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Abstract

Efficient management of patient admissions plays a critical role in increasing a hospital’s

resource utilization and reducing health care costs. We consider the problem of finding the

best available admission policy for elective hospital admissions under real time constraints.

The problem is modeled as a Markov Decision Process (MDP) and we investigate current

state-of-the art real time planning methods.

Due to the complexity of the model, traditional model-based planners are limited in

scalability since they require an explicit enumeration of the model dynamics. To overcome

this challenge, we apply sample-based planners along with efficient simulation techniques

that given an initial start state, generate an action on-demand while avoiding portions of

the model that are irrelevant to the start state.

Results show that given reasonable resources, our approach generates improved deci-

sions over existing alternatives that fail to scale as model complexity increases. We also

propose a parameter tuning method that can be easily and efficiently implemented.

iii



Acknowledgements

I would like to thank my supervisor Professor Jesse Hoey for his guidance, patience,

and support throughout my time here at the University of Waterloo.

iv



Table of Contents

1 Introduction 1

2 MDP and Planning Background 4

2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Finite Horizon MDP with Fixed Start State . . . . . . . . . . . . . 5

2.2 Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Value Iteration (VI) . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Real time Dynamic Programming (RTDP) . . . . . . . . . . . . . . 7

2.2.3 Monte Carlo Tree Search (MCTS) . . . . . . . . . . . . . . . . . . . 9

2.2.4 Upper Confidence Bounds for Trees (UCT) and Multi-arm Bandits 10

3 Literature Review 17

3.1 Patient Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Real Time Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 RTDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 MCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



4 The Elective Admissions Model 22

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 State and Action Space . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Stochastic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.4 Model Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Performance Analysis 32

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Instance Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Small Test Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.2 Large Test Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Small Test Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 Large Test Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Model Complexity and Scalability . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 44

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix 45

References 47

vi



Chapter 1

Introduction

Efficient management of patient admissions plays a critical role in reducing the overall cost

of hospitalization at health care facilities. In this thesis, we consider elective patient admis-

sions for non-emergency care. A typical scenario is admissions for rehabilitation hospitals

where patients stay for extended periods and are not expected to require emergency care.

Under this setting, hospital administrators are given increased flexibility to plan an

efficient admission policy in order to maximize the amount of available resources at their

disposal. Admission schedules can be planned at a tactical level in order to reach strategic

targets of resource utilization as well as limit potential bottlenecks during a patient’s course

of stay.

Determining an optimal admission policy is a challenging problem. Several competing

factors must be considered in order to balance the number of patients admitted at any

given time with the current state of resource availability. These factors include:

1. Patient flow - a typical patient follows a treatment path during her course of stay
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that may require difference resources (e.g. equipment, nurses, physicians) at various

stages along the way.

2. Resource utilization - a resource that is at maximum capacity blocks the patient’s

treatment path (e.g. patients must wait until the resource becomes free) as well as

limits other resources from being used to their full capacity.

3. Stochasticity - demand for resources may fluctuate at any given time. A patient’s

course of treatment and resource requirements are typically non-deterministic. For

example, a change in the patient’s condition may result in a different set of resource

requirements than was originally planned.

As the number of resources and patients increases, the complexity of the problem

increases exponentially. A systematic framework is needed to assist hospital administrators

in making the most efficient admission policy decisions.

Numerous studies have been conducted on the topic of patient scheduling and resource

allocation within the Operations Research and Artificial Intelligence communities. A pop-

ular approach is to model the problem as a Markov Decision Process (MDP) - a well

established model for decision planning under uncertainty. For our work, we adopt an

MDP model from [34] that leverages similar resource consumption as treatment patterns in

order to reduce the overall domain space. The model seeks to maximize resource utilization

and can be easily extended to handle emergency admissions as well as minimizing patient

wait-times.

We investigate several approaches to solving for the optimal or best available admission

policy (given limited resources). Traditional MDP solvers that are applied in the research

literature typically assume a very small/toy domain size and attempt to find an optimal
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solution. Although ideally an optimal solution is preferred, it is quite clear that alternative

methods are required due to the well-known curse of dimensionality issue that arises as

the problem size increases. Our goal is to find an efficient real-time solution that is able

to scale up under real-world settings. Our work includes applying established offline and

online solvers against a real-time solving approach that has gained increasing popularity

from the game playing world called UCT (Upper Confidence Bound Applied to Trees) [27].

Our results show that as the problem size increases, the UCT type solving approach that

does not require an enumeration of state transition probabilities appears to be the only

viable option.

The following chapters are organized as follows. Chapter 2 gives a background descrip-

tion of the general MDP model and planning approaches. Chapter 3 gives a literature

review of related works on patient admissions and real time planning. Chapter 4 gives

a formal description of the Elective Admissions MDP model and chapter 5 offers a per-

formance analysis over the various planning algorithms we investigated. We conclude in

chapter 6 with a discussion on future work.

3



Chapter 2

MDP and Planning Background

In this chapter we provide an overview of Markov Decision Processes (MDP) and several

planning approaches used to solve them.

2.1 Markov Decision Process

MDPs are a fundamental modeling approach in decision theory and planning. They are

used extensively within the Artificial Intelligence and Operations Research communities

to model problems that require sequential decision making in an uncertain environment.

Comprehensive studies of MDPs can be found in [38, 31].

An MDP is generally defined by the following elements:

1. S is a finite set of fully-observable possible states.

2. A is a finite set of possible actions depending on the states.
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3. P : S × A × [0, 1] is the transition function where P (s, a, s′) is the probability of

moving to state s′ when action a is applied in state s.

4. R is a real-valued reward function where R(s, a) represents the expected reward for

taking action a in state s.

A policy π : S → A specifies an action a = π(s) to be taken when in state s. The value

function:

Vπ(s) = R(s, a) + γ ·
∑
s′∈S

P (s, a, s′) · Vπ(s′)

represents the long term expected reward of executing a policy where 0 ≤ γ ≤ 1 is a

discount rate on future rewards. An optimal policy that maximizes the long term expected

rewards is defined via the optimal value function:

V ∗(s) = max
π

Vπ(s) = max
a∈A

R(s, a) + γ ·
∑
s′∈S

P (s, a, s′) · V ∗(s′).

In planning problems where time is discretized, each time period when a decision is

made is referred to as a decision epoch denoted by t ∈ 0, 1, . . . , H. If H is finite the MDP

is referred to as a finite horizon MDP and an infinite horizon MDP when H is infinite.

2.1.1 Finite Horizon MDP with Fixed Start State

An MDP can be defined over a fixed start state. This is a common extension used for

many probabilistic planning problems for reducing the size of the overall state space. They

are also referred to as stochastic shortest path problems in the literature when there is a

goal state and future rewards are not discounted [6].
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The extension is straightforward where the value function takes in an additional pa-

rameter t representing the current decision epoch:

V ∗(s, t) = max
a∈A

R(s, a) + γ ·
∑
s′∈S

P (s, a, s′) · V ∗(s′, t− 1).

The above equation is also known as the Bellman equation. V ∗(s0, H) is the optimal

value function for a finite horizon MDP with a fixed start state s0 and a maximum horizon

H. The state space for a finite horizon MDP includes only states that are reachable from

s0 up to H time periods. Therefore, there is potential to drastically reduce the overall

model complexity when we are only concerned with a limited number of start states and

a finite horizon.

2.2 Planners

The goal of a planner is to solve for an optimal or the best available policy for a given

MDP. There has been extensive research activity on various planning approaches. In the

following sections, we give an brief overview of two standard planning algorithms (Value

Iteration and Real Time Dynamic Programming) as well as a more recent approach (Monte

Carlo Tree Search) that has gained increasing popularity when dealing with MDPs with

very large state spaces.

2.2.1 Value Iteration (VI)

Value Iteration is a classic planning algorithm widely used in the planning community for

solving MDPs optimally. Algorithm 1 is the finite horizon version where the optimal value
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function is generated after performing Bellman updates over all states for each horizon

step. It is an offline planning algorithm and also referred to as a synchronous dynamic

programming solution.

Algorithm 1: ValueIterationFH

Global Parameter: H (Horizon)

for s ∈ S do
Vs,0 = 0

for h = 1 to H do

for s ∈ S do

for a ∈ A do

Qs,a,h = R(s, a) +
∑
s′∈S

P (s′|s, a)Vs,h−1

Vs,h = maxa∈AQs,a,h

VI requires a complete enumeration of the state and action spaces as well as the tran-

sition dynamics. Although it generates an optimal solution it is often impractical for

handling large MDPs as the complexity runs in O(mn2) per horizon step, for m actions

and n states.

2.2.2 Real time Dynamic Programming (RTDP)

In recent years, there has been growing interest in real time or online MDP planning

approaches. In real-world settings, practitioners often prefer an anytime solution and may

only be interested in a limited number of initial start states (typically a much smaller

subset of all possible states) at any given time. Whereas offline planners solve for all
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possible states, real time and online planners can be used to solve for a single initial state

under real time constraints.

RTDP (algorithm 2) is a real time planner that solves MDPs based on heuristic search.

It is an asynchronous solution where updates are performed through simulated greedy

searches over the visited states. Provided the value function is initiated with an admissible

upper bound defined as V (s) ≥ V ∗(s) for all states s, then RTDP converges to the optimal

value function asymptotically [6].

Algorithm 2: Finite Horizon RTDP

Global Parameter: H (horizon)

Global Variables: V̂s,h, h ∈ 1, . . . , H

Generative Model: s′ ∼ G(s, a) // draw s′ ∈ S with P (s′|s, a)

repeat

s←− sH // initial state

for h← H to 1 do

if first time visiting s at h then

V̂s,h ← admissible upper bound

for a ∈ A do

Q(s, a) = getQvalue(s, a, h)

a∗ ← arg maxa∈AQ(s, a)

V̂s,h ← maxQ(s, a)

s← G(s, a)

until timeout or convergence met

return arg maxa∈A getQValue(sH , a,H)
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Algorithm 3: getQvalue(s, a, h)

getQvalue(s, a, h)

if h = 1 then

return R(s, a)

else

return R(s, a) +
∑
s′∈S

P (s′|s, a)V̂s′,h−1 // where V̂s′,h−1 = admissible upper

bound if s′ has not been visited before at horizon h− 1

RTDP explores only the states that are relevant to the start state, i.e. states that are

reachable from the start state given the max horizon. It generates an anytime solution that

generally improves in quality as the execution time increases. However, since it requires a

complete enumeration of state transition probabilities there is still limited scalability for

large MDPs with dense transition dynamics.

2.2.3 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search is a family of planning methods based on random sampling.

It has had a number of notable advances recently in game playing domains such as Go

[17] and Solitaire [7] where previous planners failed to solve. More recently, MCTS based

planners such as UCT have become increasingly popular for solving general probabilistic

planning problems (modeled as finite horizon MDPs) where states have a large number of

transitions [26].

Conceptually, MCTS can be described as a real time search algorithm using a best-first

approach. It generates a search tree through repeated simulation trials where the nodes
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are states and branches are the actions available at each state. Sample statistics such as

state-action value estimates are calculated and propagated up from the child nodes to the

ancestor nodes. Figure 2.1 shows an outline of one iteration of the MCTS process [14].

New nodes are added to the tree incrementally based on a current-best evaluation defined

by an algorithm specific tree policy.

One of the main advantages of MCTS is that it is model free, i.e. it does not require an

enumeration of the model dynamics or state/action spaces. Whereas model based planners

such as RTDP require not only a simulator but also a complete enumeration of the state

transitions for all visited states, MCTS requires only the simulator. This is a significant

advantage since simulators can be efficiently implemented even for very large and complex

models (e.g. via a sampling function) without needing to calculate the exact transition

probabilities for every possible transition. Another significant advantage is that since the

search tree branches only on the available actions of each state node, the branching factor

can be much smaller versus planners that branch over both next states and actions (e.g.

RTDP).

2.2.4 Upper Confidence Bounds for Trees (UCT) and Multi-arm

Bandits

UCT is widely considered as the current state-of-the art MCTS based planner. Its key idea

is the application of a tree policy based on the upper confidence bound (UCB), a multi-arm

bandit (MAB) sampling technique based on regret minimization.
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Selection Expansion Simulation Backpropagation

Select leaf node to visit

based on tree policy.

A new leaf node is added

to the tree upon selection.

Run trial simulation

based on a default policy

(usually random) from the

newly created node until

terminal node is reached.

Sampled statistics from

the simulated trial is

propagated back up

from the child nodes

to the ancestor nodes.

Figure 2.1: Outline of one iteration of the Monte Carlo Tree Search process
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Multi-arm Bandits

Multi-arm bandits are a class of sequential decision problems where we must choose among

K actions. Each action returns a random reward from an unknown distribution. The goal is

to choose the action that will generate the highest cumulative reward from repeated action

selections. Thus, the problem can be viewed as playing a slot machine with multiple arms.

Since the reward distribution is unknown, this leads to the classic exploration-exploitation

dilemma where one must balance between choosing what is believed to be the best action

based on empirical results so far (exploitation) against trying other actions that may turn

out to be more profitable in the long run (exploration).

A popular performance measure of an action selection strategy is total expected regret.

For a bandit with K arms after T plays, it is defined as

RT = Tµ∗ −
T∑
t=1

µj(t)

where µ∗ represents the expected reward for the optimal action, and µj represents the

expected reward for action j = 1, 2, . . . , K.

MAB problems have been studied extensively. One of the earliest and simplest strate-

gies is the ε-greedy family of algorithms. On each turn, it plays the arm with the best

empirical mean reward with probability 1− ε and plays a random arm with probability ε.

For constant values of ε, a linear bound on the expected regret in relation to the number

of trials is achieved [28].

The idea of using upper confidence values was first proposed by Lai and Robbins [29]

and later extended by Agrawal [1]. Based on these works, Auer et.al [3] proposed a family

of more sophisticated upper confidence bound bandit algorithms including UCB1 - which
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is notable for achieving logarithmic expected regret growth (uniformly and asymptotically)

in relation to the number of plays.

Initially, UCB1 plays each arm once. Then at round t, it plays an arm a as follows:

a(t) = arg max
1...k

(
X̄i +

√
2 ln t

ni

)
where X̄i is the current sample mean reward for arm i and ni is the number of times arm

i has been played so far. The balance between exploration and exploitation is achieved by

using both the sample mean reward which encourages exploitation (i.e. playing an arm

that is the best so far) and
√

2 ln t
ni

which will increasingly favor arms that have been played

less over time.

Lai and Robbins [29] showed that for the MAB problem, regret is bounded by Ω(log n).

Therefore, UCB1 is optimal (up to a multiplicative constant) and is the basis for the tree

policy used in UCT.

UCT

UCT is a MCTS planning algorithm proposed by Kocsis and Szepesvári [27]. It is currently

the most popular MCTS planning algorithm and one of the few available options for solving

very large MDPs with dense transition dynamics (i.e. a high branching factor).

UCT views each node of the search tree as an independent multi-arm bandit problem

corresponding to the random rewards generated through simulated trials. When selecting

nodes for expansion, it applies the UCB1 bandit strategy for selecting an action a∗ as

follows:

13



a∗ = arg max
a∈A

(
Q̂s,a,h +B

√
2 lnNs,h

Ns,a,h

)
where Q̂s,a,h is the current sampled mean reward for taking action a from state s at horizon

h, Ns,h is the total number of visits for state s at horizon h, Ns,a,h is the total number of

times action a has been selected for state s at horizon h, and B is a scaling constant.

A full listing of UCT is shown in algorithm 4. The scaling constant B is used as a bias

modifier to adjust the amount for the exploration bonus and is domain dependent. Due to

its model-free property, UCT is easy to implement and efficient. A typical implementation

requires only two main components: a simulator for drawing next state transitions and a

hash table for storing the sample statistics.

Algorithm 4: UCT

Global Parameters: H (horizon), B (Bias Modifier)

Global Variables: Ns,h, Ns,a,h, Q̂s,a,h, h ∈ 1, 2, . . . , H

Generative Model: s′ ∼ G(s, a) // draw s′ ∈ S with P (s′|s, a)

s←− sH // initial state

repeat

search(s,H)

until timeout

ε-UCT

Motivated by the initial trial results of UCT and the uniform random strategy on our

test instances (see pages 41 and 42, chapter 5), we also propose a new performance tuning

method that applies the concept of ε-greedy to UCT. We call this method ε-UCT where ran-
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Algorithm 5: search(s, h)

if h = 1 then

return arg maxa∈AR(s, a)

if Ns,h = 0 then

a← random action;

q ← R(s, a)+monteCarloRollout(G(s, a), h− 1);

else

a← arg maxa∈A

(
Q̂s,a,h +B

√
2 lnNs,h

Ns,a,h

)
; // all actions are run once

initially so Ns,a,h ≥ 1

q ← R(s, a)+ search(G(s, a), h− 1);

Q̂s,a,h ← Ns,a,h·Q̂s,a,h+q

Ns,a,h+1
;

Ns,h ← Ns,h + 1;

Ns,a,h ← Ns,a,h + 1;

return q;

Algorithm 6: monteCarloRollout(s, h)

if h = 1 then

return arg maxa∈AR(s, a)

a← random action

return R(s, a)+ monteCarloRollout(G(s, a), h− 1)

15



dom action selection is applied with ε probability and the UCT tree policy is applied with

probability 1−ε in order to further fine-tune the balance between exploration-exploitation.
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Chapter 3

Literature Review

3.1 Patient Scheduling

In recent years, health care planning and control has received considerable attention as

providers face increasing pressure to reduce costs and improve operational efficiency. A

large body of work exists in the Operations Research and Management Science literature

on patient scheduling and resource allocation. Studies typically offer tailored solutions

for specific settings such as outpatient clinics [15, 18], emergency departments [30, 44] ,

and various types of services (e.g. diagnostic, rehabilitation). Comprehensive surveys of

patient scheduling can be found in [20, 11, 18, 23].

Hans et al. [21] proposed a hierarchical framework that separates health care planning

into the strategic, tactical, and operational levels. Strategic planning involves setting static

long-term targets for resource capacity and staffing levels while tactical and operational

planning implement policies for reaching strategic targets under a dynamic setting.

Our work in elective admissions planning falls within the tactical and operational stages
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that operate with short to intermediate time horizons. Relatively few studies have been

published in this area. The existing literature on elective admissions tend to focus on the

modeling aspect of the problem while offering solutions that do not scale up to realistic

settings.

The model we adopt for our work is a finite horizon version of the infinite horizon MDP

proposed by Nunes et al [34]. It is a general framework for multiple specialties/departments

and resource types. The objective is to maximize resource utilization in accordance to pre-

defined targets on multiple resource types. In the original study, they were able to generate

an optimal policy (using VI) for a test instance on a minimal setting but concluded that

alternative planning approaches should be investigated for more realistic settings. One of

the key features of the model is the use of treatment patterns to group multiple patients

with similar demand dynamics. This allows health care providers to use their historical

treatment data to potentially make drastic reductions in the model complexity.

The idea of treatment patterns was first proposed by Kapadia et al. [25, 24]. Their

objective was to model the patient’s treatment over the course of an extended period (e.g.

days, weeks) and defined a treatment pattern as “a quantified configuration of services

delivered a unit of time”. Instead of using location changes or health states, treatment

patterns represent the amount of resources consumed during each time step to mark a

patient’s treatment path over the course of his/her stay. Thus, a patient’s course of treat-

ment can be described as a sequence of treatment patterns. The study demonstrated that

distinct treatment patterns as well as shifts between them can be identified using historical

data from a real rehabilitation hospital and cluster analysis.

Other recent MDP-based approaches include [19, 36]. In Gocgun et al [19], a finite-

horizon MDP model was applied for multi-category patient scheduling in a diagnostic

hospital. They used data from a real hospital to model patient arrival patterns and used
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net resource revenue in their objective function. As with Nunes et al [34], they found

similar scalability issues with Value Iteration as their planner as the problem grew in

size. Puterman and Queyranne [36] considered multi-priority patients and applied an

approximate dynamic programming approach as their planner.

Mathematical programming is an alternative planning model that has been used exten-

sively for general resource allocation problems. This approach was recently investigated in

Hulshof et al. [22] in which they developed a Mixed Integer Programming (MIP) frame-

work with the objective of providing equitable distribution of resources and patient access

times.

The main focus of our work in the thesis is on applying a MCTS approach for generating

an admission policy in real-time. Recent results from [26] show that this approach may be

better suited for MDPs with very large state and action spaces. To our knowledge, there

has not been a study that has investigated this approach for elective admissions planning.

3.2 Real Time Planning

Real time planning has received increasing focus as researchers look for ways to solve plan-

ning problems in an online fashion. Under many real-world settings, a complete solution of

the model space is neither necessary nor achievable given limited resources. Practitioners

are often interested in solving for states they are currently in and require results that can

be generated within a few minutes. RTDP and more recently MCTS are two real-time

planning approaches that have been studied extensively in the literature. In our case we

do not hold ”real time” to the same formal definition as in Computer Vision. We sim-

ply mean that the planning algorithm can be terminated at any time within a reasonable

bound, e.g., in milliseconds or a few seconds.
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3.2.1 RTDP

RTDP was proposed by Barto et al. [6], since then it has spawned several notable exten-

sions. Bonet and Geffner proposed Labeled RTDP (LRTDP) [8] that used a label scheme

to mark states for which the value function has stabilized. Whereas vanilla RTDP contin-

ues to visit states that have converged during its trials, LRTDP directs trial visits to only

those states that have yet to converge, thereby increasing the overall convergence rate of

the algorithm. Their experiments showed LRTDP converging orders of magnitude faster

than RTDP on several test domains.

Later extensions of RTDP focused on maintaining lower and upper bounds on the value

function to prioritize state visits where the values are the most uncertain. These include

Bounded RTDP (BRTDP) [32], Focused RTDP (FRTDP) [40] and Baysian RTDP [39].

3.2.2 MCTS

MCTS based real time planning is an active research area within the Artificial Intelligence

and Planning communities. Although their initial successes were primarily in the game

playing domains [16, 17, 7, 5], there are increasing applications of MCTS and in particular

UCT for general planning problems [26, 33, 12, 37]. A comprehensive survey of MCTS

planners can be found in [9].

A major area of focus has been on improving the bandit based strategy that is central

to UCT. In addition to UCB1, Auer et al. proposed UCB1-Tuned [3] which takes empirical

variance into account when calculating the upper confidence bound. Their results showed

UCB1-Tuned outperformed UCB1 on all test instances but they were not able to offer theo-

retical guarantees on its performance. Audibert et al. [2] proposed another variance based
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bandit strategy called UCB-V along with analysis on the concentration of regret. Other

notable bandit based strategies include EXP3 [4], Bayesian UCT [42], and Hierarchical

Optimistic Optimization (HOO) [10].

Pandey et al. [35] proposed a method to model dependencies between arms in the

multi-arm Bernoulli bandit setting. It assumes the algorithm is given a clustering of arms

where arms in the same cluster share similar rewards. It used a two-level policy to first

find the best cluster, then play the best arm within that cluster. The experiments used

UCB at both policy levels. Their results show a significant improvement over vanilla UCB

for the online display ad problem where each arm is an ad and the reward is whether the

user clicks on the ad or not. The intuition is that there are many ads that share similar

click rates.

Nguyen et al. proposed a bootstrap MCTS [33] method that combined a heuristic

policy along with UCT called UCT-Aux. They advocated coupling UCT with a heuristic

policy that is extreme, i.e. either near optimal or as low as a random policy.

There is also ongoing research on the parallelisation of MCTS as multi-core processors

become widely available. A discussion and analysis of MCTS parallelisation approaches

can be found in [13].
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Chapter 4

The Elective Admissions Model

Under the model proposed by Nunes et al. [34], we assume a setting where there is an

infinite flow of patients waiting to be admitted and the decision is to output the number

of patients to be admitted given the current state of the system and time horizon.

Hospital administrators can set individual resource utilization targets in order to match

strategic goals. Planning is then carried out on a tactical level to admit the optimal

number of patients in order to minimize resource costs which include cost penalties for

when resources are over capacity, and below/over target utilization.

One of the key features of this model is the concept of treatment patterns that groups

patients by their expected resource consumption during each time step. For example, at

any given time step, there may be multiple patients who share the same consumption rate

over the same set of resources. These patients are then grouped into a single treatment

pattern rather than represented individually by the model. During a transition step, some

patients in the pattern may transition into another pattern with different resource demands,

and some patients may continue to stay in the same pattern.

22



Rather than enumerating an individual patient’s health state or location as a marker

during her “path” through the hospital, a patient’s course of treatment can be represented

as the amount of resources consumed during each time step. Therefore, a patient’s course

of treatment during her stay can be fully described by the sequence of treatment patterns

they are assigned to during each time step [34]. The work from [25] shows that given a

sufficiently long time step (e.g. a day or week) and sample size, the probability distribution

over treatment pattern transitions can be learned from historical data.

4.1 Model Description

The overall objective is to generate an admission policy that will maximize the long term

expected resource utilization under pre-set utilization targets.

We begin by describing the three basic elements that the model uses to represent the

overall state of the system:

1. Specialty - the facility is divided into a set of specialties. Each specialty admits pa-

tients independently. Patients are assumed to stay within the same specialty through

out their stay.

2. Treatment pattern - as stated earlier, each pattern represents a group of patients that

share the same resource consumption demands over the same set of resources for a

given time period. It represents the overall resource utilization across all specialties

with each specialty assigning the number of patients currently under each treatment

pattern, i.e. resources are shared across all specialties.

3. Resource - any hospital resource with an assigned cost and capacity. A resource can
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have different cost levels based on whether it is under or over pre-set target utilization

levels and capacity.

To illustrate the model further, we introduce a real-world scenario where there are three

patients currently waiting to be admitted. Patients a and b are diagnosed with the same

condition and are expected to have the same resource demands (e.g.medical equipment,

nurses, doctors) during the current time step. Patient c has different resource demands.

At time step 0, patients a and b are both assigned treatment pattern 1 since the model

considers both of them as belonging to the same class in terms of resource consumption,

and patient c is assigned treatment pattern 2. To calculate the cost function, we multiply

the number of patients in treatment pattern 1 over the resource consumption specified for

the treatment pattern, and do the same for the single patient under treatment pattern 2.

If during the transition to the next time step, patient a’s condition changes and his/her

resource demands change, then he/she will be assigned to a different treatment pattern

that matches the new resource consumption demands.

For a more detailed example, we will use the test instance specifications from Table

5.1 to illustrate an exact calculation when we formally define the cost function (subsection

4.1.3).

4.1.1 State and Action Space

States in the MDP can be expressed as

s = {(s11, s12, . . . , s1n), (s21, s
2
2, . . . , s

2
n), . . . , (sm1 , s

m
2 , . . . , s

m
n )}

for a facility consisting of m specialties and n treatment patterns, where sji denotes the

number of patients under treatment pattern i at specialty j in the current time period. By
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default, we use the last indexed treatment pattern for each specialty as a discharge pattern

representing all patients being discharged during the current time period. The state space

S consists of all possible states s.

Actions represent the number of admissions into the system and can be expressed as

a = (a1, a2, . . . , am),

where ai represents the number of patients being admitted into specialty i. The action

space A represents all possible actions subject to the constraints that will be described

later.

Throughout the paper, we use superscripts to represent the specialty index and sub-

scripts to represent the treatment pattern index whenever these distinctions are needed.

A full notations table is listed under the appendix section.

4.1.2 Stochastic Dynamics

The model assumes the stochastic dynamics are independent for each specialty. Figure

4.1 shows a dynamic decision network for the transition to the next state given the current

state and action. Patients can only transition from the current pattern to another pattern

within the same specialty. The probability of reaching s′ given s, a can be expressed as

P (s′|s, a) =
m∏
i=1

P (si′|si, ai).

where si′ is the number of patients in specialty i at time step t + 1, si is the number of

patients in specialty i at time step t, and ai is the number of patients being admitted to

specialty i in the current step step.
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Figure 4.1: Dynamic decision diagram for the Hospital MDP with m specialties and n

patterns.
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In order to find P (si′|si, ai), we assume prior knowledge on the following data:

1. Transition probabilities between all treatment patterns within the specialty. This

applies to all patients under the same pattern and can be expressed as

p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
...

pn−1,1 pn−1,2 . . . pn−1,n

0 0 . . . 1


where pij denotes the probability of any single patient currently under treatment

pattern i at time t transitioning to treatment pattern j at time t+ 1.

2. The probability of an admitted patient entering each treatment pattern denoted by

the entrance probability vector (p1, p2, . . . , pn−1, 0).

For clarity, we do not show the specialty superscript.

The above data allows us to calculate P (si′|si, ai). Figure 4.1 shows that the number of

patients in each treatment pattern during a transition is dependent on all other treatment

patterns that have a non-null probability of transition into it, as well as the probablity

of an admitted patient entering the pattern. To find P (si′|si, ai), we must consider every

pattern to pattern transition and entrance possibility that would cause si to transition into

si′, given ai. Let

x = ((x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xn1, xn2, . . . , 0))

be a vector of n random vectors where xij, i < n represents the number of patients transi-

tioning from treatment pattern i to j and xnj represents the number of admitted patients
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entering treatment pattern j. Let Rxsi′|ai,si be the support of x with respect to the tran-

sition (si′|ai, si) such that ∀x ∈ Rxsi′|ai,si :

x =

{
x ∈ {1, 2, . . .}n2

: ∀k ∈ {1, 2, . . . , n},
n∑
j=1

xjk = sik
′ ∧ ∀j ∈ {1, 2, . . . , n},

n∑
k=1

xjk = sij

}
.

That is,
∑n

j=1 xjk = sik
′ specifies that the total flow of patients transitioning into

pattern k from all other patterns j (including j = k) must equal to the number of patients

in pattern k in the next time step. Similarly,
∑n

k=1 xjk = sij specifies the total number of

patients transitioning out of pattern j to all other patterns (including k = j) must equal to

the number of patients in pattern j in the current time step. Therefore, each x ∈ Rxsi′|ai,si

represents the pattern to pattern transitions and admission entrance possibilities that can

result in the specialty transition (si′|si, ai). The random vectors in x follow a multinomial

distribution with parameters that can be taken directly from the state and action variables

and the patient transition and entrance probabilities tables. Therefore, the transition

probability for a single specialty can be expressed as:

P (si′|si, ai) =
∑

x∈Rsi|ai,si′

f
(
xn·, a

i, (p1, p2, . . . , p|xn|)
) n−1∏
j=1

f
(
xj, s

i
j, (pj1, pj2, . . . , pjn)

)
,

where xn is the vector containing the number of patients being admitted into the specialty

under each pattern, p1, . . . , p|xn| is the corresponding entrance probability vector, xj is the

vector containing the number of patients transitioning from pattern j to all other patterns

(including j itself), and pj1, . . . , pjn are the corresponding transition probabilities, and

f
(
u, s, (p1, p2, . . . , p|u|

)
) is the probability mass function for a multinomial distribution over

a set of random variables U where U1 = u1, . . . , U|u| = u|u| and p1 = P (U1 = u1), . . . , p|u| =

P (U|u| = u|u|):
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f
(
u, s, (p1, p2, . . . , p|u|

)
) =


s!

u1!u2!...u|u|!
p1 . . . p|u| when

∑|u|
i=1 ui = s

0 otherwise

4.1.3 Reward Function

The reward function models the costs incurred when the utilization of a resource is over

its maximum capacity, as well as whether it is over or under its targeted utilization level

set by the hospital administrator.

For a hospital with l resources, let

C = ((c11, c12, . . . , c1l), . . . , (cn1, . . . , cnl))

where Cij represents the per patient consumption from treatment pattern i on resource j.

Let O = (o1, o2, . . . , ol), B = (b1, b2, . . . , bl), D = (d1, d2, . . . , dl), E = (e1, e2, . . . , el) and

F = (f1, f2, . . . , fl), where Oi, Bi, Di, Ei, Fi represents the over cost, excess cost, idle cost,

target and maximum capacity for resource i, respectively. The over cost represents the

cost for when a resource is over its maximum capacity, the excess cost represents the cost

for when a resource is over its target utilization level, and the idle cost represents the cost

for when a resource is under its target utilization level.

Given the above definitions, the immediate reward for being in a state can be expressed

as

R(s) = −
l∑

k=1


Ok ×max

(∑m
j=1

∑n
i=1Ciks

j
i − Fk; 0

)
+

Bk ×max
(∑m

j=1

∑n
i=1Ciks

j
i − Ek; 0

)
+

Dk ×max
(
Ek −

∑m
j=1

∑n
i=1Ciks

j
i ; 0
)

 (4.1)
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for a hospital with l resources.

For example, under the instance specifications from table 5.1 and a test state s =

[(0, 0, 0)(0, 0, 0)],

R(s) = − (0 + 0 + (1.0 ∗ (4− 0)) + (0 + 0 + (1.6 ∗ (4− 0)) = 10.4

as a state with no patients in any specialty would incur only the idle cost for each resource.

The best possible immediate reward of a state is 0, i.e. the state is in the ideal utilization

level that does not incur any over, excess or idle costs.

4.1.4 Model Constraints

The main challenge in planning for this domain is how quickly the model grows in complex-

ity with only a slight increase to the instance settings (e.g. resource capacity, max number

of admissions per time period, number of specialties and treatment patterns). In order to

make the model scalable to a realistic setting, we first apply the following constraints:

1. any state that is expected to consume a resource over its capacity in the next time

period stops admitting new patients.

2. at time 0, only states that are not expected to be over the capacity limit for any

resource is allowed, i.e. states that will incur an over capacity cost in the next time

step are not allowed to be an initial start state.

3. we define the MDP over a finite horizon, the maximum number of transitions for any

state is bounded by the horizon parameter.

30



We implement these constraints in the model by specifying a default empty state, i.e.

[(0, . . . , 0), . . . , (0, . . . , 0)] as the initial seed state and a no-op action where we admit 0

patients across all specialties if the current state is expected to be over capacity in the

next time step. This allows us to reduce the number of possible states up to a manageable

level while still maintaining a realistic setting for a typical treatment facility.
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Chapter 5

Performance Analysis

In this chapter we present the trial results and analysis on the planning algorithms de-

scribed in chapter 2.

We tested the algorithms on two instances of the model - one with a small number of

domain elements where we were able to compare results against an optimal policy and a

larger instance with more realistic settings where the optimal planner fails to solve.

5.1 Experimental Setup

We measure the performance of a planner based on the cumulative rewards received from

executing the planner’s policy over a number of time steps. Give an initial start state

s = sH , and horizon H and a planner that takes parameters s and h ∈ 1, 2, . . . , H and

returns an action a, each trial consists of the following steps:

1. Query the planner with s and h and receive an action a ∈ A as the result.
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2. Simulate the next state by drawing s′ given s and a based on the model’s transition

probabilities and record the immediate reward R(s′). Set s = s′ and h = h− 1.

3. Continue to step 1 until h = 0.

The trial reward is the sum of the immediate rewards (undiscounted) recorded during

step 2. All trials were executed on machines with an AMD Opteron @ 2.2 GHz processor

and a max memory setting of 8.0 GB. For each of the real-time planners, we ran trials on

time-out settings of 100, 1,000, 10,000, 100,000, 1,000,0000 milliseconds. A total of 100

trials were executed for each time-out setting and we used the average trial reward along

with the standard error as the score.

5.2 Instance Specification

In this section we present the specifications for each test model instance.

5.2.1 Small Test Instance

For the small test instance, we use the same specifications from [34] which consists of 2

specialties, 3 treatment patterns (including the discharge pattern), and 2 resources. Table

5.1 shows a complete listing of the specifications used to generate the instance. The

total number of possible states in this instance is 5,765 states with over 17 million state

transitions.
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Average resource utilization per period

resource 1 resource 2

pattern 1 2.2 2.6

pattern 2 2.6 2.2

pattern 3 (discharge) - -

Resource costs, capacity, and target level

resource 1 resource 2

over cost 1.0 1.0

excess cost 1.5 1.0

idle cost 1.0 1.6

capacity 5 5

target level 4 4

Treatment pattern transition probabilities

pattern 1 pattern 2 pattern 3

specialty 1

pattern 1 0.4 0.1 0.5

pattern 2 0.1 0.3 0.6

pattern 3 0.0 0.0 1.0

specialty 2

pattern 1 0.2 0.1 0.7

pattern 2 0.1 0.2 0.7

pattern 3 0.0 0.0 1.0

Entrance probabilities

specialty 1 specialty 2

pattern 1 0.5 0.4

pattern 2 0.5 0.6

pattern 3 0.0 0.0

Maximum number of admissions per specialty = 2 patients

Table 5.1: Small instance specification
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5.2.2 Large Test Instance

Table 5.2 lists the specifications for the large test instance. We increased the settings to 4

specialties, 4 treatment patterns (including the discharge pattern), and 4 resources while

keeping the same number of maximum admissions per specialty and resource capacities.

Each specialty can admit from 0 to 2 patients which makes 34 = 81 possible actions. The

resulting instance proved too large for Value Iteration and RTDP to solve.. Therefore, the

results include comparisons between planners that rely solely on a simulator for execution.

5.3 Results

In this section we present the trial results for both test instances.

5.3.1 Small Test Instance

For the small test instance we were able to generate an optimal policy using the Finite

Horizon Value Iteration algorithm described in Algorithm 1. Figure 5.1 and table 5.3 shows

the results for running the planners for H = 10 horizon steps. The average trial reward

for the optimal policy is measured at -42.64 (std. error = 0.59) by returning the optimal

action to the simulator for each horizon step. Although the settings for this instance are

extremely small, the goal is to allow a comparison against an optimal policy that would

be impossible to generate for larger and more realistic settings.

From the results we can see that of the MCTS planners, 0.50-UCT clearly has the best

performance on all time-out settings. Comparing the ε-greedy planners, there is consistent
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Average resource utilization per period

resource 1 resource 2 resource 3 resource 4

pattern 1 1.0 0.5 0.5 1.0

pattern 2 0.5 1.0 2.0 0.25

pattern 3 2 0.5 1.5 0.5

Resource costs, capacity, and target level

resource 1 resource 2 resource 3 resource 4

over cost 1.5 2.0 2.5 1.5

excess cost 1.0 1.5 1.5 0.5

idle cost 2.0 3.0 1.5 1.0

capacity 5 5 5 5

target level 4 4 4 4

Treatment pattern transition probabilities

pattern 1 pattern 2 pattern 3 pattern 4

specialty 1

pattern 1 0.40 0.10 0.20 0.30

pattern 2 0.10 0.30 0.40 0.20

pattern 3 0.80 0.10 0.00 0.10

pattern 4 0.00 0.00 0.00 1.00

specialty 2

pattern 1 0.10 0.30 0.40 0.20

pattern 2 0.80 0.10 0.00 0.10

pattern 3 0.25 0.25 0.25 0.25

pattern 4 0.00 0.00 0.00 1.00

specialty 3

pattern 1 0.80 0.10 0.00 0.10

pattern 2 0.40 0.10 0.00 0.50

pattern 3 0.30 0.30 0.20 0.20

pattern 4 0.00 0.00 0.00 1.00

specialty 4

pattern 1 0.50 0.15 0.00 0.35

pattern 2 0.40 0.10 0.00 0.50

pattern 3 0.80 0.10 0.00 0.10

pattern 4 0.00 0.00 0.00 1.00

Entrance probabilities

specialty 1 specialty 2 specialty 3 specialty 4

pattern 1 0.20 0.40 0.15 0.00

pattern 2 0.40 0.25 0.70 0.00

pattern 3 0.40 0.35 0.15 0.00

pattern 4 0.00 0.00 0.00 0.00

Maximum number of admissions per specialty = 2 patients

Table 5.2: Large instance specification
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Figure 5.1: Small instance with horizon = 10

improvement as the ratio of random sampling increases. Surprisingly, the uniform random

sampling method achieves the second best result of all MCTS methods including UCT.

For RTDP, its results are significantly lower compared to all but one other planner until

the 10,000 millisecond time-out mark where it starts to overtake all other planners and

eventually converges to the optimal policy at the 1,000,000 milliseconds time-out mark.

Even on this small instance, there is significant ramp up time for RTDP to generate good

results as compared to the MCTS planners.

Figure 5.2 and table 5.4 show the results for increasing the horizon steps to H = 20.

As can be seen, the increased horizon has a signficant impact on RTDP’s performance.
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planner/timeout 100 1,000 10,000 100,000 1,000,000

VI -42.64 (±0.59) -42.64 (±0.59) -42.64 (±0.59) -42.64 (±0.59) -42.64 (±0.59)

RTDP -54.44 (±1.55) -52.57 (±1.17) -45.19 (±0.73) -43.02 (±0.55) -42.6 (±0.58)

UCT -49.48 (±0.58) -48.18 (±0.51) -46.04 (±0.46) -45.38 (±0.58) -44.89 (±0.55)

0.50-UCT -47.16 (±0.43) -44.44 (±0.67) -44.8 (±0.61) -44.00 (±0.53) -43.82 (±0.66)

0.75-Greedy -50.57 (±1.02) -46.75 (±0.98) -46.81 (±0.84) -46.06 (±0.83) -46.22 (±0.81)

0.50-Greedy -53.15 (±0.81) -49.70 (±0.54) -48.41 (±0.58) -49.84 (±0.47) -48.93 (±0.55)

0.25-Greedy -55.36 (±0.82) -53.81 (±0.67) -53.22 (±0.61) -53.51 (±0.53) -51.42 (±0.61)

Uniform Random -49.00 (±0.66) -45.77 (±0.44) -45.48 (±0.55) -44.84 (±0.63) -44.08 (±0.59)

Table 5.3: Small instance with horizon = 10

planner/timeout 100 1,000 10,000 100,000 1,000,000

VI -80.47 (±0.88) -80.47 (±0.88) -80.47 (±0.88) -80.47 (±0.88) -80.47 (±0.88)

RTDP -125.92 (±3.38) -115.05 (±2.19) -98.21 (±1.77) -84.22 (±1.02) -80.08 (±0.84)

UCT -105.68 (±0.87) -89.48 (±1.02) -83.07 (±0.87) -82.89 (±0.83) -81.89 (±0.88)

0.50-UCT -91.89 (±0.81) -85.83 (±0.77) -81.37 (±0.86) -81.02 (±0.88) -80.32 (±0.77)

0.75-Greedy -98.86 (±1.31) -89.52 (±0.81) -88.61 (±0.72) -87.22 (±0.83) -87.40 (±0.9)

0.50-Greedy -101.31 (±1.42) -97.14 (±1.13) -96.27 (±1.09) -96.12 (±1.20) -96.67 (±1.20)

0.25-Greedy -104.55 (±1.65) -103.08 (±1.41) -101.16 (±1.39) -102.20 (±1.46) -101.86 (±1.43)

Uniform-random -97.62 (±1.35) -87.27 (±0.88) -84.47 (±0.86) -82.96 (±0.9) -81.79 (±0.87)

Table 5.4: Small instance with horizon = 20

RTDP’s results are lower against all but one other planner until the 100,000 millisecond

time-out mark while the performance of the MCTS planners are not impacted significantly.

Overall, 0.50-UCT again shows the best performance where it converged to the optimal

policy at the 10,000 miliseconds time-out mark. Between UCT and uniform-random, their

results are much closer to each other at the increase horizon setting. Although UCT starts

lower, its results are statistically tied with uniform-random after the 10,000 milliseconds

time mark.
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Figure 5.2: Small test instance with horizon = 20

5.3.2 Large Test Instance

Figure 5.3 and 5.5 shows the results of running trials on the large test instance with horizon

H = 10. As previously mentioned, we were not able to generate the optimal policy on this

increased setting using VI nor were we able to run RTDP in any reasonable amount of

time (i.e. we were not able to complete a single RTDP trial in under an hour). Therefore,

results are included for only the MCTS planners.

One noticeable difference in these results is the performance of UCT where it has the

lowest initial score but then achieves almost best overall results at the time-out mark of

1,000 milliseconds. However, it experiences a significant dip at the next time-out mark
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before recovering.

On the last two time-out marks, both 0.50-UCT and UCT are statistically tied for best

performance with 0.50-UCT consistently improving after each time-out mark. Uniform-

random has lower results for the first two time-out marks but overtakes the ε-greedy plan-

ners for the last three time-out marks.

Figure 5.3: Large test instance with horizon = 10

5.4 Discussion

We were most surprised that the naive uniform random action selection policy performed

well past expectations on all of the test instances, especially in relation to UCT. We
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planner/timeout 100 1,000 10,000 100,000 1,000,000

UCT -164.37 (±3.71) -109.2 (±1.59) -117.42 (±1.65) -106.44 (±1.37) -108.73 (±1.39)

0.50-UCT -151.17 (±2.83) -118.41 (±1.54) -110.55 (±1.82) -108.05 (±1.55) -107.52 (±1.36)

0.75-Greedy -139.14 (±2.94) -118.51 (±1.60) -119.74 (±1.68) -118.32 (±1.73) -117.53 (±1.81)

0.50-Greedy -138.67 (±2.83) -121.63 (±1.94) -121.87 (±1.70) -121.50 (±1.69) -120.90 (±1.80)

0.25-Greedy -141.49 (±3.38) -124.85 (±1.96) -121.78 (±1.96) -124.59 (±1.87) -123.58 (±1.91)

Uniform-random -142.32 (±3.53) -126.90 (±1.66) -115.60 (±1.62) -116.44 (±1.62) -114.28 (±1.76)

Table 5.5: Large instance with horizon = 10

expected UCT to be the top ranked MCTS planner given its reputation and popularity.

However, while UCT does indeed outperform uniform random on the large test instance

on most time-out settings, it was tied or beaten on both horizon settings of the small test

instance (on most time-out settings).

Reviewing UCT’s sampling percentages over all actions, it was evident that we needed

to tune the bias modifier to increase the exploration bonus, i.e. it was under-exploring

potentially better actions on the small test instance. This raises an important and often

overlooked issue - it is difficult to determine what is an appropriate bias modifier setting

until we compare trial results from various settings, which brings us back to the exploration-

exploitation dilemma. Although UCT and many of the bandit strategies offer theoretical

guarantees asymptotically, in practice what is desired is a convergence condition that can

be evaluated under a finite setting.

It is also notable that on the large test instance, UCT suffered a dip in performance

as the time-out increased from 1,000 to 10,000 milliseconds. In theory UCT should return

better results given more execution time. However, our results show that as instance size

becomes large short term performance gains do not always hold as UCT can often over-

exploit suboptimal actions due to sample variance. It will eventually recover due to the
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exploration bonus increase over time but the process can be slow with a larger number of

actions to sample from as well as a bias modifier that is not properly tuned.

Given our initial results, we were motivated to find a more efficient method of tuning the

balance between exploration-exploitation. Applying the ε-greedy concept, we implemented

ε-UCT and set ε to 0.50, i.e. apply a 50/50 split between random action selection and

the UCT policy. As results show, 0.50-UCT was the overall best MCTS planner on all

of the test instances. Furthermore, 0.50-UCT consistently improved as time-out settings

increased and was able to converge to the optimal policy on both the small instance settings.

For RTDP, the main cause behind the slower ramp up time is due to it having to

calculate action values for all possible next states for each state it visits at each horizon.

Even on the small test instance setting, the search tree it generates is substantial as the

horizon increases. On average, we measured an average of 19 next states for each visited

state. Combined with 9 possible actions this results in a much longer execution time for

each search trial. In contrast, the search tree for the MCTS planners branches only on the

possible actions. They store a running average of the action values over the visited states

and therefore do not require the branching on next states during the search rollout.

Overall, we are encouraged by the performance of 0.50-UCT. Combining random sam-

pling with UCT offers a mechanism that can be tuned efficiently while providing behavior

that can be easily understood by the practitioner. As model complexity increases, an

efficient tuning method is desirable since trials become much more expensive to run.

5.4.1 Model Complexity and Scalability

Under this model, the number of specialties and treatment patterns alone does not nec-

essarily imply increased complexity. Instance size can be dramatically affected by only a
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slight adjustment in resource capacity, transition density between treatment patterns, and

the maximum number of admissions per period for each specialty.

Although MCTS planners do not branch over next states, they are nevertheless affected

by the number of next state transitions. For example, if we double the setting of our

large test instance to 8 specialties and 8 treatment patterns while keeping similar resource

capacities and transition density, the number of next state transitions can easily reach tens

of thousands for a given state with many low probability transitions. Under this setting,

UCT or any standard sample-based planner will end up defaulting to the random policy

since they will rarely visit the same state again.
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Chapter 6

Conclusion

In this thesis, we applied current state-of-the-art real time planning techniques for Elective

Admissions Planning. To our knowledge, no existing studies have focused on applying the

MCTS family of planning algorithms on this challenging domain. Through extensive trials,

we showed MCTS to be a viable option for solving larger instances of the model where

traditional planners (e.g. VI and RTDP) were unable to solve.

6.1 Future Work

In our work, we did not consider patient wait-times nor different priority levels in our

model. For a real hospital setting, we would need to extend the model to cover these

additional requirements. These extensions should be investigated in order to find efficient

ways of building a more complete model.

Given the lack of real hospital admission data, we were unable to apply any domain

knowledge into the planning algorithms. Domain-specific adaptations have been shown to
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dramatically improve MCTS planners (e.g. Gelly et al. [17]). There are also opportunities

to apply machine learning techniques to better guide the search strategy if given access to

real patient treatment patterns.

There is also potential in combining planning approaches other than the random action

selection we have proposed. One interesting approach would be to combine the RTDP

and UCT approaches together. Ideally, we would like to calculate the value function using

the exact transition probabilities rather than the sampling approach. However, this is

an expensive operation when dealing with large MDPs with dense transition dynamics.

However, in a realistic setting there may be states with significantly fewer transitions

than others. Then it would make sense to apply asynchronous backups over states with

sparse transitions and UCT for states with dense transitions. The trick is identifying

the transition densities cheaply without doing the actual enumeration (e.g. from domain

knowledge). The result would likely generate more accurate estimates without sacrificing

scalability.
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Appendix

Notation Table

n number of treatment patterns

m number of specialties

l number of resources

sji state variable denoting number of patients currently un-

der treatment pattern i and specialty j.

ai number of patients to be admitted for specialty i in the

current time step.

x vector of vectors denoting the number of patient transi-

tioning between treatment patterns for each specialty.

xij number of patients transitioning from treatment pattern

i to treatment pattern j from the current time step to

the next time step.

Rxsi|ai,si′ the support of x with respect to the state transition

(si′|si, ai).
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