon depth. The use of the 

Dutch auger and profile sample box allowed a quick and easy sampling procedure in field. 

 
Figure 3.2 Field survey tools and method: (a) Dutch auger (left) and profile sample box (right); (b) using the 
Dutch auger to collect soil; and (c) using profile sample box to see soil profile. 

 

It should be noted that the survey was limited by the accessibility in field and time. It 

was mainly developed in the northeast land area of the conservation, where total 19 sites 

were sampled. The northeast land area occupies relatively larger area than the west land 

area does, and the middle area is covered mostly by the reservoir. Thus the field survey was 

conducted mainly in the northeast area. The location and soil series code of the field 

sampling points are displayed on top of a surficial geology layer in Figure 3.3 (a). Their site 

number can be seen from Figure 3.3 (b) on top of contours with interval of 1 m based on 10 

m conventional DEM. Table 3.1 records detailed information on the sampling points. 
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Figure 3.3 (a) Location and soil series code of field sampling points on surficial geology layer, and (b) 
location and site number of field sampling points on contours with interval of 1 m. 

 Surficial Geology 
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Table 3.1 Summarized information of field sampling points: sites number, identified soil series in three letter 
code, specific name of soil code, coordinates of sites, and remarks. 

Site No. Soil_Code Name Easting (m) Northing (m) Remarks 
1 BRT  Brant loam 534835 4815412 Toe slope              
2 WTO Waterloo fine sandy loam 534831 4815445 Mid-slope 
3 HUO Huron loam 534852 4815434 Top slope 
4 HIG Heidelberg fine sandy loam 534720 4815313 Waterloo catena 
5 WTO Waterloo fine sandy loam 534671 4815307  
6 WTO Waterloo fine sandy loam 534658 4815228  
7 ZOR Organic soils 534582 4815246 Wetland soil 
8 FOX Fox sandy loam 534519 4815124  
9 WTO Waterloo fine sandy loam 534448 4815059  
10 CAD Caledon sandy loam 534377 4815098  
11 WTO Waterloo fine sandy loam 534526 4814880  
12 HUO Huron loam 534327 4814649  
13 HUO Huron loam 534311 4814676  
14 HUO Huron loam 534292 4814649  
15 FOX Fox sandy loam 534308 4814606  
16 FOX Fox sandy loam 534300 4814622 FOX over HUO 
17 HUO Huron loam 534146 4814721  
18 HUO Huron loam 534106 4814737  
19 HUO Huron loam 534030 4814783 PERTH 

3.3 Data and Methodology 

The intent of this study was to examine the purposive sampling design for digital soil 

mapping based on FCM clustering. The initial data include a 10 m conventional DEM, raw 

LiDAR points, and SPOT images. Figure 3.4 demonstrates the framework of the data 

collection and methodology. The first step was to assemble environmental covariate 

databases, including terrain covariates and vegetation covariates. The second step was a 

purposive sampling design based on FCM clustering of the databases. The cluster 

information extracted from FCM clustering results were used to analyze the effects of the 

resolution and the vegetation covariate, NDVI, on optimal partitions. The fuzzy 
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membership value maps then were employed in the interpretation of fuzzy membership 

values at sampled points in order to investigate the associations between soil series and 

fuzzy clusters. Specifically, the data collection and the purposive sampling design method 

are detailed in following sections.  

 

 
Figure 3.4 Framework of data collection and the purposive sampling design. 

3.3.1 Environmental Covariates Data 

The field observation and sampling led to some preliminary findings. By overlapping 

with surficial geologic feature layer (Figure 3.3), sampling sites could be roughly classified 

into two units, Ice-contact sand unit (Unit 1) containing more sand deposits and Tavistock 

Till unit (Unit 2) containing more clay deposits. In Unit 1, four of the eight sampling points 

were identified as WTO series consisting of well drained soils developed on fine and very 

fine sandy loams, while in Unit 2, seven of the eleven sampling points belonged to HUO 

series developed on moderately well drained clayey parent materials (Presant and Wicklund, 

1971). It is likely that soils vary with geologic features in this area. I contend to control the 
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geologic factor in this study in order to examine only the interested issues. Therefore, the 

study area was stratified into those two units, and these two units were employed to 

examine the resolution and vegetation issues, respectively. This stratification strategy is 

also commonly used in terrain-based hydrological modeling, for example, channel cells and 

hillslope cells which are treated differently (Quinn et al., 1995; Gallant and Dowling, 2003; 

Deng et al., 2007).  

3.3.1.1 Generating DEM from Raw LiDAR Points 

A 1 m resolution LiDAR DEM was generated from raw LiDAR points in the Laurel 

Creek Conservation area. The raw LiDAR point data was provided by Mapping, Analysis 

and Design (MAD) in the University of Waterloo. This dataset covering most areas of the 

City of Waterloo was collected by Optech® with flying height of ~1300 m, pulse repetition 

frequency of 70 Hz and point density of 1.5 pt/m2, on March 11, 2006. The generation of 

DEM from raw LiDAR points involved two steps: filtering and interpolating as shown in 

Figure 3.5.  

 
Figure 3.5 Generating DEM from raw LiDAR data. 

 

Filtering is to remove non-ground points from raw LiDAR points. Two categories of 

filtering methods exist (Liu, 2008). Methods in the first category filter grid images that are 

interpolated from raw LiDAR points, such as wavelet-based filtering (Vu and Tokunaga, 
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2001), and segmentation-based filtering (Nardinocchi et al., 2003). Many of these methods 

stem from digital images processing methods. While it is evident that these methods might 

lose important information and introduce errors during transferring raw LiDAR points into 

grid images (Axelsson, 2000; Pfeifer and Mandlburger, 2009). It is therefore suggested to 

utilize methods in the other category which directly use raw LiDAR points in order to 

overcome those limitations (Axelsson, 2000; Liu, 2008). One of the popular methods in this 

category is Axelsson (2000): using adaptive TIN (Triangulated Irregular Networks) models, 

where a sparse TIN created from seed points is progressively densified by adding ground 

points which meet certain criteria. This method has been employed in many practical 

applications (Liu, 2008), and is effective in dense areas. Thus, this method was used in 

filtering the raw LiDAR points in the study area. Through testing and observation, it was 

decided to first segment the raw LiDAR point cloud data into subset datasets and then apply 

the filtering method for each subset individually. The reason for this segmentation could be 

explained as the LiDAR points belonging to trees and grasses were somewhat difficult to 

entirely clean up by conducting the filtering algorithm globally.  

The filtering results, ground points, were then interpolated into a 1 m resolution DEM. 

Interpolation is to determine the elevation value at unsampled points using the sampled 

elevation values at neighbouring points. Commonly used interpolation methods include the 

inverse distance weighted (IDW), Spline, and Kriging methods. The IDW method assumes 

the sample points that are closer to the predicted point have more influence on the predicted 

value. Spline-based methods estimate values using a function to minimize the overall 
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surface curvature. Kriging is a geostatistical method based on both the distance and the 

degree of autocorrelation. Previous studies have shown that Kriging can yield the best 

interpolation results (Zimmerman et al, 1999). However, when dealing with high density 

points, such as LiDAR points, there are no significant differences between the 

performances of the IDW and Kriging methods (Liu, 2008; Pfeifer and Mandlburger, 2009). 

Additionally, the IDW method has a better computational performance than other methods 

(Pfeifer and Mandlburger, 2009). Therefore, this study employed the IDW method to 

interpolate the ground LiDAR points into a 1 m DEM in ArcGIS®. The generated 

LiDAR-derived DEM was filled in ArcGIS®. 

3.3.1.2 Resampling 

A conventional DEM at 10 m resolution in the Laurel Creek Conservation area also 

provided the initial data for this study and was used to extract land-surface parameters. This 

DEM was provided by the Map Library at the University of Waterloo. It was extracted from 

a DEM covering the whole Grand River watershed produced by Grand River Conservation 

Authority. This DEM was hydrologically-conditioned and originally constructed based on 

contour data and digital terrain data from 1:10,000 Ontario Base Maps in the fall of 2000. 

The horizontal precision is +/- 10 m, and the vertical precision is +/- 5 m. Since the dataset 

was unfilled, the first step was to fill it in order to avoid errors caused by artefacts.  

To examine the effects of resolution on the purposive sampling design, different 

resolution DEMs were resampled from the basic 1 m LiDAR-derived DEM and the 10 m 
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conventional DEM. NEAREST, BILINEAR, and CUBIC options are among the commonly 

used resampling methods in ArcGIS® (Lo and Yeung, 2007). The NEARST option assigns 

the value of the nearest original cell to the corresponding resampled cell. The BILINEAR 

option takes a proximity-weighted average of the four original nearest cells to determine the 

resampled cell. In CUBIC option, the number of the determining original cells becomes16. 

Among them, the NEAREST option is the preferred method to use when applied to map 

layers in GIS because it does not change the attribute values of the original grid cells 

assigned to the reoriented grid cells and it is easier to compute than the other two options 

(Lo and Yeung, 2007). Previous studies also indicated that no significant differences exist 

among the three resampling options when computing land-surface parameters (Wu et al., 

2008). Therefore, the 1 m LiDAR-derived DEM was resampled into 5 m, 10 m, 20 m, 30 m, 

and 50 m, and the 10 m conventional DEM was resampled into 20 m, 30 m, and 50 m 

(Figure 3.6), using the NEAREST option in ArcGIS®. 

 
Figure 3.6 Resampling conventional DEM and LiDAR-derived DEM. 

3.3.1.3 Deriving Land-Surface Parameters 

Five land-surface parameters were decided to be primary importance to soil formation 
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in the study area: elevation, slope, plan curvature, profile curvature and topographic 

wetness index (TWI). Many previous studies deemed these land-surface parameters are 

essential in representing landform (English, 2001; Zhu et al., 2008b; Yang et al., 2011). The 

typical characteristics of the terrain can be well described using slope and curvatures, and in 

terms of the impact of soil moisture on soil formation, topographic wetness index can assist 

in classifying the soil. Moore et al. (1993) indicated that among a number of primary and 

secondary land-surface parameters, slope, curvatures, and wetness index have higher 

correlations with the soil properties. McSweeney et al. (1994) and English (2001) also 

contended that elevation, slope, plan curvature, profile curvature, and topographic wetness 

index exhibit the majority of relief influence on soil formation. Thus, these five 

land-surface parameters were input into FCM clustering as terrain covariates (Figure 3.7). 

 
Figure 3.7 Deriving land-surface parameters as terrain covariates. 

 

Primary land-surface parameters, slope, plan curvature, and profile curvature were 

directly derived from DEM as shown in Figure 3.7. Slope reflects the rate of change of 
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elevation in the steepest descent, and plan and profile curvatures are two parameters 

describing the concavity and convexity of the land surface (Olaya, 2009). The calculation 

of slope, plan curvature and profile curvature was based on the Evans-Young method 

(Evans, 1972; Young, 1978; Evans, 1979) in which the land surface was modeled by a 

quadratic polynomial. Another primary land-surface parameter, catchment area, was also 

derived from DEM directly for the purpose of calculating secondary land-surface 

parameters (Figure 3.7). Catchment area of a cell is the area of a watershed where water 

flows to this cell. This parameter was calculated based on a multiple flow direction method 

(Quinn et al., 1991) in which water in a cell flows into all lower neighboring cells. A 

secondary land-surface parameter, topographic wetness index, was calculated based on 

slope and catchment area. Topographic wetness index has the potential to reflect the 

tendency of a cell to accumulate water. It is defined as: 

𝑇𝑊𝐼 = ln  ( 
𝐴

tan𝛽
 )                                                                                                                         (3.1) 

where A is catchment area and β is slope angle in degrees.  

The elevation, slope, plan curvature, profile curvature, and topographic wetness index 

layers were all utilized as terrain covariates in FCM clustering. These primary and 

secondary land-surface parameters were calculated using terrain analysis algorithms 

embedded within a software package called “SoLIM Solutions 2010” developed by Zhu et 

al. (http://solim.geography.wisc.edu/software/index.htm). This useful software permitted 

the derivation of land-surface parameters as well as the purposive sampling design based on 

FCM clustering of environmental covariates in this study. 

http://solim.geography.wisc.edu/software/index.htm
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3.3.1.4 Deriving NDVI 

To examine the contribution of vegetation covariate to the purposive sampling design 

based on FCM clustering, a vegetation index, NDVI, was employed in the environmental 

covariates database construction. NDVI is commonly calculated from satellite images using 

the formula proposed by Kriegler et al. (1969): 

𝑁𝐷𝑉𝐼 =  
𝜆𝑁𝐼𝑅 −  𝜆𝑅𝐸𝐷
𝜆𝑁𝐼𝑅 + 𝜆𝑅𝐸𝐷

                                                                                                               (3.2) 

where 𝜆𝑁𝐼𝑅  and 𝜆𝑅𝐸𝐷 represent the reflectances in the near-infrared (NIR) and red bands, 

respectively. NDVI responds to the variations in green biomass, chlorophyll content, and 

canopy water stress (Liang, 2004). It ranges from -1.0 to 1.0, with negative values denoting 

non-vegetation and positive values indicating vegetation. The higher the value is, the denser 

the vegetation is. NDVI is regarded as one of the most effective indicators of vegetation in 

various applications (Ünsalan and Boyer, 2011).  

As shown in Figure 3.8, NDVI was calculated using SPOT images downloaded from 

GeoBase Orthoimage 2005-2010 database (http://www.geobase.ca). This database consists 

of SPOT 4/5 images during the period 2005-2010 at 20 m resolution. In SPOT 4/5 images, 

Bands 2 and 3 are located in red and near-infrared, respectively. Thus, NDVI was calculated 

in ArcGIS® using:  

𝑁𝐷𝑉𝐼 =  
𝐵3 −  𝐵2
𝐵3 +  𝐵2

                                                                                                                         (3.3) 

where  𝐵2 and  𝐵3 denoted the SPOT Bands 2 and 3, respectively. The NDVI layer was 

input into the FCM clustering as a vegetation covariate. 
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Figure 3.8 Calculating NDVI from SPOT images. 

3.3.2 Purposive Sampling Design Method 

The purposive sampling design based on FCM clustering of environmental covariates 

was conducted in Units 1 and 2 areas, respectively. In particular, the experiments were 

grouped into: Groups A and B on the use of conventional DEMs, and Groups C and D 

based on LiDAR-derived DEMs. Group A consisted of four experiments conducted in Unit 

1 area based on four conventional DEMs at 10 m, 20 m, 30 m, and 50 m resolutions. Group 

B included two experiments conducted in Unit 2 area based on 10 m conventional DEM 

with and without NDVI, respectively. Experiments in Group C included six in Unit 1 area 

based on the LiDAR-derived DEMs with resolutions of 1 m, 5 m, 10 m, 20 m, 30 m, and 50 

m. Group D involved two experiments in Unit 2 area using 10 m LiDAR-derived DEM 

with and without NDVI, respectively. Hence, the effects of resolution on the purposive 

sampling design could be analyzed based on the results of the experiments in Groups A and 

C, and the contribution of NDVI could be seen through the experiments in Groups B and D. 

The use of LiDAR-derived DEM could be analyzed through experiments in Groups C and 

D. In each experiment in these four groups, the purposive sampling design in general 

embodied two steps as shown in Figure 3.4. 

1) The first step was to construct the environmental covariate database. The five 
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experiments in Group A constructed five databases embedded with five land-surface 

parameters (slope, plan curvature, profile curvature, topographic wetness index, and 

elevation) derived from the 10 m, 20 m, 30 m, and 50 m resolution conventional DEMs, 

respectively. In the first experiment of Group B, the database contained the five 

land-surface parameters derived from the 10 m conventional DEM and the resampled 10 m 

NDVI, while in the second experiment of Group B, the NDVI dataset was deleted from the 

database. The six experiments in Group C used the five land-surface parameters derived 

from the 1 m, 5 m, 10 m, 20 m, 30 m, and 50 m LiDAR-derived DEMs, respectively. In the 

first experiment in Group D, the database consisted of both the five land-surface parameters 

obtained from LiDAR-derived DEM and NDVI at 10 m resolution. The second experiment 

in Group D only contained the five LiDAR-derived land-surface parameters.  

Although the initial NDVI was derived from the SPOT images at 20 m resolution, it 

was resampled into 10 m resolution to match other datasets in the experiments of Groups B 

and D. It should be noted that the process was only for the compatibility purpose, and the 

resolution of NDVI was only 20 m even though it was resampled into higher resolution. 

The datasets in environmental covariates databases carried different numerical ranges, 

for example, elevation ranging around 330~360 m while slope ranging around 0~10 degree. 

By assuming that these covariates have the same weight in predicting soil variation, it was 

suggested to standardize these covariates to the same numerical range (Yang, 2006; Zhu et 

al., 2008a). Since cells in slope, topographic wetness index, and elevation layers carried 

only positive values, these layers were stretched into 0~100; while, plan curvature, profile 
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curvature, and NDVI layers were stretched to -50~50 because they originally ranged from 

negative values to positive values. 

2) The second step was to conduct FCM clustering of environmental covariates. The 

aim of using FCM clustering was to identify the patterns of the environmental configuration. 

For each experiment in Groups A, B, C, and D, FCM clustering was performed five times 

across algorithms with fuzziness exponent m of 1.25, 1.5, 1.75, 2, and 2.25, respectively. 

For each run, the number of clusters c ranged from 2 to 15, the iteration number was 50 and 

the maximum membership error 𝜀 was 0.01. The FCM clustering results in each run 

included a set of fuzzy membership value maps in raster format corresponding to clusters, 

respectively, and a text file recording information on fuzziness exponent m, iteration 

number, cluster number c, partition coefficient F, entropy H, and fuzzy partition error 

(payoff) Jm . By examining the improvements in partition coefficient (F) and entropy (H) 

across the adjacent clustering, possible optimal numbers of clusters could be found in each 

run. When the improvement in H with cluster number changing from c to c + 1 was larger 

than the improvement with cluster number changing from c - 1 to c and from c + 1 to c + 2, 

c was regarded as an optimal cluster number in this run (Yang et al., 2011).  

After FCM clustering of environmental covariates, an optimal partition of the study 

domain was able to be found. Each cluster in this partition would be presented in a fuzzy 

membership value map. Locations with highest membership values would be deemed as the 

fittest representations of the unique environmental configuration corresponded by this 

cluster because they were the closest to the cluster centroids. Field sampling could be 
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conducted only at such locations to interpret the environmental configuration as 

representative of soil series. 

3.4 Chapter Summary 

This chapter first presents the information of the Laurel Creek Conservation area and 

field sampling. The field survey indicated a strategy for the study of soil in this area, which 

was to stratify the area according to the suficial geology layer in order to control influential 

factors. Two units of geology features were selected as subset study areas. Following is the 

detailed framework of data collection and methodology in this study. Raw LiDAR point 

cloud data were utilized to generate a LiDAR-derived DEM. Both conventional and 

LiDAR-derived DEMs were resampled into coarser resolutions, based on which primary 

and secondary land-surface parameters were derived as terrain covariates input into 

environmental covariates database. NDVI calculated from SPOT images was used as 

vegetation covariate in the database. The purposive sampling design was based on FCM 

clustering of environmental covariates databases, and organized into four groups of 

experiments in which DEM source and NDVI were controlled.  
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CHAPTER 4 RESULTS AND DISCUSSION 

This chapter first presents FCM clustering results of experiments in Groups A and C for 

Unit 1 area, based on which the effects of resolution on the purposive sampling design are 

discussed. Then it shows the results of experiments in Groups B and D in Unit 2 area, based 

on which the contribution of vegetation covariate is discussed. The fuzzy membership 

values at the sampled sites are interpreted in the third section. The demonstration of results 

in Groups C and D also implies an opportunity to discuss the use of LiDAR data in digital 

soil mapping. In the last section, a validation experiment in a subset area of the Waterloo 

Aquifer area is provided. 

4.1 FCM Clustering Results in Unit 1 Area 

4.1.1 Use of Conventional DEM 

F and H 

Graphical displays of the partition coefficient (F) and entropy (H) with number of 

clusters across five algorithms of weighting exponent of m = 1.25, 1.5, 1.75, 2, and 2.25 

based on 10 m, 20 m, 30 m, and 50 m conventional DEMs in experiments of Group A are 

illustrated in Figure 4.1.  
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Figure 4.1 Partition coefficient (F) and entropy (H) plotted against the number of clusters based on 10 m, 20 
m, 30 m, and 50 m conventional DEMs across five algorithms with m of (a) 1.25, (b) 1.5, (c) 1.75, (d) 2, and 
(e) 2.25 in Unit 1 area. 

 

As the number of clusters increases, F decreases and H increases gradually. According 

to theory, F is inversely proportional to the overall average overlap between pairs of fuzzy 

clusters, and H is a scalar measure of the amount of fuzziness in a given fuzzy partition. 

Thus, the result presented in Figure 4.1 confirms that the overlap between clusters increases 

as the number of clusters increases. It also can be seen that increasing m leads to lower F 

and higher H and therefore reduces the estimated classification certainty. It is desirable to 

achieve a balance between fuzziness and certainty by choosing a proper weighting 

exponent m. 
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Slight changes of F and H with resolution exist. First, F tends to be larger and H tends 

to be smaller at each number of clusters when the resolution becomes lower. This trend is 

evident when m is small (e.g., m = 1.25). Second, when m is 1.25, 1.5, and 1.75, H at each 

number of clusters at 50 m resolution is obviously smaller than those at the other three 

higher resolutions. Third, when m is 2 and 2.25, the trend of H at 10 m resolution does not 

follow the others at lower resolutions. It experiences some small fluctuations. When m is 

2.25, H experiences such fluctuations not only at 10 m resolution but also at 20 m 

resolution, while F keeps stable. Although a shift of the statistical population induced by 

the change in the number of evaluated cells might lead to these changes, it is still possible 

that they could imply the resolution dependency. For example, the different changes of H 

when the resolution is aggregated to 50 m might indicate a threshold of resolution for fuzzy 

clustering in Unit 1.  

Improvements in F and H 

It is useful to examine the improvements in F and H with numbers of clusters 

graphically in order to determine the optimal numbers of clusters. The improvements in 

partition coefficient (ΔF = F(c) – F (c + 1)) and the entropy (ΔH = H (c) – H (c + 1)) over 

adjacent clusters across m of 1.25, 1.5, 1.75, 2, and 2.25 are demonstrated in Figure 4.2, 4.3, 

4.4, 4.5, and 4.6, respectively. Each figure has four graphs showing ΔF and ΔH in four grid 

sizes. ΔH reaches its local maximum or minimum values and ΔF reaches its local minimum 

or maximum values at the same number of clusters, respectively. 
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Figure 4.2 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, and (d) 50 m conventional DEMs, 
using the algorithm with m of 1.25 in Unit 1 area. 

 

 
Figure 4.3 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, and (d)50 m conventional DEMs, 
using the algorithm with m of 1.5 in Unit 1 area. 
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Figure 4.4 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, and (d)50 m conventional DEMs, 
using the algorithm with m of 1.75 in Unit 1 area. 

 
Figure 4.5 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, and (d)50 m conventional DEMs, 
using the algorithm with m of 2 in Unit 1 area. 
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Figure 4.6 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, and (d)50 m conventional DEMs, 
using the algorithm with m of 2.25 in Unit 1 area. 

 

Figures 4.2-4.6 show that increasing m from 1.25 to 2.25 generally weakens the 

fluctuations in ΔF and ΔH at each of the four resolutions. In Figure 4.2, when the grid size 

changes from 10 m to 20 m, the improvements have similar variations with the number of 

cluster increasing. When the grid size becomes 30 m, the improvements tend to be stable. 

However, when the grid size reaches 50 m, ΔF and ΔH become to fluctuate again. In Figure 

4.3, ΔF and ΔH at 50 m are the most unstable. The fluctuation becomes larger when the grid 

size increases. In Figure 4.4, the improvements are roughly stable when the grid size 

increases from 10 m to 30 m. When the grid size becomes 50 m, the improvements show 

some variations with the increasing of clusters. In Figure 4.5, ΔF and ΔH are smooth when 

the grid size grows from 20 m to 50 m. When the grid size is 10 m, the improvements 
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undergo slight fluctuations with larger numbers of clusters. In Figure 4.6, when m comes to 

a larger value, 2.25, ΔF and ΔH become relatively smooth. However, when the grid size is 

smaller, sparse variations exist in the curves. When ΔF reaches its local minimum value and 

ΔH reaches its local maximum value, the cluster number is regarded as one optimal number 

of clusters. Table 4.1 summaries the possible optimal numbers of clusters with different m 

and at different grid sizes. 

 
Table 4.1 Possible optimal numbers of clusters based on 10 m, 20 m, 30 m, and 50 m conventional DEMs 
across five algorithms with m of 1.25, 1.5, 1.75, 2, and 2.25 in Unit 1 area. 

 10 m 20 m 30 m 50 m 

1.25 9  12 6  9  12  14  7  10  14 

1.5 9  13 12 6 5  7  11 
1.75    8  10  12 
2 11  14    
2.25 7 5 14   

 

It can be seen from Figures 4.2-4.6 and Table 4.1 that ΔF and ΔH vary with the grid 

size. Increasing the grid size from 10 m to 30 m generally mutes the fluctuations in ΔF and 

ΔH and therefore reduces choices of optimal numbers of clusters. However, when the grid 

size is 50 m, the fluctuations in ΔF and ΔH are enhanced and there are more choices of 

optimal numbers of clusters. These findings indicate that the clustering results can be 

different when the resolution shifts and therefore various environmental configurations may 

be identified. For example, a different environmental configuration containing fewer 

landform details may be established at a coarser resolution. This new configuration may 

correspond to a soil series that is not related to any configuration obtained at higher 

grid 
size 

m 
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resolutions. In other words, as the resolution changes different environmental 

configurations may become evident and significant in the prediction of soils.  

These findings can be explained as environmental modeling (e.g., soil modeling) is 

restricted to spatial scales and resolutions on which the studied biophysical processes 

depend or the modeling per se depends (Zhuang and Montgomery, 1994; Band and Moore, 

1995; Florinsky and Kuryakova, 2000; Deng et al., 2007). For example, land-surface 

parameters are dependent on the resolution at which they are calculated (Moore et al., 

1993). In Deng et al. (2007), plan curvature and profile curvature derived from coarser 

resolutions are found to induce an unrealistic topography that is much smoother and gently 

rounded. As well, topographic wetness index is very sensitive to DEM resolution, while it 

may strongly relate to the landscape type (Zhang and Montgomery, 1994; Florinsky and 

Kuryakova, 2000; Deng et al., 2007). Thus, it is possible the variation of the five 

land-surface parameters used in this study with DEM resolution that has significant impact 

on the FCM clustering and the purposive sampling design. 

A related study is done by Arrell et al. (2007) focussing on fuzzy identification of 

morphometric landform classes from DEMs. They argued that as the resolution increases, 

the number of fuzzy classes which can capture meaningful landform information will 

decrease and therefore the optimal number of clusters will decrease. It seems this 

conclusion is against the FCM clustering results based on conventional DEM in Unit 1 area 

that increasing resolution (from 30 m to 10 m) leads to more optimal numbers of clusters. 

However, it should be noted that the two studies are interested in different scales which can 



55 
 

influence the conclusions. In addition, it has not been examined whether the number of 

meaningful partitions increases with the increase of resolution in the study in Unit 1 area. 

It can be seen through the findings that resolution has an influence on the recognition 

of the dominant environmental configuration. The spatial resolution of environmental 

covariates used in soil inference may not always correspond to the spatial scale of soil 

forming processes (Geng et al., 2012). Identifying the dominant environmental 

configurations at different resolutions is therefore important for understanding the scale of 

soil forming processes in the specific area.  

An m equal to 1.5 represents a good compromise with respect to the improvements and 

stability of the classification. This result corresponds to previous studies which also used 

1.5 as a proper value of m (e.g., Odeh et al., 1992; MacMillan et al., 2000; Burrough et al., 

2001; Arrell et al., 2007). Thus, the clustering results with m of 1.5 are explored in 

demonstrating optimal partitions. 

Hardened Class Maps 

Fuzzy membership value maps in FCM clustering results indicate the spatial 

distribution of fuzzy membership values to clusters. A technique in fuzzy logic-based 

digital soil mapping is to harden these fuzzy membership value maps into conventional 

crisp form for the purpose of comparisons or interpretations (Burrough et al., 2000; English, 

2001; Zhu et al., 2008a). The hardening present in this study is done by classifying each 

cell into the class to which the cell carries the highest membership value. This hardening 

can be further employed to create raster soil categorical maps if the association between 
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clusters and soils are obtained through soil inference (Zhu et al., 2008a). Four hardened 

class maps for the Unit 1 area are shown in Figure 4.7. These maps were drawn from the 

results of the FCM clustering in Group A experiments at four resolutions with m of 1.5. The 

numbers of clusters at the four resolutions were selected from Table 4.1. They are 

appropriate for partition because they appear multiple times (e.g., 9 at 10 m, 12 at 20 m, 7 

at 50 m) or are the only choice (e.g., 6 at 30 m) among the possible optimal choices. A 

conventional 1: 50,000 soil map obtained from National Soil DataBase (NSDB), 

Agriculture Agri-Food Canada, is also presented for comparisons. This soil map was 

produced based on soil survey in 1970s (Presant and Wickland, 1971).  

 

 
Figure 4.7 Hardened class maps based on conventional DEM with resolution of and number of clusters c of (a) 
10 m and 9, (b) 20 m and 12, (c) 30 m and 6, and (d) 50 m and 7, respectively, using the algorithm with m of 
1.5 in Unit 1 area. 

 

In hardened class maps, each cell represents the most possibility of belonging to a 

cluster. It is likely that hardened class maps can capture both the local and overall variation 
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of soil information if the association between soil and the clusters exists (English, 2001). 

Although the area is classified into different numbers of clusters at four resolutions, a 

general consistent pattern can still be seen through the four maps. For example, the classes 

around the northwest area occupy almost the same area and have the same shape across 

four resolutions, namely, Class 4 in (a), Class 8 in (b), Class 4 in (c), and Class 5 in (d). 

These classes generally correspond to the distribution of soil series WTO in pink colour in 

the 1:50,000 conventional soil map. Although, it might be explained as both conventional 

soil survey and fuzzy clustering utilized terrain parameters, so that this corresponding is 

only a representation of terrain feature, this finding may still indicate the existing of the 

association between fuzzy clusters and soil series. In addition, all the four hardened class 

maps show more detailed variations than the 1:50,000 conventional soil map. Thus more 

detailed variations of soil are possible to be revealed in fuzzy logic-based digital soil 

mapping.  

Through the fuzzy membership maps and hardened class maps, it is possible to identify 

the optimal viewing resolution of the clusters as 10 m for Unit 1 area. More details are 

present at this resolution and the surface generalisation is increased at other resolutions. In 

addition, classes at 10 m resolution are generally spatial adjacent, while classes at lower 

resolutions have considerable scatters. However, for soil classification purpose, it is not 

necessary that the highest resolution performs the best. A coarser resolution may provide a 

clearer and more meaningful classification result by reducing the classification noise (Arrell 

et al., 2007; MacMillan et al., 2010). It is likely the hardened class maps at lower 
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resolutions in this study can reveal much clearer patterns of soils than those at higher 

resolutions, which needs further validations. For example, the hardened map at 10 m 

resolution may reveal variations at a level of detail that does not match with the one 

reflecting soil forming processes. In other words, too much noise may exist at this scale for 

soil forming processes. In previous studies, Smith et al. (2006) argued that while very fine 

resolution DEMs contain much more detailed terrain information, they may not lead to 

more accurate soil resource inventories because fine resolution does not necessarily 

contribute to the differentiation of soil at the scale of interest. Zhu et al. (2008b) suggested 

that DEM resolution does not have significant impact on the accuracy of soil maps in that it 

does not have impact on derived slope values. They indicated that coarse DEM soothes out 

the fine details which are not important to soil classification at the studied scale. Similar 

findings can also be found in Howell et al. (2008). It is necessary to identify an optimal 

resolution at which fuzzy clustering and soil inference perform best.  

Catenary Sequence 

Images representing the spatial distribution of membership values to each class at three 

resolutions are shown in Figure 4.8 by arranging them as to appear in a catenary sequence, 

from the flat bottoms in southeast part to the tops in north part in Unit 1 area. Only the 

images at 10 m, 20 m, and 30 m resolutions are shown in this figure because when the grid 

size is 50 m it is unclear to observe such a catenary sequence from membership value maps. 

While the particular arrangement of numbers of clusters at each resolution differed 

numerically, each captured similar landscape positions in Unit 1 area. 
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Figure 4.8 FCM membership value maps showing a catenary sequence using the algorithm with m of 1.5 and 
number of clusters c of 9 in Unit 1 area: (a1) Class 3, (a2) Class 7, (a3) Class 5, (a4) Class 4, based on 10 m 
conventional DEM; (b1) Class 8, (b2) Class 5, (b3) Class 3, (b4) Class 4, based on 20 m conventional DEM; 
(c1) Class 1, (c2) Class9, (c3) Class 2, (c4) Class 6, based on 30 m conventional DEM (light tone indicates 
high membership value).  

 

In Figure 4.8, from left to right, cells with highest membership values correspond to 

landscape positions from flat and low bottoms to high and sloping tops in a catenary 

sequence. These classes are considered to be associated directly with obvious landscape 

positions (Odeh et al., 1992; Ahn et al., 1999; English, 2001). This result confirms the 

observations of Irvin et al. (1997), Burrough et al. (2000), and Arrell et al. (2007) that FCM 

clustering allows the extraction of geomorphologically significant classes. These classes 

may correspond to distinct environmental configurations which can be used to identify 
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soil-landscape associations. Other fuzzy classes not shown in Figure 4.8 then can be 

interpreted as transition zones between distinct landscape positions (Odeh et al., 1992; Ahn 

et al., 1999; English, 2001). Soil series related to these transition classes may also relate to 

transitive types. Another explanation could be that the other fuzzy classes are difficult to 

interpret and do not contain any geomorphologically significant meanings (Arrell et al., 

2007).  

Figure 4.8 also identifies the persistence of a catenary sequence at different resolutions. 

This catenary sequence is captured obviously and similarly at each of the three resolutions. 

If a landscape position is present in the same area at different spatial resolutions without 

changes in its shape or form, then it can be recognised as persistent and isometric (Arrell et 

al., 2007). The classes exhibiting the catenary sequence can be viewed as resolution 

independent and therefore are of great importance in soil inference. In particular, figures 

(a1), (b1), and (c1) show flat and low areas persistent at all three resolutions. These areas 

may imply soil series containing more water content because the water tends to flow and 

accumulate at these areas. For example, one of the sampled points in such areas, namely 

Point 7 (Table 3.1), was identified as ZOR series which is organic soils on wetlands. 

However, this persistence seems present only when the resolution is aggregated from 10 m 

to 30 m. When the resolution is 50 m, it is unlikely to identify such a persistent catenary 

sequence. The explanation may stem from that the resolutions lower than 50 m dramatically 

dilute the variation of environmental covariates, or that the landscape characteristics only 

dominate when resolution is higher than 50 m at the study scale. Therefore, it is suggested 
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that for Unit 1 area, it is better to use resolution higher than 50 m to classify landform or 

soil. 

Although the purpose of examining FCM clustering results in Unit 1 area is to gain a 

fuller understanding of the sensibility of resolution to the purposive sampling design, it also 

poses the question of which is the best resolution to predict the soils. Knowledge within a 

soil context is needed for the determination. For example, examining the conventional soil 

maps and detailed soil survey reports in the study area can aid in the determination of the 

optimal resolution and number of clusters. The desired resolution depends on a number of 

issues, such as the environment of study area, available datasets, and also the computation 

ability. Another challenge is the identification of the best number of clusters. It is 

recommended that the number of clusters is better larger than the types of soils on the 

conventional soil map (Yang, 2006). It should be expected that each of all the soil types 

occurring on soil maps can be associated with at least one cluster unless this soil type does 

not exist anymore. It is also expected that new soil types never reported in conventional soil 

survey may appear to correspond to some clusters. Therefore, it is better to use more 

clusters than the known types of soils occurring in the study area to design the field survey 

and conduct soil inference.  

Consequently, the FCM clustering results in Unit 1 area based on conventional DEM 

reveal that the resolution plays a vital role in the determination of optimal numbers of 

clusters and therefore in the partitioning of the environmental covariate space and 

identifying the environmental configurations. The choice of the optimal numbers of clusters 
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shifts with changing resolution: it decreases with the resolution aggregated from 10 m to 30 

m, and suddenly increases when the resolution is 50 m. Hardened class maps imply the 

clusters associated with soils and it is not necessary the finer resolution can lead to better 

clustering results. The observation of a persistent catenary sequence through different 

resolutions indicates the association between landform positions and clusters, and also 

suggests fuzzy clustering at resolutions higher than 50 m in Unit 1 area.  

4.1.2 Use of LiDAR-derived DEM 

 LiDAR-derived DEM 

 The 1 m DEM generated from raw LiDAR data is demonstrated in Figure 4.9, along 

with the raw LiDAR points and filtered ground points. Compared with conventional DEM 

in the study area (Figure 3.1), this LiDAR-derived DEM carries more details in relief 

variation but also some man-made features. For example, it is clear to see a dam on the 

reservoir from this DEM, which may be mis-interpolated in terrain analysis. The footprint 

of roads could also be captured in this DEM. Although such features could cause errors in 

deriving land-surface parameters, the impact of them is not deemed as significant in this 

study. The LiDAR-derived DEM does not cover a small part in the west corner of the 

Laurel Creek Conservation area due to the range of the raw LiDAR point data, while this 

missing does not influence the experiments in Units 1 and 2 areas located in the northeast 

part. 
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Figure 4.9 1 m LiDAR-derived DEM in the Laurel Creek Conservation area, with raw LiDAR points in 
right-bottom, and ground LiDAR points in right-top. 

 

 In an attempt to validate the LiDAR-derived DEM, the conventional 10 m DEM was 

compared with the resampled 10 m LiDAR-derived DEM. Total 100 points were randomly 

selected on the land of the Laurel Creek Conservation area. The root-mean-squre deviation 

(RMSD) of the elveation values extracted from the conventional 10 m DEM and the 

LiDAR-derived 10 m DEM at these points was 0.96487 m. Given the accuracy of the 

conventional 10 m DEM (vertical reliable: +/- 5 m), the value of the RMSD can be deemed 

as small enough to support the claim that the LiDAR-derived DEM has a high accuracy that 

could satisfy the need of this study.  

Improvements in F and H 

The FCM clustering results of experiments in Group C in Unit 1 area based on 
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LiDAR-derived DEM include information on the partition coefficient (F) and entropy (H) 

and fuzzy membership value maps. The results confirm the observation in Section 4.1.1 

that with the increase of the cluster number, F decreases and H increases gradually. The 

improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and the entropy (ΔH = H (c) – 

H (c + 1)) over adjacent clusters across m of 1.25, 1.5, 1.75, 2, and 2.25 are demonstrated in 

Figures 4.10, 4.11, 4.12, 4.13, and 4.14, respectively. Each figure has six graphs showing 

ΔF and ΔH at six grid sizes. ΔH reaches its local maximum or minimum values and ΔF 

reaches its local minimum or maximum values at the same number of clusters, respectively. 
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Figure 4.10 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 1 m, (b) 5 m, (c) 10 m, (d) 20 m, (e) 30 m, and (f) 50 m 
LiDAR-derived DEMs, using the algorithm with m of 1.25 in Unit 1 area. 
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Figure 4.11 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 1 m, (b) 5 m, (c) 10 m, (d) 20 m, (e) 30 m, and (f) 50 m 
LiDAR-derived DEMs, using the algorithm with m of 1.5 in Unit 1 area. 
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Figure 4.12 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 1 m, (b) 5 m, (c) 10 m, (d) 20 m, (e) 30 m, and (f) 50 m 
LiDAR-derived DEMs, using the algorithm with m of 1.75 in Unit 1 area. 
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Figure 4.13 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 1 m, (b) 5 m, (c) 10 m, (d) 20 m, (e) 30 m, and (f) 50 m 
LiDAR-derived DEMs, using the algorithm with m of 2 in Unit 1 area. 
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Figure 4.14 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 1 m, (b) 5 m, (c) 10 m, (d) 20 m, (e) 30 m, and (f) 50 m 
LiDAR-derived DEMs, using the algorithm with m of 2.25 in Unit 1 area. 
 

 Figures 4.10-4.14 confirm the finding that increasing m from 1.25 to 2.25 generally 

weakens the fluctuations in ΔF and ΔH at each resolution. The variation of ΔF and ΔH with 

number of clusters are different at each resolution. Increasing grid size from 1 m to 20 m 

generally mutes the fluctuations in ΔF and ΔH. When the grid size is 30 m, the fluctuations 

in ΔF and ΔH become bigger with smaller values of m, e.g., 1.25, 1.5, and 1.75, but 

generally follow the trend from 1 m to 20 m with m of 2 and 2.25. When the grid size is 50 
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m, the fluctuations in ΔF and ΔH are obviously enhanced.  

 The finding at 30 m resolution using LiDAR-derived DEM is different from that 

observed using conventional DEM shown in Section 4.1.1, while the trend from 1 m to 20 

m using LiDAR-derived DEM agrees with the trend from 10 m to 30 m using conventional 

DEM. The finding at 50 m resolution of LiDAR-derived DEM corresponds to the clear 

change observed in 50 m conventional DEM.  

Table 4.2 summaries the possible optimal numbers of clusters with different m and at 

different grid sizes, when ΔF reaches its local minimum value and ΔH reaches its local 

maximum value.  

 
Table 4.2 Possible optimal numbers of clusters based on 1 m, 5 m, 10 m, 20 m, 30 m, and 50 m 
LiDAR-derived DEMs across five algorithms with m of 1.25, 1.5, 1.75, 2, and 2.25 in Unit 1 area. 

 
 

1 m  5 m  10 m  20 m 30 m 50 m 

1.25 5 10 12 5 8 13 4 6 8 10 13 4 6 11 11 13 5 9 12 

1.5 5 5 14 4 8 11 13 9 12 5 7 10 6 9 12 

1.75 5 10 12 9 12  4 6 10 7 9 13 4 8 10 

2  9 9 11 13  9 8 11 

2.25      10 12 

 

 It is likely that the choices of optimal number of clusters increase when resolution of 

LiDAR-derived DEM is aggregated from 1 m to 10 m and then decrease from 10 m to 20 m. 

When using conventional DEM, the choices for optimal number of clusters decrease with 

the grid size increasing from 10 m to 30 m, while this trend is true to LiDAR-derived DEM 

only from 10 m to 20 m. When using LiDAR-derived DEM at 30 m, there is no significant 

decline in the choices of optimal number of clusters as the one observed using conventional 

DEM. However, a sudden increase at 50 m is observed in both conventional and 

si- -ze 
m 
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LiDAR-derived DEM. In addition, the choices of optimal number of clusters in 

LiDAR-derived DEM are more than those in conventional DEM at 10 m, 20 m, 30 m, and 

50 m resolutions, respectively.  

 The differences between the results using conventional and LiDAR-derived DEM may 

be explained by the differences between the environmental covariates. At the same 

resolution, LiDAR-derived DEM may delineate land-surface parameters in more detail than 

conventional DEM does, which stems from the different degrees of relief variation in 

conventional and LiDAR-derived DEMs at the same resolution (Remmel et al., 2008; Vaze 

et al., 2010). In Remmel et al. (2008), LiDAR-derived DEM provides a much more 

complete and accurate representation of the hydrological processes than the conventional 

DEM does. Vaze et al. (2010) also showed that a more detailed delineation of watersheds is 

given by the 25 m LiDAR-derived DEM but not the 25 m conventional DEM. The 

difference may then propagate to the FCM clustering of environmental covariates, resulting 

in more variations of environmental covariates generated from LiDAR-derived DEM, and 

more choices of optimal number of clusters found. Moreover, both results in conventional 

and LiDAR-derived DEM have shown a transition at 50 m that could be deemed as a 

threshold for the fuzzy soil inference in Unit 1 area. 

 Hardened Class Maps 

 Hardened class maps with m of 1.5 based on LiDAR-derived DEM at six resolutions 

are demonstrated in Figure 4.15. As aforementioned, an m equal to 1.5 was used due to its 

representing a good compromise with respect to the improvements and stability of the 
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partition. The numbers of clusters (c) are 5, 5, 13, 12, 10, and 12 with resolutions of 1 m, 5 

m, 10 m, 20 m, 30 m, and 50 m, respectively. These numbers were selected from Table 4.2 

based on which the partitions could be deemed as optimal.  

 

 
Figure 4.15 Hardened class maps based on LiDAR-derived DEM with resolution of and number of clusters c 
of (a) 1 m and 5, (b) 5 m and 5, (c) 10 m and 13, and (d) 20 m and 12, (e) 30 m and 10, (f) 50 m and 12, 
respectively, using the algorithm with m of 1.5 in Unit 1 area. 

  

 Although each of the six hardened class maps presents different partitions of Unit 1 

area, a consistent pattern can still be seen through them. This consistency corresponds to 

the hardened class maps using conventional DEM shown in Section 4.1.1, which could 

confirm the domination of some landforms in this area.  The graphs (a) and (b) at 1 m and 

5 m resolution in Figure 4.15 carry very similar patterns based on the use of the same 
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number of clusters. Class 3 in graph (a) shown in yellow colour occupies thinner areas at 

the bottom than the corresponding Class 1 in graph (b) in blue. These areas may be 

interpolated into a channel that could develop soil with more water content. To determine 

which of the two graphs is more reasonable in representing such terrain feature, a good way 

may be to examine it in field by measuring the real scale over which it develops. Thus, 

more information is needed when selecting resolution of LiDAR-derived DEM to perform 

landform and soil classification.  

At 20 m resolution, the hardened class map (d) in Figure 4.15 using LiDAR-derived 

DEM and the map (b) in Figure 4.7 using conventional DEM both have 12 classes, and thus 

it is of meaning to compare these two maps in terms of clustering patterns. The former one 

shows less scattering than the latter one and therefore is likely to provide clearer and 

continuous boundaries of clusters. Then, a better soil classification result could be produced 

from LiDAR-derived DEM with resolution of 20 m. This may correspond to many previous 

studies indicating that LiDAR-derived DEM could lead to improvements in the accuracy of 

geomorphic and hydrologic classification and prediction. (e.g., MacMillan et al., 2003; 

Murphy et al., 2008; Vaze et al., 2010). However, it is still impossible to claim that 

LiDAR-derived DEM at higher resolution and accuracy could perform better in soil 

classification than that at lower resolution and accuracy. For example, being both classified 

into 12 clusters, graph (d) in Figure 4.15 at 20 m presents more detailed variations of 

clusters than graph (f) at 50 m does, while a clear and meaningful classification may be 

seen from the coarser graph (f). A related observation in MacMillan et al. (2010) indicated 
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that finer resolution DEM with 5 m and 10 m resolution presents challenges for 

distinguishing short range from long range information, but lower resolution may perform 

better.  

 Consequently, it can be seen that the level of dependency of fuzzy clustering to 

resolution varies with DEM sources, conventional and LiDAR-derived DEM. When using 

LiDAR-derived DEM, the choices of optimal numbers of clusters increase with the 

resolution aggregated from 1 m to 10 m, decrease from 10 m to 20 m, generally keep stable 

when it comes to 30 m, and suddenly increase at 50 m. While using conventional DEM, the 

choices decrease from 10 m to 30 m, and increase at 50 m. At each resolution, the choices 

using LiDAR-derived DEM are more than those using conventional DEM. These variations 

may stem from the differences of the two sources of DEM in representing landscape. It has 

to be admitted that no perfect DEM resolution exists (Claessens et al., 2005) either in 

conventional DEM nor LiDAR-derived DEM. However fuzzy soil mapping could still 

profit from an explicit procedure on analyzing a fit resolution at which the most possible 

detailed and meaningful information on landscape could be gained. 

4.2 FCM Clustering Results in Unit 2 Area 

4.2.1 Use of Conventional DEM 

F and H 

In Group B, two experiments across five algorithms of weighting exponent of m = 1.25, 

1.5, 1.75, 2, and 2.25 at 10 m resolution were conducted in Unit 2 area. One experiment 
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employed both the five terrain covariates and the vegetation covariate, NDVI, while the 

other one employed only the five terrain covariates. Graphical displays of the partition 

coefficient (F) and entropy (H) against the number of clusters are illustrated in Figure 4.16.  

 

 
Figure 4.16 Partition coefficient (F) and entropy (H) plotted against the number of clusters based on 10 m 
conventional DEM across five algorithms with m of (a) 1.25, (b) 1.5, (c) 1.75, (d) 2, and (e) 2.25, where 
environmental covariates databases were constructed with NDVI and without NDVI in Unit 2 area.  

 

Both of the two experiments (with NDVI and without NDVI) show that with the 

increase of the cluster number, F decreases and H increases generally, as well, increasing m 

leads to lower F and higher H. These results confirm the observations in Section 4.1 that 

the overlap between clusters increases as the number of clusters increases and the 
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classification certainty reduces as the value of m increases.  

Some differences between the experiments with NDVI and without NDVI exist. First, 

when m grows from 1.25 to 2, the values of F with NDVI are smaller than those without 

NDVI at the same number of clusters, and the values of H with NDVI are larger than those 

without NDVI at the same number of clusters. However, when m comes to 2.25, there are 

no significant differences between the values of F or H with and without NDVI. Second, 

when m is 1.25, 1.5, 2, and 2.25, F with and without NDVI tend to decrease at the same 

speed, and H with and without NDVI tend to increase at the same speed as well. Both the 

increase and the decease are gradual. However, when m is 1.75, F and H with NDVI show 

some obvious fluctuations, while F and H without NDVI do not show such fluctuations. 

These differences may result from the change of dimensions in the environmental 

covariates space. It is also evident that such differences have dependence on the value of m.  

Improvements in F and H 

It is also necessary to examine the improvements in F and H with numbers of clusters 

graphically in order to determine the optimal numbers of clusters for experiments in Unit 2 

area. The improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and the entropy (ΔH 

= H (c) – H (c + 1)) over adjacent clusters across m of 1.25, 1.5, 1.75, 2, and 2.25 at 10 m 

resolution are demonstrated in Figure 4.17. The figures on the left side show the results 

obtained with NDVI, while results shown on the right side are without NDVI. ΔH reaches 

its local maximum or minimum values and ΔF reaches its local minimum or maximum 

values at the same number of clusters, respectively.  
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Figure 4.17 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on 10 m conventional DEM across the algorithms with m of 
and the construction of environmental covariates database (a) 1.25 with NDVI, (b) 1.25 without NDVI, (c) 1.5 
with NDVI. (d) 1.5 without NDVI, (e) 1.75 with NDVI, (f) 1.75 without NDVI, (g) 2 with NDVI, (h) 2 
without NDVI, (i) 2.25 with NDVI, and (j) 2.25 without NDVI, respectively, in Unit 2 area. 
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Figure 4.17 shows that the variations of ΔF and ΔH with the number of clusters are 

different when using NDVI and not using NDVI as a covariate. When m is 1.25 and 1.5, ΔF 

and ΔH with NDVI and without NDVI demonstrate similar fluctuations, while with m of 

1.75, ΔF and ΔH with NDVI fluctuate strongly but those without NDVI tend to be stable. 

When m is 2 and 2.25, ΔF and ΔH with NDVI are very smooth, while those without NDVI 

undergo some fluctuations. Through these observations, it is necessary to examine the 

possible optimal numbers of clusters at which ΔF reaches its local minimum value and ΔH 

reaches its local maximum value. Table 4.3 summaries the possible optimal numbers of 

clusters when using NDVI and not using NDVI across m of five different values. 

 
Table 4.3 Possible optimal numbers of clusters based on 10 m conventional DEM across five algorithms with 
m of 1.25, 1.5, 1.75, 2, 2.25, using environmental databases with and without NDVI in Unit 2 area. 

m 1.25 1.5 1.75 2 2.25 
With NDVI 4 7 10 5 8 11 4 7 12   
Without NDVI 3 7 9 14 8 4 4 5 7 

 

It can be seen that adding NDVI into the environmental covariates database generally 

reinforces the fluctuation of ΔF and ΔH across m of lower values, while this effect becomes 

negative with higher values of m. There are more choices of the optimal number of clusters 

when including NDVI than the situation when not including NDVI across m of lower 

values (< 2), while when m is higher, 2 and 2.25, the experiment using NDVI cannot reveal 

any optimal number of clusters and that without NDVI still shows some choices. As 

aforementioned, the larger m, 2 and 2.25, will result in more unstable classification. The 

results with m of lower values, such as 1.5, is more reliable. Thus, from this point of view, 

one then can argue that FCM clustering with NDVI in Unit 2 area based on conventional 
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DEM provides more optimal numbers of clusters than that without NDVI, and it is also 

possible that the introducing of more choices will lead to more effective classification 

results.  

Many would contend that land-surface parameters are the most useful predictors for 

soil mapping (McKenzie et al., 2000; McBratney et al., 2003), while the best performance 

may take place where water and material flows are strongly governed by relief, e.g., hilly 

area, (Huggett, 1975; Park and Vlek, 2002). In other words, when the relief is relatively flat, 

other environmental covariates such as vegetation may take control in the prediction. That 

is much likely true for the Unit 2 area based on conventional DEM where the elevation 

range is only about 20 m (from ~340 m to ~360 m). Field investigation also indicates that 

the natural vegetation coverage in this area tends to follow the soil variation, which can be 

explained by the impact of the content of sand and clay on the vegetation growing. Hence, 

based on this study it is suggested to embody vegetation information when performing soil 

classification on the use of FCM clustering in this area.  

Hardened Class Maps 

Examining the hardened class maps for Unit 2 area can also provide useful information 

on the effectiveness of vegetation covariate. As shown in Table 4.3, using 8 as the number 

of clusters is one of the optimal options not only for the case with NDVI but also for that 

without NDVI. Thus, the hardening was done on the fuzzy membership value maps in Unit 

2 area with m of 1.5 and c of 8 based on 10 m conventional DEM. The hardened class maps 

are shown in Figure 4.17, compared with the 1:50,000 conventional soil map in right top. 
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Figure 4.18 Hardened class maps based on 10 m conventional DEM and the construction of environmental 
covariates database (a) with NDVI and (b) without NDVI, using the algorithm with m of 1.5 and number of 
clusters c of 8 in Unit 2 area. 

 

As shown in Figure 4.18, graphs (a) and (b) have the same number of classes and 

similar patterns, while the two graphs tend to differentiate each other by the degree of detail 

in the distribution of these classes. For example, in the central area, graph (a) contains more 

details than graph (b) does. This variance may be explained by the addition of NDVI. 

NDVI is able to reflect the two distinct vegetation communities, grassland and forest, found 

in Unit 2 area. Thus, graph (a) tends to reveal more information on vegetation communities 

than graph (b). In field investigation, in grassland area soils were easy to dig and contain 

more sand, while in forest area soils were always hard to dig due to more plant roots and 

clay content. This difference may reveal the association between vegetation covariate and 

soil series. However, answering the question of whether graph (a) is more reasonable and 

useful than graph (b) needs further studies on validation. In addition, both of the graphs 

show more detailed variations than the conventional soil map, suggesting that fuzzy 

logic-based digital soil mapping may produce more detailed soil maps.  

The findings may indicate combining NDVI with land-surface parameters may 
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improve soil classification to some extent. This conclusion confirms the observations in 

McKenzie and Ryan (1999) and Park and Vlek (2002) that vegetation occurrence in 

addition to land-surface parameters improves the performance of soil prediction model. 

Although further studies on soil inference and validation in Unit 2 area are needed to better 

support this conclusion, it still bears significance to the initial work of the purposive 

sampling design for fuzzy logic-based digital soil mapping in this area. Zhu et al. (1997) 

implied that including vegetation information in an environmental covariate database may 

provide useful information for identifying soil attributes where vegetation can exhibit a 

great dependence on the soil conditions. However, in practice, many failed to include such 

information because the vegetation in the study area was always disturbed by human 

activities, for example, planted with single type of trees or crops. This is true to many soil 

surveys (e.g., Zhu et al., 2008a). In this case, other environmental covariates are expected to 

contribute more to gain better classification results. 

4.2.2 Use of LiDAR-derived DEM 

 Improvements in F and H 

 The improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and the entropy (ΔH 

= H (c) – H (c + 1)) over adjacent clusters across m of 1.25, 1.5, 1.75, 2, and 2.25 based on 

10 m LiDAR-derived DEM in experiments of Group D are demonstrated in Figure 4.19. 

The figures on the left side show the results of using NDVI in the environmental covariates 

database, while results on the right side are without NDVI. 
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Figure 4.19 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on 10 m LiDAR-derived DEM across the algorithms with m 
of and the construction of environmental covariates database (a) 1.25 with NDVI, (b) 1.25 without NDVI, (c) 
1.5 with NDVI. (d) 1. 5 without NDVI, (e) 1.75 with NDVI, (f) 1.75 without NDVI, (g) 2 with NDVI, (h) 2 
without NDVI, (i) 2.25 with NDVI, and (j) 2.25 without NDVI, respectively, in Unit 2 area. 
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 Figure 4.19 shows that the variations of ΔF and ΔH with the number of clusters when 

using NDVI are different from not using NDVI as a covariate. When m is 1.25, 1.5 or 2.25, 

the variations of ΔF and ΔH with NDVI are steadier than those without NDVI, while with 

m of 1.75 or 2 the variations of ΔF and ΔH without NDVI become steadier. This finding 

disagrees with the results using conventional DEM in Section 4.2.1 that adding NDVI into 

the environmental covariates database generally reinforces the fluctuation of ΔF and ΔH 

across m of lower values and mutes it with higher values of m. Possible optimal numbers of 

clusters at which ΔF reaches its local minimum value and ΔH reaches its local maximum 

value are summarized in Table 4.4.  

 
Table 4.4 Possible optimal numbers of clusters based on 10 m LiDAR-derived DEM across five algorithms 
with m of 1.25, 1.5, 1.75, 2, and 2.25, using environmental databases with and without NDVI in Unit 2 area. 

m 1.25 1.5 1.75 2 2.25 
With NDVI 5 9 14 4 5 9  
Without NDVI 5 12 10 12 14 9 4 5 11 
 

 It is likely to find more choices of optimal numbers of clusters when not using NDVI 

as an environmental covariate than those found in the situation with NDVI across m of 1.25, 

1.5, and 2.25, while with m of 1.75 and 2 the choices using NDVI are not less than those 

without NDVI. This finding does not tie in with the observation in conventional DEM in 

Group B where involving NDVI leads to more optimal numbers of clusters with lower 

values of m, and less with larger values of m. This discrepancy may arise from the 

differences in the level of detail of environmental covariates. Terrain covariates derived 

from LiDAR data would contain more detailed variances than those derived from 

conventional DEM (MacMillan et al., 2010). However, NDVI datasets employed to 
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construct the environmental covariates databases in Groups B and D are the same. It is 

possible that the difference of the level of detail between LiDAR-derived terrain covariates 

and NDVI does not match with the one between conventional DEM-derived terrain 

covariates and NDVI. It may be this difference that leads to the disagreement in the 

findings in Groups B and D. In addition, this discrepancy may be attributed to the 

differences of the dominant terrain features identified by LiDAR and conventional 

DEM-derived environmental configurations (Vaze et al., 2010). These differences then 

could have impacts on the contribution of NDVI to the FCM clustering.  

Hardened Class Maps 

It is also helpful to examine hardened class maps for recognizing the contribution of 

NDVI on the use of LiDAR-derived DEM. Hardened class maps with NDVI and without 

NDVI based on LiDAR-derived DEM and m of 1.5 in Unit 2 area are illustrated in Figure 

4.20.  

 
Figure 4.20 Hardened class maps based on 10 m LiDAR-derived DEM and the construction of environmental 
covariate database (a) with NDVI and (b) without NDVI, using the algorithm with m of 1.5 and number of 
clusters c of 14 in Unit 2 area. 
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 Both of the two hardened class maps have 14 classes exhibiting similar patterns and 

show more detailed variances than the 1:50,000 conventional soil map, which confirm the 

observation in conventional DEM. Some slight differences of the patterns include the 

southeast area where the level of detail with NDVI is higher than the one without NDVI, 

which corresponds to the conclusion in Group B that adding NDVI leads to more detailed 

variances in hardened class maps. While in the middle-east area, the pattern without NDVI 

shows more variances than the one with NDVI, which is obviously different from the 

observation in conventional DEM (Figure 4.18). In this particular middle-east area, the 10 

m LiDAR-derived and conventional DEMs carry very dissimilar information on elevation 

that could lead to such an obvious discrepancy in experiments of Groups B and D. However, 

as in Group B that more examinations and validations are needed to identify the map with 

more meaningful clustering information, the same applies to Group D. 

Consequently, the contribution of NDVI to the purposive sampling design varies with 

DEM sources, which could still be ascribed to the difference between the levels of detail in 

DEM. Although findings from experiments based on LiDAR-derived and conventional 

DEMs are slightly different, it is still suggested to involve NDVI as a vegetation covariate 

in the fuzzy soil inference as long as the study area could demonstrate an association 

between soil and vegetation. The areas altered by human activities such as agriculture lands 

with uniform vegetation type, notwithstanding, might not carry such an association, where 

other environmental covariates may assist the fuzzy soil inference better.  
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4.3 Interpretation of Membership Values 

4.3.1 Use of Conventional DEM 

In fuzzy logic-based soil inference, it is suggested that if fuzzy clusters can be correctly 

interpreted as soil series, then soil maps can be inferred using the information of the cluster 

centroids (English, 2001). Cluster centroids are in the environmental covariates space with 

the membership values of 1, while in spatial space a cell with the membership value of 1 

does not always exist. Cells with membership values very near 1 (e.g., > 0.9) are thus 

utilized to represent the most “typical” individuals of this cluster because they are the 

closest to the centroids. In this study, the results of the field sampling (Table 3.1) were 

employed to interpret the fuzzy membership values. An interpretation of fuzzy membership 

values at these points is possible to promote the understanding of the associations between 

fuzzy clusters and soil series in the study area.  

Although fuzzy logic-based digital soil mapping avoids sharp boundaries in crisp form 

soil mapping, there could be confusion if the assigned membership values to two or more 

clusters at a cell are very similar (Burrough et al., 1997). Burrough et al. (1997) introduced 

a confusion index (CI) that is the ratio of the second to the first highest membership values 

at a cell to evaluate how well each individual observation in FCM clustering has been 

classified. As CI→0, the observation strongly associates with the first dominant class and 

there is little confusion; while as CI→1, there are small differences between the 

membership values to the two dominant classes, implying more confusion. When more 

confusion exists, the observation can be regarded as an intergrade between the two 
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dominant classes (in-between types). This index was calculated for sampled sites.  

Table 4.5 presents the fuzzy membership values at the field sampling points in Unit 1 

area with m of 1.5 and c of 9 based on 10 m conventional DEM in Group A. The calculated 

confusion index (CI) results are also recorded in Table 4.5. 

 
Table 4.5 Fuzzy membership values and confusion index (CI) at sampled points based on 10 m conventional 
DEM using the algorithm with m of 1.5 and c of 9 in Unit 1 area (the first and second highest membership 
values in bold). 

Membership value Field Point ID and Soil_Code 
4  5  6  7  8  9  10  11  
HIG WTO WTO ZOR FOX WTO CAD WTO 

Class 1 0.581  0.006  0.029  0.015  0.009  0.025  0.020  0.014  
Class 2 0.039  0.030  0.169  0.001  0.025  0.027  0.033  0.140  
Class 3 0.033  0.127  0.283  0.001  0.530  0.054  0.105  0.063  
Class 4 0.007  0.025  0.023  0.000  0.037  0.004  0.047  0.109  
Class 5 0.015  0.077  0.114  0.001  0.073  0.012  0.046  0.483  
Class 6 0.157  0.057  0.148  0.002  0.059  0.805  0.146  0.034  
Class 7 0.029  0.660  0.149  0.001  0.201  0.064  0.580  0.069  
Class 8 0.017  0.017  0.080  0.001  0.065  0.008  0.020  0.085  
Class 9 0.123  0.001  0.003  0.977  0.001  0.002  0.004  0.002  
Total 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  
CI 0.270  0.192  0.597  0.015  0.379  0.080  0.252  0.290  
 

In Table 4.5, Points 5, 6, 9, and 11 were all classified into WTO series by field survey, 

while their membership values to classes and their dominant classes vary largely. At Point 6, 

the confusion index (CI) is high (nearly 0.6) enough to be regarded as an intergrade 

between Classes 3 and 2 (Burrough et al., 1997). At Point 9, on the contrary, the CI value is 

close to 0 and thus there is little confusion about the dominant class, namely Class 6. For a 

site with high value of CI (e.g., Point 6), there will be more confusion about which class 

this site “really belongs”. This question may seem meaningless considering the “fuzziness”, 
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while such sites can be treated as intergrades lying between two classes in environmental 

covariates space and used to locate boundaries (Burrough et al., 1997; Arrell et al., 2007). 

In a further soil inference study, it is not recommended to use Point 6 to represent WTO 

series based on this partition because the high CI value implies this point may not be a 

“typical” WTO over environmental covariates space, while Point 9 with very low CI value 

is a better choice. Moreover, the very small membership value to the first dominant class 

(0.283) at Point 6 also hinders the use of this point to infer that class.  

Among the CI values in Table 4.5, the lowest one is at Point 7, indicating that the 

dominant class (Class 9) at Point 7 can represent ZOR series (organic soils) well in soil 

inference. Point 7 was sampled at a low and flat site where the environmental configuration 

may be typical for organic soil forming. It is therefore suggested to map the distribution of 

organic soil in Unit 1 area according to the distribution of fuzzy membership values to 

Class 9. 

Table 4.6 shows the fuzzy membership values at the field sampling points in Unit 2 

area with m of 1.5 and c of 8 based on 10 m conventional DEM and NDVI in the first 

experiment of Group B. The calculated confusion index (CI) results are also recorded in 

Table 4.6. 
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Table 4.6 Fuzzy membership values and confusion index (CI) at sampled points based on 10 m conventional 
DEM and environmental covariates database with NDVI, using the algorithm with m of 1.5 and c of 8 and in 
Unit 2 area (the first and second highest membership values in bold). 

Mem- 
bership 
value 

Field Point ID and Soil_Code 
1 2 3 12 13 14 15 16 17 18 19 
BRT WTO HUO HUO HUO HUO FOX FOX HUO HUO HUO 

Class 1 0.486  0.804  0.097  0.438  0.198  0.713  0.088  0.128  0.166  0.104  0.026  
Class 2 0.044  0.016  0.038  0.018  0.080  0.013  0.004  0.005  0.227  0.159  0.871  
Class 3 0.016  0.009  0.729  0.012  0.017  0.017  0.009  0.009  0.292  0.051  0.008  
Class 4 0.084  0.020  0.035  0.041  0.040  0.025  0.032  0.030  0.084  0.534  0.009  
Class 5 0.176  0.081  0.063  0.355  0.114  0.176  0.851  0.808  0.139  0.058  0.010  
Class 6 0.012  0.006  0.010  0.022  0.016  0.015  0.005  0.006  0.009  0.010  0.001  
Class 7 0.002  0.001  0.004  0.001  0.001  0.001  0.001  0.001  0.004  0.005  0.000  
Class 8 0.180  0.064  0.024  0.113  0.533  0.042  0.010  0.013  0.079  0.078  0.074  
Total 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  
CI 0.370  0.101  0.133  0.811  0.371  0.247  0.103  0.158  0.777  0.298  0.085  
 

As shown in Table 4.6, Points 3, 12, 13, 14, 17, 18, and 19 were identified as HUO 

series and Points 15, and 16 were within FOX series. For HUO, the CI values at Points 12 

and 17 are very high (>0.6, a threshold defined by Burrough et al. in 1997) and should be 

considered as intergrades that cannot be used as “typical” instances in soil inference based 

on this partition. Among these seven points identified as HUO, Point 19 with the lowest CI 

value would be a good instance for inferring HUO in Unit 2 area. For FOX, Points 15 and 

16 with low CI values and identified both as FOX series have a same dominant class, 

namely, Class 5. Thus, these two points are adjacent not only in spatial space (Figure 3.3) 

but also in environmental covariates space. They both can be regarded as “typical” FOX.  

In fuzzy soil inference, a point with a very low CI value can be used to infer the soil 

series identified at this point to the entire area under study based on the distribution of 

fuzzy membership values and expert knowledge. As aforementioned, Point 7 in Table 4.5 
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and Point 19 in Table 4.6 are good and typical instances for inferring ZOR and HUO series, 

respectively. The class dominating the typical point is believed to correspond to a unique 

environmental configuration related to the soil series. However, two major concerns 

following this may be, first, other soil series may happen to correspond to the 

environmental configuration defined by the class. Second, other different environmental 

configurations may also represent the same series. In fact, they are much likely to be true in 

real world. As in the first situation, Zhu et al. (2008a) suggested to survey two or three sites 

with the highest membership values to a class in field to determine the associated soil series. 

In terms of the second concern, the combination of more than one environmental 

configuration is indeed analogous to the soil expert defining a soil series happening in 

different landform types (English, 2001). Thus, expert knowledge can be captured with the 

use of fuzzy logic in digital soil mapping to some extent.  

4.3.2 Use of LiDAR-derived DEM 

 The fuzzy membership values at sampled points using LiDAR-derived DEM were also 

employed to discover the associations between fuzzy clusters and soil series. Take the 

experiment based on the 1 m LiDAR-derived DEM in Unit 1 area for example. Fuzzy 

membership values and the CI values at sampled points are shown in Table 4.7, with m of 

1.5 and c of 5 that could be deemed as an optimal partition. The CI values at Points 6, 7 and 

10 are near 0, and thus these three points are optimal to be used as “typical” instances of the 

identified soil series in Unit 1 area, namely, WTO, ZOR, and CAD, respectively. It is 

evident to use Points 6, 7, and 10 to represent Classes 4, 3, and 2 to which these points have 
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the highest fuzzy membership values, respectively. Then the fuzzy membership distribution 

of these classes accompanied by expert knowledge would be used to infer soil series from 

these points to areas without sampled points.   

 
Table 4.7 Fuzzy membership values and confusion index (CI) at sampled points based on 1m LiDAR-derived 
DEM using the algorithm m of 1.5 and c of 5 in Unit 1 area (the first and second highest membership values 
in bold). 

Membership value Field Point ID and Soil_Code 
4  5  6  7  8  9  10  11  
HIG WTO WTO ZOR FOX WTO CAD WTO 

Class 1 0.152  0.699  0.002  0.031  0.144  0.622  0.059  0.450  
Class 2 0.020  0.030  0.000  0.012  0.148  0.012  0.893  0.177  
Class 3 0.053  0.018  0.004  0.856  0.042  0.024  0.005  0.026  
Class 4 0.583  0.144  0.989  0.063  0.180  0.246  0.009  0.093  
Class 5 0.192  0.109  0.004  0.039  0.486  0.096  0.034  0.254  
Total 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  
CI 0.329  0.207  0.004  0.073  0.370  0.395  0.066  0.565  

 

Through the interpretation of fuzzy membership values at 19 sampled points in Units 1 

and 2 areas based on LiDAR-derived and conventional DEMs, it is indeed possible to 

interpret fuzzy clusters as soil series. As well, the nature of in-between types in soils and 

expert knowledge can also be quantitatively captured by fuzzy membership values. Hence, 

it is much likely to conclude that the associations between soil series and fuzzy clusters 

exist and fuzzy logic can assist soil inference well by providing quantitative measure of 

in-between types and expert knowledge to some extent. 

4.4 Validation of Results 

A subset area located in the southwest corner of the Waterloo Aquifer area (Figure 4.21) 

was utilized to validate the results in this study. This validation area covering an area of 56 
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km2 is much larger than the Laurel Creek Conservation area and carries different landforms 

and vegetation types (mainly crops). The elevation ranges from the lowest in southeast part 

(~310 m) to the highest in the north part (~420 m). This area mainly consists of agricultural 

lands which are not likely to exhibit associations between soil and vegetation, and thus the 

contribution of vegetation covariate was not validated in this area. Only the resolution 

dependency and associations between soil series and clusters were examined and presented 

in this section.  

 
Figure 4.21 Location of the subset area of the Waterloo Aquifer area.  

 

The 10 m conventional DEM covering this area was first filled and then resampled into 

20 m, 30 m, 50 m, and 100 m. Land-surface parameters, namely, slope, plan curvature, 

profile curvature, topographic wetness index, and elevation, were derived from these DEMs 

and input into FCM clustering across five algorithms of m = 1.25, 1.5, 1.75, 2, and 2.25, 
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respectively. For each run, the number of clusters c ranged from 2 to 30, the iteration 

number was 50, and the maximum membership error was 0.01. The reason for using the 

range from 2 to 30 as the number of clusters, which was twice larger than the one used in 

the Laurel Creek Conservation area, was that the soils in the conventional soil map at a 

scale of 1:50,000 in the subset area include more than 15 types, but not more than 30 types. 

As aforementioned, it is better to use the number of clusters more than the number of 

existing soil types in soil maps.  

The improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and the entropy (ΔH 

= H (c) – H (c + 1)) over adjacent clusters based on conventional DEM at 10 m, 20 m, 30 m, 

50 m, and 100 m with m of 1.25, 1.5, 1.75, 2, and 2.25 are shown in Figures 4.22-4.26. 

Table 4.8 summarises the optimal numbers of clusters in each run. 
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Figure 4.22 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 100 m 
conventional DEMs using the algorithm with m of 1.25, in the subset area of the Waterloo Aquifer area. 
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Figure 4.23 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 1)) 
plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 100 m 
conventional DEMs using the algorithm with m of 1.5, in the subset area of the Waterloo Aquifer area. 
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Figure 4.24 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 100 m 
conventional DEMs using the algorithm with m of 1.75, in the subset area of the Waterloo Aquifer area. 
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Figure 4.25 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 100 m 
conventional DEMs using the algorithm with m of 2, in the subset area of the Waterloo Aquifer area. 
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Figure 4.26 Improvements in partition coefficient (ΔF = F(c) – F (c + 1)) and entropy (ΔH = H (c) – H (c + 
1)) plotted against the number of clusters based on (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 100 m 
conventional DEMs using the algorithm with m of 2.25, in the subset area of the Waterloo Aquifer area. 

 
Table 4.8 Possible optimal numbers of clusters based on 10 m, 20 m, 30 m, and 50 m conventional DEMs 
across five algorithms with m of 1.25, 1.5, 1.75, 2, and 2.25, in the subset area of the Waterloo Aquifer area. 

 10 m 20 m 30 m 50 m 100 m 

1.25 5 15 17 19 6 9 11 13 6 9 12 12 15 20 7 13 16 

22 24 28 15 17 19 28 14 19 25 23 25 28 21 25 

1.5 5 7 9 13 7 9 11 13 9 12 14 6 10 12 10 13 15 

17 19 22 25 17 23 26 16 26 25 22 

1.75 10 17 22 4 8 10 20 19 11 19 27 10 13 15 28 

2 12 17 24 6 15 4 23 10  

2.25 21 14 24 27 4 23 26 25  

 

 The FCM clustering results in the subset area of the Waterloo Aquifer area show that 

increasing m from 1.25 to 2.25 generally weakens the fluctuations in ΔF and ΔH at each of 

grid 
size 

m 
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the five resolutions, which confirms the observations in the study in the Laurel Creek 

Conservation area. It is also likely to find that increasing the grid size from 10 m to 100 m 

generally mutes the fluctuations in ΔF and ΔH and therefore reduces choices of optimal 

numbers of clusters with m of larger values such as 2 and 2.25. However, when m is smaller, 

the muting effect is not obvious. Table 4.8 shows that the choices of optimal numbers of 

clusters do not suffer obvious change when the resolution is aggregated from 10 m to 20 m, 

but enjoy slight decrease from 20 m to 100 m.  

 In Unit 1 area, when using LiDAR-derived DEM, the choices of optimal numbers of 

clusters increase with the resolution aggregated from 1 m to 10 m, decrease from 10 m to 

20 m, generally keep stable when it comes to 30 m, and suddenly increase from 30 m to 50 

m. While in using conventional DEM in Unit 1 area, the choices decrease from 10 m to 30 

m, and increase from 30 m to 50 m. It can be seen the general trend of decreasing in the 

choices of optimal number of clusters in the subset area of the Waterloo Aquifer area from 

20 m to 100 m confirms the decrease from 10 m to 30 m in Unit 1 area on the use of 

conventional DEM, and the decrease from 10 m to 20 m when using LiDAR-derived DEM. 

Although the corresponding resolutions are different, they show a consistent decreasing 

with resolution aggregated. The sudden change at 50 m resolution in Unit 1 area is not 

observed in the subset area, which may be explained as the scale and landform in the subset 

area are different from those in Unit 1 area. From the analysis of results in Unit 1 area, it is 

possible that 50 m resolution may be a threshold for fuzzy soil inference in this area, while 

for the subset area of the Waterloo Aquifer area, the corresponding threshold may be found 
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at lower resolution, lower than the tested 100 m. After all, the subset area is much larger 

than Unit 1 area. When study scales are different, the identified environmental 

configurations may be very different. Nevertheless, in general, the results in the subset area 

could confirm the conclusions on resolution issue obtained in Unit 1 area that the choices of 

optimal number of clusters shift with resolution aggregated and the application of the 

purposive sampling design for fuzzy soil inference requires the consideration of the 

resolution dependency. 

 In the study in the Laurel Creek Conservation area, an m equal to 1.5 shows a balance 

between stability and fuzziness, while in the subset area of the Waterloo Aquifer area, it 

seems an m equal to 2 performs better in establishing optimal clustering. In particular, 

graphs in Figure 4.23 with m of 1.5 are fluctuating all the time, but as shown in Figure 4.25, 

when m is 2, the fluctuation tends to be stable with the increase of the number of clusters, 

which can be seen even through the limited range from 2 to 30. For example, when m is 2 

and the gird size is 10 m, the last optimal number of clusters before 30 is 24, and after 24 

the curve becomes very stable, indicating an optimal clustering at 24. This phenomenon 

was not obvious in the study in the Laurel Creek Conservation area, which might be due to 

the limited number of clusters or the influence of scale issue in these different study areas.  

In terms of the purposive sampling design, take the partition with m of 2 and c of 24 at 

10 m resolution in the subset area for example. For each cluster, three points with the 

highest membership values to this cluster were designed as purposive sampling points for 

this cluster, which are shown in Figure 4.27. There are total 72 points in the figure with 
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their cluster numbers as labels (from 1 to 24). By overlapping with 1:50,000 conventional 

soil map, it is found that in 13 classes (54.2%) at least two of the three designed sampling 

points belonged to same soil series. Table 4.9 records the 13 classes, their purposive 

sampling points, and the corresponding soil series. Similar work has also been done in two 

nearby subset areas which have the same areas with this one. In one of these two areas, a 

purposive sampling design based on the partition with m of 2 and c of 20 at 10 m resolution, 

which was an optimal partition, demonstrates 12 classes (60%) carry at least two points of 

the three designed points belonging to same soil series. In the other area, the result is 12 

classes out of 18 classes (66.7%) based on one optimal partition with m of 2 and c of 18 at 

10 m resolution.  

  
Figure 4.27 Purposive sampling points in the subset area of the Waterloo Aquifer area based on the partition 
with m of 2 and c of 24 and10 m conventional DEM.  
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Table 4.9 Classes with two or three purposive sampling points belonging to the same soil series in the subset 
area of the Waterloo Aquifer area based on the partition with m of 2 and c of 24 and 10 m conventional DEM. 

Class No. SOIL_CODE1 Point ID  Class No. SOIL_CODE1 Point ID 

1 BNG 2, 3 13 FOX 38, 39 

3 ZOR 7,8 15 FOX 43, 44 

4 BNG 10, 11 17 HUO 49, 50, 51 

6 BNG 16, 17 18 HUO 52, 54 

8 FOX 21, 22 19 FOX 55, 56, 57 

9 FOX 26, 27 24 FOX 70, 71, 72 

10 FOX 28, 30    

 

To some extent, this finding can confirm the conclusion in Section 4.3 that the 

associations between clusters and soil series exist. Although the conventional 1:50,000 soil 

map has been produced more than 3 decades ago, it still carries significant soil information 

that embodies with expert knowledge (Geng et al., 2010). Overlaying the soil map with the 

designed sampling points is a first approximation in evaluating the sampling design and 

also provides evidence of the associations between clusters and soils. According to the 

method by Zhu et al. (2008), sampling two to three points in each class is good enough for 

the establishment of the association between clusters and soil series. In the experiments in 

three subset areas of the Waterloo Aquifer area, more than half of the classes in each 

experiment involve two or three purposive sampling points belonging to same soil series. 

Therefore, it is much likely to verify the associations between fuzzy clusters and soils. This 

finding could confirm the conclusions drawn from the study in the Laurel Creek 

Conservation area. The real fieldwork also can be done based on this overlaying, in which 

the focus for soil surveyors is on validating the known soil types in soil maps at the 

designed points.  

 It should be noted that the experiments in the subset area of the Waterloo Aquifer area 
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was conducted at different landscape and scale from those in the experiments in the Laurel 

Creek Conservation area. Conclusions on resolution dependency drawn from the 

experiments in the subset area could only validate the trend in the experiments of Groups A 

and C generally and coarsely. It is less possible to obtain the exactly same conclusions from 

these experiments. In other words, it is likely to expect some discrepancies between the 

results in the subset area and Unit 1 area at the same resolution. However, this validation 

still bears meanings to this study and could provide valuable information on the 

understanding of the resolution dependency of the purposive sampling design. Additionally, 

the ultimate goal of this study is to provide preliminary suggestions for the future soil 

survey and mapping in the Waterloo Aquifer area. The future soil survey in this area bears 

significance to the protection of the groundwater resources and the precision agriculture in 

the Waterloo County. Thus, a validation experiment based on its subset area could also 

initiate future studies in the whole Waterloo Aquifer area.  

Consequently, these findings in the subset areas of the Waterloo Aquifer area could 

confirm the conclusion in the study in the Laurel Creek Conservation area that the 

resolution of DEM has influence on the purposive sampling design, the choices of optimal 

number of clusters vary with resolution aggregated, and the associations between fuzzy 

clusters and soil series exist.  

4.5 Chapter Summary 

 This chapter presents FCM clustering results in Units 1 and 2 areas in the Laurel Creek 
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Conservation area based on both conventional and LiDAR-derived DEMs. The dependency 

of the purposive sampling design in Unit 1 area varies with DEM resolution as well as 

DEM source. Although results of the contributions of vegetation covariate based on 

conventional and LiDAR-derived DEM in Unit 2 area are slightly different, it is still 

evident to employ vegetation covariate to infer soil as long as the association between soil 

and vegetation could be found. Interpretation of fuzzy membership values to clusters at 

sampled points indicates the existing of the associations between fuzzy cluster and soil 

series, and lends promise to quantifying expert knowledge by fuzzy membership values. 

The findings related to the issues of the resolution dependency and associations between 

soil series and clusters were generally confirmed by a validation experiment in a subset area 

of the Waterloo Aquifer area.  
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

This study examines three issues in the purposive sampling design for fuzzy 

logic-based digital soil mapping: the resolution dependency, the contribution of vegetation 

covariates, and the use of LiDAR data. The results and discussion yield several findings 

that provide empirical answers to the research questions and suggest interesting avenues for 

future studies. This concluding chapter summarises the results of this study by answering 

the original research questions: (1) How do the purposive sampling design results vary with 

the resolution of conventional DEM? (2) How does the involvement of NDVI in 

environmental covariates database influence the purposive sampling design results? (3) Do 

the associations between fuzzy clusters and soil series exist? (4)What are the answers of 

above three questions when using LiDAR-derived DEM? The first section in this chapter 

presents conclusions on these research questions, and the following section discusses the 

limitations in this study and the direction for further research.  

5.1 Conclusions 

5.1.1 Resolution Dependency 

The first research question this study attempted to answer was the resolution 

dependency of the purposive sampling design. It was examined by resampling basic DEM 

into coarser resolutions and performing FCM clustering of environmental covariates, 

including five land-surface parameters (elevation, slope, plan curvature, profile curvature, 

and topographic wetness index), derived from the basic and resampled DEMs. FCM 
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clustering results consisted of clusters information on partition coefficient and entropy, and 

fuzzy membership value maps. Optimal partitions of the environmental covariate space 

were distinguished by significant improvements in partition coefficient and entropy.  

Through the experiments, the resolution of DEM has been recognized as an influential 

factor to the purposive sampling design for fuzzy soil mapping. The choices of optimal 

numbers of clusters shift with resolution aggregated. Different environmental 

configurations may be identified at different resolutions, which may result in diverse 

establishments of associations between fuzzy clusters and soil series. In other words, as the 

resolution changes different environmental configurations may become evident and 

significant in the prediction of soils. This shifting may arise from the effects of DEM 

resolution on land-surface parameters, as environmental modeling is restricted to spatial 

scales and resolutions on which the studied biophysical processes depend or the modeling 

per se depends. In addition, hardened class maps imply that finer resolution does not 

necessary lead to better classification results. By comparing with conventional soil map, 

more detailed variation may be obtained through fuzzy soil mapping method than 

conventional mapping method does, and there may be associations between patterns in 

fuzzy clusters and the distribution of soil series in the conventional soil map. Moreover, the 

observation of a persistent catenary sequence in fuzzy membership value maps across 

different resolutions indicates the association between landform positions and clusters, 

which may be independent of resolution and therefore be important in soil inference. The 

consistent catenary sequence may imply the dominate terrain features that have great 



107 
 

impact on soil development, while its disappearance at much lower resolution may suggest 

a resolution threshold for fuzzy soil inference in the study area.  

Consequently, choosing a proper resolution of DEM to derive land-surface parameters 

for the specific study area is essential. Taking account of the sensitivity of FCM clustering 

to DEM resolution can not only improve the quality of the purposive sampling design, but 

also the understanding of landforms and soils in the area under study. Although it has to be 

admitted that no perfect DEM resolution exists, fuzzy soil mapping could still profit from 

explicit procedures on analyzing the influence brought by resolution change, and on 

attempting to locate a fit resolution at which the most possible detailed and meaningful 

information on landscape could be gained. 

5.1.2 Vegetation Covariate 

The second research question addressed the missing of vegetation covariates in 

previous attempts on the purposive sampling design for fuzzy soil inference. This study 

experimented with NDVI, a vegetation covariate derived from remotely sensed data, in the 

construction of the environmental covariates database. The control experiments based on 

NDVI and the five land-surface parameters (elevation, slope, plan curvature, profile 

curvature, and topographic wetness index) demonstrated the influence of NDVI on the 

purposive sampling design.  

In FCM clustering, combing NDVI with land-surface parameters derived from 

conventional DEM is able to provide more optimal numbers of clusters for the sampling 

design. It is possible that the introducing of more choices will lead to more effective 
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classification results and thus improvements in the fuzzy soil inference, while more field 

studies are needed to support this argument. Additionally, hardened class maps demonstrate 

more details revealed through embodying NDVI. Although land-surface parameters are the 

most useful predictors for soil mapping, their best performance may take place where water 

and material flows are strongly governed by relief. For areas with relatively flat relief, the 

role played by other environmental covariates in the prediction may be strengthened, such 

as vegetation covariates. It should be noted that vegetation covariates are expected to 

complement terrain covariates but not to replace them because terrain covariates are still the 

most practical and influential predictors in digital soil mapping. 

Consequently, it is recommended to add vegetation covariates in fuzzy logic-based 

digital soil mapping as long as the association between vegetation and soil can be found in 

the study area. In the state of art, more new environmental covariates other than parameters 

derived from elevation data are becoming available, arising from the boost in remotely 

sensed data. Vegetation covariates are typical examples of these data. Many studies have 

found combining new remotely sensed covariates such as NDVI with terrain covariates 

would produce the better environmental modeling and prediction results. How these 

remotely sensed covariates can assist the fuzzy soil inference is worthy of exploration. 

5.1.3 Associations between Fuzzy Clusters and Soil Series 

The third research question on the existence of the associations between fuzzy clusters 

and soil series was examined by interpreting fuzzy membership values at field sampling 

sites. Fuzzy membership values were obtained from optimal partitions of the environmental 
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covariates in the study area. The confusion degree of an observation belonging to more than 

one class was measured by a confusion index.  

Associations between fuzzy clusters and soil series can be seen from the interpretations 

of fuzzy membership values at the sampling points. Points with more confusion carry the 

in-between characteristic and are not recommended for representing the corresponding 

class, while those with low confusion are deemed as typical instances representing the 

dominant class. Interpretations of fuzzy membership values are able to discover that more 

than one cluster correspond to the same soil series, which is analogous to the knowledge of 

soil experts when they define a soil series happening in different landform types. It is also 

possible that within a same cluster more than one typical soil series are found, in which 

situation effective strategies are needed to establish the corresponding soil series by the 

specific environmental configurations. In the purposive sampling design, the corresponding 

points to each cluster obtained from an optimal fuzzy partition of the environmental 

covariates space will be surveyed, and these points need to have low confusion and obvious 

dominant class. 

As a result, the in-between nature of soil and expert knowledge can be represented 

through fuzzy membership values in a quantitative form, and the associations between 

fuzzy clusters and soil series can be discovered through interpreting fuzzy membership 

values. It is true that in practical applications of fuzzy soil mapping the establishment of the 

associations between environmental configurations and soil series or properties is assisted 

not only by the FCM clustering results but also expert knowledge. Soil experts design rules 
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to define those associations. Nevertheless, fuzzy membership values provide an opportunity 

to quantify such expert knowledge, and they are able to aid experts in defining rules. It can 

be seen that the associations between fuzzy clusters and soil series exist and thus FCM 

clustering of environmental covariates represents a useful avenue for soil survey and 

mapping with limited expert knowledge and resources. 

5.1.4 Use of LiDAR Data 

To address the last research question, LiDAR data were employed to examine the 

resolution dependency, the contribution of vegetation covariates, and the associations 

between fuzzy clusters and soil series. A high-resolution DEM was generated from raw 

LiDAR points and resampled into coarser resolutions to derive land-surface parameters. 

Control experiments on NDVI, the vegetation covariate, were performed based on 

LiDAR-derived land-surface parameters as well. The interpretation of fuzzy membership 

values obtained from an optimal partition based on LiDAR-derived environmental 

covariates was also conducted.  

It can be seen that the level of dependency of the purposive sampling design to 

resolution varies with DEM sources, conventional and LiDAR-derived DEMs. The shifting 

pattern of the choices of optimal numbers of clusters using LiDAR-derived DEM is 

different from the one using conventional DEM. At each resolution, the choices using 

LiDAR-derived DEM are more than those using conventional DEM. These variances may 

arise from the discrepancy in the level of detail of relief represented by conventional and 

LiDAR-derived DEMs. LiDAR data have higher vertical and horizontal accuracy than most 
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of the other DEM sources, which could result in the discrepancy found in this study. It is 

evident that LiDAR-derived DEM can delineate land-surface parameters in more detail than 

conventional DEM does partly because the different degrees of relief variation and 

accuracies in the two DEM sources, which may correspond to the finding in many studies 

that LiDAR-derived DEM provides a much more complete and accurate representation of 

the hydrological processes than the conventional DEM does. However, it is not necessarily 

the case that high-resolution LiDAR-derived DEM performs better than low-resolution 

LiDAR-derived DEM in fuzzy soil inference. With the popularity of high resolution DEM 

data, investigations on distinguishing the optimal resolution for specific study area are 

important. 

In terms of the contribution of vegetation covariates, slightly different results are found 

using LiDAR-derived DEM from those using conventional DEM. Combining NDVI with 

LiDAR-derived land-surface parameters could not introduce more choices of optimal 

number of clusters, which may be ascribed to the difference between the levels of detail in 

land-surface parameters derived from the two source DEM, and may also arise from the 

discrepancy in the level of detail of NDVI and land-surface parameters. Notwithstanding, it 

is still suggest to consider vegetation covariates in fuzzy soil inference based on LiDAR 

data, because the discrepancy in the level of detail of vegetation covariate data and LiDAR 

data will be diminished by the increasing accuracy of remotely sensed data.  

The interpretation of fuzzy membership values obtained from the LiDAR-based fuzzy 

partition at sampled sites agrees with the one based on conventional DEM. Typical 
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instances for specific classes can be seen from the results. The associations between fuzzy 

clusters and soil series have the potential to assist fuzzy soil inference and the 

quantification of expert knowledge to some extent. Although there are some difficulties in 

using LiDAR data, such as the large volume of data and the challenges to conventional 

algorithms, LiDAR data has become an auspicious source to generate DEM for terrain 

analysis and also digital soil mapping. The results in this study thus provide useful 

experiences to the use of LiDAR data in fuzzy soil inference. 

In conclusion, this study has accomplished its overall objectives by answering the four 

research questions. This initial work on the purposive sampling design will minimize the 

extent and the amount of field investigation efforts. The examination on related issues in 

this design also carries considerable potentials for assisting the determination of the optimal 

resolution and vegetation as environmental covariates, and relevance to the auspicious use 

of LiDAR data in digital soil mapping. The most telling contribution of this study is the 

encouragement for the success of extrapolating soil patterns from environmental covariates 

under fuzzy logic.  

5.2 Limitations and Recommendations for Future Studies 

This study bears significances to the initial work of fuzzy logic-based digital soil 

mapping in the Laurel Creek Conservation area, however, it also carries some limitations 

that can be improved in future studies. 

First, the yielded results and conclusions were based on this case study in the Laurel 
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Creek Conservation area only. Similar studies in other areas with different landform and 

vegetation types should be carefully validated. Many previous studies have indicated that 

their conclusions may only hold true for their specific study areas or landform types (e.g., 

Arrell et al., 2007; Deng 2007; Deng et al., 2007; Wu et al., 2008; Vaze et al., 2010). 

Although a subset area of the Waterloo Aquifer area, carrying different landform and 

vegetation types was used as validation, it is still necessary to carefully consider bias and 

uncertainty involved in terrain analysis and fuzzy soil inference. In this study, bias and 

uncertainty may exist in the initial data, DEM. The conventional DEM carries a low 

accuracy because it was produced based on low resolution source data. Errors may exist in 

LiDAR-derived DEM too, suggesting a validation based on field survey of elevation in the 

future work. Moreover, the accuracy of the primary and secondary land-surface parameters 

relies on the performance of the deriving algorithms. The scale that these algorithms are 

developed at may influence the resolution dependency results to some extent. In addition, 

the procedure of FCM clustering carries some uncertainties, such as the determination of 

the fuzzy degree, the maximum membership error, and the iteration number. Hence, it is 

suggested to thoughtfully infer the obtained conclusions in this study to other study areas 

with different or even similar landform and vegetation types. 

Second, it should be noted that the stratification according to the geology layer is not 

always obligatory in fuzzy logic-based digital soil mapping but is likely to be necessary for 

areas with soil displaying significant dependence on geology. Terrain factor is deemed as 

the basic influential factor in soil formation, using which is very practical because of the 
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widespread elevation data (MacBratney et al., 2003). Considering the geology layer as an 

environmental covariate in soil inference is also promising due to the role of parent 

materials in the formation of soil in Jenny (1941). However, in this study the influential 

factors other than terrain or vegetation were controlled in order to reach its objectives 

through a much clearer manner. In addition, the geology characteristics in the study area 

involve much more issues which need careful investigations, such as the Waterloo Moraine. 

It might be impossible to comprehensively capture these characteristics in this study with 

limited data and fieldwork. Thus, it is recommended to research more on geologic 

predictors for soil inference in the future work, particularly, with respect to the glacial 

deposits in southern Ontario.  

Third, the basic field survey assisted by two soil scientists promoted the understanding 

of the soil in the study area, while it will be necessary to pursue a comprehensive field 

survey based on the results of the purposive sampling design in the future work. It has to be 

noted that this study did not conduct such a comprehensive survey because of the lack of 

resources in surveyors and tools, and also because of the limited time and accessibility. 

Although digital soil mapping involves the use of large remotely sensed data and GIS tools, 

fieldwork is still inevitable. All the new techniques are aiming at reducing it but hardly 

replacing it. Moreover, fieldwork for digital soil mapping may deviate from conventional 

soil survey because, first, preliminary results such as the purposive sampling design can 

provide quantitative guidelines and estimations for real fieldwork, and second, it can be 

supported by a legacy of soil maps, such as the overlapping strategy in the validation 
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experiment in Section 4.4. Thus, a field survey based on the purposive sampling design is 

needed in the future work to validate the design and to infer soil series or properties.  

Fourth, this study assumed all the land-surface parameters have the same weight in soil 

prediction, while this may not always hold true. For example, in Behrens et al. (2010), it is 

reported that topographic wetness index and profile curvature have more weights than other 

parameters when predicting fluvial soils, while soil classes occurring on steeper slopes 

show stronger correlation with slope than other parameters do. Future studies need to 

evaluate the different weights of predictors based on an investigation of soil forming 

processes and landscape characteristics in field. Moreover, the determination of 

land-surface parameters used in fuzzy soil inference is still arbitrary itself, and strongly 

depends on knowledge in domains including not only soil science but also geomorphometry. 

Although the utilization of fuzzy clustering aims at minimizing requirements for domain 

knowledge in determining input parameters, such knowledge can still control and influence 

the output and the interpretation of the results. A future application of this fuzzy soil 

inference method in areas such as the Waterloo Aquifer area will definitely need experts 

with knowledge not only about the soils developed in these areas but also their specific 

terrain characteristics.  

Fifth, one main objective of this study was to explore the resolution dependency of the 

purposive sampling design for fuzzy soil inference. However it has to be noted that the 

integration of multiple scales has become a new trend in terrain analysis (Deng, 2007). This 

integration is expected to improve the modeling of hydrological and geomorphological 
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processes which carry obvious multi-scale characteristics (Gessler et al., 2009), such as 

fractal (Deng, 2007). There have been many efforts on the integration of multiple scales in 

terrain analysis (e.g., Fisher et al., 2004; Schmidt and Andrew, 2005; Behrens et al., 2010), 

based on approaches of contextual spatial information (e.g., Behrens et al., 2010), wavelet 

analysis (e.g., Lark, 2007), incorporating scale into land-surface parameters (e.g., Schmidt 

and Hewitt, 2004), and so on. Fuzzy logic has also been incorporated to multi-scale 

landform classification. For example, in Deng and Wilson (2008), multiple spatial scales 

and multiple semantic meanings were combined to delineate mountain peaks as fuzzy 

entities, through considering the peak properties and spatial scale dependency. This initial 

work has shown a positive sign of using multiple spatial scales in fuzzy landform 

classification. Given the basic connections between geomorphometry and digital soil 

mapping, explorations on multi-scale fuzzy soil inference will be a future research priority. 

The findings in this study could also provide preliminary indications for the integration of 

multiple scales.  

Sixth, it should be noted that soil is a very complex system that is always difficult to 

model accurately. Soil is often continuous, so that fuzzy logic used in digital soil mapping 

indeed can assist in representing this continuousness characteristic. However, since soil is 

complicate, it may not always be continuous. Sudden changes may be observed within very 

short spatial distance. This may always happen, particularly, when surveying soils 

developed based on glacier deposits, in which soil profiles might suffer abrupt disturbs 

during the movement of glaciers. In the field survey in this study, such a sudden change 
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was found among Points 12-16 , at which soil profiles changed quickly against the spatial 

distance. If there is a way to “see” the whole soils horizontally in that particular area, it 

might be found abrupt or crisp changes, not a gentle continuous change in soil profiles 

horizontally. Thus, the fuzzy clustering of soil in such situations needs more future efforts. 

In conclusion, although some limitations exist in this study, it can still provide useful 

insights for future studies on fuzzy soil inference. However, it has to be admitted that 

finding a number of clusters that can completely satisfy a complex system such as soil is 

very difficult. As Odeh et al. (1992) pointed out, “the biggest problem in fuzzy c-means 

clustering is to determine how many classes exist in the data and how fuzzy they are”. 

Indeed, there is still much work need to be done in order to solve this problem and to take 

the most advantage of fuzzy logic in digital soil mapping.  
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APPENDIX A 

The FCM clustering results of the experiments in Group A. 
 
Table A.1 FCM clustering results in Unit 1 area based on 10 m conventional DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 26 2 0.929398 0.070602 0.120283 -0.12028 1533041 
 19 3 0.831701 0.097697 0.278084 -0.1578 1216207 
 30 4 0.782653 0.049048 0.388312 -0.11023 1058811 
 36 5 0.758931 0.023722 0.449154 -0.06084 953621 
 36 6 0.753382 0.005549 0.480577 -0.03142 874692.6 
 50 7 0.74428 0.009102 0.508232 -0.02766 816909.2 
 50 8 0.721199 0.023081 0.555044 -0.04681 773439.4 
 50 9 0.726765 -0.00557 0.551638 0.003406 723419.8 
 50 10 0.713023 0.013742 0.586859 -0.03522 692992.5 
 28 11 0.702939 0.010084 0.617896 -0.03104 665699.3 
 50 12 0.701918 0.001021 0.620771 -0.00287 643174.1 
 50 13 0.692577 0.009341 0.649801 -0.02903 622123 
 50 14 0.683072 0.009505 0.676731 -0.02693 603739.5 
 50 15 0.671609 0.011463 0.701284 -0.02455 588842.6 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 21 2 0.781231 0.218769 0.354508 -0.35451 1428935 
 20 3 0.67179 0.109441 0.551007 -0.1965 1070556 
 46 4 0.565003 0.106787 0.783295 -0.23229 890978.2 
 50 5 0.505498 0.059505 0.947566 -0.16427 778491.7 
 50 6 0.466053 0.039445 1.074836 -0.12727 700554.2 
 50 7 0.43554 0.030513 1.182386 -0.10755 641425.3 
 50 8 0.410653 0.024887 1.274344 -0.09196 595273.9 
 50 9 0.409801 0.000852 1.316449 -0.04211 555134.5 
 50 10 0.396011 0.01379 1.379552 -0.0631 523621.7 
 50 11 0.381082 0.014929 1.444622 -0.06507 496975 
 50 12 0.358854 0.022228 1.52452 -0.0799 475268.1 
 50 13 0.365806 -0.00695 1.535383 -0.01086 452927.8 
 50 14 0.348436 0.01737 1.601902 -0.06652 435242.7 
 50 15 0.336828 0.011608 1.651369 -0.04947 419011.8 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 19 2 0.66094 0.33906 0.513691 -0.51369 1266796 
 25 3 0.540783 0.120157 0.768321 -0.25463 890753.4 
 22 4 0.405148 0.135635 1.061649 -0.29333 695894.4 
 39 5 0.344865 0.060283 1.264898 -0.20325 578252.6 
 20 6 0.280303 0.064562 1.47459 -0.20969 500821.9 
 33 7 0.253307 0.026996 1.610316 -0.13573 443390.5 
 39 8 0.231081 0.022226 1.729064 -0.11875 399815.4 
 36 9 0.209948 0.021133 1.84264 -0.11358 365248.3 
 50 10 0.191991 0.017957 1.948067 -0.10543 337057.2 
 38 11 0.17457 0.017421 2.049629 -0.10156 313585 
 30 12 0.160421 0.014149 2.14303 -0.0934 293632.3 
 41 13 0.14901 0.011411 2.223863 -0.08083 276429.2 
 49 14 0.144889 0.004121 2.27233 -0.04847 261109.5 
 34 15 0.135034 0.009855 2.346547 -0.07422 247857.8 
 m = 2 Iteration 

Number 
Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 3 2 0.50003 0.49997 0.693117 -0.69312 1123909 
 31 3 0.445347 0.054683 0.921911 -0.22879 713402.6 
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 28 4 0.346868 0.098479 1.182663 -0.26075 520943.1 
 28 5 0.281282 0.065586 1.405835 -0.22317 410184.7 
 26 6 0.233673 0.047609 1.597895 -0.19206 339008.4 
 26 7 0.201779 0.031894 1.756556 -0.15866 289309.2 
 36 8 0.177113 0.024666 1.894519 -0.13796 252652.1 
 32 9 0.159122 0.017991 2.008894 -0.11438 224406.6 
 2 10 0.100091 0.059031 2.302132 -0.29324 224759.8 
 43 11 0.132973 -0.03288 2.208393 0.093739 183373 
 2 12 0.083405 0.049568 2.484478 -0.27609 187306.2 
 2 13 0.077004 0.006401 2.564421 -0.07994 172888.4 
 29 14 0.105 -0.028 2.451172 0.113249 143938.6 
 2 15 0.066729 0.038271 2.70758 -0.25641 149843.6 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 2 2 0.500013 0.499987 0.693135 -0.69314 0.693135 
 37 3 0.386813 0.1132 1.015023 -0.32189 556937.5 
 36 4 0.306866 0.079947 1.265163 -0.25014 381945.6 
 36 5 0.247908 0.058958 1.484581 -0.21942 284811.5 
 3 6 0.166818 0.08109 1.791306 -0.30673 239336.4 
 34 7 0.177431 -0.01061 1.828688 -0.03738 184571.4 
 2 8 0.125159 0.052272 2.078806 -0.25012 167042.5 
 2 9 0.111218 0.013941 2.196743 -0.11794 144187.1 
 2 10 0.100065 0.011153 2.302261 -0.10552 126397.5 
 2 11 0.091071 0.008994 2.397004 -0.09474 112178 
 2 12 0.083385 0.007686 2.484595 -0.08759 100641.3 
 2 13 0.076981 0.006404 2.564573 -0.07998 91055.25 
 2 14 0.071512 0.005469 2.638472 -0.0739 82994.06 
 2 15 0.066711 0.004801 2.707719 -0.06925 76144.49 
 
Table A.2 FCM clustering results in Unit 1 area based on 20 m conventional DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 22 2 0.903138 0.096862 0.161122 -0.16112 393129 
 21 3 0.824249 0.078889 0.289142 -0.12802 315248.2 
 33 4 0.779146 0.045103 0.394095 -0.10495 273986.8 
 26 5 0.758314 0.020832 0.450431 -0.05634 246134 
 50 6 0.763098 -0.00478 0.464621 -0.01419 224138.8 
 50 7 0.743803 0.019295 0.510552 -0.04593 209767.3 
 50 8 0.721661 0.022142 0.55829 -0.04774 199129 
 36 9 0.726387 -0.00473 0.553581 0.004709 185883.7 
 30 10 0.712449 0.013938 0.593682 -0.0401 178392.2 
 50 11 0.698205 0.014244 0.625001 -0.03132 171781.5 
 44 12 0.703769 -0.00556 0.629493 -0.00449 165323.6 
 50 13 0.695684 0.008085 0.645255 -0.01576 159903.2 
 50 14 0.701115 -0.00543 0.645021 0.000234 155498.9 
 50 15 0.680372 0.020743 0.688408 -0.04339 151152.7 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 15 2 0.765619 0.234381 0.376237 -0.37624 363355.3 
 20 3 0.660289 0.10533 0.571825 -0.19559 276332.1 
 44 4 0.557299 0.10299 0.796965 -0.22514 230182 
 27 5 0.506625 0.050674 0.947765 -0.1508 200575.5 
 32 6 0.462821 0.043804 1.082854 -0.13509 180475.2 
 50 7 0.431999 0.030822 1.193647 -0.11079 165566.9 
 39 8 0.425163 0.006836 1.248906 -0.05526 152982.8 
 49 9 0.416222 0.008941 1.304342 -0.05544 142751.3 
 44 10 0.39398 0.022242 1.386987 -0.08265 134800.7 
 50 11 0.376101 0.017879 1.458795 -0.07181 127977 
 50 12 0.367347 0.008754 1.503485 -0.04469 121797.4 
 50 13 0.352489 0.014858 1.559417 -0.05593 116833.9 
 50 14 0.342492 0.009997 1.62733 -0.06791 112447.7 
 50 15 0.338667 0.003825 1.645793 -0.01846 107655.9 
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m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 14 2 0.654135 0.345865 0.521862 -0.52186 320910.3 
 24 3 0.523871 0.130264 0.798373 -0.27651 228596.6 
 23 4 0.408527 0.115344 1.062783 -0.26441 179044.1 
 19 5 0.333815 0.074712 1.28733 -0.22455 148975 
 28 6 0.289836 0.043979 1.458105 -0.17078 128698.9 
 24 7 0.250884 0.038952 1.61658 -0.15848 114093.3 
 27 8 0.222594 0.02829 1.752548 -0.13597 102912.8 
 24 9 0.200289 0.022305 1.873049 -0.1205 94034 
 35 10 0.187155 0.013134 1.965195 -0.09215 86750.43 
 48 11 0.17677 0.010385 2.046748 -0.08155 80680.87 
 41 12 0.162521 0.014249 2.139579 -0.09283 75560.79 
 30 13 0.147276 0.015245 2.230041 -0.09046 71179.18 
 50 14 0.141648 0.005628 2.289926 -0.05989 67276.5 
 50 15 0.136016 0.005632 2.340968 -0.05104 63779.65 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 15 2 0.584741 0.415259 0.603093 -0.60309 276691.7 
 27 3 0.428514 0.156227 0.950312 -0.34722 181818.5 
 32 4 0.340077 0.088437 1.198917 -0.24861 133668.8 
 21 5 0.274774 0.065303 1.42176 -0.22284 105360.4 
 26 6 0.23158 0.043194 1.604403 -0.18264 87064.87 
 28 7 0.199414 0.032166 1.763245 -0.15884 74276.97 
 26 8 0.174688 0.024726 1.901838 -0.13859 64839.73 
 25 9 0.155668 0.01902 2.023625 -0.12179 57567.13 
 19 10 0.140478 0.01519 2.130091 -0.10647 51784.73 
 30 11 0.130009 0.010469 2.222455 -0.09236 47040.03 
 25 12 0.119449 0.01056 2.311183 -0.08873 43120.29 
 30 13 0.110494 0.008955 2.390341 -0.07916 39810.6 
 40 14 0.102522 0.007972 2.46697 -0.07663 36967.96 
 41 15 0.09542 0.007102 2.536552 -0.06958 34501.87 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 19 2 0.545595 0.454405 0.645965 -0.64597 235716.5 
 31 3 0.378764 0.166831 1.028563 -0.3826 141204.7 
 4 4 0.250187 0.128577 1.385922 -0.35736 100289 
 28 5 0.242653 0.007534 1.498191 -0.11227 72941.79 
 29 6 0.202506 0.040147 1.682507 -0.18432 57626.8 
 29 7 0.173647 0.028859 1.839845 -0.15734 47298.64 
 24 8 0.15176 0.021887 1.977126 -0.13728 39921.02 
 26 9 0.13493 0.01683 2.09743 -0.1203 34406.92 
 25 10 0.121752 0.013178 2.203815 -0.10639 30148.09 
 23 11 0.1097 0.012052 2.305541 -0.10173 26763.1 
 3 12 0.083747 0.025953 2.482425 -0.17688 25385.24 
 3 13 0.077454 0.006293 2.5615 -0.07908 22959.24 
 46 14 0.088418 -0.01096 2.540405 0.021095 19789.86 
 38 15 0.08231 0.006108 2.611337 -0.07093 18160.14 
 
Table A.3 FCM clustering results in Unit 1 area based on 30 m conventional DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 20 2 0.944204 0.055796 0.098092 -0.09809 191104.1 
 20 3 0.831058 0.113146 0.278485 -0.18039 152042.9 
 47 4 0.78371 0.047348 0.38694 -0.10846 132418 
 50 5 0.756341 0.027369 0.447568 -0.06063 119224.7 
 50 6 0.747245 0.009096 0.484494 -0.03693 109224.9 
 50 7 0.741897 0.005348 0.509698 -0.0252 101047.2 
 40 8 0.736993 0.004904 0.523599 -0.0139 94487.68 
 50 9 0.734246 0.002747 0.538694 -0.0151 89246.59 
 50 10 0.727403 0.006843 0.566374 -0.02768 85345.84 
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 36 11 0.719218 0.008185 0.587332 -0.02096 81617.12 
 42 12 0.714538 0.00468 0.607691 -0.02036 79029.48 
 50 13 0.7142 0.000338 0.608938 -0.00125 76284.56 
 50 14 0.717684 -0.00348 0.613925 -0.00499 73788.74 
 50 15 0.711863 0.005821 0.633867 -0.01994 71527.63 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 20 2 0.802652 0.197348 0.324161 -0.32416 179551.8 
 17 3 0.672837 0.129815 0.54829 -0.22413 133958.4 
 35 4 0.567004 0.105833 0.77807 -0.22978 111473.9 
 23 5 0.50907 0.057934 0.940964 -0.16289 97329.72 
 42 6 0.482858 0.026212 1.038767 -0.0978 87037.5 
 41 7 0.442074 0.040784 1.162105 -0.12334 79578.63 
 30 8 0.409031 0.033043 1.274028 -0.11192 73905.15 
 50 9 0.409787 -0.00076 1.314447 -0.04042 68880.58 
 50 10 0.407849 0.001938 1.353552 -0.03911 64728.08 
 50 11 0.400966 0.006883 1.402132 -0.04858 61305.13 
 50 12 0.378806 0.02216 1.485799 -0.08367 58665.02 
 50 13 0.370109 0.008697 1.536117 -0.05032 56212.16 
 50 14 0.361116 0.008993 1.570421 -0.0343 53821.44 
 46 15 0.358128 0.002988 1.601436 -0.03102 51703.77 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 16 2 0.674001 0.325999 0.497564 -0.49756 160109.2 
 19 3 0.545895 0.128106 0.759341 -0.26178 111695.5 
 26 4 0.42294 0.122955 1.034562 -0.27522 87138.82 
 22 5 0.341592 0.081348 1.268175 -0.23361 72479.54 
 38 6 0.298274 0.043318 1.435903 -0.16773 62574.18 
 26 7 0.266353 0.031921 1.575158 -0.13926 55277.71 
 21 8 0.238537 0.027816 1.708135 -0.13298 49739.97 
 20 9 0.213277 0.02526 1.835034 -0.1269 45396.67 
 31 10 0.196895 0.016382 1.935848 -0.10081 41870.91 
 44 11 0.183761 0.013134 2.023949 -0.0881 38944.86 
 50 12 0.172625 0.011136 2.100469 -0.07652 36524.97 
 50 13 0.159451 0.013174 2.193968 -0.0935 34376.04 
 50 14 0.152695 0.006756 2.249124 -0.05516 32503.42 
 50 15 0.147154 0.005541 2.30322 -0.0541 30815.49 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 16 2 0.599478 0.400522 0.586686 -0.58669 138754.9 
 21 3 0.454283 0.145195 0.906631 -0.31995 89764.94 
 21 4 0.351865 0.102418 1.172679 -0.26605 65477.05 
 21 5 0.282228 0.069637 1.402845 -0.23017 51510.13 
 31 6 0.237895 0.044333 1.586245 -0.1834 42528.2 
 37 7 0.20541 0.032485 1.744945 -0.1587 36273.44 
 26 8 0.185946 0.019464 1.866594 -0.12165 31615.66 
 22 9 0.168712 0.017234 1.981143 -0.11455 28011.91 
 34 10 0.152597 0.016115 2.09066 -0.10952 25169.37 
 25 11 0.138993 0.013604 2.189843 -0.09918 22867.02 
 34 12 0.12784 0.011153 2.279925 -0.09008 20965.56 
 31 13 0.118 0.00984 2.364845 -0.08492 19361.12 
 25 14 0.109615 0.008385 2.441136 -0.07629 17998.13 
 26 15 0.101776 0.007839 2.512946 -0.07181 16816.06 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 17 2 0.553343 0.446657 0.637797 -0.6378 118606.9 
 21 3 0.395537 0.157806 1.000034 -0.36224 70399.17 
 25 4 0.311407 0.08413 1.255652 -0.25562 48147.08 
 26 5 0.251873 0.059534 1.475053 -0.2194 35849.14 
 24 6 0.20942 0.042453 1.662571 -0.18752 28283.54 
 23 7 0.178603 0.030817 1.824501 -0.16193 23210.66 
 23 8 0.157771 0.020832 1.957298 -0.1328 19589.71 
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 27 9 0.142693 0.015078 2.069792 -0.11249 16880.39 
 21 10 0.125576 0.017117 2.19081 -0.12102 14800.47 
 38 11 0.118471 0.007105 2.26936 -0.07855 13102.6 
 27 12 0.10869 0.009781 2.358486 -0.08913 11750.89 
 38 13 0.100238 0.008452 2.442371 -0.08389 10633.16 
 31 14 0.092652 0.007586 2.520288 -0.07792 9700.546 
 3 15 0.067312 0.02534 2.703205 -0.18292 9705.696 
 
Table A.4 FCM clustering results in Unit 1 area based on 50 m conventional DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 18 2 0.966994 0.033006 0.061967 -0.06197 72682.74 
 17 3 0.866114 0.10088 0.226352 -0.16439 55885.79 
 24 4 0.809458 0.056656 0.34528 -0.11893 48993.36 
 40 5 0.778825 0.030633 0.407764 -0.06248 43833.01 
 50 6 0.763396 0.015429 0.455555 -0.04779 40503.55 
 50 7 0.765788 -0.00239 0.462891 -0.00734 37580.83 
 50 8 0.745762 0.020026 0.51235 -0.04946 35435.11 
 50 9 0.745366 0.000396 0.522452 -0.0101 33542.62 
 37 10 0.762506 -0.01714 0.49588 0.026572 31400.38 
 50 11 0.765055 -0.00255 0.495013 0.000867 29936.82 
 50 12 0.756023 0.009032 0.52398 -0.02897 28749.96 
 39 13 0.754697 0.001326 0.539873 -0.01589 27645.08 
 50 14 0.766338 -0.01164 0.524433 0.01544 26615.31 
 50 15 0.7558 0.010538 0.537499 -0.01307 25807.71 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 23 2 0.855655 0.144345 0.248655 -0.24866 69506.98 
 16 3 0.714593 0.141062 0.481178 -0.23252 50091.63 
 38 4 0.586422 0.128171 0.737666 -0.25649 41769.31 
 29 5 0.542546 0.043876 0.871522 -0.13386 36237.98 
 50 6 0.482888 0.059658 1.027162 -0.15564 32707.67 
 50 7 0.473932 0.008956 1.081364 -0.0542 29728.71 
 40 8 0.441637 0.032295 1.183885 -0.10252 27446.07 
 36 9 0.426744 0.014893 1.26079 -0.07691 25564.95 
 33 10 0.421403 0.005341 1.310129 -0.04934 23961.61 
 50 11 0.426034 -0.00463 1.334509 -0.02438 22586.02 
 50 12 0.400232 0.025802 1.425083 -0.09057 21551.61 
 39 13 0.406768 -0.00654 1.44075 -0.01567 20521.3 
 50 14 0.410224 -0.00346 1.456152 -0.0154 19711.14 
 50 15 0.389198 0.021026 1.521094 -0.06494 19084.01 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 17 2 0.706577 0.293423 0.458327 -0.45833 63018.61 
 19 3 0.588214 0.118363 0.68938 -0.23105 42473.45 
 17 4 0.442167 0.146047 0.993494 -0.30411 33033.29 
 24 5 0.385436 0.056731 1.182445 -0.18895 27394.08 
 26 6 0.327815 0.057621 1.368666 -0.18622 23666.06 
 27 7 0.287278 0.040537 1.516311 -0.14765 20927.31 
 44 8 0.274331 0.012947 1.599631 -0.08332 18735.25 
 27 9 0.245123 0.029208 1.726359 -0.12673 17018.55 
 45 10 0.232626 0.012497 1.815249 -0.08889 15631.57 
 29 11 0.207966 0.02466 1.934678 -0.11943 14510.54 
 50 12 0.213805 -0.00584 1.972212 -0.03753 13533.53 
 50 13 0.20741 0.006395 2.038196 -0.06598 12719 
 50 14 0.195511 0.011899 2.112738 -0.07454 12017.87 
 45 15 0.189549 0.005962 2.171693 -0.05896 11408.32 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 15 2 0.619283 0.380717 0.564264 -0.56426 55042.18 
 22 3 0.496433 0.12285 0.837954 -0.27369 34661.45 
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 19 4 0.371791 0.124642 1.131305 -0.29335 25089.76 
 24 5 0.300642 0.071149 1.357729 -0.22642 19727.51 
 19 6 0.255436 0.045206 1.541967 -0.18424 16267.54 
 25 7 0.222806 0.03263 1.697456 -0.15549 13853.77 
 26 8 0.196525 0.026281 1.828379 -0.13092 12058.19 
 46 9 0.181209 0.015316 1.927754 -0.09938 10651.5 
 31 10 0.166488 0.014721 2.032613 -0.10486 9535.556 
 29 11 0.151993 0.014495 2.131793 -0.09918 8637.793 
 19 12 0.140749 0.011244 2.225424 -0.09363 7904.329 
 27 13 0.130963 0.009786 2.3056 -0.08018 7290.091 
 22 14 0.122447 0.008516 2.380685 -0.07509 6767.329 
 34 15 0.117102 0.005345 2.447961 -0.06728 6315.574 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 15 2 0.569555 0.430445 0.620243 -0.62024 47243.78 
 26 3 0.432715 0.13684 0.940204 -0.31996 27562.83 
 22 4 0.32927 0.103445 1.218018 -0.27781 18620.84 
 21 5 0.261979 0.067291 1.44734 -0.22932 13850.91 
 22 6 0.222007 0.039972 1.628181 -0.18084 10904 
 23 7 0.191112 0.030895 1.787613 -0.15943 8936.112 
 18 8 0.166889 0.024223 1.926398 -0.13879 7534.423 
 27 9 0.152179 0.01471 2.035969 -0.10957 6479.779 
 28 10 0.138803 0.013376 2.139567 -0.1036 5666.912 
 44 11 0.128729 0.010074 2.225057 -0.08549 5003.071 
 23 12 0.118919 0.00981 2.316217 -0.09116 4479.413 
 29 13 0.110143 0.008776 2.399039 -0.08282 4049.541 
 29 14 0.10204 0.008103 2.47578 -0.07674 3690.758 
 28 15 0.096184 0.005856 2.547028 -0.07125 3387.22 
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APPENDIX B 

The FCM clustering results of the experiments in Group B. 
 
Table B.1 FCM clustering results in Unit 2 area based on 10 m conventional DEM with NDVI. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 24 2 0.843523 0.156477 0.258415 -0.25842 4499411 
 35 3 0.804117 0.039406 0.352449 -0.09403 3746483 
 28 4 0.797914 0.006203 0.372285 -0.01984 3226231 
 45 5 0.765668 0.032246 0.434485 -0.0622 2891016 
 36 6 0.726149 0.039519 0.522096 -0.08761 2681762 
 50 7 0.72838 -0.00223 0.535622 -0.01353 2490018 
 38 8 0.725669 0.002711 0.556997 -0.02137 2336227 
 50 9 0.706138 0.019531 0.600332 -0.04334 2226737 
 50 10 0.707772 -0.00163 0.604794 -0.00446 2123938 
 50 11 0.702697 0.005075 0.618362 -0.01357 2046468 
 50 12 0.700496 0.002201 0.626623 -0.00826 1965786 
 49 13 0.692507 0.007989 0.650947 -0.02432 1895588 
 50 14 0.689651 0.002856 0.66547 -0.01452 1834249 
 50 15 0.690979 -0.00133 0.663075 0.002395 1762415 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 20 2 0.663206 0.336794 0.507858 -0.50786 3999978 
 39 3 0.580117 0.083089 0.729874 -0.22202 3171527 
 39 4 0.537334 0.042783 0.868217 -0.13834 2696243 
 45 5 0.513792 0.023542 0.948017 -0.0798 2353132 
 32 6 0.456075 0.057717 1.09592 -0.1479 2112066 
 50 7 0.415042 0.041033 1.224825 -0.12891 1932679 
 50 8 0.419933 -0.00489 1.266148 -0.04132 1780567 
 50 9 0.387457 0.032476 1.376324 -0.11018 1673006 
 50 10 0.367073 0.020384 1.454492 -0.07817 1574711 
 50 11 0.36724 -0.00017 1.489596 -0.0351 1490309 
 50 12 0.35521 0.01203 1.548373 -0.05878 1420775 
 50 13 0.343488 0.011722 1.604471 -0.0561 1359488 
 50 14 0.325358 0.01813 1.675077 -0.07061 1307219 
 50 15 0.324078 0.00128 1.707403 -0.03233 1257140 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 21 2 0.563623 0.436377 0.625954 -0.62595 3430385 
 2 3 0.333392 0.230231 1.098524 -0.47257 2548925 
 45 4 0.345506 -0.01211 1.210531 -0.11201 2020907 
 50 5 0.286315 0.059191 1.417804 -0.20727 1706922 
 2 6 0.16678 0.119535 1.791421 -0.37362 1515562 
 50 7 0.220005 -0.05323 1.722772 0.068649 1321828 
 50 8 0.210343 0.009662 1.798373 -0.0756 1187828 
 50 9 0.192293 0.01805 1.908023 -0.10965 1084076 
 50 10 0.172606 0.019687 2.018207 -0.11018 1000610 
 2 11 0.090959 0.081647 2.397622 -0.37942 961943.2 
 50 12 0.148213 -0.05725 2.193751 0.203871 869150.2 
 50 13 0.136446 0.011767 2.283128 -0.08938 821678.5 
 2 14 0.0715 0.064946 2.63856 -0.35543 802764.5 
 2 15 0.066732 0.004768 2.70756 -0.069 762289 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 2 2 0.50009 0.49991 0.693057 -0.69306 2905120 
 3 3 0.333354 0.166736 1.098582 -0.40553 1936767 
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 3 4 0.25005 0.083304 1.386194 -0.28761 1452570 
 3 5 0.200158 0.049892 1.609042 -0.22285 1162028 
 2 6 0.166722 0.033436 1.791593 -0.18255 968390.7 
 3 7 0.142931 0.023791 1.945651 -0.15406 830034.5 
 3 8 0.12506 0.017871 2.079202 -0.13355 726291.3 
 2 9 0.11117 0.01389 2.19696 -0.11776 645588.1 
 2 10 0.10004 0.01113 2.302387 -0.10543 581038.8 
 2 11 0.090937 0.009103 2.397743 -0.09536 528217.5 
 3 12 0.083384 0.007553 2.484606 -0.08686 484192 
 2 13 0.076963 0.006421 2.564688 -0.08008 446955.5 
 2 14 0.071468 0.005495 2.638782 -0.07409 415029.1 
 2 15 0.066705 0.004763 2.707766 -0.06898 387362.4 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 2 2 0.500052 0.499948 0.693095 -0.6931 2442928 
 3 3 0.333344 0.166708 1.098597 -0.4055 1471627 
 3 4 0.250025 0.083319 1.386244 -0.28765 1.386244 
 3 5 0.20008 0.049945 1.609238 -0.22299 777125.3 
 2 6 0.1667 0.03338 1.791659 -0.18242 1.791659 
 3 7 0.142896 0.023804 1.945776 -0.15412 510306.9 
 3 8 0.125031 0.017865 2.079317 -0.13354 431863.9 
 2 9 0.111149 0.013882 2.197052 -0.11774 372742.2 
 2 10 0.100027 0.011122 2.30245 -0.1054 326748.9 
 2 11 0.090928 0.009099 2.397791 -0.09534 290049.8 
 3 12 0.083361 0.007567 2.484742 -0.08695 260156 
 2 13 0.076949 0.006412 2.564778 -0.08004 235392 
 2 14 0.071455 0.005494 2.638871 -0.07409 214566.3 
 2 15 0.066694 0.004761 2.707846 -0.06898 196838.5 
 
Table B.2 FCM clustering results in Unit 2 area based on conventional DEM without NDVI. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 28 2 0.851203 0.148797 0.241698 -0.2417 3468140 
 30 3 0.833034 0.018169 0.299186 -0.05749 2797131 
 42 4 0.799009 0.034025 0.364136 -0.06495 2456003 
 50 5 0.78082 0.018189 0.408623 -0.04449 2195969 
 32 6 0.764837 0.015983 0.451382 -0.04276 2012657 
 46 7 0.76635 -0.00151 0.456421 -0.00504 1846045 
 50 8 0.746117 0.020233 0.500376 -0.04396 1736236 
 50 9 0.761514 -0.0154 0.472886 0.02749 1640311 
 44 10 0.746154 0.01536 0.509719 -0.03683 1547401 
 50 11 0.751497 -0.00534 0.507041 0.002678 1458992 
 50 12 0.74906 0.002437 0.513956 -0.00692 1387381 
 50 13 0.737118 0.011942 0.541468 -0.02751 1328720 
 50 14 0.742259 -0.00514 0.537649 0.003819 1268257 
 50 15 0.733411 0.008848 0.56156 -0.02391 1229411 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 15 2 0.714616 0.285384 0.440514 -0.44051 3102352 
 32 3 0.638374 0.076242 0.637908 -0.19739 2408627 
 50 4 0.587316 0.051058 0.772687 -0.13478 2028765 
 50 5 0.546749 0.040567 0.890694 -0.11801 0.890694 
 31 6 0.511862 0.034887 1.000041 -0.10935 1.000041 
 50 7 0.476459 0.035403 1.106669 -0.10663 1458022 
 50 8 0.47272 0.003739 1.145009 -0.03834 1342665 
 50 9 0.45127 0.02145 1.222301 -0.07729 1254957 
 50 10 0.447944 0.003326 1.250065 -0.02776 1174543 
 43 11 0.449116 -0.00117 1.276356 -0.02629 1104892 
 50 12 0.432816 0.0163 1.34441 -0.06805 1049713 
 50 13 0.415568 0.017248 1.408099 -0.06369 1005223 
 50 14 0.41559 -2.2E-05 1.41819 -0.01009 953589.1 
 50 15 0.420639 -0.00505 1.418423 -0.00023 904902.1 
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m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 14 2 0.620792 0.379208 0.560156 -0.56016 2687527 
 2 3 0.333367 0.287425 1.098562 -0.53841 2035962 
 37 4 0.423378 -0.09001 1.072867 0.025695 1550493 
 37 5 0.374621 0.048757 1.238908 -0.16604 1300945 
 29 6 0.334679 0.039942 1.386316 -0.14741 1127017 
 50 7 0.294413 0.040266 1.532746 -0.14643 1000244 
 40 8 0.270202 0.024211 1.646791 -0.11405 901351.2 
 50 9 0.252556 0.017646 1.741308 -0.09452 0.252556 
 50 10 0.240682 0.011874 1.823314 -0.08201 757631.8 
 50 11 0.228621 0.012061 1.897235 -0.07392 1.897235 
 50 12 0.205201 0.02342 2.007327 -0.11009 659701.9 
 50 13 0.198431 0.00677 2.064487 -0.05716 619319.9 
 50 14 0.187154 0.011277 2.139715 -0.07523 585762.8 
 50 15 0.183093 0.004061 2.184186 -0.04447 554286.9 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 19 2 0.56341 0.43659 0.626238 -0.62624 2293540 
 2 3 0.333351 0.230059 1.098586 -0.47235 1547002 
 37 4 0.326681 0.00667 1.245565 -0.14698 1136157 
 40 5 0.271014 0.055667 1.451586 -0.20602 907326.2 
 43 6 0.233497 0.037517 1.618958 -0.16737 754771.4 
 50 7 0.206231 0.027266 1.760101 -0.14114 646012.2 
 50 8 0.184492 0.021739 1.884298 -0.1242 564286.9 
 50 9 0.166342 0.01815 1.998024 -0.11373 501001 
 49 10 0.15188 0.014462 2.099978 -0.10195 450305.9 
 50 11 0.13812 0.01376 2.196218 -0.09624 409108.7 
 50 12 0.128117 0.010003 2.281697 -0.08548 374630.9 
 50 13 0.118456 0.009661 2.360513 -0.07882 345637.7 
 2 14 0.071518 0.046938 2.638433 -0.27792 2.638433 
 50 15 0.103438 -0.03192 2.506628 0.131805 2.506628 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF F(c)-F(c+1) H ΔH 
H(c)-H(c+1) 

Jm 

 1 1 1  0   
 2 2 0.50011 0.49989 0.693037 -0.69304 1951258 
 2 3 0.333344 0.166766 1.098596 -0.40556 1175470 
 3 4 0.250084 0.08326 1.386126 -0.28753 820407.7 
 27 5 0.215124 0.03496 1.571302 -0.18518 617514.3 
 2 6 0.166734 0.04839 1.791558 -0.22026 494215.5 
 34 7 0.158149 0.008585 1.897887 -0.10633 404801.8 
 3 8 0.125087 0.033062 2.079096 -0.18121 344936.7 
 2 9 0.111204 0.013883 2.196807 -0.11771 297708 
 35 10 0.111059 0.000145 2.255727 -0.05892 259154.6 
 2 11 0.090954 0.020105 2.39765 -0.14192 231671 
 2 12 0.083399 0.007555 2.48451 -0.08686 207791.2 
 50 13 0.086682 -0.00328 2.511334 -0.02682 186632 
 2 14 0.071489 0.015193 2.638632 -0.1273 171374.4 
 2 15 0.066727 0.004762 2.7076 -0.06897 157215.5 
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APPENDIX C 

The FCM clustering results of the experiments in Group C. 
 
Table C.1 FCM clustering results in Unit 1 area based on 1 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 14 2 0.903368  0.1628  393327442 
 50 3 0.836297 0.067071 0.2893 -0.12646 334352858 
 26 4 0.810182 0.026115 0.345 -0.05578 288180257 
 31 5 0.833077 -0.022895 0.3112 0.03387 243899400 
 50 6 0.811046 0.022031 0.3588 -0.0476 220481363 
 50 7 0.799154 0.011892 0.3855 -0.02676 205318728 
 36 8 0.790272 0.008882 0.4078 -0.02227 196877050 
 50 9 0.768115 0.022157 0.4597 -0.0519 182348914 
 38 10 0.766128 0.001987 0.47 -0.01029 173640791 
 50 11 0.754152 0.011976 0.4944 -0.02444 167800493 
 41 12 0.764191 -0.010039 0.4758 0.01861 159507855 
 50 13 0.749784 0.014407 0.5133 -0.03747 154646613 
 50 14 0.746877 0.002907 0.5239 -0.0106 149516234 
 50 15 0.756381 -0.009504 0.5055 0.018354 144925103 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500004  0.6931  416720483 
 21 3 0.634671 -0.134667 0.6234 0.069783 287545670 
 29 4 0.60418 0.030491 0.7394 -0.11607 240509174 
 39 5 0.614832 -0.010652 0.7648 -0.02534 205374086 
 50 6 0.575676 0.039156 0.865 -0.10025 181902175 
 50 7 0.535354 0.040322 0.975 -0.10993 166498177 
 50 8 0.510988 0.024366 1.0509 -0.07595 153295137 
 50 9 0.491614 0.019374 1.1139 -0.06301 142526406 
 50 10 0.460648 0.030966 1.2042 -0.0903 134560163 
 50 11 0.448841 0.011807 1.261 -0.05681 127666271 
 2 12 0.083345 0.365496 2.4848 -1.22382 170122644 
 2 13 0.076929 0.006416 2.5649 -0.08007 163449759 
 2 14 0.071438 0.005491 2.639 -0.07409 157503407 
 2 15 0.066681 0.004757 2.7079 -0.06895 152161042 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500001  0.6931  350418924 
 23 3 0.518786 -0.018785 0.8134 -0.12023 233473866 
 2 4 0.250005 0.268781 1.3863 -0.57291 208359728 
 46 5 0.387038 -0.137033 1.2072 0.179111 156027517 
 50 6 0.35027 0.036768 1.348 -0.14083 135188375 
 2 7 0.142865 0.207405 1.9459 -0.59788 136940765 
 2 8 0.125004 0.017861 2.0794 -0.13355 123891317 
 2 9 0.111119 0.013885 2.1972 -0.11776 113415718 
 2 10 0.100002 0.011117 2.3026 -0.10539 104799376 
 2 11 0.090913 0.009089 2.3979 -0.0953 97569195.3 
 2 12 0.083338 0.007575 2.4849 -0.08701 91405162.9 
 2 13 0.076925 0.006413 2.5649 -0.08005 86079668.7 
 2 14 0.071432 0.005493 2.639 -0.0741 81425604.9 
 2 15 0.066672 0.00476 2.708 -0.06898 77318899.6 
 m = 2 Iteration 

Number 
Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500001  0.6931  294666063 
 3 3 0.333341 0.16666 1.0986 -0.40545 196443166 
 2 4 0.250003 0.083338 1.3863 -0.28769 147332745 
 2 5 0.200005 0.049998 1.6094 -0.22314 117865931 
 2 6 0.16667 0.033335 1.7918 -0.18232 98221690.4 
 2 7 0.142861 0.023809 1.9459 -0.15415 84189853.9 
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 2 8 0.125002 0.017859 2.0794 -0.13354 73666317.7 
 2 9 0.111116 0.013886 2.1972 -0.11777 65480870.9 
 2 10 0.100001 0.011115 2.3026 -0.10537 58933090.3 
 2 11 0.090911 0.00909 2.3979 -0.09531 53575424.7 
 2 12 0.083336 0.007575 2.4849 -0.08701 49110774.9 
 2 13 0.076924 0.006412 2.5649 -0.08005 45333101.4 
 2 14 0.071431 0.005493 2.639 -0.0741 42094953.7 
 2 15 0.06667 0.004761 2.708 -0.06898 39288415.7 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.5  0.6931  247783655 
 2 3 0.333335 0.166665 1.0986 -0.40546 149265058 
 2 4 0.250002 0.083333 1.3863 -0.28768 104180041 
 2 5 0.200003 0.049999 1.6094 -0.22314 78821814.9 
 2 6 0.166669 0.033334 1.7918 -0.18232 62758124.1 
 2 7 0.14286 0.023809 1.9459 -0.15415 51759015 
 2 8 0.125001 0.017859 2.0794 -0.13354 43802283.2 
 2 9 0.111114 0.013887 2.1972 -0.11778 37805480.1 
 2 10 0.100001 0.011113 2.3026 -0.10537 33140534.3 
 2 11 0.090911 0.00909 2.3979 -0.09531 29418326.4 
 2 12 0.083335 0.007576 2.4849 -0.08701 26386523.1 
 2 13 0.076924 0.006411 2.5649 -0.08005 23874258.3 
 2 14 0.07143 0.005494 2.639 -0.0741 21761986.6 
 2 15 0.066669 0.004761 2.708 -0.06899 19963764.4 
 
Table C.2 FCM clustering results in Unit 1 area based on 5 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 12 2 0.91004  0.152581  15613184 
 50 3 0.828254 0.081786 0.298921 -0.14634 13239047 
 30 4 0.821608 0.006646 0.324433 -0.02551 11304045 
 31 5 0.831485 -0.00988 0.311569 0.012864 9716689 
 42 6 0.809577 0.021908 0.35778 -0.04621 8774545 
 50 7 0.792213 0.017364 0.394933 -0.03715 8153679 
 31 8 0.789129 0.003084 0.410721 -0.01579 7580596 
 50 9 0.773154 0.015975 0.448069 -0.03735 7161781 
 47 10 0.770133 0.003021 0.457666 -0.0096 6789150 
 50 11 0.774074 -0.00394 0.456325 0.001341 6430663 
 50 12 0.76207 0.012004 0.481328 -0.025 6214690 
 40 13 0.769402 -0.00733 0.470047 0.011281 5905351 
 50 14 0.761716 0.007686 0.487873 -0.01783 5702968 
 50 15 0.753183 0.008533 0.507191 -0.01932 5537988 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 13 2 0.800314  0.325988  14410456 
 16 3 0.647124 0.15319 0.603648 -0.27766 11420588 
 27 4 0.617555 0.029569 0.713669 -0.11002 9511319 
 50 5 0.612038 0.005517 0.766775 -0.05311 8197186 
 39 6 0.581259 0.030779 0.84921 -0.08244 7247452 
 50 7 0.529495 0.051764 0.972903 -0.12369 6621757 
 50 8 0.517046 0.012449 1.026594 -0.05369 6090320 
 50 9 0.503953 0.013093 1.081791 -0.0552 5627535 
 50 10 0.490779 0.013174 1.137321 -0.05553 5274321 
 36 11 0.480533 0.010246 1.183979 -0.04666 4975898 
 50 12 0.471717 0.008816 1.223991 -0.04001 4717564 
 50 13 0.455663 0.016054 1.27844 -0.05445 4509059 
 50 14 0.4592 -0.00354 1.291826 -0.01339 4291020 
 50 15 0.441389 0.017811 1.350886 -0.05906 4133170 
         m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 15 2 0.706099  0.456674  12810853 
 16 3 0.527088 0.179011 0.7993 -0.34263 9311679 
 32 4 0.463054 0.064034 0.995586 -0.19629 7389924 
 46 5 0.394045 0.069009 1.186474 -0.19089 6204674 
 50 6 0.37339 0.020655 1.298577 -0.1121 5351280 
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 50 7 0.35297 0.02042 1.391387 -0.09281 4720076 
 50 8 0.330435 0.022535 1.486625 -0.09524 4244524 
 50 9 0.300048 0.030387 1.601969 -0.11534 3867706 
 50 10 0.291966 0.008082 1.663207 -0.06124 3545667 
 50 11 0.269795 0.022171 1.753207 -0.09 3287343 
 50 12 0.264839 0.004956 1.80551 -0.0523 3062177 
 50 13 0.248149 0.01669 1.884616 -0.07911 2879780 
 50 14 0.240042 0.008107 1.939016 -0.0544 2710297 
 50 15 0.235071 0.004971 1.986211 -0.04719 2566196 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 17 2 0.637922  0.541736  11143121 
 18 3 0.452995 0.184927 0.915917 -0.37418 7372980 
 45 4 0.365205 0.08779 1.16864 -0.25272 5500449 
 44 5 0.30192 0.063285 1.377878 -0.20924 4389640 
 50 6 0.260843 0.041077 1.54444 -0.16656 3651344 
 50 7 0.231306 0.029537 1.685693 -0.14125 3124940 
 50 8 0.203578 0.027728 1.818222 -0.13253 2730954 
 50 9 0.193078 0.0105 1.909 -0.09078 2422327 
 50 10 0.167899 0.025179 2.035136 -0.12614 2183339 
 50 11 0.159999 0.0079 2.107778 -0.07264 1980871 
 50 12 0.150787 0.009212 2.182266 -0.07449 1812032 
 50 13 0.138722 0.012065 2.266105 -0.08384 1673555 
 50 14 0.12953 0.009192 2.337945 -0.07184 1551161 
 50 15 0.12058 0.00895 2.410415 -0.07247 1448659 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500012  0.693135  9988386 
 20 3 0.408165 0.091847 0.984872 -0.29174 5744124 
 37 4 0.313504 0.094661 1.261871 -0.277 4001385 
 39 5 0.252396 0.061108 1.48361 -0.22174 3025546 
 50 6 0.212568 0.039828 1.66316 -0.17955 2408031 
 34 7 0.183007 0.029561 1.816026 -0.15287 1985412 
 43 8 0.161174 0.021833 1.947727 -0.1317 1679769 
 50 9 0.144515 0.016659 2.061591 -0.11386 1449527 
 50 10 0.129399 0.015116 2.168555 -0.10696 1270776 
 48 11 0.117522 0.011877 2.265477 -0.09692 1127859 
 50 12 0.108655 0.008867 2.349765 -0.08429 1011543 
 3 13 0.076982 0.031673 2.564565 -0.2148 962229.3 
 2 14 0.071462 0.00552 2.638827 -0.07426 877166.4 
 2 15 0.066693 0.004769 2.70785 -0.06902 804712.9 
 
Table C.3 FCM clustering results in Unit 1 area based on 10 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 12 2 0.912007  0.148731  3838980 
 50 3 0.8469 0.06511 0.26993 -0.12119 3238855 
 26 4 0.82689 0.020007 0.314028 -0.0441 2738223 
 50 5 0.80217 0.02472 0.366334 -0.05231 2468987 
 50 6 0.799943 0.002227 0.379119 -0.01279 2221415 
 50 7 0.792526 0.007417 0.403259 -0.02414 2064308 
 50 8 0.789739 0.002787 0.411765 -0.00851 1910341 
 50 9 0.760073 0.029666 0.473733 -0.06197 1844362 
 48 10 0.777267 -0.01719 0.448457 0.025276 1709991 
 50 11 0.767297 0.00997 0.46993 -0.02147 1639330 
 50 12 0.762839 0.004458 0.481784 -0.01185 1573809 
 50 13 0.77013 -0.00729 0.470013 0.011771 1502174 
 50 14 0.76614 0.00399 0.481648 -0.01164 1447069 
 50 15 0.770281 -0.00414 0.47131 0.010338 1379567 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 12 2 0.806218  0.317126  3548574 
 13 3 0.656787 0.149431 0.588389 -0.27126 2802196 
 21 4 0.629038 0.027749 0.692486 -0.1041 2317853 
 50 5 0.573338 0.0557 0.827194 -0.13471 2026947 
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 50 6 0.553366 0.019972 0.901887 -0.07469 1807405 
 37 7 0.533455 0.019911 0.977727 -0.07584 1648913 
 50 8 0.525675 0.00778 1.019472 -0.04174 1513278 
 50 9 0.505377 0.020298 1.0887 -0.06923 1406654 
 36 10 0.491656 0.013721 1.146382 -0.05768 1323263 
 50 11 0.486016 0.00564 1.183694 -0.03731 1250668 
 48 12 0.471358 0.014658 1.234816 -0.05112 1187180 
 50 13 0.464792 0.006566 1.268455 -0.03364 1130912 
 50 14 0.44433 0.020462 1.335062 -0.06661 1088381 
 50 15 0.436301 0.008029 1.370266 -0.0352 1044752 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 14 2 0.713491  0.447008  3162200 
 15 3 0.537656 0.175835 0.783258 -0.33625 2292356 
 34 4 0.475496 0.06216 0.973951 -0.19069 1812845 
 50 5 0.408364 0.067132 1.160075 -0.18612 1521042 
 50 6 0.365866 0.042498 1.302184 -0.14211 1316784 
 50 7 0.34719 0.018676 1.403359 -0.10118 1164976 
 40 8 0.325283 0.021907 1.504322 -0.10096 1047321 
 50 9 0.310684 0.014599 1.581639 -0.07732 953119.8 
 50 10 0.289602 0.021082 1.676238 -0.0946 878180.5 
 50 11 0.269343 0.020259 1.765325 -0.08909 816470.7 
 50 12 0.26096 0.008383 1.821835 -0.05651 761293.5 
 50 13 0.249459 0.011501 1.890919 -0.06908 715450.2 
 50 14 0.241644 0.007815 1.94841 -0.05749 675080.1 
 50 15 0.235097 0.006547 1.993422 -0.04501 640220.1 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 16 2 0.645286  0.532907  2756434 
 18 3 0.462204 0.183082 0.902294 -0.36939 1820559 
 30 4 0.376342 0.085862 1.149611 -0.24732 1355803 
 39 5 0.307671 0.068671 1.368267 -0.21866 1084103 
 50 6 0.269378 0.038293 1.523636 -0.15537 899413.9 
 36 7 0.236678 0.0327 1.670163 -0.14653 769978.4 
 50 8 0.205873 0.030805 1.809458 -0.1393 673818.1 
 50 9 0.196877 0.008996 1.894851 -0.08539 597181.1 
 45 10 0.173887 0.02299 2.009438 -0.11459 537602.2 
 50 11 0.164976 0.008911 2.089258 -0.07982 488197.3 
 50 12 0.145775 0.019201 2.191681 -0.10242 447834.8 
 50 13 0.146112 -0.00034 2.237238 -0.04556 411764.2 
 50 14 0.135728 0.010384 2.315289 -0.07805 382332.8 
 50 15 0.128278 0.00745 2.380259 -0.06497 356598.7 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 18 2 0.598496  0.587709  2371589 
 21 3 0.415281 0.183215 0.974314 -0.38661 1421734 
 33 4 0.321924 0.093357 1.247375 -0.27306 989584.8 
 44 5 0.260424 0.0615 1.46787 -0.2205 748181.6 
 28 6 0.217135 0.043289 1.650803 -0.18293 595478.7 
 50 7 0.189252 0.027883 1.798232 -0.14743 490875 
 45 8 0.166834 0.022418 1.929258 -0.13103 415283.6 
 42 9 0.14733 0.019504 2.050496 -0.12124 358453 
 50 10 0.133106 0.014224 2.155238 -0.10474 314169.5 
 50 11 0.12244 0.010666 2.245671 -0.09043 278824.1 
 43 12 0.111514 0.010926 2.334764 -0.08909 250093 
 38 13 0.102276 0.009238 2.418327 -0.08356 226308.8 
 39 14 0.095785 0.006491 2.490231 -0.0719 206269.9 
 41 15 0.089776 0.006009 2.556289 -0.06606 189189 
 
Table C.4 FCM clustering results in Unit 1 area based on 20 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 13 2 0.913049  0.145682  1027312 
 50 3 0.83502 0.078032 0.28043 -0.13475 856089 
 18 4 0.833108 0.001909 0.303549 -0.02312 719344.3 
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 25 5 0.808547 0.024561 0.354596 -0.05105 640114.4 
 26 6 0.802841 0.005706 0.372708 -0.01811 580385.9 
 38 7 0.793216 0.009625 0.398859 -0.02615 537834 
 50 8 0.792105 0.001111 0.408068 -0.00921 501276.1 
 50 9 0.791506 0.000599 0.412338 -0.00427 467888 
 50 10 0.789676 0.00183 0.421627 -0.00929 442575.3 
 30 11 0.790858 -0.00118 0.423333 -0.00171 420328.9 
 50 12 0.787286 0.003572 0.433814 -0.01048 402371.8 
 50 13 0.783175 0.004111 0.443099 -0.00929 384086 
 50 14 0.778979 0.004196 0.45593 -0.01283 371221.4 
 50 15 0.783336 -0.00436 0.446989 0.008941 355889.3 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 14 2 0.810821  0.310291  951631.1 
 12 3 0.66486 0.145961 0.573145 -0.26285 745651.7 
 19 4 0.636121 0.028739 0.677875 -0.10473 613487.8 
 30 5 0.59721 0.038911 0.785365 -0.10749 531808.9 
 32 6 0.567192 0.030018 0.87329 -0.08793 474065 
 50 7 0.542253 0.024939 0.951963 -0.07867 431876.8 
 50 8 0.528651 0.013602 1.015402 -0.06344 400002.4 
 41 9 0.519517 0.009134 1.059599 -0.0442 368231.3 
 50 10 0.503883 0.015634 1.113896 -0.0543 346099.3 
 50 11 0.497087 0.006796 1.153308 -0.03941 325622.8 
 50 12 0.503065 -0.00598 1.163146 -0.00984 308415.6 
 50 13 0.487289 0.015776 1.215779 -0.05263 294115.3 
 50 14 0.474169 0.01312 1.260539 -0.04476 281058.7 
 50 15 0.472335 0.001834 1.285077 -0.02454 269191.3 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 15 2 0.717847  0.441347  849998.6 
 13 3 0.546821 0.171026 0.768106 -0.32676 612823.7 
 23 4 0.485834 0.060987 0.954597 -0.18649 482611.7 
 19 5 0.407302 0.078532 1.156956 -0.20236 406013.8 
 36 6 0.392189 0.015113 1.252235 -0.09528 347739.2 
 37 7 0.363919 0.02827 1.363977 -0.11174 307621.4 
 50 8 0.341208 0.022711 1.465737 -0.10176 276223.5 
 43 9 0.324635 0.016573 1.547848 -0.08211 250913.4 
 50 10 0.314307 0.010328 1.618239 -0.07039 230625.6 
 50 11 0.290364 0.023943 1.711873 -0.09363 214334.5 
 50 12 0.282113 0.008251 1.768813 -0.05694 200122.3 
 50 13 0.271003 0.01111 1.836272 -0.06746 187898.5 
 50 14 0.25964 0.011363 1.896465 -0.06019 177258.5 
 50 15 0.262323 -0.00268 1.923199 -0.02673 167370.7 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 3 2 0.500011  0.693136  802737.6 
 14 3 0.470272 0.029739 0.889927 -0.19679 488308.7 
 27 4 0.387724 0.082548 1.130047 -0.24012 362583.3 
 50 5 0.328396 0.059328 1.327585 -0.19754 288764.1 
 29 6 0.284502 0.043894 1.493012 -0.16543 239727.4 
 34 7 0.257252 0.02725 1.623475 -0.13046 204797.9 
 42 8 0.2343 0.022952 1.740207 -0.11673 178710.1 
 48 9 0.2195 0.0148 1.835902 -0.09569 158280.3 
 34 10 0.201453 0.018047 1.936837 -0.10094 142142 
 50 11 0.186999 0.014454 2.026557 -0.08972 129035.5 
 50 12 0.17573 0.011269 2.105556 -0.079 118095.5 
 50 13 0.166303 0.009427 2.177838 -0.07228 108862.1 
 50 14 0.156348 0.009955 2.250721 -0.07288 100996.4 
 50 15 0.149013 0.007335 2.312773 -0.06205 94172.63 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 3 2 0.500003  0.693144  675020.8 
 16 3 0.422463 0.07754 0.963998 -0.27085 382219.7 
 29 4 0.330408 0.092055 1.232659 -0.26866 265576.6 
 41 5 0.268424 0.061984 1.451645 -0.21899 200632.3 
 32 6 0.227239 0.041185 1.627628 -0.17598 159585.2 
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 44 7 0.198628 0.028611 1.774212 -0.14658 131522.3 
 33 8 0.173862 0.024766 1.908835 -0.13462 111271.7 
 48 9 0.160664 0.013198 2.009749 -0.10091 95898.16 
 44 10 0.147696 0.012968 2.107755 -0.09801 83973.65 
 50 11 0.137468 0.010228 2.195622 -0.08787 74463.8 
 50 12 0.126363 0.011105 2.284058 -0.08844 66735.63 
 42 13 0.11659 0.009773 2.365942 -0.08188 60334.18 
 49 14 0.110572 0.006018 2.43362 -0.06768 54958.25 
 50 15 0.102645 0.007927 2.5053 -0.07168 50393.01 
 
Table C.5 FCM clustering results in Unit 1 area based on 30 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 11 2 0.920252  0.134678  522513.1 
 50 3 0.849566 0.070686 0.25796 -0.12328 431683.3 
 32 4 0.817274 0.032292 0.322184 -0.06422 369221.8 
 50 5 0.803781 0.013493 0.360536 -0.03835 329212.3 
 50 6 0.802122 0.001659 0.381402 -0.02087 301453.7 
 50 7 0.806272 -0.00415 0.379444 0.001958 276323.4 
 48 8 0.810471 -0.0042 0.369907 0.009537 248003.1 
 50 9 0.810189 0.000282 0.37694 -0.00703 231311 
 50 10 0.789748 0.020441 0.419008 -0.04207 221076.4 
 50 11 0.798249 -0.0085 0.403894 0.015114 206005 
 50 12 0.79489 0.003359 0.415007 -0.01111 193927.1 
 36 13 0.810712 -0.01582 0.390967 0.02404 185454.5 
 50 14 0.79132 0.019392 0.429221 -0.03825 177080.6 
 36 15 0.804697 -0.01338 0.406843 0.022378 170790.3 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 11 2 0.818264  0.299422  484456.5 
 21 3 0.677158 0.141106 0.552137 -0.25272 377623.4 
 32 4 0.63003 0.047128 0.681175 -0.12904 313384.8 
 34 5 0.596696 0.033334 0.784163 -0.10299 271784.7 
 50 6 0.549777 0.046919 0.906527 -0.12236 244884 
 50 7 0.552345 -0.00257 0.941741 -0.03521 221005.4 
 50 8 0.538548 0.013797 0.996117 -0.05438 203363 
 50 9 0.531604 0.006944 1.03224 -0.03612 188618.8 
 49 10 0.539194 -0.00759 1.027466 0.004774 171154.6 
 50 11 0.518828 0.020366 1.09306 -0.06559 162032.7 
 34 12 0.518026 0.000802 1.109895 -0.01684 151907 
 46 13 0.519908 -0.00188 1.126202 -0.01631 143161.5 
 50 14 0.499944 0.019964 1.178908 -0.05271 136785.9 
 40 15 0.493749 0.006195 1.213063 -0.03415 130627.9 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 11 2 0.725008  0.431747  432785.6 
 19 3 0.556111 0.168897 0.752664 -0.32092 310855.7 
 41 4 0.482365 0.073746 0.955482 -0.20282 245960 
 35 5 0.43381 0.048555 1.110861 -0.15538 204772.4 
 44 6 0.383258 0.050552 1.268488 -0.15763 177454 
 43 7 0.366644 0.016614 1.365462 -0.09697 156925.4 
 50 8 0.33921 0.027434 1.469465 -0.104 141100.4 
 43 9 0.332572 0.006638 1.535168 -0.0657 128210.9 
 43 10 0.312947 0.019625 1.619245 -0.08408 118065.2 
 50 11 0.297928 0.015019 1.696568 -0.07732 109656.5 
 50 12 0.281086 0.016842 1.767874 -0.07131 102421.8 
 48 13 0.286287 -0.0052 1.790422 -0.02255 95831.63 
 50 14 0.275394 0.010893 1.850726 -0.0603 90304.54 
 48 15 0.269042 0.006352 1.896441 -0.04572 85634.63 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 11 2 0.655073  0.521004  377988.2 
 22 3 0.478192 0.176881 0.877054 -0.35605 247863 
 32 4 0.382573 0.095619 1.135481 -0.25843 184619 
 30 5 0.328326 0.054247 1.32207 -0.18659 146577.2 
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 28 6 0.276961 0.051365 1.50447 -0.1824 121780.6 
 39 7 0.251451 0.02551 1.633785 -0.12932 104093.4 
 42 8 0.225574 0.025877 1.755439 -0.12165 90899.16 
 45 9 0.212397 0.013177 1.852415 -0.09698 80564.95 
 50 10 0.193837 0.01856 1.958058 -0.10564 72432.39 
 44 11 0.175875 0.017962 2.059257 -0.1012 65832.26 
 50 12 0.167266 0.008609 2.129743 -0.07049 60295.5 
 50 13 0.160291 0.006975 2.197142 -0.0674 55612.89 
 50 14 0.148155 0.012136 2.275914 -0.07877 51670.16 
 50 15 0.13916 0.008995 2.343278 -0.06736 48210.05 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 12 2 0.606901  0.578124  325726.2 
 28 3 0.428633 0.178268 0.953841 -0.37572 194162.2 
 27 4 0.329038 0.099595 1.233355 -0.27951 135091.5 
 22 5 0.271171 0.057867 1.443171 -0.20982 101921.8 
 31 6 0.229051 0.04212 1.62107 -0.1779 80988.95 
 36 7 0.198224 0.030827 1.773269 -0.1522 66739.12 
 35 8 0.176755 0.021469 1.899538 -0.12627 56427.75 
 47 9 0.159017 0.017738 2.011805 -0.11227 48641.01 
 44 10 0.146382 0.012635 2.109982 -0.09818 42591.46 
 35 11 0.133592 0.01279 2.206341 -0.09636 37778.48 
 32 12 0.121389 0.012203 2.297402 -0.09106 33878.3 
 35 13 0.113995 0.007394 2.371775 -0.07437 30643.7 
 29 14 0.106313 0.007682 2.449201 -0.07743 27926.04 
 33 15 0.099874 0.006439 2.5157 -0.0665 25614.75 
 
Table C.6 FCM clustering results in Unit 1 area based on 50 m LiDAR-derived DEM. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 10 2 0.910742  0.150141  201500 
 50 3 0.857019 0.053723 0.247161 -0.09702 165560 
 27 4 0.847435 0.009584 0.2784 -0.03124 138390.4 
 48 5 0.852426 -0.00499 0.274513 0.003887 117105.7 
 44 6 0.839959 0.012467 0.30458 -0.03007 105058.8 
 50 7 0.824591 0.015368 0.337996 -0.03342 96190.99 
 50 8 0.828546 -0.00396 0.339736 -0.00174 88078.98 
 50 9 0.848077 -0.01953 0.30768 0.032056 80371.35 
 37 10 0.844137 0.00394 0.318459 -0.01078 74000.21 
 50 11 0.838198 0.005939 0.332877 -0.01442 72094.21 
 25 12 0.860389 -0.02219 0.289155 0.043722 64067.73 
 50 13 0.860352 3.7E-05 0.29723 -0.00808 61328.36 
 50 14 0.836932 0.02342 0.339617 -0.04239 59164.32 
 28 15 0.857412 -0.02048 0.30058 0.039037 56102.7 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 8 2 0.805551  0.316835  185725.7 
 42 3 0.682976 0.122575 0.544783 -0.22795 144712.7 
 14 4 0.653757 0.029219 0.647444 -0.10266 118304.6 
 35 5 0.618433 0.035324 0.751857 -0.10441 103149.1 
 50 6 0.628877 -0.01044 0.738097 0.01376 87177.87 
 50 7 0.603586 0.025291 0.822452 -0.08436 78186.53 
 26 8 0.582333 0.021253 0.886052 -0.0636 70682.36 
 50 9 0.608615 -0.02628 0.867346 0.018706 64988.7 
 50 10 0.579305 0.02931 0.94124 -0.07389 59967.73 
 50 11 0.547668 0.031637 1.029603 -0.08836 57038.38 
 44 12 0.567203 -0.01954 1.002736 0.026867 52436.96 
 39 13 0.565403 0.0018 1.01841 -0.01567 49423.84 
 50 14 0.567487 -0.00208 1.029316 -0.01091 46445.49 
 50 15 0.564579 0.002908 1.04268 -0.01336 44089.39 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 8 2 0.715009  0.443638  164891.1 
 20 3 0.554702 0.160307 0.75451 -0.31087 118602.1 
 12 4 0.512527 0.042175 0.911678 -0.15717 92519.48 
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 29 5 0.45355 0.058977 1.08375 -0.17207 77472.98 
 47 6 0.41136 0.04219 1.228059 -0.14431 67175.15 
 32 7 0.374506 0.036854 1.348566 -0.12051 59673.04 
 43 8 0.373517 0.000989 1.394236 -0.04567 52974.02 
 28 9 0.340327 0.03319 1.525404 -0.13117 49009.31 
 40 10 0.343628 -0.0033 1.553254 -0.02785 44238.67 
 43 11 0.329126 0.014502 1.626599 -0.07335 41086.16 
 50 12 0.338131 -0.00901 1.64344 -0.01684 38089.49 
 40 13 0.349342 -0.01121 1.644748 -0.00131 35433.96 
 50 14 0.33449 0.014852 1.709541 -0.06479 33366.17 
 50 15 0.32358 0.01091 1.768929 -0.05939 31635.03 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 8 2 0.648233  0.528461  143385.9 
 15 3 0.478089 0.170144 0.877797 -0.34934 94114.34 
 14 4 0.416634 0.061455 1.084114 -0.20632 69310.35 
 24 5 0.352058 0.064576 1.287025 -0.20291 55181.93 
 40 6 0.308772 0.043286 1.451792 -0.16477 45860.35 
 19 7 0.268539 0.040233 1.606023 -0.15423 39333.84 
 40 8 0.260161 0.008378 1.690194 -0.08417 34254.28 
 34 9 0.244922 0.015239 1.787509 -0.09732 30398.83 
 34 10 0.223624 0.021298 1.893543 -0.10603 27355.68 
 50 11 0.220432 0.003192 1.938015 -0.04447 24560.73 
 32 12 0.2117 0.008732 2.018296 -0.08028 22473.17 
 39 13 0.209079 0.002621 2.068802 -0.05051 20711.53 
 41 14 0.210272 -0.00119 2.103812 -0.03501 19137.69 
 50 15 0.201252 0.00902 2.173608 -0.0698 17870.48 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 8 2 0.601403  0.583951  123208 
 17 3 0.429413 0.17199 0.953334 -0.36938 73492.73 
 16 4 0.355024 0.074389 1.193247 -0.23991 50762.99 
 24 5 0.294774 0.06025 1.403745 -0.2105 38257.77 
 27 6 0.245191 0.049583 1.591702 -0.18796 30449.56 
 21 7 0.222223 0.022968 1.725871 -0.13417 25064.93 
 28 8 0.19492 0.027303 1.862207 -0.13634 21215.95 
 23 9 0.17847 0.01645 1.975122 -0.11292 18301.44 
 50 10 0.177484 0.000986 2.040508 -0.06539 16010.98 
 31 11 0.154637 0.022847 2.15427 -0.11376 14224.36 
 48 12 0.160454 -0.00582 2.186558 -0.03229 12681.01 
 50 13 0.154752 0.005702 2.253617 -0.06706 11454.32 
 50 14 0.152174 0.002578 2.307344 -0.05373 10421.47 
 50 15 0.139701 0.012473 2.392944 -0.0856 9560.609 
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APPENDIX D 

The FCM clustering results of the experiments in Group D. 
 
Table D.1 FCM clustering results in Unit 2 area based on 10 m LiDAR-derived DEM with NDVI. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 16 2 0.865008  0.224155  9430906 
 22 3 0.82877 0.036238 0.304063 -0.07991 7678461 
 50 4 0.772601 0.056169 0.417888 -0.11383 6934210 
 42 5 0.749121 0.02348 0.477659 -0.05977 6360727 
 40 6 0.717778 0.031343 0.550011 -0.07235 5991687 
 50 7 0.719513 -0.00173 0.551394 -0.00138 5534865 
 50 8 0.72158 -0.00207 0.551521 -0.00013 5192402 
 50 9 0.722385 -0.00081 0.562142 -0.01062 4938665 
 50 10 0.712522 0.009863 0.585658 -0.02352 4684860 
 50 11 0.704284 0.008238 0.611992 -0.02633 4496432 
 50 12 0.701543 0.002741 0.632795 -0.0208 4402048 
 50 13 0.698049 0.003494 0.635295 -0.0025 4158041 
 50 14 0.701108 -0.00306 0.63919 -0.00389 4007472 
 50 15 0.702052 -0.00094 0.641533 -0.00234 3859835 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 14 2 0.727008  0.426339  8496134 
 23 3 0.646918 0.08009 0.624544 -0.19821 6588596 
 27 4 0.541297 0.105621 0.859687 -0.23514 5679313 
 48 5 0.490158 0.051139 1.002809 -0.14312 5018773 
 45 6 0.446649 0.043509 1.138879 -0.13607 4562072 
 50 7 0.40527 0.041379 1.263425 -0.12455 4209675 
 50 8 0.382334 0.022936 1.35402 -0.0906 3921969 
 49 9 0.381341 0.000993 1.388469 -0.03445 3665049 
 50 10 0.369572 0.011769 1.454386 -0.06592 3459576 
 50 11 0.353348 0.016224 1.519866 -0.06548 3288806 
 50 12 0.339105 0.014243 1.583987 -0.06412 3138621 
 50 13 0.325099 0.014006 1.646805 -0.06282 3007447 
 50 14 0.333228 -0.00813 1.652232 -0.00543 2879956 
 50 15 0.330548 0.00268 1.691638 -0.03941 2775617 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 15 2 0.628441  0.551828  7393730 
 3 3 0.333598 0.294843 1.098214 -0.54639 5637736 
 30 4 0.399259 -0.06566 1.114772 -0.01656 4291464 
 30 5 0.335243 0.064016 1.314382 -0.19961 3620733 
 50 6 0.284322 0.050921 1.491193 -0.17681 3157586 
 50 7 0.252277 0.032045 1.633519 -0.14233 2810540 
 50 8 0.224814 0.027463 1.763413 -0.12989 2542213 
 43 9 0.204443 0.020371 1.869489 -0.10608 2325547 
 46 10 0.181785 0.022658 1.983196 -0.11371 2149572 
 43 11 0.167601 0.014184 2.072995 -0.0898 2000817 
 40 12 0.156622 0.010979 2.151712 -0.07872 1873381 
 2 13 0.076995 0.079627 2.564484 -0.41277 1877029 
 2 14 0.07151 0.005485 2.63849 -0.07401 1775522 
 2 15 0.066788 0.004722 2.707142 -0.06865 1685862 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500054  0.693094  6425881 
 3 3 0.33343 0.166624 1.098467 -0.40537 4283965 
 3 4 0.250039 0.083391 1.386216 -0.28775 3212962 
 26 5 0.255479 -0.00544 1.483907 -0.09769 2509916 
 3 6 0.166793 0.088686 1.79138 -0.30747 2141797 
 3 7 0.143001 0.023792 1.945407 -0.15403 1835801 
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 2 8 0.125072 0.017929 2.079152 -0.13375 1606405 
 30 9 0.142183 -0.01711 2.079766 -0.00061 1396096 
 2 10 0.100069 0.042114 2.302238 -0.22247 1285130 
 2 11 0.090993 0.009076 2.397433 -0.09519 1168269 
 2 12 0.083402 0.007591 2.484494 -0.08706 1070915 
 2 13 0.076963 0.006439 2.564692 -0.0802 988574.7 
 2 14 0.071474 0.005489 2.638738 -0.07405 917957.9 
 2 15 0.066738 0.004736 2.707518 -0.06878 856731.4 
         m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500032  0.693115  5403539 
 2 3 0.333391 0.166641 1.098526 -0.40541 3255183 
 3 4 0.250019 0.083372 1.386257 -0.28773 2271929 
 2 5 0.200089 0.04993 1.609215 -0.22296 1718879 
 3 6 0.166729 0.03336 1.791572 -0.18236 1368564 
 3 7 0.14293 0.023799 1.945654 -0.15408 1128710 
 2 8 0.125047 0.017883 2.079255 -0.1336 955210.3 
 2 9 0.111174 0.013873 2.196944 -0.11769 824420.4 
 2 10 0.100046 0.011128 2.302357 -0.10541 722715.6 
 2 11 0.090969 0.009077 2.397569 -0.09521 641533.2 
 2 12 0.083384 0.007585 2.484605 -0.08704 575414.4 
 2 13 0.076951 0.006433 2.564771 -0.08017 520640.2 
 2 14 0.07146 0.005491 2.638837 -0.07407 474578.2 
 2 15 0.066718 0.004742 2.707662 -0.06882 435361.4 
         
Table D.2 FCM clustering results in Unit 2 area based on 10 m LiDAR-derived DEM without NDVI. 
m = 
1.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 15 2 0.880965  0.198191  8036673 
 22 3 0.853376 0.027589 0.259823 -0.06163 6317678 
 42 4 0.807402 0.045974 0.352389 -0.09257 5619001 
 49 5 0.789723 0.017679 0.39667 -0.04428 5073561 
 20 6 0.761873 0.02785 0.456395 -0.05973 4745396 
 50 7 0.767547 -0.00567 0.454967 0.001428 4363066 
 50 8 0.773816 -0.00627 0.444056 0.010911 3988072 
 50 9 0.772933 0.000883 0.45317 -0.00911 3751905 
 50 10 0.758199 0.014734 0.486498 -0.03333 3543421 
 50 11 0.752875 0.005324 0.503586 -0.01709 3379222 
 50 12 0.752968 -9.3E-05 0.508047 -0.00446 3243571 
 50 13 0.749538 0.00343 0.520217 -0.01217 3096582 
 50 14 0.747786 0.001752 0.522918 -0.0027 3003774 
 50 15 0.75104 -0.00325 0.522819 9.9E-05 2856024 
 m = 
1.5 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 13 2 0.756981  0.384804  7289732 
 25 3 0.691804 0.065177 0.550444 -0.16564 5495251 
 50 4 0.602813 0.088991 0.748128 -0.19768 4692323 
 50 5 0.561465 0.041348 0.866259 -0.11813 4104538 
 39 6 0.520801 0.040664 0.983279 -0.11702 3710737 
 50 7 0.477126 0.043675 1.096603 -0.11332 3414766 
 47 8 0.459553 0.017573 1.170369 -0.07377 3163540 
 50 9 0.449676 0.009877 1.229723 -0.05935 2956161 
 50 10 0.466148 -0.01647 1.208703 0.02102 2720260 
 50 11 0.452377 0.013771 1.268207 -0.0595 2575561 
 50 12 0.457245 -0.00487 1.275113 -0.00691 2425962 
 50 13 0.43994 0.017305 1.336167 -0.06105 2314306 
 50 14 0.447704 -0.00776 1.336373 -0.00021 2199447 
 50 15 0.418987 0.028717 1.438779 -0.10241 2177604 
 m = 
1.75 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 13 2 0.663184  0.509245  6388458 
 30 3 0.559712 0.103472 0.765322 -0.25608 4511519 
 22 4 0.450365 0.109347 1.025948 -0.26063 3623171 
 31 5 0.395366 0.054999 1.19576 -0.16981 3034167 
 50 6 0.352996 0.04237 1.348242 -0.15248 1.348242 
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 42 7 0.314485 0.038511 1.483717 -0.13548 2345719 
 50 8 0.287648 0.026837 1.6038 -0.12008 2118952 
 45 9 0.275172 0.012476 1.683806 -0.08001 1930030 
 50 10 0.255815 0.019357 1.771234 -0.08743 1781391 
 50 11 0.241233 0.014582 1.855795 -0.08456 1655605 
 49 12 0.227735 0.013498 1.928215 -0.07242 1550763 
 50 13 0.220171 0.007564 1.993864 -0.06565 1456333 
 50 14 0.214212 0.005959 2.049377 -0.05551 1375587 
 50 15 0.206233 0.007979 2.109316 -0.05994 1305517 
 m = 
2 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 16 2 0.600307  0.584913  5500278 
 3 3 0.333523 0.266784 1.098327 -0.51341 3790678 
 31 4 0.369013 -0.03549 1.17077 -0.07244 2679962 
 36 5 0.305701 0.063312 1.379672 -0.2089 2138902 
 28 6 0.257402 0.048299 1.560021 -0.18035 1781965 
 48 7 0.227478 0.029924 1.703878 -0.14386 1526362 
 44 8 0.20408 0.023398 1.826863 -0.12299 1334054 
 50 9 0.182424 0.021656 1.944833 -0.11797 1185891 
 41 10 0.165288 0.017136 2.045842 -0.10101 1066788 
 48 11 0.152128 0.01316 2.14046 -0.09462 969599.2 
 50 12 0.141243 0.010885 2.220704 -0.08024 888487 
 42 13 0.129 0.012243 2.307993 -0.08729 820645.7 
 3 14 0.071555 0.057445 2.638172 -0.33018 812088.4 
 50 15 0.115411 -0.04386 2.442067 0.196105 710556.5 
 m = 
2.25 

Iteration 
Number 

Cluster 
number 

F ΔF 
F(c)-F(c+1) 

H ΔH 
H(c)-H(c+1) 

Jm 

 2 2 0.500049  0.693098  4781465 
 3 3 0.333426 0.166623 1.098473 -0.40538 2880400 
 3 4 0.250039 0.083387 1.386217 -0.28774 2010373 
 27 5 0.251437 -0.0014 1.49384 -0.10762 1473683 
 35 6 0.213986 0.037451 1.666139 -0.1723 1172269 
 40 7 0.184774 0.029212 1.819706 -0.15357 966803.7 
 48 8 0.162534 0.02224 1.949667 -0.12996 817926.8 
 50 9 0.144206 0.018328 2.069295 -0.11963 706075.5 
 2 10 0.100074 0.044132 2.302213 -0.23292 639470.6 
 37 11 0.118533 -0.01846 2.26836 0.033853 549272.7 
 38 12 0.10777 0.010763 2.357597 -0.08924 492781.8 
 3 13 0.076987 0.030783 2.564531 -0.20693 460645.4 
 3 14 0.0715 0.005487 2.63856 -0.07403 419882.4 
 50 15 0.087413 -0.01591 2.577019 0.061541 372729.1 
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