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Abstract 

Over the course of the past several decades the benefits of redeveloping brownfields have been 

widely recognized. Actions have been taken to foster sustainable redevelopment of brownfields by 

government, policy makers and stakeholders across the world. However, redevelopments encounter 

great challenges and risks related to environmental and non-environmental issues. In this work, we 

intend to build a comprehensive and practical framework to evaluate the hydrogeological and 

financial risks involved during redevelopment and to ensure developers reserve sufficient capital to 

cover unexpected future costs within the guarantee period. Punitive damages, which contribute to 

these costs, are in this thesis solely associated with the cost of repossessing a house within a 

development should the indoor air concentration of TCE exceed the regulatory limit at a later time. 

The uncertainties associated with brownfield remediation have been among the barriers to 

brownfield redevelopment. This is mainly caused by the lack of knowledge about a site’s 

environmental condition. In order to alleviate uncertainties and to better understand the contaminant 

transport process in the subsurface, numerical simulations have been conducted to investigate the role 

of controlling parameters in determining the fate and transport of volatile organic compounds 

originating from a NAPL source zone located below the water table in the subsurface. In the first part 

of this thesis, the numerical model CompFlow Bio is used on a hypothesized three-dimensional 

problem geometry where multiple residential dwellings are built. The simulations indicate that 

uncertainty in the simulated indoor air concentration is sensitive to heterogeneity in the permeability 

structure of a stratigraphically continuous aquifer with uncertainty defined as the probability of 

exceeding a regulatory limit. Houses which are laterally offset from the groundwater plume are less 

affected by vapour intrusion due to limited transverse horizontal flux of TCE within the groundwater 

plume in agreement with the ASTM (2008) guidance. Within this uncertainty framework, we show 

that the Johnson and Ettinger (1991) model generates overly-conservative results and contributes to 

the exclusion zone being much further away from the groundwater plume relative to either 

CompFlow Bio or ASTM (2008). The probability of failure (or the probability of exceedence of the 

regulatory limit) is defined and calculated for further study. 

Due to uncertainties resulting from parameter estimation and model prediction, a methodology is 

introduced to incorporate field measurements into the initial estimates from the numerical model in 

order to improve prediction accuracy. The principle idea of this methodology is to combine the 

geostatistical tool kriging with the statistical data assimilation method Kalman filter to evaluate the 

worth and effectiveness of data in a quantitative way in order to select an optimal sampling scenario. 
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This methodology is also used to infer whether one of the houses located adjacent to affected houses 

has indoor air problems based on the measurements subject to the observation that the affected house 

is monitored and has problems and developers have liability if a problem occurs. In this part of the 

study, different sampling scenarios are set up in terms of permeability (1 – 80 boreholes) and soil gas 

concentration (2, 4 and 7 samples) and three metrics are defined and computed as a criterion for 

comparison.  

Financing brownfield redevelopment is often viewed as a major barrier to the development process 

mainly due to risks and liabilities associated with brownfields. The common way of managing the 

risk is to transfer it to insurers by purchasing insurance coverage. This work provides two different 

strategies to price the risk, which is equivalent to an insurance premium. It is intended to give an 

instructive insight into project planning and feasibility studies during the decision-making process of 

a brownfield project. The two strategies of risk capital valuation are an actuarial premium calculation 

principle and a martingale premium calculation principle accounting for the hydrogeological and 

financial uncertainties faced in a project. The data used for valuation are the posterior estimates of 

data assimilation obtained from the results of different sampling scenarios. The cost-benefit-risk 

analysis is employed as a basis to construct the objective function in order to find the least cost 

among sampling scenarios for the project. As a result, it shows that drilling seven boreholes to extract 

permeability data and taking soil gas samplings in four locations or seven locations alternatively give 

the minimum total cost. Sensitivity analysis of some influential parameters (the safety loading factors 

and the possible methods to calculate the probability of failure) is performed to determine their roles 

of importance in the risk capital valuation. This framework can be applied to provide guidance for 

other risk-based environmental projects.      
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Chapter 1 Introduction 

1.1 Background Research 

Brownfields are defined as “abandoned, idled, or under-used industrial and commercial facilities 

where expansion or redevelopment is complicated by real or perceived environmental contamination” 

by the U.S. Environmental Protection Agency (US EPA). Brownfields are usually unintended by-

products of industrial practices of the last several decades in which measures were not taken to ensure 

that industrial operations did not harm the natural environment. In brownfields, there exist known and 

potential contaminants, such as volatile organic compounds (VOCs) or semi-volatile organic 

compounds (SVOCs) which over time, may be exposed to the air and potentially threaten public 

health and have negative impacts on ecological systems. Redevelopment of brownfields is beneficial 

for the environment as well as communities. It is an efficient, effective, and environmentally-friendly 

way to encourage development using existing infrastructures, services, and resources. Redeveloping 

brownfields can also generate great economic benefits if appropriate and reasonable methodologies 

are designed. There are strong environmental, social, and economic grounds to redevelop and utilize 

brownfields. Redevelopment provides a means of creating jobs, increasing the federal and local tax 

base, increasing the attractiveness of neighbourhoods, and protecting natural ecosystems (US EPA, 

1999; NRTEE, 2003; UK Environment Agency, 2003).  

Since the 1980s, North America and Europe have made moves to foster sustainable redevelopment 

of brownfields. The United States of America enacted the Liability Act Superfund to reclaim 1,410 

heavily contaminated sites and the National Brownfields Association has estimated that 600,000 

brownfield sites exist across the nation (Mueller, 2005). Canada also has paid a great deal of attention 

to brownfield redevelopment projects (aboutRemediation
TM

, 2012). Policy makers and developers 

have focused their efforts on transforming brownfields into industrial areas, commercial areas, and 

residential areas depending on the characteristics of the community and the site itself. At the same 

time, brownfield redevelopment projects also harbour great risks, which can impede the decision-

making process. Major risks faced during brownfield redevelopment associated with costs are 

possible cost overruns in clean-up operations (the technologies for remediation of brownfields 

summarized by Reddy et al., (1999)), possible liability claims from accidents or contaminant 

exposure spilled in the past or during the clean-up and uncertainty about future community 

acceptance (Wade VanLandingham et al., 2002). All of these risks mainly arise from imperfect 

knowledge of the complexity of brownfield sites. Complications include complex geological 

formations and physical properties of the subsurface, the uncertainty of the source zone, the number 
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and features of existing and potential contaminants, and the unreliability of detecting and contouring 

of the contaminant plume. In addition, cleanup standards have also changed over time and vary 

depending on the use of a property creating further uncertainty and impediments to development.  

In order to reduce the risks and uncertainties of brownfield site assessment, geologists and 

hydrogeologists have endeavoured to create effective methods and invent innovative tools to help 

improve site characterization. Limiting factors such as cost, time, and accuracy may not always 

permit further sampling. Empirical and comprehensive analysis of field data is one option and 

construction of screen-level or more sophisticated models is another option. The typical screen-level 

model to evaluate the soil vapour transport to indoor air pathway was built by Johnson and Ettinger 

(J&E) (1991) which incorporates analytical and semi-analytical solutions for steady-state one-

dimensional vapour transport. Despite numerous simplifying assumptions used to develop the closed-

form J&E model, limited site characterization budgets have motivated its wide-spread use. 

Alternative models (Abreu and Johnson, 2005, 2006; Bozkurt et al., 2009; Yu et al., 2009; Ozgur et 

al., 2009), which include additional science-based mechanisms controlling the fate and transport of 

contaminants from the subsurface into buildings accounting for advection, diffusion, and 

biodegradation processes, could also be used. These models have been applied to investigate the 

impact of soil type, physical properties of aquifers, vapour source concentration, vapour source 

location relative to the house, the air exchange rate in the house, building construction, the chemical 

degradation rate, the anatomy of the contaminant source on vapour pathways, and the distribution of 

indoor air concentration. However, at present, we are unaware of any previous efforts to simulate the 

fate and transport of contaminants from groundwater through the vadose zone and into indoor air for 

multiple residential dwellings on a three-dimensional problem geometry. The criterion of the 

influence of neighbouring houses on the soil vapour distribution is essential when attempting to use a 

numerical model to help delineate an exclusion zone (defined relative to the geometry of the 

groundwater plume, providing the rationale to exclude the need to conduct further pathway 

assessment and monitoring and hence used to characterize the house as being unaffected by the 

subsurface contamination).  

The problem of uncertainty reduction in site characterization, subject to a limited amount of data 

collection, has also been addressed using geostatistical tools, inverse modeling, Monte Carlo 

simulation, and optimization techniques by many researchers. James and Gorelick (1994) built a 

Bayesian data worth framework for an optimal remediation design given the high cost of data 

collection and found out that the optimum mainly depended on the mean and variance of hydraulic 

conductivity. Zhang et al. (2005) applied the Kalman filter algorithm to determine the least cost 
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design of groundwater quality monitoring networks. No researcher has adopted these approaches for 

presenting the worth of data in a risk-based brownfield redevelopment project. Comprehensive 

algorithms are needed to reduce uncertainty and improve accuracy in order to provide better measures 

of the effectiveness of data and more insight into the complexities of making a project management 

decision.  

The feasibility of brownfield redevelopment projects do not only rely on environmental and 

engineering advancement, but also need to consider the economic ramifications. The net cash flow, 

which is the stream of present value, is the economic measure of income and capital investment 

project selection. Massmann et al. (1987) applied a risk-cost-benefit analysis for waste management 

facilities to look at the variation of risk, cost, and benefits with different risk-based engineering 

designs. Also, they introduced and defined the risk capital that quantified the risk associated with the 

waste management project. Yu et al. (2012) derived and summarized five different approaches to 

estimate the risk capital of turning brownfields into residential buildings. Risks associated with these 

approaches include hydrogeological risks and financial risks (discount rate and the US national house 

price index). However, they failed to link actuarial and financial approaches to define safety loadings 

to compensate against uncertainties from hydrogeological and financial aspects in an objective and 

practical way. Moreover, they ignore the value of collecting site information to incorporate into the 

cost function.  

Risk management options are self-insurance, avoidance, risk control/engineering, contractual 

transfer, and risk transfer. Insurance is considered as the primary risk management tool in this thesis. 

For the last decade environmental insurance has become one of the few tools capable of mitigating 

and transferring risks, which also has been welcomed by regulators and public officials. The 

protection afforded by environmental insurance is available in a number of different policy terms and 

types of coverage (Yount and Meyer, 2005; Wernstedt et al., 2003), but there are no standard policies 

and actual rates of utilization are below what insurers might expect. The availability of insurance 

coverage is low in the insurance market and the fact that the total number of insurance companies that 

offer these products is declining indicates that a more disciplined and professional underwriting is 

required. The risk capital introduced by Yu et al. (2009) was equivalent to the net insurance premium 

in the traditional insurance industry. In the practical world, insurance underwriters make insurance 

policies to adjust the premium for a given ground-up loss claimed by insured parties. It is needed to 

build a more sophisticated structure of insurance product for brownfield redevelopment claims to help 

stabilize a developer’s long term environmental cost exposure.   
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1.2 Research Objectives 

The main objectives of this thesis are to improve the understanding of the physical process of the 

contaminated soil vapour exposure pathways from a residual source zone located under the water 

table into multiple residential buildings; provide an awareness of the importance of site 

characterization in a risk-based brownfield redevelopment project and determine the effort required to 

collect data; and build a framework for evaluating the risks associated with imperfect knowledge of 

the subsurface and the financial market, in a quantitative way, in order to develop an optimal financial 

strategy for the project. Specific objectives of this study were:  

 To examine the fate and transport of volatile organic contaminants originating from a NAPL 

source zone located below the water table and their potential impact on multiple residential 

dwellings located down-gradient of the source zone using the numerical model CompFlow 

Bio, 

 To compare CompFlow Bio and J&E models, as well as the ASTM (2008) guidance in terms 

of delineating the exclusion zone, 

 To use the Kalman filter method to quantify the worth of data based on statistical measures 

in order to demonstrate the importance of site characterization and long-term monitoring to  

reduce parameter uncertainty and model prediction uncertainty for the decision making 

process, 

 To study the reliability of using sparse datasets to infer whether one of the houses located 

adjacent to affected houses has indoor air problems given that the affected houses are 

monitored, 

 To further develop two approaches of pricing the risk capital (hydrogeological and financial 

risks) based on the actuarial premium and martingale premium calculation principles with an 

innovative way of defining the safety loading terms to avoid developers’ insolvency, 

 To construct an objective cost function to consider the cost of data and the risk capital in 

order to obtain the least cost and the best sampling scheme. 
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1.3 Thesis Scope 

The thesis has been organized into 5 chapters. Chapter 2, 3, and 4 constitute the main body of this 

thesis, and each chapter was completed as an independent manuscript for publication containing its 

own abstract, introduction, and conclusion.   

Chapter 2 summarizes the simulation results and findings of the fate and transport of a contaminant 

from groundwater to indoor air using the numerical model CompFlow Bio with variations of model 

parameters. A three-dimensional problem geometry, reminiscent of the Rivett (1995) field experiment 

in the Borden aquifer and motivated by the work of Yu et al. (2009), is used, which contains houses 

located both above and adjacent to the groundwater plume in order to define an exclusion zone. In 

this chapter, the impact of the controlling parameters on the indoor air concentration is observed and 

results are compared with the conservative J&E model and ASTM (2008) in terms of the exclusion 

zone. 

Chapter 3 presents the methodology to evaluate data worth for vapour intrusion into buildings 

under uncertainty. The geostatistical kriging algorithm and the statistical Kalman filter data 

assimilation method are combined to improve the estimation of indoor air concentration. The number 

of sampling data acquired in the estimation is selected from a practical perspective and used to 

examine the effectiveness of data collection. Eventually, an optimal number of samplings is selected 

according to three statistical metrics based on different measures of optimization results.  

Chapter 4 presents an optimal design for a risk-based site characterization of a brownfield 

redevelopment project using the statistics obtained from the results of incorporating the 

hydrogeological model with the estimation made through Kalman filter based on given sampling 

information. This chapter proposes two major methods to price the risk capital modified from Yu et 

al. (2012). They both take consideration of hydrogeological risk and financial risk in the form of a 

safety loading term which represents the level of risk aversion by developers. The safety loading term 

reflects the accuracy (the expected value) and the uncertainty (the standard deviation) resulting from 

the estimation using Kalman filter. The optimal least cost including the risk capital and the cost of 

data is then calculated and selected. 

Chapter 5 summarizes the findings of the individual chapters and gives a broader picture and 

insights into potential applications of this research in a risk-based environmental project. This chapter 

also provides recommendations for future studies.   
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1.4 Contributions 

This thesis provides a comprehensive framework for evaluating a risk-based project from different 

points of view, mainly focusing on environmental and financial aspects. It acknowledges 

uncertainties a project may face during developers’ liability period and raises the question of how to 

optimize the trade-off between increasing site-investigation budgets and overall cost reductions. 

The objective of this thesis is not only to alleviate the risk exposure during brownfields 

redevelopment projects by improving the prediction of contaminated indoor air concentrations and to 

search for the optimal balance between increasing site characterization budgets and decreasing 

contingency measure to cover the risk exposure, but also to quantify and manage the risk. The 

foundation of this thesis is to provide a practical guideline for developers and decision makers to look 

upon when benefits of a project are substantial in comparison with risks from both 

environmental/engineering and financial perspectives. This thesis shows that minimizing damage and 

potential risks to meet environmental regulatory standards and maximizing the investment capital 

may not be in an agreement with each other. Site characterization can help to better capture and 

understand a site and the surrounding environmental influences so that effective remedial action can 

be enforced and accurate prediction of a possible future failure can be made. At the same time, high 

cost of sampling and monitoring makes it impossible for developers to increase the budget infinitely 

and to ignore probability principles. This thesis presents a balance between the two and shows that 

both needs can be relatively satisfied.  

This thesis helps hydrogeologists comprehend the risk from a different point of view and to 

understand what important factors affect the project during the decision making process. Influential 

parameters like discount rate and real estate value could be dominant factors contributing to risk 

capital and ultimately determine the feasibility of an environmental project. This study highlights the 

important role site characterization plays, although, excessive information is not necessary. Different 

techniques are combined to improve model prediction and parameter estimation, which are quite 

advanced. The numerical model used to simulate TCE soil gas transport is a three-dimensional multi-

phase multi-compositional model with all three phases (water, gas, and oil) active and is able to 

simulate the complex physics involved in the process. Even though it is computationally expensive, it 

gives a better interpretation of the physics.  

There are several insurance products with different types of coverage in the market for 

environmental risk-based projects, but there is no standard policy. The market has been relatively 

small because of lack of information and experience despite the high risks. Therefore, environmental 

insurance markets need scientific support to better understand loss occurrence intensity and loss 
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frequency (the loss is defined when environmental standards are not met) for professional insurance 

policy underwriting. This thesis proposes a risk capital valuation methodology, which is equivalent to 

an insurance premium calculation for environmental projects. The way insurance premiums are 

calculated follows the classic actuarial insurance premium calculation principle and the martingale 

insurance premium calculation principle, which are commonly seen in the insurance industry. This 

thesis builds a bridge between insurance and hydrogeology. Also, analysis of different sampling 

scenarios can draw developers’ attention to risk management since the cost of risk could be 

substantial in some cases in an environmental project. In a nutshell, understanding of risk capital 

valuation in a risk-based environmental project will facilitate developers to make an optimal 

investment strategy. 
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Chapter 2 Simulating factors contributing to an exclusion zone for 

vapour intrusion of TCE from groundwater into indoor air 

Chapter Summary 

This chapter is an extension of the work by Yu et al. (2009) to examine exposure pathways of volatile 

organic compounds (VOCs) originating from a NAPL source zone located below the water table, and 

their potential impact on multiple residential dwellings down-gradient of the source zone. We use 

three-dimensional problem geometry reminiscent of the Rivett (1995) field experiment in the Borden 

aquifer, which contains houses located both above and adjacent to the groundwater plume in order to 

define an exclusion zone. Simulation results using the numerical model CompFlow Bio indicate that 

houses which are laterally offset from the groundwater plume are less affected by vapour intrusion 

due to limited transverse horizontal flux of TCE within the groundwater plume, in agreement with the 

ASTM (2008) guidance. Uncertainty in the simulated indoor air concentration is sensitive to 

heterogeneity in the permeability structure of a stratigraphically continuous aquifer, with uncertainty 

defined as the probability of exceeding a regulatory limit. Within this uncertainty framework, we 

show that the Johnson and Ettinger (1991) model generates overly-conservative results and 

contributes to the exclusion zone being much further away from the groundwater plume relative to 

either CompFlow Bio or ASTM (2008). 

 

2.1 Introduction 

Numerous sites with monitored shallow groundwater plumes originating from volatile organic 

contaminant source zones also exhibit deleterious impacts on the vadose immediately above the 

plume (Rivett, 1995; Smedes et al., 1993). This issue is problematic given the potential for vapour 

intrusion of the volatile organic contaminants to degrade the indoor air quality of houses with 

foundation slabs located within the area of impacted vadose zone. To address this issue, two layers of 

regulatory guidance have been developed. In the first level, the concepts of “exclusion criteria” and 

an “exclusion distance” are defined relative to the geometry of the groundwater plume and other 

characteristics of the site, and provide the rationale to exclude the need to conduct further pathway 

assessment and monitoring and hence characterize the house as being unaffected by the subsurface 

contamination (Luo et al., 2010). For the scenario where the vapour source is a non-biodegradable 

volatile organic groundwater plume, ASTM (2008) itemizes the critical distance demarking the 
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exclusion zone as being 100 feet (approximately 30 m) from the perimeter of the plume. This critical 

distance is adjusted whether, for instance, the source of the vapours is a dissolved and biodegradable 

hydrocarbon plume, or even a NAPL source zone. In the second level, science-based regulatory 

criteria are used to evaluate the fate and transport of volatile organic contaminants from the 

subsurface into the indoor air of residential dwellings. In particular, the Johnson and Ettinger (1991) 

heuristic model (the J&E model) has become the de-factor standard. While designed to be 

conservative (USAF, 2006; Hers et al., 2003; Schreuder, 2006; Fitzpatrick and Fitzgerald, 2002; Mills 

et al., 2007; Yu et al., 2009; Provoost et al., 2010; Johnston and Gibson, 2011), the J&E model was 

also found to be the most accurate and least conservative in comparison to six other methodologies 

used in Europe (Provoost et al., 2009). Despite numerous simplifying assumptions used to develop 

the closed-form analytical solution constituting the J&E model, limited site characterization budgets 

have motivated its wide-spread application as a preliminary screening tool to virtually all sites in the 

US and Canada. Given a regulatory limit defining the maximum permissible indoor air concentration 

(OEHHA-CEPA, 2007; NYSDOH, 2005), the J&E model can then be as an alternative to ASTM 

(2008) to identify those residential dwellings that are unlikely to be adversely affected by subsurface 

contamination and hence are within the exclusion zone. 

While the use of the J&E model to define an exclusion zone is a straight-forward extension of its 

current scope of application, alternative models could also be used to include additional science-based 

mechanisms controlling the fate and transport of contaminants from the subsurface into the indoor air 

further refining the geometry of the exclusion zone. Yu et al. (2009) used the numerical model 

CompFlow Bio to simulate the fate and transport of TCE from groundwater to indoor air for the 

problem geometry reproduced here in Figure 2.1. This problem geometry was developed under the 

assumption that the pathway for the contamination from the source zone into the indoor air is: 

advective and diffusive transport in the groundwater from the NAPL source zone to beneath the 

foundation slab of the residential dwelling, upward diffusive transport across the capillary fringe into 

the vadose zone, and advective and diffusive transport in the gas phase within the vadose zone 

through a crack in the foundation slab and into the residential dwelling. This problem geometry was 

motivated by a field experiment conducted by Rivett (1995) in the Borden aquifer, who observed that 

weak vertical transverse transport resulting from hydrodynamic dispersion below the water table 

allows the groundwater plume to advect contaminants a significant distance without mass transport 

across the capillary fringe. McCarthy and Johnson (1993) conducted a laboratory experiment and 

observed that vertical mass transport of contaminants across the capillary fringe was controlled by 

aqueous phase diffusion. Yu et al. (2009) used a two-dimensional numerical mesh to represent the 
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problem geometry and hypothesized that the resulting indoor air concentrations would be 

conservative given that the groundwater plume was forced to advect beneath the foundation slab of 

the house, and the lack of transverse horizontal transport to the groundwater plume could not reduce 

groundwater concentrations within the plume. Given this limitation in the numerical mesh, they were 

unable to conclude whether the J&E model generated conservative indoor air concentrations relative 

to CompFlow Bio for the problem geometry shown in Figure 2.1. 

Within the last two decades, numerical modeling tools have evolved significantly to help interpret 

and parameterize the physical processes controlling the fate and transport of contaminants from 

groundwater into the vadose zone. Early models such as those by Mendoza and Frind (1990a, 1990b), 

Culver et al. (1991), Celia and Binning (1992) and Thomson et al. (1997) focused on mathematical 

formulation and model development issues to adequately represent this transport mechanism. Later 

models evolved to focus on soil vapour intrusion pathways, including: the effect of atmospheric 

pressure (Massmann and Farrier, 1992), and the effect of wind speed and direction (Riley et al., 

1999). Parker (2003) and DeVaull et al. (2002) emphasized the significance of biodegradation, while 

Abreu and Johnson (2005, 2006) then included biodegradation processes into a three-dimensional 

numerical model to investigate the impact of building construction, degradation rate, and the source 

zone architecture on indoor air concentrations. Robinson and Turczynowicz (2005) and Bozkurt et al. 

(2009) also use fully three-dimensional problem geometries, with the latter examining the impact of 

multiple stratigraphic units on the fate and transport of contaminants through the vadose into the 

indoor air. At present, we are unaware of any previous efforts to simulate the fate and transport of 

contaminants from groundwater, through the vadose zone and into the indoor air for multiple 

residential dwellings. The last criterion is essential when attempting to use a numerical model to help 

delineate an exclusion zone.  

The objective of this chapter is to use the multi-phase compositional numerical model CompFlow 

Bio to examine the fate and transport of volatile organic contaminants originating from a NAPL 

source zone located below the water table, and their potential impact on multiple residential dwellings 

located down-gradient of the source zone. While the problem geometry is based directly on that of Yu 

et al. (2009) and hence is reminiscent of the Rivett (1995) field experiment in the Borden aquifer, we 

extend the problem geometry here to be fully three-dimensional. This enhancement was motivated by 

the need to accommodate the multiple houses, with some laterally offset from the direction of 

groundwater plume advection, in an attempt to delineate an exclusion zone. In addition, we are now 

in a position to evaluate the impact of the transverse horizontal flux of contaminant (to the direction 

of the groundwater plume advection) on reducing contaminant concentrations within the plume and 
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ultimately within the indoor air. Following the discussion in Yu et al. (2009) detailing the 

methodology for comparing the CompFlow Bio and J&E models for the problem geometry shown in 

Figure 2.1, we can then further refine statements in Yu et al. (2009) regarding the conservative nature 

of the J&E model. We have three fundamental questions that we wish to explore through the use of 

the conceptual and numerical model. First, what is the relative importance of variations in the 

conceptual model such as recharge, inserting a clay layer with and without recharge, extending the 

thickness of the vadose zone, and heterogeneity in the subsurface permeability structure of the 

stratigraphically continuous aquifer, on indoor air concentrations within houses located directly above 

and adjacent to the groundwater plume? Second, how do the CompFlow Bio and J&E models as well 

as the ASTM (2008) guidance compare in terms of delineating the exclusion zone for the conceptual 

model shown in Figure 2.1? Third, by using statistical methods to calculate the probability of indoor 

air concentrations exceeding the NYSDOH (2005) regulatory limit for all houses within the 

CompFlow Bio model domain, can we determine with confidence the degree to which the exclusion 

zone can be delineated, and furthermore the degree to which the J&E model provides conservative 

estimates of indoor air concentration for the conceptual model shown in Figure 2.1? 

 

2.2 Conceptual and Numerical Model 

The conceptual and numerical model used in this chapter is largely an extension of that initially 

presented in Yu et al. (2009). As such, development of the conceptual and numerical model consists 

of two stages. First, we outline the formulation of the three-phase multi-component compositional 

numerical model CompFlow Bio to solve the relevant governing equations and constitutive 

relationships to simulate the fate and transport of TCE emanating from a non-aqueous phase source 

zone located in a variably saturated aquifer. In contrast to Yu et al. (2009), we only focus on the 

scenario where the source zone is located below the water table. In this case, the pathway includes 

dissolution of TCE into the ambient groundwater, mass transfer across the capillary fringe, and 

subsequent advective-dispersive transport in the mobile soil gas and groundwater towards the 

foundation slab of multiple structures located below grade. Second, we develop a conceptual model 

of the variably saturated aquifer, which is: (1) extension of the Yu et al. (2009) model to become fully 

three-dimensional, (2) inclusion of six regularly-spaced structures within the expanded domain, with 

two located directly above the groundwater plume, and the remaining four laterally offset from the 

plume, (3) a statistical analysis of the distribution of indoor air concentrations and attenuation 

coefficients within all six houses, resulting from Monte Carlo simulations using alternative 
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heterogeneous Borden-like permeability aquifer distributions, and (4) inclusion of discrete 

stratigraphic features into the three-dimensional simulation domain in order to assess their impact on 

indoor air concentrations. We reiterate from Yu et al. (2009) that the intent of this conceptual model 

is to serve as a process-based model to assess indoor air concentrations within prototypical dwellings 

located in a heterogeneous sandy variably-saturated aquifer with a shallow water table. Once again, 

the intended outcome of this model (i.e., the CompFlow Bio model) is to act as a benchmark to 

compute the impact of factors controlling the attenuation of indoor air concentrations for direct 

comparison to the de facto industry standard approach developed by Johnson and Ettinger (1991) 

(i.e., the J&E model). However, here we compare and contrast the merits of the CompFlow Bio and 

the J&E models for use in defining an exclusion zone. The reader is referred to Yu et al. (2009) for a 

discussion of differences between these two conceptual and mathematical/numerical models. 

 

2.2.1 Formulation 

The numerical model presented here follows directly from Yu et al. (2009), and was initially 

developed by Forsyth (1993) and then further upgraded by Unger et al. (1996), Forsyth et al. (1998) 

and Slough et al. (1999). Here, we only present those equations from Yu et al. (2009) needed for this 

discussion, and reference the omitted equations from Yu et al. (2009) where relevant. CompFlow Bio 

is a multi-phase multi-component compositional model that considers three mobile phases, namely; 

the aqueous    , non-aqueous     and gas     phases. Components are summarized as water   , air 

    and TCE (    ). Assuming equilibrium partitioning of components              between 

phases           under isothermal conditions, the conservation of moles for each component   is 

written as: 
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where the Darcy flux of each phase is given by: 
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The hydrodynamic dispersion tensor    includes both mechanical dispersion and molecular 

diffusion in porous medium and is given by:  

 

     
   

     (  
    

 )
    

  
           . (2.3) 

  

A summary of the nomenclature is as follows: 

 

    saturation of phase       

    pressure of phase    k a  

    molar density of phase    moles m ⁄   

     mole fraction of component   in phase       

    mass density of porous media (rock)     kg m ⁄   

    mass density of phase     kg m ⁄   

    viscosity of phase     k a  day  

   porosity of porous media     

   Intrinsic permeability of porous media   m   

     sorption coefficient of component   onto porous media  m kg⁄   

     relative permeability of phase        

    depth  m   

    molecular diffusion of all components in phase    m day⁄   

   tortuosity of porous media [– ] from Millington (1959) 
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   longitudinal dispersivity of phase    m   

  
   transverse dispersivity of phase    m   

    source (+ve) or sink (-ve) term for component    mole  m  day ⁄  .     

 

The four terms in Equation (2.1) each have a physically simple interpretation in the context of this 

work. The first term represents the accumulation of moles of a single component (i.e. TCE where   

      ) in all phases           within a single control volume node of the domain. The second 

term represents the advective molar flux of the single component within all phases into and out of the 

node. The third term represents the dispersive Fickian-like molar flux of component   within all 

phases. Finally, the fourth term represents the molar rate by which the single component is either 

injected into or removed from the node through a physical process such as an injection well, or even 

biological decay. 

 

2.2.2 Problem Geometry 

In this part of study, we wish to use the conceptual model to examine the issue of defining an 

exclusion zone for residential houses located adjacent to a groundwater plume. However, definition of 

an exclusion zone is based on fundamental knowledge of processes governing the fate and transport 

of TCE from the source zone beneath the water table to the indoor air of each house. In particular, the 

two processes described in Yu et al. (2009) also apply in this study, and are summarized here for 

completeness. First, heterogeneity in the permeability of the aquifer may cause the plume to be 

deflected away from the centre of the groundwater plume and vertical diffusion process may cause 

the plume to be transferred upwards and approaching the water table while the flow of water that has 

infiltrated from precipitation will act to push the plume downward. Once the plume is sufficiently 

near the water table, hydrodynamic dispersion (including molecular diffusion) will then cause the 

upward transport of TCE across the capillary fringe and into the vadose zone. Second, after TCE has 

reached the vadose zone, transport of TCE towards the foundation slab of the residential dwelling will 

be driven by advection and diffusion. Operation of a high-efficiency furnace (or alternatively 

heating/ventilation/HVAC system) will induce a “stack effect” causing the basement to be slightly 

under-pressurized with respect to the main floor and the ambient atmospheric pressure. Assuming 

there is a crack in the foundation slab in the basement, slight depressurization of the basement may 
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induce advective flow of the soil gas beneath the foundation slab into the indoor air. Bearing in mind 

the above two processes, the notion of an exclusion zone can be examined by introducing multiple 

residential dwellings within the conceptual model, with some directly overlying the groundwater 

plume, and others adjacent to the plume. The proximity of the foundation slab of each house to the 

TCE source zone, groundwater plume, and resulting TCE soil gas, will affect the balance of advective 

and dispersive soil gas flux of TCE through the foundation slab into the indoor air.  

Figure 2.2a and 2.2b depict the geometry of the base scenario numerical model, listed as “scenario 

1” on Table 2.1. Dimensions of the problem geometry are 160   (length)   50   (width)   8   

(depth). A total of six houses are included within the domain, each with a foundation slab area of 

150   . Each house is assumed to consist of a basement and a main floor at ground level. Assuming 

each floor is 3   tall, the volume of the house    is 900   . In addition, the living space of each 

house given by the above-ground floor is 150   . This is somewhat smaller than the average size of a 

single family house from the US Census Bureau given as 201   . The houses are arranged in two 

rows of three houses perpendicular to the direction of groundwater flow (i.e. the  -axis), with the 

center houses directly over the groundwater plume. The houses are arranged with 10   gaps between 

them. The foundation slab for each house is located 2   below grade and is 0.2   thick. The domain 

is discretized with 41   70   35 nodes in the   ,    and    directions, respectively. Along the 

   direction, the maximum mesh size is 5   and is reduced to 2.5   in the vicinity of the houses. 

Along the    direction, the maximum mesh size is 2   between the houses, and is reduced to 0.5   

beneath the houses. Finally, in the    direction the discretization follows from Yu et al. (2009) with 

a mesh size of 0.2   assigned from the ground surface to a depth of 6   below grade. Thereafter, the 

mesh size increases to 0.4   until the bottom of the domain. This discretization was established 

during a grid convergence test conducted to balance the need to: minimize numerical dispersion, 

retain realistic simulation times, ensure that the groundwater plume of TCE could travel the entire 

length of the domain with minimal impact to the vadose zone in keeping with Rivett (1995), and 

accommodate details of alternative heterogeneous permeability realizations. Figure 2.3 depicts a 

single realization of a heterogeneous and statistically isotropic permeability field with properties 

listed on Table 2.2. Values on Table 2.2 are characteristics of the Borden aquifer as measured by 

Woodbury and Sudicky (1991) and Conant et al. (1996), with the variance increased substantially to 

be similar to that of the more heterogeneous Cape Cod aquifer (Hess et al., 1992). The permeability 

realization was generated using the algorithm described by Robin et al. (1993). Note that the base 

scenario simulation does not include the clay layer depicted n Figure 2.2b and Figure 2.3. Instead, 

inclusion of this discrete stratigraphic feature into the three-dimensional simulation domain will be 
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used in an alternative scenario (see scenarios 4 and 5 in Section 2.3.2) in order to assess its impact on 

indoor air concentrations. Finally, we explore the impact of the thickness increasing of the vadose 

zone in an alternative scenario (see scenario 6 in Section 2.3.2) with the revised problem geometry 

depicted in Figure 2.2c.  

A critical element of this chapter is to examine the impact of the dimensionality of the problem 

geometry on the simulated indoor air concentrations. This is motivated by the statement in Yu et al. 

(2009) that their use of a two dimensional model would create conservative results by forcing the 

groundwater plume emanating from the TCE source zone to advect beneath the foundation slab, and 

by not permitting horizontal diffusion (in their    direction) to diminish TCE concentrations before 

they reach the vadose zone. We examine this issue of dimensionality by adding the y-dimension while 

retaining as many features of the original Yu et al. (2009) problem geometry as reasonable. 

Specifically, all boundary conditions, physical and chemical hydrologic properties, foundation slab, 

basement wall/interior properties, and indoor air concentrations are accommodated within and post-

processed from the base scenario in a manner identical to that described by Yu et al. (2009). In 

summary, boundary conditions for the base scenario model are as follows: the ground surface has a 

constant pressure gas phase boundary and the ambient atmosphere pressure is 100    ; the bottom 

and side boundaries parallel to the groundwater flow direction are impermeable; a constant aqueous 

phase head is imposed at the groundwater inflow and outflow boundaries resulting in a groundwater 

flow velocity of 0.09       (Woodbury and Sudicky, 1991) along the x-direction; 0.18    of TCE 

is injected 55   up-gradient of the first row of houses below the water table; and, the houses are 

depressurized by 10    relative to ambient atmosphere pressure. For the base scenario model, we 

assume there is no infiltration from precipitation to generate conservative indoor air concentrations. 

However, in an alternative scenario (see scenario 2 of Section 2.3.2) an annual infiltration rate of 0.2 

       is assigned (Solomon et al., 1992). All relevant physical and chemical hydrologic properties 

of the system follow directly from Tables 2 to 5 of Yu et al. (2009). The soil gas emanating from the 

subsurface can only pass through the foundation slab to reach the basement. The basement walls of all 

houses are impermeable, and each house has a single shrinkage crack along the entire perimeter of the 

basement floor. The aperture of the crack for the base scenario is           yielding a 

permeability of       
               , while the foundation slab which is made of concrete is 

assigned a permeability of       
            . The resultant bulk permeability of the 

foundation slab is       
                following Equation (11) of Yu et al. (2009), with all 

basement and foundation slab properties summarized here on Table 2.3. The methodology for 
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calculating the indoor air concentration of TCE in unit of parts per million by volume      follows 

from Equations (12) to (14) of Yu et al. (2009), with a base scenario air exchange rate of       . 

Simulations using the CompFlow Bio model consist of three main stages. First, we establish an 

appropriate initial condition for steady-state aqueous and gas phase flow in the subsurface using the 

boundary conditions itemized above. This initial condition includes the presence of all six houses. 

Second, we introduce a TCE source zone within the model by injecting 0.18    of TCE over a period 

of one day forming a DNAPL source zone of volume 0.18    below the water table. The start of 

TCE injection is denoted as         . Third, the TCE source zone is then allowed to redistribute 

itself as necessary, and TCE contamination then emanates from the DNAPL source zone and is 

transported within the steady-state aqueous and gas phase flow fields towards the basements of the six 

houses which are all located down-gradient of the source zone.  

 

2.3 Results 

Use of the CompFlow Bio numerical model for the purposes of defining an exclusion zone for the six 

houses located within the problem geometry is based on a three-step process, each with an established 

body of science-based literature. First, previous laboratory and field experiments (Rivett and Cherry, 

1991; Rivett, 1995; McCarthy and Johnson, 1993) have established a process-based hydrological 

conceptual model defining the mechanisms for the fate and transport of volatile organic contaminants 

from the groundwater, through the capillary fringe, and into the vadose zone. Section 2.2.2 of this 

chapter outlines our efforts to ensure that the simulation domain used as the basis for this work is 

faithful to these previous efforts. Second, each house within the simulation domain is in effect a 

sensitive receptor based on monitored indoor air concentrations. The indoor air concentration is 

impacted via the mass flux of TCE (the volatile organic contaminant simulated in this chapter) in the 

soil gas across the foundation slab and into the basement of each house. As such, the foundation slab 

is in effect a “flux fence” reminiscent of field experiments conducted by Mackay et al. (1986), 

Leblanc et al. (1991), Conant et al. (1996), Devlin and Barker (1996), Ezzedine and Rubin (1997), 

Schirmer and Barker (1998), Zheng and Jiao (1998), King et al. (1999), Rivett et al. (2001), Hess et 

al. (2002), Bockelmann et al. (2003), Mackay et al. (2006), Cai et al. (2011) and Béland-Pelletier et 

al. (2011), and further utilized in the body of work related to partial source zone depletion (Blum and 

Annable, 2008; Sale et al., 2008; Brooks et al., 2008). However, the fate and transport processes 

between the TCE source zone and foundation slab fence are significantly more complicated than 
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previously examined given that the foundation slab is in the vadose zone rather than beneath the 

water table. Also, while the foundation slab is parallel to the advection of the groundwater plume (and 

of course, the ground surface), it is perpendicular to soil gas flow induced by the occupancy of each 

house. Yu et al. (2009) and Yao et al. (2011) both discuss this idea of the soil gas flux as a 

contribution to the indoor air concentration of TCE. The efforts of Johnson et al. (2011) to monitor 

soil gas concentrations beneath the foundation slab is reminiscent of efforts to monitor flux fences for 

groundwater plumes. Third, a given house is defined as being either within (i.e., unaffected house fit 

for occupancy) or outside (i.e., and an affected house unfit for occupancy) the exclusion zone based 

on whether its indoor air concentration exceeds a regulatory limit during the entire transient period 

over which the TCE source zone is depleted. Here we use an indoor air regulatory limit for TCE of 5 

      which can also be expressed as 8.95X10
-4

       (NYSDOH, 2005). 

 

2.3.1 Base Scenario Exclusion Zone 

The fate and transport of TCE from groundwater to the indoor air as simulated by CompFlow Bio for 

each of the six houses for the base scenario (scenario 1) is shown in Figure 2.4a. This figure shows 

the mole fraction of TCE in the gas phase within the aquifer 1800 days after TCE was introduced. 

Contours of TCE gas phase mole fraction are provided along a transect through the source zone and 

the middle of houses 2 and 5, and parallel to groundwater advection (i.e. along the  -  plane). In 

addition, contours are also shown on transects through the rows of houses 1-2-3 as well as houses 4-

5-6, perpendicular to groundwater advection (i.e. along the  -  plane). We remind the reader that all 

physical dispersion below the water table and in the vadose zone is entirely due to molecular 

diffusion as all dispersivities   
  and   

              (resulting from hydrodynamic dispersion) were 

set to zero. Also, an extensive grid refinement was performed to minimize numerical dispersion 

within the region of contaminant transport as exhibited by Figure 2.4a. We note that below the water 

table, the groundwater plume exhibits a sharp contrast from high to low concentrations transverse to 

the direction of groundwater advection in keeping with observations at the Borden aquifer (Sudicky, 

1986). Perturbations in the shape of the groundwater plume are a consequence of the impact that 

heterogeneity in the permeability structure of the aquifer has on groundwater flow, as well as the 

induced macro-dispersivity that these perturbations in groundwater flow will have at the mesh 

discretization scale. Given the close proximity of the TCE source zone to the water table, we can see 

that for the particular permeability realization shown in Figure 2.3, once the TCE plume has advected 

about 30   down-gradient from the source zone, it transports upwards by advection to the capillary 
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fringe due to the structure of the heterogeneous permeability field. Once TCE diffuses through the 

capillary fringe and reaches the vadose zone, the resulting TCE vapour plume rapidly spreads across 

the vadose zone. This spread is largely due to the vacuum induced by the heating/ventilation/HVAC 

system within each house which creates an advective flux of the gas phase from the vadose zone, 

across the foundation slab, and into the indoor air. Molecular diffusion of TCE in the gas phase is also 

a substantial transport mechanism, particularly in regions distant from the foundation slab. Houses 2 

and 5, which reside directly over the groundwater plume, exhibit the highest mole fraction of TCE in 

the gas phase beneath their foundations slab. All of the houses which are laterally offset from the 

groundwater plume exhibit lower soil gas concentrations beneath their foundation slabs, with houses 

1 and 4 being less than houses 3 and 6 due to the structure of the particular permeability realization.  

The mass flux of TCE in the soil gas across the foundation slab and into the indoor air for scenario 

1 is shown in Figure 2.5a. This flux is the product of the TCE concentration in the soil gas as given 

by Equation (12) of Yu et al. (2009) and the volumetric flow rate of soil gas into the house as shown 

in Figure 2.5b, with this flux of TCE representing    in Equation (13) of Yu et al. (2009). Note that 

each foundation slab was discretized using 6 × 20 × 1 nodes of dimension 2.5   × 0.5   × 0.2    in 

the  −,  − and  − directions, respectively, in an attempt to resolve spatial variations in the soil gas 

composition of TCE beneath the foundation slab induced by the heterogeneous aquifer permeability 

structure in keeping with the field observations of Johnson et al. (2011). The mass flux of TCE across 

the foundation slab for all houses generally increases in a transient manner over the simulated 4800-

day simulation period as the groundwater plume advects beneath the development. For houses 2 and 

5, the mass flux diminishes somewhat after it reaches a peak at about 2000 days due to partial 

dissolution of the TCE source zone. At 4800 days, the mass flux for houses 1 and 4 is less than that 

for houses 3 and 6, although they are all within an order-of-magnitude of one another. However, the 

mass fluxes of TCE into houses 2 and 5 are roughly one to two orders-of-magnitude greater. In 

contrast, the volumetric flow of soil gas into all houses is relatively similar between 3.96 to 5.74 

     ⁄  (see Figure 2.5b and Table 2.3) over the entire simulation period, with the fluctuations due 

to the numerical difficulty of imposing the penalty sink term given by Equation (14) of Yu et al. 

(2009). 

Indoor air concentrations of TCE for scenario 1 within all six houses are shown in Figure 2.6. 

These concentrations were calculated using Equation (13) of Yu et al (2009) and closely mimic the 

mass flux of TCE across the foundation slab as is expected. We note two key observations in the 

indoor air concentrations. First, the indoor air concentrations for houses 2 and 5 which are directly 

above the groundwater plume are about an order-of-magnitude lower than those presented by Yu et 
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al. (2009 − see “no recharge” in Figure 13). We endeavored to retain an identical problem geometry 

and parameterization between the models, with the notable difference of this model containing six 

houses and also being three-dimensional. Clearly, dimensionality of the problem geometry has a 

significant influence on the simulation results as hypothesized in Section 2.2.2. Second, the indoor air 

concentrations for houses 1, 3, 4, and 6 which are adjacent to the groundwater plume are significantly 

lower than houses 2 and 5. Using the NYSDOH (2005) indoor air regulatory limit for TCE of 5 

     , houses 2 and 5 are adversely affected and are outside the exclusion zone, while houses 1, 3, 4 

and 6 are all below the regulatory limit and are within the exclusion zone. Given the narrow spacing 

between the houses of 10  , we conclude that the weak transverse macro-dispersion seen in 

groundwater plumes generates narrow exclusion zone bands that effectively trace the projection of the 

groundwater plume onto the ground surface. This occurs despite the fact the region transverse to the 

plume that exhibits measurable soil gas impacts may extend beyond the boundaries of the exclusion 

zone. In the United States, the average air exchange rate during the seasons when houses are kept 

closed is within the range of 0.1 − 2.0      (ASHRAE, 2009; Ek et al., 1990), and a minimum air 

exchange rate of 0.35      is also recommended by the American Society of Heating, Refrigerating, 

and Air Condition Engineers (ASHRAE). We conclude that the dilution that the indoor air exchange 

rate offers for a modest-sized house confers a certain degree of protection against subsurface 

contamination issues, even when weighed against the relatively strict NYSDOH (2005) indoor air 

regulatory limit. 

Both ASTM (2008) and the J&E model provide alternative strategies to delineate the exclusion 

zone. Specifically, ASTM (2008) indicates that the critical distance beyond which a site may be 

excluded from further assessment when the vapour source is a dissolved non-degradable plume is 100 

feet (or approximately 30  ). Given that the centroid of the foundation slab of all houses is within 20 

  of the centre-line of the plume along the ground surface, all houses would fall outside the exclusion 

zone by about 10  . Therefore, in the case of the base scenario (scenario 1), ASTM (2008) provides 

slightly more conservative guidance than CompFlow Bio. As part of additional scenarios in Section 

2.3.2, we attempt to generalize this observation by comparing CompFlow Bio against ASTM (2008) 

using alternative problem geometries. Parameterization of the J&E model for direct comparison to 

CompFlow Bio for the base scenario follows from the extensive discussion in Yu et al. (2009), with 

relevant parameters summarized on Table 2.4 and using       values from Table 2.3. Indoor air 

concentrations calculated using Equation (19) of Johnson and Ettinger (1991) for each of the six 

houses in the base scenario are shown in Figure 2.6. Results indicate that the indoor air concentration 

calculated using the J&E model for each of the six houses is greater than the NYSDOH (2005) 
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regulatory limit indicating that all houses would fall outside the exclusion zone. This result is 

identical to ASTM (2008) and is more conservative than CompFlow Bio. Common use of the J&E 

model is by means of the “attenuation coefficient” denoted here as      representing the ratio of the 

indoor air concentration to that of the source, as defined by Equations (20) and (21) of Johnson and 

Ettinger (1991). For the CompFlow Bio model,      is computed when the TCE indoor air 

concentration reaches its peak value within each house individually. Comparison of      and       is 

provided on Table 2.5. For the base scenario,      is between 14 to 30 times greater than      for 

houses 2 and 5 which are both directly over the groundwater plume. For houses 1, 3, 4 and 6 which 

are adjacent to the groundwater plume,      is between 617 to 6239 times greater than     . 

Consequently, we speculate that while the agreement between the exclusion zones defined by ASTM 

(2008) and the J&E model are reassuring for the base scenario problem geometry, the J&E model 

appears to be overly conservative when predicting indoor air concentrations relative to the CompFlow 

Bio model. We will revisit this issue later in Section 2.3.3 when we quantify the uncertainty that the 

heterogeneous permeability field impacts on the      values. 

 

2.3.2 Variations in the problem geometry 

A thorough site investigation is a necessary prerequisite, and also part of the professional engineers or 

geoscientists due diligence, before making any assessments regarding the fate and transport of TCE 

from an observed source zone to the indoor air of a house. Yu et al. (2009) observed that imperfect 

knowledge of subsurface conditions can have a significant impact on uncertainty in predicting, or 

interpreting, indoor air concentrations arising from subsurface conditions. In this context, we 

investigate the impact of a series of modifications to the base scenario problem geometry that could 

potentially impact the fate and transport of TCE from the source zone below the water table, across 

the capillary fringe, into the vadose zone, through the foundation slab, and into the indoor air. These 

scenarios are itemized as scenario 2 – 6 as listed on Table 2.1, and are described below.  

Following the arguments outlined in Section 3.3.5 of Yu et al. (2009), we begin by introducing 

scenario 2 which involves modifying the base scenario by increasing infiltration to 0.2    ⁄ . The 

rationale for this scenario being that the aqueous phase diffusive flux of TCE across the capillary 

fringe is the limiting hydrologic process controlling indoor air exposure. Increasing the infiltration 

rate diminishes the diffusive flux of TCE across the capillary fringe by effectively pushing the 

groundwater plume downward as the additional water recharges the water table. In a manner 
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consistent with Yu et al. (2009), we observed in Figure 2.6 that the indoor air concentration within all 

six houses decreases for scenario 2 relative to the base scenario. In fact, house 2 no longer exhibits 

indoor air concentration in excess of the regulatory limit and hence should be part of the exclusion 

zone. We note that neither ASTM (2008) nor the J&E model (see Table 2.4) accommodates recharge 

in their guidance towards delineating the exclusion zone. Comparison of      for scenarios 1 and 2 

(as listed on Table 2.5) provides a convenient methodology to quantify the impact of this particular 

variation on the problem geometry on reducing indoor air concentration. Recharge is able to reduce 

the attenuate factor (i.e. decrease indoor air concentrations) by a factor from between 7 and 21 for 

houses 2 and 5 which are directly above the groundwater plume, to between 43 and 105 for houses 1, 

3, 4, and 6 which are laterally offset. Note that volumetric rate of air flow into the houses as listed on 

Table 2.3 is only marginally impacted by infiltration. Figure 2.4b shows that infiltration is able to 

generate a greater reduction in TCE soil gas concentrations beneath the foundation slab of houses that 

have lateral offset relative to those over the groundwater plume, resulting in a corresponding decrease 

in the flux of TCE across the foundation slab and into the indoor air. We conclude that increased 

recharge serves to diminish the weak lateral transport of TCE from the groundwater plume into the 

vadose zone, further tightening the boundaries of the exclusion zone to the perimeter of the 

groundwater plume. For comparative purposes, we note that Yu et al. (2009) observed that adding 

recharge (see scenario 8 on Table 8 of Yu et al. (2009)) increased      by a factor of 8 for the single 

house in the domain which was located in the same position as house 2 for this base scenario.  

With or without recharge, TCE does exhibit low but significant mole fractions along the 

impermeable side boundaries of the base scenario domain, constraining the further lateral spread of 

TCE in the vadose zone and effectively increasing the TCE soil gas concentration beneath the 

foundation slab of all houses. We examine the undue influence of the lateral boundary conditions on 

the simulated indoor air concentrations by introducing scenario 3 which involves modifying the base 

scenario by reducing the pressure drop within each house to zero, i.e.:    
            a .  

Therefore, there is no advection of the gas phase in the vadose zone to transport TCE to houses that 

are laterally offset from the groundwater plume and adjacent to the side boundaries. Diffusive flux of 

TCE in the gas phase is the only transport mechanism to reach these houses. Figure 2.4c shows little 

change in the mole fraction of TCE in the gas phase along the side boundaries between scenarios 1 

and 3. However, the mole fraction of TCE in the gas phase is much greater for scenario 3 beneath the 

foundation slab of houses 2 and 5, and between all houses just beneath the ground surface. For 

scenario 1, the decrease in soil gas concentration is a consequence of clean atmospheric air which is 

drawn downward from the ground surface and then across the foundation slab when    
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    a. Figure 2.6 shows that indoor air concentration in all houses for scenario 3 are considerably 

lower than those for scenario 1. In fact, they are all lower than the regulatory limit. Therefore, we 

conclude that while the lateral extent of the domain is insufficient to prevent lateral diffusion of TCE 

in the gas phase within the vadose zone from impacting the side boundaries, the advective flux of 

TCE in the gas phase across the foundation slab is the dominant mechanism impacting the indoor air 

quality. To this end, extending the domain further in the  -direction would serve to allow additional 

clean atmospheric air to enter the basements of the lateral houses and further dilute and constrain the 

lateral migration of the TCE in the vadose zone. 

A significant simplification inherent in the base problem geometry is that the domain consists of a 

single stratigraphic unit, albeit with a heterogeneous permeability structure. Scenarios 4 and 5 involve 

adding a low permeability clay layer between the water table and foundation slab within the vadose 

zone, as depicted in Figure 2.2b and Figure 2.3. Otherwise, the permeability structure of the domain 

remains unchanged like the base scenario. Scenarios 4 and 5 differ in that the infiltration rate is 

increased from 0 to 0.2    ⁄  to investigate the impact of water saturation within the clay layer on 

the fate and transport of TCE through the vadose zone. For scenario 4 when infiltration is 0    ⁄ , 

the water saturation of the clay layer is         due to its close proximity to the capillary fringe 

and high air entry pressure     (    )           . At this water saturation, the Darcy flux of the 

gas phase (see Equation (2.2)) is reduced as    (       )       effectively diminishing the 

advective flux of TCE in the gas phase between the top of the capillary fringe and the base of the 

foundation slab. In addition, the dispersive flux of TCE in the gas phase is diminished given that it is 

proportional to    (see Equation (2.1)). For scenario 5, the water saturation of the clay layer increases 

to          as recharge is added. At this water saturation, both the advective and diffusive fluxes 

of TCE in the gas phase are non-existent. The only transport mechanism for TCE through the clay 

layer is diffusive flux in the aqueous phase. Figure 2.4d shows contours of the mole fraction of TCE 

in the gas phase for scenario 5 at 1800 days after emplacement of the TCE source zone. The clay 

layer has completely prevented TCE from impacting any of the houses despite the fact the vadose 

zone below the clay layer exhibits significant TCE soil gas concentrations. Figure 2.6 indicates that 

while the clay layer with no infiltration (scenario 4) does reduce indoor air concentrations, the degree 

of protection is not nearly as significant as when the clay layer is fully water saturated (scenario 5). 

The indoor air concentrations computed using the J&E model for scenarios 4 and 5 are provided in 

Figure 2.6, and are indistinguishable from those calculated for scenarios 1 and 2. Clearly, the process 

of identifying stratigraphic units as part of a site investigation is a prerequisite step when quantifying 

the fate and transport of contaminants from groundwater to the indoor air. For scenario 5, the 
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CompFlow Bio model indicates that all houses should be part of the exclusion zone whereas both J&E 

and ASTM (2008) provide the exact opposite guidance. As above, comparison of      for scenarios 

4 and 5 (as listed on Table 2.5) provides a convenient methodology to quantify their impact on 

reducing indoor air concentration relative to the base scenario. For the clay layer without recharge, 

the attenuation factor for all houses was only decreased by a factor between 1.3 and 10.5. In contrast, 

with recharge the attenuation factor was decreased by a factor between         and        . 

The thickness of the vadose zone has a direct impact on the fate and transport of TCE from 

groundwater to the indoor air given that it alters the offset between the source zone and center of the 

foundation slab. Scenario 6 involves increasing the thickness of the vadose zone to approximately 10 

  as shown in Figure 2.2c. We note that the structure of the heterogeneous permeability field for the 

bottom 8   is identical to that of the base scenario to ensure that the groundwater plume was not 

perturbed relative to the base scenario. The additional 7   contains a continuation in the 

heterogeneous permeability structure. Figure 2.4e shows contours of the mole fraction of TCE in the 

gas phase for scenario 6 at 1800 days after emplacement of the TCE source zone. Surprisingly, the 

soil gas composition of TCE in the vadose zone actually increased relative to the base scenario, 

particularly for houses 1, 3, 4, and 6 which are laterally offset from the groundwater plume. This is 

reflected in Figure 2.6 which also shows: a minor decrease in the peak indoor air concentration for 

house 2, and a minor increase for house 5, with both houses being directly over the groundwater 

plume; and an increase in peak indoor air concentration for the remaining houses by a factor between 

4.5 and 9.3. This increase in indoor air concentration is a product of the increased flow of soil gas into 

each house across the foundation slab (see Table 2.3), and the increased TCE soil gas composition in 

the vadose zone, effectively increasing the flux of TCE into the indoor air. Note that by increasing    

for scenario 6 in Table 2.4, the J&E model calculates a decrease in the indoor air concentrations (see 

Equation (19) of Johnson and Ettinger (1991)) for all houses. This decrease is insignificant relative to 

the J&E indoor air concentration for the base scenario as shown in Figure 2.6. Most importantly, both 

the CompFlow Bio and J&E models indicate that the thickness of the vadose zone within the 

constraints of this particular problem geometry is not a significant factor when attempting to define an 

exclusion zone.  
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2.3.3 Aquifer heterogeneity 

Imperfect knowledge of the point-to-point structure of subsurface properties is a fundamental issue 

when assessing the fate and transport of contaminants from the groundwater to the indoor air. 

Heterogeneity in the permeability structure of the aquifer will impart uncertainty in indoor air 

concentrations and consequently the perimeter of the exclusion zone. We address this issue by 

generating 50 alternatives, but statistically equivalent, heterogeneous permeability realizations to that 

shown in Figure 2.3. Each realization is unconditioned in the sense that we assumed no permeability 

measurements were available to constrain the realizations, beyond implicit knowledge of the 

statistical structure itself as provided on Table 2.2. Next, we used CompFlow Bio to compute the 

resulting indoor air concentration in each of the six houses for the base scenario using each 

permeability realization in a Monte Carlo approach. These results are shown in Figure 2.7. 

Comparison of the indoor air concentrations for the base scenario as shown in Figure 2.6 to those 

calculated using the alterative permeability realizations indicates that the majority of the realizations 

yield lower indoor air concentrations in all six houses. As discussed in Yu et al. (2009), these 

situations arose when the groundwater plume was deflected downward effectively diminishing the 

ability of aqueous phase diffusion to transport TCE across the capillary fringe. We remind the reader 

that Rivett (1995) observed that groundwater could transport contaminants a significant distance 

without impacting the vadose zone in the Borden aquifer. In contrast, the base scenario using the 

permeability realization shown in Figure 2.3 exhibits a strong impact on the vadose zone and hence is 

overly conservative. 

Comparison of aquifer heterogeneity to the alterative problem geometries (scenarios 2 to 6) 

discussed in the previous section indicates that only scenario 5, which includes the clay layer and 

infiltration, has the greatest impact on the indoor air concentrations. Consequently, we suggest that 

the professional engineer or geoscientist focus their efforts first on characterizing the stratigraphy, 

and then on obtaining permeability measurements and other hydrogeological properties (i.e. 

infiltration rate) of the aquifer. Yu et al. (2009) provide an extensive analysis of the impact of 

alternative properties, including; lateral offset of the source zone, barometric pressure fluctuations, 

aperture of the foundation crack, pressure drop within the house, and thickness of the capillary fringe. 

In the context of this study, these same alterative properties have an identical impact on indoor air 

concentrations relative to aquifer heterogeneity for identical reasons as discussed in Yu et al. (2009) 

and hence are not repeated here for brevity. 
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Definition of an exclusion zone based on the Monte Carlo indoor air concentrations generated 

using the 50 permeability realizations follows two strategies. In the first strategy, we assume that the 

developer monitors the indoor air quality periodically every               days for the first 

       days (approximately 5 years). For a given monitoring interval           where      

           with                  and                     , the probability of exceedence       

for the  th house                   and           is calculated as: the sum of the number of 

Monte Carlo realizations for which the indoor air concentration for TCE exceeds the NYSDOH 

(2005) indoor air regulatory limit       of 5       at the time interval            for the  th house 

defined as            
 ; followed by dividing by the total number of Monte Carlo realizations 

              ; yielding 

 

      
           

             
  . (2.4) 

 

The exclusion zone is then demarked by the line which separates those houses for which        

for                  from the remainder of the houses within the development that exhibit      

 . The deficiency in this approach is that 50 Monte Carlo realizations may not be a sufficient sample 

to accurately demark the perimeter of the exclusion zone to the satisfaction of regulatory guidance 

specifying an acceptable probability of failure (exceedence of the regulatory limit). In the second 

strategy, we begin with the hypothesis that the indoor air TCE concentrations for all Monte Carlo 

realizations                with                          for a given monitoring interval           and 

the  th house are log-normally distributed. In contrast, Schwede et al. (2008) suggest average 

concentrations within a large sampling volume follow a beta distribution. However, we note their 

analysis is specific to a groundwater plume whereas we focus on that of house located above the 

water table. To test our hypothesis, we used a one-sample Kolmogorov-Smirnov test (Massey, 1951; 

Miller, 1956) with the null hypothesis being that the vector of                 follows a normal 

distribution. The alternative hypothesis is that the vector of                 does not follow a normal 

distribution at the 1% significance level. The benefit of “fitting” a log-normal distribution to 

              is that we are able to extrapolate the heavy tail of the log-normal distribution to determine 

the probability      by which indoor air concentrations exceed the regulatory limit, and conservatively 

demark the perimeter of the exclusion zone.  
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The temporal transition of               to being log-normally distributed as the increment of the 

monitoring interval           increases is best shown in Figure 2.7 when the mean concentration 

changes from a dashed to a solid line. The dashed line indicates the null hypothesis is not accepted, 

while the solid line indicates that it is accepted. Indoor air concentrations appear to become log-

normally distributed only once a sufficient number of realizations   in a given monitoring interval 

          for house   are impacted. This occurs at latest by about 700 days when the bulk of the 

groundwater plume has advected at least 63   given that the groundwater velocity is on average 

0.09     ⁄ . We note that the distance between the TCE source zone and the front of house 2 is 55 

  (see Figure 2.2a). The upper 95%, 99% and 99.9% confidence intervals are also shown in Figure 

2.7 and are computed using the mean and standard deviation of indoor air 

concentration                 . Once all houses exhibit log-normal concentrations, the upper 95%, 99% 

and 99.9% confidence intervals all decrease sharply to a minima demarked by the vertical gray line. 

These minima occur once all Monte-Carlo groundwater plumes have impacted the indoor air 

concentrations of a given house. In fact, this early time peak is caused by a large standard deviation in 

                which remains inflated by the low indoor air concentrations that occur before all 

realizations have impacted a given house. Following these minima, the mean and upper 95%, 99% 

and 99.9% confidence intervals all increase monotonically before they plateau at the end of the 

monitoring period at 1800 days. It is this statistically stable region following the vertical gray line 

(which is characterized by having a minimum and maximum  -statistic from the Kolmogorov-

Smirnov test of 0.192 and 0.946, respectively) that will be used to demark the perimeter of the 

exclusion zone.  

Using the first strategy defined above, Figure 2.7 indicates that the exclusion zone contains houses 

1, 3, 4 and 6 which are all offset from the groundwater plume given that        for   

              . Using the second strategy defined above, the exclusion zone at the 95% confidence 

interval is identical to the first strategy using the raw Monte Carlo simulations to calculate    . 

However, at the 99% confidence interval the exclusion zone contains only houses 1 and 4. This lack 

of symmetry whereby houses to the left of the groundwater plume are slightly less impacted than 

those to the right is a consequence of insufficient Monte Carlo realizations of the heterogeneous 

permeability field to resolve the ensemble statistics of the groundwater and vadose zone TCE 

distributions. At the 99.9% confidence interval, none of the houses are within the exclusion zone 

consistent with both the J&E and ASTM (2008).  
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Numerous studies have made statements regarding the conservative nature of the J&E model 

(USAF, 2006; Hers et al., 2003; Schreuder, 2006; Fitzpatrick and Fitzgerald, 2002; Mills et al., 2007; 

Yu et al., 2009; Provoost et al., 2010; Johnston and Gibson, 2011). We now attempt to statistically 

quantity the degree of this conservatism by comparing      and      values using the 50 Monte 

Carlo permeability realizations for the base scenario problem geometry. We remind the reader that the 

base scenario problem geometry was motivated by the Rivett (1995) field experiment at the Borden 

site. As such, the degree of conservatism as expressed here cannot be generalized to other sites 

without following the methodology outlined in this thesis. We begin by computing          for each 

realization                         taking note that          occurs when the indoor air 

concentration               is at its peak value which may occur at different monitoring intervals 

          for the  th house and for all realizations. We then test the hypothesis that            is 

normally distributed using the Kolmogorov-Smirnov test at the 1% level of significance. We 

observed strong confirmation of this hypothesis given that the  -statistic had a minimum and 

maximum value of 0.602 (house 2) and 0.944 (house 3), respectively. Table 2.6 itemizes the 

statistical results for the             distribution for each house. In summary, only for house 2 which 

directly overlies the plume is CompFlow Bio more conservative than the J&E model at the 99.9% 

confidence level. Otherwise, J&E is more conservative than CompFlow Bio, with the degree of 

conservativeness expressed by the probability of             . Clearly for houses 1, 3, 4 and 6 

which are laterally offset from the groundwater plume, the degree to which the J&E model is 

conservative is rather onerous. Assuming the professional engineer or geoscientist will define the 

perimeter of the exclusion zone by adjusting    in the J&E model to decrease      until the 

calculated indoor air concentrations are less than the regulatory limit, the resulting lateral offset of the 

exclusion zone will be much greater than what CompFlow Bio would otherwise suggest given the 

weak transverse dispersion of groundwater plumes observed at field sites, and as implicitly supported 

by the ASTM (2008) regulatory guidance. 

 

2.4 Conclusions 

The objective of this chapter is to use the multi-phase compositional numerical model CompFlow Bio 

to examine the fate and transport of volatile organic contaminants originating from a NAPL source 

zone located below the water table, and their potential impact on multiple residential dwellings 

located down-gradient of the source zone. While the problem geometry is based directly on that of Yu 
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et al. (2009) and hence is reminiscent of the Rivett (1995) field experiment in the Borden aquifer, the 

problem geometry is extended to be fully three-dimensional. This enhancement was motivated by the 

need to accommodate multiple houses, with some laterally offset from the direction of groundwater 

plume advection, in an attempt to delineate an exclusion zone. We note that the Rivett (1995) field 

experiment conducted in the Borden aquifer involved a DNAPL source zone located a short distance 

below the water table. Monitoring of both the groundwater plume and soil gas above the plume 

indicated that groundwater could transport contaminants a significant distance without transverse 

vertical mass transport of these contaminants across the capillary fringe. This key observation was 

replicated in the Yu et al. (2009) problem geometry, and hence is present in this work as well. By 

extending the Yu et al. (2009) problem geometry to be fully three-dimensional, we observed that the 

transverse horizontal flux of contaminant (to the direction of the groundwater plume advection) 

significantly reduces contaminant concentrations within the plume and ultimately within the indoor 

air relative to the equivalent two-dimensional problem geometry.   

A key factor controlling the relative importance of variations in the conceptual model (such as 

recharge, inserting a clay layer with and without recharge, extending the thickness of the vadose zone, 

and heterogeneity in the subsurface permeability structure of the stratigraphically continuous aquifer) 

on indoor air concentrations is the degree to which these variations impact the flux of TCE in the soil 

gas across the foundation slab. We observed that the combination of inserting the clay layer with 

recharge created an impervious barrier for TCE beneath the foundation slab effectively negating the 

flux of TCE in the soil gas across the foundation slab. Next in importance is heterogeneity in the 

subsurface permeability structure of the stratigraphically continuous aquifer. We observed that this 

heterogeneity conferred a greater variability in indoor air concentrations than any other variations in 

the conceptual model, except for the clay layer with recharge which exhibited no indoor air impact 

whatsoever. We conclude that characterizing the site stratigraphy is a first-order priority when 

attempting to assess the impact of the fate and transport of TCE from an observed source zone to the 

indoor air. Having established the site stratigraphy, we then recommend detailed soil core 

permeability measurements to characterize the heterogeneity within each stratigraphic unit.  

A central objective of this chapter is to compare the CompFlow Bio and J&E models as well as the 

ASTM (2008) guidance in terms of delineating the exclusion zone for the conceptual model shown in 

Figure 2.1. For the base scenario involving this conceptual model where the vapour source is a non-

biodegradable volatile organic groundwater plume, ASTM (2008) itemizes the critical distance 

demarking the exclusion zone as being 100      (approximately 30  ) from the perimeter of the 

groundwater plume. In general, CompFlow Bio exhibits an agreement with the ASTM (2008) 
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guidance on the basis that transverse horizontal macro-dispersivity induced by the heterogeneous 

permeability field is quite weak generating plumes with sharp lateral boundaries. However, the region 

of soil gas adversely impacted by the groundwater plume is extended in a lateral direction far beyond 

the boundaries of the plume due to a strong soil gas diffusion transport mechanism. Despite this, we 

observed that the dilution that the indoor air exchange rate offered for a modest-sized house confers a 

certain degree of protection against the extensive soil gas plume, even when weighed against the 

relatively strict NYSDOH (2005) indoor air regulatory limit. For the specific permeability realization 

used as part of the base scenario (and for variations in the conceptual model), we observed that the 

J&E model calculated conservative estimates for indoor air concentrations for all houses both directly 

above and laterally offset from the groundwater plume. Consequently, the J&E model generated an 

exclusion zone that would be significantly further away from the groundwater plume than what either 

CompFlow Bio or ASTM (2008) would predict. 

Given limited site characterization budgets, there is a practical need to be able to assess the fate 

and transport of TCE from an observed source zone to the indoor air in a manner that is both 

economical and conservative. The J&E model is an excellent choice for this task which has motivated 

its widespread use in industry. We attempted to quantify the degree to which the J&E model is 

conservative by comparing J&E-calculated attenuation coefficients (    ) against those computed 

using CompFlow Bio (    ) using 50 alterative permeability realizations for the base scenario 

version of the problem geometry. CompFlow Bio was more conservative than the J&E model at the 

99.9% confidence level only for house 2 which directly overlies the groundwater plume. Otherwise, 

J&E was more conservative than CompFlow Bio. For houses 1, 3, 4 and 6 which are offset from the 

groundwater plume, the degree to which the J&E model was conservative was unrealistic from a 

practical engineering design perspective. 
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Figure 2.1: Conceptual model depicting the transport of contaminants from a NAPL source zone 

below the water table to a house.  
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Figure 2.2: The 2D cross section views of the problem geometry: a), b) scenario 1 on Table 2.1, and 

c) scenario 6. 

(a) 

(b) 

(c) 
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Figure 2.3: 3D plot of the heterogeneous permeability field with a clay layer. 
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Figure 2.4: 2D cross section plots along x- axis and y- axis of mole fraction of TCE in gas phase 

1800 days after TCE was injected into the aquifer: a) base scenario 1 on Table 2.1, b) scenario 2, c) 

scenario 3, d) scenario 5, and e) scenario 6. 
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Figure 2.5: The mass flux of TCE in the soil gas and the volumetric flow rate of soil gas across the 

foundation slab into the houses for the base scenario, scenario 1.  
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Figure 2.6: Indoor air concentration of TCE in logarithmic scale with the air exchange rate 0.5/hr for 

the six scenarios on Table 2.1 using CompFlow Bio model: a) House No. 1, b) House No. 2, c) House 

No. 3, d) House No. 4, e) House No. 5, and f) House No. 6. 

Note: The number 1 – 6 represents the house number from Figure 2.2. The grey dash line represents 

the regulatory limit. The coloured dash lines represent the Indoor air concentrations of TCE in 

logarithmic scale using J-E model with parameters on Table 2.4. 
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Figure 2.7: Indoor air concentration of TCE in logarithmic scale with the air exchange rate 0.5/hr for 

50 unconditioned random permeability realizations with the mean value, the 95%, 99% and 99.9% 

confidence intervals (CI): a) House No. 1, b) House No. 2, c) House No. 

Note: The number 1 – 6 represents the house number from Figure 2.2. The dashed horizontal line 

represents the regulatory limit. The dashed lines for the mean, the 95%, 99% and 99.9% confidence 

intervals of the indoor air concentration represent they do not follow a log-normal distribution; the 

solid lines represent the indoor air concentrations follow a log-normal distribution. The solid grey 

vertical line divides the strong acceptance of log-normally distributed indoor air concentrations (on 

the right) from the week acceptance or non-acceptance (on the left).  
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Table 2.1: Scenario description 

No. Scenario  

1 Base scenario model     
             a 

2 Base scenario model with Infiltration =     m/yr 

3 Base scenario with    
            a   

4 Base scenario model with a clay layer 

5 Base scenario model with a clay layer and Infiltration  =     m/yr 

6 Base scenario with a   m thicker vadose zone 

 

 

Table 2.2: Porous media properties 

Property Value 

Porosity:          0.33 

Geometric mean permeability:       m   2×10
-11

 

Variance of       :           1.0 

Correlation length of   in principal bedding direction:          5.0 

Correlation length of   in transverse bedding direction:          2.0 

Correlation length of   perpendicular to bedding direction:          0.15 

Dispersivity:     
  and   

   m ,            0.0 

Mass density of porous media:        kg m ⁄   1810 

Organic carbon content of porous media:           0.0002 

Sorption of TCE onto porous media:         
 1.1×10

-5
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Table 2.3: Volumetric flow rate of soil gas for all houses 

 

Scenario 

No. 

Volumetric rate of air flow       ⁄   (negative sign means air flowing into houses) 

House No. 

1 2 3 4 5 6 

1 -5.3774 -5.0492 -3.9574 -5.7368 -5.1776 -4.5111 

2 -5.2627 -4.9160 -3.8057 -5.7472 -5.0975 -4.4256 

3 -1.8052 X10
-4 

3.4629 X10
-4

 -4.0967 X10
-4

 -9.7921 X10
-4

 1.9232 X10
3 

-1.2368 X10
3
 

4 -3.0586 -2.9350 -2.8919 -4.7474 -3.3595 -3.7493 

5 -2.7764 -3.1373 -2.8316 -4.1534 -3.2409 -3.2617 

6 -8.4244 -9.0287 -8.4527 -8.4324 -9.7370 -7.2889 

 

 

Table 2.4: Parameters used to compute      for the base scenario in CompFlow Bio model 

  Parameter Value 

  
   

   m day⁄   assuming         
 

 
  0.009 

a
 

         m day⁄   assumed equal to    from Table 5 in Yu et al. (2009) 0.394 

        aperture of crack in foundation slab 100 

    m   1510 (foundation slab)  +  2152 (two basement walls along 

x)  +  2102 (two basement walls along y)   

190 

        m
   50 m (long)     (wide), with    from Table 1 510

-3
 

          m day⁄          where       m  and             10800 

    m  offset between source zone and the center of the foundation 

slab 

 

  house 1, 3: 63 

  house 2: 60 

  house 4, 6: 92 

  house 5: 90 

       m  thickness of the foundation slab 0.2 

    m   permeability of foundation slab to gas phase 1.8310
-13 

 

         ppmV  the TCE concentration at source 6.0510
4
 

a   
   

   
   

   
   

                                   where    is from the Table 2.2; 

   and    are from Table A.4; Henry constant                      based on Table A.3. 
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Table 2.5: The attenuation coefficients for J&E model       and CompFlow Bio model     .      is 

computed when indoor air concentrations reached their peak in the CompFlow Bio simulation 

scenario with an air exchange rate of           .      is calculated using J&E model parameters 

from Table 2.3 using       from CompFlow Bio at the time when      was obtained 

 

Scenario 

No. 

    (X10
-9

)      (X10
-9

) 

House No. House No. 

1 2 3 4 5 6 1 2 3 4 5 6 

1 3269 3443 3269 2249 2303 2249 0.524 116.4 1.828 1.074 166.6 3.644 

2 3269 3442 3269 2249 2302 2249 0.005 5.535 0.023 0.025 22.62 0.078 

3 722 742 722 673 744 673 4x10
-4

 0.407 0.003 0.010 1.505 0.056 

4 3267 3443 3267 2249 2302 2249 0.109 11.09 0.413 0.803 30.55 2.247 

5 3259 3438 3259 2248 2300 2248 3x10
-6

 7x10
-4

 1x10
-4

 3x10
-5

 1x10
-3

 2x10
-4

 

6 3242 3413 3242 2241 2295 2241 2.733 98.24 8.192 9.957 171.1 16.83 

 

 

Table 2.6: The statistics of the attenuation coefficients      computed using the CompFlow Bio 

model results from Monte Carlo realizations based on the base scenario 

Parameter House 

1 

House 

2 

House 

3 

House 

4 

House 

5 

House 

6 

                   5.0275 271.55 6.0189 7.0015 675.57 9.8156 

              -22.99 -17.58 -22.84 -21.84 -16.03 -21.61 

              1.7671 1.6386 1.9857 1.2929 0.8380 1.4409 

upper 95% CI               3.3072 573.02 5.8730 4.1264 565.85 6.9068 

upper 99% CI               9.8195 1572.0 19.951 9.1488 948.10 16.775 

upper 99.9% CI               34.719 5070.6 82.470 23.049 1725.7 46.977 

   CFB            2.28e-9 0.0011 1.35e-7 4.1e-12 1.39e-4 1.15e-9 
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Chapter 3 Risk-Based Site Characterization for Vapour Intrusion at 

a Brownfields Site: Data Worth and Prediction Uncertainty 

Chapter summary 

In this chapter, the data-worth evaluation methodology adopted for a risk-based characterizing for 

vapour intrusion at a Brownfield site is a combination of the use of the predictive physical model 

CompFlow Bio, the geostatistical tool Kriging and the statistical data assimilation method Kalman 

filter. The objective of this chapter is not only to assess the worth of soil core permeability and TCE 

soil gas concentration data contributing to the reduction of prediction uncertainty in quantifying 

indoor air concentration of TCE in residential dwellings, but also to use sparse data to infer whether 

one of the houses located adjacent to affected houses has indoor air problems subject to the 

observation that affected house is monitored and has problems and developers have liability if a 

problem occurs. The results which are measured by three metrics among different combinations of 

sampling strategies show that incrementally increasing sampling data incorporated into the model can 

improve the reduction of the prediction uncertainty; however, the types and quantities of data 

determine the level of reduction. In this case, 7K4C sampling scheme reaches an optimal balance 

between the two and should be favoured by developers. 

 

3.1 Introduction 

Redevelopment of brownfields land presents a significant challenge in that people may become 

exposed to legacy contamination at the site. This contamination may continue to exist even after 

extensive remediation efforts given the difficult nature of characterizing the subsurface 

hydrogeological properties (Turcke and Kueper, 1996; Hyndman et al., 2007), locating the sources of 

contamination (Lesage and Jackson, 1992; Laird et al., 2005), and subsequently removing them from 

the soil in compliance with regulatory criteria (Russell, 1992; Ward et al., 1997; ITRC, 2007a, b; 

Longino, 2005). The potential for people to suffer potential health impacts from exposure to legacy 

contamination could result in the developer receiving punitive damages of unlimited value. To 

promote the developers due diligence in remediating the site and simultaneously limit the potential 

for future punitive damages, government agencies provide liability protection beyond a specified 

monitoring period (NRTEE, 2003; UK Environmental Agency, 2003; US EPA, 1999). 
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Discovery of an oily-waste source zone beneath the water table after redevelopment of a site is 

usually followed from monitoring groundwater quality and observing a contaminant plume. Yu et al. 

(2009) and the previous chapter of this thesis discussed the hydrogeological process governing the 

fate and transport of TCE (a volatile chlorinated solvent) from groundwater to indoor air. As a first 

response, the developer would likely repurchase those houses directly overlying the plume given the 

likelihood that they will be adversely impacted, with the intent of minimizing their obvious liability 

exposure. Thereafter, regulatory guidance regarding an exclusion zone (ASTM, 2008) can be used to 

specify a critical distance beyond the lateral boundaries of the plume beyond which it is no longer 

necessary to conduct pathway assessment and monitoring and hence to characterize the house as 

being affected by subsurface contamination. While this clearly specifies the developers due diligence 

in managing the housing development upon discovery of a groundwater plume, it does not limit their 

liability to the houses within the exclusion zone before the end of the liability period. The developer 

faces an additional difficulty in that they may not actually even have access to those houses in order 

to monitor the indoor air quality without directly purchasing them. In order for the developer to 

minimize their liability for all houses within the development, they must be able to assess the 

probability that houses located within the exclusion zone may be adversely impacted given pathway 

assessment and monitoring data that they have collected within the exclusion zone as part of their due 

diligence. Consequently, they must reserve sufficient capital to be able to repurchase any adversely 

impacted house within the development provided that data become available to suggest that the 

indoor air quality exceeds a regulatory limit (OEHHA-CEPA, 2007; NYSDOH, 2005). 

Massmann and Freeze (1987a, b), Freeze et al. (1992) and Yu et al. (2012) provide a cost-risk-

benefit framework that is directly amenable to address capital reserve issues posed by the developer. 

Specifically, the framework combines both hydrogeological and economic information when pricing 

the reserve capital to cover the financial risk based on the probability that the indoor air 

concentrations of these houses may exceed a regulatory limit. The objective of this work is to build 

upon framework as adapted by Yu et al. (2012) to the problem at hand. To further introduce our 

objectives, we briefly review how Yu et al. (2012) describe the developer views on the balance of 

hydrogeological and financial uncertainties and their combined impact on the value of the risk capital.  

The highly stylized brownfields project commences with the proposition that a company owns a 

property that contains legacy non-aqueous phase liquid (NAPL) contamination. They remediate the 

subsurface in compliance with governing regulatory requirements (Federal Contaminated Sites 

Action Plan, Canada; Superfund, or Comprehensive Environmental Response, Compensation, and 

Liability Act (CERCLA), USA). However, there is a possibility that some source zones of NAPL 
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contamination may remain below the water table. They now wish to construct multiple residential 

dwellings on the site. As with the previous chapter, the central intent of this work revolves around the 

issue of assessing indoor air concentrations within a number of houses (six in total) that directly 

overlying and laterally offset from a groundwater plume emanating from a remnant TCE source zone. 

This TCE groundwater plume then results in soil gas concentrations of TCE in the vadose zone in the 

vicinity of the plume, causing indoor air impacts to the houses surrounding the plume. To entice 

buyers, the developers guarantee that they will immediately repurchase any affected house at the 

original sale price appreciated by the US national home price index in our highly stylized brownfields 

project. Indoor air concentrations are monitored every           days, and their guarantee lasts for 

the first   days. Thereafter, the government indemnifies the developer (OME, 1997; OMMAH, 

2007). In return for the repurchase agreement and continuous monitoring, the residents agree not to 

blame any reasonably foreseeable health issues arising from potential long-term exposure of indoor 

air contamination on the developer given their due diligence. To maintain the development, the 

developer then remediates the subsurface to resolve the source of contamination, and 

demolishes/rebuilds/renovates the house to prevent further intrusion of soil gas. The house is then 

resold.  

In the first part of this two-chapter (Chapter 3 and 4) series, we build upon the work of Yu et al. 

(2012) by demonstrating a strategy to assimilate hydrogeological data in order to reduce the 

prediction uncertainty associated with forecasting the probability that indoor air concentrations will 

exceed a regulatory limit. Chapter 2 demonstrate that the lithological structure of the subsurface 

exerts a primary control on the fate and transport of TCE from groundwater to the indoor air, while 

the heterogeneous permeability structure of an individual lithological unit is of secondary but 

paramount importance. In this chapter, we focus exclusively on heterogeneity in the permeability 

structure as the primary contribution to prediction uncertainty. The conceptual model used by Chapter 

2 is repeated here in Figure 3.1 and forms the foundation for this work, albeit with further 

modifications which are discussed below. With regards to Figure 3.1 and the highly stylized 

brownfields project as described above, we assume the developer has already purchased houses 2 and 

5 given that they directly overlie the plume. Furthermore, houses 1, 3, 4 and 6 which are all laterally 

offset from the plume remain privately owned and inaccessible to the developer. The developer must 

reserve sufficient risk capital in order to purchase these houses should it become apparent that any 

one of them is impacted. 

The problem of reducing prediction uncertainty in groundwater flow and solute transport models 

which primarily arises from the combination of the uncertainty in conceptual models and the 
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uncertainty in model parameters has been addressed by many researchers. In recent years, a number 

of authors have acknowledged that conceptual model uncertainty (Neuman, 2003; Bredehoeft, 2003, 

2005; Refsgaard et al., 2006). However, it is not our focus in this chapter. Uncertainty about the 

spatial variability of aquifer (geologic natural heterogeneity) is a key component and is mostly 

discussed in the risk assessment process, and has been shown to influence the predicted flow field and 

contaminant exposure risk (Dagan, 1984; Robin and Dagan, 1992; Yu et al., 2009). This uncertainty 

can be reduced by performing more investigations and collecting more data. While the collection of 

new or additional data is generally the most direct way of reducing uncertainty, limiting factors such 

as cost, time, and accuracy may not always permit further sampling. These limitations, particular the 

most concerned limited site characterization budgets, have motivated this study for the purpose of 

uncertainty reduction and accuracy improvement with effective information. The problem of model 

parameter uncertainty has been addressed using inverse modeling and optimization. The inverse 

modeling (e.g., Yeh, 1986; Abbaspour, 1997) procedure involves minimization of the square 

difference function of some measured and simulated flow or transport variables, and is used to 

decrease the uncertainty in the initial estimates of the parameters, followed by a data worth analysis to 

show the effect of additional measurements on the confidence of the model prediction. The 

optimization technique (e.g., Marryott, 1996) has been commonly used for problems of groundwater 

remediation design, which combined with the hydrogeological model to build a framework during the 

decision-making process. Monte Carlo technique (e.g., Essaid and Hess, 1993) provides a stochastic 

method in recognition of uncertainty inherent in both conceptual models and model parameters. 

When additional information on model parameters or field measurements becomes available, it is 

used to update the prior estimates of the statistics to posterior estimates in order to reduce the 

estimation uncertainty. The prior estimate is generally based on limited early data or expert judgment 

or combination of both. Bayes theorem is as one of the methodologies used for this purpose. A 

Bayesian framework allows for a project to iterate among data sampling, data analyses, sampling 

network design and decision making (Abbaspour et al., 1998; Back et al., 2007; Freeze et al., 1992; 

James et al., 1996a; James and Freeze, 1993; James and Gorelick, 1994; Massman and Freeze, 1987a, 

1987b; Norberg and Rosén, 2006; Wagner, 1999). One of the most important features of the Bayesian 

framework is data worth analysis which is very practical in an engineering project due to the fact that 

collection of field data is expensive and time consuming. Under linear quadratic Gaussian 

circumstance, Kalman filter can be derived within the Bayesian framework, which was first observed 

by Ho and Lee (1964). It consists of an iterative prediction-correction process. In the prediction step, 

the time update is taken where the one-step forward prediction of observation is calculated; in the 

correction step, the measurement update is taken where the correction to the estimate of current state 
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is calculated. Zhang et al. (2005) applied this algorithm to determine the least cost design of 

groundwater quality monitoring networks. McGrath and Pinder (2003) introduced the worth of 

sample data function (WSD) using Kalman filter technique to maximize the contaminant plume 

boundary uncertainty reduction based on updated field information to design the search strategy for 

plume delineation. It has also been used for the other studies, e.g. Andricevic (1990, 1993), Dokou 

and Pinder (2011), Graham and McLaughlin (1989, 1991), Herrera and Pinder (2005), and Loaiciga 

(1989).  

Following the work of Freeze et al. (1990, 1992) and Zhang et al. (2005), we explore a 

methodology to assimilate soil core permeability data and TCE soil gas concentration data and to 

assess their worth in terms of reducing the prediction uncertainty. In particular, we introduce three 

metrics to quantify our notion of prediction uncertainty. First, the ability to correctly estimate the 

actual indoor air concentration within houses 1, 3, 4 and 6 at any point in time. This metric is 

quantified by conditioning the permeability structure with the available borehole data so that the 

expected value of the indoor air concentration arising from a series of Monte Carlo simulations 

involving alterative permeability realizations (see Figure 2.7) approaches that of the actual indoor air 

concentration. This latter point presumes that even though houses 1, 3, 4 and 6 are not monitored, we 

do have information at these points by way of reserving one permeability realization as “reality”. This 

reality realization is used to provide the borehole sampling data, and also to transport TCE from the 

source zone to observe the actual indoor air concentrations. Second, the ability to use available soil 

gas concentration data to reduce the standard deviation of the indoor air concentration at unmonitored 

locations (i.e. houses 1, 3, 4 and 6) arising from the series of Monte Carlo simulations through time. 

Third, the ability to accurately forecast the probability of indoor air concentrations within houses 1, 3, 

4 and 6 exceeding a regulatory limit. This third metric is directly related to the first two metrics, 

which rely on estimating the mean and variance of the distribution of simulated indoor air 

concentration arising from the Monte Carlo simulations, except that we are now required to evaluate 

the “tail” of the distribution. As part of this data worth question, we explore various combinations of 

permeability and soil gas concentration sampling strategies and assess the significance of their impact 

on reducing prediction uncertainty. Each sampling strategy uses progressively more data, and (except 

in one case) is consistent with private property access limitations that would follow from the 

configuration of houses shown in Figure 3.1. In the second part of this two-chapter series, we will 

describe our methodology for using these three metrics for pricing the risk capital, with contributions 

from: the expected value and the variance of all housing re-purchase expenditures arising from indoor 

air concentration exceeding a regulatory limit; the risk posed by imperfect data constraining the 
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ability of the developer to accurately forecast an exceedence event; and, the cost of the data 

collection. 

Permeability data are collected in a series of boreholes located between the TCE source zone and 

the first row of houses 1, 2 and 3, along a presumed right-of-way which allows drilling without 

having to access private property. The data are collected at the beginning of the liability period   . 

Given that the aquifer representing “reality” consists of a heterogeneous permeability field 

reminiscent of the Borden aquifer, the resulting soil cores represent sparse data samples of the 

subsurface structure. In order to reduce prediction uncertainty the permeability data are used to 

condition point values and the general structure of multiple heterogeneous permeability realizations 

are generated based on a geostatistical analysis of the soil cores (Bianchi et al., 2011; Eggleston et al., 

1996; Feehley et al., 2000; Guadagnini et al., 2004; Maji et al., 2006; Neuman et al., 2008). In 

particular, the permeability beneath the foundation slab exerts a significant control on the flow of soil 

gas across the foundation slab and into the indoor air. Consequently, the multiple heterogeneous 

permeability realizations generate a distribution of expected soil gas flow rates that should tend 

towards “reality” with the inclusion of more permeability data. Soil gas concentration data are 

collected at a series of boreholes and beneath the foundation slab of houses 2 (and sometimes 5) 

which directly overlies the plume. The concentration data are collected in each monitoring time 

interval            where                  and                    at each monitoring location, 

and are generated via the numerical model CompFlow Bio (Forsyth, 1993; Unger et al., 1996) using 

the “reality” permeability realization. These data are also used to reduce prediction uncertainty via 

assimilation into a discrete static Kalman filter (Graham and McLaughlin, 1991; Herrera and Pinder, 

2005; Zhou et al., 1991; Zou and Parr, 1995). In the case of this work, the multiple heterogeneous 

permeability realizations are used to build a covariance matrix for use within the Kalman filter to 

optimize the predicted soil gas concentration beneath houses 1, 3, 4 and 6 in each monitoring time 

interval          . Each of the multiple heterogeneous permeability realizations is an equally probable 

reconstruction of “reality” given that they are all conditioned to have the same values along the 

sampled boreholes. Consequently, each realization is used to perturb the Kalman filter and generate a 

distribution of predicted soil gas concentrations. This distribution of soil gas concentrations is then 

combined with the paired soil gas flow rate to compute the resulting distribution of indoor air 

concentrations. The three metrics defining prediction uncertainty are all quantified based on mean, 

variance and shape of the tail of the distribution of indoor air concentrations. As such, the question of 

data worth for reducing prediction uncertainty relates to changes in these statistical measures with 

various combinations of permeability and soil gas concentration sampling strategies. 
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The outline of this first part in the two-chapter series is as follows. In Section 3.2, we present and 

interpret results relating to the assimilation of permeability and soil gas concentration data for the 

purposes of estimating the reduction in prediction uncertainty in relation to the first two metrics. In 

Section 3.3, we present prediction uncertainty results for the third metric.   

 

3.2 The mean and variance of the soil gas and indoor air concentrations 

The problem geometry framing the data worth analysis presented in this work largely follows from 

Yu et al. (2009) and the previous chapter and is depicted here in Figure 3.1. In order to further frame 

the discussion in this work, we begin by discussion the data collection strategy for the problem 

geometry shown in Figure 3.1. Specifically, we begin under the assumption that a public right-of-way 

separates the TCE DNAPL source zone and the row of houses 1, 2 and 3. Furthermore, the developer 

has purchased house 2 and 5 given that it directly overlies the known TCE plume and directly faces 

the TCE source zone across the right-of-way. As part of the developers due diligence in assessing 

their liability, they obtain a number of soil cores along the edge of the right-of-way for the purpose of 

measuring the subsurface permeability structure. Despite the fact that the developer owns houses 2 

and 5, it is impossible for them to drill vertically beneath the foundation without tearing them down 

(by way of preview, house 2 is not determinately impacted over the liability period and could result 

“as is” at a later date; however, house 5 is impacted above the regulatory limit). The previous chapter 

identifies that permeability variations in the subsurface lithology as well as heterogeneity within a 

single lithological unit can both impact the fate and transport of TCE from groundwater to indoor air. 

In the context of this work, we restrict our attention to permeability variations arising from 

heterogeneity within a single lithological unit. As such, we ignore the issue that depositional or 

erosional “holes” in a laterally pervasive clay layer (aquitard) may permit vertical contaminant 

transport analogous to Freeze et al. (1990).  

A key issue in this work is our assumption that although the developer has liability for indoor air 

impacts to houses 1, 3, 4 and 6, the developer does not have access to these properties which is often 

the case at real sites. To constrain the prediction uncertainty for indoor air impacts to the remaining 

houses, the developer then uses; knowledge of the subsurface permeability structure obtained from 

the soil cores in combination with TCE soil gas concentration measurements within these same 

boreholes, as well as TCE soil gas concentration measurements from beneath the foundation slab of 

house 2. In this section, we define prediction uncertainty using two metrics. First, the ability to 
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correctly estimate the actual indoor air concentration within houses 1, 3, 4 and 6 at any point in time. 

This metric is quantified by conditioning the permeability structure with the available borehole data 

so that the expected value of the indoor air concentration arising from a series of Monte Carlo 

simulations (Figure 2.7) approaches that of the actual indoor air concentration which we denote as 

“reality”. Reality will be defined shortly. Second, the ability to use available soil gas concentration 

data to reduce the standard deviation of the indoor air concentration at unmonitored locations (i.e. 

houses 1, 3, 4 and 6) arising from the series of Monte Carlo simulations through time. The 

methodology for quantifying these two metrics is described below. 

 

3.2.1 Worth of permeability data 

To evaluate the worth of permeability data to constrain the prediction uncertainty of indoor air 

concentrations arising from subsurface heterogeneity in the permeability structure of an aquifer, we 

begin by assigning the permeability realization denoted as “reality” in Figure 3.2 as a representation 

of the point-to-point permeability structure of an actual site. This permeability realization was 

generated using the FGEN software (see Robin et al. (1993)) adopting the direct Fourier transform 

method based on geostatistics of the Borden aquifer, and was not conditioned using actual field data. 

In particular, the geometric mean permeability is             , the variance of         was 

assigned a value of           , and the correlation lengths of   in the principal, transverse and 

perpendicular bedding direction are         ,         , and          , respectively 

(Sudicky, 1986; Woodbury and Sudicky, 1991; Turcke and Kueper, 1996). A Gaussian power 

spectral density function was used to distribute the geostatistical parameters over the spatial domain. 

The variance    was increased from that of the Borden aquifer to that of the more heterogeneous 

Cape Cod aquifer (see Hess et al. (1992)). In the context of this work, this change was motivated by 

our desire to pose a more difficult test (relative to the more homogeneous Borden aquifer) for a 

realistically limited permeability sampling strategy to be able to reconstruct the structure of the 

aquifer over the entire conceptual model domain and effectively constrain prediction uncertainty.  

Aquifer reconstruction followed by first sampling the “reality” aquifer in a series of patterns (i.e. 

1K, 3K, 5K, 7K and 80K) itemized on Table 3.1 as “ ” with the actual borehole locations depicted in 

Figure 3.1 and Figure 3.2. Boreholes 1 to 7 used in the 1K, 3K, 5K and 7K sampling patterns are all 

located along the right-of-way with a minimum spacing of     and a maximum spacing of      

between them. Each borehole is sampled for permeability along       vertical increments across the 
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entire thickness of the problem geometry. An obvious difficulty with this particular pattern of 

boreholes for the purpose of aquifer reconstruction is that they do not capture information over much 

of the domain and in particular near all of the houses in the back row (i.e. houses 4, 5 and 6). Once 

again, we assume access limitations preclude mobilizing a drill rig onto these properties in order to 

obtain a core. Even though the developers own the houses 2 and 5, they do not drill on these 

properties in order to make the problem a more challenging test for kriging conditioned on the 

permeability data and assimilating concentration data. An extreme and entirely unrealistic sampling 

strategy involving 80 boreholes (i.e. 80K) is used as a benchmark to illustrate the value of detailed 

and widespread permeability information across the entire conceptual model domain. Furthermore, 

80K provides some perspective on the balance between two contrasting strategies, namely: being data 

rich at the expense of significant data collection expenditures with the intent of minimizing prediction 

uncertainty; and, alternatively conducting ones professional due diligence in characterizing the site 

under modest data collection expenditure while accommodating a reasonable (sustainable) amount of 

prediction uncertainty. The terms involving reasonable and sustainable sampling design will be 

further investigated in Chapter 4. 

Ordinary kriging is discussed in Freeze et al. (1990) as a means of conditioning a heterogeneous 

permeability relation using sample data within a data worth framework. Essentially, ordinary kriging 

in an interpolation/extrapolation methodology is used to estimate the value of a random value (in this 

study, permeability) at one or more non-sampled locations from sparse sample data, taking into 

consideration the Gaussian statistical structure of the aquifer (Olea, 1974; Royle et al., 1981; Lam, 

1983; Heine, 1986; Davis, 1986; Deutsch and Journel, 1992; Journel and Huijbregts, 1992). We use 

ordinary kriging as implemented by S-GEMS (Stanford Geostatistical Earth Modeling Software) to 

generate multiple statistically-equivalent heterogeneous permeability realizations to that of “reality” 

as shown in Figure 3.2, where each realization is conditioned using the available borehole data from 

the 1K, 3K, 5K and 7K sampling patterns. Each realization is generated after S-GEMS which is first 

used to estimate a variogram based on the available sparse data with the prior knowledge that the 

variogram is Gaussian. Turcke and Kueper (1996) used a statistical goodness-of-fit test to fit 

Gaussian, exponential and spherical variograms to Borden data (see also: Barnes, 1991; van 

Groenigen, 2000; Rogerson et al., 2004). This approach would alleviate our need of the prior 

knowledge which we acknowledge will unduly influence the correlation between our “reality” aquifer 

and each synthetic realization. While a single vertical borehole (1K) may be sufficient to characterize 

the subsurface lithology (absent the issue of finding a hole a laterally continuous clay layer analogous 

to Scenarios 4 and 5 of Chapter 2), it is probably entirely insufficient for the purposes of kriging in 
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this context particular because it is impossible to estimate    and   . Here we assume that the same 

correlation length scale applies to different coordinate directions, namely isotropic correlation length. 

As such, 1  should be viewed as the “least” effort that one should use to investigate a site albeit the 

most likely one from a typical field investigation perspective, although it is not appropriate for the 

purpose of aquifer reconstruction as we denote it here. In contrast, we postulate that 7K may be the 

“greatest” effort that one could reasonably use to investigate the site, although it is lack of aquifer 

information in the transverse bedding direction and also assumed to have isotropic correlation length. 

However, we anticipate that the worth of the permeability data in terms of aquifer reconstruction will 

substantially diminish as we move from the front row of the houses (1, 2, and 3) to the back row (4, 5 

and 6) given that these houses are up to      away from the row of boreholes along the right-of-way, 

and hence multiple values of   . The statistics of kriging variance   
      which is also the variance 

of the kriged estimates error and variance of permeability sample data   
 
 
 for the 1K, 3K, 5K, 7K 

and 80K sample patterns are provided on Table 3.2. The kriging variance does not give an accurate 

reflection of the local variation in that it is a function of the spatial distribution and configuration of 

sample data but not the values of the sample data. Kriging variance will decrease as sample data are 

closer to the location of estimation. As we can see, the mean value of the kriging variance decreases 

when additional samples are incorporated into the kriging system (which can also be seen in Gao et 

al. (1996)). The 80K shows the smallest mean value of the kriging variance even if the variability of 

the sample data is relatively high. Using the criterion of minimizing the average kriging variance, 

more boreholes of permeability data exhibit a more accurate interpretation of the aquifer structure. 

To test whether our sampling and kriging strategy have any merit in using the permeability data to 

reduce prediction uncertainty of the indoor air concentrations, we generate                  

alterative permeability realizations for each of the testing scenarios. Monte Carlo method is the most 

widely used technique for capturing the uncertainty in predictions. Whether 50 Monte Carlo 

simulations would be sufficient and reliable for uncertainty analysis here is a question. A Monte 

Carlo realization size can be evaluated by running as many Monte Carlo runs as necessary to obtain a 

reasonable statistic and a reasonable statistic is obtained when the addition of more Monte Carlo runs 

does not change the first and second moment of the simulated indoor air concentration of TCE 

distributions. The results of the mean and the standard deviation of the indoor air concentrations for 

FGEN, 1K and 7K scenarios with the increasing number of Monte Carlo realizations are shown in 

Figure 3.3. The mean value tends to become stable after 10 realizations for FGEN and 7K scenarios 

and after approximately 20 - 30 realizations for 1K scenario depending on the location of the house. 

The standard deviation has the similar trend for each house under different scenarios. The FGEN and 
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7K scenarios obtain constant values within 10 Monte Carlo realizations; while 1K tends to get more 

stable with additional 10 realizations. We can conclude here that 50 Monte Carlo simulations would 

be sufficient and large enough to provide a statistically representative concentration distribution for 

each scenario. 

At this point, we restrict our attention to 1K, 7K and 80K scenarios given that they provide a 

diverse spatial distribution of sparse data to test the kriging algorithm. We then use CompFlow Bio 

(see scenario 1 of Chapter 2) to simulate the fate and transport of TCE from groundwater to the 

indoor air of each of the six houses within the conceptual model domain in a Monte Carlo framework. 

Figure 3.4 shows the resulting indoor air concentrations (initially denoted as         in Yu et al. 

(2009) and Chapter 2, and here revised to             and furthermore  ̂          ) for each of the 

permeability realizations, as well as that arising from reality (here denoted as           
). Note that at 

this point, we have not used any TCE soil gas concentration data to reduce prediction uncertainty. 

Clearly, 1K does a poor job of capturing the temporal shape of the indoor air concentrations in all of 

the six houses relative to reality. In contrast, both 7K and 80K capture the temporal shape albeit with 

7K exhibiting greater uncertainty than 80K. To this end, we feel satisfied that at least (in a subjective 

sense) the 7K scenario provides some value in using available permeability data to constrain 

prediction uncertainty. What remains is a more quantitative description of prediction uncertainty, 

especially with the inclusion of the TCE soil gas data. Note that Figure 2.7 displays about as much 

variability as the 80K scenario in Figure 3.4. This is the consequence of that fact FGEN was used in 

the previous chapter to generate all 50 unconditioned permeability realizations, with each realization 

generated using identical statistics to our reality. As such, perfect knowledge of the aquifer 

geostatistics is implied by Figure 2.7 and serves to constrain prediction uncertainty substantially. The 

reader should bear in mind that obtaining this perfect knowledge of the aquifer geostatistics implicitly 

requires obtaining many cores (see Sudicky (1986)), well beyond the 7K scenario. 

 

3.2.2 Worth of soil gas concentration 

In the previous section, we described how permeability data used to condition the heterogeneous 

permeability structure of an aquifer could influence the fate and transport of TCE from groundwater 

to the indoor air. Part of a professional engineers or geoscientists due diligence in managing such a 

site also involves collecting TCE soil gas and indoor air concentrations in a routine pattern over space 

and time at accessible and pertinent locations to assess the potential for indoor air concentrations to 
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exceed a regulatory limit. Therefore, these TCE soil gas and indoor air samples should serve to 

further constrain prediction uncertainty at locations where the developer has liability exposure for but 

limited access to monitor actual TCE concentrations. In the case of this study, the developer has 

access to all boreholes along the right-of-way as well as within and beneath the foundation slab of 

house 2. However, the developer has liability for, but no access to, houses 1, 3, 4 and 6.  

The TCE soil gas sampling strategy involves collecting near-surface (at a depth of      ) samples 

within boreholes 2, 3, 4, 5 and 6, as well as beneath the foundation slab of houses 2 and 5. Various 

strategies are used to sample these locations and are itemized on Table 3.1 as 2C, 4C and 7C. For 

each sample location within a given sampling strategy, samples are regularly collected at each  th 

monitoring time interval           over the duration of the liability period. For all sampling strategies, 

borehole 4 as well as beneath the foundation slab of house 2 are always monitored given that they 

directly overlie the plume, are also accessible, and would seemingly provide peak soil gas 

concentrations. The latter point is significant in that Chapter 2 established the idea that it is the mass 

flux of TCE crossing the foundation slab which largely controls the indoor air concentration, with the 

mass flux of TCE being the product of the TCE soil gas concentration beneath the foundation slab 

times the volumetric flow rate of soil gas into the house through the foundation slab (due to HVAC 

activities which ultimately depressurize the house relative to the vadose zone). Consequently, the 

combined worth of TCE soil gas data to estimate peak concentrations with permeability data to 

estimate the volumetric flow of soil gas across the foundation slab are essential to constrain prediction 

uncertainty of indoor air concentrations within houses 1, 3, 4 and 6. Sampling strategy 2C denotes the 

minimal effort of monitoring borehole 1 and house 2, and is combined with any of 1K, 3K, 5K, 7K 

and even 80K to evaluate the combined worth of both soil gas and permeability data. Sampling 

strategy 4C provides an incremental improvement over 2C by further sampling boreholes 3 and 5 

which straddle the surface projection of the groundwater plume across the right-of-way (see Figure 

2.4a). This strategy is motivated by McGrath and Pinder (2003) who concluded that sampling a plume 

along its lateral edges where the concentration gradient is large serves to provide a great deal of 

information regarding plume location uncertainty. This should in turn help us further reduce 

prediction uncertainty for houses 1, 3, 4 and 6 which are all laterally offset from the plume. Finally, 

sampling strategy 7C further samples boreholes 2 and 6 as well as beneath the foundation slab of 

house 5. This strategy is motivated by the previous study who observed that indoor air impacts to 

houses decrease precipitously as a function of their lateral distance from the groundwater plume, 

generating narrow exclusion zones. Boreholes 2 and 6 are included to further resolve the lateral 

decline in soil gas concentrations in the transverse direction to the groundwater plume along the right-
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of-way. House 5 is included to provide TCE soil gas concentration information pertinent to the back 

row of houses. As with sampling strategy 2C, both 4C and 7C are combined with any of  1K, 3K, 5K, 

7K and 80K to evaluate the combined worth of both soil gas and permeability data. 

 

3.2.2.1 Application of the discrete static Kalman filter 

Motivated by the work of Zhang et al. (2005), we adopt the discrete static Kalman filter (KF) as a tool 

to assimilate the spatial and temporal set of TCE soil gas data, arising from each sampling scenario 

identified on Table 3.1, to reduce prediction uncertainty of indoor air concentrations within houses 1, 

3, 4 and 6. In general, the KF is used to estimate the state of a linear dynamic system based as 

simulated by a stochastic model in association with noisy data and appropriate initial and boundary 

conditions. The KF describes how the system would respond after processing the noisy data in order 

to achieve an optimal estimation of its current state. In essence, it is a recursive solution to least-

squares problems. As data become available, the KF can then deduce a minimum error estimate to 

improve future model prediction. A complete presentation of the discrete static KF can be found in 

Gelb (1974). Within this framework, we use the numerical model CompFlow Bio (see Equations 

(2.1−2.2) and Equations (1−10) of Yu et al. (2009)) in combination with the heterogeneous 

permeability structure of the aquifer to represent the stochastic model. In this work, both groundwater 

and soil gas flow are steady-state processes. However, dissolution of TCE source zone with resulting 

transport of TCE from the groundwater, across the capillary fringe and into the vadose zone, and 

finally into the indoor air, is a transient process. Dissolution of the TCE source zone is the only 

process that imparts non-linearity to the transport of TCE and is isolated far from houses 1, 3, 4 and 6 

where we desire to constrain prediction uncertainty. We remind the reader that permeability data 

serve to condition the heterogeneous permeability structure of the aquifer as described in Section 

3.2.1. TCE soil gas concentrations constitute the noisy data, where the noise is imparted by; point-to-

point variability in heterogeneous permeability structure of the aquifer as it impacts contaminant 

transport, potential field collection and laboratory analysis errors of the soil gas data.  

An essential element in the application of the discrete static KF is that the noisy observed data 

conform to a Gaussian distribution. To confirm that this requirement is met, in Figure 3.5 we present 

the natural logarithm of simulated TCE soil gas concentrations (initially denoted as        in Yu et 

al. (2009) and used in Chapter 2, and here revised to            and furthermore   ̂         ) for 

1K and 7K, and before assimilation of data arising from the 2C, 4C or 7C sampling scenarios. The 
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notion of “before assimilation” for these concentrations is denoted as    
 . To test whether    

  are 

Gaussian, we begin with the hypothesis that for all Monte Carlo realizations, the TCE soil gas 

concentration         
  at the  th monitoring time interval            where                 , the  th 

house, and with                        , are log-normally distributed. To test our hypothesis, we 

use a one-sample Kolmogorov-Smirnov test (Massey, 1951; Miller, 1956) with the null hypothesis 

being that the vector of  ̂       

 
  follows a normal distribution. The alternative hypothesis is that the 

vector of  ̂       

 
 does not follow a normal distribution at the 5% significance level. The temporal 

transition of  ̂       

 
to being normally distributed as the increment of the monitoring interval           

increases is shown in Figure 3.5 when the mean concentration       
  calculated as:  

 

      
   

 

             
∑  ̂       

 

             

   

 (3.1) 

 

changes from a dashed to a solid line. The dashed line indicates the null hypothesis is not accepted, 

while the solid line indicates that it is accepted. In general,  ̂     

 
are not normally distributed at early 

time because TCE soil gas concentrations beneath the houses for numerous realizations are lower 

than the accuracy of what can be reliably resolved with the CompFlow Bio model. Despite this 

predicament, we are compelled to use  ̂  
 

within the KF over the entire liability period for reasons of 

continuity, as well as necessity as will be made clear shortly. We note that 3K, 5K and 80K conform 

to the same behaviour. Finally, TCE soil gas concentrations  ̂  
 

 provided in Figure 3.5 are post-

processed via Equations (12-14) of Yu et al. (2009) to yield the indoor air concentrations     depicted 

here in Figure 3.4. 

Following the methodology of Zhang et al. (2005), we now adopt the static discrete KF to the 

problem at hand. The involvement of the CompFlow Bio model as the stochastic model used to 

transport soil gas concentrations within a given heterogeneous permeability realization can be written 

succinctly as: 
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     (3.2) 

 

where       
 ,     

  are the vectors of discrete estimates of the state variable representing TCE soil 

gas concentrations at the monitoring time interval     and   respectively (before application of the 

KF), the matrix   is the state transition matrix (i.e. the CompFlow Bio model) from the  th to    

  th monitoring interval, and    is the system noise (model error) at the  th interval, which has a zero 

mean, white sequence of covariance   . Herrera (1998) showed that if the state vector is spatially 

correlated, then the resulting model error at some nodes at some times may be strongly correlated to 

the model error at some other nodes at some other time. Therefore, we also assume that the model 

error    is spatially correlated and its correlation    is imbedded in the physical model. Also, the soil 

gas concentrations are obtained via the CompFlow Bio model with heterogeneous permeability fields 

based on a given spatial correlation and statistics, which would be different for different number of 

permeability data scenarios. From Equation (3.2), the first step in the application of discrete static KF 

is to propagate the state variables and error covariance of the system forward in time. As discussed in 

Zhang et al. (2005), the vector of discrete estimates of the state variable here includes both spatial and 

temporal TCE soil gas concentrations, with the static discrete KF not differentiating between the 

space and time dimensions. Therefore, we further simplify     
  in Equation (3.2) to simply    

 .  

We now show that the state matrix  ̂  
 

 is built by the concentration vectors  ̂     

 
 at location   

                  , the  th monitoring time interval                 , and for a given 

permeability realization  . The dimension of the state matrix  ̂  
 

 is      and              

       . The variable            is the number of target locations to be investigated including 

measurement and non-measurement locations (6 houses and 5 boreholes, see Table 3.1) 

where              . The variable        is the maximum number of monitoring time intervals at 

every 100 days from TCE injection to the end of liability period 5 years with          . It has to be 

noted that  ̂  
 

 is independently reconstructed for each permeability realization  . The vector of 

discrete estimates of the state variable is given as: 

 

 ̂  
 

   ̂     
     ̂          

   ̂     
     ̂      

   ̂              

     ̂                   

     
(3.3) 
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Each realization of  ̂  
 

  for a given   is an initial optimal estimate of the state vector for either the 

1K, 3K, 5K, 7K or 80K scenarios.   

The prior estimate of the error covariance    before any soil gas samples are taken using one of 

2C, 4C or 7C is assembled using the covariance matrix elements            
          

   calculated by:  

 

   ( ̂     
   ̂       

 )   

 

               
∑ ( ̂       

        
 ) ( ̂         

          
 )

             

   

 

(3.4) 

 

where   is the lag between two  ̂     

 
 separated by both location   and monitoring time   in the vector 

 ̂  
 

 , and is of dimension      . Given that  ̂  
 

 varies for each of the1K, 3K, 5K, 7K and 80K 

scenarios, so does the covariance matrix. We reiterate our earlier hypothesis that the progressive 

addition of permeability data to condition the heterogeneous structure of the aquifer should serve to 

increase the correlation between two values of   ̂     
 separated by  . Furthermore, the combined 

worth of permeability and concentration data should serve to reduce prediction uncertainty of the 

TCE soil gas concentrations beneath the foundation slab, and the flow of soil gas across the 

foundation slab into the indoor air of houses 1, 3, 4 and 6. The net result should be a reduction in the 

prediction uncertainty of indoor air concentrations within these same houses. 

The rationale for each TCE soil gas sampling strategy (i.e. 2C, 4C and 7C) was previously 

described in Section 3.2.2. These samples all arise from use of the “reality” aquifer shown in Figure 

3.2, with the resulting TCE soil gas concentrations beneath all six houses provided in Figure 3.5 and 

denoted as  ̂          . These measurements are uniquely defined and known a priori everywhere 

within the computational domain in space and time, and are assumed to be linearly related to the 

system and are employed for the filtering process. A vector of measurement data   that is corrupted 

by non-negligible measurement errors   is extracted from  ̂          . These measurement errors are 

assumed to be uncorrelated in time and independent of the system estimation. Marrin and Thompson 
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(1987) suggested that the average error for different sampled soil gas data in shallow aquifer is      

which reflects both human/instrument performance and the effect of horizontal heterogeneities. We 

assume that the acceptable relative error level for measurements varies within      of the measured 

values and this error does not vary between different measurements. The measurement equation 

describing how the estimated  ̂  
 

 are related to the actual system state   is: 

 

     ̂  
    (3.5) 

 

where 

   the vector of    noise-corrupted measurements, with dimension    , where in our 

case                             with                              , such that 

                  includes only that subset of locations where concentration 

measurements are taken (i.e. where a ‘C’ is listed on Table 3.1); 

   the measurement matrix, dimension    ; 

   the vector of random measurement noise,           , assumed to be uncorrelated with 

previous measurement errors, dimension    ; 

   the measurement noise covariance matrix, independent of the state variable, with 

dimension    . 

 

Elements of the measurement matrix   are assigned a value of 1 if a sample is taken at location   at 

the  th time interval; 0 otherwise. The diagonal elements of   are assigned a value of         . 

As measurement data   become available, the concentration and its associated error covariance are 

updated by assimilating the data and its uncertainty. First, we compute the Kalman gain matrix   of 

dimension     which contains the model and measurements bias as: 

 

                       . (3.6) 
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Next, the posterior estimate of  ̂  
 

 can be updated using a linear function of the prior estimate and 

the measurement   as: 

 

 ̂  
 
   ̂  

 
         ̂  

 
   . (3.7) 

 

Finally, the corresponding error covariance    is updated as: 

 

              . (3.8) 

 

The optimal estimation for  ̂  
   is obtained when the Kalman gain   is maximized and the sum of 

the diagonal of the covariance matrix    is reduced.  

 

3.2.2.2 Interpretation of the discrete static Kalman filter 

A critical assumption in the presentation of the discrete static KF in Section 3.2.2.1 was that an 

optimal estimate of the state vector of soil gas concentrations could be obtained without 

simultaneously estimating permeability within the state vector. This strategy is possible via the 

ensemble KF (Evensen, 2003) given that the resulting dynamic system would become non-linear. The 

disadvantage to the ensemble KF approach for this application is that a significantly greater number 

of forward simulations (see Equation (3.2)) would be required. This is not possible given our current 

computational resources.  

We remind the reader that although there is only one set of permeability and soil gas concentration 

data that we can actually observe in reality (as itemized on Table 3.1), we never know with certainty 

what the permeability and soil gas concentrations are in the remaining of the domain. In other words, 

during the application of the  alman filter, we must turn a blind eye towards “reality” as depicted in 

Figure 3.2 (except at the boreholes sampled by one of 1K, 3K, 5K, 7K and 80K) as well as              

in Figure 3.5 for houses 1, 3, 4, 5 (for 2C and 4C) and 6. Bearing this in mind, for a given 1K, 3K, 
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5K, 7K or 80K, all permeability realizations   have identical values at those points where we actually 

take measurements and hence are equally probable versions of reality. Therefore, we reiterate that 

each solution of    
  obtained via Equation (3.2) for every permeability realizations   is an initial 

(prior) optimal estimate of the state vector for either the 1K, 3K, 5K, 7K or 80K scenarios. 

Application of the Kalman gain matrix via Equation (3.7) then serves to correct the prior estimate of 

 ̂  
 

 at those locations where to not have data (i.e. houses 1, 3, 4 and 6) to  ̂  
 

. This correction 

should force  ̂  
 

 to tend towards reality as progressively more data are assimilated.  

Following the above interpretation of the Kalman filter, we are then left with a distribution of  ̂  
 

 

arising from each permeability realizations   for a given 1K, 3K, 5K, 7K or 80K. This distribution 

must then be interpreted with regards to our notion of prediction uncertainty. Once again, we define 

prediction uncertainty using two metrics: first, the ability to correctly estimate the actual indoor air 

concentration within houses 1, 3, 4 and 6 at any point in time; second, the ability to use available soil 

gas concentration data to reduce the standard deviation of the estimated indoor air concentration 

within houses 1, 3, 4 and 6 at any point in time. We investigate these metrics by introducing the 

following moments of the posterior soil gas and indoor air concentration distributions:  
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(3.9) 

 

While the indoor air concentrations are no directly estimated as part of the KF, values of the posterior 

 ̂     

 
 are post-processed as outlined by Yu et al. (2009) and the previous chapter to yield  ̂     

 
. 
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3.2.3 Results 

Figure 3.6 and Figure 3.7 depict the mean and standard deviation (see Equation (3.9)) of the posterior 

soil gas and indoor air concentrations within all six houses over the liability period. These results are 

shown for four separate permeability and soil gas sampling combinations which would appear to have 

common use in practice, namely; 1K2C, 1K4C, 7K4C and 7K7C. They span the range of the least and 

greatest reasonable effort that one would consider when characterizing a site. The transition from 

1K2C to 1K4C is meant to evaluate the worth of moderately increasing the amount of soil gas 

concentration data given limited permeability data. The transition from 1K4C to 7K4C is meant to 

evaluate the worth of significantly increasing the amount of permeability data given moderate amount 

of soil gas concentration data. Finally, the transition from 7K4C to 7K7C is meant to demonstrate the 

value of a detailed site investigation. For each scenario, the solid line is the mean value while the 

error bars provide the standard deviation. The reality soil gas concentration  ̂             
 is also 

provided for reference. 

To demonstrate the contribution of the KF, consider the soil gas concentration beneath the 

foundation slab of house 2 (see Figure 3.6b) which is monitored for each of 1K2C, 1K4C, 7K4C and 

7K7C. Despite the fact the prior  ̂     

 
 (see Figure 3.5) shows a great deal of variability for each 

permeability realization  , with this variability for 1K being unreasonably large relative to 7K and 

reality, the KF is able to reduce prediction uncertainty drastically. However, the indoor air 

concentration within house 2 (see Figure 3.7b) shows unreasonably large prediction uncertainty for 

both 1K2C and 1K4C, particularly at early time. In contrast, 7K4C and 7K7C show near identical 

prediction uncertainty demonstrating the value of characterizing the subsurface heterogeneous 

permeability structure in order to correctly estimate the flow of soil gas into the house across the 

foundation slab and hence the mass flux of TCE into the indoor air. This same pattern is repeated for 

house 5 (see Figure 3.6e), except that the soil gas is only sampled for 7K7C. As a consequence, soil 

gas concentration prediction uncertainty for 7K4C increases slightly relative to 7K7C, while it visibly 

deteriorates for both 1K2C and 1K4C. The resulting pattern is further compounded for the indoor air 

concentrations shown in Figure 3.7e.  

Of particular interest is the prediction uncertainty within houses 1, 3, 4 and 6 for which the 

developer does not possess but has liability. Soil gas concentrations within each of these four houses 

show a great deal of prediction uncertainty (see Figures 3.6a, 3.6c, 3.6d and 3.6f), to the degree that it 
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seems impossible to visibly note any trend that would differentiate between any of 1K2C, 1K4C, 

7K4C and 7K7C. In contrast, a trend becomes apparent for prediction uncertainty of the indoor air 

concentrations (see Figures 3.7a, 3.7c, 3.7d and 3.7f). For 1K2C and 1K4C, the KF significantly 

underestimates       
  relative to reality with very large values of       

 . This problem appears far 

worst for houses 1 and 4 which are both on one side of the groundwater plume relative to houses 3 

and 6. While 7K7C appears to do a slightly better job at reducing prediction uncertainty than 7K4C, 

both 7K7C and 7K4C are vast improvements over 1K2C and 1K4C. The trend where reduction in 

prediction uncertainty is favored for houses 3 and 6 over houses 1 and 4 still appears to be present, 

but is relatively subdued. 

To quantify the prediction uncertainty, we initially focus only on the first metric, namely; the 

ability to correctly estimate the actual indoor air concentration within houses 1, 3, 4 and 6 at any point 

in time. As such, we use the root-mean-square-error (      
) defined as:  

 

      
 √

∑ |      
    ̂             

|
       

   

      
 

(3.10) 

 

where   is one of houses 1, 3, 4, 5 and 6, and for all sampling scenarios listed on Table 3.1. Results 

for all possible permeability and concentration sampling combinations are shown in Figure 3.9a. With 

7C, a clear trend develops for the progression of 1K, 3K, 5K, 7K and 80K where the       
 

decreases, and reaches a minimum at 80K, for all houses. This same trend holds as the concentration 

sampling strategy is decreased to 4C. This trend is in support of the first metric. As the concentration 

sampling strategy is decreased to 2C, this trend becomes erratic. The KF does not appear to be able 

minimize the       
 based on the combined worth of the permeability and concentration data when 

only two concentration sampling points are used.  
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3.2.3.1 Assessing the significance in improved predictions of indoor air concentrations at 

unmonitored houses 

The monetary commitment required to collect increasing amounts of data could, in part, be motivated 

by the need to demonstrate a statistically significant improvement in the reduction of prediction 

uncertainty at the locations where the developer has liability but no access (i.e. houses 1, 3, 4 and 6). 

In this section once again we focus on the first metric measuring prediction uncertainty, namely; the 

ability to correctly estimate the actual indoor air concentration within houses 1, 3, 4 and 6 at any point 

in time. Here we apply a statistical test to infer whether there is a reduction in the absolute difference 

between       
  and  ̂             

 as well as between       
  and  ̂             

 for the pairs of 

incrementally increasing sampling data strategies represented by; 1K2C to 1K4C, 1K4C to 7K4C, and 

finally 7K4C to 7K7C. Within the context of the statistical inference test, each pair of sampling 

strategies represents a population of  ̂     

 
 and  ̂     

 
  at each houses   = 1, 3, 4 and 6, within time 

interval          . These populations are generated by the   permeability realizations. 

The test statistic used here is based on the standard normal distribution, which requires the use of 

the natural logarithm of the soil gas concentration and indoor air concentrations. For brevity, the 

presentation which follows is for indoor air concentrations but is equally applicable to soil gas 

concentrations. Let         
  and         

  represent the means of two populations “1” and “2”, 

|        
    ̂             

| and |        
    ̂             

| are the absolute errors between the mean and 

the actual concentrations at location   and the  th time interval,         

  
 and        

  
 are their 

variances, and each population is of size         
 and         

 , respectively. Let    be the hypothetical 

difference in the absolute error, while | ̂       

     ̂             
| and | ̂       

     ̂             
| are the 

absolute errors obtained from two samples drawn randomly from each populations. The statement for 

the hypothesis    test is as follows: 

 

Null hypothesis:       |        
    ̂             

|  |        
    ̂             

|     (3.11) 
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Test statistic:      
|  ̂      

       ̂            
|   |  ̂      

      ̂             
|     

√
        

  

        
 
    

        
  

         

 
(3.12) 

Alternative hypotheses: Rejection criterion:  

    |        
    ̂             

|

 |        
    ̂             

|     

                        

(3.13) 

    |        
    ̂             

|

 |        
    ̂             

|     

       

    |        
    ̂             

|

 |        
    ̂             

|     

        

 

and the parameter   denotes the level of statistical significance. 

The results of this statistical test are reported on Table 3.3 for the pairs of incrementally increasing 

sampling data strategies represented by; 1K2C to 1K4C, 1K4C to 7K4C, and finally 7K4C to 7K7C. 

A value of “T” denotes acceptance of hypothesis   , “F” denotes acceptance of hypothesis   , and 

“0” denotes acceptance of hypothesis   , all at a level of significance of        or 5%. In other 

words, “T” denotes that the first prediction uncertainty metric is achieved via the worth of adding 

more data, “F” denotes the data have the opposite impact (which would not be anticipated), and “0” 

denotes that no statement of significance can be made. A dash “-“denotes that the test could not be 

conducted because one or both of the populations do not conform to a normal distribution.   

For the pair of sampling strategies 1K2C to 1K4C, Table 3.3 indicates that there appears to be a 

consistent reduction in prediction uncertainty in the soil gas concentration beneath houses 3 and 4 

only. However, there is no consistent reduction in prediction uncertainty for the indoor air 

concentrations for any of the houses. These results follow from the       
 analysis, and imply only 

one permeability core is insufficient data for the KF to assimilate the available concentration data in a 

useful manner. For sampling strategies 1K4C to 7K4C, houses 3, 5 and 6 (and possibly 1) all show a 
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significant reduction in the prediction uncertainty for soil gas concentrations. More important is that 

all houses show a significant improvement for the indoor air concentrations. These results imply that 

there is a great deal of value in collection permeability data as part of a detailed site characterization 

(i.e. 7K) when attempting to use the KF to assimilate even a modest amount of soil gas concentration 

data (i.e. 4C) to reduce the prediction uncertainty of indoor air concentrations. Finally, for sampling 

strategies 7K4C to 7K7C, there is a significant reduction in prediction uncertainty for soil gas 

concentrations beneath houses 1, 4 and 5. However, only house 5 shows a reduction in the prediction 

uncertainty of the indoor air concentrations. This occurs because 7C is the only strategy that samples 

the soil gas beneath house 5. These results imply that once a detailed site investigation has been 

conducted (i.e. 7K), there is a point of diminishing returns where the further addition of soil gas 

concentration data (i.e. 4C to 7C) does little via the KF to significantly reduce the prediction 

uncertainty of indoor air concentrations. In summary, there is a clear balance between the types and 

quantities of data that should be obtained as part of a site characterization effort in order to maximize 

the combined data worth. In the case of the problem at hand, 7K4C appears to provide the optimal 

balance. 

 

3.2.3.2 Assessing the significance in uncertainty reduction of predicted indoor air 

concentrations at unmonitored houses 

Following from Section 3.2.3.1, we now focus on the second metric measuring prediction uncertainty, 

namely; the ability to use available soil gas concentration data to reduce the standard deviation of the 

estimated indoor air concentration within houses 1, 3, 4 and 6 at any point in time. We apply a 

statistical test to infer whether there is a reduction in       
  and       

  for the pairs of incrementally 

increasing sampling data strategies represented by; 1K2C to 1K4C, 1K4C to 7K4C, and finally 7K4C 

to 7K7C. As before, each pair of sampling strategies represents a population of  ̂     

 
 and  ̂     

 
  at 

each house   = 1, 3, 4 and 6, within time interval          . These populations are generated by the   

permeability realizations. 

We apply a statistical test based on the inference of variances of two normal populations “1” and 

“2”, with variances         

  
 and         

  
. For brevity, the presentation which follows is for indoor air 

concentrations but is equally applicable to soil gas concentrations. The development of this test 

hypothesis requires the introduction of the  -distribution, which is defined as follows:  
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 (3.14) 

 

where  and   are independent chi-square random variables with   and   degrees of freedom, 

respectively. It has the probability density function: 
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where   is the gamma function. The statement for the hypothesis test is as follows: 

 

Null hypothesis:               

  
         

  
 (3.16) 

Test statistic:      
        

  

        
   

(3.17) 

Alternative hypotheses: Rejection criterion:  
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the parameter   denotes the level of statistical significance and        is the quantile function of the 

 -distribution. 

The results of this statistical test are reported on Table 3.4 for the pairs of incrementally increasing 

sampling data strategies represented by; 1K2C to 1K4C, 1K4C to 7K4C, and finally 7K4C to 7K7C. 

A value of “T” denotes acceptance of hypothesis   , “F” denotes acceptance of hypothesis   , and 

“0” denotes acceptance of hypothesis   , all at a level of significance of        or 5%. In other 

words, “T” denotes that the second prediction uncertainty metric is achieved via the worth of adding 

more data, “F” denotes the data have the opposite impact (which would not be anticipated), and “0” 

denotes that no statement of significance can be made. A dash “-“denotes that the test could not be 

conducted because one or both of the populations does not conform to a normal distribution.   

Comparison of Table 3.4 to Table 3.3 indicates that the reduction in prediction uncertainty as 

represented by the second metric follows the same pattern as that of the first, albeit with more “noise” 

(i.e. tests of “0” or “F”). The two patterns typically become aligned at late time near the end of the 

liability period. We surmise that fifty Monte Carlo simulations based on alternative permeability 

realizations may not be a sufficient number to reliably conduct the statistical test represented by 

Equations (3.14) - (3.18) and test the second metric. In summary, we reiterate that there is a clear 

balance between the types and quantities of data that should be obtained as part of a site 

characterization effort in order to maximize the combined data worth. Once again, 7K4C appears to 

provide the optimal balance. 

 

3.3 Probability of indoor air concentrations exceeding a regulatory limit 

As discussed previously, the key issue in this work is our assumption that although the developer has 

liability for indoor air impacts to houses 1, 3, 4 and 6, the developer does not have access to these 

properties which is often the case at the real sites. Liability would occur should the indoor air 

concentration in one of these houses exceed the regulatory limit, at which point (upon receiving 

notification) the developer would need to purchase the house. As before, to constrain the prediction 

uncertainty for indoor impacts on these houses, the developer then uses; knowledge of the subsurface 

permeability structure obtained from the soil cores in combination with TCE soil gas concentration 

measurements within these same boreholes, as well as TCE soil gas concentration measurements 

from beneath the foundation slab of house 2. Therefore, we define the third metric associated with 

prediction uncertainty, namely; the ability to accurately forecast the probability of indoor air 
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concentrations within houses 1, 3, 4 and 6 exceeding a regulatory limit. This third metric is directly 

related to the first two which relies on the first and second moments of  ̂     

 
 and  ̂     

 
  (see 

Equation (3.9) and Sections 3.2.3.1 and 3.2.3.2) except that we are now required to evaluate the “tail” 

of the distribution.  

The definition of probability of failure (also called the probability of exceedence) follows from 

Chapter 2 who uses the criterion to delineate an exclusion zone. Failure occurs when the indoor air 

concentration of TCE at a single house exceeds the NYSDOH (2005) regulatory limit of 5      . 

The probability of failure       for the  th location (i.e. one of houses 1, 3, 4, 5 and 6) is calculated as 

the sum of the number of Monte Carlo realizations for which the indoor air concentration of TCE  

      
   exceeds              , defined as        

      
 , divided by the total number of Monte 

Carlo realizations              : 

 

     
       

      

             
  . (3.19) 

 

In Figure 3.8, we provide      for       
  for sampling data strategies represented by; 1K2C, 1K4C, 

7K4C and 7K7C. For reference, the actual indoor air concentration               
 is provided in Figure 

3.4 for reference as the solid red line. Because house 2 is monitored for all sampling scenarios, there 

is no uncertainty regarding its indoor air concentration. Houses 1, 3, 4 and 6 which are all laterally 

offset from the groundwater plume, and for which the developer has liability, exhibit indoor air 

concentrations that in reality never exceed the regulatory limit. In contrast, house 5 which the 

developer already owns exceeds the regulatory limit only after 1100 days. Figure 3.8 shows that 

1K2C yields a probability of exceedence (using Equation (3.19)) for houses 1, 3 and 6 which over-

predicts reality, and correctly estimates      for house 4. In addition 1K2C underestimates       for 

house 5. Surprisingly, the transition to 1K4C estimated the correct      for all houses except for; one 

event in house 6 at 600 days, and house 5 for the entire monitoring period. We remind the reader that 

1K4C performs poorly based on the first two performance metrics regarding prediction uncertainty 

(see Sections 3.2.3.1 and 3.2.3.2). As we transition to 7K4C,      is now correctly estimated for 

houses 1, 3 (except for one minor occurrence at 1100 days), 5 (after 1100 days) and 6. House 4 shows 

some minor values of probability of exceedence between 1100 and 1800 days. Finally, as we 
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transition to 7K7C, the values of      in house 4 are reduced as well as the values occurring before 

1100 days in house 5. We note that the soil gas beneath house 5 is monitored for 7K7C, and yet we do 

not get the exact probability of exceedence outcome as occurs in reality. This is a due to 7K 

permeability sampling strategy incorrectly estimating the permeability below house 5, leading to an 

incorrect estimate in the flux of TCE across the foundation slab and into the indoor air. 

We anticipate that through the process of collecting progressively more permeability and 

concentration data, the difference between the estimated probabilities of exceedence      and whether 

actual indoor air concentration exceeds the regulatory limit in reality            
 should tend to zero.  

We quantify this as: 

 

      
 √

∑ |                
|
       

   

      
 

(3.20) 

 

where; 

           
 {

                   
      

           
 (3.21) 

 

and       
 denotes the root mean square error of the probability of failure for the  th house. Figure 

3.9b shows results for       
 with      calculated using Equation (3.19). The results do not clearly 

show our anticipated pattern which is largely due to insufficient Monte Carlo realizations in order to 

adequately represent the “tail” of the distribution via Equation (3.19). For instance, 1K seems to 

exhibit a lower       
 for various concentration sampling combinations relative to 3K, 5K and 7K. 

However, we know from Figure 3.7 and Figure 3.9a that this is resulted from 1K erroneously 

underestimating indoor air concentrations. This in turn leads to a smaller tail on the probability 

distribution. In general, the anticipated pattern is apparent for 7C with the progression from 1K to 

80 . Despite the “noise” in       
 where lines of different K samples cross, it does appear that for 

a given sample line K there is a general downward slope (representing a decline in       
) with 
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increasing values of C. This supports the idea that the combined worth of permeability and 

concentration data contributes to reduction in prediction uncertainty as it applies to the third metric. 

In an alternative strategy to define     , we follow the previous work “fitting” a log-normal as well 

as a beta distribution to       
  in order to better capture the tail of the distribution with the limited 

number of Monte Carlo simulations. Both the log-normal and beta distributions make use of the first 

two moments of  ̂     

 
 given by       

  and       
  in Equation (3.9). The log-normal distribution is 

characterized as being left-skewed with a heavy tail, and will therefore yield conservative estimates 

for the probability of exceedence relative to Equation (3.19) for extreme (low probability) events. In 

contrast, the unimodal form of the beta distribution with a bounded domain does not exhibit a heavy 

tail, and the normalized beta distribution has a range from 0 to 1. Therefore, it will therefore yield less 

conservative estimates for the probability of exceedence relative to the log-normal distribution and 

possibly even Equation (3.19). Figure 3.10 and Figure 3.11 provide      for       
  for sampling data 

strategies 1K2C, 1K4C, 7K4C and 7K7C using the log-normal and beta distributions, respectively.  

For 1K2C, the      pattern using both the log-normal (Figure 3.10) and beta (Figure 3.11) 

distributions is identical to that established using Equation (3.19) (Figure 3.8). Surprisingly, the log-

normal distribution yields a lower      at houses 3 and 6 relative to Equation (3.19). The      at house 

5 is poorly predicted using all three methods. As we transition to 1K4C, both the log-normal and beta 

distributions now correctly estimate       for all houses except for house 5. We reiterate that 1K4C 

performs poorly based on the first two metrics regarding to the prediction uncertainty (see Sections 

3.2.3.1 and 3.2.3.2). In summary, we see little value in using either the log-normal or beta 

distributions to extrapolate the probability distribution for extreme events when       
  and       

  are 

poorly constrained by insufficient data. As we transition to 7K4C, our anticipated pattern for      

emerges. Using      as calculated by Equation (3.19) and shown in Figure 3.8 as a benchmark, for 

houses 1, 3, 4 and 6, the log-normal distribution does provide slightly greater estimates of      while 

the beta distribution provides slightly lower estimates. For house 5, all three distributions appear to 

predict      equally well. Finally, as we transition to 7K7C, the same pattern established by 7K4C is 

retained albeit with slightly lower values of      relative to 7K4C. Of particular note is that the beta 

distribution for 7K7C yields            
 exactly for houses 1, 3 and 6, and exhibits only minor 

deviations between 1600 and 1800 days for house 4. As such, the beta distribution combined with 

sufficient data yields the most accurate prediction uncertainty estimate based on the third metric for 

those houses offset from the groundwater plume. We conclude that extensive site characterization of 
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the subsurface permeability structure is an essential prerequisite for estimating the probability of 

indoor air concentrations exceeding a regulatory limit, where the exceedence occurs as an extreme 

event. 

 Figure 3.9 shows the       
with      now calculated using the log-normal (Figure 3.9c) and the 

beta (Figure 3.9d) distributions. In general, the pattern of       
 for both the log-normal and beta 

distributions follows that of Equation (3.19) and is subject to the same interpretation. However, one 

additional feature becomes evident; that is, once we transition to a 7K sampling strategy, the       
 

for the log-normal distribution appears greater than either that from Equation (3.19) or the beta 

distribution, for any given C sampling strategy. Furthermore, 7K4C and 7K7C appear to perform 

equally well at positioning the       
 for the beta distribution as being greater than that of Equation 

(3.19) but less than that of the log-normal distribution. Given the definition of the       
 given by 

Equation (3.20), we conclude that for the lateral houses offset from the groundwater plume (i.e. 

houses 1, 3, 4 and 6) the log-normal distribution provides the most conservative estimates  for 

prediction uncertainty as characterized by the probability of exceedence. In addition, the beta 

distribution and Equation (3.19) provide intermediate and least conservative estimates. 

 

3.4 Conclusions 

A methodology was developed to assimilate soil core permeability data and TCE soil gas 

concentration data and to assess their worth for the purpose of reducing the numerical model 

prediction uncertainty. We proposed three metrics to quantify the prediction uncertainty, namely, the 

ability to estimate the actual indoor air concentration within houses 1, 3, 4 and 6 at any point in time; 

the ability to use available soil gas concentration data to reduce the standard deviation of the indoor 

air concentration within these houses arising from the series of Monte Carlo simulations through 

time; the ability to accurately forecast the probability of indoor air concentrations within these four 

houses exceeding a regulatory limit. 

Due to the fact that the developer does not possess but has liability of houses 1, 3, 4 and 6, to 

evaluate the prediction uncertainty within houses 1, 3, 4 and 6 is of our particular interest. The results 

of soil gas concentrations and indoor air concentrations within each of these four houses after 

assimilating the soil core permeability and soil gas concentration data showed a great deal of 

prediction uncertainty in terms of the expected value relative to reality and the standard deviation. 
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Both 7K4C and 7K7C had a trend of improvements over 1K2C and 1K4C in reducing the prediction 

uncertainty; while 7K7C appeared to do an even better job. We used the root-mean-square-error 

(      
) and the statistical test (Equation (3.11) – (3.13)) to quantify the prediction uncertainty (the 

difference between the expected and the real values) associated with the first metric, and learnt that 

with the incremental increasing number of permeability and concentration samplings, the uncertainty 

would be reduced. Based on the second metric, another statistical test (Equation (3.14) – (3.18)) was 

conducted and the same trend was discovered: the standard deviation of the estimated indoor air 

concentration would decrease with the increasing number of data. Moreover, different measures of 

the prediction uncertainty all implied that once a detailed site investigation has been conducted (i.e. 

7K), further additional soil gas concentration data did little improvement via the KF (i.e. 4C to 7C) 

and 7K4C appeared to provide the optimal balance between the types and quantities of data. 

This third metric was presented by three different evaluations of the probability of exceedence 

(Equation (3.19) and fitting the tail of the indoor air concentration distribution to a log-normal and 

beta distribution) using       
 as a criterion in terms of the reduction of the prediction uncertainty. 

We concluded that the probabilities of 7K4C and 7K7C provided the closest trends to the reality, of 

which the Figures 3.8, 3.10 and 3.11 gave a good visual representation, and 7K4C and 7K7C 

appeared to perform equally well at positioning the       
 as well. In addition, the log-normal 

distribution provided the most conservative estimates for prediction uncertainty as characterized by 

the probability of exceedence, and the beta distribution and Equation (3.19) provided intermediate 

and least conservative estimates. 

As we have seen, the methodology we developed, which is the combination of stochastic 

simulation in a geostatistical context with conditioned permeability data and Kalman filter – a special 

case of Bayesian filtering with respect to the indoor air concentration based on updating soil gas 

samplings, is a useful tool for improving the model prediction in space and time for the selected 

sample points problem considered here. Despite the fact that only limited number of samplings in 

terms of permeability and concentration are assimilated due to the availability of samplings in 

residential dwellings and high sampling costs, the uncertainty reduction is significantly improved 

compared with no measurements conditioned. It is very important for decision maker to choose the 

number of samplings, the location and time of samplings and the category of samplings as well. In 

our case, the more data are acquired, the better estimations of indoor air concentration and probability 

of exceedence we obtained. However, with the increasing number of permeability data applied in the 

geostatistical tool, the model prediction uncertainty reduces much more than the one with the 
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increasing number of soil gas sampling data. In another word, the value of permeability data is worth 

more than the value of concentration data under this framework; there is a clear balance between the 

types and quantities of data that should be obtained in order to maximize the combined data worth 

(i.e. 7K4C). In an environmental project, the site characterization of a geological aquifer is the most 

important phase.  

In general, the use of Monte Carlo simulation and the KF requires a great number of groundwater 

flow and solute transport simulations per optimal sampling design which could be very 

computationally expensive. Therefore, the efficiency of this methodology depends on the type of 

application and the computation speed of the model. The judgement from experienced professionals 

for an initial sampling design is needed. 
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Figure 3.1: The 2D cross section views of the problem geometry: a) top view, and b) vertical cross 

section. 
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Figure 3.2: One interpolated random permeability field realization of the reality aquifer conditioning 

7 boreholes of data statistics via kriging. 
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Figure 3.3: The mean and the standard deviation of the natural logarithmic values of indoor air 

concentration of TCE for different numbers of Monte Carlo realizations.  

Note: The thin solid lines represent the indoor air concentrations of TCE from the permeability 

realizations incurred from FGEN data; the thick solid lines represent the indoor air concentrations of 

TCE from the permeability realizations incurred from 1 core data; and the dashed lines represent the 

indoor air concentrations of TCE from the permeability realizations incurred from 7 cores data.  
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Figure 3.4: The indoor air concentration of TCE in logarithmic scale with air exchange rate        

till 1800 days after TCE injection using multiple alternative permeability realizations via CompFlow 

Bio model: a) House No. 1, b) House No. 2, c) House No. 3, d) House No. 4, e) House No. 5, and f) 

House No. 6.  

Note: The light grey lines represent the indoor air concentrations of TCE from the permeability 

realizations incurred from 1 core data; the cyan lines represent the indoor air concentrations of TCE 

from the permeability realizations incurred from 7 cores data; and the dark grey lines represent the 

indoor air concentrations of TCE from the permeability realizations incurred from 80 cores data. The 

red solid line represents the concentrations in reality. The red dashed line represents the regulatory 

limit for indoor air concentration of TCE. 
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Figure 3.5: The natural logarithmic values of soil gas concentration of TCE from CompFlow Bio 

model results before assimilating data  ̂  
 

 in light grey and cyan and their mean    
   in dark grey 

and dark blue: a) House No. 1, b) House No. 2, c) House No. 3, d) House No. 4, e) House No. 5, and 

f) House No. 6.   

Note: The light grey lines represent the soil gas concentration of TCE from the permeability 

realizations incurred from 1 core data; the cyan lines represent the soil gas concentration of TCE from 

the permeability realizations incurred from 7 cores data. The red solid line represents the 

concentrations in reality  ̂          . The dashed lines represent the concentration population do not 

follow a log-normal distribution verified using the Kolmogorov-Smirnov test; while the solid lines 

represent the acceptance of the log-normally distributed concentrations.  
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Figure 3.6: The mean    
  and the standard deviation    

  of natural logarithmic values of soil gas 

concentration of TCE after updating different numbers of concentration measurements for different 

scenarios: a) House No. 1, b) House No. 2, c) House No. 3, d) House No. 4, e) House No. 5, and f) 

House No. 6.   

Note: The solid lines are the mean values and the error bars represent the standard deviations of the 

Monte Carlo simulations. 
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Figure 3.7: The mean    
  and the standard deviation    

 of natural logarithmic values of indoor air 

concentration of TCE after updating different numbers of concentration measurements for different 

scenarios: a) House No. 1, b) House No. 2, c) House No. 3, d) House No. 4, e) House No. 5, and f) 

House No. 6.  

Note: The dashed line represents the regulatory limit for indoor air concentration of TCE. The solid 

lines are the mean values and the error bars represent the standard deviations of the Monte Carlo 

simulations. 
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Figure 3.8: The probability of exceedence from the Monte Carlo realizations for the six houses for 

the cases 1)1K, 2C; 2) 1K, 4C; 3) 7K, 4C; and 4) 7K, 7C: a) House No. 1, b) House No. 3, c) House 

No. 4, d) House No. 5, and e) House No. 6. Note: d) has different scale in y- axis from the other 

figures. 
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Figure 3.9: a) The Root Mean Square Error of the estimation of indoor air concentration of TCE 

      
 for different number of permeability and concentration data; b) The Root Mean Square Error 

of the estimation of probability of failure       
 for different number of permeability and 

concentration data using definition by Eq. (3.19); c)       
 using log-normal distribution; d) 

      
 using beta distribution.  

Note: Number 1, 3, 4, 5 and 6 represent house No. 1, 3, 4, 5, and 6. In figures b), c) and d), if       
 

value is not shown, it implies that       
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Figure 3.10: The probability of exceedence from the Monte Carlo realizations fitting a log-normal 

distribution for the six houses for the cases 1)1K, 2C; 2) 1K, 4C; 3) 7K, 4C; and 4) 7K, 7C: a) House 

No. 1, b) House No. 3, c) House No. 4, d) House No. 5, and e) House No. 6. Note: d) has different 

scale in y- axis from the other figures. 
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Figure 3.11: The probability of exceedence from the Monte Carlo realizations fitting a beta 

distribution for the six houses for the cases 1)1K, 2C; 2) 1K, 4C; 3) 7K, 4C; and 4) 7K, 7C: a) House 

No. 1, b) House No. 3, c) House No. 4, d) House No. 5, and e) House No. 6. Note: d) has different 

scale in y- axis from the other figures. 
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Table 3.1: Locations where the permeability and concentration data are obtained for different 

scenarios 

 Scenarios 

Locations 
1K 

2C 

1K 

4C 

1K 

7C 

3K 

2C 

3K 

4C 

3K 

7C 

5K 

2C 

5K 

4C 

5K 

7C 

7K 

2C 

7K 

4C 

7K 

7C 

80

K2

C 

80

K4

C 

80

K7

C 

House 1 − − − − − − − − − − − − − − − 

House 2 C C C C C C C C C C C C C C C 

House 3 − − − − − − − − − − − − − − − 

House 4 − − − − − − − − − − − − − − − 

House 5 − − C − − C − − C − − C − − C 

House 6 − − − − − − − − − − − − − − − 

BH 1 − − − − − − − − − K K K K K K 

BH 2 − − C − − C K K K, C K K K, C K K K, C 

BH 3 − C C K K, C K, C K K, C K, C K K, C K, C K K, C K, C 

BH 4 K, C K, C K,C K, C K, C K, C K, C K, C K, C K, C K, C K, C K, C K, C K, C 

BH 5 − C C K K, C K, C K K, C K, C K K, C K, C K K, C K, C 

BH 6 − − C − − C K K K, C K K K, C K K K, C 

BH 7 − − − − − − − − − K K K K K K 

  − − − − − − − − − − − −       

BH 80 − − − − − − − − − − − − K K K 

− denotes no sample data at the location 

K denotes permeability measurements obtained from boreholes (BH) 

C denotes soil gas concentration sample obtained from either boreholes or residential houses 
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Table 3.2: The statistics of the kriging variance inferred from different boreholes of permeability data  

 1K 3K 5K 7K 80K 

       
        1.2727 0.8929 0.8878 0.8418 0.8264 

       
 
 
  1.0127 0.7434 0.7140 0.7509 0.8439 

      
        1.4265 0.9 0.8959 0.8543 0.9300 

      
        9.9984e-5 1.0000e-4 1.0000e-4 1.0000e-4 1.0000e-4 

       
(1.2090, 

1.3364) 

(0.8267, 

0.9591) 

(0.7947, 

0.9809) 

(0.7438, 

0.9398) 

(0.4809, 

1.1719) 

Note:   
      represents the kriging variance;   

 
 
 represents the variance of samplings;    represents 

confidence interval. 
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Table 3.3: The differences in the absolute error of soil gas and indoor air concentration of TCE  

between the mean and the real value at 5% confidence level in each 100 days interval           till 

1800 days after TCE injection: ‘T’ – hypothesis is true; ‘0’ – equality; ‘F‘ – false; ‘-‘ – normal 

distribution does not apply 

 |     
   ̂       |    

|     
   ̂       | 

SG/IA 

|     
   ̂       |    

|     
   ̂       | 

SG/IA 

|     
   ̂       |    

|     
   ̂       | 

SG/IA 

Time (days) 

          

   House No.    House No.    House No. 

1 3 4 5 6 1 3 4 5 6 1 3 4 5 6 

(0,100] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(100,200] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(200,300] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(300,400] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 0/0 -/- 

(400,500] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- T/0 -/- 

(500,600] -/- T/T -/- -/- -/- -/- -/ -/- -/- -/- -/- -/- -/- T/0 -/- 

(600,700] F/0 T/T -/- 0/0 -/- -/- -/- -/- T/T -/- -/- -/- -/- T/0 -/- 

(700,800] F/0 0/F F/0 0/0 -/- T/F -/- F/F T/T -/- 0/0 -/- 0/0 T/T -/- 

(800,900] 0/0 T/F T/0 0/0 -/- T/T 0/T F/F T/T -/- 0/0 0/0 0/0 T/T -/- 

(900,1000] T/0 T/F T/0 0/0 -/- 0/T 0/T F/T T/T -/- 0/0 0/0 0/0 T/T 0/0 

(1000,1100] T/0 T/F T/0 0/0 -/- 0/T T/T F/T T/T -/- T/0 0/0 0/0 T/T 0/0 

(1100,1200] T/0 T/F T/0 0/0 -/- 0/T T/T 0/T T/T -/- T/0 0/0 T/0 T/T 0/0 

(1200,1300] T/0 T/F T/0 0/0 F/F F/T T/T 0/T T/T T/T T/0 0/0 T/0 T/T 0/0 

(1300,1400] T/0 T/F T/0 0/0 F/F F/T T/T 0/T T/T T/T T/0 0/0 T/0 T/T 0/0 

(1400,1500] F/0 T/F T/0 0/0 F/F T/T T/T F/T T/T T/T T/0 0/0 T/0 T/T 0/0 

(1500,1600] F/0 T/F T/0 0/0 F/F T/T T/T F/T T/T T/T T/0 0/0 T/0 T/T 0/0 

(1600,1700] F/0 T/F T/0 0/0 F/F T/T T/T 0/T T/T T/T T/0 0/0 T/0 T/T 0/0 

(1700,1800] F/0 T/F T/0 0/0 F/F T/T T/T 0/T T/T T/T T/0 0/0 T/0 T/T 0/0 
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Table 3.4: The differences in variances of soil gas and indoor air concentration of TCE  at 5% 

confidence level in each 100 days interval           till 1800 days after the TCE injection: ‘T’ – 

hypothesis is true; ‘0’ – equality; ‘F‘ – false; ‘-‘ – normal distribution does not apply 

      
        

  

SG/IA 

     
       

  

SG/IA 

     
       

  

SG/IA 

Time (days) 

          

   House No.    House No.    House No. 

1 3 4 5 6 1 3 4 5 6 1 3 4 5 6 

(0,100] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(100,200] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(200,300] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

(300,400] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- T/0 -/- 

(400,500] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- T/T -/- 

(500,600] -/- T/T -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- T/T -/- 

(600,700] 0/0 T/T -/- 0/F -/- -/- -/- -/- T/T -/- -/- -/- -/- T/T -/- 

(700,800] 0/0 T/T 0/0 0/0 -/- 0/F -/- F/F T/T -/- 0/0 -/- 0/0 T/T -/- 

(800,900] T/0 T/T 0/0 0/F -/- 0/F F/F 0/F T/T -/- 0/0 0/0 0/0 T/T -/- 

(900,1000] 0/0 T/T 0/0 0/0 -/- 0/F F/F 0/F T/F -/- 0/0 0/0 0/0 T/T 0/0 

(1000,1100] T/F T/T 0/0 0/F -/- T/0 0/F T/F T/T -/- 0/0 0/0 0/0 T/T 0/0 

(1100,1200] 0/F T/T 0/0 0/0 -/- T/0 0/F T/F T/T -/- 0/0 0/0 0/0 T/T 0/0 

(1200,1300] T/F T/T 0/0 0/F 0/T T/0 0/T T/F T/T T/F 0/0 0/0 0/0 T/T 0/0 

(1300,1400] T/0 T/T 0/0 0/F 0/T T/F 0/T T/F T/T T/F 0/0 0/0 0/0 T/T 0/0 

(1400,1500] T/F T/T 0/0 0/0 0/T T/T 0/T T/F T/T T/0 0/0 0/0 0/0 T/T 0/0 

(1500,1600] T/F T/T 0/0 0/0 T/T T/T T/T T/F T/T 0/T 0/0 0/0 0/0 T/T 0/0 

(1600,1700] T/0 T/T T/0 0/0 T/T T/T T/T T/F T/T 0/T 0/0 0/0 0/0 T/T 0/0 

(1700,1800] T/0 T/T T/0 0/0 T/T T/T T/T T/F T/T 0/T 0/0 0/0 T/0 T/T 0/0 
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Chapter 4 Risk-Based Site Characterization for Vapour Intrusion at 

a Brownfields Site: Pricing the Risk Capital 

Chapter Summary 

A framework for assessing an optimal sampling design for a brownfields redevelopment project is 

presented. The cost-benefit-risk analysis is employed as a basis to construct the objective function 

which is the sum of the cost of risk (also defined as risk capital) and the cost of data in order to 

facilitate the optimal sampling design decision making. The alternative sampling strategies result 

from a series of sampling cases used in the previous chapter for progressively reducing the prediction 

uncertainty which are the product of the numerical model CompFlow Bio, geostatistical Kriging and 

data assimilation tool Kalman filter. Two methods are developed to price the risk accounting for the 

hydrogeological and financial uncertainties possessed in the brownfields redevelopment project in an 

actuarial premium calculation principle and a martingale premium calculation principle. The optimal 

sampling design is then selected based on the objective function showing that drilling 7 boreholes to 

extract permeability data and taking soil gas samplings in 4 locations give the least total cost. The 

sensitivity analysis of some influential parameters (the long-term interest rate spread over which 

engineering companies’ shares trade in excess of appreciation in the US housing market    and the 

evaluation methods of the probability of failure) is performed to determine their roles of importance 

in the risk capital valuation. This framework can be applied to provide guidance for a risk-based 

environmental project.      

 

4.1 Introduction 

Since the 1980’s, both North America and Europe have recognized the social, environmental, and 

economic benefits of fostering the redevelopment of brownfields sites. The USA enacted the 

Superfund Liability Act to reclaim 1,410 heavily contaminated sites across the nation. However, the 

complex and uncertain nature of the subsurface hydrogeology and its impact on financial liabilities, 

benefits and risks inherent in the redevelopment project often serve to stifle any redevelopment plans. 

Yu et al. (2012) identify two hurdles that face the developer contemplating the purchase, remediation, 

and redevelopment of the brownfields land. First, the cost of redevelopment plus the initial purchase 

price may be greater than the value of its end use. Second, the possibility that people occupying the 

redevelopment site may suffer adverse health impacts from lingering subsurface contamination could 
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expose the developer to punitive damages of unlimited value. This latter issue is the focus of Yu et al. 

(2009) and Wang et al. (2012) who explore the impact of multiple hydrogeological factors on the fate 

and transport of TCE from a DNAPL source zone located below the water table, with dissolution into 

the groundwater and vaporization into the indoor air of a residential dwelling located above the 

groundwater plume. Health impacts are assumed to arise should the indoor air concentration exceed a 

regulatory limit (OEHHA-CEPA, 2007; NYSDOH, 2005). 

A typical brownfields project undergoes numerous stages before development is complete (Meyer 

et al., 1997; McCarthy, 2001; aboutRemediation
TM

, 2012). For the purposes of this work, we 

aggregate them into five stages as depicted in Figure 4.1. Stage 1 involves site purchase at time   . 

Stage 2 follows with environmental site assessment, evaluation and planning at time   . Stage 3 

includes site remediation and additional risk assessment at time    . Stage 4 begins the process of 

construction which we assume involves a residential development, and the sale of the houses, at 

time     . Stage 5 operates until the termination of the project and involves site operation and 

monitoring until time       . The worth of the project to the developer can be valued by discounting 

all cash flows arising from the above five stages to a present value (Pratt and Grabowski, 2008), and 

is expressed as:  

 

                                                   (4.1) 

 

where   denotes present value,        is the total cost of the project, and    ,    ,     ,      and      

are the costs of each of the five stages. 

Following Yu et al. (2012), this chapter focuses on Stage 5 otherwise known as the guarantee 

period. This stage arises because hydrogeological site complexities often prevent complete 

remediation of legacy DNAPL source zones in Stage 3, providing the potential for future degradation 

of the indoor air quality within the residential houses within the development. Our interpretation of 

the guarantee is as follows. To entice buyers, the developer guarantees that they will immediately 

repurchase any affected house at the original sale price appreciated by the US national home price 

index. Indoor air concentrations are monitored every           days, and the guarantee lasts from 

time      until time  . Thereafter, the government indemnifies the developer (OME, 1997; OMMAH, 

2007). In return for the repurchase agreement and continuous monitoring, the residents agree not to 
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blame any reasonable foreseeable health issues arising from potential long-term exposure of indoor 

air contamination on the developer given their due diligence. To maintain the development, the 

developer then remediates the subsurface to resolve the source contamination, and 

demolishes/rebuilds/renovates the house to prevent further intrusion of soil gas. The house is then 

resold. While this description of the guarantee period is identical to that of Yu et al. (2012), central 

questions regarding its implementation by the developer in the context of this study are substantially 

different and are outlined below. 

Wang et al. (2012a) explore the impact of various hydrogeological factors on defining an exclusion 

zone for indoor air contamination around the lateral edges of a groundwater plume. This same 

problem geometry is directly amenable to exploring questions related to the guarantee period in this 

study. Specifically, we assume the developer has already repurchased the two houses located directly 

over the plume (see houses 2 and 5 in Figure 4.1 of Wang et al. (2012b)) as part of their due diligence 

and is faced with dilemma of assessing their liability with regards to the houses adjacent (see houses 

1, 3, 4 and 6 in Figure 1 of Wang et al. (2012b)) to those directly over the plume. The dilemma arises 

from the fact that although they have liability should the indoor air concentrations in these houses 

exceed the regulatory limit, they do not necessarily have access to monitor the indoor air quality 

without purchasing the houses a priori. In part 1 of this two-chapter series (Chapter 3), we explore the 

worth of collecting permeability and soil gas concentration data for reducing the prediction 

uncertainty of whether the TCE concentration within the indoor air of the laterally offset houses will 

exceed a regulatory limit. Without direct access, we presume the developer indicates their due 

diligence by using the data to simultaneously reduce prediction uncertainty while minimizing costs 

associated with the guarantee period and in effect promoting sustainable development. A specific 

objective of part 1 was to quantify predication uncertainty using three metrics: first, the ability to 

correctly estimate the actual indoor air concentrations at unmonitored locations (i.e. within houses 1, 

3, 4 and 6) at any point in time; second, the ability to use available soil gas concentration data to 

reduce the standard deviation in indoor air concentration at unmonitored locations; and third, to 

accurately forecast the probability that indoor air concentrations will exceed a regulatory limit at 

unmonitored locations. The third metric is in fact the probability of failure. 

Costs associated with the guarantee period     are assumed to arise from two categories; the cost of 

the monitoring data       , and the cost of failure arising from the need to repurchase and eventually 

resell an affected house          . This is expressed as:  
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           (        )             . (4.2) 

 

Yu et al. (2012) focus entirely on the cost of failure term as the central question facing the 

developer.  Specifically, they state that the cost of failure is essentially a contingency fee that the 

developer must set aside from the sale of each house to cover the “risk” that they may need to 

repurchase it and maintain the development at a future date. Alternatively, the contingency fee could 

be viewed as the value of an insurance policy with the “risk” transfer to an insurance company 

following from the upfront payment of the premium. Yu et al. (2012) further clarify their definition of 

“risk” as “risk capital”, which includes a surcharge in excess of the expected present value of the 

probability of failure times the cost of failure. This surcharge represents the value that a rational and 

risk adverse person places on investing in the brownfields project due to their anticipated loss of 

investment principal. The objective of part 2 of this two-chapter series (Chapter 4) is to expand upon 

the work of Yu et al. (2012) to value the risk capital as        . As such, we seek to minimize an 

objective function based largely upon Equation (4.2) that balances the trade-offs between collecting 

progressively more data to reduce project uncertainty and hence the cost of failure, but at an ever 

increasing site characterization cost. 

Massmann and Freeze (1987a, b), Massmann et al. (1991) and Freeze et al. (1992) proposed and 

applied a general cost-benefit-risk framework that is directly amenable to our brownfields 

redevelopment project in that it combines hydrogeological and economic information into an estimate 

of the projects value. Barnes and McWhorter (2000) used the same framework for the design of soil 

vapor extraction systems. Wong and Yeh (2002) developed a cost-benefit uncertainty analysis for 

solving a contaminated aquifer management problem focusing on the relationship between increased 

management costs and the desired level of protection. Additional cost-benefit analysis has been used 

to examine risk assessment strategies for analyzing human health risks due to chemical exposure 

arising from hydrogeological projects (Reichard and Evans 1989; Pelmulder et al. 1996), and to make 

remedial action decisions in an optimization framework (Smalley et al. 2000). A central principle in 

the above (and our) cost-benefit-risk analysis is that all risks with an engineering project can be 

defined as the product of the probability that the engineered system will fail to meet the intended goal 

(probability of failure) and the cost of not reaching that goal (James et al. 1996b; Khadam and 

Kaluarachi 2003).  



  92 

Yu et al. (2102) indicate that a common element in the Massmann and Freeze (1987a, b), 

Massmann et al. (1991) and Barnes and McWhorter (2000) cost-benefit-risk framework is the 

application of the classical economic utility function which takes into account the risk aversion that a 

decision maker has to accept. The utility function is an abstract measure of risk-averse tendencies 

capturing the subjective perception of risk based on prevailing social and economic factors. It is 

difficult to both conceptualize and define. However, empirical studies by Neufville and King (1991) 

and Laryea and Hughes (2008) indicate that common practice by contractors is to surcharge their bid 

on a project by a factor of 1%-3% to accommodate construction risk. Balatbat et al. (2010) and Unger 

et al. (2012) further indicate that this surcharge is then expressed as an interest rate spread over and 

above the consumer price index, and in fact can be inferred from appreciation of the stock of 

construction companies trading on the market. A novel contribution of this work is to adapt two risk 

capital valuation methods from Yu et al. (2012) to unambiguously parameterize and value the risk 

capital problem at hand. Specifically, we show how the hydrogeological and financial (market) data 

can be used to inform; a classical P&C insurance valuation involving safety loading (see Method 2 as 

described in Section 3.2 of Yu et al. (2012)) which we term an “actuarial” approach, and a risk-

neutral valuation that is based on implied loss distributions from market prices (see Method 5 as 

described in Section 3.5 of Yu et al. (2012)) which we term a “financial” approach. By equating and 

then comparing and contrasting these two risk capital valuation approaches, we relate both 

hydrogeological and financial uncertainties to the developer’s needs to minimize an objective 

function based largely upon Equation (4.2). 

 

4.2 The Guarantee Period 

4.2.1 Probability of Failure 

The probability of failure follows directly from Section 3.3, and is reviewed briefly here for 

completeness. The key issue in this work is our assumption that although the developer has liability 

for indoor air impacts to houses 1, 3, 4 and 6, the developer does not have access to these properties 

which is often the case at the real sites. To constrain the prediction uncertainty for indoor impacts on 

these houses, the developer uses; knowledge of the subsurface permeability structure obtained from 

the soil cores in combination with TCE soil gas concentration measurements within these same 

boreholes, as well as TCE soil gas concentration measurements from beneath the foundation slab of 

house 2. The In Chapter 3, we define the third metric associated with prediction uncertainty, namely; 
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the ability to accurately forecast the probability of indoor air concentrations within houses 1, 3, 4 and 

6 exceeding a regulatory limit. This third metric is directly related to the first and second moments of 

 ̂     

 
  (see Equation (3.9)) which represent indoor air concentrations conditioned using kriging and 

the static Kalman filter to assimilate the permeability and soil gas data. 

The probability of failure during the guarantee period is calculated in the following two steps. First, 

we assume that the developer monitors the indoor air quality periodically every               

days for the duration of the guarantee period which lasts for             days (5 years). For a 

given monitoring interval           where                 with                  and         

                   , we calculate the probability of exceedence       for the  th location (i.e. one of 

houses 1, 3, 4 and 6) in one of two methods. First, as the sum of the number of Monte Carlo 

realizations for which the indoor air concentration first exceeds the regulatory criterion, defined as 

       
      

 , divided by the total number of Monte Carlo realizations              : 

 

     
       

      

             
  . (4.3) 

 

The indoor air concentration of TCE in each single house would first increase, reach a plateau and 

then tend to decline (see Figure 2.6). The probability of failure is independent within each monitoring 

interval and not based on prior values. Here, it assumes that occurrence of failure in one house can be 

more than one in different time intervals. In other words, if failure occurs in one time interval it can 

also occur in another time interval at a later time. Therefore the evaluation of the probability of failure 

using this method represents its conservative nature. 

Second, we fit a log-normal as well as a beta distribution to       
  in order to better capture the tail 

of the distribution with the limited number of Monte Carlo simulations. Both the log-normal and beta 

distributions make use of the first two moments of  ̂     

 
 given by       

  and       
  in Equation 

(3.9). All values of      are shown in Figures 3.8, 3.10 and 3.11. 
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4.2.2 Cost of Failure 

The cost of failure is largely adapted and abbreviated from Yu et al. (2012) with modifications to 

accommodate the optimization problem need to value         as expressed by Equation (4.2). The 

cost itself follows from the developer’s guarantee presented in Section 4.1, and its value          
     

at time    in the time interval           is:  

 

         
          (4.4) 

 

where    is the value of one of the lateral houses offset from the groundwater plume (i.e. houses 1, 3, 

4 and 6) at time    as appreciated by the US national home price index, and   is a scalar       

and is used to represent the lost revenue arising from the purchase, remediation, demolition, 

rebuilding and stigma associated with the resale value of the house. The present value of the cost of 

failure within time interval           is:  

 

         
            {∫      

  

  

} (4.5) 

 

where   is the discount rate for the brownfields redevelopment project, and will be discussed in 

greater details in Section 4.2.4.  

Following from Yu et al. (2012), the US national home price index   (see Figure 1a of Yu et al., 

2012) is assumed to follow a stochastic process defined by Geometric Brownian Motion (GBM) with 

drift given by:  

 

                    (4.6) 

 



  95 

where    is the annual rate of appreciation in the US housing market,    is the volatility, and     is a 

Wiener process. Estimates of    and    obtained using the maximum likelihood estimation 

methodology are provided on Table 4.1. A sample realization of          
     based on market 

movements in   follows as:  

 

         
            {(   

  
 

 
)            }     (4.7) 

 

Because          
     appears frequently in this work, we will simplify its notation to          

. 

Equation (4.7) provides an estimate of          
with the expectation: 

 

 [         
]                 (4.8) 

 

and variance: 

 

   [         
]        

                    
          . (4.9) 

 

4.2.3 Cost of data 

Within Equation (4.1), the present value of the cost of data is expressed as           and is further 

defined as:  

 

          ∑        {∫   

  

  

  }

      

   

                (4.10) 
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where    is the cost of obtaining an single concentration sample and    is the cost of obtaining a 

single permeability measurement, while    and    denote the number of concentration (i.e. 0C, 2C, 

4C and 7C) and permeability data (i.e. 1K, 3K, 5K, 7K and 80K) collected according to the sampling 

strategies outlined on Table 3.1. The cost of individual concentration and permeability measurements 

is provided here on Table 4.2. Aller et al. (1989) reviews numerous factors governing the borehole 

drilling strategy, including; depth, cost, reliability for obtaining samples, availability of drilling 

equipment, site accessibility, well installation and development time, and minimizing damage to the 

site and the subsurface. We chose auger drilling to obtain the samples at 10 cm spacing throughout 

the 8 m aquifer thickness. The main itemized cost for obtaining the permeability data includes; 

operation of the drill rig, mobilization and demobilization, and sample analysis (Kram et al., 2002; 

US EPA, 1998). Soil gas concentration sampling strategies are either passive or active. We chose 

passive soil gas sampling via a buried collector at an overall cost of $250 per sample (Korte, 1992). 

While all permeability data are collected at time   , the concentration data all collected in the time 

intervals          . The cost of all data is appreciated from their collection time to    at the inflation 

rate   . 

The annual rate of inflation    using the Consumer Price Index as a proxy (see Figure 1b of Yu et 

al. (2012)) is assumed to follow a stochastic process defined by the mean-reverting arithmetic 

Ornstein-Uhlenbeck model given by:  

 

                         (4.11) 

 

where    denotes the speed of adjustment,    is the reversion level,    is the volatility, and     is a 

Weiner process. Estimates of   ,    , and    obtained using the maximum likelihood estimation 

method are provided on Table 4.1. The following equation provides an estimate of       Equation 

(4.10) with the expectation: 
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         ∑      [   {∫   

  

  

  }]

      

   

                (4.12) 

 

Section 3.7 of Yu et al. (2012) provides a discussion of how to evaluate  [   {∫   
  

  
  }] when    

is a stochastic process as expressed by Equation (4.11).  

  

4.2.4 The Risk Free and Project Discount Rates 

The conventional approach in the engineering literature for estimating the discount rate   for cost-

benefit-risk projects is to use a range of values to reflect the decision-makers’ subjective evaluation of 

risk. For instance, Massman and Freeze (1987a) use        to      per annum with a base case of 

      per annum. Schwartz (1994) advocates an approach based on arbitrage or equilibrium in the 

financial markets in order to estimate the market value of the project. Insley and Wirjanto (2010) 

further modify this approach with information from the Capital Asset Pricing Model (CAPM) in order 

to relate   to the risk free rate, with their approach then adopted by Yu et al. (2012) for application to 

a brownfields project. Here, we briefly review Yu et al. (2012) to ensure consistency and clarity of 

notation in this work.  

The risk free rate in the USA follows from movements in the price of US Treasury securities that, 

by their nature, are risk-free and represent the nominal annual interest rate   . Typically,   is 

assumed to follow a stochastic process defined by the mean-reverting Cox-Ingersoll-Ross (CIR) 

model (Cox et al., 1985) given by:  

 

                        (4.13) 

 

where    denotes the speed of adjustment,    is the reversion level,    is the volatility, and     is a 

Weiner process. Duan and Simonato (1999) provide estimates of   ,    , and   , with values 

provided on Table 4.1.  
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Insley and Wirjanto (2010) demonstrate an approach to estimate the discount rate that uses a risk 

premium consistent with the CAPM. Specifically, the discount rate   is given as:  

 

      ̂    (4.14) 

 

where  ̂  is the market price of risk for a contract (i.e. the guarantee) that depends linearly on the 

stochastic underlying variable  . Finally,  ̂  is calculated as:  

 

 ̂  
             

  
      (4.15) 

 

where Siegel and Schwartz (2004) estimate the expected return on the market portfolio            

per annum, Yu et al. (2012) estimate           , yielding  ̂          and          per 

annum. These results are summarized on Table 4.1.  

 

4.3 Risk Capital Valuation 

In the context of the guarantee period for this brownfields problem involving houses 1, 3, 4 and 6,   

is the total claim or risk at time    and is calculated as the product of the probability and cost of 

failure within a given time interval            as:  

 

  ∑ ∑         

       

   

      

   

 ∑ ∑          
          

       

   

       
      

      

   

 (4.16) 
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where:                   so that          ; and        
      

 is a Bernoulli random variable of the 

value 1 with the probability of      in time interval           for the jth house when the indoor air 

concentration       
 exceeds the regulatory limit      , and has a value 0 with the probability of 

      . The Bernoulli probability distribution of variable   is formulated as 

 

       {
                         

      

                             
 (4.17) 

 

Yu et al. (2012) indicate that   is not a complete estimate of the risk capital in that it does not 

cover the developers’ preference for risk aversion. Yu et al. (2012) then adapt five methodologies 

from the actuarial and financial literature to price the risk capital in the guarantee period that directly 

take consideration of the developer’s risk aversion within their formulation. In this study, we further 

adapt two of these methodologies to account for the worth of hydrogeological data in reducing 

prediction uncertainty as to whether the indoor air concentrations within houses 1, 3, 4 and 6 exceed 

the regulatory limit. First, we focus on method 2 as described in Section 3.1 of Yu et al (2012) that 

follows classical P&C insurance policies and uses the standard deviation of the cost of failure as a 

safety loading factor (Moller, 2002; Sondermann, 1991). The worth of the hydrogeological data is to 

reduce the standard deviation in the cost of failure and hence minimize the safety loading factor. 

Here, we denote this methodology as the “actuarial” premium calculation principle. Second, we focus 

on method 5 as described in Section 3.5 of Yu et al. (2012) which follows that of empirical studies 

that seek implied loss distributions from market prices (Torresetti et al., 2007; Hardle and Lopez 

Cabrera, 2007; Hayek and Ghanem, 2002; Christensen, 2001). Yu et al. (2012) demonstrate that the 

safety loading factor can be expressed as an interest rate surcharge in excess of the risk free rate. 

Once again, the worth of the hydrogeological data is to reduce this interest rate surcharge. Here, we 

denote this methodology as the “financial” premium calculation principle. Below, we present our 

adaptations of these two methodologies to pricing the risk capital for the guarantee period at hand 

with the intent of demonstrating our approach for incorporating the worth of hydrogeological data. 
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4.3.1 The Actuarial Premium Calculation Principle 

Within the actuarial literature, one of the non-life insurance premium calculation principles involves 

charging a premium based on the expected value of the claim enhanced by a safety loading term. In 

the context of the guarantee period, this principle is described as: 

 

     ∑ ∑  E [      ]          

       

   

      

   

 (4.18) 

 

where:      denotes the risk capital arising from the guarantee period for houses 1, 3, 4 and 6; E  is 

the expectation of claim      under the physical measure  ; and  (    ) is the safety loading term.  

The expectation of the claim E       can be calculated as follows: 

 

E       ∑ ∑ E      

       

   

      

   

   

 ∑ ∑ E           
         

       

   

       
      

      

   

  

 ∑ ∑ E           
          

       

   

 E         
      

 

      

   

 

 ∑ ∑               

       

   

             

      

   

 

(4.19) 

 

which is simply the present    value of the probability of failure times the cost of failure. In Chapter 

3, we explore the worth of data to reduce prediction uncertainty on the probability of exceedence term 

     as discussed above in Section 4.2.1. For the problem at hand, we note in Chapter 3 that      

        which may not be true in general. Furthermore, in Figure 3.9 the root mean square error 
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between the predicted and actual probability of exceedence diminishes as the number of permeability 

and concentration measurements increases. Therefore, this same progression of data will minimize 

E       for this particular guarantee period. 

The risk loading term         is evaluated using the standard deviation principle (Møller, 2001), 

and is adapted here for the guarantee period as: 

 

                √          (4.20) 

 

where          is a data informed scalar for the safety loading factor under the actuarial principle 

(denoted here by the subscript “       ”) in the time interval           for the  th house. We begin by 

calculating           as a random sum of independent random variables (Goodman, 1962) as: 

  

   [    ]     [         
                

      
 ]

 (  [         
         ])

 
    [       
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 ( [       
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    [         

         ]

     [         
         ]     [       
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           {   [         
]      [         
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    (      )}    

(4.21) 

 

While           is informed by the probability of failure in an identical manner to E      , 

intuitively we would expect that it would also have some dependence on the first two metrics used to 

quantify predication uncertainty: first, the ability to correctly estimate the actual indoor air 

concentrations at unmonitored locations (i.e. within houses 1, 3, 4 and 6) at any point in time; second, 

the ability to use available soil gas concentration data to reduce the standard deviation in indoor air 
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concentration at unmonitored locations. Therefore, we introduce these terms into          which is a 

scalar for the safety loading factor in the time interval           for the  th house as: 

 

            [          (           
            

     )     ] (4.22) 

 

with; 

 

     
 |
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 |

 ̂     

    ̂             

 ̂             

|     

(4.23) 

 

Equation (4.22) entirely represents hydrogeological uncertainty as scaled by the parameter       . 

Parameterization of the scalars         ,       ,       , and        is discussed later in Section 4.3.3. 

Equation (4.23) indicates that      
 is the expression of the coefficient of variation in an absolute 

form, which is a measure of variability associated with uncertainty and is dimensionless and 

independent of scale. In statistics, it is a normalized measure of dispersion of a probability 

distribution and is known as the relative standard deviation. Zhang et al. (2005) used the coefficient 

of variation as a criterion to select target sampling locations. The parameter      
 is a measure of 

relative accuracy and it is defined as a ratio of the absolute error of a measurement to the accepted 

value of the measurement. In combination,      
 and      

 address the first two prediction uncertainty 

metrics, and are illustrated in Figure 4.2 for each house during the guarantee period using the 

progression of permeability and soil gas concentration sampling strategies itemized as 1K2C, 1K4C, 

7K4C and 7K7C.  

Finally, we complete this section with a closed-form expression of the risk capital during the 

guarantee period as: 
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E [    ]
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(4.24) 

 

For projects with a non-zero      in reality, Equation (4.24) shows that the as progressively more 

hydrogeological data are collected then      
 and      

 in          are driven to “zero” leaving only the 

financial risk in the housing market to surcharge the expected cost of failure via the project discount 

rate   as shown in Equation (4.14). 

 

4.3.2 The Martingale Premium Calculation Principle in a Financial Market 

In the previous section, the premium for a risky asset is defined as the expectation of the total claim 

amount to be paid in a given time interval surcharged by a safety loading factor. In the financial 

markets, observed prices for insurance premiums on risky assets are never equal to the mathematical 

expectations of the underlying assets under the   measure because they do not take into account the 

risk averseness of investors. Sondermann (1991) introduced a method for evaluating the insurance 

premium in an arbitrage free market by taking a risk-neutral probability distribution under the   

measure. Delbaen and Haezendonck (1989) applied this principle to a process with a compound 

Poisson probability distribution. We will adopt this principle for the risk capital valuation of our risk-

based brownfields redevelopment project under the risk-neutral   measure. For clarity and 

completeness of notation, we review method 5 of Yu et al. (2012) with application to pricing the risk 

capital for this guarantee period. 

To begin with, we no longer focus on the probability of failure of each individual house, but rather 

expand it to the number of occurrences of failure within a residential area using a compound Poisson 

distribution. Suppose that:  
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                             (4.25) 

 

which is a counting process using       a random variable in time interval           with a Poisson 

distribution. The probability of obtaining      occurrences of failure in the time interval           for 

the  th house (which can alternatively be expressed as the number of houses      being affected by the 

TCE gas concentration in exceedence of the regulatory limit) can be formulated as: 

 

 (          )   (             )  
         

    

     
          (4.26) 

 

where:      is the rate of the Poisson process and is equal to the expected number of occurrences 

during the given time interval           for the  th house,  

 

     
       

      

   
    (4.27) 

 

and,        
      

 is the number of realizations where the indoor air concentration of TCE exceeds the 

regulatory limit over the time period          . The choice of      is made to ensure that  

 

       

             
        (4.28) 

 

The expected value and the variance of variable      exhibit as: 
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  [    ]     [    ]               (4.29) 

 

The present value of cost of failure within the time interval           for the  th house can be 

derived from Equation (4.16) as; 

 

                  ∑          
  
 

    

   

 (4.30) 

 

and implies that the cost of failure for any single house within the development is the same. The 

expected cost of failure can then be evaluated under the physical   measure as; 

 

E [      ]            E
 

[ ∑          
  
 

    

   

 ]            E
 
[    ] E

 [          
  
 ] (4.31) 

 

which now involves the loss on a “unit” house           
  
  during the time interval          . In terms 

of the problem at hand, the unit house implies that each of houses 1, 3, 4 and 6 has the same value and 

that we do not attempt to distinguish between them in terms of their contribution to the “cost” of 

failure. 

The probability distribution defining the cost of failure under the   measure can be converted into 

a probability distribution under the   measure, which is also a compound Poisson process. 

Furthermore, these distributions are progressively equivalent. Under  , the price process becomes a 

Martingale. The probability under   tends to give more weight to less favourable events in a risk-

averse environment. The expected cost of failure under the   measure can be defined as; 
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E [      ]              E
 

[ ∑          
  
 

    

   

 ]              E
 
[    ] E

 [          
  
 ] (4.32) 

 

where the discount rate   in Equation (4.31) is replace with the risk-free rate   . Having established 

the notation for E [      ] for the guarantee period at hand, we are now in a position to summarize 

how Equations (28-33) of Yu et al. (2012) contribute to pricing the risk capital. At issue is the need to 

relate  E [    ] E
 [          

  
 ] in Equation (4.32) to their same expectations under the physical   

measure which can then be evaluated using the available hydrogeological data. The transformation is 

accomplished using Proposition 2.1 of Delbaen and Haezendonck (1989) combined with Equation 

(33) of Yu et al. (2012). The premise of this transformation is that the   measure achieves its risk 

loading via an interest rate surcharge in excess of   , which is the expected appreciation rate of the 

brownfields project arising from the sale of the houses. This interest rate surcharge varies with time 

interval           as well as for houses             and is expressed as; 
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(4.33) 

 

Finally, the total value of the risk capital can be expressed as;  
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(4.34) 
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The estimation of parameters      ,       and       will be discussed in the next section. Once 

again we note that for projects with a non-zero      in reality, Equations (4.33-4.34) show that as 

progressively more hydrogeological data are collected then      
 and      

 in         are driven to 

“zero” leaving only the financial risk in the housing market  ̂    to surcharge the risk capital. This 

financial risk term can be combined with    to yield the project discount rate   as shown in Equation 

(4.14). 

 

4.3.3 Optimization and Parameter Estimation 

The optimization and parameterization problem that embodies this work is best expressed by 

Equation (4.2), and involves our attempt to find the least cost strategy for the guarantee period. The 

premise here is that we can assess the financially sustainable market rate for companies specializing 

in this type of activity by observing the interest rate spread that shares in these companies trade at in 

excess of appreciation in the US housing market   . Insurance policies for the guarantee period are 

likely to be quoted in an over-the-counter market (as with insurance policies in general), and cannot 

be directly observed. In Chapter 3, we alluded to the idea that 7K4C and 7K7C appeared to be 

optimal sampling strategies in that they provided the “best” estimates of the three statistical metrics 

quantifying the worth of the hydrogeological data with a reasonable (i.e. not excessive as with 80K) 

amount of data. In this section, we build upon this idea and demonstrate that the interest rate spread 

can be used to price the worth of the hydrogeological data in terms of minimizing the risk capital for 

the guarantee period.  

We begin by recasting         in Equation (4.2) as the value of an objective function    , and 

then   (        ) using      from either Equation (4.24) or (4.34). We now state the objective 

function as;  

 

                     subject to                          (4.35) 

 

where                  ,     $200,000, and      . Therefore, the expected value of the risk 

capital cannot exceed $640,000 otherwise the developer should never attempt to resell any house 
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should it become impacted by indoor air quality issues. The following optimization and 

parameterization effort is built upon the idea that the minimum value of the objective function is 

located within the vicinity of the 7K4C and 7K7C sampling strategies. Clearly, the objective function 

seeks to balance the worth of the hydrogeological data in terms of minimizing     , and the expense 

of ever increasing site characterization costs valued by         . 

The first step in the procedure is to parameterize four unknown values of       ,      ,         and 

      using the 7K4C sampling case strategy. The idea is to balance the contributions of the first two 

statistical metrics that quantify prediction uncertainty, measured by       

     and       

    , towards the 

risk capital. We achieve this balance by simultaneously solving the following fours equations for the 

above four unknowns; 
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(4.36) 

 

where                  . Values of       

     and       

     are provided in Figure 4.2. As a resulting of 

solving Equation (4.36), we found that the weighting coefficients        and       to be 

approximately 0.6, and       ,        to be approximately 0.4. These values are listed on Table 4.1.  

We repeated the same procedure for the 7K7C sampling strategy (i.e. by using       

     and       

    ) 

and found similar results.  

The second step in the procedure is to parameterize      . We begin by observing a long-term 

average interest rate surcharge  ̅    (in excess of   ) in the stock of companies that specialize in 

trading the risk associated with the guarantee period. We anticipate that this might be difficult given 
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that it is more likely that companies will be involved in all activities associated with the brownfields 

development as expressed by Equation (4.1). To proceed, we assume    ̅        per annum with 

a base case value of  ̅        per annum given the anecdotal evidence that brownfields project 

rarely receive funding given the multitude of other “safer” investment opportunities in the financial 

markets. We now use  ̅    to parameterize       for the project at hand assuming the optimal solution 

lies somewhere between the 7K4C and 7K7C sampling strategies. We formulate this as; 
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(4.37) 

 

where                  . The value of       on Table 4.1 is based on  ̅        per annum.  

The third step in the procedure is to parameterize        and simultaneously equate the actuarial 

and financial methodologies for calculating the risk premium as expressed by Equations (4.24) and 

(4.34), respectively. We begin by recasting the objective function expressed by Equation (4.35) as; 
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     (4.38) 

 

under the assumption that the minimum value lies somewhere between the 7K4C and 7K7C sampling 

strategies. The value of        is found by minimizing Equation (4.38), with a value provided on 

Table 4.1 when  ̅        per annum. 

 

4.4 Results  

The optimal cost of the risk capital is such, that when added to the cost of the hydrogeological data, 

the least cost for guarantee period is achieved. This concept is directly expressed by Equation (4.35).  

In Section 4.3.3, we conducted a joint parameter estimation and optimization exercise with the 

understanding that the least cost for the guarantee period lies somewhere between the 7K4C and 

7K7C sampling strategies. This notion was informed by Sections 3.2.3.1 and 3.2.3.2 in which we 

observed that beyond the 7K4C sampling strategy, there was not a statistically significant reduction in 

the prediction uncertainty of the first two metrics at the 5% level of significance. In this section, we 

now price all components of the risk capital and data collection in Equation (4.35). Specifically, this 

involves evaluating the risk capital using both the actuarial (see Section 4.3.1) and financial (see 

Section 4.3.2) methodologies, for all data collection strategies. The worth of data becomes apparent 

by comparing and contrasting the expected cost of the guarantee period for the alternative data 

collection strategies. 

We begin the discussion on the optimal cost of the risk capital by focusing on the financial 

methodology. In Figure 4.3, we provide values of         in time interval           for the  th house 

when  ̅        per annum. Values of        are calculated using Equation (4.33) with parameters 

      ,      ,        ,       and       estimated from the first two steps outlined in Section 4.3.3. The 

time-varying nature of         denotes the transient risk during the guarantee period, which mimics the 

shape of      
 and      

 for sampling strategies 7K4C and 7K7C as shown in Figure 4.2. Specifically, 

the interest rate surcharge         quantifying hydrogeological (and financial) risk is minimal at early 

time before any of the Monte Carlo permeability realization plumes arrive. Then, as the leading edge 

of the groundwater plume reaches the houses, the risk is greatest because the Kalman filter is least 

effective at constraining the prediction uncertainty as measured by the first two metrics. This is 
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largely a consequence of the very low arrival-time soil gas and indoor air concentrations inflating the 

value of       
  and       

  of Equation (3.9). Later,         declines and asymptotically reaches  ̅   . 

Finally, we note that the contribution of the hydrogeological risk to         far exceeds that of the 

financial risk when  ̅        per annum. 

On Table 4.3, we provide values of the objective function (see Equation (4.35)) with the risk 

capital      from Equation (4.34), and the probability of failure      defined by Equation (4.3) and as 

shown in Figure 3.8. The value of       arising from the use of the 7K4C and 7K7C sampling 

strategies, as discussed in the second step of the parameter estimation and optimization procedure 

outlined in Section 4.3.3, was applied to calculate      for all remaining sampling strategies. 

Surprisingly, the minimum value of the objective function occurred for 1K4C. However, in Section 

3.3 we recognized that while the 1K4C provided accurate estimates of     , it performed poorly based 

on the first two performance metrics measuring prediction uncertainty. Therefore, we instead accept 

7K4C as the correct minimum. The minimum remained near 7K4C when we adjusted  ̅    over the 

interval    ̅        per annum, and we provide further discussion on this issue later in this 

section. 

Professional engineers, geoscientists, and actuaries involved in managing the guarantee period of 

the brownfields development project are more likely to envision the time-varying cost of the risk 

capital      by decomposing it into a contribution from a first and second moment analogous to the 

actuarial methodology in Equation (4.24). In step 3 of Section 4.3.3, we chose a value of        in 

Equation (4.33) so that the costs of the risk capital between the financial and actuarial methodologies, 

and for the average of the 7K4C and 7K7C sampling strategies, were identical. This can be observed 

on Tables 4.3 and 4.4. Note that the cost of the objective function using either the actuarial or 

financial methodologies to evaluate      exhibits the same trends for the various sampling strategies. 

Note that 1K4C still remains the minimum. However, we use our judgement to denote 7K4C as the 

correct minimum.  

In the first column of Figure 4.4, we show values of various components of the objective function 

calculated using the probability of exceedence from Equation (4.3). These components include; 

E       which is the expected cost of the risk capital (i.e. first moment),        which is the risk 

loading term arising from the standard deviation in the risk capital (i.e. second moment),          

which is the expected cost of data, and     which is the cost of the objective function from Equation 

(4.35). The value of the risk capital in Equation (4.35) is;      E             . The solid lines 
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indicate the cost of each component while the dashed lines indicate the percentage by which they 

contribute to the total cost of the objective function. The expected costs of failure for both 7K4C and 

7 7C are nearly identical, and almost “zero” in keeping with reality for the problem at hand in which 

the indoor air concentration never exceeds the regulatory limit for houses 1, 3, 4 and 6. The risk 

loading term for 7K4C is slightly larger than for 7K7C due to the worth of the extra soil gas 

concentration data in 7K7C for reducing prediction uncertainty. However, these extra soil gas 

concentration measurements cause the cost of data for 7K7C to exceed that of 7K4C. The optimal 

sampling strategy 7K4C achieves a least cost by balancing the worth of the cost of hydrogeological 

data against its value in reducing the risk loading term arising from prediction uncertainty. In contrast, 

7K7C places too much emphasis on data collection relative to its actual worth in reducing the cost of 

the risk loading term. The optimal balance achieved by 7K4C indicates that the distribution of costs 

for the guarantee period should be: E             ,              , and                 

for a total cost of $91883.66. We reiterate that this breakdown of costs was established under the 

assumption that financial risk  ̅        per annum. 

Sampling strategies 1K and 80K provide extreme opposite insights into the merits of Equation 

(4.24) for evaluating the risk capital. For instance, 1K exhibits erratic behaviour with the cost of 

E       and        for 4C being less than 7C. This is irrational and is a consequence of Equation 

(4.24) being strongly dependent on the probability of failure     . This is a due to our earlier 

assumption in Equation (4.16) that the total claim or risk   is the product of the probability and cost 

of failure. Therefore, when we have insufficient data as with 1K4C, we may erroneously 

underestimate      (as the third performance metric quantifying prediction uncertainty) yielding a low 

value for the total claim or risk and ultimately the risk capital. Given that the cost of data is also at a 

minimum, the objective function is minimized implying an optimal management strategy. Our 

attempts to alleviate this problem by introducing the first and second performance metrics for 

prediction uncertainty (i.e.      
 and      

) into         and          were not entirely successful. This 

could create a problem for optimization algorithms that do not depend on human judgement. At the 

opposite end of the spectrum, 80K exhibits perfectly rational behaviour in that the extensive site 

characterization effort yields a cost for E       and        which are effectively “zero” in keeping 

with reality for the problem at hand. However,          is exorbitantly large yielding a high total cost 

and hence sub-optimal management strategy.  

In the second and third columns of Figure 4.4, once again we show values of various components 

of the objective function except using the probability of exceedence      derived by fitting the log-
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normal and beta distributions to       
 . This adjustment to      has a direct impact on both E       

and        as shown by Equation (4.24). Focusing specifically on the 7K sampling strategies, we see 

on Table 4.4 and Figure 4.4 that the beta distribution yields the lowest total cost of the objective 

function. This is a consequence of the fact that it yields the lowest estimates of      as discussed in 

Section 3.3. Similarly, the log-normal distribution yields the greatest total cost given higher estimates 

of     . Of particular interest is the observation that the use of the log-normal distribution to calculate 

     appears to place the most value on          as a percentage of the total costs relative to using 

Equation (4.3) to calculate     . It also inflates the percentage of contribution of E       and        to 

total costs. In contrast, the beta distribution has the opposite effect relative to using Equation (4.3) to 

calculate     , although the impact is only slight. This should be of concern to professional engineers, 

geoscientists and actuaries who will jointly share the wealth created by the brownfields project. As 

we progressively remove permeability data and transition down to the 5K, 3K and finally 1K 

sampling strategies, the above observations become less relevant. We simply reiterate our previous 

statement from Section 3.3 that there is little value in using either the log-normal or beta distributions 

to extrapolate the probability distribution for extreme events when       
  and       

  are poorly 

constrained by insufficient data. 

The remaining question that we wish to examine is the sensitivity of the total cost of the guarantee 

period to the long-term average interest rate surcharge  ̅    (in excess of   ) on the stock of 

companies that specialize in trading the risk associated with the guarantee period. The motivation for 

this sensitive analysis follows from the fact that we are unaware of the availability of market data to 

estimate  ̅    and expect that it may instead come from public disclosure of over-the-counter financial 

products. We surmise that a successful brownfields project will be one whose progress is least 

sensitive to potential market fluctuations in  ̅   , as well as being managed at the least cost. We 

conduct this sensitivity analysis by adjusting  ̅    over the interval    ̅        per annum, and re-

establishing steps 2 and 3 of the parameter estimation and optimization processes discussed above in 

Section 4.3.3 for each increment of  ̅   . Each incremental value of  ̅    yields a new estimate of 

       and ultimately the cost of the safety loading term       . The cost of E       and          in 

the objective function remain unaffected.  

Figure 4.5 provides the cost of        and the objective function with    ̅        per annum, 

for sampling strategies 1K2C, 1K4C, 7K4C and 7K7C. Once again, 1K4C appears optimal although 

it should be discarded based on the first two performance metrics quantifying prediction uncertainty. 
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For sampling strategies 7K4C and 7K7C, the cost of the safety loading term        increases 

monotonically with  ̅   . This occurs because        is proportional to       , and        increases 

with  ̅   . Because        for sampling strategy 7K4C is greater than that for 7K7C, the spread 

between their safety loading terms also increases with  ̅   . In other words, as the market places a 

greater premium on risk during the guarantee period by increasing the average interest rate 

surcharge  ̅   , the contribution of the safety loading term to the total cost of the guarantee period also 

increases. At some point, the optimal least cost management strategy becomes one that places greater 

worth on the value of hydrogeological data          as a means to reduce prediction uncertainty and 

hence the cost of the safety loading term       . This transition whereby 7K7C becomes the optimal 

least cost management strategy is shown in Figure 4.5 as  ̅    increases beyond 0.17 per annum when 

using Equation (4.3) to calculate     . It is reassuring to note that the total cost of the objective 

function for both 7K4C and 7K7C does not increase appreciably with  ̅    because both sampling 

strategies already place a significant emphasis on the worth of data as a means of reducing prediction 

uncertainty. Finally, we note that the above observations are insensitive to whether Equation (4.3), the 

log-normal, or beta distributions are used to calculate     . 

 

4.5 Conclusions 

In this work, we develop the methodology to price the risk in a brownfields redevelopment project 

using the actuarial premium calculation principle and financial principle respectively. The possessed 

risk mainly results from the hydrogeological and the financial uncertainties. The results indicate that 

with more hydrogeological measurements through the site characterization process as well as during 

the monitoring period, part of the loss reserves which is a measure of the level of risk aversion will be 

reduced. In another word, when the insurers or developers are more certain about the occurrence of 

failure in the future, the less they need to put aside to compensate against the uncertainties. On the 

other hand, more data could become excessive to further investigate the project and not be worth it 

due to the high cost of data. The optimal cost of the project occurs when we obtain sufficient amount 

of data. In this study, 7K4C gives the least cost and comparable to 7K7C.   

The safety loading factors         ,         accounted for the insurers’ preference of risk aversion and 

incorporated into both actuarial and financial methodologies are dependent on the first two metrics 

which are used to quantify predication uncertainty: first, the ability to correctly estimate the actual 

indoor air concentrations at unmonitored locations at any point in time; second, the ability to use 
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available soil gas concentration data to reduce the standard deviation in indoor air concentration at 

unmonitored locations. The principle of the optimization and parameterization is to balance the 

contributions of the two statistical metrics and also to equate the actuarial and financial 

methodologies for calculating the risk premium for the 7K4C and 7K7C sampling strategies. Using 

the financial methodology, we can see that the contribution of the hydrogeological risk to         is far 

beyond that of the financial risk when the average interest rate surcharge  ̅        per annum. Also, 

the risk capital and the total cost of this project vary when adjusting the average  ̅    for the 7K4C 

and 7K7C cases between 0 and 0.2. We can conclude that when the site information is not sufficient 

enough to infer the potential risk of the indoor air in the residential buildings exceeding the regulatory 

limit, with the change of  ̅   , the risk capital and the total cost could change significantly. On the 

contrary, with sufficient amount of data prior to the construction and during the monitoring period, 

when the  ̅    changes within a practical range, the risk capital and the total cost would be expected to 

stay within an accepted level (7K case). The reason for that is the safety loading factor is only a small 

fraction of the total risk capital with sufficient datasets. Also, the minimum value of the objective 

function becomes 7K7C which is the optimal least cost management strategy as  ̅    increases 

beyond 0.17 per annum. 

The sensitivity of the methods of defining the probability of failure for the calculation of the total 

cost, by either using Equation (4.3), fitting the log-normal or beta distributions to       
 , is discussed. 

Log-normal distribution or beta distribution can either overestimate or underestimate the risk capital 

depending on the characteristics of the population. The log-normal distribution can be used for heavy-

tailed population to increase the probability of failure which will be in favor of determining the loss 

reserve in a conservative manner. However, if the data is enough, we will need less money to ensure 

the uncertainty, and the safety loading factor will contribute less to the risk capital. Since the safety 

loading takes a small portion of the risk capital compared with the expected value of losses, the risk 

capital and the corresponding total cost in this case will not differentiate dramatically no matter which 

method is applied to define the probability of failure.  

This chapter shows the importance of site characterization and sampling for a project, and the way 

to quantify the risk in an economic way. It has to be noted that the methodology presented here can be 

extended and applied, and other data can be incorporated into the framework for different risk-based 

engineering projects.  
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Figure 4.1: The five stages of a brownfields redevelopment project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  117 

 

Figure 4.2: Transient behaviour of     and     with time for sampling strategies 1K2C, 1K4C, 7K4C 

and 7K7C in (a) house 1, (b) house 2, (c) house 3, (d) house 4, (e) house 5, and (f) house 6. 
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Figure 4.3: Transient behaviour of         for houses 1, 3, 4 and 6 using sampling strategies (a) 7K4C 

and (b) 7K7C.  
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Figure 4.4: Transient variability as a function of sampling strategy for;      which is the expected 

cost of failure,      which is the safety loading term,          which is the expected cost of data, 

and     which is the total cost of the objective function (see Equation (4.35)). The first column 

involves      estimated using Equation (4.3), the second column involves      estimated using a log-

normal distribution, and the third column involves      estimated using a beta distribution.  
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Figure 4.5: Sensitivity in the cost of;      which is the safety loading term, and     which is the 

total cost of the objective function (see Equation (4.35)), to  ̅   over the interval    ̅        per 

annum. The first column involves     estimated using Equation (4.3), the second column involves      

estimated using a log-normal distribution, and the third column involves      estimated using a beta 

distribution. 
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Table 4.1: Risk capital parameter values 

Parameter Value 

General  

    start date for brownfields project March 2008 

           indoor air monitoring interval 100 days 

   guarantee period for brownfields project 2000 days 

   house value reduction after resold 0.2 

US national housing index parameters for    

    unit price of house at time    $200,000 

    annual rate of appreciation  0.0456 per annum 

    volatility  0.0375 

  ̂  market price of risk 0.0316 

Annual rate of inflation     

    speed of adjustment 5.83 

    reversion level 3.12 per annum 

    Volatility 6.19 

  ̂  market price of risk -0.1 to 0.1 

Annual discount rate    

   discount rate        ̂    0.0612 

Nominal annual interest rate     

    speed of adjustment 0.2 

    reversion level 0.06 per annum 

    Volatility 0.07 

  ̂  market price of risk −0.1 

S&P 500 parameters for    

    annual rate of appreciation  0.0662 per annum 

    volatility  0.1537 

        expected return on the market portfolio   0.12 per annum 

    correlation between    and    0.0197 

Safety loading parameters  

       ,      weighting parameter for coefficient of variation 0.6 

       ,      weighting parameter for relative accuracy 0.4 

       hydrogeological coefficient in financial method 0.7210 

        hydrogeological coefficient in actuarial method 0.7916 

note: modified from Table 4.2. of Yu (2009) and based on  ̅    = 0.1 per annum.  
 

 

Table 4.2: Estimated sampling costs for soil gas concentration and permeability data 

Cost of sampling concentration ($) Cost of permeability data ($) 

Type of method Buried collector Type of method Auger drilling 

Equipment  Drill 430.71 

Mobilization  Equipment 100 

Operation  Mobilization 400 

Per sample 250 Sampling per borehole 7800 

Total 250   Total 930.71+7800   

note:    and    are the number of concentration and boreholes for permeability data. 
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Table 4.3: Values of objective function for different sampling strategies using the financial premium 

calculation principle 

Obj 0C 2C 4C 7C 

1K – Eqn. (3) $640,000.00 $640,000.00 $51,602.64 $521,271.29 

3K – Eqn. (3) $493,275.59 $454,147.37 $170,055.57 $129,264.35 

5K – Eqn. (3) $631,132.02 $524,726.16 $261,609.59 $151,430.53 

7K – Eqn. (3) $326,670.09 $149,458.83 $91,740.90 $97,637.68 

80K – Eqn. (3) $626,298.71 $634,893.85 $640,000.00 $640,000.00 

note: the safety loading coefficients are calculate based on  ̅    = 0.1 per annum. 

 

 

Table 4.4: Values of objective function for different sampling strategies using the actuarial premium 

calculation principle 

Obj 0C 2C 4C 7C 

1K – Eqn. (3) $603,020.27 $296,437.90 $42,618.83 $222,052.10 

3K – Eqn. (3) $371,076.73 $322,743.19 $150,245.09 $126,015.93 

5K – Eqn. (3) $424,568.91 $312,474.46 $200,695.79 $148,339.10 

7K – Eqn. (3) $257,024.86 $132,073.46 $91,883.66 $97,766.69 

7K – lognormal $243,745.38 $157,082.49 $127,352.46 $128,136.10 

7K – beta $231,657.80 $125,717.41 $90,354.70 $91,032.11 

80K – Eqn. (3) $626,298.71 $634,943.26 $640,000.00 $640,000.00 

note: the safety loading coefficients are calculate based on  ̅    = 0.1 per annum. 
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Chapter 5 Summary and Recommendations 

5.1 Summary of Accomplishments 

The main goal of this research is to develop a framework for optimal design of site characterization of 

a risk-based brownfield redevelopment project under uncertainty. To accomplish this goal, three 

major elements are presented and comprise the core of this thesis. First, the numerical model 

CompFlow Bio was applied to analyze the hydrogeological process governing the fate and transport 

of TCE (a volatile chlorinated solvent) from groundwater to indoor air. It provided an increased 

understanding of the impact of various influential factors (including recharge, a clay layer with and 

without recharge, a thicker vadose zone, and heterogeneity in the subsurface permeability structure of 

a stratigraphically continuous aquifer) on the distribution of the indoor air concentrations within 

multiple residential houses located directly above and adjacent to the groundwater plume. Due to 

limiting factors such as cost, time, and accuracy involved in site characterization and monitoring 

during redevelopment, an integrated approach was developed as the second element of this thesis to 

reduce uncertainty and improve accuracy with effective information. To reduce prediction 

uncertainty, this approach took into account the worth of permeability data and soil gas concentration 

data and was measured statistically using three metrics. A series of permeability data was conditioned 

and used to reconstruct the geological aquifer based on the kriging technique in order to build the 

spatially correlated error covariance matrix using the numerical model to simulate indoor air 

concentration in space and time. Different amounts of soil gas concentration data were also used 

through the Kalman filter to update estimates of the indoor air concentration obtained from the 

hydrogeological model. For the third element, prediction results, after data assimilation was applied, 

were used to investigate the cost of hydrogeological and financial risks in different sampling 

strategies under the two risk capital valuation approaches defined and developed in this study. 

Eventually, an optimal sampling strategy was selected based on the least cost criterion.  

Specific accomplishments are described below. 

 The heterogeneous and statistically isotropic Borden-like permeability field realization and 

the problem geometry, reminiscent of the Rivett (1995) field experiment in the Borden 

aquifer, were presented for the numerical model. The three-dimensional geometry was 

motivated by the need to accommodate multiple houses, with some laterally offset from the 

direction of groundwater plume advection. 
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 The relative importance of various influential parameters was observed in Chapter 2. The 

combination of inserting a clay layer and recharge created an impervious barrier for TCE 

beneath the foundation slab effectively negating the flux of TCE across the foundation 

slab. Heterogeneity in the subsurface permeability structure was the next parameter of 

importance. It implied that characterizing the site stratigraphy plays an important role when 

assessing the fate and transport of TCE and detailed soil core permeability measurements 

to characterize the heterogeneity within each stratigraphic unit is necessary.  

 

 Simulation results using the numerical model CompFlow Bio in Chapter 2 indicated that 

houses which were laterally offset from the groundwater plume were less affected by 

vapour intrusion due to limited transverse horizontal flux of TCE within the groundwater 

plume, in agreement with the ASTM (2008) guidance. The J&E model generated an 

exclusion zone that would be significantly further away from the groundwater plume than 

what either CompFlow Bio or ASTM (2008) would predict. 

 

 By comparing J&E-calculated attenuation coefficients (    ) against those computed using 

CompFlow Bio (    ) based on 50 alterative permeability realizations, the result showed 

that the J&E model is conservative and the degree to which the J&E model is conservative 

is unrealistic from a practical engineering design perspective. When site characterization 

budgets are limited, the J&E model is an excellent choice to assess the fate and transport of 

TCE in a manner that is both economical and conservative. 

 

 Chapter 3 presented a methodology for reducing the uncertainty in predicting indoor air 

concentration when field data (permeability and concentration data) became available. The 

overall performance of the prediction was measured by three metrics: the ability to 

correctly estimate the actual indoor air concentration; the ability to use available soil gas 

concentration data to reduce the standard deviation of the indoor air concentration; and the 

ability to accurately forecast the probability of indoor air concentrations exceeding the 

regulatory limit. Based on the RMSE and the statistical test results with respect to the three 

metrics, we concluded that 7K4C produced the optimal estimation which balanced the type 

and quantity of sampling data.  

 

 Permeability data were extracted from borehole logging prior to the redevelopment, 

therefore the geological information was imbedded in the model before assimilating soil 
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gas sampling data through the Kalman filter to reduce the model prediction uncertainty. 

The results in Chapter 3 showed that the value of permeability data was worth more than 

the value of concentration data under this framework by comparing different measures of 

uncertainty reduction, which implied that the site characterization of a geological aquifer is 

the most important step in a risk-based project.  

 

 The uncertainty reduction was significantly improved after incorporating sampling data, 

even if a limited number of samplings were taken due to the availability of samplings in 

residential dwellings and high sampling costs. It is very important for the decision maker to 

choose the appropriate number of samplings, location and time of samplings, and category 

of samplings (permeability versus concentration). We obtained better estimations of indoor 

air concentration and probability of exceedence when more data were acquired. 

 

 The third metric was presented by three different evaluations of the probability of 

exceedence (Equation (3.19) and fitting the tail of the indoor air concentration distribution 

to a log-normal and beta distribution). It showed that the log-normal distribution provided 

the most conservative estimates for prediction uncertainty as characterized by the 

probability of exceedence and the beta distribution and Equation (3.19) provided 

intermediate and least conservative estimates. This may help regulators to make an 

appropriate strategy for managing uncertainty based on the characteristics of indoor air 

concentration population. 

 

 The use of Monte Carlo simulations and the Kalman filter requires a great number of 

groundwater flow and solute transport simulations per optimal sampling design, which can 

be computationally expensive. Therefore, the efficiency of this methodology depends on 

the type of application and the computation speed of the model. Judgment from 

experienced professionals for the initial sampling design is needed. 

 

 Chapter 4 proposed an optimal least cost solution for designing a sampling network and 

managing the risks from hydrogeological and financial perspectives. It showed that drilling 

7 boreholes to extract permeability data and taking soil gas samplings in 4 locations or 7 

locations alternatively gave the minimum total cost. 
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 Two risk capital valuation approaches were presented based on two different principles, 

actuarial and financial. With the increasing amount of data, the value of the safety loading 

term for compensating against the uncertainties became smaller, however, the cost of 

samplings increased. A trade-off between an increasing sampling budget and a decreasing 

risk capital was observed.  

 

 The hydrogeological uncertainty was represented in the risk capital valuation by the 

coefficient of variation, the relative accuracy, and the probability of exceedence 

summarized in the results obtained by the Kalman filter. The financial uncertainty mainly 

resulted from the market price of risk for a contract that depended linearly on the 

underlying stochastic US national housing price index.    

 

 The risk capital was composed of the expected value of risk capital, the safety loading 

term, and the cost of data. By fitting the indoor air concentration of TCE into a log-normal 

distribution to define the probability of failure, a more conservative estimation of loss 

reserve was obtained.  

 

 The safety loading term only contributed to a small portion of the risk capital compared 

with the expected value of losses. The risk capital and the corresponding total cost would 

not differentiate dramatically from varying the average interest rate surcharge which 

represents the market price of risk with a greater volatility and they were not sensitive to 

the method used to define the probability of failure. 

 

 This framework can also be applied for different engineering projects. 

 

5.2 Recommendations for Future Research 

This research has provided some insights into the risk capital valuation for a risk-based engineering 

project and helped understand the process affecting exposure pathways of volatile organic compounds 

(VOCs) originating from a NAPL source zone located below the water table into indoor air, but some 

questions remain and others have arisen from this study.  



  127 

The effects of more hydrogeological factors and factors with respect to structure of residential 

houses on the vapour intrusion pathways should be further investigated. In the modeling part of this 

thesis, the impacts of the influential parameters, recharge, barometric pressure, inserting a clay layer 

with and without recharge, extending the thickness of the vadose zone, heterogeneity in the 

subsurface permeability structure of the stratigraphically continuous aquifer, the aperture of the 

foundation slab, and the negative pressure in the basement on the indoor air concentration were 

examined. However, there are some other parameters which may also play important roles in soil gas 

transport process. First, non-equilibrium dissolution models used to show the persistent dissolution 

behaviour of DNAPLs is crucial for governing the mass transfer in the source zone. Different 

formulation and parameter values of the dissolution rate should be evaluated. Second, in previous 

studies, the thickness of the capillary fringe has been shown to be a dominant factor in the vertical 

mass flux across the capillary fringe since that DNAPLs located below the water table must diffuse 

across the capillary fringe before moving upwards in the gas phase. It would be helpful if the 

importance of the thickness of the capillary fringe was fully investigated.  

The problem with using the three-dimensional CompFlow Bio model is the high computational 

cost. It took a couple of weeks to finish one standard simulation for this application. Therefore, there 

is a need to enhance the computational efficiency without simplifying the model. Parallel computing 

is a form of high-performance computation that can be considered to mitigate this problem. Building 

a Jacobian matrix and the iterative solver are the two core components contributing to the execution 

time and should be the main focus for improvement.  

This study was intended to provide some insights and practical guidance for redeveloping a 

brownfield, but the conceptual model was highly stylized and hypothetical. It will be valuable to use 

real world data to verify our strategy. This thesis has shown that the geological information of an 

aquifer is essential for determining the temporal and spatial distribution of contaminated vapour, so 

more characteristic sites with different lithology parameters should be taken into account to evaluate 

this impact. Also, the scale of this study was relatively small. There were only six houses set up in the 

problem geometry. The negative pressure in the basement of each house causes the soil gas to be 

pulled out of the subsurface into the basement and deflects the soil gas plume in the vadose zone. If 

there are more houses with the same structure built in the geometry, the plume may spread more 

laterally and the delineation of the exclusion zone may change. At the same time, the problem of 

boundary effect could be alleviated. A larger scale model is necessary with up-scaling techniques 

introduced to capture the effects of fine scale heterogeneity.  
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The thesis used an ordinary kriging technique to produce smooth images based on the spatial 

correlation generated from the sampled data. In doing so, short scale variability was poorly 

reproduced while it underestimated extremes. Compared with the classical kriging method, a 

conditional transition probability/Markov chain approach (TP/MC) can generate a high-resolution 

aquifer analogue, improve consideration of spatial cross-correlations, and facilitate the integration of 

geologic interpretation of facies architecture. In order to better capture the structurally complex 

geology, this approach can be applied to reconstruct aquifer heterogeneity in a future study.  

In the cost-benefit-risk analysis, the cost of acquiring permeability and soil gas sampling data was 

roughly estimated. The cost of labour and reporting results were not taken into consideration, which 

could be a significant part of the total cost. The hypothesis in the risk capital valuation was that the 

cost of demolishing a house, remediating the site and rebuilding the house was neglected, so the risk 

of this cost appreciated over time was overlooked. If the liability period for developers is long 

enough, the inflation rate could be an important factor for cost analysis in order to reserve enough 

capital to avoid insolvency. In future studies, all of these factors should be taken into account. 
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Appendices 

Appendix A Model Parameters 

In order to better understand the numerical model and parameter estimations in Chapter 2, a great 

number of materials from Section 2 of Yu et al. (2009) are directly used as supporting documentation, 

including; (1) formulation, (2) the parameterization of all porous media and chemical properties 

governing flow and transport, (3) a methodology for incorporating the foundation of the building that 

is below grade into the model and simulating the interaction between the aquifer and the building, and 

(4) a methodology for calculating the indoor air TCE concentration based on the interaction between 

the aquifer and building.  

Based on Equations (2.1) – (2.3), there exist the following constraints among the primary variables:  

 

           

       ̂    (  )      ̂ [    (  )      (    )] 

       ̂    (  )      ̂     (    ) 

(A.1) 

 

where 

 

 ̂             
 ⁄   (A.2) 

 

and       ,      , and      are experimentally derived capillary pressure curves      .   
  is a 

blending parameter used to ensure that the capillary pressure has the correct form as the non-aqueous 

phase saturation goes to zero. The capillary pressure curves are scaled using a modified form of the 

function proposed by Leverett (1941):  
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where       
  and       

   are the dimensionless and dimensional capillary pressures, respectively, 

between any two phases,                ,      is the surface/interfacial tension between the two 

phases, and  ̃ is a parameter related to the pore size distribution of the porous media.  

Stone’s second model (Stone, 1973) is used in CompFlow Bio to estimate     and is normalized 

using the method introduced by Aziz and Settari (1979). Therefore, the relative permeability of the 

aqueous, gas and non-aqueous phases for the three-phase system is given by:  
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    )  (       )] 

(A.4) 

 

where         and        are the non-aqueous phase relative permeabilities measured in the two-phase 

non-aqueous/aqueous and non-aqueous/gas systems at the aqueous and gas phase saturations in the 

full three-phase system, respectively.  

Partitioning of components between phases is assumed to be at equilibrium. In this context, the 

following constraint applies to any phase   which is present:  

 

∑     

 

 

     (A.5) 
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Component   partitions between the gas and non-aqueous phases according to:  

 

            where         {    }   ⁄  (A.6) 

 

while between the gas and aqueous phases, the relationship is:  

 

            where         {    }   ⁄  

            where            ⁄  

(A.7) 

 

where both      and      are dependent on the systems pressure   .  

Although Equation (2.1) is given in the most general sense, some simplifying assumptions are 

made that restrict the composition of various phases. Specifically, the non-aqueous phase consists of 

only component          which implies       and       , the aqueous phase consists of 

components            which implies      , and the gas phase consists of all available 

components             . The rationale for this restricted system is provided in Forsyth (1993).  

Phase appearance and disappearance rules are used to develop meaningful tests to detect which 

subset of phases exists at a node given the moles of component   present. These rules follow from the 

set of primary variables, which in general consist of   ,    , and    and are aligned with Equations 

(2.1) to (2.3) . Following the formulation introduced by Forsyth (1993), we also assume the gas phase 

is always present to at least some minimal saturation   
         to alleviate numerical issues 

associated with the non-condensable air component.  

All relevant physical and chemical properties of the porous media and components are itemized on 

Table A.1 – A.4. 

Interaction between the soil gas and the indoor air is limited to occur across the foundation slab 

only. To facilitate this in the numerical model, we assumed there was a 2.2 m length of crack per unit 
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surface area of foundation slab, where the genesis of the cracks is due to foundation settlement. The 

aperture of the crack for the base scenario is         m resulting in a permeability of       
 

             , while the foundation slab matrix is comprised of concrete and is essentially 

impermeable which is approximated by assigning it a permeability of       
           , with 

the resulting bulk permeability of the foundation slab being       
              . These 

properties were calculated using the following series of relationships:  

 

      
 

  

     
  

      
         

 

      
 

     

  
 

      
       

       
       

       
 

(A.8) 

 

where    and       are the volume      of the crack and entire foundation slab, respectively. 

Advective flux of the gas phase is forced to occur across the foundation slab only by reducing the gas 

phase pressure along the top row of the basement interior nodes so that for the base scenario they are 

   
             a below that of the ambient atmospheric pressure. The interior nodes of the 

basement are assigned a permeability of                     to ensure that the foundation slab 

is the limiting factor allowing gas phase flow to enter the basement. The porosity of the nodes 

representing the interior volume of the basement was reduced to                 to minimize the 

mixing volume within the basement. These properties are summarized on Table A.5. 

Once the two metrics described above are computed using CompFlow Bio, the indoor air 

concentration of TCE is computed as a post-processing step. This methodology proceeds by first 

computing the concentration of TCE in the soil gas        that is entering the basement at current 

CompFlow Bio simulation time     as:  
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             (A.9) 

 

where      
                and    

            are the flow rate of TCE and air into the basement at 

timestep    .  Next, we assume two possibilities concerning the ventilated condition of the house, 

namely; without air exchange, and alternatively with air exchange. Without air exchange, the high 

efficiency furnace does not introduce any outside air into the house, the air within the house is 

perfectly circulated via the ventilation system attached to the furnace, and that any soil gas entering 

  
      (or exiting   

     ) the indoor air of the house across the foundation slab is compensated by 

an equal flow of indoor air out of   
      (or atmospheric air into   

     ) the house through leaks 

around the windows and doors. The indoor air concentration of TCE,        
    , at current CompFlow 

Bio time step     is computed as:  
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(A.10) 

 

where    
      +   

      =   
      +   

       and the concentration of TCE in the atmospheric air 

         
      ppmV for the base scenario. The fluxes of TCE,   ,   ,    and               

        ⁄  , are depicted on Figure A.1. The volume of the house    is calculated under the 

assumption that it consists of a basement and main floor, and each floor including supporting beams 

is 3 m tall, resulting in a total indoor air volume of          . Note that timestep           , 

where   denotes the prior CompFlow Bio simulation time. With air exchange,   
      =         

where            is the number of air volumes flowing into the house per unit time for the base 

scenario model. Note that   
      is enforced using a penalty sink term for    in Equation (2.1) and 

is implemented as:  
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   ) (A.11) 

 

where    
                 

         , node   is basement node in which the sink term is placed, 

   is the volume of node  , and       in order to ensure a grid-converged air flow rate   
        for 

the simulated pressure difference.  
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Figure A.1: Contaminant flux into and out of house, denoted by   ,   ,    and    [          

        ⁄ ], as calculated using Equation (A.10). 
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Table A.1: Capillary pressure and relative permeability aqueous/non-aqueous phase table 

                                          

0.2 0.0 0.68 9.0 

0.3 0.04 0.55 5.4 

0.4 0.10 0.43 3.9 

0.5 0.18 0.31 3.3 

0.6 0.30 0.20 3.0 

0.7 0.44 0.12 2.7 

0.8 0.60 0.05 2.4 

0.9 0.80 0.0 1.53 

1.0 1.0 0.0 0.0 

note: cited from Table 2. of Yu et al. (2009) 

 
 

Table A.2: Capillary pressure and relative permeability liquid/gas phase table 

                                                         
a
             

b
 

0.2 0.64 0.0 9.0 6.6 11.6 

0.32 0.46 0.0 3.0 4.5 9.5 

0.4 0.36 0.0009 2.4 3.9 8.9 

0.5 0.25 0.045 2.1 3.6 8.6 

0.6 0.16 0.116 1.8 3.3 8.3 

0.7 0.09 0.21 1.5 3.0 8.0 

0.8 0.04 0.34 1.2 2.0 7.0 

0.9 0.01 0.49 0.9 1.0 6.0 

0.95 0.0 0.58 0.5 0.5 5.5 

1.0 0.0 0.68 0.0 0.0 5.0 
a
 base scenario capillary fringe 

b
 scenario with thicker capillary fringe 

note: cited from Table 3. of Yu et al. (2009) 
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Table A.3: Equilibrium partitioning coefficients (at 10
o
C)  

Property Value 

water:            

           —
a
 

           1.07 

air:            

           —
b
 

           —
b
 

TCE:               

              1.96 

              10.52 
a 
water is not allowed to partition from the gas into the  non-

aqueous phases 
b 
air is a non-condensable component and is not allowed to partition 

from the gas phase into either the aqueous or non-aqueous phases 

note: cited from Table 4. of Yu et al. (2009) 
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Table A.4: Component and phase property data (at 10
o
C) 

  Property Value 

Compressibilities  

  ̂     k a
    3.0×10

-6
 

  ̂     k a
    4.3×10

-7
 

  ̂     k a
    1.0×10

-7
 

Standard component densities  

   
    mole m ⁄   5.5×10

4
 

   
    mole m ⁄   41.1 

      
    mole m ⁄   1.1×10

4
 

Molecular weights  

      kg mole⁄   18.02×10
-3

 

      kg mole⁄   28.97×10
-3

 

      
   kg mole⁄   131.4×10

-3
 

Reference pressure and temperature  

  ref   k a  100.0 

  ref       283.0 

Capillary pressure blending parameter  

   
       0.1 

Viscosities   

      k a  day  2.44×10
-11

 

      k a  day  1.62×10
-13

 

      
   k a  day  9.75×10

-12
 

Molecular diffusion coefficient   

      m
 day⁄   3.8×10

-5
 

      m day⁄   3.8×10
-5

 

      m day⁄   0.394 
a
 

Molar density  

 
    

    ̂ (    ref)

∑ max(     )   
 ⁄
                

  

  
   

Mass density  

     ∑     

 

 
 

note: cited from Table 5. of Yu et al. (2009) 
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Table A.5: Foundation slab and basement properties 

  Property Value 

Foundation slab  

 aperture of crack in slab:          100 

 permeability of slab matrix (concrete):       
       1×10

-20
 

 permeability of crack in slab:        
       8.33×10

-10
 

 bulk permeability:        
       1.83×10

-13
 

 bulk porosity:        
      0.00022 

Basement (walls and interior)  

 vertical permeability (i.e. interior):               
   1×10

-9
 

 porosity:                  0.001  
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Appendix B Kalman Filter Theory 

Filtering can be referred as an estimator of the state vector at the current state time based upon all past 

measurements. The Kalman filter addresses the general problem of trying to estimate the state vector 

of a discrete-time controlled process that is governed by the linear stochastic equation. The estimate 

minimizes the mean of the squared error and is essentially a Bayesian approach. The application of 

the Kalman filter is presented in Section 3.2.2.1. The discrete Kalman filter (Welch and Bishop, 

2006) is derived as follows.    

The state equation can be expressed as 

 

                    (B.1) 

 

with a noise-corrupted measurement    

 

           (B.2) 

 

where   ,      are the vectors of discrete estimates of the state variable at time    and      

respectively;      is a known control input to the system; the random variables      and    

represent the process and measurement noise and are assumed to be independent, white and with 

normal probability distributions 

 

               

                 , 

(B.3) 

 

where the process noise covariance   and measurement noise covariance   matrics might change 

with each time step or measurement, however here they are assumed to be constant. The matrix   is 

the known state transition matrix and it allows calculation of the state vector at time    given 

complete knowledge of the state vector at time      in the absence of either a driving function or 
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process noise. The matrix   relates the optional control input to the state vector   . The matrix    

relates the state to the measurement    at time    and is also called the measurement matrix.  

An estimate,  ̂, is the computed value of a quantity (which has a different definition from the one in 

Chapter 3),  , based upon a set of measurements,  .  ̂ 
  is defined as a priori state estimate at time    

and  ̂ 
  is a posteriori state estimate at time    given measurement   . And a priori and a posteriori 

estimate errors can be defined as  

 

  
      ̂ 

      

  
      ̂ 

   . 

(B.4) 

 

The a priori estimate error covariance is then 

 

  
      

   
     , (B.5) 

 

and the a posteriori estimate error covariance is  

 

  
      

   
  

     . (B.6) 

 

In deriving the equation for the Kalman filter, a posteriori estimate  ̂ 
  is sought as a linear 

combination of a priori estimate  ̂ 
  and a weighted difference between an actual measurement    and 

a measurement prediction    ̂ 
  as shown in the equation below, 

 

 ̂ 
   ̂ 

           ̂ 
     (B.7) 

 

and 
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        (B.8) 

 

The difference        ̂ 
   is called the measurement innovation, or the residual. The residual 

reflects the discrepancy between the predicted measurement    ̂ 
  and the actual measurement   . A 

residual of zero means that the two are in complete agreement. The matrix    is called the Kalman 

gain that minimizes the a posteriori error covariance at time   . The minimization can be 

accomplished by first rewriting   
  with Equation (B.7), inserting that into Equation (B.6), and then 

solving   by setting the error covariance equal to zero. As a result, the Kalman gain   can be given 

by 

 

     
   

      
   

         . (B.9) 

 

As the measurement error covariance   approaches zero in Equation (B.9), the Kalman gain   has 

more weights on the residual, specifically, 

 

            
    . (B.10) 

 

On the other hand, as the a priori estimate error covariance   
  approaches zero, the Kalman gain K 

has less weights on the residual, specifically,  

 

     
         . (B.11) 

 

In summary, the discrete Kalman filter estimates a process by predicting the process state at each 

time step and obtaining updates of estimation after incorporating noisy measurements recursively. 

The time update equations are responsible for projecting forward the current state and error 

covariance estimates to obtain a priori estimate for the next time step. This is so-called predictor-

corrector algorithm, and the specific equations for the time and measurement updates are presented as 

follows. 
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The time update equations:   

 ̂ 
    ̂          

  
        

       

(B.12) 

 

The measurement update equations: 

 

  

     
   

      
   

        

 ̂ 
   ̂ 

           ̂ 
   

  
            

    . 

(B.13) 

 

After each time and measurement update, the whole process is repeated with the previous posteriori 

estimates used to project or predict the new priori estimates.  

Here, an example of the use of Kalman filter is presented (see Pinder, 2010) for demonstration. 

Consider the case of four a priori (model derived) values of concentration as shown in Figure B.1, 

where       ,       ,        and        with covariance matrix  

 

    [

                   
                  
                
                  

]     

 

Let us now see how we can accommodate two new measurements, namely         and 

        so as to obtain an updated estimate of these values in accordance with the following 

steps. 

1. First we define the sampling matrix  , 
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]     

 

2. Then we have 
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3. Assume the values of the measurement noise are given by  
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with correlation 
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]     

 

4. The Kalman filter gain is given by substituting the above parameters into Equation (B.9) 
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which yields, 
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5. The update of the concentration is given by Equation (B.7) based on  

 

 ̂  [

   
   
   
   

] 

 

thus the updated values of the concentration are  
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6. Next we update the covariance matrix using Equation (B.8), which in our case is 
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If one now proceeds to take another sample, the entire state variable and covariance sequence will 

be repeated.  
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Figure B.1: Spatial correlation of model derived values of concentration. 
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Appendix C Supporting Figure For Chapter 4 

 

Figure C.1: (a) the US national home price index,    normalized by the index of March 2008 (source: 

http://www2.standardandpoors.com), (b) the nominal annual interest rate inferred from risk-free US 

Treasury securities,   ; Monte Carlo simulations of short term interest rate using parameters for the 

CIR model in Table 4.1. Interest rate at the first quarter in 1987 was assumed to 0.06 and    of     

year was used for the Monte Carlo simulation. The black solid line represents the mean of 1000 

realizations at each time, and (c) the general performance of the US market using the S&P 500 as a 

proxy. The closing price on the last trading day of the month was used (source: 

http://finance.yahoo.com/q?s=%5EGSPC). Cited from Figure 1 of Yu (2009). 
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