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Abstract 

Ultra-low-power circuits are becoming more desirable due to growing portable device markets 

and they are also becoming more interesting and applicable today in biomedical, pharmacy and 

sensor networking applications because of the nano-metric scaling and CMOS reliability 

improvements. In this thesis, three main achievements are presented in ultra-low-power adders. 

First, a new majority function algorithm for carry and the sum generation is presented. Then with 

this algorithm and implied new architecture, we achieved a circuit with 75mV supply voltage 

operation. Last but not least, a 64 bit current-mode majority-function adder based on the new 

architecture and algorithm is successfully  tested at 75mV supply  voltage. The circuit consumed 

4.5nW or 3.8pJ in one of the worst conditions.
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Chapter 1

1.

Introduction

1.1. Motivation

Power consumption is a key limitation in many electronic systems, ranging from mobile telecom 

to portable and desktop computing systems. Power is also a show stopper for many emerging 

applications like ambient intelligence and sensor networks. Consequently, new design techniques 

and methodologies are needed to control and limit  power consumption. From sophisticated 

handheld devices to bioelectronic circuits and nano-satellites, all require low power design. Due 

to scaling, circuits are becoming more capable, use more transistors to implement complicated 

functions and offer new applications to customers. But this means more power consumption. In 

some cases, low power design is required to avoid over heating. There are other applications like 

bioelectronics where the circuit would be implanted inside the body  and has to work either with 

small battery  or using power harvesting techniques. Similar to that, RFID and growing sensor 

networking circuits also have  to consume very low power because of available power limitation. 

In some cases we may  consider low-power design a second priority, but in those applications 

lower-power design is critical. So either source power limitation or, over heating concern and 

battery life consideration, low power design is the answer.  

In digital processing, a full adder is one of the main elements; an ALU, DSP and digital filtering 

in any microprocessor/microcontroller are based on it. Therefore, to have low power digital 

processing, a low-power full adder is desired. 
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In terms of power reduction techniques and comparison there are few papers and references 

available. At  the architecture level, some solutions like adiabatic circuits have been introduced to 

reduce power consumption. However, some of these solutions, like adiabatic, may  not be 

practical due to the number of transistors they require. Some of these techniques like pipeline 

structures or asynchronous timing becoming more attractive and getting more attention than 

other solutions. This is beside the original and main solution to reduce the supply voltage.        

The aim of this research is to explore different solutions along with circuit techniques and to 

achieve a practical low-power architecture that is applicable and suitable for 64-bit low-power 

addition. 

1.2. Thesis Organization 

In chapter 2, we review power consumption in CMOS circuits, which is followed by  solutions 

that are introduced to lower power consumption. First, we quickly review the CMOS sources and 

design consideration, theory to implementation, to have low power circuits.  

Chapter 3 provides background information on existing adder architectures. It compares some of 

the architectures in terms of power consumption and introduces suitable low power architecture. 

In chapter 4, we recall results of chapter 2 and 3 and propose a new architecture. Chapter 5, is the 

conclusion and summary of achievements followed by future works.   
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Chapter 2

2.

Power Consumption in CMOS Circuits

2.1. Introduction

Low-power circuit operation is becoming an increasingly  important metric for future integrated 

circuits. As technology continues to scale into the sub-micron regime, massively parallel 

architectures are increased and being constrained by power considerations. Low power and low 

energy have captivated circuit designers for the past few years in the quest for enhancing 

performance and extending battery lifetime. The increasing demand for integrating more 

functions with faster speeds is met by a slow increase in the capacity of batteries. The increasing 

power dissipation for fixed supply  devices is almost equally challenging as for portable devices. 

As technology feature size is reduced, the number of transistors on the chip is increased and 

more power is dissipated. According to Moore’s law, the number of transistors quadruples every 

two to three years. Expensive packing techniques are essential for dissipating such extensive 

power consumption from that large number of transistors. Also, increased power dissipation has 

an impact on device reliability. The terms of low power and low energy, although have different 

definitions, both serve to achieve the same objective. Power is defined as the average product of 

supplied voltage to a chip from the power supply  and its consumed current and it is measured in 

watts. Meanwhile, the term of energy refers to the energy dissipated per operation and is 

measured in joules. In fact, energy can be expressed in terms of the Power-Delay Product (PDP), 

which is the product of power consumption and delay. In general, reducing power will increase 

delay time; however performance is a product of these two parameters. There are some methods 
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and techniques for power and energy reduction. Most of the techniques in low power design are 

not really new ideas  or concepts but  mainly they are revisited due to transistors scaling which is 

a source of leakage currents.   

2.2. Power Dissipation

In most digital CMOS integrated circuits, power consumption can be attributed to three different 

components: short circuit, leakage, and dynamic switching power. Short circuit currents occur in 

CMOS circuits during switching transients when both NMOS and PMOS devices are “on” but 

usually  are small in well designed circuits. Dynamic switching power is the dominant component 

of power consumption today and it  is result of the gate and interconnect capacitances charging 

and discharging during the switching of signals. The third component of power consumption is 

the leakage which is also considered as static power dissipation. 

                                             

58 Prasad D Khandekar and Shaila Subbaraman 

Introduction 
The three contributory factors to the total power dissipation in CMOS are a) static 
power dissipation due to leakage current flowing through reverse biased p-n junctions 
and subthreshold current b) dynamic power dissipation due to charging and 
discharging of load capacitor during the time the output is switching and c) the short 
circuit current power dissipation during switching due to n-channel and p-channel 
transistors of the CMOS structure conducting in saturation for a short time during 
switching. The contribution due to dynamic power dissipation is the highest and is 
about 70% while that due to static power dissipation is the lowest and is about 10%. 
The remaining contribution to the total power dissipation is due to short circuit current 
dissipation. 

The charging and discharging of a load capacitor CL for a conventional CMOS 
circuit is represented in Fig. 1. It is seen that CL charges to VDD through F while 
discharges to ground through F’. During charging an energy = (1/2) CLVDD

2 is lost in 
the pull up circuit while during discharging energy = (1/2) CLVDD

2 (which was stored 
in the capacitor) is lost to the ground. Thus in one cycle of charge and discharge, 
energy CLVDD

2 is dissipated. If the output is switching at frequency f and the switching 
activity is α,  then the dynamic power dissipation is given by, 

P dynamic = α CLVDD
2 f  (1) 

The quadratic dependence of dynamic power dissipation on supply voltage offers 
an attractive solution to reduce it by a factor of S2 with supply voltage scaling down 
by a factor of S. 

 
 
 
 
 
 
 
 

 
Figure 1: Conventional CMOS. 

 
Unfortunately, as supply voltage is reduced, the circuit delays increase 

exponentially. It can be proved analytically that the power-delay product is optimized 
for power supply voltage equal to 2Vt. This tends to limit the range of voltage supplies 
to a minimum of about 2Vt. [1] Once the supply has been fixed, it remains to tactfully 
minimize the physical capacitance and activity at that operating voltage. 

A considerable amount of energy saving can be obtained if the energy which is 
generally lost to the ground during discharging period in a conventional CMOS logic 
is returned back to the supply itself. If recycling of the energy drawn from the supply 
is done then the energy efficiency of the logic circuits can be increased. Adiabatic 
logic design offers this possibility. 

Figure (2.2.1) Conventional CMOS circuit [2].

Basic energy and charge conservation principles explain the switching energy and power 

dissipation on static fully  restoring CMOS logic. In generic a CMOS gate that is shown in figure

(2.2.1) and is loaded with a capacitor CL. The load capacitor refers to the lumped parasitic input 

capacitances of the next logic stage. It is connected to supply voltage VDD through a pull-up 

network composed of “P” channel MOSFETs and same way is connected to the GND through a 

pull-down network of “n” channel MOSFETs.  So CL charges to VDD when pull-up network is 

tied and pull-down cut and will discharge when networks conditions swap. Consider Q is the 

charge size in process of charging then: 
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                                                                 ﻿Q = CL.VDD (2.1)   ﻿        

So the  energy that is supplied to CL is:             

                                                          ﻿EC = 1
2CL.VDD

2 (2.2)

Because energy is conserved, the other half must be dissipated by pull-up  network regardless to 

the make-up  of the resistance of the switches (PMOS), network and the time that is required to 

complete the charging. Similarly, during the discharge all of the signal energy  stored on the 

capacitor is inevitably  dissipated in the pull-down network. This is because no signal energy can 

enter to the GND rail (Q . VGND = Q . 0 ).  The energy of charge or given energy from supplier is:

                                                ﻿EV DD = CL.VDD2̂ (2.3)                   

 However, the energy dissipated when a signal is cycled and it is fixed at twice the signal energy, 

hence the only way to reduce energy dissipation in conventional CMOS circuits is to reduce the 

signal energy and this leads to have more background noise sensitivity  and thus the probability 

of malfunction. Consider figure (2.2.1) once again when NMOS and PMOS are substituted in 

pull-down and pull-up network receptively and consider resistor “R” for channel resistance and 

using constant charge current, so the dissipation through the channel resistance of pull-up(down) 

would be:

                         ﻿Edis = P.T = I2.R.T = (CL.VDD
T )2.R.T = R.CL

T .CL.VDD2̂ (2.4)

Equation (2.4) shows dynamic charge/discharge power dissipation and it is guidance to low 

power and energy circuit design.  Now we will look at those three different  components of power 

dissipation individually and more in detail. 

2.2.1 Static power

Technology scaling is one of the driving forces behind the tremendous improvement in 

performance, functionality and the power in integrated circuits over the past  several years. 

However, as scaling continues for future technologies, the impact of sub-threshold leakage 

currents will become increasingly large. 

In industry, the standard scaling methodology has been constant field scaling with 30% reduction 

of all dimensions per generation as summarized in table (2.1). In general, using constant field 
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scaling, physical dimensions (W, L, tgox, Xj) all scale by a factor 1/S, substrate doping scales by 

S, and voltages (VCC, Vtn, Vtp) scale by 1/ S, where S is greater than unity. Consequently, device 

currents scale by 1/S, gate capacitances scale by 1/S, and intrinsic gate delays scale by  1/S. Thus 

with 30% scaling of physical parameters, one can achieve close to a 50% improvement in 

frequency from generation to generation, although this will be degraded by worsening 

interconnect dominated delays [40]. 

Table 2.2.1 Technology Scaling Trends[40]

       

21

are limited in today’s technologies, it will become an increasingly dominant component of

overall power dissipation in future low power circuits[2].

1.2 Technology Scaling Impact on Subthreshold Leakage

Technology scaling is one of the driving forces behind the tremendous improvement in

performance, functionality, and power in integrated circuits over the past several years.

However, as scaling continues for future technologies, the impact of subthreshold leakage

currents will become increasingly large. In industry, the standard scaling methodology

has been constant field scaling with 30% reduction of all dimensions per generation as

summarized below.

In general, using constant field scaling, physical dimensions (W, L, tgox, Xj) all

scale by a factor 1/S, substrate doping scales by S, and voltages (VCC, Vtn, Vtp) scale by 1/

S, where S is greater than unity. Consequently, device currents scale by 1/S, gate capaci-

tances scale by 1/S, and intrinsic gate delays scale by 1/S. Thus with 30% scaling of phys-

ical parameters, one can achieve close to a 50% improvement in frequency from

TABLE 1-1. Technology Scaling Trends

Scaling Parameter
1/S Constant
Field Scaling

30% Scaling
Field Scaling

W, L, Tgox, Xj 1 / S 0.7

Substrate doping S 1.43
VCC, Vtn, Vtp 1 / S 0.7

Cgate, Imax 1 / S 0.7

Propagation Delay 1 / S 0.7
Frequency S 1.43
Chip Dimension 1 / S2 0.5

Dynamic Power 1 / S2 0.5

Leakage Power exponential exponential

Constant Die Assumption
Chip Dimension 1 1
Functionality S2 1.43

Dynamic Power (Constant Die) 1 1
Leakage Power (Constant Die) exponential exponential

The switching energy dissipated per event scales by 1/S3 because of 1/S constant field scaling, 

when the operating frequency increasing with scaling results the switching power dissipation 

scales by 1/S2. However, on the constant die size, dynamic power dissipation result of switching 

currents remains relatively  constant with scaling. This is because of the number of switching 

elements that are used in the same die size which are increased by a factor of S2. 
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On the other hand, leakage currents increase exponentially with a reduction in Vt, and 

furthermore the total effective width of the devices will increase by a factor of S [40]. 

Leakage current consumption is considered as static power consumption. Major elements of 

leakage current are shown in figure (2.2.2).    

Gate (Metal)Gate (Metal)Gate (Metal)

Gate OxideGate OxideGate Oxide

N+N+ I2 I3 I6 N+N+

                                                                                                                        I1
                                                                                                       I4
                                                                        I7  I8

P-Well

                                                                                                                        I1
                                                                                                       I4
                                                                        I7  I8

P-Well

                                                                                                                        I1
                                                                                                       I4
                                                                        I7  I8

P-Well

                                                                                                                        I1
                                                                                                       I4
                                                                        I7  I8

P-Well

                                                                                                                        I1
                                                                                                       I4
                                                                        I7  I8

P-Well
Figure (2.2.2) Leakage Current Components [3]. 

• I1 is the reverse-bias p-n junction leakage caused by barrier emission and minority carrier 

diffusion and band-to-band tunneling. However this current has minimal contribution to total 

OFF current. 

• I2 is sub-threshold conduction current. This is Drain-Source current when Gate-Source voltage 

is lower than VTH. This is a dominant component in leakage current and we will talk more in 

detail later in sub-threshold circuit section. 

• I3 results from the drain-induced barrier lowering (DIBL) effect. In general and ideally, DIBL 

does not change the sub-threshold slope but does lower VTH.

• I4 is gate-induced drain leakage (GIDL). The I4 is a result of the applied high electric field 

under gate-drain overlap region which causing a thinner depletion region of drain to well 

junction. GIDL is small for normal supply voltage but its impact rises at higher supply voltages 

(near burn-in).
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• I5 is channel punch-through. A punch-through current is a consequence of source and drain 

depletion regions merging into a single depletion region when channel current in sub-gate 

region is out of the gate voltage control.

• I6 is the Narrow-Width effect current. 

• I7 is oxide leakage. 

• I8 is the gate current due to hot carrier injection. 

In general all above currents are participating in two kinds of leakage current, first, ON leakage 

(I7 and I8 ) and second, OFF leakage currents which includes I1 through I6. The main concern in 

terms of leakage is about the OFF current and therefore, the focus is on the current components 

I1 through I6.   

So the total leakage current assumption will be,

                        ﻿IL = I1+I2+I3+I4+I5+I6 = I0.e
VGS−Vth+ηVDS

nVT .[1−e
−VDS

VT ] (2.5)            

where right  equation presents sub-threshold current in MOSFET moreover η and “n” are DIBL 

and sub-threshold slope coefficient.                                                   

So the total static power consumption would be,

                                                                   ﻿PS = IL.VDD (2.6)

 

2.2.2. Dynamic Power

Dynamic (switching) power is the main contributor to total the CMOS power consumption and 

mainly related to architecture and circuit speed requirements. Ever since the 0.5µm generation, 

the gate dielectric oxide thickness, supply  voltage and threshold voltage have scaled with device 

dimensions to limit the growth of dynamic power consumption while improving performance 

which led to exponential increase in static leakage power. Looking at dynamic power we see 

whenever a capacitor, which represents parasitic or controlling-charge element, charges or 

discharges, there is power dissipation and equations (2.2) to (2.4) are applicable. Equation (2.4) 

clearly  shows the effect of time and advantages of using constant current charge/discharge to 

control storage energy and power dissipation versus constant voltage.     
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In the charge process as we saw that in figure (2.2.1), CL draws an energy equal to CL.VDD2 from 

the power supply where CL is the average total on-chip capacitance switched per cycle. Half of 

this energy is stored on CL, while the other half is dissipated immediately as heat on the network 

(in the PMOS transistors and the capacitor). The discharge process similarly  draws the stored 

energy in CL (equation 2.2) and dissipates that on the NMOS pull-down network. Hence, the 

total dynamic power dissipation is also function of charge/discharge event probability (Pe). 

So the consumed power by switching of the capacitor over the period of T is,

                             ﻿
P =

E

T
=

CL.VDD2̂

T
= CL.VDD2̂.f (2.7)

Where f = 1/T is charge/discharge speed. 

Considering activity factor (α) or event probability  in equation (2.7), the total dynamic 

(switching) power becomes,

                                                          ﻿PD = α.CL.V 2
DD.f (2.8)

Equation (2.8) is a general function for dynamic power dissipation and there are some other 

sources which are hidden inside of parameters. One of the most common and major one which 

has an impact on PD and increases dynamic power consumption is a glitch. A glitch mostly  is 

hidden inside of probability  of event. A glitch highly depends on the circuit architecture and 

signal timing in the circuit. The other item which has an impact on dynamic power is technology 

scaling. From table (2.2.1) we can see that dynamic power is scaled by (1/S2) when VDD scaled 

by 1/S. But  this is partially true and in reality, there is other fact that has an impact on total 

dynamic power. This is beyond the architecture affect like the glitch. This is about MOSFET 

properties and controlling charges; however it has consequence in architecture. From the theory 

of charge control devices, charges can be distinguished as either controlling or controlled charge. 

In a MOSFET, controlling charge is the required charges for the gate to do the switching while 

the controlled charge flows through the channel. In a digital circuit, logic levels (0 and 1) are 

related parameters to ION/IOFF. The IOFF is the leakage current and as we saw that in static power 

review, this current  is increased due to scaling. So to have a valid logic, the ION also must 

increase in a same order. This mean we are in positive loop, because the channel current ratio 
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(controlled charges) is related directly to the controlling charge and Cg . We can see  that in 

equation (2.9) and (2.10).

                                                ﻿
VG =

Q

C
=

ION − IOFF

Cg.tpd
(2.9)

In saturation region and VS=0, MOSFET current is,                         ﻿                                                                           

Hence, to have stronger ION or IDS, transistors must consider to be stronger and that leads to 

larger capacitors and it requires more charge or current and this loop will continue.  

The last but not least hidden component in dynamic power is power loss in wires and 

conductances. Lower voltage due to scaling in conjunction with higher current cause voltage 

drop on the internal resistors of wires and conductances. This voltage drop  and power loss in 

most cases needs compensation to avoid logic level distortion and have better SNR. 

2.2.3. Short Circuit

Short circuit power is consequence of signal rise and fall time. The fact is during those periods 

PMOS and NMOS or in general, pull-up and pull-down networks are ON, so there will be a path 

from VDD to VSS (GND). Short circuit power is part of dynamic power consumption due to its 

dependency on signal transition and it  may presents differently in different digital logic structure 

(e.g. Static and Dynamic logic). 

Basically, CMOS cells have a minimal period of short circuit current flow, but due to the slower 

operation in low voltage circuits, this period increases. Thereby, the short circuit power is a 

factor of the supply voltage and as it is shown in equation (2.11), it will consume less when 

voltage decrease. Note that the tr and tf parameters will increase because of VDD reduction but 

not in linear fashion.  

Consider short circuit  spikes, approximately be a triangle and VDD is bigger than Vth , as it is 

depicted in figure (2.2.3), hence, we can write, 

                                      ﻿
Psc = VDD[

Ipr.tr
2

+
Ipf .tf

2
].f (2.11)
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2
.(VG − Vth)2 (2.10)



where   Ipr : Pick current during the rise-time.

  Ipf  : Pick current during the fall-time. 

  tr : Rise-time period.

  tf : Fall-time period.

  f:         circuit switching frequency.

  Ip : Saturation current.                                                                                                            

If we consider Ipr = Ipf and apply  switching activity factor (α) in equation (2.11), then we can 

rewrite that equation and simplify it to,

                                                 ﻿Psc = α.VDD.Ip
tr + tf

2
(2.12)
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 Figure (2.2.3) Short circuit model [3].

Thereby short circuit current can given by,

                                                              ﻿
Isc = Ip.

tr + tf
2f

(2.13)

               

2.3. Low Power and Low Energy Circuits Ideas

In last section we discussed briefly  about power consumption and its sources in CMOS 

technology. We saw that in most digital circuit where there is no need for biasing, then switching 

power, or in general, dynamic power is major source for power dissipation. We also saw that 
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leakage currents which are sources for static power dissipation in non biased digital circuits also 

are growing because of technology  scaling. From equations (2.6), (2.8) and (2.12), it  is very 

obvious that  supply  voltage (VDD) has major role in both static and dynamic power dissipation; 

note that  short circuit and glitch power dissipation are included in dynamic power dissipation. 

Hence supply voltage reduction is one of the most efficient and attractive solutions for low 

power circuit. For dynamic power, smaller capacitors help to improve power dissipation and it 

leads to optimum speed or frequency because of its effect on current of transistors and load 

reduction at the same time. Last but not least parameter that has direct effect on power, is activity 

factor (α). Controlling activity factor also helps to reduce static power when each block turns 

ON/OFF in its own turn. Using a pipeline architecture applies activity factor control idea and it 

makes parallelism more attractive. In this section we are looking more in detail about these 

parameters and their interaction with each other.     

2.3.1. Low Voltage and Sub-Threshold Circuits

Lowering supply voltage is our goal but the challenge is the minimum applicable supply voltage 

which circuit can operate correctly. History of minimum voltage refers to as early as 1962, when 

Keyes published papers about the limitations of performance and power dissipation of digital 

circuits. He concluded that the minimum possible voltage limit is not much higher than the 

thermal voltage (KT/q = 25 mV) but ultimately voltage must be above 500 mV for performance. 

Then Menial and Swanson in 1971 pushed voltage lower and showed CMOS circuits have the 

best power-speed product in comparison with TTL and ECL. Indeed that was true when leakage 

was low then. They showed a ring oscillator in 1972 which could work with 100mV. In 2001 

another minimum voltage operation theory emerged. To achieve the lowest possible voltage, 

NMOS and PMOS, off-currents must be equalized and with this condition the ideal limit that 

they  proposed was 2nKT/q = 57 mV. Another group presented an inverter using 180nm 

technology that could operate only at 70 mV. However they used a feedback to control the 

voltage to the wells to match NMOS and PMOS current. In 2002, Ono derived another minimum 

voltage limit by equating the NMOS and PMOS threshold voltages. They used triple well 

process and well voltage control and presented a SRAM bit that could operate at 175mV [1].  
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Transistor operation region depends on the applied supply  voltage. Lowering supply voltage 

shifts the operation region from strong inversion to moderate and finally to weak inversion. The 

strong inversion region, also known as the super-threshold regime is characterized by  large 

current drive and supply voltage substantially  above the threshold voltage of the transistor, Vth. 

The moderate inversion however, has lower current drive in compare with the super-threshold 

regime. In this case, moderate inversion, transistors operate close to threshold voltage, Vth. 

Unlike the other two regions, the weak inversion region, which is known as the sub-threshold 

regime, is characterized by small current drive and supply voltage is below the Vth. 

In sub-threshold operation, channel of transistor is not inverted and the source for the transistor 

current is diffusion. So from charge-based current models, transistor current in sub-threshold is 

given by [1],

           ﻿IDS = I0 e
VGS−Vth

nVT (1− e
−VDS

VT ) (2.3.1)                            

where I0 is IDS when VGS = Vth  and is given by [1],

              ﻿
I0 = µef fCOX(n− 1)

W

Lef f

V 2
T (2.3.2)

          

Parameter “n” is sub-threshold slope factor and is given by [1],

                ﻿
n = 1 +

Cd

Cox
(2.3.3)

                    

Considering DIBL (Drain-Induced Barrier Lowering) effects in transistor current which was 

shown in equation (2.3.1), gives right  model for transistor current in very weak inversion. This 

total current is given by,

             IDS = I0 e
VGS−Vth+ηVDS

nVT (1− e
−VDS

VT ) (2.3.4)

where η is DIBL coefficient. 

Figure (2.3.1) shows the logarithmic transistor current vs. VGS in all three regions, sub-threshold 

moderate inversion and in the super-threshold regimes. 

13



             

3.1 Static CMOS Theory

conducting below the threshold voltage (VT ) is called sub-threshold conduction. Unlike
moderate and strong inversion, in which the drift component of current dominates, sub-
threshold conduction is dominated by diffusion current [19]. Sub-threshold conduction can
be expressed by two useful equations. First, a simple first-order approximation is shown by
[2]:

Idsub1 = IOexp(
VGS − VT

nUT
), (3.1)

where n is the sub-threshold swing coefficient, the thermal voltage is defined as UT = kT/q

(25 mV for 25 C), and IO is the drain current when VGS=VT :

IO = µ0COX
Weff

Leff
(n − 1)U 2

T , (3.2)

where µ0 is the zero bias mobility, COX is the gate capacitance per unit area, andWeff and
Leff are the effective gate width and length, respectively.

Figure 3.1: CMOS Ids operation regions shown for an NMOS with Vds=1.2 V and VGS swept
from 0 V to 1.2 V.

A more detailed and intuitive current equation applicable for the sub-threshold region,
moderate inversion, and strong inversion is found from the Enz, Krummenacher, and Vittoz
(EKV) model. It provides simple hand calculations and a small amount of parameters for
calculation of the current. The model was specially developed for low-voltage and/or low-
current circuit design. Its roots derive from the design of analog circuits used within the first
electronic watches. The model has been used primarily in the design of low power analog
circuits, but it also finds application in digital logic [20]. For a thorough presentation of its
influential history see [21].
The main transistor design parameter of the EKVmodel is called the inversion coefficient

(IC). The IC replaces the long-time used overdrive voltage, which works well for the strong
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   Figure (2.3.1) Transistor current characteristics [36]. 

The slope of ID vs. VGS in millivolts per decade of current changes represents 1/S where S is 

slope factor and is given by,

      S = nVT ln 10 (2.3.5)  

Results of transistor current (Ion) in sub-threshold regime shows that the current is exponentially 

dependent on VGS , Vth and supply voltage. Hence the propagation delay and current matching 

between transistors are exponentially  dependent on the voltages. Hence, voltage variation due to 

exponential dependence will be a major concern in sub-threshold design. For process variation, 

that can fall into global and local variations. Global variations affect all devices on a wafer 

similarly  (i.e. discrepancies in alignment) with an effect seen in the sub-threshold region as 

strong PMOS or weak NMOS, or vice verse but local variations affect devices on the same wafer 

differently and consist of both systematic and random components. Typically, global variations is 

of most concern in digital CMOS design. However device mismatching is a consequence of local 

variation and threshold voltage (Vth) variation models that. The standard deviation of threshold 

voltage approximately is proportional to  ﻿(WL)−1/2
 [1].       

Temperature variation and its effects also has an impact on propagation and current mismatch. 

Two major temperature consequences on threshold voltage and mobility are given by [33],
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            ﻿Vth(T ) = Vth(T0)−KcT (2.3.6)

         ﻿µ(T ) = µ(T0)(
T
T0
)−M (2.3.7)

Where T0 = 300ºK and KC is the threshold voltage coefficient which typically  is about 2.4 mV/ºK 

moreover M is the mobility temperature exponent with typical value around 1.5. In a strong 

inversion, lower mobility dominates in high temperatures and slows circuits but a lower Vth 

dominates in high temperatures and results in a lower delay in the sub-threshold region. 

So as much as voltage variation in sub-threshold has an impact on speed of transistors, in 

comparison with the other regions, temperature variation in sub-threshold decreases delay. This 

is not fully compensated mechanism to keep the delay constant and in fact  it causes some 

disorientation on the timing when synchronization is matter. Because of timing matter and 

anomalies delay in sub-threshold regime, glitching is common in combinational circuits. 

Consequences of these glitches are power dissipation and possible false signal generation.  

Following  the previous section about CMOS power consumption, consider that,

              ﻿ET otal = PT otal.T (2.3.8) 

If we model entire circuit with Ceff then dynamic energy consumption will be,

      Edyn = Cef f .V 2
DD (2.3.9)

Consider well-known delay td in an inverter which is given by [1],

       ﻿td = KCgVDD

(VDD−Vth)α
(2.3.10)

Also we can rewrite operational frequency  of “fop =1/Top” based on the depth of critical path 

“LDP” so the operating period is given by,

            ﻿Top = td.LDP (2.3.11)

The static energy consumption is given by,

         ﻿Est = IleakVDDTop (2.3.12)

       ﻿Est = WeffKCgLDPV 2
DD e

−VDD
nVT (2.3.13)

        ﻿Etotal = Est + Edyn (2.3.14)

          ﻿Etotal = V 2
DD[Ceff +WeffKCgLDP e

−VDD
nVT ] (2.3.15)
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Assuming a standard technology  where Vth is fixed (i.e. no triple wells for body  biasing), main 

task would be finding an optimum VDD and related operational time (or frequency) to minimize 

the energy for a given design. Each design and architecture has its own critical path depth and so 

it requires different minimum VDD. Regarding to (2.3.15) and “Lambert W” function and its 

constraints, VDD(optimum) is given by [1],

         ﻿
dEtotal
dVDD

= 0 (2.3.16)

        ﻿VDD(optimum) = nVT [2−LambertW ( −2Ceff

WeffKCgLDP
) e2] (2.3.17)

So in combinational circuit the optimum supply voltage is defined by (2.3.17). This defines  

optimum VDD and it is not the minimum VDD but it consider a reference point when minimum 

voltage is desired.       

2.3.2. Pipelined and Self-Timed Circuits 

Pipeline and parallelism were proposed to reduce power consumption by increasing the 

throughput of logic blocks and processors to reduce frequency and supply voltage. A pipelined 

execution unit presents a shorter stage delay than a non-pipelined execution unit [2]. It  is 

therefore possible to work at the same operating frequency while reducing the supply voltage. 

Pipelining is a technique to improve the resource utilization by forcing them to work in a given 

defined period. The main elements for the pipeline implementing are the gated clocks and the 

latch-based design data path. The idea is to provide and prepare an activation signal to be used in 

data path. So it consists of an AND gates, validation signal generators and global clock. Figure 

(2.3.2) shows the gated clock basics. Clock gating can be performed at many different levels of 

granularity. At the unit level, all pipeline stages of the unit are clocked as long as there is any 

instruction present in any  stage of the unit. At the stage level, only  the pipeline stages where 

instructions are present are clocked. Intuitively, finer grain clock gating result in larger power 

savings, but are also more complex to implement.
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Abstract
Clock-gating has been introduced as the primary means of dy-

namic power management in recent high-end commercial micropro-
cessors. The temperature drop resulting from active power reduc-
tion can result in additional leakage power savings in future pro-
cessors. In this paper we first examine the realistic benefits and
limits of clock-gating in current generation high-performance pro-
cessors (e.g. of the POWER4 or POWER5 class). We then
look beyond classical clock-gating: we examine additional oppor-
tunities to avoid unnecessary clocking in real workload executions.
In particular, we examine the power reduction benefits of a couple
of newly invented schemes called transparent pipeline clock-gating
and elastic pipeline clock-gating. Based on our experiences with
current designs, we try to bound the practical limits of clock gating
efficiency in future microprocessors.

1. Introduction
Power and power-density limits constitute one of the primary

design constraints in future high performance processors. In current
CMOS technologies, dynamic (“switching”) power still dominates;
but, increasingly, the static (“leakage”) component is threatening
to become a major - or even the dominating - component in future
technologies [2, 3].

Current generation high-end processors like the IBM POWER4
microprocessor system [14] are performance-driven designs where
power limits are still comfortably below the power density limit af-
forded by the package/cooling solution available in the server mar-
kets. In designing and implementing future processors, the power
and especially the power-density limits could become a potential
“show-stopper” as the areas shrink and the frequencies increase,
while supply voltages stop scaling down appreciably beyond 1.0
volt.

As such, techniques like clock-gating (e.g. [13, 6]) have quickly
made their way into high-end, general purpose processors, like
the POWER5 chip. In fact, it is probably fair to say that clock-
gating has been introduced as the primary means of dynamic power
management in recent server-class microprocessors. The appeal of
clock-gating is that unused resources can be gated off to reduce (av-
erage) active power quite significantly, without any IPC loss. Power
gating [8] and dynamic adaptation of on-chip resources like caches,
queues, fetch and issue bandwidth, etc. [1] are also being actively
examined in the research community; but, the potential IPC loss is
often a drawback in the high-end server domain. As a method of
controlling maximum power, however, dynamic throttling of clocks
and data processing rates is now commonly used, even in high-
performance processors (e.g. [5]).

In this paper, we first focus on quantifying the realistic benefits
and limits of classical clock-gating for a workload suite composed
of selections from SPEC benchmarks, commercial traces and
scientific application kernels. We start with a POWER4/POWER5
class machine, and examine the power savings potential across the
workload suite in using fine grained clock-gating. The results show
that a reduction in total core power of 20-30% is a realistic target for
clock-gating in high-performance processors. This is in contrast to
what one might infer from early stage modeling where the savings
opportunity is much larger.

In the second half of the paper, we look beyond classical clock-
gating to see how we can further reduce unnecessary clocking in
pipeline latches, without degrading IPC performance. We first ex-
tend stage-level clock-gating to register-level clock gating. Subse-
quently, we examine the potential of a newly invented paradigm
called transparent clock gating [9]. We also look at a new elas-
tic pipeline clock gating technique [10] that provides power effi-
cient implementations of pipeline stalling. We show that these ad-
vanced extensions of clock-gating have the potential of reducing
clock power in pipeline latches (i.e., not including register files and
arrays) by an additional 66% on top of stage level clock gating for a
floating point unit.

2. Conventional Clock-Gating: Fundamentals,
Potential and Actual Benefits

In this section, we first provide a review of the logic-level funda-
mentals behind clock-gating, implemented at various levels of gran-
ularity. We then report early stage projections of potential power
savings from clock gating in a POWER5 processor. We also report
on later stage projections based on more accurate modeling.

2.1. Clock-gating basics and criteria
Figure 1 depicts a typical clocking arrangement used in pipelined

data flow logic within a high-end microprocessor, like the POWER5
chip. The bank of latches is clocked via an AND gate that has a
valid-bit signal from the previous pipeline stage. A stall-bit from
the next pipeline stage is used to recirculate the current data during
a pipeline stall. The latches are clocked only when there is valid
data available from the previous stage or when the data needs to be
held. In alternate designs the stall bit can also be used to gate the
clock to further improve clock gating efficiency. Results in section
2 assume recirculated data while those in Section 3.3 assume clock
gated stall implementations.

valid signal from
previous stage clock

stall signal from next stage

input data

output data
1

0

la
tc

h

Figure 1. Clock gated latch with data recirculation.

2.2. The benefits of clock gating
In modern high-frequency microprocessors, roughly 70% of the

active (switching) power is consumed by the clock circuitry and its
latch load alone. The major part of the clock power is dissipated
close to the leaf nodes of the clock tree that drive latch banks. Gating
the clock at the last few levels of the clock buffers is therefore an
effective way to reduce active power. Since a clock gated latch keeps
its current data value stable, clock gating prevents signal transitions
of invalid data from propagating down the pipeline thereby reducing
switching power in the combinational logic between latches.

In addition to reducing dynamic power, clock gating can also
reduce static (leakage) power. Leakage through CMOS devices is
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Figure 6. A three-stage transparent clock-gated pipeline.

(a) Transparent clock gating (b) Traditional opaque clock gating
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Figure 7. Example waveform trace of the local stage clocks
for the pipeline in Figure 6 propagating data items A and B.

noticeable reduced clocking for TCG pipelines. Detailed circuit im-
plementations of TCG pipelines can be found in [9].

Figure 8 illustrates the clock power savings achievable when us-
ing TCG as compared to traditional stage level clock gating. The re-
sults were obtained through microarchitecture level simulation of a
server class microprocessor over a range of commercial, TPC-C ,
and floating point loop benchmarks. The graph shows clock power
reductions close to 50% over traditional stage level clock gating for
the fixed point and load-store units under commercial and TPC-C
workloads. Even under heavy floating point workloads where fewer
bubbles are available in the pipeline due to better branch prediction
and a higher degree of instruction level parallelism, the clock power
in the floating point unit can be reduced by 34%. Note that the clock
power is normalized individually to each entry in the graph and not
across units or workloads.

It is clear that in pipelines where bubbles are present between
valid data items, transparent clock gating techniques can signifi-
cantly reduce the number of clock pulses compared to traditional
opaque clock gating techniques.

3.3. Elastic pipeline clock gating
A major concern in modern microprocessors is the problem of

stalling high-frequency pipelines. Stalling occurs frequently in the
front end of the processor core in pipeline stages preceding the in-
struction issue stage due to data dependencies between instructions.
The main problem with stalling a high-frequency pipeline is the
short cycle time available to propagate a stall signal, indicating the
need to hold the current data, to upstream pipeline stages. The stall
signal is typically heavily loaded and needs to propagate over long

Figure 8. Clock power reduction for TCG vs. traditional stage
level clock gating.

b) Elastic pipeline stalling
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a) Traditional duplicate latch stage stalling
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Figure 9. Different stall approaches.

distances to the many latches of several pipeline stages. This prob-
lem gets worse with deeper pipelining and increasing wire delays
due to technology scaling.

Due to limited cycle reach it has become necessary to latch the
stall signal after a certain distance as it propagates backward along
the pipeline. At each such latch point the stall signal is delayed by
one clock cycle. A stalled stage needs to hold its current data and
cannot receive new data. To avoid losing data, an extra stall buffer
is therefore needed to capture arriving data items until the upstream
stages have seen the stall signal and stop pushing new data.

A possible solution for progressively stalling high-frequency
pipelines is to implement the stall buffer through an additional latch
stage set in parallel to the original latch stage as illustrated in Figure
9(a) (the LCBs implements the local clock buffers and clock gat-
ing). A multiplexor is needed to enable the latch stage to read its
data either from the upstream stage when there is no stall, or from
the stall buffer when the pipeline restarts after a stall. This solution
is expensive in terms of circuit timing as well as area and power.
The duplicate latch stage and stage wide multiplexor introduce ex-
tra clock and leakage power. In addition, the extra capacitive load
and delay through the multiplexor require up-sizing the transistors
of the data- and control-path to recover the delay, resulting in addi-
tional dynamic and static power.

We have developed a significantly more cost-effective approach
to implementing the stall buffer, through an idea we call Elastic
Pipelining [10]. The elastic pipeline does not require any additional
latches or multiplexors in order to implement stall buffers in mas-
ter/slave pipelines. Instead, the technique takes advantage of the fact
that master/slave latches have the capacity to store two distinct data
items, one in the master latch and one in the slave latch (see Figure
9(b)). While a master/slave latch cannot store more than one data
item while the pipeline is actively propagating data, during a stall
condition the current data is held still and only occupies the slave
latch. This leaves the master latch free to act as a stall buffer and
capture data arriving from upstream. The idea of the elastic pipeline
is to dynamically increase its effective depth, and subsequently its
storage capacity, in segments of the pipeline where no data needs to
move. In high-frequency pipelines elastic clock gating techniques
can provide a pipeline architecture with significantly improved tim-
ing and power characteristics.

Figure 10 illustrates simulated results for four types of stall im-
plementations in an experimental high-frequency 32-bit multiply-
accumulate (MAC) unit. The “Elastic” entry represents the imple-
mentation of an elastic clock gated pipeline. The “Unit” entry rep-
resents stalling at the unit level, while “Stage” and “Stage-II” rep-
resents stalling at the stage level with additional latch stages as stall
buffers (Figure 9(a)). The “Stage” implements optimal clock gating
(only clocked when capturing stalled data), while “Stage-II” imple-
ments non-optimal clock gating (clocked each time a valid data item
arrives) in an attempt to improve stall signal delay by reducing stall
signal distribution for the first stall cycle. The elastic pipeline ap-
proach has an 18% reduced delay on the worst case stall signal, a
27% reduction in dynamic stall power under worst case data switch-
ing, an estimated 44% reduction in leakage power, and a 33% re-
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Figure (2.3.2) Gated Clocks basics [41].

The main limitations for the application of clock gating is timing on the clock gating signal and 

the ability  to group  latches with identical gating conditions. Some latch groups may be too small 

to be considered for clock gating due to design complexity and power overhead of the associated 

clock gating logic. With increasing wire delays, placement of latches close to the cone of logic 

feeding the data input may conflict  with the placement necessary to group a set of latches for the 

purpose of clock gating. Also the required logic to compute when a latch must be clock-gated 

would become more complex and of course more power hungry. 

The clock gating signal may also have to fan out to many clock drivers when the latch group is 

large. These delays may make it difficult to reach to the timing closure. Another problem is the 

inductive noise (Ldi/dt) on supply voltage rails which is caused by clock-gating. To terminate 

surge currents which result from clock-gating, designers use on-chip decoupling capacitors that 

can contribute significantly  to leakage power, thereby eroding some of the savings achieved 

through clock-gating [41]. 

The TSPC (True Single Phase Clock) and CDPD (Clock and Data Precharged Circuit Dynamic)

are the most high throughput CMOS gated clock circuit techniques [2]. 

Short setup, hold and propagation delay time of TSPC contribute to high speed. The TSPC 

requires N and P-Blocks as it is depicted in figure (2.3.3). So the P block consists of a p-type 

latch which may embed logic, associated with the complementary  logic gates before and after the 

p-latch and it  is the same for n-block and using n-type latch. These blocks must be connected 

with N and P type latches alternately. The CDPD is an alternative solution for a fast one clock 

cycle decision and in the same time it reduces the power consumption [2]. 
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ABSTRACT
New true single-phase clock (TSPC) BiCMOS circuits are
described.  The TSPC latches are intended for use in high-
performance deeply pipelined digital electronic systems.  The
circuits described are based on quasi-complementary BiCMOS
circuit using single-phase clock.  They are verified to have full-
swing operation with supply voltages as low as 1.5V.  The speed
and power performance of the new latch is superior to
previously published results, which was confirmed by
simulation in 0.5µm technology.

1. INTRODUCTION
BiCMOS digital circuits are often used in digital systems where
high performance is of great importance. The overall speed of
those systems is enhanced by deep pipelining and the use of
relatively small number of logic stages.  Fig. 1 shows the
diagram of single-phase clocked pipelined system, consisting of
two logic blocks separated by N and P type latches.  N type
latches are transparent when ! = 1, and opaque when ! = 0,
while P type latches are transparent when ! = 0, and opaque
when ! = 1 [1].  Since the pipeline design is based on latches
[2, 3], they play the key role in overall system performance. If
the latch is followed by a small number of logic stages, a high
fan-out is often created, placing a demand for high driving
capabilities of the latch.  In case of very high performance
systems, the logic between the latch stages is dynamic.  In this
work, we propose a new latch and dynamic logic circuits
implemented in BiCMOS technology, which improve the circuit
performance in terms of speed as well as power.  The stages are
based on quasi-complementary (QC) BiCMOS inverter [4], and
are suitable for low supply voltage operation.  The latch is
designed for use in true single phase clocked (TSPC) systems,
as opposed to the master-slave latch proposed in [5], which uses
two phase clock.  The other advantage of the proposed latch is
the possibility of incorporating logic function into the latch [3].
The parameters of the new latch were compared to previously
published results [3, 7], in terms of speed, power and
dependence on supply voltage.

Figure 1. Single-phase pipeline
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Figure 2. Basic CMOS TSPC stages:
a) precharged N, b) precharged P,

 c) non-precharged N, d) non-precharged P.

2. NEW BICMOS LATCH
The biggest problem of the conventional BiCMOS circuits is
their performance degradation at low supply voltages.  The QC-
BiCMOS inverter, proposed by Hitachi [4], overcomes that
problem, without using a PNP transistor to restore the full
swing.  In this circuit, the PNP transistor is substituted by
PMOS-NPN Darlington configuration, resulting in smaller
dependence in pull-down operation of the circuit.  This
configuration has separate pull-up and pull down networks, thus
the latch can be integrated in their CMOS parts.
TSPC technique is commonly used in high performance digital
systems due to its simplicity and fast operation [3].  Four basic
stages exist in TSPC, pre-charged N and P, and non-pre-charged
N and P, as shown on Fig. 2.

N
Latch Logic P

Latch Logic N
Latch

!

Figure (2.3.3) TSPC pipeline [45]. 

Domino logic often have been used for logic calculation. Figure (2.3.4) shows the most common 

architectures based on static and dynamic CMOS circuits.
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Figure (2.3.4) Most common pipeline architectures [45]. 

In general, pipeline design falls into Synchronous and Asynchronous circuits. In synchronous, 

the clock is the main element to validate a block timing. In the other hand self-timed or 

asynchronous architectures have been proposed to reduce power consumption by removing the 
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clock tree which is known to be a relatively  larger consumer. The asynchronous or clock-less 

circuits are conceptually  similar to synchronous designs, in the sense that both circuits have 

registers for storing the inputs and results of a calculation and computational elements for 

transforming the data flowing in a circuit. In a synchronous design, the sequencing of the data 

from register to register is controlled by a (usually) global clock. However in clock-less circuit 

design, the sequencing of the data from register to register through the computation elements is 

controlled by some other means, an asynchronous control. So the components in an 

asynchronous circuit operates autonomously. They are not governed by clock circuitry or a 

global clock signal, but instead need only wait  for the signals that indicate completion of 

instructions and operations. These signals are specified by simple data transfer protocols. The 

data through the stages propagate by means of handshake signals that  signal propagation of the 

data. Figure (2.3.5) compare synchronous and asynchronous design structure.

      

However, in subthreshold operation the logic design
must account for the exponential variation of subthreshold
current with Vth variation. At 65 nm even a static CMOS
logic style does not guarantee functionality in subthresh-
old. In subthreshold operation, transistor drive current
variations increase by 10! or greater, compared to no-
minal operation [7].

BSub-Vth logic will likely play a key role in many
future energy-efficient designs, but designers must
first dedicate all of their efforts to developing
variability-resistant designs[ [2].

Process variations can randomly weaken pull-up or
pull-down networks thus degrading noise margins of logic
gates. In subthreshold registers, inverters with reduced
output levels decrease the hold signal noise margin of data
rates and affect data retention. Clock buffers with reduced
output swing can cause contention thus impeding signal
propagation. Gate delay variations can be 300% of nomi-
nal, causing major challenges for designers [8], who are
left with the choice of designing conservatively and giving
up performance gains from smaller geometry processes, or
risking timing failures.

There are metal gate processes that can mitigate the
variability caused by random dopant fluctuations but line
edge roughness is still a factor and these two sources of
variability dominate in advanced fabrication processes. As
technology progresses to finer and finer geometries, design
safety margins will increase.

All of these effects contribute to a very challenging set of
problems for circuit designers to overcome: how to exploit
subthreshold power advantages, without having to sacrifice
all performance in order to guarantee functionality? Is there

a way to dynamically take advantage of the performance
inherent in a design, when the exact behavior is not known
until after fabrication, and indeed, until operation of the
device in the specific environment? There are a variety of
devices and logic families that have been proposed to deal
with subthreshold operation, with various pros and cons [9].
However, one promising approach to solving this may lie in
applying different digital design techniques, possibly bor-
rowing from lessons learned in other low-power design
arenas, such as hearing aids [10], [11].

B. Clockless Logic Overview

1) Clockless Logic Approaches: An emerging set of
technologies capable of addressing the problems experi-
enced in subthreshold design, is asynchronous or clockless
logic. While a comprehensive review of clockless logic
circuit design is beyond the scope of this paper, some
introduction to the key features and characteristics of the
most relevant approaches is warranted. More details in
depth on the design of clockless logic circuits can be found
in [12].

Clockless logic circuit designs are conceptually similar
to CBL designs, in the sense that both circuits have registers
for storing the inputs and results of a calculation and
computational elements for transforming the data flowing in
a circuit. In a CBL design, the sequencing of the data from
register to register is controlled by a (usually) global signal,
the clock. In clockless logic circuit design, the sequencing
of the data from register to register through the
computation elements is controlled by some other means,
an asynchronous control (Fig. 1).

There are numerous approaches to designing without
clocks, with various pros and cons depending on the design

Fig. 1. (a) Comparison of CBL design structure, with (b) a general clockless logic circuit design structure.

Jorgenson et al. : Ultralow-Power Operation in Subthreshold Regimes Applying Clockless Logic

Vol. 98, No. 2, February 2010 | Proceedings of the IEEE 301

Figure (2.3.5) Comparison of (a) Synchronous and (b) Asynchronous circuit structure [45].

There are several advantages and disadvantages of using asynchronous versus synchronous. 

Some of them are,

- Robust operation across PVT (Process, Voltage and Temperature) variations due to the 

elimination of the clock. 
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- Logically determined circuit design. Circuits are designed to function independent of the timing 

assumptions normally inherent in synchronous design approaches.

- Power management with very low latency.

- Low EMI and crosstalk.

- Modular composition and delay insensitive interfacing. The ability for individual blocks to 

automatically self-synchronize their data rates permits the designer to concentrate on the logical 

structure of the data flow.

- Complicated design approaches.

- Area/performance penalties.

2.3.3. Adiabatic-Switching

Adiabatic Logic is the term given to low-power electronic circuits that implement reversible 

logic. The term comes from the fact that an adiabatic process is one in which the total heat or 

energy in the system remains constant. Research in this area has mainly  been retrieved by the 

fact that as circuits get smaller and faster, their energy  dissipation greatly increases, a problem 

that adiabatic circuits promises to solve. Most research has focused on building adiabatic logic 

out of CMOS. However, current CMOS technology, though fairly energy efficient compared to 

similar technologies, dissipate energy  as heat, mostly when switching. The fundamental reasons  

are, never turn on a transistor when there is a voltage difference between the drain and source 

and never turn off a transistor that has current flowing through it. 

Several designs of adiabatic CMOS circuits have been developed. Some of the more interesting 

ones include split-level charge recovery  logic (SCRL) [12] and Two Level Adiabatic Logic or 

2LAL [13]. Both rely heavily on the transmission gates, use trapezoidal waves to clock the 

circuit and can be fully pipelined. CMOS transistors dissipate power when they switch. The main 

part of this dissipation is due to the need to charge and discharge the gate capacitance “C” 

through a component that has some resistivity  “R”. The energy dissipated when, charging of the 

gate is ﻿equal to                         ,

where “T” is the time it takes the gate to charge or discharge. In non-reversible circuits, the 

charging time “T” is proportional to the “RC”. Reversible logic uses the fact that  a single clock 
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cycle is much longer then RC and thus attempts to spread the charging of the gate over the whole 

cycle and thus reduces the energy dissipated.

The SCRL NAND gate and 2LAL Buffer are shown in figure (2.3.6) and (2.3.7) respectively.

Figure 1: SCRL NAND

/Φ1 are split, when a has a value of logical 1 and b of logical 0, current flows
from Vdd through the P-MOS controlled by b and down through the N-MOS
controlled by a which means that a high voltage is passing through an N-
MOS which will thus dissipate energy. This problem is solved by the extra
P-MOS and in general care must be taken to ensure that an internal node is not
dissipating energy in this way.

Finally the only node that is not restored by the gate is the output. This is
so that a fully pipelined circuit at the gate level can be achieved (see [1] for a
detailed explanation of how this is done). Also, in order to achieve the grad-
ual swings needed to operate these gates, trapezoidal clock are used so that
initially, the voltage is held constant for quarter of a cycle, then gradually gets
turned up or down, held constant again, and for the final quarter, is gradually
returned to the initial value.

1.1.2 2LAL

Another interesting adiabatic circuit family is the Two Level Adiabatic Logic
or 2LAL developed by Frank [2]. Like SCRL, this family can be fully pipelined
at the gate level. Figure 2 (a) shows the basic building block of 2LAL, a pair of
transmission gates which transmit signal A and A respectively both of which
are represented by the single “box” on the left. The fact that 2LAL only re-
quires a basic switching device and is not dependent on CMOS makes it ideal
for use with new technologies.

Figure 2 (b) shows the basic buffer element of 2LAL which consist of two
sets of transmission gates. Φ1 and Φ0 are both trapezoidal clocks but Φ1 is a
quarter cycle behind Φ0. Initially all the nodes are at 0. As the input gradually
raises to 1 (if it is 1) or stays at 0, Φ0 transitions to 1. On the next step, Φ1 tran-
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Figure (2.3.6) SCRL NAND gate [46].

Figure 2: 2LAL Basic Gate (a) and Buffer (b)

sitions to 1 which sets the output to 1 if the input was one and otherwise leaves
it at 0 which in itself reduces the power dissipation because no charge passes
through the transistor. On the third step Φ0 transitions back to 0 reseting the
input to 0. Finally Φ1 transitions back to 0 and the output is restored to 0 by the
following gate in order to accommodate for full pipelining and thus the circuit
is ready to process a new input. Another feature of 2LAL is that inverters can
be easily created by simply crossing over the rails when going from one gate
to the next.

4

Figure (2.3.7) 2LAL Buffer [46].

Figure (2.3.6) is very similar to a conventional NAND; however, one of the main differences is 

that the top and bottom rails are driven by trapezoidal clocks ( ﻿﻿     and  ﻿   ) rather then VDD and 

VSS. At the beginning the entire circuit is set to VDD/2 except for P1 which is set to VSS and ﻿P1 

which is set  to VDD so that the transmission gate is off. In the next step, the transmission gate is 

turned on by gradually switching the P 1 and ﻿P1 . Following, φ1 and ﻿    which were at VDD/2 are 

split to VDD and VSS respectively. At this point, the gate computes the NAND of a and b like a 

non-adiabatic gate would. Once the output is used by  the next gate, the transmission gate can be 
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turned back off gradually. Then φ1 and ﻿    are gradually returned to VDD/2 and now the input can 

change and the next cycle can begin. It  is important not to change the input until the rails are 

back to VDD/2 so that a transistor is not  turned on when there is a potential difference thus 

violating the first rule.

Figure (2.3.7) shows the basic buffer element of 2LAL which consist of two sets of transmission 

gates. Φ1 and Φ0 are both trapezoidal clocks but Φ1 is a quarter cycle behind Φ0. Initially all the 

nodes are at  0. As the input gradually  raises to 1 (if it is 1) or stays at  0, Φ0 changes to 1. On the 

next step, Φ1 changes to 1 which sets the output to 1 if the input was one and otherwise leaves it 

at 0 which that reduces the power dissipation because no charge passes through the transistor. On 

the third step  Φ0 goes back to 0 reseting the input to 0. Finally Φ1 returns to 0 and the output is 

restored to 0 by the following gate in order to accommodate for full pipelining and thus the 

circuit is ready to process a new input. 

2.3.4. Winner-Take All circuits

Winner-take-all nets are useful because they form part of the underlying basis of many well 

known neural network algorithms such as vector quantization and coding, optimization, self 

organizing feature maps, and adaptive resonance theory. The standard winner- take-all network is 

shown in Figure (2.3.8).

VLSI Implementation of Pulse Coded Winner Take All Networks 

Paul Hylander, Jack Meador, Eddie Frie 
School of Electrical Engineering and Computer Science 

Washington State University 

Abstract - A VLSI implementation of a pulse coded 
winner-take-all network is presented. The pulse coded 
winner-take-all network uses a single inhibition bus to 
implement lateral inhibition. One advantage of the 
pulse coded winner-take-all is that it has a wiring 
complexity of O(n). This is in contrast with the standard 
winner-take-all whose wiring complexity is of O(n2). 
The pulse coded version also has the advantage of 
preserving the relative magnitude of the winning 
neuronk incoming signals. Experimental results are 
presented. 

BACKGROUND MATERIAL 

Winner Take All Networks 

Winner-take-all nets are useful because they form 
part of the underlying basis of many well known neural 
network algorithms such as vector quantization and 
coding, optimization, self organizing feature maps, and 
adaptive resonance theory [ l l .  The standard winner- 
take-all network is shown in Figure 1. 

x1 

Y2 
x2 

x3 

Y3 

Figure 1. Standard winner-take-all network showing 
inhibitory connections for only the Y2 output 

The basic function of a winner-take-all net is to 
select the neuron that has the largest dot product of its 
weights and the incoming signals. In the standard 
network, this is done through the use of lateral 
inhibition. The neuron with the largest initial 
activation, i.e. the neuron that has the largest dot 
product of its weights and the incoming signal, will 
inhibit the other neurons in the network the most. The 
result of this inhibition is the selection of one and only 
one neuron as the "winner". This behavior is described 
by the following equation [2, 3, 41. 
CH 3381-1/93/501.00 01993 IEEE 158 

vi = {  1 if W T i X > W T i X  V j # i  
0 otherwise 

Pulse Coded VLSI Neurons 

Pulse coded VLSI neurons are the basic elements of 
the winner-take-all network to  be presented. The 
fundamental structure of the pulse coded neuron is 
shown in Figure 2. 

. --- 

Integrating Capacitor 

Figure 2. Fundamental structure of the pulse coded 
neuron 

The operation of the pulse coded neuron is as follows: 
[2, 3, 41 Initially, s l  is closed and s2 is open. During this 
stage synaptic current arriving from the synapses is 
integrated on C. As integration proceeds, the voltage 
across C gets higher and higher. Eventually, the voltage 
across C reaches the firing threshold of the Schmitt 
trigger. At the firing threshold the output of the 
Schmitt trigger switches to the high voltage level. This 
causes s l  to  open and s2 to close. C discharges through 
R and s2. When the capacitor voltage reaches the lower 
threshold voltage of the Schmitt trigger, the output of 
the trigger reverts to the low voltage level. The width of 
the output pulse is dictated by the time-constant of the 
RC circuit. 

It can be shown that the output firing rate of the 
pulse coded neuron is dependent on the input current in 
the following way.[2, 3, 41 

Synaptic input currents are generated using a 
scheme shown in Figure 3. In Figure 3, Wij is a weight 
voltage connected to M1. M1 acts as a current source 
that is gated either on or off by transistor M2. 

Figure (2.3.8) Standard Winner-Take-All Network [19].

The basic function of a winner-take-all net is to select the neuron that has the largest dot product 

of its weights and the incoming signals. In the standard network, this is done through the use of 
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lateral inhibition. The neuron with the largest initial activation (i.e. the neuron that has the largest 

dot product of its weights and the incoming signal) will inhibit the other neurons in the network 

the most. The result of this inhibition is the selection of one and only one neuron as the "winner".

Figure (2.3.9) shows a schematic diagram of a two-neuron winner-take-all circuit. To understand 

the behavior of the circuit, first consider the input condition I1 = I2 ≡ Im. Transistors T11 and T12 

have identical potentials at gate and source, and are both sinking Im; thus, the drain potentials V1 

and V2 must be equal. Transistors T21 and T22 have identical source, drain, and gate potentials, 

and therefore must sink the identical current Ic1 = Ic2 = Ic/2.

In the sub-threshold region of operation, the equation Im = I0 EXP (Vc/Vo) describes transistors 

T11 and T12, where Io is a fabrication parameter, and V0 = kT/qκ. So the Vm is given by,

    ﻿Vm = V0 ln(
Im
I0

) + V0 ln(
Ic
2I0

) (2.3.18)

T11

T21

I1

V1

Ic

Vc

V2

I2

T22

T12

Ic1 Ic2

Figure 2 Schematic diagram of a two-neuron winner-take-all circuit.

The input condition I1 = Im+δi, I2 = Im illustrates the inhibitory action of the
circuit. Transistor T11 must sink δi more current than in the previous example; as a
result, the gate voltage of T11 rises. Transistors T11 and T12 share a common gate,
however; thus, T12 must also sink Im + δi. But only Im is present at the drain of
T12 . To compensate, the drain voltage of T12 , V2, must decrease. For small δis, the
Early effect serves to decrease the current through T12 , decreasing V2 linearly with
δi. For large δis, T12 must leave saturation, driving V2 to approximately 0 volts.
As desired, the output associated with the smaller input diminishes. For large δis,
Ic2 ≈ 0, and Ic1 ≈ Ic. The equation Im + δi = Io exp(Vc/Vo) describes transistor
T11 , and the equation Ic = Io exp((V1−Vc)/Vo) describes transistor T21 . Solving for
V1 yields

V1 = Vo ln(
Im + δi

Io
) + Vo ln(

Ic

Io
). (2)

The winning output encodes the logarithm of the associated input. The symmetrical
circuit topology ensures similar behavior for increases in I2 relative to I1.

Equation 2 predicts the winning response of the circuit; a more complex ex-
pression, derived in Appendix A, predicts the losing and crossover response of the
circuit. Figure 3 is a plot of this analysis, fit to experimental data.

Figure (2.3.9) Two Channel  Winner-Take-All Network [47].
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2.4. Summary

Designing for power and energy efficient designs has become a necessity for modern VLSI 

technologies. Constant electrical field scaling which cause leakage current to increase 

exponentially along with increasing integration capacity are the main sources of growing static 

power dissipation.  Reviewing power consumption in CMOS circuits shows dynamic power 

dissipation result of switching still dominates. It was confirmed that supply voltage has major 

role in both static and dynamic power dissipation and voltage reduction is the most efficient 

solution for low power circuits. 

Lowering the voltage causes transistors to operate in sub-threshold region. Increasing 

propagation delay is one of the main characteristics of transistor in sub-threshold region. This 

will be source of glitching which not only increases power dissipation but also can generate false 

signal. Pipelined and self-timed circuits are proposed to improve the resource utilization and 

efficiency of circuits. Synchronous and asynchronous are two main categories of pipelining 

architectures. Each one has advantages and disadvantages, however, asynchronous is more 

attractive for low-power design because it is clock less.    

Then there is specific circuit implementation that use reversible logic to save energy. Adiabatic 

logic is the term given to this circuits. It requires several clock pulses with different phases to 

transfer energy from one point to the others.        
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Chapter 3

3.

Adder Architectures 

3.1. Introduction

Addition is one of the fundamental arithmetic operations and it has been used extensively in 

many VLSI systems such as microprocessors, DSP and other specific application architectures. 

In addition to its main task, which is adding two numbers, it is the nucleus of many other useful 

operations such as, subtraction, multiplication, address calculation and etc. It is also the speed 

limiting and more power consuming element as well. The design of faster, smaller and more 

efficient adder architecture has been aim and goal for many research efforts and has resulted in a 

large number of adder architectures. Each architecture provides different insight and thus 

suggests different implementations. 

The power consumption and propagation delay are two most important  properties of the adder 

circuit architectures which basically are against each other. That is knowing, lowering the power 

causes longer propagation delay and vice versa, hence, most architectures referring to one of 

those important properties. Nevertheless, in some cases they booth may compromised to achieve 

to low energy consumption. All architectures provide different insight and therefore require 

different implementation. This chapter provides overall and essential information and abstract of 

the most adder architectures in system level. In general full Adder function can introduce either 

using boolean logic function (conventional architecture) or the majority-function.  

25



3.2. Boolean Logic Full Adder Function

 A full adder boolean logic function is based on three inputs, (Ai, Bi, Ci-1) and provides two 

outputs Si and Ci. Equation (3.2.1) and (3.2.2) are sum and carry outputs with respect to their 

input.

      Si = Ai ⊕ Bi ⊕ Ci-1                        (3.2.1)

                                 Ci = Ai Bi + Bi Ci-1 + Ai Ci-1               (3.2.2) 

However it is most common and practical to use denoted characters Pi (Carry Propagate) and Gi 

(Carry Generate) and rewrite (3.2.1) and (3.2.2) by replacing (3.2.3) and (3.2.4).  

             Pi = Ai + Bi      (3.2.3)

             Gi = Ai Bi       (3.2.4)

So sum and carry outputs is given by: 

            Ci = Gi + Pi Ci-1      (3.2.5)

            Si = Pi ⊕ Ci-1      (3.2.6)

There are different solutions to implement n-bits full adder. First, architecture must be defined 

based on speed or power consumption. Then logic cell implementing will take place to finish the 

design cycle. In following section we will have a quick look at the most common n-bit full adder 

architectures.     

3.3. Boolean Logic Full Adder Architectures

Since today many  types and architectures are introduced for the full adder boolean logic but all 

they can conceptually categorized into two major groups:

(a)  Carry Propagate (CP)

(b)  Carry Look-Ahead (CLA)

In first group (group “a”), generated carry  propagates from first to the last  digit or it  may skips 

some blocks. Based on equitation (3.2.6), result of sum (Si) depends on this propagation. This 

group consider to have a linear base structure which requires less logic gates and so less power 

consuming. But it has long delay in compare with group  “b”. Glitch in this group also is a 
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consequence of such a delay or propagation time in big adder and it has an impact on dynamic 

power consumption. Most full adder architectures design fall in to this group (“a”). Some of the 

very popular architectures in this group are:

a.1- Ripple Carry Adder. 

a.2- Carry Skip Adder. 

a.3- Carry Select Adder.

a.4- Carry Save Adder.

The second group (group “b”) however calculates the carry  in advance to avoid that propagation 

time delay. For every bit, the (Si) is independent of last sum result so the ripple effect has thus 

been terminated. Because of that termination, the number of bits wont change addition time and 

it will be independent than bits numbers. However, due to increasing number of overhead gates 

in these circuits, propagation delay increases but still this group is faster than the first one in 

operation under certain condition. As a result  of increasing number of gates, this group  also 

consider high power consuming again in certain condition that we will see later. Some of the 

most popular architectures in this group are:

b.1 Keogh-Stone Adder.    

b.2 Brent-Kung Adder.

b.3 Han-Carlson Adder.      

b.4 Ladner-Fischer Adder.

b.5 Ling Adder.

3.3.1 Ripple Carry Adder

The simplest addition architecture is based on a linear array of a full adder cell as it is depicted in 

figure (3.3.1). This architecture which also known as RCA has been subjected to be the smallest 

and the lowest power consuming. However according to the experimental results in this model, 

they  show the average activity overhead (glitch) is about 50% [2]. The worst case delay or the 

critical delay path in N-Bit RCA is given by:

            ﻿tp = (N − 1)tcarry (3.3.1)
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where tcarry is the carry propagation delay from the input to the output.     

Adder Architectures 5

carry signal ripples from the least significant bit position to the most significant one. The

delay through the circuit depends on the number of logic stages that must be traversed

and is a function of the applied input signals [1]. It is important to know that, for some

input signals no rippling effect occurs while for the others, the carry has to ripple all the

way from the least significant bit (lsb) to the most significant bit (msb) which is the worst

case delay over all possible input patterns. Therefore, the N-bit ripple carry adder worst

case delay is:

tadder = (N − 1)tcarry + tsum (2.7)

Where, tcarry is the propagation delay from the input carry to the output carry signal and

tsum is the propagation delay for ’S’ (sum) at the output of each full adder block. This

delay shows the longest delay in the circuit or the critical path delay. As we can see in

the above equation, the longest delay increases linearly with the number of input bits;

therefore this kind of adder architecture can not be used in high performance processors

which are designed for more than 64-bit data path.
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Figure 2.1: 4-bit ripple carry adderFigure (3.3.1) 4-bit Ripple Carry Adder [3].

Adder Architectures 6

2.4 Carry Skip Adder

Since the path from Cin to Cout represents the longest path in the ripple carry adder, an

obvious attempt is to accelerate carry propagation through the adder. This is accomplished

by using carry propagate signals within a group of bits. If all the Pi signals within the

group are one, the conditions exist for the carry to bypass the entire group. The structure

of a carry bypass adder is shown in Figure 2.2. We divide the N bit inputs to N
M groups

of M bits and for each group we do a carry skip addition. The worst case delay for this

adder can be derived by the following formula [1]:

tp = tpg + Mtcarry + (
N

M
− 1)tbypass + Mtcarry + tsum (2.8)

Where tpg is the time required to create ’P’ and ’G’ signals, tcarry is the propagation delay

of the carry signal through one block, tbypass is the delay through the bypass multiplexer

of a single stage and tsum is the time to generate the sum of the final stage. As we can see

in the above formula, the worst case delay is still proportional to the number of input bits

but it is less than ripple carry adder delay. This architecture increases circuit complexity

as well.
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Figure 2.2: Carry skip adder structure
Figure (3.3.2) 4-bit Carry Skip Adder [3].

Figure (3.3.3) 4-bit Carry Select Adder [44].
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3.3.2. Carry Skip Adder

The carry skip  adder like RCA is based on linear structure but it  takes advantage of extra gates to 

skip from designated blocks that logic gates are leading to make long critical path Cin to Cout 

shorter. Hence the critical propagation delay path in N-bit full adder when it is divided to  M-bits  

groups is given by,

       ﻿tp = tpg +Mtcarry + (N
M − 1)tskip (3.3.2)  ﻿

Where tpg is the required time to generate “P” and “G” signals and tcarry is the carry propagation 

delay in each group and tskip is the multiplexer propagation delay. Note that  multiplexer 

propagation delay in equation (3.3.2) consists of select signal generating delay  (N/M  bits AND 

logic) and data path delay. 

3.3.3. Carry Select Adder

The main idea in a carry select adder is to split a sequential adder into two parts and performing 

the computation of most significant bit (MSB) part with considering the two possibilities for 

carry-in bit in parallel. The right generated carry  then will be selected using the carry-out bit of 

the least significant bit (LSB). In this case the critical delay path in N-bit full adder when it  is 

divided to M-bit group is given by,

            ﻿tp = Mtcarry + (N
M )tmultiplexer (3.3.3)

    ﻿M =
�

N
2 (3.3.4)

Where tcarry is the carry propagation delay in each group and tmultiplexer is the multiplexer 

propagation delay. Figure (3.3.3) shows the idea of carry select adder.    

           

3.3.4. Carry Save Adder

There are many cases where it is desired to add more than two numbers together. The 

straightforward way  of adding together N numbers (all M bits wide) is to add the first two, then 

add that sum to the next, and so on. This requires a total of (N − 1) additions, for a total gate 

delay of (N.log M). Using carry  save adder, the delay can be reduced further still. The idea is to 
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take these three numbers that we want to add together, X + Y+ Z, and convert it into two 

numbers C + S such that  X + Y + Z = C + S. The carry save adder consists of a ladder of stand 

alone full adders, and carries out a number of partial additions. The principal idea is that carry 

has a higher power of two and thus is routed to the next column. Doing additions with Carry  save 

adder saves time and logic. Figure (3.3.4) shows the general idea of carry save adder with four 

operands.

   Number 1
Number 2
Number 3

Number 4
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Figure (3.3.4) 4-operands Carry Save Adder [43].

Carry save adder which also known as CSA comparison with the other standard adder is not 

straightforward. CSA systems require more bits than the other for the same interval of 

representable value. This leads to storage or additional bus resources, hence for a N-digit CSA, 

2N bits are required [9].

3.3.5. Brent-Kung Adder

This is the adder from group “b” or carry  look ahead. The main idea of carry look ahead (CLA) 

is an attempt to generate all incoming carries in parallel and avoid waiting until the correct carry 

propagates from the first stage. A new Boolean operator which is called “Dot operator or (.)” is 

introduced as,

        ﻿(G,P ).(G�, P �) = (G+ PG�, PP �) (3.3.5)
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3.3.6. Kogge-Stone Adder

Kogge-stone adder is similar to Brent-Kung adder in principle. The only difference is that it uses 

the idempotent property. In this architecture, the adjacent bits are grouped based on the cell sizes 

and they are reused by  adjacent nodes. Therefore fan-out is equal to the cell size and it has the 

least number of levels comparing to other structures. If the number of inputs is K, then the total 

cost or the number of used cells is Klog2K − (K − 1) and number of levels is log2K [9].

Figure (3.3.6) shows 16-bit Kogge-Stone Adder implementation.

3.3.7. Han-Carlson Adder

Han-Carlson adder is another architecture of prefix adders which is similar to architecture of 

Kogge-Stone, but it  has area-time trade-off. In other words, it  increases the logic depth for a 

reduction in fan-out. In this architecture, at  the first level, bits are grouped based on the cell sizes 

and at the second level, the nodes have N number of inputs from previous level results based on 

the cell sizes (N) [9]. Figure (3.3.7) shows 16-bit Han-Carlson Adder implementation.

3.3.8. Lander-Fischer Adder

Ladner-Fischer adder is an improved version of Sklansky adder, where the maximum fan-out is 

reduced. Ladner-Fischer formulated a parallel prefix network design space which included this 

minimal depth case. In general this adder structure has logic depth similar to Han-Carlson where 

that is equal to (Log2n +1) and it is higher than Sklansky and Kogge-Stone which they are 

limited to (Log2n). In terms of fan-out however, it still has a large fan-out requirement up to n/2 

in compare with the others techniques. Figure (3.3.8) shows 16-bit Lander-Fischer Adder 

implementation. The number of computation nodes is similar to Sklansky  and Han-Carlson is 

given by (n/2)(Log2n).
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Figure 6. 16-bit Kogge-Stone adder

Figure 7 is the parallel prefix graph of a Brent-Kung adder. This adder is the extreme case of maximum logic depth and minimum area.

Figure 7. 16-bit Brent-Kung adder

Figure 8 is the parallel prefix graph of a Han-Carlson adder. This adder has a hybrid design combining stages from the Brent-Kung and Kogge-
Stone adder.

Figure 8. 16-bit Han-Carlson adder

Conditional sum adder

The basic idea in the conditional sum adder is to generate two sets of outputs for a given group of operand bits, say, k bits. Each set includes k
sum bits and an outgoing carry. One set assumes that the eventual incoming carry will be zero, while the other assumes that it will be one.
Once the incoming carry is known, we need only to select the correct set of outputs (out of the two sets) without waiting for the carry to further
propagate through the k positions.

In this generator, we divide the given n-bit operands into two groups of size n/2 bits each. Each of these can be further divided into two groups
of n/4 bits each. This process can, in principle, be continued until a group of size 1 is reached. The above idea is applied to each of groups
separately.

Figure 9 depicts a conditional sum adder for 4-bit operands.

Figure (3.3.5) 16-bit Brent-Kung Adder [43].
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sum bits and an outgoing carry. One set assumes that the eventual incoming carry will be zero, while the other assumes that it will be one.
Once the incoming carry is known, we need only to select the correct set of outputs (out of the two sets) without waiting for the carry to further
propagate through the k positions.

In this generator, we divide the given n-bit operands into two groups of size n/2 bits each. Each of these can be further divided into two groups
of n/4 bits each. This process can, in principle, be continued until a group of size 1 is reached. The above idea is applied to each of groups
separately.

Figure 9 depicts a conditional sum adder for 4-bit operands.

Figure (3.3.6) 16-bit Kogge-Stone Adder [43].
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Figure 6. 16-bit Kogge-Stone adder

Figure 7 is the parallel prefix graph of a Brent-Kung adder. This adder is the extreme case of maximum logic depth and minimum area.

Figure 7. 16-bit Brent-Kung adder

Figure 8 is the parallel prefix graph of a Han-Carlson adder. This adder has a hybrid design combining stages from the Brent-Kung and Kogge-
Stone adder.

Figure 8. 16-bit Han-Carlson adder

Conditional sum adder

The basic idea in the conditional sum adder is to generate two sets of outputs for a given group of operand bits, say, k bits. Each set includes k
sum bits and an outgoing carry. One set assumes that the eventual incoming carry will be zero, while the other assumes that it will be one.
Once the incoming carry is known, we need only to select the correct set of outputs (out of the two sets) without waiting for the carry to further
propagate through the k positions.

In this generator, we divide the given n-bit operands into two groups of size n/2 bits each. Each of these can be further divided into two groups
of n/4 bits each. This process can, in principle, be continued until a group of size 1 is reached. The above idea is applied to each of groups
separately.

Figure 9 depicts a conditional sum adder for 4-bit operands.

Figure (3.3.7) 16-bit Han-Carlson Adder [43].
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Figure 3. 64-bit Block carry look-ahead adder

Parallel prefix adders (Ladner-Fischer adder, Kogge-Stone adder, Brent-Kung adder, Han-Carlson adder)

Parallel prefix adders are constructed out of fundamental carry operators denoted by ¢ as follows:
 (G'', P'') ¢ (G', P') = (G''+G'·P'', P'·P''),
where P'' and P' indicate the propagations, G'' and G' indicate the generations. The fundamental carry operator is represented as Figure 4.

Figure 4. Carry operator

A parallel prefix adder can be represented as a parallel prefix graph consisting of carry operator nodes.

Figure 5 is the parallel prefix graph of a Ladner-Fischer adder. This adder structure has minimum logic depth, but has large fan-out
requirement up to n/2.

Figure 5. 16-bit Ladner-Fischer adder

Figure 6 is the parallel prefix graph of a Kogge-Stone adder. This adder structure has minimum logic depth, and full binary tree with minimum
fun-out, resulting in a fast adder but with a large area.

Figure (3.3.8) 16-bit Lander-Fischer Adder [43].

32



3.3.9. Parallel Adder Taxonomy Revisited

There are many other kinds of parallel adder which can fit in each axes of the parallel adder tree 

taxonomy. The taxonomy is three dimensional graph based on logic depth,  wire tracks and fan-

out and it helps to summarize group “b”. Figure (3.3.9) shows some of the above adders in that 

tree. 

Figure (3.3.9) Parallel Adder Taxonomy Revisited [42].

3.4. Low Power Full Adder Architectures Comparison

Low power designs have often been compared based on area or total gate count. But gate count 

does not show the impact of transistor sizing and supply voltage scaling on energy  and delay. 

Different arithmetic algorithms have been proposed in order to improve computational efficiency 

in terms of speed, area, and regularity  of structures. In low power applications however, 

evaluating the energy  efficiency of the algorithm is crucial. Research for low power adders lacks 

the framework for analyzing and quantifying the energy ramifications of different algorithm 
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choices and their implementations. Delay estimation of designs was initially based on the 

number of logic levels. The notion of fan-in and fan-out considerations for the delay was 

expanded into a comprehensive method known as “Logical Effort”. Table (3.4.1) compares some 

of the best known adder architectures in terms of gates count and complexity [11].

Adder Type (32-bit) Gate Count Complexity
RCA 161 208

CSK 197 245

VBA 209 254

CSA 248 423

CLSK 272 338

KS 404 461

Table 3.4.1 Adder Architectures comparison.

Where in this table RCA refers to Ripple-Carry Adder, CSK means Carry-Skip Adder, VBA is 

Variable Block Adder, CSA presents Carry-Select Adder, CLSK refers to Carry-Lookahead-Skip 

Adder and KS presents Kogge-Stone Adder architecture. There are many architectures for the 

adder and more than that, there are many  different implementations for each architecture but not 

many references to compares architectures using best implementation in terms of power or 

energy consumption. Hence table (3.4.1) just gives an idea about the differences. Neither gate 

count nor complexity can be used as a figure of merit for energy efficiency because they do not 

consider impact of switching activity, parasitics and wiring and gate sizing on energy. To 

evaluate design in above table, the following definition of merit for “efficiency” is used as:

   Efficiency = 10,000
D×T (3.4.1)

Where D refers to worst case delay or critical path and T represents the average number of gate 

transitions per addition [11]. In that comparison experience all above architectures are simulated 

using technology 130nm with applied 1.2V at 27°C. Note that in that simulation SCL (Spares 

Carry-Lookahead) adder was used instead of CSK which is initially RCA with improved critical 

path and results are shown in the table (3.4.2). 

34



Adder Type (32-bit) Delay (ns) Av. Energy (pJ) EDP(pJ/GHz) Gate Count

RCA 2.1 1.1 2.31 161

VBA 0.98 1.38 1.35 209

CSA 1 1.78 1.78 248

CLSK 0.94 2.63 2.47 272

SCL 0.62 1.78 1.1 315

KS 0.65 2.04 1.3 404

 Table 3.4.2 Adder Architectures characteristics at 1.2V, 27°C.

In first glance Gate Count vs. Av. Energy may give an impression about gate count impact on 

power or energy consumption. Average energy was measured on a set of 500 random input test 

vectors. The delay of each adder is obtained from simulation of the critical path vectors [11].   

All adders in that experience had been sized for minimal energy. Figure (3.4.1) shows above 

adder architectures when supply voltage was swept from 1.2V to 0.6V with 50mV span.

The results in Fig. 3. also demonstrate that CLSK 
which was designed as intent to reduce power and yet 
improve performance, is inefficient in all regions of its 
operation. It leads to only 5% of delay improvement 
over VBA at the expense of twice the energy 
consumption. Among traditional low-power designs, 
the CSA structure demonstrates similar performance to 
VBA, however conditional computation led to an 
energy increase of 30% compared to VBA.  

Simulation results for the ultra low-power region of 
the adders are shown in Fig. 4. At the lowest operating 
voltage (0.6V), VBA is two times faster than RCA and 
requires only a 25% increase in energy. At nominal 
voltage, there is no justification of using simple RCA 
structure, it has 2.5x higher energy than SCL adder 
operation at 0.6V, thus provides no energy savings at 
all.

Fig. 4. Ultra low-power comparison of 32-bit 
adders with Vdd scaling 

6. Conclusion 

In this paper, we provide an approach for the design 
and comparison of 32-bit adders for low- and ultra 
low-power applications. The energy-delay space 
results demonstrate that when designing for low power 
a comparison of designs at a single voltage or a 
comparison based on gate count is insufficient for 
determining the optimal structures.  
We have demonstrated that the use of high-
performance structures combined with supply-voltage 
scaling, results in reduced energy compared to 
traditional designs for low power and ultra low-power 
operation. This finding is contrary to common belief. 
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Fig. 1. Sparse Carry-Lookahead adder (SCL) 

4. Simulation Conditions 

All simulations are performed in a 130nm CMOS 
technology, with 1.2V nominal supply, at 27ºC, under 
typical process conditions. The simulation test bench is 
shown in Fig. 2. Average energy is measured in H-
SPICE on a set of 500 random input test vectors. The 
delay of each adder is obtained from simulation of the 
critical path vectors. 

Fig. 2. Simulation test bench 

Each output is loaded with a 10µm equivalent gate 
capacitance. Wire lengths are estimated assuming a 

4µm bit pitch and are included in the analysis and 
simulation. Each adder is sized for minimal energy. 
Using these gate sizes, the supply-voltage (Vdd) is 
swept from 1.2V to 0.6V in 50mV decrements to 
obtain the range of operation for each adder in the 
energy-delay space. 

5. Results 

A comparison of the adders at the nominal supply-
voltage of 1.2V is shown in Table 2. From this table it 
appears that VBA is the best design at 1ns, while RCA 
uses the least amount of energy at 2.1ns. However, it is 
unclear if these statements will hold if adders are 
designed to operate at the same delay.  

Table 2. Characteristics of the adders at 1.2V 
Adder
Type

(32-bit ) 

Delay 
[ns]

Av. 
Energy

[pJ]

EDP
[pJ/GHz] 

Gate 
Count

RCA 2.1 1.1 2.31 161
VBA 0.98 1.38 1.35 197
CSA 1 1.78 1.78 209

CLSK 0.94 2.63 2.47 248
SCL 0.62 1.78 1.1 315
KS 0.65 2.04 1.3 404

We use the results of the adders at nominal voltage 
from Table 2 to define the low- and ultra low-power 
regions of operation. The low-power region is defined 
as the range of delay between VBA and RCA at 
nominal voltage (0.98ns to 2.1ns). The ultra-low power 
region is defined as the region of operation where 
delay exceeds the performance of RCA at nominal 
voltage (>2.1ns), as indicated in Fig. 3, 4. 

Simulation results for the energy and delay of the 
adders described in Section 3 are presented in Fig. 3. 

Fig. 3. Low-Power comparison of 32-bit adders 
with Vdd scaling 

 In the low-power design region the use of high-
performance schemes, such as SCL, combined with 
reduced supply- voltage always yield lower energy. At 
the target frequency of 1GHz, the SCL adder can 
operate at 0.85V and consumes 42% less energy than 
VBA which must operate at nominal voltage to achieve 
the same speed. As supply-voltage is reduced, the 
energy saving of the SCL structure versus VBA is 
reduced. At  the intersection of low-power and ultra-
low power region, which occurs at 2.1ns, the energy 
saving of SCL compared to VBA is 25%.  
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Figure (3.4.1) 32-bit Low-Power Adder comparison[11].

The energy-delay results demonstrate that when designing for low power a comparison of 

designs at a single voltage or a comparison based on gate count is insufficient for determining 

the optimal structures [11]. However there are many  other parameters that have not considered in 
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this experiment such as synchronous and asynchronous, so for energy  consideration, time delay 

was multiplied by consumed average power. It also shows that in ultra low power RCA may 

consider as an competitive option where power or energy has higher priority than delay or speed.  

3.5. Majority Function

Majority-function (also called the median operator), is a function from “n” inputs to one output. 

The value of the operation is false when “n/2” or more arguments are false, and it is true 

otherwise. Alternatively, representing true values as “1” and false values as “0”, we may use 

equation (3.4.2),

       ﻿Majority(P1, ..., P2) = [ 12+
�n

i=1(Pi− 1
2 )

n ] (3.4.2)

Where the "−1/2" in the formula serves to break ties in favor of zeros when “n” is even; a similar 

formula can be used for a function that breaks ties in favor of ones. For n = 3 the ternary median 

operator can be expressed using conjunction and disjunction as, 

       ﻿MF (x, y, z) = xy + yz + zx (3.4.3)              

Remarkably  this expression denotes “carry” in logical addition. So the generated carry and sum 

in logical addition is given by,

           ﻿Cout = MF (x, y, z) (3.4.4)

   S = MF (MF (x, y, z), Cout, z) (3.4.5)

Where “z’ represents Cin in equations above. 

Logical circuit implementing using majority-function will be attractive because of the “XOR”. 

The fact this gate has long propagation delay  in compare with other standard logical gates and it 

is in the critical path in conventional addition but majority-function doesn’t need or use this gate.  

3.6. Majority Function Architectures

There is only one architecture so far has been introduced for a logical full adder using majority 

function. In that only architecture, a network of passive capacitors are introduced to present 

majority function which is depicted in figure (3.5.1).
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Figure (3.5.1) Majority Function in Voltage Mode.

In figure (3.5.1) we can see that, “Carry = 1” when MF is greater than VDD/2 and “Carry = 0” 

when MF is less than VDD/2. Note that voltage swing or voltage precision in that circuit  is as 

small as VDD/3 and that is an advantage of this architecture, but it  also limits the minimum 

supply voltage to three time higher than the other architectures. Figure (3.5.1) also shows simple 

idea of MF implementation circuit. Thereby, carry generation is one step operation and 

propagation delay has less impact on the results. Equation (3.4.5) is depicted in figure (3.5.2) 

which is showing VMMF (Voltage-Mode Majority-Function). Note that XOR gate has not been 

used to generate carry [6].

                               

          Cout = Maj (A, B, Cin)                                     (2) 
        

        Maj (A, B, Cin) = A.B + B.Cin + A.Cin                   (3)                                          
  

Based on Eq. (2), we can generate outC  by using a 

3-input Majority-not Function, which can be simply 
implemented by using only three capacitors and a 
regular static CMOS inverter [10] (Fig. 1 (a), (b)). 
The capacitor network is used to provide voltage 
division for implementing majority logic. When the 
majority of inputs are “0”, the output of the capacitor 
network is considered as “0” by the inverter and 
consequently the output of inverter is VDD. When the 
majority of inputs are “1”, the output of the capacitor 
network is considered “1” by the inverter and 
consequently the output of inverter is 0v. With this 

structure, we can generate outC . To generate Cout, an 

inverter can be used in the output of the described 
structure. Another approach is to use complementary 
inputs, based on the following equation: 
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We can also implement 3-input XOR function 

(Sum) based on Majority-not gate by the following 
equation, which is obtained from Eq. (1) and Eq. (3). 
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However, we can modify Eq. (3) the way that 

Cout becomes one of the elements, which generate 
Sum. By utilizing this new method, we do not need a 
separate circuit for generating Cout and the Full Adder 
becomes more efficient. This is shown in Fig. 2 (c) 
and can be described by the following equation: 

 

  
)C,C,)CB,Maj(A,Maj(Sum inoutin=                     (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. (a) Schematic of the MAJ generator circuit. (b) The efficient design for the 

MAJ generator circuit. (c) Generating SUM by 3-input majority functions.  

(d) MAJFA1 Full Adder cell. (e) MAJFA2 Full Adder cell. 
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Figure (3.5.2) Majority Function Full Adder implementing using VMMF [6].
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Figure (3.5.3) shows the average power consumption comparison between CPL (Complementary 

Pass Logic), conventional and VMMF adder [7]. The PDP comparison is depicted in figure 

(3.5.4). Simulations are performed in 0.18µm and voltage varies from 1.8V to 0.4V at room 

temperature.

A New Full-Adder Based on Majority Function and Standard Gates 
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Fig. 5  Average power consumption curves. 
!

 
Fig. 6  Propagation delay curves. 
!

 
Fig. 7  Power delay product (PDP) curves. 
!

Figure (3.5.3) Average Power Comparison [7].
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Figure (3.5.4) PDP Curves comparison [7].
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3.7. Summary

Addition is one of the fundamental arithmetic operations and it has been used extensively in 

many VLSI systems. In addition to its main task, which is adding two numbers, it is the nucleus 

of many other useful operations such as, subtraction, multiplication, address calculation and etc. 

It is also the speed limiting and more power consuming element as well. The power consumption 

and propagation delay are two most important properties of the adder circuit architectures which 

basically are against each other. 

Two main group of full adder architectures are, carry propagation and carry look-ahead. Result 

of propagation delay comparison clearly presents carry look-ahead group has less delay  than the 

first group, carry  propagation. However, comparison of power consumption in both groups 

confirms that the first group, carry  propagation, specifically ripple carry adder from that group, 

consume less power. 

Along with boolean logic full adder architectures, majority-function full adder is proposed which 

it is not based on conventional logic. Majority-function, is a function from “n” inputs to one 

output. That  value of the operation is false when “n/2” or more arguments are false and it is true 

otherwise. Proposed voltage-mode majority-function full adder is based on front-end capacitor 

network to realize the majority-function. This algorithm is attractive because it  doesn’t need 

XOR gate which has longest  propagation delay compare with other logical gates. Also it 

provides direct calculation, so logic depth wont be matter in this architecture.   
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Chapter 4

Ultra low power Current-Mode Majority 

Function Full-Adder

4.1. Introduction

In last three chapters we discussed power consumption in CMOS circuits and low power and 

energy design techniques. Then we reviewed some of the full adder architectures and their 

comparison in terms of power and energy  consumption. Now in this chapter, results of our last 

discussions will use as a guidance. These results like pieces of puzzle will picture desired 

architecture and implementation when we put them together.  

4.2. Project overview and guidance 

First and very  obvious step regarding to chapter 2 is to drop the supply voltage as low as possible 

and that leads to sub-threshold operation. Section (2.3.1) showed the history  of tried and 

proposed minimum voltage. Consider an inverter which is the basic digital gate in sub-threshold 

and if temporary we assume that there is no DIBL or Early-Voltage effects in transistors, then the 

maximal gain of the inverter, Ainv, occurs at the switching threshold of VDD/2 is given by,

      ﻿Ainv = gNMOS

m
+gPMOS

m

gNMOS

d
+gPMOS

d

(4.1.1)
   

 Where gm and gd are defined as the corresponding partial derivation of ids vs. input voltage and 

output voltage respectively  [5]. Considering sub-threshold current equation we can rewrite 

(4.1.1) to,
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            ﻿
Ainv = (kn+kp

2 ) 1−e
−VDD
2VT

e
−VDD
2VT

(4.1.2)
      

Hence, in order to have Ainv >1 the minimum supply voltage is given by [5]

           ﻿V
Min
DD = 2VT ln (kn+kp+2

kn+kp
) (4.1.3)

Considering kn = kp = k = 1/n and n is given by

           ﻿n = 1 + Cd
Cox

(4.1.4)

 Therefore, minimum VDD in (4.1.3) can simplified and rewritten as,

          ﻿V Min
DD = 2VT (n+ 1) (4.1.5)

  Using (2.3.5) in (4.1.5) gives,

       ﻿V Min
DD = 2VT + 0.87S (4.1.6)

where S is slope factor and VT is thermal voltage. 

However in most practical circuits that voltage supply  in excess of 100 mV, the gain of CMOS 

inverter (in sub-threshold) is set by DIBL effects rather than by saturation effects and it is given 

by,

         ﻿Ainv = kn+kp

ηn+ηp
(4.1.7) 

where η is DIBL coefficient.

The other result of chapter two was about pipeline architecture advantages in order to eliminate 

activity factor and improve the resources utilization. Also we saw that the advantage of 

asynchronous and self timing in comparison with synchronous clocking in a pipeline 

architecture. So the goal is to utilize asynchronous pipelined in sub-threshold circuit. 

In chapter three most important full adder architectures in each group are reviewed with their 

power and energy  consumption comparison. The result in table (3.4.2) showed that  the RCA 

(Ripple Carry  Adder) consume less power and energy in average. Note that  its total energy 

consumption was higher than the other due to its delay. In other words the total energy was given 

by,

          ﻿Etotal = ttotal×Ptotal = TDelay
�n

i=1 Pi (4.1.8)

where, “n” is the total number of bits, TDelay is a propagation delay from fist to last bits and Pi is 

the power consumption in each stage. Using an asynchronous pipeline architecture to rebuild 
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RCA changes equation (4.1.8) and breaks the big propagation delay to small pieces where they 

contribute with only related stages. So total energy will be,

          ﻿Etotal =
�n

i=1 ti × Pi (4.1.9)    

The last part  in in our puzzle and design cycle is suitable architecture to implement. In very  low 

voltage circuits like the full adder, critical path, which in this case is carry generation, is the key 

point. Figure (3.5.4) indicates that majority  function has better result in compare with the other 

circuits in that comparison. We can easily expect that due to majority function structure and the 

fact that carry generation doesn’t require complicated and multi-stage gates. So our aim is to 

introduce sub-threshold asynchronous pipeline RCA based on majority-function. In next section 

and first, we look at transistors, specifically NMOS, characterization in sub-threshold and weak 

inversion.

4.3. Weak inversion transistor sizing and characteristics      

One of the first  important step prior to design is to test transistors (e.g. NMOS) characterizations 

in sub-threshold and in weak inversion. The effects of sizing “L” on the “ON” and “OFF” or 

leakage currents are showed in figures (4.3.1) and (4.3.2) respectively. Results show that 

increasing “L” doesn’t do much neither on “ON” nor “OFF” current in weak inversion. In this 

experience “W” was kept as minimum and supply voltage varied from 75 mV to 200 mV.

Also results show that leakage current variation due to supply voltage variation is very small in 

compare with “ON” current variation. The other result  from this simulation was nonlinearity on 

both “ON” current as well as leakage current when “L” was linearly increased. The leakage 

current doesn’t exactly follows the same pattern in “ON” current, hence sizing “L” may is not 

applicable on weak inversion. The effects of sizing “W” on “ON” and “OFF” or leakage currents 

are showed in figures (4.3.3) and (4.3.4) respectively. Unlike increasing “L” size, results show 

that increasing size of “W” linearly, it will increase “ON” current almost linearly as well as 

leakage current. Hence, due to the results of sizing “L” and “W”, practically “W” sizing will be 

applicable in weak inversion when linearity is matter. Also in different operation point where 

“W” is not minimum, the pattern due to varying “L” size may be different than when “W” is 

minimum.     
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Figure(4.3.1) “L” size effect on the ID in voltage variation when “W” is Min.

Figure(4.3.2) “L” size effect on leakage in voltage variation when “W” is Min.
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Figure(4.3.3) “W” size effect on the ID in voltage variation when “L” is Min. 

Figure(4.3.4) “W” size effect on leakage in voltage variation when “L” is Min.
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The other important parameter in transistor sizing is a parameter called finger number or “F”. 

Low operating current is the one of the sub-threshold drawback, hence transistor has to be sized 

big enough in order to have sufficient  “ON” current. Transistor total width can increase either by 

increasing “W” or increasing finger number “F” and it is given by, WTotal = W x F. 

A general assumption is to have almost identical current on two transistors when both have 

identical total size in an identical condition. However in sub-threshold and weak inversion that is 

not the case. Figures (4.3.5) shows two identical transistors, one with W=240 nm and F=1 which 

gives WTotal = (240 nm x 1) = 240 nm and the other one with W=120 nm and F=2 which gives 

also  WTotal = (120 nm x 2) = 240 nm.  

Figure(4.3.5) Transistor parameters (Total width) test and comparison. 

Results of this simulation are depicted in figure (4.3.6) and (4.3.7). Figure (4.3.6) shows “ON” 

current and figure (4.3.7) presents leakage current. Results show that at  the same condition 

transistor with greater “F” parameter provides better conductivity than higher “W”. This 

difference on the ID between two transistors will be bigger as “F” increases. Figure (4.3.8) 

compares ID of two transistors with identical WTotal but one with L=60 nm, W=1.2 µm, F=1 and 

the other with L=60 nm, W=120 nm, F=10.          
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Figure(4.3.6) Effect of “F” parameter on Transistors current. 

Figure(4.3.7) Effect of “F” parameter on Transistors leakage.
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Figure(4.3.8) Effect of greater “F” parameter on Transistors current.

However, less flexibility  will be the consequence of using “F” versus “W” for transistor sizing. 

In terms of using “F” step  size will become bigger because “F” has to be an integer. In fact, 

transistor size increase by integer factor of minimum “W”. This discrepancy on the current 

becomes critical when we use both “F” and “W” to size and ratio two transistors. Nevertheless, 

using “F” improves slope factor and helps transistor works more efficient in sub-threshold and 

weak inversion. All the results are applicable to PMOS and the current discrepancy is worse than 

NMOS. The ratio of NMOS and PMOS in sub-threshold is the other important  fact. An inverter 

is an important and basic element in digital logic and its VTC shows the best ratio of NMOS and 

PMOS in sub-threshold. A minimum NMOS size was considered in an INV circuit to achieve 

minimum energy consumption. Using VTC gives PMOS sizes and ratio to maintain 10% to 90% 

voltage swing as they are depicted in figures (4.3.9) and (4.3.10) when operating voltage varies 

from 75 mV to 200 mV respectively.       

47



Figure(4.3.9) VTC vs. PMOS sizes at 75mV.

Figure(4.3.10) VTC vs. PMOS sizes at 200mV.
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Considering test  results, transistor parameters and their sizing impact, parameter “F” takes place 

instead of “W” whenever it  is applicable and “L” sizing wont be used due to its nonlinear 

impacts and at last, the ratio of three will use due to general voltage swing and weakness of 

PMOS. It also pushes inverter switching voltage, Vm, below VDD/2 and that helps to use less 

power during the evaluation which we will see that later.     

4.4. Current-Mode Majority Function FA implementation

In sections (3.5) and (3.6) we discussed about the majority-function full adder and its so far only 

implemented circuit that it has been introduced. The circuit was based on passive capacitors 

network and taking advantage of lowering voltage swing to VDD/3 but also it suffers from 

minimum applicable supply voltage because of that  lowering. The capacitors must be sized such 

that transistor parasitic capacitors have less impact on the output voltage of network. Relatively 

big capacitors in front-end network has impact on speed and energy consumption of circuit. 

Using current instead of voltage can help to improve circuit operation where a single node in  

circuit perform analog current addition. Table (4.4.1) and (4.4.2) show carry  and sum generation 

in majority-function respectively. In table (4.4.1), carry  generation, consider logic “1” is 

represented by  reference current “I” and vice versa and no current refers to logic “0”. Thereby  Ix 

column in table (4.4.1) presents analog sum of input signals Ai, Bi and Ci-1 in current-mode. It 

also presents a single node current where adding all incoming and outgoing currents must 

becomes zero. Table (4.4.1) confirms that,

Ci = 0 if

�
Ix = 0,
Ix = I,   

Ci = 1 if

�
Ix = 2I,
Ix = 3I, 

So the threshold current of “(1.5)I” is a boundary  condition where “I” refers to input logic “1” 

and the statements above can result, 

   
Ci =

�
0 if Ix < ( 32 )I,
1 if x > ( 32 )I.

(4.4.1)

Therefor a single current comparator can generates the carry with respect to majority-function.  
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Ai Bi Ci−1 Ci Ix Logic
0 0 0 0 0

Ix < 1.5I
0 0 1 0 I

Ix < 1.5I
0 1 0 0 I

Ix < 1.5I

1 0 0 0 I

Ix < 1.5I

0 1 1 1 2I

Ix > 1.5I
1 0 1 1 2I

Ix > 1.5I
1 1 0 1 2I

Ix > 1.5I

1 1 1 1 3I

Ix > 1.5I

   Table 4.4.1 Carry generation in Majority-Function full adder. 

Ci Ai Bi Ci−1 Si Iy Logic
1 0 0 0 0 mI

Iy < G.I
0 0 1 1 0 2I

Iy < G.I
0 1 0 1 0 2I

Iy < G.I

0 1 1 0 0 2I

Iy < G.I

1 0 0 1 1 (m+1)I

Iy > G.I
1 0 1 0 1 (m+1)I

Iy > G.I
1 1 0 0 1 (m+1)I

Iy > G.I

0 1 1 1 1 3I

Iy > G.I

Table 4.4.2 Sum generation in Majority-Function full adder. 

Sum generation is depicted in table (4.4.2) with regard to same assumption. It converts logic to 

the current and vice versa. The only difference in here is that ﻿Ci  is replaced by ﻿m× I current in 

total current Iy. Note that all conditions below must be considered in table (4.4.2).
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




(m+ 1)I > 2I,
(m+ 1)I > mI,

mI < 3I.
(4.4.2)

Equation (4.4.2) results,





m > 1,
I > 0,
m < 3.

(4.4.3)

 

Thereby, 1< m = 2 <3 and considering m=2, we can replace threshold current “G.I” to “(2.5)I” 

and table (4.4.2) will change to table (4.4.3). Similar to carry generation, a single current 

comparator generates sum with respect to majority-function.

Ci Ai Bi Ci−1 Si Iy Logic
1 0 0 0 0 2I

Iy < 2.5I
0 0 1 1 0 2I

Iy < 2.5I
0 1 0 1 0 2I

Iy < 2.5I

0 1 1 0 0 2I

Iy < 2.5I

1 0 0 1 1 3I

Iy > 2.5I
1 0 1 0 1 3I

Iy > 2.5I
1 1 0 0 1 3I

Iy > 2.5I

0 1 1 1 1 3I

Iy > 2.5I

Table 4.4.3 Simplified Sum generation in Majority Function full adder.

The easy  way of implementing a current-mode majority-function is depicted in figure (4.4.1). It 

requires a single node and a current comparator but with the cost of increasing static current and 

power consumption. Using duality and converting current to voltage at very  last step however, 

helps to improve static current consumption and take the advantage of speed improvement. In 

figure (4.4.1) reference current competes with inputs current (Ai, Bi and Ci-1) and result  of that 

keeps lumped capacitor Cp either charged or discharged. So if we refer inputs current to Ix (Iy) 
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and reference current to 1.5I (2.5I) then the output of figure (4.4.1) generates table (4.4.1) and 

(4.4.4).      

Figure(4.4.1) Current-mode majority-function basis.

Figure (4.4.1) requires constants and static current and we need different  way to avoid this 

constants current and static power consumption. A capacitor converts current to voltage and save 

applied power. In sub-threshold where operation current is so small, parasitic capacitor along 

with node capacitor will be noticeable. Consider “Cp” is lumped model of that capacitor then,

            ﻿IC/D = Cp × (dVdt ) (4.4.4)

Where IC/D is charge or discharge current and it is a result of all inputs. So if we could charge this 

capacitor during the initialization and then evaluate inputs in period of “t”, which is required 

time period to discharge that  capacitor with reference current, then there wont be that static 

constants current. Figure (4.4.2) pictures this idea for both tables (4.4.1) and (4.4.4) by simply 

using Ix and Iy. The circuit is initialized by signal(s) Ti-1(Ti) and initializing signal will turn off 

during the evaluation and evaluating pulse PCi (PSi) with defined period of ‘t” applies to the 

circuit. If Ix (Iy) was bigger than reference current then in defined period it  can discharge 

capacitor, Cp, and brings voltage below switching threshold voltage VM. So as we can see, not 

only static current path is closed but also evaluation is limited to VDD/2 or VM (when it is 

considered to be in midpoint). Note that using PMOS/NMOS ratio equal to three pushes VM to 

be lower than VDD/2 and evaluating voltage swing becomes lower.
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Low voltage swing was advantage of voltage-mode majority-function by using front-end 

capacitor network architecture which is applicable in this current-mode architecture as well.  

 Figure(4.4.2) Current mode majority function FA concept.

Hence, we took advantage of both current-mode and voltage-mode in this architecture. As we 

discussed and have seen it in table (4.4.1) and (4.4.3) both carry  and sum follow the identical 

idea so their architectures are similar with only difference on sizes to maintain 1.5I and 2.5I for 

carry  and sum respectively. Also from table (4.4.3) we saw that sum is a product of carry  from 

same stage so sum has to wait for its carry  to calculate first before it evaluates the input signals. 

More about timing and synchronization will discuss in coming section. 

4.4.1 Carry circuit

Figure (4.4.3) shows carry  circuit implementing the way it is discussed in figure (4.4.2). At the 

beginning when circuit is not  enabled and enable line (ENi) is low, transistor MC8 is ON and  it 

charges input capacitor of back to back inverter pair INVC3 and 4.

Previous  stage       Next stage
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Figure(4.4.3) Carry circuit in current-mode majority-function FA.

Note that transistors MC10, MC11 and MC12 are the sources for majority function and are sized 

equally to provide current of “I”.  At the time that  enable line (ENi) becomes high, transistor 

MC8 will turn “OFF” and at the same time MC9 will turn “ON” because of PCi. Input capacitor 

of back to back inverter pair (INVC3 and 4) discharges through MC9 and input transistors 

MC10, 11 and 12 based on their ON/OFF conditions during period time of PCi. So PCi either 

must be generated from ENi or synchronized with that. 
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4.4.2 Sum circuit 

The other advantage of this idea is that sum circuit is similar to carry circuit with only difference 

in size and an extra input signal. Figure (4.4.4) shows sum circuit implementing. Like carry 

circuit, transistors MS8 charges input lumped capacitor at initial time, when ENi+1 is low. When 

ENi+1 goes high, MS8 will turn “OFF” and MS9 turns “ON” as a result of PSi. So that lumped 

input capacitor of back to back inverter pair (INVS3 and 4) discharges through MS9 and MS10, 

MS11, MS12 and MS13. Like the PCi, PSi must also be generated either from ENi+1 or 

synchronized with that.

Figure(4.4.4) Sum circuit in current-mode majority-function FA.
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Note that according to table (4.4.3), MS13 must be 2 times bigger than MS10, MS11 and MS12. 

That is because of Ci value or m = 2 which we saw that earlier.

4.4.3 Pulse Generating

Carry or sum circuits are relying on PCi and PSi to evaluate their input  signals and respond to 

them correctly and respectively  to tables (4.4.1) and (4.4.3). Circuits generate PCi and PSi must 

be similar to carry  and sum circuit to maintain identical condition in terms of parasitic capacitors. 

Figure (4.4.5) presents PCi signal generator circuit implementing. 

Figure(4.4.5) PCi circuit in current-mode majority-function FA.

Similar to carry circuit PCi pulse generator using identical back to back inverters (INVC1 and 2) 

and all transistors are sized exactly the same except MC3 which represents reference current 
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(1.5I). So size of MC9 must be close to 1.5 times bigger than MC10, MC11 or MC12.  Following 

our experiment in section (4.3) all transistors are considered to have minimum “L” and sized 

“W” to meet the requirements, so WMC3 is almost 1.5 times bigger than WMC10, WMC11 and 

WMC12. Note that following section (4.3), the source for the minor difference in here from our 

calculation is because of nonlinearity  in transistor current vs size. Like carry circuit, PCi is low 

when ENi is low and MC1 is “ON”, so input lumped capacitor similar to carry  circuit charges 

through the MC1. When ENi turns “ON” or it goes high, it turns “OFF” MC1 and turns “ON” 

MC2. MC2 and MC3 provide starving mechanism to discharge input lamp capacitor like what 

MC9 does with combination of MC10, MC11 and MC12 in carry circuit. MC3 presents 

reference current and generates discharge period or delay time equal to reference current so that 

ENi+1 will go high after this delay. This delay time is maximum required time for evaluation on 

each stage and must be realized on each stage.

Figure(4.4.6) The AND gate which is been used in the PCi circuit.
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Next these signals ENi and ENiB which refer to starving node in figure (4.4.5) are applied to an 

AND gate which is pictured in figure (4.4.6). Result of that AND gate is PCi with pulse width 

that presents reference current, Ix.                 

PSi circuit, pulse generator for sum circuit, is very similar to PCi with this difference that 

reference current is 2.5 times bigger than input signals current that have been used in sum circuit, 

so MS3 must be 2.5 stronger than MS10, MS11 and MS12. Figure (4.4.7) shows PSi circuit. 

Similar to PCi, MS2 and MS3 provide starving architecture to discharge input lumped capacitor.   

 Figure(4.4.7) PSi circuit in current-mode majority-function FA.

The other difference between PSi and PCi is applied enable signal. The fourth required signal in 

sum circuit as we discussed before is Ci and in order to evaluate input signals in sum circuit we 

must wait to evaluate carry first. ENi+1 confirms that the evaluation in the carry circuit is done 
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and next stage and sum circuit can use Ci signal as their input signal. Because of that PSi uses 

ENi+1 to generate its pulse, PSi. Similar to PCi these signals ENi+1 and ENi+1B which refers to the 

starving node in figure (4.4.7) are applied to an AND gate which is pictured in figure (4.4.8). 

Result of the AND gate is PSi with pulse width that presents reference current, Iy. 

Figure(4.4.8) AND gate which is been used in the PCi circuit.

So all required elements for a single bit full adder based on current-mode majority-function are 

presented. Before we look at test circuit  and result on a single bit, it is important to take a look at 

synchronization and review pipeline architecture which has been used in this design.
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4.5. Self-Timed Circuit implementing 

In chapter two we discussed advantages of using pipeline and self-timed circuits. Proposed 

current-mode majority-function full adder uses pipeline architecture with self-timed circuit. In 

table (4.4.3), we saw sum is function of Ai and Bi, input signals to each stage, Ci-1 from previous 

stage and Ci which is carry result of the same stage. In all carry ripple adder circuit we have to 

wait for Ci-1, so using pipeline architecture can help to save energy which is consumed in the 

format of a glitch. This glitch propagates from first to last stage in group one (“a”) of full adder 

(Carry propagate group in chapter 3). Therefore pipeline can prioritize each stage to avoid 

generating a glitch. We also saw advantage of asynchronous architecture in chapter two which 

has been used in this design and Figure (4.5.1) pictures asynchronous pipeline implementing in 

this design. 

Figure(4.5.1) Asynchronous pipeline pulse generating in CMMF.

At the beginning ENi signal is “Low” hence all other stages are “Low”.When ENi goes “High” 

and after period of tpc, which based on reference current, Ix, as it  was discussed in section (4.4.3), 

   ENi                                         ENi+1                                             ENi+2    

                                     PCi                                                 PCi+1       

                                         
                                       
                                     PSi                                                PSi+1  

      Stage i                      Stage i+1

ENi

ENi+1

ENi+2

PCi

PSi

PCi+1

PC i PC i+1

PS i PS i+1
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ENi+1 becomes “High”. PCi or applied pulse with period of tpc to carry circuit, is a result of ENi 

and ENi+1. In the next stage, carry pulse generator enables when ENi+1 becomes “High” and so. 

Note that, pulse for sum circuit  must be presented when Ci is ready, therefore ENi+1 is considered 

to generate PSi with period of tps. PSi circuit follows the same idea that has been used for PCi. 

PSi and PCi+1 both are synced and generated from ENi+1 which refers to falling edge of PCi 

and that means carry evaluation in last stage is completed and carry  signal is valid. Because of 

different required pulse widths for carry  and sum, two separate pulse generator has been used in 

this design. If we consider tpc = tps, then we could use PCi+1 instead of PSi to make circuit smaller 

and use less transistors. However this requires to have size ratio of 1.7 between back to back 

inverters (or (input lumped capacitor) in carry circuit and sum circuit. Note that in sub-threshold 

size of transistors are big to maintain minimum current and considering back to back inverters 

larger to achieve 1.7 time bigger lump capacitor leads to enlarge entire sum circuit as we 

discussed it earlier (i.e. Impact of parasitic capacitors).     

We could also generate two different pulse PC and PS at the beginning and then pass them 

through each stage with delay equal to pulse width of PC. That approach uses more transistors 

where in this architecture asynchronous pipeline pulse generators are merged in evaluating 

circuit to use less transistors and consume less power. Also at 75 mV, required propagation time 

or the delay to evaluate input signals was measured and determined to be around 10 µs. Thereby, 

ENi+1 goes “High” right 10 µs after ENi goes “High” from “Low” or that means 10 µs requires to 

evaluate input signals at 75 mV.   

4.6. Circuit Simulation and Analysis      

Designed architecture for CMMF full adder is an independent circuit. This means carry is 

generated in each stage and also has been used internally  to generate sum result. Therefor carry 

and sum outputs of each stage are independent from next  and other stages, so all applicable tests 

in single bit full adder circuit, conceptually are valid in structural N-bit circuit. 
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4.6.1. A Single Bit CMMF-FA Simulation     

In this test all inputs and outputs to or from the CMMF-FA single bit unit, are driven by  identical 

line buffer/Inverter. Figure (4.6.1) presents applied tests to the CMMF full adder circuit and its 

interaction with I/O units. Three major elements in test circuit are the “CMMF-SB”, “MF-INV1”  

and “CMMF-Driver” units. 

Figure(4.6.1) Single Bit CMMF Full Adder Test Circuit.
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Figure (4.6.2) pictures detail of CMMF-SB circuit. This is a main unit  which will use to provide 

an 64-bit adder circuit in later tests. Input signals can connect directly to pulse generators but 

buffer and driver circuits are used to provide realistic condition and consider any impact result  of  

drivers and buffers on final results.    

Figure(4.6.2) A Single Bit CMMF Full Adder Circuit.

Figure (4.6.3) shows “CMMF-Driver” and “MF-INV1” circuits in detail. These units also will be 

used in 64-bit CMMF adder test circuit.

Figure(4.6.3) CMMF-Driver circuit (Left) and MF-INV1 Circuit (Right).

Ai, Bi and Ci-1 are applied input signals along with ENi. They generate all conditions in look-up 

table of full adder. Note that evaluation begins right after enable signal applied. First test is to 

operate circuit at 200 mV and in 27°C. Results are pictured in figure (4.6.4). Then voltage 

gradually dropped to reach to the minimum applicable voltage at the same temperature. Figure 

(4.6.5) shows the test results at 75 mV and 27°C.   
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Figure(4.6.4) A Single Bit CMMF-FA Simulation at 200mV/27˚C.

Figure(4.6.5) A Single Bit CMMF-FA Simulation at 75mV/27˚C.  
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Figure(4.6.6) A Single Bit CMMF-FA Simulation at 200mV/57˚C.

Figure(4.6.7) A Single Bit CMMF-FA Simulation at 75mV/40˚C.
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Test results also show the impact of voltage variation and minimum applicable voltage at room 

temperature, 27°C. The minimum applicable voltage of 75 mV was recorded and confirmed. 

Temperature variation at minimum and maximum applicable voltage (i.e 200 mV and 75 mV) 

also tried to confirm maximum operating temperatures in each case. Figures (4.6.6) and (4.6.7) 

present test results at 200 mV and 57°C followed by  75 mV and 40°C. Comparing figure (4.6.7) 

and figure (4.6.5) shows that speed of circuit  has been improved when temperature was raised. 

That was expected and discussed earlier in section (2.3.1). Unlike strong inversion where lower 

mobility  dominates in high temperatures and slows circuits, in sub-threshold region, a lower Vth 

dominates in high temperatures and results in a lower delay. Following equation (2.3.7), 

Temperature has an exponential effect on the mobility  in sub-threshold and that causes 

nonlinearity impact on the circuit. This condition must be considered in any circuit that required 

wide operating temperature and it is based on timing.

Above tests confirm operation of single bit CMMF full adder architecture. Most architectures 

pass single bit  tests but problem happens when they are used to generate higher bits. There are 

many reason for that but the major ones are significant voltage and speed drop. Hence to confirm 

the single bit CMMF full adder cell design, it must be used in adder with large number of bits. 
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4.7. A 64-Bit Pipeline CMMF-FA Test and Simulation

A 64-bit array of the single bit CMMF full adder that  was tested in pervious section are put 

together to generate a 64-Bit Pipeline CMMF adder. Single bit units are pipelined and connected 

as they are shown in figure (4.7.1) to perform an 64-Bit adder.   

Figure(4.7.1) A 64 Bits CMMF-FA circuit.
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Generated 64-Bit CMMF adder, then is used in test circuit which is presented in figure (4.7.2) to 

add two numbers, “FFFF,FFFF...FFFF,FFFF” and FFFF,0000...0000,FFFF”. These two numbers 

are selected because they generate longest carry propagation and consuming almost maximum 

power because of sum result. 

Figure(4.7.2) A 64 Bits CMMF-Adder Test circuit.
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Same concept to use buffers and drivers to provide realistic conditions and consider any  impact 

from drivers and buffers on final results that we considered in a single bit CMMF full adder test 

has been taken in this test. The “CMMF-BUF64” and “CMMF-Load” circuits in detail are shown 

in figure (4.7.3). Both circuits use “CMMF-Driver” circuit  which was already shown in figure 

(4.6.3). Last element in this test is “CMMF-Driver” which was shown in figure (4.6.3) too. Carry 

and sum result of all bits are pictured in transient mode to present signals conditions in each 

stage. All carry and sum results are pictured in figure (4.7.4) to (4.7.9). The total operation time 

for a 64 bits adding at 75 mV applied voltage and 27°C is captured as 860 µs. The power and 

energy consumption in this operation was 4.5 nW or 3.8 pJ. Figure (4.7.10) shows current 

consumption before and during the operation. Current consumption is raised almost linearly as 

the stages are enabled one by one and the delta current  was about 20 nA, from first to the last 

stage. Recorded power consumption in this test is close to maximum power consumption for this 

circuit. This is because dynamic power consumption is result of two major elements. First, 

evaluating and second, is level changing. It has been discussed earlier that  evaluating uses 

minimum possible power which is based on VM < VDD/2 where VM is the switching threshold 

voltage of inverters. So regardless to the inputs and output result this much power has to be taken 

to evaluate any input signal. The second part however, it consumes more than the half of voltage 

which was used to evaluate and it is used to flip  back to back inverters output. So whenever carry 

or sum outputs becomes high, the second power consumption element has been used. In this test 

all carry and 25% of sum outputs became high.      
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Figure(4.7.3) CMMF-BUF64 and CMMF-Load circuits.
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Figure(4.7.4) Test Results of Bits 1 to 12.
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Figure(4.7.5) Test Results of Bits 13 to 24.
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Figure(4.7.6) Test Results of Bits 25 to 36.
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Figure(4.7.7) Test Results of Bits 37 to 48.
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Figure(4.7.8) Test Results of Bits 49 to 60.
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Figure(4.7.9) Test Results of Bit 61 to 64.

Figure(4.7.10) Current consumption in 64 Bit adding operation.        
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4.8.  Conventional Full Adder Test with 75mV

A conventional single bit  full adder based on transmission gate logic (TGL) as it is shown in 

figure (4.8.1) is tested with applied 75mV voltage supply. The test results of a single bit full 

adder that  is shown in figure (4.8.1) is pictured in figure (4.82). All the input signals are buffered 

same reason and way  that it was discussed earlier. Results of a single bit are acceptable even we 

could see the result of propagation delay. The next test was done on a 5 bits conventional adder 

based on the single bit  full adder which was discussed and tested. Result of each stage are shown 

in transient mode to present the signals conditions in each stage and is shown in figure (4.8.3). 

Results are showing that signal levels are not acceptable especially after fourth bit which causing 

false result.       

Figure(4.8.1) A Single Bit Conventional Full Adder based on TGL.
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Figure(4.8.2) A Single Bit Conventional Full Adder Test Results at 75mV.

Figure(4.8.3) A 5 Bits Conventional Adder Test Results at 75mV.
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Chapter 5

Conclusion

5.1. Project Review

Low and ultra low-power circuits are becoming more desirable as portable devices markets are 

growing and they also become more interested and applicable in biomedical, pharmacy and 

sensor networking application because of the CMOS reliability improvement and the nano-

metric scaling. 

Architectures like adiabatic, winner takes all and pipelined are introduced along with obvious 

solution to reduce the speed and supply voltage or using multiple supply voltage. However still 

there is more references need to do the comparison in each and every cases similar to the high 

speed application. Reducing voltage leads to sub-threshold and weak inversion operation along 

with asynchronous pipeline architectures which are the most efficient solutions for ultra low-

power consumption. But having architecture that use all these efficient solution is a challenge.  

Proper algorithm is the answer to win that challenge and have an appropriate architecture, the 

architecture that implies precise asynchronous pipeline technique in sub-threshold and ultra low 

voltage. Majority-function algorithm and two synthesis method of this algorithm which was the 

voltage-mode (VMMF) and current-mode discussed and reviewed. VMMF because of the 

capacitor network on front  and dividing operating voltage to VDD/3 wasn’t an ideal case for the 

sub-threshold. However using current mode (CMMF) and converting it to voltage immediately 

was the answer. In this thesis current  mode majority function adder is presented for the first time. 

Also for the first time ultra low voltage of 75 mV was implied. Therefor three major areas in this 
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thesis are, current-mode majority-function algorithm, achieving to 75 mV operating voltage and 

the technique to implement 64-bit adder. 

In summery, the majority-function algorithm provides advantages like,

1- It provides direct and quick way  to calculate the carry and the sum by  a simple 

comparison.

2- Because of using current mode it is fast even in ultra low voltages.

3- It requires and implies pipeline architecture.

4- It works perfectly with asynchronous self-timed circuit.

5- The input signals evaluating needs less than VDD/2 or VM and because of that it 

consumes low power.  

6- There are many ways to implement the algorithm. The one which was the best 

suitable for the sub-threshold and ultra low power circuits only introduced.  

7- It requires less transistors to implement in compare with others.  

Proposed circuit can operate voltage from 200 mV to as low as 75 mV. Total 64-bit calculation 

took 860 µs at 75 mV applied voltage. This means about 13 µs time requires for each stage or bit. 

The operation consumed 4.5 nW or 3.8 pJ with 75 mV applied voltage and defined input signals 

“FFFF,FFFF,....,FFFF,FFFF, and “FFFF,0000,.....,0000,FFFF”. Input signals are meant to realize 

maximum and worse case condition for both operating time and power consumption. Delta 

current consumption was about  20 nA and it  linearly increased from first stage/bit to the last. 

Total leakage current was about 55 nA before operation begins, before applying EN signal

(enable signal). 64-bit adder did respond correctly  and retuned output signals are consistent and 

have acceptable voltage level.  

The conventional circuit  failed at 75 mV applied voltage on the fourth bit. Signal levels are poor 

and unacceptable. 
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5.2. Future works

For the future, it is important to experience transistor exact behave in ultra low voltage like 

75mV as we saw and discussed about some uncertainty  and discrepancy in Cadence simulation 

in that region. The current architecture is very  easy and uses easy  and straight forward logics. 

The key parts perhaps are the starving mechanism which requires more investigation for better 

linearity. Current architecture uses two pulse generators for the carry  and the sum circuits, 

however it is possible to ratio the inverters and use only one pulse generator. This can reduces 

number of transistors almost 30%. Using other architectures to implement majority  factor and 

doing more tests and comparison would be very suitable.     
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