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Abstract

We consider variations of range searching in which, given a query range, our goal is
to compute some function based on frequencies of points that lie in the range. The most
basic such computation involves counting the number of points in a query range. Data
structures that compute this function solve the well-studied range counting problem. We
consider adaptive and approximate data structures for the 2-D orthogonal range counting
problem under the w-bit word RAM model. The query time of an adaptive range counting
data structure is sensitive to k, the number of points being counted. We give an adaptive
data structure that requires O(n log log n) space and O(log log n+logw k) query time. Non-
adaptive data structures on the other hand require Ω(logw n) query time (Pătraşcu, 2007).
Our specific bounds are interesting for two reasons. First, when k = O(1), our bounds
match the state of the art for the 2-D orthogonal range emptiness problem (Chan et al.,
2011). Second, when k = Θ(n), our data structure is tight to the aforementioned Ω(logw n)
query time lower bound.

We also give approximate data structures for 2-D orthogonal range counting whose
bounds match the state of the art for the 2-D orthogonal range emptiness problem. Our
first data structure requires O(n log log n) space and O(log log n) query time. Our second
data structure requires O(n) space and O(logε n) query time for any fixed constant ε > 0.
These data structures compute an approximation k′ such that (1− δ)k ≤ k′ ≤ (1 + δ)k for
any fixed constant δ > 0.

The range selection query problem in an array involves finding the kth lowest element
in a given subarray. Range selection in an array is very closely related to 3-sided 2-D
orthogonal range counting. An extension of our technique for 3-sided 2-D range counting
yields an efficient solution to adaptive range selection in an array. In particular, we present
an adaptive data structure that requires O(n) space and O(logw k) query time, exactly
matching a recent lower bound (Jørgensen and Larsen, 2011).

We next consider a variety of frequency-based range query problems in arrays. We give
efficient data structures for the range mode and least frequent element query problems and
also exhibit the hardness of these problems by reducing Boolean matrix multiplication to
the construction and use of a range mode or least frequent element data structure. We
also give data structures for the range α-majority and α-minority query problems. An
α-majority is an element whose frequency in a subarray is greater than an α fraction of the
size of the subarray; any other element is an α-minority. Surprisingly, geometric insights
prove to be useful even in the design of our 1-D range α-majority and α-minority data
structures.
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Chapter 1

Introduction

Range Searching. Range searching is one of the fundamental problems in computational
geometry. In this problem, we must preprocess a set P of n points from Rd so that
given a query range Q ⊆ Rd we can efficiently report all points in P ∩ Q. Efficient data
structures for range searching problems only exist if the query ranges are restricted to some
special class of ranges. The most important of these classes are halfspaces and axis-aligned
boxes. When query ranges are restricted to the former class, the specialized problem is
called halfspace range searching. When query ranges are restricted to the latter class, the
specialized problem is called orthogonal range searching. Orthogonal range searching in
particular is a very practical tool that can support database queries with inequality filters
on d columns. The range tree [Ben80] is the standard textbook solution to orthogonal range
searching, requiring O(n logd−1 n) space and O(logd n+ k) query time, where k = |P ∩Q|.
The query time can be reduced to O(logd−1 n+ k) via downpointers [Wil85], a special case
of fractional cascading [CG86].

Word RAM Model. We consider the w-bit word RAM model [FW93]. Under this model,
the coordinates of the points of P and the vertices of Q are taken from a fixed-size universe
[U ] = [1, U ] = {1, . . . , U}. Furthermore, operations on single words take constant time. We
make two standard assumptions on w, the number of bits in a word. First, w = Ω(logU)
so that any coordinate fits in a single word. Second, w = Ω(log n) so that an index into
the input array representing P fits in a single word. Bounds on the space requirements of
data structures are given in words, unless stated otherwise.

It is a common misconception that the assumption w = Ω(log n) indicates that data
structures under the word RAM model require a computer with a dynamic word size that
somehow varies with the size of the input. In reality, the assumption is very natural and
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Space Query Time

O(n) O((1 + k) logε n)
O(n log log n) O((1 + k) log log n)
O(n logε n) O(log log n+ k)

Table 1.1: Bounds of Chan et al. [CLP11] for 2-D orthogonal range searching

practical. One of the first lines of C++ or Java code that a programmer writes when
solving almost any problem includes a loop that iterates through the input to the problem.
This loop includes an integer counter variable, usually named i, which is stored in a single
word. The fact that few programmers are worried about this counter variable overflowing
as it is incremented to n is due to an implicit assumption that w = Ω(log n). In the case
that a real-world programmer is indeed worried about such overflow, it is likely that a data
structure designed under an external memory model [AV88] or a streaming model [AMS99]
is more appropriate.

Rank Space. For the purposes of orthogonal range searching, we can operate in rank
space [GBT84]. Instead of working with the coordinates of points, we work with the ranks
of their coordinates, reducing the size of the fixed-size universe from U to n at the expense
of d predecessor searches during each query to convert the query into rank space. Under
the word RAM model, there are linear-space data structures for predecessor search that re-
quire O(log logU) [Wil83], O(logw n) [FW93], and O(

√
log n/ log log n) [AT07] query time.

These data structures are all optimal [PT06]. Unless stated otherwise, the data structures
that we consider are for points in rank space. Such a data structure can handle points in
[U ]d only after including an additive O(log logU), O(logw n), or O(

√
log n/ log log n) term

to its query time. Under the word RAM model, the state of the art for 2-D orthogonal
range searching amongst points in rank space is a space-time tradeoff given by Chan et
al. [CLP11]. Some important instances of the tradeoff are described in Table 1.1.

Range-Aggregate Queries. Given the massive scale of modern data sets, range searching
may not even be feasible since the running time of a query must depend linearly on k, as
each point in P ∩Q must be individually reported. However, in applications where k may
be so large that range searching is not even feasible, the result of a query is clearly never
intended to be presented to a human in its raw form. Instead, the result of the query must
be summarized in some way. We can encapsulate this idea of summarizing P ∩Q with an
aggregation function f with domain P(P ). The result of a query is then f(P ∩Q). Data
structures that compute such functions solve range-aggregate query problems. The running
times of range-aggregate queries need not depend linearly on k as the points in P ∩Q need
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not be individually reported. For example, consider the Boolean function f(X) that is true
if and only if X is empty. The resulting range-aggregate query problem is called the range
emptiness problem. The best bounds for the 2-D orthogonal range emptiness problem are
achieved by the same data structures of Chan et al. [CLP11] that solve 2-D orthogonal
range searching, by setting k = 1 in their query times. Despite a simple Boolean output,
the range emptiness problem still captures the hardness of range searching.

Range Counting. We consider aggregation functions that are based on frequencies of
points. The most basic of these functions is f(X) = |X|, which gives rise to the range
counting problem. The data structure of JaJa et al. [JMS05] for 2-D orthogonal range
counting requires O(n) space and O(logw n) query time. Pătraşcu [Păt07] gives a matching
Ω(logw n) lower bound on query time, which holds for data structures using up to n logO(1) n
space. We consider adaptive data structures for the 2-D orthogonal range counting problem.
When k = Θ(n), these data structures perform similarly to non-adaptive data structures.
However, when k = o(n), adaptive data structures can achieve faster query times than their
non-adaptive counterparts. The query times of these adaptive data structures are sensitive
to the number of points being counted. Our main result is an adaptive data structure
for 2-D orthogonal range counting requiring O(n log log n) space and O(log log n+ logw k)
query time. These specific bounds for 2-D orthogonal range counting are interesting for
two reasons. First, our bounds match the state of the art for the 2-D orthogonal range
emptiness problem. That is, our data structure solves the 2-D orthogonal range emptiness
problem in O(n log log n) space and O(log log n) query time, by setting k = 1 in the query
time. Second, when k = Θ(n), our data structure is tight to the aforementioned Ω(logw n)
query time lower bound for 2-D orthogonal range counting.

The first step that our adaptive data structure takes when answering a query is to
determine a multiplicative constant-factor approximation of k. Thus, we also consider the
approximate range counting problem, which involves computing an approximation k′ such
that (1−δ)k ≤ k′ ≤ (1+δ)k. We give two approximate data structures for 2-D orthogonal
range counting, both of which match the state of the art for the range emptiness problem.
The first data structure requires O(n log log n) space and O(log log n) query time. The
second data structure requires O(n) space and O(logε n) query time.

Our adaptive and approximate data structures combine shallow cuttings [Mat92] with
various techniques for 2-D orthogonal range searching, in addition to new techniques in-
spired by the realm of succinct data structures.

Range Queries in Arrays. An important class of aggregation functions are those that
operate on weights that are assigned to the points of P . For each point p ∈ P , let w(p) ∈ [U ]
be its weight. This class of aggregation functions is especially important in the 1-D setting
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where range-aggregate query problems in rank space are exactly equivalent to range query
problems in arrays. For example, given an array A of n elements from [U ], the well-known
range minimum query problem involves preprocessing A so that we can efficiently identify
the least element in any subarray A[` : r] of A. This problem is equivalent to a 1-D range-
aggregate query problem in rank space where f(X) = min{w(p) | p ∈ X}. Replacing min
with mean or median results in the range mean and range median query problems, which
are also well-studied in the context of arrays. There are known optimal data structures for
the range minimum, mean, and median query problems [HT84, BJ09].

Range Selection. The range minimum and median query problems are generalized by
the aggregation function f(X) = v such that |{p ∈ X | w(p) ≤ v}| = k, where k is
given at query time. This generalization is the range selection query problem. The range
minimum query problem is obtained by fixing k = 1. The range median query problem
is obtained by fixing k = d(r − ` + 1)/2e. Jørgensen and Larsen [JL11] give an adaptive
data structure for the range selection query problem in an array that is sensitive to the
query parameter k. Their data structure requires O(n) space and O(log log n + logw k)
query time. They also give a query time lower bound of Ω(logw k), to which their data
structure is tight for all but small values of k. Range selection in an array is very closely
related to 3-sided 2-D orthogonal range counting. An extension of our technique for 3-sided
2-D range counting yields an efficient solution to adaptive range selection in an array. In
particular, we present an adaptive data structure that requires O(n) space and O(logw k)
query time, exactly matching the lower bound of Jørgensen and Larsen [JL11].

Range Mode. There is considerably less progress in the literature for the range mode
query problem, which is obtained by similarly replacing min with mode, the final and
often overlooked measure of central tendency. Continuing our investigation of aggregation
functions related to frequencies of points, we turn our attention to the range mode query
problem. A mode of a multiset is a most frequently occurring element in the multiset. The
mode is an especially important measure when considering categorical data. For example,
if we interpret the elements of A as colours with no inherent ordering, then the mode is
the only well-defined measure of central tendency. We first give a data structure for the
range mode query problem requiring O(n) space and O(

√
n) query time, thus eliminating

an O(log log n) factor from the query time of the data structure of Krizanc et al. [KMS05].
We show that a similar approach solves the range least frequent element problem. Using
succinct data structures and bit-packing, we are able to achieve o(

√
n) query time while

keeping space consumption linear. In particular, we achieve O(
√
n/w) query time. We

note that the same optimization does not seem to be applicable for the range least frequent
element problem.

Our improvement over the data structure of Krizanc et al. [KMS05] may seem modest,
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given that our query time is still very close to O(
√
n). However, we also give evidence that

suggests that O(
√
n) is the critical running time around which we should be optimizing for

logarithmic factors. In particular, we show a reduction from Boolean matrix multiplication
to both the range mode and range least frequent element query problems. This reduction
suggests that the best query time that is likely to be achieved via purely combinatorial
means is around O(

√
n).

Range Majority. The mode of a multiset is interesting due to its exceptionally high
frequency. Other elements with high frequency in a multiset may also be interesting,
which motivates searching for elements with frequencies that surpass some threshold. In
particular, we consider searching for α-majority elements. These α-majority elements
have frequencies greater than αk. We also consider searching for an α-minority element:
any element with frequency no greater than αk. We consider both data structures that
allow α to be specified at query time and data structures that fix the parameter during
preprocessing. To distinguish the latter case, we instead use the parameter β. We consider
both 1-D and 2-D data structures. Surprisingly, geometric insights prove to be useful even
in the design of our 1-D data structures. In particular, one of the tools that we use is
Chazelle’s hive graph data structure [Cha86]. In the design of our 2-D data structure, we
get the opportunity to apply our own approximate data structure for 2-D orthogonal range
counting, thus exemplifying the cohesion of our results.

Outline. In Chapter 2, we discuss related work. In Chapter 3, we describe all of the
important tools that we use in the design of our data structures. This chapter may be
best used as a reference. In Chapter 4, we describe our adaptive and approximate data
structures for 2-D orthogonal range counting. In Chapter 5, we extend our techniques
for adaptive range counting to give an optimal adaptive range selection data structure. In
Chapter 6, we give data structures for and discuss the hardness of the range mode and range
least frequent element problems. In Chapter 7, we apply techniques from computational
geometry to the design of data structures for the range majority and range minority query
problems. We conclude with open problems and directions for future research in Chapter 8.

Notation. All logarithms without an explicit base have base 2. We denote by [i, j] the set
of integers {i, i+ 1, . . . , j − 1, j} and we denote by [i] the set of integers {1, 2, . . . , i− 1, i}.
Given an array A, A[i] represents the array element at index i and A[i : j] represents the
subarray from index i to index j. We describe that we are working in d dimensions with
the short form “d-D.” All occurrences of ε, δ, and any decorated versions of these letters
represent arbitrary constants greater than zero.
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Chapter 2

Related Work

Range Searching. The range tree [Ben80] is a simple solution to 2-D orthogonal range
searching that operates via binary divide-and-conquer on the x-coordinates of points.
Most subsequent solutions, summarized in Table 2.1, are variations on the range tree.
Chazelle [Cha88] introduces a tradeoff between the space of a data structure and the time
required to report each point. Essentially, he designs compressed range trees which require
time to decompress each reported point. Chan et al. [CLP11] refine this idea, resulting in
the best known data structures for range emptiness.

Range Counting. The range tree [Ben80] is also a simple solution to 2-D orthogonal range
counting. The x-interval of a query rectangle can be partitioned into O(log n) subintervals
such that each subinterval is the x-interval of a node in the range tree. In this way,
we can decompose the 2-D query into 1-D queries in these O(log n) nodes of the range
tree. Counting points in 1-D ranges reduces to predecessor search. Under the comparison
model, predecessor search requires Ω(log n) time and is solved in O(log n) time via binary
search. Thus the total 2-D query time is O(log2 n). Since the height of a range tree is
O(log n) and each point is present in exactly one node of each level of the tree, the total
space requirement is O(n log n). The downpointers of Willard [Wil85], a special case of
fractional cascading [CG86], is a technique that can be used to avoid the full costs of
repeated predecessor searches at each level of the range tree. Assume we have performed
predecessor search in a node of the range tree and we now wish to perform the same search
in one of the node’s children. For each element in the parent, we can store pointers to the
element’s predecessor in the child without an asymptotic increase in space. Then, during a
2-D range counting query, we only need to perform one full binary search with cost O(log n)
at the root of the range tree. The rest of the O(log n) predecessor searches take constant
time each for a total of O(log n) time. Chazelle’s compressed range tree [Cha88] reduces
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Reference Space Query Time

[Ben80] O(n log n) O(log2 n+ k)

[Wil85] O(n log n) O(log n+ k)

[Cha88]
O(n) O(log n+ k logε n)
O(n log log n) O(log n+ k log log n)
O(n logε n) O(log n+ k)

[Ove88] O(n log n) O(log log n+ k)

[ABR00]
O(n log log n) O((log log n+ k) log log n)
O(n logε n) O(log log n+ k)

[Nek09b] O(n) O(logw n+ k logε n)

[CLP11]
O(n) O((1 + k) logε n)
O(n log log n) O((1 + k) log log n)

Table 2.1: Data structures for 2-D orthogonal range searching

space to O(n) in the word RAM model by representing the downpointers succinctly in O(n)
bits at each node. JaJa et al. [JMS05] use a wε-ary range tree and fusion trees [FW93] for
predecessor search in order to reduce the query time to O(logw n).

To the best of the author’s knowledge, there are no previous adaptive data structures
explicitly designed for 2-D orthogonal range counting. However, the adaptive range se-
lection data structure of Jørgensen and Larsen [JL11] can be adapted to solve 3-sided
2-D orthogonal range counting. Such a data structure would require O(n) space and
O(log log n+ logw k) query time.

Recent research in the area of approximate range counting focuses on halfspace queries.
In the context of halfspace range counting, the best known exact counting data structure
requires O(n) space and O(n1−1/d) query time [Mat93]. Emptiness queries can be answered
in O(n1−1/bd/2c) time [Mat92]. It turns out that the complexity of approximate halfspace
range counting lies close to that of the halfspace range emptiness problem [AS10, AHP08].
Afshani et al. [AHZ10] give a general framework for approximate range counting that
applies to any type of range that admits shallow cuttings. They give linear-space data
structures for 3-D halfspace and 3-D orthogonal dominance counting that require optimal
O(logB(n/k)) query time under the external memory model. Applying their technique
under the word RAM model seems to require Ω((log log n)2) query time and thus we cannot
approach optimal O(log log n) query time without further ideas.

7



Reference Problem Space Query Time

[CLP11] Emptiness O(n log log n) O(log log n)
[CLP11] Emptiness O(n) O(logε n)
[JMS05] Standard O(n) O(logw n)
new Adaptive O(n log log n) O(log log n+ logw k)
[Nek09a] Approximate O(n log2 n) O(log log n)
new Approximate O(n log log n) O(log log n)
new Approximate O(n) O(logε n)

Table 2.2: Comparison of 2-D orthogonal range counting results

Nekrich [Nek09a] gives data structures for approximate orthogonal range counting using
a more precise notion of approximation than in the literature for halfspace range counting.
In particular, his data structures compute an approximation k′ such that k − δkp ≤ k′ ≤
k+δkp, where δ > 0 and 0 < p < 1. He gives a 2-D data structure that requires O(n log4 n)
space and O((1/p) log log n) query time, if p can be specified at query time. If p is fixed
during the preprocessing of the data structure, the space requirement can be reduced to
O(n log2 n). In either case, these data structures require much more space than the 2-D
orthogonal range emptiness data structure of Chan et al. [CLP11].

We compare our results to these previous results in Table 2.2.

Range Selection. Research on range query problems in arrays tends to focus on data
structures that require linear space or constant query time. Research on linear-space data
structures is interesting since there is often an Ω(n) lower bound on space for range query
problems. On the other hand, there are at most O(n2) different subarrays, so there are
trivial data structures that precompute and store the answer for every possible query in
order to support constant-time queries using O(n2) space. Research on data structures with
constant query time involves reducing space from the O(n2) bound as much as possible.

In the context of data structures with constant query time, Krizanc et al. [KMS05] give
a data structure for the range median query problem that requires O(n2 log log n/ log n)
space. Petersen [Pet08] improves the space requirement to O(n2 log(c) n/ log n), where
log(c) n is the iterated logarithm with a constant number of iterations. Finally, Petersen
and Grabowski [PG09] improve the space requirement to O((n log log n/ log n)2).

In the context of linear space data structures, initial results for range selection require
O(log n) query time [GPT09, GS09]. Brodal and Jørgensen [BJ09] reduce query time to
O(logw n). Jørgensen and Larsen [JL11] give an adaptive data structure that requires
O(log log n+ logw k) query time. They also prove an Ω(logw k) lower bound, showing that

8



Reference Problem Space Query Time

[BJ09] Standard O(n) O(logw n)
[JL11] Adaptive O(n) O(log log n+ logw k)
new Adaptive O(n) O(logw k)

Table 2.3: Comparison of range selection results

Reference Problem Space Query Time

[KMS05] Mode O(n) O(
√
n log log n)

[Pet08] Mode O(n1+ε) O(
√
n)

new Mode O(n) O(
√
n/w)

new LFE O(n) O(
√
n)

Table 2.4: Comparison of range mode and least frequent element results

their data structure is optimal for all but small values of k. We compare our result to these
previous results in Table 2.3.

Range Mode. In the context of data structures with constant query time, Krizanc et
al. [KMS05] give a data structure for the range mode query problem requiring the same
space consumption as their data structure for the range median query problem. Petersen
and Grabowski [PG09] also give a data structure for the range mode query problem that
requires O((n/ log n)2 log log n) space, which is less space than required by their data struc-
ture for the range median query problem by an O(log log n) factor.

Krizanc et al. [KMS05] also give a space-time tradeoff by describing a data structure
that requires O(n2−2s) space and O(ns log n) query time, for any 0 < s ≤ 1/2. At the
linear-space end of this tradeoff, the data structure requires O(

√
n log n) query time. The

logarithmic factor arises due to predecessor search in a universe of size n. Substituting an
efficient predecessor search data structure designed under the word RAM model [Wil83]
yields a query time of O(

√
n log log n). Petersen [Pet08] eliminates the logarithmic factor

from the space-time tradeoff. However, his data structure is only valid for 0 ≤ s < 1/2,
as the number of levels in a hierarchical set of tables and hash functions approaches ∞ as
s approaches 1/2. Thus, his data structure always requires ω(n) space. We compare our
results to these previous results in Table 2.4.

Finally, Greve et al. [GJLT10] prove a lower bound of Ω(log n/ log(Sw/n)) query time
for any data structure that uses S memory cells of w bits in the cell probe model. There
is evidently a huge gap between the upper and lower bounds.
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Reference Problem Dimensions Space Query Time

[DHM+11] β-majority 1 O(n log(1/β)) O(1/β)
[GHMN11] α-majority 1 O(n log n) O(1/α)
new α-minority 1 O(n) O(1/α)
alternative α-majority 1 O(n log n) O(1/α)
[KN08] β-majority 2 O((1/β)n log n) O((1/β) log2 n)
new β-majority 2 O(log(1/β)n logε n) O((1/β) log n)

Table 2.5: Comparison of range majority and minority results

Range Majority. There are previous results for both the α-majority problem, in which
different values of α can be specified during each query, and the β-majority problem, in
which the value of β is fixed during preprocessing. Durocher et al. [DHM+11] give a data
structure for the range β-majority problem in an array requiring O(n log(1/β)) space and
O(1/β) query time. Gagie et al. [GHMN11] consider the α-majority problem in 2-D matri-
ces and in 1-D arrays. Note that problems in 2-D matrices with n elements are easier then
problems over n 2-D points in rank space as the “positions” of elements are predetermined.
Their 2-D data structure requires O(n log2 n) space and O(1/α) query time. Their 1-D data
structure requires O(n log n) space and O(1/α) query time. Karpinski and Nekrich [KN08]
consider the problem of searching for τ -dominating colours amongst coloured 2-D points.
Their problem is equivalent to the 2-D orthogonal β-majority range query problem. They
give a data structure that requires O((1/β)n log n) space and O((1/β) log2 n) query time.
We compare our results to these previous results in Table 2.5.
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Chapter 3

Toolbox

This chapter contains descriptions of various existing data structures and techniques that
we apply in the design of our own data structures. The sections of this chapter are mostly
self-contained and are referenced in later chapters, so it is not necessary to process all of
the contents of this chapter before proceeding to the descriptions of our data structures.

3.1 Succinct Data Structures

Classic analysis of a data structure in the word RAM model involves giving an asymptotic
upper bound on space consumption in words. The study of succinct data structures [Jac88]
involves refining this analysis of space consumption. Consider a data structure problem
in which there is an optimal number of bits B(n) required to be able to represent all
possible problem instances of size n, based on information-theoretic arguments. The goal
of a designer of a succinct data structure is to create a data structure that requires only
B(n) + o(B(n)) bits of space, while still supporting efficient queries. As we do not intend
to design succinct data structures, our motivation for using succinct data structures is
primarily that we can use bit-packing to squeeze a succinct data structure into O(B(n)/w)
words of space.

3.1.1 Succinct Rank and Select

A common technique used to store information compactly is to represent the information
as a string and extract it using rank and select queries. Assume we are given a string
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a1a2 . . . an of n elements from the alphabet Σ = {1, . . . , σ}. Then, rankx(i) for x ∈ Σ
and i ∈ [n] is the number of occurrences of x in the substring a1a2 . . . ai. Also, selectx(i)
for x ∈ Σ and i ∈ Z+ is the index of the ith occurrence of x, if such an occurrence
exists. Succinct data structures for this problem were first obtained for a binary alphabet
Σ = {0, 1}.

Theorem 3.1 (Clark and Munro [CM96]). There exists a data structure for rank and
select queries in a binary string of length n requiring O(n) bits of space and O(1) query
time.

Golynski et al. [GMR06] give a data structure for the general problem of any arbitrary
alphabet size that requires O(n log σ) bits of space, O(log log σ) time for rank queries, and
O(1) time for select queries. Supporting constant-time rank queries in the same space
bound is possible, if there is a restriction on the alphabet size.

Theorem 3.2 (Ferragina et al. [FMM04]). There exists a data structure for rank and select
queries in a string with alphabet size σ = logO(1) n requiring O(n log σ) bits of space and
O(1) query time.

3.1.2 Succinct Trees

The use of trees to store information is ubiquitous in computer science. The structure of
a static tree on n nodes can be stored succinctly while still supporting a wide array of
constant-time navigation queries.

Theorem 3.3 (e.g., Sadakane and Navarro [SN10]). There exists a data structure for a
static tree on n nodes that requires O(n) bits of space and supports LCA operations in O(1)
time.

3.1.3 Succinct Predecessor Search

Given a set S of n elements from R, the predecessor of some element x ∈ R is the greatest
element of S that is less than x. Binary search in a sorted array representation of S is a
simple solution to the predecessor search problem requiring O(log n) time, which is optimal
under the comparison model. Under the word RAM model, where elements are take from
the fixed-size universe [U ], data structures exist with query times that depend only on U .
The van Emde Boas tree [vEBKZ76] was the first data structure to achieve O(log logU)
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query time. The y-fast trie of Willard [Wil83] supports the same query time and requires
O(n) space. Pătraşcu and Thorup [PT06] give a matching lower bound.

However, it turns out that the requirement of O(n) space to achieve O(log logU) query
time is simply due to a need for access to the input elements. Storing the input elements
explicitly requires O(n) space. If we instead allow oracle access to the input elements,
more succinct predecessor search data structures exist.

Lemma 3.4 (Grossi et al. [GORR09]). There exists a data structure for predecessor search
requiring O(n log logU) bits of space and O(A(n) logw n) query time, where A(n) is the time
required for oracle access to an input element given its rank.

Lemma 3.5 (Grossi et al. [GORR09]). There exists a data structure for predecessor search
requiring O(n log logU) bits of space and O(log logU + A(n)) query time, where A(n) is
the time required for oracle access to an input element given its rank.

Data structures that support rank and select queries in a binary string (see Sec-
tion 3.1.1) provide an alternative solution to the predecessor search problem. We con-
struct a binary string a1a2 . . . aU such that ax = 1 if and only if x ∈ S for each x ∈ [U ].
Then, if ax = 1 the predecessor of x is select1(rank1(x) − 1). Otherwise, the predecessor
of x is select1(rank1(x)). Theorem 3.1 thus gives a predecessor search data structure with
constant query time.

Lemma 3.6. There exists a data structure for predecessor search requiring O(U) bits of
space and O(1) query time.

In many cases, O(U) bits of space may be prohibitive. However, when working in rank
space (i.e., when U = n), Lemma 3.6 is very efficient in terms of both space and query
time.

3.2 Range Trees and Ball Inheritance

The range tree [Ben80] is a very common tool used to solve orthogonal range searching
and its decomposable variants. Let (X1, X2) be a partition of a set of points X. A range-
aggregate query problem with aggregation function f is decomposable if we can compute
f(X) in constant time given f(X1) and f(X2). The standard binary range tree is con-
structed by dividing the set P of n points in [U ]d into two sets of size n/2 and recursing
on each of these sets so that the leaves of the range tree contain only one point each. The
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points are divided based on xi-coordinate for some fixed i. All points with xi-coordinate
less than or equal to the median xi-coordinate become the left child of the current node
of the range tree. All points with xi-coordinate greater than the median become the right
child. The height of the range tree is O(log n).

One purpose of the range tree is to decompose one d-D query into O(log n) (d − 1)-D
queries: at most two queries in nodes of each level of the range tree. Another purpose is to
decompose an s-sided query into (s − 1)-sided queries. If any two sides are parallel, then
one s-sided query becomes two (s− 1)-sided queries: one query in each of the children of
the deepest node that contains both of the parallel sides.

At each node of the range tree, we store a data structure D for (d − 1)-D queries
or (s − 1)-sided queries, as required. The space required by the range tree as a whole
is typically O(SD(n) log n). One way to obtain a range tree requiring o(n log n) space is
to increase its fan-out. In particular, a B-ary range tree has height O(logB n) and thus
requires space O(SD(n) logB n). However, in a B-ary range tree, the decomposition of a
query becomes more complex.

Another way to obtain a range tree requiring o(n log n) space is to use a succinct data
structure D that requires o(n) space. In such little space, D cannot explicitly store the
points over which it supports queries. Providing this access is a problem solved by the ball
inheritance data structure of Chan et al. [CLP11]. Given a range tree, a ball inheritance
query involves determining the coordinates of a point p given a node v of the range tree
and the xj-rank of p in v, for any j. Chan et al. [CLP11] give a space-time tradeoff for the
ball inheritance problem in rank space.

Lemma 3.7 (Chan et al. [CLP11]). For any B ∈ [2, blogε nc], there exists a data structure
for the ball inheritance problem requiring either O(nB log log n) space and O(logB log n)
query time, or O(n logB log n) space and O(B log log n) query time.

Corollary 3.8. There exists a data structure for the ball inheritance problem requiring
O(n log log n) space and O(log log n) query time.

Corollary 3.9. There exists a data structure for the ball inheritance problem requiring
O(n) space and O(logε n) query time.

Corollary 3.10. There exists a data structure for the ball inheritance problem requiring
O(n logε n) space and O(1) query time.

By combining this ball inheritance data structure that provides access to input elements
with the succinct predecessor search data structure of Lemma 3.5 which requires oracle
access to input elements, Chan et al. [CLP11] give an augmented range tree that supports
efficient predecessor search along the xj-axis at every node, for any j.
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Lemma 3.11 (Chan et al. [CLP11]). Given a data structure D for the ball inheritance
problem, there exists an augmented range tree that supports predecessor search at every
node requiring O(n+ SD(n)) space and O(log log n+QD(n)) query time.

3.3 Cartesian Trees

Given a set P of n points from [U ]2, the Cartesian tree for P is constructed by creating a
node containing the lowest point p ∈ P and recursing on all points that lie to the left of p
and on all points that lie to the right of p. Unlike a range tree, the height of a Cartesian
tree is not guaranteed to be logarithmic since p does not necessarily lie in the middle of P
along the x-axis. In fact, the height of the tree can be linear if, for example, the points of
P are organized along a diagonal line.

The key property of the Cartesian tree is that, given a query range of the form Q =
[`, r] × [U ] (i.e., a vertical slab), the lowest point in Q is the lowest common ancestor of
the leftmost and rightmost points in Q. If the x-coordinate of this point is m, then we can
find all other points in Q by recursing in query ranges [`,m− 1]× [U ] and [m+ 1, r]× [U ].
Finding the leftmost and rightmost points in Q is a 1-D problem: predecessor search along
the x-axis. So, a Cartesian tree reduces range searching in a vertical slab to predecessor
search queries and LCA queries. Using the succinct predecessor search data structure of
Lemma 3.6 and the succinct tree data structure of Theorem 3.3, we obtain a succinct
Cartesian tree.

Lemma 3.12. There exists a Cartesian tree that requires O(U) bits of space and O(1)
time to find the x-rank of the lowest point in a query range of the form [`, r]× [U ].

The Cartesian tree can also handle a 3-sided query range of the form [`, r] × [1, t]
by terminating its recursion whenever reaching a point with y-coordinate greater than t.
The data structure of Chan et al. [CLP11] for 2-D orthogonal range searching uses the
augmented range tree of Lemma 3.11 to transform a general 4-sided query into two 3-sided
queries and uses succinct Cartesian trees at each node of the range tree to handle the
3-sided queries.

3.4 Shallow Cuttings

Let H be a set of n d-D hyperplanes. A (1/r)-cutting [Mat91] is a decomposition of Rd

into simplices such that each simplex intersects at most O(n/r) hyperplanes of H. The
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size of a (1/r)-cutting is the number of simplices into which Rd is decomposed. Chazelle
and Friedman [CF90] show that there exist (1/r)-cuttings of optimal size O(rd). Cuttings
are often applied recursively to efficiently solve problems in computational geometry in
which we are given query points. For example, a data structure first does some processing
for a query point at the current node of recursion. The data structure then determines in
which of the O(rd) simplices the query point lies. It finally recurses in this simplex, thus
reducing the size of the problem to O(n/r).

Let the K-level of H be the set of points p on the hyperplanes of H such that the
hyperplane containing p has the Kth lowest xi-coordinate for some fixed i. The (≤ K)-
level of H is the set of points of Rd that lie on or under the K-level of H, based again on
xi-coordinate. The shallow cutting lemma of Matous̆ek [Mat92] shows that, if a cutting
need only decompose the (≤ K)-level of H instead of all of Rd, smaller cuttings exist.
In particular, there exists a (K/n)-cutting of the (≤ K)-level of H of size O((n/K)bd/2c).
We call this (K/n)-cutting a K-shallow cutting. A K-shallow cutting thus consists of
((n/K)bd/2c) simplices, each of which intersects O(K) hyperplanes of H. This result is
particularly nice for d = 3 since bd/2c = 1. Thus, in 3-D there are K-shallow cuttings of
size O(n/K).

Agarwal et al. [AES99] show that 3-D shallow cuttings exist for arrangements of more
general classes of surfaces than hyperplanes. Afshani [Afs08] observes that shallow cuttings
are thus applicable to 3-D orthogonal problems involving a set P of n points by showing
the equivalence (in this context) of shallow cuttings and the approximate boundaries of
Vengroff and Vitter [VV96]. We opt to use the terminology of shallow cuttings rather
than that of approximate boundaries. Assume queries are dominance regions of the form
(−∞, x]× (−∞, y]× (−∞, z]. A K-shallow cutting then consists of O(n/K) cells, each of
which is a subset of P . If a query Q contains no more than K points, then there exists
a shallow cutting cell C such that C ∩ Q = P ∩ Q. Finding such a shallow cutting cell
reduces to 2-D orthogonal point location.

Consider a set P of n points from [U ]2. There exist shallow cuttings for 3-sided orthog-
onal queries of the form [`, r]× [1, t], by a simple mapping of the points to 3-D points and
queries to 3-D dominance regions. Jørgensen and Larsen [JL11] give an alternative con-
struction of shallow cuttings for range selection queries, which are closely related to 3-sided
2-D orthogonal range counting queries. In their construction, each shallow cutting cell is
assigned a key, which is a horizontal line segment. Finding a shallow cutting cell C that
can answer a range selection query reduces to finding the key with the least y-coordinate
contained in the vertical slab [`, r] × [U ]. This problem again reduces to 2-D orthogonal
point location.
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3.5 Relative (p, ε)-Approximations

A standard technique for approximate range counting amongst a set P of n points involves
taking a random sample R ⊆ P and showing that for some positive probability, |R ∩Q| is
a scaled-down approximation of |P ∩Q| for all queries Q. An absolute ε-approximation is
a set R ⊆ P such that ∣∣∣∣ |R ∩Q||R|

− |P ∩Q|
|P |

∣∣∣∣ < ε.

So, if we calculate k′ = (|P |/|R|)|R ∩ Q| given a query Q, we are guaranteed that
k − εn < k′ < k + εn. There exist constant-size absolute ε-approximations for orthogonal
ranges [PA95]. However, the accuracy of approximation degrades for small k as the error
term always depends on n. Fixing this problem, a relative ε-approximation is a set R ⊆ P
such that

(1− ε) |P ∩Q|
|P |

≤ |R ∩Q|
|R|

≤ (1 + ε)
|P ∩Q|
|P |

.

This time if we calculate k′ = (|P |/|R|)|R ∩ Q|, we are guaranteed that (1 − ε)k ≤
k′ ≤ (1 + ε)k. However, this guarantee is hard to achieve for small k. In particular, if
we determine that k′ = 0, then k must also be 0. This observation implies that there
exists only one relative ε-approximation and it is R = P , which is useless. A relative
(p, ε)-approximation [CKMS06] masks out this problem by providing the same guarantee
as a relative ε-approximation, but only when |P ∩Q|/|P | ≥ p for a fixed 0 < p < 1.

Theorem 3.13 (Har-Peled and Sharir [HPS11]). There exist relative (p, ε)-approximations
of size O((1/p) log(1/p)) for orthogonal ranges. Furthermore, for a sufficiently large con-
stant c depending on ε and the number of dimensions d, any random sample of size
c(1/p) log(1/p) is a relative (p, ε)-approximation for orthogonal ranges with constant posi-
tive probability.

3.6 Hive Graphs

Given n horizontal line segments, consider the problem of finding every segment that
intersects a query vertical line segment. Given a data structure D for 2-D orthogonal
point location, the hive graph data structure of Chazelle [Cha86] solves this problem in
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O(n + SD(n)) space and O(QD(n) + k) query time, where k is the number of segments
reported. In fact, the hive graph solves the more general problem of reporting the horizontal
line segments that intersect a query vertical ray in sorted order. Finding the first horizontal
line intersecting a vertical ray requires a 2-D orthogonal point location query; however,
subsequent intersections can be found in constant time each. Using the point location data
structure of Chan [Cha11] yields an efficient linear-space hive graph.

Lemma 3.14. There exists a data structure for vertical ray shooting queries through hor-
izontal line segments requiring O(n) space, O(log logU) time to find the first intersection,
and O(1) time to find each subsequent intersection in sorted order along the query ray.
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Chapter 4

Range Counting

We consider 2-D orthogonal range counting. In this problem, we must preprocess a set
P of n points from [n]2 so that given a query rectangle Q = [`, r] × [b, t] ⊆ [n]2 we can
efficiently compute k = |P ∩ Q|. JaJa et al. [JMS05] give an efficient linear-space data
structure for this problem.

Theorem 4.1 (JaJa et al. [JMS05]). There exists a data structure for 2-D orthogonal
range counting requiring O(n) space and O(logw n) query time.

This data structure is optimal as Pătraşcu [Păt07] gives a matching Ω(logw n) query
time lower bound that holds even for data structures requiring up to n logO(1) n space. We
seek adaptive data structures with query times that depend on k so that for k = o(n),
we can beat the query time lower bound of Ω(logw n). We also seek approximate data
structures for 2-D orthogonal range counting. An approximate data structure need only
compute an approximation k′ of k such that (1 − δ)k ≤ k′ ≤ (1 + δ)k. We consider
approximate data structures for two reasons. First, we use our approximate data structure
as a building block for our adaptive data structure. Second, approximate range counting
is of independent interest.

For both our adaptive and approximate range counting data structures, our goal is to
match the best known bounds for range emptiness data structures. In linear space, Chan
et al. [CLP11] support emptiness queries in O(logε n) time. Query time can be reduced
to O(log log n) if space consumption is increased to O(n log log n). We give approximate
data structures that match these bounds exactly. We also give an adaptive data struc-
ture requiring O(n log log n) space and O(log log n + logw k) query time. These bounds
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Figure 4.1: Overview of our adaptive range counting data structure

match those of the range emptiness problem when k = O(1), as well as Pătraşcu’s lower
bound [Păt07] when k = Θ(n).

We introduce and give efficient solutions to a problem called K-shallow range counting.
In this problem, our goal is again to compute |P ∩ Q| given a query Q. However, if
|P ∩Q| > K, we may output an error.

In Section 4.1 we begin by considering the decomposability of shallow, approximate, and
adaptive range counting queries. In Section 4.2, we design data structures for K-shallow
range counting. The query time for each of these data structures includes an O(logwK)
term. Our intent is to construct O(log log n) copies of such a data structure for double
exponentially increasing values of K. Then, for any standard range counting query, one
of the copies must be able to answer the query such that the O(logwK) term in its query
time is also O(logw k). Determining which of the copies to query reduces to approximate
range counting, which we consider in Section 4.3. In Section 4.4, we combine our shallow
and approximate data structures, as briefly outlined in this paragraph, to create our final
adaptive data structure. We summarize our high-level plan in Figure 4.1.

4.1 Decomposability

As is common in the study of orthogonal range searching problems, we start by considering
the special case of 3-sided queries of the form [`, r] × [1, t] and then we find some way to
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generalize to 4-sided queries. In the case of standard range counting, generalizing from 3-
sided queries to 4-sided queries is trivial. Range counting is an instance of a more general
problem in which each point is assigned a weight and we must compute the group sum of
the weights of the points in a given range. So, we can handle a 4-sided query by subtracting
the sum/count for the 3-sided range [`, r] × [1, b − 1] from the sum/count for the 3-sided
range [`, r] × [1, t]. It is important to note that this technique is not applicable in the
context of shallow, approximate, or adaptive range counting. In the context of K-shallow
range counting, even if the count for the 4-sided query is no more than K, the number of
points in the range [`, r] × [1, b − 1] may exceed K. In the context of approximate range
counting, the error term would depend on the number of points in the range [`, r]×[1, b−1],
which may be greater than k. In the context of adaptive range counting, the running time
of a query would depend on the number of points in the range [`, r]× [1, b− 1], which may
be greater than k.

Although we cannot take advantage of techniques for the range group sum problem,
we can take advantage of techniques for the range semigroup sum problem. For example,
we can efficiently decompose a query Q into two queries Q1 and Q2 such that (Q1, Q2) is
a partition of Q.

Lemma 4.2 (Shallow Decomposability). Given a method to obtain the K-shallow count
for Q1 in f1(n,K) time and for Q2 in f2(n,K) time, the K-shallow count for Q can be
computed in O(f1(n,K) + f2(n,K)) time.

Proof. We compute k1 = |P ∩ Q1| in f1(n,K) time. If there is an error, then k1 > K.
Thus, k = k1 + k2 > K so we output an error. We similarly compute k2, outputting an
error if there is an error in computing it. If there are no errors, then we compute and
output k = |P ∩Q| = |P ∩Q1|+ |P ∩Q2| = k1 + k2.

Lemma 4.3 (Approximate Decomposability). Given a method to obtain the (1 + δ)-
approximate count for Q1 in f1(n) time and for Q2 in f2(n) time, the (1 + δ)-approximate
count for Q can be computed in O(f1(n) + f2(n)) time.

Proof. Let k1 = |P∩Q1| and k2 = |P∩Q2|, so that k = |P∩Q| = |P∩Q1|+|P∩Q2| = k1+k2.
We compute and return k′ = k′1 + k′2, where k′1 is the (1 + δ)-approximate count for Q1

and k′2 is the (1 + δ)-approximate count for Q2. Since (1 − δ)k1 ≤ k′1 ≤ (1 + δ)k1 and
(1− δ)k2 ≤ k′2 ≤ (1 + δ)k2,

(1− δ)(k1 + k2) ≤ k′1 + k′2 k′1 + k′2 ≤ (1 + δ)(k1 + k2)

(1− δ)k ≤ k′ k′ ≤ (1 + δ)k.
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Lemma 4.4 (Adaptive Decomposability). Given a method to obtain the exact count for
Q1 in f1(n, k1) time and for Q2 in f2(n, k2) time, the exact count for Q can be computed
in O(f1(n, k) + f2(n, k)) time, for non-decreasing functions f1 and f2.

Proof. Let k1 = |P ∩Q1| and k2 = |P ∩Q2|, so that k = |P ∩Q| = |P ∩Q1|+ |P ∩Q2| =
k1 + k2. We compute k1 in f1(n, k1) time and k2 in f2(n, k2) time. We compute and return
k = k1 + k2. Since k1 ≤ k, then f1(n, k1) = O(f1(n, k)). Similarly, f2(n, k2) = O(f(n, k)).
So, the total running time is O(f1(n, k) + f2(n, k)).

4.2 Shallow Range Counting

In this section, we give data structures for K-shallow 2-D orthogonal range counting. We
begin with a simple linear-space 3-sided data structure that uses a K-shallow cutting
for 3-sided ranges (see Section 3.4). We next create a data structure that solves the
same problem but requires only O(n log(K log n)) bits of space by using a space-saving
technique from the realm of succinct data structures (see Section 3.1). We use a range
tree (see Section 3.2) to support 4-sided queries using our succinct 3-sided data structure.
In order to save space, we use a range tree with fan-out of Θ(K log n). However, using
a Θ(K log n)-ary range tree requires, at each node, a data structure for range counting
queries on a narrow [Θ(K log n)]× [n] grid. Using known techniques for range counting on
a narrow grid, the running time of such queries matches the running time of our 3-sided
queries. We summarize our high-level plan in Figure 4.2.

Lemma 4.5. There exists a data structure for K-shallow 3-sided 2-D orthogonal range
counting requiring O(n) space and O(log log n+ logwK) query time.

Proof. We construct a K-shallow cutting of P . In each cell of the shallow cutting we build
the standard range counting data structure of Theorem 4.1. Each of the O(n/K) cells thus
requires O(K) space, for a total of O(n) space.

We can determine in which cell a 3-sided query rectangle Q lies, if any, using a 2-D
orthogonal point location query. We build the linear-space point location data structure
of Chan [Cha11] which answers queries in O(log log n) time. If Q does not lie in a shallow
cutting cell, then k > K, so we output an error. If Q lies in shallow cutting cell C,
then we forward Q onto the standard range counting data structure stored for C. Since
|C| = O(K), the standard query takes O(logwK) time.
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Figure 4.2: Overview of our shallow range counting data structure
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In the design of succinct data structures, an important technique involves finding ways
to store pointers to input elements in fewer than O(log n) bits. An easy way to achieve
this is to divide the input into blocks of size logO(1) n. Then, local pointers within a block
require only O(log log n) bits of space. We improve the space bound of Lemma 4.5 with
this idea in mind. We also apply existing succinct data structures for predecessor search
(see Section 3.1.3).

Lemma 4.6. There exists a data structure for K-shallow 3-sided 2-D orthogonal range
counting requiring O(n log(K log n)) bits of space and O(log log n + logwK + A(n)) query
time, where A(n) is the time required for oracle access to a point given its x-rank in P .

Proof. We partition P by x-coordinate into n/B vertical slabs S1, S2, . . . , Sn/B, each con-
taining B = K log n points. As allowed by Lemma 4.2, we decompose a 3-sided query of the
form [`, r]× [1, t] into at most two 3-sided queries within slabs and at most one slab-aligned
query: a 3-sided query whose boundaries along the x-axis align with slab boundaries.

In each slab Si we build the standard range counting data structure of Theorem 4.1
for the points in Si’s rank space, which requires O(B logB) bits of space. We also build
the succinct predecessor search data structure of Lemma 3.5 for the points of Si along
both the x- and y-axes. These succinct data structures require only O(B log log n) bits of
space, but during a search they require oracle access to the full (log n)-bit coordinates of
O(1) points, given their x- or y-ranks within Si. For now, we simply convert oracle access
given x- or y-rank within Si to oracle access given x-rank within P . Given an x-rank j
within Si, the corresponding x-rank within P is (i− 1)B+ j, which we can easily compute
in O(1) time. Given a y-rank j within Si, it is now sufficient to find the corresponding
x-rank within Si. We create an array requiring O(B logB) bits to map y-ranks to x-ranks
within Si in constant time. Across all slabs we require O(n logB) = O(n log(K log n)) bits
of space. Given a query Q within Si, we first convert Q into a query Q′ in Si’s rank space
via predecessor search in O(log log n + A(n)) time, where A(n) is the time required for
oracle access to a point given its x-rank in P . We then forward Q′ onto the standard range
counting data structure stored for Si. Since |Si| = B = K log n, the standard query takes
O(logw |Si|) = O(logwK) time.

It remains to handle slab-aligned queries. Assume we are given one such query Q. If
|Q∩ Si| > K, then we know that the K + 1 points in Si with the least y-coordinates lie in
Q. The converse is also trivially true. Let S ′i be the set of K+ 1 points in Si with the least
y-coordinates. Then, for the purposes of K-shallow range counting, computing |Q ∩ S ′i|
instead of |Q∩Si| is sufficient for a single slab Si: if |Si∩Q| ≤ K then |S ′i∩Q| = |Si∩Q| and
if |Si ∩Q| > K then |S ′i ∩Q| > K. To handle multiple slabs simultaneously, we construct
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a set of points P ′ =
⋃n/B
i=1 S

′
i and build the data structure of Lemma 4.5 over these points.

Since |P ′| = (n/B)K = n/ log n, this data structure requires only O(n) bits of space. We
compute |P ′∩Q| in O(log log n+logwK) time. If |P ′∩Q| ≤ K then k = |P ∩Q| = |P ′∩Q|.
If |P ′ ∩Q| > K then k = |P ∩Q| > K and we output an error.

Our intention is to use a range tree in combination with Lemma 4.6 in order to support
4-sided queries. In order to ensure that space consumption does not increase by a full
multiplicative O(log n) factor, we use instead a B-ary tree, for some appropriate fan-out
of B. Answering a query then involves a 4-sided query on a narrow [B] × [n] grid. An
important component of the optimal standard range counting data structure of JaJa et
al. [JMS05] is an efficient solution to the range counting problem on a very narrow grid.

Lemma 4.7 (JaJa et al. [JMS05]). There exists a data structure for 2-D orthogonal range
counting on a [wε]× [n] grid requiring O(n logw) bits of space and O(1) query time.

Both JaJa et al. [JMS05] and Nekrich [Nek09b] apply wε-ary range trees in order to
support queries on grids that are less narrow. The following is a simple generalization of
their technique that reduces a query on the [n]× [n] grid to multiple queries on [wε]× [n]
grids.

Lemma 4.8 (JaJa et al. [JMS05], Nekrich [Nek09b]). Given a data structure D for 2-
D orthogonal range counting on a [wε] × [n] grid, for any B ∈ [n], there exists a data
structure for the same problem on a [B] × [n] grid requiring O(SD(n) logw B) space and
O(QD(n) logw B) query time.

Lemma 4.9. For any B ∈ [n], there exists a data structure for 2-D orthogonal range
counting on a [B]× [n] grid requiring O(n logB) bits of space and O(logw B) query time.

Proof. By Lemmata 4.8 and 4.7.

Theorem 4.10. Given a data structure D for the ball inheritance problem, there exists a
data structure for K-shallow 2-D orthogonal range counting requiring O(n+ SD(n)) space
and O(log log n+ logwK +QD(n)) query time.

Proof. Assume for simplicity of presentation that n is a power of 2. We build a B-ary
range tree, where B is the first power of 2 no less than K log n. Then, B is a power of 2
and is also Θ(K log n).

Given a 4-sided query, we find the node v of the range tree that contains the two vertical
sides of the query in different child nodes. Finding v reduces to finding the LCA of two
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leaves of the range tree. There exists a linear-space data structure for computing LCAs in
a tree in only O(1) time [HT84]. Then, as allowed by Lemma 4.2, we decompose the query
into at most two 3-sided query in child nodes of v and at most one slab-aligned query in v:
a 4-sided query whose boundaries along the x-axis align with the boundaries of children of
v.

At each node of the range tree, we build the data structure of Lemma 4.6 to handle 3-
sided queries of the form [1, r]× [b, t] and [`, 1]× [b, t]. These data structures require oracle
access to points given their y-ranks. Since B is a power of 2, every node in our range
tree corresponds to some node in a binary range tree. Lemma 3.7, a solution to the ball
inheritance problem in a binary tree, is thus exactly what we need to implement the oracle
access required by Lemma 4.6. We also augment this binary range tree to allow predecessor
search at every node as in Lemma 3.11. Excluding the augmented binary tree and the ball
inheritance data structure, this component of our data structure requires O(n log(K log n))
bits of space at each node of the B-ary range tree, for a total of O(n) words of space since
the tree has height O(logB n) = O(log n/ log(K log n)). Given a 3-sided query Q at a child
u of node v, we first convert Q into a query Q′ in u’s rank space using the augmented range
tree. We then forward Q′ to the 3-sided data structure stored for u. The query time is
thus O(log log n+ logwK +QD(n)), where D is the data structure for the ball inheritance
problem.

It remains to handle slab-aligned queries. At each node we construct a point set P ′ by
rounding the x-coordinates of all of the points of P to the boundaries of child nodes. Then,
for any query Q whose boundaries align with those of child nodes, |Q ∩ P ′| = |Q ∩ P |, so
computing |Q∩P ′| is sufficient. Since the points of P ′ lie on a narrow [B]×[n] grid, we con-
struct the data structure of Lemma 4.9 to handle these queries in O(logw B) = O(logwK)
time. Again, the space requirement at every node is O(n logB) = O(n log(K log n)) bits,
for a total of O(n) words of space across the entire B-ary range tree.

Corollary 4.11. There exists a data structure for K-shallow 2-D orthogonal range count-
ing requiring O(n log log n) space and O(log log n+ logwK) query time.

Proof. By Corollary 3.8.

Corollary 4.12. There exists a data structure for K-shallow 2-D orthogonal range count-
ing, requiring O(n) space and O(logε n+ logwK) query time.

Proof. By Corollary 3.9.
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4.3 Approximate Range Counting

In this section, we give approximate data structures for 2-D orthogonal range counting.
Our key ingredient is a succinct data structure representation of shallow cuttings for 3-sided
ranges (see Section 3.4). By building K-shallow cuttings for exponentially increasing values
of K, we can find, for 3-sided queries, a multiplicative constant-factor approximation of k
in O(log log n) time via a binary search over the O(log n) shallow cuttings. We refine the
approximation k′ such that (1 − δ)k ≤ k′ ≤ (1 + δ)k using relative (p, ε)-approximations
(see Section 3.5) of the points in each shallow cutting cell. We apply a range tree to
support 4-sided queries using our 3-sided data structure, at the expense of a logarithmic
increase in space consumption. In order to reduce space, we build the range tree on a
relative (p, ε)-approximation of P so that we can only compute accurate approximations
for ranges containing at least logO(1) n points. We build a (logO(1) n)-shallow data structure
to handle ranges containing fewer than logO(1) n points. We summarize our high-level plan
in Figure 4.3.

We temporarily consider points that have not been reduced to rank space. Thus, for
now, the points of P are from [U ]2 instead of from [n]2. We do so to highlight how our
data structures use space and to highlight the necessity for rank space reduction in a later
data structure.

We begin by describing a succinct data structure representation of a shallow cutting for
3-sided queries. This data structure can find shallow cutting cells containing 3-sided queries
in constant time without the need for O(log log n)-time 2-D orthogonal point location
queries.

In the construction of the shallow cuttings of Jørgensen and Larsen [JL11], a horizontal
sweep line passes from y = 1 to y = U . Throughout the sweep, we maintain a partition of
the plane into vertical slabs, initially containing a single slab (−∞,∞)× [U ]. During the
sweep, if any slab contains 2K + 2 points on or below the sweep line y = y0, this slab is
split in two at the median m of the x-coordinates of the 2K + 2 points. Let (m, y0) be a
split point. Throughout the sweep, we build a set S = {s1, s2, . . . , s|S|} of all split points
sorted in order of x-coordinate.

Let X = {x1, x2, . . . , x|X|} be the x-coordinates of all split points immediately following
the insertion of a new split point with x-coordinate xi. Assume the sweep line is at y = y0.
After the insertion of the split point, we construct two shallow cutting cells. The first cell
contains all points of P that lie in [xi−2, xi+1]× [1, y0]. The second cell contains all points of
P that lie in [xi−1, xi+2]× [1, y0]. Each cell is assigned a key, which is a horizontal segment
used to help determine in which cell a query range lies. The key for the cell defined by the
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Figure 4.3: Overview of our approximate range counting data structure
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range [xi−2, xi+1]× [1, y0] is the segment with x-interval [xi−1, xi] at height y0. The key for
the cell defined by the range [xi−1, xi+2] × [1, y0] is the segment with x-interval [xi, xi+1]
at height y0. For each pair of adjacent slabs in the final partition of the plane, we create
an additional keyless shallow cutting cell containing all points in both slabs. We highlight
the following property of the resulting shallow cutting for later use.

Observation 4.13. Every cell in the shallow cuttings of Jørgensen and Larsen [JL11] is
the intersection of some range of the form [`, r]× [1, t] with P .

Note that an invariant of the sweep is that all slabs contain at most O(K) points on
or below the sweep line. All cells (keyless or not) also contain O(K) point as each cell
overlaps a constant number of slabs (at the time of its creation) and only contains points
on or below the sweep line. A new slab is created only when the number of points in an
existing slab on or under the sweep line grows by at least K + 1. Thus, the the shallow
cutting contains O(n/K) cell.

Assume we are given a 3-sided query Q = [`, r]× [1, t]. If the slab [`, r]× [U ] does not
contain any key, then Q lies in one of the keyless shallow cutting cells. Otherwise, consider
the lowest key contained in [`, r]× [U ] and let X = {x1, x2, . . . , x|X|} be the x-coordinates
of all split points at the time of its creation. Assume without loss of generality that the
key has x-interval [xi, xi+1] and height y0. Assume that ` < xi−1. Then, there is a key
in [`, r] × [U ] with x-interval [xi−1, xi+1] and height less than y0: a contradiction. Thus,
` ≥ xi−1. Similarly, r ≤ xi+2. So, the x-interval of Q lies in the x-interval of the key’s cell.
If t is no less than the y0, then Q contains at least K + 1 points since there are exactly
K+1 points on or under every key. In this case, Q does not need to lie in a shallow cutting
cell as it is not K-shallow. If t is less than y0, then Q lies in the key’s cell.

Lemma 4.14. There exists a data structure representation of a K-shallow cutting that
requires O(U+(n/K) logU) bits of space and that can find a shallow cutting cell containing
a 3-sided query, or determine that no such cell exists, in O(1) time.

Proof. Assume we are given a 3-sided query Q = [`, r] × [1, t]. In order to determine
whether or not Q lies in a keyless cell, it is sufficient to count the number of split points
in Q′ = [`, r] × [U ]. If there are fewer than two, then Q lies in a keyless cell. We can
count the number of split points in Q′ as well as determine the keyless cell containing Q
via predecessor search in S. We build the predecessor search data structure of Lemma 3.6,
which requires O(U) bits of space and O(1) query time.

If Q′ contains at least one key, it is sufficient to find the lowest key in Q′. Consider
first the lowest split point si in Q′. There are two keys that share si as an endpoint. The
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other endpoint of each of these keys must either be directly above another split point or at
negative or positive infinity along the x-axis. In the former case, since si is the lowest split
point in Q′, the key must extend to the x-coordinate of some split point that is outside of
Q′. In the latter case, the key is infinitely long. In either case, Q′ cannot contain the key.

Consider the second highest split point sj in Q′ and assume without loss of generality
that it lies to the left of si. Then, there is a key whose left endpoint is sj and whose right
endpoint lies above si. This key is thus contained in Q′. It is also the lowest key in Q′

since neither of the keys associated with si are in Q′. Thus, we have reduced finding the
lowest key in Q′ to finding the second lowest split point in Q′.

We build a Cartesian tree over the points of S. We encode the tree using the suc-
cinct data structure of Theorem 3.3 which allows constant-time LCA queries and requires
O(n/K) bits of space. Finding the second lowest point in S ∩ Q′ using a Cartesian tree
reduces to a constant number of predecessor searches and LCA queries (see Section 3.3).
Since we have succinct data structures for both of these problems with constant query
time, we can find the second lowest point in constant time.

In order to be able to compare t with the y-coordinate of the lowest key, we must store
all of the y-coordinates of all of the keys. Storing these coordinates requires a total of
O((n/K) logU) bits.

A c-approximate range counting data structure is permitted to overestimate the number
of points in a given range by a constant multiplicative factor. In particular, if the data
structure outputs a count k′, then it must hold that k ≤ k′ ≤ ck.

Lemma 4.15. There exists a data structure for c-approximate 3-sided 2-D orthogonal
range counting requiring O(U) space and O(log log n) query time.

Proof. We construct 2i-shallow cuttings for i ∈ [dlog ne] and represent each with the data
structure of Lemma 4.14. In total, the space requirement of these data structures in bits
is

S(n) =

dlogne∑
i=1

(U + (n/2i) logU)

= O(U logU).

Additionally, for each cell of the 2-shallow cutting, we store all of the points in the cell
in an array. Since this shallow cutting has O(n) cells and each cell contains O(1) points,
these arrays require O(n) ⊆ O(U) space.
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Given a query Q, we perform a binary search amongst our O(log n) shallow cuttings to
find the shallowest shallow cutting with a cell C that contains Q. This binary search takes
O(log log n) time, since for each shallow cutting we can determine in O(1) time whether
or not it has a cell containing Q. Assume C is a cell of the 2i-shallow cutting. If i = 1,
we determine k′ = k exactly in O(1) time by iterating through the O(1) points of C which
are stored for the 2-shallow cutting only. Since the size of each cell in a K-shallow cutting
is O(K), there exists some constant c′ such that all cells in all of our 2j-shallow cuttings
have size no greater than c′2j. If i > 1, we output the approximate count k′ = c′2i. Since
C contains Q and since |C| ≤ c′2i, we have k ≤ c′2i = k′. There must not be a cell in
the 2i−1-shallow cutting that contains Q. So, k > 2i−1 and we have k′ < 2c′k. Thus,
k ≤ k′ ≤ ck, where c = 2c′.

We now refine the approximation of the data structure of Lemma 4.15 by building
relative (p, ε)-approximations of the points in each shallow cutting cell. Since we have
K-shallow cuttings for exponentially increasing values of K, for the shallowest cell C
containing a query range Q, it must be that |C ∩ Q| = O(|C|). Thus, we only need a
relative (p, ε)-approximation of constant size in each shallow cutting cell.

Lemma 4.16. There exists a data structure for (1+δ)-approximate 3-sided 2-D orthogonal
range counting requiring O(U) space and O(log log n) query time.

Proof. We extend the c-approximate data structure of Lemma 4.15. For each cell C of each
2i-shallow cutting for i > 1 we store a relative (p, ε)-approximation C ′ of C for p = 1/c
and ε = δ. By Theorem 3.13 there exists such a relative (p, ε)-approximation such that
|C ′| = O(1). Space remains linear in U since there are a total of O(n) ⊆ O(U) cells across
all O(log n) shallow cuttings.

As in Lemma 4.15, during a query we find the shallowest shallow cutting that contains
Q in some cell C. We output the approximate count k′ = (|C|/|C ′|)|C ′ ∩Q|. We compute
|C ′ ∩Q| in constant time by iterating through the O(1) points of C ′. Since |C ∩Q| > 2i−1

and since |C| ≤ c′2i, we have |C ∩Q|/|C| ≥ 1/(2c′) = 1/c = p. Then, by the definition of
a relative (p, ε)-approximation, we have

(1− δ) |C ∩Q|
|C|

≤ |C
′ ∩Q|
|C ′|

≤ (1 + δ)
|C ∩Q|
|C|

.

Since |C ∩Q| = |P ∩Q| = k, we have (1− δ)k ≤ k′ ≤ (1 + δ)k.

We now return to considering points in rank space. Thus, the points of P are from [n]2.
The next step is to support 4-sided queries using a range tree.
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Lemma 4.17. There exists a data structure for (1 + δ)-approximate 2-D orthogonal range
counting requiring O(n log n) space and O(log log n) query time.

Proof. We build a range tree, storing the data structure of Lemma 4.16 at each node
to handle 3-sided queries of the form [1, r] × [b, t] and [`, 1] × [b, t]. We store each data
structure in the rank space of its node so that its space requirement is linear in the size of
the node instead of linear in n. At each node we also store a linear-space data structure
for predecessor search that supports queries in O(log log n) time [Wil83]. The size of the
range tree is thus O(n log n).

Given a 4-sided query, we find the pair of sibling nodes in the range tree that each
contain only one of the two vertical sides of the query. As allowed by Lemma 4.3, we
decompose the 4-sided query into a 3-sided query in each of these sibling nodes. Finding
the sibling nodes reduces to finding the LCA of two nodes of the range tree. There exists a
linear-space data structure for computing LCAs in a tree in only O(1) time [HT84]. For a
3-sided query Q at node v, we convert Q into a query Q′ in v’s rank space via predecessor
search in O(log log n) time. We then forward Q′ to the 3-sided data structure stored for
v, which outputs an approximate count in O(log log n) time. We output the sum of the
approximate counts for both 3-sided queries.

Finally, we reduce space by building the data structure of Lemma 4.17 only for a relative
(p, ε)-approximation of P . For ranges containing few points, we need an alternative data
structure: our shallow data structure is sufficient!

Theorem 4.18. Given a data structure D for the ball inheritance problem, there exists a
data structure for (1+δ)-approximate 2-D orthogonal range counting requiring O(n+SD(n))
space and O(log log n+QD(n)) query time.

Proof. We build the data structure of Theorem 4.10, setting K = log2 n. This data struc-
ture requires O(n + SD(n)) space and computes exact counts for queries containing up
to log2 n points in O(log log n + QD(n)) time. However, if the data structure may output
an error if the count is greater than log2 n. To handle queries such that k > log2 n, we
build a relative (p, ε)-approximation P ′ of P setting p = (log2 n)/n and ε = δ1. By Theo-
rem 3.13, |P ′| = O((1/p) log(1/p)) = O(n/ log n). We construct the (1 + δ2)-approximate
data structure of Lemma 4.17 on the points of P ′, which requires O(n) space. Given a
query Q such that k > log2 n, we first compute the (1 + δ2)-approximate count k′′ for
P ′ ∩Q in O(log log n) time. We then output k′ = (|P |/|P ′|)k′′. Since k > log2 n, we have
|P ∩Q|/|P | > (log2 n)/n = p. By the definition of a relative (p, ε)-approximation, we have
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(1− δ1)
|P ∩Q|
|P |

≤ |P
′ ∩Q|
|P ′|

≤ (1 + δ1)
|P ∩Q|
|P |

.

We thus have (1− δ)k ≤ k′ ≤ (1 + δ)k for δ = δ1 + δ2 + δ1δ2.

Corollary 4.19. There exists a data structure for (1 + δ)-approximate 2-D orthogonal
range counting requiring O(n log log n) space and O(log log n) query time.

Proof. By Corollary 3.8.

Corollary 4.20. There exists a data structure for (1 + δ)-approximate 2-D orthogonal
range counting requiring O(n) space and O(logε n) query time.

Proof. By Corollary 3.9.

4.4 Adaptive Range Counting

We finally combine our shallow and approximate data structures for 2-D orthogonal range
counting to create an adaptive data structure for the same problem.

Theorem 4.21. There exists a data structure for 2-D orthogonal range counting requiring
O(n log log n) space and O(log log n+ logw k) query time.

Proof. We build the K-shallow data structure of Theorem 4.10 for K = 22i for i ∈
[dlog log ne]. We reuse the ball inheritance data structure of Corollary 3.8 across all
O(log log n) of these data structures. The total space requirement is O(n log log n). We
also build the (1 + δ)-approximate data structure of Corollary 4.19, which also requires
O(n log log n) space.

Given a query, we first compute a (1 + δ)-approximate count k′ in O(log log n) time.
We compute k′′ = (1/(1 − δ))k′ so that k′′ ≥ k and k′′ = O(k). We find the least i such
that 22i ≥ k′′. Since k ≤ k′′ ≤ 22i , we can query the 22i-shallow data structure to obtain an
accurate count in O(log log n + logw 22i) time. By our definition of i we know k′′ > 22i−1

.
Thus k = Ω(22i−1

) and logw k = Ω(logw 22i).
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Chapter 5

Range Selection

Given an array A of n elements from [U ], we consider the problem of preprocessing A so
that we can efficiently compute the kth lowest element in subarray A[` : r], given k, `, r ∈ [n]
such that ` ≤ r and k ≤ r − `+ 1. We immediately note that we can reduce the elements
of A to rank space without incurring the query time cost of predecessor search, since none
of the query parameters are elements of A. Thus, if a query in rank space outputs the rank
k′, then we can select in constant time the element from [U ] with rank k′ in A via an array
representation of the elements of A indexed by rank. Going forward, we assume that A is
in rank space and thus each of the n elements is from [n].

The range selection query problem is very closely related to 3-sided 2-D range counting.
Consider the 2-D point set P = {(i, A[i]) | i ∈ [n]}. Finding the kth lowest element in
A[` : r] is equivalent to finding the point pi = (i, A[i]) with the kth lowest y-coordinate in
P∩Q, where Q = [`, r]×[n]. Equivalently, pi is the point for which |P∩Q′| = k, where Q′ is
the 3-sided range [`, r]×[1, A[i]]. Going forward, we work with this geometric interpretation
of the range selection query problem. Similarly to 2-D orthogonal range counting, there
is an efficient linear-space data structure that answers range selection queries in o(log n)
time.

Theorem 5.1 (Brodal and Jørgensen [BJ09]). There exists a data structure for the range
selection query problem requiring O(n) space and O(logw n) query time.

Jørgensen and Larsen [JL11] give a matching lower bound, but also investigate adaptive
data structures with query times that are sensitive to k. They give a linear-space data
structure that requires O(log log n+ logw k) query time and an Ω(logw k) query time lower
bound. Their data structure is thus optimal for all but small values of k.
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A key difference between the range selection query problem and 2-D orthogonal range
counting is that the latter is decomposable while the former is not. If we are given the
sizes of two multisets we can easily compute the size of the union of the multisets in O(1)
time via addition. However, if we are given, for example, the elements with rank k in
two multisets we cannot efficiently compute the element with rank k in the union of the
multisets. This difference is the reason that we cannot directly apply the techniques of
Section 4.2 to solve the range selection query problem.

Shallow cuttings are a tool that we still can use, since reducing a query over the points
of P to a query over the points of a single shallow cell does not decompose the query into
multiple parts. However, in the context of the range selection query problem, a K-shallow
cutting requires an additional property in order to be useful. In particular, if a query
Q of the form [`, r] × [n] contains at least k ≤ K points, then there must exist a cell C
such that the point with the kth lowest y-coordinate in C ∩ Q is the point with the kth

lowest y-coordinate in P ∩Q. We say shallow cutting cell C resolves query Q. The shallow
cuttings of Jørgensen and Larsen [JL11] satisfy this property and play an important role
in their data structure. Their data structure applies shallow cuttings recursively. Rank
space reduction is applied at each level of recursion in order to reduce space.

We take a different approach to reduce space and instead use another succinct data
structure representation of a shallow cutting. We then follow the approach of Chapter 4
by first creating a succinct data structure for K-shallow range selection and then building
such a data structure for double exponentially increasing values of K in order to create an
adaptive data structure. The query parameter k of a K-shallow query is restricted such
that k ≤ K. We summarize our high-level plan in Figure 5.1.

Lemma 5.2. There exists a data structure representation of a K-shallow cutting that
requires O(n log(K log n) + (n/K) log n) bits of space and, given a query Q of the form
[`, r]× [n], can:

• find a shallow cutting cell that resolves Q, or determine that no such cell exists, in
O(1) time, and

• access the full (log n)-bit coordinates of a point with a given x-rank in a given cell in
O(A(n)) time, where A(n) is the time required for oracle access to a point given its
x-rank in P .

Proof. The data structure of Lemma 4.14 requires O(n + (n/K) log n) bits of space and
supports finding cells that resolve queries in O(1) time. In order to give access to points
by x-rank in a cell, we adapt the technique of Lemma 4.6.
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Shallow Cutting
(Section 3.4)

Succinct
Shallow Cutting

(Lemma 5.2)

Succinct
Pred. Search

(Section 3.1.3)

Standard
(Theorem 5.1)

Shallow
(Lemma 5.3)

Adaptive
(Theorem 5.4)

Figure 5.1: Overview of our adaptive range selection data structure

We partition P by x-coordinate into n/B vertical slabs S1, S2, . . . , Sn/B, each containing
B = K log n points. Since the size of each cell in our K-shallow cutting is O(K), there
exists some constant c such that each cell of our K-shallow cutting has size no greater than
cK. Let S ′i be the set of cK points in Si with the least y-coordinates. Let P ′ =

⋃n/B
i=1 S

′
i

so that |P ′| = O(n/ log n). We construct a cK-shallow cutting of P ′. This shallow cutting
has O(n/(K log n)) cells, each containing O(K) points.

Consider a cell C of our K-shallow cutting of P . By Observation 4.13, the points of C
are exactly P ∩R for some 3-sided range R of the form [`, r]× [1, t]. Let Sa be the slab that
contains the left vertical side of R and let Sb be the slab that contains the right vertical
side of R. Finally, consider the points C ′ = C \ (Sa∪Sb). Assuming C ′ is not empty, these
points are exactly P ∩ R′, where R′ is a 3-sided rectangle whose vertical sides are aligned
with the slab boundaries of Sa and Sb and whose top side is at the same height as R. Since
C ′ ⊆ C, we have |C ′| ≤ cK. Assume towards contradiction that there is a point p ∈ C ′
such that p /∈ P ′. Let Si be the slab containing p. Since p /∈ P ′, it must also be that
p /∈ S ′i. Since the vertical sides of R′ are aligned with slab boundaries, C ′ must contain
all points in Si that are lower than p, including all points of S ′i. Since |S ′i| = cK, we have
that |C ′| > cK, a contradiction. Therefore, C ′ ⊆ P ′ and C ′ = P ′ ∩ R′. Since |C ′| ≤ cK,
R′ must lie in one of the cK-shallow cutting cells of P ′. Let this cell be C∗. Each point
p ∈ C must either be in Sa, Sb, or C∗.

We store pointers to Sa, Sb, and C∗ for C, which requires O(log n) bits. Across all
cells of the K-shallow cutting of P , the space requirement is O((n/K) log n) bits. For each
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point p ∈ C, we store in a constant number of bits which of these three sets contains p. Let
this set be X. We also store the x-rank of p within X. Since |X| ≤ max{|Sa|, |Sb|, |C∗|} =
O(K log n), we require O(log(K log n)) bits per point. We store this information in an
array TC indexed by x-rank in C. Across all points of all cells of the K-shallow cutting of
P , the space requirement is O((n/K) · K · log(K log n)) = O(n log(K log n)) bits. Given
a point p ∈ C and its x-rank i in C, we can then lookup TC [i], the x-rank of p in X, in
constant time.

We store an array FC∗ containing the full (log n)-bit coordinates of all of the points of
C∗ indexed by x-rank in C∗. Across all points of all cells of the cK-shallow cutting of P ′,
the space requirement is O((n/K log n) · K · log n) = O(n) bits. Assume we need access
to the full (log n)-bit coordinates of the point p ∈ C with x-rank i in C∗. We then lookup
FC∗ [i], the full (log n)-bit coordinates of p, in constant time.

Without loss of generality, assume we need access to a point p ∈ C with x-rank i in Sa.
We cannot afford to store the full (log n)-bit coordinates of all points of all slabs, as doing
so would require O(n log n) bits of space. Instead we use an oracle that gives access to, in
A(n) time, the full (log n)-bit coordinates of a point given its x-rank in P . The x-rank of
p within P is (a− 1)B + i, which we can easily compute in O(1) time.

The key new feature of the data structure of Lemma 5.2 is the ability to access a point
in a shallow cutting cell by its rank without requiring linear space. We can then build
succinct predecessor search data structures (see Section 3.1.3) in each cell and the total
space requirement is still sublinear. Using predecessor search in a cell, we can reduce a
query to rank space inside the cell. Thus, any linear-space data structure we build in the
cell to handle a query requires only O(K logK) bits instead of O(K log n) bits.

Lemma 5.3. There exists a data structure for the K-shallow range selection query problem
that requires O(n log(K log n) + (n/K) log n) bits of space and O(A(n) logwK) query time,
where A(n) is the time required for oracle access to a point given its x-rank in P .

Proof. We build a K-shallow cutting of P and represent it with the data structure of
Lemma 5.2. For each cell C of the shallow cutting, we build the succinct predecessor
search data structure of Lemma 3.4 to search amongst the points of C along the x-axis.
Each of the O(n/K) cells requires O(K log log n) bits of space for a total of O(n log log n)
bits. The succinct predecessor search data structure in each cell C requires oracle access
to the full (log n)-bit coordinates of O(logwK) points, given their x-ranks within C. We
implement this oracle access via the second operation of Lemma 5.2.
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In each cell C, we also build the standard range selection data structure of Theorem 5.1
in the rank space of C. This data structure requires O(K logK) bits. Across all O(n/K)
cells, the space requirement is O(n logK) bits.

Given a query range Q of the form [`, r]× [n] and a query rank k ≤ K, we first find a
cell C that resolves Q in O(1) time via the data structures of Lemma 5.2. Next, we reduce
Q to a query range Q′ in the rank space of C in O(A(n) logwK) time, via the succinct
predecessor search data structure for C. We forward the query range Q′ and the query
rank k on to the standard range selection data structure for C, which requires O(logwK)
time. The result is a point in C’s rank space, which we convert to a point in P in O(A(n))
time via the second operation of Lemma 5.2.

In the context of adaptive range counting, in order to obtain an adaptive data structure
we need a K-shallow data structures for double exponentially increasing values of K as well
as an approximate data structure. We need the approximate data structure to determine
which K-shallow data structure to query. In the context of adaptive range selection, we are
given k exactly as part of the query, thus we do not need any approximate data structure.

Theorem 5.4. There exists a data structure for the range selection query problem that
requires O(n) space and O(logw k) query time.

Proof. We build theK-shallow data structure of Lemma 5.3 forK = 22i for i ∈ [dlog log ne].
Each data structure requires the same oracle access to a point in P given its x-rank in P .
We implement this oracle access by sorting the points of P in an array by x-rank. This
implementation requires O(n) space and O(1) time for an access. The total space in bits
required by all of our succinct shallow data structures is

S(n) =

dlog logne∑
i=1

(n log(22i log n) + (n/22i) log n)

= O(n log n).

Given a query rank k, we forward the query to the 22i-shallow data structure with
least i such that k ≤ 22i . The query runs in O(logw 22i) time. Since k > 22i−1

, we have
logw k = Ω(logw 22i) and thus the query time is O(logw k).
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Chapter 6

Range Mode and Least Frequent
Element

The frequency of an element x in a multiset S, denoted freqS(x), is the number of occur-
rences (i.e., the multiplicity) of x in S. A mode of S is an element a ∈ S such that for
all x ∈ S, freqS(x) ≤ freqS(a). A multiset S may have multiple distinct modes with equal
frequencies. Similarly, a least frequent element of S is an element a ∈ S such that for all
x ∈ S, freqS(x) ≥ freqS(a).

Along with the mean and median, the mode is a fundamental statistic in data analysis.
Given a sequence of n elements in an array A, a range query seeks to compute the cor-
responding statistic on the multiset determined by a subinterval of the list A[` : r]. The
objective is to preprocess A to construct a data structure that supports efficient response
to one or more subsequent range queries, where the corresponding input parameters (`, r)
are provided at query time. A range mean query is equivalent to a normalized range
sum query, for which a precomputed prefix-sum array provides a linear-space static data
structure with constant query time [KMS05]. Range median queries have been analyzed
extensively in recent years, resulting in an optimal data structure [BJ09] and our optimal
range selection data structure of Theorem 5.4 which supports range median queries as a
special case. In contrast, range mode queries appear more challenging than range mean
and median. As expressed recently by Brodal et al. [BGJS11, page 2]: “The problem of
finding the most frequent element within a given array range is still rather open.”

The best previous linear-space data structure for the range mode query problem is by
Krizanc et al. [KMS05], who obtain a query time of O(

√
n log log n). No better approach

has been discovered in over five years, which leads one to suspect that a query time around
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O(
√
n) might be the best one could hope for.

Indeed, we present strong evidence that purely combinatorial approaches cannot avoid
the
√
n effect in the preprocessing or query costs, up to polylogarithmic factors. The

method of Krizanc et al. [KMS05] has preprocessing time around O(n3/2) = O(n
√
n).

More specifically, we show in Section 6.1 that Boolean matrix multiplication (matrix mul-
tiplication on {0, 1}-matrices with addition and multiplication replaced by OR and AND,
respectively) of two n × n matrices reduces to n2 range mode queries in an array of size
O(n2). We show a similar reduction to the construction and use of a data structure for
the range least frequent element problem. These reductions imply that any data structure
for the range mode or least frequent element query problems must have either Ω(nω/2)
preprocessing time or Ω(nω/2−1) query time in the worst case, where ω denotes the matrix
multiplication exponent. Since the current best matrix multiplication algorithm has expo-
nent 2.3727 [Wil11], we cannot obtain preprocessing time better than n1.18635 and query
time better than n0.18635 simultaneously without a major breakthrough. Moreover, since
the current best combinatorial algorithm for Boolean matrix multiplication (which avoids
algebraic techniques as in Strassen’s algorithm) has running time only a polylogarithmic
factor better than cubic [BW09], we cannot obtain preprocessing time better than O(n3/2)
and query time better than O(

√
n) simultaneously by purely combinatorial techniques with

current knowledge, except for a speedup by a polylogarithmic factor.

In view of the above hardness result, it is therefore worthwhile to pursue more modest
improvements for the range mode query problem. Notably, can the extra O(log log n) factor
in the query time bound of Krizanc et al. [KMS05] be eliminated?

In Section 6.2, we give a data structure that accomplishes just that: with O(n) space,
we can answer range mode queries in O(

√
n) time. The data structure is based on—and

in some ways simplifies—that of Krizanc et al. [KMS05], since we use only rudimentary
structures (mostly arrays) and no complex predecessor search techniques. We also show
that, with some additional ideas, the same technique can solve the range least frequent
element query problem.

In the case of the range mode query problem only, we go beyond eliminating a mere
O(log log n) factor: in Section 6.5, we present a linear-space data structure that answers
range mode queries in o(

√
n) time! The precise worst-case time bound is O(

√
n/w) ⊆

O(
√
n/ log n). As one might guess, bit packing tricks are used to achieve the speedup, but

in addition we need a nontrivial combination of ideas, including partitioning elements into
two sets (one with small maximum frequency and another with a small number of distinct
elements), each handled by a different method, and an interesting application of succinct
rank and select data structures.
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Throughout this chapter, let m ≤ n denote the maximum frequency (i.e., the frequency
of the mode of A), and let ∆ ≤ n denote the number of distinct elements in A.

6.1 Reductions from Boolean Matrix Multiplication

In this section, we show that Boolean matrix multiplication of two n× n matrices reduces
to n2 range mode queries in an array of size O(n2). In our proof we use two simple
observations of Greve et al. [GJLT10]:

Observation 6.1 (Greve et al. [GJLT10]). Let S be a multiset with elements from universe
U . Then adding one of each element in U to S increases the frequency of the mode of S
by one.

Observation 6.2 (Greve et al. [GJLT10]). Let S1 and S2 be two sets (not multisets) and
let S be the multiset union of S1 and S2. Then the frequency of the mode of S is two if
and only if S1 ∩ S2 6= ∅.

Now, let L and R be two n × n Boolean matrices for which we are to compute the
product P = LR. The entry pi,j in P must be 1 precisely if there exists at least one index
k, where 1 ≤ k ≤ n, such that `i,k = rk,j = 1. Our goal is to determine whether this is the
case using one range mode query for each entry pi,j. Our first step is to transform each
row of L and each column of R into a set. For the ith row of L, we construct the set Li
containing all those indices k for which `i,k = 1, i.e., Li = {k | `i,k = 1}. Similarly we
let Rj = {k | rk,j = 1}. Clearly pi,j = 1 if and only if Li ∩ Rj 6= ∅. By Observation 6.2,
this condition can be tested if we can determine the frequency of the mode in the multiset
union of Li and Rj. Our last step is thus to embed all the sets Li and Rj into an array, such
that we can use range mode queries to perform these intersection tests for every pair (i, j).
Our constructed array A has two parts, a left part AL and a right part AR. The array A
is then simply the concatenation of AL and AR. The array AL represents all the sets Li.
It consists of n blocks of n entries. The ith block (entries AL[(i− 1)n + 1 : in]) represents
the set Li, and it consists of the elements [n] \ Li in some arbitrary order, followed by the
elements of Li in some arbitrary order. The array AR similarly represents the sets Rj and
it also consists of n blocks of n entries. The jth block represents the set Rj and it consists
of the elements of Rj in some arbitrary order, followed by the elements [n] \ Rj in some
arbitrary order.

Now assume that |Li| and |Rj| are known for each set Li and Rj. We can now determine
whether Li ∩ Rj 6= ∅ (i.e., whether pi,j = 1) from the result of the range mode query on
A[start(i) : end(j)], where
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start(i) = in− |Li|+ 1

end(j) = n2 + (j − 1)n+ |Rj|.

To see this, first observe that the index start(i) is the first index in A of the elements
in Li, and that end(j) is the last index in A of the elements in Rj. In addition to a
suffix of the block representing Li and a prefix of the block representing Rj, the subarray
A[start(i) : end(j)] contains n− i complete blocks from AL and j− 1 complete blocks from
AR. Since a complete block contains one occurrence of each element of [n], it follows from
Observations 6.1 and 6.2 that Li ∩Rj 6= ∅ (i.e., pi,j = 1) if and only if the frequency of the
mode in A[start(i) : end(j)] is 2 + (n− i) + (j − 1). The answer to the range mode query
(start(i), end(j)) thus allows us to determine whether pi,j = 1 or not. The array A and the
values |Li| and |Rj| can clearly be computed in O(n2) time when given matrices L and R,
thus we have the following result:

Theorem 6.3. Given a data structure for the range mode query problem in an array of n
elements with P (n) preprocessing time and Q(n) query time, there exists an algorithm for
Boolean matrix multiplication of two n×n matrices that runs in O(P (n2) +n2Q(n2) +n2)
time.

We can also give a similar reduction from Boolean matrix multiplication to the range
least frequent element query problem. Let S1 and S2 be two subsets of [n] and let S be the
multiset union of [n] \ S1, [n] \ S2, and [n]. Similarly to Observation 6.2, the frequency of
the least frequent element of S is one if and only if S1 ∩ S2 6= ∅. Thus, when we construct
the block corresponding to Li in AL we instead include the elements of Li in some arbitrary
order, followed by the elements [n] \ Li in some arbitrary order. In this way, we swap the
elements Li and [n] \ Li in the block. We perform a symmetric modification to AR. We
also include one additional block between AL and AR containing all elements of [n] in some
arbitrary order. We can then determine whether Li ∩ Rj 6= ∅ from the result of the range
least frequent element query on A[start(i) : end(j)], where

start(i) = (i− 1)n+ |Li|+ 1

end(j) = n2 + (j + 1)n− |Rj|.

In particular, by a similar argument to that of our reduction to the range mode query
problem, Li∩Rj 6= ∅ if and only if the frequency of the least frequent element in A[start(i) :
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end(j)] is (n− i) + (j − 1) + 1. The reason that we include the additional block between
AL and AR is simply to ensure that every element in [n] occurs in each query range; our
definition of least frequent element requires that the element has frequency greater than
zero.

Theorem 6.4. Given a data structure for the least frequent element query problem in an
array of n elements with P (n) preprocessing time and Q(n) query time, there exists an
algorithm for Boolean matrix multiplication of two n× n matrices that runs in O(P (n2) +
n2Q(n2) + n2) time.

6.2 First Method: O(
√
n) Query Time

We begin by presenting a linear-space data structure with O(
√
n) query time, improving

the query time of the data structure of Krizanc et al. [KMS05] by an O(log log n) factor.
We build on their data structure and introduce a different technique that avoids the need
for predecessor search, which is the origin of the O(log log n) factor in their query time.
In Section 6.2.1 we describe our data structure for the range mode query problem. In
Section 6.2.2 we adapt our technique to solve the range least frequent element problem.

6.2.1 Range Mode

We actually establish the following time-space tradeoff—the linear-space result follows by
setting the parameter s = d

√
ne.

Theorem 6.5. For any s ∈ [n], there exists a data structure for the range mode query
problem in an array requiring O(n+s2) space, O(ns) preprocessing time, and O(n/s) query
time.

The following observation will be useful:

Observation 6.6 (Krizanc et al. [KMS05]). Let S1 and S2 be any multisets. If element e
is a mode of S1 ∪ S2 and e 6∈ S1, then e is a mode of S2.

We are given an arrayA of n elements. In general, these elements are from [U ]. However,
we can work instead in rank space, representing each element by its rank in A instead of its
actual value. Since there are ∆ distinct elements in A, the ranks of elements are from [∆].
Thus, if a query in rank space outputs the rank k, then we can select in constant time the
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distinct element with rank k in A via an array representation of the distinct elements of A
indexed by rank. Reducing A to rank space and constructing the sorted array of distinct
elements requires O(n log ∆) time during preprocessing. Going forward, we assume that
A is in rank space and thus each of the n elements is from [∆]. We also assume that we
know ∆.

Preprocessing. For each x ∈ [∆], let Ix = {i | A[i] = x}. That is, Ix is the set of indices
i such that A[i] = x. For any element x, a range counting query for element x in A[` : r]
can be answered by searching for the predecessors of ` and r, respectively, in the set Ix; the
difference of the indices of the two predecessors is the frequency of x in A[` : r] [KMS05].
Such a range counting query can be implemented using an efficient linear-space predecessor
search data structure [Wil83] in Θ(log log n) time in the worst case.

The following related decision problem, however, can be answered in constant time by a
linear-space data structure: does A[` : r] contain at least k instances of element A[`]? This
question can be answered by a “select” query that returns the index of the kth occurrence of
A[`] in A[` : n]. For each x ∈ [∆], we store the set Ix as a sorted array (also denoted Ix for
simplicity). Define a “rank” array R[1 : n] such that for all i, R[i] denotes the multiplicity
of A[i] in A[1 : i]. Given any k, `, and r, to determine whether A[` : r] contains at least k
instances of A[`] it suffices to check whether IA[`][R[`] + k− 1] ≤ r. Since array IA[`] stores
the sequence of indices of instances of element A[`] in A, looking ahead k − 1 positions in
IA[`] returns the index of the kth occurrence of element A[`] in A[` : n]; if this index is at
most r, then the frequency of A[`] in A[` : r] is at least k. If the index R[`] + k− 1 exceeds
the size of the array IA[`], then the query returns a negative answer. The arrays I1, . . . , I∆

and R can be constructed in O(n) total time in a single scan of array A. They require
a total of O(n) space as each element of A has a corresponding entry in only one of the
index arrays.

Lemma 6.7. Given an array A[1 : n], there exists a data structure requiring O(n) space
that can determine in constant time for any 1 ≤ ` ≤ r ≤ n and any k whether A[` : r]
contains at least k instances of element A[`].

Following Krizanc et al. [KMS05], given any s ∈ [n] we partition array A into s blocks
of size t = dn/se. That is, for each bi ∈ [s], the bth

i block spans A[(bi − 1)t + 1 : bit]. We
precompute tables M [1 : s, 1 : s] and F [1 : s, 1 : s], each of size Θ(s2), such that for any
1 ≤ b` ≤ br ≤ s, M [b`, br] stores a mode of A[(b` − 1)t + 1 : brt] and F [b`, br] stores the
frequency of this mode.

The tables M and F require O(s2) space. The following lemma is useful for the con-
struction of M and F . It is slightly more powerful than necessary, but we will use it to its
full potential when we consider the range least frequent element problem.
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Lemma 6.8. There exists a data structure maintaining an initially empty multiset S of
elements from [∆]. It requires O(∆) space and preprocessing time and supports the following
operations:

• Insert(S, e): Inserts element e into multiset S in O(1) time.

• MostFrequent/LeastFrequent(S, k): Returns the k most or least frequent elements in
S, along with their frequencies, in O(k) time.

Proof. We construct a doubly-linked list L, where each node contains a frequency f and a
doubly-linked sublist of all distinct elements with frequency f . The nodes of L are sorted
in the ascending order of frequency. Nodes for the sublists are taken from an array N [1 : ∆]
of nodes for each distinct element. Each of these sublist nodes contains a pointer to its
containing sublist. It can be verified that an insertion of an element e causes only local
changes around N [e] that run in O(1) time. To find the k most or least frequent elements,
we simply iterate through L starting from the head or tail until we have reported k elements
or until there are no more elements to report.

We construct M and F in O(ns) time by repeatedly passing through A, starting at each
of the s block boundaries. During each pass we incrementally build a multiset using the
data structure of Lemma 6.8. At every block boundary (i.e., every t elements) we obtain
the mode of the multiset and its frequency in O(1) time.

Query Algorithm. Given a query range A[` : r], let b` = d`/te + 1 and br = dr/te − 1
denote the respective indices of the first and last blocks completely contained within A[` :
r]. Let A[(b` − 1)t + 1 : brt] be the span of the query range. Let A[` : min{(b` − 1)t, r}]
be the prefix of the query range and let A[max{brt + 1, `} : r] be the suffix of the query
range. One or more of the prefix, span, and suffix may be empty; in particular, if b` > br,
then the span is empty.

The value c = M [b`, br] is a mode of the span with corresponding frequency fc =
F [b`, br]. If the span is empty, then let fc = 0. By Observation 6.6, either c is a mode of
A[` : r] or some element of the prefix or suffix is a mode of A[` : r]. Thus, to identify a
mode of A[` : r], we verify for every element in the prefix and suffix whether its frequency
in A[` : r] exceeds fc and, if so, we identify this element as a candidate mode and count its
additional occurrences in A[` : r]. We present the details of this procedure for the prefix;
an analogous procedure is applied to the suffix.

We now describe how to compute the frequency of all candidate elements in the prefix
over the range A[` : r], storing the value and frequency of the current best candidate in
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c and fc. We sequentially scan the items in the prefix starting at the leftmost index, `,
and let i denote the index of the current item. If IA[i][R[i] − 1] ≥ `, then an instance of
element A[i] appears in A[` : i − 1], and its frequency has been counted already; in this
case, simply skip A[i] and increment i. Otherwise, check whether the frequency of A[i] in
A[` : r] (which is equal to the frequency of A[i] in A[i : r]) is at least fc by Lemma 6.7
(i.e., by testing whether IA[i][R[i] + fc− 1] ≤ r). If not, we again skip A[i] and increment i.
Otherwise, A[i] is a candidate, and the exact frequency of A[i] in A[` : r] can be counted
by a linear scan of IA[i], starting at index R[i] + fc − 1 and terminating at the last index
j such that IA[i][j] ≤ r. That is, IA[i][j] denotes the index of the rightmost occurrence of
element A[i] that lies inside query range A[` : r]. Consequently, the frequency of A[i] in
A[` : r] is fi = y −R[i] + 1. We update the current best candidate: c← A[i] and fc ← fi.

After all elements in the prefix and suffix have been processed, a mode of A[` : r] and
its frequency are stored in c and fc, respectively. Excluding the linear scans of IA[i], the
query cost is clearly bounded by O(t). For each candidate A[i] encountered during the
processing of the prefix, the cost of the linear scan of IA[i] is O(fi− fc). Since fc is at least
the frequency of the mode of the span, at least fi − fc instances of A[i] must occur in the
prefix or suffix. We can thus charge the cost of the scan to these instances. Since each
element A[i] is considered a candidate at most once (during its first appearance) in the
prefix, we conclude that the total time required by all the linear scans is proportional to
the total number of elements in the prefix (i.e., O(t) time). An analogous argument holds
for the cost of processing the suffix. Therefore, a query requires O(t) = O(n/s) total time.
We conclude our proof of Theorem 6.5.

6.2.2 Range Least Frequent Element

The range least frequent element query problem has significant differences when compared
to the range mode query problem. For example, the frequencies of the respective modes
of A[` : r] and A[` : r+ 1] differ by either zero or one. Also, a mode of A[` : r+ 1] is either
a mode of A[` : r] or it is A[r + 1]. On the other hand, the frequencies of respective least
frequent elements of A[` : r] and A[` : r + 1] can differ by any value in {` − r, . . . , 0, 1}.
Also, if the addition of an element to a multiset changes the least frequent element of the
multiset, the new least frequent element has no relationship to the newly added element.

In this section we present a linear-space data structure that identifies a least frequent
element in a query range in O(

√
n) time and requires O(n3/2) preprocessing time. Specifi-

cally, we prove the following theorem that implies the above result when s = d
√
ne:
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Theorem 6.9. For any s ∈ [n], there exists a data structure for the range least frequent
element problem requiring O(n + s2) space, O(ns) preprocessing time, and O(n/s) query
time.

We begin with a lemma that describes a data structure that can determine the frequen-
cies of every element, including that of the least frequent element, in a query range in time
proportional to the size of the query range.

Lemma 6.10. Given an array A[1 : n], there exists a linear-space data structure that
computes in O(r − ` + 1) time for any 1 ≤ ` ≤ r ≤ n the frequencies of all elements in
A[` : r]. In particular, a least frequent element in A[` : r] and its frequency can be computed
in O(r − `+ 1) time.

Proof. No actual preprocessing is necessary other than initializing an array C[1 : ∆] to
zero. The query algorithm is similar to counting sort: for each element A[i] in A[` : r] we
increment C[A[i]]. Then, for every element x, C[x] corresponds to the frequency of x in
A[` : r]. We iterate through A[` : r] again to find the element x with minimum C[x]. We
iterate through A[` : r] one last time to reset all entries in C that we modified to zero.

Preprocessing. We construct the data structure of Lemma 6.7, including arrays I1, . . . , I∆

and R. We also construct the data structure of Lemma 6.10. As in Section 6.2.1, we divide
A into s blocks of size t = dn/se. We compute tables M , F , M ′, and F ′, so that for each
table entry [b`, br] for 1 ≤ b` ≤ br ≤ s contains information associated with the span from
block b` to block br. Table M contains a least frequent element of each span. Table F
contains the frequencies of these least frequent elements in their spans. Table M ′ contains a
least frequent element of each span, excluding elements that appear in blocks immediately
adjacent to the span. Table F ′ contains the associated frequencies of the elements stored
in M ′.

All four tables require O(s2) space. We construct these tables in O(ns) time by re-
peatedly passing through A, starting at each of the s block boundaries. During each pass
we incrementally build a multiset using the data structure of Lemma 6.8. At every block
boundary (i.e., every t elements) we obtain the least frequent element of the multiset in
O(1) time. We must also find the least frequent element excluding the elements contained
in two adjacent blocks. This set of excluded elements has size O(t) and so the element for
which we are searching must appear amongst the O(t) least frequent elements of the multi-
set, which we can find in O(t) time. The total cost of a single pass is thus O(n+st) = O(n)
time. Therefore, the s passes altogether require O(ns) time.
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Query Algorithm. Consider the query range Q = A[` : r]. We define the prefix, suffix,
and span of the query range as in Section 6.2.1. By the data structure of Lemma 6.10, if
r− `+1 < 2t, then the range query can be answered in O(t) = O(n/s) time. Now consider
the case r− `+ 1 ≥ 2t. In this case, the span, denoted S, must be non-empty. We denote
the prefix by P1 and the suffix by P2. Let P ′1 and P ′2 denote the respective blocks that
contain P1 and P2. We now treat Q, S, P1, P2, P ′1, and P ′2 as multisets. Let P denote
the union of P1 and P2. Similarly, let P ′ denote the union of P ′1 and P ′2. We partition the
distinct elements of Q into four sets and proceed to find an element of minimum frequency
amongst the distinct elements in each case:

1. elements of Q that are in P but not S,

2. elements of Q that are in S and P ,

3. elements of Q that are in S and P ′, but not P , and

4. elements of Q that are in S but not P ′.

We first show how to determine which elements of P ′ fall into cases 1, 2, and 3. It
suffices to determine for each element of P ′ whether or not the element appears in P and
whether or not the element appears in S. We determine which elements appear in P by
simply iterating through P . To determine which elements appear in S, we first find the
closest occurrence of each element to S in a scan through P ′. Assume that we have one
such closest element A[i] at index i. Assume without loss of generality that it appears in
P ′1. The next occurrence of element A[i] is at index j = IA[i][R[i] + 1], which we compute
in O(1) time. Thus, S contains an occurrence of element A[i] if and only if j lies inside S.

The least frequent element in Q is given by the least frequent of the least frequent
elements for each of the cases defined above.

Case 1. By Lemma 6.10, we compute the frequencies of all elements in P1 in O(t) time,
omitting the final step of resetting the entries of array C to zero. We then repeat for P2

so that that C contains aggregate data for all of P . Consider all elements that occur in P
but not in S. For each such element x, freqQ(x) = freqP (x). So, the least frequent of these
elements in Q is the element with minimum non-zero entry in C. We find this element via
another iteration through both P1 and P2.

Case 2. Let c be the least frequent element in S stored in M and let fc be its frequency
in S stored in F . The minimum frequency in Q of any element present in both S and P is
at least fc and at most fc + 2t. For each element x that occurs in both S and P1, we find
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the leftmost occurrence of x within P1 in a scan through P1. We repeat in a symmetric
fashion in P2. Then, by Lemma 6.7, we can check in O(1) time whether an element x in
both S and P has frequency in Q less than some threshold. We begin with a threshold
of fc + 2t + 1. If an element x has frequency less than the threshold, we find its actual
frequency by iterating through Ix (forward or backwards depending on whether we are
considering an element in P1 or P2) until reaching an index within Q. This frequency
becomes our new threshold. We repeat with all other elements that occur in both S and
P . The last element to change the threshold is the least frequent of these elements. Since
the furthest to which the threshold can decrease is fc, the total time spent finding exact
frequencies is O(t).

Case 3. Consider all elements that occur in both S and P ′ but not in P . As in Case
2, their frequencies in Q are bounded between fc and fc + 2t. We can thus apply the
same technique as in Case 2. However, for each element, instead of finding the leftmost
occurrence in P1 or the rightmost occurrence in P2 from which to base the queries of
Lemma 6.7, we find the rightmost occurrence in P ′1 or the leftmost occurrence in P ′2.

Case 4. Consider all elements that occur in S but not in P ′. For each such element
x, freqQ(x) = freqS(x). The least frequent of these elements has been precomputed and
stored in table M ′. The frequency of this element is stored in table F ′.

The running time of each case is bounded by O(t) = O(n/s). We conclude our proof
of Theorem 6.9.

6.3 Second Method: O(
√
n/w) Query Time when m ≤√

nw

Our second method is a refinement of the first method (from Section 6.2), in which we store
the tables M and F more compactly by an encoding scheme that enables efficient retrieval
of the relevant information, using techniques from succinct data structures, specifically,
for rank and select operations. We show how to reduce a query to four rank and select
operations. These new ideas allow us to improve the space bound in Theorem 6.5 by a
factor of w, which enables us to use a slightly larger number of blocks, s, which in turn
leads to an improved query time. However, there is one important caveat: our space-
saving technique only works when the maximum frequency is small (i.e., when m ≤ s).
Specifically, we prove the following theorem in this section: choosing s = d

√
nwe gives

O(n) space and O(
√
n/w) query time for m ≤

√
nw.
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Theorem 6.11. For any s ∈ [m,n], there exists a data structure for the range mode query
problem requiring O(n+ s2/w) space and O(n/s) query time.

Preprocessing. Recall that for a span from block b` to block br, M [b`, br] is a mode of
the span and F [b`, br] is the frequency of the mode of the span. As we will show, a mode
of the span can be computed efficiently if its frequency is known; consequently, we omit
table M . Also, instead of storing the frequency of the mode explicitly, we store column-
to-column frequency deltas (i.e., differences of adjacent frequency values); observe that
frequency values are monotone increasing across each row. We encode the frequency deltas
for a single row as a bit string, where a zero bit represents an increment in the frequency of
the mode (i.e., each frequency delta is encoded in unary) and a one bit represents a former
cell boundary. In any row, the number of ones is at most the number of blocks, s, and
the number of zeroes is at most m ≤ s. We construct the succinct rank and select data
structure of Theorem 3.1 that requires a linear number of bits to support constant-time
rank and select operations on each row. Thus, each row of the table uses O(s) bits of
space. The table has s rows and requires O(s2) bits of space in total. We pack these bits
into words, resulting in a table that requires O(s2/w) words of space.

Query Algorithm. Assuming we know a mode of the span and its frequency, we can
process the prefix and suffix ranges in O(t) time as before. Our attention turns now to
determining a mode of the span and its frequency. We first obtain the frequency of the
mode of the span; this is not difficult using rank and select queries on the bit string of the
bth
` row, in O(1) time:

posbr = select1(br − b` + 1)

freq = rank0(posbr).

Having found the frequency of the mode, identifying a mode itself is still a tricky prob-
lem. We proceed in two steps. We first determine the block in which the last occurrence
of a mode lies, in O(1) time, as follows:

poslast = select0(freq)

blast = rank1(poslast).

Next, we find a mode of the span by iteratively examining each element in block blast,
using a technique analogous to that for processing a suffix from Section 6.2. By Lemma 6.7
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(reversed with r ≤ `), we can check whether each element A[i] in blast has frequency freq
in A[(b`− 1)t+ 1 : i], in O(1) time per element. If the mode occurs multiple times in block
blast, its last occurrence will be successfully identified. Processing block blast requires O(t)
total time. We conclude that the total query time is O(t) = O(n/s) time. We conclude
our proof of Theorem 6.11.

6.4 Third Method: O(∆) Query Time

In this section, we take a quick detour and consider a third method that has query time
sensitive to ∆, the number of distinct elements in A; this “detour” turns out to be essential
in assembling our final solution. We show the following:

Theorem 6.12. There exists a data structure for the range mode query problem that
requires O(n) space and O(∆) query time.

The proof is simple: to answer a range mode query, the approach is to compute the
frequency (in the query range) for each of the ∆ possible elements explicitly, and then just
compute the maximum in O(∆) time.

Preprocessing. We divide A into blocks of size t = ∆. For each i ∈ [bn/∆c], and for
every x ∈ [∆], store the frequency Ci[x] of x in the range A[1 : i∆]. The total size of all
these arrays is O((n/∆)∆) = O(n). The preprocessing time required is O(n).

Query Algorithm. Given a query range A[` : r], as mentioned, it suffices to compute
the frequency of x in A[` : r] for every x ∈ [∆]. Let br = dr/∆e − 1. We can compute the
frequency C(x) of x in the suffix A[br∆ + 1 : r] for every x ∈ [∆] by a linear scan, in O(∆)
time since the suffix has size at most ∆. Then the frequency of x in A[1, r] is given by
Cbr [x] +C(x). The frequency of x in A[1, `− 1] can be similarly computed. The frequency
of x in A[`, r] is just the difference of these two frequencies. The total query time is clearly
O(∆). We conclude our proof of Theorem 6.12.

6.5 Final Method: O(
√
n/w) Query Time

We are finally ready to present our improved linear-space data structure with O(
√
n/w)

query time. Our final idea is simple: if the elements all have small frequencies, the second
method (Section 6.3) already works well; otherwise, the number of distinct elements with
large frequencies is small, and so the third method (Section 6.4) can be applied instead.
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More precisely, let s be any fixed value in [n]. We partition the elements of A into
those with low frequencies (i.e., frequencies at most s), and those with high frequencies
(i.e., frequencies greater than s). A mode of all low-frequency elements has frequency
at most s. Thus we can apply Theorem 6.11 to build a data structure that requires
O(n + s2/w) space and O(n/s) query time. On the other hand, there are at most n/s
distinct high-frequency elements. Thus, we can apply Theorem 6.12 to build a linear-
space data structure on the high-frequency elements supporting O(n/s) query time. The
following simple “decomposition” lemma allows us to combine the two structures:

Lemma 6.13. Given an array A[1 : n] and any ordered partition of A into two arrays
B1[1 : n′] and B2[1 : n−n′] such that no element in B1 occurs in B2 nor vice versa, if there
exist respective S1(n)- and S2(n)-space data structures that support range mode queries on
B1 and B2 in Q1(n) and Q2(n) time, then there exists an O(n+S1(n) +S2(n))-space data
structure that supports range mode query on A in O(Q1(n) +Q2(n)) time.

Proof. For each a ∈ {1, 2} and i ∈ [n], precompute Ia[i], the index in the Ba array of the
first element in A to the right of A[i] that lies in Ba; and precompute Ja[i], the index in the
Ba array of the first element in A to the left of A[i] that lies in Ba. Given a range query
A[` : r], we can compute the mode in the range B1[I1[`], J1[r]] and the mode in the range
B2[I2[`], J2[r]] and determine which has larger frequency; this is a mode of A[` : r].

We have thus completed the proof of our main theorem concerning the range mode
query problem:

Theorem 6.14. Given any s ∈ [n], there exists a data structure for the range mode query
problem requiring O(n + s2/w) space and O(n/s) query time. In particular, by setting
s = d

√
nwe, there exists a data structure requiring O(n) space and O(

√
n/w) query time.
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Chapter 7

Range Majority and Minority

Given some 0 < α < 1, an element x is an α-majority in a multiset S if freqS(x) > α|S|.
Otherwise, x is an α-minority in S. An α-majority range query in an array A specifies
some 0 < α < 1 and a pair of indices (`, r) into A such that 1 ≤ ` ≤ r ≤ n. The result
of the query is the set of all α-majorities of the multiset defined by subarray A[` : r].
These are all elements with frequency greater than α(r− `+ 1) in A[` : r]. An α-minority
range query in A instead outputs a single α-minority element: any element with frequency
no greater than α(r − ` + 1). If no such element exists, the query must not return any
element. Whenever we discuss a data structure with a parameter β instead of α, β is fixed
during the preprocessing of the data structure. We do so to differentiate from the more
challenging case in which different parameter values can be specified at query time.

In Section 7.1 we give a linear-space data structure that supports α-minority range
queries in O(1/α) time. Our technique is quite different from the previous techniques of
Durocher et al. [DHM+11] for β-majority range queries and of Gagie et al. [GHMN11] for
α-majority range queries, which have worse space bounds (O(n log(1/β+1) and O(n log n),
respectively).

In Section 7.2 we apply a variation of our technique to give a data structure for the
α-majority range query problem in an array requiring O(n log n) space and O(1/α) query
time. These space and time bounds match those achieved by a recent α-majority data
structure of Gagie et al. [GHMN11].

Both our data structures in Sections 7.1 and 7.2 make interesting use of existing tools
from computational geometry. Notably, we apply Chazelle’s hive graphs [Cha86], which
were designed for a seemingly unrelated two-dimensional searching problem: preprocess a
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set of horizontal line segments so that we can report segments intersecting a given vertical
line segment or ray (see Section 3.6).

Finally, in Section 7.3, we give a data structure for the 2-D orthogonal range β-majority
problem. In this setting, we are given a set P of n coloured points from [n]2. Given a query
rectangle Q, we must find either all β-majority colours amongst the colours of the points
of P ∩ Q. Interestingly, we make use of one of our approximate data structures for 2-D
orthogonal range counting from Section 4.3.

7.1 1-D Range α-Minority

In this section we describe a linear-space data structure that identifies an α-minority ele-
ment, if any exists, in a query range in O(1/α) time. We first reduce this α-minority range
query problem to the problem of identifying the leftmost occurrences of the k leftmost
distinct elements on or to the right of a given query index. We call the latter problem
distinct element searching and we require that k can be specified at query time.

Lemma 7.1. Given a data structure D for distinct element searching that requires SD(n)
space and QD(n, k) query time to report k elements, there exists a data structure for the
α-minority range query problem that requires O(SD(n)+n) space and O(QD(n, 1/α)+1/α)
query time.

Proof. We construct the linear-space data structure of Lemma 6.7. With this data struc-
ture, we can check in O(1) time whether there are at least k instances of A[`] in the range
A[` : r] for any k ≥ 0 and r ≥ `.

Observe that any element in a range is either an α-majority or an α-minority for the
range and fewer than 1/α distinct elements can be α-majorities. Thus, if we can find 1/α
distinct elements in a range, then at least one of them must be an α-minority.

Given a query range A[` : r], we use data structure D to find the leftmost occurrences
of the 1/α leftmost distinct elements on or to the right of index ` in QD(n, 1/α) time.
Some of these leftmost occurrences may lie to the right of index r; we can ignore these
elements as none of their occurrences lie in A[` : r]. There are O(1/α) remaining leftmost
occurrences of leftmost distinct elements. Consider such an occurrence at index i. Since
this occurrence is the first of A[i] on or after index `, the frequency of A[i] in A[i : r] is
equal to the frequency of A[i] in A[` : r]. We can then check whether or not A[i] is an
α-minority in A[` : r] in O(1) time by setting k = α(r−`+1)+1 in Lemma 6.7. Repeating
for all leftmost occurrences requires O(1/α) time.
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If we find an α-minority we are done. If we do not find an α-minority, then there must
not have been 1/α distinct elements to check. In that case, we checked all distinct elements
in A[` : r] so there cannot be an α-minority.

We can now focus on distinct element searching. If all queries use a common fixed k (as
is the case if our goal is to solve just the range β-minority problem), there is a simple data
structure that requires O(n) space and O(k) query time: for each i that is a multiple of k,
store the k leftmost distinct elements to the right of index i; then for an arbitrary index
i, we can answer a query by examining the k elements stored at j = di/kek in addition to
the O(k) elements in A[i : j]. However, it is not obvious how to extend this solution to the
general problem for arbitrary k, without increasing the space bound.

In Lemma 7.2, we map this problem to a 2-D problem in computational geometry
that can be solved by Lemma 3.14, Chazelle’s hive graph data structure [Cha86] (see
Section 3.6). Given n horizontal line segments, the hive graph allows efficient intersection
searching along vertical rays. Finding the first horizontal line intersecting a vertical ray
requires an orthogonal planar point location query; however, subsequent intersections can
be found in sorted order in constant time each. The hive graph requires O(n) space.

Lemma 7.2. There exists a data structure for distinct element searching that requires
O(n) space and O(k) query time.

Proof. Let Li be the set of indices in A that are associated with the leftmost occurrence
of an element on or after index i. We can find the leftmost occurrences of the k leftmost
distinct elements on or after index i by iterating through Li in sorted order. However,∑n

i=1 |Li| can be Ω(n2) so we cannot afford to explicitly store all these sets.

Consider an index `. Clearly, ` ∈ L` and ` /∈ Li for i > `. Consider the first occurrence
of A[`] to the left of index ` at index `′, if it exists. Then ` /∈ Li for i ≤ `′. However, for
`′ < i ≤ `, ` ∈ Li. We associate ` with a horizontal segment with x-interval (`′, `] and
with y-value `. If no such index `′ exists, then we associate ` with a horizontal segment
with x-interval [0, `] and with y-value `. We thus have n horizontal segments. We build
the data structure of Lemma 3.14 on these segments.

By the construction of the x-intervals of our segments, a segment intersects the vertical
line y = i if and only if it is associated with an index ` such that ` ∈ Li. Since the y-value
of a segment associated with ` is `, the segments are sorted along the vertical line in the
order of their associated indices. Thus, to find the k leftmost indices in Li, we query the
hive graph for the horizontal segments with a vertical ray from (i, 0) to (i,∞). The cost of
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a query to the hive graph of Lemma 3.14 is O(log log n+ k) time, since all of our segments
have coordinates from the universe [0, n].

To reduce the query time to O(k), our key idea is to observe that there are only n
distinct vertical rays with which we query the hive graph, and hence only n distinct points
at which we perform point location. Thus, we can perform the orthogonal point location
component of each query during preprocessing and store each resulting node in the hive
graph in a total of O(n) space. In fact, since all the query rays originate from points on
the x-axis, the batched point locations are one-dimensional and can be handled easily in
our application.

Corollary 7.3. There exists a data structure for the α-minority range query problem that
requires O(n) space and O(1/α) query time.

Proof. By Lemmata 7.1 and 7.2.

7.2 1-D Range α-Majority

We now consider the α-majority range query problem. Recently, Gagie et al. [GHMN11] de-
scribe an O(n log n)-space data structure that supports α-majority queries in O(1/α) time,
where α is specified at query time. In this section we describe a different α-majority range
query data structure with the same bounds. Previous work by Durocher et al. [DHM+11]
considers the β-majority range query problem, where β is specified during preprocessing;
their data structure requires O(n log(1/β+ 1)) space and supports queries in O(1/β) time.

We consider first a related problem: reporting the top k most frequent elements in a
query range where k is specified at query time. We call this problem the top-k range query
problem while warning the reader not to confuse it with reporting the top k highest valued
elements. We use a variation on the technique of Lemma 7.2 in order to support one-sided
queries in O(n) space and O(k) query time. We note that the resulting data structure is
a persistent version of Lemma 6.8 in which all updates are provided offline.

Lemma 7.4. There exists a data structure for the one-sided top-k range query problem
that requires O(n) space and O(k) query time.

Proof. Assume our one-sided queries take the form A[1 : r] for 1 ≤ r ≤ n. Consider the
frequencies of the elements as we enlarge the one-sided range from left to right. Say an
element has frequency f for ranges A[1 : i] through A[1 : j] and this range of ranges is
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maximal. We construct a horizontal segment with x-interval [i, j + 1) and with y-value f .
We repeat for all elements and for all f ≥ 0 and arbitrarily perturb the y-values for any
segments that overlap.

We construct ∆ ≤ n segments with y-value 0: one segment corresponding to each
distinct element having frequency 0 in a vacuous subarray. Each element of A causes a
single change in frequency of a single element, which results in one additional segment.
So, in total we construct O(n) segments. We build the hive graph of Lemma 3.14 on these
segments.

For every distinct element e in A[1 : r] there is a horizontal segment with x-interval
[i, j + 1) intersecting the vertical line y = r with A[i] = e and freqA[1:r](e) = f . These
horizontal segments are sorted along the vertical line in the order of frequency. To find
the k most frequent elements in A[1 : r], we query the hive graph for the first k horizontal
segments intersecting the vertical ray from (r, n) to (r,−∞). As in Lemma 7.2, there are
only n distinct queries to the hive graph, so we can perform the orthogonal point location
component of each query during preprocessing at a cost of O(n) space to store the resulting
nodes of the hive graph. For each segment that the hive graph reports, we report A[i] where
i is the left x-coordinate of the segment.

Observe also that the index of the leftmost endpoint of the horizontal segment associ-
ated with a reported element is the index of the rightmost occurrence of the element in
A[1 : r]. Top-k queries are not decomposable in the sense that, given a partition of a range
R into two subranges R1 and R2, there is no relationship between the top k most frequent
elements in R1, R2, and R. However, α-majority queries are decomposable in this way.

Observation 7.5 (Karpinski and Nekrich [KN08]). Assume R is a multiset and (R1, R2)
is a partition of R. Every α-majority of R is an α-majority of at least one of R1 and R2.

Proof. Let x be an α-majority of R so that freqR(x) > α|R|. Assume towards contra-
diction that x is neither an α-majority of R1 nor of R2. Then, freqR1

(x) ≤ α|R1| and
freqR2

(x) ≤ α|R2|. Since freqR(x) = freqR1
(x) + freqR2

(x) and since |R| = |R1| + |R2|, we
have freqR(x) ≤ α|R|: a contradiction.

Since α-majority queries are decomposable in this way, and since all α-majorities are
amongst the top 1/α most frequent elements, we can now apply a range tree (see Sec-
tion 3.2) to support two-sided α-majority queries.

Theorem 7.6. There exists a data structure for the α-majority range query problem that
requires O(n log n) space and O(1/α) query time.
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Proof. We build the data structure of Lemma 7.4 on array A. We divide A into two halves
and recurse in both halves to create a range tree. The total space consumption of all top-k
data structures is thus O(n log n). We also represent the range tree with the succinct tree
data structure of Theorem 3.3. We use this data structure to decompose a two-sided query
into one-sided queries in two nodes of the range tree via an LCA operation. We also build
the arrays required to support the queries of Lemma 6.7.

We decompose a two-sided query into one-sided queries in two nodes of the range tree in
O(1) time. For each one-sided query we find the 1/α most frequent elements using the top-
k data structures in O(1/α) time. By Observation 7.5, our O(1/α) most frequent elements
in both one-sided ranges are a superset of the α-majorities of the original two-sided query.
Since the top-k data structures report for each element occurrences that are closest to one
of the boundaries of the two-sided range, we can apply Lemma 6.7 to check which of the
O(1/α) most frequent elements are in fact α-majorities in constant time each.

7.3 2-D Range β-Majority

We turn our attention to a 2-D generalization of the β-majority range query problem. In
this generalization, we are given a set P of n coloured points from [n]2. We must preprocess
P so that given any query rectangle Q, we can efficiently find all β-majority colours in the
multiset of the colours of the points of P ∩Q.

Our high-level plan is to use a Θ(logε n)-ary range tree to decompose query Q into
O(log n/ log log n) 1-D queries. By Observation 7.5, the β-majorities of Q must be in the
union of the β-majorities of the all of these 1-D queries. We take the union of the results
of the 1-D queries to obtain O((1/β) log n/ log log n) candidates. We can determine which
of these candidates are actually β-majorities in Q by counting, for each candidate, the
number of points of the candidate colour in Q. All of these Θ(logw n)-time range counting
queries (see Theorem 4.1) would require a total of O((1/β)(log n/ log log n)2) time. We
can do better, by first filtering out candidates using approximate range counting. We can
determine a multiplicative constant-factor approximation for each candidate in O(log log n)
time each via our data structure for approximate range counting. In only O((1/β) log n)
time, we are thus able to filter our candidates down to a set of size O(1/β). We can
then afford to perform the expensive exact range counting queries for this smaller set of
candidates without increasing the overall query time beyond O((1/β) log n). Since we are
performing counting in 2-D to verify which candidates are α-majorities, we are able to save
space by using a modified 1-D data structure that does not verify that the O(1/β) colours
that it outputs are all β-majorities.
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Before we dive in, we consider a generalization of the augmented range tree of Chan
et al. [CLP11] (see Section 3.2) for Θ(logε n)-ary range trees. This generalization will
be useful in our decomposition of 2-D queries into 1-D queries. The augmented range
tree of Lemma 3.11 equipped with the ball inheritance data structure of Corollary 3.10
requires O(n logε n) space, O(1) time for ball inheritance queries, and O(log log n) time
for predecessor search queries in any node. In our generalization, a ball inheritance query
specifies the rank of a point amongst those of a sequence of adjacent siblings in the range
tree instead of amongst those of a single node. Similarly, a generalized predecessor search
query searches amongst the points of a sequence of adjacent siblings.

Lemma 7.7. There exists an augmented Θ(logε n)-ary range tree that requires O(n log2ε n)
space and that supports generalized ball inheritance queries in O(1) time and generalized
predecessor search queries in O(log log n) time.

Proof. Let b be the first power of 2 no less than logε n. Then, b is a power and 2 and is also
Θ(logε n). Every node in a b-ary range tree contains exactly the same points as some node
in a standard binary range tree. Thus, using the augmented range tree of Lemma 3.11
equipped with the ball inheritance data structure of Corollary 3.10, ball inheritance queries
involving only a single node can be answered in constant time using O(n logε n) space by
querying the corresponding node in the standard binary augmented range tree.

Consider a sequence of adjacent children ci, . . . , cj of the root of the b-ary range tree.
We build a bit vector Ai,j[1 : n] where Ai,j[k] is 1 if and only if the point at index k in
the root node is in one of ci, . . . , cj. We build the succinct rank and select data structure
of Theorem 3.1 for each of these bit vectors. We build this data structure for all O(b2)
sequences of adjacent children of the root node and also recursively build the data structures
in each child node. The additional space required is given by the recurrence

S(n) = bS(n/b) +O(nb2/w)

⇒ S(n) = O((nb2/w) logb n)

= O(n log2ε n).

Assume we are given a generalized ball inheritance query consisting of a sequence of
children ci, . . . , cj of a node p and a rank k to a point within this sequence. We select,
in constant time, the kth one bit in Ai,j, resulting in an index k′ into the bit vector. The
point with rank k′ in p is the point with rank k in ci, . . . , cj. A standard ball inheritance
query can now, in constant time, determine the coordinates of the point with rank k′ in p.
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Now, assume we are given a generalize predecessor search query consisting of a sequence
of children ci, . . . , cj of a node p and a value v from which to search. We perform a standard
predecessor search query in p with value v, resulting in a rank k′ in p. We determine k,
the number of one bits up to index k′ in Ai,j, via a constant-time rank query. The point
with rank k in ci, . . . , cj is the predecessor of the point with rank k′ in p, and is thus also
the predecessor of value v.

We now consider the range β-majority problem in an array with slightly modified
requirements in order to save space. We relax the requirements of the data structure in
two ways. First, the data structure reports a colour by giving its index in A. Second, the
data structure may report indices that correspond to colours that are not β-majorities in
A[` : r], as long as it reports all β-majorities in A[` : r].

Lemma 7.8. There exists a data structure for an array that, given a subarray A[` : r],
reports a set I of indices such that {A[i] | i ∈ I} contains all β-majorities in A[` : r]. The
data structure requires O(n log(1/β)) bits of space and O(1/β) query time.

Proof. We begin with the range β-majority data structure of Durocher et al. [DHM+11].
The data structure is conceptually a range tree formed by recursing on the left and right
halves of A. At each level of the tree, consecutive sequences of four tree nodes are grouped
into quadruples. There are O(n) such quadruples. Consider a quadruple (a, b, c, d) con-
sisting of a total of m elements. If a query within this quadruple contains either b or c,
then the query has size at least m/4. Then, any β-majority must have multiplicity greater
than β(m/4). However, there can be at most 4/β = O(1/β) elements with such high
multiplicity in the quadruple. For our purposes, it is sufficient to output these O(1/β)
candidates. Durocher et al. [DHM+11] show that for every query, there is a quadruple
(a, b, c, d) that contains the query such that the query contains either b or c. Furthermore,
such a quadruple can be found in constant time by an O(n)-bit data structure.

For quadruples of size m > 1/β, we encode the set of O(1/β) candidates by an array of
indices into the quadruple pointing to each candidate. Each index requires O(logm) bits.
For quadruples of size m ≤ 1/β we do not store anything as we can simply output every
element in the query range in O(1/β) time in this case. The total space requirement in
bits is given by the recurrence

S(n) =

{
2S(n/2) +O((1/β) log n) for n > 1/β

O(1) for n ≤ 1/β

⇒ S(n) = O(n log(1/β)).
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During a query we can convert indices into a quadruple to indices in A in constant time
based on the offset of the quadruple in A, which can be computed in constant time.

We now have the tools required to tackle our 2-D results.

Theorem 7.9. There exists a data structure for the 2-D orthogonal range β-majority query
problem requiring O(log(1/β)n logε n) space and O((1/β) log n) query time.

Proof. We build the generalized augmented Θ(logε
′
n)-ary range tree of Lemma 7.7. For

every sequence of adjacent siblings in the range tree, we map the union of the points of
these siblings to an array such that the ith entry contains the colour of the point with
y-rank i. For each such array, we build the data structure of Lemma 7.8. The total space
required by all of these data structures is O(log(1/β)n logε n) where ε = 2ε′.

For each colour, we also build the approximate 2-D orthogonal range counting data
structure of Corollary 4.19, as well as the exact 2-D orthogonal range counting data struc-
ture of Theorem 4.1. The exact counting data structures require O(n) space across all
colours and answer queries in O(logw n) time. The approximate range counting data struc-
tures require O(n log log n) space across all colours and answer queries in O(log log n) time.
Finally, we build the exact counting data structure of Theorem 4.1 over all of P , requiring
linear space and O(logw n) query time.

Given a query range Q, we use our range tree to decompose Q into O(log n/ log log n)
vertical slabs, where each slab corresponds to some sequence of adjacent siblings in the
range tree. We use generalized predecessor search data structures to map the top and
bottom boundaries of Q into y-ranks in each slab. All of these predecessor searches require
O(log n) time. In each slab we then find O(1/β) β-majority candidates using the data
structure of Lemma 7.8. These candidates are represented as ranks of points in each slab.
We can determine the colours of these points via generalized ball inheritance queries. By
Observation 7.5, every β-majority of Q must be a β-majority in one of the slabs that
partition Q. Thus, we have O((1/β) log n/ log log n) candidates for β-majority of Q.

We determine |P ∩ Q| in O(logw n) time using the exact counting data structure for
P . For each candidate of colour c, we use the approximate range counting data structure
for c to find a multiplicative constant-factor approximation k of the number of points with
colour c in Q. Then, for some sufficiently small constant f < 1, it is safe to exclude
candidates for which k < fβ|P ∩ Q|. Each remaining colour has multiplicity Ω(β|P ∩
Q|) in P ∩ Q; there can be at most O(1/β) such colours. Finally, we use the exact
counting data structures for each remaining colour to determine which of these remaining
candidates are actually the β-majorities. The query time is dominated by the cost of
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O((1/β) log n/ log log n) approximate range counting queries that require O(log log n) time
each for a total of O((1/β) log n) time.
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Chapter 8

Conclusion

Range Counting. We have given an adaptive data structure for 2-D orthogonal range
counting that requires O(n log log n) space and O(log log n + logw k) query time. When
when k = O(1), the space and query time bounds for this data structure match the best
known bounds for the 2-D orthogonal range emptiness query problem. However, there is
also a data structure for the 2-D orthogonal range emptiness query problem that requires
only O(n) space and O(logε n) query time. An interesting open problem is whether or
not there is an adaptive data structure for 2-D orthogonal range counting that similarly
matches these bounds, modulo an O(logw k) term in the query time.

Open Problem 8.1. Does there exist a data structure for 2-D orthogonal range counting
requiring O(n) space and O(logε n+ logw k) query time?

Such a data structure would be a strict improvement over the linear-space data structure
of JaJa et al. [JMS05] that supports 2-D orthogonal range counting queries in O(logw n)
time. In Corollary 4.12, we give a linear-space K-shallow data structure for 2-D orthogonal
range counting that requires O(logε n + logwK) query time. However, we cannot follow
the approach of building such a data structure for double exponentially increasing values
of K to create an adaptive data structure, as the space requirement would increase by an
O(log log n) factor. It seems that new ideas are necessary.

Since K-shallow cuttings of size O(n/K) exist for 3-D dominance regions, it is natural
to wonder whether our techniques can be applied to 3-D orthogonal range counting. The
best known data structure for the 3-D orthogonal range emptiness query problem requires
O(n log1+ε n) space and O(log log n) query time [CLP11]. The best known data struc-
ture for 3-D orthogonal range counting requires O(n logw n) space and O((logw n)2) query
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time [JMS05]. It turns out that our succinct data structure representations of shallow
cuttings are key to keeping both our space and query time bounds low. These succinct
shallow cuttings depend on the structure of shallow cuttings for 3-sided 2-D ranges and
cannot be generalized to shallow cuttings for 3-D dominance regions. Then, to decide in
which cell a 3-D dominance region lies requires 2-D orthogonal point location queries that
run in O(log log n) time. Thus, if we have K-shallow cuttings for various values of K, we
must overlay them in order to avoid increasing query time beyond O(log log n). However,
overlaying two shallow cuttings can result in O(n2) cells and our space bound would suffer.

Open Problem 8.2. Does there exist a data structure for 3-D orthogonal range counting
requiring O(n log1+ε n) space and O(log log n+ (logw k)2) query time?

Open Problem 8.3. Does there exist a data structure for (1 + δ)-approximate 3-D or-
thogonal range counting requiring O(n log1+ε n) space and O(log log n) query time?

Range Selection. We have given an adaptive data structure for the range selection query
problem in an array that requires O(n) space and O(logw k) query time to select the kth

lowest element in a given subarray. Our data structure is optimal as it matches the lower
bound of Jørgensen and Larsen [JL11]. Our data structure can answer range minimum
queries in optimal O(1) time and range median queries in optimal O(logw n) time. Other
than potential generalizations or simplifications, our result ends its line of research.

Range Mode. We have demonstrated the hardness of the range mode and least frequent
element problems by reducing Boolean matrix multiplication to the construction and use
of a range mode or least frequent element data structure. This argument is not a rigorous
lower bound argument as the complexity of Boolean matrix multiplication is not known.
Since no current techniques seem capable of proving unconditional super-polylogarithmic
cell probe lower bounds, the following open problem is likely very difficult to solve.

Open Problem 8.4. What is the optimal query time required by any linear-space data
structure for the range mode query problem in an array?

Using succinct rank and select data structures and bit packing, we reduce the query
time for the range mode query problem from O(

√
n) to O(

√
n/w) without increasing

the data structure’s space consumption beyond O(n). Unlike the frequency of the mode
of a multiset, the frequency of the least frequent element of a multiset does not vary
monotonically as elements are added to the multiset. Furthermore, when the least frequent
element changes, the new element of minimum frequency has no relationship with the newly
added element. Consequently, our techniques do not seem immediately applicable to the
least frequent element range query problem.
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Open Problem 8.5. Does there exist a data structure for the range least frequent element
query problem in an array requiring O(n) space and o(

√
n) query time?

An interesting generalization of the range mode and least frequent element query prob-
lems is to compute the kth most frequently occurring element (or the top k most frequent
elements) in a query range. This problem generalizes the range least frequent element
query problem similarly to how the range selection query problem generalizes the range
minimum query problem. Generalizations of our techniques for the range mode and least
frequent element query problems seem unlikely without a significant increase in space when
k is large.

Open Problem 8.6. Does there exist a data structure that can identify the kth most
frequently occurring element (or the top k most frequent elements) in a given subarray of
an array while requiring O(n) space and O(n1−ε) (or O(n1−ε + k)) query time for some
constant ε > 0.

We note that Lemma 7.4 is a linear-space data structure that solves the variant of
reporting the top k most frequent elements, but only for one-sided ranges of the form
A[1 : r].

Range Majority. We have given a data structure achieving O(1/α) query time in O(n)
space for the range α-minority problem. This data structure is efficient despite allowing α
to be specified at query time. We also give a data structure achieving O(1/α) query time
in O(n log n) space for the range α-majority problem. These bounds match those of Gagie
et al. [GHMN11], but our technique is significantly different. The greater space required
by our α-majority data structure in comparison to our α-minority data structure suggests
that further improvements may be possible.

Open Problem 8.7. Does there exist a data structure for the range α-majority query
problem in an array requiring o(n log n) space and O(1/α) query time?

Our data structure for the 2-D orthogonal range β-majority problem requires signif-
icantly more space and query time than data structures for the 2-D orthogonal range
emptiness problem, suggesting again that further improvements may be possible. Also,
investigation into supporting α-majority queries is warranted.
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[Păt07] M. Pătraşcu. Lower bounds for 2-dimensional range counting. In Proceedings
of the 39th Symposium on Theory of Computing (STOC’07), pages 40–46.
ACM, 2007.

[Pet08] H. Petersen. Improved bounds for range mode and range median queries. In
Proceedings of the 34th Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM’08), volume 4910 of LNCS, pages 418–423.
Springer-Verlag, 2008.

[PG09] H. Petersen and S. Grabowski. Range mode and range median queries in
constant time and sub-quadratic space. Inf. Process. Lett., 109(4):225–228,
2009.
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