
 
Varactor Based Tunable Planar Filters 

and Post-Fabrication Tuning of 
Microwave Filters  

 

 

 

 

by 

 

 

Alborz Rezazadeh Sereshkeh 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Electrical and Computer Engineering 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

©Alborz Rezazadeh Sereshkeh 2012 

 



 

ii 

 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 
any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

iii 

 

Abstract 

Post-fabrication tuning of filters is usually realized by adding number of elements for tuning the 

frequency and/or controlling the couplings between the resonators. The task of these tuning elements 

is to control resonators center frequency, inter-resonators coupling and input/output couplings.  While 

the most common tool for the post-fabrication tuning is to use tuning screws and rods, it is not usually 

practical to tune a planar filter with these tools.  

This thesis introduces a novel method for global post-fabrication tuning of microwave filters by 

designing and adding a passive distributed-element circuit in parallel to the detuned filter. The idea, 

which is demonstrated by experimental results, has several advantages over traditional techniques for 

filter tuning that use screws. The quality factor of resonator reduces significantly after adding the 

tuning screws while the proposed method does not affect the Q of resonators.  

The most important advantage of the proposed compensator circuit is that it can be employed 

without knowing details of the detuned filters. Since the compensator circuit will be added in parallel 

to the detuned filter, it will not affect the elements of filter individually. So whether the filter is planar 

or cavity, the proposed circuit can be used for the tuning. The experimental results obtained 

demonstrate the validity of this method. 

The dissertation also presents a novel concept for designing a center frequency and bandwidth 

tunable microstrip filter by using GaAs varactors. The proposed isolated coupling structure which is 

used in this filter makes the bandwidth tuning possible by reducing the loading effect of coupling 

elements on the resonators. The center frequency of this filter can be also tuned by using a different 

set of varactors connected to resonators. A 3-pole filter based on this concept has been designed and 

simulated. The concept can be expanded to higher order filters. 
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Chapter 1 
Introduction 

1.1 Motivations 

Two main purposes of bandpass filters are band selection and image-rejection. However, the 

implementation of transceivers is challenging due to the occurrence of multi-frequency bands in 

different regions and diverse applications. Because of this, a single bandpass filter cannot carry out 

the filtering needs of all bands. The most common solution is to use a filter-bank and switching 

network, which necessitates a larger circuit size and greater complexity. Figure 1-1 shows a block 

diagram of a traditional multi-band transceiver. 

A viable solution for eliminating the bulky filter-bank and switching network is replacing them 

with a tunable bandpass filter. Over the past two decades, radio frequency (RF) tunable filters have 

received increasing attention due to their potential to reduce the complexity and size of modern multi-

band transceivers. The focus of recent work on tunable filters has shifted from maximizing the tuning 

range to controlling filter behavior as it is tuned. However, achieving clear-cut tuning has proven 

difficult due to manufacturing process inaccuracies, operational temperature, and long-term drift.  

The most important demand for tunable filters is in multi-band wireless communication systems. 

The filter-banks followed by switch networks in multi-band cell phones usually take up 60-80% of 

the area on an RF board.  Another important application of RF tunable filters is cognitive radios, 

which can decide on a usable communication channel by sensing the available spectrum. These do 

not have a fixed frequency band.  

One of the most important steps in manufacturing commercial microwave filters is post-

production tuning. As this step usually entails the input of expensive vector network analyzers (VNA) 

and skilful experts, it significantly impacts the filter’s overall cost. Full control of a tunable filter 

requires the use of tunable elements to tune the center frequency of resonators as well as the coupling 

between two adjacent resonators and the input/output coupling. There are number of tuning 

techniques for reducing the complexity of filter tuning, such as time domain, group delay and fuzzy 

logic methods [1, 2, 3]. However, all of these techniques require the use of several tuning elements. 
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Chapter 3 introduces a novel method for the post-fabrication tuning of a microwave filter. A 

detailed theoretical analysis is provided for the proposed concept. EM simulation and experimental 

results are presented to demonstrate the validity of the concept.  

Chapter 4 presents a new varactor-based structure for a center frequency and bandwidth tunable 

microstrip filter. At the end of Chapter 4, EM-simulation results of this structure are provided.  

Chapter 5 presents the work’s conclusions and possible future improvements.  
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Chapter 2 
Background 

2.1 Introduction 

In this chapter, we cover some of the most important work that has been done in the area of 

microwave bandpass tunable filters. In section 2.2, a literature review of various tunable filters is 

presented. Section 2.3 outlines the fundamentals and design steps of a bandpass microstrip microwave 

filter. Finally, a literature survey of different methods of compensating a detuned fabricated filter is 

provided in Section 2.4, which is primarily concerned with the post-production tunability of filters.  

2.2 Tunable Filters 

This section overviews the major improvements in tunable cavity and planar filter design and is 

divided into three subsections. Subsection 2.2.1 outlines the planar tunable filters, while a literature 

review on bandwidth tunable filters is provided in 2.2.2. 

Most tunable filters presented in this section fall into three main types: mechanically tunable, 

magnetically tunable, and electronically tunable [5]. 

Due to their large size and low tuning speed, mechanically tunable filters are not practical for 

modern communication systems. Their main advantage is low insertion loss [6].  

The most widely held examples of magnetically tunable filters are filters with Yttrium-Iron-Garnet 

(YIG)-based resonators. The ferromagnetic resonators of these filters enable them to be tuned by 

applying an external DC magnetic field and variation of the ferromagnetic resonant frequency of YIG 

spheres. Although YIG filters have low insertion loss and high quality factor (Q) resonators, they 

suffer from large power consumption (0.1-1 W) [7]. Another disadvantage of YIG filters is their non-

planar structure, which prevents their wide application in modern communication systems. 

Electronically tunable filters come in three different types: varactor diodes; Barium Stronium 

Titanate (BST); and Radio-Frequency Micro-Electro-Mechanical Systems (RF MEMS). 

The concept used in varactor diode-based tunable filters centers on changes in the depletion region 

width and resultant changes in capacitance. A reverse-bias DC voltage is utilized to effect this 
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change. Although these filters have zero power consumption and relatively fast tuning speed, they 

suffer from moderate Q of the resonators [8].  

A ferroelectric thin-film BST tunable capacitor is the fundamental element of BST tunable filters. 

An electric field can change the relative dielectric constant of ferroelectric materials. The major 

advantages of BST filters are that they are planar, easy to integrate, and have zero power consumption 

[9]. However, they suffer from poor linearity and moderate Q.     

The tuning element of RF MEMS tunable filter is usually a capacitance network based on RF 

MEMS. In these devices, an applied DC voltage can result in variations in the capacitance by 

employing micrometer level movements. Low insertion loss, high linearity, and low power 

consumption are some advantages of these filters. On the other hand, as they need a high voltage 

drive to operate (25-90 V), relatively more complex circuitry for high-voltage drive circuits is 

required.   

2.2.1 Tunable Planar Filters 

Planar filter are difficult to tune mechanically or magnetically since the electric field is trapped 

inside the dielectric. While varactors are the most common tuning element in the planar tunable filter 

technology, BST tunable capacitors and RF MEMS are other common methods for tuning planar 

filters. In this section, several publications in each category are reviewed. The selection criteria 

include having wide and nearly continuous frequency coverage, high Q, low insertion-loss, and good 

frequency response. 

2.2.1.1 Varactor-based Planar Tunable Filters 

Brown et al. presented an electronically tunable filter by applying a suspended substrate design 

and varactors as the tuning element [10]. The filter has a 60% center frequency tuning range from 700 

MHz to 1.33 GHz, and the insertion loss is less than 3 dB for half of the tuning range. However, the 

filter suffers from bandwidth uncontrollability, and the fractional bandwidth reduces from 14% to 

0.5% as the center frequency is tuned from 1 GHz to 700 MHz.    

Sanchez-Renedo et al. demonstrated a tunable combline filter with additional transmission zeros 

by applying multiple couplings between the source/load and resonators [11]. The center frequency of 
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this filter is tunable from 400 MHz to 800 MHz. Along with a non-controllable bandwidth, the filter 

suffers from high insertion loss in the tuning range, especially at lower center frequencies. 

One of the pioneer publications in controlling bandwidth in varactor-based planar filter tuning 

technology is presented by Park et al. [12]. This 2-pole filter has three different fractional bandwidth 

variations and a center frequency tuning range of 850 to 1400 MHz. The insertion loss performance 

of this filter is less than 3 dB for most frequencies in the tuning range, which represented state-of-the 

art insertion-loss performance at the time. However, the proposed 2-pole filter structure is not 

expandable to more resonators. 

2.2.1.2 MEMS-based Planar Tunable Filters 

Entesari et al. developed a 4-bit, 2-pole tunable filter by employing switched capacitors, metal-

contact switches, and fixed-value capacitors [13]. The lumped inductors are air-coil type and the Q is 

114 at 50 MHz. The Radant-MEMS switches are bonded on the FR-4 filter substrate; the measured 

insertion loss is 3–5 dB at 25–75 MHz; the relative bandwidth is 4.2േ0.5%, and the measured IIP3 of 

the tunable filter is greater than +65 dBm. A resonator Q of 52–75 was measured over all tuning 

states.  

Reines et al. presented a high-Q filter by employing suspended strip-line configurations. They 

developed the first suspended three-pole high-Q tunable combline RF MEMS tunable filter with a 

frequency coverage of 1.6–2.4 GHz, built on a quartz substrate [14]. The essential element for a 3-

pole low-loss filter is a high-Q resonator and the suspended topology is chosen to fulfill the Q 

requirement. Both the resonators and the input/output matching networks are tunable. The insertion 

loss of the filter is 1.34–3.03 dB over the tuning range and a 3-dB bandwidth of 201–279 MHz. The 

quality factor is tunable and its value is 50–150 over the frequency range.   

By investigating the loss mechanism of the multi-bit capacitance network, Park et al. used a high-

Q 3-bits orthogonally-biased RF MEMS capacitance network and developed a low-loss 3-bit tunable 

filter [15]. The orthogonal biasing networks ensure high-Q operation because of a very low RF 

leakage through the bias lines. The measured filter has an insertion loss of 1.5–2.8 dB with a 1-dB 

bandwidth of 4.35േ0.35% over the 4–6 GHz tuning range. The tunable Q is 85–170 and can be 

improved to 125–210 with the use of a thicker bottom electrode for the RF MEMS capacitive switch. 
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At 5.91 GHz, the measured IIP3 is greater than 40 dBm while 1-dB power compression point is 

greater than +27.5 dBm. 

The tunable filters for wireless applications need to have constant absolute bandwidth. El-Tanani 

et al. developed high performance tunable filters with this feature [16]. The filter is fabricated on 

ceramic substrates (ߝ௥ ൌ 9.9) for miniaturization and the design is based on corrugated coupled-lines. 

As the 3-bit tuning network is fabricated using a digital/analog RF MEMS device, it can provide a 

large capacitance ratio and continuous frequency coverage. The insertion loss of 1.9-2.2 dB at 1.5-2.5 

GHz is measured in narrowband (bandwidth of 72േ3 MHz) and wideband (bandwidth of 115േ10 

MHz) 2-pole filters. The power handling is 25 dBm and IIP3 is greater than 35 dBm. A quality factor 

of 85–165 was reported for this filter, which was the highest reported at this frequency range at the 

time of publication of this paper.  

2.2.1.3 BST-based Planar Tunable Filters 

Sanderson et al. presented a tunable IF filter by employing thin-film BST varactors [17]. The filter 

center frequency is tunable from 30 MHz to 88 MHz in three separate switch-selectable bands. The 

fractional bandwidth is relatively constant in the tuning range, and the insertion loss is less than 5 dB 

for the entire frequency range. 

Chun et al. demonstrated a bandpass tunable bandwidth filter by employing an interdigital BST 

varactor [18]. The center frequency of this filter is 1.8 GHz while the 3-db bandwidth is tunable from 

276 MHz to 318 MHz.  

Nguyen et al. applied high-Q, tunable ICs to demonstrate a tunable bandpass filter [19]. The ICs 

are fabricated by applying Paratek’s proprietary doped BST material. The presented 3-pole filter has a 

center frequency tuning range of 74% from 230 MHz to 400 MHz, and the insertion filter is less than 

2.5 dB for the entire tuning range.   

2.2.2 Bandwidth Tunable Filters 

Unlike the tunability of the center frequency, little effort has been made with regards to the 

bandwidth tunability of filters. One probable reason for this lack of research interest is that, in the 

design steps of a microwave filter, bandwidth is taken into consideration in the designing of coupling 

elements. However, methods for varying the inter-resonator couplings are currently inadequate. Thus, 
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Step 2: Finding J values for J-admittance inverters based on g values from Step 1 and percentage 

bandwidth (Δ)  

J values can be calculated with the following formulas [33]. Figure 2-13 shows a bandpass filter 

with J-admittance inverters. 

 

ߚ  ൌ ln ൬coth ൬
ܴܮ
17.37

൰൰ (2-2) 

ߛ  ൌ sinhሺ
ߚ
2݊
ሻ (2-3) 

 ܽ௞ ൌ sin ቆ
ሺ2݇ െ 1ሻߨ

2݊
ቇ , ݇ ൌ 1,2, … , ݊ (2-4) 

 ܾ௞ ൌ ଶ	ߛ ൅ sinଶ ൬
ߨ݇
݊
൰ , ݇ ൌ 1,2, … , ݊ (2-5) 

 ݃ଵ ൌ
2ܽଵ
ߛ

 (2-6) 

 ݃௞ ൌ
4ܽ௞ିଵܽ௞
ܾ௞ିଵ݃௞ିଵ

, ݇ ൌ 2,3, … , ݊ (2-7) 

 ݃௡ାଵ ൌ ൝
1 ݊ ݀݀݋

ଶ݄ݐ݋ܿ ൬
ߚ
4
൰ ݊ ݊݁ݒ݁

 (2-8) 
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After finishing this step, all of the elements of the microstrip filter are determined and the filter is 

complete. 

2.4 Post-Production Tuning 

Nowadays, a filter designer can accurately model and simulate a microwave filter with 

commercially available software such as HFSS, ADS [34] and Sonnet [35]. Nevertheless, after the 

fabrication, the experimental response can differ from the simulation results for any number of 

reasons, including inaccuracies in the material properties or fabrication process. As a result, post-

production tuning is usually necessary. 

One of the most popular ways of tuning an as-made filter is employing mechanical tuning screws. 

These screws enable adjustment of the center frequency of resonators and/or coupling between them. 

Despite their popularity, tuning screws have many disadvantages. For instance, in compact circuit 

design, due to the relatively small maximum size of tuning screws, the possible tuning range is 

limited [36]. Also, for detuned filters with a deviated center frequency of 5% or more, tuning screws 

alone usually cannot compensate for the difference and hence a new fabrication is required [37].  

Harscher et al. proposed and demonstrated an automated filter tuning method for microwave filters 

[38]. Their method comprises two steps. The first step is determining the sensitivity of different 

parameters relating to the tuning elements by performing a number of S-parameters measurements. In 

the second step, the filter’s measured parameters are compared to the corresponding parameters of an 

ideal filter, from which optimal screw positions can be determined. The measured response of the 

filter before and after tuning is provided in Figures 2-20 (a) and (b). 

௞ܮ  ൌ
௚଴ߣ
ߨ2

ቆߨ ൅
1
2
ሺ߶௞ିଵ ൅ ߶௞ሻቇ ݇ ൌ 1,2, … , ݊ (2-19) 
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Chapter 3 
Post-Fabrication Tuning of Microwave Filters  

3.1 Introduction 

Controlling a tunable Chebyshev filter is usually realized by adding a number of elements to tune 

the frequency and/or control the couplings between resonators. Some of the most common tuning 

elements are tuning screws, MEMS switches, and semiconductor varactors.  The task of each tuning 

element can be one the following: tuning the center frequency of one or more resonator; controlling 

the coupling between two adjacent resonators; or adjusting the input and output couplings. The 

complexity of tuning microwave filter stems from the interaction between the resonance frequencies 

of resonators and the coupling between them. In other words, tuning one parameter without affecting 

the value of other parameters is virtually impossible. 

One of the most important steps in manufacturing commercial microwave filters is post-

production tuning. This step requires the skill of experts and consequently significantly affects the 

final cost of the filter. There are number of different tuning techniques for reducing the complexity of 

filter tuning such as time domain, group delay, and fuzzy logic methods [1, 2, 3]. The base parameters 

in implementing these methods are the phase and magnitude of the filter’s reflection coefficient.  

Meng et al. proposed an analytical approach to extract the coupling matrix of a bandpass 

Chebyshev filter and utilized it for computer-aided tuning of bandpass microwave filters [44]. This 

parameter extraction relies on pole and zero identification of the transfer function and, as a result, 

requires a VNA for the measurement. Prior to [44], two similar approaches for computer-aided tuning 

of a microwave filter based on coupling matrix extraction and use of VNA were published in [39, 45]. 

In this chapter, a novel idea for the post production tuning of microwave filters is presented. This 

method relies on adding a passive microwave circuit parallel to the original filter by creating a path 

between the input and the output. The structure of an added circuit can be determined by calculating 

the difference between the Y parameters of a detuned and an ideal filter (Δܻሻ. Since creating the exact 

shape of Δܻ may be complicated, an approximation model is used as the added circuit. The idea is 

demonstrated by tuning a detuned cavity filter and a detuned microstrip filter, with the experimental 

results being provided at the end of this chapter.  
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Chapter 3 is organized as follows. In section 3.2, the idea is explained and circuit implementation 

for tuning a Chebyshev filter with high insertion loss in the passband is presented. In section 3.3, we 

use the stated method to tune several detuned filters. Finally, the EM simulation and experimental 

results are provided in sections 3.4 and 3.5, respectively. 

3.2 Theory 

A Chebyshev bandpass filter can be specified by the number of poles, ripple level (or, 

alternatively, the return loss), center frequency, and bandwidth. The limited quality factor (Q) of the 

resonators, i.e., having a non-ideal Chebyshev filter, has a considerable influence on the final shape of 

the S parameters [46]. On average, achieving a return loss less than -20 dB is considered a success in 

filter manufacturing. 

In this section, the theory behind the tuning method will be explained. The goal of this section is 

decreasing the ripple level of a Chebyshev filter in the bandpass by adding a simple passive circuit 

parallel to the filter. Henceforth in this dissertation, this parallel circuit will be called the auxiliary 

circuit. The bandwidth of the filter will show only a slight decrease during this process. The design 

steps of the auxiliary circuit are also provided in this section. 

3.2.1 Pole Matching of Admittance Parameters 

An in-line ideal Chebyshev filter can be determined by number of poles, ripple level, center 

frequency, and bandwidth. As will be explained in this section, if all of these parameters (except the 

ripple level) are similar for two Chebyshev filters, the location of their admittance parameters poles 

will be different. When designing a proper auxiliary circuit, these poles need to be exactly matched.  

The g-values of a filter, regardless of its center frequency and bandwidth, can be calculated by the 

given formulas in Chapter 2 (2-1 to 2-8). Having calculated the g-values, the coupling matrix can then 

be calculated as shown in expression (3-1) [33]. Two other necessary parameters for determining the 

filter response are input and output resistance (RS and RL, respectively). If n is the degree of the filter, 

the value of the input and output resonators can be calculated as follows: 
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Another matrix needs to be defined for the calculation of S parameters. This matrix is called R and 

can be calculated as follows: 

ݔ݅ݎݐܽܯ	ܴ  ൌ 	

ۏ
ێ
ێ
ێ
ۍ
ܴ௦ 0 0 ⋯ 0
0 0 0 ⋯ 0
0 0 ⋱ ⋯ 0
⋮ ⋮ ⋮ ⋱ 0
0 0 0 0 ܴ௅ے

ۑ
ۑ
ۑ
ې

 (3-4) 

The S parameters of a microwave band-pass filter can be easily calculated using the following 

equations [33]: 

ߣ  ൌ ଴݂

ܹܤ
൬
݂

଴݂
െ ଴݂

݂
൰ (3-5) 

ߜ  ൌ ଴݂

௨ܳ.ܹܤ
 (3-6) 

 ሺݐ݂݂ܿ݁ܧ ݂݋ ܽ݀݀݅݊݃ ሻݏ݁ݏݏ݋݈ ߣ → ߣ െ  ߜ݆

ܣ  ൌ ܫߣ െ ݆ܴ ൅(7-3) ܯ 

	ܯ  ൌ 		

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 0

1

ඥ݃ଵ݃ଶ
0 0 ⋯ 0

1

ඥ݃ଵ݃ଶ
0

1

ඥ݃ଶ݃ଷ
0 ⋯ 0

0
1

ඥ݃ଶ݃ଷ
0 ⋱ ⋯ 0

0 0 ⋱ ⋱
1

ඥ݃௡ିଶ݃௡ିଵ
0

⋮ ⋮ ⋮
1

ඥ݃௡ିଶ݃௡ିଵ
0

1

ඥ݃௡ିଵ݃௡

0 0 0 0
1

ඥ݃௡ିଵ݃௡
0

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3-1) 

 ܴ௦ ൌ
1
݃ଵ

 (3-2) 

 ܴ௅ ൌ
1

݃௡݃௡ାଵ
 (3-3) 
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 	 ଵܵଵ ൌ 1 ൅ 2݆ܴ௦ሾିܣଵሿଵଵ (3-8) 

 ܵଶଵ ൌ െ2݆ඥܴ௦ܴ௅ሾିܣଵሿ௡ଵ (3-9) 

where ଴݂ is the center frequency, ܹܤ is the bandwidth, and Qu is the unloaded quality factor. The 

effect of losses in resonators is taken into consideration as the value of ߜ. In the case of an ideal filter 

with an infinite quality factor, ߜ is equal to zero.  

The admittance parameters of a Chebyshev filter have different poles from the scattering matrix 

parameters. The Y parameter matrix can be expressed as follows [47]: 

 ܻ ൌ ሺܯ െ ܫߣ െ ݆ܴሻିଵ (3-10) 

The input admittance, ݕଵଵ, can be calculated as follows: 

ሻߣଵଵሺݕ  ൌ ሺെܫߣ ൅ ሻିଵଵଵܯ ൌ
| െ ܫߣ ൅ |௡ିଵܯ
| െ ܫߣ ൅ |ܯ

 (3-11) 

where ܯ௡ିଵ is the coupling matrix after the elimination of the first row and first column. In the case 

of an in-line 3-pole Chebyshev filter, the poles of admittance parameters can be determined by 

calculating the denominator of ݕଵଵ in the above equation. 

detሺെܫߣ ൅ ሻܯ ൌ det

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ െߣ

1

ඥ݃ଵ݃ଶ
0

1

ඥ݃ଵ݃ଶ
െߣ

1

ඥ݃ଶ݃ଷ

0
1

ඥ݃ଶ݃ଷ
െߣ

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ی

ۋ
ۋ
ۋ
ۋ
ۊ

 

ൌ െߣ ൬ߣଶ െ
1

݃ଶ݃ଷ
൰ െ

1

ඥ݃ଵ݃ଶ
ሺ
െߣ

ඥ݃ଵ݃ଶ
ሻ

ଵ

√௚భ௚మ
ୀ

ଵ

ඥ௚మ௚య
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 

 detሺെܫߣ ൅ ሻܯ ൌ െߣሺߣଶ െ
2

݃ଵ݃ଶ
ሻ (3-12) 

Thus, the location of the three poles can be calculated by equating the above equation to zero.  
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 െߣ ൬ߣଶ െ
2

݃ଵ݃ଶ
൰ ൌ 0 ⇒ :ݏ݈݁݋ܲ

ە
ۖۖ

۔

ۖۖ

ۓ
ߣ ൌ 0

ߣ ൌ ඨ
2

݃ଵ݃ଶ

ߣ ൌ െඨ
2

݃ଵ݃ଶ

 (3-13) 

Since ߣ is equal to 
௙బ
஻ௐ

ቀ௙
௙బ
െ

௙బ
௙
ቁ, the location of the poles on the frequency axis, ଵ݂, ଶ݂ and ଷ݂, can 

be calculated as follows: 

ߣ  ൌ 0 ⇒ ଴݂

ܹܤ
൬
݂

଴݂
െ ଴݂

݂
൰ ൌ 0 ⇒ ଵ݂ ൌ ଴݂ (3-14) 

 

ߣ ൌ ඨ
2

݃ଵ݃ଶ
⇒ 	 ଴݂

ܹܤ
൬
݂

଴݂
െ ଴݂

݂
൰ ൌ ඨ

2
݃ଵ݃ଶ

⇒ ݂ଶ െ ቌܹܤඨ
2

݃ଵ݃ଶ
ቍ݂ െ ଴݂

ଶ ൌ 0 ⇒ 

ଶ݂ ൌ
ටܹܤ 2

݃ଵ݃ଶ
൅ ට4 ଴݂

ଶ ൅
ଶܹܤ2

݃ଵ݃ଶ
2

௙௢௥	௡௔௥௥௢௪ି௕௔௡ௗ	௙௜௟௧௘௥௦	
ଶ஻ௐమ

௚భ௚మ
≪ସ௙బ

మ

ሳልልልልልልልልልልልልልልልልልልልልልልልልልልልልልሰ 

 ଶ݂ ൌ ଴݂ ൅
ܹܤ
2

ඨ
2

݃ଵ݃ଶ
 (3-15) 

ߣ ൌ െඨ
2

݃ଵ݃ଶ
⇒ 	 ଴݂

ܹܤ
൬
݂

଴݂
െ ଴݂

݂
൰ ൌ െඨ

2
݃ଵ݃ଶ

⇒ ݂ଶ ൅ ቌܹܤඨ
2

݃ଵ݃ଶ
ቍ݂ െ ଴݂

ଶ ൌ 0 ⇒ 

ଷ݂ ൌ
െܹܤට 2

݃ଵ݃ଶ
൅ ට4 ଴݂

ଶ ൅
ଶܹܤ2

݃ଵ݃ଶ
2

௙௢௥	௡௔௥௥௢௪ି௕௔௡ௗ	௙௜௟௧௘௥௦	
ଶ஻ௐమ

௚భ௚మ
≪ସ௙బ

మ

ሳልልልልልልልልልልልልልልልልልልልልልልልልልልልልልሰ 

 ଷ݂ ൌ ଴݂ െ
ܹܤ
2

ඨ
2

݃ଵ݃ଶ
 (3-16) 

The above expressions show that the two in-line 3-pole Chebyshev filters, with the same center 

frequency, have similar poles in the admittance parameters if the value of ሺ2/ܹܤሻ ൈ ඥ2/݃ଵ݃ଶ is 
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equal for both of them. The reduction in the ripple level causes an increase in the elements of the 

coupling matrix [33]. So, for ሺ2/ܹܤሻ ൈ ඥ2/݃ଵ݃ଶ to remain constant, the bandwidth needs to be 

reduced. 

	݈݁ݒ݁ܮ	݈݁݌݌ܴ݅ ↓		⇒ 	ݏݐ݈݊݁݉݁ܧ	ݔ݅ݎݐܽܯ	݈݃݊݅݌ݑ݋ܥ ↑

ி௢௥	
஻ௐ
ଶ
ඨ

ଶ
௚భ௚మ

	௧௢	௥௘௠௔௜௡	௖௢௡௦௧௔௡௧

ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮܤ ↓ 

	The ratios of this change in the ripple level and the bandwidth are not the same. For example, to 

decrease the ripple level from 0.1396 dB, which represents a return loss of -15 dB, to 0.0436 dB (i.e., 

a return loss of -20 dB), the admittance matrix poles will remain constant if the bandwidth decreases 

to 85.4% of the original bandwidth. This indicates an approximately 70% decrease in ripple level, in 

the dB scale, results in an approximately 15% decrease in bandwidth. 

ݔ݅ݎݐܽ݉	݁ܿ݊ܽݐݐ݅݉݀ܽ	݂݋	ݏ݈݁݋݌	݁݉ܽܵ ൜
݈݁ݒ݈݁	݈݁݌݌݅ݎ ൌ ,ܤ݀	0.1396 ݄ݐ݀݅ݓ݀݊ܽܤ ൌ ܹܤ

݈݁ݒ݈݁	݈݁݌݌݅ݎ ൌ ,ܤ݀	0.0436 ݄ݐ݀݅ݓ݀݊ܽܤ ൌ 0.854 ∗  ܹܤ

3.2.2 Phase Loading Effect Addition 

The Y parameters of a two-port circuit can be calculated from S parameters by using the following 

equations [48]. 

 ଵܻଵ ൌ ଴ܻ
ሺ1 െ ଵܵଵሻሺ1 ൅ ܵଶଶሻ ൅ ଵܵଶܵଶଵ
ሺ1 ൅ ଵܵଵሻሺ1 ൅ ܵଶଶሻ െ ଵܵଶܵଶଵ

 (3-17) 

 ଵܻଶ ൌ ଴ܻ
െ2 ଵܵଶ

ሺ1 ൅ ଵܵଵሻሺ1 ൅ ܵଶଶሻ െ ଵܵଶܵଶଵ
 (3-18) 

 ଶܻଵ ൌ ଴ܻ
െ2ܵଶଵ

ሺ1 ൅ ଵܵଵሻሺ1 ൅ ܵଶଶሻ െ ଵܵଶܵଶଵ
 (3-19) 

 ଶܻଶ ൌ ଴ܻ
ሺ1 ൅ ଵܵଵሻሺ1 െ ܵଶଶሻ ൅ ଵܵଶܵଶଵ
ሺ1 ൅ ଵܵଵሻሺ1 ൅ ܵଶଶሻ െ ଵܵଶܵଶଵ

 (3-20) 

Analyzing a filter based on its Y parameters is complicated due to the phase-loading effect, which 

represents the difference between the reference phase at the input of an ideal coupled resonator filter 

and the reference phase calculated from the reference plane at the filter input in measurement. In 

order to accurately compare the Y parameters of two filters, the effect of phase-loading must first be 

removed. After its removal, the system’s poles will emerge at the correct positions on the real 
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As primary filters, four 3-pole Chebyshev filters with the same center frequency (2 GHz) and 

bandwidth (2%) but with different return losses (18 dB, 16 dB, 14 dB and 12 dB) are used. The goal 

is to improve the return losses of these filters to 20 dB by using the proposed auxiliary circuit. The 

inductance of the inductors is fixed at a value of 8 nH, which was calculated in the previous section 

for improving the return loss of 15 dB to 20 dB. 

The simulation results show that the proposed auxiliary circuit has the ability to improve the return 

loss of all four filters to 20 dB by tuning the varactor from 390 fF to 720 fF. As was expected (based 

on the previous sections), the bandwidth of the net circuit is smaller than the bandwidth of the 

primary filter. Table 3-2 shows the required capacitance of varactors in each case and the bandwidth 

of the net circuit with a return loss of 20 dB. Figure 3-15 shows an S parameters diagram of four 

primary filters before and after adding the auxiliary circuit. These results clearly show that a single 

auxiliary circuit with varactors has the ability to tune different detuned filters.  

Table  3-2: shows the required capacitance of varactors in each case and the bandwidth of the tuned filter 

 18 dB 16 dB 14 dB 12 dB 

C1 720 fF 640 fF 540 fF 390 fF 

L1 8 nH 8 nH 8 nH 8 nH 

Bandwidth of the 

Tuned Filter 
1.9% 1.75% 1.62% 1.5% 

 

 

 

 



 

 

Figure  3-15:: The effect of adding the pro
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Chapter 4 
Center Frequency and Bandwidth Tuning of a Bandpass Microstrip 

Filter Using GaAs Varactors 

4.1 Introduction 

Microwave tunable filters have received increased attention over the past few decades due to their 

potential to replace switched-filter banks in multi-band communication systems. Planar technologies 

being utilized for tuning include RF-MEMS devices, semiconductor (silicon, GaAs) varactor diodes, 

and P-I-N diodes. The focus of recent work on tunable filters has shifted from maximizing tuning 

range to controlling filter behaviour as it is tuned. 

In this chapter, we introduce a new type of center frequency and bandwidth tunable microstrip 

filter, which is realized using varactors. The innovation of this structure is in isolating the coupling 

elements from the resonators by proposing a novel structure for admittance inverters. The proposed 

filter exhibits low insertion loss in the passband, with full control over bandwidth and center 

frequency. Input couplings, resonance frequency of individual resonators, and inner couplings 

schemes are discussed in detail. Additionally, to validate the practicality of the proposed structure, 

measurements for the fabricated filter are presented. 

The organization of this chapter is as follows. Motivations for the proposed structure and filter 

design are provided in section 4.2. The effects of varactors on both resonators and coupling structures 

are presented in section 4.3, along with the implementation of the tunable filter by adding the 

varactors. Finally, section 4.4 presents the EM simulation results.  

4.2 Filter Design 

Bandwidth tunability of microwave filters can be achieved by changing the coupling value of the 

inverters between the resonators. In microstrip filters, inverters are usually realized by a gap between 

resonators, as shown in Figure 4-1. To change the coupling value (J or K of the inverter) of microstrip 

gaps, either gap size or gap width needs to be changed. This method is difficult to implement on a 

microstrip filter that has already been fabricated. Attaching a varactor to gap walls is another solution 

for altering the coupling. However, as gap walls are directly connected to resonators, the resonance 

frequency of the adjacent resonator will also be impacted by the varactor. Moreover, to maintain the 
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4.2.2 The Filter Structure 

The design steps of the microstrip filter in this chapter are the same as in section 2.3.2. However, 

the microstrip gaps, employed as an admittance inverter in that section, are replaced with the 

proposed coupling structure in 4.2.1. Later in this chapter, GaAs Varactors will be attached to the 

proposed coupling structures to enable tuning of the coupling value. Varactors with different ranges 

of capacitances will also be employed to change the resonance frequency of resonators 

The first step in designing a microstrip filter is calculating element values (g-values) for equal-

ripple low-pass filter prototypes. Equations (2-1) to (2-8) show the expression for calculating element 

values. These values are a function of equal ripple level and number of poles and are independent 

from bandwidth and center frequency. Calculating the ܬ values for admittance inverters is the second 

step. ܬ values can be calculated by using element values and the ratio of bandwidth to center 

frequency. Equations (2-9), (2-10) and (2-11) are used to calculate J values.  

In the microstrip filter design steps, the desired ܬ values for admittance inverters are usually 

realized by microstrip gaps. As explained earlier, for tunability purposes, a new coupling structure is 

proposed in this chapter by using two similar gaps (Figure 4-2). In this section, this structure is 

employed to implement inter-resonator couplings. An important point in the design of the coupling 

structure is the resonance frequency of the transmission line that connects the two coupled lines. The 

length of this transmission line must be much shorter in comparison with the physical length of the 

resonators so that its resonance frequency will not interfere in the passband of the filter. 

Equations (2-12) to (2-15) show the relationship between the S parameters of a coupling structure 

as a 2-port network and its ܬ value as an admittance inverter. Note that the proposed coupling 

structure in Figure 4-2 can also be used for the input coupling. However, as the value of the input 

coupling is larger than the other couplings and its tuning range needs to be wide, we decided to use a 

single gap to realize the input coupling due to its greater sensitivity to varactors and hence wider 

coupling range.   

In designing a proper inter-resonator admittance inverter, the dimensions of the proposed coupling 

structure are determined in such a way that their ܬvalue is equal to the desired calculated 	ܬ value. On 

the other hand, determining the input and output couplers requires more complex calculations. First, 

the R values can be calculated from the expressions (3-2) and (3-3), after which the maximum value 
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4.3 Implementation of the Tunable Filter 

A coupling matrix approach is used for the synthesis of the tunable filters. The fundamentals of 

the coupling matrix along with an introduction to M and R matrices were provided in section 3.2. The 

elements of the R matrix represent input and output couplings, while the M matrix secondary 

diagonal elements represent the inner couplings between the resonators. Each diagonal element of a 

coupling matrix represents one of the resonators. In this section, the tunability of center frequency, 

input/output couplings and inter-resonator couplings are analyzed individually. The effect of tuning 

one parameter on the others is analyzed at the end of this section. 

4.3.1 Tuning the Center Frequency 

For Chebyshev filters, the diagonal elements of a coupling matrix are zero. Each diagonal element 

represents a shift from the center frequency in the corresponding resonator. Tuning the center 

frequency is possible by tuning the resonant frequency of all resonators. Calculations of each 

resonator’s resonance frequency will not be accurate if a single resonator is simulated without 

considering the loading effects of adjacent coupling structure and resonators. One reasonable method 

for finding the resonance frequency of a loaded resonator is by considering the next-closest coupling 

structures in the simulation.   

Figure 4-7 shows a resonator with adjacent coupling structures. The phase-loading effect of the 

adjacent admittance inverters on the resonator is included in this 2-port network. As we can see, the 

center frequency tuning varactors is mounted on the center of this resonator. The duties of ܴܥ 

varactor include tuning the filter center frequency and compensating for loading effects when the 

filter bandwidth is tuned. The length of the resonator should be adjusted in such a way that the 

resonance frequency of the above structure will be set to the desired center frequency.  

The main function of this varactor is tuning the center frequency of the filter. Hence, we should 

expect to see a shift in resonance frequency when the capacitance of the varactor increases. Figure 4-8 

summarizes the effect of increasing ܴܥ capacitance on the resonance frequency of a resonator. The 

initial resonance frequency of this resonator is 2 GHz. The diagram shows that the resonance 

frequency decreases when the capacitance of ܴܥ increases. As depicted in this figure, the slope of the 

graph is almost constant and the trend of decreasing the resonance frequency is linear. The graph 

below shows that the center frequency of the filter can be tuned by changing the capacitance of 
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values of varactor C1 attached to it. The initial reflected group delay value of this coupling structure, 

without any attached varactor, is 7.83	 ൈ	10ିଽ. 

 

Figure  4-10: Maximum value of reflected group delay versus different values of varactor C1 

 

The effect of this increase in the maximum reflected group delay on the behaviour of the filter can 

be analyzed by looking back at Equation (4-1). The left side of this equation, which is the maximum 

group delay of ଵܵଵ, will increase by using higher values of varactors for C1.On the other hand, the 

value of ܴ in the right side is only a function of g-values and hence it remains the same regardless of 

the change in the bandwidth. This means that the only variable in the right side will be the filter 

bandwidth. Since Δ݂ is in the denominator on the right side, an increase in the maximum reflected 

group delay will result in a decrease in the bandwidth. 

	1ܥ  ↑		⇒ ߬௠௔௫ ↑
௘௤௨௔௧௜௢௡ ሺସିଵሻ
ሳልልልልልልልልልልሰ ݄ݐ݀݅ݓ݀݊ܽܤ ↓ (4-3) 

Not all maximum reflected group delays used in Figure 4-10 occur in the filter center frequency, 

which is 2 GHz in this case. Figure 4-11 shows a frequency in which maximum group delay happens 

versus the value of varactor C1. The center frequency decreases when the capacitance of 1ܥ 

increases. As will be explained later in this chapter, this effect will be adjusted by the other varactors, 

primarily the varactor attached to the adjacent resonator. 
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Figure  4-11: Frequency of maximum reflected group delay versus the value of varactor C1 

4.3.3 Inter-Resonator Coupling 

Extracting the inter-resonator coupling from a coupled circuit with two resonators is explained in 

detail in [46]. There are two resonant peaks in the S parameter diagrams of the coupled circuit with 

two resonators.  If we name these two peaks ଵ݂ and ଶ݂, then the coupling coefficient can be calculated 

with the following expression. Thus, in tuning bandwidth microwave filters, the coupling coefficient 

between the adjacent resonators likewise needs to be tuned. 

ܭ  ൌ ଶ݂
ଶ െ ଵ݂

ଶ

ଶ݂
ଶ ൅ ଵ݂

ଶ

௙௢௥	௧௛௘ ௡௔௥௥௢௪௕௔௡ௗ ௖௜௥௖௨௜௧௦: ௙ଵ.௙ଶൎ௙బ
మ

ሳልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልሰܭ ൎ ଶ݂ െ ଵ݂

଴݂
 (4-4) 

As explained earlier, the proposed coupling structure in Figure 4-2 is employed for implementing 

the inter-resonator coupling. The J value of the proposed admittance inverter in Figure 4-2 can be 

calculated from the S parameters by using the expressions (2-12) to (2-15). The relationship between 

the inter-resonator coupling value and the bandwidth is stated in the following expressions, which 

shows that the inter-resonator coupling value is directly proportional to the filter bandwidth.  

௜௡௧௘௥ି௥௘௦௢௡௔௧௢௥ܬ  ∝  (5-4) ݄ݐ݀݅ݓܾ݀݊ܽ

The circuit model of the admittance inverter was shown in Figure 2-42. Adding the varactor C2 to 

the middle of this circuit will result in the equivalent circuit of Figure 4-12. If the ߂ െ ܻ transform is 
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value of the capacitors that result in a change in coupling values. This is exactly what we wanted in 

the first place: Changing the coupling value without disturbing the impedance inverter model. The 

graph in Figure 4-11 shows the new ܬ values of an admittance inverter as the capacitance of C2 

increases. The initial coupling value of this coupling structure, without any attached varactor, is 

11.32	 ൈ	10ିସ. 

 

Figure  4-14: The ܬ value of admittance inverter versus the value of varactor C2 

 

As stated in expression (4-3), if the desired bandwidth of a Cheyshev filter increases, the inter-

resonator coupling value will increase at the same pace. Figure 4-8 shows that the value of ܬ 

decreases as the capacitance of C2 increases. Hence, this indicates that the bandwidth of the entire 

filter will decrease as a result of an increase in C2. Since increasing C1 has a reduction effect on the 

filter bandwidth as well, filters with minimum varactor values will have maximum bandwidth. 

Working from this perspective, decreasing bandwidth is possible by increasing varactor capacitances 

and decreasing inverter coupling values.  

Unfortunately, the ܬ value is not the only parameter that changes with the alteration in C2.  The 

simulation result shows that increasing the capacitance of varactor C2 will slightly change the value 
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of the phase loading effect, ߶. Figure 4-15 shows the calculated ߶ values of the same coupling 

structure after each alteration in varactor capacitance. The major effect of this change in ߶ appears in 

the resonance frequency of adjacent resonators. However, this problem can be solved by adjusting the 

resonance frequency of resonators with their connected varactors, CR1 and CR2 varactors. 

 

Figure  4-15: The ߶ values of admittance inverter versus the value of varactor C2 

 

4.3.4 Tunable Filter Implementation 

Figure 4-16 shows the final design of the filter after adding the varactors. Seven varactors have 

been used with four different capacitances: C1, C2, CR1 and CR2. The first varactor, C1, is used to 

tune the input and output coupling. C2 is attached to the middle of the inter-resonator coupling 

structure to tune the coupling value. In other words, the main duty of these two capacitors is to tune 

bandwidth. CR1 is applied to tune resonance frequency of the first and last resonators and to 

compensate for alterations in the phase loading effect caused by the other varactors. CR2 does the 

same to the second resonator and its adjacent couplers.  
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Table  4-1: The look-up table for the varactor values (all of the capacitances are in fF) 

  

  

 

 

 3.5% 3% 2% 1.5% 1% 

2 GHz C1=0 

C2=0 

CR1=500 

CR2=750 

C1=235 

C2=850 

CR1=337 

CR2=524 

C1=838.4 

C2=3585.9 

CR1=0 

CR2=84.4 

  

1.95 

GHz 

 C1=118.1 

C2=136 

CR1=1519 

CR2=1648 

C1=788.9 

C2=2771.1 

CR1=1231 

CR2=1260 

C1=1317 

C2=5361.6 

CR1=1045 

CR2=1051 

C1=2124.7 

C2=10281.9 

CR1=822.8 

CR2=835.8 

1.9 

GHz 

  C1=636.8 

C2=1774.4 

CR1=2316 

CR2=2305 

C1=1149.8 

C2=4000 

CR1=2168 

CR2=2128 

C1=1981.5 

C2=8472.3 

CR1=1983.5 

CR2=1939.8 

1.85 

GHz 

  C1=437.8 

C2=800 

CR1=3298 

CR2=3259 

C1=973.1 

C2=2805.4 

CR1=3168 

CR2=3090 

C1=1764.9 

C2=6574.5 

CR1=3020.1 

CR2=2928.8 

1.8 

GHz 

  C1=458.4 

C2=548.4 

CR1=4190 

CR2=4126 

C1=766.1 

C2=1493.8 

CR1=4130 

CR2=4045 

C1=1544 

C2=4476.6 

CR1=4001 

CR2=3893 
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Chapter 5 
Conclusions and Future Work 

5.1 Contribution of This Work 

This work and the research leading up to its execution contain a number of primary contributions 

to the area of tunable microwave filters, all of which can be divided into two main areas. 

First of all, the thesis introduces a novel method for the post-fabrication tuning of microwave 

filters by designing and adding a passive distributed-element circuit parallel to the detuned filter. This 

novel idea, demonstrated by experimental results, has several advantages over tuning screws, which is 

currently the most common way of tuning filters. The quality factor of each resonator reduces 

significantly after adding the tuning screws, whereas the proposed method does not affect the Q of 

resonators. Since the designed circuit will be added parallel to the original filter, it will not affect the 

elements of the filter individually. Thus, the proposed circuit can be used for tuning, whether the filter 

is planar or cavity. The provided experimental results show the performance of this idea on both 

cavity and planar filters. 

This thesis’ second area of contribution is its novel center frequency and bandwidth tunable 

microstrip filter by using GaAs varactors. The new isolated coupling structure used in this filter 

makes bandwidth tuning possible by reducing the loading effect of the coupling elements on the 

resonators. The center frequency of this filter can be also tuned by utilizing a different set of varactors 

connected to the resonators. 

5.2 Future Work 

The presented method in Chapter 3 can be extended to a more complicated circuit by adding 

admittance inverters to the proposed circuit. In this thesis, we modeled the differences between the Y 

parameters of a detuned filter and ideal filter with a set of transmission lines. By adding an 

admittance inverter to these transmission lines, we can approximate the more complicated Y 

parameter differences. 

The ultimate improvement to the added compensator circuit is making the transmission lines 

dimensions tunable. Implementing this tunability depends on the type of applied transmission line in 
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the added circuit. For example, if a microstrip filter is used, the length can be increased by wire-

bonding the microstrip lines together.   
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