
Learning Automatic Question

Answering from Community Data

by

Di Wang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Di Wang 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Although traditional search engines can retrieval thousands or millions of web links

related to input keywords, users still need to manually locate answers to their information

needs from multiple returned documents or initiate further searches. Question Answering

(QA) is an effective paradigm to address this problem, which automatically finds one or

more accurate and concise answers to natural language questions. Existing QA systems

often rely on off-the-shelf Natural Language Processing (NLP) resources and tools that are

not optimized for the QA task. Additionally, they tend to require hand-crafted rules to

extract properties from input questions which, in turn, means that it would be time and

manpower consuming to build comprehensive QA systems. In this thesis, we study the

potentials of using the Community Question Answering (cQA) archives as a central building

block of QA systems. To that end, this thesis proposes two cQA-based query expansion

and structured query generation approaches, one employed in Text-based QA and the other

in Ontology-based QA. In addition, based on above structured query generation method,

an end-to-end open-domain Ontology-based QA is developed and evaluated on a standard

factoid QA benchmark.

iii

Acknowledgements

I would like to thank all the people who made this possible. I wish to express profound

gratitude towards my supervisor Dr. Ming Li, for his invaluable support and discussions

throughout my master study. My sincere thanks also go to Dr. Grant Weddell and Dr.

Olga Vechtomova for reading my thesis. Lastly, many thanks go to my girl friend Yan Yan,

my parents, and all my friends for their encourage and support.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Question Answering . 2

1.2 Question Analysis . 2

1.3 Motivation . 3

1.4 Contributions . 4

1.5 Thesis Organization . 5

2 Background and Related Work 6

2.1 Text-based Question Answering . 6

2.1.1 Query Expansion . 8

2.1.2 Passage Retrieval . 9

2.2 Ontology-based Question Answering . 10

2.3 Community Question Answering . 12

2.4 Evaluation . 13

vi

3 Observations and Assumptions 15

3.1 Question Topics and Focus . 15

3.2 Three Classes of Question-Query Transform Functions 16

4 Extending Text-based QA with Community QA 18

4.1 Challenges . 18

4.1.1 CRFs Model . 20

4.1.2 Features in CRF models . 21

4.2 Implementation . 22

4.3 Experiments . 23

5 An Ontology-based QA System built from Community QA 26

5.1 Problem Formulation . 26

5.2 Challenges . 28

5.3 System Architecture . 29

5.4 Name Dictionary and Triple Indexing . 32

5.5 Named-entity Recognition based on Anchor Texts 34

5.6 Templates Training . 35

5.7 Normalization . 38

5.8 Question Answering . 39

5.9 Experiments . 43

5.9.1 Experiment Setup . 43

5.9.2 Evaluation . 45

6 Conclusions 48

6.1 Summary . 48

6.2 Future Work . 49

References 51

vii

List of Tables

5.1 The impact of threshold θTf when θS is fixed to 0.05 45

5.2 The impact of threshold θS when θTf is fixed to 30 46

viii

List of Figures

2.1 A Basic Text-based Question Answering Architecture 7

2.2 An Example Yahoo! Answers page shows a question with its best answer. . 13

5.1 A example knowledge subgraph describing “Bob Dylan” 27

5.2 The Workflow of Unsupervised Training Process for mapping from natural

language questions to structured queries 30

5.3 The Workflow of Ontology-based Question Answering 31

5.4 Example Triples in Knowledge Base . 32

5.5 An Illustration of SPO Triple Index . 33

5.6 An example of anchor text link structure. 34

5.7 A Example Generated Basic Query . 40

ix

Chapter 1

Introduction

Since the invention of digital computers, electronically stored information has grown ex-

ponentially and has covered human knowledge in virtually all aspects. For instance, the

World Wide Web (WWW), as a gigantic warehouse of information, meets a wide range of

information needs. However, the explosive growth of WWW also increases the difficulty

for users to efficiently acquire the demanded knowledge from scattered pieces of informa-

tion. Although modern search engines can quickly provide user plenty of web links related

to input keywords, users still often have to spent plenty of time on locating the precise

information they are looking for. Clearly a new paradigm is wanted to allow more natural

and more immediate access to their answers.

Meanwhile, making computers to understand human language gradually becomes possi-

ble with Natural Language Processing (NLP) technologies. Large collections of annotated

corpus, user generated content, and structured knowledge are recently available to NLP

researchers and massively enhanced the NLP abilities. Supported by the vast power of

modern computers, NLP technologies now enable the Information Retrieval (IR) to shift

its input from keywords to natural language questions, and shift its output from piles of

related documents to concise answers.

1

1.1 Question Answering

The task of Question Answering (QA) is to find specific and concise answers (usually in

form of phrases or sentences) to questions posed in natural language. For example, a QA

system can accept natural language questions like “Who is the first president of United

States?”, and attempt to output the exact phrases or sentences expressing the answer

“George Washington” based on its information sources such as a collection of web pages.

QA dispenses with unnecessary user interactions with typical search engines and web

pages and is able to offer brief description of answer, which ideally serves the information

needs better on interaction restricted environment such as Short Message Service (SMS).

With regards to the input, it accepts natural language questions rather than query syntax,

which makes it easier to use for the casual user and might better suit the voice-activated

information retrieval tasks. The human language nature of its input question and answer

sentence makes QA systems a effective choice to help achieve cross-language information

retrieval as well.

Depending on different sources of knowledge, QA systems can be categorized into mix-

tures of following three types:

• Text-based QA systems, which retrieval answer text snippets from one or more free

text documents (e.g. Internet web page).

• Ontology-based QA systems, which query answer entry from structured knowledge

bases (e.g. expert domain knowledge).

• Community QA systems, which refer archived answer by linking input question with

previous answered questions in datasets (e.g. Online Community QA site).

The next few chapters will introduce characteristics, components, and standard workflows

of above three kinds of QA systems.

1.2 Question Analysis

The Question Analysis component is commonly the first step of all kinds QA systems.

Intuitively, if question analysis module can not provide enough information from question,

2

the following components are less possible to discover correct answers to respond input

question. Therefore end-to-end accuracy and recall of a QA system is very sensitive to the

quality of its question analysis part.

The ultimate goal of question analysis is to interpret from plain text question sen-

tence into the meaning of the user’s inquiry. Although fully modeling semantic meaning of

natural language sentences is one of most difficult problems in the field of artificial intelli-

gence and also known as one of AI-Complete [62] problems, existing QA systems partially

interpret user’s intention by generating features from input question.

In Text-based QA systems, constructing keywords extension is commonly a must-have

task in question analysis module. Given question “Who is the wife of Bill Clinton”, if the

IR module wishes to retrieval passages like “Hillary Rodham married Bill Clinton at their

home in Fayetteville, Arksansas.”, the question analysis component is responsible to feed

IR module with query keyword extension (wife OR married OR spouse) AND Bill Clinton.

In Ontology-based QA systems, information is store in structured knowledge bases with

certain scheme, and is only accessible by structured query corresponding to the schema.

Therefore, the question analysis is primary in Ontology-based QA systems. It is responsible

to parse and understand the natural language input and map it to structured query in

format such as Sparql [59].

To produce richer feature set for Question Analysis, researchers in Question Answer-

ing community already introduced a wide range of Natural Language Processing (NLP)

technologies to Question Analysis task, including Named Entity Recognition (NER)[49],

syntactic and semantic parsing [23], coreference resolution [53], semantic role labeling [63].

Additionally, new features also were created specifically for better interpreting Question

intention, such as UIUC Question classification [36].

1.3 Motivation

As mentioned in previous sections, the ability of understanding natural language question

fundamentally differentiates Question Answering paradigm to keywords based search en-

gine. However, there is still tremendous room for improvements in existing QA system to

parse and model semantic structure of input question.

3

State-of-art QA systems often adopt off-the-shelf NLP tools and resources to generate

bags of features without much tunning. Various features can be generated by these NLP

tools to express the question such as pos-tagging, keywords query with extension, term

weighting, semantic roles, named entities, and syntactic trees. Nevertheless, these NLP

tools are built for general purpose of analyzing sentence structure and are not optimize

for the QA task. For example, input sentence “where is MIT” should be extend to query

pattern “locate in”. Sometimes hand-crafted rules or manually labeled data are added

to QA systems to further improve question analysis ability. However, it makes the QA

systems expensive to construct and hard to export to other domain schemes or languages.

When human provide an answer to certain question in natural language form, the

intelligent gap between the question and answer pair is worth exploring for automatic

question answering task. Therefore, this thesis investigates, designs, and implements two

applications to learn from community answered question-answer archive to understand the

semantic intentions of natural language questions.

1.4 Contributions

The work of this thesis explores possible ways of making use of user-generated content in

Community Question Answering (cQA) sites to implement automatic Question Answering

functionalities, especially the question analysis component.

Specifically, this thesis proposes, implements and evaluates two novel approaches for

automatic text-based and ontology-based QA tasks:

• A CRF-based passage extraction method is developed to explore the potential of the

cQA based Question Analysis module for text-based QA. The major contributions

are:

1. Discovering a new query expansion method based on cQA archive;

2. Designing a CRF-based passage extraction module to apply above query exten-

sions as a feature;

3. Showing how cQA-based query extension can improve the performance of pas-

sage extraction.

4

• A complete open-domain ontology-based QA system is implemented with a new cQA

based training process for its question analysis module. The major contributions for

this part are:

1. Implementing a large scale question answering system to query in natural lan-

guage to structured knowledge base;

2. Inventing a new training method to learn mapping natural language questions

to structured query based on community question answering pairs;

3. A named entity recognizer with its dictionary is extracted from links in Wikipedia

articles.;

4. The normalization and scoring functions to rank and choose the best answer

among various kinds of generated queries;

5. Evaluation that shows this ontology-based QA system achieve high performance

on both answer results and speed.

1.5 Thesis Organization

Chapter 2 introduces the background of this thesis including characters of QA system with

different knowledge source, state-of-art question answering systems, evaluation methodol-

ogy for question answering, and related question answering components and resources.

Chapter 3 discuss the basic observation and assumption in this thesis, and the following

thesis following this aspect to conduct research.

Chapter 4 deploys cQA resource to text-based QA task. It consider the problem of

extending the query keywords set for passage retrieval.

Chapter 5 describes full processes of a new ontology-based QA system, particularly the

training from cQA data and scoring methods to rank best answer.

Finally, chapter 6 concludes the thesis, and discusses future directions for applying cQA

resource for automatic QA task.

5

Chapter 2

Background and Related Work

This chapter wishes to give the reader a grounding in the state of the art of Question

Answering (QA) research, and to identify issues that are addressed by this thesis.

2.1 Text-based Question Answering

Unstructured question answering systems normally integrate natural language processing

(NLP) with information retrieval (IR) to achieve QA functionalities. As shown in Figure

2.1, those QA systems employ an abstract pipeline architecture consisting of three compo-

nents: question analysis, information retrieval (document retrieval and passage retrieval),

and answer extraction. First, question analysis module is responsible for parsing the input

question, determine the type of question, and generate query keywords with extension and

constraints. Secondly, information retrieval module search documents and that contains

query keywords and matches other constraints. Finally, the answer extraction module anal-

ysis of the content returned from IR module then selects the most likely word, sentence or

passage to answer the question.

When a QA system accepts a natural language question, question analysis module needs

to parse this question and extract meaningful structured information (parameters) from

the input question for later modules. Question analysis module may parse grammatical

structure such as part-of-speech tagging, phrase structure trees, or grammatical relations

6

Figure 2.1: A Basic Text-based Question Answering Architecture

(typed dependency) formats. In addition to grammatical parsing, question analysis module

could also be required to determine the type of the question and then the type of answer.

For example, it could classify ”how many” as numeric values question class such as the

classifier developed by Li and Roth [37]. Finally, question analysis module should extract

keywords and/or generate keywords’ extensions or other features from the input question.

Its purpose is to construct an effective query to retrieve documents or passages containing

related features as candidate answers. For instance, some modern QA systems may for-

mulate keywords with certain query syntax for its IR components, such as president AND

(United States OR America).

In open-domain question answering systems, based on the analysis [41] from Jimmy

Lin about the impact of the answer context, retrieving relevant paragraphs may have

better overall user experiences than both whole documents and word phrases. Therefore,

this thesis only considers passages (groups of sentences) as finer grained answers than

document. Passage retrieval is one of retrieval methods that aim to search compact text

7

excerpts within documents in response to users’ queries. It generally involves extracting

proper passages from documents, and further ranking passages based on their relevance to

IR query. Given a query, it can either rank documents first then extract relevant passages,

or extract relevant passages from all documents then rank those passages.

2.1.1 Query Expansion

To help increase the recall rate of relevant documents retrieved by IR module, many kinds

of query expansion or constrain methods have been introduced to the QA field, which is

vital for those questions with few available extracted keywords to feed to IR module.

The most straightforward would be expansion using morphology derivations or syn-

onymy from WordNet [51]. Hovy et al. [24] and Greenwood [19] have shown improvements

of IR quality with restricted use of WordNet resources. Pasca and Sanda [55] manually

maintained a rule-based method to inserting morphology and lexical derivations of original

keyword. Lin and Pantel [39] present an approach in which questions are syntactically

paraphrased to more flexible answer matching. Similarly, Hermjakob et al. [22] reformu-

late the questions with semantic paraphrases, called phrasal synonyms, to enhance the

retrieval performance. Negri and Kouylekov studied how to account for syntactic and

semantic correspondences between questions and passages, by computing similarities be-

tween their respective syntactic trees [54] and an edit distance. Therefore, those query

expansion methods basically attempt to extend the original query by different expressions

with similar meaning in given context.

Beyond keyword similarity, several researchers have tried pre-processing the corpus and

matching question focus (e.g. “where”) to structurally annotated entities such as Lin et

al. [40], Bilotti [3], and the predicate annotation by Prager et al. [58]. In addition, Riezler

et al [60] do query expansions by translation based methods. Derczynski et al [16] has

tried identifying the difficulty of input questions and then inserting extra search keywords

for difficult question, which discovered extensions from previous QA evaluations’ answer

text.

8

2.1.2 Passage Retrieval

Passage retrieval is a method that matches highly relevant paragraphs to the input inquiry.

Because it is able to discover those potential answers surrounded by relevant passages but

in irrelevant documents, the passage retrieval is widely used in text-based QA systems.

The concept of passage retrieval was first proposed by Salton [61] in the 1993 which

suggested applying certain strategy to identify that two text fragments is similar to each

other. Passage retrieval algorithm do match and sort passages related to inquiry. Some

classical passage retrieval algorithms retrieval and rank passage according to keywords fre-

quencies, such as MITRE [38]; Keywords densities are also take into consideration, such

as in MultiText [13], Site Q[34], and IBM [25]; Moreover, language model based algorithm

[42] to retrieval and rank passage. There is also many method in the field that tried to

retrieval passage with probability techniques. In [52], Mittendorf and Schanble considered

passage retrieval as stochastic process, which generates text fragments independent of any

particular query. Hidden Markov Models (HMMs) was used to model this stochastic pro-

cesses. In [27], Jiang and Zhai thought most existing work tends to rely on pre-segmenting

documents into fixed-length passages which are unlikely optimal because the length of a

relevant passage is presumably highly sensitive to both the query and document. They

handled this problem using HMM-based method, which naturally the topical boundaries

between sentences that irrelevant to its neighbors. Melucci [50] presented a Bayesian frame-

work, the probabilistic technique, to implement passage retrieval from texts having a large

size or heterogeneous semantic content. The proposed technique is independent on any

supporting auxiliary data, such as text structure, topic organization, or pre-defined text

segments.

The passages themselves can vary in size and degree of overlap. A critical problem in

passage retrieval is to accurately locate the boundaries of coherent relevant passages in a

document, which is called passage extraction. The performance of passage retrieval relies

on accurate passage extraction [27]. In [8], the authors classified the existing approaches

of passage extraction into three categories: text block relativity [29], text segmentation

[9] and probability models [42]. Despite its importance, the passage extraction problem

has not been seriously addressed in existing work. None of the existing passage retrieval

methods was intentionally designed to achieve the goal of extracting passages that are both

query-dependent and coherent[27]. It is trickier to consider the dependency that exists be-

9

tween chunks of texts (in this project, sentences)[8]. Khalid [31] compared the effectiveness

of several passage retrieval techniques with respect to their usefulness for QA. Their main

interest was the contribution of sliding passages as apposed to disjoint passages, and eval-

uated the retrieval approaches on two different QA tasks: factoid-QA and a relatively new

problem in the QA field: that of answering why-questions (why-QA). In [17], the authors

presented a graph-based model to represent the sentence dependencies. That model is a

generalisation of the Hits algorithm. The similarity function considers the structural simi-

larities. [66] concluded that neglecting crucial relations between words is a major source of

false positives for current lexical matching based retrieval techniques. The reason is that

many irrelevant passages share the same question terms with correct ones, but the relations

between these terms are different from those in the question. To address this problem, [14]

proposed a novel fuzzy relation matching method which examines grammatical dependency

relations between question terms to improve current passage retrieval techniques for ques-

tion answering. The authors employed Minipar to accomplish dependency parsing, and

presented a statistical technique for measuring the degree of match of pertinent relations

in candidate sentences with their corresponding relations in the question.

2.2 Ontology-based Question Answering

The rise of Semantic Web has provided a platform for users to generate and share knowl-

edge. In recent years, large structured knowledge bases, such as those in Linked Open Data

(LOD) [4], already contain billions of RDF (Resource Description Framework) [47] triples

and act as a rich source of information for diverse user needs. To bring the advantages of

these valuable data to casual users and further answer their questions, natural language

interfaces to access those knowledge databases are highly demanded.

Ontology-based Question Answering systems utilize knowledge stored in structured

data store. It also can been viewed as natural language interface to structured databases.

Unlike text-based QA which is typically agnostic to the text content of its data source, the

knowledge source of early structured QA systems were restricted to closed domains (e.g. a

geography database). However, with the recent emerge of Linked Data concept, DBpedia

data set [5], and commercial interest such as Google Rich Snippets1, huge amount of

1https://developers.google.com/webmasters/richsnippets/

10

heterogeneous structured knowledge (metadata) is now available and opens new challenge

to utilize these structured knowledge to QA field.

The major task of structured QA is to generate proper structured database query based

on natural language input. With respect to input, many structured QA systems require

Controlled natural languages (CNLs) as input to enable accurate mapping from question

to predefined terminology and schema of data source. But easy to use and flexible natural

language input without restriction is obviously desired by casual users. Hence the Question

Analysis component of a ontology-based QA system significantly affects its usability. In

many large open-domain ontology-based QA systems, the problems of knowledge sparse-

ness, duplicity and incompleteness might exist in its knowledge base. For that reason,

answer selection is also needed to choose and validate the results returned from multiple

queries.

In fact, the research on accessing structured database with natural language was started

more than forty years. Since 1970s, William Woods built one of the world’s first natural

language question answering systems (LUNAR) [72] for two databases about chemical

analyzes and the literature references of moon rocks. The translation from question in

English to its database query language was done by a rule-driven ATN parser [71]. Soon

after, several other systems with larger databases or larger vocabulary were developed

such as LADDER [21] and TEAM [48]. Zelle and Mooney [74, 75] investigated learning

approaches, specifically learning to parse learning to parse into Prolog queries. These

work of Mooney focused on applying Inductive Logic Programming to generate semantic

grammar from examples in certain domain. Popescu et al. invented PRECISE [57, 56]

which guaranteed the correctness of its output by identifying natural language queries

that it can not fully understand.

Recently, the field of natural language interface to structured data focused on ontology

knowledge base, with large number of newly available ontology data. The task becomes

translating a natural language query into structured query language for retrieval answer

knowledge statements. Currently, the most popular query language is Sparql [59] for RDF.

Moreover, several question answering systems recently developed based on ontology knowl-

edge base. ORAKEL [11, 12] system introduced by Cimiano et al. rigorously parses input

using lambda calculus. AquaLog [44] and its successor PowerAqua [45] map question into

sets of triple text segments, matches to most similar ontology entities, and then generate

triple queries to find answer. Similar with PANTO [69] and Querix [30] are implemented

11

with similar approaches as AquaLog, and cover geography, restaurants and jobs domains.

Damljanovic et al. desinged FREyA [15] system which emphasize user interaction and

feedback. However, these ontology-based QA systems are both close-domain and strongly

reply on vocabularies derived from ontology nodes and WordNet extension.

2.3 Community Question Answering

Community Question Answering (cQA) makes use of human intelligence to resolve ques-

tions. The major responsibilities of a cQA engine are retrieval archived answers for new

question and find different potential answerer for different question.

Based on the observation that same question might be repeatedly asked by different

users, preparing a list of question with answers (FAQ) has been a convenient way to share

knowledge since the early days of WWW. Recent emergenced Community-base Question-

answering services such as Yahoo! Answers 2 and the WikiAnswers 3 already accumulated

large volume user generated knowledge. For example, Yahoo! Answers alreay achieved

300 million questions 4 and more than one billion posted answers 5. Figure 2.2 shows a

example question and its best answer discussed on Yahoo! Answers.

Unlike text-based QA and ontology-based QA, the resources in cQA sites directly serve

the information need in natural language question form. Hence, when users query full sen-

tence queries which beyond the paradigm of simple keyword-document relevance, modern

search engines resort to display previous answered question from cQA site to help user

efficiently find answer. Si et al. [64] reported that 25% of Google’s search result first page

contain at least one link to Q&A sites in China.

Most research carried on cQA field mainly focus on effectively retrieval answers from

cQA archive, question intention analysis, and social interactions on cQA. Xue et al. [73]

and Jeon et al. [26] investigated the combination of translation-based model to compare

question similarity and query retrieval model to evaluate answer. Wang et al. [70] reported

2http://answers.yahoo.com
3http://wiki.answers.com
4http://yanswersblog.com/index.php/archives/2012/07/10/we’ve-reached-300-million-questions/
5http://yanswersblog.com/index.php/archives/2010/05/03/1-billion-answers-served

12

Figure 2.2: An Example Yahoo! Answers page shows a question with its best answer.

that the syntactic tree based question comparison achieves higher performance than bag-

of-word or tree kernel based. Cao et al. [7] suggested the category information can improve

cQA retrieval performance. Li et al.[35] and Bian et al. [2] tried automatically identifying

whether a question is personal or subjective. Liu et al. [43] and Jurczyk and Agichtein[28]

investigated ways of finding experts from users’ behavior in the community, which enable

forwarding unanswered question to certain experts in the community.

2.4 Evaluation

Text REtrieval Conferences6 (TRECs), organized by the U.S. National Institute of Stan-

dards and Technology (NIST), has organized large-scale evaluations for QA systems an-

nually between 1999 and 2007. Each year, the QA task involves a new set of questions

6http://trec.nist.gov

13

and answer nuggets that can be found in corpuses likes AQUAINT which contains approx-

imately 1 million articles in 3 gigabytes of text. Documents in those corpuses covering

archives such as Financial Times Limited, Congressional Record of the 103rd Congress,

the Federal Register, Associated Press Worldstream News, New York Times News, and

the English portion of the Xinhua News. All those answers submitted to the evaluation

and judged correct by evaluators can be also used to train and evaluate other QA systems.

Similar with TRECs, the Cross-Language Evaluation Forum7 (CLEF) in Europe orga-

nized evaluations in monolingual and cross-lingual QA since 2003. The Mooney GeoQuery

dataset [75] contains 250 questions and their structured logical expressions about United

States geography information. This dataset is extensively used to both train and evaluate

the natural language interfaces to database, such as PRECISE.

7http://www.clef-campaign.org/

14

Chapter 3

Observations and Assumptions

3.1 Question Topics and Focus

There are many possible perspectives to understand one natural language question. When

it comes to Information Retrieval, one of our duties is to find the most related objects from

large amounts of objects. It is naturally to see that there are questions that are easier to

be solved with the help of IR system, which have strong topic among the question. For

example, questions like “Who stared the movie Avatar?”. We could easily locate those

pages contain the answer for it by searching only keywords “Avatar”. While, a counter

example could be a question likes “What is the sum of 231 and 213?”. It is not likely that

the second kind of question could be answered by searching existing text in a corpus without

deep semantic understanding. Therefore, in this project, we consider those questions always

contain “topic”. Here, the “topic” is the major object in a question that represents the

users’ intention.

Several reasonable ways exist to discover the topic part from input question. We could

apply name entity recognition parser to detect name like word from the sentence. Using

grammatical parser like Stanford parser [32] to get proper noun as topic. Also, term

frequency also could employ as judgment for topic selection. It means that if some word in

the sentence has lower term frequency than others. This term tends to be in topic words.

On the other hand, the topic could also be user marked (human selected) as it did in the

TREC QA track from 2004 to 2007.

15

After selecting the topic part of the question, we could get remaining parts as the

question focus. For example, in question ‘Who wrote the book Hamlet?”, Hamlet is the

topic and the else part can consider as the question focus. (Perhaps, we could continue to

divide the non-topic parts if the question is rather complex.)

As discussed in chapter 2, the passage retrieval modules is to locate the most likely

passage as the query described [6] . And, if we define the target passage T of our QA system

have the form XfrontAXbehind, where the A is the answer and X is the text surrounded

it. Then, the question answering problem could be considered as to generate the query

that matches X as much as possible. In this thesis, we attempt to design schemes and do

experiments to produce queries for matching the sounding text X.

Now we could consider topic part and focus parts separately when doing query ex-

pansion and retrieval. Intuitively, topic and focus parts act different when answering a

question. The topic part used to be more “fixed” or “discriminative” than focus parts and

highly likely should appear near the answer. While the focus part plays another role on

answers’ surrounding passage X, it may not appear in X but there should at least some

terms corresponding to focus part shown in X. Formally, we could simply define the target

passage T is a set of words contains {topic part, f ∗(focus), answer}, where f ∗ is a mapping

from focus part of the question to the corresponding words should near answer.

3.2 Three Classes of Question-Query Transform Func-

tions

Question answering is such a subset of IR problems that users want to retrieve the in-

formation that he doesn’t know. This indicates that the input question doesn’t likely

contains enough direct searching keywords for answer target. Question-query transforma-

tion could be employed as an important method to overcome this gap. With the topic and

focus perspective introduced above, we could therefore define three kinds of question-query

transform function at different granularity.

First, equation class function, is to find the extent words have the same sense of meaning

on the condition of the original question or only topic. This could be done by validating

each question word’s possible synonyms by fitting the original question or by checking high

16

co-occurrence with topic words in corpus. Or as works did in [60] that using translation

based method to exam that whether the some replaced new word doesn’t change the

meaning (translation) of original question. For example, ‘Who starred the movie Avatar?”

equals to ‘Who is the leading actor of the movie Avatar?”.

Second, correspondence class function, is to find the corresponding keywords or sentence

pattern in answer’s context with the focus part of the input question. For example, the

“Who wrote the book *?” should correspond to keywords like “author”. This may be done

by off-line statistic or machine learning on the focus parts of the question in the question

answering community archive. This class of transformation is one major feature in Chapter

4.

Third, inference class function, is to find the meaning or concept highly close to the

topic parts, like abbreviation or an equivalent concept like “44th President of US→ Barack

Obama”.

After we obtain the query from the transformation function of the input question,

our attention moves to design passage extraction model to combine and match those rich

features of input question.

17

Chapter 4

Extending Text-based QA with

Community QA

In this chapter, we preset a Conditional Random Fields (CRF) based model to implement

passage extraction.

4.1 Challenges

Let’s consider one example first:

TREC 2007 QA track data

Question Number: 239.2

Question: Who was the first host of Jeopardy?

Answer: alex trebek;Art Fleming

Example Text:

Jeopardy! is an American quiz show featuring trivia in history, literature, the arts, pop

culture, science, sports, geography, and more. There are also wordplay categories. The show

has a unique answer-and-question format in which contestants are presented with clues in

the form of answers, and must phrase their responses in question form. The show has

18

a decades-long broadcast history in the United States since its creation by

Merv Griffin in 1964. It first ran in the daytime on NBC from March 30, 1964

until January 3, 1975; concurrently ran in a weekly syndicated version from

September 9, 1974 to September 5, 1975; and later ran in a revival from October

2, 1978 to March 2, 1979. All of these versions were hosted by Art Fleming. Its

most successful incarnation is the Alex Trebek-hosted syndicated version, which has aired

continuously since September 10, 1984, and has been adapted internationally.

The passages we look for can be of various lengths, which depend on different documents. In

this example, the correct answer is Art Fleming. According to our human-being reasoning,

we have to infer the answer from the first sentence to the third sentence in the underlined

part to get the right answer. We hope our model and algorithm can handle this kind of

reasoning partly. How to develop a machine learning method based on a training corpus

of documents, which can take full advantage of the inter-sentence relationship and rich

features? In this project, we present a new approach trying to tackle this passage extraction

problem.

The example above motivate us about how human being or a computer extract a pas-

sage from a random document by posing this problem as a sequence labeling problem.

Intuitively, a document can be regarded as a sequence of sentences that can be partitioned

into several segments where each segment is relatively coherent in content and every sen-

tence is dependent on its neighbors logically. As a human being, we have to infer the

correct answer from several consecutive sentences in a segment by reasoning and extract

the segment as the retrieved passage. The sentences in the document contain some in-

formation , which is called features in CRF, such as number of key words, length of the

sentence, similarity between it and the question and whether it is related to the question

type, etc. So, we need to read the document from the beginning to the end and extract

informative passages consisting of neighboring sentences. This procedure is a kind of se-

quence labeling, a label of 1 denoting the extracted sentence sentences and 0 denoting the

non-extracted sentences.

19

4.1.1 CRFs Model

From the aspect of machine learning, we consider passage extraction as a sequence labeling

problem. In our model, each document is considered as a sequence of sentences and the

purpose of passage extraction is to label the sentences in the sequence with 1 and 0, where

a label of 1 indicates that the sentence is a extracted sentence for the passage while 0

denotes a non-extracted sentence. The label of one sentence is expected to be involved in

the labels of other neighboring sentences.

Conditional random fields (CRFs) [33] can helps us to achieve this objective. CRFs

is simply a conditional distribution p(Y |X) with an associated graphical structure. Be-

cause the model is conditional, dependencies between the input variables X do not need

to be explicitly represented, affording the use of rich, global features as the input. A CRF

framework is constructed by adding all possible features which may be complex and over-

lapping. Further, a set of features for the task of passage extraction is introduced to the

CRF model. As a discriminative model, this sentence based CRF model outputs the max-

imum likelihood of the extracted sentence sequence, conditioning on the whole sentence

sequence which is the document.

In this paper, we only focus on the linear-chain CRFs, which can capture the depen-

dency between contiguous sentences. Given a question Q, and a retrieved document X

that is relevant to Q. For the simplicity, we represent X as a sequence of sentences, that

is, X = (x1, x2, x3, . . . , xT). For the given question Q, our goal is to find the corresponding

labeling sequence of D, Y = (y1, y2, y3, . . . , yT). The linear-chain conditional random field

is a distribution p(Y |X) that takes the form.

p(Y |X) =
1

Z(x)
exp{ΣK

k=1λkfk(yt, yt−1, X)},

where Z(x) = Σyexp{ΣK
k=1λkfk(yt, yt−1, X)} is a normalization function; Λ = {λk} is

parameter vector; {fk(y, y′, X)}Kk=1is a set of binary feature functions over the entire ob-

servation sequence, which can describe any aspect of transition from yt1 to yt and the global

characteristics of X.

Parameter Estimation Given the training data D =
{

(X i, Y i)
N
i=1

}
, where each X i =

(xi1, x
i
2, . . . , x

i
T) isa sequence of the desired extractions for the document. Parameter esti-

mation of Λ is typically performed by maximum log likelihood, ml(Λ) =
∑N

i=1 log p (Y i|X i).

20

Perhaps the simplest approach to optimize ml(Λ) is steepest ascent, but this requires

too many iterations to be practical. Newtons method converges much faster because it

takes into account the curvature of the likelihood, but it requires computing the Hessian,

the matrix of all second derivatives. Particularly successful have been quasi-Newton meth-

ods such as BFGS , which compute an approximation to the Hessian from only the first

derivative of the objective function. As an alternative to limited-memory BFGS, conjugate

gradient is another optimization technique that also makes approximate use of second-

order information and has been used successfully with CRFs[65]. In our experiment, we

use steepest ascent method.

Inference During training, computing the gradient requires marginal distributions for

each edge p(yt, yt1|X) and computing the likelihood requires Z(X). We compute the most

likely (Viterbi) labeling Y ∗ = argY p(Y |X). In our linear-chain CRFs, both inference tasks

can be performed efficiently and exactly by variants of the standard dynamic program-

ming algorithms for HMMs. We define the forward variables αi(y|X)by setting αi(y|X)

equal to the probability of starting with state y and computer αi(y|X) by the recur-

sion αi+1 (y|X) =
∑

y′ αi (y|X) exp (Λi (y′, y,X)), where exp (Λi (y′, y,X)) = Σkλkfk(yt =

y′, yt1 = y,X). The backward variable βi (y|X) recursion is exactly the same. Finally,

we computer the globally most probable assignment Y ∗ = arg maxY p(Y |X) by using the

Viterbi recursion[65].

4.1.2 Features in CRF models

The main features in our linear-chain CRF models for passage extraction are listed below.

Query Based Features:

• Length of the sentence

• Number of (topic, focus, whole, Fe, Fc,Fi) keywords in the sentence

• Density of (topic, focus, whole, Fe, Fc,Fi) keywords in the sentence

, where Fe, Fc, and Fi are three transform function “equals”, “correspondence”, and “in-

ference” discussed in chapter 3.

The procedure to generate Fc is described as following:

21

1. Given input question Q∗, we divide it into topic∗ and focus∗.

2. Collect a supporting set of (Q,A) pairs from QA community such that for every

Qi ∈ (Q,A) its focusi equals (or close similar) with focus∗.

3. Counting the terms in Ai − topici for all selected supporting QA pairs

4. Select the term t, such that (frequency(t, A− topic) - frequency(t, background cor-

pus)) larger than pre-defined threshold.

Coherent Features:

• Wether the sentence contain keywords in group i and its neighbor contains keyword

in group j (for example, whether current sentence have keyword in topic and its

neighbor contains keywords in group Fc).

Density of keywords in sentence is a classical way to evaluate if the sentence is relevant

to the question. It can be calculated by the ratio of frequency of keywords in the sentence

to the frequency of keywords in the collection. All the Query and Coherent based features

are used to capture the dependency between contiguous sentences for CRFs. For example,

if the density or the coherent of one sentence is great than given threshold, we consider

this sentence should be extracted for the passage without hesitation. Moreover, if the

neighour sentence contain one keyword, we would think this sentence can be included in

the passage as further context. In addition, the feature function fk(y, y′, X) can not only

describe aspects of transition from yt−1 to yt but also capture the global characteristics of

X

4.2 Implementation

Viterbi Search for CRF

Dynamic programming Viterbi algorithm is introduced to solve CRF models. The running-

time is linear with the number of sentences and quadratic with number of features, Θ(#sentence×
#feature2). One observation of our practical problem is that even the feature’s value is

22

unbounded in general, but its values usually small (0, 1, 2 or 3). That infers that we could

hold a kernel matrix for computed results, because there are only polynomial times n pos-

sible kernels for small value n. We could compute each feature combinations for once and

save computation time for the rest of them which just repeat the previous combination.

Further, we even could compute these kernel matrix off-line, which makes running-time

reduce to Θ(#sentence).

Data indexing and keyword-sentence-positions retrieval

Index is built based on the open source information retrieval software library, Apache

Lucene[20]. For this specific project, besides recording document numbers and keywords

frequency into posting lists, we also need to record detailed sentence number and positions

of each keyword appear in that documentation. Hence, Lucene’s index structure is modified

to store these extra information with hopefully minimum changes. To finish sentence

aware indexing, we also need to break the input text into sentences and gracefully handle

cases like ‘Mr.”. Then Stanford parser’s[32] sub-package is used to detect the end of

sentences. Further, additional boolean search is implemented to support modified posting

list (sentence aware, position stored) from stretch.

Passage Extraction

SAX model is used to parse TREC QA track document data sets AQUAINT and question

sets. Then, retrieval Yahoo! Answer’s QA set as described above as supporting QA pair.

Once keywords are extracted from question, other features needed could directly be fetched

from above index built above.

Dynamic programming Viterbi algorithm for linear CRFs model then labels sentences

as sequence data, those marked 1 is selected as passages.

4.3 Experiments

In this section, experiments are conducted to test this CRF based passage extraction

approach empirically. The data set is from TREC, which contains questions and judgment

23

in TREC QA task in 2004. The training is performed on TREC QA task 2000 questions

and judgments that arbitrarily mark seven sentence long passages which center is answer

keyword in answer documents.

First, the following is samples from focus community generated works for Fc. Here, for

each focus part in a question, at most 500 QA pairs considered.

Topic : Tale of Genji

Focus : Who wrote it?

Fc (Who wrote it) : { wrote states writing long people version love author story time life

words written write read man find music books job called book word years part }

Topic : The Clash

Focus : What kind of music does the band play?

Fc (What kind of music does the band play) : {bands pop rock hear time band friends metal

work piano favorite country stuff start sound years hope song songs punk kind playing life

money listen hard find sounds music feel jazz play instrument school guitar }

We could see that the most generated words list is related to each focu part in question.

It seems highly possible these words would also appear in the target passage, which could

improve the overall effectiveness. However, there are still some words looks not quite ques-

tionable dependent. This situation should be improved if more strict thresholds are settled.

Next, experiments are done on recall rates of CRFs passage extraction algorithm:

Transform #ans sent #CRF passage covered total answer #doc

Community 1236 1033 1070

None 331 224 1070

In the above table “#ans sent” indicates the number of sentences containing answer in

retrieved documents. “#CRF passage covered” means the sentence number in “#ans

sent” that is covered in CRF extracted passages. And the “total answer #doc” is the total

number of documents that contain answers.

24

Here, we notice that the CRFs passage retrieval method could both give good recall

rate about 1033
1236

= 0.84 and 224
331

= 0.68.

And, we further could discover that the community-based could significantly increase

the document retrieval recall rate and mild increase on passage extraction recalls rate with

reasonable size of expansion.

25

Chapter 5

An Ontology-based QA System built

from Community QA

This chapter introduces an approach for answering open-domain natural language ques-

tions over a structured knowledge base by translating the natural language questions into

structured queries, such as database queries.

5.1 Problem Formulation

A simplified knowledge base can be expressed by a collection of triples (s, p, o), where each

s refers to the subject; p indicates the predicate; and o is the object. Each subject must

be a concept. The concept may indicates a real-world entity such as “Bob Dylan”, or

an abstract notion such as “Artist”. Each predicate is a special concept representing the

relationship between subject and object. And the object in a triple can be either a concept

or a literal value. Then a knowledge base can be considered as a directed graph with

labeled edges, where subjects and objects are nodes and predicates are edges. The figure

5.1 shows a example sub-graph describing “Bob Dylan” in a knowledge base. Additionally,

a path in the knowledge graph is a sequence of predicate-labeled directed edges. In above

example sub-graph, the path represents “the birth place of the artist that played the song”

is (musicalArtist, birthP lace). The inverse relation of p is denoted by p−1, and (s, p, o)

26

is equivalent to (o, p−1, s). For instance, one of the predicate paths from “Bob Dylan” to

“Derek Boogaard” is (birthP lace, deathP lace−1).

Figure 5.1: A example knowledge subgraph describing “Bob Dylan”

In knowledge bases, a structured query is consisting of a set of triple patterns known

as a Basic Graph Pattern (BGP). Each triple pattern is similar to triples (s, p, o) except

that each subject, predicate and object can be a variable. For example, a very basic BGP

is finding o for given corresponding s and p, such as a given subject “Bill Clinton” and the

predicate “child” to find variable “?children” that will be “Chelsea Clinton”.

As input, we are given a natural language question, comprising a sequence of words

(w1, . . . , wn). In the question, an entity surface text is a subsequence of words (wi, . . . , wi+j)

that can possibly refer to one or more entities which are subjects or objects in the knowledge

base.

Our goal is to map the plain text question to a structured query. BGP of the structured

query corresponds to all logical constraints in question. And each triple pattern contains

proper mapping from an entity surface to an entity, and mapping from the question focus to

a predicate. After mapping all logical constraints in the question into BGP, the structured

query is expected to return entities or literals as few as possible that contain the answer

to the question.

27

5.2 Challenges

In general, there are three challenges to answer natural language question with structured

knowledge base.

• The first is recognizing entities in an unstructured question and associating those

named entities with their corresponding entries in the knowledge base. The word

or phrase in the unstructured question often ambiguously implies various database

entries. For example, the word “Obama” can refer to both “Barack Obama (44th

President of the United States) ” and “Obama, Fukui (a city located in Fukui Pre-

fecture, Japan)”.

• The second is the mapping from each question’s semantic intention of entities to

database relations (the predicate in the triple) and then construct structured queries.

For instance, the question “who is the wife of Bill Clinton” might link to the “spouse”

relation to the entity “Bill Clinton” in the certain knowledge base.

• The third is identifying structured dependencies among database relations such as

nesting and Boolean algebra.

Prior art solutions exist that attempt to address the above mentioned challenges. Gen-

erally speaking these prior art solutions either (1) manually matching whole input ques-

tions to structure queries, or (2) linking keywords in questions to names of entries in the

database. The approach (1) requires a large number of hand-written mappings from ques-

tions to structured queries, which typically has a very low recall rate. Regarding (2), this

type of approach often has low precision because of its nature of approximate matching

between keywords and entities. Both types of approaches provide poor performance on

large open-domain knowledge bases. Furthermore, above approaches involve maintaining

substantive human-annotated mappings or domain-specific keywords, which makes them

very expensive to extend and improve from the implementation perspective.

These challenges are a practical obstacle to design and implementation of Question An-

swering (QA) systems with structured knowledge that are accurate enough for widespread

user adoption. There is a need for a computer system, computer program, and computer

implemented method that addresses the above mentioned obstacles. Accordingly, what is

28

needed in the art is a new knowledge base QA system and a method that automatically

translate natural language questions into structured queries that lead to the correct an-

swers and require neither hand-written mapping patterns nor domain-specific approximate

matching tuning for scalability.

5.3 System Architecture

The following presents a simplified summary of the Ontology-base Question Answering

system in order to provide a basic understanding of some aspects of the innovation. This

summary is not an extensive overview of the innovation. It is not intended to identify

key/critical elements of the innovation or to delineate the scope of the innovation. Its sole

purpose is to present some concepts of the innovation in a simplified form as a prelude to

the more detailed description that is presented later.

In the view of forging situation, the present invention provides system and method

to answer open-domain natural language questions with structured knowledge base by

translating them to structured queries such as database queries.

In one aspect of the invention, a computer implemented Ontology-base QA method is

provided comprising the steps of:

1. recognizing one or more Named Entities (database entries) in a natural language

question;

2. retrieving pre-trained possible predicate (relationship) mappings using rest of ques-

tion exclude Named Entities;

3. constructing structured queries in accordance with question’s logical representation

including Boolean algebra on basic graph pattern (BGP) and nested queries;

4. sorting possible structured queries with a score combing the confidence of Named

Entities Recognition (NER), the confidence of BGP translation, and the confidence

of queries nesting;

5. building natural language answers with one or more queried outputs.

29

Another aspect of the invention is to provide a training system and method that au-

tomatically learn the transformation rules, patterns, and statistics for translating natural

language question into structured queries. The present invention integrates the knowl-

edge base with training pairs of questions and answers, which discovers and links textual

patterns with semantic relationships.

Figure 5.2 depicts the workflow of unsupervised training of the mapping from natural

language questions to structured queries.

Figure 5.2: The Workflow of Unsupervised Training Process for mapping from natural

language questions to structured queries

Figure 5.3 is a question answering workflow diagram illustrating a representative work-

flow in accordance with one aspect of the invention.

30

Figure 5.3: The Workflow of Ontology-based Question Answering

The present invention provides a computer network implemented system, a computer

network implemented method, and a computer network architecture that is able to find

concise answers for natural language questions with structured knowledge base, specifically

mapping unstructured natural language (such as English) questions to structured queries

and find its corresponding answer.

In one aspect of the invention, a computer implemented method is provided that learn

somatic linkage between the natural language questions patterns and the structured queries

they imply.

31

5.4 Name Dictionary and Triple Indexing

Most public structured knowledge sources are provided in plain triples form, such as N-

Triples syntax [18] used by DBpedia. In the N-Triples syntax, concepts are expressed

as URI (Uniform Resource Identifier) references. And each literal is in form of a string

that optinally appended with a URI that indicates its data type. The figure 5.4 lists two

example triples in DBpedia knowledge base.

Subject : <http :// dbpedia . org / r e sou r c e /Canada>

Pred i ca te : <http :// dbpedia . org / onto logy / ca p i t a l>

Object : <http :// dbpedia . org / r e sou r c e /Ottawa>

Subject : <http :// dbpedia . org / r e s ou r c e /Canada>

Pred i ca te : <http :// dbpedia . org / onto logy / foundingDate>

Object : ‘ ‘1931−12−11 ’ ’ˆˆ< http ://www. w3 . org /2001/XMLSchema#date>

Figure 5.4: Example Triples in Knowledge Base

For both time and speed efficiencies, a natural technique [10] is replacing all URI ref-

erences and literals by numerical ids using a name dictionary. This approach enable faster

and simpler triple indexing and querying operations. More importantly, the name dictio-

nary delivers space economy. For instance, a path in knowledge graph can be straightfor-

wardly stored in a sequence of id numbers. Usually a name dictionary introduces additional

cost when translating queries in URIs and literals into its id. However, as the input of

this system is natural language questions instead of structured queries, the Named-entity

Recognition module (see Section 5.5) is able to map from surface texts to dictionary id

directly, which eliminate the extra cost of using name dictionary.

As introduced in section 5.1, knowledge base are required to respond to basic pattern

matching queries on triples as Basic Graph Patterns (BGP). Although most of the prior

Ontology-based QA systems built on top of existing triplestore or relational database

engines, this project optimizes triple searching procedure for QA tasks with a new triple

storage and implementation from strach.

To enable efficient matching all triples by given BGP, indexes are need to be built from

triples. There are six possible permutations of subject (S), predicate (P), and object (O),

32

which are SPO, PSO, OPS, POS, SOP, OSP. Because the BGPs in this application always

contain two known elements and one unknown variable and query processor can adjust the

order of known elements, only three indexes SPO, OPS, SOP are necessary and used. For

example, the index SPO implements a mapping function: Ispo(s, p) = {o|(s, p, o) ∈ K},
where K is all triples in the knowledge base.

Hash table is chosen to be the underlying triple indexing data structure. Specifically,

open addressing main memory hash tables are used with two known ids as key and data

range as value. As shown in the figure 5.5, a supplementary array stores the value list

of each key mapped. Based on a observation and assumption that each BGP query is

Figure 5.5: An Illustration of SPO Triple Index

independent, it is difficult to cache the index to memory well if indices are stored on disk.

Because keys and values are all numeric ids, the main memory can more easily afford the

hash table index even with the extra space consumed by empty slots, which avoids using

33

disk-friendly but slower looking up data structures like B+-trees.

5.5 Named-entity Recognition based on Anchor Texts

The function of Named-entity Recognition (NER) module is to spot interesting text seg-

ments and bridge them to their probable semantic meanings in form of knowledge base

entities. This NER module is frequently used by other modules such as identifying question

topic in question answering module.

To support this open-domain large scale QA system, the NER is generated based on

anchor text resources to meet needs of mapping miscellaneous textual expressions to knowl-

edge entities. In many public available knowledge base such as wikipedia, each knowledge

entity (topic) has its own public available URL. Therefore, webpages such as news, blogs,

and wikepedia itself often add hyperlinks that point to related wikipedia topics within

the passages. As the example shown in figure 5.6, a HTML web page might contain

a hyperlink T-Mac that

link plain text “T-Mac” to the wikipedia page of “Tracy McGrady”. In Wikitext format,

Figure 5.6: An example of anchor text link structure.

an equivalent link is formed as [[Tracy McGrady|T-Mac]]. In the above example, the

34

wikipedia topic page “Tracy McGrady” uniquely identify an entity in DBpedia knowledge

base. Therefore, those surface texts (e.g. “T-Mac”) in hyperlinks suggest textual labels or

textual short expressions for an knowledge entity.

These are several advantageous characteristics of using those anchor surfaces as textual

labels for entities. First, various surfaces can be extracted for same entity, which covers

almost all kinds of possible labeling descriptions for each entity. Second, given a surface,

the statistical distribution of pointed entities can act as the probability of each entity on

this surface and can help disambiguate the surface. Third, for each entity, the total number

of the reference links indicates the popularity of this entity.

A dictionary-based Named Entity Recognition (NER) is implemented with a prefix

tree of words. The NER dictionary entries are extracted from links of articles as described

above. Given input words sequence (w1, . . . , wn), the NER spots a set of surface texts

S = {tk = (wi, . . . , wj)|1 ≤ i ≤ j ≤ n, 0 ≤ k ≤ n2} (5.1)

that match a entry in surface dictionary. Since different entities can be referenced from

same surface text, the NER produces a list of entities E(tk) = (e1, . . . , em) that possibly

associating with each surface text tk. Further, entities in the list are ranked based on the

total count of each entity being referenced which likely imply its popularity.

In addition, the NER module also detects date, time, string literals, and other numbers

such as monetary values. For example, numbers such as “3.1415 millions” will be extracted

and approximately transformed to form as 3.14 × 106. The normalized number is stored

and searched in the SOP index discussed in section 5.4, which enables approximate number

matching between free text and knowledge base.

5.6 Templates Training

After applying NER on the unstructured question text, another critical challenge of suc-

cessfully translation from natural language question to structured query is finding and

selecting the proper relationship (i.e. predicate in RDF triple) to construct BGP. To over-

come this challenge, this approach automatically learns this mapping rules, patterns, and

statistics from natural language to proper relationship paths from question-answer pairs

and knowledge bases.

35

The procedure of template training can be briefly described as following steps:

1. Given a pair of natural language question and its answer, the template training

module applies NER to both question and answer. It collects spotted entity surfaces

Sq from question and Sa from answer as described in section 5.5.

2. For every pair of surface texts (tq, ta) where tq ∈ Sq and ta ∈ Sa.

(a) The original question is normalized and grouped with spotted text tq, which

called template surface.

(b) For every pair of entities (eq, ea) where eq ∈ E(tq) and ea ∈ E(ta).

i. The training program exams whether there exists any short path between

eq and ea in the graph of knowledge base.

ii. If one or more short paths between eq and ea are discovered, those predicate

paths and eq will be recorded and attached to the template surface.

(c) In addition, if more than one disjoint spotted texts in the question are found path

to same entity in the answer, a template with multiple slots will be recorded.

(d) However, if no short path is detected from all pairs of entity between E(tq) and

E(ta), a special “no path found” path will be added to the template surface.

3. Repeat above steps over a collection of question and answer pairs. After finishing

training all questions, for every template, a distribution over potential predicates

paths is observed.

To illustrate, if NER extracts an entity textual surface tq = (wi, . . . , wj) associating with

entities E(tq) for the question and entities E(ta) for the answer, then the training program

tries all queries with triple pattern (eq, P, ea) where eq ∈ E(tq) and ea ∈ E(ta). If predicate

P fits one of above queries, the training program records this P appearance associating with

a single slot template surface T = (w1, . . . , wi−1,M,wj+1, . . . , wn), where M is a slot marker

indicates the type of eq. In other words, path P is added to path set PS(T) for T and it

counts a unit credit in counter CP,T . By going through a large collection of pairs of questions

and answers, the training program obtains a model containing predicate (relation) path

distributions on each question template surface. The probability of predicate path r given

36

template T is the predicate path frequency:

p(r|T) = pfp,T =
Cr,T∑

k∈PS(T)

Ck,T

(5.2)

For example, given template T1 =“who is the president of [ORGANIZATION]?”, the

trained model can return a list of possible predicates with different probabilities such

as p(leaderName|T1) = 0.5 and p(keyPerson|T1) = 0.1.

The unsupervised learning nature of above procedure and the noisy training data pos-

sibly introduce predicate paths that not semantically bridging a template to its answers.

For example, when training with question “who is the mayor of Chicago” and its answer

text “The current mayor of Chicago is Rahm Emanuel.”, the predicate paths between

“Chicago” and “Rahm Emanuel” are both leaderName and birthP lace−1. Even though

many city mayors were indeed born at the city too, the birthP lace−1 is not one of the

desired predicate paths of the training. To overcome this problem, a relatively large col-

lection of training questions and answers is necessary to provide statistical significance for

predicate path distributions for templates. Specifically, the training data also contains

questions about “who is mayor of Toronto” and “who is mayor of New York” that only

related to leaderName not birthP lace−1, which makes predicate leaderName statistically

dominates for templates “who is mayor of [CITY]?”.

In fact, the predicate paths observed during the training process have different credibil-

ities. Several techniques are used for the above challenge by giving proper weight of each

trained predicate path mapping. For instance, if c paths are detected between a pair of

entities (eq, ea), the weight of each path in template path distribution is equally divided by

c. The purpose of this operation is to deal with the semantically duplication in knowledge

bases. Given training question “Who is Bill Gates’ father?” and answer “William Gates”,

there exists two semantically equivalent predicate paths parent and child−1 from “Bill

Gates” to “William Gates”. This normalization operation makes sure duplicated predi-

cates won’t gain extra credits, as contrasted with ordinary predicates which only appear

once in one direction.

In addition, the likelihood of an entity for a surface text also affects the weights of

a detected predicate path. Ideally, the probability of correct predicate path detection is

proportional to the entity likelihood. However, in practice, the NER is not in a position to

37

disambiguate the surface text and produces accurate probability of candidate entities itself,

which actually largely depends on its context. As a result, the weight of a predicate path

is proportion of entities popularities in logarithmic scale. Therefore the weight function

for a observed path with total c paths is:

weq ,ea =
1

c
×Qeq ,tq ×Qea,ta (5.3)

with

Qe,t =
logPe∑

k∈E(t)

logPk

(5.4)

where Pe is the popularity of an entity defined by NER module. In this way, for all pairs

of entities PEp,T = {(eq, ea)} that discovered predicate p for template T , the counter Cp,T

is added up with weight function 5.3 :

Cr,T =
∑

(eq ,ea)∈PEp,T

weq ,ea (5.5)

5.7 Normalization

The post-processing module employs multiple kinds of normalization and optimization on

the trained model results.

First of all, standard morphological normalization is applied on the template surfaces.

As a result, template surfaces with morphological variations of words are merged together.

Distributions associated with those template surfaces are also combined. For example,

all verbs will be normalized to simple present tense and in the plural form. Therefore,

”Who marries PERSON” and ”Who married PERSON” are normalized and merged to

Who marry PERSON.

Secondly, templates surfaces within near tf-idf (term frequency-inverse document fre-

quency) distance are merged together. The tf-idf is a well-tested statistical measure used

to evaluate how important a word is to a document in corpus. Computing tf-idf in the

collection of templates surfaces can provide empirical observations on each word’s weights

in for reflecting the topic of the template surface. The similarity between words sequences

is defined as the cosine similarity of their if-idf vectors. Further, the distance between

38

word sequences is 1 minus the similarity value. Thus two templates are combined with

their distribution if they satisfy all following conditions: 1) they share the same template

slot marker (entity type); 2) their relation path (predicate) distribution overlaps in certain

degree; 3) the tf-idf distance between them is near (e.g. less than 0.3). In short, this step

merges the predicate distributions of those templates sharing major keywords and semantic

mappings, which improve and unified the ability of distributions prediction.

One obvious observation at QA training pairs is that training answers contain noisy

entities. Those noisy entities such as a country name can lead to unwanted predicate paths

like withinCountry. In order to alleviate the effect of above problem, a predicate path

which appears too often in templates should have lower weight than others. Similar with

the idea of inverse document frequency, all predicates are applied with a weight function:

itfp,C = log
|C|

1 + |{t ∈ C : p ∈ t}|
, (5.6)

where |C| is the total number of templates trained and |{t ∈ C : p ∈ t}| is the total

number of templates that contains predicate path p. Besides, the predicate path frequency

pfp,T for predicate path p in a template T is scaled by maximum predicate frequency in

T like “maximum tf normalization” summarized in [46]. The normalized predicate path

frequency is defined as

npfp,T = α + (1− α)
pfp,T

pfmax(T)
, (5.7)

where pfmax(T) = maxp′∈T pfp′,T and the parameter α ∈ (0, 1). This normalization will

augment the probabilities of a few high rank predicate paths that likely to be picked to

answer question. Two weighing function combined to make the score of a predicate path

p in a template T ∈ C to be:

P-Scorep,T,C = npfp,T × itfp,C (5.8)

In section 5.8, Equation 5.8 will be used to rank and choose answer.

5.8 Question Answering

Given the templates model trained in section 5.6, the basic questions can be answered by

matching templates. Similar with the training process, a input question is first scanned

39

by NER to generate an entity surface tq = (wi, . . . , wj) and then form a template for the

input question (w1, . . . , wi−1,m,wj+1, . . . , wn) with slot marker m. If the normalized input

template is matched with at least one of trained templates, predicates is retrieved from the

trained predicate path distribution of the matched template. With the entites refereed by

NER and predicates mapped from trained templates, a group of BGPs then is generated.

Groups of the BGPs might contain one or more BGP conjunction and are used to construct

a comprehensive structured query. For instance, a predicate path (father, brother−1) and

a entity “Tom” can produce a basic query as shown in figure 5.7. Each BGP in the query

S e l e c t ?x where

{
<Tom> <f a ther> ?a .

?x <brother> ?a .

}

Figure 5.7: A Example Generated Basic Query

is submitted to the SPO or OPS index built in section 5.4 to retrieval matched entities. If

any result entity are found for input the query, it is added to the solution set as a candidate

answer entity. Moreover, when multiple entity surfaces detected in the input question, it

can either lead to one template with several slots or multiple candidate templates. If two

entities are recognized and their surface texts are disjointed, a template with multiple slots

are formed in similar way to single slot templates.

The present question answering method and system is able to find solutions for complex

questions containing nested grammar structures. The templates training process only

discovers short relation paths (e.g. less than 3 steps) for training efficiency. To answer

complex questions, multiple steps structured queries are typically needed. One important

observation is that nested template surfaces are equivalent to definition question template

surfaces. For example, a definition question template surface “who is the daughter of

PERSON” and another template surface “where did PERSON graduate from” can be

used together for answering questions like “where did the daughter of PERSON graduate

from”. Therefore, the question answering module applies Context-Free Grammar (CFG)

on template surfaces recursively to generate multiple steps structured queries and answer

complex questions.

40

Assume the NER found a surface text tq = (wi2, . . . , wj2) in a question with word

sequence (w1, . . . , wi1, . . . , wi2, . . . , wj2, . . . , wj1, . . . , wn). If the basic query built from tem-

plate (wi1, . . . , wi2−1,m,wj2+1, . . . , wj1) and an entity eq ∈ E(tq) successfully matches any

answer entity ea, the original question will be rewritten and be transformed to new template

Tnew = (w1, . . . , wi1−1,m,wj1+1, . . . , wn). The same substitute procedure will be applied on

Tnew and ea to obtain an further intermediate answer. The above route repeats endlessly

until the original question is fully interpreted or the any intermediate query cannot be

resolved. If the whole question is successfully parsed with templates along with a series of

answer entities, this answer entity sequence will be added to the solution set as a multiple

step answer.

Various kinds of answer entities are matched from different structured queries. For

the purpose of ranking the entities corresponding to the question, scores are computed

to measure the similarity between queries to the question. To this end, those structured

queries are scored based on the popularity of nesting templates, the popularity of source

entities, and the probability of predicate path corresponding to the template discussed in

score 5.8.

The popularity of each template T ∈ C is measured by template frequency Tfp,T , which

is the sum of all its predicate path credits:

Tfp,T =
∑
p∈T

(pfp,T × itfp,C) (5.9)

Further, for a multiple step answer which uses multiple templates, the credibility of a series

of steps is decided by the least credible step following the Liebig’s Law. Both P-Score and

Tf reflect one step’s credibility. Therefore, the overall score of a sequence of templates and

predicates path pair TP = ((p1, T1), . . . , (pn, Tn)) is:

TP-ScoreTP,C = min
(p,T)∈PT

(Tfp,T × P-Scorep,T,C) (5.10)

At this point, we may view the Tf as the total credibility of a template and the P-Score is

the proportion of credit occupied by the predicate path.

In addition, the source entity frequency and number of returned answer entities also

affects the final score of a solution. The source entity frequency for surface text t is defined

41

as:

Efeq ,t =
Peq∑

k∈E(t)

Pk

(5.11)

where Peq is the popularity of the entity e defined by NER module. On account of the

global observations on predicate path and template, source entity frequency play greater

role on the credibility of a solution in contrast to the training process with a logarithmic

scaled Pe. When a predicate path leads to a solution with many answer entities, this

implies the possibility that this predicate path might also be counted redundant times

during training. Besides, too many answer entities meet the preferences of QA systems on

concise answers. Towards this end, we assign to weight wNa to a solution as well,

wNa =
1

1 + logNa

, (5.12)

where Na is the total number of answer entities in a solution.

Thus, the final score for each solution is combined with function:

S-ScoreTP,C,eq ,t,Na = Efeq ,t × TP-ScoreTP,C × wNa (5.13)

Thus, solutions are ranked based on above score function and the highest scored solution

is returned.

Since this ontology-based QA system is a sub-system of a larger QA system which

explores various data sources, it is vital to respond “I don’t know.” for unsure question.

Hence, two thresholds are used to decide whether choosing current best answer. The count

Tfp,T has to be larger than threshold θTf . This criteria guarantee the statistical significant

of this template mapping. Also, the S-Score should be larger than the θS to ensure that

current solution is not recklessly chosen because of missing data in the knowledge base.

When necessary, the question answering module can employ an optional corpus-based

answer validation and refines the module. When potential answers are found in the above

modules, each answer and question keywords are examined by co-occurrence in the corpus.

If the answer and keywords appear in the same passage frequently, then this answer phrase

is validated.

As mentioned in weight function 5.3 during training, if c predicate paths are discovered a

pair of training entities, each predicate path only gain
1

c
its original credit in corresponding

42

counter. Though this weighing avoid duplicate predicate paths over counted, each duplicate

predicate path alone has less count to compete with other predicate paths. To deal with

this problem, when different queries from the same source entity reached the same answer

entities, these solutions are merged to a new solution, and sum of their S-Scores is assigned

to this new solution.

Instead of outputting the answer phrase directly, answer sentences are composed based

on the answer phrase and its corresponding structured query. The present system provides a

hand-written answer sentence template for the popular relation path. It is also able to make

answer sentence by learning the relationship description from a corpus by summarizing

textual description on known entities’ surfaces.

5.9 Experiments

In this chapter, a natural language QA system is designed and implemented for querying

ontology knowledge sources, which trained question analysis from community QA archive.

Experiments are carried out to study the impact of community data on the performance

of question answering. This section introduces the experimental environments, parameters

tuning results, and performance evaluation of Question Answering.

5.9.1 Experiment Setup

The materials used to train the template mappings consists of 10 million question and

answer pairs crawled from Yahoo! Answers and WikiAnswers websites. For questions with

multiple available answers, only the best answer selected by community is used in for the

training.

The knowledge base is built on RDF triples in DBpedia 3.71 (September 2011), which

were extracted from Wikipedia articles infobox templates [1]. In the data set of DBpedia

3.7 release (September 2011), there are 3.64 million entities under 740,000 Wikipedia cat-

egories. The English portion of DBpedia consisting of 385 million RDF triples is indexed

in this project as knowledge source.

1http://blog.dbpedia.org/2011/09/11/dbpedia-37-released-including-15-localized-editions/

43

A dictionary-based NER is constructed based on internal link surfaces in Wikipedia

articles. In addition, the labels, redirects, and disambiguating triples ships with DBpdia

data set is added to NER as well. Above data results in a NER dictionary with 3,580,963

surface entries.

TREC-9 (2000) QA track questions set [68, 67] is used to evaluate the end-to-end QA

performance. For this test sets, to measure its ability to correctly classify true negative,

questions that did not have known answers in the reference knowledge base are kept intact.

TREC-9 test set includes 693 questions extracted from the logs of Microsoft’s Encarta

system and Excite search engine.

Because the knowledge source of this QA system is provided by DBpedia instead of

TREC corpus, many answers for TREC questions is not available in this common sense

knowledge base. Besides, this ontology-based QA system is designed to work with other

QA systems together. As a result, the system is required to respond No Answer (NA)

rather than inaccurate or unsure answers. The evaluation on system precision is the metric

precision@1 defined as:

precision@1 =
#correctly answered

#answered question (not No Answer)
(5.14)

And, to estimate the system’s overall answering coverage, the percentage of correct answers

over all inputs is used:

%correctall =
#correctly answered

#total input questions
(5.15)

Since only a part of the answers exist in the DBpedia knowledge base, there are

%correcthuman =
#human can answered

#total input questions
(5.16)

percent of questions in the testing set that a human searcher is able to answer by browsing

DBpedia knowledge only. Moreover, the %correcthuman for TREC-9 test set with DBpedia

as knowledge base is measured as 377
693
≈ 54.4%.

Therefore, %correctrel is used to measure the recall of answer retrieval from this limited

knowledge source, which is the percentage of correctly answered questions over questions

that human is able to answered:

%correctrel =
#correctly answered

#human can answered
=

%correct

%correcthuman

(5.17)

44

5.9.2 Evaluation

As discussed in section 5.8, there are three thresholds to determine whether returning

current best answer or replying no answer. In general, those thresholds balance the two

evaluation metrics precision@1 and %correctrel. Intuitively, when those thresholds become

more conservative, the QA system will achieve higher precision but possibly answer less

number of questions, and vice versa. To meet different system requirements, two thresholds

can be respectively tuned to optimize certain objectives function such as F1-Score.

To explain these thresholds in more detail meaning, the S-score is the objective function

to rank answers, which measures the overall probability of the current answer to the input

question. In another words, S-score reflects how close is current structured query mapping

to the original question, and the θS control the maximum distance allowed between the

question and structured query. On the other hand, the thresholds θTf ensures the trustwor-

thiness of S-Score. Table 5.1 and 5.2 summarizes the those effects in terms precision@1

and %correctrel.

Table 5.1: The impact of threshold θTf when θS is fixed to 0.05

θTf Precision@1 %Correctrel

0 0.8206 0.4854

10 0.8198 0.4828

20 0.8341 0.4801

30 0.8429 0.4695

40 0.8510 0.4695

50 0.8502 0.4668

60 0.8607 0.4589

100 0.8724 0.4536

200 0.8778 0.4191

400 0.8957 0.3873

800 0.8951 0.3395

Compare Table 5.1 and 5.2, we can find that the system performance is clearly more

sensitive on θS threshold. Further, it shows relatively small number of Tf is able to provide

45

Table 5.2: The impact of threshold θS when θTf is fixed to 30

θS Precision@1 %Correctrel

0 0.7300 0.5093

0.005 0.7510 0.5040

0.01 0.7602 0.4960

0.02 0.7881 0.4934

0.03 0.8009 0.4801

0.04 0.8241 0.4721

0.05 0.8429 0.4695

0.06 0.8731 0.4562

0.07 0.8789 0.4430

0.08 0.8824 0.4377

0.09 0.8827 0.4191

0.1 0.8908 0.4111

0.15 0.9250 0.3926

0.2 0.9504 0.3554

0.3 0.9655 0.2971

0.5 0.9877 0.2122

46

good confidence on template correctness, which is to prove it not trained from noise data

pairs.

As shown, this Ontology-based QA system has relatively high precision@1 that can

arrives more than 90% with tuned parameters. This characters would let it plays safely

with other QA systems using different knowledge source. Moreover, the %correcthuman is

considered as the upper bound of %correct and is measured as 54.4%. In this way, the

system can retrieve majority of available answers and avoid false positive answers at the

same time.

In term of speed, this system achieves high throughput of average 1213 questions per

second, which make it scalable to face the challenge of real-world industry usage. This

implementation of QA system is significantly faster than other DBpedia-based natural

language query system by a few orders of magnitude. For example, the PowerAqua [45]

requires an average 20.06 seconds to respond a question.

47

Chapter 6

Conclusions

6.1 Summary

This thesis demonstrated practical usage of community question answering archive data

for automatic question answering task. In this project, the definition, objective, and char-

acteristics of question answering from difficult sources are revised, further analyzed three

classes of transformations by the concept that dividing question into topic and focus part.

This thesis introduced query extension methods by collecting keywords for similar ques-

tion focus. Moreover, this extended queries are used as a feature for passage extraction

task for question answering, which improves its recall rates.

A end-to-end question answering system is developed, which comprising: receiving a

natural language question; recognizing one or more entity surfaces in the natural language

question, and generating one or more corresponding template surface queries; constructing

one or more structured queries based on trained models for queried templates and entities;

finding and selecting one or more answer phrases using constructed structured queries on

a knowledge base; and composing output for user based on one or more answer phrases.

During constructing one or more structured queries from trained models and entities

comprises: creating a basic graph pattern (BGP) with trained predicate paths and entities;

performing boolean algebra on multiple BGPs to better describe the question intent; and

applying context-free grammar (CFG) on template surfaces to build nesting queries.

48

When selecting one or more answer phrases using constructed structured queries com-

prises: employing a ranking scheme considering following factors: popularity of the tem-

plates surface; popularity of entities; probability of predicate path corresponding to the

template; and the depth of the nesting structured queries.

Further, a automatically learning mappings from a natural language question to a

structured query, comprising: a named entity recognizer for detecting the entity surface in

input text to link a text phrase to a knowledge concept; a training processor for searching

and organizing mapping from a template surface to one or more predicate paths; a training

post-processor for normalizing and optimizing trained mapping distributions for one or

more templates.

The named entity recognizer is adapted to: extract entity surfaces from one or more

webpage links to each knowledge concept; build a prefix-tree based dictionary on extracted

entity surfaces to link knowledge concepts; and search inputted text with a surface dictio-

nary to identity one or more potential knowledge concepts.

Post-processor for normalizing and optimizing is adapted to: perform morphological

normalization on template surfaces; merge the predicate distributions of those templates

sharing major semantic mappings and near in tf-idf distance.

6.2 Future Work

This project defines three class of Question-Query transform function. But, since equal

and inference transformation functions have been widely researched and applied, this work

only focus on correspondence transformation. In future, other two class of transformation

should also included to further overcome the information gap between the question and

answers.

The CRFs passage extraction model is an open models that can balance overlap fea-

tures. This is a trivial improvement for the effectiveness of overall QA system that adding

more features. However, obviously, large features could also slow the system performance.

Lastly, the post-process module employed multiple kinds of matrix analysis, transfor-

mation and decomposition on the trained model. Considering each template surface is a

row and each relation path of the template is a column, the trained model can be regarded

49

as a matrix. Therefore, matrix analysis techniques can be applied to reduce noises and/or

detect corelativeness in relationship path distributions.

50

References

[1] Sören Auer and Jens Lehmann. What Have Innsbruck and Leipzig in Common? Ex-

tracting Semantics from Wiki Content. In Proceedings of the 4th European conference

on The Semantic Web: Research and Applications, ESWC ’07, pages 503–517, Berlin,

Heidelberg, 2007. Springer-Verlag.

[2] J Bian, Y Liu, Eugene Agichtein, and Hongyuan Zha. Finding the right facts in the

crowd: factoid question answering over social media. International World Wide Web

Conference Com- mittee (IW3C2), pages 467–476, 2008.

[3] MW Bilotti, Paul Ogilvie, and Jamie Callan. Structured retrieval for question an-

swering. in information retrieval, pages 351–358, 2007.

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So Far.

International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[5] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. DBpedia - A crystallization point for

the Web of Data. Web Semantics: Science, Services and Agents on the World Wide

Web, 7(3):154–165, September 2009.

[6] Stefan Büttcher, Clarke Charles, and Cormack Gordon. Information Retrieval: Im-

plementing and Evaluating Search Engines. MIT Press, 2010.

[7] Xin Cao and Gao Cong. A generalized framework of exploring category informa-

tion for question retrieval in community question answer archives. World Wide Web

Conference Com- mittee (IW3C2), (December 2005):201–210, 2010.

51

[8] Xi Chen, Shihong Chen, and Weiming Wang. Passage Extraction Using Subsequence-

Based Query-Sensitive Maximum Cut. 2008 International Symposium on Knowledge

Acquisition and Modeling, pages 221–225, December 2008.

[9] F.Y.Y. Choi. Advances in domain independent linear text segmentation. In Pro-

ceedings of the 1st North American chapter of the Association for Computational

Linguistics conference, pages 26–33. Morgan Kaufmann Publishers Inc., 2000.

[10] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan.

An Efficient SQL-based RDF Querying Scheme. In Proceedings of the 31st VLDB

Conference, pages 1216–1227, 2005.

[11] Philipp Cimiano, Peter Haase, and Jörg Heizmann. Porting natural language interfaces

between domains. In Proceedings of the 12th international conference on Intelligent

user interfaces - IUI ’07, page 180, New York, New York, USA, January 2007. ACM

Press.

[12] Philipp Cimiano, Peter Haase, Jörg Heizmann, Matthias Mantel, and Rudi Studer.

Towards portable natural language interfaces to knowledge bases The case of the

ORAKEL system. Data & Knowledge Engineering, 65(2):325–354, May 2008.

[13] GV Cormack, CLA Clarke, and CR Palmer. Fast automatic passage ranking (Multi-

Text experiments for TREC-8). Proceedings of the, 2000.

[14] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question an-

swering passage retrieval using dependency relations. Proceedings of the 28th annual

international ACM SIGIR conference on Research and development in information

retrieval - SIGIR ’05, page 400, 2005.

[15] D. Damljanovic, M. Agatonovic, and H. Cunningham. FREyA: an Interactive Way of

Querying Linked Data using Natural Language. In Proceedings of 1st Workshop on

Question Answering over Linked Data (QALD-1), Collocated with the 8th Extended

Semantic Web Conference (ESWC 2011), Heraklion, Greece, 2011.

[16] Leon Derczynski, Jun Wang, Robert Gaizauskas, and Mark A. Greenwood. A data

driven approach to query expansion in question answering. Proceeding IRQA ’08

52

Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question

Answering, pages 34–41, August 2008.

[17] T. Dkaki, J. Mothe, and Quoc Dinh Truong. Passage Retrieval Using Graph Vertices

Comparison. In Signal-Image Technologies and Internet-Based System, 2007. SITIS

’07. Third International IEEE Conference on, pages 71–76, 2007.

[18] Jan Grant and Dave Beckett. N-Triples syntax in W3C Working Draft ”RDF Test

Cases”.

[19] Mark Greenwood. Using Pertainyms to Improve Passage Retrieval for Questions Re-

questing Information About a Location. In Proceedings of the SIGIR Workshop on

Information Retrieval for Question Answering, pages 17 – 22, 2004.

[20] Erik Hatcher and Otis Gospodnetic. Lucene in Action. Manning Publications, De-

cember 2004.

[21] Gary G. Hendrix, Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan

Slocum. Developing a Natural Language to Complex Data. ACM TRANSACTIONS

ON DATABASE SYSTEMS, 3:105 – 147, 1978.

[22] U Hermjakob and A Echihabi. Natural language based reformulation resource and

web exploitation for question answering. Proceedings of the Text Retrieval, 2002.

[23] Ulf Hermjakob. Parsing and question classification for question answering. In Pro-

ceedings of the workshop on ARABIC language processing status and prospects -, vol-

ume 12, pages 1–6, Morristown, NJ, USA, July 2001. Association for Computational

Linguistics.

[24] Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and Chin-yew Lin. Ques-

tion Answering in Webclopedia. IN PROCEEDINGS OF THE NINTH TEXT RE-

TRIEVAL CONFERENCE (TREC-9, pages 655 – 664, 2000.

[25] A Ittycheriah, M Franz, WJ Zhu, and A Ratnaparkhi. IBM’s statistical question

answering system. NIST SPECIAL, 2001.

53

[26] Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. Finding similar questions in large

question and answer archives. Proceedings of the 14th ACM international conference

on Information and knowledge management - CIKM ’05, page 84, 2005.

[27] Jing Jiang and Chengxiang Zhai. Extraction of coherent relevant passages using

hidden Markov models. ACM Transactions on Information Systems, 24(3):295–319,

July 2006.

[28] Pawel Jurczyk and Eugene Agichtein. Discovering authorities in question answer

communities by using link analysis. In Proceedings of the sixteenth ACM conference

on Conference on information and knowledge management - CIKM ’07, page 919,

New York, New York, USA, November 2007. ACM Press.

[29] Marcin Kaszkiel and Justin Zobel. Effective ranking with arbitrary passages. Journal

of the American Society for Information Science and Technology, 52(4):344–364, 2001.

[30] Esther Kaufmann, Abraham Bernstein, and Renato Zumstein. Querix: A natural lan-

guage interface to query ontologies based on clarification dialogs. In 5th International

Semantic Web Conference (ISWC 2006), number November, pages 980–981. Citeseer,

2006.

[31] M.A. Khalid and Suzan Verberne. Passage retrieval for question answering using

Sliding Windows. In Coling 2008: Proceedings of the 2nd workshop on Information

Retrieval for Question Answering, number August, pages 26–33, Morristown, NJ,

USA, 2008. Association for Computational Linguistics.

[32] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics - ACL ’03,

pages 423–430, 2003.

[33] John Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilis-

tic models for segmenting and labeling sequence data. In MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages 282–289. Citeseer,

2001.

[34] GG Lee, S Lee, Hanmin Jung, BH Cho, Changki Lee, and BK. SiteQ: Engineering

high performance QA system using lexico-semantic pattern matching and shallow

NLP. NIST SPECIAL, 2002.

54

[35] Baoli Li, Yangdong Liu, and Eugene Agichtein. CoCQA: co-training over questions

and answers with an application to predicting question subjectivity orientation. Pro-

ceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,

(October):937–946, 2008.

[36] H. Li, Y. Cao, J. Xu, Y. Hu, S. Li, and D. Meyerzon. A new approach to intranet

search based on information extraction. In Proceedings of the 14th ACM international

conference on Information and knowledge management, pages 460–468. ACM, 2005.

[37] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th in-

ternational conference on Computational linguistics-Volume 1, volume 12, pages 1–7.

Association for Computational Linguistics, December 2002.

[38] Marc Light, Gideon S. Mann, Ellen Riloff, and Eric Breck. Analyses for elucidating

current question answering technology. Natural Language Engineering, 7(04), Febru-

ary 2002.

[39] Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.

Natural Language Engineering, 7(04):343–360, February 2002.

[40] Jimmy Lin and Boris Katz. Question answering from the web using knowledge an-

notation and knowledge mining techniques. Proceedings of the twelfth international

conference on Information and knowledge management - CIKM ’03, (November):116,

2003.

[41] Jimmy Lin, Dennis Quan, Vineet Sinha, Karun Bakshi, David Huynh, Boris Katz, and

D.R. Karger. What makes a good answer? The role of context in question answering.

In Human-computer interaction: INTERACT’03; IFIP TC13 International Confer-

ence on Human-Computer Interaction, 1st-5th September 2003, Zurich, Switzerland,

number September, page 25. Ios Pr Inc, 2003.

[42] Xiaoyong Liu and W. Bruce Croft. Passage retrieval based on language models. Pro-

ceedings of the eleventh international conference on Information and knowledge man-

agement - CIKM ’02, page 375, 2002.

[43] Xiaoyong Liu, W. Bruce Croft, and Matthew Koll. Finding experts in community-

based question-answering services. In Proceedings of the 14th ACM international

55

conference on Information and knowledge management - CIKM ’05, page 315, New

York, New York, USA, October 2005. ACM Press.

[44] V Lopez, V Uren, E Motta, and M Pasin. AquaLog: An ontology-driven question

answering system for organizational semantic intranets. Web Semantics: Science,

Services and Agents on the World Wide Web, 5(2):72–105, June 2007.

[45] Vanessa Lopez and M Fernndez. Poweraqua: Supporting users in querying and ex-

ploring the semantic web content. Semantic Web Journal, 2011.

[46] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[47] Frank Manola and Eric Miller. RDF primer. W3C recommendation, 2004.

[48] Paul Martin, Douglas E. Appelt, Barbara J. Grosz, and Fernando Pereira. TEAM:

an experimental transportable natural-language interface. pages 260–267, November

1986.

[49] Paul Mcnamee, Rion Snow, Patrick Schone, and James Mayfield. Learning Named-

Entity Hyponyms for Question Answering. pages 799 – 804, 2008.

[50] M Melucci. Passage retrieval: A probabilistic technique. Information Processing &

Management, 34(1):43–68, January 1998.

[51] George A. Miller. WordNet: a lexical database for English. Communications of the

ACM, 38(11):39–41, November 1995.

[52] E. Mittendorf and P. Schauble. Document and passage retrieval based on hidden

Markov models. In Proceedings of the 17th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages 318–327. Springer-

Verlag New York, Inc., 1994.

[53] Thomas S. Morton. Using coreference for question answering. Proceeding CorefApp

’99 Proceedings of the Workshop on Coreference and its Applications, pages 85–89,

June 1999.

56

[54] Matte Negri and Milen Kouylekov. Question Answering over Structured Data: an

Entailment-Based Approach to Question Analysis. International Conference RANLP

2009 - Borovets, Bulgaria, pages 305–311, 2009.

[55] Marius A. Pasca and Sandra M. Harabagiu. High performance question/answering.

In Proceedings of the 24th annual international ACM SIGIR conference on Research

and development in information retrieval - SIGIR ’01, pages 366–374, New York, New

York, USA, September 2001. ACM Press.

[56] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates.

Modern natural language interfaces to databases: composing statistical parsing with

semantic tractability. In Proceedings of the 20th international conference on Compu-

tational Linguistics - COLING ’04, pages 141–es, Morristown, NJ, USA, August 2004.

Association for Computational Linguistics.

[57] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural

language interfaces to databases. In Proceedings of the 8th international conference on

Intelligent user interfaces - IUI ’03, page 149, New York, New York, USA, January

2003. ACM Press.

[58] John Prager, Eric Brown, Anni Coden, and Dragomir Radev. Question-answering by

predictive annotation. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval - SIGIR ’00, pages

184–191, New York, New York, USA, July 2000. ACM Press.

[59] Eric Prudhommeaux and Andy Seaborne. SPARQL Query Language for RDF, 2008.

[60] Stefan Riezler, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu Mittal, and

Yi Liu. Statistical machine translation for query expansion in answer retrieval. In AN-

NUAL MEETING-ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, vol-

ume 45, page 464, 2007.

[61] Gerard Salton, J Allan, and C. Buckley. Approaches to passage retrieval in full text

information systems. In Proceedings of the 16th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 49–58. ACM,

1993.

57

[62] Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. January 1992.

[63] Dan Shen and Mirella Lapata. Using semantic roles to improve question answering.

Proceedings of EMNLP-CoNLL, (June):12–21, 2007.

[64] Xiance Si and EY Chang. Confucius and its intelligent disciples: integrating social

with search. Proceedings of the VLDB, 3(2):1505–1516, 2010.

[65] Charles Sutton and A McCallum. An introduction to conditional random fields for

relational learning. in introduction to statistical relational learnin. Graphical Models,

(x), 2006.

[66] Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton. Quan-

titative evaluation of passage retrieval algorithms for question answering. Proceedings

of the 26th annual international ACM SIGIR conference on Research and development

in informaion retrieval - SIGIR ’03, (July):41, 2003.

[67] E Voorhees. Overview of the TREC 2001 question answering track. NIST SPECIAL

PUBLICATION SP, 2002.

[68] Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection.

In Proceedings of the 23rd annual international ACM SIGIR conference on Research

and development in information retrieval - SIGIR ’00, pages 200–207, New York, New

York, USA, July 2000. ACM Press.

[69] Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu. Panto: A portable natural language

interface to ontologies. The Semantic Web: Research and Applications, pages 473–487,

2007.

[70] Kai Wang and Zhaoyan Ming. A syntactic tree matching approach to finding similar

questions in community-based qa services. Proceedings of the 32nd international ACM,

page 187, 2009.

[71] W. A. Woods. Transition network grammars for natural language analysis. Commu-

nications of the ACM, 13(10):591–606, October 1970.

58

[72] William A. Woods, Robert M. Kaplan, and Bonnie Lynn Nash-Webber. The Lunar

Sciences Natural Language Information System: Final Report. Technical Report BBN

Report, Bold Beranek and Newman Inc., Cambridge, Massachusetts, 2378, 1972.

[73] Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. Retrieval models for question and

answer archives. Proceedings of the 31st annual international ACM SIGIR conference

on Research and development in information retrieval - SIGIR ’08, page 475, 2008.

[74] John M. Zelle and Raymond Mooney. Learning Semantic Grammars with Constructive

Inductive Logic Programming. May 1993.

[75] John M. Zelle and Raymond J. Mooney. Learning to parse database queries using

inductive logic programming. pages 1050–1055, August 1996.

59

	List of Tables
	List of Figures
	Introduction
	Question Answering
	Question Analysis
	Motivation
	Contributions
	Thesis Organization

	Background and Related Work
	Text-based Question Answering
	Query Expansion
	Passage Retrieval

	Ontology-based Question Answering
	Community Question Answering
	Evaluation

	Observations and Assumptions
	Question Topics and Focus
	Three Classes of Question-Query Transform Functions

	Extending Text-based QA with Community QA
	Challenges
	CRFs Model
	Features in CRF models

	Implementation
	Experiments

	An Ontology-based QA System built from Community QA
	Problem Formulation
	Challenges
	System Architecture
	Name Dictionary and Triple Indexing
	Named-entity Recognition based on Anchor Texts
	Templates Training
	Normalization
	Question Answering
	Experiments
	Experiment Setup
	Evaluation

	Conclusions
	Summary
	Future Work

	References

