A Uniform Formal Approach to
Business and Access Control Models,
Policies and their Combinations

by

Vahid Reza Karimi

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2012

(©) Vahid Reza Karimi 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111

Abstract

Access control represents an important part of security in software systems, since access
control policies determine which users of a software system have access to what objects and
operations and under what constraints. One can view access control models as providing
the basis for access control rules. Further, an access control policy can be seen as a
combination of one or more rules, and one or more policies can be combined into a set
of access control policies that control access to an entire system. The rules and resulting
policies can be combined in many different ways, and the combination of rules and policies
are included in policy languages.

Approaches to access control (AC) policy languages, such as XACML, do not provide a
formal representation for specifying rule- and policy-combining algorithms or for classifying
and verifying properties of AC policies. In addition, there is no connection between the
rules that form a policy and the general access control and business models on which those
rules are based.

Some authors propose formal representations for rule- and policy-combining algorithms.
However, the proposed models are not expressive enough to represent formally classes
of algorithms related to history of policy outcomes including ordered-permit-overrides,
ordered-deny-overrides, and only-one-applicable. In fact, they are not able to express
formally any algorithm that involves history including the class related to consensus such
as weak-consensus, weak-majority, strong-consensus, strong-majority, and super-majority-
permit. In addition, some other authors propose a formal representation but do not present
an approach and automated support for the formal verification of any classes of combining
algorithms.

The work presented in this thesis provides a uniform formal approach to business and
access control models, policies and their combinations. The research involves a new formal
representation for access control rules, policies, and their combination and supports formal
verification. In addition, the approach explicitly connects the rules to the underlying access
control model. Specifically, the approach

e provides a common representation for systematically describing and integrating busi-
ness processes, access control models, their rules and policies,

e expresses access control rules using an underlying access control model based on an
existing augmented business modeling notation,

e can express and verify formally all known policy- and rule-combining algorithms, a
result not seen in the literature,

e supports a classification of relevant access control properties that can be verified
against policies and their combinations, and

e supports automated formal verification of single policies and combined policy sets
based on model checking.

Finally, the approach is applied to an augmented version of the conference management
system, a well-known example from the literature. Several properties, whose verification
was not possible by prior approaches, such as ones involving history of policy outcomes,
are verified in this thesis.

vi

Acknowledgements

I would like to thank my supervisor Professor Donald Cowan for his guidance and fi-
nancial support during my studies. I also acknowledge my Ph.D. committee members Pro-
fessors Howard Armitage, Daniel Berry, Michael Godfrey, William McCarthy, and Grant
Weddell for their time and efforts to be part of this committee. I would like to thank
Research Professor Paulo Alencar for many discussions and his input at the later stage of
this study.

I am also thankful for financial support from the Ontario Graduate Scholarship in
Science and Technology (OGSST) program.

vii

Table of Contents

List of Tables xiii

List of Figures XV

1 Introduction 1

1.1 Contributions 2

1.2 Research Approach 2

1.3 Thesis Organization L 6

2 Related Work 9
2.1 Access Control

2.1.1 Access Control Models 10

2.1.2 Access Control Policies and Policy Languages 13

2.2 Business Patterns and Business Processes 16

2.3 Formal Verification 21

2.3.1 Formal Verification of Access Control Policies 23

2.3.2 Formal Verification of Business Processes 28

3 Access Control Models, Rules and Policies and their Combinations 31

3.1 Overview of Representing Classes of AC Models 34

3.2 Representing Classes of Access Control Models 36

X

3.2.1 Modeling Roles and User Assignments 38

3.2.2 Modeling Permissions L 44
3.2.3 A Core Access Control Model Formed by Combining Patterns . . . 46
3.2.4 Advantages of the Core Access Control Model 48
3.2.5 Modeling Constraints, Role Hierarchies, and Mutually Exclusive Roles 52
3.2.6 Extending the Approach to Describe DAC and MAC 56
3.3 Defining Access Control Rules based on Models 58
3.3.1 Access Control Rule Syntax 59
3.3.2 Description of Access Control Rule Syntax 64
3.3.3 Access Control Rule Examples 70
3.3.4 Translation from EBNF to Predicate Logic 73
3.4 Creating Access Control (AC) Policies from AC Rules 75
3.4.1 The Use of Algorithmic Forms 76
3.4.2 The Use of State Machines 76
3.5 Policy-combining Algorithms 80
3.6 An Advantage of the Presented Approach 81
Specification of Properties for Access Control and Categorization 87
4.1 Backgroundo 87
4.2 AC Property Specification and Categories 88

4.2.1 Any Primitives of Agents, Events, and Resources Individually, and
in Connection with AC Results 92

4.2.2 Any Primitives of Agents, Events, and Resources Individually, and
their Attributes, and in Connection with AC Results 94

4.2.3 A Combination of Agents, Events, Resources, and their Relation-
ships, and in Connection with AC Results 96

4.2.4 A Combination of Agents, Events, Resources, their Attributes, and
their Relationships, and in Connection with AC Results 98
4.3 General Form of AC Property Specification 98
4.4 Related Work on Property Specifications 101

5 Evaluation: Conference Management Case Study

5.1 CONTINUE, Policies, and Properties

5.2 Business and AC Models, Rules and Combination
5.2.1 Business and AC Models L.
5.2.2 Access Control Rule L.
5.2.3 AC Rule Combination by Algorithmic Form and State Machine
5.2.4 An Advantage of the Thesis’s Approach

5.3 Formal Analysis
5.3.1 Formal Specification of AC Policies in PROMELA
5.3.2 Formal Specification of AC Properties in LTL
5.3.3 Verification Results and Expressive Advantage

54 A Note on the Useof SPIN,

6 Conclusion
6.1 Summary of Contributions
6.2 Limitations
6.3 Future Work
6.3.1 Other Access Control Models and their Extensions
6.3.2 Rights, Delegations, and Obligations
6.3.3 Analysis and Formal Methods
6.3.4 Privacy
6.3.5 Different Domains. L

APPENDICES

A An Overview of REA
A1 REA asan Ontology
A.2 REA Patterns for Policy-level Specification

X1

103
105
106
106
106
109
116
117
117
119
120
123

125
125
126
127
127
128
128
129
129

131

B BNF and EBNF Definitions
B.1 Access Control Rule in BNF
B.2 Other BNF and EBNF Definitions.

C A Brief Background on Logic
C.1 Propositional Logic
C.2 Predicate Logic
C.3 Linear Temporal Logic

D An Overview of SPIN and Alloy
D.1 SPIN
D.2 Alloy and Example

E The CONTINUE Policies and Properties
E.1 The CONTINUE Policies.
E.2 The CONTINUE Properties

F Other Combining Access Control Algorithms

References

xii

139
139
143

159
159
161
163

165
165
168

179
179
183

185

197

List of Tables

3.1

3.2
3.3
3.4
3.5
3.6
3.7

5.1
2.2
2.3
0.4
2.5

Al

B.1

D.1
D.2

Entities and attributes of the role modeling and user assignments pattern

in a table format 43
Entities and attributes of permission modeling pattern 46
A table representation of policies for the banking example 48
Additional elements added to access control models 53
A static separation of duties representation for the banking example 54

An example of the elements of an access control (AC) rule (a singleton policy) 59

Extended BNF (EBNF) 61

Rule-combining algorithms in the context of their use with formal verification116
Rule-combining algorithms in the context of using with formal verification 116
Some LTL and SPIN operators 119
State space, memory, and verification time, New, First Applicable 121

State space, memory, and verification time with ordered-permit-overrides

rule-combining algorithmo 122
A categorization of REA ontology 136
The original BNF o 139
SPIN’s temporal operators and their notations 167
Alloy’s relational and logical operators 168

xlil

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

A high-level overview oL

The RBAC model
An XACML example
(a) An exchange pattern, (b) a pattern to model a policy

Two Exchanges in a Value Chain: (a) renting a car, (b) repairing a car

Two rules and their combinations using MTBDDs

The SecureUML metamodel

Access control models, their realizations, and rule definitions

Access control policies as a combination of rules and a rule-combining algo-
rithm e

First-applicable Rule-combining Algorithm
The existence of a general policy can be modeled by a Mirror pattern.

RBAC with permissions as operations on objects
Analysis and design versions of aclass
A banking example
The Basic pattern, its specialization and enhancement, and example

(a) The Root pattern and (b) the specialized Root pattern

3.10 (a) Pattern for modeling roles and user assignments, (b) an example

XV

12
15
17
18
20
25
27

32

33
34
35
37
38
39
40
41
42

3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18
3.19

3.20
3.21
3.22
3.23
3.24
3.25
3.26

3.27
3.28
3.29
3.30

3.31
3.32

4.1
4.2

(a) Pattern for modeling permissions, (b) an example 45

(a) A combination of two presented patterns, (b) an example 47
Two levels of policy descriptions 49
The Job Classification class is the agent type class. 50
Aggregation and Groupo o1
Implicit versus Explicit Modeling of an Aggregate [93] 52
The specialized and enhanced Basic pattern, its variation to model role

hierarchies, and an example 55
Role hierarchies representations [34, 87]o L. 56
The specialized and enhanced Basic pattern, its variation to model mutually

exclusive roles, and an example o000 57
An example of an access control model 59
Plane, plane type, flight, flight type, and fleet 60
Access control rule definition in Extended BNF 64

Rule Combination using the AC rule definitions for first-applicable algorithm 77
Combining rules with the AC rule definitions for permit-unless-deny algorithm 78
A UML state machine using AC rule definitions for first-applicable algorithm 79
A UML state machine that uses the definitions of AC rules for permit-unless-

deny algorithm 80
An algorithmic description for first-applicable policy-combining algorithm . 81
A UML state machine for first-applicable policy-combining algorithm . . . 82
The algorithmic form for weak-consensus policy-combining algorithm . . . 83

A UML state machine representing weak-consensus policy-combining algo-

rithm 84
The algorithmic form for weak-majority policy-combining algorithm 85
A UML state machine for weak-majority policy-combining algorithm . . . 86
Predicate and propositional versions of expressions 88
Propositional versions of predicates 89

Xvi

4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
2.3
5.4
2.5
0.6
5.7
2.8
2.9
5.10
5.11

Al
A2
A3
A4
A5

B.1
B.2
B.3
B.4

Category 1, sub-categories, and sub-category variations 93

Category 2, sub-categories, and sub-category variations 95
Temporal implications [47] oL 96
Category 3, sub-categories, and sub-category variations 97
Category 4, sub-categories, and sub-category variations 99
A general form of AC Property 100
A summary of this chapter for access control policy specification 104
A summary of this chapter for property description and verification 104
A REA model of submitting and reviewing papers 107
A core access control model, based on this thesis’s presentation 107
An example of access control model for reviewing papers 108
The defined AC rules and states for ordered-permit-overrides 110

A UML state machine using the defined AC rules for ordered-permit-overrides111
The defined AC rules and states for ordered-deny-overrides 112
A UML state machine using the defined AC rules for ordered-deny-overrides 113
The defined AC rules and states for only-one-applicable 114
A UML state machine using the defined AC rules for only-one-applicable . 115

AREAmodel 134
Resource and its sub-categories 134
A state diagram of a resource 135
Patterns for policy-level specifications 137
A flight example for policy-level specifications 138
Access control rule definition in BNF 143
Agent-related definitions in Extended BNF 146
Agent-related definitions in BNF 148
Resource-related definitions in Extended BNF 151

xXvil

B.5 Resource-related definitions in BNF 153

B.6 Event definitions in Extended BNF 155
B.7 Event-related definitions in BNF 0. 157
D.1 A verification of policies that are not based on a model. 171
D.2 Visualizing of a REA rent business model using Alloy 172
D.3 A counter-example indicating an error 174
D.4 A counterexample of separation of duties 176
D.5 Employees and Customers 176
F.1 The algorithmic form for strong-consensus policy-combining algorithm . . . 186
F.2 A UML state machine for strong-consensus policy-combining algorithm . . 187
F.3 The algorithmic form for strong-majority policy-combining algorithm . . . 188
F.4 A UML state machine for strong-majority policy-combining algorithm . . . 189

F.5 The algorithmic form for super-majority-permit policy-combining algorithm 190
F.6 A UML state machine for super-majority-permit policy-combining algorithm 191
F.7 The defined AC rules and states for weak-consensus rule-combining algorithm192

F.8 A UML state machine that uses AC rule definitions for weak-consensus rule-
combining algorithm oo 193

F.9 The defined AC rules and states for weak-majority rule-combining algorithm 194

F.10 A UML state machine that uses the AC rule definitions for weak-majority
rule-combining algorithm oo 195

XVviil

Chapter 1

Introduction

Access control is an important part of business processes and is a significant part of security,
as “security depends on authentication, authorization, and auditing: the gold standard
[65].” Access control constitutes an important component of operating systems, database
management systems (DBMS), and applications. Access control policies define which users
have access to what objects and operations and describe any existing constraints. Several
incidents of information leaks in real systems owing to the implementation of incorrect
access control policies (e.g., [109], [17]) have been reported. These incidents indicate the
need for thorough analysis of access control policies and their properties. Although testing
reveals many existing errors in software systems, errors still remain undetected even in
safety-critical and economically vital systems [29].

One can view access control models as providing the basis for access control rules.
Further, an access control policy can be seen as a combination of one or more rules, and
one or more policies can be combined into a set of access control policies that control access
to an entire system. The rules and resulting policies can be combined in many different
ways, and the combination of rules and policies are included in policy languages.

Approaches to access control (AC) policy languages, such as XACML, do not provide a
formal representation for specifying rule- and policy-combining algorithms or for classifying
and verifying properties of AC policies. In addition, there is no connection between the
rules that form a policy and the general access control and business models on which those
rules are based.

Some authors propose formal representations for rule- and policy-combining algorithms
([36], [59]). However, the proposed models are not expressive enough to represent for-
mally classes of algorithms related to history of policy outcomes including ordered-permit-

overrides, ordered-deny-overrides, and only-one-applicable. In fact, they are not able to
express formally any algorithm that involves history including the class related to consen-
sus such as weak-consensus, weak-majority, strong-consensus, strong-majority, and super-
majority-permit. In addition, some other authors (e.g., [66]) propose a formal representa-
tion but do not present an approach and automated support for the formal verification of
any classes of combining algorithms.

1.1 Contributions

The work presented in this thesis provides a uniform formal approach to business and
access control models, policies and their combinations. The research involves a new formal
representation for access control rules, policies, and their combination and supports formal
verification. In addition, the approach explicitly connects the rules to the underlying access
control model. Specifically, the approach

e provides a common representation for systematically describing and integrating busi-
ness processes, access control models, their rules and policies,

e expresses access control rules using an underlying access control model based on an
existing augmented business modeling notation,

e can express and verify formally all known policy- and rule-combining algorithms, a
result not seen in the literature,

e supports a classification of relevant access control properties that can be verified
against policies and their combinations, and

e supports automated formal verification of single policies and combined policy sets
based on model checking.

1.2 Research Approach

This section provides a bird’s eye view of the research approach and then subsequently a
more detailed presentation of this work.

An Overview: Access control (AC) is an essential part of any business process. This
thesis proposes a new common representation for business models and classes of access

control models based on the resources, events, agents (REA) modeling approach to business
processes. The common modeling representation is defined incrementally. First, access
control primitives are mapped onto novel REA-based access control patterns. Then, REA-
based access control patterns are combined to define access control models. Based on
these models, access control rules are defined. General access control policies, which are
combinations of rules, are formed by augmenting the common representation with state
machines. This approach allows the specification and verification of more expressive access
control policies than are reported in the literature.

Once a model is constructed, it is formalized and then mapped to a language to facilitate
model checking analysis. Specifically, access control policies and related business processes
are specified in PROMELA, the language of the SPIN model checker. Finally, formal AC
properties to be verified are specified in linear temporal logic (LTL) and checked against
the access control policies. A conference management case study [36] is augmented with
these new access control policies to illustrate the proposed approach.

A property categorization for the specification of access control properties based on
property patterns [28, 27, 62] and using REA primitives is introduced. This categorization
involves four classes based on REA primitives, and each class has five subclasses (absence,
existence, universality, precedence, and response) based on property patterns. In addition,
this classification provides guidelines for reusing formal property specification. Currently,
there is no such categorization of access control properties reported in the literature.

The Detailed View: This thesis presents a common modeling representation for de-
scribing both business and access control models, and their associated rules and policies
[55]. The AC policy model is then formalized using state machines, and the properties
of the model are specified in linear temporal logic (LTL). To mechanize the verification
of the properties against the model, the formal specifications of the model and properties
are translated into PROMELA (the language of the SPIN model checker) and LTL, which
is used by SPIN, respectively. The entire approach is shown in Figure 1.1, where Box A
shows the model, Box B shows the formalization, and Box C shows the automated support
for formal verification. Each box contains several constituents that are described in the
next few labeled paragraphs.

A. The Common Modeling Representation: Boxes A1, A2, and A3, which are com-
ponents of this model, are described next.

A1l. REA and Access Control Models: This thesis uses the REA model to represent
business models for two reasons. First, REA contains rules that define relationships among
resources, events, and agents to express business processes. Second, REA has patterns that
provide descriptions of generic business processes. REA uses an object-oriented approach

A. The Common Maodeling B. The Formal Model
Representation and Properties

A3 B3 Cl
Formal AC Policies Formal Specification of
(State Machines) AC Policiesin PROMELA

C. Formal Analysis

Access Control (AC) Policy

A

combination
A2 B2 Cc2
Access Control Rule based on Formal AC Properties Formal Spec.lflc.ail on of
(LTL) AC Propertiesin LTL
| |
defined based .
Al on the model B1 contributed to
Access Control Models based on Access Control Property The SPIN Model Checker
Business Modelsin REA Categorization ‘
‘ Results

Figure 1.1: A high-level overview

and UML diagrams to represent business models. Access control models are then built
based on REA primitives and patterns. Box A1 of Figure 1.1 shows this approach.

A first contribution shows how the common representation can be used to describe
both business and access control models. According to Ferraiolo et al. [33], an access
control model can be described by the five elements wusers, objects, subjects, operations,
permissions, and the relationships among them. In Chapter 3, as a second contribution,
these five elements are mapped to resources, events, and agents, leading to three generic
patterns that support the representation of the main categories of access control (i.e., role-
based access control, discretionary access control, and mandatory access control). However,
the approach can be used to support any access control model that depends on these five
elements (users, objects, subjects, operations, and permissions). Chapter 3 discusses these
topics in detail.

A2. Access Control Rule: Moving from Box Al to Box A2 of Figure 1.1 portrays the
idea that access control (AC) rules are defined based on AC models. The grammar of AC
rules is declared in Extended Backus-Naur Form (EBNF). The contributions with regard
to AC rules are twofold: a definition of AC rules is based on the elements of the underlying
AC model, and the syntax in EBNF for the AC rules is provided. Chapter 3 presents AC
rules and their definitions in EBNF. In contrast, there is no connection between the AC
rules and an underlying AC model.

A3. Access Control Policy: In its simplest form, an access control policy consists
of a single access control rule, but several such rules are generally combined to make a
policy. As a contribution, this thesis uses state machines to describe all-known policies.
To summarize, the novelty of this research includes a) a rigorous systematic approach using
general forms of state machines (algorithmic forms) to define AC policies and b) policies
based on AC rules, which are based on AC models. Box A3 of Figure 1.1 shows access
control policy as a combination of AC rules. Chapters 3 and 5 provide detailed discussion
of this topic.

B. The Formal Model and Properties: Boxes Bl, B2, and B3 are related to the
categorization of properties, formal representation of AC policies, their combination and
their properties.

B1. Access Control Property Categorization: Box Bl of Figure 1.1 shows a novel
categorization for describing access control properties. This categorization uses property
patterns and REA primitives and their combinations. This classification involves four
categories based on REA primitives, and each category has five subcategories (absence,
existence, universality, precedence, and response) based on property patterns. This topic
is described in Chapter 4.

B2. Formal AC Property: Formal AC properties in linear temporal logic (LTL) are
specified based on AC rules in EBNF. Chapter 4 describes the AC properties and their
syntax in EBNF.

B3. Formal AC Policies: Box B3 of Figure 1.1 is the formalization of AC policies
using AC rules and state machines where the AC rules govern the transitions between
states. The state machine representation allows for the description and verification of
more complex policies than are currently reported in the literature. For example, policies
relying on history of policy outcomes and policies relying on consensus can be represented
and verified in this formalism. This topic is discussed in Chapters 3 and 5.

C. Formal Analysis: This box shows formal analysis of access control policies and their
properties in the context of business processes. Analysis of this type is needed because
multiple access control policies can interact to produce undesirable behaviour.

C1. Formal Specification of AC Policies: This step consists of the specification of
state machines in the specification language of a model checker. Since this thesis uses the
SPIN model checker, state machines are encoded in PROMELA.

C2. Formal Specification of AC Properties: Properties are specified using the general
form of properties from Box B2 and the specific notation of LTL for the SPIN model
checker.

Finally, the properties are verified against the policy model using SPIN, and results are
obtained.

A Case Study: An augmented version of the conference management case study called
CONTINUE that uses Boxes A, B, and C is described in Chapter 5 to show the method
presented in this thesis. This case study is enhanced with rule- and policy-combining
algorithms that involve history of policy outcomes, which have not been formally specified
and verified in the literature.

The notation used in this thesis makes it possible to specify and verify formally all
known access control policy combinations, thereby significantly extending the coverage
and correctness of AC decision-making in general and in the conference management sys-
tem in particular. For instance, the use of only-one-applicable combining algorithm, which
has not been formally represented before, makes it possible to detect whether access control
policies have rules with contradictory results (i.e., one rule permits a case, and the other
denies the same case). In this situation, the final decision according to only-one-applicable
is indeterminate. By knowing that the result is indeterminate, the inconsistency can be
resolved by removing the conflicting rule. As another example, the strong-majority com-
bining algorithm can be represented and verified formally, allowing policies that take into
consideration voting decisions under different majority conditions.

This case study uses access control models, rules, and policies, and their formalization
that are presented in Chapter 3. In addition, the definitions, categories, and general forms
of LTL AC properties from Chapter 4 are used to represent this case study’s properties. The
case study is represented and verified using the SPIN model checker and its specification
languages PROMELA and LTL.

AC properties of CONTINUE are verified including several properties where verification
was not possible by prior approaches (as are attested by these approaches [36] and [59]) if
certain rule-combining algorithms, such as properties involving history of policy outcomes,
e.g., ordered-permit-overrides and only-one-applicable. The time and memory usage of the
verification results are presented to indicate that the approach described in this thesis is
practical.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the related work, including
prior research on access control models and policies, business patterns and business process
models, and formal verification of both access control policies and business processes. Using

a running example, Chapter 3 describes the common modeling representation that consists
of access control models, access control rules and policies, and their combinations. This
chapter covers Boxes A1, A2, A3, and B3 of Figure 1.1. Chapter 4 discusses a categorization
and specification of properties for business-related access control policies and corresponds
to Boxes Bl and B2 of Figure 1.1. Building upon Chapters 3 and 4, Chapter 5 uses a
conference management case study to evaluate the approach presented in this thesis. This
chapter revisits Boxes A and B and is related to Box C of Figure 1.1. This chapter also
describes the expressiveness of this thesis’s approach and compares the verification results
with the outcomes of two previous works that use the same case study but apply different
analysis approaches. Finally, Chapter 6 concludes by discussing contributions, limitations,
and future extensions of this work.

Chapter 2

Related Work

Summary: This thesis discusses access control (AC) models, access control rules and
policies (in addition to the combination of AC rules and policies) and uses a business
process modeling notation. It also discusses the expression of access control properties in
addition to formal specification and verification of these properties. Therefore, the related
areas include access control models, access control policies, business processes, and formal
verification of business processes and access control policies.

Section 2.1 discusses related access control work, and in two subsections, describes
access control models, access control policies and policy languages. Section 2.2 provides an
overview of business processes. Finally, related work on the formal verification of access
control policies and business processes is discussed in two subsections of Section 2.3.

2.1 Access Control

Authentication, access control, and audit form the foundation of information and system
security [89], as previously mentioned in Chapter 1. The focus of this thesis is on one
aspect of security: access control or authorization.

An early work on access control in computer systems includes Lampson’s research [64] in
which an access control or “protection” is defined as a “general term for all the mechanisms
that control the access of a program to other things in the system.”

Section 2.1.1 presents access control models, and Section 2.1.2 describes access control
policies and policy languages. These topics are related areas because this work describes

the addition of a class of access control models and a policy language to a business model
in Chapter 3.

2.1.1 Access Control Models

This thesis presents access control models based on the five elements, as described in
Chapter 1, that are needed by any access control model. There are numerous access control
models (and policies) that are variously classified. In one classification [98, 12], three main
categories of access control are Mandatory Access Control, Discretionary Access Control,
and Role-based Access Control. These three categories are described next.

Mandatory Access Control (MAC): In the 1980s, the Trusted Computer System Eval-
uation Criteria (TCSEC) document (first version 1983; second version 1985), commonly
referred to as the orange book because of the color of this document’s cover, described
Mandatory Access Control (MAC). MAC is concerned with confidentiality, a need that
evolved in a military information setting. Access is granted or denied based on comparing
the security label of an object with the security clearance of a subject. The tight control
of MAC is not suitable in all cases, but this type of control is needed in some specific
situations.

In the 1970s, David Bell and Leonard La Padula described an example of MAC. Their
description of MAC had two main entities: a subject and an object; each had also a
security class. A security clearance describes a subject’s security class, whereas a security
classification represents an object’s security class [98]. Bell and La Padula described two
rules for MAC [98]: 1) simple security property (ss-property): a subject can read an object
only if the subject’s security class is equal or higher than the object’s security class; hence,
no read up represents an alternative name for ss-property, 2) star property (x-property):
a subject can write an object only if the security level of an object is equal or higher than
the subject’s class; hence, no write down is another name for x-property. If a subject can
write at the level lower than his/her security class, then a subsequent read by a subject at
this lower level can compromise confidentiality. BLP also includes an additional property,
called the discretionary property (ds-property) that enables users to grant others access to
an object; this discretionary access is constrained by the first two rules [98].

The goal of MAC is to provide confidentiality of information, and this main focus on
confidentiality makes MAC rigid. MAC contrasts with the needs of commercial systems,
including business processes. As a result, MAC and its specific variations or examples are
not emphasized in this thesis since the AC model presentation in Chapter 3 does not start

10

off with MAC. However, Chapter 3 shows how the AC model that is presented in that
chapter can be modified to represent MAC.

Discretionary Access Control (DAC): The TCSEC’s document also described DAC.
As the name indicates, the owners of an object use their own discretion to grant others
access to that object. DAC is also called Identity-based Access Control (IBAC) because
of its emphasis on a user’s identity in allowing or denying access to an object [15]. The
notion of control is more applicable than the concept of ownership for cases such as that
of an organization that owns objects and has employees that control these objects [32].
Nevertheless, an individual or an identity holds the ownership or control of objects. The
BLP ds-property represents the basis of DAC by providing for discretionary access control
[98]. One disadvantage of discretionary access control, for which it has been continuously
criticized, is the lack of assurance. For instance, individuals with ownership or control over
objects can grant an object access to other individuals who should not have access.

Although DAC is used in commercial systems, it is known for its weakness in granting
access [33]: if a person A grants access to B, then B can grant access to C who is unknown
to A. Discretionary Access Control is not emphasized in this thesis because of the formal
verification aspect of this thesis and its emphasis on correctness of policies. Even though
DAC is not emphasized, since the presentation of AC models does not start with it in the
next chapter, Chapter 3 shows the way in which the AC model presented in that chapter
can be adjusted to represent DAC.

Role-based Access Control (RBAC): The RBAC model [32] was introduced in 1992
as a generalized model of access control by adapting the existing role-based access control
approaches. RBAC represents a conceptually simple model in which an object’s access is
determined by a subject’s role. RBAC [34] introduces roles between users and permissions,
and permissions are assigned to roles instead of to users. This arrangement makes permis-
sion assignment easier because permission of roles changes less frequently than the user
roles (i.e., people change jobs or are assigned to various roles more often than permissions
are changed). In addition, an estimate indicates that the number of roles is about 3-4% of
the number of users [90]; in other words, each individual usually takes three to four roles
in an organization, that is, the ratio of users to roles is about three to four. As another
advantage, introducing roles simplifies the assignment of permissions because the number
of permissions in an enterprise is larger than the number of roles. Figure 2.1 [87] shows

RBAC.

RBAC was extended and described as four models [87]: RBAC, is the base or the
core model. The core model includes neither hierarchy of roles nor any constraints (e.g.,
separation of duties). RBAC] is the core model with role hierarchies. RBAC, is the core

11

I4

-

User Assignment Role Hierarchy

(RH)

Permissions

®

Permission Assignment
4 (PA)

/
/

¥

@ (©)

N
Role Hierarchy
(RH)

-

PRMS

Figure 2.1: The RBAC model

model with constraints such as restrictions (e.g., a purchasing manager cannot be a paying
manager). RBAC; is the comprehensive model and consists of the core, role hierarchy,
and constraint models. Figure 2.1(a) shows role hierarchies and constraints; constraints
are a significant element of RBAC. The arrowheads on both ends of the solid lines indicate
many-to-many relations. Figure 2.1(b) [34] is a representation similar to Figure 2.1(a) and
shows permissions (PRMS) as many-to-many relationships of operations (OPS) on objects

(OBS).

RBAC has been used frequently in commercial systems and does not have the drawbacks
of MAC and DAC, as described previously; therefore, RBAC is chosen as the model for
this thesis.

One extension to RBAC is Rule-based RBAC (RB-RBAC). RB-RBAC [1] assigns users
to roles on the basis of users’ attributes because RBAC does not describe how to assign

12

users to roles. As described in Chapter 3, RB-RBAC can be represented by the model that
is presented in the next chapter because of the use of attributes in the discussed model.

Bertino et al. [14] propose temporal-RBAC (TRBAC), an extension to RBAC, to enable
periodical activation and deactivation of roles; as a result, roles can be either active or
inactive within a certain time. The authors provide the syntax and semantics of TRBAC
and use an example. Although Bertino et al. [14] describe the features of TRBAC in
detail, it has to be determined whether such an extensive extension to RBAC hinders its
practicality.

RBAC is not concerned with the sequence of events, and layering other models, such
as Task-based Authorization Controls (TBAC), on top of it is recommended [87].

An RBAC Extension: Task-based Authorization Controls. Thomas and Sandhu
[102], in describing the need for a task-based authorization control paradigm, defined a task
or an activity a) being long lived, b) as perhaps including subtasks to be authorized indi-
vidually or collectively, ¢) as possibly having multiple individuals to perform each subtask,
and d) as being distributed in space and time. Subsequently, Thomas and Sandhu [103]
introduced the Task-based Authorization Controls (TBAC) paradigm, somewhat different
from their initial work. In addition to subject, object, and action sets, TBAC includes two
additional sets: “usage and validity count” and “authorization step” [103]. Each authoriza-
tion step contains its own subjects, objects, and actions sets. In addition, TBAC includes
the notion of “usage” and “validity” with a permission: no permission is unrestricted; each
is limited and has an expiration period.

Similar to RBAC, TBAC is described as one of four models [103]: TBAC, (the core
or base model), TBAC; (the model with composite authorization), TBAC, (the model
with constraints), and TBAC;3 (the consolidated model). A TBAC; composite authoriza-
tion includes more than one authorization step; for instance, transferring money from one
account to another account consists of two steps. One step consists of an authorization
to deduct money from a source account, and the addition of the money to a destination
account represents the second authorization step.

TBAC and RBAC are not in contention, but TBAC is mainly a research work, and
the extent of the use of this model in commercial systems, if any, is not discussed in the
literature. For this reason, TBAC is not further discussed in this thesis.

2.1.2 Access Control Policies and Policy Languages

For the specification of access control policies, several research works present different
policy languages that are not explicitly based on an access control model. In addition,

13

current approaches to policy languages are not able to specify and verify formally all forms
of rule- and policy-combination. In contrast, this thesis describes the process of I) creating
access control models and basing rules on access control policies and policy sets explicitly
on these models and II) further provides rule- and policy-combining representation that
supports formal specification and verification. A brief overview of policy languages in the
literature is provided next as a contrast to this thesis’s approach.

A policy language is a language that describes security policies. These languages
are classified into two categories [15]: 1) high-level policy languages describe conditions
and constraints on entities independent of implementations and 2) low-level policy lan-
guages represent constraints as inputs or arguments to commands (e.g., the UNIX-based
X-Windows provides a language to control access to the console such that typing xzhost
+hostnamea -hostnameb makes the system allow access from hostnamea but disallows ac-
cess from hostnameb.) In this thesis, whenever the term policy language is used, the term
means a high-level one.

Various such languages exist; some are, implicitly or explicitly, improvements and ex-
tensions of prior ones. eXtensible Access Control Markup Language (XACML) is the
standard and general-purpose XML-based access control language. In it, a rule constitutes
the most elementary part of a policy and is composed of three components [79]: 1) a target
that consists of subject, resource, action, and environment elements, 2) a condition that is
an optional element, 3) an effect that can be either deny or permit.

Figure 2.2 [79] (with some abbreviations) represents an access control policy stating
that“any user with an e-mail name in the ‘med.example.com’ namespace is allowed to
perform any action on any resource.” Line one of this figure identifies a rule named Rulel
as an abbreviated id; a value of “Permit” for the effect is also shown. A condition does not
exist for this example. In addition, resource, action, and environment, as three components
of targets, have not been specified in Figure 2.2 because the access control policy in English
states that any action and resource is allowed, and no description of an environment exists.
Lines five to twelve use a matching function with the “med.example.com” literal value and
a pointer using SubjectAtributeDesignator to identify a specific subject attribute.

The XACML specification [79] includes the core and hierarchical role-based access con-
trol (RBAC) profile within XACML v2.0, but separation of duties is currently beyond the
scope of this profile. XACML describes rule- and policy-combining algorithms in English
and provides pseudo-codes for the application of these algorithms. In contrast, Chapters 3
and 5 of this thesis use these algorithms and provide their descriptions in algorithmic forms
and state machines. In addition, the transitions between the states are governed by the
elements of access control rules, which are defined in extended BNF (EBNF).

14

© oo ~ =] ot - W [-

<Rule Ruleld="‘‘...Rulel’’ Effect=‘‘Permit’’>
<Target>
<Subjects>
<Subject>
<SubjectMatch Matchld= ‘... function: ... Name-match’ >
<AttributeValue DataType=‘‘...# string’’>
med . example .com
</AttributeValue>
<SubjectAttributeDesignator
Attributeld= ‘... subject—id "’
DataType= ¢ ‘...Name’’ />
</SubjectMatch>
</Subject>
</Subjects>
</Target>
</Rule>

Figure 2.2: An XACML example

Finin et al. [35] presented ROWLBAC for the integration of RBAC with OWL. They
used OWL to represent policies that can be represented by the RBAC model. Policy
languages in the literature with the exception of ROWLBAC and to a certain extent the
XACML profile of RBAC are not model-based. Despite the use of a language to describe a
model (RBAC), ROWLBAC does not describe AC rule and policy combinations that exist
in many policy languages. The description of ROWLBAC is limited to RBAC, whereas
Chapters 3 and 5 and Appendix F clarify an approach for the combinations of AC policies
and rules, which are based on the RBAC model in REA. These combinations are beyond
the capability of RBAC and ROWLBAC.

Knowledgable Agent-oriented System (KAoS) [104] enables specifying and resolving
conflicts of policies; policies are specified as an ontology. KAoS, originally a framework for
software agents, can include policies describing positive or negative authorizations. KAoS
includes the Policy Adminstration Tool (KPAT), a graphical user interface for specifying
and revising policies, and an analysis framework that relies on algorithms written as an
extension of Java Theorem Prover (JTV) for detecting policy conflicts [104]. The analysis
of access control policies is also a part of this thesis and is described later. Neverthe-
less, similar to many policy languages, access control policies defined by KAoS have no
connection to an explicit access control model. In addition, KAoS does not include the
combination of AC rules and policies that currently exist in policy languages. Therefore,
the last two points, i.e., AC rules based on a model and the inclusion of rule and policy

15

combinations, differentiate KAoS and the work presented in this thesis.

Rei [54] exemplifies a policy language and is capable of specifying a wide range of poli-
cies, such as access control policies. These policies are intended not to be tied to a specific
application/domain. Rei’s policy representation can include rights and prohibitions cor-
responding to KAoS’s positive authorization and negative authorization, respectively. An
entity, a, can perform an action, b, if certain conditions are met, a statement expressed as
has(a,right(b,conditions)). Similar to KAoS, there is a core ontology that can be extended
or retracted to fulfill specific needs of various applications. Rei relies on a Prolog engine
for policy analysis. If conflicts exist, such as overlapping of subject, object, and target,
then metapolicies, such as those created by specifying orders for policies, can be defined
to resolve these conflicts. Similarly, the analysis of access control policies is also a part of
this thesis and is described later. Nevertheless, Rei is a language that does not define rules
based on an explicit model and does not discuss rule and policy combinations; therefore,
Rei’s approach differs from the approach that is presented in this thesis.

2.2 Business Patterns and Business Processes

This thesis uses REA, which is presented as business patterns, for describing business pro-
cesses. The common representation (Chapter 3) is based on the Resource-Event-Agent
(REA) model, new combinations of access control and business patterns, and state ma-
chines. Therefore, a brief overview of business patterns and REA is provided next. In
addition, other modeling notations for business processes are described.

Although the idea of patterns in software engineering was popularized by design pat-
terns, which are still “the most popular and influential pattern work” [20], there are other
types of patterns. Business patterns are one type of pattern, related to business domains,
and are used to create business models that are simplified views of a business. The term
“business” in business patterns describes an organization that uses resources and has goals

[31).

The Resource-Event-Agent (REA) model is a collection of business patterns based on
the notions of Resources, Events, and Agents. These patterns are collectively called REA.
REA was initially introduced by McCarthy [68] and has been extended over the years.
Hruby et al. [48] presented REA as a group of business patterns. (An overview of REA
is provided in Appendix A.) Figures 2.3(a) and 2.3(b) show an exchange pattern and
another pattern to model a policy, respectively [48]. These two patterns can be combined
by merging their common elements.

16

duality

Resource |1 resource-flow 1.* Event 1.* participate 1 Agent

Resource Event Agent

* * *
grouping grouping grouping
* * *
Resource Group Event group Agent group
* * *
apply
*
apply x Policy * apply

(b)

Figure 2.3: (a) An exchange pattern, (b) a pattern to model a policy

Figure 2.4 [56] shows two exchange patterns connected together such that an output of
one exchange is an input to the other one. This figure shows two simple REA exchanges in
Figure 2.4(a), renting a car, during which an employee receives a client’s cash and provides
a car, and the customer provides cash and receives a car. In Figure 2.4(b), repairing a
car, an inspector provides cash to a mechanic and receives the repaired car (the reverse
also holds: a mechanic provides a repaired car and receives cash). These two models are
connected to make a value chain: cash is the output resource of the car-renting process
and is the input in the car-repairing process; similarly, a repaired car is an output resource
of the car-repairing process and is an input in the car-renting process.

As an advantage, REA includes rules for constructing business models; as a result, this
process is more orderly than others. As another advantage, REA uses an object-oriented
approach and UML diagrams to represent business processes.

Eriksson and Penker [31] provide a collection of business patterns classified into three
categories: resource and rule patterns, goal patterns, and process patterns. Each of these

17

<<event>>
<<resource>> <<resource-flows>> rent <<provide>>
car amount
7 . date
, <<receive>> .
// time
g - = . <<agent>>
/ agen <<provide>> <<duality>> employee
! customer
1
| <<event>>
|
', payment
| <<resource>> <<resource-flow>> <<receive>>
: cash amount
|‘ v date
\ time
@ \
Y ___ . N\
| \.__ - - - - - """"-"-"-"=""-"""-""°~="“="~"=~"~"=7"=7”"=”"7”" =" =" =" =”" =¥”" ¥" ¥" ¥" ¥ ¥ ¥ =¥" =" =" =" =" =" =" - -
| \
|
\ \\\\ <<event>>
‘)
t\ <<resource>> <<resource-flow>> repair payment | < orovides>
\\ cash amount
\
) <<receive>> O,'a‘e
) time
\
\ _ <<agent>>
\ <<agent>> <<provide>> <<duality>> ; %
\ _ inspector
\ mechanic
\
. <<event>>
. .
. repair
<<resource>> <<resource-flow>> <<receive>>
repaired car amount
date
im
) time

Figure 2.4: Two Exchanges in a Value Chain: (a) renting a car, (b) repairing a car

categories contains several patterns. Arlow and Neustadt [4] also present a set of business
patterns, but their patterns, such as customer and money, are related to the detailed

modeling of individual concepts present in business; probably for this reason, they call
their patterns “business archetype patterns.”

18

Process Modeling and Enterprise Modeling: Next, a brief description of a line of re-
search, identified as enterprise modeling, is provided because the selected business patterns
of this work are represented as an ontology and emphasize the semantic of entities. An
enterprise model “is a computational representation of the structure, activities, processes,
information, resources, people, behavior, goals, and constraints of a business, government,
or other enterprise. It can be both descriptive and definitional-spanning what is and what
should be [40].” TOronto Virtual Enterprise (TOVE) [39] exemplifies an effort on enter-
prise modeling. The OMG Semantics of Business Vocabulary and Business Rules (SBVR)
describes a business modeling approach based on the semantics of business vocabularies,
facts, and business rules.

Several modeling notations for specifying business processes exist. Because of the exis-
tence of various such languages and difficulties in translation from one language to another,
some authors compare this situation with the Tower of Babel [21]. A few popular, currently
or at some point in time, of these languages for modeling business processes are described
next.

Business Process Modeling Notation (BPMN): The following description of BPMN
graphical notation is mainly based on an article by Dijkman et al. [25]. BPMN, an OMG
standard, includes numerous graphical elements or constructs divided into three groups:
objects, sequence flows, and object flows. Object is subsequently classified into three cate-
gories: event, activity, and gateway; each category includes several elements. For instance,
a start event graphical construct represents the beginning of a process, and an end event
notation shows the end of a process. In addition, terminate, message, and error events
represent other types of events. A sequence flow links two objects and describes an order-
ing within a process, whereas a message flow describes the interaction between processes
as a method to connect them.

Despite BPMN being similar to the UML activity diagrams and part of OMG, BPMN
has more constructs than activity diagrams; in addition, BPMN is not an approach related
to object-oriented modeling.

Business Process Execution Language (BPEL): This XML-based specification lan-
guage represents business processes in a declarative manner. BPEL can specify both
abstract and executable business processes [77]: an abstract BPEL partially specifies a
business process without describing all the detail of execution, whereas an executable
one describes the process in detail. Barreto et al. [77] regard a BPEL specification as a
container that starts with a process element. Similar to BPMN, BPEL is not related to
object-oriented modeling. In addition, BPEL does not discuss business processes in general
but considers them in the context of the Web.

19

Finally, the use of activity diagrams, Data Flow Diagrams (DFDs), flow charts, and
Integration DEFinition (IDEF) models for process modeling is mentioned next.

Activity Diagram: These diagrams are the current UML standards for showing steps
that make a process. An activity diagram resembles a sequence diagram, but the former fo-
cuses on operations, and the latter emphasizes objects [16]. (Although an activity diagram
can also show objects by the addition of implicit and explicit pins and data objects, these
additional elements are not necessarily included in every activity diagram.) An activity
diagram is a variation of a flow chart: for instance, an activity diagram can show both
sequential and concurrent processes, whereas a traditional flowchart cannot [16]. Activity
diagrams comprise a few notations to describe processes, such as business processes; never-
theless, an activity diagram is a general representation and does not represent a modeling
approach.

Data Flow Diagram (DFD) and Flow Chart: DFD was a popular diagram within
the structured analysis paradigm, but its use has declined. As the name of this diagram
indicates, DFD shows the flow of data within processes and sub-processes. Control of flow
is not explicitly modeled, and what causes this flow is determined using other structured
analysis techniques, such as decision tables [21]. The UML activity diagrams provide a
means to represent DFDs by the addition of object nodes and pins to activity diagrams.
Flow charts, variations of UML activity diagrams, can also describe control of flow.

IDEF: Integration DEFinition (IDEF) is a family of modeling notation; in it, IDEF0 and
IDEF3 are related to business process modeling. The following IDEF descriptions are
largely based on the IDEF web site, www.idef.com, unless stated otherwise.

IDEF0/IDEFS3: The primary use of IDEF0 is modeling functions. IDEF0 shows a function
as a box with nputs, mechanisms (i.e., “the means used to perform a function”), and
controls (i.e., “conditions required to produce correct output”) as inflows to the box, and
outputs as outflows from the box. Figure 2.5 [76] depicts IDEFO.

L \Controls

Inputs _ Outputs
- Function =

W ‘ Mechanisms

Figure 2.5: IDEF0

20

A function can be gradually decomposed to show sub-functions. IDEF0 recommends
function decomposition up to six levels. Functions can be organized in a hierarchical
representation, for instance from left to right, such that an output from one function is
an input to another. Therefore, IDEFO can show a sequence of activities without time
considerations. IDEFO identifies what functions are performed, and what is needed to
perform these functions. Some authors note the lack of guidance in function decomposition
as a drawback of this approach [21]. Although IDEFO can represent a sequence of activities
as described, IDEFO0 is not intended for this procedure. IDEF3 is designed for process
description and includes two diagrams: process flow and object state transition network.
A process flow diagram shows the sequence of activities within a process, and an object
state transition network presents an object-centered view.

REA is compatible with other approaches, such as IDEF0 [48]: IDEFO inputs cor-
respond to REA resources consumed, and IDEFO outputs correspond to REA resources
produced. IDEF0’s mechanisms (i.e., “the means used to perform a function” [76]) rep-
resent people and machines and therefore are equivalent to REA agents and resources;
IDEFO0 controls (i.e., “conditions required to produce correct output” [76]) are compara-
ble to REA policies. The sub-functions of an IDEF0 can also be compared to the REA
value chain model, described previously, in which an input from a module is the output to
another one.

2.3 Formal Verification

This thesis uses model checking, a formal method approach, also used in the industry, with
weaknesses and strengths. Baier et al. [8] list characteristics of model checking and note
its strengths as follows: a) this general approach is applicable to software and hardware;
b) it allows properties to be validated individually; c¢) when a property is not valid, the
approach creates a counter-example for the invalidity of the property; d) the approach
is rapidly being adopted by the industry, and new techniques and tools are constantly
being introduced. The authors express the following weaknesses of model checking: a) the
approach, in most cases, is suitable for “control-intensive” applications rather than “data-
intensive” ones; b) model checking is subject to theoretical limitations of decidability and
effective computations; ¢) this approach verifies a model and not an actual system; d) the
state-space explosion is still a problem to overcome.

Model checkers use temporal logic to express various properties; therefore, an overview
of temporal logic follows. Although several types of temporal logic for property specifi-

21

cations exist, Linear time Temporal Logic (LTL)! and Propositional Computational Tree
Logic (CTL), a branching-time temporal logic, are used most often by model checkers. In
LTL, time is a set of paths, and each path is a sequence that consists of time instances;
therefore, LTL is called linear because of this view of time. In CTL, time is viewed as a
tree, and each moment can have various possible futures. CTL cannot express fairness
properties because this type of property describes that something will happen or fail to
happen, with or without certain conditions, infinitely often (read repeated liveness) [13].
The “infinitely often” of the above definition translates into GF, where G and F stand for
“always” and “eventually,” respectively. A property that includes GF cannot be expressed
in CTL because the temporal operators, such as G and F, must follow either the universal
quantifier (V) or existential quantifier (3).

LTL does not have universal and existential quantifiers (V and 3). The nonexistence
of the universal quantifier (V) does not impose any problem in property specification be-
cause LTL implicitly quantifies over all paths. In addition, the nonexistence of existential
quantifier (3) can be remedied using the dual negation relation between V and 3 [49]: to
check whether there is a path from a state s that satisfies a formula ¢, one can check its
equivalent to determine whether all paths from the state s satisfy —¢. However, a property
statement that includes both existential and universal quantifiers cannot be described by
the negation of the original statement because its negation also contains the existential
quantifier. For instance, “For every computation it is always possible to return to the
initial state” (i.e., VGIF start) cannot be expressed by LTL [8].

Alloy [50] represents a formal specification and analysis mainly based on predicate logic
with some similarities and differences to the model checking approach. Alloy Analyzer is
a compiler that translates a problem into a Boolean formula; the formula is subsequently
handed to a SAT solver. Alloy Analyzer also translates the SAT solver’s solution into
Alloy’s language. Therefore, the Alloy analysis relies on SAT solvers.

Theorem provers are also used in the verification of access control and/or business
processes. Theorem proving uses axioms and proofs to show the correctness of a system
[23]. In addition, Description Logics (DLs) are formal languages for representing and
reasoning about knowledge. In general, DLs represent subsets of first order logic, but some
are supersets of predicate logic. The expressivity of DLs depends on the constructors they
use in specification [7, 6]. Various DL reasoners such as FaCT++, Pellet, and Racerpro
with different reasoning capability are available.

'Berard et al. [13] use the term Propositional Linear Temporal Logic (PLTL) instead of LTL. PLTL is
more descriptive and accurate, but because of the common use in literature of LTL to mean PLTL, the
term LTL is also used here.

22

2.3.1 Formal Verification of Access Control Policies

Formal verification of access control policies is an active research area. This thesis also
discusses the verification of these policies, but the policies are based on access control
models. In addition, the combination of the policies is also represented by state machines.
This section describes prior works on the verification of access control policies.

Various formal method approaches, such as logic programming, model checking, and
theorem proving, are used for the verification of access control policies. Before describing
a few examples, it may be beneficial to mention the theoretical limitation in analysis and
to elaborate on the scope of this limitation.

The theoretical limitation always applies in that these types of analysis for the most
difficult problems are probably intractable. Role-based Access Control (RBAC) analysis is
shown to have PSPACE-complete complexity for general cases, and for certain restricted
cases, the complexity changes to NP-complete; for some others, running time is reduced
to polynomial [52]. It is known that P C NP C PSPACE C EXPTIME, although it has not
been discovered whether any of the above containment relationships is an equality [95].
Some strict containment between the above non-adjacent classes, such as P ¢ EXPTIME,
is known, but it has not been determined whether P ¢ PSPACE holds [83]. Nevertheless,
the intractability indicates the existence of possible exponential running time for difficult
instances, but this possibility does not apply to every instance. Jha et al. [52] performed
several experiments to determine how realistic the analysis of RBAC access control is. They
included cases in which the number of roles varied from 12 to 100, and the number of rules
were in the range of 31 to 250. The results were very positive because these nontrivial cases
have been analyzed in an expected amount of time. In addition, an exponential running
time such as 2" indicates a worst-case measure and the existence of at least one problem
of size n to require such a running time; however, most cases require much less time than
2™ [41].

Harrison et al. [45] also describe the general theoretical limitation in analysis but are in
favor of analysis. They study the safety analysis problem in an access control matrix and
conclude that it is undecidable: no algorithm can determine whether, in a general case,
an arbitrary configuration of an access matrix is safe. In other words, if users can grant
rights for accessing objects or operations to other users, determining whether someone can
gain a prohibited access when the access control system has no controls to limit users’
access is impossible [33]. Nevertheless, Harrison et al. [45] suggest that the undecidability
of the general case should not prevent analysis of restricted versions. For instance, they
show that analysis of the safety problem within an access control matrix is decidable if no
subjects or objects are allowed to be created.

23

Next, a few representations of access control policy analysis are provided. Jha et al. [52]
use model checking and logic programming to analyze access control policies and compare
these two approaches. They perform two experiments and conclude that even a problem
with a probably intractable running time (i.e., probably an exponential running time) for
the most difficult cases, can be solved in a reasonable time for some realistic instances.
They use both model checking and a logic programming approach and conclude that logic
programming using XSB (the Stony Brook University Extended Prolog) performs better
for small instances, while model checking using New Symbolic Model Verifier (NuSMV)
performs better for larger cases. Their experiments show that the number of rules is a
determining factor in runtime; even data sets with a larger number of roles and fewer rules
run faster than data sets with fewer roles and more rules. The authors’ work provides
insights in terms of using two different analysis approaches, but the scope of their work is
limited to RBAC: Their work is not concerned with rule- and policy-combining algorithms
that exist in policy languages.

Jirjens et al. [53] introduce UMLsec, extensions to UML using stereotypes to enable
security specifications (both authorizations and authentications). In this approach, UML
diagrams are annotated using a language with formal semantics. For instance, they use
a permission-based access control (i.e., associating permissions to entities) and annotate
UML class and sequence diagrams with these permissions to describe static and dynamic
aspects. Then, the authors translate these permissions into the language of a first order
theorem prover, such as SPASS, for the purpose of analysis. Despite the large scope of
UMLsec (i.e., includes authorization and authentication), UMLsec annotates UML dia-
grams to define precise security definitions. Some may argue that this approach defeats
the entire purpose and advantage of UML as a visual modeling language. Similarly, their
work does not apply to policy languages and rule and policy combinations.

Several authors describe different approaches in which they initially use UML and
OCL and then add analysis capabilities. HOL-OCL represents a tool for analyzing UML
class models annotated with OCL constraints. HOL-OCL mainly relies on the Higher
Order Logic (HOL) theorem prover for analysis and consists of several components [19]:
a) a data repository that can accept UML and OCL specifications and translate them
into XML Metalanguage Interchange (XMI). The data repository can also accept directly
XMI; in addition, there are other tools to perform this translation from UML to XMI, b)
a datatype package in HOL that includes object-oriented data structures of UML/OCL
models, ¢) a library that consists of over 10,000 UML/OCL definitions such as those of
integer, real, bag, and sequence, d) a collection of proof procedures for HOL that provides
necessary modules of analysis. HOL-OCL describes an analysis approach for UML class
diagrams, but the scope of this research is limited to only one type of UML diagram.

24

The current standard language for specifying access control policies is eXtensible Access
Control Markup Language (XACML). Some research on formalizing XACML exists, and
one representation is discussed next.

Fisler et al. [36] present an approach and a tool called Margrave? for the verification
of access-control policies written in an XACML subset, which will eventually be extended.
For instance, some XACML features, such as conditions with nested non-boolean functions
and multi-subject requests, are not currently handled by Margrave. To analyze access con-
trol properties, Margrave translates these XACML properties into Multi- Terminal Binary
Decision Diagrams (MTBDDs), variations and general forms of Binary Decision Diagrams
(BDDs). An MTBDD has multiple terminal nodes. Margrave builds an MTBDD for each
rule; then, these MTBDDs representing rules are combined. For instance, Figure 2.6(a)
shows an MTBDD representing a rule in which a project manager (p) is permitted to book
(b) a room (r), and Figure 2.6(b) describes another rule in which a member (m) is not
allowed to book a room. Figure 2.6(c) shows the combination of these two rules.

In addition, the authors’ approach also includes a change-impact analysis component
that compares two polices using a decision diagram called a change-analysis decision dia-
gram. The authors use the policies of conference management to evaluate their approach.

@ ©
Figure 2.6: Two rules and their combinations using MTBDDs

Fisler et al. present their research for access control policy analysis in addition to
providing a change impact analysis. Their approach is not capable of expressing some

2“a margrave is a lord or keeper of borders: that is, a medieval access control manager [36].”

25

rule-combining algorithms, such as the ordered-permit-overrides algorithm. This topic is
discussed in detail in Chapter 5.

Enterprise Policy Authorization Language (EPAL) resembles XACML. For instance, a
policy in both XACML and EPAL consists of one or several rules with similar three-part
structures [3]: a) an applicability that determines whether a rule applies to a request using
attribute values, b) a condition that describes existing constrains, ¢) an effect with a value
of either permit or deny that determines when a rule is applicable and conditions are met.
Therefore, because of similarities between XACML and EPAL, the research on formalizing
XACML can be applicable to EPAL. Fisler et al. [36] believe that Margrave “can, with
minor changes, handle EPAL just as well as it does XACML.”

Finally, some research starts with UML and OCL and performs analysis using addi-
tional tools. Some representatives of this line of research for access control policy analysis
are discussed next. UML-based Specification Environment (USE) enables the analysis of
both structure (i.e., classes, associations, attributes, and invariants of these elements) and
behaviour (i.e., operations and their pre- and post-conditions) of models [44]. It appears
that the current scope of OCL specification contains only class diagrams, but the USE
project also includes UML sequence diagrams. Gogolla et al.’s future work consists of
more support for sequence diagrams and the import and export of diagrams to XMI [44].

Sohr et al. [96] present two approaches for the analysis of access control policies. In
their first approach, USE receives both a textual format of UML models and OCL (i.e., a
textual representation of class names, attributes, and associations) as input. After syntax
checking, USE draws UML diagrams. The authors mention that USE may find errors
in certain situations and recommend the use of theorem provers to find other errors [96].
Despite the stated limitation, USE has been capable of detecting bugs such as initialization
errors within the first variant of Alloy [50]. In their second approach, the authors use the
theorem prover Isabelle and first order temporal logic. They also use Temporal Object
Constraint Language (TOCL), first introduced by Ziemann and Gogolla, to specify a type
of dynamic separation of duties. The scope of this work is also limited to RBAC.

Basin et al. [10] present the SecureUML metamodel, which uses UML to visualize
and extend RBAC. They also use OCL expressions, e.g., for expressing class invariants.
Figure 2.7 [9] shows the updated SecureUML metamodel from a subsequent publication.

The RBAC model (Figure 2.1) shows permission, which is generally viewed as operations
on objects. Figure 2.7 presents permission connected to the class of action (i.e., operation)
and associated with the class of resource (i.e., objects), but permission is generally expressed
as operations on objects. Therefore, the existence of class “permission” in addition to
“action” and “resource” is not justified. Despite their choice, their model (Figure 2.7) can

26

Resource

roleHierarchy 1
—é ResourceA ssignment
superrole
Permission 1
Role 1 PermissionAssignment * ActionAssignment ..
subrole i haspermission |default: Boolean ~ Action
default: Boolean |9'VE3CCESS o * 1.
*hasrole contains |1 ActionHierarchy
ConstraintAssingment
UserAssignment
isconstrainedby |0..1 [\
* Jincludes AuthorizaionConstraint CompositeAction | | AtomicAction
User body: String
language: String

Figure 2.7: The SecureUML metamodel

be considered an extension of RBAC because it is not substantially different from RBAC.

Basin et al. [9] add querying capabilities to answer certain questions, such as whether
two roles exist such that one includes the set of all actions of the other in addition to not
being related to each other in a hierarchical manner in terms of privileges. The authors
introduce SecureMOVA, an extension of MOVA, to provide query capabilities. (MOVA
enables drawing UML class and object diagrams plus writing and evaluating OCL con-
straints.)

Finally, it is worth mentioning an effort called the Common Criteria for Information
Technology and Security Evaluation, commonly referred to as CC. The description of this
effort also compares common criteria and this thesis’ scope.

The Common Criteria started in the mid to late 1990s through the evolution, merging,
and extension of three existing evaluation criteria: The Trusted Computer System Evalua-
tion Criteria (TCSEC) of the 1980s, the Canadian Trusted Computer Product Evaluation
Criteria (CTCPEC) of the 1990s, and Europe’s Information Technology Security Evalua-
tion Criteria (ITSEC) of the 1990s [15].

The Common Criteria consists of two categories [98]: a) functional requirements that
describe desired security behaviour and consist of eleven classes, including audit and iden-
tification and authentication, and b) assurance requirements that specify the existing in-

27

tended security measures and include several classes. The Security Assurance requirements
use an Evaluation Assurance Level (EAL) classification, which currently consists of seven
levels, but the last three levels are hardly applied in practice.

The scope of CC includes all aspects of security, including access control, authentication,
and auditing. Several licensed laboratories exist around the world to evaluate these criteria;
in addition, annual conferences entitled International Common Criteria Conferences are
dedicated to this subject. Despite continuously updated ISO (ISO 15048) and extensive
classification of security requirements, the common criteria represents a general approach.

2.3.2 Formal Verification of Business Processes

This thesis describes the verification of business and access models and policies. Therefore,
at this point it may help to outline some prior works on formal verification of business
processes.

Similarly, and in a parallel effort to access control policy verification, the desired prop-
erties for business processes are verified using different analysis techniques. This formal
analysis includes some properties, such as whether an action is reachable in a business
process. A few representatives are discussed next.

Janssen et al. [51] present Architectural Modelling Box for Enterprise Redesign (AM-
BER) for the specification of business processes. AMBER has graphical constructs to
describe actions, hierarchical compositions, and causality relations, among others. These
graphical representations are automatically translated to the language of SPIN. The au-
thors view their automatic translation as a bridge between informal and formal models.
They define GARAGE, a process for repairing a car after an accident, and PRO-FIT, a
process for evaluating a claim sent from a customer to an insurance company. Using Liner
Temporal Logic (LTL), Janssen et al. define and evaluate five properties, e.g., is the car
always repaired when delivered? AMBER does not perform an automatic translation of
properties, and users have to write properties in LTL. The work in this thesis (Chapter 4)
also specifies properties in LTL, but these properties are categorized and have specific
forms.

Some research papers for verification of business processes start with Business Process
Execution Language (BPEL) descriptions and then apply various formal verification tools
to analyze certain properties. A few representations of this line of research follow.

VERIification for BUSiness processes (VERBUS) [37] represents an approach and a
tool, based on the model checking approach, for verification of business process properties.

28

Currently, VERBUS receives a BPEL description and translates it automatically to a
common formal specification that is subsequently translated to the languages of SPIN
and Symbolic Model Verifier (SMV) model checkers. The authors state that VERBUS
differs from other similar approaches because it can be extended by the inclusion of other
business process languages and formal methods techniques. According to the authors,
the extendibility is achieved through use of a common intermediate language. As an
advantage of this approach, VERBUS can examine both Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) properties. VERBUS can use both SPIN and SMV
model checkers.

Salatin et al. [86] state that BPEL lacks well-defined semantics and advocate the use
of languages with formal semantics such as Calculus of Communicating Systems (CCS),
a process algebra language. With a small test case written in both BPEL and CCS,
they describe a sanitary agency model that can accept requests from elderly citizens and
provide responses accordingly. To analyze certain properties, Salatin et al. use Concurrency
Workbench of the New Century (CWB-NC), which can accept a CCS specification. The
authors use Calculus of Communicating Systems to describe their test case; nevertheless,
their test case is a small one.

Ouyang et al. [81] take advantage of extensive research using Petri nets to describe and
analyze business processes and present their approach using BPEL2PNML and WofBPEL
tools. Using Petri Net Markup Language (PNML), BPEL2PNML accepts BPELs and
translates them into Petri nets. (Other existing Petri net graphical visualizers, such as
the PIPE editor, can also transform PNML layout descriptions into Petri net diagrams.)
WofBPEL receives PNML layout information and performs three different types of analysis,
including the detection of unreachable actions within business processes. In addition,
WOofBPEL creates an XML file that contains the results of an analysis, including description
of errors. The authors provide small examples and show three different error messages
captured by their analysis.

Some authors, e.g., Dijkman et al. [25], argue that the Business Process Modeling
Notation (BPMN) standard may possibly introduce errors in modeling business processes
because BPMN has many constructs that lack formal semantics. The authors translate
BNMPs to Petri nets because Petri nets are formal models based on the concept of flow,
either the flow of an object or the flow of control. The authors translate some BNMP
models, collected from different sources, into Petri nets; their analysis detects dead tasks
and livelock errors. Their work neither covers the BNMP existing capabilities of multiple
concurrent, executions of subprocesses for handling exceptions completely nor BNMP OR-
join gateways.

29

Chapter 3

Access Control Models, Rules and
Policies and their Combinations

Summary: This chapter describes a common representation for business and access con-
trol models, rules, and policies based on the Resource-Event-Agent (REA) model, REA
patterns, and state machines (SMs).

Access control models provide the basis for access control rules. An access control
policy can be seen as a combination of one or more rules, and one or more policies can be
combined into a set of access control policies that control access to an entire system. The
rules and resulting policies can be combined in many different ways, and the combination
of rules and policies are included in policy languages.

The top two boxes of Figure 3.1 correspond to Box Al of Figure 1.1 and show the
approach of using a common representation to describe both business processes and access
control models. Business models are described using REA and business patterns (e.g.,
[42, 48, 68, 100]). Section 2.2 and Appendix A also describe REA.

As the top right-hand box of Figure 3.1 presents, the role-based access control (RBAC)
model is selected to show the approach. As explained in Chapter 1 and described in detail
later in this chapter, this modeling approach applies not only to RBAC but to any general
access control model that is based on the five constituents: users, objects, permissions,
operations, and subjects [33]. In general, access control models can be expressed in REA
through three REA AC patterns that map resources, events, and agents to the previously
mentioned five constituents of access control. Extension of the model to two other main

access control categories, discretionary access control (DAC) and mandatory access control
(MAC), is illustrated.

31

Access Control (AC) Models

Access Control (AC) Models and I Almost any access control model can be rep-
Policiesin REA and SM — resented by the following elements:

created in this thesis: Chapter 3 i
(reaedinth)

Business Processes in REA
(already exists: REA is described
in Chapte 2 and Appendix A).

Modeled as ssimple patternsin this thesis
RBAC ismodeled as an example.

Access Control Models

based on

Y

Access Control Rules

Figure 3.1: Access control models, their realizations, and rule definitions

The box at the bottom of Figure 3.1 represents access control rules based on access

control models and corresponds to A2 of Figure 1.1. The grammar of AC rules, based on
AC models, is described in BNF.

This chapter also discusses the combination of rules into policies using state machines
and explains different possible ordering combinations. This approach is shown in the two
top boxes of Figure 3.2, and it maps into Box A3 in Figure 1.1. These combinations can
be described by various algorithms, such as the first-applicable algorithm (the top right-
hand box of Figure 3.2 and also described in detail in Figure 3.3). The bottom box of
Figure 3.2 shows a state machine that describes the formal model for the first-applicable
rule-combining algorithm and corresponds to Box B3 in Figure 1.1. As presented in this
box, one of the authorizations of permit, deny, or not applicable (NA) is decided based on
the existing AC rules and this algorithm. The state machines for these combinations are
discussed in detail later. The categorization and formalization of properties from Boxes
B1 and B2 of Figure 1.1 are described in Chapter 4.

Section 3.1 provides an overview of the general approach. Section 3.2 describes the

32

. Rule-combinin
Access Control Policies (AP) . g
Described by
AP1 APQ APB Apn . .
‘ State Machine Representations
4 Y L] Different combining algorithms are possible.
APy APy AP3 AP, Oneis based on the first-applicable algorithm:
rule; |jrule; rule; rule; . . ;
rule, ||rule, rules |..|rule, if found, return permit or deny and then quit;
: : : : if not found at the end, return NA.
rule, |[lrule, rule, rule,

== ¢

RuleEvaluation ‘
First-applicable

[p-rule; = true [p-rule; = false]

permit [\ Event;Access (permit) = true] ‘
@ =l [i] [d10]
y _ &(\)e\
~ [p-rule; = true| /' |[p-rules =
m false]
d \’\X m
il [\ Event;Access (deny) = true] (
i=1 d21] [20]
L
[\ Event;Access (permit) = true]
i=1 ,

[p-rule, = true]

[/\ Event;Access (deny) = true]

(o)

My,

[\ Event;Access (permit) = true] else
i=1

Figure 3.2: Access control policies as a combination of rules and a rule-combining algorithm

33

The description of the first-applicable rule-combining algorithm follows [79]: the evalu-
ation of rules within a policy is in the same order that rules are listed in a policy. If a
rule applies, then the rule’s result, i.e., permit or deny, applies, and the evaluation of the
rest of rules halts. Otherwise, the procedure continues to the end. If none of the rules
applies, then the result will be not applicable.

Figure 3.3: First-applicable Rule-combining Algorithm

generic patterns of this thesis and uses a running banking example, taken from the litera-
ture, to illustrate examples of these patterns. This section provides a detailed description
of the patterns used to construct classes of access control models and explains Box A1 of
Figure 1.1. Section 3.3 explains the specification of a general form of access control rules
based on access control models. This section expands on the material in Box A2 of Fig-
ure 1.1. Section 3.4 shows the creation of access control policies using general algorithmic
forms, state machines, and access control rules. This section presents Boxes A3 and B3 of
Figure 1.1.

3.1 Overview of Representing Classes of AC Models

Geerts and McCarthy [43] created a notation to represent policies related to business
models using REA and a small number of patterns. Since models such as RBAC represent
access control policies, this thesis has adopted a similar approach as a starting point for
the access control domain. Specifically, Geerts and McCarthy’s notation is enhanced to
include the classes, attributes, and relationships to represent access control models.

This section provides an overview of the task of representing access control (AC) models
using patterns. First, an overview of general policy patterns as described by Geerts and
McCarthy [43] is provided. These patterns are the starting point for modeling access
control. Then, a motivation for using patterns and an outline of the pattern approach are
provided.

General Policy Patterns: A general policy applies to groups and types, such as groups
of airplanes and types of flights, rather than an individual entity. For example, commuter
aircraft usually fly between cities a few miles apart, but jumbo jets fly between continents.
Such a policy can be modeled graphically as patterns.! Detailed descriptions of business
models and general policies using REA patterns are provided in Appendix A. Figure 3.4

LA pattern is here used in the same sense as described by Fowler [38].

34

shows an example of a REA pattern called Mirror for modeling the existence of a general
policy. In this figure, a policy can be expressed by the association between Flight Type and
PlaneType describing what types of planes can be used for what types of flights.

{Airline Policy:}

FlightT PlaneType
gntiype {What plane types can be used yp

for the different flight types?}

Flight Plane

Figure 3.4: The existence of a general policy can be modeled by a Mirror pattern.

Motivation for Using Patterns: Patterns are used for representing access control mod-
els for the following reasons:

e REA provides some patterns for modeling general policies. However, their patterns
are deficient in the sense that they do not include the classes, attributes, and rela-
tionships to represent access control models. However patterns, such as the Mirror
pattern, can serve as an excellent starting point in access control modeling.

e The problem can be solved incrementally as each pattern can solve part of a prob-
lem. For instance, one pattern can model a building block (e.g., permission) of an
access control model, and another pattern can model a different element. Then, the
combination of patterns can build an access control model.

e The benefits of patterns are commonly acknowledged, as patterns can enable reuse
and prevent the reinvention the same solutions over and over. In addition, one can
take advantage of the guidelines of patterns (i.e., the context, problem, solution, and
example of a pattern) in determining when and how to use them [16].

An Outline of the Pattern Approach: A mapping between resources, events, and
agents and the primitives of access control, namely subjects, objects, users, permissions,
operations and their relationships, is performed using the patterns in Appendix A as a
starting point. This mapping is performed using the following steps:

a) The patterns are specialized to deal with only resources, events, and agents.

35

b) These patterns are further enhanced with attributes to map REA to the primitive
building blocks of access control models such as users and permissions. Specialized
Basic and Root patterns model the users (and roles) and role hierarchies (if they exist)
of access control models. A specialized Mirror pattern models permissions of access
control models.

¢) Specific combinations of these three specialized patterns based on the Root and Mirror
patterns are used to construct classes of access control models.

3.2 Representing Classes of Access Control Models

Classes of access control models, in general, can be described by five elements [33], namely
users, objects, subjects, operations, permissions, and their relationships. A user represents
an individual interacting with a computer system. An object represents any resource, such
as a file, that can be accessed, and therefore is assumed to be passive. An operation is an
active process such as write, when a user writes to a file, and a subject refers to a computer
process, such as a program consisting of several operations.? Finally, a permission describes
a set of tuples relating operations and objects such that if a tuple contains an operation
and an object, then the operation on that object is permitted.

A mapping between these five elements and the three elements (i.e., resources, events,
agents) of the REA model is described next. This mapping will be structured using pat-
terns. First, users and objects correspond to agents and resources, respectively. An event
corresponds to the completion of an operation, and can be considered as a different view of
the same concept: an event includes a distinct change of state, whereas an operation makes
the change happen [67]. Since a permission describes a set of tuples relating operations
and objects, then based on the mapping between events and operations, permissions can
also be modeled as tuples of events on resources. In addition, the subject corresponds to
a process, which is set of operations that now map to events.

Using patterns and this mapping, access control models are constructed. RBAC, Fig-
ure 3.5 [34], is used to show the approach. RBAC is a well-known access control model
and presented in detail in Section 2.1.1.

2The early access control models used the term subject for an active process, whereas in some recent ac-
cess control models, such as role-based access control (RBAC), an operation and a subject are distinguished
between [33]: a subject refers to a process possibly invoking several operations.

36

-

User Assignment Role Hierarchy

(RH)

(UA)

Permission Assignment
4 (PA)

Figure 3.5: RBAC with permissions as operations on objects

This mapping is demonstrated by modeling the elements of Figure 3.5. Section 3.2.1
describes the modeling of roles and user assignments using a pattern and also discusses
constraints on users and roles. Section 3.2.2 presents the modeling of permission using
a different pattern; this section also discusses constraints on permissions. Section 3.2.3
explains a core RBAC model that is constructed by the combination of patterns of the
previous two sections. Section 3.2.4 explains the advantages of the core access control model
constructed in this thesis. Section 3.2.5 presents role hierarchies and separation of duties
using a variation of the pattern described in Section 3.2.1. Section 3.2.6 illustrates the
extension of this modeling to represent discretionary access control (DAC) and mandatory
access control (MAC), two other main categories of access control.

Convention: This chapter follows the readability convention proposed by Ambler [2],
namely that capital letters or underscores are not used in class names or their attributes
(Figure 3.6). For example, loan officer and day of week are used instead of loanOfficer and

dayOfWeek.

Description of Patterns: The pattern representation presented here is consistent with
the general presentation of analysis patterns in the literature (e.g., [38]), in which context,
problem, and solution are the three main elements. The resulting contezt is adopted from
Hruby’s form [48]. The pattern description consists of the following elements:

Name: A short descriptive name for a pattern
Context: A description of the situation to which a pattern applies
Problem: A brief explanation of the problem that a pattern attempts to solve

Solution: An explanation of the way a pattern solves a described problem. This chapter

37

Analysis Design

Order Order

Placement Date - deliveryDate:Date

Delivery Date - orderNumber: int

Order Number - placementDate: Date

Calculate Total - taxes: Currency

Calculate Taxes - total: Currency
calculateTaxes(Country, State): Currency
calculateTotal(): Currency

Figure 3.6: Analysis and design versions of a class

intends to describe the solution in enough detail to be coherent, but also to be general
enough to allow the solution to apply broadly.

Example: An example of the solution

Resulting Context: A clarification and the consequences of the solution in a broader
aspect

Pattern descriptions [57] for access control models, which appear in the next sections,
are presented both in general and in relation to a specific banking example. Figure 3.7
shows this banking application, provided by Chandramouli [22].

3.2.1 Modeling Roles and User Assignments

The pattern described next models the user, role, and the assignment of a user to a role
(user assignment) of an access control model. For instance, for RBAC, this pattern uses
REA to describe the left hand-side of Figure 3.5, which consists of circles called users and
roles, and their connections.

Name: Role Modeling and User Assignments Pattern

Context: This work assumes that the roles are already known and can be described using
various existing entities (classes) and their attributes.

Problem: The concept of roles in organizations is significant because activities and tasks
are associated with roles. More specifically, how can one model users and roles using REA
primitives? What kind of roles can be included in teams or organizational units (i.e., teams

38

Banking Case Study [22]

The banking application is used by tellers, customer service reps and loan officers, accountants,
and accounting managers.

Policies: The existing policies are as follows:

P1) A teller can modify deposit accounts.

P2) A customer service rep can create and delete deposit accounts and also has a teller’s per-
missions.

P3) A loan officer can create and modify loan accounts.

P4) An accountant can create general ledger reports.

P5) An accounting manager can modify ledger posting rules and also has the permissions of
an accountant.

Hierarchical Role Relationships:

H1) A customer service rep role ranks higher than a teller role.

H2) An accounting manager role ranks higher than an accountant role.

H3) Customer service rep, loan officer, and accounting manager roles rank at the same level.
H4) A branch manager ranks the highest.

Static Separation of Duties: A single user cannot hold the following pair of roles:
1) customer service rep and accounting manager

2) loan officer and accounting manager

3) teller and accountant

4) teller and loan officer

5) accountant and loan officer

Dynamic Separation of Duties: One individual cannot hold the following two roles at the
same time: customer service rep and loan officer

Figure 3.7: A banking example

or organizational units are aggregation of users.)? How can different roles of a user, if they
arise in relation to teams or organizational units, be modeled? In addition, how are these
roles assigned to users?

Solution: The solution is constructed in two steps using the Basic and Root patterns.

Step One: This step models users and roles of access control using REA. Users and roles
correspond to individuals and their types respectively, and can be specialized to agents and
agent types of REA. The Basic pattern (Appendix A) can model the constraint relationship

39

of access control between agent and agent type and so is used as a starting point.

Figure 3.8(a) shows an example of the Basic pattern. The Basic pattern can represent a
statement (i.e., a general policy) using a classType and its attribute; e.g., in Figure 3.8(a),
the attribute of the FlightType class can be used to state the scheduled departure time of
a flight type is at a specific time.

FlightType <<agent type>> <<agent type>> o employee type
scheduled departure time attribute al employeetype ~~ =
attribute a. roleor job classification
- role name
* o eg., role name = teller
<<typification>> responsibilities[1..*]
<<typification>> status
*
Flight *
<<agent>> <<typification>>
) attribute b1 *
(a) aBasic pattern atribute b... <<agent>>
employee
(b) aspecialized and enhanced specific responsibilities
Basic pettern day of week performed
daily start time (c) an example of the specialized
daily end time and enhanced Basic pattern

Figure 3.8: The Basic pattern, its specialization and enhancement, and example

First, the Basic pattern is specialized to deal only with agent and agent types, and then
the pattern is enhanced with attributes of agent and agent types, as shown in Figure 3.8(b).
For instance, in Figure 3.8(c), the agent type is enhanced with attributes role name, and
status, and responsibilities. Thus, if a role name is teller and the status is temporary, the
teller responsibilities can have values such as deposit cheque or cash and update passbook.
Agents can also have attributes such as start time. The multiplicities of association many
(*, zero or more) next to agent and agent type (role) allow one agent to have many roles,
and one role to have many agents.

The use of type (e.g., FlightType, agent type) is consistent with the work of Geerts and
McCarthy [43] as described in Appendix A.

Step Two: This step first adds to step one the modeling of kinds of roles that can be
part of teams or organization units. This step also models different roles of a user, if they
arise, in relation to teams or organization units. Thus, this step uses agents (e.g., users),
agent type or role, and agent group (e.g., teams or organization units). The Root pattern

40

(Appendix A) can represent access control constraints between agent type (role) and agent
group (e.g., teams), and between agent and agent group.

Figure 3.9(a) shows an example of the Root pattern in which Plane, PlaneType, and
Fleet (i.e., plane group) are associated with one another. Based on the association between
PlaneType and Fleet, the Root pattern in Figure 3.9(a) represents a statement (i.e., a
general policy): specific types of planes (i.e., PlaneType) can be part of a Fleet.

* *

agent type

* *

{i.e,, PlaneGroup} - |- _ Fleet PlaneType agent group

Plane agent

(3 (b)
Figure 3.9: (a) The Root pattern and (b) the specialized Root pattern

Figure 3.9(b) shows the specialized Root pattern that has only agent, agent type, and
agent group classes. Based on Figure 3.9(b), one can state a specific agent type can be part
of a group; for instance, specific agent type (e.g., managers) can be part a group such as
a bank branch. The multiplicities of association of many (*, zero or more), next to agent
type (role) and agent group allow one agent type (role) to be part of many (zero or more)
groups, and one agent group (e.g., team) to have many (zero or more) roles. Similarly, the
multiplicities of association many (*, zero or more) next to agent and agent group allow
one agent to be part of many groups (i.e., zero or more), and one agent group (e.g., team)
to have many (zero or more) agents.

As a result of the two steps described, Figure 3.10 shows the role modeling and user
assignments pattern that uses the Basic and Root patterns. This figure also shows the
attributes of agent, agent type, and agent group. By using various combinations of these
attributes, one will be able to describe details of the functions of agents, agent types or
roles, and agent groups that are related to access control. For instance, a specific teller
can have access to cash at certain hours, such as 9 am. to 5 pm., based on the attributes
shown in Figure 3.10.

User Assignments: This pattern not only applies to RBAC but also to extensions of
RBAC such as rule-based RBAC [1]. Rule-based RBAC suggests the assignment of users
to roles based on the attribute values of individual users. This assignment can be described
in the form of a rule and therefore the naming rule-based RBAC. For instance, Kern and
Walhorn [58] provide an example: if the costCenter of a user is AB2500 (costCenter is an
attribute of users), then the user has the role of a cashier. The pattern in this section is

41

(b)

Figure 3.10: (a) Pattern for modeling roles and user assignments, (b) an example

also capable of describing this approach (whenever it is applicable) because the pattern
includes attributes. Therefore, in this case, the association called typification in Figure 3.10
always exists at the class level, but at the instance level based on the attribute values of

<<agent type>>

attribute al
attribute a... *

belongsTo

*

<<typification>>

*

<<agent>>

<<grouping>>

*

attribute b1
atributeb...

<<agent type>>

employeetype - -

role name
responsibilities[1..*]
status

<<group>>

agent group

employee type

role or job classification
e.g., role name = teller

belongsTo

<<typification>>

*

<<agent>>

employee

specific responsibilities
day of week performed
daily start time

daily end time

*

<<grouping>>

42

<<agent group>>

team

size

an agent, a link (i.e., an association at the object level) may or may not exist between an
agent (i.e., user) and agent type (i.e., role).

Example: Figure 3.10(b) shows an example of the Role Modeling and User Assignments
pattern. Table 3.1 is related to Figure 3.10(b) as the table includes the agent, agent type,
agent group, and attributes of the figure.

As Table 3.1 shows, a detailed description of roles and their functions is possible using
only the attributes of agents, agent types, and agent groups. For instance, the last row of
this table can use each element of the columns of this table and provide a detailed represen-
tation: e.g., an employee with a role name of teller in a team of a specific size. Similarly,
using the columns of the second row of the table, an employee in a temporary teller role
with certain responsibilities can be portrayed using role name, status, and responsibilities
attributes. The third row illustrates the possibility of describing an employee with a teller
role to be valid only for a permitted time period (e.g., Monday to Friday and 9:00 am to
5:00 pm) using day of week performed, daily start time, and daily end time attributes.

user agent/agent type agent type agent | agent group
(agent) attribute or role group attribute
employee role name, responsibilities teller - -

employee | role name, status, responsibilities | temporary teller - -

employee | role name, day of week performed teller - -

employee role name teller team size

Table 3.1: Entities and attributes of the role modeling and user assignments pattern in a
table format

Resulting Context: To summarize, this pattern models users, roles, their aggregations
(e.g., organization units and teams), and their relationships. The main purpose of this
pattern is to model the foundational building blocks (i.e., users and roles) that are needed
to construct access control models.

In addition, using attributes of this pattern, it is possible to present some features of the
extended RBAC models such as rule-based RBAC (as previously described) or temporal
RBAC (TRBAC) [14]. With TRBAC, some roles are active at certain times (e.g., a teller

role may be valid only for a permitted time period).

43

3.2.2 Modeling Permissions

The pattern described next models the permission of an access control model. For instance,
for RBAC, this pattern uses REA to model the right hand-side of Figure 3.5. Permissions
in this figure are shown by the symbol PRMS, and include OPS (operations) and OBJS
(objects) circles and their connections.

Name: Permission Modeling Pattern

Context: Permission is one of the main components of any access control model and
constitutes an element of access control policies. Describing the processes of an organi-
zation not only includes an explanation of what needs to be performed but also includes
permissions and restrictions in performing these activities.

Problem: How can permission be represented? More specifically, how can permission as
an element of access control be modeled?

Solution: Permissions can be viewed as a set of tuples relating operations and objects
such that if a tuple contains an operation and an object, then the operation on that object
is permitted. Operations translate to REA events, and objects are equivalent to REA
resources. The following brief description of events and operations describes the mapping
of events to operations.

Fvents and Operations: These two terms are essentially two different views of the same
concept; an event includes a distinct change of state, whereas an operation is the agent
of this change [67]. In other words, the operation view considers the mechanism for this
change, and the event view is concerned about the result of the operation [67, 75]. For
instance, verify order represents an operation, whereas order verified describes an event
occurrence.

Figure 3.4 has previously shown an example of the Mirror pattern (Appendix A).
The Mirror pattern can be specialized to represent the permission of access control using
operations and objects. The permission modeling pattern specializes the Mirror pattern
by the identification of event, event type, resource, and resource type as entities of this
pattern, as shown in Figure 3.11(a). An operation (OP), an object (OB), two typification
associations (one between event and event type and the other between resource and resource
type), and two other associations (one connecting event type and resource type and the
other connecting event and resource) are also presented in this figure.

An enhancement to this pattern includes the use of attributes of event types or re-
source types, or both. Attributes can be used with this pattern to describe constraints on
operations and objects, as shown next.

44

<<event type>> <<resource type>>
* *
event type attribute a <<resource-flow type>> resource type attribute a
event type attribute a... resource type attribute a...
1 1
<<typification>> <<typfication>>
* *
<<event>> * <<resource-flow>> 1 <<resource>>
@
<<event type>> <<resource type>>
modification type * * account type
- <<resource-flow type>>
kind yp name
maximum amount currency
1

1

<<typification>> <<typfication>>

* *

<<event>> <<resource>>
* <<resource-flow>> 1)

modification deposit account

(b)

Figure 3.11: (a) Pattern for modeling permissions, (b) an example

Example: An example of permission can be the maximum amount of modification such
as withdrawal from a foreign currency deposit account. Figure 3.11(b) models such a
permission and also uses currency and mazimum amount attributes.

Table 3.2 is related to Figure 3.11(b) because the table uses the entities and attributes
of the figure. For instance, the last row of this table can be described using the columns of
this table as a modification with a maximum amount for an account type with a currency
(e.g., foreign currency) of a deposit account. The first row is similar to the third row, but
the first row does not use attributes. In the second row, create is the value of attribute
kind of the modification type class.

Resulting Context: To summarize, this pattern models permission, which is a founda-
tional building block of access control. In addition, using various attribute combinations
of event types and resource types, one will be able to provide constraints on describing
permissions.

45

event/event | event type resource resource resource type
type attribute type attribute
modification - account type | deposit account -
create - account type loan account -
modification maximum | account type | deposit account currency
amount

Table 3.2: Entities and attributes of permission modeling pattern

3.2.3 A Core Access Control Model Formed by Combining Pat-
terns

This section describes how to combine the users and role assignments pattern and the
permission pattern (Sections 3.2.1 and 3.2.2) to construct a core access control model.
To recap, the users and role assignments pattern models the left hand-side of Figure 3.5
consisting of circles called users and roles, and their connections. The permission pattern
models the same figure’s right hand-side consisting of OPS (operations) and OBJ (objects)
circles and their connections.

Name: Core Access Control Model Pattern

Context: A core access control model represents the basic functions of an access control
model. This core access control model can represent who can perform what operations on
which objects.

Problem: How can a core access control model for business models be obtained using
the same entities used in describing business models? How can such a core access control
model portray access control policies?

Solution: The combination of role modeling and user assignments and permission pat-
terns creates a core model of authorization. Figure 3.12(a) shows the combination of
these two patterns, where the dotted line separates the two patterns and identifies the two
associations (i.e., participate-t and participate) that connect them.

Example: Figure 3.12(b) shows an example of the combination of these two patterns. This
combination presents an example of a core RBAC model in which an employee role (i.e.,
teller) is shown in conjunction with one permission (e.g., modification of deposit accounts)
of this role.

Table 3.3 is related to Figure 3.12 because the columns of this table are the classes
of the figure. This table shows the policies of the banking running example. The word

46

<<resource type>>

resource type attribute a
resource type attribute a..

1
<<typfication>>

*

<<agent type>> Role modeling
. 1 participate-t - |user assignment
attribute al = pattern
atribute a.. =
¥ belongsTo e
; Permission
* N R
o / modeling
<<typification>> <<group>> // pattern
agent group |,
I
* * Il
<<agent>> -/
.
|
i - ' <<event type>>
attr'l bute b1 <<grouping>> | typ . .
attribute b... , _
T -7 |eventtypeattribute a <<resource-flow type>>
1 ! .
| event type attribute a...
l\ 1
\
! <<typification>>
I
IJ *
/
<<participate>> * <<event>> | <<resource-flow>>
1
@

<<resource>>

, {employee type = role or job classification}

* *

<<agent>>
employee

specific responsibilities
day of week performed
daily start time
daily end time
1

<<participate>>

<<agenttype>> /' |1 participate-t

employee type ’
role nar_nPT N * *| <<agent group>>
responsibilities]1..*] belongsTo
status employee group

*

<<grouping>>
<<typification>> *

<<event type>>
modification type

kind
maximum amount

1
<<typification>>

*

<<event>>

(b)

modification

<<resource-flow type>>

<<resource type>>

account type

name
currency

1

<<typfication>>

*

<<resource-flow>>

<<resource>>

deposit account

Figure 3.12: (a) A combination of two presented patterns, (b) an example

47

“policies” in this table and this section is the same as the use of this word in the running
banking example. The columns of this table represent event and event type, resource and
resource type, agent and agent type that are used to portray access control policies. Based
on the first row of Table 3.3, an employee with a teller role can modify account types of
deposit accounts. The words create and delete in this table are the values of attribute kind
of the modification type class. The remaining rows of this table are similar to the first one.

P e r mis s 1 o n

A E R
policies user agent type event/ object object type
(agent) or role event type (resource) (resource type)

P1 employee teller modification | deposit accounts account type

P2 employee customer modification, | deposit accounts account type
service rep | create, delete

P3 employee | accountant create general ledger account type

reports
P4 employee | accounting | modification ledger posting account type
manager rules

P5 employee | loan officer create, loan accounts account type

modification

Table 3.3: A table representation of policies for the banking example

Figure 3.12(b) uses a UML class diagram and portrays the first row of Table 3.3; the
other rows can be portrayed similarly. The policies of this table can be described by an
access control model, which is an extension to RBAC.

Resulting Context: To summarize, the combination of a role modeling and user assign-
ments pattern with a permission modeling pattern creates a core access control model.
This combination (i.e., a core access control model) can portray a large range of access
control models and policies.

3.2.4 Advantages of the Core Access Control Model

Figures 3.10 and 3.12 use classes that have type or group as part of their names, such as
a resource type class or an agent group class. The advantages of using these classes are
described next.

First Advantage: REA uses resource type, event type, and agent type classes that ba-
sically keep information and detailed descriptions about resources, events, and agents,

48

respectively. Figure 3.14 illustrates the purpose and advantage of using such classes with
an example of an agent type class called Job Classification. REA uses these classes for the
modeling of general policies, and this thesis uses these classes for presenting access control
models and their portrayed access control policies. An example of using such classes for
the representation of general policies and its advantage is illustrated by Figure 3.13.

FlightType
gotiyp PlaneType
scheduled departure time
Flight
9 Plane
actual departure time

Figure 3.13: Two levels of policy descriptions

The top level of Figure 3.13 can be used for defining policies, because the instances of
Flight Type and PlaneType describe the common characteristics of flights. For instance,
based on the top level of this figure, one can state that flights between Toronto and Van-
couver leave at 10 am based on the value of scheduled departure time (departure city and
arrival city attributes are not shown in this figure). The instances of the lower level of this
figure can be actual flights that take place. For instance, based on the lower level, one can
state that the flight between Toronto and Vancouver actually left at 10:15 am. An alterna-
tive of not using the FlightType class can be the inclusion of the FlightType’s scheduled
departure time attribute in the Flight class and deleting the FlightType class. But this
alternative is not concise and thus creates redundancy, because scheduled departure time
must be included in every instance of the Flight Class. Therefore, the use of classes such as
FlighType reduces redundancy as policies can be defined using the common characteristics
of classes and be applicable for all the instantiations of the concept.

Second Advantage: Aggregation and group are discussed in the literature [107, 85, 67,
72, 71, 92]. Figure 3.15 provides a brief overview. REA uses the notion of group, a sub-
category of aggregation, to be specific on the kind of aggregation it uses. Similarly, this
thesis uses group in modeling access control.

In addition, REA uses explicit aggregates, and this thesis also presents access control
models using the explicit representation of aggregates. The advantages of explicit aggre-
gates versus implicit modeling of aggregates is discussed in the literature. Figure 3.16

49

The Use of Classes with Type as a Part of Their Names

The following left hand-side figure has a class called Job Classification that is an agent
type class, or in this case, the Employee type, in REA. The Job Classification class can
hold detailed information, such as role name values and base pay rate values for each
Employee or agent. The right hand-side figure shows an alternative approach in which
the role name and base pay rate attributes of the Job Classification class are included in
the Employee class, and the Job Classification class, or the employee type class, does not
exist.

The disadvantage of the right-hand side of the figure is its lack of conciseness and conse-
quent redundancy in keeping information. For instance, the base pay rate attribute of the
Employee class must be duplicated for every instance of the Employee class. In addition,
if the value of base pay rate changes, this change must be reflected for every instance of
the Employee class. Similarly, if an attribute and its value that applies to all role names
is added or deleted, then for the model on the right, this change must be reflected for
every instance of the Employee class. For the model on the left, only one entry is added
to or removed from the Job Classification class.

{i.e,agenttypeor __|_ joh Classification
Employee type}
__rrolename

{eg. teller, -- | basepay rate

accountant} * Employee

* name
Employee socid ins. num.
role name
nan.1e ; base pay rate

(a social ins. num. ()

Figure 3.14: The Job Classification class is the agent type class.

provides an overview of this topic. As a result of using explicit aggregates, the model
presented in this chapter is more expressive than general access control models.

The following examples show this benefit and present cases that cannot be expressed
by general access control models because explicit aggregates are not used.

Agent Group Erxample: Can a teller within a team with size three (size is an attribute of
the team) have a certain permission on a resource (e.g., a large withdrawal from a savings
account with foreign currency)? An implicit representation of a team as a relationship

20

Aggregation and group are widely discussed in the literature (e.g., [107, 85, 67, 72, 71, 92]).
Group is the member-bunch sub-category of aggregation, e.g., a ship is part of (i.e.,
member of) a fleet. The member-bunch is an aggregation with two specific characteristics
[107, 67]: 1) parts are not “in a specific spatial/temporal position” in relation to each
other and to the whole (the non-configurational attribute) and 2) parts are not similar in
relation to each other and to the whole (the nonhomoeomerous attribute).

Figure 3.15: Aggregation and Group

cannot describe the size (i.e., an emergent property of a team) and the mutual property
between a team and the rest of the model.

Agent Group Example: Can a teller belong to a team with no leader have/have not cer-
tain permissions? This expression cannot be described by an implicit representation of
aggregates. The explanation provided for example 1 in Figure 3.16 applies here.

Agent Group FExample: Can a loan officer be a member of more than one team and, as a
result, get permissions he/she should not have (e.g., first and second approvers of a loan)?
This expression cannot also be described by an implicit representation of aggregates. The
explanation provided for example 2 in Figure 3.16 applies here.

Resource Group Example: A broker has a permission to sell a minimum and maximum
number of stocks within a portfolio. A portfolio is a grouping of resources, and minimum
and maximum number of stocks are two attributes of a portfolio.

Resource Group Fxample: A teller has a permission to modify a portfolio that has a certain
number of accounts. A portfolio represents a grouping of certain accounts, and number of
accounts is an attribute of a portfolio.

Fvent Group Ezxample: A head teller has an authorization to perform closing events (a
grouping of events) at the closing time of a bank. The explanation provided for example 2
in Figure 3.16 applies here. The prefix head in head teller is similar to the member in that
example, and more than one team in that example is similar to more than one event here.

In summary, the model presented in this chapter is more expressive than any general
access control models because of the inclusion of several related additional group enti-
ties, attributes, and their relationships. Table 3.4 shows the additional elements that are
introduced in this chapter and added to access control models.

ol

An aggregate can be modeled implicitly using associations, whereas the explicit approach
models an aggregate using a class [5, 93]. The following figure [93] on the left models
Team as an association, whereas the figure on the right models Team as a class.

teamed with Employee
member | 0..* 0..1|leader
member | 0..* 0..* | leader
Employee 0. 0.*
Team
(a) Animplicit modeling of an aggregate (b) An explicit modeling of an aggregate

An explicit modeling of an aggregate has two advantages [109]: 1) emergent properties
of the model can be expressed, e.g., the size (i.e., an emergent property) of a group or
team (i.e., an aggregate); for the model on the right, Team can have an attribute of size,
and 2) the mutual properties between an aggregate and its components can be expressed.
The latter case is described by the following two examples that also show that the model
on the left cannot model some cases.

Example 1: Can a team have no leader? The figure on the left shows a team as an
association between member(s) and leader(s). By this choice, if this association exists,
then both association-ends must be in place; i.e., the implicit aggregation cannot model
a team that has no leader.

Example 2: Can an employee be a member of more than one team? The answer to
this question by the model on the left is indeterminate because this model associates an
employee, as a member, with leaders. If an employee, as a member, is associated with
many leaders, then the association does not explicitly indicate that these leaders belong
to different teams, i.e., the leaders may lead one team. As a result, the answer to the
question of whether an employee can be a member of more than one team is indeterminate
by the model on the left.

Figure 3.16: Implicit versus Explicit Modeling of an Aggregate [93]

3.2.5 Modeling Constraints, Role Hierarchies, and Mutually Ex-
clusive Roles

In general, constraints are included in access control because many such constraints among

users (agents), roles (agent types), and permissions occur in reality. For example, it may
be the case that the role of teller needs authorization (constraints) to deposit cheques

o2

Addition Addition of Addition of
of groups attributes relationships
resource group | resource group among resource group
attributes and the rest of AC model
agent group agent group among agent group
attributes and the rest of AC model
event group event group among event group
attributes and the rest of AC model

Table 3.4: Additional elements added to access control models

(permission) over 1000 dollars. Constraints are part of RBAC and other access control
models and are the principle motivation behind them [87]. In effect, constraints define
access control restrictions.

Constraints on Agents, Roles, and Permissions: The role modeling and user assign-
ments pattern (Section 3.2.1) can model constraints on agents and roles (i.e., agent types)
and their attributes and agent-role assignments as previously described. For instance, a
constraint can be that an employee does not have a role of teller on Sundays. Similarly,
as described in Section 3.2.2, the permission modeling pattern can model constraints on
permissions using an event type and its attributes (e.g., a mazimum amount attribute),
a resource type and its attributes (e.g., the currency attribute of Figure 3.11), and the
relationship between event type and resource type. Another example of using constraints
in permission modeling can be that a pilot (i.e., a role), based on skill or other attributes,
is authorized to fly (an event) certain type of planes (resources).

Role Hierarchies and Mutually Exclusive Roles: Both role hierarchies and mutually
exclusive roles can be viewed as cases in which constraints on roles exist. For instance,
for role hierarchies, one can mention that a manager is higher than a teller in terms of
authorization. A variation of the step one of role modeling and user assignments pattern
(Section 3.2.1) is used next to describe both the modeling of role hierarchies and mutually
exclusive roles.

Name: A variation of the step one of role modeling and user assignments pattern

Context for Role Hierarchies: Role hierarchies in organizations express the line of
authorities or responsibilities and exemplify constraints and relationships among roles in
terms of authorization.

Context for Separation of Duties: Separation of duties is a well-known principle and

93

teller | customer | accountant | accounting | loan

service rep manager | officer
teller - - + - +
customer service rep - - - + -
accountant + - - _ +
accounting manager - + - - +
loan officer + - + 4 _

Table 3.5: A static separation of duties representation for the banking example

has two broad categories: static and dynamic; the dynamic one contains several variations
[94]. The static separation of duty represents constraints on roles as a strong exclusion of
roles in which no user can ever take both roles A and B if these two roles are exclusive
(e.g., that a purchaser and an approver of an order must be different people is a common
example provided frequently in the literature). The static separation of duties of the
banking example (Figure 3.7) is shown in Table 3.5, where the plus sign in a cell of this
table indicates the existence of a static separation of duty between two roles associated
with that cell.

Problem: How are role hierarchies modeled? In addition, how can the static separation
of duties or mutually exclusive roles be modeled? Because of the relationship between
roles (i.e., agent type) and agents, they both must be included in the presentation of role
hierarchies and mutually exclusive roles.

Solution for Representing Role Hierarchies: The pattern for modeling role hierar-
chies is a variation of the step one of role modeling and user assignments pattern (first
pattern) (Section 3.2.1). Therefore, the same explanation provided for the first pattern
also holds here. Figure 3.17(a) shows the specialized and enhanced Basic pattern from the
step one of first pattern, previously shown in Section 3.2.1. Figure 3.17(b) is a variation in
which a relation called role hierarchy with multiplicities is added. Based on the descrip-
tion provided for role hierarchies representations in Figure 3.18, this pattern can represent
role hierarchies for the general case. Figure 3.17(c) shows an example of this variation for
representing role hierarchies.

Solution for Representing Mutually Exclusive Roles: Mutually exclusive roles can
be represented as relationships among roles, as previously shown [84]. The pattern for
modeling mutually exclusive roles is also a variation of the step one of the first pattern
(Section 3.2.1). The same explanation provided for the first pattern also holds. Fig-
ure 3.19(a) shows the specialized and enhanced Basic pattern from the step one of the first

o4

role hierarchy

role hierarchy low ’—‘ high
[1] : '

- * <<agent type>> employee type
<<agent type>> <<agent type>> - =
employeetype -~ . T
attribute al attribute al role or job classification
attribute a... attribute a... role name eg., rolename = teller
* * responsibilities1..*]
P . status
<<typification>> <<typification>> >
* * <<typification>>
<<agent>> <<agent>>
attribute bl attribute bl .
attribute b... attribute b... <<agent>>
employee
(8) aspecialized and enhanced (b) avariation of specialized and specific responsibilities o of averiat
Basic pattern enhanced Basic pattern day of week performed (©) an example of avariation
P daily Start time of the specialized and
} . enhanced Basic pattern
daily end time

Figure 3.17: The specialized and enhanced Basic pattern, its variation to model role hier-
archies, and an example

pattern. A variation of this pattern is shown in Figure 3.19(b) and (c), where a relation
called mutually exclusive with multiplicities is shown to represent mutually exclusive roles.

Example: In Figure 3.17(c), if the role hierarchy relation has a teller role on the side
identified as low, then a customer service rep is on the side identified as high.

Similarly, in Figure 3.19, for mutually exclusive roles, whenever a role is of a teller, then
one instance of this relation may indicate that a teller is not an accountant, and another
instance is that a teller is not a loan officer.

Resulting Context: This pattern models role hierarchies and mutually exclusively roles
of access control. This pattern is a variation of the step one of the first pattern presented
in this chapter, and it shows an agent and agent type (role). RBAC mentions dynamic sep-
aration of duties whose support needs a dynamic representation. Next chapter (Chapter 4)
provides a dynamic representation.

95

Role hierarchies are represented either by partial orders for the general case or by tree
structures for the restricted case as described next.

A partial order is a binary relation between certain elements (therefore the word partial)
of a set where the elements of sets in this case are roles. For instance, the following figure
shows a partial order for the role hierarchy relation, which is depicted as a line connecting
two roles. This figure shows roles, such as Director and Production Engineer 1, and their
positions in this hierarchy. The higher a role in this hierarchy indicates the higher level
of authorization.

Director
Project Lead 1 Project Lead 2
Production Quallity Production Quallity
Engineer 1 Engineer 1 Engineer 2 Engineer 2
\/ \/
Engineer 1 Engineer 2

A restriction on roles can be imposed such that roles may have one or more immediate
descendants but can only have a single immediate ascendant. With this restriction on
roles, role hierarchies can be represented using tree structures such as the one shown in
the following figure.

Director
Project Lead 1 Project Lead 2
Production Quallity Production Quallity
Engineer 1 Engineer 1 Engineer 2 Engineer 2

Figure 3.18: Role hierarchies representations [34, 87]

3.2.6 Extending the Approach to Describe DAC and MAC

As previously mentioned in Chapter 2, three main categories of access control are Discre-
tionary Access Control (DAC), Mandatory Access Control (MAC), and Role-based Access
Control (RBAC) [98, 12]. This chapter selected RBAC to show the approach, but this
method can be applied to more general access control approaches, as will be illustrated
through application to DAC and MAC.

o6

mutually exclusive

mutually exclusive ’—‘
’—‘ * *
* *

<<agent type>> . employee type
<<agent type>> <<agent type>> _- =
employeetype -) e
attribute al attribute al role or job classification
atribute a... atribute a... fole name eg., role name = teller
* * responsibilities[1..*]
N o status
<<typification>> <<typification>> "
* * g .
<<typification>>
<<agent>> <<agent>>
attribute bl attribute bl —
attribute b... attribute b... <agent>
employee
(a) aspeciaized and enhanced | (b) avariation of specidlizedand | | SPecific responsibilities e of avariati
Basic pattern enhenced Basic patterm day of week performed (c) an example of avariation
P daily start time of the specialized and
} . enhanced Basic pattern
daily end time

Figure 3.19: The specialized and enhanced Basic pattern, its variation to model mutually
exclusive roles, and an example

Describing DAC: The literature [88, 80] discusses the use of RBAC to represent Discre-
tionary Access Control (DAC). Similar discussion applies here. The main idea of DAC is
based on the principle that the owner of that object, usually the creator, has the authority
to determine who gets or loses access to an object. Several DAC variations, which mainly
differ from each other in terms of rules for granting or revoking access, are available. To
describe DAC using RBAC, one can proceed as follows.

To define a variation of DAC in which an owner of a resource is the only one who can
grant or revoke an individual’s write access to the owner’s resource, one needs to add two
more elements to the model described in this chapter. The first element is an administrative
role, e.g., own-resource, which is in addition to the role entity that already exists in RBAC.
The second addition is an administrative permission entity with two permissions: One
permission allows the addition of users to have write access to the owner’s resource, and
the other allows the removal of users from having write access to the owner’s resource.
Similarly, for adding read access, two permissions for the purpose of reading are required:
one to add a user, and the other to remove the user.

Describing MAC: Similarly, Mandatory Access Control (MAC) can be represented by
RBAC as discussed in the literature [80]. As previously mentioned (Chapter 2), security

57

labels are assigned to both users and objects in MAC. The security labels for users are called
security clearance, and the labels for objects are named security classification. Examples
of such labels are top-secret, secret, confidential, and unclassified. MAC can describe a
user’s access to an object by using two rules: no read up and no write down. No read up
means that a user can read objects if the security labels of objects are equal or lower than
the security labels of the user; no write down indicates that a user can write objects if the
security labels of objects are higher or equal than the security clearance of the user.

The model described in this chapter can be adjusted to describe MAC as shown next.
Permission is represented in this chapter as an operation on a resource; therefore, in this
case, an operation is either read or write on a resource. The roles of RBAC to represent
MAC can be identified with security labels for both read and write operations. For instance,
two roles can be top-secret-read and top-secret-write, where top-secret is a security label.
Therefore, the number of roles is determined by read, write, and the number of security
labels. For instance, a user maps to two roles: security-label-read (e.g., top-secret-read)
and security-label-write (e.g., top-secret-write). The effect of no read up and no write
down can be included by the inclusion of two constraints: 1) a user who is assigned to a
role can read a resource if and only if the user is also assigned to the lowest level of writing
that resource and 2) a user is assigned only to one role (e.g., top-secret-read). Finally, two
hierarchies are needed: one to represent the security-label-read hierarchy and the other to
describe theq security-label-write hierarchy.

3.3 Defining Access Control Rules based on Models

Given an agent and a resource, an access control rule states whether the agent is permitted
to perform an operation on the resource. Performing an operation is equivalent to an event
as described previously. These rules can apply to individual agents, events, and resources,
or to types of agents (roles), resources, and events. Further, a rule can be generalized
and can contain combinations of agents and agent types, combinations of resources and
resource types, and combinations of events and event types.

For example, tellers and managers but not loan officers are permitted to modify but
neither create nor delete deposit accounts with foreign currency. In this case, tellers,
managers, and loan officers are used in an agent expression, deposit accounts with foreign
currency are used in a resource expression, and modify, create, and delete are components
of an event expression. In general, an access control rule can be viewed as an expression
that combines an agent expression, a resource expression, and an event expression and
their relationships.

o8

Table 3.6, which is the first row of Table 3.3, presents an example of the entities of an
AC rule that is based on the model shown in Figure 3.20.

P e r mis s 1 o n

A E R
user agent type event/ object object type
(agent) or role event type (resource) (resource type)
employee teller modification (modify) | deposit accounts account type

Table 3.6: An example of the elements of an access control (AC) rule (a singleton policy)

, {employee type = role or job classification}

<<agenttype>> /| participate-t —
/ mission
employee type r,,,,,,,,,,,,,,,,,,,,,,,,{ ,,,,,,, b ‘
I I
role name ----F {eg,rolename . |
ibiliti =tell w
responsibilities/1..*] er} | <<event type>> <<resource type>> 3
status
- | modificationtype |* * account type |
! . <<resource-flow type>> |
<<typification>> ' |kind name !
! maximum amount currency I
. ‘ 1 1 |
<<agent>> | |
employee 3 <<typification>> <<typfication>> :
I
spexific responsibilities | . « |
I I
day of week performed 1 } . <<event>> . 1 <<resource>> !
daily start time <<participate>> ! modification <<resource-flow>> deposit account !
daily end time } !
I

Figure 3.20: An example of an access control model
The columns of this table are classes of an access control model. Figure 3.20, a slight
simplification of Figure 3.12(b), shows an example of such an access control model corre-

sponding to Table 3.6. The general format of an access control model for this example was
also previously presented in Figure 3.12(a).

3.3.1 Access Control Rule Syntax

As access control rule syntax uses types, groups, and their instances, the following example
can be beneficial to provide another overview of these terms.

29

Figure 3.21 shows plane, plane type, and fleet. Examples (instances) of planes and plane
types represent completely different information. Examples (instances) of plane types are
Boeing 737 and Boeing 787 that can provide general characteristics of plane type such as
their number of engines. On the other hand, examples (instances) of planes represent actual
planes with specific identification numbers and their actual plane age. Similarly, in this
figure, examples of flight type captures general information such as the scheduled departure
time of flight types, whereas the examples (instances) of flights provide the information
about actual departure time of flights that took place. Finally, a fleet (a group) can be
organized based on plane types. Then, general examples of a fleet can consist of a specific
plane type.

Note that the access control rule syntax does not include the instances of agents, re-
sources, or events but instead the instances of types and groups are used in the sense de-
scribed. The intention for inclusion of instances at the type and group levels is to use the
general characteristics and general information provided by these instances, as described.

FlightType
gntiyp PlaneType Fleet
scheduled departure time
Fligh
'ght Plane

actual departuretime

Figure 3.21: Plane, plane type, flight, flight type, and fleet

An access control (AC) rule can be stated as

ACRule ::= (AgentExp and ResourceExp and EventExp and AgeEveRel

and ResEveRel) implies EventResult

Figure 3.22 presents the detailed syntax of ACRule in Extended Backus-Naur Form
(EBNF). Table 3.7 (ISO 14977) [99] shows the EBNF elements and their meanings.

Appendix B provides the corresponding definitions of AC rules in Backus-Naur Form
(BNF). These definitions (i.e., the AC rule grammar) in BNF are checked with a tool
called Gold Parser [24]. Appendix B also provides definitions related to the descriptions
of agents, resources, and events in BNF and EBNF. All BNF definitions in this appendix
are checked with the Gold Parser tool to ensure the grammars are well formed.

60

Extended BNF Meaning
unquoted words | Non-terminal symbol

Terminal symbol
(...) Grouping

[...] Optional symbols
{-..} Symbols repeated
zero or more times
= Defining symbol
Alternative

; Rule termination

, Concatenation

Table 3.7: Extended BNF (EBNF)

Access Control Rule Definition in Extended BNF

ACRule = (AgentExp "and" ResourceExp "and" EventExp "and" AgeEveRel
"and" ResEveRel) "implies" EventResult;

AgentExp = ([uop] equA equArep);

uop = "not";

equA = ATG | attrATG;

equArep = {bop [uop] equA};

bop = ("and" | "or");

ATG = Agent "=" className | AgentTG "=" identifier

attrATG = AgeAttlde"."attrNameValue {"," AgeAttlde"."attrNameValue};

AgentDesignation = Agent | AgentType | AgentGroup;

AgentTG = AgentType | AgentGroup;

AgeAttlde = ATG | ATClassName | AClassName | AGClassName | AgentDesignation
className = "string";

identifier = "instance" "string";

instanceName = "string";

61

Access Control Rule Definition in Extended BNF (contd.)

Agent = "var" "string" identifierA;
AgentType = "var" "string" identifierAT;
AgentGroup = "var" "string" identifierAG;
attrNameValue = attrName attrValue;

identiferA = "Agent" ;
identiferAT = "AgentType";

identiferAG = "AgentGroup";

attrName = "string";

attrValue = relationN valueNum | relationC valueC;
relationN = "< | ">t | on>no | onge |on=n | nf
relationC = "equals" | "notEquals"

valueNum = number;

number = "integer" | ‘real";

valueC = "character" | "string" | bool;

bool = "True" | "False";

ATClassName = identifier "in" (AgentType "=" identifier);
AClassName = className "in" (Agent "=" className);

AGClassName = identifier "in" (AgentGroup "=" identifier);
ResourceExp = ([uop] equR equRrep);

equR = RTG | attrRTG;

equRrep = {bop [uop] equR};

RTG = Resource "="className | ResourceTG "="identifier ;
ResourceDesignation = Resource | ResourceType | ResourceGroup;
ResourceTG = ResourceType | ResourceGroup;

Resource = "var" "string" idenitiferR;

ResourceType = "var" "string" identifierRT;

ResourceGroup = "var" "string" identifierRG;

attrRTG = ResAttlde"."attrNameValue {"," ResAttlde"."attrNameValue};
identifierR = "Resource";

identifierRT = "ResourceType";

62

Access Control Rule Definition in Extended BNF (contd.)

identifierRG = "ResourceGroup";

ResAttlde = RTG | RTClassName | RClassname | RGClassname |
ResourceDesignation

RTClassName = identifier "in" (ResourceType "=" identifier);

RClassname = className "in" (Resource "=" className);

RGClassname = identifier "in" (ResourceGroup "=" identifier);

EventExpr = ([uop] ETG ETGrep);

ETG = Event "=" className | EventTG "=" identifier;
ETGrep = {bop [uop] ETG};

EventDesignation = Event | EventType | EventGroup;
EventTG = EventType | EventGroup;

Event = "var" "string" identifierE;

EventType = "var" "string" identifierET;

EventGroup = "var" "string" identifierEG;

identifierE = "Event";
identifierET = "EventType";
identifierEG = "EventGroup";

AgeEveRel = ([uop] AgeERel AgeERelrep);

AgeERel = "RelATET"(ATClassName "," ETClassName) |
"RelAE"(AClassName "," EClassName) |
"RelATG"(ATClassName "," AGClassName) |
"RelAT"(AClassName "," ATClassName) |
"RelAG"(AClassName "," AGClassName);

AgeERelrep = {bop [uop] AgeERel}

ResEveRel = ([uop] ResERel ResERelrep);

ResERel = "RelRTET"(RTClassName "," ETClassName) |
"RelRE"(RClassName "," EClassName) |
"RelRTG"(RTClassName "," RGClassName) |
"RelRT"(RClassName "," RTClassName) |
"RelRG"(RClassName "," RGClassName);

63

Access Control Rule Definition in Extended BNF (contd.)

ResERelrep = {bop [uop] ResERel};

EventResult = (Juop] accETG accETGrep);

accETG = accessETG "=" result;

accETGrep = {bop [uop] accETG};

result = "permit" | "deny";

accessETG = (ETClassName | EClassName) "Access"
ETClassName = identifier "in" (EventType "=" identifier);
EClassName = className "in" (Event "=" className);

Figure 3.22: Access control rule definition in Extended BNF

3.3.2 Description of Access Control Rule Syntax

EBNF is used to define the syntax of access control rules in Figure 3.22. This figure can
be described based on the definitions of notations used by EBNF as shown in Tables 3.7.

Figure 3.22 is explained by identifying the starting lines of each definition. For instance,
if an item of this description mentions the expression starting with ACRule, it indicates
that the definition starts with a line commencing with ACRule in Figure 3.22.

The first expression starts with ACRule: An access control (AC) rule is defined as
an agent expression (AgentEzp), a resource expression (ResourceFErp), an event expres-
sion (FventExp), relations related to agents and events (AgeFveRel), relations related to
resources and events (ResEveRel). The conjunctions of these expressions imply an event
result (FventResult).

The expressions in Figure 3.22 are divided into six sections based on these six elements:
AgentEzp, ResourceErp, FventFExp, AgeFveRel, ResEveRel, and FventResult

I. AgentExp The following descriptions are mainly related to AgentExp.

e The expression starting with AgentExp: An agent expression, AgentFxp, is identified
by a form called equA that may be followed by another form called equArep (equA
and equArep are defined shortly). An optional not can also precede equA.

e The expression starting with uop: uop is "not".

64

The expression starting with equA: eugA can be expressions either about agents, or
agent types, or agent groups (ATG), which are called agent-related expressions, or
about the attributes of agents, or agent types, or agent groups (attrATG).

The expression starting with equArep: Zero or more agent-related expression(s) is
(are) possible using ‘"and" and "or" connectives. An optional "not" can also precede
equArep .

The expression starting with bop: bop is either "and" or "or".

The expression starting with ATG: This expression identifies an agent, or agent type,
or agent group in conjunction with a class name or an identifier.

The expression starting with attrATG: This expression identifies an attribute name,
and its value in conjunction with an identification of AgeAttlde, which is defined
shortly.

The expression starting with AgentDesignation: An AgentDesignation can be any of
the following three elements: agent, agent type, or agent group.

The expression starting with AgentTG: An AgentTG can be either an agent type or
an agent group.

The expression starting with AgeAttlde: An agent attribute identification can be
either an agent designation, the class name of an agent, agent type, or agent group,
or can be an agent designation along with the class name of the agent designation.

The expression starting with className: A class name is a string.

The expression starting with identifier: An identifier is a string that distinguishes an
instance.

The expression starting with Agent: An agent is defined as a variable that holds a
value of a string type within identifierA.

The expression starting with AgentType: An agent type is defined as a variable that
holds a value of a string type within identifierAT.

The expression starting with AgentGroup: An agent group is defined as a variable
that holds a value of a string type within identifierAG.

The expression starting with attrNameValue: An attribute has a name and a value.

65

e The expression starting with identifierA: An agent identifier is recognized by the
word agent.

e The expression starting with identifierAT: An agent type identifier is recognized by
the word agent type.

e The expression starting with identifierAG: An agent group is recognized by the word
agent group.

e The expression starting with attrName: An attribute name is a string.

e The expression starting with attrValue: Attribute values are either numbers or
strings. Relational symbols (relationN or relationC') are also included for both num-
bers and strings.

e The expression starting with relationN: relationN is short for relation for numbers
and is one of <, >, <, >, <, and = symbols for comparing numbers.

e The expression starting with relationC: relationC is short for relation for characters
and is for comparing equalities of characters and strings.

e The expression starting with valueNum: ValueNum is a number.
e The expression starting with valueC: valueC' is any of character, string, or bool value.
e The expression starting with bool: bool can be either True or False.

e The expression starting with ATClassName: ATClassName is defined to be an iden-
tifier, previously defined, of an agent type.

e The expression starting with AClassName: AClassName is defined to be the class
name of an agent.

e The expression starting with AGClassName: AGClassName is defined to be an iden-
tifier, previously defined, of an agent group.

II. ResourceExp: The next explanations are related to ResourceExp.

e The expression starting with ResourceExp: A resource expression, ResourceEzp, is
identified by a form called equR that may be followed by another form called equRrep
(equR and equRrep are defined shortly). An optional "not" can also precede the form
equlRk.

66

The expression starting with equR: eugR can be expressions either about resources,
or resource types, or resource groups (RT'G), which are called resource-related expres-

sions, or are about the attributes of resources, or resource types, or resource groups
(attrRTG).

The expression starting with equRrep: Zero or more resource-related expression(s)
is (are) possible using "and" and "or". An optional "not" can also precede equRrep.

The expression starting with RT'G: This expression identifies a resource, or resource
type, or resource group in conjunction with either a class name or an identifier.

The expression starting with ResourceDesignation: A ResourceDesignation can be
any of these three: resource, resource type, or resource group.

The expression starting with ResourceTG: A ResourceTG can be either a resource
type or a resource group.

The expression starting with Resource: A resource is defined as a variable that holds
a value of a string type within identifierR.

The expression starting with ResourceType: A resource type is defined as a variable
that holds a value of a string type within identifierRT.

The expression starting with ResourceGroup: A resource group is defined as a vari-
able that holds a value of a string type within identifierRG.

The expression starting with attrRTG: This expression identifies an attribute name,
and its value with the class name of either a resource, or resource type, or resource

group.

The expression starting with identifierR: A resource identifier is recognized by the
word resource.

The expression starting with identifierRT: A resource type identifier is recognized by
the word resource type.

The expression starting with identifierRG: A resource group is recognized by the
word resource group.

The expression starting with ResAttlde: A resource attribute identification can be
either a resource designation, the class name of a resource, resource type, or resource
group, or can be a resource designation along with the class name of a resource
designation.

67

e The expression starting with RTClassName: RTClassName is defined to be an iden-
tifier, previously defined, of a resource type.

e The expression starting with RClassName: RClassName is defined to be a class name
of a resource.

e The expression starting with RGClassName: RGClassName is defined to be an iden-
tifier, previously defined, of a resource group.

III. EventExp: The following statements are related to EventExp.

e The expression starting with EventExp: An event expression, FventFEzp, is identified
by a form called ETG that may be followed by another form called ETGrep (ETG
and ETGrep are defined shortly). An optional "not" can also precede the form ETG.

e The expression starting with ETG: This expression describes the designation of an
event, event type, or event group along with their class names or their identifiers.

e The expression starting with ETGrep: ETGrep describes zero or more event(s), or
event type(s), or event group(s) designations along with their class names. The
conjunction and negation of these events are possible.

e The expression starting with EventDesignation: An EventDesignation can have one
of three: event, event type, or event group.

e The expression starting with EventTG: An EventTG can be either an event type or
an event group.

e The expression starting with Event: An event is defined as a variable that holds a
value of a string type within identifierE.

e The expression starting with EventType: An event type is defined as a variable that
holds a value of a string type within identifierET.

e The expression starting with EventGroup: An event group is defined as a variable
that holds a value of a string type within identifierEG.

e The expression starting with identifierE: An event identifier is recognized by the word
event.

68

e The expression starting with identifierET: An event type identifier is recognized by
the word event type.

e The expression starting with identifierEG: An event group is recognized by the word
event group.

IV. AgeEveRel: This section explains different agent and event relationships.

e The expression starting with AgeEveRel: The expression identifies the existence
of one or more relationships involving agents and events. An optional negation is
possible to indicate such a relationship does not exist.

e The expression starting with AgeERel: The relationships involving agents and events
can be between one of the following elements: agent type and event type, agent and
event, agent type and agent group, agent type and agent, agent and agent group.

e The expression starting with AgeERelrep: This expression describes zero or more
repetition(s) of relationships involving agents and events, as just described.

V. ResEveRel: This section describes different resource and event relationships.

e The expression starting with ResEveRel: This expression describes the existence of
one or more relationships involving resources and events. An optional negation is
possible to indicate such a relationship does not exist.

e The expression starting with ResERel: The relationships involving resources and
events can be between one of the following elements: resource type and event type,
resource and event, resource type and resource group, resource type and resource,
resource and resource group.

e The expression starting with ResERelrep: The possibility of zero or more repeti-
tion(s) of relationships involving resources and events is described by this expression.

VI. EventResult: The following explanations are related to EventResult.

e The expression starting with EventResult: This expression describes the format of
an event and its result. One or more events are possible.

69

e The expression starting with accETG: This expression describes the result of an
event, or event type, or event group along with its class name.

e The expression starting with accETGrep: accETGrep describes zero or more repeti-
tion of accETG as just described.

e The expression starting with result: result can be either a permit or deny.

e The expression starting with accessETG: This expression defines the class name of
an event type or event along with the word Access.

e The expression starting with ETClassName: ETClassName distinguishes an identi-
fier, previously defined, of an event type.

e The expression starting with EClassName: This expression describes the class name
of an event.

3.3.3 Access Control Rule Examples

The following examples are related to a banking situation. Employees in this situation
can have possible roles such as tellers, managers, and loan officers and can have full time
status. Different working teams are possible in the banking case. Account types can
have an attribute of type of currency (e.g., Canadian or US), and examples of accounts
are deposit and loan accounts. Modification, deletion, and addition of accounts are some
possible events. To summarize, the following syntactical elements exist:

Agent: employee

Agent type or role: teller, manager, loan officer

Agent type attribute: status (full-time can be a value for status)

Agent Group: teamA

Resource/ResourceType: account type, deposit account, loan account
Event/EventType: modification (modify), creation (create), and deletion (delete)

Using these elements and EBNF definitions, three examples of access control rules are
provided.

AC Rule Example 1: Tellers or managers are permitted to modify deposit accounts.

The AC rule format perviously defined follows:

70

ACRule = (AgentExp and ResourceExp and EventExp and AgeEveRel

and ResEveRel) implies EventResult;

Next, each component of the above expression, such as AgentExp, is described. The
combinations of these expressions using and and implies create an access control rule as
shown next.

AgentExp: (AgentType = Teller or AgentType = Manager)
and

ResourceExp: (ResourceType = DepositAccount)
and

EventExp: (EventType = Modify)
and

AgeEveRel: (RelATET(Teller, Modify) and RelATET(Manager, Modify))
and

ResEveRel: (RelRTET (DepositAccount, Modify))
implies

EventResult: (Modify Access = permit)

AC Rule Example 2: Tellers can modify but can neither create nor delete deposit
accounts.

This rule can be expressed using the general format, shown in Figure 3.22, as follows:

ACRule = (AgentExp and ResourceExp and EventExp and AgeEveRel
and ResEveRel) implies EventResult;

The components of the above expression follow. The combinations of these components
using and and implies create an access control rule, as shown next.

AgentExp: (AgentType = Teller)
and

ResourceExp: (ResourceType = DepositAccount)
and

EventExp: (EventType = Modify or EventType = Create or EventType = Delete)

71

and
AgeEveRel: (RelATET(Teller, Modify) and not RelATET(Teller, Create) and not
RelATET (Teller, Delete))
and
ResEveRel: (RelRTET (DepositAccount, Modify) and not ReIRTET(DepositAccount,
Create) and not RelRTET(DepositAccount, Delete))
implies

EventResult: (Modify Access = permit and Create Access = deny and Delete
Access = deny)

AC Rule Example 3: Loan officers who are full-time and are in TeamA can create or
delete loan accounts. This rule can be expressed as

The components of this expression and their combinations are shown next.
AgentExp: (AgentType = LoanOfficer, AgentType.Status = FullTime and
AgentGroup = TeamA)
and
ResourceExp: (Resource = LoanAccount)
and
EventExp: (EventType = Create or EventType = Delete)
and
AgeEveRel: (RelATET (LoanOfficer, Create) and RelATET(LoanOfficer, Delete)
and RelATG(LoanOfficer, TeamA))
and
ResEveRel: (RelRTET (LoanAccount, Create) and RelRTET(LoanAccount, Delete))
implies

EventResult: (Create Access = permit and Delete Access = permit)

72

3.3.4 Translation from EBNF to Predicate Logic

The grammar in Figure 3.22 uses "and", "or", and "implies", which become A(and), V(or),
and — (implication), respectively, in predicate logic.

For instance, an expression

(AgentExp and ResourceExp and EventExp and AgeEveRel and ResEveRel)
implies EventResult, (in Figure 3.22) translates in predicate logic as

(AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveExp) — EventResult

The term "not" in Figure 3.22, becomes — in predicate logic. For instance, an expression
such as "not" equA translates to —equA in predicate logic.

Predicates: The definitions provided in the grammar (Figure 3.22) use the symbols of
equalities ("="), greater than (">"), less than ("<"), greater than or equal (">"), and
less than or equal ("<"). These symbols translate to the corresponding logical predicates
=, >, <, >, and <.

For instance, attrName "=" attrValue in this figure translates to the expression using
the equality predicate attrName = attrValue in infix notation, such as employmentStatus
= FullTime.

The three examples of the previous section are described again.
AC Rule Example 1: Tellers or managers are permitted to modify deposit accounts.
The AC rule format can be shown as
ACRule = (AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel)
— EventResult

Next, each component of the above expression, such as AgentExp, is described. The
combinations of these expressions using and and implies create an access control rule as
shown next.

VAgentType VResourceType VEventType |

(AgentType = Teller V AgentType = Manager) « AgentExp
A

(ResourceType = DepositAccount) P ResourceExp
A

73

(EventType = Modify) P EventExp

A

(RelATET(Teller, Modify) A RelATET(Manager, Modify)) <P AgeEveRel
A

(RelRTET (DepositAccount, Modify)) «p ResEveRel
—

Modify Access(permit) « EventResult

AC Rule Example 2: Tellers can modify but can neither create nor delete deposit
accounts.

This rule can be expressed using the general format, shown in Figure 3.22, as follows:
ACRule = (AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel)
— EventResult

The components of the above expression follow. The combinations of these components
using and and implies create an access control rule as shown next.

VAgentType VResourceType VEventType |

(AgentType = Teller) « AgentExp
A\
(ResourceType = DepositAccount) P ResourceExp
A
(EventType = Modify V EventType = Create V EventType = Delete) <P EventExp
A
(RelATET(Teller, Modify) A —Relation ATET(Teller, Create) A
—Relation ATET (Teller, Delete)) ~ AgeEveRel
A
(RelRTET (DepositAccount, Modify) A —RelRTET(DepositAccount, Create) A
—RelRTET (DepositAccount, Delete)) ~ ResEveRel
N

ModifyAccess(permit) A CreateAccess(deny) A DeleteAccess(deny) <P EventResult

74

AC Rule Example 3: Loan officers who are full-time and are in TeamA can create or
delete loan accounts. This rule can be expressed as

The components of this expression and their combination are shown next.
VAgentType VAgentType.Status VAgentGroup VResourceType VEventType |
(AgentType = LoanOfficer A AgentType.Status = FullTime A

AgentGroup = TeamA) ~ AgentExp
A
(ResourceType = LoanAccount) P ResourceExp
A
(EventType = Create V EventType = Delete) ¢ EventExp
A\

(RelATET (LoanOfficer, Create) A RelATET(LoanOfficer, Delete) A <P AgeEveRel
RelATG(LoanOfficer, TeamA))

A

(RelRTET(LoanAccount, Create) A RelRTET(LoanAccount, Delete)) <P ResEveRel
%

CreateAccess(permit) A DeleteAccess(permit) «f EventResult

3.4 Creating Access Control (AC) Policies from AC
Rules

An access control policy is defined as a combination of one or more AC rules. As an
AC policy usually consists of several rules, many policy languages describe combining
algorithms to provide different strategies for making decisions about this combination. For
instance, a combining algorithm may permit a request if a rule in the collection of rules
allows such a request, regardless of the existence or not existence of another rule within
the collection that denies such a request. Conversely, a combining algorithm may deny a
request if one rule denies such a request and another rule within the collection permits the
request.

75

These combining algorithms are usually more detailed as just described. Two such
algorithms for combining rules into policies are described in detail in Section 3.4.1.

This section (Section 3.4) presents the combination of AC rules to create AC policies in
two steps: first, an informal description of state machines in algorithmic forms is shown to
describe this combination (Section 3.4.1); this step corresponds to Box A3 of Figure 1.1.
Then, a formal representation of state machines is presented to describe the AC rule
combinations (Section 3.4.2); this step corresponds to Box B3 of Figure 1.1.

3.4.1 The Use of Algorithmic Forms

The first-applicable rule-combining algorithm, described earlier in this chapter, follows [79]:
the evaluation of rules within a policy is in the same order that rules are listed in a policy.
If a rule applies, then the rule’s result, i.e., permit or deny, applies and the evaluation of
the rest of the rules halts. Otherwise, the procedure continues to the end. If none of the
rules applies, then the result will be not applicable.

Figure 3.23 shows an algorithmic form for creating policies from rules for the first-
applicable rule-combining algorithm.

The description in this figure uses the notion of states in conjunction with the AC rule
definitions provided earlier in this chapter.

An AC rule has the following format, previously described in detail:

(AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel) — EventResult
Therefore, the premise of a rule in this figure includes the following part:
(AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel)

The consequence of a rule is the EventResult portion.

Another algorithm is permit-unless-deny [78], which can be described as follows: if any
decision is deny, then the result will be deny; otherwise, the result will be permit.

Figure 3.24 shows an algorithmic form for the evaluation of rules for the permit-unless-
deny rule-combining algorithm. Similarly, this description uses the AC rule definitions,
provided earlier, and also includes the notion of states.

3.4.2 The Use of State Machines

The section describes the use of formal state machines to represent algorithmic forms
for the combination of rules to create policies. Before showing these state machines, the

76

initial state = stateg;
for 1 = 1 to n do
// n = the number of rules in a policy
if premise-rule; = false then
| move to state;p;
else
move to state;q;
if Fvent; Access(permit) = true for every element of EventResult then
move to state permit;
exit loop;
else if Event; Access(deny) = true for every element of EventResult then
move to state deny;
exit loop;
end

end
if i = n then

| move to state NA;
end

end

Figure 3.23: Rule Combination using the AC rule definitions for first-applicable algorithm

associated states and their meanings are defined.

State Naming Convention and Meaning: The initial state is qoo. With the exception
of the initial state, the initial digit(s) of a state name is 1 or greater and indicate(s) the
rule number. The last digit indicates whether the assumption of that rule holds (1) or does
not hold (0); e.g., ¢11: the state in which rule 1’s assumption holds (i.e., true = 1).

¢10: the state in which rule 1’s assumption does not hold (i.e., false = 0).
Each rule is described as follows:
(AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel) — EventResult

This expression can be shorten and written as p — ¢, where p is an assumption and
consists of the following part: (AgentExp A ResourceExp A EventExp A AgeEveRel A
ResEveRel). ¢ is a conclusion and consists of the EventResult part. The assumptions and
conclusions for rules one to n can be shown as py...p,, and q;...q,, respectively. Each
assumption is not necessarily an atomic statement, but atomic statements are usually com-
bined using conjunction, disjunction, or negation; this combination was previously provided

7

initial state = stateg;
for i = 1 to n do
// n = the number of rules in a policy
if premise-rule; = false then
| move to state;p;
else
move to state;q;
if Fvent; Access(permit) = true for every element of EventResult then
| continue;
else if Event; Access(deny) = true for every element of EventResult then
move to state deny;
exit loop;
end

end
if © = n then

| move to state permit;
end

end

Figure 3.24: Combining rules with the AC rule definitions for permit-unless-deny algorithm

in EBNF definitions. Similarly, each conclusion can include conjunction, disjunction, and
negation; the EBNF definitions also show these various possibilities.

Similarly, when the state machine is used to describe policy combinations instead of rule
combinations, the word rule changes to policy in the provided description. For instance,
q11 and ¢y for policy-combining state machines have the following meanings:

¢11: the state in which policy 1’s has the outcome in which the assumption holds (i.e.,
true = 1).

q10: the state in which policy 1’s has the outcome in which the assumption does not
hold (i.e., false = 0).

Transition within State Meaning: The transitions between states are governed by
examining the p-rule and g-rule. As mentioned previously, the p-rules on state machines
are identical to the assumption part of a rule:

o (AgentExp A ResourceExp A EventExp A AgeEveRel A ResEveRel)
The g-rule on state machines is identical to the conclusion part of a rule:

e EventResult

78

The conclusion of a rule or EvenResult on state machines is shown as follows:

mi
[/\ Event;Access (permit) = true]
i=1
m1
The superscript of /\ indicates the number of elements in the EventResult expression
of a rule. For instance,znil is the number of elements in the EventResult of rule 1, and my
is the number of elements in the EventResult of rule 2.

Figure 3.25 shows the UML state machine for the first-applicable algorithm.

RuleEvaluation ‘
First-applicable

[p-rule; = true] [p-rule; = false]

permit [/\1 Event;Access (permit) = true] . ‘
i=1
qi1] [q10]
@ “\)e\ L
< K&eﬂ‘]\ ~ [p-rule; = true] [p-rule; =
et false]

mao

@ [Ti\l Event;Access (deny) = true] [Qo1] [f120]

mo
[\ Event;Access (permit) = true]
i=1

[p-rule,, = true] [p-rule,, = false]

My,

[\ Event;Access (deny) = true]

=1 dn1

My,

[Event;Access (permit) = true] else @
NA

i=1

Figure 3.25: A UML state machine using AC rule definitions for first-applicable algorithm

79

Figure 3.26 shows the UML state machine for the permit-unless-deny rule-combining
algorithm.

RuleEvaluation
Permit-unless-deny

[p-rule; = true] [p-rule; = false]

my

% [\ Event;Access (deny) = true]

i=1

[p-rule; = true] [p-rule; = false]

[\ Event;Access (deny) = true]
i=1

- [p-rule,, = false]

[\ Event;Access (deny) = true]
elsq/

i=1
My,

[\ Event;Access (deny) = false] Permit
i=1

Figure 3.26: A UML state machine that uses the definitions of AC rules for permit-unless-
deny algorithm

3.5 Policy-combining Algorithms

Policy-combining algorithms are similar to the rule-combining algorithms, which are de-
scribed in Section 3.4.

For instance, the first-applicable policy-combining algorithm can be described as follows
[79]: the evaluation of policies within a policy set is in the same order that policies are
listed in a policy set. If a policy applies and its result is permit or deny, then the result
(i.e., permit or deny) applies and the evaluation of the rest of the policies halts. If a policy

80

does not apply or its result is not applicable, then the procedure continues. If no other
policy exists, then the result will be not applicable.

An algorithmic form for describing the first-applicable policy-combining algorithm is
shown in Figure 3.27.

initial state = stateg;
for i = 1 to n do
// n = the number of policies in a policy set
if premise-policy; = false then
| move to state;p;
else
move to state;q;
if Fvent; Access(permit) = true for every element of EventResult then
move to state permit;
exit loop;
else if Event; Access(deny) = true for every element of EventResult then
move to state deny;
exit loop;
end

end
if © = n then

| move to state NA;
end

end

Figure 3.27: An algorithmic description for first-applicable policy-combining algorithm

Figure 3.28 shows a UML state machine that corresponds to the first-applicable policy-
combining algorithm.

3.6 An Advantage of the Presented Approach

Many policy languages allow the combination of rules and policies. As Li et al. [66]
explain, XACML provides more flexible approaches of these combinations among policy
languages, but even XACML cannot express formally several possible combinations. Li
et al. [66] provide a few possible approaches, such as weak-consensus, that XACML can-
not express formally. According to the description provided in this chapter, this section

81

PolicyEvaluation ‘

First-applicable too
[p-policyr = truc] [p-policy; = false]
permit [/\ Event;Access (permit) = true]
@ = [an } qd10]
¥ \ = o€
deny o
. Ps(?c%e & [p-policys = true] [p-policy, = false]
iy SN
e
deny

@ [51 Event; Access (deny) = true] [421]E 20 |]

mo
[\ Event;Access (permit) = true]
i=1

[p-policy,, = true] [p-policy, = false]

[/{1 Event;Access (deny) = true]

=1 dn1

My,
[\ Event;Access (permit) = true] else
i=1

(IO

Figure 3.28: A UML state machine for first-applicable policy-combining algorithm

presents weak-consensus and weak-majority policy-combining algorithms. Appendix F
shows other possible approaches such as the strong-consensus policy-combining algorithm,
strong-majority policy-combining algorithm, and super-majority-permit policy-combining
algorithm.

Weak-consensus [66]: “Sub-policies should not conflict with each other: Permit a request
if some sub-policies permit a request, and no sub-policy denies it. Deny a request if some

sub-policies deny a request, and no sub-policy permits it. Yield a value indicating conflict
if some permit and some deny.”

Figure 3.29 shows the weak-consensus policy-combining algorithm according to the
approach shown in this chapter.

82

initial state = stateg;
set PermitRes to false;
set DenyRes to false;
set ConflictRes to false;
for 1 = 1 to n do
// n = the number of policies in a policy set
if premise-policy; = false then
| move to state;, ;

else
move to state;;;

if Event; Access(permit) = true for every element of EventResult then
set PermitRes to true;
move to state permitRes;
else if FEvent; Access(deny) = true for every element of EventResult then
set DenyRes to true;
move to state denyRes;
end

end

end
if i = n and PermitRes = true and DenyRes = false then
| move to state permit;
else if i = n and DenyRes = true and PermitRes = false then
| move to state deny;
else if i = n and PermitRes = true and DenyRes = true then
set. ConflictRes to true;
move to state conflict;
end

Figure 3.29: The algorithmic form for weak-consensus policy-combining algorithm

Figure 3.30 represents the state machine representation for the weak-consensus policy-
combining algorithm that corresponds to the presented algorithmic form.

83

PolicyEvaluation ‘

Weak-consensus

[p-policy,
= false]

[p-policy; = true]
my

[\ Event;Access (permit) = true]
permitRes<————
J /PermitRes := true d11 qd10

my
[\ Event;Access (deny) = true]
i=1

/DenyRes := true

[p-policys [p-policys
= true] = false]

denyRes

[p‘poljcy 2 =

tru
[p-policyy = true] ¢/
920
[p-policy, = false] . ST
m, d(n—1)0 |[P-policy, = false]
[\ Event;Access (permit) = true] —
permitRes = [p-policy,, = true]
/PermitRes := true
m'n/

[\ Event;Access (deny) = true] (
{denyRes i=1 L An1] [dno

/DenyRes := true

[p-policy, = true, [p-policy,, = true, DenyRes = true]

PermitRes = true]

[PermitRes = false] @ [PermitRes = false,

[PermitRes = true] deny DenyRes = true]

[DenyRes = true] /ConflictRes := true

/ConflictRes := true N
L)

[DenyRes = false] conflict

@ permit

Figure 3.30: A UML state machine representing weak-consensus policy-combining algo-
rithm

[PermitRes = true, DenyRes = true]
/ConflictRes := true

[PermitRes = true, DenyRes = false]

84

Weak-majority[66]: “A decision (permit or deny) wins if it has more votes than the
opposite. Permit (deny, resp.) a request if the number of sub-policies permitting (denying,
resp.) the request is greater than the number of sub-policies denying (permitting, resp.).”

Figure 3.31 shows the weak-majority policy-combining algorithm, and the correspond-
ing state machine is presented in Figure 3.32.

initial state = stateg;
set NumPermit to zero;
set NumDeny to zero;
for i = 1 ton do
// n = the number of policies in a policy set
if premise-policy; = false then
| move to state;, ;
else
move to state;;;
if Event; Access(permit) = true for every element of EventResult then
add one to NumPermit;
move to state permitRes;
else if Event; Access(deny) = true for every element of EventResult then
add one to NumDenys;
move to state denyRes;
end

end
end

if i« = n and NumPermit > NumDeny then
| move to state permit;

else if i = n and NumDeny > NumPermit then
| move to state deny;
end

Figure 3.31: The algorithmic form for weak-majority policy-combining algorithm
As mentioned previously, Appendix F provide the algorithmic forms and state machines

of the strong-consensus policy-combining algorithm, strong-majority policy-combining al-
gorithm, and super-majority-permit policy-combining algorithm.

85

PolicyEvaluation ‘

Weak-majority

[p-policy;
= false]

[p-policy; = true]

mq

[\ Event;Access (permit) = true]
permitReg~—~" _
J /NumPermit +1 qi1 10

mi

[\ Event;Access (deny) = true]
i=1
/NumDeny + 1

[p-policys [p-policys
= true] = false]

denyRes

[p-p Olicy2 — falSe]

[p“pO]iCy2 -
[p-policyy = true] e/ .
20
[p-policy, = false] P
i . dm-1)0 |[p-policy, = false]
[\ Event;Access (permit) = true] —
permitRes =t - [p-policy, = true]
/NumPermit + 1
n Event;Access (deny) = true
[/2\1 ; (deny) | [W } [W

/NumDeny + 1
[p-policy,, = true]
[p-policy,, = true]

[NumPermit > NumDeny]

[NumDeny > NumPermit]

[NumPermit > NumDeny] (\

permit [NumPermit > NumDeny]

Figure 3.32: A UML state machine for weak-majority policy-combining algorithm

86

Chapter 4

Specification of Properties for Access
Control and Categorization

Summary: The previous chapter, Chapter 3, described the common representation model,
which is based on REA notations, REA patterns, and state machines. In general, properties
are specified and checked to determine whether these properties are satisfied in a model.

In this chapter, properties for access control (AC) are specified and possible categories
of properties, using the AC rule definitions provided in Chapter 3, are identified. The
benefits of categorization have been acknowledged in many fields. Categorization pro-
vides organization of understanding and can enable the discovery of missing categories and
elements. A main advantage of this categorization is the possibility of reusing it.

This chapter also provides a general form of AC property specification that can also
represent the AC properties related to categorization.

Section 4.1 provides a short background on Linear Temporal Logic (LTL), used here
to specify AC properties. Section 4.2 explains AC property specification for access control
and categories using the AC rules previously defined; this section describes Box Bl of
Figure 1.1. Section 4.3 explains a general form of property specification and describes
Box B2 of Figure 1.1. Section 4.4 explains some related work on property specifications.

4.1 Background

Linear Temporal Logic (LTL) is used in this work and is briefly reviewed next. Appendix C
provides a more detailed description of LTL.

87

LTL: The syntax of LTL follows [49]:
o= T | L [p][(=) | (6r9) | (6Ve) | (6—=9)
| @) | (©0) | (Xé) | (U@ [(0 W) | 6RO

p is a propositional atom. The temporal operators [J, ¢, X, U, R, W mean “always,”
“eventually,” “neXt,” “Until,” “Release,” and “Weak-until,” respectively. Alternative no-
tations for temporal operators [and ¢ are G and F, respectively. Appendix C describes
the semantics of linear temporal logic, and some proof examples using the semantics of
LTL, in addition to a short description of other forms of logic.

Convention: Similar to the common convention on binding priorities (e.g., [49]), the
following precedence applies: the unary connectives that include negation (=), always or
Globally (G or), eventually or some Future states (F or ¢), and neXt (X or () bind
most tightly. Next, in order, come Until (U or), Release (R or R), Weak-until (W or
W), followed by the logical and (A), and or (V), and finally, the implication (—).

4.2 AC Property Specification and Categories

This section specifies and categorizes properties based on the components of AC rules,
defined in EBNF in Chapter 3. Properties are specified in LTL, which is a propositional
temporal logic. First, Figures 4.1 and 4.2 provide the general idea for the translation from
the EBNF elements and its predicates, such as equalities and relationships, to propositions.
The propositional versions are identified with a subscript of prop in these figures. Then,
PROMELA, the language of SPIN, is used to describe this translation at the code level.
Figure 4.1 shows three elements AGT, RGT, and ETG, defined in EBNF in Chapter 3.
Their propositional versions are identified as AGT,,p, RGT)p0p, and EGT,,,, respectively.

Using AgentType = member | ResourceType= Review | EventType = Create
redicates: | e
pred AGT | RGT : ETG
represented 3 represented | represented
Using AgentTypeMember 1 ResourceTypeReview 3 EventTypeCreate
propositions | T
AGTprop ‘ RGTPTOP ‘ ETGP’“OP

Figure 4.1: Predicate and propositional versions of expressions

38

The propositional elements of Figure 4.1 can be described by the language of a model
checker. For instance, if PROMELA is used, then the propositional versions in this figure
(i.e., AgentTypeMember, ResourceTypeReview, and EventTypeCreate) can be defined as
follows. In the following expressions, the symbol “==" means equal. Appendix D provides
an overview of PROMELA.

#define AgentTypeMember (AgentType == Member)
#define ResourceTypeReview (ResourceType == Review)
#define EventTypeCreate (EventType == Create)

Similarly, predicates, such as the ones that represent relationships, can be described as
one unit—propositions—as shown in Figure 4.2.

using ATET(Member,Create) | CreateAccess(permit)
predicates: -_ - | -
REL | EventResult
represented E represented
FLJJr?)Sgsitions ATETMemberCreate | CreateA ccessPermit
T | - —
REL, ., EventResult o

Figure 4.2: Propositional versions of predicates

The predicates that can represent existing relationships, such as between agent types
and event types ATET(Member, Create), can be represented by the language of a model
checker. For instance, using PROMELA (i.e., the language of SPIN), this relationship can
be expressed using an array called RelA, which is defined by the keyword typedef. The
elements of this array are AgeN and Act, which can hold information about agent types
and event types.

typedef RelA {
byte AgeN;
byte Act;

}

Then, a specific array of the required size can be defined; e.g., RelA memR[1];

89

For instance, the elements of this specific array can hold information about a relation-
ship between an agent type of member and an event type of create as follows. In the
following expressions, the symbol “=" is for assignment.

memR[0].AgeN = member; memR[0].Act = create;

Similar to the previously provided description to represent predicates by propositions,
the propositional version of the relationship between an agent type of member and an
event type of create can be represented using PROMELA’s keyword define, as shown next.
ETMemberCreate is the propositional representation of the information within the array
just described.

#define ETMemberCreate (memR[0].AT == member && memR[0].ET == create)

The predicates, such as CreateAccess(permit) or its equivalent representation in EBNF
form, Create Access = permit, can be defined as CreateAccess == Permit. The later
expression can be defined as a proposition called CreateAccesPermit, as shown next.

#define CreateAccessPermit (CreateAccess == Permit)
Based on this explanation about the propositional and predicate versions of expressions,

the categories of properties are described next.

Definition 4.1. Property Description: Properties are categorized into four high-level
categories that are later divided into subcategories:

1. This category holds any primitives of agents, events, and resources individually, and
in connection with AC results. The base form of this category can have one of the
following forms:

a) AGT,., A EventResult,,
b) RGT,..p, A EventResult,,,
c) EGTp A EventResult,,,

AGT,,,, and the rest of these terms are propositional expressions corresponding to
previously defined terms as follows:

AGT,,,,: propositional expression of AGT, defined in Chapter 3
EventResult,,.,: propositional expression of EventResult, defined in Chapter 3
RTG,,0p: propositional expression of RT'G, defined in Chapter 3
ETG,,p: propositional expression of ETG, defined in Chapter 3

90

2. This category holds any primitives of agents, events, resources, and their attributes
individually, and in connection with AC results. The base form of this category can
have one of the following forms:

a) AgentExp,.o, A EventResult,,
b) ResourceExp,.o, A EventResult,,,
c) EventExp,,., A EventResult,,,
AgentExspy,o, and the rest of these terms are propositional expressions corresponding
to previously defined terms as follows:
AgentExp,,p: propositional expression of AgentExp, defined in Chapter 3
EventResult,,.,: propositional expression of EventResult, defined in Chapter 3
ResourceExp,,.,: propositional expression of ResourceExp, defined in Chapter 3
EventExp,rqp: propositional expression of EventExp, defined in Chapter 3
3. This category holds a combination of agents, events, resources, and their relation-
ships, and in connection with AC results. The base form of this property is
O(AGT,0p A RGTpop A ETG,0p A AgeEveRel,,, A ResEveExpp.., —
XOEventResult,,p)
AgeEveRel,,,,: propositional expression of AgeEveRel defined in Chapter 3
ResEveExp,,op: propositional expression of ResEveExp defined in Chapter 3
4. This category holds a combination of agents, events, resources, their attributes, and

their relationships, and in connection with AC results. The base form of this property
follows:

O(AgentExpyrop A ResourceExp,.o, A EventExp,.., A AgeEveRel,,, A
ResEveExpy.., — XOEventResult,,p)
The type and group of entities (e.g., as shown in Chapter 3), such as a resource type or

group, also apply whenever agent, event, and resource entities are used. For brevity, their
types and groups are not mentioned in the prose description of these categories.

Each category is further divided into five subcategories, and each subcategory has three
variations. The subcategories and their variations use the specification patterns and their
LTL specifications as suggested by Dwyer et al. [28, 27, 62].

The next four subsections describe these four categories and provide detailed examples
for property specification for each category.

91

4.2.1 Any Primitives of Agents, Events, and Resources Individ-
ually, and in Connection with AC Results

As mentioned in Section 4.2, the base form of this category can be one of the following:

a) AGT,,, N EventResult,,,
b) RGT,.p A EventResult,,.p

c) EGT,0p A EventResult,,

The base forms, in addition to temporal and logical operators, are used to create cate-
gory 1, its subcategories, and variations of subcategories.

An example of the first base form (AGT,,, A EventResult,,,) is a state cannot be
reached in which a teller has a permission of create. This expression can be presented as
a general form of O(=(AGT,.,, A EventResult,,.,)). A teller is a specific example of the
term AGT),p, and a permission to create is a specific instance of the term EventResult,,p.

An example of the second base form (i.e., RGT,,, A EventResult,,,) is as follows:
it is impossible to reach a state in which a loan account is deleted. This expression can
be presented as a general form of O(=(RGT,.., A EventResult,,.,)). A loan account is a
specific example of the term RGT),,,, and a permission to delete is a specific instance of
the term EventResult,,p,.

An example of the third base form (i.e., EGT,.,, A EventResult,,,,) is it is always
the case that a deposit is allowed. A general form of this expression can be O(EGT),,q,
A EventResult,,.,). A deposit is a specific example of EGT),,,, and the deposit action is
permitted is an instance of EventResult,,p).

Using the first base form (AGT),,, A EventResult,,,,), Figure 4.3 shows category 1, its
sub-categories, and the variations of each sub-category.

Two other variations of this figure are possible simply by replacing the first base form
(AGT,.0p N EventResult,,,,) with the second base form (RGT,.,, A EventResult,,,) or
the third base form (EGT,..,, A EventResult,,,).

92

Category 1: The base form of this category follows: (AGT,,, A EventResult,,.,). The
five subcategories, in which p, q, r, and s have this category’s base form, are listed below.

1. absence sub-category: p, q, and r have the base form AGT),,,, A EventResult,,.

a) absence globally (p is false globally): O-(AGT),,, A EventResult,,,)
b) absence before r (p is false before r): Or — (—p U r)
c) absence after q (p is false after q): O(q — O(—p))

2. universality sub-category:

a) universality globally (p is true globally): O(AGT),,, A EventResult,,,)
b) universality before r (p is true before r): Or — (p U r)
c¢) universality after q (p is true after q): O(q — Op)

3. existence sub-category:

a) existence (p becomes true): O(AGT,,,, A EventResult,,,)
b) existence before r (p becomes true before r): =r W (p A —r)

c) existence after q (p becomes true after q): O((—q) V O(q A Op)
4. response sub-category:

a) globally (s responds to p globally): O((AGT,,., A EventResult,,,,) — Os)
b) before r (s responds to p before r): ¢r — (p = (-r U (s A —1))) Ur
c) after q (s responds to p after q): O(q — O(p — 0s))

5. precedence sub-category:

a) globally (s precedes p globally): =(AGT,., A EventResult,,.,) W s
b) before r (s precedes p before r): Or — (=p U (s V 1))
c) after q (s precedes p after q): O—q V O(q A (-p W s))

Figure 4.3: Category 1, sub-categories, and sub-category variations

93

4.2.2 Any Primitives of Agents, Events, and Resources Individ-
ually, and their Attributes, and in Connection with AC
Results

These properties are described by any primitives of agents, events, and resources individu-
ally, and their attributes, and in connection with AC results. The description of attributes
can use one or both of the following: a) values of attributes or constraints on these values,
b) derived attribute values.

The base form of this category can take one of the following forms:

a) AgentExp,.., A EventResult,,,
b) ResourceExp,.., A EventResult,,,

c) EventExp,,,, A EventResult,,,

An example of the first base form is the following: a state cannot be reached in which a
Junior teller is permitted to create (e.g., an account). This expression can be described as
O(—(AgentExp,rop A EventResult,,.p)), in which AgentExp,,., represents a junior teller
and EventResult,,,, can describe an access of permit to create.

An example of the second base form (i.e., ResourceExp,.,, A EventResult,,,,) is it
15 1mpossible to reach a state in which a savings account with an opening balance of less
than 100 is permaitted to be created. This expression can be presented as a general form
of O(—(ResourceExp,op A EventResult,,.,)). A savings account with an opening balance
of 100 is a specific example of the term ResourceExp,,.,, and a permission to create is a
specific instance of the term EventResult,, .

An example using the third base form (i.e., EventExp,,,, A EventResult,..,) is it is
impossible to allow an invalid (e.g., larger than a designated amount) withdrawal. A gen-
eral form of this expression would be O(—(EventExp,,,, A EventResult,,,,)). An invalid
withdrawal is a specific example of EventExp,,p,, and the withdraw action is permitted is
an instance of EventResult,,p).

Using the first base form (AgentExp,., A EventResult,,,,), Figure 4.4 shows category
2, its sub-categories, and the variations of each sub-category.

Two other variations of this figure are possible simply by replacing the first base
form (AgentExp,.,, A EventResult,,,) with the second base form (ResourceExppo, A
EventResult,,,) or the third base form (EventExp,,., A EventResult,,).

94

Category 2: The base form of this category follows: (AgentExp,,,, A EventResult,,p).

The five subcategories, in which p, q, r, and s have this category’s base form, are listed
below.

1. absence sub-category:

a) absence globally (p is false globally): O—(AgentExp,.,, A EventResult,,,)
b) and ¢) see Note 1 below

2. universality sub-category:

a) universality globally (p is true globally): O(AgentExp,., A EventResult,,)
b) and ¢) see Note 1 below

3. existence sub-category:

a) existence (p becomes true): ¢(AgentExp,.., A EventResult,,,,)

b) and ¢) see Note 1 below

Note 1: b) and ¢) in all the above three items are similar to the corresponding LTL
expressions in Figure 4.3, but p, r, and q are in the base form of this category.

4. response sub-category:

a) globally (s responds to p globally): O((AgentExp,,., A EventResult,,q,) — 0s)
b) and ¢) see Note 2 below

5. precedence sub-category:

a) globally (s precedes p globally): =(AgentExp,.,, A EventResult,,.,) W s

b) and c) see note 2 below

Note 2: b) and c¢) in the above two items are similar to the corresponding LTL
expressions in Figure 4.3, but p, r, q, and s are in the base form of this category.

Figure 4.4: Category 2, sub-categories, and sub-category variations

95

4.2.3 A Combination of Agents, Events, Resources, and their
Relationships, and in Connection with AC Results

The base form of this property uses temporal implication as described in Figure 4.5. This
figure explains the reasons for using various temporal operators, as are used in the expres-
sion. As a result of this use, the base form of this property follows:

O(AGT,0p A RGTy0p A ETG,p A AgeEveRel,,, A ResEveExpp.,, —
XOEventResult,,.,)

AGT),,,,: propositional expression of AGT, defined in Chapter 3

RTGyrop: propositional expression of RT'G, defined in Chapter 3

ETG,,qp: propositional expression of ETG, defined in Chapter 3

AgeEveRel,,,,: propositional expression of AgeEveRel, defined in Chapter 3

ResEveExp,,op: propositional expression of ResEveExp, defined in Chapter 3

EventResult,,.,: propositional expression of EventResult, defined in Chapter 3

To describe p implies ¢, one can write a simple expression, p — q

As p — q is equivalent to (Ip) V g, this implication holds, for instance, in the first state
of a run in which p is false or q is true. In order to make the implication true within each
step of a run, the implication must be written as d(p — q)

This expression is still not correct because it has no notion of temporal implication (e.g.,
the evaluation of a rule reaches a result at some point.). This expression must be written
as O(p — Qq)

The latest expression still holds in a case in which p and q hold at the same state. To
describe that q holds in the next state, one can change the description to

O(p — X0q)

Finally, the last expression holds if p never becomes true because of the implication (—).
The addition of A Qp at the end of the previous expression ensures that p is expected to
hold at some point of time. This addition prevents the expression from being vacuously
true. The final description is O(p — X{0q) A Op

Figure 4.5: Temporal implications [47]

Figure 4.6 shows category 3, its subcategories, and their variations.

96

Category 3: The base form of this category follows:

O(AGT,0p A RGTprp A ETGyp A AgeEveRel,.,, A ResEveExpy., —
XOEventResult,,p)

Note 1: Subcategories 1, 2, and 3, below, have variations b) and c) that are similar to the
corresponding LTL expressions in Figure 4.3, but p, r, and q have the above base form.

Note 2: Subcategories 4 and 5, below, have variations b) and c) that are both similar to
the corresponding LTL expressions in Figure 4.3, but p, r, q, and s are in this category’s
base form.

1. absence sub-category:

a) absence globally (p is false globally): O-(O(AGTp0p A RGT,0p A ETG0p
A AgeEveRel,.,, A ResEveExp,.,, — XOEventResult,,))

2. universality sub-category:

a) universality globally (p is true globally): O(AGT,,,, A RGT,0p A ETGppp A
AgeEveRel,.op, A ResEveExpy.., — XOEventResult,,,)

3. existence sub-category:

a) existence (p becomes true): O(O(AGT,0p A RGTp0p A ETGppp A
AgeEveRel,.,, A ResEveExp,.,, — XOEventResult,,.,))

4. response sub-category:

a) globally (s responds to p globally): O(O(AGT,0p A RGTpop A ETGprep A
AgeEveRel,,, A ResEveExp.., — XOEventResult,..,) — 0s)

5. precedence sub-category:

a) globally (s precedes p globally): =(O(AGTp0p A RGTp0p A ETGp0p A
AgeEveRel,op A ResEveExp,.., — XOEventResult,..,)) W s

Figure 4.6: Category 3, sub-categories, and sub-category variations

97

4.2.4 A Combination of Agents, Events, Resources, their At-
tributes, and their Relationships, and in Connection with
AC Results

Similar to and based on the description provided in Figure 4.5, the base form of this
property follows:

O(AgentExpy,op A ResourceExp,rop A EventExp,.., A AgeEveRel,,.., A ResEveEXp,qp
— XOEventResult,,p)

AgentExp,,p: propositional statement of AgentExp, previously defined in Chapter 3.

ResourceExpy,qp: propositional expression of ResourceExp, defined in Chapter 3

EventExp,p: propositional expression of EventExp, defined in Chapter 3

AgeEveRel,,,: propositional expression of AgeEveRel defined in Chapter 3

ResEveExp,,.,: propositional expression of ResEveExp defined in Chapter 3

EventResult,,.,: propositional expression of EventResult, defined in Chapter 3

Figure 4.7 shows category 4, its subcategories, and their variations.

4.3 General Form of AC Property Specification

This section provides a general form of AC property specification. This general form uses
both the AC rules presented in Chapter 3 and the categorization specification described in
Section 4.2.

Figure 4.8 shows a general form of AC property. This definition includes the tem-
poral operators of LTL and the connective of propositional logic. An atomic proposi-
tion is represented as “p”, and the elements identified as AgentExp,,.p, ResourceExpyop,
EventExp,rop, AgeEveRely,.,, ResEveExp,,q,, EventResult,..,, AGT,..p, RGT,,p, and
ETG,,., are propositions equivalent to the previously defined (Chapter 3, Figure 3.22)
AgentExp, ResourceExp, EventExp, AgeEveRel, ResEveExp, EventResult, AGT, RGT,

and ETG, respectively.

Next, an example is provided to describe the general form of AC property specification
in the context of specific cases.

Example: It is always the case that a program committee (PC) member who owns reviews
can eventually edit his/her reviews:

98

Category 4: The base form of this category follows:
O(AgentExpy,o, A ResourceExpy.,, A EventExp,..,, A AgeEveRel,,, A
ResEveExp,.,, — XOEventResult,,,)

Note 1: Subcategories 1, 2, and 3, below, have variations b) and c) that are similar to the
corresponding LTL expressions in Figure 4.3, but p, r, and q have the above base form.

Note 2: Subcategories 4 and 5, below, have variations b) and c) that are both similar to
the corresponding LTL expressions in Figure 4.3, but p, r, q, and s are in this category’s
base form.

1. absence sub-category:

a) absence globally (p is false globally): O—(O(AgentExp,,o, A ResourceExp,q, A
EventExp,.o, A AgeEveRel,.., A ResEveExpp.,, — XOEventResult,.p))

2. universality sub-category:

a) universality globally (p is true globally): O(AgentExp,,., A ResourceExppop A
EventExpy,op A AgeEveRel, o, A ResEveExp,.., — XOEventResult,,.,)

3. existence sub-category:

a) existence (p becomes true): O(O(AgentExspyop A ResourceExppop A
EventExp,.o, A AgeEveRel,,, A ResEveExp,.., — XOEventResult,..p))

4. response sub-category:

a) globally (s responds to p globally): O(0O(AgentExp,o, A ResourceExppop A
EventExpyop A AgeEveRel,,, A ResEveExp,.,, — XOEventResult,,,)
— 0s)

5. precedence sub-category:

a) globally (s precedes p globally): =(O(AgentExpyrop A ResourceExppo, A
EventExp,.., A AgeEveRel,,, A ResEveExp,.,, — XOEventResult,,,))
W s

Figure 4.7: Category 4, sub-categories, and sub-category variations
99

P= wop(P) | (P bop P) | ultl (P) | (P bltl P) | AgentExpy.p |
ResourceExpyrop | EventExpy.., | AgeEveRel,.., | ResEveExp, op |
EventResult,op | ATGpop | RTGpop | ETGprop;

uop = “not”;

bop = “and” | “or” | “implies”;
ultl = “always” | “eventually” | ‘“next”;
bltl = “until” | “release” | “weak until”;

Figure 4.8: A general form of AC Property

O(pcMember A ownedReview A eventIsUpdate A pcMemberUpdateRel A
UpdateReviewRel — X{permitUpdate)
This property can be described using the general AC property as follows:

Note: The extra parentheses are removed in the following expressions, using the con-
vention provided in section 4.1.

e pcMember corresponds to AgentExp,,., of the general property definition.

e ownedReview corresponds to ResourceExp,,,, of the general property definition.

e The use of option (P bop P) creates (AgentExp,.,, “and” ResourceExp,.p), where
bop is the option “and” (A); the new P is now (AgentExp,,., “and” ResourceExppop)-

e ceventlsUpdate corresponds to EventExpy,p.

e Another use of option (P bop P) where (AgentExp,., “and” ResourceExp,,,,) is
the first P, and the second P is eventlsUpdate, and bop is “and” creates the new P
expression (AgentExp,,.., “and” ResourceExp,.,, “and” eventIsUpdate)

e pcMemberUpdateRel corresponds to AgeEveRel,,,, in the general form.

e Another use of option (P bop P) where the first P is

AgentExp,,.,, “and” ResourceExp,,,, “and” eventlsUpdate), and the second P is
g Pprop Pprop P
pcMemberUpdateRel, and bop is “and” creates the new P expression

(AgentExp,,,, “and” ResourceExp,.,, “and” eventIsUpdate “and” pcMemberUp-
dateRel)

100

UpdateReviewRel corresponds to ResEveExp,,.,. Similar to the explanation of the
previous item, another use of (P bop P) creates the new P, called A, as follows:

(AgentExp,,,, “and” ResourceExp,.,, “and” eventIsUpdate “and” pcMemberUp-
dateRel “and” UpdateReviewRel)

permitUpdate corresponds to EventResult,,,,. The use of ultl (P), where P is pr-
mitUpdate, and ultl is “next”, creates “next”(permitUpdate). Another application
of ultl (P), where P is this latest expression, and ultl is “eventually”, creates an
expression, called B, as follows: “eventually” “next” (permitUpdate)

Another use of option (P bop P), where the first P is what is called A, and the second
P is what is called B, and bop is “implies”, creates the following expression:
(AgentExp,,,, “and” ResourceExp,.,, “and” eventIsUpdate “and” pcMemberUp-
dateRel “and” UpdateReviewRel “implies” “eventually” “next” permitUpdate)
Finally, the use of ultl (P), where P is the last expression, and ultl is “always”, creates
the expression

“always” (AgentExp,,., “and” ResourceExp,,,, “and” eventlsUpdate “and” pcMem-
berUpdateRel “and” UpdateReviewRel “implies” “eventually” “next” permitUpdate)

Or
O(pcMember A ownedReview A eventIsUpdate A pcMemberUpdateRel A
UpdateReviewRel — X{permitUpdate)

4.4 Related Work on Property Specifications

The Object Management Group’s (OMG) “Semantics of Business Vocabulary and Business
Rules (SBVR)” [101] uses predicate logic with a small extension of modal logic. The
SBVR document uses limited modal logic operators without committing to any particular
modal logic. SBVR defines a rule as a “proposition that is a claim of obligation or of
necessity,” and a business rule is expressed as a rule under a business jurisdiction. SBVR
classifies business rules as structural (or definitional) or operative. A definitional rule is
a statement that represents a claim of necessity, whereas an operative rule is a claim of
obligation. In general, a special case of modal logic is temporal logic [49]. In temporal
logic, a statement can be true at some point in time but false at others. Similarly, modal
logic labels statements as “true by necessity” and “true by possibility,” and therefore,

101

statements that are true now and those that are always true are differentiated [108]. Both
modal and temporal logic creates various worlds by interpretations that can correspond
to each other. Woodcock and Loomes provide a comparison of these two interpretations
[108]: in a basic modal logic, (J ¢ denotes that ¢ is true by necessity, and ¢ ¢ states that ¢
may possibly be true; if time represents the ordering of these various worlds, and assuming
that there is no past or that time is non-branching, then [y means that ¢ is always true,
and ¢ ¢ means that ¢ will be true at some future (or eventual) stage.

Martin and Odell [67] classify rules into two categories: constraint and derivation.!
Constraint rules restrict either structure or operation of an object and are categorized
into stimulus/response, operation constraint, and structure constraint rules; conversely,
derivation rules are divided into inference and computation.

The Business Rules Group (BRG) [18] classifies business rules into three categories:
structural assertions, action assertions, and derivations. Structural assertions describe
static representations, such as those modeled by entity-relationship diagrams. As they
state, their structural assertions usually describe “possibilities”; for instance, “A model may
be requested by a customer from a rental branch” [18]. BRG defines dynamic assertions
as constraints on the results of actions; as a result, these types of assertions use the words
“must or must not” and “should or should not.” The BRG’s dynamic assertions include
assertions for conditions (e.g., “is a car registered?”), for integrity constraints (e.g., “a car
must be registered”), or for authorization (e.g., only certain individuals perform certain
tasks). Finally, the derivations of the Business Rules Group consist of either “inference”
or “mathematical calculation” using facts, other derivations, or action assertions.

A small running example that describes the specification of access control properties
in Alloy and demonstrates the benefit of access control formal analysis [56] is presented
in Section D.2.1. Dwyer et al. [28] collected 555 specifications from 35 different sources
within several domains. Some had only temporal logic specifications, and others had both
informal prose and temporal logic specifications. The authors classified these specifications
into two categories: occurrence and order. Occurrence is grouped into absence, universality,
ezxistence, and bounded existence. Furthermore, order is split into four classes: precedence,
response, chain precedence, and chain precedence. For instance, to describe an order of
precedence such that the occurrence of one event/state, S, is a necessary pre-condition
for the occurrence of a second one, P, requires the following LTL specification: QP —

(=P U(S A=P))

!Martin and Odell attribute many of their stated ideas about rules to Frans Van Assche and mentions an
internal publication: Frans Van Assche, Rule-Based IEM, James Martin and Co., internal paper, December
1991.

102

Chapter 5

Evaluation: Conference Management
Case Study

Summary: This chapter describes a conference management case study, called CON-
TINUE, and its realistic access control policies and properties. This detailed illustration
demonstrates the approach explained in Chapters 3 and 4 of this thesis.

As Figure 5.1 shows, this chapter uses the materials on access control models, rules
and policies, and their combinations from Chapter 3 (corresponding to Boxes A1, A2, A3,
and B3 of Figure 1.1) to build access control policies in CONTINUE. This chapter also
mentions the approach for encoding CONTINUE’s access control policies using PROMELA
(the language of SPIN) corresponding of Box C1 of Figure 1.1).

CONTINUE’s policy and property descriptions use the approach of Chapters 3 and 4
as shown in Figure 5.2 that corresponds to Box C of Figure 1.1. The properties are
specified in Linear Temporal Logic (LTL). The LTL specifications are followed by the
formal verification of these properties using the SPIN model checker.

Properties are then verified, and the results are expressed and compared/contrasted
with the outcomes of two prior works that use the same case study but apply different verifi-
cation techniques. Similar to the two prior works, the first-applicable combining algorithm
is first used, and the verification time and state space, obtained by using SPIN, are pro-
vided. Then, the expressiveness advantage of this thesis’s approach over other prior works
is described. Specifically, three combining algorithms—ordered-permit-overrides, ordered-
deny-overrides, and only-one-applicable that prior works are not capable of describing—are
presented based on this thesis’s approach in two formats including state machines. Us-
ing the ordered-permit-overrides algorithm, the verification of properties for the same case

103

Access Control Policies (AP)

Conference Management AC Policies

APq| e AP, from Chapter 3

Model and Policy Descriptions Using the Language of SPIN (PROMELA)

from Chapter 3
Rule Definitions by Implicati
ule Definitions by Implications 3 -
— : rom cnept Conference Management AC Policiesin PROMELA
Rule Combinations Described by (using the models and the rule-combining approach
State Machines from Chapter 3)

Figure 5.1: A summary of this chapter for access control policy specification

study is also performed, and verification time and state space are expressed.

Conference Management AC Propertiesin LTL, Conference Management AC Policiesin
Formal PROMELA
Verification time and memory using SPIN ~ ———» Comparison with two prior works

Figure 5.2: A summary of this chapter for property description and verification

Section 5.1 is a summary of the CONTINUE conference management case study and
the scope of this application. Section 5.2 explains business and access control models,
AC rules and their combinations using algorithmic forms and state machines for the case
study. This section describes Boxes A1, A2, A3, and B3 of Figure 1.1 for the case study.
Section 5.3 points to the materials of Boxes B1 and B2 of Figure 1.1 for the case study and
is mainly about Box C (C1 and C2) of Figure 1.1. This section details the results in terms
of verification time and memory, and the state space of the problem.! This section also
describes the expressiveness advantage of this thesis’s approach over those of prior formal
verification works’ approaches. Section 5.4 provides a short note on selecting the SPIN
model checker to specify and verify properties.

IThe state of a program is a set consisting of the values of the program variables and location counters
of the program, and the state space of a program represents the set of states that can possibly exist within
a computation [11].

104

5.1 CONTINUE, Policies, and Properties

CONTINUE [60] is a free conference management application supporting the submission,
review, discussion, and notification phases of conferences. Shriram Krishnamurthi initially
wrote CONTINUE. A broad description of CONTINUE’s behaviour follows:

e During the initial stage, individuals can view the conference information.

e During the submission phase, authors, including program committee (PC) members,
but not PC chairs, can submit papers.

e PC chairs assign papers to non-conflicted PC members (i.e., PC members cannot be
assigned to review their own papers).

e Only those who are assigned to review papers can submit reviews.

e No PC members can view other PC members’ reviews unless the former have sub-
mitted their own reviews. The purpose of preventing PC members from accidentally
accessing other member reviews, before submitting their own, is to reduce bias in
their reviews.

e PC chairs can see all decisions, whereas PC members do not possess this authoriza-
tion. PC members who have submitted papers should not be able to determine who
reviewed their papers.

e Paper reviews are read during the discussion phase and are the basis for decisions on
which papers are accepted.

Many conferences do not allow their own chairs to submit research papers; based on this
practice, CONTINUE allows PC chairs to read/write all decisions [60]. CONTINUE has
been used by several conferences, such as the International Symposium on Software Testing
and Analysis. In addition, other works also used this case study, making comparison
possible between the verification results obtained by applying the approach described in
this work and those of other authors.

The original conference management access control policies are described by eXtensible
Access Control Markup Language (XACML). The CONTINUE policies are available in
XACML format on the following web site.? For brevity, a prose description of the XACML

2http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/
continue/CodeB/

105

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/CodeB/
http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/CodeB/

policies are provided in Appendix E because in their original XACML format they occupy
more space than is available here. The XACML format and also the prose translation
demonstrate the difficulty of defining access control policies correctly because of the nu-
merous rules and their nested referrals. Furthermore, this application provides properties
that are provided in Appendix E. This thesis specifies properties according to the approach
provided in Chapter 4.

5.2 Business and AC Models, Rules and Combination

This section uses the CONTINUE case study to describe the modeling of access control on
top of business models, the specification of AC rules based on models using the provided
AC rules in Extended BNF, and the description of AC rule combinations using algorithmic
forms and state machines.

5.2.1 Business and AC Models

Figure 5.3 shows a REA exchange model. This figure views submitting and reviewing
(papers) as dual events and is presented. An agent or author (or a role) submits a paper,
and a PC member updates (e.g., reads, writes, modifies, or deletes) reviews. The two
events of submit and update are viewed as REA dual events.

An access control model can be built on top of Figure 5.3. Figure 5.4 shows such a
generic model that is a slight modification of Figure 3.12(a) in Chapter 3.

An example of the generic model of Figure 5.4 can be constructed. This access control
example model (Figure 5.5) can be combined with Figure 5.3. In this combination, the
identical classes and associations are merged. These classes consist of ConfMember, Update,
and Review. The associations consist of one between PCMember and Update, and another
one between Update and Review.

Similarly, examples of access control models for submission of papers can be defined
using the generic form in Figure 5.4, which can subsequently be merged with Figure 5.3.

5.2.2 Access Control Rule

An access control rule of the case study is described in relation to the extended BNF
(EBNF) form previously defined.

106

<<agent type>>

attribute al

atribute a...

Figure 5.3: A REA model of submitting and reviewing papers

1 participate-t

<<Resource>> <<Event>> .
x <<provide>>
Paper 1 <<resource-flow>> 1.* Submit p
paperNum *| submitDate .
title <<receive>> 1.% <<Agent>>
noPages R Author
<<duality>>
1 y authorLN
1.*
authorFN
<<Agent>> <<Event>>
ConfMember Update x <<receive>>
confMemberNum|1 * updateDate
confMemberL N <<provide>> § <<Resource>>
confMemberFN 1. Review
<<resource-flow>> 1
reviewStatus
{e.g., discussion} revAuthorNum
" -~ 1phase

Role modeling
__ | user assignment

*

<<typification>>

<<£gent>>

attribute b1
atribute b...

1

<<participate>> /

| pattern

pattern

, Permission
modeling
!

<<event type>> <<resource type>>

==~ | event typeattribute a

| event type attribute a...

* <<resource-flow type>>

*

resource type attribute a
resource type attribute a...

1
<<typification>>

*

1

<<typfication>>

!

*

<<event>> * <<resource-flow>>

1 <<resource>>

Figure 5.4: A core access control model, based on this thesis’s presentation

107

{confMemberType = role}

<<Agent Type>> |/
ConfMemberType /| <<Event Type>> <<Resource Type>
1 * UpdateType * * ReviewType
roleName TN <<resource-flow-type>> ™
responsibilitieg1..*] updiiName reviName
isConflicted expAssignedDate 0.1

" 0.1 I

<<typification>>

<<typification >> <<typification>> *

% % <<Resource>>
<<Agent>> <<Event>> Review
ConfMember |1 * Update 1" s<resourceflow>> L reviewstatus

<<provide>> revAuthorNum
confMemberNum updateDate {eg., discussion} _ _ . .
< phase
confMemberLN
MamberE {revAuthorNum = confMemberNum}
confMember|

Figure 5.5: An example of access control model for reviewing papers

Example 1: A pc chair is permitted to create or delete review resources.

This rule is based on Figure 5.5. In this figure, the roleName attribute of ConfMem-
berType can have values of PCChair and PCMember. This rule can be described by the
EBNF definitions (Figure 3.22) in Chapter 3. According to the provided definitions, an
AC rule can be defined as follows:

ACRule = (AgentExp and ResourceExp and EventExp and AgeEveRel
and ResEveRel) implies EventResult;

Next, each component of the above expression, such as AgentExp, is described. The
combinations of these expressions using and and implies create an access control rule, as
shown next.

AgentExp: (AgentType = PCChair)
and

ResourceExp: (ResourceType = Review)
and

EventExp: (EventType = Create or EventType = Delete)
and

AgeEveRel: (RelATET(PCChair, Create) and RelATET(PCChair, Delete)

108

and
ResEveRel: (RelRTET(Review, Create) and RelRTET(Review, Delete))
implies

EventResult: (Create Access = permit and Delete Access = permit)

5.2.3 AC Rule Combination by Algorithmic Form and State Ma-
chine

The approach shown in this chapter can describe various ordering combination algorithms,
such as ordered-permit-overrides, ordered-deny-overrides and only-one-applicable for the
purpose of formal verification, whereas prior works are not capable of expressing these
combinations. These three combining algorithms and their specifications according to this
thesis’s approach follow.

The Ordered-permit-overrides Rule-combining Algorithm: This algorithm can be
described as follows [79]: The evaluation of rules within a policy is in the same order that
these rules are listed in a policy. If any rule evaluates to permit, then the result is permit.
If none of the rules evaluates to permit and the result of at least one evaluation is deny
and the results of the rest are not-applicable, then the result is deny. If none of the rules
applies, then the final evaluation result is not applicable.

Figure 5.6 shows a description of ordered-permit-overrides in an algorithmic form.

Similarly, Figure 5.7 also shows the UML state machine corresponding to the ordered-
permit-overrides rule-combining algorithm. The same convention from Chapter 3, restated
below, still holds.

State Naming Convention and Meaning: The first digit of a state name (e.g., g1 in
Figure 5.7) indicates the rule number, and the second digit indicates whether the assump-
tion of that rule holds (1) or does not hold (0); e.g.,

q11: the state in which rule 1’s assumption holds (i.e., true = 1).
q10: the state in which rule 1’s assumption does not hold (i.e., false = 0).

Permit-overrides, another algorithm, is similar to ordered-permit-overrides with one dif-
ference: in permit-overrides, rules can be evaluated in any orders within a policy. This algo-
rithm can be implemented using the non-deterministic if-statement of SPIN (Appendix D).

The Ordered-deny-overrides Rule-combining Algorithm: This algorithm can be
described as follows [79]: The evaluation of rules within a policy is in the same order that

109

set seen-deny to false;
initial state = stateg;
for i = 1 to n do
// n = the number of rules in a policy
if premise-rule; = false then
| move to state;p;
else
move to state;q;
if Fvent; Access(permit) = true for every element of EventResult then
move to state permit;
exit loop;
else if Fvent; Access(deny) = true for every element of EventResult then
move to state deny-seen;
set seen-deny to true;
end

end
if i = n then
if seen-deny = true then
| move to deny state;

else
| move to state NA;

end
end

end

Figure 5.6: The defined AC rules and states for ordered-permit-overrides

these rules are listed in a policy. If any rule evaluates to deny, then the result is deny.
If none of the rules evaluates to deny and the result of at least one evaluation is permit
and the results of the rest are not-applicable, then the result is permit. If none of the rules
applies, then the final evaluation result is not applicable. Figure 5.8 shows the algorithmic
form representation of this algorithm.

Similarly, Figure 5.9 shows the UML state machine for this algorithm.

Similar to the previous case, another rule-combining algorithm is deny-overrides in
which rules can be evaluated in any order within a policy. Similarly, the use of the non-
deterministic if-statement of SPIN, as previously explained, applies in this case too.

The Only-one-applicable Rule-combining Algorithm: The XCAML standard de-

110

RuleEvaluation)
S

Ordered-permit-override

[p-rule; = true]

it .
%ﬂ [\ Event;Access (permit) = true] = false]
i=1
— uue\ q10
™ entyACCeS (deny)
LA [p-ruley [p-rule;

1;1

My,
[\ Event;Access (permit) = true]
i=1

My,

[\ Event;Access (deny) = true]
i=1

Figure 5.7: A UML state machine using the defined AC rules for ordered-permit-overrides

fines the only-one-applicable combining algorithm for policies not rules. XCAML defines
the only-one-applicable algorithm for policies and not for rules. Kolovski et al. [59] de-
scribes the only-one-applicable rule-combining algorithm as the same rule- and policy-
combining algorithms of XACML are similar. This algorithm can be described as follows:
if more than one rule is applicable, then the result is indeterminate. If none of the rules
is applicable, then the result is not applicable. If only one rule applies, then the result of
that rule applies. Figures 5.10 and 5.11 describe this algorithm.

111

set seen-permit to false;

initial state = stateg;

for 1 = 1 to n do

// n = the number of rules in a policy

if premise-rule; = false then
| move to state;p;

else

move to state;;

if Event; Access(permit) = true for every element of EventResult then

move to state permit-seen;

set seen-permit to true;

else if FEvent; Access(deny) = true for every element of EventResult then
move to state deny;

exit loop;
end
end
if i = n then

if seen-permit = true then
| move to state permit;

else
| move to state NA;

end

end
end

Figure 5.8: The defined AC rules and states for ordered-deny-overrides

112

RuleEvaluation
Ordered-deny-overrides

[p-rule; = true]
mq

deny [\ Event;Access (deny) = true] = false]

(\ i=1

\.j Lo true) E(ho
rmit) = o

o e
[p-rule;

= false]

My,

[\ Event;Access (deny) = true]
i=1

My
[\ Event;Access (permit) = true]
i=1

Figure 5.9: A UML state machine using the defined AC rules for ordered-deny-overrides

113

initial state = stategy; set num-seen to zero; set result to false;
for i = 1 to n do

end

// n = the number of rules in a policy
if premise-rule; = false then

move to state;, ;

if © = n and num-seen > 1 then

move to state indeterminate;

exit loop;

else if 1 = n and num-seen = 0 then

move to state NA;

exit loop;

else if © = n and num-seen = 1 and result = permit then
move to state permit;

exit loop;

else if 1 = n and num-seen = 1 and result = deny then
move to state deny;

exit loop;

end

Ise

move to state;;;

if Event; Access(permit) = true for every element of EventResult then
set result to permit;

add one to num-seen; move to state seen;

else if Event; Access(deny) = true for every element of EventResult then
set result to deny;

add one to num-seen; move to state seen;

end

f ©+ = n and num-seen > 1 then

move to state indeterminate;

exit loop;

else if i = n and num-seen = 1 and result = permit then

move to state permit;

exit loop;

else if 1 = n and num-seen = 1 and result = deny then

move to state deny;

exit loop;

end

[y

end

Figure 5.10: The defined AC rules and states for only-one-applicable
114

RuleEvaluation
Only-one-applicable

miy

[\ Event;Access (permit) = true]
i=1
/assign permit to result, num-seen + 1

[p-rule; = true]

seen
my

[\ Event;Access (deny) = true]
i=1
/assign deny to result, num-seen + 1

:

[p-rule; = false

[p-rule; = true]

my
[\ Event;Access (permit) = true]
i=1
/assign permit to result, num-seen + 1

seen ‘

)

mi

[\ Event;Access (deny) = true]

i=1
/assign deny to result, num-seen + 1
[p-rule,, = true] [num-seen

[num-seen > 1]

indeterminate

[result = deny, num-seen = 1]

[result = permit, num-seen = 1]

[p-rule, = true]

. num-seen = 1,
®

[p-rule; = false]

[p-rule; = false]

[num-seen = 0]

> 1]
[p-rule, = false,

result = deny]

deny

[p-rule,, = false,
num-seen = 1,
result = permit]

\(@ permit

Figure 5.11: A UML state machine using the defined AC rules for only-one-applicable

115

5.2.4 An Advantage of the Thesis’s Approach

Table 5.1 shows a summary and comparison of this thesis and prior approaches in terms of
using rule-combining algorithms in the context of formal verification of properties. The plus
sign indicates the capability of their expressions, whereas the minus sign shows the inability
of their expressions. XCAML defines the only-one-applicable algorithm for policies and not
for rules. Kolovski et al. [59] describes the only-one-applicable rule-combining algorithm
as the same rule- and policy-combining algorithms of XACML are similar.

rule-combining algorithms | Fisler et al. | Kolovski et al. | this thesis
first-applicable + + +
permit-overrides + + +
deny-overrides + + +
ordered-permit-overrides - - +
ordered-deny-overrides - - 4
only-one-applicable - - +

Table 5.1: Rule-combining algorithms in the context of their use with formal verification

Similarly, an expression of the combination of ordered-permit-overrides, ordered-deny-
overrides, and only-one-applicable rule-combining algorithms with others is not possible.
As a result, if a policy uses the first-applicable algorithm, and another applies ordered-
permit-overrides, then their combinations cannot be expressed in conjunction with the
previously presented formal verification. Table 5.2 shows the various possible combinations.

rule-combining algorithms Fisler et al. | Kolovski et al. | this thesis

first-applicable + ordered-permit-overrides - - +
first-applicable + ordered-deny-overrides - -
first-applicable + only-one-applicable - -

permit-overrides + ordered-permit-overrides - -
permit-overrides + ordered-deny-overrides - -

permit-overrides + only-one-applicable - -

deny-overrides + ordered-permit-overrides - -

deny-overrides + ordered-deny-overrides - -

o+ |+ [+

deny-overrides + only-one-applicable - -

Table 5.2: Rule-combining algorithms in the context of using with formal verification

116

5.3 Formal Analysis

This section uses the SPIN model checker to assist in expressing CONTINUE’s policies and
properties in addition to the analysis of properties. SPIN accepts specifications written
in a C-like language called PROMELA. Correctness properties can be written as assertion
statements or specified as Linear Temporal Logic (LTL) formulas. An overview of SPIN is
provided in Appendix D.1.

Access control was initially defined using a matrix to specify who has access to what,
but the growth of an organization adds to the maintenance problems of such a matrix;
instead, access control is now defined using rules to describe the information within that
matrix [36]. Despite the benefits of using rules, some disadvantages still exist [58]: 1) large
organizations have a lot of rules; therefore, application of these rules makes it problematic
to determine who has access to what, and 2) the addition and modification of new rules add
to the problem of maintaining these rules. (Although the disadvantages are described only
in the context of Rule-based RBAC, they apply generally). In addition, it is well known
that what one specifies is what one gets but not necessarily what one wants. Therefore,
the analysis of specifications still constitutes a significant step no matter how carefully
specification is described.

5.3.1 Formal Specification of AC Policies in PROMELA

The existing CONTINUE policies, described in XACML, are specified in PROMELA. The
formats of AC rules have also previously been defined in extended BNF (EBNF). These
rules are encoded in PROMELA.

In addition, this specification of AC rules follows the algorithmic forms or state machines
to encode policies and their combinations. The specific AC rules of CONTINUE are
specified in their place-holders, identified as rule-numbers, in algorithmic forms or state
machines.

The following example shows one possible combination of policies. The following if-
statement shows the premise of rules, such as premiseRulel and premiseRule2, and the
conclusion of rules, such as conclusionRulel and conclusionRule2. The premises and con-
clusions of rules are defined in PROMELA as shown in the top portion of Figure 4.1, using
equalities and arrays as described on Page 89. Initially, the state is qgg, as shown in the
state machines of this thesis. If premiseRulel holds, then the state is q;1, and based on con-
clusionRulel, the state proceeds to a result (permit or deny). Otherwise, the state is state

117

d10, and the procedure continues to the state representing premiserule2. The procedure
continues the evaluation to the end in the same manner.

if
premiseRulel -> conclusionRulel;
else
if
:: premiseRule2 -> conclusionRule2;
fi;
else
if
:: premiseRule3 -> conclusionRule3;
fi;
fi;
Next, premiseRulel, conclusionRulel, premiseRule2, conclusionRule2, permiseRule3,
and conclusionRule3 of the if-statement are defined. RT, AT, and ET stand for Resource-
Type, AgentType, and EventType, respectively.

The definition of premiseRulel follows:
RT == pcmemberR && AT == member && ET == readEvent && memR[13].AgeN ==
mem && memR[13] .RAct == readA && memR[13] .ResN == pcmemberR

conclusionRulel is defined as readAccess == permit

premiseRule? is defined as
RT == pcmemberR && AT == admin && (ET == writeEvent || ET ==
createEvent || ET == deleteEvent) && admR[2].AgeN == adm &&
admR[2] .WAct == writeA && admR[2].CAct == createA && admR[2].DAct
== deleteA && admR[2].ResN == pcmemberR

The definition of conclusionRule?2 follows:

writeAccess == permit; createAccess == permit; deleteAccess == permit

premiseRule3 is defined as follows:

RT == pcmemberR && AT == member && AT.userID == RT.resourceID && (ET

118

== readEvent || ET == writeEvent || ET == createEvent || ET ==
deleteEvent) && memR[13].AgeN == mem && memR[13] .RAct == readA &&
memR [13] .ResN == pcmemberR

The definition of conclusionRule3 follows:
readAccess == deny; writeAccess == deny; createAccess == deny;

deleteAccess == deny

5.3.2 Formal Specification of AC Properties in LTL

CONTINUE provides properties that this thesis expresses in LTL. The SPIN model checker
is used to specify properties. Properties can be specified as LTL expressions in SPIN.
Appendix D.1 provides an overview of SPIN. Table 5.3 shows the math symbols and the
SPIN equivalents used.

Operator LTL SPIN
and A &&
or vV I
not - !
implies — ->
always O []
eventually O <>
next X X

Table 5.3: Some LTL and SPIN operators

Property Example: For any state, if an individual is neither a PC chair nor an admin-
istrator, then he or she cannot eventually set (write) the meeting flag resource.

This property exemplifies category 3 and its subcategory the universality sub-category,
as described in Chapter 4. This property can be defined in the LTL notation of SPIN as

[1 (pThree -> X<>notSetup)
where pThree and notSetup are defined as follows:

#define pThree (! (AT == chair || AT == admin) && (RT ==

119

ismeetingflagR) && eventIsW && chaERrel && admERrel)

where eventIsW, chaERrel, and admERrel are defined as
#define eventIsW (ET == writeEvent)

#define chaERrel (chaR[13].AgeN == cha && chaR[13] .RAct == readA
&& chaR[13] .WAct == writeA && chaR[13] .ResN == ismeetingflagR)

#define admERrel (admR[0].AgeN == adm && admR[0].WAct == writeA
&& admR[0] .ResN == pcmember_infoChairFlagR)

notSetup is defined as #define notSetup (writeAccess == deny)

Property Example: It is always the case that if an individual role is not described (i.e.,
no roles exist for a subject), then no permit exists for the individual.

This property exemplifies the absence globally sub-category of category 1 as described
in Chapter 4. This property can be defined in the LTL notation of SPIN as []pFour

where pFour is defined as

#define pFour (!(AT == uniden && aPermit))

aPermit can be described in PROMELA as
#define aPermit (readAccess == permit || writeAccess == permit ||
createAccess == permit || deleteAccess == permit)
The use of eventually instead of always in this property expression places this property
into the existence subcategory of category 1, as shown in Chapter 4.

Property Example: It is always the case that a program committee (PC) member who
owns reviews can eventually edit his/her reviews.

This property exemplifies the universality sub-category of category 4 (Chapter 4). This
example is similar to the first example of this section but uses the attributes of program
committees and reviews, thus placing this property into category 4.

5.3.3 Verification Results and Expressive Advantage

This work has verified the twelve properties provided by CONTINUE. The result of this
verification is described and compared with the results of two previous works. These two

120

Pry Pry Prj Pry Prg Pry; Prg Pryo Prqq Pris
1,364,017 | 496,401 | 538,257 | 368,017 | 368,017 | 436,497 | 383,633 | 438,033 | 387,089 | 381,953
12.3 3.06 3.2 2.14 2.14 2.7 2.31 2.74 2.37 2.23
468.298 | 170.426 | 184.796 | 126.349 | 126.349 | 149.859 | 131.710 | 150.387 | 132.896 | 131.133
700,017 | 380,049 | 377,233 | 368,017 | 368,017 | 377,745 | 370,833 | 372,433 | 369,521 | 368,465
3.75 1.91 1.84 1.89 1.85 1.93 1.92 1.93 1.8 1.88
240.332 | 130.479 | 129.513 | 126.349 | 126.349 | 129.688 | 127.315 | 127.865 | 126.865 | 126.502

Table 5.4: State space, memory, and verification time, New, First Applicable

works use different approaches that are not completely comparable with the experiment
described in this chapter, but they use CONTINUE policies and properties and use ver-
ification as a part of their efforts. The approach in this thesis in terms of the use of a
model checker to verify access control policies is completely comparable with the line of
work described by Jha et al. [52] in Section 2.3.1.

The state space of a program is the multiplication of the number of statements of
each process by the number of values each variable can have [11]. The state space in this
work was relatively small because the range of values that each variable could take has
been selected to be as small as possible. In addition, the number of statements has been
reduced by using PROMELA’s atomic keyword.

Table 5.4 shows the experimental results for the properties that hold. The second row
is the state space; the third row is the verification time in seconds, and the fourth is the
memory usage reported when running the program. Similarly, the next three rows represent
state space, running time, and memory usage for the same properties, but the assumptions
of implications that must eventually hold are not included. For instance, based on the
explanation provided in Figure 4.5, for Pry, the top three rows report the experiment for
the expression [](p -> X<>q) && <>p, and the bottom three rows of column Pr; use
the expression [](p -> X<>q), an acceptable form, in which the assumptions that must
eventually hold are not stated.

Finally, Pry and Prg failed as they should. Pr, failed with the state space of 293,315,
a running time 0.654 seconds, and a memory usage of 101.036. Prg failed with the state
space of 16,313, a running time of 0.047 seconds, and a memory usage of 7.969.

A Windows PC with a Pentium (R) Dual core 2.7GHz CPU and 4 Gbytes of memory
is used for the experiment.

As an example, the CONTINUE case study is used again with the ordered-permit-
overrides rule-combining algorithm. All twelve properties whose verifications under this

121

Pry Pry Prj Pry Prg Pry; Prg Pryo Prqq Pris
1,391,409 | 503,249 | 545,105 | 374,865 | 374,865 | 450,833 | 390,481 | 444,881 | 393,937 | 388,801
12.8 3.17 3.33 2.21 2.21 3.02 2.4 2.87 2.4 2.32
477.702 | 172,777 | 187.147 | 128.700 | 128.700 | 154.781 | 134.61 | 152.738 | 135.248 | 133.484
713,713 | 386,897 | 384,081 | 374,865 | 374,865 | 387,089 | 377,681 | 379,281 | 376,369 | 375,313
3.81 1.95 1.95 1.87 1.9 1.96 1.93 1.94 1.91 1.93
245.034 | 132.031 | 131.864 | 128.700 | 128.700 | 132.896 | 129.666 | 130.216 | 129.216 | 128.853

Table 5.5: State space, memory, and verification time with ordered-permit-overrides rule-
combining algorithm

algorithm were not possible by prior approaches are verified. Table 5.5 shows the result of
this verification.

Pry and Prg failed as they should. Pry failed with the state space of 274,906, a running
time 0.623 seconds, and a memory usage of 94.883. Prg failed with the state space of
16,313, a running time of 0.044 seconds, and a memory usage of 7.969. Similar to the
previous case, a Windows PC with a Pentium (R) Dual core 2.7GHz CPU and 4 Gbytes
of memory is used for the experiment.

A comparison of this chapter’s experiment and those of two other works is described
next. This comparison cannot be in terms of state space and verification time directly
because the other two works use different approaches. One reports a certain timing for
parsing XACML and constraining the representation, and the other describes timing for
parsing XACML, converting to description logic, and preprocessing time to convert them
to normal form. Neither of these elements applies to the work described in this chapter.

Next, two other works that use the same policies and properties but apply different
verification methods are discussed. These works are by a) Fisler et al. [36] and b) Kolovski
et al. [59].

Fisler et al. [36] Work: The authors, who created and made CONTINUE policies and
properties publicly available, use Multi-Terminal Binary Decision Diagrams (MTBDDs)
to represent policies. MTBDDs, variations of Binary Decision Diagrams, have multiple
terminal nodes such that the permit, deny, and not applicable of a policy rule can be
represented. An MTBDD is built for each rule, then these MTBDDs are combined using
provided algorithms. MTBDDs can be manipulated using PLT Scheme (renamed Racket),
a programming language also used to query and verify properties. The authors report a
time of 2050 milliseconds to parse and convert policies into the MTBDD representations
and another 20 milliseconds to constrain this representation. The verification of each

122

property takes less than 1 millisecond. They seemingly obtained these results using a
machine with an Athlon XP 1800+ processor at 1.5 GHz with 512 Mb RAM.

The verification time of Fisler et al.’s experiment is faster than that the results reported
in Table 5.4, but Fisler et al.’s 2050 milliseconds for parsing policies and 20 milliseconds
for constraining policies are not applicable and have not occurred in the experiment using
SPIN because compiling the PROMELA program is fast. Fisler et al. use PLT Scheme to
write queries about policies, and LTL expressions are used in this chapter to do so.

Note that Fisler et al. cannot describe any of ordered-permit-overrides, ordered-deny-
overrides and Only-one-applicable combining algorithms.

b) The Work by Kolovski et al. [59]: The authors used description logics and im-
plemented a prototype of an XACML analysis tool on top of Pellet, a description logic
reasoner. In general, description logics are decidable subsets of first order logic, but some
are supersets of predicate logic. The authors mention that one advantage of choosing DL
representations is their expressiveness. Therefore, a larger subset of XACML that is more
expressive than propositional logic can be represented and verified. Parsing these XACML
policies took 2.1 seconds, and converting them to description logic took another 1.7 sec-
onds. Preprocessing concepts and transforming them into normal forms consumed 10.6
seconds. Verification of properties took 0.420 seconds on average. The type of machine
used to obtain these results is not mentioned. The authors attribute the faster time re-
ported by Fisler et al.’s work to the optimizations for Pellet that are designed to perform
verification for a richer logic than propositional logic (i.e., the logic that describes these
policies).

Kolovski et al.’s 0.42 seconds verification time is faster than the one reported in Ta-
ble 5.4, but their 2.1 seconds for parsing, 1.7 seconds for converting policies to description
logic, and 10.6 seconds for transforming concepts to normal formals are not applicable to
the experiment using SPIN because the compilation of the PROMELA program is fast.

Note that Kolovski et al. [59] are not able to specify ordered-permit-overrides and
ordered-deny-overrides combining algorithms. Kolovski et al. believe that they will be able
to express only-one-applicable combining algorithm in their future work.

5.4 A Note on the Use of SPIN

The SPIN model checker is selected to specify policies and properties and to verify prop-
erties. This tool has been used in many projects. Initially, the plan was to use Alloy, but

123

Alloy was not used for this specific task, for reasons explained after the notion of using
scope in Alloy’s analysis has been described.

Alloy’s analysis is based on scope: an analysis is valid for the specified scope. If
the Alloy analyzer does not find a counterexample, it does not necessarily mean that no
counterexample exists. A counterexample may exist in a larger scope. As Jackson [50]
notes, an increase in scope decreases the chance of the existence of errors; Jackson’s “small
scope hypothesis” states that most errors can be found in small scope. Therefore, the
scope of analysis increases gradually until it reaches a point at which the analyzer runs out
of memory. Appendix D provides an overview of Alloy and an example of access control
specification and verification using Alloy.

Alloy was not used for two reasons: a) Fisler et al. [36] report the unsuccessful use of
Alloy even for handling one third of the CONTINUE policies, as memory was exhausted
after only a few minutes. Alloy is based on first-order logic; therefore, it introduces addi-
tional variables into a model, making analysis intractable; b) the notion of scope in Alloy’s
analysis makes a verification valid for the specified scope. Jackson [50, Pages 184-185]
describes the consequence of the existence of scope, and compares his tool with model
checkers: “model checkers are generally capable of exhausting an entire state space. In
an Alloy trace analysis, only traces of bounded length are considered, and the bound is
generally small”.

124

Chapter 6

Conclusion

This chapter provides a summary of contributions, a discussion of limitations, and an
outline of possible future work.

6.1 Summary of Contributions

The work presented in this thesis provides a uniform formal approach to business and
access control models, policies and their combinations. The research involves a new formal
representation for access control rules, policies, and their combination and supports formal
verification. In addition, the approach explicitly connects the rules to the underlying access
control model. Further, this research approach enables the description and verification of
all known access control policies expressed in the literature.

Research reported in the literature does not directly connect access control models
to rules using a generic AC model. Typically, the research focuses on one or the other.
Further, no formal approach (e.g., [36], [59], [66]) supports formal description and verifi-
cation of classes of policy-combining algorithms related to history of policy outcomes and
consensus.

This approach advances AC in the following ways:

e The approach provides a common representation for describing and integrating busi-
ness processes, access control models, their rules and policies. This contribution
emphasizes a systematic approach

125

— starting from a business model,
— adding AC models to these business models,
— defining AC rules based on these models,

— combining AC rules using state machines in which the transitions are governed
by elements of the defined AC rules.

This approach in its entirety has not been seen in the literature. Chapters 3 and 5
discuss this approach, and additional materials are provided in Appendices B and F.

The approach expresses AC rules using an underlying AC model based on an existing
augmented business modeling notation. The underlying AC model is general enough
to describe Role-based Access Control (RBAC), Discretionary Access Control (DAC),
and Mandatory Access Control (MAC). Chapter 3 presents this topic, and some AC
rule definitions are provided in Appendix B.

The approach can express and verify formally all known policy- and rule-combining
algorithms, a result not seen in the literature. The algorithms related to history of
policy outcomes that include ordered-permit-overrides, ordered-deny-overrides, and
only-one-applicable are expressed in Chapter 5. In addition, the verification using this
class of combining algorithms for the case study is described and results are provided
in the same chapter. The formal expressions of algorithms related to consensus
that include weak-consensus, weak-majority, strong-consensus, strong-majority, and
super-majority-permit are shown in Chapter 3 and Appendix F.

The approach supports a classification of relevant AC properties expressed in LTL
that can be verified against policies and their combinations. Chapter 4 discusses this
topic.

Finally, the approach supports automated formal verification of single policies and
combined policy sets based on model checking. Chapter 5 presents this topic and
provides the verification results.

6.2 Limitations

The modeling of three main classes of AC, RBAC, DAC, and MAC, is described by the
approach presented in this thesis in Chapter 3. However, several other AC models, some
of them are detailed, exist. It appears that the approach shown in this thesis can be

126

extended to represent other AC models such as the ones involving time (e.g., temporal-
RBAC (TRBAC) as mentioned in Chapter 2) and obligation. These extensions can be a
topic of future work.

The computational limitations imposed by the model checking approach are discussed
(Chapter 2), and these limitations also apply in general. One main limitation is state-space
explosion, which implies that as the model gets larger, the analysis will be impractical.
Another limitation of model checking is that the analysis is performed on a model of a
system and not on the actual system code.

This thesis uses a conference management case study that has appeared frequently
in the literature, and therefore the comparison of results is possible. This case study is
extended to include the verification of AC policies that use policy-combining algorithms
involving history that have not appeared in the literature. The verification results are
shown in Chapter 5. Despite the successful reported verification results, as the case study
becomes larger, state-space explosion causes verification to be impractical.

6.3 Future Work

Several future directions can enhance the work presented in this thesis. A few are described
next.

6.3.1 Other Access Control Models and their Extensions

As discussed in Chapter 1, the presentation of AC models in this thesis does not rely
on a specific AC model and is based on the constituent of any AC model: AC models
can be described by the elements users, objects, subjects, operations, permissions, and
the relationships among them [33]. Three main classes of AC are discussed to show the
approach presented in this thesis. Nevertheless, several other AC models exist; for instance,
the Usage CONtrol (UCON) model in which usage means the rights to use digital objects
and to delegate these rights. UCON is described as an intersection of traditional AC
models, digital rights management, and trust management [82]. Exploring in depth other
AC models and their extensions, such as trust management, can enhance the scope of this
work.

127

6.3.2 Rights, Delegations, and Obligations

One possible extension of this work can be the inclusion of rights and delegations. For
instance, one categorization [100] provided in Figure A.2 (Appendix A) uses generalization
and specialization and present resources as goods, rights, or services. This thesis has not
explored resources as rights; no differences appear to exist if resources are rights, but this
type of presentation may require additional attention.

Delegation within AC models has also been discussed in the literature because of the
presence of this feature in various situations. Therefore, delegation can also be described
in related models. For instance, an agent with a role and with permissions to perform some
operations may delegate this authority to another role. CONTINUE (Chapter 5) includes
two roles: PC members and sub-reviewers. Although, in essence, PC members delegate
reviewing papers to sub-reviewers, reviewing papers by sub-reviewers is not presented as
an authorization given by PC members to sub-reviewers as delegations—possibly because
of difficulties involved if such an approach is taken.

Not only does the existence of delegation add more features to an AC model but also
the several possible forms of delegations and their combinations, which have already been
defined in the literature. Investigating the addition of delegation, its benefits, and possible
disadvantages, and determining the extent of its use within AC models can be extensions
to this work.

Obligations have also been discussed in the AC literature. For instance, XACML [79, 78]
represents an obligation, specified within a policy, as an operation that must be performed.
Including an obligation within the approach presented in this thesis can be another topic
of future work.

6.3.3 Analysis and Formal Methods

Several enhancements for policy analysis are possible, for instance, the use of various anal-
ysis techniques and formal method approaches to determine what techniques are appro-
priate for certain situations. Performing such experiments could result in the development
of guidelines. For instance, Jha et al. [52] mention that a logic programming tool uses
an excessive amount of memory if the number of rules exceeds a certain number, whereas
memory use is much lower if a model checker tool analyzes the same case. As mentioned in
Chapter 2, one experiment shows that the number of rules is a determining runtime factor;
even data sets with a larger number of roles but fewer rules run faster than data sets with
fewer roles but more rules. In general, however, an increase in the number of roles can

128

increase the number of rules. Similarly, determining other factors in an analysis would be
worthwhile. Finding out what makes one analysis more memory and time consuming than
another will forewarn analysts about the degree of complexity to expect from an analysis.

Similarly, an analysis can include policies related to rights, delegations, and privacy,
and as can be expected, the inclusion of these additional elements increases the state space
of an analysis. Case studies can be used to examine the effect of multi-role permissions, i.e.,
permissions that a user can obtain by filling more than one role at the same time. Similar
to the inclusion of rights and delegation, the existence of multiple roles can increase the
state space of an analysis.

6.3.4 Privacy

An enhancement of this work would be the inclusion of privacy, because AC policies and
privacy policies are related. Anderson [3] describes this connection well: an AC policy
describes who has what operation accesses on which resources, whereas, in addition, a
privacy policy must match the purposes between data collected and data accessed.

AC models are not designed to meet privacy requirements, but—as one reason—the
connection between these two types of policies has created the need to extend AC models
to describe privacy requirements. For instance, Privacy-aware RBAC (P-RBAC) [74] is one
such effort that includes privacy within RBAC. The XACML specification [79] includes a
brief privacy profile touching on this topic.

6.3.5 Different Domains

Exploring access control in different domains such as social networking and digital rights,
and investigating whether each environment imposes different challenges would make a
natural extension of this work. The extent and the combination of various factors such as
multi-role permissions, delegations, the requirement of privacy, and the number of rules,
roles, and permissions of each domain may present additional dimensions in the presenta-
tion and analysis of policies for each domain.

129

APPENDICES

131

Appendix A

An Overview of REA

The Resource-Event-Agent (REA) model was introduced by McCarthy [68] and contains
two broad groups of business processes: ezchanges and conversions. A sale (i.e., an ex-
change of cash for a product) and a loan (i.e., an exchange of cash in lieu of future return of
cash and its interest) are two exchange processes [48]. Conversely, creating new products
and modifying existing ones exemplify conversion processes. Furthermore, a REA value
chain represents a model in which any number of exchange and conversion processes are
connected such that a resource outflow of a process is a resource inflow to another process
[48]. In addition to exchange, conversion, and value chain models, other elements such as
commitment, contract, policy, custody, and linkage are also defined, thus enabling larger
models to be described.

Nakamura and Johnson [73] describe REA and state that

Although the REA model was proposed as a result of the study of accounting
theories, it can be applied to many other business domains The REA
model is a promising modeling technique for developing business applications
because it has a solid foundation and it can be applied to nearly all business
domains.

Figure A.1 [69, 100] shows a partial REA model in which a value chain represent an
aggregation of business processes that are themselves an aggregation of economic events.
Several rules exist for constructing REA models. For instance, as Figure A.1 shows, an
association between a resource and an event is called resource-flow, and an association
between an agent and event is named participates. A duality relationship is an association
between two (or more) economic events.

133

Business Value

Process Chain
Phases
Economic <> Q
Agreement governs Business
Process
establishes
Economic specifies specifies .
Resource . Economic Economic
Type reciprocal [|) -
Commitment specifies Agent Type
Economic
typifies .
. typifies Event Type
fulfills yp typifies
E i . to E .
conomic resource-flow Economic conomic
Resource Event from Agent
site
duality

Location

Figure A.1: A REA model

A minimum REA model includes resources, events, and agents and their relationships
(i.e., resource-flow, duality, and participates). A promise to execute an event is called a
commitment; an association between an event and commitment is called a fulfillment.

Figure A.2 presents a REA economic resource that can be goods, services, or rights
[100]. Further classification beyond this level is also possible and may differ from one
industry or business to another. The aggregation symbol in Figure A.2 indicates that a
resource can have components.

E Economic Resource

\ [\
Goods Services Rights

Figure A.2: Resource and its sub-categories

134

(7

Py publishCatalog @ sendAvail AndPriceRequest @

returnAvailabilityandPriceResult
acceptOffer Specified sendReceivingReport Actualized - @

Figure A.3: A state diagram of a resource

Figure A.3 [69] shows states related to business phases planning, identification, nego-
tiation, actualization, and post-actualization. This figure shows a resource that, during
purchase of an item, passes through various business process phases, mentioned previously.

A.1 REA as an Ontology

REA is also presented as an ontology using Sowa’s categorization [97]. Ontology is “the
study of existence, of all the kinds of entities—abstract and concrete—that make up the
world” [97] or similarly “an explicit specification of a conceptualization” [70]. Sowa has
classified the components of reality into three categories: “abstract versus physical,” “con-
tinuant versus occurrent,” and “firstness versus secondness versus thirdness”; as a result,
he recognizes twelve, 2x2x3, categories.

These categories can be briefly described so [42, 63]: “the category physical for anything
consisting of matter or energy and the category abstract for pure information structures.”*
Continuant represents an object and its attributes “that enable its various appearances at
different times to be recognized as the same individual,”? whereas occurrent describes an
event or a process identifiable with regard to a certain time and space. Firstness represents
an entity, z, such that its existence and attributes are independent of anything external to
x; for instance, a woman can be such an entity. Firstness is also called first, independent, or

!The statement between quotation marks is by Sowa [97].
2The statement between quotation marks is by Sowa [97].

135

predicate P(x). Secondness represents entities but in connection with other(s); for instance,
a mother can describe the same woman but in relation to her children. Relative is also
named second, relative, or P(x,y). Finally, thirdness describes a relation, z, mediating two
other entities, y and z; motherhood can be an example that describes a relation between a
mother and her children. Thirdness is also referred to as third, mediating, or P(x,y, z). As
a result of applying Sowa’s classification, the REA ontology is organized into the twelve
categories shown in Table A.1 [42].

Physical Categories Abstract Categories
Continuant Occurrent Continuant Occurrent
1%t Or EconomicAgent (A) | EconomicEvent (E) | AgentType (AT) | EventType (ET)
Independent | EconomicResource Commitment (C) ResourceType CommitmentType
(R) (RT) (CT)
2nd Or Association (A-A) Stockflow (E-R) Typification Typification
Relative Custody (A-R) Duality (E-E) (A-AT) (E-ET)
Linkage (R-R) Accountability (R-RT) (C-CT)
(E-A)
Executes (C-E) Characterization Scenario
Involvement (C-A) (AT-AT) (ET-RT)
Reserved (C-R) (AT-RT) (ET-ET)
Reciprocal (C-C) (RT-RT) (ET-AT)
(CT-ET)
(CT-AT)
(CT-RT)
(CT-CT)
34 Or Responsibility Exchange Segmentation Standardization
Mediating Partnering Conversion Policy Policy
Configuration Contracting Substitutability Strategy
Scheduling Complementarity
Configuration

Table A.1: A categorization of REA ontology

The benefit of this categorization is its placing all elements into twelve categories, but one
problem is the incompleteness of this categorization [63]. A brief explanation of elements
of this table follows [42]: a REA commitment can be a hotel reservation, and segmentation
describes “the rationale for grouping resources and agents into abstract categories like slow-
paying customers.” Configuration in the second column can describe a resource represented

136

Policy - .-
1 1 1 1
i i 1 1
) 1 1 1 1
Operational g J
-
Level .
Basic Mirror Compromise
Policy
Level ! ’
1 \ ’
1 Al ,.'
I AT
Operational ! \ b
I—E
e b
Hybrid Root
Legend:
I : object classes —— : associations but not of typification or grouping
= = = :typification or grouping : policy definitions

Figure A.4: Patterns for policy-level specifications

as an aggregation of resources (Figure A.2). Similarly, linking REA resource types can
constitute a description for substitutability, complementarity, and configuration in column
four. Furthermore, Table A.1 and Figure A.1 can be mapped to each other; e.g., duality
and typifies (typification) are shown in both the table and figure.

A.2 REA Patterns for Policy-level Specification

REA patterns for policy-level specification are shown in Figure A.4 [43] and illustrated
using a plane and flight scenario in Figure A.5 [43]; these two figures are described next.

Figures A.4 and A.5 can be described so [43]: The Basic pattern includes flight, flight-
Type, and a single typification association between them. A policy is defined by a flight-
Type attribute: based on a scheduled departure of a flightType, a policy can state that
a flight should take off at a certain time (which can be different from the flight’s actual
departure time). In these two figures, a typification relationship denotes an “is a-kind-of”
association, whereas a grouping association represents an “is a-member-of” association.

The Mirror pattern is among planeType, flight Type, plane, and flight (i.e., two typifica-
tion or grouping associations and two other associations). A policy can express the type of

137

Compensation

erks
-

PlaneCategory RouteType CancellationType

W

Compromise

Target

targeted fuel consumption

| FlightType

Fleet
W PlaneType scheduled departure time

Root P2 .
o Mirror Basic

Hybrid

Flight

ServiceOperator Plane actual departure time
@ @ actual fuel consumption @

Legend:
Type Object Class Grouping Object Class [O] Operational-Level Object Class

Figure A.5: A flight example for policy-level specifications

plane to be used for the type of flight. The Compromise pattern, a variation of Mirror, one
typification or grouping is compromised: it consists of one typification or grouping and two
other associations—one of which is at the policy level. Compromise includes routeType,
cancelationType, and flight; a cancelationType can be defined per routeType.

The Hybrid pattern, another variation of Mirror, includes plane, fleet, and serviceOp-
erator and consists of one typification or grouping and two other associations—mnone of
which is at the policy level. This pattern is used when one class has a small number of
instances on which the policy is validated (e.g., a list of people who can provide service to
a fleet). Operational and policy levels are differentiated in Figures A.4 and A.5 either by
their explicit mention or by the use of “T” to denote type.

Finally, the Root pattern is defined among fleet, planeType, and fleet and applies to
cases in which one operational-level object participates in more than one typification or
grouping (e.g., the typification of plane and planeType and the grouping of plane and fleet).
This pattern consists of two typification or grouping associations and another association
at the policy level (e.g., a plane should be of a specific planeType to be a member of a
fleet).

138

Appendix B

BNF and EBNF Definitions

This appendix first provides the BNF definitions of access control rules in Section B.1.
Then, the agent-, resource-, and event-related definitions in BNF and EBNF are presented
in Section B.2.

B.1 Access Control Rule in BNF

The original BNF elements and their meanings are shown in Table B.1 [91]. As this table
shows, the original BNF has only four elements and does not have specific symbols for
repetitions (e.g., { }) and options(e.g., [|). Therefore, a specification in BNF is longer
than EBNF. Table B.1 shows the BNF elements and their meanings.

BNF Meaning
(unquoted words) Non-terminal
symbol

unquoted characters | Terminal symbol

n= Defining symbol

| Alternative

Table B.1: The original BNF

The AC rule definitions (i.e., the AC rule grammar) in BNF are checked with a tool
called Gold Parser [24]. This tool requires that the symbols such as parenthesis, arithmetic

139

symbols (e.g., > or =), and commas be enclosed by single quotation marks. Thus, these
symbols are enclosed by single quotation marks in the figures identified as BNF. In addi-
tion, the Gold Parser requires that definitions start with “start symbol”; therefore, when
checking the grammar of AC rule definitions (Figure B.1), the first rule in this figure must
be as follows: "Start Symbol" = (ACRule).

Figure B.1 shows the BNF definitions of AC rules, which have been previously presented
in EBNF in Chapter 3.

Access Control Rule Definition in BNF

(ACRule) ::= '('(AgentExp) and (ResourceExp) and (EventExp) and
(AgeEveRel) and (ResEveExp)')' implies (EventExp)
(AgentExp) == '("(equA)")" | '("(uop) (equA)')" | '('(equA) (equArep)')'

| '("(uop) (equA) (equArep)')’
(uop) ::= not
(equA) == (ATG) | (attrATG)
(equArep) = (bop) (equA) | (bop) (equA) (equArep) | (bop) (uop) (equA)
| (bop) (uop) (equA) (equArep) | empty

(bop) == (" and | or ")

(ATG) == (Agent) '=' (className) | (AgentTG) '=' (identifier)

(attrATG) = (AgeAttlde)'.'(attrNameValue) | (AgeAttlde)'.'(attrNameValue)
L' (attrATG)

(AgentDesignation) = (Agent) | (AgentType) | (AgentGroup)

(AgentTG) = (AgentType) | (AgentGroup)
(AgeAttlde) := (ATG) | (ATClassName) | (AClassName) | (AGClassName)

| (AgentDesignation)
(Agent) == var string (idenitiferA)
(AgentType) ::= var string (identifierAT)
(AgentGroup) := var string (identifierAG)
(className) ::= string
(identifier) ::= instance string
(attrNameValue) = (attrName) (attrValue)
(attrName) ::= string

140

Access Control Rule Definition in BNF (contd.)

attrValue) ;= (relationN) (valueNum) | (relationC) (valueC)
identifierA) = Agent

identifier A’ > AgentType

identifierAG > AgentGroup

relationN) ::= '<'| SU>T <] = |

relationC) ::= equals | notEquals
valueNum) ::= (number)

valueC) ::= character | string | (bool)

bool) ::= True | False

ATClassName) ::= (identifier) in '('(AgentType) '=' (identifier)')'

AClassName) ::= (className) in '('(Agent) '='(className)')'

AGClassName) ::= (identifier) in '('(AgentGroup) '=' (identifier)")'

ResourceExp) ::= '("(equR)")' | '("(uop) (equR)")' | '('(equR) (equRrep)")'

| '("(uop) (equR) (equRrep)')’

(equR) := (RTG) | (attrRTG)

(equRrep) ::= (bop) (equR) | (bop) (equR) (equRrep) | (bop) (uop) (equR)
| (bop) (uop) (equR) (equRrep) | empty

RTG) ::= (Resource) '='{(className) | (ResourceTG) '=' (identifier)

(
(
(
(
(
(
(
(number) ::= integer | real
(
(
(
(
(
(

ResourceDesignation) ::= (Resource) | (ResourceType) | (ResourceGroup)
ResourceTG) ::= (ResourceType) | (ResourceGroup)

ResourceType) ::= var string (identifierRT)

ResourceGroup) := var string (identifierRG)

attrRTG) = (ResAttlde)'.'(attrNameValue) | (ResAttlde)'.'(attrNameValue)
1 (attrRTG)

(
(
(
(Resource) ::= var string (identifierR)
(
(
(

(identiferR) ::= Resource

(identiferRT) ::= ResourceType

(identifierRG) ::= ResourceGroup

(ResAttlde) := (RTG) | (RTClassName) | (RClassName) | (RGClassName) |
(ResourceDesignation)

141

Access Control Rule Definition in BNF (contd.)

(RTClassName) ::= (identifier) in '('(ResourceType) '=" (identifier)')'
(RClassname) ::= (className) in '('(Resource) '=' (className)')'
(RGClassname) ::= (identifier) in '('(ResourceGroup) '=' (identifier)')'
(EventExp) == '("(ETG)")' | '("(uop) (ETG)")' | '((ETG) (ETGrep)')" |

(

'("(uop) (ETG) (ETGrep)')'

(ETG) = (Event) '='(className) | (EventTG) '=' (identifier)

(ETGrep) ::= (bop) (ETG) | (bop) (ETG) (ETGrep) | (bop) (uop) (ETG) |
(bop) (uop) (ETG) (ETGrep) | empty

(EventDesignation) ::= (Event) | (EventType) | (EventGroup)
(EventTG) ::= (EventType) | (EventGroup)

(Event) ::= wvar string (identifierE)

(EventType) ::= var string (identifierET)

(EventGroup) ::= var string (identifierEG)

(identifierE) ::= Event

(identifierET) ::= EventType

(identifierEG) ::= EventGroup

(AgeEveRel) := '('(AgeERel))" | '('(uop) (AgeERel)")' | '('(AgeERel)

(AgeERelRep)")' | '("(uop) (AgeERel) (AgeERelRep)')'
(AgeERel) ::= RelATET '('(ATClassName) ', (ETClassName)')'
RelAE '('(AClassName) ',' (EClassName)')'
| RelATG '('(ATClassName) ','(AGClassName) ')’
| RelAT '('(AClassName) ',' (ATClassName)')'
| RelAG '('(AClassName) ',' (AGClassName) ')'
= (bop) (AgeERel) | (bop) (AgeERel) (AgeERelrep) | (bop) (uop)
(AgeERel) | (bop) (uop) (AgeERel) (AgeERelRep) | empty
(ResEveRel) ::= '("(ResERel)')" | '('(uop) (ResERel)")' | '('(ResERel)
(ResERelRep)")' | '('(uop) (ResERel) (ResERelRep)')'
(ResERel) == RelRTET '('(RTClassName) '' (ETClassName)')'
| RelRE '('(RClassName) ',' (EClassName)')'
| RelRTG '('"(RTClassName) ',' (RGClassName)')'

(AgeERelRep) ::

142

Access Control Rule Definition in BNF (contd.)

| RelRT '('"(RClassName) ')' (RTClassName)')'
| RelRG '("(RClassName) ',' (RGClassName)')'
= (bop) (ResERel) | (bop) (ResERel) (ResERelrep) | (bop) (uop)

(ResERel) | (bop) (uop) (ResERel) (ResERelRep) | empty
(EventResult) ::= (accETG) | (accETG) (accETGrep) | (uop) (accETG)

| (uwop) (accETG) (accETGrep)

(accETG) ::= (accessETG) '=' (result)

(accETGrep) ::= (bop) (accETG) | (bop) (accETG) (accETGrep)
| (bop) (uop) (accETG)
| (bop) (uop) (accETG) (accETGrep) | empty

(ResERelRep) ::

(result) ::= permit | deny

(accessETG) = (ETClassName) Access | (EClassName) Access
(ETClassName) = (identifier) in '('(EventType) '=' (identifier)')'
(EClassName) ::= (className) in '('(Event) '=' (className)')'

Figure B.1: Access control rule definition in BNF
B.2 Other BNF and EBNF Definitions

This section provides agent-, resource-, and event-related definitions. Figures B.2 and
B.3 show agent-related definitions in extended BNF and BNF, respectively. These two
figures use symbols provided in Tables 3.7 and B.1. The same explanation also holds when
resource- and event-related definitions are provided.

The agent-, resource-, and event-related definitions (i.e., the grammar) in BNFs (Fig-
ures B.3, B.5, and B.7) are checked with a tool called Gold Parser [24]. As mentioned
previously, this tool requires the symbols such as parenthesis, arithmetic equalities or in-
equalities (e.g., > or =), and commas to be enclosed by single quotation marks. Therefore,
these symbols are enclosed by single quotation marks in the figures identified as BNF. In
addition, the Gold Parser requires that definitions start with “start symbol”; therefore,
when checking the definitions in Figures B.3, B.5, and B.7, the first rule in these figures
must be as follows: "Start Symbol" = (modelDef). The last statement also applies for all
figures that are identified as BNF definitions.

After providing agent-related definitions in Figures B.2 and B.3, the definitions are

143

described for both figures together by identifying the corresponding starting line of each
definition in these two figures. The definitions and their descriptions for resource- and
event-related definitions are very similar to the one provided for agent-related definition.

Description of Agent-related definitions: Figures B.2 and B.3 are described by iden-
tifying the corresponding starting line of each definition in these two figures.

e The expression starting with modelDef or (modelDef): This expression defines mod-
leDef as a class or an instance of a class (i.e., Iclass) or an association.

e The expression starting with class or (class): This expression identifies a class with
its components: attribute names and types (i.e., attrNameType), operation names
and types (if they exist), and operation return values (if they exist).

e The expression starting with AgentDesignation or (AgentDesignation): An Agent-
Designation can be one of the following three elements: agent, agent type, or agent

group.
e The expression starting with className or (className): The class name is a string,.

e The expression starting with attrNameType or (attrNameType): One or more at-
tributes can exist, and each attribute has a name and a type.

e The expression starting with attrName or (attrName): An attrName is a string.
e The expression starting with type or (type): A type can be a basic type or a class.

e The expression starting with basicType or (basicType): A basic type can be a num-
ber, character, string, or bool.

e The expression starting with opNTR or (opNTR): An operation has a name and can
include optional elements of paramNameType and resType.

e The expression starting with Agent or (Agent): An agent is defined as a variable
that holds a value of a string type within identifierA.

e The expression starting with AgentType or (AgentType):: An agent type is defined
as a variable that holds a value of a string type within identifierAT.

e The expression starting with AgentGroup or or (AgentGroup):: An agent group is
defined as a variable that holds a value of a string type within identifierAG.

144

Agent-related Definitions in Extended BNF

modelDef = class | Iclass | association;
class = ([AgentDesignation "="] className "," attrNameType {"," attrNameValue}
{ u’u OpNTR}),

AgentDesignation = Agent | AgentType | AgentGroup;
className = "string";
attrNameType = (attrName ":" type) { (attrName ":" type) };

attrName = "string";

type = basicType | class;

basicType = number | "character" | "string" | bool;
opNTR = opName([paramNameType|) [resType;

Agent = "var" ‘string" identifierA;

AgentType = "var" "string" identifierAT;
AgentGroup = "var" ‘“string" identifierAG;
opName = "string";

paramNameType = (paramName ":" type) { (paramName ":" type) };
paramName = "string";

resType = type;

identifierA = "Agent";

identifierAT = "AgentType";

identifierAG = "AgentGroup";

Iclass = ("object" [AgentDesignation "="] objectName":"className
attrNameValue { "," opNTR});

objectName = "string";

attrNameValue = (attrName attrValue) { (attrName attrValue) };

attrValue = relationN valueNum | relationC valueC;

relationN = "< | ">t | on>no | ongn |on=n | nf

relationC = "equlas" | notEquals;

valueNum = number;

number = "integer" | ‘"real";

valueC = "character" | "string" | bool;

145

Agent-related Definitions in Extended BNF (contd.)

bool = "True" | "False";

association = "association" associationName Agent className
multiplicity AgentTG className multiplicity
| "association" associationName AgentType className
multiplicity AgentGroup className multiplicity;

associationName = "string";

multiplicity = [lower".."|upper;

AgentTG = AgentType | AgentGroup;

lower = "integer";

upper = "*" | “integer";

Figure B.2: Agent-related definitions in Extended BNF

Agent-related Definitions in BNF

(modelDef) ::= (class) | (Iclass) | (association)

(class) == '('class (AgentDesignation) '='(className) "' (attrNameType)
(attrNameValue) "' (opNTR)")' | '('class (className) '
(attrNameType) (attrNameValue) ' (opNTR)")'

(AgentDesignation) ::= (Agent) | (AgentType) | (AgentGroup)

(className) ::= string

(attrNameType) ::= '('(attrName) "' (type)')' | '('(attrName) "' (type)')'

(attrNameType)

(attrName) = string

(type) ::= (basicType) | (class)

(basicType) ::= (number) | character | string | (bool)

(opNTR) ::= (opName)'()" | (opName)'('(paramNameType)')'

| (opName)'('(paramNameType)')" (resType)
| (opName)'()! {resType) | (opName)'()! (opNTR)
| (opName)'('(paramNameType)')' (opNTR)

146

Agent-related Definitions in BNF (contd.)

| (opName)'()' (resType) (opNTR)

| (opName)'('(paramNameType)')' (resType) (opNTR) | empty
(Agent) := wvar string (identifierA)
(AgentType) ::= var string (identifierAT)
(AgentGroup) ::= var string (identifierAG)
(opName) ::= string
(paramNameType) ::= '('(paramName) "' (type)')' | '('(paramName) "' (type)')'

(paramNameType) | empty

(paramName) ::= string
(resType) = (type)
(identifierA) ::= Agent
(identifierAT) ::= AgentType
(identifierAG) ::= AgentGroup
(Iclass) ::=='('object (AgentDesignation) '='(objectName)':'(className)

(attrNameValue) "' (opNTR)')" | '('object (objectName)':'(className)

(attrNameValue) ')' (opNTR)')'

!

(objectName) ::= string

(attrNameValue) ::== "' (attrName) (attrValue) (attrNameValue) | empty

(attrValue) ::= (relationN) (valueNum) | (relationC) (valueC)

(relationN) == '<' | '>' | > | <Y =]

(relationC) ::= equals | notEquals

(valueNum) ::= (number)

(number) ::= integer | real

(valueC) ::= character | string | (bool)

(bool) ::= True | False

(association) ::= association (associationName) (Agent) (className)
(multiplicity) (AgentTG) (className) (multiplicity)
| association (associationName) (AgentType) (className)
(multiplicity) (AgentGroup) (className) (multiplicity)

147

associationName) ::= string

multiplicity) ::= (lower)'.."(upper) | (upper)
AgentTG) = (AgentType) | (AgentGroup)
lower) ::= integer

upper) = "*' | integer

Agent-related Definitions in BNF (contd.)

Figure B.3: Agent-related definitions in BNF
The expression starting with opName or (opName): An operation name (opName)
is a string.

The expression starting with paramNameType or (opNTR): One or more param-
NameType can exist.

The expression starting with paramName or (paramName): A paramName is a string,.
The expression starting with resType or (resType): A result type (resType) is a type.

The expression starting with identifierA: An agent identifier is recognized by the
word Agent.

The expression starting with identifierAT: An agent type identifier is recognized by
the word AgentType.

The expression starting with identifierAG: An agent group is recognized by the word
AgentGroup.

The expression starting with Iclass or (Iclass): An object with its components: at-
tribute names and values, operation names and types, and return values.

The expression starting with objectName or (objectName): An object name is a
string.

The expression starting with attrNameValue or (attrNameValue): An attribute has
a name and a value.

The expression starting with attrValue or (attrValue): Attribute values are defined
as numbers or strings. Relational symbols (relationN or relationC') are also included
for both numbers and strings.

148

The expression starting with relationN or (relationN): relationN (relation for num-
bers) is one of <, >, <, >, <, and = symbols for comparing numbers.

The expression starting with relationC or (relationC): relationC (relation for char-
acters) can be used to compare equalities of characters and strings.

The expression starting with valueNum or (valueNum): ValueNum is a number.

The expression starting with valueC or (valueC): valueC' is any of character, string,
or bool.

The expression starting with bool or (bool): bool is either True or False.

The expression starting with association or (association): This expression identifies
the existence of associations between agent and agent type, agent and agent group,
and agent type and agent group. Associations have multiplicities on each end.

The expression starting with associationName or (associationName): An association
name is a string.

The expression starting with multiplicity or (multiplicity): Each association-end can
have a single element as a multiplicity (i.e., upper) or can have a range identified
with lower and upper limits and two dots in between.

The expression starting with AgentTG or (AgentTG): AgentTG is defined to be
either agent type or agent group.

The expression starting with lower or (lower): lower is an integer.

The expression starting with lower or (lower): The upper range is an integer or many
(the symbol star means zero or more).

149

Similarly, resource-related definitions in both extended BNF and BNF in Figures B.4
and B.5 are provided, respectively.

Resource-related Definitions in Extended BNF

modelDef = class | Iclass | association;

class = ([ResourceDesignation "="| className "," attrNameType
{ "," attrNameValue} { "," opNTR})

ResourceDesignation = Resource | ResourceType | ResourceGroup;

className = "string";

attrNameType = (attrName ":" type) { (attrName ":" type) };

attrName = "string";

type = basicType | class;

basicType = number | "character" | "string" | bool;

opNTR = opName([paramNameType|) [resTypel;

Resource = "var" ‘string" identifierR;

ResourceType = "var" ‘"string" identifierRT;

ResourceGroup = "var" ‘"string" identifierRG;

opName = "string";

paramNameType = (paramName ":" type) { (paramName ":" type) };

paramName = "string";

resType = type;

identifierR = "Resource";

identifierRT = "ResourceType";

identifierRG = "ResourceGroup";

Iclass = ("object" [ResourceDesignation "="] objectName":"className
attrNameValue { "," opNTR});

objectName = "string";

attrNameValue = (attrName attrValue) { (attrName attrValue) };

attrValue = relationN valueNum | relationC valueC;

relationN = "< | > | on>n || o= | it

relationC = "equlas" | notEquals;

valueNum = number;

150

Resource-related Definitions in Extended BNF (contd.)

number = "integer" | ‘"real";

valueC = "character" | "string" | bool;

bool = "True" | "False";

association = "association" associationName Resource className

multiplicity ResourceTG className multiplicity
| "association" associationName ResourceType className
multiplicity ResourceGroup className multiplicity;
associationName = "string";
multiplicity = [lower".."|upper;
ResourceTG = ResourceType | ResourceGroup;
lower = "integer";

upper = "*" | Minteger";

Figure B.4: Resource-related definitions in Extended BNF

Resource-related Definitions in BNF

(modelDef) ::= (class) | (Iclass) | (association)

[[

(class) = '('class (ResourceDesignation) (className) ')' (attrNameType)
(attrNameValue) "' (opNTR)')' | '('class (className) ',
(attrNameType) (attrNameValue) ')' (opNTR)'")'

(ResourceDesignation) ::= (Resource) | (ResourceType) | (ResourceGroup)

(className) ::= string

(attrNameType) ::= '('(attrName) "' (type)')' | '('(attrName) "' (type)')'
(attrNameType)

(attrName) ::= string

(type) == (basicType) | (class)
(basicType) ::= (number) | character | string | (bool)

151

Resource-related Definitions in BNF (contd.)

(opNTR) ::= (opName)'()" | (opName)'('(paramNameType)')'
| (opName)'('(paramNameType)')" (resType)
| (opName)'()" (resType) | (opName)'()' (opNTR)
| (opName)'('(paramNameType)')' (opNTR)
| (opName)'()' (resType) (opNTR)
| (opName)'('(paramNameType)')' (resType) (opNTR) | empty
(Resource) ::= var string (identifierR)
(ResourceType) ::= var string (identifierRT)
(ResourceGroup) ::= var string (identifierRG)
(opName) ::= string
(paramNameType) ::= '('(paramName) "' (type)')' | '('(paramName) "' (type)')'

(paramNameType) | empty

(paramName) = string

(resType) = (type)

(identifierR) ::= Resource

(identifierRT) ::= ResourceType

(identifierRG) ::= ResourceGroup

(Iclass) ::=='('object (ResourceDesignation) '='(objectName)':'(className)
(attrNameValue) "' (opNTR)')' | '('object (objectName)':'(className)
(attrNameValue) ')' (opNTR)')'

(objectName) ::= string

(attrNameValue) ::== "' (attrName) (attrValue) (attrNameValue) | empty

(attrValue) ::= (relationN) (valueNum) | (relationC) (valueC)

(relationN) == '<' | '>' | "> | <Y =]

(relationC) ::= equals | notEquals

(valueNum) ::= (number)

(number) ::= integer | real

(valueC) ::= character | string | (bool)

(bool) ::= True | False

152

Resource-related Definitions in BNF (contd.)

(association) ::= association (associationName) (Resource) (className)
(multiplicity) (ResourceTG) (className) (multiplicity)
| association (associationName) (ResourceType) (className)
(multiplicity) (ResourceGroup) (className) (multiplicity)

(associationName) ::= string

(multiplicity) ::= (lower)'.."(upper) | (upper)

(ResourceTG) ::= (ResourceType) | (ResourceGroup)

(lower) ::= integer

(upper) == '"*' | integer

Figure B.5: Resource-related definitions in BNF

153

Figures B.6 and B.7 show event-related definitions in both extended BNF and BNF,
respectively.

Event-related Definitions in Extended BNF

modelDef = class | Iclass | association;

class = ([EventDesignation "="] className "," attrNameType {"," attrNameValue}
{ "7 opNTR})

EventDesignation = Event | EventType | EventGroup;

className = "string";

attrNameType = (attrName ":" type) { (attrName ":" type) };

attrName = "string";

type = basicType | class;

basicType = number | "character" | "string" | bool;

opNTR = opName([paramNameType|) [resType;

Event = "var" ‘“string" identifierE;

EventType = "var" ‘"string" identifierET;

EventGroup = "var" ‘“string" identifierEG;

opName = "string";

paramNameType = (paramName ":" type) { (paramName ":" type) };

paramName = "string";

resType = type;

identifierE = "Event";

identifierET = "EventType";

identifierEG = "EventGroup";

Iclass = ("object" [EventDesignation "="] objectName":"className
attrNameValue { "," opNTR});

objectName = "string";

attrNameValue = (attrName attrValue) { (attrName attrValue) };

attrValue = relationN valueNum | relationC valueC;

relationN = "< | Ut | on>no o | | g

relationC = "equlas" | notEquals;

valueNum = number;

154

Event-related Definitions in Extended BNF (contd.)

number = "integer" | ‘real";

valueC = "character" | "string" | bool;

bool = "True" | "False";

association = "association" associationName Event className

multiplicity EventTG className multiplicity
| "association" associationName EventType className
multiplicity EventGroup className multiplicity;
associationName = "string";
multiplicity = [lower".."|upper;
EventTG = EventType | EventGroup;
lower = "integer";

upper = "*" | “integer";

Figure B.6: Event definitions in Extended BNF

Event-related Definitions in BNF

(modelDef) ::= (class) | (Iclass) | (association)

(class) ::= '('class (EventDesignation) '='/{className) '' (attrNameType)
(attrNameValue) '," (opNTR)")' | '('class (className) ',
(attrNameType) (attrNameValue) ')' (opNTR)')'

(EventDesignation) ::= (Event) | (EventType) | (EventGroup)

(className) ::= string

(attrNameType) := '('(attrName) "' (type)')' | '('(attrName) "' (type)')'

(attrNameType)

(attrName) ::= string

(type) = (basicType) | (class)

(basicType) ::= (number) | character | string | (bool)

155

Event-related Definitions in BNF (contd.)

(opNTR) ::= (opName)'()" | (opName)'('(paramNameType)')'
| (opName)'('(paramNameType)')" (resType)
| (opName)'()" (resType) | (opName)'()' (opNTR)
| (opName)'('(paramNameType)')' (opNTR)
| (opName)'()' (resType) (opNTR)
| (opName)'('(paramNameType)')' (resType) (opNTR) | empty
(Event) ::= var string (identifierE)
(EventType) == var string (identifierET)
(EventGroup) ::= var string (identifierEG)
(opName) ::= string
(paramNameType) ::= '('(paramName) "' (type)')' | '('(paramName) "' (type)')'

(paramNameType) | empty
(paramName) ::= string
(resType) = (type)
(identifierE) ::= Event
{
{
{

identifier EG

[class) := (obJect (EventDesignation) '=' (objectName)':'(className)
(attrNameValue) "' (opNTR)')' | '('object (objectName)':'(className)
(attrNameValue) ')' (opNTR)')'

identifierET) ::= EventType
> EventGroup
!

(objectName) ::= string

(attrNameValue) ::== "' (attrName) (attrValue) (attrNameValue) | empty
(attrValue) ::= (relationN) (valueNum) | (relationC) (valueC)

(relationN) == '<' | '>' | > | <Y =]

(relationC) ::= equals | notEquals

(valueNum) ::= (number)

(number) ::= integer | real

(valueC) ::= character | string | (bool)

(bool) == True | False

156

Event-related Definitions in BNF (contd.)

(association) ::= association (associationName) (Event) (className)
(multiplicity) (EventTG) (className) (multiplicity)
| association (associationName) (EventType) (className)
(multiplicity) (EventGroup) (className) (multiplicity)

(associationName) ::= string

(multiplicity) ::= (lower)'.."(upper) | (upper)

(EventTG) ::= (EventType) | (EventGroup)

(lower) ::= integer

(upper) == '"*'| integer

Figure B.7: Event-related definitions in BNF

157

Appendix C

A Brief Background on Logic

This Appendix is a background on logic. This background is provided because some in the
REA community may have a preference for such an overview. Therefore, this appendix
describes an overview of propositional logic, predicate logic, and linear temporal logic. This
description is mainly based on Logic in Computer Science: Modelling and Reasoning about
Systems [49] unless another source is cited.

C.1 Propositional Logic

Propositional logic, as the name indicates, is about propositions or declarative sentences.
Declarative sentences can be validated either true or false.

Syntax: The syntax of well-formed formulas in propositional logic, described in Backus
Naur Form (BNF), follows:

¢ = pl(=0) [(@AY [(6VY)]| (6= ¥

where p is any atomic proposition, and ¢, on the right side of ::=, and 1 represent a
formula that has already been constructed according to these rules; — (negation), A (and),
V (or), and — (implies) are connectives. An atomic proposition, p, is also a formula.

Semantics: Semantics provide interpretation for well-formed propositional logic syntax.
This interpretation is based on the assignment of True (T) or False (F) values to atomic
prepositions and formulas. A valuation (v) of a formula (¢) is written as v(¢). This
valuation is defined as follows [30]:

159

T if wvw(¢) = F,
F otherwise.

oi-0) = {

T it v(p) =T and v(y) = T,
F otherwise.

oo n o ={

T if v(p) =T or v(v) =T,
F otherwise.

v<¢vw>—{

F if v(¢) =T and v(v) = F,
T otherwise.

oo v ={

Example C.1.1: Does the expression p — p V ¢ hold?

Because of the semantics of implication, this example holds since in this case whenever
v(p) = T then v(p V q) = T because of the semantics of V. Similarly, because of the
semantics of implication, if v(p) = F, then regardless of true of false evaluation of (p V q),
the implication holds. Finally, it is not possible to have a case in which v(p) = T and
(pV q) = F. Therefore, p — p V ¢ holds.

Example C.1.2: Does the expression pV ¢ — p hold?

Similar to the previous example, but this implication does not necessarily hold. For
instance, if v(p V ¢) = T then according to or’s semantics, there can be a case in which
v(q) = T and v(p) = F’; as a result, the valuation of antecedence is true, but the valuation
of consequence is false. Therefore, this implication does not hold.

Example C.1.3: Does the expression (p — ¢q) — (—p V ¢) hold?

Because of the implication’s semantics, p — ¢ is true in all interpretations except when
the value of p is true (v(p) = T') and the value of q is false (v(g) = F'). Similarly, because of
the semantics of negation and or, the valuation of =p V ¢ is also true in all interpretations
except in a case in which the value of p is true (v(p) = T') and the value of ¢ is false

(v(g) = F).
(p — q) and (—p V q) are logically equivalent, (p — q) = (—p V q), because their values
are the same under all interpretations.

Example C.1.4: Does the expression (—=pV q) — (p — ¢) hold? This example is
similar to C.1.3.

160

C.2 Predicate Logic

Two extensions of predicate logic to propositional logic are quantifiers and functions.

Syntax: terms are used in the syntax definition of predicate logic; therefore, terms are
first defined. In BNF, terms (¢) are defined as follows:

to=x | ¢ | f(ty,...,t,)

where x is a variable and ranges over a set of variables var, ¢ stands for a constant. f
is a function over a set of function symbols F with an arity of n > 0.

The syntax of predicate logic, which uses previously defined terms, follows:

¢ = Pllnty,..itn) | (50) | (0N @) [(@ V@) [(0= ¢)| (Veg) | (Fz9)

where P € P and is a predicate symbol of arity n > 0, and (¢1,%s,...,t,) are terms.
x is a variable, and the quantifiers V and 4 mean “for all” and “there exists or for some,”
respectively. The occurrence of ¢ on the right side of ::= represents any formula that has
already been constructed using the rules shown here.

Semantics: The semantics or interpretation consists of a pair Z = (Uzr, Az). Uz is a
non-empty set called domain or universe. Az is defined for every predicate, function, and
variable.

If F and G are formulas and Z is an interpretation, then the following holds [106]:

o I(x) =t
o I(f(ti,...,tx) = [H(Z(tr), ..., Z(tx))
o Z(p(ty,. .., ty) = trueif (Z(t1),...,Z(ty)) € p?, false otherwise

e The interpretation of logical connectives A, V, —, and — are identical to propositional
logic. For instance, to evaluate Z(F' A G), one evaluates sub-formulas F' and G and
then applies the interpretation of these connectives.

o I(VF) = true for every d € U : Iy q)(F) = true, false otherwise. (The notation [z/d]
means replacing x with d.)

e I(dF) = true if there is a d € U : Zjy/q(F') = true, false otherwise.

161

Example C.2.1: Does the expression Jz p(x) — Va p(z) hold?

This example does not hold because of the meanings of V and 3. The semantics provided
for 3 defines “Z(3F) = true if there is a d € U : I}, /q(F) = true, false otherwise.” (The
notation [z/d] means replacing = with d; F' is a formula.) Conversely, the meaning provided
for V defines “Z(VF) = true for every d € U : Zj,/q(F) = true.” Therefore, if there is a
d in which I(F) = T, then it does not mean that for all d, I(F) = T. As a result, this
implication does not hold.

Example C.2.2: Does the expression Vo p(z) — Jz p(z) hold?

This example holds. A similar explanation to example C.2.1 applies. The meaning
provided for V defines “Z(VF') = true for every d € U : Ij,/q(F') = true.” (The notation
[x/d] means replacing x with d; F is a formula.) The semantics provided for 3 defines
“Z(3F) = true if there is a d € U : I, q(F) = true, false otherwise.” Therefore, if for
all d, I(F) =T, then there is a d in which I(F) =T. As a result, this implication holds.

Example C.2.3: Does the expression —(p(z) A ¢(x)) — (—p(z) V —¢(x)) hold?

If =(p(x) A q(z)) holds, then because of the semantics of = and A, either p(x) or ¢(z)
does not hold, or none of them holds. If p(x) does not hold, then because of the semantics
of negation, —p(x) holds; then the right-hand side (—p(x) VvV —q(x)) also holds because of
the semantics of V. If ¢(z) does not hold, then —g(z) holds; as a result, the right-hand
side of the implication holds. Similarly, if neither p(z) nor ¢(z) holds, because of negation,
both —p(x) and —¢(x) hold. As a result, the right-hand side holds because of the semantics
of V.

Therefore, =(p(xz) A q(x)) — (=p(x) V —¢(x)) holds.
Note: (—=p(z)) V (—q(x)) — =(p(z) A g(x)) is similar.
Example C.2.4: Does the expression Jy Vz p(z,y) — Vz Iy p(z,y) hold?

1) Jy Vz p(z,y)
2) Vo p(z,9)y/vo] Line 1 to line 2 uses the previously mentioned
semantics of 3: Z(IF) = true if there is a d € U : I, /q)(F) = true, false
otherwise. (The notation [z/d] means replacing = with d.)
3) plx,y)y/vo][z/d] Line 2 to line 3 uses the previously mentioned
semantics of V: Z(VF) = true for every d € U : 1, /q(F) = true, false otherwise.
4) plx,y)[z/dy/yo] Lines 3 and 4 are identical because z, zg, y, and .

are different variables.

162

5) Jyp(x,y)lx/d] Line 4 to line 5 uses the semantics of 3, shown on line 2.
6) Va3Jyp(r,y) Line 5 to line 6 uses the semantics of V, shown on line 3.
Therefore, Iy Va p(z,y) — Va Iy p(x,y) holds.
Ezample C.2.5: Does the expression Vz Jy p(x,y) — Ty Va p(z,y) hold?

This example is similar to C.2.4.

C.3 Linear Temporal Logic

Linear Temporal Logic (LTL) models time as a line or path.
Syntax: The syntax of LTL in BNF follows:
o= T | L[p | (=9) | (6r9) | (6Ve) | (6—=9)
| @) | (©0) | (Xo) | (¢U¢) [(6 W) | 6RO

p is a propositional atom. The temporal operators [J, ¢, X, U, R, W mean “always,”

“eventually,” “neXt,” “Until,” “Release,” and “Weak-until,” respectively.

Semantics: LTL models time as a sequence of states. This sequence of state is called a

computation path or just a path. The semantics of LTL in which 7 is a path follows.

= T (ie., T is always true)

E L (ie., L is always false)

= p iff p € L(s;) (i.e., atomic propositions are evaluated along the path)
E ¢ iff m ¥ ¢ (similar to propositional logic)

E o1 N ¢ iff T = ¢ and m | ¢o (similar to propositional logic)

= &1V g iff m = ¢ or m = ¢9 (similar to propositional logic)

E ¢1 — ¢ iff T = ¢o whenever m = ¢ (similar to propositional logic)
E Q¢ iff Vi>1, 7 E ¢

E O iff Ji>1, 7 E ¢

E X¢ iff @ = ¢ (ie., the next (second) state from the path is ¢)

= oUw iff 3i>1 suchthat "Edgand Vi=1,....i—1, © | ¢ holds
¢ W 1) similar to the definition of U (above); or Vk > 1, 7rk |: ¢ holds

N0 03 3 3 3 3 3 3 3 3 3

T

N

Vk>1, 7F = ¢ holds
Example C.3.1: Does the expression ¢Llp — [CIOp hold?.

163

= ¢ Ry iff 3 >1 suchthat 7 E ¢and Vj=1,... 7 | 4 holds; or

The following proof [61] shows that if this theorem holds, then the following holds:

arbitrary K and i € N, K;(O0p) = true implies that K;(00)p = true.
(1) K;(0Op) = true — K;(Op) = true for some j > i;*

2) — Ki(p

3) — Kk() = true for some k > j and arbitrary j > ;3

4) K5(

5) — Ki(DOp) = true;’
Therefore, the expression ¢Llp — CIOp holds.

Example C.3.2: Does the expression LJOp — OUp hold?

) = true for some j > i and every k > j;?

Op) = true for every j > i;4

(
(
(
(

for

If this theorem holds, then the following should hold: for arbitrary K and i € N,

K;(OOp) = true implies that K;(00)p = true.
(1) K;(O0p) = true — K;(Op) = true for every j > 1;

(2) — Ky(p) = true for every j > i and some k > j;
(3) — K;(Op) = true for some k > j;
(4) — K;(OOp) = true;

Therefore, (JOp — OUp does not hold as the subscript j refers to a point of of time

equal or greater then i.

Example C.3.3: Does the expression [() p — OOp hold?
For arbitrary K and ¢ € N

(1) K;(B0p)=true = K;(Op) = true for every j >
(2) — K]H(p) for every j >

(3) K;(p) = true for every j >i+1
(4) — Ki_l,_l(p) = true

(5) — K;(OOp) = true

Therefore, K;(0 O p) = K;(Op) holds.

Ihote: because of {’s semantics
2note: from line (1) to (2) is because of [I’s semantics.

3note: from line (2) to (3) is for the following two reasons: 1) if holds for every k > j on line (2) then

it should hold for some k > j ; 2) since k > j then it should hold for any arbitrary j
“note: from line (3) to (4) is because of ¢’s semantics
note: from line (4) to (5) is because of [J’s semantics

164

Appendix D

An Overview of SPIN and Alloy

D.1 SPIN

A description of the SPIN model checker follows. This description is mainly based on The
SPIN Model Checker: Primer and Reference Manual [47], The Model Checker SPIN [}6],
and Principles of the Spin Model Checker [11].

SPIN stands for Simple PROMELA INterpreter and accepts a specification written in
a C-like language called PROcess MEta-LAengage (PROMELA); the correctness property
can be specified in Linear Temporal Logic (LTL). SPIN, written by Gerard Holzmann, was
developed at Bell Laboratories in the 1980s and became available publicly with its first free
version in early 1991. This tool represents a widely-used model checker that constantly
evolves. SPIN has been used for the verification of operating systems, call processing
software at Bell, and key control algorithms for space missions at NASA, to name a few
uses.

PROMELA programs consist of a set of processes, which are represented by either
proctype or active proctype keywords; although it is possible to have a program that consists
of a single process. The main numeric data types of PROMELA consist of bit (with values
of 0 and 1), bool (a syntactic sugar for bit accepting false and true), byte, short, int,
unsigned, and channel (chan). A channel data type, defined by the keyword chan can
include send and receive operations with messages of particular types as defined. There
are two types of channels: a) rendezvous channels, with a capacity of zero, are used for
synchronous communications holding only one message, and b) buffered channels, with a
capacity of more than zero, are used for asynchronous communications.

165

No floating, string, and character variables exist in PROMELA. Literal characters can
be printed using a byte data type and printf with an option of %c. Messages with string
content can be given numeric values and printed. If floating data types are definitely
needed, they can be represented as embedded C code. Another possibility is to use mini-
mum, low, maximum, and high and obtain an approximation of a floating data type.

Two other PROMELA data types consist of message type (mtype) and process identifier
(pid). The mtype data type enables the assignment of mnemonic names to values; as a
result, these easily remembered names can be represented and printed whenever needed.
Up to 255 values are available because mtype is internally represented as positive byte
values. Although similar to byte, pid represents a separate data type and can have a value
up to 255, which is also the maximum number of processes in a SPIN model. The variable
_pid, which is assigned to a process every time it is initiated, is predefined as a pid data

type.

PROMELA uses repetition (loops) and selection (if statements) control structures that
are both based on guarded commands. Dijkstra [26] introduced guarded commands as
components for both alternative and repetitive constructs. Both constructs consist of
a list of boolean expressions acting as guards: whenever a guard is true, its associated
statement can be executed. Guards can be non-disjoint; as a result, one of them can be
selected non-deterministically. (This selection can even be different from one execution
to another.) The guards and their associated statements are enclosed within do and od
for the repetition structure and are encircled within if and fi for a selection structure, as
shown below.

do if
o guard; -> Sy o guardy -> S
o guards -> Sy o guards -> Sy
od fi

Only one guard is evaluated in each iteration or selection, and the order of a guard is
irrelevant in this evaluation; in this sense, the guarded commands selection resembles the
case control structure [105], but guards can be overlapping in guarded commands.

In addition to PROMELA, Ada and Occam, two other programming languages, also
support some form of guarded commands.

The SPIN temporal operators and their notations are shown in Table D.1.

SPIN does not have the weak until (W or W) operator, but this operator can be defined
using its equivalent as below:

166

Temporal Operator | General Notation | SPIN Notation
always O []
eventually O <>
until U, U U
next X, O X

Table D.1: SPIN’s temporal operators and their notations
pWq=pUqVvDp

SPIN can be used in two different modes: simulation and verification. The correctness
properties can be specified as assertions and either simulated with interactive/random
modes or verified. In addition, one can use LTL and specify desired properties and verify
specifications. SPIN translates an LTL formula into a never claim, which is a PROMELA
construct, that can also be written directly. The term never claim is used because an LTL
property specification represents a claim; SPIN uses the negation of a claim and includes
the keyword never in its translation from LTL to PROMELA. For instance, a translation
of [Jmutex, where [] is the SPIN notation for always (O) and mutez is defined in code as
a variable with a value of 1 or less, follows:

never {
TO_init:
if
(! ((mutex))) -> goto accept_all
(1) -> goto TO_init
fi;
accept_all:
skip
}

The claim [|mutez holds, and mutex has a value of one; therefore, its negation (/mutex)
does not hold. Initially, the second guard (1) is selected, but if the property does not hold,
the first guard will be selected.

SPIN is described as an on-the-fly model checker because the entire state space is not
built in one round and searched in another: SPIN searches the target states while building
them. Therefore, if a counter-example exists, then the search space is built up to that

167

point, and there is no need to continue further. The entire state space will be constructed
only when there is no error in a model.

Finally, worth mentioning is the computational cost of the SPIN verification. The
cost is linear in terms of reachable states in both CPU time and memory space for the
verification of safety properties, such as the absence of deadlock and user-defined assertions
(in the latter case, properties are not described in LTL). The verification of LTL properties
does not change the required space, but the time requirement can be exponential, in the
worst case, in terms of temporal operators within an LTL formula.

D.2 Alloy

The description of Alloy used here is primarily based on Jackson’s Software Abstractions:
Logic, Language, and Analysis [50]. Alloy was introduced in 1997. Similar to Jackson’s,
this overview is divided into three sections: logic, language, and analysis.

Logic: Alloy’s logic is called a relational logic and combines the quantifiers of predicate
logic with the operators of relational calculus. The logical and relational operators play an
important role in Alloy and are shown in Table D.2.

Relational Operator Logical Operator
arrow (->) and (&&)
dot (. or (|
box ([]) not (!)
transpose (~) implies (=>)
transitive closure () iff (<=>)

reflexive transitive closure (x)
domain restriction (<:)
range restriction (:>)
override (++)

Table D.2: Alloy’s relational and logical operators
The meanings of logical operators are similar to those of predicate logic. A brief de-

scription of operational operators follows. The arrow product (->) of p -> ¢ represents a
binary relation if p and ¢ are sets, but describes a multirelation if p and ¢ are relations.

168

The dot (.) or the join operator can be used for object navigation. This operator resem-
bles the relational database join, but in Alloy, the matching element is dropped; e.g., the
joining of (a,b) and (b,c) results in (a,c). The box ([]) operator represents a variation of
join in which arguments are received in reverse order; e.g., p[|¢ = ¢.p. The transpose (~)
of a binary relation represents its mirror image; e.g., the transpose of {(a,b)} is {(b,a)}. A
transitive closure (”) of a relation includes the relation and its closure; e.g., the transitive
closure of {(a,b), (b,c)} will be {(a,b), (b,c), (a,c)}.

Four other relational operators include reflexive transitive closure (%), domain restric-
tion (<:), range restriction (:>), and override (4++). A reflexive transitive closure is defined
as a relation that is reflexive and includes its closure; a relation is reflexive if for every ex-
isting element of a, it also includes a->a. The domain restriction (<:) of s<:r, where s is a
set and r is a relation, includes tuples with starting elements in s. For instance, if r={(a,b),
(c,d), (e,a)} and s={(a)}, then s<:r is represented by {(a,b)}. The range restriction (:>)
or s:>r, where s is a set and r is a relation, includes tuples with ending elements in s.
The range restriction of the set s and relation r, just described, is represented as s:>r =
{(e,a)}. Finally, the override (++) of relations p and ¢ is shown by p+-+¢ and defined
as their union, in which q can override p; e.g., if p= {(a,b), (¢,d)} and ¢ ={(a,m), (e,f)},
then p++¢ = {(a,m), (c¢,d), (e,f)}.

Language: The language component of Alloy provides the ability to organize the
structure of a model and communicates with the analyzer. Some features, e.g., scope and
signature, of the language are unique to Alloy; others, such as function, are common to
many modeling and programming languages. The components that are used most often
follow.

e signature declarations, by the use of the keyword sig, define sets; in addition, relations
can also be declared as fields in sig declarations, and subsets can also be defined.

e constraint paragraphs, by the use of keywords fact, pred (predicate), and fun (func-
tion), describe various expressions.

e assertions, by the use of the keyword assert, express properties that should hold.

e commands, by the use of keywords run and check, declare a particular desired anal-
ysis. By running a predicate, the analyzer looks for a model, whereas by checking an
assertion, the analyzer looks for a counterexample.

Analysis: Alloy Analyzer is a compiler that translates a problem into a boolean for-
mula; the formula is subsequently handed to a SAT solver. Alloy Analyzer also translates a

169

SAT solver’s solution into Alloy’s language. Therefore, the analysis is a form of constraint
solving. Alloy’s analysis is based on scope, which plays a role in the creation of a boolean
formula. A model is called an instance in Alloy, and the use of scope makes instance find-
ings possible. Therefore, the analysis finds an instance within a specified limit or scope.
Jackson proposes a hypothesis called the “small scope hypothesis” that states, “most bugs
have small counterexamples.”

The creation of a boolean formula is as follows: for a relation r from a set A to a set B,
an adjacency matrix is created. The dimension of this matrix depends on the scope of sets
A and B. If both have the default scope of 3, then there will be a 3 x 3 matrix having 9
boolean variables that creates 22 values for these variables. Therefore, if a model has only
four relations, there will be over a billion cases (22 x 29 x 29 x 29) of values. Despite the
existence of optimization techniques in this translation and consistent progress in SAT-
solving techniques, the state space grows exponentially, as described above; therefore,
Alloy’s analysis is usually small in scope; the default for the scope is 3.

D.2.1 An Example of AC Policies and Properties Specification
and Verification

This section describes a small running example to show the benefit of access control formal
analysis [56]. This approach is in contrast with a) the description of access control models,
rules, policies, and their combinations in Chapter 3, b) the property categorization provided
in the first part of this chapter, and c¢) the case study approach presented in Chapter 5. In
particular, the policies of this section are not based on a model; there is no definition of
the structure of an access control rule or a policy and their combinations. Access control
rules or policies are specified using a programming language.

The following running example describes the formal specification and verification of
access control policies for business processes. First, this section specifies access control
policies for REA business processes and examines the addition and combination of these
policies, more specifically focusing on the principal of separation of duties. In addition, the
verification of access control properties is examined in conjunction with a REA business
process, and it is shown that this process can reveal errors. As a running example, this
chapter uses the process of renting a car and adds access control policies. Subsequently,
these policies are integrated into a REA process and are formally analyzed. An incorrect
effect is created by adding new access control policies.

Specification of a REA Business Process: A REA business process of rent is specified
in Alloy (an overview of Alloy is provided in Appendix D.2.), and a description of these

170

Access Control Policiesin REA Business Process in REA

luﬂngAlloy using Alloy

Access Control Policiesin Alloy Business Process in Alloy

Figure D.1: A verification of policies that are not based on a model.

few lines follows.

Alloy is used for formal specification and verification of access control policies. Alloy
is a declarative language with a complete semantic and automatic analysis having the ca-
pability of presenting models graphically [50]. Alloy Analyzer is a compiler that translates
a problem into a Boolean formula; the formula is subsequently handed to a SAT solver.
Alloy Analyzer also translates the SAT solver’s solution into Alloy’s language [50].

module models/REAexchangeBasic

abstract sig Resource, Agent, Event{}

sig CashReceipt extends Event{}

sig RentACar extends Event{}

sig CarRentalEmployee in Agent{}

sig Customer in Agent{}

sig Car extends Resource{}

sig Money extends Resource{}

sig Exchange {inflow: Money —> CashReceipt ,
outflow: Car —> RentACar,
exchange: (CashReceipt —> RentACar),
exchangeb: (RentACar —> CashReceipt),
provide: (Customer —> CashReceipt),
provideb: (CarRentalEmployee —> RentACar),
receive: (CashReceipt —> CarRentalEmployee),
receiveb: (RentACar —> Customer) }

A sig (signature) declares a set; an extend keyword introduces subsignatures, and “an
abstract signature has no elements except those belonging to its extensions” [50]. Unlike

171

Resource

Money

outflow

inflow extends

Figure D.2: Visualizing of a REA rent business model using Alloy

subsets introduced by the keyword extend, subset signatures declared by the keyword in are
not necessarily mutually disjoint subsets [50]; e.g., customers and car rental employees form
a non-disjoint set because an employee can also rent a car. “exchange and exchangeb” are
used to show the bidirectional associations; similarly, “provide and provideb” and “receive
and receiveb” are used for the “provide” and “receive,” respectively.

Alloy has an option called meta-model that is used to show the process of renting a car
as a directed graph. This option is used to create Figure D.2. The car-rental employees and
customers are presented inside ellipses using the keyword in to represent non-disjoint sets
(i.e., car-rental employees can rent cars to themselves and therefore can be customers); on
the other hand, cash receipts and rent cars are represented as disjoint sets (i.e., the extend
keyword) and are shown inside rectangles.

As Fisler et al. [36] describe, “access control is conventionally defined using a matrix.
As organizations grow, however, the explicit matrix becomes very cumbersome,” and the
information in the matrix is captured using rules.

172

This section introduces three policies as three rules and explains whether the verification
of the following three policies holds individually and in composition:

Pi: Gold-club customers get a discount whenever they rent a car.

P,: People who get a discount (i.e., gold-club customers) cannot be both customers and
car rental employees within one exchange.

P;: Car-rental employees can receive certain discounts whenever they rent a car.

P, represents a static separation of duty (SoD) when a discount is involved. A static SoD
can use an agent’s attribute, and with or without the existence of a discount.

In the next section, these three policies are added to the existing previous model and
are analyzed using Alloy to determine their effects. The analysis of access control policies
enables determining whether a specification is actually intended.

The typical reasoning analysis includes determining the consistency of these policies and
finding out whether there is an instance for a description. In addition, the safety analysis,
which is arguably the most important property [59], can be checked (e.g., whether an
individual has a permission that he/she should not have).

The next section uses Alloy and provides an example of the verification of access control
policies in conjunction with a process of renting a car. More specifically, the principal of
separation of duties (e.g., two separate individuals must authorize ordering items and
paying for them) is illustrated.

Specification and Verification of Access Control Policies: This section revisits the
previously mentioned policies and adds them one by one. The main access control property
is to maintain the separation of duties during the car-rental process such that individuals
are not able to rent cars to themselves. The first property, “gold-club customers get a
discount whenever they rent a car,” is indicated as PolicyGCC and defined as an extension
of the set Policy.

abstract sig Policy{}
sig Policy GCC extends Policy{apply: GoldClubCustomer}

The predicate and run keywords of Alloy are used to find models of specifications. The
idea is to examine whether there is a model for a specific specification.

173

Policy_GCC

apply
v
Agentl
Money (this/CarRental Employee, this/Customer,
. this/GoldClubCustomer)
inflow

v provide
ECashRecei pt exchange

o]

outflow

receiveb
receive

Y

AgentO
(thig/CarRental Employee)

provideb RentACar

Figure D.3: A counter-example indicating an error

pred showPolicy []{}
run showPolicy for 2 but 1 Policy .GCC, 1 RentACar,
1 Exchange

The statement, “run showPolicy” is sufficient to create models. Other options such as
“for 2 but 1 Policy_GCC, 1 RentACar,” are added to create a small model that has only
one policy and is applicable to only one exchange. The numbers “2,” “1” of Policy GCC,
and “1” of RentACar, from showPolicy just mentioned, are the scope of analysis. Scope
is used to bound (i.e., to restrict or to limit) the size of an analysis. The default scope
is 3, and scope is the number of elements of top-level signatures that will be included in
analysis. Figure D.3 represents one possible model. Names, such as Car and Agent0, in
Figure D.3 and other upcoming ones, are assigned by Alloy and can be changed by the
users of this tool.

Figure D.3 shows that one individual both receives cash and rents a car. The goal is to
tighten this case so that these two tasks cannot be performed by one individual. Therefore,
a new property is added to ensure a separation of duties: employees cannot be counted
as gold-club customers. The second property, “people who get a discount (i.e., gold-club
customers) cannot be both customers and car rental employees in one exchange.” Gold-

174

club customers get discounts, and therefore, the following fact (an Alloy keyword) is added
to ensure that if a gold-club customer provides cash, he/she cannot be the person who is
the provider of the rental car. This fact is described in Alloy as follows:

fact{all e:Exchange, gc:GoldClubCustomer, cr:CashReceipt, rac:RentACar |
gc = e.provide.cr

=> e.provideb.rac != gc}

The above fact can be added as an assertion (using the keyword assert) and then
checked to determine whether a counterexample exists. No counterexample is found when
the assertion is checked. An assertion is essentially a constraint that follows from implicit
or explicit facts and is added to detect flaws in specifications [50]. Now, the third policy,
“Car-rental employees can receive certain discounts when they rent a car,” is added to
enable car-rental employees to get discounts.

sig EmpCus in Customer{}

sig Policy -Emp extends Policy{apply: EmpCus}

assert empSP2{all e:Exchange, ec:EmpCus, cr:CashReceipt, rac:RentACar |
ec = e.provide.cr

=> e.provideb.rac != ec}

Checking this assertion indicates the existence of a counterexample: “Counterexample
found. empSP2 is invalid.” Whenever an assertion is not valid, Alloy creates a graphi-
cal counterexample to show the violation(s). Figure D.4 represents this violation and a
counterexample for this case.

This counterexample (Figure D.4) shows that a car-rental employee or EmpCus (i.e.,
a car-rental employee who is also a customer) can receive money (i.e., the edge named
“receive” from “CashReceipt” to “Agentl” in Figure D.4); in addition, a car rental em-
ployee can provide a car during the rental event (i.e., the edge named “provideb” from
“Agent1” to “RentACar in the same figure). Figure D.5 shows the graphical represen-
tation of an “Agent” and its non-disjoint subsets before and after allowing discounts for
car-rental employees, as shown in Part a and Part b, respectively.

The reason for the existence of a counterexample can be observed if Figure D.5 is
compared to the previously mentioned fact, shown again below.

175

| ca | et
(this/CarRental Employee,

outflow this/Customer,this’EmpCus)
' poidd
RentACar Money provide

exchangeb

] receive
Policy GCC$0| |receiveb inflow

apply exchange

Agent0 CashReceipt

(this/CarRental Empl oyee,this/Customer,
this/Gol dClubCustomer)

Y Y

Figure D.4: A counterexample of separation of duties

n

in
@ GoldClubCustomers

GoldClubCustomers

a) Before allowing discounts for employees b) After allowing discounts for employees

Figure D.5: Employees and Customers

fact{all e:Exchange, gc:GoldClubCustomer, cr:CashReceipt, rac:RentACar |
gc = e.provide.cr

=> e.provideb.rac != gc }

Initially, this fact was stated for gold-club customers, who were the only people entitled
to receive discounts. The fact was designed to reduce the possibility of fraud and to enforce
separation of duties when only gold-club customers were eligible for discounts. The addition

176

of the last policy so as to make employees eligible for a discount creates a counterexample
because car-rental employees are now customers too.

One possibility for correcting this counterexample is the inclusion of another fact, simi-
lar to the previously mentioned one. With the inclusion of the following fact, checking the
previous assertion does not find a counterexample.

fact{all e:Exchange, ec:EmpCus, cr:CashReceipt, rac:RentACar |
ec = e.provide.cr

=> e.provideb.rac != ec }

The drawback to this approach is the inclusion of another similar fact; on the other
hand, that all the possible cases are enumerated and are not implicit can be an advantage.
Another possibility for correcting this counterexample is to change the fact specified for
gold-club customers on Page 175 and the fact just described for employees who are cus-
tomers and consider both groups as customers and have one single fact. The following fact
not only ensure that the provider of a car and the receiver of cash are different whenever
a discount policy exists but also is true for all other cases. This strict separation of duties
might sometimes be required. The single resulting fact follows:

fact{all e:Exchange, c:Customer, cr:CashReceipt, rac:RentACar |
¢ = e.provide.cr

=> e.provideb.rac != ¢ }

Checking the assertion after this change does not find a counterexample. This assertion
is initially checked for the default scope of 3. Then, the scope is gradually increased to 27,
and no counterexample is found within this large scope (the analysis runs out of memory
for a scope of 28).

This simple example illustrates how combining policies can create an incorrect effect.
Iterating over all possible combinations and determining their effects require formal analysis
when the number of these polices increases.

Clarification of the approach described and of the access control safety analysis for
a general case is necessary. Similar to Jha et al.’s work [52], the presented verification
is not the safety analysis mentioned on Page 23 of this thesis; instead, the intention is
here to determine whether access control policy invariants are preserved. (Invariants are
correctness properties that should hold at certain control points of a program’s execution
[83].) Jha et al. show that this analysis is decidable.

177

In summary, a small example that includes access control policies in connection with
a REA business process has been specified. In addition, the access control policies have
been verified, and the formal verification of policies showed that an incorrect effect occurs
with the addition of the last policy; more specifically, the separation of duties has been
violated.

178

Appendix E

The CONTINUE Policies and
Properties

The CONTINUE policies and the properties are provided in Sections E.1 and E.2, respec-
tively.

E.1 The CONTINUE Policies

A prose description of twenty-five policies for CONTINUE conference management follows.
The first-applicable combining rule within each of the following policies holds. These
policies are available in the XACML format from the CONTINUE web site.

In CONTINUE, a review-set consists of four resources: paper-review, paper-review-info,
paper-review-info-reviewer, and paper-review-info-submissionStatus. Similarly, a review-
content-set consists of four resources: paper-review-content, paper-review-content-rating,
paper-review-content-commentsAll, and paper-review-content-commentsPc. Furthermore,
the first-applicable combining rule within each of the following policies holds.

Convention: The dashes within names and the suffix rc (rc stands for resource class) are
omitted; therefore, paper review is used instead of paper-review_rc.

Policy One: An administrator has permission to read and write conference resources,
and a pc chair possesses permission to read these resources. A pc member at a meeting

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/
continue/CodeB/

179

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/CodeB/
http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/continue/CodeB/

is permitted to read conference resources; an unidentified subject has no access to these
resources.

Policy Two: An unidentified subject has access to read conference info resources. Any
other permission to these resources is based on the same access rules applicable to confer-
ence resources.

Policy Three: A pc member has access to read pc member resources. An administrator
possesses permission to write, create, and delete pc member resources. A pc member whose
user-id is equal to the user-id of a pc member resources has no permission to perform any
action on these resources. Any other individual’s access to these resources follows the same
rules for accessing conference resources.

Policy Four: A pc chair possesses permission to read and write pc member assignment
resources, whereas a pc member is allowed to read his/her own assignments (i.e., a pc mem-
ber’s user-id is equal to the user-id of a pc member assignment resources). An unidentified
subject has no access to these resources. Other types of access to these resources follow
the same rules for accessing pc member resources.

Policy Five: A pc chair has read and write access to pc member conflict resources,
whereas a pc member is capable of reading his/her conflict resources. An unidentified
subject has no access to these resources. In addition, other types of access to pc member
conflict resources follow the same rules for accessing pc member resources.

Policy Six: Access to pc member assignment count resources is according to the rules for
accessing pc member resources.

Policy Seven: A pc chair possesses permission to read and write pc member info resources,
whereas a pc member has access to read and write his/her pc member info resources. An
unidentified subject has no permission to access these resources. Furthermore, the same
permission rules for accessing pc member resources hold for pc member info resources too.

Policy Eight: A pc member has write access to his/her pc member info password resources,
and an administrator has the same permission whenever pc member info password resources
are not pending. An unidentified subject does not posses any access to these resources.
Additionally, the same permission rules for accessing pc member info resources also hold
for accessing pc member info password resources.

Policy Nine: A pc member has access to read pc member isChairFlag resources, whereas
a pc member whose user-id is equal to the user-id of these resources has no access to pc
member isChairFlag resources. An unidentified subject has no access to these resources.
Furthermore, the same permission rules for accessing pc member info resources also hold
to access pc member isChairFlag resources.

180

Policy Ten: A pc chair possesses access to delete paper resources. A pc member has
permission to read a paper if the paper is designated for a meeting; in addition, a pc
member is allowed to create paper resources. Any other access to paper resources is based
on the same rules for accessing conference resources.

Policy Eleven: A pc chair and a pc member are permitted to read paper submission
resources, whereas a sub-reviewer is allowed to read only his/his own paper submission
resources. In addition, the same permission rules for accessing paper resources are also
applicable for accessing paper submission resources.

A pc member, P, designates a sub-reviewer, S, to review P’s papers. S submits reviews
for the assigned papers; after submitting these reviews, S has no future access to these
reviews. P can access the reviews by S and modify and submit them. This arrangement
makes S capable of using the conference management interface to read submitted papers
and to write reviews. Otherwise, P has to make copies of submitted papers for S and
retrieve S’s reviews without using the conference management interface.

Policy Twelve: Access to paper submission info resources follows the same criteria as
those for accessing paper submission resources.

Policy Thirteen: The same rules for accessing paper submission resources are also appli-
cable for accessing Paper submission file resources.

Policy Fourteen: A pc chair in a meeting has read and write access to paper decision
resources. Other criteria for accessing paper decision resources are based on the same rules
as those for accessing paper resources.

Note: In the following policies, the words “conflicted” and “unconflicted” indicate that
people in a role may face conflicts of interest, such as when reading and writing reviews.

Policy Fifteen: A pc chair and an administrator are allowed to read and write paper
conflict resources, whereas a pc member who is conflicted is permitted to read paper conflict
resources. In addition, a pc member in a meeting has access to read paper conflict resources.
An unidentified subject has no access to paper conflict resources. Furthermore, other types
of access to paper conflict resources follow the same rules for accessing paper resources.

Policy Sixteen: A pc chair and an administrator are permitted to read and write paper
assignment resources. An unidentified subject who is conflicted possesses no access to
paper assignment resources. A pc chair in a meeting is allowed to read a paper assignment
resource that is related to the meeting. An unidentified subject who is in the meeting
is allowed to read paper assignment resources. An unidentified subject has no access to
paper assignment resources. In addition, the same criteria for accessing paper resources
are applicable for determining access permission for paper assignment resources.

181

Policy Seventeen: An unconflicted pc chair has all types of access to paper review
resources, whereas a pc chair in a meeting for particular paper review resources is allowed
to read only those resources. A pc chair is permitted to create and delete paper review
resources. A conflicted subject has no access to paper review resources. An unconflicted pc
member is permitted to read paper review resources. All have all types of access to their
own paper review resources. All types of access are permitted to discussion phase paper
review resources. An unidentified subject who is assigned to paper review resources and has
already done his/her task is allowed to have any type of access to the resources, whereas
an unidentified one assigned to particular paper review resources has all types of access to
them. An unidentified subject is not allowed to have any access to unassigned paper review
resources. Furthermore, other access rules to paper resources are also applicable to paper
review Tesources.

Policy Eighteen: A pc chair has all types of access to paper review info resources; in
addition, other types of access to paper review info resources are based on the same criteria
for accessing paper review resources.

Policy Nineteen: A pc member is permitted to write, create, and delete paper review
content resources if a pc member’s user-id is equal to the user-id of the paper review content
resources, whereas a sub-reviewer is allowed to create paper review content resources only
if the sub-reviewer user-id is equal to the user-id of the paper review content resources.
Furthermore, other types of access to paper review content resources follow the same criteria
for accessing paper review resources.

Policy Twenty: A pc member has permission to write paper review info submission status
resources if the pc member’s user-id equals the user-id of these resources and the content of
these resources is already in place. Other types of access to paper review info submission
status resources are based on the same rules for accessing paper review info resources.

Policy Twenty-one: All types of access to paper review content rating resources are
based on the same rules as those for accessing paper review content resources.

Policy Twenty-two: All types of access to paper review content comments all resources
are based on the same rules as those for accessing paper review content resources.

Policy Twenty-three: All types of access to paper review content comments pc resources
are based on the same rules as those for accessing paper review content resources.

Note: CONTINUE currently does not permit comments by pc members who have not
written reviews for a paper, and therefore, have not read the paper in as much detail as
the reviewers of that paper have but intend to provide comments, which are distinct from
reviews, for authors.

182

Policy Twenty-four: All types of access to paper review info reviewer resources are based
on the same rules as those for accessing paper review info resources.

Policy Twenty-five: A pc chair has read and write access to is meeting flag resources,
whereas a pc member possesses only read access. In addition, other types of access criteria
for is Meeting flag resources follow the same rules for accessing conference resources.

E.2 The CONTINUE Properties

The CONTINUE properties are provided next. Note that because of the use of model
checking and temporal logic and implications (Figure 4.5), always, eventually, and next
exist in the description of these properties.

Property 1 (Pr;): For any state, if there is a request, then it will eventually allow only
a deny or permit response (i.e., no NA response is possible). This property should hold.

Property 2 (Pry): It is always the case that a program committee (PC) member who
owns reviews can eventually edit his/her reviews. This property should hold.

Property 3 (Pr;3): For any state, if an individual is neither a PC chair nor an adminis-
trator, then he or she cannot eventually set the meeting flag. In verification, this property

should hold.

Property 4 (Pry): It is always the case that if an individual role is not described (i.e.,
no roles exist for a subject), then no permit exists for the individual. In verification, this
property should fail.

Property 5 (Pr;): For any state, if an individual’s role is not described and a resource
is not conference-information, then eventually no permits exist for the individual. This
property should hold.

Property 6 (Prg): It is always the case that if a person is neither a PC chair nor an
administrator, then the person should eventually never be allowed to read the paper review
resources for which he/she has a conflict of interest. This property should hold.

Property 7 (Pr;): For any state, if an individual is neither a PC chair nor an adminis-
trator, and he/she is conflicted, then the individual should never be eventually permitted
to read either any part of the review-content-set resources that are not written by the
individual, or read the reviewer-info resource. This property should hold.?

2Pr; and Prg are similar in the sense that the latter refers to a subset of the former. (Prg refers

183

Property 8 (Prg): For any state, if a PC chair calls for a meeting, then the chair can
eventually read anything related to the subject of the meeting. This property should fail .

Property 9 (Prg): For any state, if a PC chair calls for a meeting, then the chair can
eventually read any part of the reviews to be discussed at the meeting. This property
should hold.*

Property 10 (Pryg): It is always the case that a non-conflicted PC member at discussion
phase can eventually read all parts of the reviews. This property should hold.

Property 11 (Prj;): For any state, a non-conflicted PC member who has submitted
a review of a paper can eventually read all parts of others’ reviews of that paper. This
property should hold.’

Property 12 (Prj,): It is always the case that when the phase is not discussion, a PC
member who has been assigned to submit a review of a paper but who has not done so
cannot eventually read any part of review-content-set of others’ reviews of that paper. This
property should hold.

to paper review resources, and Pr7 includes all review resources.) A discrepancy between Pr;’s prose
description and the specification of this property in Scheme exists. The specification in Scheme considers
only review-content-set and paper-review-info-reviewer resources, not all resources; nevertheless, either
case is acceptable.

3This property possibly exists to check whether a paper’s certain information, such as a paper’s au-
thor(s), can be revealed in a meeting. Generally, the specific information, which can be known, must be
clearly defined.

4Pry, a specific case of Prg, allows access to all eight review resources (described previously).

5For both Pry; and Prys, the provided Scheme code specifies non-conflicted PC members.

184

Appendix F

Other Combining Access Control
Algorithms

This appendix presents algorithmic forms and state machines for the following combin-
ing algorithms: the strong-consensus policy-combining algorithm, strong-majority policy-
combining algorithm, and super-majority-permit policy-combining algorithm. This ap-
pendix also shows algorithmic forms and state machines for the weak-consensus rule-
combing algorithm and weak-majority rule-combining algorithm.

Strong-consensus [66]: “All sub-policies must agree: Permit a request if all sub-policies
permit a request. Deny a request if all sub-policies deny a request. Yield conflict other-
wise.” This algorithm differs from the weak-consensus policy-combining algorithm as one
or more policies may have a not applicable result. In this situation, the result provided
by the strong-consensus algorithm is conflict, whereas the weak-consensus algorithm may
provide a permit or deny result because one or more not applicable results have no effect
in the final decision.

Figure F.1 shows the strong-consensus policy-combining algorithm according to the
approach shown in Chapter 3. Figure F.2 shows the corresponding state machine for this
algorithm according to the approach presented in this thesis.

185

initial state = stateg;
set PermitRes to false;
set DenyRes to false;
set ConflictRes to false;
set NAres to false;
for 1 = 1 to n do
// n = the number of policies in a policy set
if premise-rule; = false then
set NAres to true;
move to state;,;
else
move to state;q;
if Fvent; Access(permit) = true for every element of EventResult then
set PermitRes to true;
move to state permitRes;
else if Event; Access(deny) = true for every element of EventResult then
set DenyRes to true;
move to state denyRes;
end

end
end

f 1 = n and NAres = true then
set ConflictRes to true;
move to state conflict;
else if i = n and PermitRes = true and DenyRes = false then
| move to state permit;
else if i = n and DenyRes = true and PermitRes = false then
| move to state deny;
else if i = n and PermitRes = true and DenyRes = true then
set ConflictRes to true;
move to state conflict;
end

i o

Figure F.1: The algorithmic form for strong-consensus policy-combining algorithm

186

PolicyEvaluation ‘

Strong-consensus

[p-policy; = true]

mi
[\ Event;Access (permit) = true]
i=1 Z

permitRes -
J /PermitRes := true

mq

[\ Event;Access (deny) = true]
i=1

doo

[p-policy; = false]
/NAres := true

o)L

[p-policy, = false]

/DenyRes := true

[p-r ule, —
/NAreg i

denyRes

[p‘po]jcy2 =
[p-policys = true]

tI’ue]

fa]se]
true

[p-policys

/NAres := true
= true]

[p-policys = false]/NAres := true

mn
[/\ Event;Access (permit) = true]
i=1

permitRes)
/PermitRes := true

[/< Event;Access (deny) = true]
i=1

/DenyRes := true

[p-policy,, = true,

PermitRes = true]

[p-policy, = true, DenyRes = true]

[PermitRes = false, NAres = false]

20
d(n-1)0 [p-policy,, = false]
/NAres :=

[p-policy,, = true] true

T)

[DenyRes = true or
NAres = true]
/ConflictRes := true

/ConflictRes := true

[PermitRes = true or NAres = true]

®

deny

[DenyRes = false,
NAres = false]

@ permit

conflict

/ConflictRes := true

Figure F.2: A UML state machine for strong-consensus policy-combining algorithm

187

Strong-majority [66]: “Permit a request if over half of all sub-policies permit it, and
deny the request if over half deny it.”

Figure F.3 shows the algorithmic form for the strong-majority policy-combining algo-
rithm.

initial state = stateg;
set NumPermit to zero;
set NumDeny to zero;
for : = 1 to n do
// n = the number of policies in a policy set
if premise-rule; = false then
| move to state;, ;
else
move to state;;
if Event; Access(permit) = true for every element of EventResult then
add one to NumPermit;
move to state permitRes;
else if Fvent;Access(deny) = true for every element of EventResult then
add one to NumDeny;
move to state denyRes;
end

end

end

if i = n and NumPermit > (n/2) then
| move to state permit;

else if i = n and NumDeny > (n/2) then
| move to state deny;
end

Figure F.3: The algorithmic form for strong-majority policy-combining algorithm

Figure F.4 shows the state machine corresponding to the algorithmic format.

188

PolicyEvaluation ‘
Strong-majority

[p-policyi
= false]

[p-policy; = true]

mq

[\ Event;Access (permit) = true]
permitRes— =) _
J /NumPermit +1 di1 10

mi

[\ Event;Access (deny) = true]
i=1
/NumDeny + 1

[p-policys [p-policys
= true] = false]

denyRes

P-poli0y2

= f
[p‘pO]icy — alse]
i ; 2=tr ue/
[p-policys = true] »
[p-policy, = false] . P
me dm-10 |[p-policy, = false]
[\ Event;Access (permit) = true] —
permitRes Z/zl\llumPermit 1 [p-policy,, = true]

[/< Event;Access (deny) = true] (
{denyRes) i=1 L An1 } dno

/NumDeny + 1
[p-policy,, = true]
[NumDeny > (n/2)]

[p-policy,, = true]

[NumPermit > (n/2)]

[NumDeny > (n/2)]

[NumPermit > (n/2)]) [NumPermit > (n/2)]
@permit

Figure F.4: A UML state machine for strong-majority policy-combining algorithm

189

Super-majority-permit [66]: “Permit a request if over 2/3 of all policies permit it, and
deny the request otherwise.”

Figure F.5 shows the algorithmic form for the super-majority-permit policy-combining
algorithm.

initial state = stateg;

set NumPermit to zero;

for i = 1 to n do

// n = the number of policies in a policy set

if premise-rule; = false then
| move to state;, ;

else
move to state;;;

if Event; Access(permit) = true for every element of EventResult then
add one to NumPermit;
move to state permitRes;
else if FEvent; Access(deny) = true for every element of EventResult then
| move to state denyRes;
end

end

end

if © = n and NumPermit > (2/3n) then
| move to state permit;

else
| move to state deny;
end

Figure F.5: The algorithmic form for super-majority-permit policy-combining algorithm

Figure F.6 shows the state machine corresponding to the algorithmic format.

190

PolicyEvaluation ‘
Super-majority-permit

[p-policy;
= false]

[p-policy; = true]

mq

[\ Event;Access (permit) = true]
permitReg~—"" _
J /NumPermit +1 di1 10

m

[\ Event;Access (deny) = true]
i=1

[p-policys [p-policys
= true] = false]

denyRes

[P-policy; — i)
_policys = t
[p-policys = true] "
[p-policy, = false] . T
mp, . dm-1)0 |[p-policy, = false]
[\ Event;Access (permit) = true] —
permitRes =1 : [p-policy, = true]
/NumPermit + 1
[/\n Event;Access (deny) = true] (
=1 L dn1 ano

[p‘pOhCyn = true] [p_pOhCYTL = true]

else

[NumPermit > (2/3n)]

else

deny

[NumPermit > (2/3n)] N [NumPermit > (2/3n)]
- @permit

Figure F.6: A UML state machine for super-majority-permit policy-combining algorithm

191

Figure F.7 shows the weak-consensus rule-combining algorithm that is similar to the
weak-consensus policy combining-algorithm, shown in Chapter 3.

initial state = stateg;
set PermitRes to false;
set DenyRes to false;
set ConflictRes to false;
for i = 1 to n do
// n = the number of rules in a policy
if premise-rule; = false then
| move to state;, ;
else
move to state;;
if Event; Access(permit) = true for every element of EventResult then
set PermitRes to true;
move to state permitRes;
else if Fvent; Access(deny) = true for every element of EventResult then
set DenyRes to true;
move to state denyRes;
end

end

end
if i = n and PermitRes = true and DenyRes = false then
| move to state permit;
else if i = n and DenyRes = true and PermitRes = false then
| move to state deny;
else if i = n and PermitRes = true and DenyRes = true then
set ConflictRes to true;
move to state conflict;
end

Figure F.7: The defined AC rules and states for weak-consensus rule-combining algorithm

Figure F.8 represents the state machine corresponding to the algorithmic description.

192

RuleEvaluation ‘
Weak-consensus

-rule
[p-rule; = true] [p-ruley

[\ Event;Access (permit) = true] = false]
permitRes|=———— (
J /PermitRes := true t qu1 1o
[/\ Event;Access (deny) = true]
iﬁ)en Res := true [p-rule, p-rules
denyRes y = prul — true] = false]
Ipra % €2 = false]
2 =try
[p-ruley = true] o
420
[p-rule; = false] o I
My, d(n—1)0 |[p-rule, = false]
[\ Event;Access (permit) = true] —
permitRes =l : [p-rule, = true]
/PermitRes := true
\ Event;Access (deny) = true
[ii\l (y)] [An1] [dno

/DenyRes := true

[p-rule, = true,
. [p-rule, = true, DenyRes = true]
PermitRes = true]

[PermitRes = false] g\ [PermitRes = false,

[PermitRes = true] deny DenyRes = true]

[DenyRes = true] /ConflictRes := true
/ConflictRes := true

~N [PermitRes = true, DenyRes = true]

@ /ConflictRes := true

[DenyRes = false] conflict

@ permit

Figure F.8: A UML state machine that uses AC rule definitions for weak-consensus rule-
combining algorithm

[PermitRes = true, DenyRes = false]

193

Figure F.9 shows the algorithmic form for the weak-majority rule-combining algorithm
that is similar to the weak-majority policy-combining algorithm, shown in Chapter 3.

initial state = stateg;
set NumPermit to zero;
set NumDeny to zero;
for i = 1 to n do
// n = the number of rules in a policy
if premise-rule; = false then
| move to state;, ;
else
move to state;;;
if Fvent; Access(permit) = true for every element of EventResult then
add one to NumPermit;
move to state permitRes;
else if Event; Access(deny) = true for every element of EventResult then
add one to NumDeny;
move to state denyRes;
end

end
end

if i = n and NumPermit > NumDeny then
| move to state permit;

else if i = n and NumDeny > NumPermilt then
| move to state deny;

end

Figure F.9: The defined AC rules and states for weak-majority rule-combining algorithm

Figure F.10 represents the state machine corresponding to the algorithmic description.

194

RuleEvaluation ‘
Weak-majority

-rule
[p-rule; = true] [p-ruley

[/\1 Event;Access (permit) = true] = false]
J /NumPermit + 1 t qi1 10
[/\ Event;Access (deny) = true]
Z?ll\lumDen +1 [p-ruley [p-rule;
denyRes y [p-rule — true] = false]
[P~1"u]e2 — 2 = false]
= tru
[p-ruley = true] ¢/
420

[p-rule; = false]

My,
[\ Event;Access (permit) = true]
i=1

d(n-1)0

I—

[p-rule, = false]

permitRes

NumPermit + 1

My,

[\ Event;Access (deny) = true]
i=1

[p-rule,, = true]

(

/NumDeny + 1

[p—rulen = true] [p—rulen = true]

™ M e

[NumPermit > NumDeny]

[NumDeny > NumPermit]

NumPermit > NumDeny
| e

permit

[NumPermit > NumDeny]

Figure F.10: A UML state machine that uses the AC rule definitions for weak-majority

rule-combining algorithm
195

References

1]

2]
[3]

Mohammad Al-Kahtani and Ravi Sandhu. A model for attribute-based user-role
assignment. In Proceedings of the 18th Annual Computer Security Applications Con-
ference (ACSAC), pages 353-364, Las Vegas, USA, December 2002.

Scott Ambler. The Elements of UML 2.0 Style. Cambridge University Press, 2005.

Anne Anderson. A comparison of two privacy policy languages: EPAL and XACML.
In Proceedings of the 3rd ACM Workshop On Secure Web Services, pages 5360,
Alexandria, VA, USA, November 2006.

Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA : Building Better Software
with Archetype Patterns and UML. Addison-Wesley, 2004.

Alessandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi. Part-whole
relations in object-centered systems: An overview. Data ¢ Knowledge Engineering,
20(3):347-383, November 1996.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, second edition, 2007.

Franz Baader and Werner Nutt. Basic Description Logics, chapter two in The De-
scription Logic Handbook: Theory, Implementation, and Applications, pages 47-104.
Cambridge University Press, 2007.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

David Basin, Manuel Clavel, Jiirgen Doser, and Marina Egea. Automated analysis of
security-design models. Information and Software Technology, 51(5):815-831, 2009.

197

[10]

[11]
[12]

[13]

[14]

[15]
[16]

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven security: From
UML models to access control infrastructures. ACM Transactions on Software En-
gineering and Methodology, 15(1):39-91, 2006.

Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer, 2008.

Messaoud Benantar. Access Control Systems: Security, Identity, Management, and
Trust Models. Springer, 2006.

Béatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit,
Laure Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software
Verification: Model-checking Techniques and Tools. Springer, 2001.

Elisa Bertino, Piero Bonatti, and Elena Ferrari. TRBAC: A temporal role-based
access control model. In Proceedings of the ACM Workshop on Role-Based Access
Control, pages 21-30, 2000.

Matthew Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

Michael Blaha and James Rumbaugh. Object-oriented Modeling and Design with
UML. Pearson Prentice Hall, second edition, 2005.

Hiawatha Bray. Payroll website still not secured. The Boston Globe, March 1, 2005.

The Business Rules Group (BRG). Defining Business Rules: What are They Really?
Rewvision 1.3. http://www.BusinessRulesGroup.org, July 2000.

Achim Brucker and Burkhart Wolff. HOL-OCL: A formal proof environment for UM-
L/OCL. In Proceedings of the 11th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), pages 97-100, Budapest, Hungary, March
2008.

Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Past, present, and future
trends in software patterns. IEEE Software, 24(4):31-37, 2007.

Carla Carnaghan. Business process modeling approaches in the context of process
level audit risk assessment: An analysis and comparison. International Journal of
Accounting Information Systems, 7(2):170-204, 2006.

Ramaswamy Chandramouli. Application of XML tools for enterprise-wide RBAC
implementation tasks. In Proceedings of the Fifth ACM Workshop on Role-based
Access Control, pages 11-18, Berlin, Germany, July 2000.

198

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. The MIT
Press, 1999.

Devin Cook and Multiple Contributors. Gold parseing system, available at http:
//goldparser.org/index.htm.

Remco Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of busi-
ness process models in BPMN. Information and Software Technology, 50(12):1281—
1294, 2008.

Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18(8):453-457, 1975.

Matthew Dwyer, George Avrunin, and James Corbett. Property specification pat-
terns for finite-state verification. In Proceedings of the Second Workshop on Formal
Methods in Software Practice(FMSP), pages 7-15, Florida, USA, March 1998.

Matthew Dwyer, George Avrunin, and James Corbett. Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 1999 International Conference
on Software Engineering (ICSE), pages 411-420, Los Angeles, CA, USA, May 1999.

E. Allen Emerson. The beginning of model checking: A personal perspective. In
Proceedings of the 25 Years of Model Checking, pages 27-45, 2008.

Herbert Enderton. A Mathematical Introduction to Logic. Academic Press, second
edition, 2001.

Hans-Erik Eriksson and Magnus Penker. Business Modeling with UML: Business
Patterns at Work. Wiley, 2000.

David Ferraiolo and D. Richard Kuhn. Role-based access control. In Proceedings of
the 15th National Computer Security Conference, pages 554-563, October 1992.

David Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based
Access Control. Artech House, second edition, 2007.

David Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy
Chandramouli. Proposed NIST standard for role-based access control. ACM Trans-
actions on Information and System Security (TISSEC), 4(3):224-274, August 2001.

199

http://goldparser.org/index.htm
http://goldparser.org/index.htm

[35]

[41]

[42]

[43]

[44]

Timothy Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi Sandhu, William
Winsborough, and Bhavani Thuraisingham. ROWLBAC: Representing role based
access control in OWL. In Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies (SACMAT), pages 73-82, CO, USA, 2008.

Kathi Fisler, Shriram Krishnamurthi, Leo Meyerovich, and Michael Tschantz. Ver-
ification and change-impact analysis of access-control policies. In Proceedings of

the International Conference on Software Engineering (ICSE), pages 196-205, Saint
Louis, US, May 2005.

Jests Arias Fisteus, Luis Sanchez Fernandez, and Carlos Delgado Kloos. Applying
model checking to BPEL4WS business collaborations. In Proceedings of the ACM
Symposium on Applied Computing (SAC), pages 826-830, New Mexico, USA, March
2005.

Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

Mark Fox. The TOVE project towards a common-sense model of the enterprise.
In Proceedings of the 5th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Ezxpert Systems, Lecture Notes in Computer
Science, Springer, volume 604, pages 25-34, June 1992.

Mark Fox and Michael Gruninger. Enterprise modeling. AI Magazine, 19(3):109-121,
1998.

Michael Garey and David Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979.

Guido Geerts and William McCarthy. An ontological analysis of the economic prim-
itives of the extended-REA enterprise information architecture. The International
Journal of Accounting Information Systems, 3(1):1-16, March 2002.

Guido Geerts and William McCarthy. Policy-level specifications in REA enterprise
information systems. Journal of Information Systems, 20(2):37-63, Fall 2006.

Martin Gogolla, Fabian Bittner, and Mark Richters. USE: A UML-based specifica-
tion environment for validating UML and OCL. Science of Computer Programming,
69(1-3):27-34, 2007.

Michael Harrison, Walter Ruzzo, and Jeffrey Ullman. Protection in operating sys-
tems. Communications of the ACM, 19(8):461-471, 1976.

200

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[55]

Gerard Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering (TSE), 23(5):279-295, May 1997.

Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

Pavel Hruby and with contributions by Jesper Kiehn and Christian Vibe Scheller.
Model-Driven Design Using Business Patterns. Springer, 2006.

Michael Huth and Mark Ryan. Logic in Computer Science: Modeling and Reasoning
about Systems. Cambridge University Press, second edition, 2004.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Springintveld. Verifying busi-
ness processes using SPIN. In Proceedings of the 4th International SPIN Workshop,
pages 21-36, Paris, France, November 1998.

Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, and William Wins-
borough. Towards formal verification of role-based access control policies. [FEE
Transactions on Dependable and Secure Computing, 5(4):242-255, 2008.

Jan Jiirjens, Jorg Schreck, and Yijun Yu. Automated analysis of permission-based
security using UMLsec. In Proceedings of the 11th International Conference Fun-
damental Approaches to Software Engineering (FASE), pages 292-295, Budapest,
Hungary, 2008.

Lalana Kagal, Timothy Finin, and Anupam Joshi. A policy language for a pervasive
computing environment. In Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), pages 63-74, Lake Como,
Italy, June 2003.

Vahid Karimi. Formal analysis of access control policies for pattern-based business
processes. In Proceedings of the IEEE World Congress on Privacy, Security, Trust,
and the Management of e-Business, Doctoral Symposium, pages 239-242, Saint John,
New Brunswick, Canada, August 20009.

Vahid Karimi and Donald Cowan. Verification of access control policies for REA
business processes. In Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference (COMPSAC), pages 422-427, Seattle, Wash-
ington, USA, July 2009.

201

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

Vahid Karimi and Donald Cowan. Access control models for business processes.
In Proceedings of the Internation Conference on Security and Cryptography (SE-
CRYPT), pages 489498, Athens, Greece, July 2010.

Axel Kern and Claudia Walhorn. Rule support for role-based access control. In
Proceedings of the 10th ACM Symposium on Access Control Models and Technologies
(SACMAT), pages 130-138, Stockholm, Sweden, June 2005.

Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing Web access control
policies. In Proceedings of the 16th International Conference on World Wide Web
(WWW), pages 677-686, Banff, Alberta, Canada, 2007.

Shriram Krishnamurthi. The CONTINUE server (or, how I administered PADL 2002
and 2003). In Proceedings of the 5th International Symposium Practical Aspects of
Declarative Languages (PADL), pages 2-16, New Orleans, LA, USA, 2003.

Fred Kroger and Stephan Merz. Temporal Logic and State System. Springer, 2008.

SAnToS laboratory. Spec patterns, available at http://patterns.projects.cis.
ksu.edu/.

James Lampe. Discussion of an ontological analysis of the economic primitives of
the extended-REA enterprise information. International Journal of Accounting In-
formation Systems, 3(1):17-34, 2002.

Butler Lampson. Protection. In Proceedings of the 5th Princeton Conference on
Information Sciences and Systems, pages 437-443, Princeton University, March 1971.

Butler Lampson. Computer security in the real world. IEEE Computer, 37(6):37-46,
2004.

Ninghui Li, Qihua Wang, Wahbeh Qardaji, Elisa Bertino, Prathima Rao, Jorge Lobo,
and Dan Lin. Access control policy combining: theory meets practice. In Proceedings
of the 14th ACM Symposium on Access Control Models and Technologies (SACMAT),
pages 135—144, Stresa, Italy, June 2009.

James Martin and James Odell. Object-Oriented Methods: a Foundation, UML FEdi-
tion. Prentice Hall, second edition, 1998.

William McCarthy. The REA accounting model: A generalized framework for ac-
counting systems in a shared data environment. The Accounting Review, 57(3):54-78,
July 1982.

202

http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

William McCarthy. Ontologically-driven standards development for business pro-
cess systems. Ontolog invited Speaker Presentation. http://ontolog.cim3.net/cgi-
bin/wiki.pl?ConferenceCall_2008_06_05, 2008.

Deborah McGuinness. Ontologies come of age: Bringing the world wide web to its
full potential. In Proceedings of the Spinning the Semantic Web, pages 171-194, 2003.

Renate Motschnig-Pitrik and Jens Kaasbgll. Part-whole relationship categories and
their application in object-oriented analysis. IEEE Transactions of Knowledge and
Data Engineering, 11(5):779-797, September/October 1999.

Renate Motschnig-Pitrik and Veda Storey. Modelling of set membership: The notion
and the issues. Data & Knowledge Engineering, 16(2):147-185, August 1995.

Hiroaki Nakamura and Ralph Johnson. Adaptive framework for the REA accounting
model. In OOPSLA Workshop on Business Object Design and Implementation 1V,
1998.

Qun Ni, Alberto Trombetta, Elisa Bertino, and Jorge Lobo. Privacy-aware role based
access control. In Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 41-50, Sophia Antipolis, France, June 2007.

James Odell. Advanced Object-Oriented Analysis and Design Using UML. Cambridge
University Press, 1998.

IDEF Family of Methods: A Structured Approach to Enterprise Modeling and Anal-
ysis. http://www.idef.com/.

Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Business Process Ezxecution Language Primer, Version 2.0.
http://docs.oasis-open.org/wsbpel /2.0 /Primer/wsbpel-v2.0-Primer.pdf, May 2007.

Organization for the Advancement of Structured Information Standards (OASIS).
eXtensible Access Control Markup Language (XACML), Version 3.0, Committee
Specification 01, August 2010.

Organization for the Advancement of Structured Information Standards (OASIS),
Tim Moses (editor). eXtensible Access Control Markup Language (XACML), Version
2.0, February 2005.

203

[30]

[81]

Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies. ACM Trans-
actions on Information and System Security, 3(2):85-106, May 2000.

Chun Ouyang, Eric Verbeek, Wil van der Aalst, Stephan Breutel, Marlon Dumas, and
Arthur ter Hofstede. WofBPEL: A tool for automated analysis of BPEL processes.
In Proceedings of the Third International Conference on Service-Oriented Computing
(1CSOC), pages 484-489, Amsterdam, The Netherlands, December 2005.

Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond traditional
access control. In Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies(SACMAT), pages 57-64, California, USA, June 2002.

Doron Peled. Software Reliability Methods. Springer, 2001.

Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. Using UML to visualize
role-based access control constraints. In Proceedings of the 9th ACM Symposium
on Access Control Models and Technologies (SACMAT), pages 115-124, New York,
USA, June 2004.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual. Addison-Wesley Professional, second edition, 2005.

Gwen Salaiin, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on web

services using process algebra. In Proceedings of the IEEE International Conference
on Web Services (ICWS), pages 43-50, San Diego, California, USA, June 2004.

Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based access
control models. IEEE Computer, 29(2):38-47, 1996.

Ravi Sandhu and Qamar Munawer. How to do discretionary access control using
roles. In Proceddings of the third ACM Workshop on Role-Based Access Control,
pages 47-54, Virginia, USA, 1998.

Ravi Sandhu and Pierangela Samarati. Authentication, access control, and audit.
ACM Computing Surveys, 28(1):241-243, 1996.

Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based access control
system of a European bank: a case study and discussion. In Proceedings of the
6th Symposium on Access Control Models and Technologies (SACMAT), pages 3-9,
Virginia, USA, May 2001.

204

[91]

[92]

[93]

[94]

[95]

[96]

[101]

[102]

R. Scowen. Generic base standards. In Proceedings of the Software Engineering
Standards Symposium, pages 25-34, 1993.

Graeme Shanks, Elizabeth Tansley, Jasmina Nuredini, and Daniel Tobin. Repre-
senting part-whole relations in conceptual modeling: an empirical evaluation. MIS
Quarterly, 32(3):553-573, September 2008.

Graeme Shanks, Elizabeth Tansley, and Ron Weber. Representing composites in
conceptual modeling. Communications of the ACM, 47(7):77-80, July 2004.

Richard Simon and Mary Ellen Zurko. Separation of duty in role-based environments.
In Proceedings of the 10th Computer Security Foundations Workshop (CSEFW), pages
183-194, Massachusetts, USA, June 1997.

Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Com-
pany, first edition, 1997.

Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Martin Gogolla. Analyzing
and managing role-based access control policies. IEEE Transactions on Knowledge
and Data Engineering, 20(7):924-939, July 2008.

John Sowa. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole, 2000.

William Stallings and Lawrie Brown with contributions by Mick Bauer and Michael
Howard. Computer Security: Principles and Practice. Pearson Prentice Hall, 2008.

The International Organization for Standardization (ISO) and the International Elec-
trotechnical Commission (IEC). International Standard, ISO/IEC 14977. Informa-
tion technology—Syntactic metalanguage—FExtended BNF, first edition, December 1966.

The International Organization for Standardization (ISO) and the International Elec-
trotechnical Commission (IEC). International Standard, ISO/IEC 15944-4:2007(E).
Information Technology—Business Operational View—Part 4: Business Transaction
Scenarios—Accounting and Economy Ontology, first edition, November 2007.

The Object Management Group (OMG). Semantics of Business Vocabulary and
Business Rules (SBVR), Version 1.0, January 2008.

Roshan Thomas and Ravi Sandhu. Towards a task-based paradigm for flexible and
adaptable access control in distributed applications. In Proceedings of the Workshop
on New Security Paradigms, pages 138-142, Rhode Island, USA, 1993.

205

[103]

[104]

[105]

[106]

107]

[108]

[109]

Roshan Thomas and Ravi Sandhu. Task-based Authorization Controls (TBAC): A
family of models for active and enterprise-oriented authorization management. In
Proceedings of the Eleventh International Conference on Database Security (DBSec),
pages 166—181, Lake Tahoe, California, 1997.

Gianluca Tonti, Jeffrey Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan Suri,
and Andrzej Uszok. Semantic web languages for policy representation and reason-
ing: A comparison of KAoS, Rei, and Ponder. In Proceedings of the International
Semantic Web Conference, pages 419-437, October 2003.

Jerrold Wagener. Guarded command. In Encyclopedia of Computer Science, pages
761-762. John Wiley, 2003.

Wikibook, Logic for Computer Scientists/Predicate Logic/Semantics, available at
http://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Predicate_
Logic/Semantics.

Morton Winston, Roger Chaffin, and Douglas Herrmann. A taxonomy of part-whole
relations. Cognitive Science, 11(4), 1987.

Jim Woodcock and Martin Loomes. Software Engineering Mathematics. Addison-
Wesley, 1988.

Tom Zeller. Not yet in business school, and already flunking ethics. The New York
Times, March 14, 2005.

206

http://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Predicate_Logic/Semantics
http://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Predicate_Logic/Semantics

	List of Tables
	List of Figures
	Introduction
	Contributions
	Research Approach
	Thesis Organization

	Related Work
	Access Control
	Business Patterns and Business Processes
	Formal Verification

	Access Control Models, Rules and Policies and their Combinations
	Overview of Representing Classes of AC Models
	Representing Classes of Access Control Models
	Defining Access Control Rules based on Models
	Creating Access Control (AC) Policies from AC Rules
	Policy-combining Algorithms
	An Advantage of the Presented Approach

	Specification of Properties for Access Control and Categorization
	Background
	AC Property Specification and Categories
	General Form of AC Property Specification
	Related Work on Property Specifications

	Evaluation: Conference Management Case Study
	CONTINUE, Policies, and Properties
	Business and AC Models, Rules and Combination
	Formal Analysis
	A Note on the Use of SPIN

	Conclusion
	Summary of Contributions
	Limitations
	Future Work

	APPENDICES
	An Overview of REA
	REA as an Ontology
	REA Patterns for Policy-level Specification

	BNF and EBNF Definitions
	Access Control Rule in BNF
	Other BNF and EBNF Definitions

	A Brief Background on Logic
	Propositional Logic
	Predicate Logic
	Linear Temporal Logic

	An Overview of SPIN and Alloy
	SPIN
	Alloy and Example

	The CONTINUE Policies and Properties
	The CONTINUE Policies
	The CONTINUE Properties

	Other Combining Access Control Algorithms
	References

