
Axon: A Middleware for Robotics

by

Michael Morckos

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Michael Morckos 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The area of multi-robot systems and frameworks has become, in recent years, a hot
research area in the field of robotics. This is attributed to the great advances made in
robotic hardware, software, and the diversity of robotic systems. The need to integrate
different heterogeneous robotic components and systems has led to the birth of robotic
middleware. A robotic middleware is an intricate piece of software that masks the hetero-
geneity of underlying components and provides high-level interfaces that enable developers
to make efficient use of the components. A large number of robotic middleware programs
exist today. Each one comes with its own design methodologies and complexities. Up to
this moment, however, there exists no unified standard for robotic middleware. Moreover,
many of the middleware in use today deal with low-level and hardware aspects. This adds
unnecessary complexity in research involving robotic behavior, inter-robot collaboration,
and other high-level experiments which do not require prior knowledge of low-level details.
In addition, the notion of structured lightweight data transfer between robots is not em-
phasized in existing work. This dissertation tackles the robotic middleware problem from
a different perspective. The aim of this work is to develop a robust middleware that is able
to handle multiple robots and clients within a laboratory environment. In the proposed
middleware, a high-level representation of robots in an environment is introduced. Also,
this work introduces the notion of structured and efficient data exchange as an important
issue in robotic middleware research. The middleware has been designed and developed
using rigorous methodologies and leading edge technologies. Moreover, the middleware’s
ability to integrate different types of robots in a seamless manner, as well as its ability to
accommodate multiple robots and clients, has been tested and evaluated.

iii

Acknowledgements

Foremost, I would like to express my deepest gratitude to my advisor Dr. Fakhreddine
Karray, for his continuous support and supervision of my MASc. studies and research. His
patience, motivation, immense knowledge and professionalism were the driving force of my
research and writing.

I would also like to acknowledge Jamil Abou-Saleh, Sepideh Seifzadeh, and Pouria
Fewzee for their assistance and help in the CPAMI laboratory at the University of Waterloo.

I would also like to give special thanks to my thesis readers, Dr. William D. Bishop,
and Dr. Andrew Morton for taking the time to review and assess my research work, as
well as for their useful and pertinent feedback.

iv

Dedication

This thesis is dedicated to my family. My father Yousif Morckos and my mother Viola
Yousif, my brothers Mark and Matthew. I owe everything to their immense love, sacrifice,
endless support, and encouragement.

Thank you all.

v

Table of Contents

List of Figures ix

List of Tables xi

List of Acronyms and Abbreviations xii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives and Contributions . 3

1.3 Organization of the Thesis . 3

2 Background and Literature Review 5

2.1 Robotic Middleware . 5

2.2 Middleware for Networked Robots . 7

2.3 Literature Review . 8

2.4 Commercial Robotic Systems . 17

2.5 Chapter Summary . 17

3 Middleware Architecture 19

3.1 Information Base and Data Carrier . 22

3.1.1 Entity Information . 23

3.1.2 Google Protocol Buffers . 27

vi

3.1.3 Google Protocol Buffers Messages 28

3.2 Network Middleware . 29

3.2.1 The Internet Communications Engine 31

3.2.2 ICE Services . 31

3.2.3 SLICE . 33

3.3 Entity Component . 34

3.3.1 The Entity Manager . 34

3.3.2 The Entity Interfacer . 42

3.4 Server Component . 44

3.4.1 Entity Server . 45

3.4.2 Front-End Server . 48

3.4.3 Inter-server Communication . 52

3.5 Overall Architecture . 53

3.6 Chapter Summary . 54

4 Experimental Setup for Multi-Robot System 56

4.1 PeopleBot Mobile Robot . 56

4.1.1 Pioneer SDK . 58

4.1.2 Implemented Services . 60

4.2 Cyton Alpha Robotic Arm . 62

4.2.1 Actin-SE Control Software . 63

4.2.2 Implemented Services . 64

4.3 Collaborative Service . 65

4.4 Chapter Summary . 68

5 System Evaluation 69

5.1 Latency . 69

5.2 Single Client - Multiple Entities . 70

vii

5.2.1 Raw Data Stream . 71

5.2.2 Stop Signal . 72

5.3 Multiple Clients - Multiple Entities . 74

5.3.1 Raw Data Stream . 74

5.3.2 Stop Signal . 76

5.4 Chapter Summary . 77

6 Conclusion and Future Work 78

Bibliography 81

Appendix 86

A Installing and Running the Server 86

A.1 Prerequisites . 86

A.2 Installation . 86

A.3 Configurations and Running . 87

A.4 Global Services . 87

B Adding an Entity to the Environment 89

B.1 Prerequisites . 89

B.2 Installation . 89

B.2.1 Entity Manager . 90

B.2.2 Entity Interfacer . 90

B.3 Configurations and Running . 91

B.3.1 Entity Interfacer . 91

B.3.2 Entity Manager . 91

viii

List of Figures

3.1 Middleware Abstracted Overview. 22

3.2 A Sample Basic Profile XML File. 23

3.3 A Sample Services Profile XML File. 26

3.4 The “Service” Message File. 29

3.5 Entity Manager Simplified UML State Machine Diagram. 35

3.6 Entity Manager Simplified UML Class Diagram. 38

3.7 Portion of the Entity Session SLICE Interface. 41

3.8 Portion of the Entity Callback SLICE Interface. 42

3.9 Entity Interfacer UML Class Diagram. 43

3.10 Simplified UML Class Diagram of the Entity Server. 46

3.11 Simplified UML Class Diagram of the Front-End Server. 49

3.12 Portion of the Client Session SLICE Interface. 51

3.13 Portion of the Client Callback SLICE Interface. 52

3.14 The Entity Server Topic SLICE Interface. 53

3.15 The Front-End Server Topic SLICE Interface. 53

3.16 Middlware UML component diagram. 54

4.1 The PeopleBot Mobile Robot [11]. 57

4.2 PeopleBot Range-Finding Devices. 58

4.3 The Cyton Alpha Robotic Arm [14]. 63

4.4 Cyton Viewer [14]. 64

ix

4.5 PeopleBot and Cyton Alpha at Initial Setup. 66

4.6 Cyton Alpha in Action. 67

4.7 PeopleBot performing “Table Object Tracking and Grabbing”. 67

4.8 PeopleBot Performing “Navigation”. The Target is the Front of the Oppo-
site Table. 68

5.1 Single Client - Multiple Entities Data Stream Average Latency Plot. 72

5.2 Single Client - Multiple Entities Stop Signal Average Latency Plot. 73

5.3 Multiple Clients - Multiple Entities Data Stream Average Latency Plot. . . 75

5.4 Multiple Clients - Multiple Entities Stop Signal Average Latency Plot. . . 77

A.1 “Global services” Profile. 88

x

List of Tables

5.1 Single Client - Multiple Entities Data Stream Average Latency. 71

5.2 Single Client - Multiple Entities Stop Signal Average Latency. 73

5.3 Multiple Clients - Multiple Entities Data Stream Average Latency. 75

5.4 Multiple Clients - Multiple Entities Stop Signal Average Latency. 76

xi

List of Acronyms and
Abbreviations

ACTS Advanced Color Tracking System

API Application Programming Interface

ARCOS Advanced Robotics Control Operating System

ARIA Advanced Robotics Interface for Applications

ARNL Autonomous Robotic Navigation and Localization

CORBA Common Object Request Broker Architecture

COTS Commercially available Off-The-Shelf

CPAMI Centre for Pattern Analysis and Machine Intelligence

DOF Degree of Freedom

EI Entity Interfacer

EM Entity Manager

FSM Finite-State Machine

xii

GNU GPL GNU General Public License

GPB Google Protocol Buffers

GUI Graphical User Interface

HRI Human-Robot Interaction

HTTP Hypertext Transfer Protocol

ICE Internet Communications Engine

IDE Integrated Development Environment

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LAN Local Area Network

MCL Monte-Carlo Localization

OMG Object Management Group

OSI Open Systems Interconnection

POSIX Portable Operating System Interface

PTZ Pan Tilt Zoom

QoS Quality of Service

xiii

RPC Remote Procedure Call

RT Real-Time

RTOS Real-Time Operating System

RTT Round Trip Time

SDK Software Development Kit

SLICE Specification Language for the Internet Communications Engine

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

USB Universal Serial Bus

UUID Universally Unique IDentifier

WLAN Wireless Local Area Network

XML Extensible Markup Language

xiv

Chapter 1

Introduction

Robotics became a major research area in the 1980’s and has been experiencing a rapid
growth ever since. Advances in the hardware, sensors, actuators and wireless technologies
have opened the door to countless unprecedented opportunities in robotics and applica-
tions. A growing number of universities house an advanced robotics lab in at least one
department. Robotics is a highly interdisciplinary field, using applications of mechanical,
electronics, communication and software engineering.

A typical modern robot consists of a distributed system of hardware components such as
sensors and actuators. These components are controlled by sophisticated software ranging
from low-level controllers and device drivers to high-level software libraries implemented in
high-level programming languages. There is great diversity in robotic software and hard-
ware components. This is attributed to the growing number of robot vendors. However,
the robot industry and corresponding markets are far from mature. To date, there are no
global standards for robotics. Most of the vendor-provided robotic hardware and software
are self-contained and proprietary with minimal or zero support for interoperability. Most
robotic systems are incompatible with other robotic systems.

The evolution of middleware has greatly simplified the task of building distributed and
loosely coupled applications. According to Bakken et al. [19], “middleware is a class of
software technologies designed to help manage the complexity and heterogeneity inherent
in distributed systems. It is defined as a layer of software above the operating system
but below the application program that provides a common programming abstraction
across a distributed system.”. In robotics, the purpose of middleware is to bring several
heterogeneous components into a single cohesive system. The past few years have witnessed
the birth of several novel robotic middleware that can accommodate a variety of hardware

1

components and robots.

However, the distribution requirements extend beyond a single robot. The area of multi-
robot control and collaborative task achievement among different robots has long been a
hot research topic. Major advances in computer networking and the birth of the Internet
have greatly facilitated efficient and reliable communication among separate entities. Thus,
there is an ever growing need for generic robotic frameworks and middleware. Many modern
robotic middleware programs not only deal with the heterogeneity of components onboard
a single robot, but also deal with network heterogeneity by providing a generic network
interface to enable multiple robots to interact in a seamless manner. Effectively, robotic
middleware provides a framework to integrate several robots into an environment where
they can be controlled by a human operator to carry out some tasks and/or collaborate
together to achieve a major goal through data and information exchange.

1.1 Motivation

Numerous high-profile robotic middleware programs are currently in use. Robotic middle-
ware programs have varying architectures but typically have the same set of functionalities
such as providing hardware and software abstraction layers, resource management, etc. The
provided low-level and hardware interfaces provide tight control. While this is desirable in
many applications, it can sometimes add unnecessary complexities. As mentioned earlier,
robotics is an interdisciplinary field; researchers working with robotics come from different
engineering backgrounds and have different needs. For instance, a researcher working on
high-level applications such as localization or collaborative robotic behavior may treat the
robot as a single entity that provides inputs for his/her application and can be acted upon
in return. Such researchers are usually uninterested in lower-level details such as sonar
ranging acquisition rate, or low level motor control signals [41].

Thus, the work presented in this thesis is motivated by the existence of the following
issues:

• The lack of a generic middleware standard that can accommodate a wide range of
heterogeneous robots.

• The (sometimes) unnecessary complexities in many existing middleware programs.

• While existing middleware programs can accommodate many robotic components,
they cannot fully replace vendor-provided tools and libraries. For a robot, it is

2

undeniable that, in most cases, the vendor-provided tools are the best and most
efficient way to make use of all of the robot’s capabilities.

• In existing middleware programs, and especially those that support networked robots,
the exchange of data and information between multiple robots is implicit and not
explicitly discussed. The notion of efficient structured information and data exchange
between robots is not heavily emphasized in existing work.

1.2 Objectives and Contributions

The work presented in this thesis aims at tackling the problem of robotic middleware from
a novel perspective. The main points are as follows:

• Representing a robot as a high-level single entity in the environment rather than
fine-grained modeling.

• Providing a system/framework for rapid prototyping of robotic applications and al-
gorithms without worrying about low-level hardware details.

• Providing greater transparency for developers. Namely, network and communications
transparency.

• Enabling developers to make full use of vendor-provided libraries and tools, while at
the same time allowing for seamless integration with other systems.

• Introducing the notion of structured lightweight data and information exchange be-
tween multiple robots in an environment.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 provides a detailed overview
of recent advances in the areas of robotic middleware and multi-robot frameworks, along
with the latest state-of-the-art work presented in the literature. Moreover, this chapter
covers the concepts and challenges of robotic middleware as well as emphasizes some of the
related middleware programs, which will be essential for clear presentation of subsequent
chapters. Chapter 3 describes, in detail, the architecture of the proposed middleware. This

3

includes the purpose of the work, design decisions, software designs and methodologies as
well as the different components of the system and how they work together. Chapter 4
describes the robotic entities and the experimental setup used to test and evaluate the
middleware in a real environment. Chapter 5 discusses the evaluation metrics used to
exhaustively evaluate the performance and scalability of the middleware. Chapter 6 con-
cludes the thesis by summarizing the contributions of the presented work and discusses
ideas for future research work.

4

Chapter 2

Background and Literature Review

In this chapter, a detailed discussion of robotic middleware and frameworks is given, in-
cluding design goals, typical functionalities, architectures, and challenges. Moreover, the
current state-of-the-art advances in multi-robot control frameworks and middleware-based
architectures are covered. These combined will help explaining how the proposed mid-
dleware emphasizes certain elements in multi-robot environments and how it tackles the
problem from a different perspective.

2.1 Robotic Middleware

Robots come in different types and configurations. A mobile robot is an automatic machine
that is equipped with wheels for cruising. A robotic arm is a sophisticated set of joints and
actuators with different degrees of freedom mimicking the human arm and used to manip-
ulate objects. Another example is humanoid robots, whose physical structure resembles
that of the human body. A modern robot is usually equipped with a sophisticated array
of heterogeneous hardware components. Examples of these are sensors such as infrared
sensors and range finding devices such as laser and sonar, cameras, and vision systems, to
name a few. These devices are usually controlled by low-level microcontrollers and device
drivers. A large number of modern robots can be controlled using computers and come
with vendor-provided software components which control the low-level hardware compo-
nents. Thus, a modern robot can be modeled as a highly distributed system of hardware
and software modules. At the robot level, different hardware components can be provided
by different vendors. The same applies to software components which can also come in
different programming languages. Moreover, different vendors use different communication

5

protocols between components. While modularity is highly favored in the engineering of
sophisticated systems, it is a major issue in robotics integration and configuration. At the
robot level, integrating different heterogeneous components in a manner that fully utilizes
the robot functionalities is a challenging task. An even more challenging task is integrat-
ing different robots into a single cohesive multi-robot framework. The unique nature of
robotics comes with its own challenges. Some are listed here:

• Application development for robotics is a difficult task since it sometimes requires
knowledge from different engineering fields.

• The heterogeneity of robotic hardware and software components, as well as their
communication protocols constitute a major obstacle in multi-robot integration. This
results in a steep learning curve and longer development times.

• The lack of a unified standard for robotic communication, or integration means that
most multi-robot frameworks are developed in an ad-hoc manner, serving only a
specific purpose, and can only be used in a handful of environments.

• Different robots have varying physical properties and offer different services. Making
use of all the different services in a meaningful and efficient manner is a challenging
task. Moreover, developing “run anywhere” applications that could be deployed on
different robots is a very challenging task [41].

• Robots have different and varying operational requirements compared to conventional
machines. Some critical robotic systems must operate in a real-time fashion, others
may have more relaxed constraints and operate in a “best effort” fashion [41].

There is a growing need for a middle layer, or a middleware, for robotics. A middleware,
in a distributed system context, is a sophisticated piece of software that enables different
distributed components to communicate and manage data in a meaningful manner [8].
The main function of any middleware is to mask all the heterogeneity of components in
a distributed system and provide the user with a structured set of high-level services and
functionalities that leverage the use of the underlying components. Designing a middleware
that can accommodate multiple hardware and software components is one of the most
challenging research problems in the field of robotics. A perfect robotic middleware should
accomplish the following:

• Reduce robotic software applications development times by providing a high-level
abstraction of the underlying components [37].

6

• Allow for the integration of different types of components in a seamless manner,
regardless of their types and configurations, by hiding the heterogeneity of the un-
derlying components.

• Promote reusability and shorter development times by providing commonly used
robotic services such as range readings, color tracking, image processing, navigation,
localization, and so on, as pluggable components in the system. These services should
be independent of any hardware or operating system.

• Provide real-time capabilities for time-critical applications.

• Fully utilize all the underlying functionalities of a robot and ensure minimal overhead
and latency.

2.2 Middleware for Networked Robots

Middleware for networked robots, or multi-robot middleware, is a subclass of robotic mid-
dleware programs. This type of middleware aims at integrating different entities such as
robots, external systems, and sensor networks, into a single framework where entities can
use services provided by each other, and collaborate to achieve common goals. Designing
middleware programs for networked entities is considered to be a major research problem
in robotics. In addition to the inherent impediments encountered in designing conventional
robotic middleware, new issues and challenges arise when designing multi-robot middleware
programs. A perfect multi-robot middleware should provide the following:

• Collaboration is one of the most common requirements in a multi-robot system. It
is important that the middleware provides high-level collaboration frameworks and
mechanisms to facilitate development of collaborative operations among multi-robots.

• Be able to integrate different types of systems and components that can be used by
robots, such as sensor networks and high performance machines running complex
algorithms.

• Since multi-robot environments are highly dynamic and uncertain, the middleware
should provide facilities for dynamic and efficient resource discovery. This greatly
enhances the robot’s ability to be self-adapting and self-optimizing.

• The middleware should provide an efficient structured information and data carrier
mechanism across different integrated robots and components.

7

In multi-robot middleware, the communication model defines the standard and tech-
nologies used to implement the communication infrastructure of the middleware, through
which different robots and components communicate. The communication model is an
indispensable part of any middleware. Different standard and non-standard models are
employed by existing middleware programs.

Standard network middleware is a major building component in many existing multi-
robot middleware programs. A well known example is the Common Object Request Broker
Architecture (CORBA) standard, defined by the Object Management Group (OMG) [7].
CORBA is by far the most used network middleware in robotic middleware. It defines
standards for inter-process and inter-platform communications. Moreover, it defines a set
of utilities that are inherently important in distributed systems, such as event distribution,
distributed notifications, and service discovery. A large number of implementations exist for
CORBA [2]. Another relatively new network middleware is the Internet Communications
Engine (ICE), developed by ZeroC [17]. ICE is an object-oriented middleware that provides
platform and programming language independence, as well as RPC and publish-subscribe
functionalities. Some of the interesting features of ICE is that it is object-oriented, built
using component-based design methodologies, and supports grid computing.

Besides network middleware technologies, some robotic middleware rely on web tech-
nologies such as the Simple Object Access Protocol (SOAP). SOAP is a W3C protocol
specification for the exchange of structured information. SOAP uses XML-based messages
and relies on application layer protocols of the OSI model, such as HTTP and SMTP, for
message transport.

Lastly, some middleware programs rely on non-standard communication models such
as custom-implemented shared memory. The rationale behind this is to provide specific
low-level functions that cannot be achieved using general purpose technologies.

2.3 Literature Review

The past fifteen years have witnessed numerous research contributions in the area of robotic
middlware. Although existing work has focused on different purposes and capabilities, it
can generally be split into two major categories. On one hand, the first category tackles
the issue of hardware and software heterogeneity from a low-level perspective, focusing
on abstracting different types of sensors, actuators and other types of hardware. On the
other hand, the second category addresses the problem from a higher level perspective by
focusing on the higher level robotic functionalities and human operator experience.

8

Utz et al. [46] developed Miro, a mobile robot middleware that tackled the problem of
heterogeneity in robotics hardware and software components. The authors of Miro adopted
an object-oriented design methodology. They relied on the CORBA standard to facilitate
the software development process and ease the integration of different robotic entities, as
well providing hardware and operating system independence. Miro is composed of three
layers: the device layer, the service layer, and the class framework layer. The device layer is
the platform-dependent component of the middleware. It abstracts all the robotic hardware
components such as the sensors and actuators. The service layer provides an abstracted
interface to hardware components through the use of the Interface Definition Language
(IDL) of CORBA. This essentially models sensors and actuators as objects with callable
programmatic routines. The use of CORBA IDL eliminates any programming language
and location dependencies. The class framework layer lies atop the previous two layers. It
provides a collection of common services executed on mobile robots such as localization,
path planning, navigation, and logging. The use of cross-platform libraries such as the
CORBA-based adaptive communication environment (ACE) [40] and CORBA notification
service [27] greatly promotes portability.

In addition, Jung et al. [30] proposed a component-based framework for seamless inte-
gration of robotic systems. This work is based on the cisst package which is a collection
of C++-based libraries implementing lock-free data structures and providing efficient data
exchange mechanisms for communicating threads within a running process. A major part
of the cisst package is the component framework that models each running thread within a
process as a separate component with typical provided and required interfaces. These in-
terfaces enable the components to behave in a client-server manner. Jung et al. augmented
the data exchange mechanism by using the proxy design pattern and network middleware
to enable inter-process communication across networks while preserving the original data
exchange mechanism and location transparency. ICE was chosen as the network middle-
ware due to its high performance and its use of the proxy design pattern, which matches
the adopted approach in this work.

Lee et al. [32] viewed the robotic middleware problem from a more general perspective
by proposing a middleware architecture and a software component model for building in-
telligent service-oriented robotic systems. Lee et al. argue that the existing middleware
programs are too complex and can only be used in a handful of environments. Lee et
al. proposed a four-layer middleware architecture. The first and bottom layer is called
the operating environment layer. It is responsible for providing real-time capabilities and
operating system abstraction. The second layer is the communication layer which houses
network middleware programs such as CORBA and ICE. This layer is responsible for pro-
viding programming language independence and location transparency. The third layer is

9

the intelligent service layer. It makes use of component-based software models and design
patterns to create a repository of reusable intelligent services. The fourth and final layer
is the application layer which provides application developers with a set of powerful tools
and APIs for application and user interface development. The second contribution is a
simplified and robust component software model. Lee et al. argue that component models
of other work are either incomplete or too convoluted. The proposed model provides a
template for component-based design. In this model, each component has three interfaces:
message interface, event interface and data interface. The message interface provides a
message interaction interface to other components. The data interface is used for data
exchange. The event interface is used for receiving and sending events. Events have the
highest priority since they control the flow of execution within the component. There are
three types of components: device components, service components, and basic components.
Device components can be used to control separate hardware parts on the robot. Com-
monly used robotic services can be implemented as service components. Basic components
are used to implement communication infrastructure and housekeeping facilities for other
components.

Ando et al. [18] introduced RT-middleware (Robotics Technology Middleware). RT-
middleware is a common platform standard for robotic systems based on distributed ob-
jects. The standard aims at achieving two major goals. The first is to broaden the robot
market through the creation of a standardized and generic architecture that emphasizes
modularization of different robotic components. This, according to Ando et al., will re-
move the barrier between robotic software and hardware manufacturers. The second goal
is to increase research efficiency by having researchers focus on implementing their ex-
periments/robotic applications instead of worrying about building robotic systems from
scratch. To achieve these two goals, RT-middleware aims at realizing certain capabilities
such as real-time execution, synchronization, platform independence and network indepen-
dence. The building block of RT-middleware is the RT-component. It is a specification
standard defined by the Object Management Group (OMG) [7] and modeled on CORBA.
An integrated robotic system can be created by combining various network-enabled RT-
components. An RT-component is composed of one or more component objects. A com-
ponent object is a state machine-based processing unit that has input and output ports, as
well as command interfaces. A wide scale of robotic modules with different granularity can
be implemented using RT-components. An implementation of the RT-middleware stan-
dard called the OpenRTM-aist [9] was developed by the National Institute of Advanced
Industrial Science and Technology (NIST).

Santos et al. [39] proposed an adaptive and real-time producer-consumer-based mid-
dleware for information exchange among autonomous robots over a wireless network, and

10

running on the Linux operating system. The middleware is composed of three main com-
ponents: a real-time database (RTDB), an adaptive wireless communication protocol, and
a task manager called Pman. The RTDB is a replicated blackboard containing a repository
of records with their associated data blocks. Each robot in the environment has its own
RTDB that stores the robot’s state data plus the local state data of every other robot.
Each robot periodically broadcasts a subset of the state data stored in its RTDB to every
other robot. The blackboard design allows the RTDB to act as a dual-port memory where
the application and the communication channel act as the producer and the consumer
respectively, or vice-versa. All stored data are timestamped to allow for data age estima-
tion and validation, two things that are crucial in real-time data exchange. The second
component of the middleware is the wireless communication protocol. It uses an adaptive
time-Division Multiple-Access (TDMA) mechanism that accounts for load variation in the
network. The adaptivity ensures minimal access collision between communicating robots.
The third part of the middleware is the Pman which compensates for the limited support
for time management of processes on Linux by providing real-time services to running
applications.

The work done by Song et al. [44] is yet another attempt to tackle the problem of robotic
middleware in environments with real-time and quality of service (QoS) constraints. Song
et al. implemented a CORBA-based framework to integrate different robotic and automatic
control systems. Since CORBA neither has inherent real-time support nor QoS support,
the real-time CORBA (RT-CORBA) specification was used. RT-CORBA provides a set
of standard services needed in real-time middleware. An open source implementation of
the RT-CORBA called ACE ORB (TAO) was used in an integrated framework consisting
of heterogeneous robotic and control entities such as mobile robots, robotic manipulators,
and vision systems.

Makarenko et al. [35] discussed an upgraded version of Orca, an open-source component-
based middleware for a wide range of robots and distributed sensor networks. Orca em-
phasizes promoting robotic software reuse. According to Makarenko et al., lack of software
reuse is a major limiting factor in robotics. Orca provides an infrastructure that supports
development of robotic software components and provides developers with the flexibility
of specifying component interfaces while not imposing a specific design pattern or archi-
tecture. Moreover, Orca provides a collection of APIs enclosed in the libOrcaIce library.
This library houses a large collection of facilities and patterns commonly used in robotic
applications development. It should be noted that the developer has the freedom to choose
whether to use the library or not. Orca relies on ICE as its underlying network middleware.
All developed components make direct use of ICE.

Bruyninckx et al. [20] introduced the Open Robot Control Software (OROCOS), an am-

11

bitious project that aims at becoming a de facto open standard in the robotics community.
The motivation behind OROCOS stemmed from the lack of openness and standardiza-
tion in the robotics industry where many major companies are producing highly specific
robotic equipment using their own proprietary technologies and protocols. Bruyninckx et
al. intend to follow a highly organized and modular approach in designing and developing
OROCOS. OROCOS is split into three types of modules. The first type is the supporting
module that contains common robotic services and functionalities, as well various support
and utility modules such as real-time support, logging, and so on. The second type is
the robotic module. It is a repository of novel robotic algorithms and hardware control
software. The third type is any user-developed component. These components can be com-
bined together to form complex robotic platforms. CORBA is chosen as the underlying
network middleware and the building block for all user-developed components. Moreover,
the development of OROCOS is to be based on a novel incremental process involving de-
tailed discussions among developers, use of open standards such as CORBA IDL and XML,
use of novel and original algorithms and techniques from a wide range of domains, as well
as applications of software design patterns.

Quigley et al. [38] developed ROS, an open-source Robot Operating System that aims
at tackling the problem of designing and developing large-scale distributed robotic appli-
cations. The design of ROS is based on the microkernel design, but not in the conventional
operating system sense. Instead, ROS provides a structured communication layer and ap-
plication development facilities that are realized by multiple fine-grained interconnecting
tools. ROS greatly promotes modularity as one of its cornerstone philosophies. ROS is
based on four fundamental concepts: nodes, messages, topics, and services. A node is the
elementary building block of a ROS-based application. A node is analogous to a software
module. A single application can consist of multiple nodes. Nodes communicate with each
other through message passing. Messages range from primitive data types to compound
messages. Moreover, nodes can communicate in a publish-subscribe manner by publish-
ing and/or subscribing to different topics. In addition, synchronous communications is
possible using services. A service can be defined by a name as well as request and reply
messages. ROS-based modules residing on different robots and machines communicate in
a peer-to-peer fashion. The rationale behind this is that a centralized communication can
become a hinder when different hosts reside in heterogeneous network. Peer-to-peer com-
munication occurs through XML-RPC. Regarding programming language support, ROS
supports C++, Python, LISP, and Octave. Moreover, it is natively implemented in some of
these languages. In addition, ROS provides a programming-language-independent IDL for
specifying communication interfaces between different modules. The modularity of ROS
led to the incorporation of several external open-source tools such as robotic algorithms,

12

simulators, and so on. Moreover, various tools were developed to work with ROS. These
tools offer multiple services such as debugging, collaborative development, monitoring and
visualization, to name a few. ROS is an open-source project that is distributed under
a flexible license allowing for the development of both commercial and non-commercial
applications.

Côté et al. [21] introduced MARIE (Mobile and Autonomous Robotics Integration
Environment). It is a distributed component-based middleware that aims to shorten the
software development process for robotics by promoting reusability of robotic software
components, as well as integration of existing and new robotic environments and modules.
MARIE allows for the integration of inherently incompatible robotic frameworks and com-
ponents. This gives researchers access to a wide range of services and functionalities, while
at the same time reducing development time. Côté et al. adopted a layered architecture
in the design of MARIE to provide multiple abstraction layers, as well as more control
on the development details. As such, MARIE is composed of three layers: the core layer,
the components layer and the applications layer. The core is the lowest layer. It houses
various infrastructure tools such as communication mechanisms, data handling, as well as
distributed and low-level operating systems services. The component layer provides facili-
ties for adding reusable components. The application layer is the upper layer. It provides
the main framework for developing and integrating robotic applications. The core of any
MARIE-based application is the Mediator Interoperability Layer (MIL), which is based on
the mediator software design pattern. MIL enables building of distributed robotic systems
using heterogeneous components by acting as a central unit that handles communication
among the loosely coupled components. MIL houses four main components: the Applica-
tion Adapter (AA), the Communication Adapter (CA), the Application Manager (AM),
and Communication Manager (CM). The AA acts as a unified interface between the MIL
and an application, as well as other applications. The CA handles data and information
exchange between AAs of different applications. It resolves any protocol incompatibilities.
Finally, the AM is responsible for creating and managing different components in the sys-
tem. Lastly, the CM is responsible for managing communications between components.
MARIE uses ACE ORB as its communication infrastructure.

Gerkey et al. [24] introduced the Player/Stage, an ambitious multi-robot framework
that grew to become a de facto standard in robotic frameworks and middleware. It is
argued that the existence of various types of robots, and the mandatory knowledge of
network programming are major hinders in robotics research. Player/Stage is a client-
server based framework that models a robot as a collection of hardware devices such as
sensors and actuators. The framework enables TCP-enabled client programs to control
these devices over the network. There are two main parts in Player/Stage: the Player robot

13

device server and the Stage multi-robot simulator. The Player server implements device
drivers for various robotic hardware devices, and provides TCP socket-based interfaces
to these devices. Player has multi-client support, and is usually deployed on the robot’s
onboard computer or any machine that is physically connected to the hardware devices.
Player borrows the UNIX model of representing various devices as files. A client can access
various devices using the read and write UNIX system calls. Moreover, Player provides an
extensible and flexible device model that allows for implementing sophisticated algorithms
in drivers, as well as the exchange of data and information with other drivers. While the
Player server is C/C++-based and runs on UNIX-like machines, the client programs can be
implemented in different programming languages and run on different platforms. This is
attributed to the network-based communication. The second part of Player/Stage is the
Stage simulator. Stage is a sophisticated multi-robot simulator that enables fast creation
of multi-robot simulations that could be later realized in real environments. Moreover, it
enables simulation of devices that have no counterparts in the real world. This assists in
research and development of new devices. It should be noted that Stage provides simulation
models for numerous devices with reasonable accuracy rather than modeling fewer devices
with higher accuracy.

Yoo et al. [48] presented the Robot Software Communications Architecture (RSCA),
a Real-Time (RT) Quality of Service (QoS) middleware specification for networked robots
based on the Software Communications Architecture (SCA), a Software-defined radio spec-
ification. Similar to works presented earlier, the work presented here tries to tackle the
issue of heterogeneity of robotic components. RSCA introduced a specification for stan-
dard common interfaces similar to SCA, albeit for robotic applications. These interfaces
are split into two groups. The first group is the operating environment interfaces that are
used to deploy applications. The second group is the application component interfaces.
These interfaces have to be implemented by the robotic application to leverage the func-
tionalities a robot has to offer. The core of RCSA is composed of three main parts: a
Real-Time Operating System (RTOS), communication middleware and a core middleware.
The RTOS is a POSIX-based operating system that is compliant with an IEEE standard.
The communication middleware is based on RT-CORBA. These two provide the essential
RT capabilities, as well as various services such as logging and event services. The most
important part is the core middleware, also called the core framework. This framework is
composed of a set of interfaces and XML-based domain profiles. These interfaces provide
a comprehensive set of APIs that are used by robotic applications and/or the other parts
of the middleware. The “service” interface is responsible for providing QoS, as well as
resource management through devices interfaces. The domain profiles are used to describe
various hardware and software configurations. RCSA provides an abstraction layer and

14

transparency among different robotic applications.

Hernández-Sosa et al. [28] proposed CoolBOT, a component-oriented robotic frame-
work implementing mechanisms for dynamic resource management. CoolBOT addresses
the issue of software reusability in robotic applications development, as well as adaptive
management of low-level resources on a robot, such as processor overhead. A component
in CoolBot is represented abstractly as a port automata. This representation breaks a
component into three parts: the internal functionality, the external interface, and an au-
tomaton modeling the different states of the component. The external interface provides
a set of read/write ports. The automaton is composed of external and internal states
where the external states can be controlled by the user of the component, and the internal
states are responsible for performing the core functionalities of the component. CoolBOT
supports two types of components: atomic components and compound components. An
atomic component is used for low-level control of hardware devices or for implementing
general purpose algorithms. A compound component is composed of other components
in a hierarchical fashion. Each compound component is managed by a supervisor com-
ponent. In execution, components are mapped to threads specific to the host operating
system. Different components can communicate through their input ports using the de-
veloped Inter Component Communications (ICC), a similar mechanism to Inter Process
Communication (IPC) found in operating systems. A component can be either adaptive
or non-adaptive. In CoolBOT, adaptive management of resources is defined through two
controllable variables: the frequency of operation and the quality level. Moreover, each
adaptive component must operate at certain performance levels, which can be adjusted.
The supervisor component manipulates the two variables to achieve the desired perfor-
mance level at runtime. Each component has a set of “adaptive observables” which are
monitored externally by the framework. Performance level is continuously adjusted based
on these adaptive observables.

Magnenat et al. [33] introduced ASEBA, a modular low-level event-based middleware
that aims at providing distributed control and efficient resource utilization on multiprocessor-
powered robots. The middleware targets robots that have peripheral microcontrollers con-
trolling sensors and actuators. It introduces a new architecture where microcontrollers
can communicate through asynchronous messages called events. This design replaces the
conventional periodic polling for sensor data and sending actuator commands. Moreover,
ASEBA adds to the functionalities performed by microcontrollers. It improves modularity
and efficiency by distributing several processing tasks among microcontrollers and have
them communicate with the main processor only when needed. This greatly reduces the
workload of the main processor and reduces bus latency. To achieve this, ASEBA comes
with the AESL scripting language and an Integrated Development Environment (IDE).

15

AESL is a simple scripting language that is used to implement event firing and recep-
tion behaviors. The developed script is then compiled into bytecode using the IDE and
runs in a lightweight virtual machine on the microcontroller. These custom designed vir-
tual machines have light memory and processing footprints that are suited for embedded
systems.

Gil et al. [25] introduced a data-centric middleware for integrating wireless sensor net-
works and mobile robots. It is part of the larger European middleware project
AWARE [1]. The proposed middleware aims at providing energy efficient mechanisms to
enable mobile robots to gather data and information from sensor networks in an environ-
ment. This data can be environmental data such as temperature, light and humidity, or
localization data that could be used by the robot to locate itself in the environment. The
main feature of the middleware is the abstract data-centric representation of environment
entities and object. For instance, an object can be a vehicle, a fire, or an animal. Each
object has a unique identification. Users can access these information in an abstract way.
Moreover, they can provide definitions for certain objects such as dampness for a liquid
spill, or high temperature for fire. The middleware components run on both the nodes
of the sensor networks and participating mobile robots. The middleware components de-
ployed on sensor nodes are based on the TinyOS.

The OPRoS project, introduced by Song et al. [42], is a component-based platform
for networked robots that aims at providing a standard model for developing complex
robotic applications using COTS components, while promoting reusability and compati-
bility among heterogeneous robots. The main goal of OPRoS is to support distribution and
high-level control through RPC. In OPRoS, a robotic application is composed of one or
more loosely coupled software components. OPRoS components come in two types: atomic
and composite. On one hand, an atomic OPRoS component is the basic building block of
an application. Each atomic component is composed of an execution module based on a
FSM and an arbitrary number of ports to communicate with the outside world. There are
three different types of ports: method port, data port, and event port. A port can be either
a provided (input) or required (output) port. Method ports are used to provide and/or
acquire component attributes through client-server method invocation. Data and event
ports are used for data and events exchange respectively. These two types of ports use
the publish-subscribe pattern for communication. On the other hand, a composite compo-
nent is composed of one or more atomic components. Sub-components inside a composite
component are coupled using a hybrid method that combines both connection-oriented
and hierarchical types of composition. Each component on a robot is managed by the
component container. The component container is responsible for managing the lifecycle
of components and resources.

16

2.4 Commercial Robotic Systems

There is a number of commercial robotic middleware and frameworks. One of the most
famous ones is the Microsoft Robotics Developer Studio (RDS), developed by Microsoft
Corporation [5]. It is a Windows-based environment for designing and developing robotic
applications. RDS targets academic, commercial, and hobbyist robotic application devel-
opers. The main feature of RDS is a programming model and framework that provides
facilities for developing asynchronous and state-driven robotic applications. RDS provides
a bundle of facilities that provide greater transparency for developers, as well as shorter
applications development times. RDS is based on the Concurrency and Coordination
Runtime (CCR), a .NET-based concurrency library that masks all complexities of mul-
tithreading and synchronization, and provides a clean simple interface to developers. In
addition, RDS provides a lightweight state-oriented Decentralized Software Services (DSS)
framework that enables applications to interoperate on robots and connected machines. To
further speed up development, RDS provides the Visual Programming Language (VPL).
VPL is a tool that enables building robotic applications by visually dragging and dropping
building blocks. This also promotes reusability by using previously created blocks in mul-
tiple applications. For simulation, RDS comes with the Visual Simulation Environment
(VSE). VSE is a 3D physics-based simulation tool that enables developer to simulate and
test their robotic applications in various settings and environments. RDS supports various
types of robots and hardware components. Experienced developers can develop their own
RDS-based control modules. The C# programming language is the main language used for
developing RDS-based applications.

2.5 Chapter Summary

This chapter defined robotic middleware, one of the most challenging research problems
in robotics. It discussed the difficulties and challenges associated with designing robotic
middleware programs. Moreover, it presented a comprehensive list of features and facilities
that should be provided by a perfect robotic middleware.

Some of the state-of-the-art work in the area of robotic middleware and frameworks were
covered in this chapter. Moreover, one of the well-known commercial robotic frameworks
was covered as well. It can be concluded that a large number of the existing middleware
programs deal with low-level and hardware details. As mentioned before, this can add
unneeded complexities when carrying out high-level experiments. Moreover, inter-robot
data and information exchange is not explicitly emphasized in any of the work. Thus, this

17

research aims at developing a middleware that provides a high-level modeling of robots,
and a structured and efficient inter-robot data exchange carrier.

18

Chapter 3

Middleware Architecture

This chapter presents the proposed robotic middleware. The work presented in this thesis
stems from experiences in working with robotics and fellow researchers and developers.
A major issue in a robotics laboratory is how much time it takes to build a demo or an
experiment setup involving multi-robots. Setting up a multi-robot experiment can be a
tedious and time-consuming process. Aside from implementing the robotic applications,
one has to deal with a lot of network programming and concurrency issues to attach
different robots into a complete framework. Building a framework can take much longer
than implementing the application themselves, which are the main focus of the experiment.
In most cases, and due to time constraints, the frameworks developed are ad-hoc with
limited or no extensibility and cannot be used in other experiments. The middleware aims
at providing a different experience to researchers/developers, as well as ordinary users who
have little or no knowledge of robotics.1 For developers, the middleware aims at minimizing
the time spent on setting up experiments/scenarios involving multiple robots. A developer
only needs to implement the desired functionalities for a robot in whatever programming
language and using whatever APIs are available for that robot. For normal users, the
middleware can be used as part of a demonstration framework to enable users who have
no prior knowledge of robotics to experiment with different robots and systems. A number
of issues that are inherent in robotic middleware were addressed. They are as follows:

1The discussion differentiates between two types of people: the researcher/developer and the user. On
one hand, the researcher/developer is the person implementing the application and understands how the
system works. On the other hand, the user interacts with and controls different robots in the environment
through a user interface but does not necessarily know about the system. In a research environment,
however, a developer and a user are usually the same person. This notation is used to explicitly differentiate
between the different roles of people who make use of the middleware.

19

• The heterogeneity of robotic software components.

• Rapid and seamless integration of different types of robots.

• Information and data exchange between different entities in a robotic setup.

This work borrows a few ideas from work presented in [35] and [30], such as the use
of the Internet Communications Engine (ICE) as the network middleware for the robotic
middleware. Unlike many works on robotic middleware, however, it was chosen not to delve
into the low-level and hardware details of a robot or model it as a network of components.
Instead, the middleware recognizes a robot as a single entity in the environment that
possess certain properties and has a number of services to offer to a human operator or
other entities. The reasons behind this choice are listed below.

• The main aim of this work is to assist in designing and developing high-level multi-
robot applications and experiments where new algorithms and techniques involving
robotic behavior, collaboration, reasoning, and so on can be rapidly prototyped and
tested. As mentioned before, many of these experiments do not require knowledge
of low-level or hardware details.

• Each robot vendor has its own (sometimes proprietary) libraries and protocols for
their robots; they are, in most cases, incompatible with libraries provided by other
vendors. However, one cannot neglect the fact that vendor-provided frameworks are
usually the best in terms of efficiently and easily leveraging all of the capabilities of
the underlying robot. The middleware does not aim to replace existing frameworks,
but tries instead to introduce a generic-enough protocol that could accommodate
different robots with their heterogeneous frameworks. In short, the middleware’s
main purpose is to enhance the ease of development and reduce the development
times for robotic applications.

Regarding the software design and implementation aspects, software design patterns
were extensively used in the implementation, such as the state machine and observer pat-
terns [23]. Moreover, a component-based design methodology was followed throughout the
design and implementation process. Also, the source code of the middleware was thor-
oughly documented. These efforts have culminated in an industrial-strength prototype
with the following features:

20

• Modularity: the components of the middleware are independent and loosely cou-
pled. Any component can be modified, moved to a different machine, or even re-
implemented in a different programming language without the need to make changes
to any components.

• Extensibility: the use of software design patterns, rigorous developing disciplines, and
documentation ensures that more functionalities and updates can be easily added in
the future. Moreover, the technology used for data and information exchange greatly
enhances extensibility.

• Scalability: the middleware is able to accommodate a large number of entities and
clients with minimal effect on performance (please see Chapter 5 for more details).

• Performance: while the middleware currently does not include real-time capabilities,
it ensures a minimal amount of time for information and data delivery between a
client and an entity.

• Safety: robotic environments can be hazardous. Working with mobile-and expensive-
equipment always carries the risk of damage and collision. The most basic safety
mechanism is to be able to instantly stop or halt a robot if a situation calls for it.
The middleware provides a guaranteed safety stop signal that can be acted upon in
the robotic application.

In the middleware, an entity can be a robot, sensor network, or any device that can
perform/provide services and can be controlled by high-level APIs.2 Each entity plugged in
to the middleware must publish a profile detailing the services it has to offer. A typical flow
of events in using the middleware can be as follows: When a client program is introduced
to the system, the user can browse through a list of all connected entities. The user can
then “check out” one or more entities, provided that they are available, and issue various
tasks to them. After running some experiments and scenarios, for instance, the user can
then release previously “checked-out” entities so that they become available to other users.
Figure 3.1 illustrates an abstracted overview of the middleware architecture. The shown
components will be discussed in detail.

2Only mobile and stationary types of robots were used to test the middleware. Throughout the rest of
the thesis, the terms entity, robotic entity, and robot will be used interchangeably.

21

Figure 3.1: Middleware Abstracted Overview.

The discussion starts here by describing what information is needed to model a robot
in the environment. This also includes the extensible lightweight data carrier used. Next,
the network middleware that was employed as the central hub of the robotic middleware is
discussed. Moreover, all the possible data and information that can be exchanged between
the different applications in the middleware are discussed. After this follows an expatia-
tion on the middleware architecture and components, and on how they interact and work
together.

3.1 Information Base and Data Carrier

This section discusses how each entity is represented in the environment, and what infor-
mation need to be provided for each entity to make it an active actor in the environment.
Moreover, this sections presents the technology that was chosen to have lightweight struc-
tured information and data exchange, as well as the rationale behind the choice.

22

3.1.1 Entity Information

In the middleware, each entity in the environment is recognized by a unique entity profile.
The entity profile contains a comprehensive set of declarative information, such as the
entity’s type, location, and services. This information uniquely defines an entity as an
active actor in a multi-robot, multi-user environment. The entity profile is composed
of two sub-profiles: the basic profile and the services profile. These XML-based profiles
must be defined and created prior to plugging the entity in to the environment. They are
discussed in detail in the following subsections.

Basic Profile

The basic profile provides basic information about an entity that can uniquely identify it in
the environment. The basic profile for an entity is made available to all connected clients,
and it should help a user decide which entity best suits his needs. A typical basic profile
should have the following information:

• Name : the name of the entity.

• Category : describes the nature of the entity. In the current version of the middle-
ware, two categories are supported: ROBOT and MACHINE.

• Type : the type of the entity. Two types are supported: MOBILE and STATIONARY.

• Description : an optional brief description of the entity.

• Xpos, Ypos, and Zpos : these three parameters define the current position of the
entity in an environment.

Figure 3.2 illustrates the basic profile for a mobile robot.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<BasicProfile name = "PeopleBot"

category = "ROBOT"

type = "MOBILE"

descr = "Mobile robot with an array of range finding sensors, basic gripper and camera."

xpos = "1000"

ypos = "1500"

zpos = "0" >

</BasicProfile>

Figure 3.2: A Sample Basic Profile XML File.

23

Services Profile

In addition to the basic profile, the developer must also provide the services profile. This
profile contains all the details about the services offered by the entity. In the context of the
middleware, a service is defined as an executable task that can be performed by an entity
upon request from a human operator, or from another entity (such as in collaboration). In
addition to its attributes, each service can house two optional sub-components:

• Control Parameter : a control parameter defines how external actors can interact
with a service. Control parameters are used to configure a service by providing input
and runtime configurations, as well as communicating results and feedback to the
requester.

• Resource : a resource represents external data or files that a service might require
for execution. Examples of resources are map files, images, or a batch of sensor
readings.

For each service, the following attributes should be provided:

• Name : the name of the service.

• Global ID : a global name for the service. This can be used in case the same service
is provided by more than one entity, or the service is a sub-service of a composite
service. It is the responsibility of the developer to ensure the uniqueness of the global
ID.

• Type : the type of the service. There are two supported values: SMPL and CMPLX.
SMPL signifies a simple atomic service, while CMPLX signifies a composite service that
can be composed of other services that are executed in a specific order.

• Active : an optional flag attribute indicating whether the service is enabled or dis-
abled. An enabled service means that it can be requested. A robotic application may
enable/disable a service. This can be done, for example, to preserve battery power
or resources. However, this choice is left to the developer.

• Blocking : an optional flag attribute indicating whether the service can be executed
simultaneously with another service or not. A blocking service could mean that it
makes use of resources/components that cannot be shared, or that the simultaneous
execution of a second service could interfere with the former.

24

• Pausable : an optional flag attribute indicating whether the service can be paused
in-mid execution or not.

• Description : an optional simple description for the service.

• Notes : optional short notes related to the service.

• Service list : a list of other services. This list should be populated only if the service
is CMPLX.

As mentioned earlier, each service can have an arbitrary number of control parameters
and resources. Each parameter and resource is declared as a separate piece of information
having its own attributes and enclosed inside its service. For each parameter the following
attributes should be provided:

• Name : the name of the parameter.

• Type : the type of the parameter. A parameter can be an input, output, configu-
ration, or feedback parameter. The allowed values for the type are INPUT, OUTPUT,
CONFIG, and SMPL.

• DataType : the data type of the parameter. A parameter can be an integer, double,
string, or boolean. The allowed values are INT, DBL, STR, and BOOL

• Units : an optional attribute signifying the units of the parameter (like millimeters).

• Ready : an optional flag attribute indicating whether the value of the parameter is
set or not.

• Required : an optional flag attribute indicating whether the parameter is a manda-
tory dependency for the owning service or not.

• Savable : an optional flag attribute indicating whether the parameter can be saved
or not. If the flag is not set, it means that the parameter can change multiple times,
or that it must be set each time its owning service is requested.

• Multiple : this optional attribute is used to indicate that the parameter can store a
list of values of the same data type. This can be useful for streaming data or having
multiple choices for a single parameter.

• Value : the value of the parameter.

25

• Value list : list of values of the parameter.

Similar to control parameters, each resource is defined by the following attributes:

• Name : the name of the resource.

• URL: the URL of the resource on the robot’s onboard machine.

• Ready : an optional flag attribute indicating whether the resource exists on the
robot’s machine or not.

• Required : an optional flag attribute indicating whether the resource is required for
the owning service to function or not.

• Savable : an optional flag attribute indicating whether the resource is maintained
on the robot’s machine or not. If the flag is not set it means that that the resource is
constantly changing, or that it must be set each time its owning service is requested.

Figure 3.3 illustrates a portion of the services profile for a mobile robot. In the next
section the technology that was used as the information and data carrier in the middleware
will be discussed, as well as details about how data is stored and transported in an efficient
manner.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<ServiceProfile count = "7">

<!-- Service #0 -->

<Service parameter_count = "1"

name = "Simple motion"

type = "SMPL"

active = "true"

blocking = "true"

pausable = "false"

global_id = "Walk" >

<Parameters>

<Param name = "Distance"

type = "INPUT"

data_type = "INT"

units = "meters"

value = "1000"

required = "true"

set = "true"

modifiable = "true"

descr = "Distance to travel" />

</Parameters>

</Service>

<!-- continued -->

</ServiceProfile>

Figure 3.3: A Sample Services Profile XML File.

26

3.1.2 Google Protocol Buffers

The notion of an extensible data and information exchange was not greatly emphasized
in robotic middleware. On one hand, some of the works such as those presented in [46],
[44], [35], [20], and [43], rely directly on RPC mechanisms provided in the underlying
network middleware such as ICE and CORBA to exchange data and information. For
instance, sonar readings from a mobile robot can be transmitted as function arguments in
an RPC. Since RPC interfaces are specified using Interface Definition Languages (IDL),
this approach does not allow for much extensibility in case new types of data and informa-
tion are frequently included in the system through growing needs or the addition of new
robotic entities. In that case, the interfaces have to be frequently modified to support the
change. In addition, it is almost impossible to specify all of the needed information and
their exchange interfaces at development time. On the other hand, in the ORiN project
[36], robotic specifications can be written in XML and exchanged over SOAP. In addition,
[22] and [38] use XML-RPC over HTTP for data exchange. While XML is an ideal choice
for extensible and structured information exchange, it is also verbose and heavyweight.
Moreover, the use of HTTP certainly adds extra overhead. It is believed that information
exchange in a robotic environment is a critical issue even without real-time constraints,
since in various cases it is essential that data reach a robot within a reasonable amount of
time to ensure that the desired effect takes place or to avoid any accidents.

To have a structured lightweight information exchange, the Google Protocol Buffers
(GPB) were used [12]. GPB are a collection of platform-and language-independent mech-
anisms for serializing structured data. GPB are Google’s lingua franca for the fast inter-
machine exchange of structured information. According to [12], “GPB are 20 to 100 times
faster than XML and 3 to 10 times smaller.” GPB are independent of the transport medium
or protocol. This powerful feature enables GPB to be used over any RPC framework or
transport protocol. Moreover, programmatic data access is simple and straightforward.
The emphasis on simplicity and performance in GPB as well as their powerful features,
qualify GPB as an ideal choice for information and data exchange in the middleware.

To create a type of information record, one has to write the specification as a GPB
message. A message is composed of uniquely numbered fields. Each field has a name
and a value and can be either required (must be included), optional, or repeated (a list
of values of the same data type). A message file (which has the extension .proto) is
then compiled using the GPB compiler into a simple data access class [12]. The compiler
supports translation into multiple programming languages, such as C++, Java, and Python.
The generated class provides functions to serialize/parse an information record specified by
the message file to/from raw bytes. The serialized information can then be sent over the

27

wire to its destination, where it can be parsed and used. The binary serialization format
of GPB is compact and both forward-and backward-compatible.

3.1.3 Google Protocol Buffers Messages

All data declared in the entity profile are parsed from the provided profile XML files and
stored in programmatic classes corresponding to GPB message specifications. These classes
have automatic serialization and deserialization functions that are used when transmitting
and receiving data over the network. The current version of the middleware has six message
types. They are listed as follows:

• Service : the service message stores all the information needed to define a robotic
service. Figure 3.4 illustrates a portion of the Service message file. One of the most
important fields of Service is the “entityId”, which stores the owning entity-unique
identification.

• CtrlParam : the ctrlparam message stores all the information needed to describe a
control parameter of a service. A service can have zero or more control parameters.
This information includes the name, data type, and all the other attributes obtained
from the service profile file. The ctrlparam record does not store the actual parameter
value(s), but rather the metadata of parameters.

• Param : this message stores raw parameter information. It is used for the actual
exchange of parameter data.

• Resource : the resource message stores metadata needed to locate and identify a
certain resource.

• Basic Profile : the basic profile message stores all basic information on an entity.
This information is obtained from the basic profile file.

• ByteStream : this message is used as a carrier for a stream of raw data. It can store
an arbitrary-sized array of bytes.

The middleware messages contain additional information for internal housekeeping and
data transmission. These fields of information need not be specified in the entity profile
and the developer need not be aware of them.

28

package Data;

message Service

{

enum Type

{

SMPL = 0;

CPLX = 1;

ITRAV = 2;

}

required string entityId = 1;

required int32 id = 2;

required string name = 3;

required Type type = 4;

optional int32 depCount = 5 [default = 0];

optional int32 fixedDepCount = 6 [default = 0];

optional int32 baseDepCount = 7 [default = 0];

optional bool isActive = 8 [default = true];

optional bool isExec = 9 [default = false];

optional bool isBlocking = 10 [default = true];

optional bool isPausable = 11 [default = false];

optional string descr = 12;

/* ... continued ... */

}

Figure 3.4: The “Service” Message File.

A powerful feature of GPB is that additional fields can be easily introduced into a mes-
sage or new messages can be added without worrying about modifying the communication
medium or RPC interfaces. Moreover, existing applications do not need to be modi-
fied, unless they make use of the additional fields. Even so, the change will be minimal.
Throughout the development cycle, numerous modifications and additions were made to
the message types without any modification to the network middleware or RPC interfaces.

3.2 Network Middleware

Network middleware is a sophisticated piece of software that mediates between different
distributed applications and the network in which they reside. Network middleware is
considered a vital component in many network-based distributed systems since it eliminates
the boundaries between distributed applications. Some of the functionalities a network
middleware (and a distributed system in general) can provide are the following [45]:

• Network transparency: a typical network middleware hides all networking details
from developers and provides network transparency to application developers.

• Scalability: a good network middleware can accommodate a growing number of ap-
plications and resources with graceful degradation in performance. Moreover, it can

29

support wide geographical distribution and can be easily managed, regardless of the
number of distributed components.

• Easy access to resources: a network middleware should enable different distributed
applications to access other resources and applications in an easy, efficient manner.

In the proposed robotic middleware, the network middleware is the central hub. It
is the central component that handles all communications between the different robotic
entities and controlling client programs.

There are a number of high-profile middleware technologies in use today. The CORBA
standard specified by the OMG is still considered to be the de facto communications stan-
dard for heterogeneous software components running on multiple machines. As mentioned
before, CORBA enjoys widespread use and has many implementations [2]. Various works
in robotic middleware and distributed robotic systems are based on CORBA, such as those
presented in [20], [46], [44], [43], [18], [26], [31], and [29].

Due to the design goals and the well-known reputation of CORBA, it was the natural
choice for a network middleware. However, based on a number of technical reports and
developer experiences, CORBA suffers from numerous shortcomings, such as [13]:

• Since CORBA was first conceived, it has always suffered from “design by committee”
issues. A large number of complex functionalities were included in the standard that
were either unimplementable or useless.

• Failure of the OMG to keep up with the rapid rise of web technologies.

• There are only a handful of implementations that fully implement the major features
of the CORBA standard. Many of the existing implementations are either inadequate
or incomplete.

• CORBA adds unnecessary development complexities and has a steep learning curve.

• CORBA lacks some important features, such as security and firewall traversal mech-
anisms.

SOAP technology is Web-oriented, and the use of XML for communication adds over-
head. It is essential to have minimal communication overhead between entities in a robotic
environment. Consequently, the ICE network middleware was an ideal choice for the mid-
dleware. Details are given in the next subsection.

30

3.2.1 The Internet Communications Engine

The first version of the ICE middleware was developed by ZeroC, Inc .[17], in 2003. It
is regarded as an efficient alternative to other middleware programs such as CORBA and
SOAP. From a design perspective ICE was greatly influenced by CORBA. However, it
is simpler, smaller and more powerful. The reasons behind choosing ICE for the network
middleware are the following:

• ICE has an efficient, component-based architecture. A great emphasis is put on
eliminating any network overhead and bottlenecks.

• ICE makes use of a number of software design patterns, such as the proxy pattern.

• ICE fully supports multiple programming language and platforms. It supports C++,
Java, Python, and other object-oriented languages. It also runs on various platforms,
such as Windows and GNU/Linux.

• The Specification Language for ICE (SLICE), which is ICE’s IDL, provides an easy
and extensible way of specifying interfaces.

• ICE includes a firewall traversal mechanism, a feature that is missing in most network
middleware programs.

• ICE compares favorably with other middleware programs and RPC technologies-such
as Java RMI, and WCF-in terms of performance and scalability [3].

• A number of high-profile technology and defense companies are using ICE. Some
of these companies are Hewlett-Packard, Skype, SGI, BAE Systems, and Lockheed
Martin [16]. This indicates that ICE is a highly mature, proven, powerful tool.

A handful of robotic middleware programs and frameworks are starting to adopt ICE
as their network middleware. Some of these are the works presented in [30] and [35].
The middleware has a multi-tier architecture where the clients are the robotic entities and
front-end client programs.

3.2.2 ICE Services

In addition to providing a fully-featured and high-performance RPC platform, ICE also
provides a comprehensive bundle of services and functionalities, such as data persistence

31

and event distribution. These types of services are widely used in distributed applications
and mission critical systems. ICE services are designed to have high scalability, perfor-
mance, and fault-tolerance. These services are discussed in the following subsections.

Glacier2

Glacier2 is a central service of ICE that implements firewall traversal mechanisms allow-
ing any number of clients and servers to communicate freely across firewalls. Glacier2
enables servers to “push” data and updates to clients through a bidirectional connection
feature, even if clients are residing behind a firewall that disallows incoming connections.
In addition, Glacier2 provides security, authentication, and filtering mechanisms. Clients
communicate with Glacier2 over SSL. Moreover, Glacier2 can control which resources
and objects are accessed by the clients on the server(s). Deployment of Glacier2 requires
minimal changes on the client side and no changes on the server side.

IceStorm

IceStorm is an efficient publish-subscribe mechanism that supports topic graphs. IceStorm
allows for a federation of servers. This allows for scalability limited only by communication.
Moreover, IceStorm provides persistent storage for topic subscriptions so that participants
need not be reconfigured when restarted. Unlike many publish-subscribe frameworks where
a message is composed of structured data, IceStorm messages are strongly typed classes
and represented by operation invocations.

IceGrid

IceGrid is a collection of frameworks providing services for deployment and maintenance
of high-performance grid computing applications using the collective power of multiple
networked machines. IceGrid provides four main services:

• Location service: provides server discovery facilities, as well as load balancing and
reliability mechanisms. Clients are directed to the most available server and can be
redirected to other servers in case of failures without experiencing any interruptions.
Moreover, servers need not be running at all times and can be activated on demand.

32

• Deployment service: provides facilities and tools to simplify and automate the process
of deploying and maintaining server programs and data over multiple hosts in a
network.

• Resource allocation service: this service facilitates the distribution of grid resources
and clients among servers.

• Administration service: this service provides a powerful set of tools for control and
configuration of all deployed applications and servers.

IcePatch2

IcePatch2 is an efficient service integrated with IceGrid for the distribution and patching
of updates to different remote components. IcePatch2 employs compression and checksum
techniques to ensure efficient transmission and data integrity.

Freeze and FreezeScript

The Freeze service provides facilities for persistent storage of ICE objects into a Berkeley
DB [10] database. Freeze enables retrieval and instantiation of ICE objects on demand,
such as instantiating servant objects based on a client’s request. Moreover, Freeze en-
ables applications to update and re-store objects. FreezeScript provides inspection and
debugging tools for the stored objects.

3.2.3 SLICE

The Specification Language for the Internet Communications Engine (SLICE) is the pro-
vided IDL for ICE. Like any typical IDL, SLICE is a purely declarative language that
is used to define object interfaces, operations, and exceptions that can arise from using
these interfaces. SLICE effectively defines a contract between a client and a server in an
application. The actual implementation of the interfaces must be provided by the applica-
tion developer. The separation between interfaces and their implementations means that
different components within an application need not be implemented in the same program-
ming language. Moreover, SLICE provides mechanisms for specifying semantics for object
persistence (in conjunction with Freeze).

Interface specifications must be written in a file with the extension “.ice” and com-
piled into the target programming language using the SLICE compiler. SLICE supports

33

a wide variety of object-oriented programming languages such as C++, Java, Python, C#,
Objective-C, Ruby, and PHP. The generated source code files provide the link between the
application and the ICE runtime environment and networking layer. The generated source
code must be compiled and linked with the application logic code on both the client and
the server sides.

3.3 Entity Component

The entity component is the part of the middleware that resides on the robot’s onboard
machine. This vital component is responsible for providing complete transparency to the
developer by hiding all networking and concurrency details while presenting a simple and
extensible interface that can easily interface with custom-developed robotic applications.
The entity component is composed of two modules: the Entity Manager and the Entity
Interfacer. These two modules are discussed in detail in the following subsections.

3.3.1 The Entity Manager

The Entity Manager (EM) is a modular piece of software that runs on every robotic entity
machine that is an active actor in the environment. As its name implies, the EM manages
the underlying robotic entity and acts as its interface to the outside environment. All a
developer needs to do is to implement his custom robotic program and plug it in to the
EM to connect the robot to the environment. A great emphasis was put on making the
job of the developer as easy and fast as possible. The main goal is to have the developer
worry about implementing his robotic application, and nothing more. To achieve that, the
design goals for the EM are as follows:

• Providing complete transparency to the developer who is implementing the robotic
application. The developer does not need to worry about details such as queueing,
concurrency, multithreading issues, or networking.

• Providing reliability and safety features. The main implemented feature at the mo-
ment is a stop signal that is dispatched instantly in cases of client requests, discon-
nections, or improper behavior on the client side. The stop signal is guaranteed to
reach the application in a minimal amount of time. However, it is the responsibility
of the developer to make meaningful use of the signal.

34

• Maximizing the automation of the process. All a developer needs to do is to run his
own application and the EM. Zero intervention is required after that, except in cases
of severe errors.

The core design of the EM is based on the state machine software design pattern [23].
The EM uses different states to model the different states a robot can be in while running
as an entity in the environment. Figure 3.5 illustrates the simplified UML state machine
diagram of the EM. There are nine different states in the current version of the EM. They
are explained as follows:

Figure 3.5: Entity Manager Simplified UML State Machine Diagram.

• Unavailable (UNAV): this is the initial state of the EM. The EM will first
continuously try to establish a link to the robotic application. Once the link is
established, the EM switches to the INIT state. It should be noted that the EM will
always switch to UNAV whenever the link to the entity is broken, regardless of the
current state.

• Initialize (INIT): in this state the EM will attempt to parse the entity profile
(basic and services profiles) provided by the developer. In case of parsing errors the

35

EM will switch to the ERR state. Otherwise, the EM will switch to the ENVCONN
state.

• Environment Connect (ENVCONN): in this state the EM will continuously
attempt to connect to the server. After a connection is established, the EM will
then upload the entity’s basic profile to the server. This finalizes the connection and
registration process.

• Idle (IDLE): this is the default state of any connected robot. In this state the
EM is awaiting check-out requests from a client. Whenever a check-out request is
received and granted, the EM uploads the service profile to the user’s client program
and switches to the REG state. It should be noted that the EM will always switch
to IDLE whenever the client releases the entity or the connection with the client is
lost, regardless of the current state.

• Registered (REG): in this state the entity waits for the user’s data and tasks.
When data are received (such as service control parameters or resources), the EM
relays this data to the robotic application and returns the status to the client (whether
the update was granted or denied). Whenever a task is received, the EM will switch
to either the COLLAB, the SLAVE, or the BUSY state, depending on the requested
service.

• Collaborative (COLLAB): in this state the entity will act as a master to one or
more entities involved in a collaborative task. The EM will dispatch collaboration
requests to all participating entities. Since the collaborating entities must have been
checked out by the same client, the client ID is included in the request for the purpose
of authentication. After all participating entities authenticate and acknowledge the
request, the master entity will proceed to dispatch tasks in the pre-determined order.

• Slave (SLAVE): the EM will switch to this state whenever a collaboration request
is received from a master entity. The EM will patiently await for one or more tasks
from the master entity.

• Busy (BUSY): after a task is granted by the robotic application, the EM will
switch to BUSY. The EM will remain in this state for as long as it takes for the task
to complete. Then it will switch to the previous state. There are two special cases
to consider in BUSY state:

– Whenever a stop command is received, the EM instantly dispatches a stop signal
to the robotic application and switches to the REG state.

36

– Whenever the user releases the entity or abruptly disconnects, the EM will
dispatch a stop signal to the robotic application and switches to the IDLE
state.

• Error (ERR): the EM will switch to this interactive state if it failed to parse the
entity profile. The EM will notify the user of the error and provide an option to
either fix the files or quit. User intervention is needed at this state.

The current version of EM supports three special requests, or commands. In the context
of the middleware, a command is a special message that has a higher precedence over other
messages, and can interrupt the normal behavior, or flow of execution of an entity. The
three commands are listed below.

• Stop command: this command will cause the EM to instantly dispatch a stop signal
to the robotic application. The stop command should halt all physical activities of a
robot, and it is up to the application developer to make effective use of the signal. It
should be noted that a stop command, regardless of its cause, has the highest priority
among other commands and will instantly halt all running services or operations at
any state.

• Reset command: this command causes the EM to halt execution of a task (if any)
by sending a stop signal to the underlying robot, and then proceeds with the next
task in the queue (if any).

• Clear command: this command will halt the execution of any task and clears the
EM’s tasks queue.

The UML class diagram of the EM is illustrated in Figure 3.6. The main classes of the
EM are explained as follows:

37

Figure 3.6: Entity Manager Simplified UML Class Diagram.

EntityManager

This is the central class of the EM module. It acts as the control hub for all the other
parts. The EntityManager performs the following functions:

• Instantiating and managing the other classes of the EM.

• Creating and maintaining the communications link with the robotic application
through the Entity Interfacer (explained later).

• Maintaining all of the data and information related to the state of the robot, as well
as incoming and outgoing data queues.

38

ServiceProfiler

The ServiceProfiler class acts as a registry for the robot’s services. It stores and ma-
nipulates all data and information for all services. This completely eliminates the need for
implementing complex routines to keep track of the parameters and resources of a service or
keeping track of its dependencies and readiness. The functionalities of ServiceProfiler
can be summarized as follows:

• Maintaining all data and information for each service such as its control parameters,
resources, and dependencies.

• Ensuring that all the dependencies of a service are satisfied before dispatching a task
request to the robot.

• Toggling services on/off according to commands from the robotic application.

BackEndInterfacer

This class is one of the two classes in the communications part of the EM. The BackEndInterfacer
is responsible for creating and maintaining a TCP socket-based communications link with
the robotic application. Its functionalities can be summarized as follows:

• Efficient information and data exchange with the robotic application. Data include
parameters, resources, task requests, raw data, and text-based general messages.

• Periodic heartbeat pings to ensure liveliness of connection.

State

State is the parent class of the nine state classes. The core functionalities and logic of
the EM and the state machine management are distributed among all of the State-based
classes. Each State sub-class implements the logic of one of the EM states discussed
earlier. The classes are as follows:

• StateUNAV

• StateINIT

39

• StateENVCONN

• StateIDLE

• StateREG

• StateCOLLAB

• StateSLAVE

• StateBUSY

• StateERR

EntityCommunicator

This is the second class in the communications part of EM. EntityCommunicator is
responsible for creating and maintaining the communications link between the EM and
the server. It dispatches all outgoing data to the server and updates the EntityManager’s
queues with incoming data.

SessionPrx

This class is the generated proxy implementation of the Session Glacier2 -based ICE
interface. The EM uses functions defined in this interface to interact with the server
and client programs. Figure 3.7 illustrates a portion of the interface definition. The key
functions in this interface are as follows:

• sendBasicPrfl: this function is used to upload the entity basic profile to the server.

• sendSvcPrflRecord: this function is used to send a service record to the controlling
client (who has just checked out the entity). The server will relay these data to the
client program.

• sendToClient: this function is used to send a simple string-based message to the
controlling client. This is used for sending informative messages, updates, and feed-
backs.

• sendToClientDataSeq: this function is used to send a stream of raw data to the
controlling client. Raw data can be sensor readings, a list of controlling parameters,
and so on.

40

EntityMonitorCallBack Impl

This class is the implementation of the EntityMonitorCallBack callback ICE interface
(illustrated in Figure 3.8). This interface acts as the contract between the EM and the
server. The server calls functions in this interface to push data and updates to the EM.
Some of the important functions in the interface are the following:

• newClientMsg: this function is used to relay simple client messages and requests to
the robot, such as a check-out request message.

• newClientMsgDataSeq: this function is used to relay a sequence of raw data from
the controlling client to the robot. This data could be a resource file, for instance.

• stopSignal: this function relays a stop command from the client to the entity.
Moreover, the server uses this function to alert the EM in case the client releases the
robot or abruptly disconnects.

• resetSignal: this function relays a reset command to the robot.

• clearSignal: this function relays a clear command.

#include <Ice/BuiltinSequences.ice>

#include <Glacier2/Session.ice>

#include <commutil.ice>

/* */

interface Session extends Glacier2::Session

{

void setCallback (EntityMonitorCallback *entityCb);

["ami"] long sendBasicPrfl (string entityType, string msg);

["ami"] long sendSvcPrflRecord (string entityType, int recordId,

int count, CommUtil::DataRecord svcRecord);

["ami"] long sendToClient (string clientId, string entityType,

string msgType, string msg);

/* ... continued ... */

};

/* ... continued ... */

Figure 3.7: Portion of the Entity Session SLICE Interface.

41

#include <Ice/BuiltinSequences.ice>

#include <Glacier2/Session.ice>

#include <commutil.ice>

/* */

["ami"] interface EntityMonitorCallback

{

void newClientMsg (long timestamp, string clientId, string entityType,

string msgType, string msg);

void newClientMsgDataSeq (long timestamp, string clientId,

string entityType, string msgType,

CommUtil::DataSeq dataSeq);

void newClientMsgDataRec (long timestamp, string clientId,

string entityType, string msgType,

CommUtil::DataRecord dataRec);

/* ... continued ... */

};

/* ... continued ... */

Figure 3.8: Portion of the Entity Callback SLICE Interface.

3.3.2 The Entity Interfacer

The Entity Interfacer (EI) is the second module of the entity component of the middleware.
The current version of the EI provides a TCP socket-based communications link with the
EM, as well as a simple and extensible API that the robotic application must interface
with to be able to be seamlessly plugged in to the environment. The design goals of the
EI are as follows:

• Simplicity: the current implementation of the EI provides a small set of easy-to-use
functions. All the developer needs to do is to set a required number of callback
functions in his application to enable the EI to feed the robotic program with all
the needed information and data. Moreover, the robotic program interacts with the
environment through the EI function set.

• Transparency: the EI hides all details involving the transmission, packing, and un-
packing of data and so on. The developer does not need to know how data are
handled and transmitted.

• Robustness: the EI is completely reliable and thread-safe. Moreover, its communi-
cations function runs in a totally isolated thread and external applications cannot
tamper with its execution flow.

42

• Safety: the EI will instantly dispatch a stop signal to the entity application the
instant the link to the EM is broken. Since the EI is closely associated with the
robotic application, the stop signal will never be lost.

Currently, there is only a C++ implementation of EI. However, its modular and object-
oriented design allows for fast porting to other programming languages such as Java or
Python. Figure 3.9 illustrates the UML class diagram of the EI. The main classes of the
EI are explained as follows:

Figure 3.9: Entity Interfacer UML Class Diagram.

EntityInterfacer

This class provides the main API for robotic applications developers. A robotic application
can interact with the environment by calling functions in this class. Moreover, this class
interacts with the robotic application through a set of callbacks. Some of the key functions
provided to the developers are as follows:

• uploadBasicProfile: used to upload the developer-defined basic profile file to the
EM.

• uploadServiceProfile: similar to the previous function, this function is used to
upload the services profile file.

43

• setStatus: used to set the current status of the entity. In the middleware semantics,
a checked-out entity can be either busy executing a task or ready to receive a task
request.

• sendInfoMsg: this function can be used to send simple informative messages to the
controlling client program.

• sendTaskFeedback: this function is used to report a task feedback to the controlling
client. Each task is associated with a unique service.

Communicator

This class represents the communication port of the EI, and is responsible for establishing
and maintaining the communications link with the EM. It handles all operations related
to the transmission, packing and unpacking of data. This provides complete transparency
to the developer.

3.4 Server Component

The server component is the central hub of the middleware. Its main functions are to keep
track of all connected entities and clients, as well as providing efficient and reliable message
routing between different clients and entities. The server is implemented in C++ and ICE.
The main design goals of the server are as follows:

• Minimal information and data are maintained per entity or client.

• The server should be stateless, it should not interpret passing messages and is invari-
ant of the current state of an entity or a client.

• An entity or a client are universally identifiable in the environment by a Universally
Unique IDentifier (UUID). Clients and entities are able to communicate using their
UUIDs.

• The server should provide simple and extensible communication interfaces to ensure
flexibility and easy expansion.

44

The server is composed of two sub-modules: the entity server and the front-end server.
These two loosely coupled modules communicate through a publish-subscribe mechanism
based on IceStorm to bring about the desired functions. The current version of the server
supports GNU/Linux-based platforms. It can be easily ported to other platforms. The
server components are discussed in detail in the following subsections.

3.4.1 Entity Server

The entity server is a modular piece of software that acts as a scalable registry and message
router for all connected entities. The entity server performs the following functions:

• Keeping track of all online entities.

• Efficient and scalable message routing from entities to controlling clients and vice-
versa (through the front-end server).

• Efficient and scalable message routing between different entities.

• Keeping the front-end server updated with the latest changes in connected entities’
status.

• Instantly dispatching a stop signal to checked out entities whose client abruptly
disconnects without properly releasing them. (through an update from the front-end
server).

As per the design goals, the entity server maintains a minimal amount of information
on each entity and does not interpret passing messages or data. For each connected entity,
the entity server maintains the following information:

• An entity UUID-to-callback adapter mapping (for pushing data and updates to each
connected entity).

• An entity UUID-to-basic profile mapping.

Figure 3.10 illustrates the simplified UML diagram of the entity server. The main
classes of the server are discussed follows:

45

Figure 3.10: Simplified UML Class Diagram of the Entity Server.

EntityServer

This is the main controller class of the entity server. It is responsible for initiating the ICE
runtime, as well as initializing the communicator to accept incoming entity connections and
instantiating and maintaining the EntityMonitor and the SessionManager. Moreover, it
performs other functionalities that are typical for a server, such as thread pool and resources
management.

EntityMonitor

The EntityMonitor is the central class of the server. It implements the entire logic and
behavior of the server. The main functionalities of the class are as follows:

• Maintaining a UUID-to-callback adapter mapping for each active entity session. The
callback adapter is used to communicate with the owning entity through the ICE
push mechanism.

46

• Storing and maintaining the basic profiles of all connected entities.

• Updating the front-end server with any change in the status of the connected entities.

SessionManager

As its name implies, this class is responsible for creating and maintaining a session for each
connected entity. Moreover, it is responsible for the destruction and cleanup of sessions.

Session

The Session class is the generated C++ interface of the ICE session interface shown in
Figure 3.7. This class implements a Glacier2-based “push” session and specifies all of the
operations through which the EM of a robot can interact with the server. Moreover, the
class houses all of the mechanisms needed for marshalling/unmarshalling requests, as well
as communicating with the server.

Session Impl

This class is the custom implementation of the Session interface. A connected entity will
call its session functions to interact with the entity server. The Session_Impl will in turn
invoke the designated functions in the EntityMonitor. A Session_Impl object is created
for each connected entity. The implemented functions of this class are the same those in
Section 3.3.1.

EntityMonitorCallBack

The EntityMonitorCallBack class is the generated implementation of the SLICE callback
interface. It specifies all function callbacks through which the entity server can interact
with the EM of a connected entity. Figure 3.8 illustrates a portion of the interface imple-
mentation.

EntityMonitorCallBackAdapter

As with the Session_Impl, this class is the custom implementation of the
EntityMonitorCallBack ICE interface (shown in Figure 3.8). The EntityMonitor main-
tains an instance of this class for each connected entity. The server uses the

47

EntityMonitorCallBackAdapter functions to “push” data and updates to the EM of the
owning entity. The functions of this class are equivalent to those mentioned in
Section 3.3.1.

3.4.2 Front-End Server

The front-end server functionalities are very similar to those of the entity server, except
that the former is responsible for handling all connected clients. The front-end server
maintains a minimal amount information for each connected client. The functionalities of
the front-end server are summarized as follows:

• Keeping track of all connected clients.

• Keeping all clients updated with the latest list of entity basic profiles (through up-
dates from the entity server).

• Handling check out and release requests from clients.

• Efficient and scalable message routing from controlling clients to checked-out entities
and vice-versa (through the entity server).

• Instantly notifying the entity server of any dropped clients who had previously
checked-out entities but went offline before properly releasing them.

• Parsing and uploading of global services profiles (if available) to be downloaded by
connected clients on request.

The front-end server maintains the following data:

• A mapping between each client’s UUID and its callback adapter (similar to the entity
server).

• A copy of the UUID-to-entity basic profile mappings (which are frequently updated
by the entity server). This information is sent to each recently connected client. Any
updates are immediately relayed to all connected clients.

• A mapping between each client and its checked-out entities. This is essential to
ensure that messages reach their correct destination and that the designated entities
are notified in case their controlling client abruptly disconnects.

48

The UML class diagram of the front-end server is illustrated in Figure 3.11. The
descriptions of the front-end server classes are given below.

Figure 3.11: Simplified UML Class Diagram of the Front-End Server.

FrontEndServer

This is the main controller class of the front-end server. Its functions are very similar to
that of the EntityServer class of the entity server. The FrontEndServer instantiates and
maintains the EntityMonitor and the SessionManager.

ClientMonitor

The ClientMonitor is the central class of the server. It implements the entire logic and
behavior of the server. The main functionalities of the class are as follows:

49

• Maintaining a UUID-to-callback adapter mapping for each active client session. The
callback adapter is used to communicate with the owning client through the ICE
push mechanism.

• Storing and maintaining a mapping between each client and its checked-out entities.
This is used for relaying data and updates to the designated entities (via the entity
server) and vice-versa.

SessionManager

This class is responsible for the creation, maintenance and destruction of client sessions.

Session

The Session class is the generated implementation of the ICE session interface declared
in “frontendcomm.ice” (for the front-end server). Figure 3.12 illustrates a portion of the
interface implementation.

Session Impl

This class is the custom implementation of the Session interface. A connected client
will call its session functions to interact with the server. The Session_Impl will in turn
invoke the designated functions in the ClientMonitor. Some of the important functions
in Session_Impl are:

• sendRequest: this function is used to send various types of requests to both the server
and connected entities. For the server, it can be used to request status updates for
entities, as well as for downloading the global services profile (please see Appendix
A for more information). For an entity, the function is used to send check-out and
release requests.

• sendToEntityDataSeq: this function is used to send a sequence of raw data to a
previously checked-out entity.

• sendStopSignal, sendClearSignal, and sendResetSignal: these functions are
used to send stop, clear, and reset commands respectively (please see Section 3.3.1).

50

ClientMonitorCallBack

This class is the generated implementation of the SLICE callback interface, defined in
frontendcomm.ice. It specifies all function callbacks through which the server can interact
with the client program. Figure 3.13 illustrates a portion of the interface implementation.

ClientMonitorCallBackAdapter

As with the Session_Impl, this class is the custom implementation of the
ClientMonitorCallBack interface. The ClientMonitor maintains an instance of this class
for each connected client. The server uses the ClientMonitorCallBackAdapter functions
to “push” data and updates to the client program. Some of the important functions of
ClientMonitorCallBackAdapter are:

• newBasicPrflMsg: this function is used to relay the basic profile of an entity to the
client.

• newSvcRecordMsg: this function is used to relay the raw data of a service record
originating from a recently checked-out entity.

• newEntityMsgDataSeq: this function is used to relay a sequence of raw data from a
checked-out entity to the controlling client.

• newUpdateMsg: this function relays a simple string-based message from an entity to
its controlling client.

#include <Ice/BuiltinSequences.ice>

#include <Glacier2/Session.ice>

#include <commutil.ice>

/* */

interface Session extends Glacier2::Session

{

void setCallback (ClientMonitorCallback *clientCb);

["ami"] long sendToEntity (string entityId, string entityType,

string msgType, string msg);

["ami"] long sendToEntityDataSeq (string entityId, string entityType,

string msgType, CommUtil::DataSeq dataSeq);

/* ... continued ... */

}

/* ... continued ... */

Figure 3.12: Portion of the Client Session SLICE Interface.

51

#include <Ice/BuiltinSequences.ice>

#include <Glacier2/Session.ice>

#include <commutil.ice>

/* */

["ami"] interface ClientMonitorCallback

{

void newBasicPrflMsg (long timestamp, string entityId, string entityType,

string msg);

void newSvcRecordMsg (long timestamp, string entityId, string entityType,

int recordId, int count,

CommUtil::DataRecord svcRecord);

void newEntityMsg (long timestamp, string entityId, string entityType,

string msgType, string msg);

/* ... continued ... */

}

/* ... continued ... */

Figure 3.13: Portion of the Client Callback SLICE Interface.

3.4.3 Inter-server Communication

As mentioned earlier, the two servers communicate through a publish-subscribe mechanism.
This might seem an overkill since publish-subscribe is usually used where multiple entities
subscribe to a specific topic and receive notifications related to that topic. The reason for
choosing such a mechanism is to ensure that the two servers are loosely coupled and to have
a simple and extensible communication interface between them. In the current version of
the middleware the entire server component runs on a single machine. Taking into account
future expansions which might involve running the two servers on two different machines
or having duplicate servers (for scalability), the publish-subscribe mechanism is the ideal
way to ensure minimal effort in expansion. Figures 3.14 and 3.15 illustrate portions of the
topic interface between the two servers.

52

#ifndef ENTITYTOPICS_ICE_

#define ENTITYTOPICS_ICE_

#include <commutil.ice>

module EntityComm

{

interface EntityToFrontEndComm

{

void entityBasicPrflUpdate (string entityId, string entityType, string msg);

void entitySvcRecord (string entityId, string entityType, int recordId, int count, \

CommUtil::DataRecord svcRecord);

void entityMsg (string entityId, string entityType, string msgType, string msg);

void entityMsgDataSeq (string clientId, string entityType, string msgType, \

CommUtil::DataSeq dataSeq);

void entityMsgDataRec (string clientId, string entityType, string msgType, \

CommUtil::DataRecord dataRec);

void entityUpdate (string entityId, string entityType, string msgType, string msg);

};

};

#endif // ENTITYTOPICS_ICE_

Figure 3.14: The Entity Server Topic SLICE Interface.

#ifndef FRONTENDTOPICS_ICE_

#define FRONTENDTOPICS_ICE_

#include <commutil.ice>

module FrontEndComm

{

interface FrontEndToEntityComm

{

void clientMsg (string clientId, string entityId, string entityType, string msgType, \

string msg);

void clientMsgDataSeq (string clientId, string entityId, string entityType, string msgType, \

CommUtil::DataSeq dataSeq);

void clientMsgDataRec (string clientId, string entityId, string entityType, string msgType, \

CommUtil::DataRecord dataRec);

void clientRequest (string clientId, string entityId, string entityType);

void clientUpdate (string clientId, string entityId, string entityType, string msgType, \

string msg);

void stopSignal (string clientId, string entityId, string entityType, string msg);

void clearSignal (string clientId, string entityId, string entityType, string msg);

void resetSignal (string clientId, string entityId, string entityType, string msg);

};

};

#endif // FRONTENDTOPICS_ICE_

Figure 3.15: The Front-End Server Topic SLICE Interface.

3.5 Overall Architecture

Figure 3.16 illustrates the overall architecture of the middleware, showing how the different
components interface with each other. It also shows how a robotic application and a client

53

program interface with the middleware.

Figure 3.16: Middlware UML component diagram.

3.6 Chapter Summary

In this chapter, the proposed middleware was described in a bottom-up fashion, starting
from the information base and technologies used, and going up the system architecture,
components, and integration. Firstly, the representation of a robotic entity in a multi-
robot environment based on the middleware is described, as well as the information the
robotic developer needs to provide for each robot. The Google Protocol Buffers was chosen
as an extensible and lightweight mechanism for data and information exchange in the
middleware. Moreover, the Internet Communications Engine was used as the network
middleware. This chapter also described the architecture of the proposed system. Each
component was described in detail including its design goals and choices, as well as its

54

software and implementation details. Moreover, the discussion covered how the different
components work together in the system. The middleware models each entity in the
environment as a single actor. A great emphasis was put on reducing the development times
of experiments and demos involving multi-robots, as well as making the life of developers
as easy as possible. The adherence to rigorous and professional design and implementation
methodologies helped to produce a robust and modular system that can be easily expanded
and updated.

55

Chapter 4

Experimental Setup for Multi-Robot
System

The middleware was deployed in a real environment to test and demonstrate its ability to
accommodate heterogeneous robot units. To achieve that, two different types of robots were
used: a multi-purpose mobile robot and a stationary platform mounted robotic arm. Each
robot comes from a different vendor and has its own software libraries and APIs. A testing
module was implemented for each robot. Each module is composed of a set of services
ranging from simple ones, such as travelling an arbitrary distance, to complex ones such
as tracking and picking colored objects. Moreover, a sophisticated collaborative scenario
was implemented to fully test the performance and capabilities of the middleware. The
entity component of the middleware seamlessly integrated the two robotic applications into
a highly reliable multi-robot research environment. The next sections discuss the different
robotic entities in detail including their hardware features, SDKs, and the applications
developed for each one. Moreover, the discussion will cover a collaborative scenario that
involves the two robots working together to achieve a goal.

4.1 PeopleBot Mobile Robot

PeopleBot [11], shown in Figure 4.1, is a multi-purpose differential-drive robot developed by
MobileRobots, Inc. [4], for research and applications involving Human-Robot Interaction
(HRI), cooperative robotics, performance, exhibition, education, and much more. It is
equipped with chest-level extension and a touch screen to facilitate interaction with users.

56

Figure 4.1: The PeopleBot Mobile Robot [11].

PeopleBot comes with a set of sensors, as well as range-finding devices for navigation
and obstacle avoidance purposes. For range-finding, PeopleBot features two arrays of sonar
sensors at the bottom base and the top extension. Moreover, PeopleBot can be option-
ally equipped with the SICK LMS-200 laser device for higher navigational and obstacle
avoidance accuracy. Figure 4.2 illustrates the laser device and the lower sonar array found
on the PeopleBot. In addition to range-finding devices, PeopleBot is able to recognize
objects and people, as well as track colors using an optional 120-degrees pan/tilt/zoom
(PTZ) camera which can be installed on top or underneath the top deck. PeopleBot is
equipped with infrared table sensors, as well as a 2-DOF gripper with pressure sensors to
sense tables and grab objects respectively. Moreover, an array of forward and backward
bumpers equipped with limit switches enables PeopleBot to navigate in narrow spaces
with reasonable accuracy. The provided joystick enables basic manual driving control of
the robot.

57

(a) SICK LMS [11]. (b) Lower Sonar Array [47].

Figure 4.2: PeopleBot Range-Finding Devices.

4.1.1 Pioneer SDK

PeopleBot, along with different mobile robots developed by MobileRobots, Inc., is equipped
with an onboard computer and comes with the Pioneer SDK [6]. Pioneer SDK is a collec-
tion of high-level software libraries that can run on both Linux and Windows platforms,
and provides a powerful framework for developing robotic applications. The central compo-
nent of the SDK is the Advanced Robotics Interface for Applications (ARIA) core library.
ARIA provides a collection of APIs and a framework for controlling and communicating
with all underlying robotic hardware components, as well as installed accessory devices.
ARIA provides a rich set of utilities for writing robotic control software, as well as cross-
platform applications. In addition, ARIA provides different levels of control by allowing
simple control of hardware, as well as providing optional high-level control actions com-
bining several simple motion behaviors into a single unified behavior. One of the core
utilities provided by ARIA is the ArNetworking library which provides a simple extensi-
ble client-server networking framework for writing networked robotic control applications.
ArNetworking provides facilities for multi-robot information exchange. It includes a set of
predefined services for remote control of robots, as well as remote data and information ex-
change. Some of these services are teleoperation, sensor readings, graphical visualizations,
and notifications. ARIA supports two types of control connections: a serial-based connec-
tion to the robot’s microcontroller, and a TCP-based connection to a simulator tool such
as MobileSim (discussed later). An ARIA-based application will first attempt to connect
to the robot through the serial interface, and if unsuccessful, will then attempt to connect
to the simulator. The order of precedence can be specified by the developer. ARIA is
written in C++ and provides wrappers for other programming languages, such as Java and

58

Python. It should be noted that ARIA is open-source software released under the GNU
GPL license. The other components of the Pioneer SDK are described below:

• ARNL: the Autonomous Robotic Navigation and Localization (ARNL) is a col-
lection of proprietary libraries based on ARIA that provide intelligent localization
and navigation services enabling the robot to keep track of its position and intel-
ligently plan its trip to a destination point. ARNL provides three different tech-
niques for localization. The first technique uses laser readings from the installed
SICK LMS range-finding device along with odometry readings to accurately deter-
mine the robot’s position through the application of the Monte-Carlo Localization
(MCL) algorithm. The second technique is similar to the first one except that it uses
sonar readings. The third technique is used for outdoor localization. It infuses read-
ings from an optional GPS device into the MCL algorithm. For navigation, ARNL
employs a grid-based search method to compute the shortest safe path to a destina-
tion, taking into account any detected obstacles or forbidden zones. Throughout its
trip, the robot is fed accurate translational and rotational velocities data. Moreover,
ARNL continuously computes the robot’s path during its trip to account for dynamic
changes in the environment. Like ARIA, ARNL is written in C++ and provides wrap-
pers for other programming languages, such as Java and Python.

• Mapper3: it is a tool for creating environment maps that can be used as the basis for
intelligent localization and navigation, either in a real environment or a simulation.
Drawing a map starts by having the robot thoroughly scan its environment using
its SICK range-finding laser device. This process produces a 2-dimensional map file
(.2d) that is processed by Mapper3 to produce the finalized map file (.map). This
map file can be further edited by adding obstacles, specifying home and target points,
forbidden zones, and so on.

• MobileSim: it is a rich graphical-based robot simulator that enables accurate simu-
lation of robotic applications before deployment on real robots. MobileSim simulates
the robot’s serial control connection through a TCP-based connection. MobileSim
can accurately simulate a real environment map including walls, obstacles, sectors,
and designated locations using the provided Mapper3-created map file. MobileSim
provides various features such as support for a wide range of MobileRobots robots,
simulation of multiple robots, configurations of a robot’s range-finding devices, inter-
active control of objects in the environment including robots and obstacles, as well
as many useful features [6]. A user can add custom devices and robots to MobileSim
by including an ARIA parameter file.

59

• MobileEyes: it is a client program providing a graphical-based user interface for
monitoring and controlling a robot remotely. MobileEyes can connect remotely to
applications running on the robot or MobileSim through ARIA and ArNetworking.
Through MobileEyes, a user can load an environment map and view information
such as the robot’s position on the map, sensor readings, and battery levels [6].
MobileEyes also enables teleoperation of robots, configuration of control parameters,
and controlling navigation and localization software. Moreover, it can interface with
installed accessory devices, such as the onboard PTZ camera.

• ACTS: the Advanced Color Tracking System (ACTS) is an easy-to-use cross-platform
video processing software that can be used to identify and track colored objects.
ACTS supports 32 individually trainable color channels and can process 30 frames
per second [6]. As such, it can track up to 320 mobile objects under different lighting
conditions. Information on tracked objects can be easily retrieved by ARIA-based
programs through the provided APIs. Moreover, ACTS comes with a graphical-based
training application that is used to configure and tune the different channels. ACTS
is a highly useful tool for applications involving object tracking, vision, and HRI.

• ARCOS: the Advanced Robotics Control Operating System (ARCOS) is a low
level operating system that is considered the brain of any MobileRobots robot. It is
responsible for managing all the low-level details of the robot, such as motor control,
firing the sonar, collecting and reporting sonar and odometry data, as well as stalling
the motors in response to emergency protection triggers such as a triggered bumper.
ARCOS is based on a client-server architecture where the server handles all the
robot’s low-level details and the client (an ARIA-based application) controls the robot
through a serial-based connection to the server [11]. Moreover, ARCOS provides a
client-server interface which can be used to achieve tighter low-level control, or to
implement custom control routines and reactive planning applications.

Two identical PeopleBot robots were used in the experiment. An identical set of services
was implemented for each one. They are discussed in the following subsection.

4.1.2 Implemented Services

A number of services were developed for the PeopleBot. These services range in complexity
and utilize all the available hardware components installed on the robot. Each service has
a number of input and configuration parameters, as well as feedback parameters. Some

60

complex services are standalone services while others are composed of simpler services or
built on top of others. C++ was used for implementation since it is natively supported by
the Pioneer SDK. The different services were implemented in different classes and grouped
into a single module. A total of six services were developed.

Driving

This service implements a very simple straight motion of the robot for an arbitrary distance
at a given velocity. Range readings from the sonar arrays and the SICK LMS laser device,
as well as the bumpers are used to avoid hitting an obstacle in the robot’s path. Any range
reading beyond a certain threshold, or a triggered bumper will instantly send a stall signal
to the robot’s motors. The inputs to this service are the distance (in millimeters), velocity
(speed and direction), and the range reading threshold.

Turning

This service implements simple rotational motion of the robot. The infrared table sensors
are employed to avoid hitting any table or elevated surface while turning. A triggered table
sensor will instantly stall the motors and cancel the turning. The inputs to this service are
the rotational velocity and an angle value.

Operate Gripper

This service is used to demonstrate the capabilities of the 2-DOF gripper. The inputs are
the direction of the gripper and a boolean flag storing the desired gripper mode (opened/-
closed).

Wander with Collision Avoidance

This service implements random wandering in an environment while employing a fuzzy-
logic-based obstacle avoidance mechanism. Readings from the range-finding devices are
used as an input to the obstacle avoidance mechanism, which, in turn, controls the robot’s
translational and rotational velocities in an intelligent manner. Moreover, the bumpers
and table sensors are used to avoid hitting obstacles in narrow spaces and hitting tables
respectively.

61

Navigation

This complex service involves the robot navigating to a designated location in an environ-
ment. This service employs the fuzzy logic-based obstacle avoidance mechanism discussed
earlier, as well as a simple localization technique using a map of the environment. The
input to this service is a map file of an environment and a designated location.

Table Object Tracking and Grabbing

This complex service employs the gripper and the PTZ camera to track and grab a colored
object placed on a table edge. The input to this service is a single value specifying a target
color. The robot starts by scanning its environment looking for a significantly sized object
having the specified color. After an object is found the robot will cautiously close in on the
object while continually adjusting its translational and rotational velocities to ensure an
accurate gripping position. After approaching the table, the robot will deploy its gripper
to grab the object.

4.2 Cyton Alpha Robotic Arm

The Cyton Alpha, shown in Figure 4.3, is a 7-DOF 1G robotic arm mimicking the human
arm, and is developed by Robai [14] for the purposes of performing lightweight tasks,
prototyping, and research. The Cyton Alpha features 7-DOF movement capability plus a
single end effector gripper. The “kinematic redundancy” of Cyton Alpha combined with
the high performance servo motors operating the joints contributes to the arm’s fluid and
accurate motion, as well as its ability to navigate around obstacles and narrow spaces. The
Cyton Alpha can be controlled by any machine using a USB interface.

62

Figure 4.3: The Cyton Alpha Robotic Arm [14].

4.2.1 Actin-SE Control Software

All robotic arms developed by Robai come with Actin-SE, a powerful cross-platform con-
figurable software package [14]. Actin-SE provides a rich set of APIs and tools for program-
matic control of the arm, as well as an optimized control system to reduce development
time. The provided optimized control system takes into account the great difficulty and the
countless ways of manipulating the joints to achieve a desired motion or posture. Acting
upon the provided requirements, the control system will handle simultaneous movements
of the joints while avoiding collisions, singularities, joint limits, as well as maintaining op-
timized strength, accuracy, and reduced kinetic energy. Moreover, Actin-SE provides the
Cyton Viewer (shown in Figure 4.4), which is a front-end GUI and kinematic simulator
featuring 3D visualization of the robotic arm, as well as various simulation and configu-
ration tools. Actin-SE is implemented in C++ and supports Windows, Linux, and Apple
platforms. The other functionalities and features provided by Actin-SE are listed below.

• End-effector control: enables direct control of the arm with any 3D input device,
or computer mouse.

• Kinematic and dynamic simulator: useful for the purposes of simulating opera-
tion routines and environments.

• Network interface: enables remote control of the arm over TCP/IP.

63

• Movie recording/playback: enables recording and replaying of the arm’s move-
ments and simulations. These can be produced into video clips.

• Data capture and dynamic plotting: all kinematic, dynamic, and diagnostic data
can be captured and stored in other tools’ formats such as Matlab and Mathematica.
Moreover, the captured data can be plotted dynamically in real time.

Figure 4.4: Cyton Viewer [14].

As with PeopleBot, two identical Cyton Alpha arms were available. The implemented
services are discussed in the following subsection.

4.2.2 Implemented Services

A total of three services were developed for the Cyton Alpha arm. They are discussed in
the following subsections.

64

Reach Demo

This service is a simple demo demonstrating the reach limit of each of the joints of the
arm. The service simply controls the servo motor of a joint to the minimum and maximum
values of its angular range, and it successively repeats the process for each joint.

Control

This service enables control of individual joints as well as combined control. This can be
considered as a tight manual control of the arm. The inputs to this service are the angular
values for one or more joints.

Grab and Place

This sophisticated service controls the arm to pick an object from an elevated surface and
place it accurately on a lower surface or a table edge. This service is particularly interesting
since it is used to demonstrate collaboration with the PeopleBot mobile robot.

4.3 Collaborative Service

To test the middleware rigorously, a collaborative service was created involving a PeopleBot
robot and a Cyton Alpha arm. In this scenario, the two robots work together to transport
an object placed on an elevated surface at one side of a room to a table located at the
opposite side. Figure 4.5 illustrates the initial setup in the CPAMI laboratory.

65

Figure 4.5: PeopleBot and Cyton Alpha at Initial Setup.

All a human operator needs to do is designate a master entity and issue a task request
for the service to it. The master entity will coordinate the other involved entities and
manage the order of execution of the different tasks. It makes no difference which entity
is designated as the master. Firstly, the Cyton Alpha will execute the “Grab and Place”
service (illustrated in Figure 4.6). It will then inform the PeopleBot of the success/failure
of the task, or commands the PeopleBot to execute the next task, depending on whether
the arm is the slave or the master respectively.

66

(a) Picking from an Elevated Surface. (b) Placing on the Table Edge.

Figure 4.6: Cyton Alpha in Action.

Next, the PeopleBot will execute the “Table Object Tracking and Grabbing” service.
Then, if successful, it will either proceed to execute the “Navigation” service or waits for
the command to execute “Navigation”, depending on whether PeopleBot is the master or
the slave respectively. Lastly, and after successfully reaching its destination, PeopleBot
will operate its gripper to accurately place the object on the table. Figures 4.7 and 4.8
illustrate the PeopleBot in action.

(a) (b)

Figure 4.7: PeopleBot performing “Table Object Tracking and Grabbing”.

67

(a) (b) (c)

Figure 4.8: PeopleBot Performing “Navigation”. The Target is the Front of the Opposite
Table.

4.4 Chapter Summary

This chapter discussed two different robotic platforms that were used to test the proposed
middleware. The discussion covered the hardware features and the provided software
libraries for each robot. In addition, the discussion highlighted the different services imple-
mented for each robot. These services vary in complexity and make use of all the physical
capabilities of the robot. Moreover, it was illustrated how heterogeneous robots could per-
form collaborative tasks using the middleware by having the PeopleBot mobile robot and
the Cyton Alpha arm work together to transport an object across the laboratory.

68

Chapter 5

System Evaluation

This chapter discusses preliminary evaluation of the proposed middleware. Since the main
aim is to design and develop an industrial grade distributed robotic middleware that could
accommodate multiple entities and clients, the middleware was subjected to a series of
performance and stress tests. The performance tests are tailored to match the needs of a
robotic research environment, and so, they differ slightly from typical distributed systems
and servers evaluation criteria.

The current version of the middleware is intended to be used within a typical university
robotics laboratory. A series of performance tests were carried out at the Centre for Pattern
Analysis and Machine Intelligence (CPAMI) at the University of Waterloo. The server
component was deployed on a 2.66 GHz. Intel Quad Core machine with 4 GB of RAM.
The tests relied on the provided high speed LAN and WLAN in the laboratory. Moreover,
a barebones console-based client program was developed to carry out the experiments.

5.1 Latency

Latency, in the networking and communications context, is the transmission delay between
a source and a destination in a network. In a typical packet switching network, latency
can be measured in two different ways. The first is the one-way latency, which is the time
it takes a request to travel from a source to a destination over the network. The second
is the two-way latency, also known as the round-trip time (RTT), is the one-way latency
from the source to the destination plus the one-way latency of the reverse trip (from the
destination to the source). Pinging is the most common way of measuring latency and it
is relatively accurate since it does not involve any processing on the destination side.

69

Since the middleware is designed to handle multiple clients and entities, it is criti-
cal to measure how long it takes a client to reach its checked-out entities, and how this
time changes with an increasing number of connected clients and entities. Thus, several
experiments were carried out to measure the latency between clients and entities. Un-
like conventional latency measurements which merely involve pinging the destination, two
different one-way latency measurements were carried out between clients and entities as
follows:

• Latency of transmitting batches of raw data: as mentioned before, a client is able to
send resources to an entity. A resource can be an image file, for instance. To simulate
data, the GPB bytestream message was used to pack 5000 5-ASCII character strings.
This size was chosen to simulate substantial network traffic.

• Latency of transmitting a stop signal: a client can send a stop signal to an entity
which will halt the execution of the current task and/or physically stop the entity.
For obvious safety reasons, such as hazards and collision avoidance, it is crucial that
the stop signal reaches an entity in the least amount of time.

To simulate large numbers of entities, multiple EMs were evenly distributed on four
different machines running Ubuntu Linux. Taking into account that many robots, and
especially mobile robots, rely on wireless-based communication, the tests were duplicated
to record latencies for both wired and wireless entities. Due to the inherent unreliability
of networks, and to ensure that the recorded latency values are accurate, all received data
on each entity is validated to ensure that it is uncorrupted and unaltered. The server was
modified to allow for a client to stream data/signals to all connected entities, which is
not the case in normal operation. This was done to allow for load testing. Furthermore,
connection timeouts were set to two seconds (for both entities and clients).

5.2 Single Client - Multiple Entities

In this experiment, several runs were carried out to measure how the transmission latency
between a single client and multiple entities is affected by the number of connected entities.
The experiment involves exponentially increasing number of entities from 1 up to 2048 while
recording the latency for each number of entities. For each run, an equal number of wired
and wireless entities existed in the environment.

70

5.2.1 Raw Data Stream

In this experiment the client is continuously sending a batch of raw data to each connected
entity every 500 milliseconds through successive RPCs of this function:

long sendData (long clientTimestamp, string entityId, string entityType,

string msg, CommUtil::DataSeq dataSeq);

The dataSeq stores the serialized bytestream. The total size of transmitted data (in-
cluding function arguments) per call is 35137 bytes, or 281096 bits. Table 5.2.1 summarizes
the obtained results. Figure 5.1 illustrates a plot of the average latency against the number
of entities.

Average Latency (ms)
Number of Entities LAN WLAN

1 1.8 141.5
2 1.7 57.7
4 2.7 57.7
8 4.4 57.5
16 7.9 57.1
32 16.1 56.4
64 30.9 54.2
128 61.1 58.4
256 157.6 108.4
512 249.7 246.7
1024 402.6 698.9
2048 823.7 901.8

Table 5.1: Single Client - Multiple Entities Data Stream Average Latency.

71

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500 1000 1500 2000 2500

A
v
e
ra

g
e

 L
a

te
n
c
y
 (

m
s
)

Number of Entities

Data Stream

LAN
WLAN

Figure 5.1: Single Client - Multiple Entities Data Stream Average Latency Plot.

5.2.2 Stop Signal

In this experiment the client is continuously sending a stop signal to each connected entity
every 500 milliseconds through successive RPCs of this function:

long sendStopSignal (long clientTimestamp, string entityId,

string entityType, string msg);

Table 5.2.2 summarizes the obtained results. Figure 5.2 illustrates a plot of the average
latency against the number of entities. The results clearly demonstrates that it takes less
than 1 second for a stop signal to reach any entity in an environment with a large number
of entities.

72

Average Latency (ms)
Number of Entities LAN WLAN

1 0.2 0.3
2 0.3 0.3
4 0.6 0.5
8 0.9 2.3
16 1.7 1.6
32 2.6 2.4
64 4.8 5.1
128 10.6 8.9
256 18.2 17.8
512 35.3 39.5
1024 72.3 83.6
2048 160.7 402.8

Table 5.2: Single Client - Multiple Entities Stop Signal Average Latency.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

A
v
e

ra
g
e
 L

a
te

n
c
y
 (

m
s
)

Number of Entities

Stop Signal

LAN
WLAN

Figure 5.2: Single Client - Multiple Entities Stop Signal Average Latency Plot.

73

5.3 Multiple Clients - Multiple Entities

A number of load testing experiments were carried out to measure how the transmission
latency between a client and its checked-out entities is affected by the number of both
clients and entities in the environment. As with the previous test, an equal number of
wired and wireless entities existed in the environment for each run. In this experiment,
however, a fixed number of 256 entities were connected to the environment prior to testing;
they are split into two categories as follows:

• Standard entities: this group consisted of 246 entities. These entities are ordinary
connected entities that receive data and signals from clients.

• Testing entities: this group consisted of the remaining 10 entities (5 wired and 5
wireless entities). This group is used to collect latency data.

Theoretically, the number of clients cannot exceed the number of entities. Therefore,
the number of clients was increased exponentially from 1 up to 256, thus having up to
65,536 simultaneous transmissions. Similar to categorizing the entities, each run of the
experiment had one testing client and a number of standard clients. The standard clients
continuously transmit a random mix of data and signals to the standard entities, while the
testing client is transmitting to the testing entities.

5.3.1 Raw Data Stream

In this experiment, the testing client is sending a data batch to each testing entity every
500 milliseconds. It was observed that as the number of clients increased from 128, some
of the connected entities and clients started to timeout. At 256 clients, several entities
lost connection to the server. Table 5.3.1 summarizes the obtained results. Figure 5.3
illustrates a plot of the average latency against the number of clients.

74

Average Latency (ms)
Number of Clients LAN WLAN

1 14.0 25.8
2 43.0 106.3
4 70.9 78.8
8 89.6 54.4
16 344.8 445.0
32 671.5 1374.2
64 643.6 665.1
128 860.8 711.6
256 1365.2 2215.8

Table 5.3: Multiple Clients - Multiple Entities Data Stream Average Latency.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Number of Clients

Data Stream (256 Entities)

LAN
WLAN

Figure 5.3: Multiple Clients - Multiple Entities Data Stream Average Latency Plot.

75

5.3.2 Stop Signal

In this experiment, the testing client sends a stop signal to each entity in the testing
group every 500 milliseconds. Table 5.3.2 summarizes the obtained results. Figure 5.4
illustrates a plot of the average latency against the number of clients. Similar to the
previous experiment, occasional disconnections were observed. The results demonstrate
that even with a large number of simultaneous transmissions, a stop signal takes much less
than 1 second to reach an entity.

Average Latency (ms)
Number of Clients LAN WLAN

1 0.3 0.9
2 0.3 0.6
4 0.3 0.8
8 0.3 1.0
16 2.0 3.2
32 3.5 5.7
64 3.9 4.8
128 10.6 10.7
256 8.3 9.5

Table 5.4: Multiple Clients - Multiple Entities Stop Signal Average Latency.

76

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

A
v
e
ra

g
e

 L
a

te
n
c
y
 (

m
s
)

Number of Clients

Stop Signal (256 Entities)

LAN
WLAN

Figure 5.4: Multiple Clients - Multiple Entities Stop Signal Average Latency Plot.

5.4 Chapter Summary

This chapter presented a preliminary evaluation of the middleware. A series of experiments
were performed to measure the latency between clients and entities under different condi-
tions and setups. At the same time, these experiments simulated an overloaded environ-
ment to test the robustness and scalability of the server. The results clearly demonstrated
that the average transmission latency between clients and entities is relatively small. The
server proved to be quite robust and scalable, able to handle a large number of clients and
entities.

77

Chapter 6

Conclusion and Future Work

Robotic middleware is becoming an important research topic in the robotics field. The
great advances in the hardware, software and network technologies resulted in a broad
diversity in robotic hardware and software. The rapidly growing interest in multi-robot
research and development has brought a great need for tools that could enable seamless
integration of multiple robots.

The goal of any robotic middleware is to provide the “glue” to attach multiple robotic
applications in an integrated framework. Robotic middleware provides an abstraction
layer that hides the inherent heterogeneity of hardware and software components of the
underlying robotic entities. This greatly reduces complexity, simplifies software design, re-
duces development time, and promotes reusability and extensibility of applications. Using
a robotic middleware, the developer needs only to develop his own custom algorithm or
application as a component that can be plugged in to the environment along with other
components.

This work tackles the problem of robotic middleware from a different angle. For a
robot, instead of attempting to provide a comprehensive abstraction layer for its software
and hardware components, the middleware provides a simple software abstraction layer
atop its vendor provided software libraries. The rationale behind this design is that the
vendor provided software is the best tool to make full use of the robot’s capabilities. A
developer would use the provided robotic software libraries in developing his application,
and use the middleware to seamlessly plug his application in to a multi-robot environment.
The middleware is composed of two main components: the EM and the server. The EM
runs on the robot’s onboard machine. It hides all networking and concurrency details
from developers, and presents a simple and extensible interface for robotic applications

78

development. The current version of the EM supports C++ applications, but can easily be
extended to support other programming languages. The server component keeps track of
all connected entities, and provides efficient information and data routing between them.
It is based on the ICE technology, a highly efficient and robust network middleware. The
GPB technology was employed to have a structured lightweight information exchange in the
middleware. The notion of lightweight efficient information and data exchange was greatly
emphasized in this work, and introduced as a substantial issue in robotic middleware
research.

The middleware was rigorously evaluated in terms of its capability to handle heteroge-
nous robots, and its performance. The middleware was deployed in a real laboratory
environment and was used to integrate two different types of robots in a seamless manner,
and to handle collaboration between them. In terms of performance, several experiments
were carried out to test and measure the middleware’s ability to handle exchange of data
between a large number of entities and clients. The results illustrated that the middleware
prototype is fit enough to be used right away.

The modular and professional design of the system allows for easy expansion and up-
grade, and given that the current version is only a prototype, this opens the door to nu-
merous ideas for upgrading and enhancing the system. Much more work can be addressed
in related future work as follows:

• Based on performance evaluations, the system has a decent performance when han-
dling multiple entities and clients. However, this cannot replace the need for real-time
support. Adding real-time capabilities in the middleware is an obvious upgrade, es-
pecially given that real-time constraints are a recurring requirement in robotics.

• The modular design of the EM and EI allows for easy upgrade and expansion. The
simple API provided in the EI can be easily expanded.

• The modular design of the server component allows for deployment on multiple ma-
chines to increase scalability. The middleware can grow to support multiple robotics
laboratories and coordinate among them.

• The primitive notion of “global services” and collaboration currently implemented
opens the door to develop a plugin framework that can support complex experiments
and scenarios where the developer can specify his experiment and plug it in for
execution in the environment.

79

• Support for entities other than robots can be easily included. In robotics research,
researchers can make use of complex algorithms, which can be computationally ex-
pensive. A developer can deploy his/her algorithms on dedicated machines and plug
them in to the environment using the middleware, where the robots can make use of
them.

Needless to say, much more designing, testing, and development are required to make
the middleware design a mature technology that can be used by a wide variety of developers
and end users.

80

Bibliography

[1] AWARE-project.net. http://www.aware-project.net/. Accessed: June 27, 2012.

[2] Free CORBA downloads. http://www.omg.org/technology/corba/

corbadownloads.htm. Accessed: June 16, 2012.

[3] Ice Performance White Paper. http://www.zeroc.com/articles/

IcePerformanceWhitePaper.pdf. Accessed: May 24, 2012.

[4] Intelligent Mobile Robotic Platforms for Service pobots, Research and Rapid Proto-
typing. http://www.mobilerobots.com/Mobile_Robots.aspx. Accessed: June 18,
2012.

[5] Microsoft Robotics Developer Studio. http://www.microsoft.com/robotics/. Ac-
cessed: August 6, 2012.

[6] Mobilerobots Research Development Software. http://www.mobilerobots.com/

Software.aspx. Accessed: June 18, 2012.

[7] Object Management Group (OMG). http://www.omg.org/. Accessed: June 2, 2012.

[8] ObjectWeb - what’s Middleware. http://middleware.objectweb.org/. Accessed:
June 21, 2012.

[9] OpenRTM-aist. http://www.openrtm.org/. Accessed: June 20, 2012.

[10] Oracle Berkeley DB. http://www.oracle.com/technetwork/products/

berkeleydb/overview/index.html?origref=http://www.zeroc.com/freeze/

index.html. Accessed: May 25, 2012.

[11] Peoplebot Robot Makes Human-Robot Interaction Research Affordable. http://www.
mobilerobots.com/ResearchRobots/PeopleBot.aspx. Accessed: June 18, 2012.

81

http://www.aware-project.net/
http://www.omg.org/technology/corba/corbadownloads.htm
http://www.omg.org/technology/corba/corbadownloads.htm
http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
http://www.mobilerobots.com/Mobile_Robots.aspx
http://www.microsoft.com/robotics/
http://www.mobilerobots.com/Software.aspx
http://www.mobilerobots.com/Software.aspx
http://www.omg.org/
http://middleware.objectweb.org/
http://www.openrtm.org/
 http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html?origre f=http://www.zeroc.com/freeze/index.html
 http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html?origre f=http://www.zeroc.com/freeze/index.html
 http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html?origre f=http://www.zeroc.com/freeze/index.html
http://www.mobilerobots.com/ResearchRobots/PeopleBot.aspx
http://www.mobilerobots.com/ResearchRobots/PeopleBot.aspx

[12] Protocol Buffers – Google Developers. https://developers.google.com/

protocol-buffers/. Accessed: May 21, 2012.

[13] Rise and fall of CORBA. http://www.zeroc.com/documents/riseAndFallOfCorba.
pdf. Accessed: June 16, 2012.

[14] Robai - Powerful Affordable Robots. http://www.robai.com/. Accessed: June 19,
2012.

[15] SOAP Specifications. http://www.w3.org/TR/soap/. Accessed: June 16, 2012.

[16] ZeroC - Our Customers. http://www.zeroc.com/customers.html. Accessed: May
24, 2012.

[17] ZeroC - the Internet Communications Engine. http://zeroc.com/ice.html. Ac-
cessed: May 24, 2012.

[18] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. Yoon. RT-Middleware: Dis-
tributed Component Middleware for RT (Robot Technology). In 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3933–3938, 2005.

[19] D. E. Bakken, P. Dasgupta, and J. Urban. Middleware. Encyclopedia of Distributed
Computing, 2001.

[20] H. Bruyninckx. Open robot control software: the OROCOS project. In 2001 IEEE
International Conference on Robotics and Automation (ICRA), volume 3, pages 2523–
2528, 2001.

[21] C. Côté, Y. Brosseau, D. Létourneau, C. Raevsky, and F. Michaud. Robotic Soft-
ware Integration Using MARIE. International Journal of Advanced Robotic Systems,
3(4):55–60, March 2006.

[22] G. G. de Rivera, R. Ribalda, J. Cols, and J. Garrido. A generic software platform
for controlling collaborative robotic system using XML-RPC. In 2005 International
Conference on Advanced Intelligent Mechatronics (IEEE/ASME), pages 1336–1341,
2005.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, USA, 1994.

82

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.zeroc.com/documents/riseAndFallOfCorba.pdf
http://www.zeroc.com/documents/riseAndFallOfCorba.pdf
http://www.robai.com/
http://www.w3.org/TR/soap/
http://www.zeroc.com/customers.html
http://zeroc.com/ice.html

[24] B. P. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems. In Proceedings of the International
Conference on Advanced Robotics (ICAR), pages 317–323, 2003.

[25] P. Gil, I. Maza, A. Ollero, and P. J. Marrón. Data centric middleware for the integra-
tion of wireless sensor networks and mobile robots. In Proceedings of 7th Conference
on Mobile Robots and Competitions, ROBOTICA, pages 1–6, April 2007.

[26] F. Guorui and W. Jian. Research of heterogeneous robots system based on CORBA. In
2011 International Conference on Consumer Electronics, Communications and Net-
works (CECNet), pages 569–573, 2011.

[27] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design and performance of a real-
time CORBA event service. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, volume 32,
October 1997.

[28] D. Hernández-Sosa, A. C. Domı́nguez-Brito, C. Guerra-Artal, and J. Cabrera-Gámez.
Runtime Self-Adaptation in a Component-Based Robotic Framework. In 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2700–2705, 2005.

[29] W. Hongxing, L. Shiyi, Z. Ying, Y. Liang, and W. Tianmiao. A Middleware Based
Control Architecture for Modular Robot Systems. In 2008 IEEE/ASME International
Conference on Mechtronic and Embedded Systems and Applications, pages 327–332,
2008.

[30] M. Y. Jung, A. Deguet, and P. Kazanzides. A Component-based Architecture for
Flexible Integration of Robotic Systems. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 2010.

[31] S. Knoop, S. Vacek, R. Zollner, C. Au, and R. Dillmann. A CORBA-based distributed
software architecture for control of service robots. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 4, pages 3656–3661, 2004.

[32] T. Lee, H. Seo, B. Lee, and D. Shin. A Software Component Model and Middle-
ware Architecture for Intelligent Mobile Robot. In 2nd International Conference on
Computer and Automation Engineering (ICCAE), volume 4, pages 453–456, 2010.

83

[33] S. Magnenat, V. Longchamp, and F. Mondada. ASEBA, an event-based middleware
for distributed robot control. In Workshops DVD of International Conference on
Intelligent Robots and Systems (IROS), pages 1–6, October 2007.

[34] M. R. Majedi, K. A. Osman, and M. Boyd. A Generic Service Oriented Architectural
Model for Pervasive Applications: A Case Study in Internet-based Multiple Robot
Control. In Third International Conference on Pervasive Computing and Applications,
volume 1, pages 54–59, 2008.

[35] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for Robotics. In Inter-
national Conference on Intelligent Robots and Systems (IROS), 2006.

[36] M. Mizukawa, H. Matsuka T. Koyama T. Inukai, A. Nodad, H. Tezuka, Y. Noguchi,
and N. Otera. ORiN: open robot interface for the network - the standard and unified
network interface for industrial robot applications. In 41st SICE Annual Conference,
volume 2, pages 925–928, 2002.

[37] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. A Review of Middleware for Networked
Robots. International Journal of Computer Science and Network Security (IJCSNS),
9(5):139–148, 2009.

[38] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. ROS: an open-source Robot Operating System. In ICRA 2009 Workshop
on Open Source Software in Robotics, pages 1–6, 2009.

[39] F. Santos, L. Almeida, P. Pedreiras, and L. S. Lopes. A real-time distributed software
infrastructure for cooperating mobile autonomous robots. In International Conference
on Advanced Robotics (ICAR), 2009.

[40] D. C. Schmidt. The ADAPTIVE Communication Environment: An Object-Oriented
Network Programming Toolkit for Developing Communication Software. pages 214–
225, 1993.

[41] W. D. Smart. Is a Common Middleware for Robotics Possible? In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS’07), 2007.

[42] B. Song, S. Jung, C. Jang, and S. Kim. An Introduction to Robot Component Model
for OPRoS(Open Platform for Robotic Services). In Proceedings of the International
Conference Simulation, Modeling Programming for Autonomous Robots Workshop,
pages 592–603, 2008.

84

[43] I. Song, F. Guedea, and F. Karray. CONCORD: A Control Framework for Distributed
Real-time Systems. IEEE Sensors Journal, 7(7):1078–1090, 2007.

[44] I. Song, F. Karray, and F. Guedea. A Distributed Real-time System Framework
Design for Multi-Robot Cooperative Systems using Real-Time CORBA. In 2003 IEEE
International Symposium on Intelligent Control, pages 793–798, 2003.

[45] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, USA, 2006.

[46] H. Utz, S. Sablatnög, S. Enderle, and G. Kraetzschmar. Miro - Middleware for Mobile
Robot Applications. IEEE Transaction on Robotics and Automation, 18(4):493–497,
November 2002.

[47] A. Whitbrook. Programming Mobile Robots with Aria and Player: A Guide to C++
Object-Oriented Control. Springer, London, 2010.

[48] J. Yoo, S. Kim, and S. Hong. The Robot Software Communications Architecture
(RSCA): QoS-Aware Middleware for Networked Service Robots. In International
Joint Conference, SICE-ICASE, pages 330–335, 2006.

85

Appendix A

Installing and Running the Server

This appendix describes the procedure that the developer needs to follow in order to
install the server component on a machine. The current version of the server supports x86
GNU/Linux platforms.

A.1 Prerequisites

The only prerequisite for installation is the ICE software package v.3.4.2 or later. This
package can be downloaded from this link: http://zeroc.com/ice.html, or from the
package manager of the Linux distribution on the target machine.

A.2 Installation

The server component is provided in the axon_backend.tar archive file. A developer must
perform the following steps in order to properly compile and install the server:

1. Open a terminal.

2. Untar the axon_backend.tar archive.

3. Go into the “environment/” directory by typing: “cd axon_backend/environment/”.

86

http://zeroc.com/ice.html

4. The default installation directory is “/opt/axon_backend/environment/”. This can
be changed as follows:

(a) Go to the ”config“ directory.

(b) Open the Make.rules file using a text editor.

(c) Edit the prefix parameter by typing the desired installation directory.

(d) Save and close.

5. Inside the “environment/” directory, type “make”, followed by “make install”.
This will compile and install the server into the target installation directory.

A.3 Configurations and Running

Before running, the server must be assigned to port numbers and the host machine IP
address in order for external entities and clients to be able to connect to it. Two configu-
ration files in the “config/” sub-directory of the installation directory must be edited as
follows:

• entityserver.cfg, for the entity server. In this file, the parameter EntityServer.Endpoints
takes a port number and two IP address values for SSL and TCP types of connec-
tions. The IP addresses must be the same for both types. On the other hand, port
numbers must be distinct.

• frontendserver.cfg, for the front-end server. In this file, the parameter FrontEnd-
Server.Endpoints must be edited in the same way as the EntityServer.Endpoints of
entityserver.cfg.

In order to run the server, go to directory to the “bin/“ directory and execute the
run_server.sh script by typing in the terminal: “sh run_server.sh”. If initialization is
success, the server will display success messages. It is now ready to receive connections.

A.4 Global Services

As mentioned earlier, a simple profile called the “global services” may be created to define
simple collaborative services between entities. This profile has to be kept on the server
machine in order to make it available to all clients.

87

This profile must be included in the “globalservices/” directory inside the server’s
installation directory. This will ensure that the profile will be parsed by the server and
made available to all connected clients, on request.

Figure A.1 illustrates a sample global services profile.

<?xml version="1.0" encoding="UTF-8"?>

<GlobalProfile count = "3">

<Service name = "Collaboration Demo">

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "cruiser_zone" preced = "1">

<key_value param_name = "Destination" param_value = "6" />

</entity>

<entity category = "ROBOT" type = "STATIONARY" id = "1" service_global_id = "cyton_pick" preced = "1" />

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "peoplebot_blobpick" preced = "2" />

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "cruiser_dest" preced = "3">

<key_value param_name = "Destination" param_value = "1" />

</entity>

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "gripper" preced = "4">

<key_value param_name = "Open/Close" param_value = "true" />

<key_value param_name = "Direction" param_value = "true" />

</entity>

</Service>

<Service name = "Pick and Place Demo">

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "cruiser_zone" preced = "1">

<key_value param_name = "Destination" param_value = "6" />

</entity>

<entity category = "ROBOT" type = "MOBILE" id = "1" service_global_id = "peoplebot_blobpick" preced = "2">

<key_value param_name = "Color" param_value = "1" />

</entity>

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "cruiser_dest" preced = "3" />

<entity category = "ROBOT" type = "MOBILE" id = "0" service_global_id = "peoplebot_grip" preced = "4">

<key_value param_name = "Open/Close" param_value = "true" />

</entity>

</Service>

<!-- -->

</GlobalProfile>

Figure A.1: “Global services” Profile.

88

Appendix B

Adding an Entity to the Environment

This appendix describes the procedure that the developer needs to follow in order to install
the entity component of the middleware and to link a robotic application to it.

B.1 Prerequisites

There are two software packages that need to be installed prior to installing and using the
entity component. They are listed as follows:

• The ICE software package v.3.4.2 or later. This package can be downloaded from
this link: http://zeroc.com/ice.html, or from the package manager of the Linux
distribution on the target machine.

• The GPB package v.2.4.1 or later. This package can be downloaded from this link:
https://developers.google.com/protocol-buffers/, or from the package man-
ager of the Linux distribution on the target machine.

B.2 Installation

The entity component is provided in the axon_backend.tar archive file. A developer must
perform the following steps in order to properly compile and install the entity component.

89

http://zeroc.com/ice.html
https://developers.google.com/protocol-buffers/

B.2.1 Entity Manager

1. Open a terminal.

2. Untar the axon_backend.tar archive.

3. Go into the “entity/” directory by typing: “cd axon_backend/entity/”.

4. The default installation directory is “/opt/axon_backend/entity/”. This can be
changed as follows:

(a) Go to the ”config/“ directory.

(b) Open the Make.rules file using a text editor.

(c) Edit the prefix parameter by typing the desired installation directory.

(d) Save and close.

5. Inside the “entity/” directory, type “make”, followed by “make install”. This will
compile and install the EM into the target installation directory.

B.2.2 Entity Interfacer

1. Open a terminal.

2. Untar the axon_backend.tar archive.

3. Go into the “entityinterfacer/” directory by typing:
“cd axon_backend/entityinterfacer/”.

4. The default installation directory is “/opt/axon_backend/entityinterfacer/”. This
can be changed as follows:

(a) Go to the ”config/“ directory.

(b) Open the Make.rules file using a text editor.

(c) Edit the prefix parameter by typing the desired installation directory.

(d) Save and close.

5. Inside the “entityinterfacer/” directory, type “make”, followed by “make install”.
This will compile and install the EI into the target installation directory.

90

B.3 Configurations and Running

This section provides details about configuring and running the entity component of the
middleware on a robot.

B.3.1 Entity Interfacer

In order to use the the EI in an application, the application must make use of two items
in the installation directory:

1. The “entityinterfacer.h” header file found in the “include/” sub-directory. This
header file must be included in the application source code.

2. The “libentityinterfacer.so” shared library found in the “lib/” sub-directory.
The application must link against this shared library.

The EI and the EM communicate through a TCP socket. The socket port number
can be configured by editing the “ports.cfg” configuration files found in the “config/”
sub-folder. A range of port numbers can be entered. This range must be between 5500

and 8000 inclusive.

B.3.2 Entity Manager

The EM must be configured before running. Two configuration files must be edited as
follows:

• The “entitygl2client.cfg” Glacier2 client configurations file. The Ice.Default.Router
parameter takes two IP address values. To ensure that the EM can locate the server,
the two IP addresses must match the IP address of the server machine.

• The “ports.cfg” configuration file. The specified port range must match that in
the “ports.cfg” of the EI. As with EI, the range must fall between 5500 and 8000

inclusive.

91

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	Motivation
	Objectives and Contributions
	Organization of the Thesis

	Background and Literature Review
	Robotic Middleware
	Middleware for Networked Robots
	Literature Review
	Commercial Robotic Systems
	Chapter Summary

	Middleware Architecture
	Information Base and Data Carrier
	Entity Information
	Google Protocol Buffers
	Google Protocol Buffers Messages

	Network Middleware
	The Internet Communications Engine
	ICE Services
	SLICE

	Entity Component
	The Entity Manager
	The Entity Interfacer

	Server Component
	Entity Server
	Front-End Server
	Inter-server Communication

	Overall Architecture
	Chapter Summary

	Experimental Setup for Multi-Robot System
	PeopleBot Mobile Robot
	Pioneer SDK
	Implemented Services

	Cyton Alpha Robotic Arm
	Actin-SE Control Software
	Implemented Services

	Collaborative Service
	Chapter Summary

	System Evaluation
	Latency
	Single Client - Multiple Entities
	Raw Data Stream
	Stop Signal

	Multiple Clients - Multiple Entities
	Raw Data Stream
	Stop Signal

	Chapter Summary

	Conclusion and Future Work
	Bibliography
	Appendix
	Installing and Running the Server
	Prerequisites
	Installation
	Configurations and Running
	Global Services

	Adding an Entity to the Environment
	Prerequisites
	Installation
	Entity Manager
	Entity Interfacer

	Configurations and Running
	Entity Interfacer
	Entity Manager

