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Abstract

We develop algebraic methods to solve join-cut equations, which are partial
differential equations that arise in the study of permutation factorizations. Using
these techniques, we give a detailed study of the recently introduced monotone
Hurwitz numbers, which count factorizations of a given permutation into a
fixed number of transpositions, subject to some technical conditions known as
transitivity and monotonicity.

Part of the interest in monotone Hurwitz numbers comes from the fact that
they have been identified as the coefficients in a certain asymptotic expansion
related to the Harish-Chandra-Itzykson-Zuber integral, which comes from the
theory of random matrices and has applications in mathematical physics. The
connection between random matrices and permutation factorizations goes through
representation theory, with symmetric functions in the Jucys-Murphy elements
playing a key role.

As the name implies, monotone Hurwitz numbers are related to the more
classical Hurwitz numbers, which count permutation factorizations regardless of
monotonicity, and for which there is a significant body of work. Our results for
monotone Hurwitz numbers are inspired by similar results for Hurwitz numbers;
we obtain a genus expansion for the related generating functions, which yields
explicit formulas and a polynomiality result for monotone Hurwitz numbers.
A significant difference between the two cases is that our methods are purely
algebraic, whereas the theory of Hurwitz numbers relies on some fairly deep
results in algebraic geometry.

Despite our methods being algebraic, it seems that there should be a con-
nection between monotone Hurwitz numbers and geometry, although this is
currently missing. We give some evidence for this connection by identifying some
of the coefficients in the monotone Hurwitz genus expansion with coefficients
in the classical Hurwitz genus expansion known to be Hodge integrals over the
moduli space of curves.
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Chapter 1

Preliminaries

1.1 Outline

In this thesis, we develop algebraic methods to solve join-cut equations, which are
partial differential equations that arise in the study of permutation factorizations,
and apply these techniques to the study of monotone Hurwitz numbers.

Much of this work is part of a larger project by Goulden, Novak and the au-
thor [16, 17, 18], which introduced monotone Hurwitz numbers as a combinatorial
device to resolve long-standing questions about a certain asymptotic expansion
of the Harish-Chandra-Itzykson-Zuber integral from mathematical physics and
the theory of random matrices. In the course of this work, several striking
similarities emerged between the coeflicients of this asymptotic expansion and
the well-known Hurwitz numbers, and this is the source of the name “monotone
Hurwitz numbers”.

Note that this thesis focuses on the case of so-called single monotone Hurwitz
numbers, by analogy with the single Hurwitz numbers. There is also a theory of
double monotone Hurwitz numbers which follows the theory of double Hurwitz
numbers. We will not be discussing double monotone Hurwitz theory further
here, but the interested reader is referred to [16, 17] and to Carrell [3], where it
is shown that double monotone Hurwitz numbers are piecewise polynomial and
satisfy the 2-Toda hierarchy.

Our results for monotone Hurwitz numbers are inspired by similar results
for Hurwitz numbers; we obtain a genus expansion for the related generating
functions, which yields explicit formulas and a polynomiality result for monotone
Hurwitz numbers, and identify the extreme coefficients in the genus expansion,
both at the low end and at the high end. A significant difference in our approach
is that our methods are purely algebraic, whereas the theory of Hurwitz numbers
relies on some fairly deep results in algebraic geometry. However, the results
themselves strongly suggest that monotone Hurwitz numbers should have some
kind of geometric content.
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The thesis is organized as follows.

Chapter 1 discusses the larger setting for the monotone Hurwitz problem.
After a brief review of some standard notation and some representation theoretic
aspects of the symmetric group algebra, we turn to the problem of enumerating
transposition factorizations. Section 1.6 defines many terms and contains a
few results for transposition factorizations, illustrated through a topological
construction. Sections 1.7 and 1.8 describe two important connections between
the centre of the symmetric group algebra and the ring of symmetric functions.
The first one is via the Jucys-Murphy evaluation map and the Farahat-Higman
algebra, and respects the composition of permutations; the second one is via the
characteristic map, and respects the disjoint union of permutations. The chapter
concludes with the definition of Hurwitz and monotone Hurwitz numbers, our
main objects of study. No substantial new results are given, but some aspects of
the presentation are novel.

Chapter 2 is concerned with setting up the join-cut equations for the Hurwitz
and monotone Hurwitz generating functions, which are the main tool used
in our investigations, through a combinatorial analysis. Along the way, some
convenient operators are introduced, as a bit of notation which reflects the
underlying combinatorics while being easy to manipulate algebraically. The
join-cut equations for the Hurwitz case are not new, but for the monotone
Hurwitz case they first appeared in recent work by Goulden, Novak and the
author [16, 17, 18].

Chapter 3 deals with the technical aspects of solving the join-cut equations
for monotone Hurwitz generating functions. This relies crucially on a Lagrangian
change of variables, introduced in Section 3.2. Then, Section 3.3 contains the
details of the verification for genus zero, and Section 3.4 contains the details of
the solution for higher genera, leading to a very specific rational form for the
monotone Hurwitz generating functions in higher genera. As with the join-cut
equations, this work also appears in [16, 17, 18].

Chapter 4 explores some of the consequences of the solution given in Chapter 3.
In particular, this includes a general polynomiality result for monotone Hurwitz
numbers, an explicit formula for genus one, and a discussion of the extreme
coefficients which appear in the rational form for the higher genera monotone
Hurwitz generating functions, both at the low end (the Bernoulli terms) and at
the high end (the Witten terms). The results concerning the Witten terms are
entirely new, and are a key piece of evidence pointing to a geometric interpretation
for monotone Hurwitz numbers.

Chapter 5 gives a short account of some previous results in Hurwitz theory
which are remarkably similar to the new results in monotone Hurwitz theory,
and a proof of a recurrence for the Witten terms which is structurally identical
to the recurrence of Chapter 4. This recurrence is the only new result in this
chapter.
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Chapter 6 concludes with a discussion of the many similarities and a few of the
differences between Hurwitz theory and monotone Hurwitz theory. In particular,
it contains the formal statement and proof of the correspondence between the
Witten terms for the Hurwitz and monotone Hurwitz generating functions implied
by the recurrences of Chapter 4 and Chapter 5, which strongly suggests that
a (currently missing) geometric interpretation for monotone Hurwitz numbers
should exist.

Appendix A and Appendix B contain the numerical coefficients for the rational
forms of the monotone and classical Hurwitz generating functions, respectively,
for genus 2, 3, 4 and 5.

1.2 Standard Notation

We begin by reviewing some notation used in this thesis. For partitions and
symmetric functions, we use mainly standard notation, as can be found in
Macdonald [34].

Given an integer n > 0, a partition « of n is a weakly decreasing list
(a1, e, ..., a) of positive integers whose sum is n, called the parts of a. We
write a = n to indicate that « is a partition of n. The size of « is |a| = n,
and its length is ¢(a) = k. For partitions whose parts are at most 9, we may
dispense with the parentheses and commas to avoid visual clutter, and we may
use exponents to denote repeated parts of the same size; for example, we may
write 442111 or 42213 for the partition (4,4,2,1,1,1). The number of parts equal
to a given integer i in a partition « is called the multiplicity m;(«) of i in «,
sometimes written simply as m; if the partition « is clear from the context. The
quantity

laut(e)| = ] [,

i>1

which is the number of permutations of the parts of a which leave it globally
unchanged, is also frequently used.

A partition « - n can also be identified with its Ferrers diagram, which
is a graphical representation of the set {(7,7) | 1 <i < /{(a), 1 <j < a;}. The
elements of this set are typically called boxes or cells, and arranged so that the
box (i,7) is in row ¢ and column j. The English convention for the coordinates
of boxes is the same as the usual convention for the coordinates of matrix entries,
so that, e.g., the Ferrers diagram for the partition o = (5,2,1) is

[ 1]
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This representation of partitions naturally suggests the containment order
on partitions: if o - n and g+ m are partitions such that the Ferrers diagram
for « is contained in the Ferrers diagram for 3, then we write o < . Given a
saturated chain

) =a’<al< - <a"=a

from the empty partition (0) to a partition o - n with respect to the containment
order, we can represent it as a standard Young tableau, that is, a labelling

of the boxes of the Ferrers diagram of o with the numbers 1,2, ..., n such that
the boxes labelled 1,2, ..., m form the Ferrers diagram of o™. For example, the
chain
SPEEE | [ [T
o <[<[II<[III< <[ < < <

is represented by the standard Young tableau

3[7]8]

BERE

Note that standard Young tableaux are characterized by the fact that the labels
{1,2,...,n} are each used exactly once, and the box labels increase along each
row and along each column. Similarly, a semistandard Young tableau of
shape a  n is a labelling of the boxes of the Ferrers diagram of o by positive
integers, possibly repeated, subject to the restriction that the box labels increase
weakly along each row and strictly along each column. If a semistandard Young
tableau contains t; copies of the label ¢ for ¢ = 1,2,3,..., then its type is the
vector (ty,to,ts,...). For example, the labelling

SEIE]

’Cﬂl\)b—‘
w

is a semistandard Young tableau of shape 521 and of type (3,2,2,0,1,0,0,...).
Given a countable set of indeterminates x = (x1,x2,x3,...) and a partition
a - n with k parts, the monomial symmetric function m,(x) is the sum'

_ s o
Me(x) = Zwil g, ;)

'Here, the usage of m, for monomial symmetric functions is a standard but unfortunate
clash of notation with the usage of m; for the multiplicity of a part in a partition. However, the
meaning should generally be clear from the context. The two notations can also be distinguished
by whether the subscript is a partition or a single integer.
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of all distinct monomials that can be obtained by choosing distinct indices
i1,19,...,1; for the indeterminates, so-named because they are invariant under
any permutation of the indeterminates x. Then, the ring of symmetric
functions with rational coefficients in the indeterminates x, Ag(x), is the
set of all finite Q-linear combinations of monomial symmetric functions in the
indeterminates x, with addition, subtraction and multiplication defined in the
obvious way. This ring is naturally graded by total degree, so that m,(x) has
degree |a/.

Some other standard symmetric functions are the power sum symmetric
functions

pk(x):Zarf, k>1,

i>1

the elementary symmetric functions

er(x) = Z Ty Tiy -+ Tiy k>1,

1<i1 <t <--<ig

and the complete symmetric functions

hi(x) = Z Tiy Tig -+ * Tiy, kE>1.

1<y <ig<--<ij,

For a partition o = (a1, ag, . . ., ), we write p, (x) for the product of power sums
Do (X)Pasy (X) -+ - Doy, (%), and similarly for eq(x) and ho(x). In addition to the set
{mqa(x) | @ Fn, n > 0}, the sets {pn(x) | « Fn, n >0}, {eq(x) | aFn, n >0}
and {hq(x) | @ F n, n > 0} are bases of Ag(x). A fifth significant basis of
the symmetric functions is given by the Schur symmetric functions s, (x), also
indexed by the set of all partitions «;, can be defined as

SQ(X) _ Z xlil(T)x?(T)xéS(T) e

T

where the sum is over all semistandard Young tableaux 71" of shape A, and
(t1(T),t2(T), t3(T),...) is the type of T

It is much more common to work with symmetric functions through one of
these five bases, rather than explicitly through the indeterminates x, so we will
generally erase these indeterminates from the notation, and assume that there is
an unspecified and anonymous set of indeterminates in the background.

The ring Ag also comes equipped with a standard symmetric and positive
definite inner product, called the Hall inner product. It can be characterized
by the fact that the pairs

Po

Ma < ha, Do [Tisq i@ - my ()’

S < Sq



6 CHAPTER 1. PRELIMINARIES

are dual bases, in the sense that

1 ifa=7,
(e hg) {0 otherwise,
and similarly for the other two pairs. This leads to the sixth and final classical
basis of the symmetric functions, the forgotten symmetric functions f,, defined
as the dual basis of the elementary symmetric functions eg.

We will sometimes need to deal with symmetric functions of infinite degree,
that is, infinite Q-linear combinations of monomial (or power sum, or...) sym-
metric functions. Since the ring Ag is graded, we can do this by passing to the
natural completion K@, which is similar to a ring of formal power series. In fact,
Ag can be described as the ring Q[[p]] of formal power series in the power sums
p = (p1,p2,-..), and we will use this notation almost exclusively starting in
Chapter 2.

1.3 The Symmetric Group
For n > 0,
e let [n] be the ground set {1,2,...,n};

e let S, be the symmetric group on [n], that is, the set of permutations
of [n] under composition;

e let QS,, be the group algebra of S, that is, the set of formal Q-linear com-
binations of permutations in &y, with multiplication defined by extending
the group operation Q-linearly; and

e let QS = ano QS,, be the symmetric group algebra, that is, the
Cartesian product of the group algebras of the symmetric groups S, for all
n > 0, with multiplication defined component-wise.

Remark 1.3.1. For our purposes, the relevant properties of the set [n] are that it
is an n-element set equipped with a total ordering and that we have a natural
chain of inclusions

O CCRC - Clc .

The labels 1,2,...,n for the elements of [n] are otherwise immaterial.

In some cases, we can attach a combinatorial meaning to the coefficients of
an element of the symmetric group algebra. These elements then behave like
generating functions, in the sense that some algebraic operations on the elements
correspond to combinatorial operations on their coefficients.
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Figure 1.1: The permutation diagram for the permutation o € Sg with o(1) = 3,
0(2)=5,03)=4,0(4)=8,005)=2,0(6)=1,0(7)=17,0(8) =6.

Example 1.3.2. For example, if we define A by

A= Z o,

o€Sy,n>0
o an involution
then [0]A? (that is, the coefficient of o in A?) is the number of ways of writing o
as a product of two involutions, [¢]A? is the number of ways of writing o as a
product of three involutions, and so on.

In general, if [o]A is the number of ways of putting an A-structure on a
permutation o (for some notion of A-structure) and [p|B is the number of ways
of putting a B-structure on a permutation p, then [7]AB is the number of ways
of factoring the permutation 7 as 7 = op and putting an A-structure on o and a
B-structure on p. This point of view will be particularly useful to us for the rest
of this chapter and for Chapter 2, as we deal with the combinatorics of some
permutation factorization problems. Note that this can also be extended to the
case where the coefficients [o]A and [p]|B are ordinary or exponential generating
functions instead of integers.

A permutation o € S, can be represented as a directed graph with vertex set
[n] and arcs i — o(i) for each i € [n], as in Figure 1.1. From this representation,
it is clear that any permutation can be decomposed uniquely into a set of disjoint
cycles, and this leads to the disjoint cycle notation: we write

o = (al a2 oo a’el)(bl b2 oo bez) oo (Zl ZQ “ e Zek)’ (11)
where a;, b;, . .., z; € [n], for the permutation with the k disjoint cycles

ay — ag — - —> g, — ay,
by = by — -+ — by, — by,
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21 —> 22— 2 2g, 721

The cycle lengths ¢1, o, ..., ¢, determine a partition of n, called the cycle type
of 0. Note that cycles of length one are usually suppressed from the notation,
but they are still counted in the cycle type of o.

Remark 1.3.3. Our convention in this thesis is that permutations are multiplied
left-to-right. That is, if o, p are permutations in S,,, then op is the permutation
whose action on [n] is obtained by applying o first, then p. In terms of the
usual function composition notation, this corresponds to p o o. For example, if
0=(123)(45) and p=(12345), then we have

op=(123)(45)-(12345) = (1324)(5).

If o has the disjoint cycle structure given in (1.1), and p € S,, is any permu-

tation, then the conjugate o by p is
p~top = (plar) plaz) -+~ plae,)) - (p(21) plz2) - plze,))s

so that the cycle type of a permutation is invariant under conjugation. In
fact, the cycle type is a complete invariant, hence the conjugacy classes of S,
can be labelled by the partitions a F n. It follows that an element A of the
symmetric group algebra QS is in the centre Z of the algebra exactly when the
coefficient [o]A only depends on the cycle type of o. If the coefficients [o]A have
a combinatorial meaning and give the answer to some enumeration problem on
permutations, then this problem is said to be central when A is in Z.

Example 1.3.4. The set of all permutations which are involutions is closed under
conjugation, so if A is the sum of all involutions as above, then A belongs to the
centre Z. As a consequence, every power A¥ k > 0 of this element is also in the
centre. The coefficient [0]A* is the number ways to write the permutation o as a
product of k£ involutions, so this is an example of a central problem.

For an example of a non-central problem, consider the problem of counting
the inversions of a permutation o, that is, the number of pairs (i, j) with i < j
and o (i) > o(j). This number does not depend only on the cycle type of o; for
example, the permutation (12)(3) has one inversion, but the permutation (13)(2)
has three. Correspondingly, the element B =} __ Smn>0(# inversions of o) - o
does not belong to the centre Z.

For aFn,n >0, let C, € QS be the conjugacy class sum for cycle type «,
that is, the sum of all permutations of cycle type o. Then, we have the following
equivalent characterization of the centre of the symmetric group algebra: A is
in Z if and only if it can be written as a Q-linear combination of the conjugacy
class sums. Since the centre is closed under multiplication, this leads to one
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of the most basic problems about the symmetric group algebra, namely, the
determination of the connection coefficients of the conjugacy class sums. Given
partitions o, 8, - n, what is [C,]CsC,? Combinatorially, the answer is simple;
it is the number of ways to factor an arbitrary fixed permutation of cycle type «
as a product of a permutation of cycle type § and a permutation of cycle type ~.
Numerically, however, this appears to be very hard to compute in general for
large cycle types. Since many important enumeration problems can be phrased
in terms of this basic problem, anything nontrivial that can be said about the
answer is worthwhile.

1.4 Representation Theory

Let Z, be the centre of QS,,. The conjugacy class sums C, for o - n form a
basis of this algebra over Q, but from representation theory, we know that there
is another basis consisting of the orthogonal idempotents F“, also indexed by
partitions o - n. As orthogonal idempotents, these elements satisfy F*F? = 0
for a # B and F*F* = F®, so unlike the conjugacy class basis, it is very easy
to multiply elements of Z,, expressed in the orthogonal idempotent basis. The
change of basis between these two bases is given by

Com Gl S Xepr o Z ST ac -
o = |Gl I - ZXﬁ B> arn,
BEn " BFn

where f® is the dimension of the irreducible representation of S,, indexed by the
partition a and X% is the associated irreducible character of this representation
evaluated at a permutation of cycle type 5. From this, it follows that we can
express the (generalized) connection coefficients of the conjugacy class sums as

! ) k-1
n! e (f7)

While this is a very useful expression for theoretical purposes, in practice comput-
ing the sum over all ~ exp(m+/2n/3)/(4n\/3) partitions of n is very expensive.

Given a partition a - n, let V¢ be the irreducible QS,,-module corresponding
to the character x“. This module has a Q-basis indexed by the set of standard
Young tableaux of shape «, called Young’s orthogonal basis. There are many
different constructions of this basis (see, e.g., Sagan [43]), but for our purposes,
it will be convenient to give a characterization in terms of the Jucys-Murphy
elements.

The Jucys-Murphy elements, introduced independently by Jucys [30] and
Murphy [38], are elements of the group algebra QS,, defined by

Jn =Y (k) =k + 2K+ +(k=1k), 1<k<n  (12)
i<k
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For our purposes, the first important fact about these elements is that they
commute with each other. Indeed, Jj , is invariant under conjugation by any
permutation in S,, which fixes the sets {1,...,k}, {k}, and {k+1,...,n}, so
Jin commutes with any linear combination of these permutations. The second
important fact about Jucys-Murphy elements is that, as Q-linear operators acting
on V< they have the elements of Young’s orthogonal basis as eigenvectors; if vy
is the basis element indexed by the standard Young tableau T', then

Jenvr = c(k, T)vr, (1.3)

where ¢(k,T) = j —i is called the content of the box (i, j) labelled k in T". Note
that this uniquely determines the vectors vr up to scaling. Using this fact, it is
possible to show that there exist polynomials pr(Jin,...,Jnn) such that

’UT/ lf T/ == T7
ooy dnn)op =
pr(Jin nn)UT {0 otherwise.

Since the elements of QS,, are uniquely determined by their action on the modules
Ve for a F n, it follows that the subalgebra of QS, generated by the Jucys-
Murphy elements is exactly the set of elements which act diagonally on Young’s
orthogonal basis. In particular, this is a maximal commutative subalgebra of
QS,,, called the Gelfand-Zetlin algebra GZ,, and we have the inclusions
Z, € GZ, CQS,, as illustrated in Figure 1.2.

By (1.3), the Jucys-Murphy elements can be related to the irreducible charac-
ters x® in a simple way; and by their definition (1.2) as a sum of transpositions,
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Figure 1.2: The action of the centre Z,, the Gelfand-Zetlin algebra GZ,, and
the full symmetric group algebra QS,, on Young’s orthogonal basis, for n = 4.
The basis elements are grouped together according to the shape of the associated
standard Young tableaux.
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their action on the conjugacy classes C, can be investigated combinatorially.
Thus, the Jucys-Murphy elements have a dual nature, in some sense, and provide a
bridge between the algebraic world of representation theory and the combinatorial
world of transposition factorizations, which we turn to in Section 1.5.

Remark 1.4.1. Although historically Young’s orthogonal basis was defined before
the Jucys-Murphy elements, there are now constructions of Young’s orthogonal
basis which start from the Jucys-Murphy elements. Together with a focus on the
chain of inclusions Q&1 C QS; C --- C QS,,, this lies at the heart of the modern
approach to the representation theory of the symmetric groups developed by
Okounkov and Vershik [42] (see also the recent book of Ceccherini-Silberstein,
Scarabotti and Tolli [4] for a detailed account).

1.5 Transposition Factorizations

A permutation of the form (ab) is called a transposition. The action of
multiplication by a transposition on the cycles of a permutation is particularly
simple, as illustrated in Figure 1.3: if the elements a, b are in different cycles of
o, then o - (ab) is obtained by joining these two cycles together; if a, b are in the
same cycle of o, then o - (ab) is obtained by cutting this cycle in two. In the
first case, the transposition (ab) is called a join for o, and in the second case it
is called a cut for o.

Products of transpositions will be of particular interest to us. We will refer
to a sequence

(a1 bl), (ag bg), PN ((lr br)

such that
(a1 bl)(ag b2) LR (ar br) =0

Figure 1.3: Multiplying the permutation (1234)(567) on the right by the
transposition (15) joins the two cycles together. Conversely, multiplying the
permutation (123456 7) on the right by this transposition would split it back
into two cycles.
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as a transposition factorization of ¢ of length r. By convention, we always
assume that a; < b;, and refer to the sequence (by,bo,...,b,) as the signature
of the factorization. The factorization is said to be monotone if the signature
is a weakly increasing sequence, and strictly monotone if the signature is a
strictly increasing sequence.

Remark 1.5.1. As can be guessed from Lemma 1.5.1, the “theory” of strictly
monotone factorizations is fairly boring. We introduce this concept mainly as
an extended example, with some similarities to the theories of non-monotone
transposition factorization and of (weakly) monotone factorizations, but where
more explicit computations can be given.

The partial products of this factorization are

k

op = [[(aibs), 0<k<r
i=1

and we can think of a transposition factorization of o as building up to ¢ from
the identity permutation, one transposition at a time. The ith factor (a;b;)
is called a join or a cut of the factorization according to whether it is a join
or a cut of the partial product o;_1. The initial permutation oy = id,, has n
cycles and each factor either decreases or increases the number of cycles by one,
depending on whether it is a join or a cut. It follows that the number r of factors
is at least
n — (# cycles of o),

the rank of o, and r has the same parity as this number. Permutation factoriza-
tions which satisfy the bound r > rank(o) with equality are said to be minimal,
and as the following lemma shows, they exist for every permutation o.

Lemma 1.5.1. Every permutation o has a unique strictly monotone factorization,
and its length is the rank of o.

Proof. Consider a strictly monotone factorization
(a1 bl)(ag bg) e (ar br) = 0.

If r =0, then o0 = id. Otherwise, the last transposition is the only one which
moves the element b, and no transposition moves any element greater than b,.,
so b, must be the greatest non-fixed point of o, and we must have a, = o(b,).
Thus, the last transposition is uniquely determined by o. The same argument
shows that the transposition (a; b;) is uniquely determined by the partial product
0;. Since 0;_1 = 0; - (a; b;) these partial products are uniquely determined by o,
which shows that o has at most one strictly monotone factorization.

Now, suppose we are given a permutation ¢ of rank r. We can construct partial
products o,,0,_1,...,00 by starting with o, = o and taking o;,_1 = 0; - (a; b;)
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as above for i =r,7 —1,...,1. Note that a; and b; are in the same cycle of o;,
so (a; b;) is a cut for o;, and the rank of o;_1 is one less than the rank of o;.
It follows that og = id, so this process does yield a transposition factorization.
Also, by construction, a; < b;, and o;_1 fixes every element greater than or equal
to b;, so the signature of this factorization is strictly increasing. O

Note that the Jucys-Murphy element
Jon =0k +Q2k) +---+(k—1k) € QS,

is the sum of all transpositions in S, with signature k, so that for a given
permutation o € S, the coefficient

[U]Jbl,ang,n e Jbr,n

is the number of transposition factorizations of o with signature (b1, bo, ..., b;).
In particular, we can rephrase Lemma 1.5.1 as the following generating function
equation in QS,[t], where ¢ is an indeterminate:

(L4 thin) (L + tdom) - (L+thyn) = Y K)o, (1.4)
geSy,

Similarly, the generating function for monotone factorizations in QS,|[[t]], where
t is an ordinary marker for the length of the factorizations, is:

(1—tdyn) (A —tdopn) ™t (1 —tdy) (1.5)

Part of the interest in counting monotone factorizations comes from the fact that
this generating function is equal to

( Z (_t)rank(a)a> - 7

O'ESn

and its coefficients have been identified as giving an asymptotic expansion of
the unitary Weingarten function in the large NV limit, from the theory of matrix
integration over the classical groups (see Collins [5] for the unitary Weingarten
function, and Novak [40] for the connection to this generating function).

Remark 1.5.2. Since the Jucys-Murphy elements commute, for any reordering
(c1,c2,...,¢) of a given signature (b, b, ..., b,), we have

Jbl,ang,n te Jb7-,n = Jcl,nJCQ,n T Jcr,na

so that any given permutation ¢ € &, has as many factorizations with one
signature as with the other. Thus, although there is an apparent asymmetry
in the definition of monotone factorizations between increasing and decreasing
signatures, this difference is immaterial for the purposes of enumerating them.
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1.6 Graphs and Surfaces

The purpose of this section is to describe a way of visualizing permutation
factorizations as topological surfaces. As such, we take a very naive view of
topology and refrain from proving any of the topological facts. We also define a
few related concepts pertaining to transposition factorizations and use the surfaces
to illustrate some bijections. However, the actual definitions and bijections are
purely combinatorial.

Given a transposition factorization

(a1 bl)(az bQ) s (ar br) =0 c Sn,

we can construct a graph embedded on a surface to visualize the factorization.
(Technically speaking, the result is an embedding of a vertex-labelled, edge-
labelled loopless multigraph on a not necessarily connected, oriented surface with
boundary, where the vertices lie on the boundary, the edges lie in the interior,
and the faces are homeomorphic to discs, with each face containing exactly one
arc of the surface’s boundary.) This embedding can be described by decomposing
it into vertices, boundary arcs, internal edges, and faces:

e The vertices and boundary arcs are given by the permutation diagram
of the product o; that is, the vertex set is the ground set [n], and there is
a boundary arc i — o(i) for each vertex 1.

e The internal edges are given by the factors of the permutation factorization;
that is, for each transposition (ay by), there is an internal edge labelled &
joining the vertices a; and bg. Note that the labelling of edges is important,
as a given transposition may appear more than once in the factorization,
leading to multiple edges between two vertices.

e The faces are oriented discs whose boundaries are given by following ele-
ments of the ground set [n] through the partial products of the permutation
factorization; that is, for each element i € [n], consider the sequence

or(i), or-1(@), or—2(i), ..., o2(i), o1(i), o0(i).

This determines a walk from the vertex o (i) (written as 0,.(7)) to the vertex
i (written as og(i)) if we traverse the edge labelled k, corresponding to
the factor (aibg), whenever ox(i) = a and o;_1(i) = by or vice versa.
Taking this walk together with the boundary arc ¢ — o (i) gives an oriented
closed walk, to which we can glue an oriented disc, yielding a face of the
embedding. Note that each internal edge is traversed exactly once in each
direction when tracing the face boundaries, so that gluing the faces together
along the internal edges does produce an oriented surface with the correct
boundary.
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Example 1.6.1. This construction is illustrated for the permutation factorization
(14)(68)(34)(57)(27)(18)(57)(13) = (13486)(25)(7)

in Figures 1.4 and 1.5.

The top of Figure 1.4 shows the graph formed from the vertices and the
internal edges. The middle shows the resulting oriented surface, with the vertices
and boundary arcs present, but with the internal edges erased; the left component
is a disc together with a handle glued on, making it homeomorphic to a punctured
torus, and the right component is formed from two discs joined by a handle,
making it homeomorphic to a cylinder. The bottom shows the whole graph
embedding, with the surface cut up so that it can be flattened; to recover the
embedding, the dashed edges should be identified according to the number and
direction of chevrons they are marked with, following the usual topological
convention.

The top two rows of Figure 1.5 show the neighbourhoods local to each
vertex, with the neighbouring vertices repeated if necessary, and with the faces
labelled {A,B,C,D,E,F,G,H}. The bottom two rows show the faces of the
embedding, with the same labelling, corresponding to the progression of the
elements {1,2,3,4,5,6,7,8} through the factorization, respectively.

In both figures, every flat part of the surface is shown so that the clockwise
direction matches the orientation of the surface.

This shows how to construct a graph embedding from a permutation factor-
ization. Conversely, given a graph embedding, the only conditions for it to come
from a transposition factorization are that:

1. the vertices lie on the boundary, the edges lie in the interior, and the faces
be homeomorphic to discs, each face containing exactly one arc of the
surface’s boundary; and

2a. the labels of the internal edges be decreasing along each face’s boundary
in clockwise order, starting and stopping with the (unlabelled) arc of the
surface’s boundary; or, equivalently

2b. the labels of the internal edges be increasing around each vertex in clockwise
order, starting with the outgoing surface boundary arc and stopping with
the incoming surface boundary arc.
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Figure 1.4: The global data for the topological construction associated to the per-
mutation factorization (14)(68)(34)(57)(27)(18)(57)(13) = (13486)(25)(7).
From top to bottom: the graph of the factorization; the unadorned surface; and
the embedding of the graph on the surface.
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Figure 1.5: The local data for the topological construction associated to the per-
mutation factorization (14)(68)(34)(57)(27)(18)(57)(13) = (13486)(25)(7).
From top to bottom: the neighbourhood of each vertex in the graph embedding;
and the faces of the graph embedding.
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From this point of view, it is fairly easy to enumerate transposition fac-
torizations in certain special cases, as in Theorem 1.6.1 and Theorem 1.6.2
below.

Theorem 1.6.1. (Dénes, [8]). The number of minimal transposition factoriza-
tions of the permutation (12 --- n) is n" 2.

Proof. A transposition factorization is uniquely determined by the corresponding
graph of internal edges, together with the its vertex and edge labels, and every
(loopless multi-)graph with vertices labelled by [n] and edges labelled by [r]
determines a factorization of some permutation in S,, into r transpositions.
Thus, it is enough to show that there are n”~2 graphs corresponding to minimal
factorization of (12 --- n).

Given the graph of a factorization of (12 --- n), the vertex labels can be
recovered from the knowledge of

e the permutation 0 = (12 --- n),
e the edge labels, and
e the label of a single vertex, say n,

since one can use the edge labels to walk along the graph from any vertex ¢ to
the vertex of its image o(i). In particular, the graph must be connected. For a
minimal factorization of (12 --- n), this connected graph has r = n — 1 edges, so
it must be a tree.

In fact, given any tree with edges labelled 1,2,...,n — 1 and a vertex labelled
n, this procedure of walking along the graph to recover the missing vertex labels
always works; regardless of the vertex labels, the n — 1 transpositions of the
corresponding factorization must all be joins, so the product can only be a full

Figure 1.6: The graph embedding corresponding to the minimal transposition
factorization (27)(56)(37)(57)(12)(45) = (1234567).
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cycle. Thus, this data is equivalent to the data of a minimal factorization of
(12 ---n).

Now, note that the set of trees with a “non-redundant” labelling as above is
in bijection with the set of trees with vertices labelled by [n]; the correspondence
is given by “pushing” the labels 1,2,...,n — 1 from the edges to the vertices
away from n, or in reverse by “pulling” these labels from the vertices to the
edges towards n. (See Figure 1.6 for an illustration of this.) Threading all these
correspondences together, we obtain a bijection between minimal transposition
factorizations of (12 --- n) and trees on the vertex set [n], of which there are
n"2. O

For Theorem 1.6.2, it is convenient to have a name to refer to permutations
such as

(987)(654)(3)(21),

whose disjoint cycle representation can be obtained by writing down by the
decreasing list n,n—1,...,1 and adding parentheses, so we call them decreasing
permutations. Formally speaking, these permutations are characterized by the
property that for each i € [n], i is either the smallest element in its cycle, or
t—1— 1.

We will also need some terms to describe the graphs associated to minimal
monotone factorizations of decreasing permutations. A forest is a graph which
is a disjoint union of trees, or in other words, a graph which contains no cycles. A
rooted forest is a forest together with a choice of root vertex for each component.
For each non-root vertex, its parent is the unique adjacent vertex closer to a root
vertex, and it is said to be a child of its parent. For each vertex, its up-degree
is its number of children. An ordered forest is a rooted forest together with a
total ordering on the set of its roots and, for each vertex, a total ordering on the
set of its children.

Example 1.6.2. The right-hand side of Figure 1.7 gives an example of an ordered
forest. The root vertices are labelled (9,3,2) in order from left to right, and
the children of each vertex are located directly above it, also in order from left
to right. For instance, the vertex 7 has up-degree 3, the list of its children is
(6,5,4), and its parent is the vertex 9.

Given a vertex in a rooted forest, its ancestry is the list of vertices on the
unique path from a root to it. In an ordered forest, we can compare ancestries
lexicographically, that is, in dictionary order, and this gives a total ordering on
the vertices of the forest, called the depth-first search ordering. Note that the
structure of an ordered forest can be recovered from its underlying forest and
its depth-first search ordering, but in general not every total ordering on the
vertices of a forest comes from a depth-first search ordering.
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Ezxample 1.6.3. For the ordered forest of Figure 1.7, the list of ancestries is

(2,1) 4 (9,7,4) 7. (9,7)
(2) 5 (9,7,5) 8: (9,8)
(3) 6: (9,7,6) 9: (9).

Since the children of each vertex happen to be ordered according to their vertex
labels in decreasing order, the sorted list of ancestries is

9), (9,8), (9,7), (9,7,6), (9,7,5), (9,7,4), (3), (2), (2,1),
and the depth-first search ordering of the vertices is (9,8,7,6,5,4,3,2,1).

Theorem 1.6.2. Given a minimal monotone factorization of a decreasing per-
mutation in S,, the associated graph is an ordered forest, where the depth-first
search ordering of the vertices isn,n—1,...,1.

Conversely, given an ordered forest on n unlabelled vertices, its vertices can be
labelled n,n — 1,...,1 in depth-first search order. There is then a unique way to
label it edges to obtain the associated graph of a minimal monotone factorization
of a decreasing permutation.

Remark 1.6.4. Matsumoto and Novak [35] give an equivalent bijection between
minimal monotone factorizations and certain parking functions. We restate
it here in terms of ordered forests since they appear naturally as part of the
topological construction described in this section.

Remark 1.6.5. Note that by the nature of the depth-first search ordering, for
every edge in the ordered forests described in Theorem 1.6.2, the parent vertex
label is larger than the child vertex label. Since the edges correspond directly to
the transpositions of the associated transposition factorization, it follows that the
up-degree of the vertex labelled i, i € [n], is the number of times i appears in the
signature of the factorization. In particular, for strictly monotone factorizations,
the up-degree is always zero or one, so the component trees of the corresponding
ordered forests are simply paths.

Proof. We proceed by induction on n, with a trivial base case of n = 0. For
n >0, let 0 € S, be a decreasing factorization, let

F: (al bl)(agbz)-”(arbr) =0
be a minimal monotone factorization, and consider the partial factorizations
Fy, - (a1 b1)(azbe) - - (ag bg) = ok, 0<k<r.

A factorization is minimal if and only if each of its transpositions is a join, so it
follows that each F} is a minimal monotone factorization of the corresponding
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Figure 1.7: The graph embedding corresponding to the minimal monotone
factorization (12)(67)(57)(47)(89)(79) = (987654)(3)(21).

partial product og. For k > 0, as in the proof of Lemma 1.5.1, this implies that
by, is the largest non-fixed point of oy, and a; and by are in the same cycle of oy.
If we let b, = o ' (ax) and a, = o ' (by,), then the action of (ay bx) on the cycle
of o} containing a; and by is given by

(b - bpar -+ ap) - (apbe) = (be -~ b)(ag -+ ap).

In particular, if oy is a decreasing permutation, then so is ox—1 = oy - (ax bx),
and it follows that each oy is a decreasing permutation.

Now, let j be maximal such that n is a fixed point of o;. Then, by construction,
for k > j, we have by = n and the cycle of o;_; containing n consists of the
elements 7 with n > 7 > aj. Thus, we have n > a;11 > aj;2 > -+ > a,, and
these are the » — j + 1 largest elements at the top of a cycle of o;. By the
induction hypothesis, the graph of the factorization F} restricted to the ground
set [n—1] is an ordered forest where the depth-first search ordering of the vertices

isn—1,n—2,...,1. The first r — j component trees of this ordered forest
must be rooted at aji1,aj42,...,a,. Adding the vertex n and edges for the
transpositions (a;j4+1n), (aj42n), ..., (arn) to this ordered forest gives the graph
of the full factorization F'. Furthermore, if the vertex n is taken as a new first
root, with children a;y1,a;j42,...,a, in that order, then the depth-first search
ordering of the resulting ordered forest is n,n — 1,...,1; this is because the
vertices n,n — 1,...,i, where i = 0~!(n), gain n at the start of their ancestry,
while the vertices ¢ — 1,7 — 2,...,1 have their ancestry unaffected.

For the converse, note that the edge labels of the graph of a minimal monotone
factorization of a decreasing permutation are uniquely determined by the vertex
labels; by monotonicity, the transpositions (a1 b1), (a2 b2),. .., (a, b,) occur in
weakly increasing order of bg, and by the argument above, for a given value
of b, they occur in strictly decreasing order of ai. Thus, given an ordered
forest on n unlabelled vertices, the vertex labels can be recovered by depth-first
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search, and the edge labels can be recovered uniquely, and the construction above
can be reversed to construct a minimal monotone factorization of a decreasing
permutation. ]

Corollary 1.6.3. (Matsumoto and Novak [35]). If a decreasing permutation has

cycle type a b n, then it has Hf(a) = (%i’:f

i—1 o ) minimal monotone factorizations.
- 3

Proof. In this case, the minimal monotone factorizations correspond to ordered
forests on n unlabelled vertices, with the additional restriction that the component
ordered trees have numbers of vertices given by the parts of « in some fixed
order. Each of these component ordered trees can be chosen independently, and

the number of ordered trees on «; unlabelled vertices is the Catalan number
1 (20@—2)‘ OJ

a; \a;—1

Given a transposition factorization, the corresponding surface may not be
connected, but it can be split up into connected components. By construction,
the connected components of the surface correspond exactly to the connected
components of the graph of internal edges. Combinatorially, the vertex sets of
the components can be described as the orbits of the subgroup

<(a1 bl)? (aQ b2)7 SRR (ar br)) C Sn

generated by the factors, acting on the ground set [n]; by abuse of language,
we may refer to these orbits as connected components of the factorization as
well. The surface is connected exactly when the subgroup acts transitively on the
ground set (meaning that it has a single orbit), in which case the factorization is
said to be transitive.

This notion of connectivity also lets us refine our previous classification
of factors of a transposition factorization as either joins or cuts; given the
components of the partial factorization

(a1b1)(azb2) -+ (aj—1 bi—1) = 041,

the next factor (a; b;) can be either a cut, in which case a; and b; are necessarily
in the same component, or it can be a join with a; and b; in different components,
in which case it is called an essential join for the factorization, or it can be a
join with a; and b; in the same component already, in which case it is called a
redundant join for the factorization.

Topologically, this notion of redundant joins corresponds to the notion of
genus of the surface. Indeed, if the surface is connected and has genus g, its
Euler characteristic can be computed as

X = 2 — 2g — (# boundary components),



1.7. THE FARAHAT-HIGMAN ALGEBRA 23

or alternatively, using the decomposition into vertices, boundary arcs, internal
edges and faces, as

X = (# vertices) — (# boundary arcs) — (# internal edges) + (# faces),
from which it follows that
r=n+/{(a)+2g — 2,
where « is the cycle type of . Then, using the fact that
l(a) = n — (# joins) + (# cuts)

and that n — 1 of the joins must be essential joins to get a connected surface, we
get
g = (# redundant joins).

Thus, we say that a transitive transposition factorization has genus g if it has ¢
redundant joins. If g = 0, we say that it is minimal transitive.

Remark 1.6.6. For permutations with a single cycle, all transposition factoriza-
tions are automatically transitive, so the notions of minimal factorization and
minimal transitive factorization coincide in this case. The two notions diverge
for permutations with more than one cycle, and this can be seen topologically:
the surface for a minimal factorization consists a separate closed disc for each
cycle, while the surface for a minimal transitive factorization consists of a sphere
with an open disc removed for each cycle.

Remark 1.6.7. Given the notion of representing transposition factorizations
as graphs embedded on surfaces, one approach to enumerating transposition
factorizations is to fix a surface and then to count embeddings on it. Here, fixing
a surface means specifying the number of connected components, together with
the genus and number of boundary components of each one. One benefit of this
is that the number of vertices is not fixed, so that this approach is amenable
to the use of generating functions. In the physics literature, this leads to the
notion of topological recursion, as described by Eynard and Orantin [12]; see also
Bouchard and Marifio [2] and Eynard, Mulase and Safnuk [11]. Our approach in
this thesis is similar in some sense, but the technical details are quite different.

1.7 The Farahat-Higman Algebra

We have a natural chain of set inclusions
O =[1]=2<=-—=hlon+l]=---,
and this corresponds to a natural chain of group inclusions

So =S =S = =8, = Spp1 =,
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where permutations of the set [n] can be extended to permutations of the set
[n+1] by adding the element n+1 as a fixed point. Since these inclusions respect
the group structure of the symmetric groups, they can be extended Q-linearly to
give ring inclusions

QSy — Q&1 — QS — --- = QS;, = Q51 — -+ -,
GZy — GZy — GZy — -+ — GZp — GZpy1 — -+ .

We might expect to get a similar chain of ring inclusions for the centres of the
group algebras, but since the inclusion QS,, — QS,,+1 treats the element n + 1
differently from the other elements of [n + 1], the centre Z,, does not map to
the centre Z,1. Still, there is some common structure between the centres, as
evidenced by equations involving the conjugacy class sums such as

C21n72C21n72 = <;L> Cln + 3C31n73 + 2C221n—4 & Zn, (16)

which holds uniformly for all values of n > 4. As we will see, this common struc-
ture is captured by the Farahat-Higman algebra, a subring of QS = [],,~, QS,.

To introduce the Farahat-Higman algebra, we need the concept of reduced
cycle type. For a permutation o € S, let cyc(o) F n be its cycle type. Then, the
reduced cycle type redcyc(o) of o is obtained from the partition cyc(o) by
subtracting one from each of its parts, and discarding any resulting parts of size
zero. Thus, redcyc(o) is a partition of the integer |cyc(o)| — ¢(cyc(o)) = rank(o).
Given n, the cycle type of o can be recovered from its reduced cycle type, but
unlike cyc(o), redcyc(o) is preserved by the natural inclusion S,, < Sp41.

Now, for every partition a, let K, € Z C QS be the reduced class sum for
the reduced cycle type «, defined by

Ko = Z o,

c€S8,,n>0
redeyc(o)=a

and let n € QS be the element defined by

n= Znidn,

n>0

where id,, is the identity permutation in S,,. Then, the Farahat-Higman
algebra FH is the Q-subalgebra of Z generated by n and the reduced class sums
Ka. With these definitions, (1.6) can be rewritten as

KK, = <;> Ko + 3Ky + 2Ky, € FH.
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Farahat and Higman [13] showed that for partitions o - n and g m, the
product K,Kg has an expansion of the form

|25
KoK = Z Czy,ﬁ(”)Kw
k=0 ~Fn+m—2k

where each ¢/, 5 is a polynomial of degree at most 2k = |a| + |5]| — |y|. Thus,
the reduced class sums K, form a basis of FH over the polynomial ring Q|n].
Furthermore, we have a natural filtration on FH if we take n to have degree 1
and K, to have degree |a|.

We can give another description of the Farahat-Higman algebra in terms of
the global Jucys-Murphy elements

Je =) Jkn €QS.

n>k

Since only finitely many of these global Jucys-Murphy elements are nonzero under
each of the projections QS — QS,,, n > 0, symmetric functions of Jy,Jo,... are
well-defined elements of QS. By (1.4), the rth elementary symmetric function is

given by
€T(J1,J2,...): Z U:ZKQ,

0€S8,,n>0 abr

rank(o)=r
so it is an element of FH, and it follows that every symmetric function of J1, Jo, . ..
is an element of FH. We can also allow polynomials in n as coefficients for these
symmetric functions and stay within the Farahat-Higman algebra. Thus, we
have an evaluation map

ev: AQ[t] (X) — AQM(J) - FH
t—n
XTi — JZ’, 1> 1,

where we write J for the list Ji,Jo,.... Since e,(J1,J2,...) € FH has degree r, it
follows that this map is degree-preserving, in the sense that symmetric functions
of total degree at most d in the indeterminates ¢, x1, x2,... map to elements of
degree at most d in the Farahat-Higman algebra.

One consequence of the evaluation map is that various transposition fac-
torization enumeration problems are automatically central, namely, the ones
whose generating functions can be expressed as symmetric functions in the
Jucys-Murphy elements. In particular, by (1.5), the generating function for
monotone factorizations of length 7 is the rth complete symmetric function in
the Jucys-Murphy elements, so this is a central problem. Another important
example is that of monomial symmetric functions, where we have the following
result.
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Lemma 1.7.1. (Matsumoto and Novak [35]). If o, B\ 1 are partitions of the
same size, then [Ko|mg(J) is the number of ordered forests where the ith tree has
«; edges, and the up-degrees of the non-leaf vertices are given by the parts of 3
i some order.

In particular, [KoJmg(J) = 0 if 5 is not a refinement of a, and [Ko|mpg(J) =1
if 6=a.

Proof. For a partition 8  r, the monomial symmetric function mg(J) is the
generating function for the following problem, as can be seen by expanding it as
a sum of products of Jucys-Murphy elements: how many monotone factorizations
of length r of a permutation o € §,, have a signature with some element repeated
1 times, another repeated (o times, another repeated (3 times, etc.?

By centrality, we can restrict our attention to decreasing permutations, and
then according to Theorem 1.6.2, the answer is simple in the case of minimal
monotone factorizations, that is, when r = rank(o); then, the monotone factor-
izations are in bijection with ordered forests with tree sizes given by cyc(o) and
up-degrees of non-leaf vertices given by 5. Since a tree of size one consists only
of a leaf vertex, the answer depends on the reduced cycle type redcyc(o) rather
than on the cycle type cyc(o), and redcyc(o) gives the numbers of edges in each
tree, rather than the number of vertices. O

Corollary 1.7.2. (Diaconis and Greene, [9]; Corteel, Goupil and Schaeffer, [6]).
The Jucys-Murphy evaluation map ev: Agy(x) — FH is a ring isomorphism.

Proof. First, note that ev identifies the subring Q[t] of Agjy(x) with the subring
QI[n] of FH, so that we can view ev as a linear map with respect to this common
subring. Now, order the set of all partitions in increasing order of size and
refinement, and take the monomial symmetric functions as an ordered basis for
Agy(x) over Q[t] and the reduced class sums as an ordered basis for FH over
Q[n]. Then, by Lemma 1.7.1 and degree considerations in the Farahat-Higman
algebra, the matrix for ev is upper triangular, with ones on the diagonal. In
particular, it is invertible. ]

Remark 1.7.1. Early on, Jucys [30] showed that every projection of the map
ev to QS,, n > 0, gives a surjection onto the centre Z,, but did not consider
whether the combined map to QS = @p,,~, QS,, is bijective. This was also shown
independently by Murphy [38, 39]. Later, Diaconis and Greene [9] essentially
gave a proof that ev is invertible by considering power sum symmetric functions.
This approach was also taken independently by Corteel, Goupil and Schaeffer [6].

Since the Jucys-Murphy evaluation map is an isomorphism, it follows that
FH = Agy(J) has bases over Q[n] given by the classical bases for the ring of
symmetric functions, in addition to the basis of reduced class sums. This leads
to the problem of expressing these bases in terms of each other.
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Figure 1.8: The pattern of nonzero coefficients up to degree 10 for various
change of basis matrices, from classical bases of the symmetric function ring
Agn)(J), to the basis of reduced class sums K, of the Farahat-Higman algebra
FH. From left to right, and top to bottom: monomial symmetric functions,
complete symmetric functions; power sum symmetric functions, Schur symmetric
functions; elementary symmetric functions, and forgotten symmetric functions.
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When expressing other bases in terms of the reduced class sums K,, this
is called the class expansion problem. Figure 1.8 gives a visual representation
of the change of basis matrices from the classical bases of symmetric functions
to the reduced class sum basis, where the pattern of nonzero entries is drawn
in black. In each case, there is a clear block structure, corresponding to the
different degrees of symmetric functions and to the different ranks of the reduced
class sums. The lower triangular nature of the block structure comes from the
fact that the grading on symmetric functions is compatible with the filtration on
the Farahat-Higman algebra, and the checkerboard pattern comes from the fact
that even-degree symmetric functions of the Jucys-Murphy elements only have
even permutations in their expansions, and similarly for odd-degree symmetric
functions.

From this diagram, it is also apparent that the bases of monomial symmetric
functions, power sum symmetric function, and forgotten symmetric functions
are all triangular (and not just block triangular) with respect to the reduced
class sums. What is not apparent is that the monomial symmetric functions
are actually unitriangular with respect to the reduced class sums, meaning that
the diagonal entries are all ones, unlike the power sum and forgotten symmetric
functions. Thus, it may be that the monomial symmetric functions are the more
natural basis when studying the Jucys-Murphy evaluation map.

Another possible natural basis is given by some homogeneous symmetric
function introduced by Macdonald [34, 1.7, Example 25] (see also Goulden and
Jackson [19]) to study the coefficients [Ko|KgK, when |a| = || + |v|, called the
top connection coefficients. As noted in [6], up to a predictable sign change, the
change of basis matrix from these symmetric functions to the reduced class sums
is block unitriangular, meaning that the diagonal blocks are identity matrices.
In fact, it is easy to see that there is a unique basis of the symmetric functions
which is both homogeneous and block unitriangular with the reduced class
sums; studying this basis may yield some insight on the exact correspondence
between the natural grading for symmetric functions on one hand, and the
natural filtration for the Farahat-Higman algebra on the other hand.

1.8 The Characteristic Map

The Jucys-Murphy evaluation map ev: Agy — FH gives one link between sym-
metric functions and the symmetric group algebra QS, but another link is given
by the characteristic map ch: QS — Ag. There is already an algebra structure
on QS given by the component-wise product, but through the characteristic
map, we will define another algebra structure on QS which is relevant to the
combinatorics of permutation factorizations.

As a Q-linear map, the characteristic map is defined by ch(o) = po/n!, where
a F n is the cycle type of o, and p, is a power sum symmetric function. It
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is well-known from the representation theory of symmetric groups that, when
restricted to the centre Z = ano Z,, the characteristic map satisfies

_ pa AN fasa ay
Ch(COé) - HZZI ’Lml(a) . mz(O{)'? Ch(F ) - n' I Ch(X ) = Sa

for a -n, n >0, where y* =>_ Brn X%CB is an element of Z,, representing the
irreducible character indexed by a. Also, using the standard inner products on
Z and Ag, we have

a B\ )L ifa= 4,
O XD = (5as 59) {O, otherwise,
so the characteristic map is an isometry.

As a linear map, the characteristic map is already useful as a way to relate
change of basis matrices in Ag and in Z, but the multiplication in Ag also
corresponds to a meaningful representation-theoretic operation in Z. If U is
a group representation of S for some k < n and V is a group representation
of Sk, then U ® V is a group representation of the group Si x S,,_, which
we can view as a subgroup of S,, by letting S, act on {1,2,...,k} and S,
act on {k + 1,...n}. Then, there is a corresponding induced representation
W=UV TgZxSn,k of S,. If we let xV = > oes, tracep (o) be the element

representing U in Zj,, and similarly for x" and x"V, then we have
ch(x") = ch(x") ch(x").

Thus, the characteristic map relates the multiplication of symmetric functions to
induced representations of the symmetric group.

While this is a notable description of the relation between multiplication and
the characteristic map, there is another, more combinatorial description which
will be more useful to us. There are (}) ways to embed the sets [k] and [n — k] as
complementary subsets of the set [n] in an order-preserving way, and for each of
these, there is an embedding of the group S; X S,k into S,. Given permutations
o € S; and p € S;,_, their concatenation product o ® p € QS,, is the sum of
the (Z) order-preserving embeddings of the pair (o, p) into S,,. If we extend this
operation bilinearly to the symmetric group algebra QS, then we immediately
have

ch(A®B) = ch(A)ch(B),  A,BeQSs,

and we will write A®* for the concatenation product

ARA®---QA.

k times
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Note that for conjugacy class sums, we have

laut(a U B)|
|aut ()| [aut(8)[ "

CQ®C5:

where a U (8 is the partition obtained by taking all the parts of « and all the
parts of 8 and sorting them in decreasing order, so the concatenation product
preserves the centre Z of QS.

For elements of QS whose coefficients have a combinatorial meaning attached,
the concatenation product is compatible with a cycle-by-cycle decomposition of
permutations. Roughly speaking, suppose we have an element A € QS such that
[0]A is the number of ways of putting an A-structure on a permutation o, for
some notion of A-structure which is independent of order-preserving relabellings
of the ground set. Similarly, suppose [p|B is the number of ways of putting a
B-structure on a permutation p. Then, [T]A® B is the number of ways of choosing
some cycles of 7, putting an A-structure on them, and putting a B-structure on
the remaining cycles. For some permutation problems, this can be used to talk
about decompositions into connected components, as shown by the following
propositions and their proofs.

Remark 1.8.1. Note that Proposition 1.8.1 and its proof are included here
mainly as a template for Propositions 1.8.2 and 1.8.3, the benefit of the strictly
monotone case being that all the generating functions involved have simple,
explicit formulas.

Proposition 1.8.1. Let R € QS[[t]] be the generating function for transitive
strictly monotone factorizations, where t is an ordinary marker for the length
of factorizations, so that [t"c|R is the number of transitive strictly monotone
factorizations of length r of the permutation o. Similarly, let R* be the generating
function for all strictly monotone factorizations. Then, we have

R®k

> =R

k>0
so that exp(ch(R)) = ch(R¥), or equivalently, ch(R) = log(ch(R*)).

Proof. We know from Lemma 1.5.1 that every permutation ¢ has a unique
strictly monotone factorization, and that its length is rank(o). Also, none of the
transpositions can be a cut, so each cycle of ¢ is a connected component of the
factorization. Thus, only the permutations with a single cycle have a transitive
strictly monotone factorization, and we have

R = Z tkilck.
k>1

Now, consider the generating function R ® R. The coefficient [7]R ® R is zero
unless 7 has exactly two cycles, in which case it counts the number of pairs (F, G)
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where F' is a transitive strictly monotone factorization of one of the cycles of 7,
and G is a transitive strictly monotone factorization of the other cycle of 7. If F’
is the factorization

(a1 bl)(ag bg) s ((lr br) =0

and G is the factorization

(crdi)(cada) -+ (csds) = p,

then F' and G operate on disjoint subsets of the ground set of 7, so the factors
of F' commute with the factors of GG, and there is a unique rearrangement of the
product

(a1 by) -+ (arby)(crdy) -+ (csds) =op=T

which interleaves the factors of ' and G to give a strictly monotone factorization of
7. Conversely, given a permutation 7 with two cycles, its unique strictly monotone
factorization can be restricted to a transitive strictly monotone factorization on
each of the two cycles, and this corresponds to two ordered pairs (F, G) as above.

Thus,
R®R _ a2
2 Z ¢ Ca
alFn,n>0
L(a)=2

is the generating function for strictly monotone factorizations with two connected
components. Similarly,

R®k =k
T 2 G
alFn,n>0
)=k

is the generating function for strictly monotone factorizations with k& connected
components, and the sum

R®k

_ |a|—€(c) _ px*
- = oot C, =R
k>0 akFn,n>0
is the generating function for all strictly monotone factorizations. ]

Proposition 1.8.2. Let H € QS[[t]] be the generating function for transitive
monotone factorizations, where t is an ordinary marker for the length of factor-
izations, so that [tTU]ﬁ 18 the number of transitive monotone factorizations of
length r of the permutation o. Similarly, let H* be the generating function for all
monotone factorizations. Then, we have
3 HER
k! ’

k>0

so that exp(ch(H)) = ch(H*), or equivalently, ch(H) = log(ch(H*)).
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Proof. The proof is essentially the same as the proof of Proposition 1.8.1, even
though the generating function H doesn’t have a simple expression in this case.
If o and p are permutations obtained by restricting 7 to two complementary
subsets of its ground set, and F, G are the transitive monotone factorizations

F (albl)(@bg)---(arbr):a,
G: (c1dy)(cads) -+ (csds) = p,

then F' and G operate on disjoint subsets of the ground set of 7, so the factors
of F commute with the factors of G. There is a unique rearrangement of the
product

(a1 by) -+ (arby)(crdy) -+ (csds) =op=7

which interleaves the factors of F' and G while keeping the relative order of
the factors of I’ and keeping the relative order of the factors of G to give a
monotone factorization of 7. Conversely, given a monotone factorization of 7 with
two connected components, it can be restricted to an ordered pair of transitive
monotone factorizations in two ways. In general, a monotone factorization of
with k connected components can be restricted to an ordered k-tuple of transitive
monotone factorizations in k! ways by choosing an ordering on the connected
components, so the generating function for monotone factorizations with exactly
k components is HE* /k!. O

Proposition 1.8.3. Let H € QS|[[t]] be the generating function for transitive
transposition factorizations, where t is an exponential marker for the length
of factorizations, so that [t"c/r!|H is the number of transitive transposition
factorizations of length r of the permutation o. Similarly, let H* be the generating
function for all transposition factorizations. Then, we have

> =
Ko
k>0

so that exp(ch(H)) = ch(H*), or equivalently, ch(H) = log(ch(H*)).
Proof. As with Proposition 1.8.2, the proof has the same structure as the proof
of Proposition 1.8.1, but the fact that ¢ is an exponential marker rather than an
ordinary marker for the length of factorizations is a significant difference. If o
and p are permutations obtained by restricting 7 to two complementary subsets
of its ground set, and F, G are the transitive transposition factorizations

F (albl)(@bg)---(arbr):a,

G : (c1di)(c2dz) -+ (csds) = p,

then there is generally more than one way to rearrange the product

(a1b1) -+ (arby)(c1dy) - (csds) =op=T
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to interleave the factors of F' and G while keeping the relative order of factors
within each factorization to obtain a transposition factorization of 7. In fact,
any of the (T:fs) ways of interleaving the factors works. In general, for a transpo-
sition factorization of 7 with k£ connected components, the number of ways of
interleaving the factors of the restrictions of this factorization to its connected
components is a multinomial coefficient, and this is exactly compensated by
the exponential nature of the marker ¢ for the number of transpositions in a
factorization. O

Thus, the use of the characteristic map in these cases allows an algebraic
treatment of the combinatorial decomposition into connected components.

Remark 1.8.2. The relationship between the (centre of the) symmetric group
algebra and the ring of symmetric functions can be summarized by the diagram

Note that the symmetric functions on the left and the symmetric functions on
the right have different base rings, which is an important distinction in this case.
Also, although each one is isomorphic to the symmetric group algebra in some
sense, this is for different product structures; the Jucys-Murphy evaluation map
preserves the composition product structure, whereas the characteristic map
preserves the concatenation product.

In particular, the logarithm and the exponential in an expression such as
log(ch(ev(exp(p1)))) have very different natures.

1.9 Classical and Monotone Hurwitz Numbers

Having defined all the required preliminary notions, we close this chapter with a
definition of Hurwitz numbers and monotone Hurwitz numbers, which are the
subject of the remainder of the thesis.

The Hurwitz number H,(a) (see [27, 28]) can be defined as the number of
branched coverings (up to isomorphism) of the Riemann sphere by a surface of
genus ¢ with ramification data given the partition «, as follows. After fixing the
ramification locus and a set of branch cuts on the sphere, the branched covering
can be thought of as a set of disjoint sheets, labelled 1,2, ...,n, and glued along
the branch cuts in some way. This gluing can be described by considering the
preimage of a small clockwise (say) circle around each ramification point, which
can be encoded as a permutation in S,,. Then, a branched cover is counted by
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Hy(o) if the permutation for the first ramification point has cycle type «, and
the permutations for the other ramification points are all transpositions.

Since the choice of ramification locus and branch cuts is arbitrary, we may
assume that the first ramification point is at the origin, with the other ramification
points arranged clockwise on the unit circle, and the branch cuts are line segments
from the origin to the unit circle, forming a star graph. Then, the permutations
o,(a1by), (a2b2),..., (arb,) which encode the gluing are characterized by the
equation

(a1 b1)(azb2) - (ar by) = o,

and the requirement that this transposition factorization be transitive. Further-
more, a branched covering is uniquely determined up to isomorphism by this
monodromy data, and the length r of the factorization is determined by the
Riemann-Hurwitz formula,

r=n+{(a)+ 29— 2. (1.7)

Thus, the Hurwitz number Hy(a) could also be defined as the number of transitive
transposition factorizations of length r of all permutations of cycle type a F n.
Per Proposition 1.8.3, this is also the coefficient of t"p,/r!n! in ch(H).

Remark 1.9.1. Given a cycle type «, the parameters r and g are equivalent, in
that either one is uniquely determined by the other, but either one may be more
natural in a given situation. We will write H"(«) and H,4(«) interchangeably to
refer to Hurwitz numbers, with the understanding that (1.7) always holds.

Remark 1.9.2. Note that the branched coverings counted by Hy(c) can be related
to the topological construction of Section 1.6 as follows. Given a branched covering
with the branch cuts in the form of a star, consider the planar dual graph G of
this star, which consists of a single vertex and r loops. Then, the n preimages of
the vertex of G are the vertices of the construction, and the preimages of the
loops of G give the internal edges of the construction. If a suitable directed loop
is added to G, then its preimage gives the boundary arcs of the construction,
and removing the interiors of these boundary arcs completes the picture.

By analogy, the monotone Hurwitz number ﬁ’”(a) is defined as the
number of transitive monotone factorizations of length r of all permutations of
cycle type a = m; per Proposition 1.8.2, ﬁ’"(a) is the coefficient of t"p, /n! in ch(ﬁ).
Since monotone factorizations are transposition factorizations, the relation (1.7)
also holds for them, and we will write ﬁg(a) and H "(«v) interchangeably, as with
Hurwitz numbers.

The monotone Hurwitz numbers were introduced by Goulden, Novak and
the author [16, 17] as the coefficients in an asymptotic expansion of the Harish-
Chandra-Itzykson-Zuber integral [26, 29].

For clarity, we will often refer to the Hurwitz numbers as classical Hurwitz
numbers, to distinguish them from their monotone counterparts.
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Join-Cut Equations

The algebraic approach to monotone Hurwitz numbers that we develop in this
thesis is based on a join-cut equation for the associated generating function, very
similar to the join-cut equation of Goulden and Jackson [20] for the generating
function for classical Hurwitz numbers. In this chapter, we give a quick review
of the join-cut equation for classical Hurwitz numbers and the combinatorial
join-cut analysis that leads up to it, then use the same techniques to establish a
join-cut equation for monotone Hurwitz numbers.

While these join-cut equations are combinatorially straightforward, they are
second-order nonlinear partial differential equations in infinitely many variables,
so they can be difficult to manipulate. To address this, we introduce three
families of convenient algebraic operators.

2.1 Hurwitz Numbers

2.1.1 All Transposition Factorizations

First, we review the combinatorial join-cut analysis which leads to the join-cut
differential operator.

Lemma 2.1.1. (Goulden, [1}]). Let A be an element of QS, and let K € QS
be the sum of all transpositions. Then, we have

1 0? o)
ch(K{A) = = (ijp- i+ (t+7 p'p~> ch(A).
i) =3 3 (s gy, + (4 g ) &)
Thus, when translated through the characteristic map ch, the action of Ky on A
can be expressed as a differential operator.

Proof. This is essentially a restatement in the context of the characteristic map
of the permutation equations

(ayag -~ a;)(biby -+~ bj) - (a1by) = (arag -~ a;by by - by),

35
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(arag -+~ a;jbyby -+~ b;)- (a1 b)) = (ayag --- a;)(by by - - b;),

which express the fact that multiplying a permutation by a transposition either
joins two cycles into one, or breaks one cycle into two. By Q-linearity, it is enough
to check the statement when A is a single permutation ¢ € S,,, n > 0, in which
case K1 A is the sum of all permutations that can be obtained by multiplying o
by a transposition (ab) € S,. The transposition (ab) will either be a join or a
cut for o, depending on whether a and b are in the same cycle of 0. Let us first
consider joins. Let o have m; cycles of length i, so that ch(o) = p"'py?--- /nl.
Then, for 4,7 > 1, there are im; ways to choose an element a in a cycle of length
i, and either jm; or j(m; — 1) ways to choose an element b in a (different) cycle
of length j, depending on whether j is distinct from ¢. For each of these choices,
multiplying o by (ab) joins a cycle of length i and a cycle of length j into a cycle
of length ¢ 4+ j. Summing over these choices and accounting for the symmetry
between (ab) and (ba), we get

1 . d%ch(o
S chlo(@b) = 3 3 idpies G
iODj

(ab) a join 7,5>1

Now, let us consider cuts. For 4,7 > 1, there are m;4; ways to choose a cycle of
length 7 4 j, and then there are ¢ + j ways to choose a and b in that cycle so that
multiplying o by (ab) puts a in a cycle of length ¢ and b in a cycle of length j.
Summing over these choices and accounting for the symmetry between (ab) and
(ba) again, we get

Y ch(o-(ab) = % > (i + j)pip; 85222)' O

(ab) a cut 5,521

Using this, we can easily find a differential equation which characterizes the
generating function for all transposition factorizations, with no transitivity or
monotonicity requirement.

Theorem 2.1.2. (Goulden, [15]). Let H* = exp(tK;) € QS][[t]] be the generating
function for all transposition factorizations, where t is an exponential marker
for the factorization lengths, so that [t"o/r!|H* is the number of factorizations of
the permutation o into r transpositions. Let H* = ch(H*) € Q[[p, t]] be its image
under the characteristic map. Then, H* is uniquely determined by the partial
differential equation

B o\ ...
= = Z (mea o, + (i 4 )pivi5— H])H

i,7>1

with initial condition [t°]H* = exp(p1).
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Proof. For a solution which is a formal power series in ¢, the coefficient of ¢"+!
can be computed directly from the coefficient of ¢, so existence and uniqueness
follow directly. To show that H* = ch(H*) is a solution, note that the operators

% and ch commute, so we have

0 v 0|« 0 .
aH =ch <(9tH ) =ch (8t exp(tK1)> = ch (Kj exp(tKy)) = ch(K{H*).

Then, by Lemma 2.1.1, we have

1 0? 3, )
ch(K{H") = - 1jpiti=——=— + (i + j)pipj H*.
(KiH) =3 UZ; < TP g (i + J)pip; T
For the initial condition, note that the identity element id € QS is the sum of
the identity elements id,, € S, for all n > 0, so we have

T
[tO1H* = Z ch(id,) = Z % = exp(p1). O
n>0 n>0

Remark 2.1.1. Although we gave an algebraic proof of the join-cut equation for
H*, the terms in it have a very straightforward combinatorial interpretation,
and the proof could be made combinatorial. Specifically, the equation can be
read as saying, “to get a transposition factorization of length r + 1, take a
transposition factorization of length r and either add a join or add a cut”, and
the initial condition can be read as saying, “for each n > 0, the only transposition
factorization of length zero in §,, is the empty factorization of the identity
permutation id,,”. However, a substantial amount of bookkeeping is involved in
counting the contributions of all cases exactly and making sure that the correct
scaling is used.

2.1.2 Transitive Transposition Factorizations

From the join-cut equation for the generating function for all transposition factor-
izations of Theorem 2.1.2, we can deduce a join-cut equation which characterizes
the generating function for transitive transposition factorizations.

Corollary 2.1.3. (Goulden, Jackson and Vainshtein, [23]). Let H € QS][t]]
be the generating function for transitive transposition factorizations, where t
is an exponential marker for the factorization lengths, so that [t"o /r!|H is the
number of transitive factorizations of the permutation o into r transpositions.
Let H = ch(H) € Q[[p, t]] be its image under the characteristic map. Then, H is
uniquely determined by the partial differential equation

OH 1Z<..p OHOH . O’H G+ )pip 8H>
A, o VPi+j 3 o LPi+j a3 1 WPia
8t 9 = J +J apl 8]9] J +7J 8;018]?] J ]api+j

with initial condition [t°]H = p.
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Proof. This follows directly from Theorem 2.1.2 by substituting exp(H) for H*,
as per Proposition 1.8.3, and using the chain rule. ]

Remark 2.1.2. As above, we gave an algebraic proof of the join-cut equation
for the generating function for transitive transposition factorizations, but its
terms have a simple combinatorial interpretation, and the proof could be made
combinatorial. Specifically, the partial differential equation can be read as saying,
“to get a transitive transposition factorization of length r + 1, either add an
essential join to a transposition factorization of length r with two components,
or add a redundant join to a transitive transposition factorization of length r, or
add a cut to a transitive transposition factorization of length r”, and the initial
condition can be read as saying, “the only transitive transposition factorization of
length zero is the empty factorization of the identity permutation in S1”. Again,
however, the algebraic proof avoids having to deal with a substantial amount of
bookkeeping.

2.1.3 Breakdown by Transitive Genus

As noted in Sections 1.6 and 1.9, a transitive factorization of a permutation of
cycle type a F n into 7 transpositions has a genus g, defined by

r=n+{(a)+ 29— 2,

and this g is always a non-negative integer. For our purposes, it will be useful
to group the coeflicients of the Hurwitz generating function according to their
genus.

Definition 2.1.4. The genus g generating function for Hurwitz numbers is

1 a
H, = ZzHg(a)(n+€(a)+29—2)!%'

n>1akn

We can unpack the differential equation from Corollary 2.1.3 for H into a
separate differential equation for each Hy, as follows.

Theorem 2.1.5. (Goulden, Jackson and Vainshtein, [23]). The genus zero
generating function for Hurwitz numbers Hy € Q|[p]] is uniquely determined by
the partial differential equation

O0Hj 1 . O0Hy 0H, L O0Hj B

k>1 ij>1 Opit;

with initial condition [p1)Ho = 1. For g > 1, the genus g generating function for
Hurwitz numbers Hy € Q[[p]] is uniquely determined by the partial differential
equation
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> ((k‘ + 1)29%2%) + (29 — 2)Hy

k>1

0o OH OH
§ < ]p +] a apj ( j)p Dj 8pi+j

3,7>1

0H, OH
5 Z ]pz-i-j o a -+ Z ipi+i— a;jg

5,521

and the generating functions Ho, Hyq,... , Hy_1.

Proof. Let A = Zgzo H,u?, so that as a generating function, A has the same
coeflicients as H, but has an ordinary marker v for the genus g instead of an
exponential marker ¢ for the number of transpositions . Since r = n+£(a)+2g—2,
the generating functions

OH 0A 0A
— 1 2u— — 2A
t>, and ;((k—l— )p ap>+ u

also have the same coefficients. Then, by comparison with Corollary 2.1.3, it
follows that A is uniquely determined by the partial differential equation

0A OA

Sk +Dpey— ) +2u—— —2A
Opg ou

k>1

A OA %A O0A
- Z g o ops ap; VP g i+ piwig — o

i,5>1

with initial condition [u'p;]A = 1. Extracting the coefficient of u9 from this
equation for ¢ = 0 and g > 1 and reorganizing terms gives the stated equations
for Hy and Hy, g > 1. O

Remark 2.1.3. Although they may seem unwieldy, the differential equations
of Theorem 2.1.5 are actually quite useful. They were used by Goulden and
Jackson [20, 22, 21] to prove the correctness of explicit formulas for g = 0,1, 2,
and in Chapter 5, we use them to relate the asymptotics of Hurwitz numbers
and monotone Hurwitz numbers.

2.2 Convenient Operators

To perform manipulations on generating functions in Q[[p]] such as Hgy, it will be
convenient to have a ready supply of auxiliary indeterminates, so we introduce a
countable set x = (z1,x2,...) of new indeterminates and form the ring Q[[p, x]].
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Unlike power sum symmetric functions, these new indeterminates should be
thought of as completely interchangeable.

Then, the following Q-linear operators can be used to relate the new indeter-
minates x to the power sums p and manipulate them.

Definition 2.2.1. The ith lifting operator A; is the Q[[x]]-linear differential
operator on the ring Q[[p, x]] defined by

0
Ai:kaf—, i > 1.
>1 Opx,

Definition 2.2.2. The ith projection operator II; is the Q[[p]]-linear idem-
potent operator on the ring Q[[p, x|] defined by

IL = [29] + Zpk[xf], i>1.
k>1

Note that II; is also Q[[z;]]-linear for j # i.

Definition 2.2.3. Let F'(x;) be an element of Q[[p, x]], considered as a power
series in x;, and let 7 > 1 be an index other than ¢ > 1. Then the i-to-j splitting
operator is defined by

Split F(z;) = 20 =2 @) | gy

i—j Ti — Ty

so that Split; ,; 1 = Split;_,; z; = 0 and

Split zf = mfflxj + xfox? + -+ xixffl, k> 2.

i—J
Note that Split,_,; is Q[[p]]-linear, and Q[[x]]-linear for k # .

Remark 2.2.1. Note that the indeterminates x = (x1, z2,...) are interchangeable
in the definition of the lifting, projection and splitting operators, in the sense
that the definition of A; is obtained by replacing every occurrence of x; by z;
in the definition of A;, and similarly for II; and Split, ,;. To cut down on the
proliferation of indices, we will generally state results involving these operators
using explicit numeric indices and write, e.g., Split;_,, instead of Split;_, ;.

Notationally, the lifting and projection operators essentially translate between
subscripts on the power sums p and exponents on the indeterminates x. This
makes it easier to express some natural combinatorial operations on permutations
as algebraic operations on generating functions in Q|[p, x]|.

For example, if a cycle of length k is represented by a power sum py, then as
noted in Section 1.8, the concatenation product on permutations corresponds
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to multiplication of generating functions. However, if a cycle of length £ is
given a label ¢ and represented by as wf, then multiplication of generating
functions corresponds to the operation of joining cycles with the same label
instead. Conversely, if :B’f represents a cycle of length k& and xo is an unused
indeterminate, then applying the Split;_,, operator to a generating function
corresponds to the operation of cutting the cycle labelled 1 in two cycles labelled
1 and 2 in all possible ways.

More concretely, the lifting, projection and splitting operators can be used to
rewrite the differential operators of Lemma 2.1.1 (and Theorem 2.1.2) in a way
that mirrors the combinatorial considerations which appear in its proof. The
operator which accounts for multiplying a permutation by a transposition (ab)
which is a join is

1 g 0? 1 9

5 ”2221 L) Pi+j Opidp; 2 II1 A1,
where the first application of A; accounts for the number of ways of picking
a while recording the length of the cycle containing it as the exponent of xy;
the second application of A1 accounts for the number of ways of picking b in a
different cycle while recording the length of this cycle as the exponent x1; the
implicit multiplication of these two powers of x1 accounts for joining these two
cycles; the application of IT; converts the exponent of the auxiliary indeterminate
x1 to a power sum subscript; and the division by two accounts for the symmetry
between a and b. The operator which accounts for multiplying a permutation by
a cut is

1 0 1
= ST (i 4 )pipi—— = =TI T Split Ay,
2ijz>1( ])pzpjapiﬂ g 1 1&2 !

where again the application of A; accounts for the number of ways of picking a
while recording the length of the cycle containing it as the exponent of x1; the
application of Split,_,5 accounts for the ways in which the cycle containing a
could be split in two, while recording the lengths of these cycles as the exponents
of x1 and x9; the application of II; IIs converts these exponents to power sum
subscripts; and the division by two is again for symmetry.

Similarly, the differential equation of Corollary 2.1.3 can be rewritten as

OoH 1
—— =112 ((A1H)2+A%H+SplitA1H>,
ot 2 12

which can also be given a fairly direct combinatorial interpretation.

These examples illustrate the fact that the lifting, projection and splitting
operators can be used to describe simple combinatorial operations on permuta-
tions, but as we will see in Chapter 3, their power comes from the fact that they
are also compatible with algebraic changes of variables.
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As a final note, we have the following easy lemma, which can be used to
move projection operators to the outside of an expression; this typically makes
computations easier.

Lemma 2.2.4. For F' € Q|[p, x]], we have the identity

OF
MILF =12 A1 F+x1
Oy

To=x1
Proof. The identity can be verified directly on monomials in p and x, and by
Q-linearity, it extends to all of Q[[p, x]]. O

2.3 Monotone Hurwitz Numbers

2.3.1 All Monotone Factorizations

Now, we turn to the combinatorial analysis leading to a join-cut equation for the
generating function for monotone factorizations. To simplify the bookkeeping
involved, it will be useful to give a combinatorial interpretation to the coeflicients
of a few auxiliary generating functions.

Ezample 2.3.1. Let H* = ch(H*) € Q[[p,#]], so that for 7 > 0 and «a F n, the
coefficient [t"pas/ n!]H* is the number of monotone factorizations of length r of
all permutations in S, of cycle type a. In particular, there are 20 permutations
in S5 of cycle type a = (3,1,1):

(1)(2)(345) (1)(3)(245) (1)(4)(235) (1)(5)(234) (2)(3)(145)
(1)(2)(435) (1)(3)(425) (1)(4)(325) (1)(5)(324) (2)(3)(415)
(2)(4)(135) (2)(5)(134) (3)(4)(125) (3)(5)(124) (4)(5)(123)
(2)4)315) (2)(5)(314) (3)(4)(215) (3)(5)(214) (4)(5)(213)

Each of these permutations has exactly 3 monotone factorizations of length 2, so
we have [t?p311/5!|H* = 60. The corresponding contribution to A3 H* is

t*p1at t*p3121
5l + 120 I

180

and we can interpret this as follows: in the list of 60 monotone factorizations,
there are 180 instances of an element of the ground set in a cycle of length 3
(marked by z3), and 120 instances of an element in a cycle of length 1 (marked
by x1). Note that, in each case, the selected element of the ground set is equally
likely to be 1, 2, 3, 4 or 5, so we can rewrite this contribution as

t2p1y a3 n 247522931951

30 4l 4! 7
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with the interpretation that out of the 60 monotone factorizations, there are 36
where the element 5 (say) is in a cycle of length 3, and 24 where the element 5 is
in a cycle of length 1.

Now, what happens if we apply a second lifting operator, As, to this rewritten
contribution? The effect of Ao corresponds to selecting an element of the ground
set in all possible ways, and marking its cycle by m’j instead of pg, where k is
the cycle length; here, we exclude any element whose cycle is already marked
by some power of x1 instead of a power sum. Thus, the contribution of the 60
monotone factorizations to As A1 H* can be written as
*pratas n 72t2p1$1l‘% +24752p33311?2

2 4] 4! 4!

indicating that

e in the 36 monotone factorizations where the element 5 is in a cycle of length
3 (marked by x3), there are 72 instances of another element of the ground
set being in a cycle of length 1 (marked by z2);

e in the 24 monotone factorizations where the element 5 is in a cycle of length
1 (marked by z1), there are 72 instances of another element of the ground
set being in a cycle of length 3 (marked by x3);

e in the same 24 monotone factorizations where the element 5 is in a cycle of
length 1, there are 24 instances of another element of the ground set being
in a different cycle of length 1 (marked by x3).

These observations are formalized in the following lemma.

Lemma 2.3.1. Let H* € QSJ[[t] be the generating function for all monotone
factorizations, where t is an ordinary marker for the factorization lengths, so
that [tra]ﬁ* is the number of monotone factorizations of the permutation o into r
transpositions. Let H* = ch(H*) € Q[[p, ]] be its image under the characteristic
map. Let o Fn be a partition with at least one part of size k, and let o — k be
the partition obtained by removing one of these parts. Then,

1. The coefficient [t"pa_pzh /nl] Ay H* is the number of triples (o, F,a) where
o € 8, is a permutation of cycle type a, F' is a monotone factorization of o

into r transpositions, and a € [n| is an element of the ground set in a cycle of
o of length k;

2. The coefficient [t"po—_pa’/(n — 1)1 A1 H* is the number of pairs (o, F) where
o € S, is a permutation of cycle type o, F is a monotone factorization of o
into r transpositions, and the element n of the ground set is in a cycle of o of
length k; and
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3. if a—k has at least one part of size j, then the coefficient [tTpa_j_kafxg/(n —
D!l Ao Ay H* is the number of triples (o, F,a) where o € Sy is a permutation
of cycle type o, F' is a monotone factorization of o into r transpositions, the
element n of the ground set is in a cycle of o of length k, and a € [n] is an
element of the ground set in a different cycle, of length j.

Proof. 1. If o has my, parts of size k, then we have
[t Pa_rz’ /nl] A1 H* = kmy[t po /n!]H*

Since H* = ch(H*), the coefficient [¢"p,/n!]JH* is the number of pairs (o, F)
where o € S, is a permutation of cycle type a and F' is a monotone factor-
ization of ¢ into r transpositions. For each of these, there are kmy elements
a € [n] which are in a cycle of ¢ of length k.

2. Since the problem of counting monotone factorizations is central, as noted
in Section 1.7, for any permutation ¢ € S,, and any element a € [n], the
number of pairs (o, F') where F' is a monotone factorization of o is equal to
the number of pairs ((an)o(an), F’) where F’ is a monotone factorization of
the conjugate permutation (an)o(an). Furthermore, the element n is in a
cycle of o of length k exactly when a is in a cycle of (an)o(an) of length k.

Thus, for each pair (o, F') where n is in a cycle of o of length k, there are
n triples ((an)o(an), F';a) where a is in a cycle of (an)o(an) of length k.
Since o can be recovered from the knowledge of (an)o(an) and a, this gives
a 1-to-n correspondence between the pairs (o, F') counted here and the triples
(0, F,a) counted in part 1. Thus, the number of these pairs is

1 ok ok
[ pamrat /) AV = [pa it/ (n - 1)) A H
as claimed.

3. This part follows from part 2 by essentially the same argument as in part 1.
O

Usmg these combinatorial interpretations for the coefficients of A H* and
Ao A1 H* , we can give a differential equation which characterizes H*.

Theorem 2.3.2. Let H* € QS[[t]] be the generating function for all monotone
factorizations, where t is an ordinary marker for the factorization lengths, so
that [t"o ]H* is the number of monotone factorizations of the permutation o into r
transpositions. Let H* = ch(H*) € Q[[p, {]] be its image under the characteristic
map. Then, H* is uniquely determined by the partial differential equation

A1 H* =t A2H* + ¢ 11, Split A; H* + 2, H* (2.1)
1-2

with initial condition [po]H* = 1.
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Proof. To prove uniqueness, let a - n be a nonempty partition, let £ > 1 be the
size of one of its parts, let » > 0, and consider the coefficient of ¢"p,_px% of both
sides of (2.1). For the left-hand side, this is kmy[t"po]H*, where my, > 1 is the
number of parts of « of size k. For the right-hand side, this is an expression
involving only coefficients [t po/JH* where either ' < r and |o/| = |a/, or where
" =r and |&/| < |a|. Thus, by induction on 7+ |a|, with the base case of |a| = 0
handled by the initial condition, every coefficient of H* is uniquely determined.

To prove that H* is indeed a solution, consider the coefficient of t" Pa_rzh /(n—
1)! of both sides of (2.1) and their combinatorial interpretation, where again « is
an arbitrary nonempty partition, k£ > 1 is the size of one of its parts, and r» > 0.
For the left-hand side, as noted in Lemma 2.3.1, this is the number of pairs (o, F)
where o € §,, is a permutation of cycle type «, F' is a monotone factorization of
o into r transpositions, and the element n of the ground set is in a cycle of o of
length k. Let F' be the factorization

(a1 b1)(agb2) -+ (ay by) = 0.

The pairs (o, F') can be split into three disjoint sets, corresponding to the three
terms of the right-hand side of (2.1), based on whether

1. the transposition (a, b,) is a join and b, = n, or
2. the transposition (a, b,) is a cut and b, = n, or

3. no transposition involves the element n.

Case 1: (a,b,) is a join with b, = n precisely when the shorter monotone
factorization

F': (a1b1)(azb2) -+ (ap—1bp—1) = 0p—1

is such that a, is in a cycle of o,_1 of some length j, b, = n is in a different
cycle of 0,1 of length £ — j. By Lemma 2.3.1, the number of triples
(0r4—1, F',a,) satisfying these conditions for a given value of j is simply
[t pa_rzi 7 ad /(n—1)!] Ay Ay H*. Then, the total number of pairs (o, F)
counted in this case is

[t Pa—sat/(n — 1))t ATH",
which is the first term on the right-hand side of (2.1).

Case 2: Similarly, (a, b,) is a cut with b, = n precisely when F” is such that a,
is in the same cycle of ¢,._1 as n, which must have length j+ & for some part
size j of a — k. For a given value of j, the number of triples (0,1, F’, a,)
satisfying these conditions is [tr_lpa_j_kz{Jrk/(n — 1) A, H*.
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Then, the total number of pairs (o, F') counted in this case is

[t" pa—ra}/(n — 1)1t 115 Split A H,
1—2

which is the second term on the right-hand side of (2.1).

Case 3: By monotonicity, if neither of the previous cases applies, then there is
no transposition in the factorization F' involving n. In this case, n must be
a fixed point of o, so k = 1, and F' can be any monotone factorization of
length r of the restriction ¢’ of o to the ground set [n —1]. By the definition
of H*, the number of pairs (¢/, F') in this case is [t"pa_g/(n — 1)!JH*. This
can be rewritten as

[t"pa—rzt /(n — 1)z HY,

which is the third and final term on the right-hand side of (2.1).

The only remaining coefficients of (2.1) that are left to verify are those with «
being the empty partition, but for these coefficients the equation is 0 = 0, which
is trivially satisfied. As for the initial condition, note that the only monotone
factorization of the empty permutation in Sy is the empty factorization. O

Remark 2.3.2. Note that unlike Theorem 2.1.2, the existence of a solution
to (2.1) is not entirely trivial from an algebraic point of view, since in general the
partial differential equation imposes more than one constraint on each coefficient
[t’”pa}ﬁ*; for example, extracting the coefficient of t!22ps and the coefficient of
tLa3py from (2.1) gives two different ways of computing the coefficient [tlpgg]ﬁ* in
terms of coefficients of the form [topa]ﬁ*, and these two ways must be consistent
for existence to hold. Instead, the proof relies on the combinatorial interpretation
of the coefficients of H*.

In contrast, applying the projection operator II; to (2.1) gives the slightly
weaker differential equation

.0
Z Zpi Ip;

i>1

Sk . g 0 C = =
H :tz (Z]pi+jam%+(l+])pipj )H +piHY, (2.2)

5= Opij
for which existence and uniqueness of a solution are both trivial to show alge-
braically; that is, each coefficient [t"p,]H* is uniquely determined by (2.2) only
once, so to speak.

While these two differential equations each uniquely determine ﬁ*, it is un-
clear how to derive (2.1) from (2.2) without using the combinatorial interpretation
of H*.
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2.3.2 Transitive Monotone Factorizations

From the differential equation of Theorem 2.3.2 for the generating function
for all monotone factorizations, we can deduce a differential equation which
characterizes the generating function for transitive monotone factorizations.

Corollary 2.3.3. Let H € QS[[t]] be the generating function for transitive
monotone factorizations, where t is an ordinary marker for the factorization
lengths, so that [tra]ﬁ is the number of transitive monotone factorizations of
the permutation o into r transpositions. Let H = ch(H) € Q[[p,t]] be its image
under the characteristic map. Then, H is uniquely determined by the partial
differential equation

— —

ATH =t(A1H)? + t AZH + ¢t 11, Split Ay H 4 24
1—2

with initial condition [po]H = 0.
Proof. This follows directly from Theorem 2.3.2 by substituting exp(H) for H*,
as per Proposition 1.8.3, and using the chain rule. O

Remark 2.3.3. Note that this differential equation for H can also be proved com-
binatorially. In this case, the first three terms on the right-hand side correspond,
respectively, to the last transposition in a transitive monotone factorization
being an essential join, a redundant join, and a cut; and the fourth term on the
right-hand side corresponds to the only empty transitive monotone factorization,
which is the empty factorization for the identity permutation in Sj.

Remark 2.3.4. In fact, the statement of Corollary 2.3.3 can be subtly strengthened
to the statement that A = A1 H € Q[[p,1,t]] is the unique solution of the
equation

A =tA?2+t A1 A+ ¢TI Split A + z;
1—-2

with initial condition [ppz°]A = 0. The fact that A is a solution follows directly
from Corollary 2.3.3, but showing uniqueness requires a bit more work, since the
map A1 is not surjective.

2.3.3 Breakdown by Transitive Genus

As with Hurwitz numbers (see Section 2.1.3), it will be useful to group the
coefficients of the monotone Hurwitz generating function according to their
genus.

Definition 2.3.4. The genus g generating function for monotone Hurwitz

i, = 35 Ay ().

n>1akn

numbers is
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Again, we can unpack the differential equation from Corollary 2.3.3 for H
into a separate differential equation for each H,,.

Theorem 2.3.5.

1. The generating function Ai H, € Q[[p, z1]] is uniquely determined by the
partial differential equation

A1 Ho — TI2 Split A1 Ho — (A1 Ho)? — 21 =0 (2.3)
1-2

with initial condition [poz?9] A1 Hy = 0.

2. For g > 1, the generating function A1 ﬁg € Q[[p, x1]] is uniquely determined
by A1 ﬁo, A1 ﬁl, VAN ﬁg_l and by the partial differential equation

g—1
(1 —2A1Hy — 1l Split> A1 ﬁg = A% H, 1+ Z A1 Hgl AN Hg_g/ (2.4)
1—-2
g'=1

with initial condition [pozY] A1 ﬁg =0.

3. For g > 0, the generating function ﬁg 1s uniquely determined by the generating
function Aq ﬁg and the fact that [po]ﬁg =0.

Proof. Let A =) 930 ﬁgug , so that as a generating function, A has the same

coefficients as ﬁ, but has an ordinary marker u for the genus g instead of an
ordinary marker ¢ for the number of transpositions r. Since r = n+£¢(a) +2g — 2,
by comparison with Corollary 2.3.3, it follows that A € Q[[p,u]] is uniquely
determined by the partial differential equation

A1 A = (A1A)? +uA? A + 112 Split A1 A + 2
1—2

with initial condition [pp]A = 0. As noted in Remark 2.3.4, this differential
equation actually uniquely determines A; A € Ql[p,x1,u]]. Extracting the
coeflicient of w9 from this equation for ¢ = 0 and g > 1 and reorganizing terms
gives the stated equations for A ﬁg and A1 ﬁg, g > 1. Finally, note that given
A1 ﬁg, we can compute

II1 Aq ﬁg = Z Zﬁg(a> (np_al)!,

n>1abn

which uniquely determines every coefficient of ﬁg except for the constant term.
O



Chapter 3

Monotone Hurwitz (Generating
Functions

3.1 Results

In this chapter, our goal is to state and prove explicit formulas for the genus
zero and genus one generating functions for monotone Hurwitz numbers of
Section 2.3.3, and a general form for the higher genus generating functions.
These formulas, given in terms of some power series ~,n,m1,72,... € Q[[p]]
defined in Section 3.2.2 except for genus zero, are as follows.

Theorem 3.1.1. The genus zero generating function for monotone Hurwitz
numbers is given by

£(a)
= Pa ()3 2a;
iy = 3 30 e n+ 1) H(%),
n>1ak j=1

where B
2n+ 1) =02n+1)2n+2)--- (2n + k)

denotes a rising product with k factors, and by convention

1

mp = =
( ) (2n+k+1)-F

for k < 0.

Remark 3.1.1. We initially conjectured this formula for genus zero monotone
Hurwitz numbers after generating extensive numerical data, using the group
algebra approach described in Chapter 1, together with the character theory and
generating function capabilities of Sage [44]. In particular, the case where « has
{(a) = 3 parts was very suggestive, since the formula then breaks down into a

49
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product of three terms. This was also a first indication of the striking similarities
between monotone Hurwitz numbers and classical Hurwitz numbers.

Theorem 3.1.2. Let v, n,1m1,m2, ... € Q[[p]] be as defined in Section 3.2.2. Then,
the genus one generating function for monotone Hurwitz numbers is given by

1
1—7~

1 1
— zlog

Theorem 3.1.3. Let v, n,1m1,m2, ... € Q[[p]] be as defined in Section 3.2.2. Then,
for g > 2, the genus g generating function for monotone Hurwitz numbers has

the form
39—3

T Cg7oc N
Hy = —cg0) + Z Z (1 — n)20-2+L(e)’
d=0 akd

where the constants cg o are rational numbers.

These formulas are all obtained starting from the genus-wise monotone join-
cut equations of Theorem 2.3.5. In the case of genus zero, the overall approach is
one of guessing (the explicit formula) and checking (that it satisfies the join-cut
equation (2.3)), and forms Section 3.3. For g > 1, the overall approach is to invert
the differential operator on the left-hand side of the join-cut equation (2.4) as a
linear operator and to show that its inverse preserves the appropriate subspaces,
which is done in Section 3.4. In both cases, the technical details rely crucially on
an implicit change of variables introduced in Section 3.2.

3.2 Algebraic Framework

In this section, we introduce the algebraic framework surrounding our solution
of the monotone join-cut equations. This consists of a change of variables, some
auxiliary series, and descriptions of the operators from Section 2.2 in terms of
these new variables and series.

3.2.1 Change of Variables

In working with the monotone Hurwitz generating functions, it is convenient to
change variables from p = (p1,p2,...) to 9 = (¢1,42, - .. ), where

2k .
a4 =Dj 1—Z<k>% ;. Jj=1L (3.1)

k>1

This change of variables is invertible, and can be carried out using the Lagrange
Implicit Function Theorem in many variables (see [25]). In order to work
consistently in the transformed variables q, it will be useful to have descriptions of
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the lifting, projection and splitting operators in terms of q, and when considering
these operators, the change of variables from p to q also corresponds to a change
of variables from x = (z1,22,...) toy = (y1, %2, ... ), defined by

-2

2k
yi = i 1—§:<k>% . i1, (3.2)

and this is also invertible. Note that like the indeterminates x = (z1, 2, ... ), the
indeterminates y = (y1, 42, ... ) are usually interchangeable, so we will generally
state results involving them using explicit numeric indices.

We can express the indeterminates p and q as formal power series in terms of
each other using (3.1), so we can identify the rings Q[[p]] and Q[[g]]. Using (3.2),
we can further identify the rings Q[[p, x]] and Q][q, y]]-

3.2.2 Auxiliary Series

The power series 7, n and 7;, j > 1 which appear in the statement of Theo-
rem 3.1.2 and Theorem 3.1.3, are defined by

7—}2(?)%,

E>1
2k
0=k}
E>1
n-:Z(QkJrl)k‘j 2k qx j>1.
’ k>1 k ’ B

In particular, « is defined so that the change of variables between p and q
becomes ¢; = p;(1 —+) "% and the change of variables between x and y becomes
yi = xi(1— )72

It will occasionally be useful to have parallel versions of these power series
where gy, is replaced by y¥, so we also define the power series

) =) (if)yf =(1—4y1)72 -1,

k>1

H) = (2K + 1><2:)yf S ()L,

k>1
2k 0 j 3
, = 2k + 1)kJ k— (=) (1 —49y)" 2 P> 1.
) = S0 (ot = (g ) 0 - w0 L 52

Note thatlthese series can all be expressed as polynomials in the quantity
(1 — 4y1)_§ .
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3.2.3 Differential Operators and Lifting Operators

For k > 1, consider the differential operators

0 0 0 0
Dk:pkaipka D:kakaipk’ Ek:q}caiqk’ 5:Zk%87qka

k>1 k>1

defined on Q[[p]] = Q[[q]], then extended to Q[[p,x]] = Q[[q,y]] by Q[x]]-
linearity (and not by Q[[y]]-linearity).

As Q-linear operators, the operators D1, Do, ... and D have the set {p,: a
n, n > 0} as an eigenbasis, and consequently they commute with each other.
Similarly, the operators Ej, Eo,... and £ have the set {go: @ F n, n > 0} as
an eigenbasis and commute with each other. However, these two families of
operators don’t commute with each other. By using the defining relations (3.1)
to compute the action of Ej on p;, the operator identity

2% 2k
Er =D — D E>1 3.3
=D () ke 3.3)
can be verified. It follows that
1
g=-""1p
L
and we can deduce that
2qi ([ 2k
D, =E k>1. 4
c=mr 22 (Pe k2 (3.4

Thus, we can write each family of differential operators in terms of the other.
Using this fact, together with (3.1) and the Q[[x]]-linearity of these differential
operators, we can compute the action of the lifting operator A1 on q and y,
obtaining
4y 4y1
3 ’ 3 )
(1—4y1)2(1—n) (1—4y1)2(1—n)

It follows that we can express the lifting operators as

) Ay ) )
. k
A1 = § <l<:y1> + ( § <qu8qk +ykayk>- (3.5)

3
k>1 O 1—4y1)2(1—n) =1

k> 1.

A1(qr) = kyt +kqy

A1(Yk) = Yk

3.2.4 Projection, Splitting, and Coefficient Extraction Opera-
tors

Unlike the lifting operators, which are Q[[x]]-linear, the projection and splitting
operators are Q[[p]]-linear (or equivalently, Q[[q]]-linear), which makes it easier
to express them in terms of q and y. Using (3.2), we immediately have

WilE (1) = (1 =) 5] F(z), k21,



3.2. ALGEBRAIC FRAMEWORK 53

and it follows that!

= [29]+ > pelet] = [w1] + > awlyt],

E>1 E>1
F — a1 F F — 1 F
Split F(zy) = 2@ Z@iF @) | gy 9eF(@) —unFles) | gy
1—2 1 — X2 Yyr — Y2

where F(z1) € Q[[p, x]] is an arbitrary element, considered as a power series in
1.

Like [z1] and [y1], the coefficient extraction operators [p,| and [¢,] defined on
Q[[p]] = Q[[g]] can be expressed in terms of each other, but this is not quite as
straightforward. Using a multivariate version of the Lagrange Implicit Function
Theorem, we obtain the following.

Lemma 3.2.1. If a F n is a partition and F is an element of Q[[p]], or
equivalently of Q[[q]], then

(1—n)F
[palF = [%]W-

Proof. Let ¢; = (1 —v)~%, so that (3.1) becomes q; = p;¢;, j > 1. Then, from
the multivariate Lagrange Implicit Function Theorem [25, Theorem 1.2.9], we
have

0
[ a}F = [QQ]F¢a det <(5ij - Qjaiql log @bz)
J

2iq; (2
:[Qa]ng)adet(éij_ J(J)) ’
L=9\J7 /i

where ¢ = [[; #a,;. We have ¢ = (1 — 7)~?", and using the fact that det(I +
M) =1+ trace(M) for any matrix M of rank zero or one, we can evaluate the
determinant as

0 2kqr [ 2k 1—n
det | 9;; — ¢j = log @; =1- = —.
‘ < ’ qJOQJ Og¢)m‘>1 ;1—7(79) L—v

Substituting, we obtain

[pa]F = [Qa](l(l__ryglg)n}il' O

'Note that y2 F'(x1) and y1 F/(x2) are not typos; although we have the identification Q[[p, x]] =
Ql[[q,y]], the expansion of F(z1) as a power series in yi is not equal to F(y1).
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3.3 Genus Zero

In this section, we prove Theorem 3.1.1, which gives an explicit formula for the
genus zero generating function Hg for monotone Hurwitz numbers. Our strategy
is to define the series F' by

(a) 20[
P=33 @V 3H< ’)

n>1akn

and then to show that it satisfies the genus zero monotone join-cut equation (2.3).
The main difficulty lies in finding a closed form for F, or rather for A1 F. The
first step is to find a closed form for a related series, as follows.

Theorem 3.3.1. We have
A3
(@D —2@p—epF = L2207
n

Proof. From the definition of F, for any a - n with n > 1, we have

Oé

[pa](2D — 2)(2D — 1)(2D)F = o 1(@) (2m — 2 1;[ <2a])
-G () B ()

[pa](2D — 2)(2D — 1)(2D)F = [ga](1 — 7)> 2"

£(a)

I:I

J=1

and we conclude that

Applying Lemma 3.2.1 to translate between between the coefficient extraction
operators [g,] and [p,], it we obtain

_ 3
pa](2D 22D ~ DEDF = ] 2

This holds for « - n and n > 1, and the result follows after computing the
constant term separately. O

The second step is to peel off the operators (2D — 2), (2D — 1) and (2D) to
get closer to a closed form for A F, as follows.

Theorem 3.3.2. For k > 1, we have

D = sy ()% T St () (o
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Proof. As notation local to this proof, let
F" = (2D -2)(2D - 1)(2D)F, F’"=(2D-1)(2D)F, F = (2D)F.

To prove the result, we use the operator identity

(1=9)'e = 0)((1 =2)7'C) = ;22D = )(C), (36)
which holds for any integer ¢ and any formal power series GG, as can be checked
by using the product rule and the fact that £(v) = (n — 1)/2. This allows us to
express the differential operators (2D — 2), (2D — 1) and (2D) in terms of the
operators (26 — 2), (2€ — 1) and (2£), which we can invert by recalling that they
have {go: @ Fn, n > 0} as an eigenbasis.

We proceed in stages. First we invert (2D — 2) by applying (3.6) with i = 2
to Theorem 3.3.1, obtaining

F// — (QD o 2)—1<F///)

1 (=)
=5+(2D-2) 1( - >
=3+ (1= -2)7'(1)
=4 - 309"

after checking separately that [p1]F” = 2. (This needs to be checked because the
kernel of (2D — 2) is spanned by p;.)
Next we apply D to F” via (3.4). This is straightforward, and gives

1—)2 2k
DF//:(
’ 1—mn (k)%

Now we invert (2D — 1) by applying (3.6) with ¢ = 1, which gives

D.F = (2D — 1) (D,F")

—a-mee -0 ((F)a)
=g ()

Finally, we invert (2D) by applying (3.6) with i = 0, giving

D,F = (2D) }(D,F)
—eo (1-ng— (3 )a)
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1 /2% 2 +1 (25 (2k
1 _
(2€) 2k—1<k>% ]Z>12k—1<j)<k>q]qk

“zn () S agenaen () (c)

Again, the constant term needs to be checked separately, since the kernel of (2D)
consists of the constants, but clearly DiF has no constant term. ]

We are now able to evaluate A1 F as a messy but closed form in terms of q
and y.

Corollary 3.3.3. We have

R (=)}

Y1 — Y2 1—4yo

Proof. From Theorem 3.3.2, we have

k
ALF = Z@DkF

=
- s (- X s () (et

=11, (2G(y1,0) — G(y1,2))

where the power series G(y1,y2) is defined by

2]%—1 ] 2k k j
G(y1,92) ZZ 20 + k) 2k—1)< ><k>y1y2-

720 k>1

Then, the computation

1
G(y1,y2) = /%t(l - 49115)_%(1 — 43/275)_%*

1
—U 1 _1

I (1 — 4y t)2 (1 — Ayt 2}

=) )2 )

_ Y1 <1 1= 4y1>
2(y1 — y2) 1 —4yo

completes the proof. O

Il
— O

t=0
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Finally, using the above closed form for A1 F, we can verify that F satisfies
the genus zero join-cut equation for monotone Hurwitz numbers and conclude
that Hy = F, which completes the proof of Theorem 3.1.1.

Theorem 3.3.4. The series F satisfies the genus zero monotone join-cut equa-
tion (2.3) of Theorem 2.3.5,

Al F— HQ Sp]it Al F — (Al F)2 — 1 = 0.
1—2

Thus, F is the genus zero generating function H, for monotone single Hurwitz
numbers.

Proof. Corollary 3.3.3 gives A1 F = II2 A(y1,y2), where

1—4
A(yl,yg)zl—\/l—élyl—yl(l— yl).

2(y1 — y2) 1 —4y9

We can rewrite each of the terms in the join-cut equation as

AL F = H2H3 A (y1, yz))

II2 Split A1 F = H2H<

Y2 A(y1,y3) ylA(yz,y5)>
152 ’

Y1 — Y2
(A (y1,92) y1,y3)>

z1=yi1(l—9)° = <y < 1—4y2> (2_\/1i74y3>>

to get an expression of the form

(A1 F

2113 B(y1,Y2,93)-

This series B(y1,y2,y3) itself is not zero, but a straightforward computation
shows that the series

%B(yh Y2, ?JS) + %B(yh Y3, y2)7
obtained by symmetrizing with respect to y2 and ys, is zero. Thus we have

H2 H3 B(y17y27 93) = H2 HS (%B(y17y27y3) + %B(ylu Y3, ?/2)) - 07

which completes the verification. ]
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3.4 Higher Genera

In this section, we prove Theorems 3.1.2 and 3.1.3, which give an explicit formula
for the genus one generating function H; for monotone Hurwitz numbers, and a
general form for the higher genus generating functions ﬁg, g > 2. Our strategy
is to use the expression

- 1-4
A1 Ho =112 1*\/1*4y1*L 1- =
2( 1 — 4y,

Y1 — Y2)

from Corollary 3.3.3 in the join-cut equation (2.4) for higher genera from Theo-
rem 2.3.5, that is,

g—1
(1 - 2A1 HO —II2 Spht> A1 Hg - A% Hg—l + Z A1 Hg’ A1 Hg—g’7
1—=2
g'=1

to compute an inverse for the Q-linear operator

(1 —2A1 ﬁo —Ilo Split)

1—2

which appears on the left-hand side. Then, A; FIg can be computed for g > 1,
and ﬁg can be recovered.

Remark 3.4.1. While Theorem 3.1.3 is stated as an existential result, the proof
essentially gives an algorithm to compute the rational constants ¢, o which appear
as the coefficients of ﬁg for g > 2. Provided that the rational constants for lower
genera are known, the computation is quite feasible in practice. Appendix A
lists the values for g = 2, 3,4, 5.

3.4.1 Rings and Generators

The proof of Theorem 3.1.2 that we give in this section mostly involves direct
computation of various algebraic expressions while keeping track of their general
form. To do this, we focus on a few subrings of Q[[q, y]], illustrated in Figure 3.1.2
In addition, we also keep track of a certain notion of degree, defined as follows.

Definition 3.4.1. Let F be an element of Q[(1 —4y1)~;7,(1 —n) " g>1, that is,
a polynomial in the quantities (1 —4y;)~! and 71(1—7n)"1,m2(1—n)"1,.... Then,
its weighted degree deg F' is its degree as a polynomial in these quantities,
where (1 — 4g1)~! has degree 1, and 7 (1 — 1) "' has degree k.

2Note that we use the subscript “k > 1”7 on some of these rings to indicate families of
generators, so that, e.g., the ring Q[(1 — 7)™ ';nx]r>1 is the set of polynomials in the quantities

(1—n)""and n1,72,....
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Q[a]] - Ql[[a, y1]
QI(L —n)~H k=1 Q1 —4y1) Hime(X =)~ i1
Qi (1 = 1)1 Q1 —4y1)™]

Figure 3.1: The relationship between some rings appearing in this section.

With this notion of degree, Theorem 3.1.2 can be restated as follows: if g > 2,
then the quantity

H, + ¢ 0)
(1—m)*%

is an element of Q[ng(1 —n)~1]x>1 of weighted degree at most 3g — 3.

Also, as can be seen from the following computational lemma, the lifting
operator Aj plays well with the quantities (1 — 4y1)~1, (1 —n)~1, m1, 72, ..
and with the notion of weighted degree.

*

Lemma 3.4.2. We have

Avyr = ye(n(y) =)L =)~ k=1,
Ay = 5(ny) =) =) (1 =)~
Arn=myy) + ((y1) =y (y)m L —n)~"
A = e (yn) + (1) =y @)L =)~ k=1
Proof. The first equation is a special case of (3.5), which we record here again for

convenience. The other three equations can be obtained by applying Lemma 2.2.4

to the equations v = II2 y(y2), n = H2n(y2), and n, = 27k (y2), after noting
that the operators xg% and yga%2 are equal. ]

3.4.2 Inverting the Left-Hand Side Operator

Theorem 3.4.3. If g > 1 and ﬁg is the genus g generating function for mono-
tone Hurwitz numbers, then the quantity

Al I:'Ig
(1—m)t=29(1 — dy;) 2

is an element of Q[(1 —4y1) ™Y mk(1 — 1) "Yk>1 of weighted degree at most 3g — 1.
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Proof. We proceed by induction on g, using the higher genus monotone join-cut
equation (2.4) to solve for A; ﬁg in terms of A ﬁo, A1 ﬁl, o, A1 ﬁg,l. The
proof involves several subclaims with independent proofs; they are organized
below as separate propositions.

Proposition 3.4.4. For g > 1, the quantity
A% I:I'gfl + Zg:l Al ﬁg’ Al ﬁg—g’
(1—m)*%

is an element of Q[(1 —4y1) ™ ;mk(1 — 1) "Yk>1 of weighted degree at most 3g — 1.

Proof. This is where the induction hypothesis is used. For the base case of g =1,
we need to compute A? Hy. Recall from Corollary 3.3.3 that

% Y1 1 -4y
AH_H(l_ﬁ_4 _(1_,/ ))
1 Ho 2 Y1 2(y1 — yg) 1— 4y,

Using Lemma 2.2.4 and Lemma 3.4.2, together with the fact that ITo(1—4y2)~
1+ 7, we obtain

3
2 =

ATHo = yi(1 —4y1) (3.7)
after a tedious but straightforward algebraic computation. For the case of g > 2,
it follows from the induction hypothesis and Lemma 3.4.2 that

— -1 — —
ATH, g1 ArHy AvHg g
(1—mn)*2 (1—m)>2%

is an element of Q[(1 — 4y1) ™5 nmk(1 — ) g>1 of weighted degree at most
3g — 1. O

Proposition 3.4.5. For g > 1, we have
(1 —2A1Hy — I Split> A H,=(1-T) ((1 — ) (1 — 4y1)7 A ﬁg) . (3.8)
1-2
where T is the Q|[q]]-linear operator defined by

_ - R
1) = (=) 1t (1= ) Splt (0= 400)F) ).
_>
Remark 3.4.2. As we will see in Proposition 3.4.6, the operator T is locally
nilpotent, so as a linear transformation, it can be thought of as a strictly upper
triangular matrix. Then, (3.8) essentially says that, to a first approximation, we
have
<1 — 2A1 ﬁ() —1Ilo Split> A1 ﬁg ~ (1 — ?7)(1 — 4y1)% A1 ﬁg.
1—=2

In other words, the left-hand side operator is very close to being a simple
multiplication by a fixed element of Q[[q, y]].
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Proof. Since A1 H, has no constant term as a power series in y;, we have

— —

- H, —y1 A H
Split A H, = 28150 — Y1 82
1-2 Y1 — Y2

and

[SI3Y

(1 — 4y) "7 Split ((1 — dyy)

Al ﬁg)
1—-2

3 3 — —
_ (1 —4ye)2(1 —4y1)2 A Hy —y1 Ao Hy
Y1 — Y2 '
Then, using the fact that

% Y1 /1—4y1>>
AMHy=T(1—+v1—-4y; — ——— 1 -
P 2( . 2(y1 — y2) ( 1 — 4y

(1—m)(1 —4y1)? =TI (2 — (1 — dya) " 2) (1 — )7,

we can rewrite (3.8) in the form

and

s F(y1,y2) A1 Hy — y1 Ao Hy . G(y1,y2) A1 Hy — y1 Ao Hy
Y1 — Y2 Y1 — Y2

where F(y1,v2), G(y1,y2) are algebraic expressions in y; and ys. In fact, a direct
computation shows that F'(y1,y2) = G(y1,¥2), so (3.8) holds. O

Proposition 3.4.6. The operator T defined in Proposition 3.4.5 sends the ring
sends the ring Q[(1 — 4y1) Y m(1 — 1) Yk>1 to idtself. As an operator from
Q[(1 — 4y1) Y me(1 — )" Yes1 to dtself, T is locally nilpotent and preserves
weighted degrees.

Proof. Since T is Q[[q]]-linear, in particular, it is Q[nx(1 —n)~]x>1-linear, and it
is enough to show that the statement holds for the basis 1, 4y; (1 —4y;) ™!, 4y; (1 —
4y1)72,.... We have T(1) = 0, and for k > 1, we have

3
T (41 (1 — 4y1) %) = (1 = n) " a1 — 4ya2) 2 Fr(y1, v2),
where

Fy(y1,y2) = Split (4y1(1 — 4y1)' ")
1—2

= ((1 — 4yt - 1) ((1 —dy) 7t = 1) ‘ (1 —dyy)7(1 — 4y2)17k+¢'
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Now, note that the elements

1 m(y2) n2(y2) Mk (y2)
) 3 3 R 3
(1—dyo)™> (1 —4y2)"2 (1—4dyz)™2
are polynomials in (1 —4y2)~"! of degree 0,1,2, ..., k respectively, so we can write
: n; (y2)
(Y2
Fe(y1,y2) = Gro(yr) + Y Grj(y) —=—, (3.10)
j=1 (1 —4yz)2

where, for j =0,1,...,k, G ;(y1) is a polynomial in (1 —4y;)~! of degree k — j.
In fact, setting yo = 0 in (3.10) and comparing with (3.9) shows that G o(y1) = 0.
It follows that T (4y1(1 —4y1) ™) is an element of Q[(1 — 4y1) ™ s ne(1 —n) k>t
of weighted degree at most k. Furthermore, its degree in (1 — 4y;)~! alone is
strictly less than k, and it follows that repeated application of T to any element
of Q[(1 — 4y1) Y mk(1 — 1) g>1 eventually yields zero. O

By Proposition 3.4.4, the right-hand side of the higher genus monotone join-
cut equation (2.4) is an element of Q[(1 —4y1)™;nk(1 — n) "k>1, up to a power
of (1 —n)~!. Since the operator T is Q[(1 — 7)™ !]-linear and locally nilpotent on
Q[(1 — 4y1) Y me(1 — )7 k>1, it follows that the left-hand side operator

(1 —9A Hy - Ty Split> =(1-T)(1-n)(1—4y)?
1—2

is invertible, with inverse given by

-1
(1 —2A1 Hy— Tl Split) = (=) ' —dy) 2 (1 +T+T2+--). (3.11)
1—2

Together with the degree bound of Proposition 3.4.4, this completes the proof of
Theorem 3.4.3. ]

3.4.3 Inverting the Lifting Operator

Having solved for A1 ﬁg for ¢ > 1, we can now recover ﬁg. This is essentially
an integration problem for rational functions, so it shouldn’t be surprising that
logarithms appear in ﬁl. For higher genera, the denominators all have higher
degree, so no logarithms appear; for g > 2, the main difficulty lies in showing that
there exists an antiderivative of the right form. Once this is done, establishing
degree bounds is fairly easy.

Given the previous results of this section, Theorem 3.1.2 follows easily. For
convenience, we restate it here as a corollary.



3.4. HIGHER GENERA 63

Corollary 3.4.7. The genus one generating function H; for monotone Hurwitz
numbers is given by

~ 1
1 1
H, = 2410g1_77 _§IOg1—7'
Proof. Using (3.7) and (3.11) to solve the genus one monotone join-cut equa-

tion (2.4), we get

2n1(y1) — 3n(y1) +3v(y1) | (n(y1) —y(y1))m

I:i =
Arth 181 —n) 24(1—1)?

Since the kernel of A; on Q[[p]] is simply @, this uniquely determines H, up
to a constant. Thus, the statement of the theorem can be checked by using
Lemma 3.4.2, together with the fact that H; has no constant term. O

For higher genera, the following theorem establishes the existence of an
appropriate “antiderivative” for A Hy.

Theorem 3.4.8. For g > 2, the genus g generating function ﬁg for monotone
Hurwitz numbers is a polynomial in the quantities (1 —n)~! and n1,72,. ...

Proof. We proceed by first using our knowledge of the form of A; ﬁg for g > 2

to show that ~
Zk21 EyHg
(1 —n)~2
We are then able to invert the operator ) .., Ej to obtain the result.
Note that the elements

€ QI(1— 1) mklz1-

n(y1) —v(1) m(y1) n2(y1)

1 ) 1
- (1 —4y)" 2

1, ) i
(1 — 4y1) 2 (1 — 4y1)7§

Y

are polynomials in (1 — 4y;)~! of degree 0,1,2,... respectively, so by Theo-
rem 3.4.3, we know that we can write

3g—1

A _1
(1—177% = Fyo(l —4y1) 72 + Fyi(n(y1) —v(y1)) + Z Fyini—1(y1), (3.12)
=2

]l

where, for j = 0,1,...,3g — 1, F,; is an element of Q[ng(1 — n)"|j>1. If we
set y1 = 0 in (3.12), we get Fyo = 0, since A1 ﬁg has no constant term as a
power series in y1. Next, note that when we are dealing with polynomials in
(1 —4y1)~!, we can evaluate them at y; = oo, or equivalently, at (1 —4y;)~! = 0.
By Proposition 3.4.5, if we apply the operator

(1—T)(1—n)(1 —4y1)2
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to (3.12) and evaluate at y; = oo, we get

= 3g9—1
A% Hg 1
Y1=00 Jj=2

For g = 1, the left-hand side is nonzero, but for g > 2, it follows from Theo-
rem 3.4.3 and Lemma 3.4.2 that the left-hand side is zero. Thus, for g > 2, we

have
39—1

Fyan—1) + Z Fg,jnj—1=0. (3.13)
j=2
Now, we turn to the computation of » Ekﬁg. Using (3.3), we have
. 2 . o\t 2 .
Somf, = | S0 Zp = ( (ngs) -2 ) A,
E>1 E>1 L=y oy

By direct computation, we also have

-1 _
151 <<y18> — 12_77> (m(y1) — () = 1_21(77 -1),

o\t 27 2~
I ((mé)yl) —1_7) my) =n=3——m

o\ " 2~ 2~

— ) - i) =1 — —Ln; i > 2.
I <<y18y1> . _7> (Y1) = mj-1 = 7 M dZ

Thus, applying the operator

o\ " 27
th ((w) ) m)

to (3.12) and using relation (3.13), we have

> i1 ExHy iy
DT Fyon+ ) Fynj-a(y1)
7=3

for g > 2. In particular, we have

Zkzl Eng

1—q—2 Q- m (=) ez (3.14)
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Finally, note that n,n1,79,... are all eigenvectors of the differential operator
> x>1 Ex with eigenvalue 1, since they are purely linear in q = (g1, g2, ... ). Thus,
up to an additive rational constant, we have

Na dt
> Ey = . (3.15)
1 — n)ité(a / 1— t FERAC t
= (1—mn) ) nt)

For j > 2, the integral is 778(0‘) times a polynomial in (1 —n)~!. In conjunction
with (3.14), this shows that Hy is a polynomial in (1 —n)~! and 11,72, ..., as
required. O

We can now deduce Theorem 3.1.3, which we restate here as a corollary for
convenience.

Corollary 3.4.9. For g > 2, the genus g generating function for monotone
Hurwitz numbers has the form

39—3

H, = 0) T Z Z nggn(;Jr@(a)

d= Ood—d

where the constants cg o are rational numbers.

Proof. From Lemma 3.4.2, we have that if

(1i7),~ € Qne(1 — ) k=1

and it has weighted degree j, then
Ay F
(1= )1 (1 —dy) >

and it has weighted degree j + 2. Since the kernel of A; on Q|[p]] is Q, it follows
from Theorems 3.4.3 and 3.4.8 that for some ¢ € Q,

€ QUL —4y1) V(L —n) Ve

—

H, —c
(1—mn)*%

is an element of Q[ny(1 —n)~1];>1 of weighted degree at most 3g — 3. This shows
that Hy is of the form

39—3
= S Cg,0 T
Hg=c+ Z Z (1— n)2g—2+2(a)’
d=0 akd
and the fact that ¢ = —¢, () follows from the fact that ﬁg has no constant term

as a power series. [






Chapter 4

Monotone Hurwitz Numbers

Having established some explicit formulas and a general form for the genus-by-
genus generating functions for monotone Hurwitz numbers in Chapter 3, we now
turn to some consequences of this.

First, we give a method for generating explicit formulas for monotone Hurwitz
numbers from the generating functions ﬁg in Section 4.1, and observe that we
get a polynomiality result out of it. In Section 4.2, we use this method for the
genus one case, and the resulting formula is strikingly similar to a known formula
for classical Hurwitz numbers.

Then, we discuss the rational constants appearing at the extremes of the

general form
39—3

— c
H, = —Cq,(0) T Z Z 1- ;)gg?zo;-i-f(a)
d=0 atd
from Theorem 3.1.3 for g > 2. Section 4.3 deals with the low end, that is, the
coefficients ¢y o with |a| = d = 0, which can be computed in terms of Bernoulli
numbers; and Section 4.4 deals with the high end coefficients, with d = 3g — 3,
where we establish a recurrence relation which doesn’t depend on the coefficients
with d < 3g — 3.

The significance of the results of this chapter is mainly apparent when
comparing them to similar results in classical Hurwitz theory. In particular, the
reason for referring to the high end coefficients ¢, of the monotone Hurwitz
generating functions as Witten terms comes from the fact that they are, up
to a known power of 2, equal to the high end coefficients ¢, of the classical
Hurwitz generating functions, which are closely related to Witten’s conjecture [47].
However, we hold off a discussion of this until Chapter 6, after the relevant parts
of Hurwitz theory are discussed in Chapter 5.

67



68 CHAPTER 4. MONOTONE HURWITZ NUMBERS

4.1 Polynomiality

A key consequence of Theorems 3.1.1, 3.1.2 and 3.1.3 is that they imply a
polynomiality result for the monotone single Hurwitz numbers themselves, that
is, the coefficients of the genus-by-genus generating functions studied in Chapter 3.
Note that Theorem 4.1.1 is the exact analogue of Theorem 5.1.5 for Hurwitz
numbers.

Theorem 4.1.1. For each pair (g,¢) with (g,¢) ¢ {(0,1),(0,2)}, there is a
polynomial P, o in £ variables such that, for all partitions o= n with £ parts,

¢
— n' =g 20[1
H, =P
o(2) = gy Feelors ) H<ai>’

i=1
where ﬁg(a) = [pa/n!]ﬁg is a genus g monotone Hurwitz number.

Proof. For g = 0, this follows from the explicit formula for the genus zero
generating function Hg for monotone Hurwitz numbers given in Theorem 3.1.1.
For g > 1, by using the Lagrange Implicit Function Theorem (see Lemma 3.2.1),
we have

Hy(a) = nl[pa]JHy = n![qa]((ll__/g)%igl.

Given the formula for H; from Theorem 3.1.2 and the general form from Theo-
rem 3.1.3, the power series on the right-hand side can be expanded as an infinite
sum of (rational number multiples of) terms of the form

—2n—1
< )7“n”°ni’177§2 R/

U
where k and u, vg, v1,...,vr > 0 are non-negative integers. However, since the
series v, 7, M1, M2, - . . are all purely linear in the indeterminates q, only the finitely

many terms with u + vg+v1 + - - - + v = £ contribute to the coefficient of ¢,. For
fixed u, the binomial coefficient (_22_1) is a polynomial in the parts of o, and
given the definition of the series v, 7,71, 72, ..., the contribution to the coefficient
of ¢4 is a polynomial in the parts of a multiplied by the factor

It follows that ﬁg(a) has the stated form. O
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4.2 Genus One Formula

As an illustration of Theorem 4.1.1, we can compute an explicit formula for
monotone Hurwitz numbers in the genus one case. This is very similar in flavour
to the explicit genus one formula of Theorem 5.1.2 for classical Hurwitz numbers.

Theorem 4.2.1. For a + n, the genus one monotone single Hurwitz number
Hy(«) is given by

ﬁ 1 n! e 20@'
= ity 11 (o)
- ()
x| 2n+ 1) =320+ D)7 =N (k- 2)1(2n + 1)@ Fep(2a + 1) |
k=2

(4.1)

where
@Cn+1)F =@n+1)2n+2)-- (2n+k)

denotes a rising product with k factors, and ep(2a + 1) is the kth elementary
symmetric polynomial of the quantities {2c; +1|i=1,2,...,¢0(a)}.

Proof. Recall from Theorem 3.1.2 that the genus one generating function for

monotone Hurwitz numbers is

— 1 1
_ 1 1
H1—24log1_n—§log1_7. (4.2)

For the first term in (4.2), using Lemma 3.2.1, we have

[Pa] log -— ;

1—n 1

= [ta 1
el T

—~d k
= laa] | 220+ 17| | 0= D0k =20

7>0 k>2

_ ¢ _
7% 177 77ek nk)

= kZ;(k: —2)1(2n + 1)“mg
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By iterating the product rule, we get

L(a)—k k

(@) o) s =i
9la) <nk L) =k )
 0qa \ k! ({(a) — k)!
(o)

::II<Z%> }: (20, + 1) (2, + 1) -+ (20, + 1)

1<i1 < <ip<l(a)

20y
= < O5)616(204—1-1).
. Qg
i=1
Thus,
oL 1 1) 190,
Pal 087 n o laut(a)] 25\ o

t(a)
x(@n+n%@ (kmu%+1ﬂ®k%@a+n).(4$

For the second term in (4.2), using Lemma 3.2.1 again and the fact that p, and
qo, are eigenvectors for the differential operators D and &£ respectively, we get

1
[pa] log = %[pa]D log

1—~ 1—~
e (o )
_[%J<2n0<lvﬁ”>
= ga)(2n + 1>f<a>—12(£;)!.
It follows that
19 g, ot
[pa]log(1 —~)~! = )] ];[1 <a> X (2n + 1)H@)—1 (4.4)

Combining (4.3) and (4.4) with (4.2) completes the proof. O
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4.3 Bernoulli Terms

There is a known formula for monotone Hurwitz numbers ﬁg (a) for arbitrary
genus ¢ in the case where @ = (n) is a partition with a single part, due to
Matsumoto and Novak (see [36]). By comparing this with the general form of
Theorem 3.1.3, we can compute the rational constants ¢, ) for g > 2.

Theorem 4.3.1. For g > 2, the rational constant cy ) appearing in Theo-
rem 3.1.3 is given by

where Bag ts a Bernoulli number.

Proof. To compute the monotone single Hurwitz number I:_ig(a) for = (n), we
can expand the expression for ﬁg given in Theorem 3.1.3 as a power series in
7,M1,M2, ..., and then further expand this as a power series in p = (p1,p2,...),
throwing away any terms of degree higher than one at each step. (Note that
the difference pp — qr only has terms of degree at least 2 in either p or q, so
doing this with q instead of p would give the same coefficients.) This yields the
expression

Hy((n)) = [pn/n!

JH,
39—3
pn/n‘<2g—2 0>U+ch<k )

(2n)! S ‘
= 29— 2o @n+ 1)+ D cpuy(2n+1)d" ).
’ k=1

For fixed g, this expression is (2n)!/n! times a polynomial in n, and evaluating
this polynomial at n = 0 gives (29 —2)c, (g)- In contrast, according to Matsumoto
and Novak’s formula [36, Equation (48)], we have

e

Again, for fixed g, this expression is (2n)!/n! times a polynomial in n. Evaluating
this polynomial at n = 0 gives

B )
Z2 —Z
) 29(291— 1) [(299)!} (Zaaz - 1) T

and z/(e* — 1) is the exponential generating function for the Bernoulli numbers.
O
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4.4 Witten Terms

To obtain information on the high end coefficients of the genus g generating
function ﬁg for monotone Hurwitz numbers, that is, the rational numbers ¢, o
of Theorem 3.1.3 such that |a| = 3g — 3, we can take the higher genus monotone
join-cut equation (2.4) and restrict our attention to the top degree terms. This
yields the recurrence of Theorem 4.4.6 below, which is structurally identical to
the recurrence of Theorem 5.1.7 in the classical Hurwitz case.

While the auxiliary power series n,71,72,... defined in Section 3.2.2 are
sufficient to express the generating functions ﬁg for g > 1, they are not sufficient
to express some of the intermediate expressions which appear in (2.4). For this, it
will be convenient to introduce a different set of auxiliary power series £1,&o, . . .,
as follows.

SIS

Definition 4.4.1. For k > 1, let § =111 (1 — 4y;) "2 — 1.

k
Note that v = & and n = &3. For k > 1, we have n, = II1 (M%) (1 -

1

4y1)_%, and we have yla%l(l —dy1)72 = 1((1— 4y1)_% - (1- 4y1)_%), so it
follows that 7y is a Q-linear combination of the power series &3,&5,&7, .. ., Eak+3-
Thus, expressions given in terms of v, 7, 71,72, ... can be rewritten in terms of
the power series & with odd indices; the even indices appear when dealing with
expressions like TT; A% IjIg,l or II; (Al FIg/ - A1 ﬁg,g/).

Definition 4.4.2. The notion of weighted degree from Definition 3.4.1 can
be extended to elements of Q[[q,y]] which are polynomials (or sometimes power
series) in the quantities (1 — 4yi)_% and &1,&o,. .., by giving (1 — 4yi)_% degree
1/2 and giving &, degree (k —3)/2.

With this extended notion of weighted degree, some elements have half-integer,
or even negative degree, but this does not cause any particular problems. For
example, if we adopt the convention that non-zero constant polynomials have
degree 0 while the zero polynomial has degree —oo, then the degree of a product
is the sum of the degrees of the factors, as usual.

However, implicit in this definition of weighted degree is the assumption that
whatever elements of Q[[q,y]] we are working with cannot be written in terms
of (1— 4y,~)_% and £1,&s,... in more than one way. The following proposition
justifies this assumption.

Proposition 4.4.3. The elements &1,&2, ... € Q[[q]] are algebraically indepen-
dent over Q, and they are purely linear in the indeterminates q. Thus, two power
series in a finite set of these elements are equal if and only if they have the same
coefficients.
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Proof. 1t is clear from their definition that £1, &2, ... are linear in the indetermi-
nates q with no constant term, so it is enough to consider only homogeneous
polynomials in these elements to show that they are algebraically independent.
(This is also why the last part of the proposition holds for power series instead
of just for polynomials.)

Consider a polynomial dependency of homogeneous degree d, that is, an
equation of the form

> hikarkahibhy Erg =0,

k1<ky<--<kq

where the (finitely many) coefficients ag, k, .k, are rational numbers. By the
definition of &1,&o, ..., we can rewrite this as

d

kq

II1 112 ... 11q4 Z QAky ,kg,....kq H ((1 - 4%)_7 o 1) =0.
k1<ko<-<kg i=1

This is equivalent to the symmetrized equation

k.

Mle... .4 Z akl’k2’ RLRL R Z H (1= 4y,) "2 —1) =0,

k1<ko<--<kq 0ESy i=1

averaged over all permutations of the indeterminates y1, 2, ...,yq. In turn, by
virtue of being symmetrized, this equation is equivalent to the equation

akhkz, ka ——1
> ZH (1= 4yo()"% 1) =0,
k1<ko<---<kq 0€Syi=1

obtained by removing the projection operators. It can be seen that the power
k
series (1 —4y;)~ 2 —1 for k > 1 are linearly independent over Q, and by definition

the indeterminates y1,yo,...,yq are algebraically independent over Q, so it
follows that the coefficients ag, ,.. r, are all zero. O
Given that expansions in terms of the power series &1, &s, ... are unique when

they exist, the notion of weighted degree from Definition 4.4.2 is well-defined,
and the notion of top degree terms is also well-defined.

Definition 4.4.4. Let R be the subring of Q[[q,y]] consisting of the elements
which have a well-defined, finite weighted degree. Given an element F' € R, it
can be expressed as a (possibly infinite) sum of monomials in the quantities
(1— 4yi)_%, 1> 1, and &,&,.... Let Top F' be the sum of those monomials
of degree equal to deg F'. This defines the top degree extraction operator
Top: R — R.
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The following computational lemma records how the lifting, projection and
splitting operators interact with top degree terms of elements of Q[[q, y]] of finite
weighted degree.

Lemma 4.4.5.
1. We have
1 3 1
Ar1(l—4y1)"2 = 5((1—4y1) "2 — (1 — 4y1) 5) (1-¢&) ",
_1 3 1
A1(1_4y2) 2:%((1—43/2) 2 — 1—4y2 2)

x ((1—4y1)” 2 — (1 —4yy)” %)(1 - &)
A1 & = %((1 - 4y1)_% - (1- 4y1)_%)
x ((§k+2*fk)(1*§3)_1+(1*491)_%), kE>1.

Thus, if F € Q[[q,y]] with deg F = d and d # 0, then deg A1 F =d + 3 5, and
Top A1 F' = Top A1 Top F.

2. If F € Q[lq,y]] with [y}]F =0 and deg F = d, then degIli F = d — 2, and
Top 111 F' = Top Il Top F'.

3. For k > 2, we have

Top Slplizt(l —4yy) 7k = Z(l —dyy) T — )~ 1D,
- =1

Proof.

1 1

1. The values of A1(1 —4y;)"2 and A1(1 — 4y2)~ 2 can be computed directly

from the definition of A; given in (3.5). Then, using the expression for A IIa
given in Lemma 2.2.4, the value of A1 & = A1 T2 ((1 — 4y2)_§ — 1) can be
computed, recalling that we have the operator identity 3:28%2 = ?/28%2'

2. The statement about [I; follows directly from the definition of &, and the
definition of weighted degree.

3. If we let z; = (1 —4y;) ™1, so that y; = T(1 — z71), then we have

k k
Y221 — Y129

Top Split(1 — 4y,) % = +1
12 Y1 — Y2
1) 1)kt
I G E A
Z1 — %9

and the result follows directly. O
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With these tools in place, we can give the promised description of the high
end coefficients of the genus g generating function Hy for monotone Hurwitz
numbers, as follows.

Theorem 4.4.6. Let &1,&, ... € Q[[d]] be the auxiliary power series defined in
Definition 4.4.1, and let Hy be the genus g generating function for monotone
Hurwitz numbers. Then, for g > 2, we have

f(a)
- Cy.a 20@
TopH, = E (1= £9)20 2100 H 1o | §2o¢1+37 (4.5)
ak(3g—3) i=1

where the ¢y o are the rational numbers appearing in Theorem 3.1.5 for which
|| = 3g—3; these rational numbers can be computed recursively from the equation

g—1
© TopH,; = Top II; A% TopH,_1 + Z A1 TopHy - Ay TopHy_ o |, (4.6)

g'=1

where O is the differential operator defined by

k+1
O& = *§k+1 - Z€z€k+4 i (4.7)
together with the equation
TopH; = 5 log(1 — &) 7" (4.8)

Proof. First, note that the expression (4.5) comes directly from Theorem 3.1.3,

after noting that
7

Topny=25-3-2----- el ey s,

Next, note that (4.6) comes from applying the operator Top IT; to the higher
genus monotone join-cut equation (2.4). The right-hand sides of (4.6) and (2.4)
clearly match. For the left-hand sides, we are dealing with a Q-linear differential
operator in each case, so it suffices to compare their actions on a suitable basis;
since Top ﬁg is a sum of monomials in the power series £3,&5,€&7,... with odd
indices, Lemma 4.4.5 can be used with the expression from Proposition 3.4.5 for
the left-hand side operator to obtain (4.7), after a straightforward computation.

As for (4.8), it comes from Theorem 3.1.2 by applying the operator Top IT;.

Thus, all the equations given in the theorem statement hold, but it remains
to show that (4.6) uniquely determines the rational numbers ¢4 o for a - 3g — 3
for a given genus g > 2, if Top ﬁl,Top ﬁg, ..., Top ﬁg_l are known. In this
case, the right-hand side of (4.6) is uniquely determined.
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As for the left-hand side, every monomial in Top ﬁg is of the form

Ak ko, kg §2k1 +182k0 41 * 2kt 1,

where ki, ko,...,kg > 1 are integers and ag, ,,.kx, € Q. The image of this
monomial under the operator @ is a sum of monomials with d and d + 1 factors
each, exactly one of which has an even index. Thus, the coefficients a, r,
can be recovered sequentially, in increasing order of d, and this uniquely specifies
the numbers ¢y q, o= 3g — 3. 0



Chapter 5

Classical Hurwitz (Generating
Functions

The goal of this chapter is to give a short account of some of the main results
concerning classical Hurwitz numbers which parallels the theory of monotone
Hurwitz numbers as outlined in the previous chapters. We also give a new
result (Theorem 5.1.7) which establishes an essentially identical recurrence for
the top degree terms in the classical Hurwitz case to the monotone Hurwitz case
(Theorem 4.4.6). For a discussion of the similarities and differences between the
classical and monotone versions of Hurwitz theory, see Chapter 6.

5.1 Overview

As noted in Section 1.9, Hurwitz [27, 28] first identified the numbers bearing his
name in the context of counting certain branched covers of the Riemann sphere
with specified ramification data, and showed that these branched covers could
be identified with transitive transposition factorizations (which is the definition
that we have been using). He also stated a closed formula for the genus zero
case, equivalent to the following theorem, and gave a sketch of a proof.

Theorem 5.1.1. (Hurwitz, [27, 28], Strehl, [45]; Goulden and Jackson, [20]).
The genus zero generating function for Hurwitz numbers is given by

» o) @

H, = o He)=3 g

0 ZZ laut o H a;!
n>1abn j=1

This was forgotten for a long time, during which certain special cases of

this formula were rediscovered. In particular, Dénes [8] recovered the ¢(a) =1

case, Arnol’d [1] the ¢(a)) = 2 case, while Crescimanno and Taylor [7] dealt with
the other extreme of « = 1. Following this, Goulden and Jackson [20] used

77
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their join-cut equation to state and prove the complete formula for genus zero.
This was also proved independently by Strehl [45], who filled in the details of
Hurwitz’s original argument.

Goulden, Jackson and Vainshtein [23] extended this to a conjectural complete
formula for genus one Hurwitz numbers, as follows.

Theorem 5.1.2. (Vakil, [/6]; Goulden and Jackson, [22]). The genus one
Hurwitz numbers are given by

Oéi

1 O[
Hi(a) = 24\&11‘5( n+ (o 1;[

()
| ple@) _ -1 _ Z(k _ 2)!nf(0‘)_kek(a) . (5.1)
k=2

This was proved by Vakil [46] using techniques from algebraic geometry,
and also by Goulden and Jackson [22] using the join-cut equation again, in the
following equivalent form.

Theorem 5.1.3. (Goulden and Jackson, [22]). Let 7,7,71,7s, ... € Q[[p]] be
as defined in Section 5.2.1. Then, the genus one generating function for Hurwitz

numbers is given by
1 1 —
11— 2"

H, = ilog

Using the same techniques, Goulden and Jackson [21] were also able to give
explicit formulas for the genus 2 and 3 generating functions Ha, Hz for Hurwitz
numbers, and conjectured the following general form.

Theorem 5.1.4. (Goulden, Jackson and Vakil, [24]). Let¥,7,7,7a, - .. € Q[[p]]
be as defined in Section 5.2.1. Then, for g > 2, the genus g generating function
for Hurwitz numbers has the form

39—3

Z Z cg’;gng—l-ﬁ(a) ’

d=2g—3 a#d

where the constants ¢4 are rational numbers.
This is closely related to the following polynomiality result.

Theorem 5.1.5. For each pair (g,¢) with (g,¢) ¢ {(0,1),(0,2)}, there is a
polynomial Py, in £ variables such that, for all partitions o= n with £ parts,

l .
' aql
(n+€+29—2)1Pyo(en,...,00) [ =5

Hol®) = o))

where Hy(a) = [po/n!|Hy is a genus g Hurwitz number.
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Similarly to the situation for monotone Hurwitz numbers, where the cor-
responding polynomiality result follows directly from the general form of the
genus expansion of the generating functions, Theorem 5.1.5 can be seen as a
consequence of Theorem 5.1.4. However, the connection actually goes the other
way, in the sense that Goulden, Jackson and Vakil [24] deduced Theorem 5.1.4
from the remarkable ELSV formula, which gives an expression for the polynomials
appearing in Theorem 5.1.5 in terms of the cohomology of the moduli space of
curves.

Theorem 5.1.6. (Ekedahl, Lando, Shapiro and Vainshtein, [10]). The polyno-
mials Py of Theorem 5.1.5 are given by

B T=Ai+-+(=1)9)
Pg,f(ala s 7a€) - /Mg’e (1 — Oélwl) . (1 — Ozg?l)g) . (52)

Here, M, is the (compact) moduli space of stable (-pointed genus g curves,
1, ..., are (complex codimension 1) classes corresponding to these ¢ marked
points, and A is the (complex codimension k) kth Chern class of the Hodge
bundle. The denominators in Equation (5.2) should be interpreted formally,
as geometric series. Then, the integral over ﬂg,g kills all but the terms of
codimension dimﬂg,g = 39 — 3 + ¢, and “intersects” these terms on ﬂ%g.
The result is a polynomial in the quantities a7q,...ay whose coefficients are
intersections of ¢ classes and up to one A class, and these intersections are known
as Hodge integrals.

From this, the coefficients ¢, o of Hy from Theorem 5.1.4 can also be identified
up to sign as Hodge integrals. In fact, the high end coefficients, that is, the
rational numbers ¢, o with |a| = 3g — 3, are precisely the Hodge integrals which
only involve 9 classes, and no A class.

These Hodge integrals are also the coefficients of the free energy from Witten’s
conjecture [47] (which now has several proofs; see, for instance, [33, 31, 32, 37, 41]),
also known as the Gromov-Witten potential of a point. For this reason, we refer
to them as the Witten terms of the expansion for H, from Theorem 5.1.4.

The rest of this chapter is devoted to the proof of the following theorem,
giving a recursion which uniquely determines the Witten term of H,. The actual
proof can be found at the end of Section 5.3, but first we must develop an
algebraic framework for classical Hurwitz generating functions which parallels the
framework of Section 3.2 for monotone Hurwitz generating functions. Many of
the same concepts are used, but they must be adapted to a different Lagrangian
change of variables, and there are enough differences that the translation from
one framework to the other is not entirely mechanical.
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Theorem 5.1.7. Let £1,&,, ... € Q[[p]] be the auxiliary power series defined in
Section 5.2.1, and let Hy be the genus g generating function for Hurwitz numbers.
Then, for g > 2, we have

_3— ()
239732, o (2c; + 1)1
TOp Hg = Z (1 _E )29—24—[(&) H 4 . a’i! §2ai+37 (53)
ak(3g—3) 3 i=1

where the ¢4 o are the rational numbers appearing in Theorem 5.1.4 for which
|a| = 3g—3; these rational numbers can be computed recursively from the equation

g—1

— 1
©TopH, = 1 Top IT1 A% TopH, 1 + Z A1 TopHy - A1 TopH,_o |,
g'=1
_ (5.4)
where O is the differential operator defined by
k+1
ke Rt
O8 =581 — 7 Z§i§k+4—i7 (5.5)
i=3
together with the equation
TopH; = 2 log(1 — &)1 (5.6)

5.2 Algebraic Framework

As with the monotone Hurwitz generating functions and join-cut equations, it
is convenient to work in some transformed variables for the classical Hurwitz
generating functions and join-cut equations. The following changes of variables
are due to Goulden and Jackson (see [20, 22, 21]), but we adapt them to our
notation to highlight the similarities between the classical case and the monotone
case.

5.2.1 Changes of Variables

In the case of Hurwitz generating functions, the natural change of variables from
p = (p1,p2,...) to @=(qy,Gs, - - - ), a new set of indeterminates, is defined by

_ . KF .
G=piexp |J) |, i=1 (5.7)
E>1

This is an invertible change of variables, and it can be computed explicitly
using the Lagrange Implicit Function Theorem in many variables (see [25]). The
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change of variables from p to q also corresponds to a change of variables from
x = (x1,x2,...) to another new set of indeterminates y = (¥,7s, - - - ) defined by

k:k
Y; = T;exp Eqk , 1> 1, (5.8)
E>1

which is also invertible.
In the monotone Hurwitz case, the power series

s (2;) y

k>0

N

(1—4y1)”

frequently appeared. The analogous power series in the classical Hurwitz case is
not algebraic in %, so it is convenient to introduce a further change of variables,
from ¥ = (¥1,7y,...) to a final new set of indeterminates w = (wy,ws,...),
defined by

w; =g, exp(w;), 1> 1,
so that
k.kflik
k>1

Then, the analogue of (1 — 4y;) 2 is the series

w1 . kkik
1— w1 - ; ]C' Y1

The power series 7, 7 and 7;, j > 1 which appear in the statement of
Theorem 5.1.3 and Theorem 5.1.4, are defined by

Kk

7
k>1
_ kF_
m= k5l
E>1 )
11 Lk )
m=) K, >0
k>1 ’

In particular, 7 is defined so that the change of variables between p and q
becomes q; = p; exp(j7) and the change of variables between x and ¥ becomes
U; = z;exp(¥).

As in the monotone Hurwitz case, we have the operator identity

= [29]+ > pelet] = 9] + > @),
k>1 k>1
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and we also have
0 w1 0

_ 0
xlail'l_ylai@l_ 1—’11)181017

so it follows that

_ w1
Y I )
1-— w1
F e
77 - 1 (1 _ w1)3 9
_ w9 w .
R— ) > 1.
77] Ty <l—w18w1> (1—’(01)3 ] =
Finally, the power series £;,&,, ... which appear in the statement of Theo-

rem 5.1.7 are defined by

_ w; \K
= k>1.
ék Hl(l—w:[) ’ -

Note that each &, is purely linear in the indeterminates q, and in fact the matrix

of coefficients of £;,&,,... in terms of §;,qy,... is a triangular matrix with
ones on the diagonal. Thus, this matrix is invertible, and its inverse gives the
coefficients of gy, @y, ... in terms of £;,&,,.... From this, it follows that we can

identify the rings Q[[p]], Q[[a]] and Q[[{}]]x>1; furthermore, any two of z;, 7; and
w; can be expressed in terms of each other as power series over this identified ring,

so we can also identify the rings Q[[p, x]], Q[[q, ¥]] and Q[[gj;wk/(l — wi)|]je>1-
This will be convenient in Section 5.3, since weighted degrees in the classical
Hurwitz case are defined in terms of the generators &; and wy/(1 — wy).

5.2.2 Differential Operators

When manipulating the classical Hurwitz join-cut equations, the basic differential
operators

0 0 — 0 = 0
Dy =pr— D= kpr— Er =q,— &= kg, —

for k > 1, will again be useful, so we discuss them here. They are defined on
Q[[p]] = Q[[q]], then extended to Q|[[p,x]] = Q[[q,¥]] by Q][x]]-linearity.

As in the monotone Hurwitz case, the Q-linear operators D1, Do, ... and D
have the set {p,: a Fn, n > 0} as an eigenbasis, and the operators Eq, Eo, ...
and & have the set {g,: a = n, n > 0} as an eigenbasis. By using the defining
relations (5.7) to compute the action of E; on pj, the operator identity

Er=Dy— "D k>1 (5.9)
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can be verified. It follows that

and we can deduce that
_ T
D, =E — & k>1. 5.10
k Kt I —7)" 2 (5.10)

Using this fact, together with (5.7) and the Q[[x]]-linearity of these differential
operators, we can compute the action of the lifting operator A; on q and y,
obtaining

w1 w1

AL(q) = k7¥ + kg —, A1) =7 —, k>1
Thus, we can express the lifting operators as
0 w1 0 0
A1 = kk> + — (kq > T > - 5.1
=2 (ta5.) * t=wpa=s 2 Mgy, Ty, ) B

5.3 Witten Terms

To obtain information on the high end coefficients of the genus g generating func-
tion Hy for Hurwitz numbers, that is, the rational numbers ¢4 o of Theorem 5.1.4
such that |a| = 3g — 3, we can take the higher genus join-cut equation from
Theorem 2.1.5 and restrict our attention to the top degree terms. This requires
a suitable notion of weighted degree for the auxiliary power series introduced in
Section 5.2.1, and some work in rewriting the join-cut equation in terms of these
power series.

Definition 5.3.1. Let F' be an element of Q[[q,¥]]. Then, F' can be expanded
as a power series in the quantities &1, &,,... and 11”11”1 , 11"5}2 ,... in a unique way.
The weighted degree deg F' of F' is the maximum degree of a monomial in
this expansion, where we set deg &), = (k — 3)/2 and degwy/(1 — wy) = 1/2. By
convention, deg F' = oo if there are monomials of arbitrarily high degree in the

expansion, and deg F' = —oo if F' = 0.

Definition 5.3.2. Let R be the subring of Q[[q,¥]] consisting of those elements
F such that deg I < co. For such an element F' € Q[[q, ¥]], let Top F be the sum
of those monomials in its expansion in terms of &;,&5,... and 11"&)1, 13”3)2 Yo
of degree equal to deg F'. This defines the top degree extraction operator

Top: R — R.

The following computational lemma records how the top degree extraction
operator interacts with the lifting and projection operators, as well as the series

i?ﬁvﬁlaﬁ%" o
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Lemma 5.3.3.
1. We have
_ = = _ 2k +1)!-
Topy =¢&;,  Topn=&;,  Tophy = WQH& k> 1.
2. We have
2
w w
Al ! — é —\
1—w; (1 —wy)S(1 —7)
A w9 _ wi1w9

Y1 (1—wi)3(1 —w2)3(1—7)’

(1—wp)? 1-7 1—w

so that

w1 wy \6 =1
T = ( ) —
op A1 1— w1 1 1 (1 53) ’

—w
Top A1 1 iUQwQ = (1 iUlwl>3(1 iU2w2)3(1 — &),
Top A1 &, = k<1 101101)3 <§k+2(1 -&) 7+ (1 iutul)kA) , k> 1.

Thus, if F' € Q[[q,¥]] with deg F' = d and d # 0, then deg A1 F = d + %, and
Top A1 F' = Top A1 Top F'.

3. If F € Q[[q,y]] with [§§]F =0 and deg F' = d, then degIli F = d — 3, and
Top Il F' = TopIl; Top F'.

Proof.

1. Note that ¥ = £, and 1] = &3 + 2&, + &;. For k > 1, we have

~ - bl k+1 wy
Mk =1l 3118751 1—w

g = (20 220 (7250 gy

so it follows by induction on k that the leading term of 7, is

and

2k+3
Th3-5-7 (2k:+1)-(1w1w)
— w1
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2. The values of A1 1“’11 and A1 1“’22 can be computed directly from the

expression (5.11) for Aq, recalling that yla% = 1“’111)1 Fu;- Then, the value of
A1& = ATl (722

. )k can be computed using the expression for A I1s given

in Lemma 2.2.4, recalling that 3:28%2 = 11_"1101 a% as well. To compute the top
degree terms, note that we have (1_“’131)3 = (& w1) +2( 2 w1)2 + (11”1101).

3. The statement about IT; follows directly from the definition of &, and the
definition of weighted degree. O

Having established a suitable notion of top degree terms, we now turn to
the task of rewriting the higher genus join-cut equation for Hurwitz generating
functions. The following two propositions give the details.

Proposition 5.3.4. The genus zero generating function Hy for Hurwitz numbers
satisfies the equation

Y. w w
A1H0=H2<w1—y2+ & + 2 >

U1 — V2 (w1 —w2)(1—w2) 1—we

Proof. This is essentially a repackaging of some computational results from [20]
in our notation. Proposition 3.1 from [20] states that

iHO — ﬁ exp(jﬁ) — jj_l kk+1 exp(jﬁ)qk ] >1
Op; 4! 4! = k! j+k -7
from which we deduce that
-1 k+1
Z Z ] Z Ik ?/1y2

j>1 j>1 7 g,k>1

In the course of proving Proposition 3.2 from [20], the identity

jj Ek+1 @{?5 B o
ZZ N = = (5.13)
i>0k>1 kKU g4k Y=Y (w1 —w2)(1 —w2)

is obtained. Setting y; = 0 yields the term corresponding to j = 0,

k,k—i-l wo

b2 _
k' k 1—11)2

(5.14)
E>1

Subtracting (5.14) from (5.13) gives the second term of (5.12). O
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Proposition 5.3.5. For g > 1, the join-cut equation of Theorem 2.1.5 for the

genus g generating function Hy for Hurwitz numbers can be rewritten using the
notation of Section 5.2 as

(1 —wi) ArHg + (ZEk>Hg + (29 —2)H,

k>1
1 _ A1 H, *7A2H
*§H1H2(1—w1) 1(1*11)2) 11— wg - 1w12u g
T—wi ~ 1-wsy
1 !
2
= §H1 (Al Hg,1 + /ZlAl Hg/ - A1 Hgg/) .
g:

Proof. Recall that the join-cut equation of Theorem 2.1.5 for higher genera is

Z<k+1 ) (2g — 2)H

k>1
8H0 OH 8H
a 2i % g ) —

1 M, , 4o 0H, 0H
=5 Z piti g, a“" +Z ipiri ! 8;?’ . (5.15)
j>1 ? J

We proceed by rewriting each term of (5.15). Using (5.9) to translate from Dy,
to E, we have

> <(k+1)pk%i> DH, + <ZDk>

k>1 k>1
= (1+75)DH, + <2Ek>H
E>1
Next, as noted in Section 2.2, we have
OH, 1 .
5 Z (i+7) plpja :_§H1H28phtA1HQ,
i,7>1 1—2

and for the right-hand side, we have

OH /8Hg g
= Z ]pz-l-] + Z ]pH-J -
i,j>1 p 8 Ip;

-1
1 ) 3
= §H1 (Al Hg,1 + Z A1 Hg/ - A1 Hg—g’) .

g'=1
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The term (2g — 2)H, needs no rewriting, so the only term remaining of (5.15) is

1 . 0H, 0H
—5 Z QZ]ijﬁ 8pjg =—1IIi (A1 Ho- A1 Hy),
i>1 !

which we can split up and rewrite further using Proposition 5.3.4. We have

w2

—Hl(A1H0'A1Hg)=H1H2((1—w1)A1Hg—(1+1 )A1Hg

oA H, 1o, A1H
G 2ALHy Tow 2 g), (5.16)
Y1 — Y2 wy — W2

and the first two terms of (5.16) give
Hl(l —wl)Al Hg7 —(1+7>DH§

For the last two terms of (5.16), we can symmetrize with respect to 7, and g, to
obtain

II1 11

7o A1 H 1 yo A1 H 7y, Ao H
27y2 ! g—l'hl‘[z('y2 179_’_?;71 29)
Y1 — Y2 Y2 — Y1

Y1 — Yo 2

1

= 5 I II2 Split A1 Hy
2 1—2

and

w w w
I Ty A1 Hy 1 , <11202 A1 H, n Ty A2 Hg)

=—-1II1II
w1 — w2y 2 w1 — Wy w9 — W1

w2 Al Hg W1 AQ Hg

1—ws T 1w

1
- gk w _ _w )
(1= w1 - wo) (125 - 22;)

After rewriting each of the terms of (5.15) as above, the terms

1 .
(1+7%)DHy, - II1 II2 Split A1 Hy,
2 1—2
cancel out, leaving the claimed equation. ]

Finally, we can give the promised proof of the recursion for the top degree
coefficients of classical Hurwitz generating functions.
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Proof of Theorem 5.1.7. This proof closely parallels the proof of Theorem 4.4.6.

The expressions (5.3) and (5.6) come from applying the operator Top to
Theorems 5.1.3 and 5.1.4, using Lemma 5.3.3.

The equation (5.4) comes from applying the operator Top to the join-cut
equation for Hurwitz numbers as written in Proposition 5.3.5, scaled by a factor
of % The right-hand sides clearly match, and for the left-hand sides, we are
dealing with Q-linear differential operators, so it suffices to compare their actions
on the basis £;,&,,.... As noted in Lemma 5.3.3, for k > 1, we have

kwy Ehpo + 2841 + &5, ( w1 )k—l
— + )
1-— n 1-— w1

and since (1_’”151)2 = (11”1101)2 + 1257, it follows that

1 _ k_ k_ _ _
3 Top I (1 —wi) A1&y = §§k+1 + §§k+252(1 -&) (5.17)

The terms (E i>1 E)Ek and (29 — 2)&,, have strictly smaller weighted degree,
so they simply disappear. For j > 2, we have

w2 ( w1 )j __wi ( w2 )j 7j—1 . .
1—wo \ 1—wq 1—wi \ 1—w2 . Z ( w1 )"( w2 >]—Z
11_”111]1 — —11_”121}2 — 1—w 1 — wo ’
so it follows that
1 ~ TR AL T A2
— < Top T Ma(1 — w1) (1 — wy) ™ —2———

4

1—wq 1—w2
k+2

b - R
= —§§k+252§3(1 — &) - 1 Z§i§k+4—i~ (5.18)
i—2

The combined expression from (5.17) and (5.18) matches the definition of © &,
through (5.5).

This shows that all the equations given in the theorem statement hold;
given this, the proof that the rational numbers ¢, for o - 3g — 3 are uniquely
determined is identical to the argument given at the end of the proof of Theo-
rem 4.4.6. O



Chapter 6

Conclusion, and a Hint of
Geometry

Having developed a theory of monotone Hurwitz numbers in Chapters 3 and 4
and reviewed the corresponding parts classical Hurwitz theory in Chapter 5,
we conclude this thesis with a brief discussion of the many similarities, both
qualitative and quantitative, and some of the differences between the monotone
and the classical cases. In particular, we highlight the fact that the top degree,
or Witten, terms for the generating functions in both cases are essentially equal,
which strongly suggests a (currently missing) geometric interpretation in the
monotone case.

6.1 A Tempting Analogy

As noted in the course of Chapter 4, each of our theorems about monotone
Hurwitz numbers has an analogue in the classical Hurwitz world, and it is
tempting to posit a kind of dictionary for translating between the two worlds.
For example, in genus one, we have the formula

Hi(o) = 24\aut |H<2al)

L £(a)
x | (2n+1)4®) —3(2n + 1)1 (k—2)1(2n + 1) Fe (20 + 1)
k=2
(4.1)
from Theorem 4.2.1, and from Theorem 5.1.2 we have
o 1 n! ’ ‘g(a) agt
o) = 24 |aut(a)| (n+H))! H a;!

=1

89
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()
x [ 00 = pf@OTL Sk — 2)Inf @ he(a) | (5.1)
k=2

The extra factor of (n + ¢(«))! in (5.1) can be attributed to the fact that the
generating function H € Q[[p, t]] has ¢ as an exponential marker for the number
of transpositions, whereas the generating function H Q[[p, t]] has t as an
ordinary marker; the numbers o] are related to the count of labelled trees,
whereas the numbers (25;) are related to unlabelled trees; and in going from (5.1)
to (4.1), powers of n are replaced by rising powers of (2n + 1), and each «; is
replaced by (2a; + 1). However, there does not seem to be a simple way to make
this correspondence completely precise, let alone rigorous.

It is also tempting to attribute many of the similarities between monotone
and classical Hurwitz numbers to the fact that they are both uniquely determined
by very similar join-cut equations. Indeed, recall that the (global, transitive)

monotone Hurwitz join-cut equation of Corollary 2.3.3 can be written as

= (A1H)? + A?H + 11, Split A1 H, (6.1)

A1 H - T
t 1—2

and the (global, transitive) classical Hurwitz join-cut equation of Corollary 2.1.3
can be written as
om_1 I ((Al H)? + ATH + II Split Ay H> : (6.2)
ot 2 1—2
the main difference being that the left-hand side of (6.1) is a divided difference,
whereas for (6.2) it is a derivative. Also, our methods for verifying the genus zero
and one solutions are similar to those of [20, 22| from a high level perspective.
However, the technical details are sufficiently different that we kept expecting the
analogy to break down. Indeed, the analogy does seem to break down somewhat
beyond genus one: as discussed in Chapter 5, the only known proof of the genus
expansion for H, for g > 2 given in Theorem 5.1.4 uses the ELSV formula, a
high-powered result from algebraic geometry; in contrast, our proof of the genus
expansion for ﬁg for g > 2, given in Theorem 3.1.3, is purely algebraic.

It may be possible to salvage the analogy between monotone and classical
Hurwitz generating functions for g > 2, but this does not seem to be a straight-
forward, mechanical process. Having an algebraic proof of Theorem 5.1.4 would
be interesting, however.

6.2 Witten Terms

On a different note, there is an important aspect of the theory where the
similarities are not only qualitative, but numerical, as the following theorem
shows.
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Theorem 6.2.1. For g > 2 and o = 3g—3, let c4 o be the top degree coefficient of
the genus g monotone Hurwitz generating function indexed by o in the expansion
from Theorem 3.1.3, and let ¢4 o be the corresponding top degree coefficient of the
genus g classical Hurwitz generating function in the expansion from Theorem 5.1.4.
Then, we have

Coa = 239—369 o

)

Proof. This follows by comparing the recurrences of Theorems 4.4.6 and 5.1.7
for the Witten terms of monotone and classical Hurwitz generating functions H,
and Hg, respectively, via the correspondence

Cga <> 239—369 o Top ﬁg < TopH,

)

_ 1 _
§< & TOPHlA%kaZ opIl1 A &

_ 1 _ _
0+ 0 TOpH1(A1£j'A1§k)HZTOpH1(A1§j'A1§k)-

The two recurrences are structurally identical, and they have the same initial
conditions, so it follows that ¢, o = 23973¢, 4. O

Recall from Chapter 5 that these top degree coefficients ¢4, for classical
Hurwitz numbers are actually Hodge integrals (specifically, the ones which only
involve 1) classes and no \ class), and as such they are intimately related to the
cohomology of the moduli space of curves M, . The other coefficients ¢4, are
also Hodge integrals, namely the ones which do involve a A class. Thus, given
that the top degree coefficients ¢4, for monotone Hurwitz numbers are also
Hodge integrals (up to a predictable power of two), we conjecture that the other
coefficients ¢, o have a geometric significance, perhaps related to the cohomology
of some other natural space, in which case there may be an ELSV-type formula
for the polynomials ]3975 of Theorem 4.1.1, similar to Theorem 5.1.6. It is unclear
to us what exact form such a formula would take, but there may be a clue in
the fact that the summation sets for the generating functions ﬁg and Hy, g > 2
given in Theorems 3.1.3 and 5.1.4 differ slightly: in the classical Hurwitz case,
only terms of degree between 2g — 3 and 3g — 3 appear, whereas in the monotone
Hurwitz case, terms of degree lower than 2g — 3 also appear.






Appendix A

Coeflicients for Monotone
Hurwitz Generating Functions

The following equations give the genus two and three generating functions for
the monotone Hurwitz numbers, as described in Theorem 3.1.3. Tables A.1, A.2,
A.3 and A.4 give the coefficients for genus 2, 3, 4 and 5, respectively.

3 + ong — 6m2 —5m1 29121 — 10111 281111

720H; = —3 + (1 — ,'7)2 (1 — 77)3 (1 _ 77)4 (1 — 7])5 .

—90  7TOng + 6305 — 37704 — 18913 + 6670y + 1261,

90720H; = 90 +

(1 —n)t (1—n)°
1078151 + 2012742 + 1214702 + 120914
+ 6
(1—-mn)
" 1998n32 — 3914131 — 2627120 — 2577121 + 1967111
(L—mn)°
n 85681411 + 269041321 + 58307222 4+ 100921311
(1—n)7
i 1344077221 - 2032277211 - 43521’]111
(L=n)7
n 44520m3111 + 8610072211 + 49980712111 — 15750m1111
(1—mn)®
162120m21111 + 31080m11111 n 686007111111
(1 —mn)? (L —m)to

93
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Table A.1: Coefficients for the genus 2 monotone Hurwitz generating function
in the form Hy = ﬁ((l -n)"2-1)+ 2321 > abd C2.ana (1 — ) 7274 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 243251 =720 = 6.

a N-caq a N-cyn a  N-cq
3 5 21 29 111 28
2 —6 11 -10

1 -5

Table A.2: Coefficients for the genus 3 monotone Hurwitz generating function
in the form Hz = o ((L=m)™=1) + 22:1 > abd Calla(l — 1) 7474 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 25345171 = 90720 = 9!/4.

o N -c3.4 o N -c3.q a N-c3q
6 70 51 1078 411 8568
5 63 42 2012 321 26904
4 —377 33 1214 222 5830
3 —189 41 1209 311 10092
2 667 32 1998 221 13440
1 126 31 —3914 211 —20322
22 —2627 111 —4352
21 —2577
3111 44520 11 1967
2211 86100
2111 49980 21111 162120

1111 —15750 11111 31080 [16] 68600
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Table A.3: Coeflicients for the genus 4 monotone Hurwitz generating function
in the form Hy = e ((T=n)"0—1)+ S S bd Caana(l =)0 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 28355271 = 10886400 = 3 - 10!

« N -cy4n « N -c4a « N -cya
9 700 81 20860 711 320544
8 3360 72 56820 621 1559328
7 —2151 63 106860 531 2594400
6 —25260 54 146100 522 1677480
5 —2154 71 100048 441 1535040
4 74640 62 252288 432 4831680
3 11561 53 426240 333 980000
2 —98100 44 254190 611 1495680
1 —7956 61 —16679 521 6620304
52 —16677 431 9676368
43 —4131 422 6339228
51 —557480 332 7771680
42 —1075560 511 205344
33 —650592 421 1242384
41 —201854 331 866256
6111 3297504 32 —365544 322 1259496
5211 21227136 31 1116016 411 —6017460
4311 30631104 22 769422 321 —19277040
4221 39502848 21 349845 222 —4256028
3321 48172320 11 —400212 311 —3015120
3222 20748112 221 —4192608
5111 14602560 51111 24907680 211 7975908
4211 83635104 42111 185243520 111 887776
3311 51414048 33111 113077440
3221 134339520 32211 437085600
2222 14666190 22221 93963100
4111 4786824 41111 101876880 411111 143330880
3211 26980800 32111 654024000 321111 1126957440
2221 12703040 22211 426890800 222111 967702400
3111 —40578272 31111 43375920 311111 523729920
2211 79416204 22111 120797880 221111 1707291600
2111 —22258488 21111 —184899680 211111 233397360
1111 8080814 11111 — 18654020 111111 —94694320
(3, 19] 633785600 [2,17] 2128810880 [19] 581398720
[22,15] 2447642400 [18] 666360800
[2,19] 1982016960

[17] 112171360
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Table A.4: Coefficients for the genus 5 monotone Hurwitz generating function
in the form Hs = s (L=n)™8—1) + S S raCsana(l—n)874e). Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 29305271111 = 718502400 = 18 - 111

o N -c5.4 «Q N -c5.4
[12] 3080

[11] 32340 82 12766216
[10] 76978 73 28096776
9 —226677 64 44440448
8 —979089 55 25768902
7 516582 81 —7431999
6 4592728 72 —19253708
5 —185493 63  —34574748
4 —10858021 54  —46386130
3 —683232 71 —37982436
2 12607524 62  —97588484
1 546480 53 —165452460
44 —98920039
[11,1] 150920 61 3943998
[10, 2] 540320 52 1320790
93 1378080 43 —5239846
84 2633120 51 131627986
75 3848880 42 258485354
66 2179800 33 156327858
[10, 1] 1553596 41 30510125
92 5244624 32 59066122
83 12387216 31 —209783532
74 21589064 22 —146989935
65 28319256 21 —46058760

91 3939870 11 65027556
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Table A.4: Coefficients for the genus 5 monotone Hurwitz generating function
in the form Hs = ﬁ((l -0 —1)+ 252:1 obd C.alla(1 —n) 7874 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 29365271111 = 718502400 = 18 - 11!. (cont.)

« N -c5.0 « N - c5q o N -c5.q
[10, 12] 3799488 333 —268996608
921 25006784 611 —T715895628 6221 12739765632
831 58283456 521 —3207547232 5411 13432174800
822 37599056 431 —4698449776 5321 42840873504
741 100727424 422 —3107511892 5222 9289463040
732 158528832 332 —3809388000 4421 25400829696
651 131700576 511 —121563384 4331 31156686000
642 245068224 421 —683668664 4322 40516064424
633 149469408 331 —466606288 3332 16557865632
552 141442680 322 —680575360 7111 1603025072
543 407987520 411 1794375864 6211 12403476800
444 80396160 321 5811747320 5311 21260651808
911 37912160 222 1297709514 5221 28063554816
821 233149312 311 674424616 4411 12677991612
731 497978432 221 962519712 4321 82861040064
722 324186368 211 —1894749012 4222 18234425924
641 774992016 111 —156973608 3331 17095134144
632 1236792672 3322 33814979088
551 447940560 9111 64463168 6111 —1092238136
542 1696308360 8211 580868288 5211 —6103240264
533 1039594320 7311 1225401408 4311 —8122710288
443 1233434400 7221 1579161408 4221 —9735976536
811 98750784 6411 1894318272 3321 —11151467712
721 573934384 6321 5959816896 3222 —4420223544
631 1122565040 6222 1280911280 5111 —8570428240
622 742330412 5511 1092881328 4211  —49461789124
541 1555143672 5421 8130486144 3311 —30419666640
532 2545967280 5331 4962347808 3221  —79961047848
442 1520737326 5322 6399177840 2222 —8790023242
433 1882393536 4431 5867072640 4111 —2954008640
711 —116306424 4422 3781428288 3211 —16614083992
621 —518517104 4332 9231765312 2221 —7861090512
531 —812310976 3333 938698992 3111 14896133208
522 —509211400 8111 616312928 2211 29366294892
441 —471615312 7211 5133749984 2111 6503917904

432 —1382412600 6311 9798998880 1111 —2355420606
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Table A.4: Coefficients for the genus 5 monotone Hurwitz generating function
in the form Hs = %((1 —n) 8 —1)+ 2212:1 obd Cs.alla(1 — 1) 7874 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 29365271111 = 718502400 = 18 - 11!. (cont.)

« N -c5.0 o N -c5.4
81111 816347840 33221 556311704256
72111 8872174080 32222 120527969100
63111 16749384960 61111 18700344080
62211 32357793600 52111 168890451312
54111 22845389952 43111 249143583744
53211 107796401856 42211 492561868656
52221 46297494320 33211 609394623552
44211 63712382976 32221 535293918544
43311 77807068416 22222 35295888320
43221 200466870912 51111 —6222432128
42222 21529880680 42111 —35816319704
33321 81589525248 33111 —19708525056
33222 52586584512 32211 —63659195160
71111 7384805120 22221 —10969834260
62111 73238584320 41111 —71621395912
53111 123161943168 32111 —461641675440
52211 239991560160 22211  —302490323520
44111 73004276928 31111 —31345362708
43211 698112996768 22111 —87671917168
42221 302362543560 21111 81769223712

33311 142749070464 11111 6733061940
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Table A.4: Coefficients for the genus 5 monotone Hurwitz generating function
in the form Hy = ﬁ((l —n) 8 —1)+ 252:1 obd C.alla(1 —n) 7874 Top
degree coefficients are set in bold. Note that the coefficients are scaled by
N = 29365271111 = 718502400 = 18 - 11!. (cont.)

« N -c54 o N -c54
711111 8101040640 6111111 64516144000
621111 98452939200 5211111 830121821760
531111 164025597120 4311111 1198705052160
522111 422364096000 4221111 3857350728000
441111 96939929856 3321111 4712368066560
432111 1219613826816 3222111 8088674242880
422211 785274409920 2222211 1562274051800
333111 248287522560 5111111 499085146560
332211 1438698026304 4211111 5651771257440
322221 617752911160 3311111 3467697045120
222222 26528209400 3221111 22498949124960
611111 68349240960 2222111 9733013752000
521111 746061624000 4111111 1106867534080
431111 1085173682208 3211111 10800863673600
422111 2817663932160 2221111 11835459617520
332111 3457210990464 3111111 61131778400
322211 4488775799200 2211111 363422074400
222221 583001703900 2111111 — 1890764250760
511111 164269607040 1111111 —110968630080
421111 1594210009392
331111 986016130176 51111111 416170437760
322111 5191236614256 42111111 5413828259840
222211 1708221819920 33111111 3307359538560
411111 —15555347808 32211111  25538516203200
321111 —51154596416 22221111  13696254017600
222111 —5309017560 41111111 2889658242240
311111 —432354874952 32111111 32198143084800
221111 — 1412409052824 22211111 41767355057120
211111 —198453609508 31111111 5714203288640
111111 49368073216 22111111 26277999193600

21111111 753318362720
[112] 5931880416000 11111111 —724713053680
411111111 2170719788160 3,19 9044935715200
321111111  27303458927360 [22,18) 52368137852800
222111111  40990175638720 [2,1°] 46039949278400
311111111 13155841012160 [119] 6167827881600
221111111 68240395386240
211111111 22168311605440 (2,119] 29382811427200

111111111 360221597120 (114 10757398220800







Appendix B

Coeflicients for Classical
Hurwitz Generating Functions

The following equations give the genus two and three generating functions for
the classical Hurwitz numbers, as described in Theorem 5.1.4. Tables B.1, B.2,
B.3 and B.4 give the coefficients for genus 2, 3, 4 and 5, respectively.

oMy — 127 + Ty 29791 — 25713 281111
(1-7)3 (1—-7)* (1—-7)°

5760H, =

707 — 29475 + 4107, — 18675

5806080H3 = —
(1-m)°

107875, + 2012745 + 1214745 — 3876714,
" (1=

| 615675 + 465877y, + 300277, — 18607,
(1-m)8

. 856877411 + 269047, + 58307755
(1-7)7
| 259687311 — 336420551 + 25770711 — 2790711,
(1=
| 445205111 + 86100773511 — 1106007511, + 214207111,
(1-7m)8
16212079111; — 624407111, | 68600711111
(1—-7)° (1—m)to
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Table B.1: Coefficients for the genus 2 classical Hurwitz generating function in
the form Hy = S5_ 37 % 070 (1 — 77)"274®). Top degree coefficients are set
in bold. Note that the coefficients are scaled by N = 273251 = 5760 = 8 - 6!.

a N cC2.q a N - C2q (e N - C2.q
3 5 21 29 111 28
2 —12 11 —25

1 7

Table B.2: Coefficients for the genus 3 classical Hurwitz generating function in
the form Hz = 35 4 3 13070 (1—7) 4. Top degree coefficients are set in
bold. Note that the coefficients are scaled by N = 21345171 = 5806080 = 16 - 9!.

o N - C3 . o N - C3.0 (67 N - C3.0
6 70 51 1078 411 8568
5) —294 42 2012 321 26904
4 410 33 1214 222 5830
3 —186 41 —3876 311 —25968
32 —6156 221 —33642
31 4658 211 25770
22 3002 111 —2790
3111 44520 21 —1860
2211 86100
2111 —110600 21111 162120

1111 21420 11111 —62440 [16] 68600
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Table B.3: Coefficients for the genus 4 classical Hurwitz generating function in
the form Hy = 2325 S obd ChaTla(1 —7) 7674 Top degree coefficients are set
in bold. Note that the coefficients are scaled by N = 2173%527! = 5573836800 =
29.3-100.

« N - C4a « N - Cin o N - Cin
9 700 81 20860 711 320544
8 —4480 72 56820 621 1559328
7 10856 63 106860 531 2594400
6 —11648 54 146100 522 1677480
5 4572 71 —121104 441 1535040
62 —297024 432 4831680
53 —496320 333 980000
44 —293520 611 —1673760
61 267128 521 —7234992
52 581112 431 —10471104
43 845856 422 —6771744
51 —262896 332 —8285760
6111 3297504 42 —500928 511 3308232
5211 21227136 33 —308208 421 12463200
4311 30631104 41 96012 331 7652160
4221 39502848 32 160020 322 9903768
3321 48172320 411 —2915136
3222 20748112 51111 24907680 321 —9347856
5111 —15300320 42111 185243520 222 —2029888
4211 —85865472 33111 113077440 311 960120
3311 —52533600 32211 437085600 221 1280160
3221 —135800112 22221 93963100
2222 —14627536 41111 —100916480 411111 143330880
4111 26587232 32111 —638070720 321111 1126957440
3211 126832944 22211 —412129200 222111 967702400
2221 54750864 31111 150292800 311111 —494988480
3111 —20345136 22111 389394600 221111 —1597854720
2211 —39738384 21111 —95886000 211111 609107520
2111 5760720 11111 4320540 111111 —50823360
[3,19] 633785600 [2,17] 2128810880 [19] 581398720
[22,15] 2447642400 [18] —590352000
[2,15]  —1802857280

[17] 247474080
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Table B.4: Coefficients for the genus 5 classical Hurwitz generating function
in the form H; = 252:7 obd G.aTla(1 — )84 Top degree coefficients
are set in bold. Note that the coefficients are scaled by N = 221365271111 =

2942985830400 = 21 - 3 - 12!.

o N - C5.a « N - C5.a
[12] 3080 65 —22284528
[11] 27720 91 4336816
[10] 101552 82 13220672

9 —187440 73 28156272

8 171848 64 43703728

7 —61320 59 25243728

81  —7506496
11,1] 150920 72 —20923968
[10, 2] 540320 63 —40084848

93 1378080 54 —55010352
84 2633120 71 6493128
75 3848880 62 16513568
66 2179800 53 28109424

[107 1] —1266848 44 16711128

92 —4199712 61 —2207520
83 —9832608 52 —5150880
74 —17022432 43  —=T7726320
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Table B.4: Coefficients for the genus 5 classical Hurwitz generating function
in the form H; = 252:7 b GaTla(1 — 1) 7874 Top degree coefficients
are set in bold. Note that the coefficients are scaled by N = 221365271111 =
2942985830400 = 2'1 - 3 - 12!. (cont.)

« N - C5,0 « N - C5,0 « N - C5,00
[107 12] 3799488 531 —1265742672 6311 —7190206848
921 25006784 522 —822637008 6221  —9284781264
831 58283456 441 —750789696 5411  —9820417728
822 37599056 432 —2399841216 5321 —31032567456
741 100727424 333 —491782752 5222  —6679493040
732 158528832 611 121192944 4421 —18354230400
651 131700576 521 541195872 4331 —22457502144
642 245068224 431 794495520 4322 —29003059008
633 149469408 422 521078880 3332  —11829077568
552 141442680 332 643371960 7111 1346923072
543 407987520 511 —38631600 6211 9957224464
444 80396160 421 —154526400 5311 16708366224
911 —29586304 331 —96579000 5221 21626744832
821 —178983200 322 —128772000 4411 9892861440
731 —379102080 4321 62820255168
722 —244886928 9111 64463168 4222 13551628816
641 —587052096 8211 580868288 3331 12841233504
632 —927898560 7311 1225401408 3322 24928395888
551 —338912760 7221 1579161408 6111  —1977893104
542 —1267309440 6411 1894318272 5211 —13010553072
533 —775234080 6321 5959816896 4311 —18976788864
443 —917009280 6222 1280911280 4221 —24663253296
811 93868368 5511 1092881328 3321 —30324126624
721 517489888 5421 8130486144 3222 —13137176976
631 985223776 5331 4962347808 5111 1453932480
622 637618000 5322 6399177840 4211 8392008240
541 1347934944 4431 5867072640 3311 5178983040
532 2140011024 4422 3781428288 3221 13575112320
442 1267225536 4332 9231765312 2222 1482114480
433 1554319968 3333 938698992 4111 —424947600
711 —150642896 8111 —462478016 3211 —2124738000

621 —750182944 7211 —3794809920 2221 —944328000
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Table B.4: Coeflicients for the genus 5 classical Hurwitz generating function
in the form Hs = Y023 4@ .alla(1 — 7) 3@, Top degree coefficients
are set in bold. Note that the coefficients are scaled by N = 221365271111 =
2942985830400 = 2! - 3 - 12!. (cont.)

(6] N - Cs5.0 « N - Cs5.q
81111 816347840 33311 —99989277696
72111 8872174080 33221 —387259147968
63111 16749384960 32222  —83331307752
62211 32357793600 61111 14134545920
54111 22845389952 52111 122789940240
53211 107796401856 43111 178319167488
52221 46297494320 42211 346197930672
44211 63712382976 33211 424561720704
43311 77807068416 32221 366312529968
43221 200466870912 22222 23704867648
42222 21529880680 ol1111 —18692200560
33321 81589525248 42111  —141712477280
33222 52586584512 33111 —87119205888
71111 —5349023680 32211 —339641236704
62111 —52332480640 22221  —73563956928
53111 —87462441792 41111 12277437480
52211 —169354163088 32111 79380747600
44111 —51731130880 22211 51978843840
43211 —490282146816 31111 —3187107000

42221 —210979948256 22111 —8498952000
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Table B.4: Coefficients for the genus 5 classical Hurwitz generating function

in the form Hs = Y22

ak-d E5,0¢ﬁa(1 - ﬁ)

—8—{(a)

Top degree coefficients

are set in bold. Note that the coefficients are scaled by N = 221365271111 =
2942985830400 = 2! - 3-12!. (cont.)

a N - Cs5.q o N - C5.a
711111 8101040640 6111111 64516144000
621111 98452939200 5211111 830121821760
531111 164025597120 4311111 1198705052160
522111 422364096000 4221111 3857350728000
441111 96939929856 3321111 4712368066560
432111 1219613826816 3222111 8088674242880
422211 785274409920 2222211 1562274051800
333111 248287522560 5111111 —340128268480
332211 1438698026304 4211111 —3811966238080
322221 617752911160 3311111 —2332563340800
222222 26528209400 3221111 —15048857725440
611111 —47948134080 2222111 —6472981354840
521111 —517093044160 4111111 705047949760
431111 — 748552870912 3211111 6712913518080
422111 —1932091298368 2221111 7239046306800
332111 2364392612736 3111111 —707258650560
322211 —3051596341024 2211111 —2757001354800
222221 —393874176080 2111111 335828437560
511111 113285406080 1111111 —8286478200
421111 1064547594880
331111 652723416576 51111111 416170437760
322111 3378948408528 42111111 5413828259840
222211 1093196341776 33111111 3307359538560
411111 —132235783680 32211111  25538516203200
321111 —1056336943200 22221111  13696254017600
222111 —915106536960 41111111 —1918814374400
311111 75370430520 32111111 —21207448859520
221111 246647210040 22211111 —27360937148160
211111 —16572956400 31111111 3402113225280

22111111 15407697757760
21111111 —2824078561920
[112] 5931880416000 11111111 131114712960
411111111 2170719788160 3,19 9044935715200
321111111  27303458927360 [22,18) 52368137852800
222111111  40990175638720 2,19 —29322334764800
311111111 —8539520232320 [119] 3348064473600
221111111 —44063442068800
211111111 12492588440640 [2,119] 29382811427200
111111111 —899669453760 [11] —6761652374400
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