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Abstract

This thesis describes two topological phases of matter, the Weyl semimetal and the line
node semimetal, that are related to but distinct from topological insulator phases. These
new topological phases are semimetallic, having electronic energy bands that touch at
discrete points or along a continuous curve in momentum space. These states are achieved
by breaking time-reversal symmetry near a transition between an ordinary insulator and a
topological insulator, using a model based on alternating layers of topological and ordinary
insulators, which can be tuned close to the transition by choosing the thicknesses of the
layers. The semimetallic phases are topologically protected, with corresponding topological
surface states, but the protection is due to separation of the band-touching points in
momentum space and discrete symmetries, rather than being protected by an energy gap
as in topological insulators. The chiral surface states of the Weyl semimetal give it a
non-zero Hall conductivity, while the surface states of the line node semimetal have a flat
energy dispersion in the region bounded by the line node. Some transport properties are
derived, with a particular emphasis on the behaviour of the conductivity as a function of
the impurity concentrations and the temperature.
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Chapter 1

Introduction: Topological Insulators

In recent years, there has been considerable interest in a new class of materials known as
time-reversal invariant topological insulators (TIs). These materials are characterized by
the combination of a gap in the bulk electron energy spectrum and gapless surface states.
The surface states are guaranteed by a quantity called a topological invariant,[13] which is
unaffected by continuous changes to the system, provided that such changes do not close
the bulk energy gap. Thus, the stability of TIs depends crucially on the gap.[21]

Recent work has shown, however, that there are other systems with nontrivial topologi-
cal invariants and corresponding surface states, but no bulk gap. Instead, two bands touch
at special points in the Brillouin zone. A different mechanism is then required to stabilize
the surface states. In this thesis, I describe a simple, experimentally feasible realization
of this type of system; two distinct semimetal phases are produced by adding different
TR symmetry-breaking perturbations to the system of stacked topological and ordinary
insulator layers described in Section 2.[2, 3, 24]

This thesis is organized as follows. Chapter 1 introduces the concepts of topological
invariants and surface states in more detail and discusses transitions between ordinary
insulating and topological insulator phases, using the quantum spin Hall state in graphene
as an example. Chapter 2 introduces a model structure of alternating layers of ordinary
and topological insulator layers and examines the limiting case of a single TI layer in more
detail. Chapters 3 and 5 discuss recently proposed topological phases that arise in the
layered structure when time-reversal symmetry is broken. Finally, Chapter 5 discusses
transport properties of these topological phases, with the hope that these properties may
be experimentally observable and aid in identification of these phases in real systems.

1
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Figure 1.1: Honeycomb
structure of graphene,
showing lattice vectors a1

and a2. Dots and squares
represent carbon atoms
in sublattices 1 and 2, re-
spectively.

1.1 Graphene

1.1.1 Band Structure

The properties of two-dimensional TIs can be explained by Kane and Mele’s model of
graphene with spin-orbit coupling.[12] Graphene is a two-dimensional crystal consisting of
carbon atoms arranged in a honeycomb structure with two hexagonal sublattices offset from
each other as shown in Figure 1.1.[7] Graphene itself has attracted considerable interest
for its unusual electronic properties [23, 18, 8, 20, 4, 5], which are similar in many ways to
those of the materials described later in this thesis.

For low energies, an effective Hamiltonian for graphene can be computed by using a
tight-binding description, beginning with the Hamiltonian [22]

H = −t
∑

<iα,jβ>

[
c†iαcjβ + c†jβciα

]
, (1.1)

where the sum runs over nearest neighbour atoms on lattice sites i, j and sublattices α, β ∈
{1, 2}, ciα is the annihilation operator for an electron at lattice site i on sublattice α, and
c†iα is the corresponding creation operator. Spin has been temporarily neglected. Applying
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Figure 1.2: Plot of the distinc-
tive “Dirac cone” dispersion of
graphene, εk = ~vF |k|. The en-
ergy of an electron is directly
proportional to its momentum
and there is no energy gap; elec-
tronic states are available at all
energies (in the small momen-
tum approximation that leads to
Equation (1.4).

a Fourier transform,

c†jα =
1√
N

∑
k,α

c†kαe
−ik·Rj , (1.2)

where N is the number of lattice sites, leads to the momentum-space Hamiltonian

H = −t
∑
k

[
c†k1ck2

(
1 + e−ik·a1 + e−ik·a2

)
+ c†k2ck1

(
1 + eik·a1 + eik·a2

)]
. (1.3)

This Hamiltonian has two independent band-touching points at kx = ±4π
3a

, where a =
|a1| = |a2|. Expanding the Hamiltonian at low energies near these points gives the effective
Hamiltonian

H0(k) = ~vF (kxσ
xτ z + kyσ

y), (1.4)

where vF =
√

3ta
2~ and σ and τ are Pauli operators acting on pseudospin degrees of freedom:

σ describes which sublattice the electron is on and τ describes which band-touching point
it is near in momentum space. The Hamiltonian (1.4) describes a massless Dirac fermion
(the general theory of which will be discussed in Section 1.2), with the dispersion near each
band-touching point having the well-known Dirac cone form εk = ~vF |k|, shown in Figure
1.2.
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1.1.2 Spin-Orbit Coupling

In [12], Kane and Mele considered the addition of another term to (1.4), arising from
spin-orbit coupling:

HSO(k) = ∆SOσ
zτ zsz, (1.5)

with sz a Pauli operator acting on spin. This term respects both the inversion symme-
try (which inverts σz and τ z) and the time-reversal symmetry (which inverts τ z and sz)
of graphene, but gives a non-zero mass to the Dirac fermions of (1.4) and leads to the
dispersion εk = ±

√
(~vFk)2 + ∆2

SO, with an energy gap 2∆SO. Such a Dirac mass, with
a corresponding energy gap, also arises from, for instance, a σz term, corresponding to
a potential with opposite signs on the two sublattices. The resulting system would be
topologically trivial, as in the limit of an infinitely strong potential, it simply decouples
the two sublattices, creating an atomic insulator, wherein conduction does not occur be-
cause electrons are unable to travel from one atom to its nearest neighbour because of the
large energy barrier. As will be shown, however, the spin-orbit term leads to a non-trivial
topology, meaning the system cannot be continuously transformed to a trivially insulating
phase without closing the energy gap at some intermediate stage.

Including both the spin-orbit term of (1.5) and a mass term mσz as mentioned above,
the Hamiltonian is

H(k) = ~vF (kxσ
xτ z + kyσ

y) + ∆SOσ
zτ zsz +mσz. (1.6)

The three sets of Pauli operators in (1.6) commute with one another, so it is clear that
both τ z and sz commute with H(k), meaning that they can be diagonalized simultaneously
with H(k). Thus, beginning with the case sz = 1, one can write

H±(k) = ~vF (±kxσx + kyσ
y) + (m±∆SO)σz, (1.7)

with the plus and minus signs corresponding to the eigenvalues of τ z, i.e., the two Dirac
points. The key feature of this equation is the sign change of the Dirac mass m±∆SO in
the H− block; the m > ∆SO and m < ∆SO cases can be distinguished by examining the
Landau level spectra of the two blocks.

1.1.3 Landau Level Spectra

The Landau level spectra are found by introducing a magnetic field perpendicular to the
plane of the sample: B = Bẑ, which is equivalently described by the vector potential

4



A = xBŷ in what is known as the Landau gauge. In a position space representation, ~k
becomes −i~∇+ e

c
A, giving

H± = ∓i~vF
∂

∂x
σx + ~vF

(
−i ∂
∂y

+
x

`2

)
σy + (m±∆SO)σz, (1.8)

where ` =
√

~c
eB

is the magnetic length.

Examining H2
± simplifies the calculation of the Landau level spectrum. Noting that the

Pauli operators anticommute with one another and square to the identity operator, and
also that

[
∂
∂x
, x
]

= 1, one can calculate

H2
± = −~2v2

F

∂2

∂x2
+ ~2v2

F

(
−i ∂
∂y

+
x

`2

)2

+ (m±∆SO)2 ± ~2ω2
Bσ

z, (1.9)

where ωB = vF/`. All pairs of terms in (1.9) commute, except the first two, and therefore
they can be diagonalized independently of one another. The first two terms have eigenstates
of the form Ψ(x, y) = eikyφ(x), giving

− ~2v2
F

d2φ

dx2
+ ~2v2

F

(
k +

x

`2

)2

= Eφ(x). (1.10)

This is simply the time-independent Schrödinger equation for a one-dimensional harmonic
oscillator centred away from the origin, with the mass replaced by 1/2v2

F and the frequency
by 2~ω2

B. Since the energy levels of a harmonic oscillator are given by En = ~ω(n+ 1/2),
Equation (1.9) can be written as

H2
± = 2~2ω2

B(n+
1

2
)± ~2ω2

Bσ
z + (m±∆SO)2, (1.11)

where n can be any non-negative integer.

The resulting Landau level energies satisfy

|εN±| =
√

2~2ω2
BN + (m±∆SO)2, (1.12)

with N = n or N = n+ 1 depending on the action of σz on the state. For N ≥ 1, there are
two solutions for |εN±| with the same magnitude and opposite sign. For N = 0, however,
there is only one solution for each block of the Hamiltonian, with the signs determined by
the eigenvalue of σz: for ε0+, 〈σz〉 = −1 and (1.8) requires that the coefficient of m+ ∆SO

be negative. Likewise, the coefficient of m − ∆SO is positive for ε0−. Thus, the Landau

5
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Figure 1.3: Landau level spectra
of graphene for sz = 1 with stag-
gered potential m and spin-orbit
coupling ∆SO. (a) m > ∆SO.
(b) m < ∆SO. Notice that one
Landau level crosses the zero en-
ergy point, moving from positive
energy in (a) to negative energy
in (b). If the Fermi energy is
held fixed at εF = 0, this level
becomes filled for ∆SO > m,
contributing a Hall conductance
e2/h.

levels for N ≥ 1 are symmetric about zero energy, but those for N = 0 are not: the energies
are

ε0+ = −(m+ ∆SO), and (1.13)

ε0− = m−∆SO. (1.14)

The sign change of ε0− at m = ∆SO reveals the topological nature of the ∆SO > m state:
if the Fermi energy remains fixed at εF = 0, there is one extra filled Landau level when
∆SO > m, resulting in a Hall conductance of e2/h, whereas the Hall conductance for
m > ∆SO is zero.

The above calculation was for electrons with spins aligned parallel to the field; for
anti-parallel spins, a similar calculation gives

ε0+ = −(m−∆SO) and (1.15)

ε0− = m+ ∆SO. (1.16)

So in this case, there is an extra unfilled Landau level when ∆SO > m, contributing
a Hall conductance −e2/h that cancels the above contribution. But although the net
Hall conductance is zero, these two sets of Landau states for ∆SO > m remain distinct,
describing electrons with opposite spins that travel in opposite directions along the edge
of the material.This results in a spin current Js = (~/2e)(J↑ − J↓), where J↑ and J↓ are
the charge current contributions from spin-up and spin-down electrons, respectively. The
corresponding spin Hall conductivity is then quantized as σsxy = e/2π. [12]
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Figure 1.4: Illustration of the edge states of a two-dimensional TI or Quantum spin Hall
insulator. Electrons of opposite spin move in opposite directions around the edge of the
material.

The energies of the N = 0 Landau levels calculated above are completely independent
of the magnitude of B, meaning that the spin Hall conductivity remains even in the limit
B → 0. In this limit, the time-reversal symmetry of the system, broken by the applied
magnetic field, is restored.

The existence of topological edge states in the limit B → 0 can be demonstrated by
explicitly solving the time-independent Schrödinger equation corresponding to Equation
(1.7), a method that is demonstrated in Section 2.1.3.

1.2 Dirac Fermions

A three-dimensional Dirac fermion is an excitation described by the Dirac Hamiltonian

H =
∑
k

[
3∑

µ=1

kµγµ +mγ4

]
c†kck, (1.17)

where kµ is the µth component of the (dimensionless) momentum, m is the mass of the
Dirac fermion, and γµ are Hermitian matrices that describe a discrete degree of freedom
such as spin, and satisfy [6]

γ2
µ = 1 and γµγν + γνγµ = 0 for µ 6= ν. (1.18)

7



For non-zero m, the Dirac matrices must be 4 × 4 in size. For example, Section 2.2 will
describe a system with a Dirac Hamiltonian corresponding to the 4 × 4 matrices

γ1 =

(
−σy 0

0 σy

)
, γ2 =

(
σx 0
0 −σx

)
, γ3 =

(
0 −iI
iI 0

)
, and γ4 =

(
0 I
I 0

)
. (1.19)

The full Hamiltonian of Equation (1.17) can then be written as

H(k) =


0 i(kx − iky) −ikz +m 0

−i(kx + iky) 0 0 −ikz +m
ikz +m 0 0 −i(kx − iky)

0 ikz +m i(kx + iky) 0

. (1.20)

Alternatively, one can choose the representation

γ1 =

(
σx 0
0 σx

)
, γ2 =

(
σy 0
0 σy

)
, γ3 =

(
σy 0
0 σy

)
, γ4 =

(
0 I
I 0

)
. (1.21)

The Dirac Hamiltonian can then be written in the form

H(k) =

(
σ · k m
m −σ · k

)
. (1.22)

The 2 × 2 blocks ±σ · k describe two-component Dirac fermions, since the three 2 × 2
Pauli matrices also satisfy the property (1.18) required of the Dirac matrices. These two-
component Dirac fermions are known as Weyl fermions,[19] and individual Weyl fermions
in three dimensions must be massless, since there is no fourth 2 × 2 matrix that can satisfy
(1.18) with the Pauli matrices, and hence there cannot be a mass term in Equation (1.17).

With a non-zero mass in Equation (1.22), the two Weyl fermions are coupled, creating
a gap in the energy spectrum, ε(k) = ±

√
k2 +m2. But with zero mass, the gap closes,

yielding the same Dirac cone dispersion found in graphene and shown in Figure 1.2: ε(k) =
±|k|. By perturbing the system, for instance by applying a magnetic field to break time-
reversal symmetry, the Weyl fermions can be separated in momentum space, preventing
them from coupling.

As illustrated in Section 1.1, a sign change of the Dirac mass implies a change in the
topology of the system and a quantum Hall transition, resulting from a sign change in the
lowest Landau level of the system.[21, 16]
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1.3 History and Properties of Topological Insulators

The example of graphene with spin-orbit coupling described in Section 1.1 is an example
of a two-dimensional topological insulator, also known as a quantum spin Hall insulator.
These are insulators that are topologically distinct from ordinary band insulators, meaning
that it is impossible to continuously modify their Hamiltonians into that of an ordinary
insulator (for example, a vacuum) without closing the energy gap at some intermediate
step. The first known example of such a state was the two-dimensional quantum Hall
state discovered in 1980 by von Klitzing et al.[21] This state is achieved by applying a
strong magnetic field perpendicular to a thin layer of high-purity conducting material.
The magnetic field modifies the electronic orbits, resulting in a set of highly degenerate
Landau level states at discrete energies. These Landau states correspond to chiral orbits,
traveling in only one direction (determined by the magnetic field) around the edge of
the sample. If an integer number of Landau levels are filled, this integer is a topological
invariant for the system. This invariant is closely tied to an experimentally measurable
quantity: the Hall conductance of the system is νe2/h, where ν is the number of filled
Landau levels.[21] This quantized Hall conductance allows for very precise measurements
of the fine structure constant α = e2/~c, since c is known precisely by the definition of the
metre.

Development of these ideas continued with Haldane’s theoretical model of a quantum
Hall system without an external magnetic field or Landau levels, but with time-reversal
symmetry still broken.[9] The quantum spin Hall state of Section 1.1 was predicted to occur
in graphene by Kane and Mele in 2005,[12] but the magnitude of the spin-orbit coupling
∆SO has proven to be extremely small, preventing experimental observation of the QSH
state in graphene.[21] However, the QSH state was also predicted and later observed in
HgTe/CdTe quantum wells.[1, 14]

There are also three-dimensional analogues of the quantum spin Hall state, possessing
TR symmetry and helical edge states, meaning that the motion of an electron is coupled
to its spin, as in Figure 1.4. They can be classified into strong and weak topological
insulators; the weak systems, unlike the strong systems, are equivalent to a stack of two-
dimensional systems and not robust in the presence of disorder.[10] The strong topological
insulator phase was first observed in antimony-doped bismuth, with the transition from
an ordinary insulator to a topological insulator occurring at an antimony concentration of
about 4%. This material has a complicated surface electronic structure and a small bulk
energy gap.[21] Other strong TIs with simpler surface band structures and larger bulk
gaps include Bi2Se3, Bi2Te3, and Sb2Te3. These have bulk gaps between 0.2 and 0.3 eV,
meaning that the TI phase is observable even at room temperature (kBT ∼ 0.025 eV, about

9



Figure 1.5: Angle-resolved photoemission spectroscopy measurement of the electronic en-
ergies of Bi2Se3 as a function of electron momentum. The nearly straight lines intersecting
at kx = 0 and ky = 0 represent the Dirac surface states, while the solid regions, separated
by a vertical gap, represent the bulk states.

10 times smaller).[21] Xia et al. [25] demonstrated the existence of the surface Dirac cone
in Bi2Se3 using angle-resolved photoemission spectroscopy (ARPES), in which electrons
are ejected from a sample by photons of known energy. The momenta of the electrons are
then measured, allowing the electronic band structure of both the bulk and the surface
to be determined. The results, clearly showing the surface Dirac cone as well as the bulk
energy gap, are shown in Figure 1.5.

Near the Dirac point (to second order in momentum), these materials can be described
by the Hamiltonian [21]

H(k) = ε0(k) +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)

 , (1.23)

where k± = kx ± iky, ε0(k) = C + D1k
2
z + D2k

2
⊥, and M(k) = M − B1k

2
z − B2k

2
⊥. This
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Hamiltonian represents a Dirac fermion as in Section 1.2, but with momentum-dependent
mass and a additional momentum-dependent energy shift. In more detail, the C term shifts
both bands uniformly in energy (representing a change in the chemical potential), the D1

and D2 terms shift both energy bands non-uniformly in the same direction, creating particle
hole asymmetry, which clearly occurs in the experimental data of Figure 1.5. A1 and A2

represent the velocities of electrons along the z axis and in the x-y plane, respectively. M
determines the size of the bulk energy gap at the Dirac point, while B1 and B2 give the
electrons a quadratic dispersion (rather than a linear one, as would otherwise be the case)
away from the Dirac point, representing an ordinary non-relativistic mass.

1.4 Time-Reversal Symmetry

This work will make frequent reference to TR symmetry, and most of the results will
depend on broken TR symmetry, so it is important to introduce it formally and discuss its
role in TI systems. The time-reversal operator T acts on a Hamiltonian H(k) as [10]

T : H(k)→ σyH∗(−k)σy, (1.24)

where ∗ denotes complex conjugation. Physically, the time-reversal operation reverses the
momentum, spin, and magnetic moment of all particles.

TR symmetry is closely connected to the stability of topological surface states. As
mentioned above, insulators are classified by a topological invariant that takes different
values for topological insulators than for ordinary insulators. The topological invariant
is so-named because it is unchanged by any continuous modification of the Hamiltonian
describing the system, provided that the energy gap of the system is not closed (i.e., the
material remains insulating). Since the invariant does change across the interface between
a topological and and ordinary insulator, one is forced to conclude that the two insulators
are separated by a gapless (conducting) region. However, the invariants characterizing
the quantum spin Hall state of Section 1.1 and three-dimensional TIs are only defined
for systems that possess time-reversal symmetry. So breaking TR symmetry eliminates
this particular mechanism for stabilization of the surface states, but Chapters 3 and 4
will present other stability mechanisms for related systems, that are in fact dependent on
broken TR symmetry.

TR symmetry also has important implications for the transport of the surface electrons;
scattering by non-magnetic impurities is suppressed because TR symmetry guarantees that
for any possible scattering process, the reverse process has an opposite quantum amplitude,

11



so that there is no net contribution to the scattering probability. [21] However, magnetic
impurities explicitly break TR symmetry by adding terms proportional to σx, σy, or σz

(and even powers of k), which change sign when acted upon by T , so the above argument
no longer holds. This breaking of TR symmetry will be essential for the results presented
later in this thesis.
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Chapter 2

Model System

The physical system modeled in this thesis consists of alternating thin layers of a three-
dimensional strong topological insulator and a normal insulator, as described in [2, 3]
and shown in Figure 2.1. As will be shown later in this section and in Section 2.2, this
configuration results in another strong TI, but with the advantage that its energy gap, i.e.,
the mass of the Dirac fermions, can be tuned to a desired value by choosing appropriate
thicknesses for the different layers. The semimetallic states of Chapters 3 and 4 both
require a TR-breaking perturbation of a massive Dirac fermion, with the energy scale of
the perturbation larger than the Dirac mass. This is made easier by tuning the Dirac mass
to a small value, avoiding the need for very strong magnetic fields.

The z axis is taken to be perpendicular to the layers, while the x and y axes lie along the
planes. The structure is periodic in the z direction, with period d. This system derives its
electronic structure from the surface states of the individual TI layers, whose Hamiltonian
is found by projecting the Hamiltonian (1.23) onto the x-y plane: [21]

H =
∑
k⊥

[~vF τ z(ẑ × σ) · k⊥]c†k⊥ck⊥ , (2.1)

where k⊥ = kxx̂ + kyŷ is the momentum perpendicular to the z axis, vF is the Fermi
velocity, σ and τ are Pauli operators acting on the spin and surface (top or bottom)
degrees of freedom, respectively, and c†k and ck are the creation and annihilation operators
for electrons of momentum k. The spin and surface indices are left implicit in the sum and
the creation and annihilation operators for brevity.

In the layered configuration above, the different TI surfaces are coupled by the tunneling
of electrons. This thesis will consider tunneling between opposite surfaces of a single TI
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Y

Z

Topological Insulator
Ordinary Insulator

X

d

Figure 2.1: Structure of the TI multilayer system. Dark and light layers represent topo-
logical and ordinary insulators, respectively. Surface states described by Equation (2.1) are
found at the boundaries between layers. Tunneling between layers gives rise to the Hamil-
tonian (2.2). The combined thickness of one topological insulator layer and one ordinary
insulator layer is d.

xk

yk

εk

Figure 2.2: Surface energy states
of a three-dimensional topological
insulator with arrows representing
spin. The band structure consists of
a Dirac cone as in Figure 1.2, with
an electron’s spin always perpen-
dicular to its momentum. Along a
path in momentum space that en-
circles the Dirac point, the spins
wind by 2π.
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layer, and also tunneling across an ordinary insulator layer, between the top of one TI layer
and the bottom of the TI layer above it. These processes are assigned tunneling amplitudes
of ∆S and ∆D, respectively. The Hamiltonian of the multilayer system is then

H =
∑
k⊥,i,j

[~vF τ z(ẑ × σ) · k⊥δi,j + ∆Sτ
xδi,j +

1

2
∆D(τ+δj,i+1 + τ−δj,i−1)]c†k⊥ick⊥j, (2.2)

where i and j run over each TI layer and τ± = τx ± iτ y. This Hamiltonian is in fact
equivalent to (1.23) up to first order in k after transformations of σ and τ . Thus, this new
system is also a three-dimensional strong TI, but with the gap tunable by choosing appro-
priate thicknesses for the different layers. Noting that σyσxσy = −σx and (σy)∗ = −σy,
it can be verified that the Hamiltonians (2.1) and (2.2) are invariant the transformation
(1.24), so this system possesses TR symmetry.

2.1 Single TI Layer

Before studying a many-layered system described by Equation (2.2), it is worth considering
the case of a single TI layer, as in Ref. [27]. In this case, the ∆D term and the summation
over i and j are removed from Equation (2.2), giving

H =
∑
k

[~vF τ z(ẑ × σ) · k + ∆Sτ
x]c†k⊥ck⊥ , (2.3)

where the subscript ⊥ has been dropped from k for this section. Or, writing H =∑
k⊥
H(k), and using the basis {| ↑, t〉, | ↓, t〉, | ↑, b〉, | ↓, b〉}, where the arrows represent

spin and t and b stand for the top and bottom surfaces, H(k) can be represented by the
4x4 matrix

H(k) =


0 ~vF (ikx + ky) ∆S 0

~vF (−ikx + ky) 0 0 ∆S

∆S 0 0 ~vF (−ikx − ky)
0 ∆S ~vF (ikx − ky) 0

 . (2.4)

This matrix is diagonalized to give the dispersion

|εk| =
√
~2v2

Fk2 + ∆2
S, (2.5)

which is shown graphically in Figure 2.3(a). The tunneling term hybridizes the electronic
states of the two surfaces, opening a gap and altering the topological nature of the material.
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Figure 2.3: Band structure of a thin TI layer with tunneling between top and bottom
surfaces and an applied in-plane magnetic field. The upper and lower bands are both
doubly degenerate. (a) b < |∆S|: The system is gapped. (b) b = |∆S|: The gap closes at
a single point in momentum space. (c) b > |∆S|: The single node in (b) splits into two
nodes separated in momentum space.

2.1.1 TR Symmetry-Breaking and Edge States

More interesting results are achieved upon breaking TR symmetry by adding a term bσx,
corresponding to an applied magnetic field or ferromagnetic impurities with magnetic mo-
ments aligned in the x direction. In the case of an external field, the b term arises from a
combination of two mechanisms as follows. First, there a term gµB

2
Bσx from the Zeeman

coupling of the electron spins to the field, where µB = e~
2mc

is the Bohr magneton. In
addition, the magnetic field influences the orbital motion of the electrons, an effect that
can be represented by the transformation k → e

~cA, where A = −zBŷ is the magnetic
vector potential in the Landau gauge. Setting z = ±dTI/2 for the top and bottom surfaces
of the layer, respectively, the Hamiltonian can then be written as

H(k) = ~vF τ z(ẑ × σ) ·
(

k− eB

~c
dTI

2
τ zŷ

)
+ ∆Sτ

x +
ge~
4mc

Bσx. (2.6)

16



Expanding the dot product of ẑ × σ with the dTI term gives

H(k) = ~vF τ z(ẑ × σ) · k + ∆Sτ
x +

(
g~2

4m`2
− ~vFdTI

2`2

)
σx, (2.7)

where ` =
√

~c
eB

is the magnetic length.

So, defining b =
(

g~2
4m`2
− ~vF dTI

2`2

)
, the Hamiltonian for the system with broken time-

reversal symmetry is

H(k) = ~vF τ z(ẑ × σ) · k + ∆Sτ
x + bσx, (2.8)

with dispersion

|εk,±| =
√

~2v2
Fk2 + ∆2

S + b2 ± 2b
√

~2v2
Fk

2
y + ∆2

S, (2.9)

plotted in Figure 2.3. When b ≥ |∆S|, the gap closes again, with nodes located at kx =
0, ky = ± 1

~vF

√
b2 −∆2

S. Moreover, the system acquires a new topological character, with
edge states that can be demonstrated by considering a sample limited to the x ≤ 0 half-
plane. Expanding Equation (2.3) and including the TR-breaking term above gives

H(k) = ~vFkyτ zσx − ~vFkxτ zσy + bσx + ∆Sτ
x. (2.10)

The analysis is simplified by bringing the Hamiltonian to a block diagonal form, i.e. by
transforming Equation (2.10) to eliminate all of the τ operators. To achieve this, first the
spin quantization axis is rotated by π

2
around the y axis, so that σx → σz and σz → −σx,

giving
H(k)→ ~vFkyτ zσz − ~vFkxτ zσy + bσz + ∆Sτ

x. (2.11)

This is followed by another transformation,

σ± → τ zσ±, τ± → σzτ±, (2.12)

which gives
H′(k) = [~vFkyτ z + b+ ∆Sτ

x]σz − ~vFkxσy. (2.13)

The factor in square brackets, ~vFkyτ z + b + ∆Sτ
x, commutes with H′ since it contains

only τ operators and real numbers, while the rest of H′ contains only σ operators and real
numbers. This means that it can be diagonalized simultaneously with H′, and so it can be
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replaced by its eigenvalues, b±
√

~2v2
Fk

2
y + ∆2

S. This leads to two independent 2x2 blocks

of the Hamiltonian,
H′±(k) = (b± bc)σz − ~vFkxσy, (2.14)

where bc =
√
~2v2

Fk
2
y + ∆2

S. At this point, the edge states can be demonstrated in two

ways, both of which will be presented here.

2.1.2 Topological Argument for Edge States

First, the presence of the edge states can be inferred from the topological properties of
the the above Hamiltonian, specifically the H′− block. In order to study the topology
of the system, the Hamiltonian must be regularized to obtain a periodic function of kx,
as expected for a crystalline system. The particular form of the regularization is not
important, provided that it reproduces Equation (2.14) when expanded to first order near
kx = 0 and does not create any additional nodes. To this end, one can use kx → sin(kx) and
b→ b

2
(1+cos(kx)), with the transformation of b accounting for the momentum-dependence

of the electron g-factor.

For clarity, it is useful to imagine the Hamiltonian (2.14), with the above regularization,
as describing a one dimensional system along the x axis, with ky a parameter characterizing
the system. To emphasize this, the regularized Hamiltonian can be written as

H′ky ,−(kx) =

[
b

2
(1 + cos(kx))− bc

]
σz − ~vF sin(kx)σ

y. (2.15)

Now one can consider the vector g(kx) = −~vF sin(kx)ŷ +
[
b
2
(1 + cos(kx))− bc

]
ẑ, chosen

to give g(kx) · σ = H′−. For b < bc, gz is negative for all kx, whereas for b > bc, one has
gz > 0 for kx close to 0. As kx traverses the first Brillouin zone, this sign change, combined
with the sign change of sin(kx) in the y component at kx = 0, leads to a winding of g in
the y-z plane for b > bc as shown in Figure 2.4. I.e., g has a winding number of 1 in this
case. Provided that g does not acquire an x component (which is guaranteed in this case
by certain discrete symmetries that will be discussed in Chapter 4), this winding number
is topologically invariant; no continuous change in g can remove the winding without at
some point causing g(kx) = 0 for some value of kx. Since g · σ = H′−, g = 0 implies a
closed energy gap.

The situation is now the same as that discussed in Section 1.4; for b > bc, the winding
number of g must change across the boundary at x = 0, since the vacuum has trivial
topology. Thus, the energy gap for |ky| < 1

~vF

√
b2 −∆2

S must close along the x = 0 edge,
as shown in Figure 2.5.
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kxb < bc

b > bc

g

Figure 2.4: Illustration of the winding of the vector g, defined so that the Hamiltonian is
g ·σ, as a function of kx in the first Brillouin zone. For b > bc, meaning that ky is between
the two nodes, g winds counterclockwise once as kx traverses the first Brillouin zone. For
b < bc, ky is not between the nodes (if any) and there is no winding of g.

2.1.3 Explicit Calculation of Edge State Wavefunctions

The edge states can be demonstrated explicitly by seeking zero energy states, using a real
space rather than momentum space description in the x direction: kx → −i∂/∂x. For
b > 0, only H− is relevant to the edge states, which therefore must satisfy

[b(x)− bc]σzΨ(x) + i~vFσy
∂Ψ

∂x
= 0, (2.16)

where Ψ is a two-component spinor, and the field b is now assumed to have position
dependence with b(x) → 0 as x → ∞ (i.e., the field is zero far from the sample). This
can be simplified by assuming a solution of the form Ψ(x) = iσyeF (x)φ, with φ a position-
independent spinor, leading to the new equation

[b(x)− bc]σxφ = ~vF
dF

dx
φ. (2.17)

A normalizable solution to (2.16) requires that F (x) → −∞ as x → ±∞, meaning that
dF
dx

, and hence b(x) − bc also, must have opposite signs as x → ±∞. Thus, zero energy
states occur only if b > bc inside the sample, in which case the solution is given by

Ψ(x) = e
1

~vF

∫ x
0 dx′ [b(x′)−bc]|σx = −1〉. (2.18)
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Figure 2.5: Left: energy spectrum of a thin TI film with an in-plane magnetic field and
finite size along the x direction, showing the dispersionless states on the x = 0 edge. Right:
Inverse participation ratio for the same system, showing that electronic wavefunctions in
the interval of the flat dispersion are indeed localized to the edge.

As expected, these zero energy states are localized to the edge of the sample at x = 0.

The edge state dispersion and wavefunctions can also be calculated numerically to verify
the above result. The regularized Hamiltonian 2.15 is converted to a description in terms
of N discrete positions along the x axis by a Fourier transform:

c†kx =
1√
N

∑
kx

c†je
ikxj, (2.19)

so

H′ky ,−(j) =
1

N

∑
kx,j,j′

([
b

2
(1 + cos(kx))− bc

]
σz − ~vF sin(kx)σ

y

)
e−ikx(j′−j)c†jcj′ . (2.20)

Using the identity 1
N

∑
k e

ik(j′−j) = δj,j′ , the Hamiltonian simplifies to

H′ky ,−(j) =
∑
j

(
b

2
− bc

)
σzc†jcj +

∑
j

(
b

4
σz +

i~vFσy

2
σx
)
c†jcj+1 +

+
∑
j

(
b

4
σz +

−i~vFσy

2
σx
)
c†jcj−1, (2.21)

for which the electron energies can be calculated numerically, with the results shown in
Figure 2.5, confirming the presence of gapless surface states between the point nodes.
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A participation ratio can also be defined from the eigenstates of (2.21) to character-
ize the degree to which the wavefunctions are localized at the edge. For a normalized
wavefunction ψky(j, σ), the inverse participation ratio is defined as

p−1
ψky

=
∑
j

Pj(ψky)
2, (2.22)

where Pj(ψky) = |ψky(j, σ)|2 + |ψky(j,−σ)|2 is the probability for an electron with mo-
mentum ky to be found at position j. For a wavefunction localized at a single point in
space, p−1

ψ = 1, while for a uniformly distributed state, p−1
ψ = 1/N , so a larger value of p−1

ψ

suggests a wavefunction that is more strongly localized.

2.1.4 Magnetic Susceptibility

One physical consequence of the transition between the gapped state with b < |∆S| and
the gapless state b ≥ |∆S| is found by computing the magnetic susceptibility of the system
at zero temperature, given by the differentiating the free energy twice with respect to the
applied field. In general, the free energy (grand potential) at a temperature T and chemical
potential µ is

F = −kBT ln

(∏
i

∑
ni

e−ni(εi−µ)/kBT

)
, (2.23)

where i runs over all eigenstates of the Hamiltonian, εi is the energy of eigenstate i, and kB
is the Boltzmann constant. For fermions, each ni can only be 0 or 1, and for this system,
there are four energy eigenvalues for each momentum k, given by Equation (2.9). The free
energy is therefore

F = −kBT
∑
k

[
ln

(
1 + e

−
εk,+−µ
kBT

)
+ ln

(
1 + e

−
εk,−−µ
kBT

)
+ ln

(
1 + e

εk,++µ

kBT

)
+ ln

(
1 + e

εk,−+µ

kBT

)]
. (2.24)

The susceptibility is then

χ(B) = − 1

dTIA

∂2F

∂B2
, (2.25)

where dTI is the thickness of the TI layer and A is its area. Computing this expression
explicitly for µ = 0, one first obtains

∂F

∂B
= −kBT

db

dB

∑
k

(
sinh(ε̃k,+)

1 + cosh(ε̃k,+)

∂ε̃k,+
∂B

+
sinh(ε̃k,−)

1 + cosh(ε̃k,−)

∂ε̃k,−
∂B

)
, (2.26)
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where ε̃k,± = εk,±/kBT . In the limit T → 0, ε̃k,± →∞, except at the nodes, which do not

contribute significantly to the sum, so
sinh(ε̃k,+)

1+cosh(ε̃k,+)
→ 1. Differentiating again yields

∂2F

∂B2
= −kBT

(
db

dB

)2∑
k

[
∂2ε̃k,+
∂b2

+
∂2ε̃k,−
∂b2

]

= −
(
db

dB

)2∑
k

~2v2
Fk

2
x

(
1

ε3k,+
+

1

ε3k,−

)
. (2.27)

However, this expression is divergent for large kx. This divergence is eliminated by
subtracting the susceptibility for ∆S = 0, which is zero for physical reasons.[27] Assuming
the sample is large in area, the sum over k can be replaced by an integral, giving

χ(B) = A

(
db

dB

)2

I(B), (2.28)

where

I(B) =

∫
d2k

4π2
~2v2

Fk
2
x

[
1

ε3k,+
+

1

ε3k,−
− 1

ε3k,+

∣∣∣∣∣
∆S=0

− 1

ε3k,−

∣∣∣∣∣
∆S=0

]
. (2.29)

This integral can be evaluated directly, beginning with the integral over kx, giving

I(B) =
1

2π2vF

∫ ∞
−∞

dky ln

∣∣∣∣∣∣∣
k2
y −

(
b
vF

)2

k2
y − k2

0

∣∣∣∣∣∣∣ , (2.30)

where k0 = (1/vF )
√
b2 −∆2

S is real and gives the position of the nodes along the ky axis
when b ≥ |∆S|, but is imaginary when b < |∆S|. When k0 is real, the integrand can be
rewritten as

ln

∣∣∣∣∣ k̃y − 1

k̃y − k̃0

∣∣∣∣∣+ ln

∣∣∣∣∣ k̃y + 1

k̃y + k̃0

∣∣∣∣∣ , (2.31)

where k̃y = ~vF ky
b

and k̃0 = k0
b

. The logarithms above are odd under the reflections

k̃y → −k̃y + (1 + k̃0) and k̃y → −k̃y− (1 + k̃0), respectively, so their integrals must be zero.
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Figure 2.6: Magnetic susceptibility of a thin TI film subject to an in-plane magnetic field,
plotted as a function of the field (shown for ∆S = 1).

When |∆S| > b, k0 is imaginary, and (2.30) can be evaluated directly as

I(B) =
1

2π2vF

k̃y ln

∣∣∣∣∣ k̃2
y − 1

k̃2
y + ∆̃2

S − 1

∣∣∣∣∣+ ln

∣∣∣∣∣ k̃y + 1

k̃y − 1

∣∣∣∣∣− 2

√
∆̃2
S − 1 arctan

 k̃y√
∆̃2
S − 1

∞
−∞

=
−1

πv2
F

√
∆2
S − b2. (2.32)

Therefore the susceptibility is

χ(B) =

{
0 if b ≥ ∆S

−e2B
πv2F c

2

(
g~
4m
− vF dTI

2

)2√
∆2
S − b2 if b < ∆S.

(2.33)

2.2 Ordinary Insulator to Topological Insulator Tran-

sition

Returning to the many-layered system, it is useful to transform from the description in
terms of tunneling between discrete layers, found in Equation (2.2), to one in terms of the
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momenta of electrons along the z axis. Substituting the Fourier transform

c†k⊥,j =
1√
N

∑
kz

c†ke
−ikzdj, (2.34)

where N is the number of TI layers, into (2.2) gives the momentum-space Hamiltonian

H =
∑
k

[
~vF τ z (ẑ × σ) · k + ∆̂(kz)

]
c†kck, (2.35)

where ∆̂(kz) = ∆Sτ
x + 1

2
∆D

(
τ+eikzd + τ−e−ikzd

)
. Assuming that the sample has a length

L along the z axis, the allowed values of kz are 2πn/L, where n is an integer. This
Hamiltonian has two doubly degenerate bands given by

ε±(k) = ±
√

~2v2
F (k2

x + k2
y) + ∆2

S + ∆2
D + 2∆S∆D cos(kzd). (2.36)

A key property of this system is the band-touching that occurs when |∆S| = |∆D|. The
location of the band-touching in momentum space depends on the relative signs of ∆S and
∆D; in the case ∆S,∆D > 0, the node is located at kx = ky = 0, kz = π/d. Since H(k) is
periodic in kz, with period 2π/d, kz will be chosen to lie in the interval [0, 2π/d] so that
the node is located at the centre of the range of kz.

Approximating the Hamiltonian for momenta close to the node gives

H(k) = ~vF τ z(ẑ × σ) · k + ∆Dτ
y
(
kz −

π

d

)
d+ (∆S −∆D)τx. (2.37)

This equation has the same form as that of a general four-component Dirac fermion as
discussed in Section 1.2 with the gamma matrices given by equation 1.19:

γ1 = −τ zσy, γ2 = τ zσx, γ3 = τ y, γ4 = τx, and γ5 = τ zσz. (2.38)

The mass of the Dirac fermion is therefore ∆S − ∆D; the mass is zero when ∆S = ∆D

and changes sign depending on the relative magnitudes of ∆S and ∆D. As discussed in
Section 1.2, this sign change implies a transition between different topologies, with the state
∆S > ∆D having trivial topology, since the limit ∆S/∆D →∞ corresponds to a structure
composed entirely of ordinary insulator layers, with the TI layers having vanishing thickness
in comparison. Breaking time-reversal symmetry near the transition point produces the
Weyl semimetal phase of Chapter 3 or the line node semimetal of Chapter 4, depending
on the particular mechanism of TR symmetry-breaking.
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Chapter 3

Weyl Semimetal

This chapter examines the effect of adding a term bσz to the Hamiltonian (2.35), the
momentum-space description of the multilayer heterostructure introduced in Chapter 2.
This term can be generated by doping the material with ferromagnetic impurities with
their magnetic moments aligned along the z axis. With this addition, the Hamiltonian
becomes

H(k) = ~vF τ z(ẑ × σ) · k + bσz + ∆̂(kz), (3.1)

where ∆̂(kz) = ∆sτ
x + 1

2
∆D

(
τ+eikzd + τ−e−ikzd

)
. The energy eigenvalues are

|εk,±| =

√
~2v2

F (k2
x + k2

y) +

[
b±

√
∆2
S + ∆2

D + 2∆S∆D cos(kzd)

]2

. (3.2)

For b between mc1 = |∆S −∆D| and mc2 = ∆S + ∆D, there are two point nodes for which
εk,− = 0. The εk,− bands for this case are plotted in Figure 3.1, showing two nodes along
the kz axis, located at kz = π/d± k0, where k0 = 1

d
arccos[1− (b2− (∆S −∆D)2)/2∆S∆D].

This state is the topological Weyl semimetal described in [2] and [3]. It has also been
predicted to occur in iridium compounds on pyrochlore lattices,[24, 26] but these systems
are much more complicated than the version described here, having 24 Weyl nodes instead
of two, the smallest possible number since Weyl nodes always appear in pairs with opposite
chiralities.

To study this state in detail, it is useful to make the transformation σ± → τ zσ±, τ± →
σzτ±, giving

H(k) = ~vF (kyσ
x − kxσy) + [b+ ∆̂(kz)]σ

z. (3.3)
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Figure 3.1: Plots of the bulk electronic dispersion of the Weyl semimetal. There are two
Weyl nodes, located at kx = ky = 0, kz = π/d ± k0, with k0 given in the text. At these
points, the energy gap closes and the electronic dispersion is linear. These Weyl nodes
are stable due to their separation in momentum space: they can only be eliminated by
closing the separation between them, allowing the two Weyl nodes of opposite chirality to
eliminate each other.
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Since ∆̂(kz) contains only τ operators, it commutes with H(k), and can be replaced by its
eigenvalues, giving

H±(k) = ~vF (kyσ
x − kxσy) + [b±∆(kz)]σ

z, (3.4)

where ∆(kz) =
√

∆2
S + ∆2

D + 2∆S∆D cos(kzd). Focusing on the −∆(kz) eigenvalue, the
lower band of the Hamiltonian can be approximated to first order as

H±(k) = ~vF (kyσ
x − kxσy)± ~vzkzσz, (3.5)

where vz = ∆S∆Dd sin(k0d)
b~ . Rescaling the momenta and rotating the pseudospins by π/2

about the z axis (i.e., applying the unitary operations H± → U †±H±U±, where U± are the
rotation operators Rz(∓π/2) = exp(±iπσz/4)) gives

H± = ±(kxσ
x + kyσ

y + kzσ
z), (3.6)

demonstrating the connection to the generic Weyl decomposition of Equation (1.22). There
are two Weyl nodes of opposite chirality separated in momentum space by 2k0 along the
kz axis. The individual Weyl nodes are stable in the presence of any possible perturbation:
any operator acting on a 2×2 Hilbert space can be written in the form Hp = a0 + axσ

x +
ayσ

y + azσ
z. Added to Equation (3.6), this perturbation gives the new Hamiltonian

H± = a0 ± [(kx ± ax)σx + (ky ± ay)σy + (kz ± az)σz)], (3.7)

which still describes a Weyl fermion. The Weyl fermion has been translated in momen-
tum space and in energy, but these transformations have no physical significance, since
the addition of a constant energy has no effect, while a translation in momentum space
corresponds to a change to another inertial reference frame, again having no effect in the
case of a translationally invariant system. Thus, the Weyl nodes can only be eliminated
by removing the separation in momentum space space, allowing the Weyl nodes with op-
posite chiralities to become coupled, creating a mass and corresponding energy gap as in
Equation (1.22).

Like the single-layered system of Section 2.1, the Weyl semimetal also has gapless
topological surface states. In this case, they occur along any surface not normal to the z
axis, for values of kz lying between the Weyl nodes. Their wavefunctions can be calculated
explicitly using a method similar to that of Section 2.1.3. For a semi-infinite system in the
region y < 0, the Hamiltonian (3.4) has surface state solutions given by [2]:

ψsurf = e
∫ y
0 dy′ b(y′)−∆(kz)]/~vF |σy = −1〉, (3.8)

with energies εsurf = ~vFkx. The energy bands for a sample that is finite in the y direction
are shown in Figure 3.2.
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Figure 3.2: Band structure of a Weyl semimetal that is finite in the y direction, showing
the line of zero-energy states on the surface.

3.1 Hall Conductivity

A key physically measurable property of the Weyl semimetal is its Hall conductivity, which
can be computed by treating the Hamiltonian of Equation (3.4) as a set of two-dimensional
Dirac fermions in the x-y plane, each with a Dirac mass parameterized by kz as b+∆(kz).[2]
This Dirac mass changes sign at the Weyl nodes, with b −∆(kz) > 0 for |π/d − kz| < k0

and b−∆(kz) < 0 for |π/d− kz| > k0, as shown in Figure 3.3. This change in the sign of
the mass corresponds to a quantum Hall transition, which will be described more fully in
Section 3.3, and means that 2-D systems with |π/d−kz| < k0 contribute a Hall conductance
e2/h. I.e., as a function of kz, the two-dimensional Hall conductance is

σ2D
xy (kz) =

{
0 if |π

d
− kz| > k0

e2/h if |π
d
− kz| < k0.

(3.9)

The Hall conductivity of the three-dimensional system is therefore

σxy =
1

L

∑
kz

σ2D
xy (kz), (3.10)

where L is the height of the sample. For an infinitely tall sample, the sum over kz is
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Figure 3.3: Plot of the Dirac mass b − ∆(kz) as a function of kz. The mass is positive
between the Weyl nodes, which are located at ±k0.

rewritten as an integral:

σxy =

∫ π/d+k0

π/d−k0

dkz
2π

σ2D
xy (kz)

=
e2k0

πh
. (3.11)

So the Hall conductivity is directly proportional to the separation between the Weyl nodes,
and is independent of all other material parameters. For a finite system, the Hall conduc-
tivity (as a function of b) displays a series of discrete jumps, each occurring when k0 crosses
one of the allowed values of kz, which are given by kz = 2πn/L, with n an integer. Between
the jumps, σxy is constant. The Hall conductivities for finite and infinite samples are shown
in Figure 3.4.
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Figure 3.4: Hall conductivity (in units of e2/dh) of the Weyl semimetal, plotted as a
function of the TR-breaking field for a system with 30 TI layers (left) and an infinite
number of layers (right), with ∆S = 1, ∆D = 0.8. The Weyl semimetal phase occurs for
|∆S − ∆D| < b < ∆S + ∆D, with the Hall conductivity proportional to the number of
momentum states between the Weyl nodes; jumps in the finite-size Hall conductivity occur
when a Weyl node crosses one of the discrete values of kz that are allowed: kz = 2πn/L
for an integer n.
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Figure 3.5: Phase diagram of the multilayer system with spin-splitting b due to ferromag-
netic impurities with magnetic moments aligned along the z axis. For b = 0 (left), there is a
topological insulator phase for ∆D > ∆S; otherwise the material is a normal insulator. For
b 6= 0 (right), there is a Weyl semimetal phase when |∆S−∆D| < b < ∆S +∆D, a quantum
anomalous Hall phase when b > ∆S + ∆D, and a normal insulator when b < |∆S −∆D|.

3.2 Quantum Anomalous Hall Insulator

As the spin splitting b increases, the spacing between the Weyl nodes, 2k0, increases.
However, the model system consists of discrete layers alternating between topological and
ordinary insulator layers. The discreteness of these layers means that kz must be peri-
odic, with any two points in momentum space separated by 2π/d along the kz axis being
equivalent. So in addition to the Weyl nodes at kz = π/d± k0, there are equivalent Weyl
nodes at kz = (2n + 1)π/d ± k0 for any integer n. When b = ∆S + ∆D, k0 = π/d, so
that Weyl nodes of opposite chirality from adjacent copies of the Brillouin zone meet and
annihilate each other, leaving a gapped energy spectrum, as is the case with spin splitting
that is insufficient to counter the energy gap created by tunneling, described in Section 2.2.
However, the new system is topologically distinct, retaining a non-zero Hall conductivity
σxy = e2/dh, the maximal value of the Hall conductivity of the Weyl semimetal.
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3.3 Externally Applied Magnetic Field

Previously in this chapter, the spin-splitting necessary for the Weyl semimetal was assumed
to be generated by doping the material with ferromagnetic impurities. Experimentally, it is
simpler to achieve the spin-splitting by applying an external magnetic field perpendicular
to the layers of the material (along the z axis).

The mathematical description begins with the Hamiltonian (2.35):

H(k) = ~vF τ z (ẑ × σ) · k + ∆̂(kz). (3.12)

Like the ferromagnetic impurities, the magnetic field generates a spin-splitting term σz,
but it also has an effect on the orbital motion of the electrons due to the Lorentz force.
This additional effect is taken into account by replacing k with −i∇ + e

~cA, where A is
the magnetic vector potential. For a magnetic field B = Bẑ, the vector potential can be
chosen as A = xBŷ, which is known as the Landau gauge. Since the vector potential is
independent of z, the momentum space form of the tunneling term can be retained, and
the Hamiltonian is

H = ~vF τ z(ẑ × σ) ·
(
−i∇+

e

~c
A
)

+
gµB

2
Bσz + ∆̂(kz), (3.13)

where g is a material parameter (g ≈ 50 for BI2Se3, for example [3]) and µB is the Bohr
magneton. Using the transformation σ± → τ zσ±, τ± → σzτ± as in (2.12) and diagonaliz-
ing the tunneling term gives

H± = ~vF (ẑ × σ) ·
(
−i∇+

e

c
A
)

+m±(kz)σ
z, (3.14)

where m±(kz) = b±∆(kz) and b = gµBB/2. Expanding the cross and dot products:

H± = ~vF
(
−i ∂
∂y

+
eB

~c
x

)
σx + i~vF

∂

∂x
σy +m±(kz)σ

z. (3.15)

Defining ` =
√

~c
eB

and rotating the spin operators by π/2 around the z axis transforms

this Hamiltonian into the same form as the H+ block of Equation (1.8), with m + ∆SO

replaced by m±(kz):

H± = −i~vF
∂

∂x
σx + ~vF

(
−i ∂
∂y

+
x

`2

)
σy +m±(kz)σ

z. (3.16)
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Figure 3.6: Plot of the N = 0 (solid lines) and N = 1 (dashed lines) Landau levels of the
Weyl semimetal, subject to a magnetic field perpendicular to the layers (arbitrary units).

Similarly to Section 1.1.3, then,

H2
± = 2~2ω2

B(n+
1

2
) + ~2ω2

B +m±(kz)
2, (3.17)

where ωB = vF/`. Following the reasoning of Section 1.1.3, the Landau levels are

|εN±| =
√

2~2ω2
BN + [b±∆(kz)]2. (3.18)

As in Section 1.1.3, there are pairs of Landau levels symmetric about ε = 0 for N ≥ 1,
but not for N = 0. The N = 0 levels are ε0+ = −b−∆(kz), which is always negative, and
ε0− = −b+ ∆(kz), which changes sign at the Weyl nodes, as shown in Figure 3.6, resulting
in an extra filled Landau level and a Hall conductance e2/h for |π/d− kz| < k0.

Since these lowest Landau levels only depend on the field through b (and not ωB),
which can be generated either by an external field or ferromagnetic impurities, this result
for the Hall conductance applies equally to the case of ferromagnetic impurities without an
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external field, as in Section 3.1, even though the Landau levels do not exist when B = 0.
The external field case described here may be more easily implemented experimentally, but
it is perhaps more interesting from a theoretical point of view to generate a non-zero Hall
conductivity without any external field.
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Chapter 4

Line Node Semimetal

Another topological semimetal phase, distinct from the Weyl semimetal, is created by
applying a TR-breaking field similar to the one that creates the Weyl semimetal, but in
a different direction. A term bσx can be generated by ferromagnetic impurities with their
magnetic moments aligned along the planes of the layers forming the system. Added to
the Hamiltonian (2.35), this term yields

H(k) = ~vF τ z (ẑ × σ) · k + ∆̂(kz) + bσx. (4.1)

Diagonalizing this Hamiltonian gives the band structure

|ε±| =
√
~2v2

Fk
2
x +

[
b±

√
~2v2

Fk
2
y + ∆(kz)2

]2

, (4.2)

shown in Figure 4.1. For b > |∆S−∆D|, ε− vanishes along a curve in the y-z plane defined
by ~2v2

F + ∆(kz)
2 = b2. The state is therefore termed a line node semimetal.

This state is a three-dimensional generalization of the system discussed in Section 2.1;
the two-dimensional Hamiltonian obtained by fixing a particular value of kz in Equation
(4.1) is Equation (2.9), with ∆S = ∆(kz). Thus, many of the results from that section
also apply to the line node semimetal. Along any surface not parallel to the x axis, there
are gapless surface states, meaning that the surface energy bands meet in the entire region
enclosed by the line node, as shown in Figure 4.2. Heikikilä et al showed in [11, 15] that
such a flat band leads to a finite specific heat at low temperatures and superconducting
behaviour. Section 4.1 will discuss these surface states in more detail, with a focus on
symmetry and stability considerations that were not discussed in Section 2.1. There is
also a clear transition in the magnetic susceptibility, as in Section 2.1.4, but in this case
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Figure 4.1: Electronic band structure of the line node semimetal plotted as a function of
(dimensionless) ky and kz for ∆S = 1,∆D = 0.8, and kx = 0, showing a nearly circular
curve of zero-energy states.
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Figure 4.2: Electronic band structure for a sample of the line node semimetal that is finite
along the x-axis, showing zero-energy surface states as a dark region in the area enclosed
by the line node of Figure 4.1 (∆S = 1 and ∆D = 0.8 as in Figure 4.1).

the susceptibility vanishes not at the onset of the nodal phase, but when the TR-breaking
is strong enough that the line node extends across the entire Brillouin zone, as will be
explained in Section 4.2.

4.1 Stability of the Nodal Line and Surface States

As in Section 2.1.2, the gapless surface states are guaranteed are guaranteed by the winding

of the vector g = −~vF sin(kx)ŷ +
[
b
2
(1 + cos(kx))− bc

]
ẑ, with bc =

√
~2v2

Fk
2
y + ∆(kz)2 in

the three-dimensional case. However, this winding is only well-defined when g has no
component in the x̂ direction, i.e., the transformed Hamiltonian (2.14) has no σx term. A
more intuitive reason for this requirement will now be given, along with an argument from
symmetry suggesting that this assumption is physically justified in the two-dimensional
case and in a particular subset of the Brillouin zone for the three-dimensional case.
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Together with the identity operator, the Pauli operators σx, σy, and σz form a basis for
the set of Hermitian operators acting on a two-dimensional Hilbert space. Any two-band
Hamiltonian can therefore be written as

H(k) = h0(k) + h1(k)σx + h2(k)σy + h3(k)σz. (4.3)

The bands touch at a point k if h1(k) = h2(k) = h3(k) = 0. In general, one parameter
must be tuned for each component of h that is to vanish; a system of n equations with
fewer than n free variables typically does not have a solution. So in order to achieve
band-touching, all three components of the momentum must be tuned, giving only dis-
crete band-touching points and not the line node desired in this section. However, if one
component of h vanishes everywhere for physical reasons, such as a discrete symmetry of
the system, then one free parameter will remain after tuning two momenta, resulting in a
continuous line of band-touching points. Similarly, Section 2.1 was concerned with point
nodes, but in a two-dimensional system, meaning that only two momentum components
were available as tuning parameters, so the extra condition gx = 0 was required to en-
sure band-touching. The band touching, in turn, was required for the change in topology
between the topologically trivial phase for |ky| > 1

~vF

√
b2 −∆2

S and the non-trivial phase

when |ky| < 1
~vF

√
b2 −∆2

S, by the usual argument that a change in topology necessitates
a closing of the energy gap.

It will now be shown, following [3], that the nodal line and corresponding surface states
actually do follow from symmetries of the system. The transformations that led to the
Hamiltonian (2.14) were as follows. First, the spin axis was rotated by π/2 around the
y axis, then the transformations σ± → τ zσ±, τ± → σzτ± were applied, and finally the
Hamiltonian was projected onto a 2×2 sub-block by replacing the operator ~vFkyτ z + b+

∆Sτ
x with its eigenvalue b−

√
~2v2

Fk
2
y + ∆2

S.

In the current three-dimensional case, the transformed Hamiltonian corresponding to
(2.13) is

H′(k) =

[
~vFkyτ z + b+ ∆Sτ

x +
1

2
∆D

(
τ+eikzd + τ−e−ikzd

)]
σz − ~vFkxσy. (4.4)

The operator in square brackets is projected onto its eigenvalues, giving

H′±(k) = m±(k)σz − ~vFσykx, (4.5)

where m±(k) = b±
√

~2v2
Fk

2
y + ∆(kz)2.
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The goal of this section, therefore, is to find a set of physical symmetries of (4.1) that,
after being subjected to the transformations above, imply that gx = 0. A reflection of the
system in the y-z plane reverses the x component of the momentum, and, since spin is a
pseudovector, flips the y and z components of the spin. This operation is the composition
of two of the symmetry operations in [3]. Mathematically, the reflection is described by
the operator

Ryz : H(kx, ky, kz)→ σxH(−kx, ky, kz)σx. (4.6)

It can be easily verified that (4.1) is invariant under this transformation. Applying the
above transformations to Ryz gives

R′yz : H′±(kx, ky, kz)→ σzH′±(−kx, ky, kz)σz. (4.7)

Requiring 4.3 to be unchanged by this transformation means that −h1(−kx, ky, kz) =
h1(kx, ky, kz). In particular, then, −h1(0, ky, kz) = h1(0, ky, kz), so that h1(k) must vanish
on the entire y-z plane. This result is not sufficient for the argument in Section 2.1.2,
where it was assumed that the σx term vanished for all kx. However, a stronger argument
can be made, making use of another discrete symmetry.

First, the stability of the line node must be established. By the same reasoning used
for h1, h2 is also an odd function of kx. Therefore, h1 and h2 both vanish along the y-z
plane, where the generic two-band Hamiltonian (4.3) can thus be written as

H(ky, kz) = h0(ky, kz) + h3(ky, kz)σ
z. (4.8)

There are then two parameters (ky and kz) available to tune h3 to zero, meaning that the
bands touch along a line in the y-z plane.

Another symmetry is required to guarantee the existence of the surface states. Though
time-reversal symmetry is broken by the magnetic impurities, the TR operator of Section
1.4 can be combined with a rotation by π about the z axis,

Rz
π : H(kx, ky, kz)→ σzH(−kx,−ky, kz)σz. (4.9)

This combination gives a new symmetry operation,

T ◦ Rz
π : H(kx, ky, kz)→ σxH∗(kx, ky,−kz)σx, (4.10)

under which (4.1) is invariant. Applying the transformations that led to the block diagonal
form of the Hamiltonian, the symmetry operation becomes

T ′ ◦ Rz
π
′ : H′±(kx, ky, kz)→ σz[H′±(kx, ky,−kz)]∗σz. (4.11)
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Applied to h1, this new symmetry implies h1(kx, ky, kz) = −h1(kx, ky,−kz), so that h1 is
also an odd function of kz. In particular, h1(kx, ky, π/d) = −h1(kx, ky,−π/d), which means
that h1(kx, ky, π/d) = 0, since kz = π/d and kz = −π/d define equivalent surfaces in the
Brillouin zone. So, fixing kz = π/d, the transformed Hamiltonian becomes (2.14), with ∆S

replaced by ∆(π/d) =
√

∆2
S + ∆2

D − 2∆S∆D = |∆S − ∆D|. The argument from Section
2.1.2 then applies, showing that there is a non-trivial winding of g for b > |∆S − ∆D|
and ky between the two points where the nodal line intersects the kz = π/d plane. This
winding implies the existence of gapless edge states along the line segment kz = π/d, |ky| <

1
~vF

√
b2 − |∆S −∆D|. Thus, the gapless edge states of the single-layered system in Section

2.1 are fully protected by symmetry, while in the full three-dimensional system, only the
line kz = π/d is protected.

To demonstrate this partial protection by symmetry, one can consider perturbing the
Hamiltonian (4.1) by the addition of a term that respects the above symmetries. For
instance, the term Hp(k) = akxky sin(kzd)σzτ z is invariant under the symmetry operations
above, as well as the inversion and the rotation by π around the x axis described in
[3]. Since Hp(k) = 0 when kx = 0, the bulk nodal line is unaffected by this perturbation.
However, applying the same rotation, transformation, and projection that gave (4.5),Hp(k)
becomes H′p(k) = −akxky sin(kzd)σx, showing that the above symmetries are not sufficient
to prevent a σx term from arising in some regions of momentum space. Calculating the
electron energies for a system with a surface perpendicular to the x axis shows that the
gapless surface states are eliminated, except along the lines ky = 0 (which is enforced by
the inversion and rotation symmetries of [3]) and kz = π/d, as argued above. The results
of this calculation are plotted in Figure 4.3.

The symmetries of the Hamiltonian (4.1) also do not protect against an h0 term in
Equation (4.3). This term shifts the energy of a state with momentum k by h0(k), which
does not eliminate either the band-touching or the surface states, but since h0(k) need not
be constant, it will generally shift the line node non-uniformly in energy, giving the system
a Fermi surface with finite volume as described in [3].

4.2 Magnetic Susceptibility

The susceptibility of the line node semimetal is quite similar to that of the single-layered
system with applied magnetic field, and can be calculated in nearly the same way. In this
case, the orbital part of the magnetic field is neglected for simplicity, so that b = gµBB/2.
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Figure 4.3: Top: Band structure of the line node semimetal for a sample that is finite in
the x direction, subject to the symmetry-preserving perturbation Hp(k) described in the
text. The zero-energy states are eliminated except along the lines ky = 0 and kz = π.
Bottom: Plot of the inverse participation ratio (defined in Section 2.1.3) corresponding to
the energy states of the upper plot, providing an indication of the extent to which electron
wavefunctions are localized to the surface of the material. The dark region corresponds
to bulk states, while the coloured lines along ky = 0 and kz = π are the surviving gapless
surface states.
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Once again, the free energy is

F = −kBT
∑
k

[
ln

(
1 + e

−
εk,+−µ
kBT

)
+ ln

(
1 + e

−
εk,−−µ
kBT

)
+ ln

(
1 + e

εk,++µ

kBT

)
+ ln

(
1 + e

εk,−+µ

kBT

)]
, (4.12)

with the band dispersion εk,± now given by Equation (4.2). The susceptibility in this case
is

χ(B) = − 1

V

∂2F

∂B2
, (4.13)

where V is the volume of the sample. The same calculation as in Section 2.1.4 gives

χ(B) = V

(
db

dB

)2

I(B), (4.14)

where

I(B) =

∫
d3k

8π3
~2v2

Fk
2
x

 1

ε3k,+
+

1

ε3k,−
− 1

ε3k,+

∣∣∣∣∣
∆(kz)=0

− 1

ε3k,−

∣∣∣∣∣
∆(kz)=0

 . (4.15)

Integrating over kx and ky leads to

I(B) =

∫
dkz Ikz(B), (4.16)

where

Ikz(B) =

{
− 1

2π2v2F

√
∆(kz)2 − b2 if ∆(kz)

2 − b2 ≥ 0

0 if ∆(kz)
2 − b2 < 0.

(4.17)

χ(B) can then be computed numerically to give the result shown in Figure 4.4. One
can see from Equation (4.17) that χ(B) = 0 if ∆(kz)

2 < b2 for all kz or, equivalently, if
b > ∆S + ∆D. This condition is stronger than the one for the formation of the nodal line,
b > |∆S − ∆D|, and corresponds to a special situation in which the nodal line extends
across the entire length of the Brillouin zone, as shown in Figure 4.5.

This result can be readily interpreted in relation to the two-dimensional system of
Section 2.1. As mentioned previously, the line node semimetal, at fixed kz, reduces to a
two-dimensional system that is identical to the single layer system discussed in Section
2.1. Depending on the values of kz, b, ∆S, and ∆D, the reduced system may be in either
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an insulating or a semimetallic phase. If a plane of fixed kz intersects the nodal line,
the two-dimensional reduced system has point nodes at these intersection points and is
therefore semimetallic with zero susceptibility, as calculated in Section 2.1.4. But if the
plane does not intersect the nodal line, the reduced system is fully gapped and therefore
insulating, with the diamagnetic response of Section 2.1.4. When b < ∆S + ∆D, both
situations occur for some values of kz, and the insulating sections contribute to a non-zero
diamagnetic response. When b > ∆S + ∆D, however, the nodal line extends across the
entire Brillouin zone, so it intersects all fixed-kz planes. meaning that all the reduced
systems are semimetallic and the total susceptibility is zero.

Near the transition to this state, when b is slightly smaller than ∆S + ∆D, χ(B) can be
calculated analytically by approximating ∆(kz) near kz = 0, where the non-zero contribu-
tion to I(B) occurs. In this case, ∆(kz)

2 ≈ (∆S + ∆D)2 −∆S∆Dk
2
z . So

I(B) ≈ − 1

2π2v2
F

∫
dkz

[√
(∆S + ∆D)2 − b2 −∆S∆Dk2

z

]
, (4.18)

with the integral taken over all values of kz for which the argument of the square root is
non-negative. Evaluating the integral gives the final result for the susceptibility

χ(B) ≈ −
(
g~e
4mc

)2
(∆S + ∆D)2 − b2

4πv2
F

√
∆S∆D

, (4.19)

when (∆S+∆D)2−b2
∆S∆D

is small, i.e., when ∆(0) and b are similar in magnitude, so that only
values of kz close to zero contribute to the integral.

4.3 Effect of Orbital Field

As mentioned in Chapter 3, it may be experimentally simpler to break time-reversal sym-
metry by applying an external magnetic field to a (relatively) pure sample rather than
by doping the layered structure with ferromagnetically-aligning impurities. However, an
in-plane external field (corresponding to the in-plane ferromagnetic alignment that led to
the line node) adds considerable mathematical complexity to the description of the system.
Again using the Landau gauge, the vector potential corresponding to a field B = Bx̂ is
A = −zBŷ. Making the substitution k → −i∇ + e

~cA in the model Hamiltonian (2.2)
gives

H = ~vF τ z(ẑ × σ) ·
(
−i∇− eBz

~c
ŷ

)
+
gµB

2
Bσx + ∆̂, (4.20)
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Figure 4.4: Susceptibility of the line node semimetal for b = 1, showing zero susceptibility
when b ≥ ∆S + ∆D, corresponding to Figure 4.5 (c) and (d).
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Figure 4.5: Representative plots of the band structure of the line node semimetal, showing
different shapes of the line node (dark lines): (a) b = |∆S−∆D|: the node is a single point;
(b) |∆S − ∆D| < b < ∆S + ∆D: the node is a closed curve contained entirely within the
Brillouin zone; (c) b = ∆S + ∆D: the line node just touches the edges of the Brillouin
zone at kz = 0 and kz = 2π/d; (d) b > ∆S + ∆D: there are two separate line nodes, each
crossing the entire Brillouin zone.
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where ∆̂ is the tunneling operator ∆Sτ
xδi,j + 1

2
∆D(τ+δj,i+1 +τ−δj,i−1) from Equation (2.2).

Because the vector potential A is a function of z in this case, H cannot be brought to
a simple 4×4 form by a Fourier transform c†k⊥,j =

∑
kz
c†ke
−ikzdj as was done in Section 2.2;

the problem can only be solved numerically. [3] However, there are two limiting cases for
which the behaviour can be studied analytically.

4.3.1 Almost Decoupled TI Layers: ∆D � ∆S

The simplest case is that of thin TI layers and thick ordinary insulator layers, meaning that
the coupling between opposite surfaces of the same layer is much stronger than that between
adjacent layers. In this case, ∆D is neglected so that ∆̂ = ∆Sτ

x and the Hamiltonian can
be written as a sum of independent Hamiltonians describing individual layers, similar to
Equation (2.6):

H(k⊥, j) = ~vF τ z(ẑ × σ) ·
(

k− eB

~c

(
dj +

dTI

2
τ z
)
ŷ

)
+
gµBB

2
σx + ∆Sτ

x, (4.21)

where j labels each of the TI layers, d is the period of the layered structure, and dTI is the
thickness of a single TI layer. Since different layers do not interact, the dj term can be
eliminated by translating the momentum of layer j via k→ k + eB

~c djŷ, giving

H(k) = ~vF τ z(ẑ × σ) ·
(

k− eB

~c
dTI

2
τ zŷ

)
+ ∆Sτ

x +
ge~
4mc

Bσx, (4.22)

which is precisely Equation (2.6) except that k is three-dimensional, with H(k) completely
independent of kz. Thus, the system reduces to multiple copies of the single layer of
Section 2.1 and Reference [27], with corresponding properties. As before, defining b =(

g~2
4m`2
− ~vF dTI

2`2

)
with ` =

√
~c
eB

, the bands touch, yielding a semimetallic phase when

b > ∆S. This band-touching now occurs along two vertical lines in momentum space
defined by kx = 0, ky = ±

√
b2 −∆2

S. Between these two line nodes, there are topological
surface states that are dispersionless in the ŷ direction by the same argument as in Section
2.1.2, and trivially dispersionless in the ẑ direction. These surface states are simply the
edge states from Section 2.1.2, occurring on each TI layer.

4.3.2 Weak Field

A more interesting limit is that of gµBB
2
� ∆S + ∆D and |∆S −∆D| � ∆S + ∆D, corre-

sponding to a weak magnetic field and nearly equal tunneling amplitudes. The line node
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is expected to be small in this case, so that ∆̂(kz) can be expanded near π/d, giving
∆̂(kz) ≈ (∆S−∆D)τx+ ∆Dkzdτ

y. In a full real-space description, the Hamiltonian is then

H = ~vF τ z(ẑ × σ) ·
(
−i∇− eBz

~c
ŷ

)
+
gµBB

2
σx + (∆S −∆D)τx − i∆Dτ

y ∂

∂z
. (4.23)

After the rotation of the spin axis by π/2 around the y axis and transforming σ± →
τ zσ±, τ± → σzτ±, as in (2.12), the Hamiltonian is

H′ = [b+ ~vF τ zπy + ∆Ddτ
yπz + (∆S −∆D)τx]σz − ~vFkxσy, (4.24)

where π = −i ∂
∂x
x̂+
(
−i ∂

∂y
− z

`2

)
ŷ−i ∂

∂z
ẑ is the kinetic momentum, ` =

√
~c
eB

is the magnetic

length, and kx has been restored because the Hamiltonian is independent of x. The τ
operator terms will be studied first: the operator HL = ~vF τ zπy+∆Ddτ

yπz+(∆S−∆D)τx

is similar to the Hamiltonian of Equation (1.8) and has a corresponding spectrum of Landau
levels. HL commutes withH′, so it can be diagonalized separately. In this case, the Landau
energies are calculated by introducing ladder operators:

πy =

√
ṽF

2vF `2
(a† + a),

πz = −i
√

vF
2ṽF `2

(a† − a), (4.25)

where ṽF = d
~
√

∆S∆D ≈ d∆D

~ . These can be shown from the definitions of πy and πz to
have the commutator [a, a†] = 1, as required for ladder operators. Dropping the ∆S −∆D

term and inserting (4.25), HL becomes

HL =
~ωB√

2

[
τ z(a† + a)− iτ y(a† − a)

]
, (4.26)

where ωB =
√
vF ṽF . Acting on |n〉, the nth eigenstate of the number operator a†a, HL

gives

HL|n〉 =
~ωB√

2

[
τ z
(√

n+ 1 |n+ 1〉+
√
n |n− 1〉

)
− iτ y

(√
n+ 1 |n+ 1〉+

√
n |n− 1〉

)]
,

(4.27)
which has eigenvalues

εn± = ±
√

2~2ω2
Bn. (4.28)
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The full Hamiltonian therefore becomes

Hn(kx) =

[
b±

√
2~2ω2

Bn

]
σz − ~vFkxσy. (4.29)

This is the same as the Hamiltonian (2.14) with bc replaced by
√

2~2ω2
Bn, so the same

topological argument used in Section 2.1.2 implies that there are zero-energy surface states
when b >

√
2~2ω2

Bn.
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Chapter 5

Transport Properties of Semimetallic
Phases

This chapter focuses on the interesting transport properties of the semimetallic phases.
The results apply to Weyl fermions or line node semimetals with the same band structure
in general and are not specific to the particular model discussed previously.

5.1 Point Impurities

The simplest case studied here is that of non-interacting electrons, scattered only by short-
range potentials around impurities in the material:

V (r) = u0

∑
a

δ(r− ra), (5.1)

where ra labels the position of impurity a. This is an overly simplistic model, but it is
accurate when the temperature is high and the Fermi energy is close to the Weyl nodes.

Only electrons close to the Fermi energy (assumed here to be εF = 0) contribute to the
conductivity, so the band dispersion

εk =
√

~2v2
F

(
k2
x + k2

y

)
+ [b−∆(kz)]

2 (5.2)

can be approximated near the Weyl nodes as in Equation 3.5, giving

εk =
√
~2v2

F (k2
x + k2

y) + ~2v2
zk

2
z , (5.3)
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where vz = ∆S∆Dd sin(k0d)
b~ . In order to calculate the conductivity, the corresponding density

of states, g(ε), is required. This quantity is calculated by first computing N(ε), the number
of electronic states with energies less than or equal to ε. The dispersion in (5.3) defines a
family of ellipsoidal surfaces of constant energy:

1

ε2
[
~2v2

F (k2
x + k2

y) + ~2v2
zk

2
z

]
= 1. (5.4)

The volume of such an ellipsoid is 4
3
π 1

~3v2F vz
ε3, so

N(ε) =
V

(2π)3

4

3
π

1

~3v2
Fvz

ε3. (5.5)

Finally,

g(ε) =
1

V

dN

dε

=
ε2

2π2~3v2
Fvz

(5.6)

The AC conductivity is calculated using the Boltzmann equation:

∂f

∂t
= −∇f · v +

e

~
(∇kf) · E− f − f0

τ
, (5.7)

where

τ =
1

2π~γg(ε)
(5.8)

is the relaxation time, γ = u2
0ni/~2 is a constant, proportional to the density of impurities,

ni, characterizing the ability of impurities to scatter electrons, f(r,k, t) is the electron
distribution function (the probability density function at time t for finding an electron
at position r with wave number k), and f0 is the equilibrium distribution function with
no applied electric field. The electric field is taken to be E = E0e

iωtx̂. Assuming that
the distribution function is spatially uniform means ∇f = 0 in Equation (5.7). It is also
assumed that f has the form f0 + f1, with f1 proportional to E0, and terms of order E2

0

are neglected. Finally, assuming a solution of the form f1(t) = f1e
iωt, Equation (5.7) then

takes the form
iωf1 =

e

~
(∇kf0) · (E0x̂)− 2π~γf1g(ε). (5.9)
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Now ∇kf0 = ∂f0
∂ε
∇kε, and ∇kε = ~vk, so the final result for f1 is

f1 =
e∂f0
∂ε

vk · (E0x̂)

iω + 2π~γg(ε)
. (5.10)

There is no current in equilibrium with zero applied field, so f0 does not contribute to
the current, which is then given by

j = −2e2eiωt
∫

d3k

(2π)3
f1vk, (5.11)

where the factor 2 accounts for the presence of two distinct Weyl nodes. Evaluating
vk = ∇kεk explicitly,

vk =
~v2

F (kxx̂+ kyŷ) + ~v2
zkz ẑ

εk
. (5.12)

At a temperature T , f0 is the Fermi-Dirac distribution

f0 =
1

1 + eεk/kBT
, (5.13)

so
∂f0

∂ε
= − eεk/kBT

kBT (1 + eε/kBT )2
. (5.14)

Combining Equations (5.10), (5.11), (5.12), and (5.14), the in-plane conductivity, σxx, is
then

σxx =
2~2v4

F e
2

kBT

∫
d3k

(2π)3

eεk/kBT

ε2k(1 + eεk/kBT )2

k2
x

iω + 2π~γg(εk)
. (5.15)

After a simple change of variables (kx → kx/~vF , ky → ky/~vF , kz → kz/~vz) and
switching to spherical coordinates, with r =

√
k2
x + k2

y + k2
z and θ the polar angle from the

kx axis:

σxx =
2e2

(2π)2~3vzkBT

∫ ∞
0

dr
er/kBT

(1 + er/kBT )2

r2

iω + γ
π~2v2F vz

r2

∫ π

0

dθ cos2(θ) sin(θ). (5.16)

Making another change of variables (r → kBTr) and evaluating the integral over θ gives

σxx =
e2v2

F

3πγ~

∫ ∞
0

dr
er

(1 + er)2

r2

i
π~2v2F vz
(kBT )2γ

ω + r2
. (5.17)
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This can be rewritten in a dimensionless form as

σxx
σDC

=

∫ ∞
0

dx sech2(x)
x2

x2 + iω̃
, (5.18)

where ω̃ =
π~2v2F vz
4γ(kBT )2

ω is a dimensionless frequency and

σDC =
e2v2

F

3γh
(5.19)

is the conductivity at zero frequency. The real part of Equation (5.18) is

Re(σxx) = σDC

∫ ∞
0

dx sech2(x)
x4

x4 + ω̃2
. (5.20)

Figure 5.1 shows Re(σxx) plotted as a function of ω̃. Equation (5.17) shows that,
considered as a function of ω, the width of the peak in the conductivity is proportional to
T 2. Thus, the width approaches zero for T → 0. This unusual behaviour may be used as
evidence to experimentally establish that a particular material is indeed a Weyl semimetal.
Figure 5.1 shows non-analytic behaviour at low frequency, which can be studied in more
detail. Differentiating Equation (5.20) gives

dσxx
dω̃

= −2σDCω̃

∫ ∞
0

dx sech2(x)
x4

(x4 + ω̃2)2
. (5.21)

The integrand diverges as ω̃ and x approach zero, so the low-frequency behaviour can be
extracted by approximating the integrand near x = 0, where the dominant contribution
occurs. Thus, taking sech2(x) ≈ 1, the result is

dσxx
dω̃

= −π
√

2σDC

8
√
ω̃

. (5.22)

Integrating over ω̃ to reattain σxx and restoring the dimensional factors, the conductivity
near ω = 0 is

Re(σxx) ≈
e2v2

F

3γh

(
1−

√
ωπv2

Fvzh
2

16γ(kBT )2

)
. (5.23)

The behaviour of an ordinary metal, also shown in Figure 5.1 is quite different, having
the form

σ =
σDC

1 + ω2τ 2
. (5.24)
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Figure 5.1: Real part of the AC conductivity, σxx/σDC, at finite temperature, plotted
as a function of the dimensionless frequency for a Weyl semimetal (solid line) and for an
ordinary metal (dashed line).
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This behaviour is qualitatively different from that of the Weyl semimetal, with the re-
laxation time of an ordinary metal being approximately constant at low temperatures, so
that the so-called Drude peak of the conductivity has a temperature-independent width
and behaves analytically at all frequencies, while, as shown above, the conductivity peak of
the Weyl semimetal has a width proportional to T 2 and non-analytic behaviour at ω = 0.

5.2 Donor Impurities

A more realistic model for calculating the conductivity considers donor impurities: elec-
trons escape from these impurities and travel throughout the material, giving a non-zero
Fermi energy and leaving behind positively charged impurity ions. In this case, the relax-
ation time of Equation (5.8) must be replaced by the transport time: [3]

1

τtr(ε)
=
πnig(ε)

~

∫ π

0

dθ sin(θ)|V (q)|2[1− cos(θ)]
1 + cos(θ)

2
, (5.25)

where ni is the concentration of impurity ions, θ is the scattering angle, q = w(ε/~vF ) sin(θ/2),
V (q) is the screened Coulomb potential in the Thomas-Fermi approximation,

V (q) =
4πe2

εd(q2 + q2
TF)

, (5.26)

with the Thomas-Fermi wavevector q2
TF = 4πe2g(ε). An effective fine structure constant

is defined by α = e2/εd~vF , with εd the dielectric constant of the material, and can be
thought of as the ratio of the Coulomb energy scale e2kF/εd to the kinetic energy scale
~vFkF . For this section, the Weyl fermions are assumed to be isotropic, so that vz = vF .
Equation (5.25) then becomes

1

τtr(ε)
=
π~2α2niv

3
F

4ε2

∫ π

0

dθ
sin3(θ)[

sin2( θ
2
) + α

2π

]2 . (5.27)

Evaluating the integral gives

1

τtr(ε)
=

4π3~2niv
4
F

3ε2
f(α), (5.28)

where

f(α) =
3α2

π2

[
(1 + α/π)tanh−1

(
1

1 + α/π

)
− 1

]
. (5.29)
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When the Coulomb energy is much larger than the kinetic energy, α � 1 and f(α) ≈ 1,
while for weak Coulomb interactions, α� 1 and

f(α) ≈ 3α2

2π3
ln

(
1

α

)
. (5.30)

Following the Boltzmann equation method of Section 5.1 and focusing on the DC
conductivity at zero temperature, the equation corresponding to (5.10) using the transport
time (5.28) is

f1 = eEτtr(ε)
∂f0

∂ε
vk · x̂. (5.31)

At zero temperature, ∂f0
∂ε

= −δ(ε− εF ), so the in-plane DC conductivity is

σxx = 2e2

∫
d3k

(2π)3
τtr(εk)δ(εk − εF )

~2v4
Fk

2
x

ε2k
. (5.32)

Inserting g(εk) from (5.6) and changing to spherical coordinates:

σDC =
~5v7

F e
2

2π

∫ ∞
0

dk
τtr(εk)g(εk)

ε4k
k4δ(εk − εF )

∫ π

0

dθ 2π sin(θ) cos2(θ). (5.33)

Changing the variable of integration from k to ε and evaluating the integrals gives

σDC =
2

3
v2
F e

2g(εF )τtr(εF ). (5.34)

For a material with donor impurities and no other source of free electrons, the density of
impurities is equal to the density of free electrons: ni = n, with n = N(ε)/V = ε3

6π2~3v3F
from (5.5). The conductivity can then be written as

σDC =
3e2

2π3~f(α)
(6π2ni)

1/3. (5.35)

In particular, σDC ∼ n
1/3
i , another unusual scaling property of the conductivity that is

potentially useful as an experimental sign of the Weyl semimetal phase.

5.3 Electron-Electron Interactions

At a low enough concentration of impurities, the results of Section 5.2 break down, as
electron-electron interactions become more important than impurity scattering. In this
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Figure 5.2: Plot of typical low-temperature conductivities for a metal (dashed line) and
an insulator (dotted line), compared to that of the Weyl semimetal (solid line), showing
that each has behaviour that is qualitatively different from the others. Units are arbitrary.

case, the DC conductivity at low temperatures is given in [3] as

σ(ω = ni = 0) ∼ e2T

hα2vF
. (5.36)

This linear dependence of the conductivity on temperature is in sharp contrast to the
behaviour of metals, whose conductivities typically approach a constant value for T → 0,
and of insulators, which have conductivities decaying as e−T0/T for some T0 due to the gap
in the electron energy spectrum, as shown in Figure 5.2
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5.4 Line Node Semimetal

The line node semimetal also has interesting transport properties, but the calculation of
the conductivity is more involved because the density of states is linear in energy, [3]
meaning that the Boltzmann equation approach used previously is not valid, as it requires
that 1/τ(ε) ∼ g(ε) � ε. The linear density of states means that many of the transport
properties of the line node semimetal are similar to those of graphene, which also has a
linear density of states. The result from [3] for the conductivity in the presence of point
impurities of the form studied in Section 5.1, in the limit ∆S + ∆D � b� |∆S −∆D|, is

σxx = σyy =
e2b

πṽFh
, σzz =

e2ṽF b

πv2
Fh

, (5.37)

where ṽF = d
~
√

∆S∆D as in Section 4.3.2. The DC conductivity is thus independent of
disorder, depending only on the properties of the nodal line. For donor impurities as in
Section 5.2, the conductivity is instead

σ ∼ e2v2
Fni

hα2b2
. (5.38)
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Chapter 6

Conclusions

This thesis has described in detail two topological materials that are related to and de-
scended from three-dimensional time-reversal invariant topological insulators. These new
materials, however, are different in that time-reversal symmetry is violated, and the topo-
logical stability is not due to an energy gap but instead due to the separation of Weyl
fermions with opposite chiralities in the Weyl semimetal, and discrete symmetries in the
line node semimetal. Like topological insulators, the semimetallic phases also have gapless
surface states, occurring on a line in momentum space for the Weyl semimetal and in a
two-dimensional region of momentum space for the line node semimetal.

The Weyl semimetal has a Hall conductivity e2k0
πh

that is nearly quantized in the sense
that it depends only on the separation 2k0 of the Weyl nodes in momentum space. In-
dependent measurements of k0 and of the Hall conductivity would therefore yield a value
for the physical constant e2/h. The diagonal conductivity due to scattering by Coulomb

impurities at zero temperature is proportional to n
1/3
i , where ni is the density of impurities.

The line node semimetal has a conductivity independent of disorder for point impurities
and proportional to ni for donor impurities.
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