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Abstract 

In developing a method of quantifying stability in the lumbar spine Cholewicki and 

McGill (1996) have also broached the notion of sufficient stability, where too much stiffness (and 

stability) would hinder motion. Thus people highly skilled at maintaining stability may use 

different and optimal strategies, where "sufficient" stability is maintained.  The purpose of this 

work was to explore the contributors to "sufficient" stability, how they coordinate and relate to 

injury mechanisms. 

 This work represents a cascade of investigations where. 1) To explore the balance of  

various sources of stiffness and their effect on the critical load and post-buckling behaviour, 

simulations were undertaken where the buckled configuration of the spine was predicted and its 

stability in this new configuration was assessed. 2) The various sources of stiffness contributing 

to stability in the lumbar spine have been in some cases found to be deficient. The question of 

how these deficiencies place individuals at risk of instability, if at all, remains unresolved. A 

challenged breathing task was used to determine if there was a difference in stabilizing potential 

between healthy individuals and low back pain sufferers. Given that differences in stabilizing 

potential are apparent, several tasks which included a predetermined motor strategy, such as 3) 

pressurizing the abdomen and 4) abdominal hollowing vs. muscle bracing, were evaluated to 

determine if individuals can utilize motor strategies to augment stability. The stabilizing potential 

of abdominal pressure (IAP) and its interaction with muscle activation was evaluated. 

Some individuals are more skilled at stabilizing their lumbar spine than others. Some 

consciously controlled motor strategies are better stabilizers than others. These strategies 

highlight the relative contributions of various components (posture, passive tissue, muscle 

activation, and load) in that no single muscle dominates stability and IAP appears to augment 

stability beyond muscle activation alone. The margin of safety is considerable and depends on the 

task at hand, but it is possible to speculate on which tissues are at greatest risk of injury.
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Chapter 1: Introduction 

As understanding of the determinants of spinal health improves, stability of the spinal 

column appears to become a more important issue. Current thought is that the spine may become 

injured due to a momentary period of instability, most likely due to an inappropriate activation 

strategy or localized weakness (Cholewicki and McGill 1996; Crisco et al. 1992; Gardner-Morse 

et al. 1995). The reason that poor motor strategies may occur is a subject for debate; some suggest 

it may be due to impairments of muscle coordination (Hodges and Richardson 1996) or impaired 

proprioception (Gill and Callaghan 1998; Preuss et al. 2001). Such motor control deficiencies 

may overload any one of the many structures surrounding the buckled segment, resulting in 

passive tissue damage (Crisco and Panjabi 1992; Oxland et al. 1991), to greater or lesser extents 

which will, in turn, further affect future stabilizing potential (Crisco and Panjabi 1992). 

Conversely, a ballistic muscle response to a buckling event (where buckling is defined as 

displacement, caused by a perturbation, which does not return to its start point) has been 

hypothesized to cause tissue damage (Cholewicki and McGill 1996). Even very mild tissue 

damage in the passive structures of the spine has been linked to muscle spasms (Holm et al. 

2002). Such injuries have been reported in the scientific literature and have fuelled theories to 

explain their occurrence (eg. Cholewicki and McGill 1996). 

The contributors to spine stability are limited (muscles, passive tissues, possibly intra-

abdominal pressure (IAP)) although the way in which they share the responsibility appears to be 

unlimited. For example various muscle recruitment strategies may compensate for passive tissue 

insufficiencies (Cholewicki and McGill 1996; Gardner-Morse et al. 1995). In fact this concept is 

relied on by clinicians when retraining recruitment patterns to compensate for injury. Although 

interaction with specific tasks is not clear, there is little doubt at this juncture that, beyond simple 

muscle activation (Bergmark 1989; Cholewicki and McGill 1996; Dietrich et al. 1991; Panjabi 

1992a), muscle co-activation affects stability (Gardner-Morse et al. 1995; Granata and Orishimo 
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2001; Patwardhan et al. 1999)  together with posture and spine angle (Granata and Wilson 2001; 

Kiefer et al. 1997). Some controversy still exists as to the effect of IAP on stability. Some have 

suggested, based on its concurrent increase with abdominal muscle activation (especially 

Transversus Abdominis (TrA)) that it plays an important role in stabilizing the spine (Hodges et 

al. 2001a; Hodges and Richardson 1999b). Others have determined that although stability 

increases in conjunction with IAP, this increase in stability is rather due to the increase in muscle 

activation required to increase IAP (Ivancic et al. 2002). Crisco and Panjabi  (1992) has shown 

that injury to passive tissue decreases the maximum sustainable load in the spine; evidence that 

passive tissues also play an important role in stabilizing the spine. In addition to passive stiffness 

resulting from angular position within the in vivo "neutral zone" (McGill et al. 1994), there is an 

interaction with muscle activation and its potential to load the spine in compression. This 

interaction causes an increase in passive tissue stiffness directly resulting from this compressive 

pre-load (Edwards et al. 1987; Janevic et al. 1991; Stokes et al. 2002), but its effect on stability 

has not been documented.  

A model is limited by its assumptions. Nevertheless, exploration of a complex stability 

control system could benefit from a modeling approach. Although some questions can be 

formulated independently to address the aforementioned issues, the model allows synthesis and 

evaluation of the various elements contributing to stability either through simulation or 

comparison of external conditions. The spine stability model developed by Cholewicki and 

McGill (1996) relies on a physiologically based, detailed mathematical description of stability 

and anatomical modeling. Its major components, a distribution-moment muscle model (Ma and 

Zahalak 1991)  to produce force and electromyography (EMG) assisted optimization  

(Cholewicki and McGill 1996) to match external moments, were married to a previously 

validated mechanical model of the spine designed to calculate applied moments, spine 

compression and shear forces (McGill and Norman 1985). These components have been 

separately and independently validated against external measures (Cholewicki and McGill 1996) 
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and they have been designed to preserve the basic physical and biological principals underlying 

them. Although the relative magnitude of the stability index is a useful parameter, interpretation 

of its absolute value is somewhat limiting. Only measures within a subject and between tasks can 

be compared.  

In addition to the work presented in this thesis several papers have resulted from my time 

in the University of Waterloo Spine Biomechanics Lab, all of which address the larger issue of 

spine stability. 

1) Low-back stiffness is altered with warm-up and bench rest: implications for athletes. 

2002. Green,J.P., Grenier,S.G., McGill,S.M.. Medicine and Science in Sports and 

Exercise, 34(7). pp. 1076-1081. 

2) Quantifying the contribution of individual muscles to lumbar spine stability. 

Kavcic,N., Grenier,S.G., McGill,S.M.  In Progress. 

3) Technical Note: On the Implications of Interpreting Stability Index Calculation. 

Howarth,S.J , Grenier,S.G., McGill,S.M.. Submitted to Journal of Biomechanics. 

4) Coordination of muscle activation to assure stability of the lumbar spine. 

McGill,S.M., Grenier,S.G., Kavcic,N., Cholewicki,J.. Submitted to Journal of 

Electromyography and Kinesiology. 

 

 The objective of this thesis was to contribute to the understanding of the factors 

controlling and affecting spine stability (Figure 1.1). Several experiments were required, designed 

to provide a piece of the puzzle that is spine stability and its control. Specifically four papers were 

submitted for publication, chapters 3 through 6. Chapters 1 and 2 introduce the topic and issues 

while chapter 7 describes the unifying conclusion. 
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Figure 1.1:  The interaction of various sources of stiffness in the spine and whether conscious 

control of these sources is possible will determine how much control can be exerted over stability. 

Ultimately the interaction between these variables and how they relate to the relationship between 

stabilizing potential and injury must be understood. 

 

Chapter 1. An introduction of the current issues relating to stability in the lumbar spine and 

justification of the work to follow. 

Chapter 2. A review of the literature relevant to quantifying and controlling stability in the 

spine. 

Chapter 3.  Only Crisco and Panjabi  (1992) have analyzed the spine in post-buckling and that 

was done only in the sagittal plane and with no muscular system. This experiment 

was a three dimensional analysis of post-buckling in the lumbar spine with 118 

active muscles. The simulation was accomplished by manipulating a single frame 

of in vivo data, assuming equilibrium with a given EMG profile, and artificially 

loading the spine in compression until failure and beyond to observe the 
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consequences.  Hypothesis:  Muscle stiffness and compressive pre-load should 

control the magnitude of buckling.   

Chapter 4.  Some people with low back pain have been found to have motor deficiencies 

speculated to affect lumbar stability (Hodges and Richardson 1996). The question 

of how these deficiencies place them at risk of instability, if at all, remains 

unresolved. Hypothesis: Persons with a deficient motor control system should 

have more difficulty optimizing both a challenged ventilation perturbation and 

sufficient stability.  

 

If involuntary motor control strategies affect stability then perhaps stability can also be 

affect or control by predetermined motor strategies. These strategies took two forms: IAP 

increase and abdominal hollow vs. muscle brace. 

Chapter 5. The reason for increased IAP, a natural tendency, during arduous task has been the 

source of debate for over thirty years. Hypothesis: Increased IAP and the 

associated muscle activation should increase stability more than muscle activation 

alone.  

Chapter 6.  Two issues motivated the last experiment. In addition to the possibility of 

controlling stability through a deliberate motor strategy, the selected strategy arises 

from a contentious clinical issue. There is some debate as to the effect of 

abdominal hollowing versus abdominal bracing on spine stability. The hollowing 

strategy, pulling the navel in towards the spine with a specific muscle recruitment 

pattern, was compared to an overall muscle bracing pattern in a neutral posture for 

both symmetric and asymmetric loading.  Hypothesis: A full abdominal brace 

should provide more stability than abdominal hollowing.  

Chapter 7.  A summary of the findings from this collection of studies, their relevance and the 

questions they have unveiled. 
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Chapter 2: Review of Relevant Literature 

2.1 General Stability theory 

The concept of stability can be applied to a multitude of different analyses. In 

biomechanics, the concept has been used to describe postural stability, stability of a joint, even 

the stability of a signal. Indeed, in the broad field of engineering mechanics, stability can have 

different meanings depending on the application, whether it is elastostatics, dynamics, or 

hydrodynamics. All these applications have something in common, which Leipholz  (1970) 

recognized in his definition of stability in a global sense.  

His attempt to unify the concept of stability under one definition led him to state the 

following:  “If the perturbation does not exceed its established measure, the unperturbed state is 

called stable when the change in the “norm” does not exceed its established measure. Otherwise, 

the unperturbed state is called unstable.” 

Leipholz defines a “norm” as a quantity, which characterizes the state of the system. The 

norm can be either geometric or kinematic in character. If the geometric norm changes over time 

then it is considered to be kinematic. For a stable system the norms must stay within the bounds 

of the unperturbed values. 

The application of this definition to the spine is as follows. The geometric configuration 

of the spine, either buckled or not, is considered a norm. A compressive load perturbation is 

applied to it and if the load does not cause the spine to change its configuration beyond the initial 

geometry (within “normal” bounds) or “established measure” then the initial configuration of the 

spine is considered stable. This is assuming that the load itself does not exceed its established 

measure, meaning that it cannot exceed the load that would cause collapse of the column under 

the given conditions. 
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The stability index used in our model is the average eigenvalue resulting from the 

analysis (comparable to determinant see appendix). If the index is less than zero then instability 

though not necessarily buckling is indicated. Since a potential energy 'well' is present locally and 

the system may rest in it, a perturbation may dislodge it (instability and possibly yielding of 

certain tissues) only to send it into another such local well, thus preventing buckling (Figure 2.1). 

 

Figure 2.1: Illustration of local minima and maxima depicting the transition from one stable 

configuration to another. 

If a differential equation (or a system) defines the unperturbed state, then 3 types of 

perturbations can be applied to the system. Either the perturbation can affect the initial conditions, 

such as the initial geometry, the parameters, such as the limits of normal movement or the 

physical law described by the differential equation (i.e. the equation itself). 

Lyapunov gave a mathematical formulation of the stability concept as a particular case of 

motion (Leipholz 1970). This definition, although not as general as that given by Leipholz, is 

nonetheless applicable to the elasto-mechanical spine. If we allow that the position of a system is 

defined by n generalized coordinates qi(I=1,2,3…) and that the static equilibrium state is 

characterized by qi=0, then the system rests at this equilibrium position. 

 If at time t=0 we allow small bounded disturbances: 
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The response of the system at any time t>0: 

 

If the response to the perturbation is also bounded: 

 

Then the static equilibrium position at qi=0 can be considered stable. 

 

2.2 Mechanical Stability of the Spinal Column 

 Mechanical stability of a column has been addressed in several different ways. The two 

principal methods, described here, are the continuous column model and the discrete column 

model. 

 The continuum column model originally developed by Euler (1744) typically excludes 

the active muscular component (although not necessarily, Hjalmars 1988) lumped muscle actions 

into two resultant forces) and assumes that the osteoligamentous spine is a slender elastic column. 

Several variables are required: the length of the column, its stiffness, and radius of gyration. From 

this point Euler’s equation is used to calculate the critical load or the minimal load at which the 

spine will change its geometry to accommodate the load (Pcr). In Lucas and Bresler  (1961) 

classic study, a critical load for the thoracolumbar spine of 20 N was reported, in both theoretical 

calculations and experimental results. Others have also used a similar method to investigate 

scoliosis and its correction (Lindbeck 1985) while Weiler et al.  (1990) and Weiler et al.  (1986) 

have used the stiffness of L-rods on a physical model.  Their results have corroborated Lucas and 

Bresler  (1961) original results. This approach has also been used in impact studies where the 

torso was suddenly accelerated to determine the inertial load that would buckle the spine (Cramer 

et al. 1976; Liu et al. 1971). 
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Although the Euler column can give a reasonable representation of the spine on a macro 

scale (Lindbeck 1985), a discrete model provides more information of segmental changes and 

their cause (Bergmark 1989; Cholewicki and McGill 1996). Individual vertebrae are considered 

as rigid segments linked through viscoelastic elements. The ligaments and intervertebral discs 

compose the lumped parameter viscoelastic elements. These elements are assigned 

physiologically based characteristics, modeled mathematically (McGill et al. 1994). Crisco and 

Panjabi  (1991) have shown that muscles can potentially localize instability to specific motion 

segments and given recent indications that muscles such as multifidus may have very segmentally 

specific reflex activation patterns (Holm et al. 2002), discrete models with an active muscular 

system are crucial to understanding control of stability. 

Belytschko et al.  (1973) used a discrete 3D model and they linearized the ligamentous 

effect, using seven linear springs in a quasi-dynamic analysis with no active components. Crisco 

et al.  (1992) also used a discrete model without active components. They tested this model both 

theoretically and experimentally for critical loads, using the minimum potential energy 

formulation described by Bergmark  (1989). The post buckling eigenvectors were calculated to 

provide information of buckled configurations.  They also used both linear springs and 

exponential springs to simulate elastic behavior. The exponential model did not predict as well as 

the linear model and the linear model found buckling loads very close to those reported by Lucas 

and Bresler  (1961). In fact, when they used a stiffness value averaged over all intervertebral discs 

they found Pcr = 22.1 N compared to Lucas and Bresler’s 20.5 N. When exact stiffness values for 

individual intervertebral elastic behavior was used, as reported by Lucas and Bresler  (1961), Pcr 

increased to 29.6 N. 

Dietrich et al.  (1991) and Shirazi-Adl and Parnianpour  (1993) also have used very 

comprehensive finite element models. Shirazi-Adl and Parnianpour (1993) included a very simple 

muscle model but Dietrich et al. 's (1991) model included individual ligaments as well as most of 

the important muscles in the spine. The muscles were assumed to have linear, anisotropic 



 

 10 

mechanical properties and did not reflect in vivo activation patterns in response to a given task. 

Rather an optimization procedure was used to distribute tension among the muscle to match a 

predetermined external load. 

The inertial response to a quick release mechanism applied to an inverted pendulum 

model of the torso has also been used to quantify stability (extrapolated from stiffness) in the 

spine (Chiang and Potvin 2001; Cholewicki et al. 2000). The trunk is modeled as a freely 

oscillating second order system with viscoelastic properties. The stiffness coefficient, which 

determines the stability of the static equilibrium, is obtained from the equation of motion 

describing the oscillations after release. 

2.3 Clinical Stability of the Spine 

Ultimately, assuming stability is related to injury, greater knowledge of the requirements 

for lumbar stability will lead to more effective treatment of back injury patients and possibly also 

injury prevention.  This will occur through a better clinical understanding of what stability is and 

how to assess it, combined with a mechanical view on how to maintain or regain it. There have 

been several attempts at defining clinical stability. Most of these definitions have involved some 

combination of geometric parameters. Dupuis et al.  (1985) and Weiler et al.  (1986) suggested 

that instability is present when there is an abnormal quantity or quality of movement. Some 

researchers elaborate that there should be a loss of stiffness in the joint or increased stress in the 

deformation (Kirkaldy-Willis and Farfan 1982). Paris (1985) distinguishes between 

hypermobility and instability, where instability is an abnormal quality (versus quantity) of 

movement. Paris (1985) further specifies this definition, adding that the individual should be 

symptomatic. They distinguish between clinical and mechanical stability, using increased 

abnormal motion to denote clinical instability. 

The problem, as Cholewicki and McGill (1996) state, is that the clinical definition of 

instability is based on the factors which may allow mechanical instability to occur and not on the 
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actual phenomenon of instability. In other words, geometric signs may indicate the potential or 

risk for instability but this does not ensure the absence of stability. Stability is a dynamic variable 

in which load and maintenance of equilibrium play critical roles. Static geometry can not capture 

or detect physiological or loading changes or changes in equilibrium, which might result in 

instability. Ashton-Miller and Schultz  (1991) suggest that the concept of load is critical to 

stability. A structure is only unstable if a small additional load causes a catastrophic 

displacement, consequently a spine is only unstable if its stiffness is not high enough to withstand 

anticipated daily loads. However, clinicians do not have the ability to detect instantaneous 

instability and the alternative is to assess the potential for instability. Based on this, Ogon et al.  

(1997) suggest that, in a dynamic sense, segmental instability changes intersegmental 

accelerations and velocity patterns as a function of motion direction and load conditions. 

Therefore, spine stability is a question of stable motion patterns. This is evidenced in a 

discontinuous acceleration profile (jerk) which shifted away from neutral in unstable motion 

segments (Ogon et al. 1997). Evaluation methods for these qualities remain elusive. Perhaps the 

best indicator thus far is "an abnormal quantity or quality of movement" requiring exceptional 

clinical expertise or “hands” to detect. 

 Defining various types of instability based on geometric definitions, as Frymoyer and 

Selby (1985) have done, may be appropriate for the equilibrium conditions of measurement but 

stability requires the inclusion of an external load. Nevertheless, it may be possible to predict the 

risk of instability based on visible passive tissue damage (Oxland et al. 1991), especially with 

recent advances in imaging technology. It may also be possible to predict the risk of instability 

based on muscle recruitment pattern tendencies (Hodges and Richardson 1996; Newcomer et al. 

2002). Assuming that, clinically, the risk for instability is shown to be elevated in an individual 

and that an injury can be shown to have resulted from it, the best alternative to reduce the risk of 

instability is as yet unknown. Understanding the control of stability is still in its infancy. 
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Consequently, treatment of injuries due to instability is still speculative (Hides et al. 2001; 

Hodges 1999; Newcomer et al. 2002). 

 

2.4 Control of Stability 

2.4.1 Control systems 

Panjabi; (1992a,b) has developed a comprehensive schematic describing how and where 

an instability might originate. Three subsystems likely to stabilize the spine, are theorized: the 

passive (ligaments, discs), the active (muscle, contributing to external load), and the neural-

feedback subsystem. The passive subsystem would establish the stability requirements based on 

external influences and the neural-feedback system would determine the active subsystem 

requirements (force generation and monitoring) to meet the demand. Theoretically, an injury, 

degeneration  or disease could reduce either passive or active stability or both (Adams and Dolan 

1995; Hodges and Richardson 1998; Solomonow et al. 1998). The neural-feedback system would 

then increase the demand on the muscles to compensate (Adams and Dolan 1995; Holm et al. 

2002). There is potential for such passive tissue strain to lead to abnormal muscle loading and 

fatigue to cause further injury or chronic instability (Holm et al. 2002). Thus, training the 

subsystems involved could theoretically improve stability i.e. strength, endurance, motor 

coordination and reaction time of postural control (Hides et al. 2001; Jull and Richardson 2000). 

Several researchers have found that, both the stiffness of the motion segments and of the muscles, 

had an impact on stability. Both contribute to equilibrium and their activation levels determine 

load and stability (Cholewicki et al. 1999b; Cholewicki and McGill 1996; Cholewicki et al. 1997; 

Dietrich et al. 1991; Gardner-Morse and Stokes 1998; Granata and Orishimo 2001; Granata and 

Wilson 2001; Kiefer et al. 1997). This implies that, given the functional interdependence of the 

subsystems, changes to either the passive or active component of Panjabi’s model could affect 

spine stability, whereby a deficit in one might overload the other (Cholewicki and McGill 1996). 



 

 13 

Moreover, Wilke et al.  (1995) and Kettler et al.  (2002) finding that muscular activity has a large 

impact on the neutral zone, implies that some deficits in motion segment passive stiffness may be 

overcome, but to what degree is unknown.  

2.4.2 Passive Subsystem 

Panjabi; (1992a,b) suggests that the neutral zone (NZ) has an important influence on the 

passive system.  The neutral zone is where, in a neutral spine lordosis, there is minimal resistance 

to passive movement, corresponding to the lowest slope portion of a load deformation curve. 

Magnitude and location of the NZ correlates well with other indicators of instability, mentioned 

previously. Panjabi has redefined clinical instability in this context: clinical instability is a 

significant decrease in the capacity of the stabilizing system of the spine to maintain the 

intervertebral neutral zones within physiological limits so that there is no neurological 

dysfunction, no major deformation and no incapacitating pain. This definition indirectly 

addresses the load variable by acknowledging that the active subsystem might play a part in the 

maintenance of the neutral zone.   

 Interdependency among the subsystems becomes clear when it is acknowledged that 

compressive force, possibly due to muscle co-activation, will increase passive stiffness: the mere 

act of applying a compressive force will increase stiffness of the motion segment (Edwards et al. 

1987; Janevic et al. 1991; Panjabi et al. 1976; Stokes et al. 2002).  

 Aside from providing passive stiffness there is evidence that stimulation of mechano-

receptors in "passive" structures provides feedback to the active muscular system (Eversull et al. 

2001; Holm et al. 2002; Solomonow et al. 1998) . This phenomenon seems well suited to 

preventing buckling events from occurring given that it is rate dependent as well as angle or range 

dependent (Eversull et al. 2001). Under these conditions a sudden buckling event will incur 

greater activation, seemingly at the appropriate segmental level, dependent on the magnitude of 

the angle reached. Similarly damage to these passive structures, whether painful or not, may 
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adversely affect stability in the spine via inappropriate recruitment (Holm et al. 2002).  There is 

also evidence, both in the back and in other joints, that injury to the passive structures impairs 

propioception (Gill and Callaghan 1998; Hodges and Richardson 1999a; Parkhurst and Burnett 

1994). The many passive structures in the spine, their resistance to excessive motion in various 

directions and the complexity of the interaction with the active subsystem through a feedback 

mechanism is not well understood. 

 Posture, which affects the location of the spine within the neutral zone thereby modifying 

passive stiffness, has also been found to affect stability. It should be acknowledged that posture is 

largely, if not exclusively, modified by muscle activity. Stokes and Gardner-Morse  (1995) have 

found that a straighter spine (flexed) has a lower predicted critical load. Kiefer et al.  (1997) has 

demonstrated that a neutral posture is beneficial for added stability but only when muscle activity 

can control its deformation mode. Granata and Wilson  (2001) have shown that, in a simple 

system, stability increases with flexion (due to greater muscle activation) and asymmetry also 

requires increases in muscle co-activation, especially where stability is a required optimization 

parameter. 

2.4.3 Active Subsystem 

 The second subsystem proposed by Panjabi is the active (muscle and tendon) subsystem. 

He has proposed that it acts to control stability by controlling or affect the magnitude of the 

neutral zone (Panjabi 1992b). This may be particularly important in an injured spine where 

passive tissues have been affected in such a way as to decrease stiffness within the neutral zone. 

Of course the subsystem itself may be affected by fatigue, pain and motor control (Panjabi 

1992a). 

It has been clearly established that the active component of the lumbar spine (ie. muscles) 

does contribute significant stiffness to the system (Bergmark 1989; Cholewicki and McGill 1996; 

Cholewicki and VanVliet IV 2002; Crisco and Panjabi 1991; Granata and Orishimo 2001; Kiefer 
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et al. 1997; Radebold et al. 2000; Cholewicki et al. 1997; Gardner-Morse and Stokes 1998; 

Gardner-Morse et al. 1995; Granata et al. 2001).  Bergmark (1989) was the first to incorporate an 

active component into a discrete model. His model included 40 muscle fascicles, but no intra-

abdominal pressure component or abdominal muscle fascicles. This resulted in a model only able 

to sustain a perturbation in the forward direction of the sagittal plane. The model sought the 

minimum muscle stiffness satisfying the stability criteria. The indeterminacy within the model 

was solved through minimization of the muscle stress. Bergmark  (1989) had divided muscle 

forces into local and global; the local muscles are the ones that originated or inserted on the 

vertebrae, the global muscles relayed the pelvis and ribcage. However, Cholewicki and VanVliet 

IV (2002) state in recent work that this categorization may not be appropriate.  Nevertheless, 

Bermark's pioneering work (1989) in the field has proven to be crucial to furthering understand 

the role of muscles in stability. 

Since Bergmark's (1989) efforts it has been shown that a small amount of activation 

contributes a large proportion of stiffness and stability (Cholewicki and McGill 1996; Kiefer et al. 

1997). There is also evidence that activation of antagonist muscle groups is related to potential 

energy of the external load (Granata and Orishimo 2001; Radebold et al. 2000). Crisco and 

Panjabi (1991) have demonstrated that, in a simple model, any vertebral body devoid of muscle 

resulted in instability regardless of the muscle stiffness contributed to adjacent segments, but that 

multi-segmented muscle were more efficient stabilizers. Despite suggestions that some muscles 

may be more or less important for stability (extrapolating from stiffness measurements) (Hides et 

al. 2001; Hodges and Richardson 1999b; Penning 2000; Richardson et al. 2002; Wilke et al. 

1995), recent work to quantify stability has shown that, in vivo, no single muscle contributes to 

stability more than any other, but that the relative contribution to stability depended on loading 

direction and magnitude (Cholewicki and VanVliet IV 2002). Nor was there a large difference 

between inter-segmental and multi-segmental muscles in their analysis, contrary to Crisco and 

Panjabi (1991). 
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Assuming that it does contribute to stability in the spine, intra-abdominal pressure (IAP) 

should be thought of a part of the active subsystem. This is not unreasonable given the most 

recent indications that some combination of increased muscle activity and IAP increase stability 

(Cholewicki et al. 2002; Cholewicki et al. 1999b; Essendrop et al. 2002). This benefit may be 

direction specific (Cholewicki et al. 2002), and it does not appear possible to dissociate muscle 

activation from IAP, where spine stability increases proportionally regardless of their 

combination (Cholewicki et al. 1999a).  However, debate about the function of IAP has been 

ongoing for many years. It was initially proposed to provide a restorative moment in lifting tasks 

(Morris et al. 1961). However, calculations by McGill and Norman (1987) showed that the 

muscle activity required to increase pressure to the level required for a restorative effect counters 

this extensor moment with a flexor moment. More recent work by Kumar (1997) and Marras and 

Mirka (1996) agrees with this assessment. Hodges et al. (2001a) have since demonstrated that 

IAP can create a small extensor moment (15Nm) when the requirement for muscle activity is 

removed. Daggfeldt and Thorstensson (1997) have also shown that the restorative IAP moment is 

only possible if the line of action of the muscle counter IAP (for example transversus abdominis) 

is greater than 550 to the horizontal. This argument brings to the forefront the role of transversus 

abdominis (TrA), since it is the only muscle that fits these criteria in its entirety (except for 

portions of internal and external oblique). Consequently, there has been much debate recently as 

to the role of this muscle in spine stability (Hodges 1999; Richardson et al. 2002). Hodges et al. 

(2001b) have also shown in a very small population that IAP increases translational stiffness. In 

fact, TrA has demonstrated a corresponding increases in IAP better than any other abdominal 

muscles (Cresswell 1993; Cresswell et al. 1992; Cresswell et al. 1994b; Cresswell and 

Thorstensson 1989). Calculations by Thomson (1997) suggest that TrA is the most highly 

stressed of all abdominal muscles in pressurized slow lifts. A relationship has also been drawn 

between a deficit in its function and LBP (Hodges and Richardson 1996), however this has 

recently been questioned (Allison and Henry 2002; Newcomer et al. 2002). The benefit of TrA, 
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given that its force and stiffness generation potential is limited (Cholewicki and VanVliet IV 

2002), may be in the initial stages of an unexpected perturbation since it seems to be the first 

muscle to activate in these cases (Cresswell et al. 1994b; Hodges et al. 1997).  

2.4.4 Neural Subsystem 

 When Panjabi (1992a) first proposed the neural subsystem as a control mechanism for 

stability there was very little research to support this idea. Although it is still the least understood 

of the three subsystems, since then much work has been done, building the case for this control 

mechanism. Recent work suggest that proprioceptive feedback may have quite a dramatic impact 

on muscle activity, even at very localized segmental levels, thereby affecting spine stability 

(Eversull et al. 2001; Holm et al. 2002; Solomonow et al. 1998). It appears that all of the passive 

structures (ligaments and discs) in the spine feedback to the muscular system and that the more of 

them that are stimulated at any one time, the more intense the muscle excitation response (Holm 

et al. 2002). It also appears that these "passive" tissue have displacement, velocity and tension 

thresholds which makes the response contraction appear earlier with higher velocity 

displacements (Eversull et al. 2001).  

Noting that preparatory co-activation increases trunk stiffness and stability (Chiang and 

Potvin 2001; Cholewicki et al. 1997; Gardner-Morse and Stokes 1998; Gardner-Morse and 

Stokes 2001; Krajcarski et al. 1999) it is interesting that expectation of a sudden load does not 

increase preparatory muscle activation (Granata et al. 2001). The control system may rely quite 

heavily on feedback mechanisms to determine appropriate activation levels. This seems likely 

given that the neural control appears to react to factors affecting the potential energy in the 

system (and stimulating the passive structures), such as increased co-activation for increased 

mass (Cholewicki et al. 1997), and increased coactivation for increased height (Granata and 

Orishimo 2001). The system may expect feedback before making adjustments however, it appears 

to take advantage of large increase in stiffness and stability for small muscle activation 
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(Cholewicki and McGill 1996). This may maximize cost-benefit of compression-stability 

(Granata and Marras 2000) yet pretension the muscles to reduce response time (Krajcarski et al. 

1999), decreasing electro-mechanical delay (DeLuca 1997b), and reaction time (Cresswell et al. 

1994b). 

 The control of stability also seems to be affected by posture, as mention earlier. Stability 

increases with flexion (due to increased activation) and asymmetry also requires increases in 

muscle co-activation (Granata and Wilson, 2001) Though if muscle activity does not increase 

stability the critical load decreases in a straighter (or flexed) spine (Gardner-Morse, Stokes et al., 

1995). The least demanding posture seems to be a neutral lordosis (Kiefer, Shirazi-Adl et al., 

1997), however it likely also has a high risk for unexpected loads due to minimal stimulation of 

passive tissues (Eversull, Solomonow et al., 2001) in the neutral zone (Panjabi, 1992a) unless a 

small amount of preparatory co-activation is present (Cholewicki and McGill, 1996, Stokes, 

Gardner-Morse et al., 1998).  

2.4.5 Control strategies 

 A major limitation of Bergmark (1989) model is that the muscle activity input is not 

biological. If we are to gain understanding of how individuals maintain and control stability, each 

individuals muscle activity must be reflected in the model. This is where Cholewicki and McGill 

(1996) improved on Bergmark’s model, by using EMG input from the individual, allowing a 3D 

analysis of stability in the individual, under different conditions. This is important because 

different conditions encountered by individuals may have different requirements for stability as 

well as individuals having varied responses to one condition. Electromyography (EMG) assisted 

optimization allowed input from individuals and the muscle model allowed estimation of the 

muscle force and stiffness from the EMG data.  Eighteen degrees of freedom and 90 muscle 

fascicles led to a more realistic representation. Nevertheless, the biological validity of the model 

can always be improved. The finding that the stability was greater under heavy load conditions is 
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not necessarily incompatible with Bergmark  (1989) finding. The global muscles are more likely 

to be recruited voluntarily under those conditions. When only the local system is active the 

equilibrium is less stable thus there is less protection and greater risk of injury. As Cholewicki 

and McGill  (1996) suggest one of the important questions yet to be answered is, what is the 

stability (or stabilizing potential) difference between clinically unstable patients and healthy 

people. 

 Significant efforts to understand the conscious control of stability indicate that this 

control is quite gross in nature (meaning that no single muscle dominates and no fine control 

seems possible) (Cholewicki and VanVliet IV 2002), task specific (load magnitude and direction) 

(Cholewicki and VanVliet IV 2002; Gardner-Morse and Stokes 2001; Granata and Orishimo 

2001), posture specific (neutral vs. flexed and/or asymmetric) (Granata and Wilson 2001; Kiefer 

et al. 1997). In addition, the need for equilibrium at all lumbar levels simultaneously limits the 

activation of some muscles (Stokes and Gardner-Morse 1995). However, it also appears possible 

to train, in a gross motor fashion, to overcome very specific deficits. For example, at other joints, 

such as the ankle and knee, researchers have found that training can allow the muscles crossing 

the joint to compensate for a connective tissue laxity or instability (eg. Caraffa et al. 1996; 

Corrigan et al. 1992; Konradsen et al. 1993). 

 Training protocols addressing specific muscles have been proposed (Hides et al. 2001; 

Jull and Richardson 2000) purporting to train stabilizing potential. While these programs have 

recently been shown to be effective in reducing LBP, thought to be caused by impaired stability 

(Hides et al. 2001), there is no evidence that this effect is due to an increase in stabilizing 

potential despite the change in geometric stability parameters such as reduction of sacro-iliac 

laxity (Richardson et al. 2002). Various strategies appear in the literature which have been shown 

to increase stiffness and or stability (Cholewicki and VanVliet IV 2002; Gardner-Morse and 

Stokes 1998; Granata and Orishimo 2001; Stokes and Gardner-Morse 1995). All of these 

strategies involve antagonistic co-activation in some measure which maintains equilibrium at all 
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lumbar levels simultaneously, thereby stiffening around the equilibrium point and increasing 

stability. Another strategy, first proposed by Cholewicki et al. (1999a) as an IAP mechanism, has 

recently been observed in fatigue tests by Essendrop et al.  (2002), where abdominal co-activation 

increases with IAP as the extensors fatigue. There is evidence, in  simplified systems, of 

individual muscles adding to the total stiffness in a system (Wilke et al. 1995) and even of the 

absence of muscles (and stiffness) at a joint decreasing stability (Crisco and Panjabi 1991). 

However in a complex in-vivo system there is no evidence that this is the case. In fact it has been 

recently suggest that the classic "global" versus "local" muscle categorization, where 

intersegmental muscles are stabilizing as opposed to the larger moment generating muscles, may 

be inappropriate given that no single muscle dominates spine stability (Cholewicki and VanVliet 

IV 2002). 
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3.1 Abstract 

Buckling of the spine may result in a sudden increase in the loads borne by tissues required to 

buttress the new configuration. This work explores the contributions of various sources of 

stiffness and their effect on the critical load and post-buckling behaviour. A compressive load 

was applied to an anatomically detailed model of the spine in two configurations. The kinetics 

and kinematics of the induced buckling were evaluated in both a neutral and flexed spines until a 

short period of time instability event occurred. The lumbar spine was stable in post-buckling 

configurations, given the measurement conditions and the associated equilibrium. When the 

lumbar spine with a compressive pre-load stiffness (PLS) mechanism had an initial deflection 

from neutral, the first instability event occurred at 6692 N versus 6543 N with no PLS. After 

crossing the threshold of instability, the spine buckled into a new configuration and continued to 

deflect but the compressive load was diminished. A spine with minimal initial deflection from 

neutral and a PLS mechanism became unstable at lower applied load. It appears that the lumbar 

spine protects itself from injury by increased mechanical impedance provided  by 1) increasing its 

inter-segmental stiffness with increasing load and deviation and more importantly, 2) using 

instantaneous muscle stiffness as restorative moments resulting from increased forces when 

stability is lost.  It is likely not possible to avoid injury without some neuromuscular response at 

the onset of instability, but these mechanisms may provide more time for an appropriate (safer) 

response and may keep the buckled spine within tolerable yield stresses in the absence of 

increased load or changing muscle activation patterns. 
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3.2 Introduction 

 Lumbar spine stability has emerged as an important issue for explaining injury mechanisms and 

in the development of spine rehabilitation and injury prevention strategies. Although any column, such as 

the spine, subjected to compressive force will fail when the stresses exceed its material tolerance, in many 

situations the compressive load which would cause this type of failure far exceeds the load at which the 

column will buckle. If the spine is considered as a slender column, which several researchers have done 

(Bergmark 1989; Cholewicki and McGill 1996; Crisco et al. 1992; Gardner-Morse et al. 1995; Granata 

and Marras 2000; Lucas and Bresler 1961) the magnitude of this buckling load becomes a more important 

consideration than the magnitude of compressive tolerance. Buckling of the spine may result in a sudden 

increase in the loads borne by tissues required to buttress the new configuration.  Oxland et al. (1991) 

have shown that damage to specific tissues correlate better to instability in given planes, though in this 

case instability was defined by range of motion. Consequently, some scientists have raised the issue of 

tissue yield tolerance subsequent to a buckling event (Weiler et al. 1986) because the load transfer to 

these tissues may be excessive and injurious. Insight into this mechanical scenario (in vivo) was obtained 

when a spine injury was documented in a powerlifter lifting a load from the floor in which simultaneous 

video fluoroscopy of sagittal lumbar motion showed what appeared to be a uni-segmental buckling event 

(Cholewicki and McGill 1992). A subsequent analysis suggested that the risk of buckling could actually 

increase in much lighter tasks where muscle forces and spine stiffness are lower such that an error in 

activation level of a single muscle could lead to an unstable column (Cholewicki and McGill 1996). 

Crisco and Panjabi (1992) have shown in a planar (coronal) analysis of Euler stability, that post-buckling 

behaviour (deflection after the buckling load is reached) of an osteoligamentous lumbar spine varies 

depending on the stiffness properties assigned to the joints. In vivo the stiffness of the joints has 

contributions not only from the passive tissues at the joint but also from the muscles crossing that joint 

(Gardner-Morse et al. 1995; Wilke et al. 1995) and from subsequent stiffness arising from compression 

on the column (Edwards et al. 1987; Janevic et al. 1991; Stokes et al. 2002). This work explores the 
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contributions of these various sources of stiffness and their effect on the critical load and post-buckling 

behaviour. 

Joint stiffness and the distribution or stiffness elements around the spine is critical for preventing 

buckling as well as determining the mode shape in which the spine will buckle (Crisco et al. 1992; Stokes 

and Gardner-Morse 1995). Considering only passive joint stiffness, Lucas and Bresler (1961) successfully 

applied Euler's slender column formulation to the osteoligamentous spine and mathematically predicted 

experimental buckling loads in a thoracolumbar spine. In a classic work Bergmark (1989) employed the 

concept of minimum potential energy in a discrete model to quantify stability in the in vivo lumbar spine, 

while incorporating muscles and other tissues contributing to stiffness. It was this contribution that 

offered a possible explanation for previously unexplainable injuries to the spine, such as what might occur 

during a task like picking a pencil up from the floor. Indeed, using this approach Panjabi and Crisco 

(1992) predicted experimental results of a theoretical stability analysis which confirmed the low buckling 

load (88N) previously predicted by Lucas and Bresler (1961)and used the buckled shape as an initial 

guess for post-buckling analysis assuming a planar (sagittal) system. Their model demonstrated the 

critical importance of joint stiffness distribution, not only for pre-buckling stability but also for stable 

post-buckling behaviour. They also provided insight into the effects of column imperfections that result 

from injured tissues (such as posterior ligament transection vs. removal of L5 inferior facets) on stiffness 

and stability. For example, although they showed that a healthy spine is stable in lateral post-buckling 

from a mathematical standpoint, it would be biologically untenable to experience 20o of lateral bend 

rotation in a single motion segment without serious tissue damage. Recent work has shown that a healthy 

motor control system arranges muscle forces (and stiffness) to ensure stability while a damaged system 

with corrupted motor patterns compromises stability (Grenier and McGill 2002). Two potential 

mechanisms, beyond neuromechanical feedback, may work to prevent this type of catastrophic buckling. 

First, Edwards et al. (1987); Janevic et al. (1991); Stokes et al. (2002), have all suggested that the stiffness 

in a motion segment increases with increased compressive load applied, thereby increasing the stiffness 
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and, consequently, the buckling load of the column. The sources of this compression could be either 

externally applied or from active muscle. Second, Wilke et al. (1995) have demonstrated that specific 

muscle activation strategies, in maximal extension efforts (Gardner-Morse et al. 1995), may also 

favourably affect spine stability and even compensate for stiffness compromised by injuries to the passive 

tissue (possibly even the ones simulated by Crisco et al. 1992). 

As Bermark (1989) first demonstrated in a simpler anatomic model before Cholewicki and 

McGill (1996) in a more detailed in vivo discrete segment model, given instantaneous equilibrium, the 

determinant of the second partial derivative (Hessian) matrix reveals the stability of the system. The sign 

conveys the direction of curvature of the surface while the magnitude reveals the degree of curvature. 

However it is possible that a system, while in instantaneous equilibrium and stable (or not) has unstable 

post-buckling behaviour. Further, Gardner-Morse and Stokes (1995) suggest, it is possible for a spine to 

be in equilibrium but also unstable. In fact, replication of Crisco and Panjabi's 1992 experiment indicates 

that this was the case in their osteoligamentous model of the spine. However, while a system such as this 

may be stable in post-buckling, it may also allow biologically unrealistic motion, straining passive 

structures beyond injurious levels (well beyond rupture). In summary, injuries due to instability may be 

associated with a change from a stable to an unstable post-buckling configuration. Instability occurs, and 

for the brief duration of the buckling event, the system’s load bearing capacity is compromised. This will 

last until associated tissues stiffen, restoring stability, perhaps in a new buckled mode. Further, there is no 

guarantee that the re-distribution of tissue loads will be safely tolerated.  

The purpose of this paper was to explore the three dimensional post-buckling behaviour of an in 

vivo lumbar spine through an established approach to stability analysis (Cholewicki and McGill 1996) 

and assess the possible link to injury mechanisms. Gardner-Morse et al. (1995) suggest that instability is 

possible in the absence of adequate neuromuscular control. Our own work Grenier and McGill (2002), 

which employed perturbed motor patterns, supports this notion. However, it may be that the instantaneous 

stiffness of active muscles combined with stiffness associated with spine compression for a given load 
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and angle is enough to protect the spine from catastrophic damage (i.e. uncontrolled post-buckling). This 

type of effect might, under some conditions, diminish the reliance on a rapid neuromuscular response 

within a self protecting system.  

3.3 Methods 

3.3.1 Data Collection:  

This study was approved by the university ethics committee and all subjects provided informed 

consent. An instant in time from a real subject was analyzed specifically with the lumbar spine at 20o of 

flexion, 2o of lateral bend and 4o of twist from neutral as well as in a neutral posture with a slight artificial 

imperfection (5o of flexion, 1o of lateral bend and 2o of twist). It was assumed that equilibrium was 

present in the initial instant selected in each case. This instant (frame) was then explored for post-

buckling behaviour. Lumbar spine kinematics were recorded with a 3Space Isotrak unit (Polhemus1) 

which sampled flexion-extension, lateral bend and axial twist at a rate of 60 Hz. The electromagnetic field 

(EMF) source of the Isotrak was place over the sacrum and a sensor was worn over the twelfth thoracic 

vertebrae, both were held with elastic straps. Electromyography (EMG) signals were recorded using 

bipolar surface electrodes 25 mm apart at 1024 Hz from 7 channels bilaterally (14 total): rectus abdominis 

(2 cm lateral to the umbilicus), internal oblique (perpendicular to the midline, medial to the Anterior 

Superior Iliac Spine), external oblique (15 cm lateral to the umbilicus positioned obliquely in line with the 

fibres), latissimus dorsi (15 cm lateral to T9 positioned obliquely in line with the fibres), thoracic erector 

spinae (5 cm lateral to T9 over the muscle belly), lumbar erector spinae (3 cm lateral to L3) and the 

multifidus (2 cm lateral to L5, angled slightly with superior electrode more medial). The collected signals 

were A/D converted at a sample rate of 1024 Hz (frequency response: 10 to 1000 Hz, common mode 

rejection ratio: 115dB @ 60 Hz, input impedance: ~10 GOhm) and normalized to the amplitudes 

measured during the MVC procedure following rectification and low pass filtering at 2.5 Hz. 

                                                      

Polhemus Incorporated, 40 Hercules Drive, P.O. Box 560, Colchester, VT 05446 
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3.3.2 Model:  

The model used in this experiment has been fully described elsewhere (Cholewicki and McGill 

1996). An overview of recent improvements is provided here. Improvements were made to better 

represent transversus abdominis (TrA). The fascial attachment of TrA on the lumbar vertebrae was 

represented with ten fascicles bilaterally on the five segments (two originating on the posterior tip of the 

lumbar spinous processes and the other two originating on the transverse process of the lumbar vertebrae). 

To capture the line of action of the fascial attachments, the ten fascicles converge on a point 60 cm 

directly lateral of L5 (but which move with L5). This arrangement also closely approximated Tesh et al.’s 

(1987) experimental finding that the compression cosine of the lateral TrA force was 39% of its 

magnitude. 

The skeleton of the model consisted of 5 lumbar vertebrae between a rigid pelvis/sacrum and a 

rigid ribcage. The vertebrae were linked by lumped parameter elastic discs allowing 3 degrees of freedom 

for rotational movement at each vertebral level (i.e. rotation about three orthogonal axes but no 

translation). The angular data obtained from the 3space Isotrak indicated the total lumbar angular change 

between the sacrum and T12. This angular change was allocated as a constant proportion distributed 

among all vertebrae in three directions (White and Panjabi 1978). The rotational stiffness of the discs was 

represented by torsional springs tuned to include stiffness of the discs, ligaments, fascia, skin and viscera 

(McGill et al. 1994). The restorative passive moments for flexion and lateral bending created by this 

stiffness were adjusted based on the range of motion of each individual’s spine (Cholewicki and McGill 

1996). Twisting and extension coefficients were left as constants, as was the coupling coefficient. A pre-

load bias component was added which accounted for the increase in torsional stiffness for each increase in 

compression. An exponential function was fit to data from osteoligamentous spines (Edwards et al. 1987; 

Janevic et al. 1991) where the passive moment was adjusted by the interaction of angle and preload.  
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where: 

Direction A k B 

Flexion (Mz-) 1.2069 1.287 0.0018 

Extension (Mz+) 5.213 0.6103 0.0006 

Lateral Bend (Mx) 1.2074 1.288 0.0024 

Axial Twist (My) 3.3404 24.53 0.0016 

  Note: CMP = spine compression 

The stiffness was then obtained by the derivative of this function. This was an iterative procedure that 

recalculated the estimated compression at every frame and depending on the measured joint angle 

calculated its contribution to stiffness so that every increase in compression corresponded to an 

exponential increase in stiffness.  

In addition to the restorative moment of the passive tissues, the muscles also contributed a 

restorative moment to balance the external load. Physiological cross sectional area and a maximum stress 

of 35 N/cm2 were used as an estimate of maximum force generating potential. The muscle force and 

stiffness calculated by a distribution-moment muscle model (Ma and Zahalak 1991) were modulated by 

activation level, coefficients for instantaneous muscle length, velocity of shortening and maximum force 

generating potential of each muscle. The muscle forces were then applied through 118 muscle fascicles to 

the skeletal components such that the moment they created balanced the moment generated external load 

and upper body mass. Nevertheless, the neutral posture and kinematically static nature of the task 

permitted the calculated moments to balance the external load moments within 20 Nm, even without 

optimization of the muscle forces and stiffness. Spine compression and shear were estimated from the 

vector sum of muscle, ligament, body segment and external load forces. 

A program was developed which reproduced Crisco and Panjabi's (1992) results in the coronal 

plane but its application to an 18 degree of freedom system was not possible because the non-linear solver 
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did not converge on a consistent solution. Consequently, this analysis differs from that of Crisco in 

several respects.  First, it is not limited to the coronal plane; the model includes the quantification of 

potential energy for three degrees of freedom between each of five segments, including the ribcage and 

the sacrum. Second, stiffness at the joints was modulated by 118 muscle fascicles as well as by an 

approximation of disc stiffness changes with angle and compressive pre-load. Third, solution of the non-

linear system of equilibrium equations was not possible because with every increment in load and 

subsequent deflection, the stiffness contributed by muscles, compressive load and passive tissues 

changed. Instead the load was iteratively incremented, the equilibrium re-evaluated, when instability was 

detected the buckled configuration was estimated and perturbed by a very small deflection (1% of the 

current angle). The current stiffness matrix associated with this deflection was then calculated. This 

allowed the effects of compression and angle on passive stiffness to be incorporated into the stiffness 

matrix. Nevertheless the procedure used is very similar to that of Crisco et al. (1992) since rather than 

solving for the sustainable load accompanying a given vector, the predicted buckling vector was retrieved 

for every applied load.  

The muscle force and stiffness calculated for every increment of load  by the distribution-moment 

model (Ma and Zahalak 1991) permitted the calculation of iterative stiffness matrices. The stability of the 

lumbar spine was quantified by using the system stiffness to calculate the potential energy in the linear 

springs (muscles and ligaments) and that in the torsional springs (discs). The eigenvalue solution of the 

second derivative of each of these quantities minus the external work with respect to each degree of 

freedom leads to the stability index (see Cholewicki and McGill 1996 for full explanation). The first 

derivative of the potential (an 18x18 matrix) was also solved as a generalized eigenvalue problem 

resulting in a critical load estimate for each frame accompanied by an eigenvector specifying the 

normalized shape of the buckled spine.  
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3.4 Results: 

 As expected, stability analysis showed that the lumbar spine was stable in post-buckling, given 

the measurement conditions and the associated equilibrium (Table 3.1) link table. When the lumbar spine 

with a compressive pre-load stiffness (PLS) mechanism had an initial deflection from neutral (i.e. was 

straighter @ 200 flexion, 40 lateral bend and 20 twist) the first instability occurred at 6692 N (Figure 3.1) 

while the predicted critical load was 14439 N. After crossing the threshold of instability, the spine 

buckled into a new configuration and continued to deflect but the compressive load was diminished 

(Figure 3.2-Figure 3.4). Although dominated by flexion (Figure 3.2), the new configuration which was a 

combination of all three rotations caused some the compression to be diverted into both anterior and 

medio-lateral shear load (Figure 3.3). Torsional buckling was minimal (Figure 3.4) although it was 

dominated by buckling at L1 and L5 which amounted to a change of 0.2 and 0.30 respectively. The same 

spine with no PLS buckled at 6543 N and had a predicted critical load of 14224 N. The amplitude of the 

buckled configuration was approximately twice that of the PLS flexed spine. The amplitude of initial 

lateral deflection at the 5th lumbar vertebra was 16% greater in than in the PLS spine (Figure 3.3 vs. 

Figure 3.5). Initial deflection in the sagittal plane had the same magnitude for both (Figure 3.2 vs. Figure 

3.6). 

A spine with minimal initial deflection from neutral (50 flexion, 10 lateral bend, 20 torsion) and a 

PLS mechanism withstood up to 6302 N and did not become unstable under the test conditions (Figure 

3.7). The predicted critical load under initial conditions was 10008 N. The same spine with no PLS 

buckled after 6060 N and the predicted critical load was 8897 N (Figure 3.8). Under the testing conditions 

the maximum applied compressive load reached 6446 N. In this spine the compression continued to 

increase because the deflection after buckling was not large enough to divert compression into shear. The 

predicted post-buckled configuration closely resembled the configuration before the event (Figure 3.9). 

The PLS mechanism delayed buckling by almost 250 N in the neutral spine compared to 150 N in the 

straighter spine (Figure 3.10, Figure 3.11). 
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Since the deflection was dominated by lateral bend, left side muscle stiffness values were 

subtracted from right side muscle stiffness values as an estimate of how global muscle stiffness responded 

to the buckling event.  In the flexed spine the right to left stiffness value difference increased by 2 times 

(from 1.33 to 2.23) while the neutral spine it increased by 7 times (from 0.28 to 1.96) (Table 3.2, Table 

3.3). 

3.5 Discussion and Conclusions: 

It appears that the lumbar spine protects itself from injury when it is most vulnerable by increased 

mechanical impedance provided  by 1) increasing its inter-segmental stiffness with increasing load and 

angle (Edwards et al. 1987; Janevic et al. 1991; Stokes et al. 2002) and more importantly, 2) using 

instantaneous muscle stiffness as restorative force when stability is lost. The change in right to left 

balance of muscle stiffness values (Table 3.3) indicates that muscles progressively resist the buckling 

event, mimicking a feedback control effect. The inter-segmental stiffness functions similarly in that as the 

load increases so does stiffness but this effect is multiplied at larger angles, such as what would occur 

during a buckling event or in a neutral spine relative to a straight one. Consequently this effect is not as 

large as that of muscle stiffness at smaller angles, though it did delay the onset of buckling by two load 

increments (149 N straight; 242 N neutral). In this analysis the impact of compressive pre-load stiffness 

was more evident after a catastrophic buckling event.  Likely it is not possible to avoid injury without 

some neuromuscular response at the onset of instability, but these mechanisms may provide more time for 

an appropriate response. It may be as important to maintain equilibrium with stable post-buckling as it is 

to maintain a stable equilibrium. This would allow the neuromuscular system some time for a healthy 

response to a sudden deflection, rather than inducing a muscle spasm causing local tissue overload, as 

Cholewicki and McGill (1996) suggest might occur. 

 Our observations are in agreement with Gardner-Morse et al (1995) since the flexed (straighter) 

spine supported a greater load before becoming unstable.  The predicted critical load was high in both 
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cases because the q (critical value of muscle stiffness) values were higher than their average of a 

minimum 4.5, averaging at 52 during the trial.  In this case: 

 

where : F = instantaneous muscle force 

 L = instantaneous muscle length 

k = instantaneous muscle stiffness calculated by the distribution–moment muscle model of Ma 

and Zahalak.  

If we extrapolate the relationship between q value and critical load, a multiplication factor of 1/2 is 

applied to our predicted buckling load (Gardner-Morse et al. 1995). If we further account for the unequal 

q among muscles given unequal activation (Table 3.1 and Table 3.3) then our buckling load decreases to 

approximately 6200 N and 6900 N for the neutral and flexed spines respectively. This is very similar to 

the critical load they report in their 1992 work. Interestingly, although the straight spine supported greater 

compressive load, the neutral spine displayed less dramatic post-buckling behaviour. It also benefited 

more from both the PLS mechanism as well as the instantaneous muscle stiffness (Figure 3.9). The 

similarity of the predicted post-buckled configuration to the configuration before the event may provide 

evidence for such an influence though it may be a consequence of the not having a large enough 

perturbation (1% of every new eigenvector). The perturbation was as large as was feasible within model 

parameters; since any larger value would cause extreme displacements.  

The interaction between buckling and yield stress in the tissues is crucial for understanding how 

injuries may occur due to buckling  (Weiler et al. 1986). Weiler et al. (1986) also found that as initial 

deflection increased the yield point was reached sooner. It appears at this time that, in vivo, muscle pre-

activation and compressive pre-load stiffness limit deflection sufficiently that tissue yield points are 

barely exceeded. It has been reported that ligament damage begins at approximately 60 Nm of bending 

moment with complete failure occurring as high as 140-185 Nm depending on the strain rate, which, in 

the case of buckling would be high (Adams and Dolan 1995). At the instant of buckling the straight spine 

q
k L

F
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simulation returned a flexion moment of 61.6 Nm and a lateral bending moment of 46.1 Nm. This value 

continued to increase as the load was incremented. Further investigation of this interaction will 

necessitate the partitioning of passive stiffness into its individual components to determine which specific 

tissues are at risk. 

The most important limitation of this work is the inherent assumption of equilibrium. Since the 

post-buckling analysis involves iteratively incrementing the load, the equilibrium achieved to balance the 

measured initial load no longer applies. However, this speculative exercise is a useful exploration of the 

system's limits and provides some insight into the system's behaviour when those limits are reached. The 

importance of muscle stiffness and the validity of its response to buckling relies on the validity of the 

distribution-moment (Ma and Zahalak 1991) which has been experimentally verified (Cholewicki and 

McGill 1996). This analysis assumes also that the response of the mechanical parameters (i.e. muscle 

force and stiffness) in the selected frame will not be interfered with by any neuromechanical response. 

This is unlikely though it may not be unreasonable to also assume that such a response would assist the 

purely mechanical response, at least in a healthy person or may otherwise be delayed in response time (> 

300 ms) until after these events are underway. This estimate includes the time required for the system to 

react (~250 ms) (Cresswell et al. 1994b) as well as the time required for the muscle to develop tension 

(60-80 ms) (DeLuca 1997a). 

Although muscle and compressive pre-load stiffness may not prevent a buckling incident or 

instability, the mechanical impedance contributed by these sources appears to delay the onset of 

instability and control the magnitude of displacement of buckling when, and if, it does occur especially in 

a neutral (lordotic) spine. This may have implications for lifting and for perturbation response strategies. 

From this perspective, a full torso muscle brace maneuver (the simultaneous, but modest, contraction of 

all muscles in the abdominal wall) where all muscles contribute to compression, increasing stiffness 

through the pre-load mechanism, as well as being in a heightened state of stiffness themselves, better 

prepares the system for potential buckling events. Additionally, although a straight spine may support 

more load, the benefit of a neutral spine seems to be go beyond the neuromuscular control of stability 
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(Granata and Wilson 2001) and the tissue tolerances (Adams and Dolan 1995) to a coordination of global 

injury prevention mechanisms. For example, by allowing some controlled buckling to occur and diverting 

some compression into other axis directions, (and thereby decreasing compression sustained), the risk of 

injuries such as endplate fracture may be decreased. Although other tissues may be placed at risk, 

preliminary indications are that these mechanisms keep the buckled spine bordering on yield stress 

tolerances in the absence of increased load or changing muscle activation patterns. 
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Table 3.1: For the right and left muscles the values represent the activation at a given percentage of 

maximum voluntary contraction (MVC), for the equilibrium point selected for analysis. 

Muscle %MVC muscle %MVC 

RRA 6.61 LRA 3.05 

RIO 13.06 LIO 9.72 

REO 9.28 LEO 18.77 

RLT 8.48 LLT 4.29 

RUE 7.63 LUE 8.64 

RLE 12.58 LLE 12.47 

RMF 4.43 LMF 7.54 

 

Table 3.2: For both the right and left sides, the average q value of the flexed 20 degrees trial was taken 

for all fascicles of a given muscle in the pre-buckling frame (R1,L1) as well as the first (RP1, LP1), fourth 

and sixth frames post-buckling.  

 R1 RP1 RP4 RP6 L1 LP1 LP4 LP6 

Rectus Abdominis 88.82 154.00 160.00 164.00 81.52 15.02 15.00 14.86 

External Oblique 53.09 75.70 32.37 112.34 48.30 76.37 71.62 73.43 

Internal Oblique 44.41 20.30 18.34 27.70 49.20 28.75 88.94 30.18 

Pars Lumborum 34.73 24.18 25.74 21.49 34.66 26.54 25.58 22.12 

Iliolumbar 31.20 30.23 27.62 29.72 31.20 20.94 32.67 18.14 

Longissimus Thoracis 30.07 27.96 20.86 26.55 30.23 27.88 27.04 27.35 

Quadratus Lumborum 96.18 69.19 62.99 69.42 95.72 78.74 74.57 62.70 

Latissimus Dorsi 43.13 44.56 22.51 44.91 41.05 43.02 35.49 39.44 

Multifidus 84.25 69.15 92.22 38.47 91.89 68.88 106.72 40.93 

Psoas 30.98 32.12 33.65 37.68 31.37 43.51 33.57 45.02 

Transversus Abdominis 15.12 15.47 15.27 15.42 15.40 15.45 15.36 15.12 

R=right; L=Left; P indicates post-buckling; number indicates load increment number after 

buckling occurs  
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Table 3.3: For both the right and left sides, the average stiffness value (N/mm) of the flexed 20 degrees 

was taken for all fascicles of a given muscle in the pre-buckling frame (R1,L1) as well as the first (RP1, 

LP1), fourth and sixth frames post-buckling. 

 R1 RP1 RP2 RP3 L1 LP1 LP2 LP3 

Rectus 

Abdominis 

27890.40 2868.80 3587.10 6493.50 14092.30 1586.50 2156.70 3080.10 

External oblique 38236.25 2401.95 6374.65 2939.55 24454.50 3740.30 6452.15 5400.45 

Internal Oblique 27331.30 5807.90 3547.65 2645.00 52154.15 17080.20 11810.50 13336.55 

Pars Lumborum 29294.70 1125.54 11948.58 10173.06 29079.82 1036.50 12001.06 9512.10 

Iliolum 11869.80 308.50 2056.00 625.20 12728.10 409.70 3008.80 2986.60 

Longissimus 

Thoracis 

1877.40 348.95 487.12 476.02 2036.45 270.08 599.82 833.23 

Quadratus 

Lumborum 

12380.46 772.37 2525.16 2021.28 12241.23 2690.80 4170.41 3230.26 

Latissimus Dorsi 4664.07 746.97 1459.62 570.72 2838.25 937.43 1603.22 659.88 

Multifidus 3962.73 151.20 1861.62 2021.24 6116.50 263.80 2843.41 2601.71 

Psoas 7770.50 1500.18 4718.70 5178.88 12092.24 4651.02 9203.02 8170.88 

Transversus 

Abdominis 

120.98 22.90 81.42 93.44 163.43 110.41 166.95 137.72 

R=right; L=Left; P indicates post-buckling; number indicates load increment number after 

buckling occurs  
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Figure 3.1: At the load increases the lowest eigenvalue (indicating stability decreases) until it 

suddenly drops below zero. In the flexed (straighter) spine the onset of buckling is sudden but 

muscle stiffness prevents it from continuing as it did Crisco and Panjabi's analysis (1992). 
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Figure 3.2: When the lowest eigenvalue drops below zero deflection in the spine begins, in all 

three planes simultaneously. The magnitude of this deflection is controlled by muscle stiffness. 

Note that the deflections presented in these plots represent a normalized eigenvector shape.  
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Figure 3.3: In lateral bend is where the deflection is focused relative to the magnitude of the initial 

angle. In this plot the data points were augmented by moving averages to improve clarity. Muscle 

stiffness creates on oscillation effect where, as the angle gets larger in post-buckling the stiffness 

increases until the eigenvector prediction reverses direction. 
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Figure 3.4: Compared to lateral bend the torsional deflection is small, nevertheless it occurs 

simultaneously in all three planes. Each plot was augmented by a moving average of the data. 

Flexed spine (20deg) with PLS: Torsion

0

0.05

0.1

0.15

0.2

0.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Load Increments

N
o

rm
al

iz
ed

 E
ig

en
ve

vc
to

r

 L1T

 L2T

 L3T

 L4T

 L5T



 

 

 41 

 

Figure 3.5: The magnitude of initial deflection in flexion is the same in a flexed spine with no PLS 

verses one with PLS, though it takes more load increments for the stiffness to respond. 

Flexed spine (20deg) no PLS: Flexion-Extension

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Load Increments

N
o

rm
al

iz
ed

 E
ig

en
ve

ct
o

r

 L1F

 L2F

 L3F

 L4F

 L5F



 

 

 42 

 

Figure 3.6: With no PLS the post-buckling magnitude is not as well controlled. It is 16 % larger and 

it takes 5 load increments before stiffness forces the prediction back to the original neighbourhood. 
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Figure 3.7: The neutral spine behaves differently from the straight (flexed 20 deg) spine. The estimates of 

stability are not as smooth, due to the magnitude of the initial imperfection and the stiffness it induces. 

This spine with an active preload stiffness mechanism does not buckle at the tested compressive loads. 
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Figure 3.8: The same spine (neutral) as in figure 3.5 but with no PLS mechanism does buckle 

before the maximum load is reached. 
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Figure 3.9: Contrary to figure 3.6 a neutral spine with no PLS mechanism does buckle (frame 93) but 

it only does so in lateral bend and only for joints L1 to L4. Note how the magnitude dissipates 

approaching L5 
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Figure 3.10: The effect of PLS on the lowest eigenvalue (indicating stability) of the flexed (200) 

spine is to delay the onset of instability by 2 load increments (149 N). 
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Figure 3.11: The effect of the PLS in the neutral spine is greater due to the larger angle (lordosis). The 

spine with the preload stiffness mechanism (LowEig stf) does not buckle during the trial while the one 

with out does (at 242 N less). 
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4.1 Abstract: 

4.1.1 Introduction: 

Spine stiffness, and the resulting stability, during isometric postures with hand-held loads is 

dependent upon muscle stiffnesses coordinated against the load (Cholewicki and McGill 1996). 

Co-contraction in general (Granata and Marras 2000) and of the abdominals specifically 

(Gardner-Morse and Stokes 1998) has been shown to increase torso stiffness and stability in the 

lumbar spine. However, these same muscles contract and relax with each breath during 

challenged breathing (Gardner-Morse and Stokes 1998; McGill et al. 1995). The major issue is 

will stability suffer if the motor control system is forced into challenge breathing. Is there a 

difference in strategy depending on low back pain history? Given the necessity for co-activation 

that spine stability imposes on the system (Granata and Wilson 2001) it seems unlikely that both 

ventilation and stability would be achieved optimally. 

4.1.2 Methods: 

Subjects (14 normal; 14 LBP) performed two weight holding trials (22 kg); one of 60 sec duration 

while breathing ambient air (AMB) and the other of 70 sec while breathing 10% carbon dioxide 

(an additional ten seconds to allow the CO2 to elevate breathing depth and rate). Their flexed 

trunks were held at approximately 300 from vertical and their feet were stationary, shoulder width 

apart. Stability was measured in both trials and compared between LPB and no LBP groups. 

4.1.3 Results: 

The integral of stability (area under the curve) was less in the challenged breathing (CB) 

condition than the AMB condition (p < 0.013) but only for the healthy subjects. The RMS 

difference of stability was greatest for LBP subjects in CB trials (p = 0.023). Flexion angle was 

not significantly different between LBP and noLBP. Compression at L4-L5 was higher in the 

LBP group in CB trials by an average of 290 Newtons (p = 0.061).  
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4.1.4 Conclusions: 

Challenged breathing results caused no change in stability magnitude for LBP subjects though 

with greater variation in combination with increased L4-L5 compression. Stability appeared to be 

modulated by kinematic adjustments in addition to changes in muscle activation. This may have 

important implications for tasks that elevate ventilation but do not permit the kinematic 

adjustments required to maintain stability. Such tasks may result in increased compression 

beyond what was measured in this study since the modulation of stability would rely exclusively 

on muscle activation without the benefit of kinematic adjustments.
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4.2 Introduction 

Spine stability, during isometric holds is dependent upon symmetric muscle activation 

levels balanced against the load (Cholewicki and McGill 1996; Stokes et al. 2000). Co-

contraction in general (Granata and Marras 2000) and of the abdominals specifically (Granata and 

Marras 2000;Gardner-Morse and Stokes 2001) has been shown to increase torso stiffness and 

stability in the lumbar spine. McGill et al. (1995) have shown that it is normal during quiet 

breathing (even supporting a heavy load) to have minimal entrainment of abdominal wall muscle 

activity, since a healthy diaphragm and lung elasticity seem sufficient for proper ventilation. 

However, during challenged breathing the abdominal muscles are often recruited to assist with 

elastic recoil by “active expiration” while diaphragm contraction draws air for inspiration 

(Abraham et al. 2002; Aliverti et al. 2002). The paradox presented to the motor control system is 

that these same muscles are required to simultaneously assist in maintenance of spine stability 

(McGill et al. 1995). Several questions emerge: will spine stability suffer if the motor control 

system must meet the simultaneous challenge of elevated breathing; and is there a difference in 

strategy depending on whether an individual has a history of low back pain?  Given the 

constraints (i.e. muscle co-activation requirements) that spine stability imposes on the system 

(Granata and Wilson 2001) it seems unlikely that both ventilation and stability could be optimally 

achieved. Interestingly, similar situations exist in other animals. For example, Owerkowicz et al. 

(1999) report that, in monitor lizards, mechanical ventilation requirements are a limiting factor to 

locomotion velocity. This study investigates the possibility that similar coupling exists between 

ventilation and the need for a stable spine in humans. This would have implications on both 

injury risk and performance potential. 

Recent work suggests that plasticity in the motor control system exists for adjustments in 

muscle co-contraction to maintain stability (Granata and Wilson 2001). Interestingly, during 
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episodes where more stability is required, increases in co-activation increase spine compression, 

but in a way that the benefit of a increased stability far outweighs the cost of compression 

increase (approx. 3 to 1) (Granata and Marras 2000). Thus in a system where stability may be 

compromised, whether by oscillating activation of abdominals to assist in breathing or otherwise, 

increasing co-contraction seems a biomechanically attractive solution. The co-contraction 

response to postural and purely mechanical changes has been demonstrated in a simplified model 

where stability was a requirement (Granata and Wilson 2001). However the stabilizing response 

of a more complex neuromuscular system to more complex tasks with conflicting demands is, to 

this point, poorly understood.  

The purpose of this study was to better understand the motor control response and its 

effects on spine stability during conflicting demands (in this case where the muscles contact and 

relax to assist with challenged breathing yet must also contract to support a handheld load). 

Furthermore, it is of interest to know if having a history of low back pain (LBP) impacts on the 

neuromuscular response and subsequently on the maintenance of spine stability. It was 

hypothesized that those subjects with a prior history of LBP would be more likely to exhibit the 

anomalous motor patterns that jeopardize spine stability to maintain appropriate ventilation. 

4.3 Methods 

4.3.1 Data Collection: 

This study was approved by the university ethics committee and all subjects provided 

informed consent. Workers from physically demanding jobs (n = 28) volunteered for this study. 

People with current low back pain (LBP) were not allowed to participate but subjects who 

reported any kind low back pain within the last year (LBP, n=14) were categorized apart from 

those with no history (noLBP, n =14). Subjects with no LBP were on average 37.5 years of age 

(S.D. 8.12), 1.76m tall (0.079), and had a mass of 80.6 kg (10.9). Subjects with a history of LBP: 

36.4 years (8.14), 1.82m (0.065) and 92.4 kg (12.0). Lumbar spine kinematics were recorded with 
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a 3Space Isotrak unit (Polhemus) which sampled flexion-extension, lateral bend and axial twist at 

a rate of 60 Hz. The electromagnetic field (EMF) source of the Isotrak was place over the sacrum 

and a sensor was worn over the twelfth thoracic vertebrae, both were held with elastic straps. 

EMG signals were recorded using bipolar surface electrodes 25 mm apart at 1024 Hz from 7 

channels bilaterally (14 total): rectus abdominis (RA: 2 cm lateral to the umbilicus), internal 

oblique (IO: perpendicular to the midline, medial to the Anterior Superior Iliac Spine), external 

oblique (EO: 15 cm lateral to the umbilicus positioned obliquely in line with the fibres), 

latissimus dorsi (15 cm lateral to T9 positioned obliquely in line with the fibres), thoracic erector 

spinae (TES: 5 cm lateral to T9 over the muscle belly), lumbar erector spinae (LES: 3 cm lateral 

to L3) and the multifidus (MF: 2 cm lateral to L5, angled slightly with superior electrode more 

medial). The collected signals were A/D converted at a sample rate of 1024 Hz (frequency 

response: 10 to 1000 Hz, common mode rejection ratio: 115dB @ 60 Hz, input impedance: ~10 

GOhm) and normalised to the amplitudes measured during the maximum voluntary contraction 

(MVC) procedure following rectification and low pass filtering at 2.5 Hz. The MVC procedure 

involved resisting the subjects to perform maximal isometric effort exertions in flexion, extension 

and twisting tasks in an attempt to elicit maximum electrical activity (described in detail in 

McGill 1991). An ultrasonic flow meter (model #UF202, Kou Engineering), in-line with the 

mouthpiece, also sampling at 1024 Hz recorded ventilation flow rate. 

Subjects performed two isometric weight holding trials (22 kg); one of 60 sec duration 

while breathing ambient air (AMB) and the other of 70 sec while breathing 10% carbon dioxide 

(CO2)(an additional ten seconds to allow the CO2 time to act). Their flexed trunks were held at 

approximately 300 from vertical their knees unlocked and feet were stationary, shoulder width 

apart. On average this resulted in a compressive load on the L4/L5 joint of  about 2400N, well 

below the NIOSH action limit (Waters et al. 1993).  
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4.3.2 Stability Model: 

The model used in this experiment has been fully described elsewhere (Cholewicki and 

McGill 1996 and Appendix B). A brief overview along with a description of some recent 

improvements is provided here. The skeleton of the model consisted of 5 lumbar vertebrae 

between a rigid pelvis/sacrum and a rigid ribcage. The vertebrae were linked by lumped 

parameter elastic discs allowing 3 degrees of freedom for rotational movement at each vertebral 

level (i.e. rotation about three orthogonal axes but no translation). The angular data obtained from 

the 3space Isotrak indicated the total lumbar angular change between the sacrum and T12. This 

angular change was allocated as a constant proportion distributed among all vertebrae in three 

directions based on a formula provided by White and Panjabi  (1978). The rotational stiffness of 

the discs was represented by torsional springs tuned to include stiffness of the discs, ligaments, 

fascia, skin and viscera quantified by McGill et al.  (1994). 

Recent improvements were made to better represent transversus abdominis (TrA) with 

two vertebral attachments pulling laterally via the superficial (tip of the posterior spinous process) 

and deep fascia (transverse process). Four fascicles of quadratus lumborum were added which 

originated on the transverse processes of L5 to L2 and attached to the ribs (Bogduk et al. 1992). 

The cross-sectional areas of multifidus and pars lumborum were adjusted so that the 

physiological area at each level closely approximated previous findings from MRI scans (McGill 

et al. 1993). 

During torso bending stiffness resulting from stressing passive tissues creates a 

restorative passive moment. The moment created by this stiffness in flexion and lateral bending 

was adjusted based on the range of motion of each individual’s spine. Twisting and extension 

coefficients were left as constants, as was the coupling coefficient. A pre-load bias component 

was added which accounted for the increase in torsional stiffness for each increase in 

compression. An exponential function was fit to data from osteoligamentous spines given by 
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Edwards et al.  (1987) and Janevic et al.  (1991), where the passive moment was adjusted by the 

interaction of angle and preload. 

Where: 

Direction A k B 

Flexion (Mz-) 1.2069 1.287 0.0018 

Extension (Mz+) 5.213 0.6103 0.0006 

Lateral Bend (Mx) 1.2074 1.288 0.0024 

Axial Twist (My) 3.3404 24.53 0.0016 

Note: in each case CMP is the spine compression value. 

 

 The elastic energy from the passive moment was then obtained by the same method as 

described in Cholewicki and McGill (1996); that is, integrating with respect to the relative joint 

angles and summing over the six joints. The stiffness was then derived from the first partial 

derivative with respect to each direction at each joint while the second partial derivative 

represented its contribution to stability. This was an iterative procedure that recalculated the 

estimated compression at every frame and depending on the measured joint angle calculated its 

contribution to stiffness so that every increase in compression saw an exponential increase in 

stiffness.  

In addition to the restorative moment of the passive tissues, the muscles also contributed 

a restorative moment to balance the external load. Spine compression and shear were estimated 

from the vector sum of muscle, ligament, body segment and external load forces. Physiological 

cross sectional area and a maximum stress of 35 N/cm2 were used as an estimate of maximum 

force generating potential. The muscle force and stiffness, calculated by a distribution-moment 
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muscle model (Ma and Zahalak 1991), were modulated by activation level, coefficients for 

instantaneous muscle length, velocity of shortening and maximum force generating potential. The 

muscle activation profiles were first obtained from linear envelope EMG that was used as input to 

the distribution-moment muscle model. The muscle forces were then applied through 118 muscle 

fascicles to the skeletal components such that the moment they created balanced the moment 

generated by the hand held load and upper body mass minus the passive moment. An 

optimization routine balanced the moments by applying minimal changes to the calculated muscle 

forces. The optimization procedure used to distribute muscle forces based on activation profiles 

and balance the moments (Cholewicki and McGill 1994) was modified to include a lower 

boundary (and exclude TrA).  The lower bound was based on the input of muscle activity. It was 

selected so that the output gain to be applied to the muscle could not result in a muscle force 

lower than the square root of the force before optimization. Muscles with a very low input 

activation would consequently have a much higher relative lower bound thereby biasing the 

changes toward muscles with little activation and away from muscles with greater activation. This 

procedure was chosen because it minimally constrained the optimization, yet forcing it to settle at 

a higher minimum. Setting too high a lower limit would over estimate the global force output. An 

upper bound based on activation was not set because a muscle's force output could easily exceed 

its maximum concentric force output (physiological cross sectional area * Fick's Constant) 

through modulation of the passive elastic component. TrA was left out of the optimization due to 

its limited ability to generate moments (McGill 1996) thus only its involvement in stabilisation 

was considered 

It is important to note that stability, in the engineering sense, is defined by the 

maintenance of column equilibrium (or the ability to survive an applied perturbation) relative to a 

calculated potential energy. The stability was quantified by using the system stiffness to calculate 

the potential energy in the linear springs (muscles and ligaments) and that in the torsional springs 
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(discs). The stability index was given by the arithmetic average of the 18 roots output by the 

eigenvalue solution of the second derivative matrix  (Cholewicki and McGill 1996).  

4.3.3 Analysis: 

Stability and stabilizing potential were evaluated in several ways. The mean stability 

index over the duration of the trial was calculated as was the integration of the stability curve 

(area under the curve). A second order polynomial was fit to the index and the roots of the 

equation fit were calculated. The largest positive root was taken as a projection of the time it 

would take for stability to reach zero (a negative index represents the absence of stability) if the 

trend were maintained. If the roots were complex, as was the case when the fit yielded a concave 

up parabola (U), the largest root for that group was substituted in its place. The projected time to 

zero in this case was large enough to justify this.  The root mean square difference from the mean 

(RMS) was calculated for the stability index curve. The stability index curve was also cross-

correlated to abdominal muscle (rectus abdominis, internal and external oblique) activation. 

Abdominal muscle activation was cross-correlated to ventilation patterns. Repeated measures 

ANOVA (CO2, AMB) x (LBP, no LBP) were used to distinguish any differences in response to 

the challenged breathing (carbon dioxide). Dependent variables in the ANOVA were: integrated 

index, mean index, projected zero, flexion angle, compression and root mean square (RMS) 

difference in stability index. Outcomes were considered significant if P< 0.05. 

4.4 Results 

Spine stability was sacrificed to maintain and assist ventilation requirements and this was 

more dramatic in those with no history of LBP. The integral of stability (area) normalized by time 

was less in the CB condition than the AMB condition (p = 0.013) only for the no LBP group. The 

mean stability index was greater in LBP subjects under CO2 conditions but less in no LBP 

subject under the same conditions (p = 0.009). The projected time to zero stability also increased 

in the LBP group under CO2 conditions but was not quite significant (p = 0.074) (Table 4.1). 
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Flexion angle was not significantly different between LBP and no LBP (p = 0.116) (Table 4.1). 

Though not quite significant (p = 0.061) compression at L4-L5 was higher in the LBP group 

especially comparing CO2 conditions by an average of 290 Newtons. The RMS of stability was 

greatest for the CO2 condition in those with LBP and least for the AMB condition in those with 

no LBP (p = 0.023). The magnitude, duration and constancy of stability in the face of the CO2 

perturbation decreased especially in those with a history of LBP. A cross correlation between 

stability and ventilation showed no difference between AMB and CO2.  

Of all abdominal muscles, rectus abdominis exhibited the most difference between 

conditions of ventilation and LBP. Multivariate test for differences in muscle to ventilation or 

muscle to stability cross correlations were not different between LBP groups (p = 0.659) or 

between ventilation groups (p = 0.414). The interaction between LBP and ventilation however, 

approached significance at p = 0.097. Despite this, it is perhaps useful to recognize that the 

univariate tests show the correlation of rectus abdominis to stability is higher in the LBP, but 

correlation of rectus abdominis to ventilation is lower in LBP subjects. RA's correlation to 

ventilation increases in the AMB trials and correlation to stability is greater in AMB trials for 

internal and external oblique. 

4.5 Discussion 

Subjects who had not suffered a LBP episode in the past year allowed their stability 

levels to drop in CB trials. As expected however, the higher RMS difference in stability index 

during the CB task indicates that stability varied more in subjects with LBP (Table 4.1). Two 

interpretations are possible. Either the no LBP group has a sufficient margin of safety, since 

stability does not vary excessively, such that they can allow stability to lower or that the LBP 

group must be extra cautious to not let stability lower because it varies so much over time. 

Contrary to expectations, the muscle most linked to the maintenance of stability for LBP subjects 

was rectus abdominis (RA). Though not significant in the multivariate test (P = 0.097 
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LBP*Ventilation interaction), its correlation to stability was higher in LBP subjects. While RA 

also correlated to ventilation in the ambient air trials LBP subjects appear to make subtle use of 

RA, at very low activation levels to maintain stability though at the cost of increasing 

compression. RA is rarely discussed in clinically oriented papers on stability. Anatomical and 

mechanical interpretation (McGill et al. 1996) show that RA provides the anterior anchor for 

internal  and external oblique along with transverse abdominis, suggesting that its activity has 

influence on the mechanics of all these muscles. In addition its distance from the spine makes RA 

the dominant flexor moment generator and magnifying its effect on stability. 

Pattern changes in both muscle activation and spine kinematics are linked with changing 

stability requirements. Cholewicki and McGill 's (1996) earlier analysis suggests that increases of 

2% MVC activation levels in the abdominal wall are sufficient to increase spine stability. This is 

reflected in a case study where an increase in mean abdominal activity from 9% to 12% MVC vs. 

(Figure 4.1 vs. Figure 4.4) results in increased stability (Figure 4.2 vs. Figure 4.5). It seems that 

this increase in activation occurs to prevent EMG activity from dipping below 5% MVC. This 

would seem to indicate that people who cannot react by increasing muscle recruitment are at 

greater risk of injury through instability. The fact that increased ventilation demands are linked 

with increased variability in stability may place some subjects at greater risk. Several factors may 

conspire to either place an individual in jeopardy or to prevent this from occurring. The first is the 

recruitment of a previously inactive muscle such as RA to compensate for diminished activation 

of other abdominals. The second is that in a flexed posture, as our subjects adopted, passive tissue 

stiffness and stability increases (Granata and Wilson 2001). In fact, many subjects drifted into a 

greater angle of flexion over the course of the trial. Third, it was observed that over the course of 

a trial, compression drifted to higher values (Figure 4.3 vs. Figure 4.6). It has been shown that a 

higher compressive load in itself increases stiffness in the osteoligamentous spine (Janevic et al. 

1991; Stokes et al. 2002). Finally, stability is a result of many factors one of which is muscle co-

activation in response to an external load present in the static posture task adopted by our 
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subjects. The oscillating activity levels of the abdominals may be offset by oscillating and drifting 

spine kinematics embedded in a framework of globally 'stable' kinematics. For example, drifting 

into greater flexion would increase compression though greater extensor activation and balance 

against the abdominal activity. Overlaying these effects, some subjects who require abdominal 

activation to assist with breathing may recruit additional muscles, such as RA, to maintain 

stability. How these variables interact will determine the stability needed and the stability 

achieved. Perhaps a ‘learned’ perception of 'danger' in LBP group resulted in modulation of other 

factors, besides muscle activity, producing increased stability where required. 

 Several limitations should be recognized in the application of these results. First the 

model is based on the 50th percentile male and was not scaled to accommodate the variability in 

the subject population. However the varying stress levels and optimization procedure “tunes” the 

model so that small anatomical variance could be accommodated. As well, subjects were only 

compared to themselves. Second, although all the subjects supported the weight for the required 

time, tolerance to CO2 is variable resulting in a variable response – specifically some breathed 

more heavily than others. Moreover, analysis of individual trials facilitated interpretation of the 

various cases despite statistical significance not always met. While one year was used as the cut 

off to separate those who had a history of LBP from those who had not, some who were in the 

uninjured category had in fact suffered a previous injury which might have resulted in lingering 

motor deficits, blurring the differences between the groups. Finally, a mass of twenty-two kilos 

was used for all subjects. Obviously this represents differing percentages of individual strength 

limits. 

Knowing that one of the best predictors of future LBP episodes is having a history of 

LBP (Biering-Sorensen 1984), the increased compression that accompanies a task that challenges 

stability highlights how such tasks might elevate subsequent injury risk. If maintenance of 

stability is a priority, even at the cost of additional compression (Granata and Marras 2000), these 

results may provide a framework to explain how tasks that hover near the edge of stability and 
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load tolerance limits might result in an injury recurrence. This phenomenon may lead to greater 

risk, even with ‘light loads’ which engender less passive tissue stiffness, due to a combination of  

residing in the neutral zone (Panjabi 1992b) and less compressive pre-load effect (Crisco and 

Panjabi 1992; Stokes et al. 2002). Increased muscle co-activation along with accompanying spine 

compression would provide compensation for passive tissue insufficiency, and even a deficient 

muscle recruitment scheme, due to a previous injury. Thus in light loading task where the 

perceived threat is low and reliance on passive tissue is high, the risk of injury would increase 

without a co-activation response. The benefit of co-activation, especially at light loads, becomes 

evident (Gardner-Morse and Stokes 2001; Granata and Orishimo 2001).  

Although abdominal muscles do appear to be important for achieving sufficient spine 

stability, a complex in vivo model with various feedback mechanisms suggests that other factors 

may compensate for the increased variability in stability (Figure 4.6). Hodges et al.  (1997) report 

that the latency response of TrA is affected by respiratory activity. The response time is less when 

the muscle is prepared for expiration. This implies that in people who use this muscle to breathe 

(ie ‘belly breathers’ vs. diaphragm breathers) the risk of injury increases while inspiring, when 

the muscle may not be active. In this case the inactive muscle may not be available for rapid 

recruitment to stabilize if necessary.  

Increased lung ventilation rates can result in decreased stability and produces greater 

variation in stability combined with increased compression. Further, oscillations in spine stability 

with challenged breathing appear to be modulated by spine/torso kinematic adjustments. This 

may have important implications for tasks that compromise ventilation but do not permit the 

kinematic adjustments required to maintain stability or in people who elect to perform the task in 

this way. Such tasks may result in increased compression beyond what was measured in this 

study since the modulation of stability would rely exclusively on muscle activation. The overall 

conclusion of the analysis reported here is that having a history of LBP is linked to motor patterns 

that compromise the ability to optimize spine stability and compression. The interesting clinical 
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question is did these motor control anomalies lead to LBP or does the compromised motor 

response result from having LBP? Longitudinal studies in the future may help to address this 

important question. 
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Table 4.1: Mean values for the measures of stability (SI) area/time, mean, and root (time to zero 

stability) as well as flexion angle and compression. Values are given for Ventilation conditions of 

ambient air(AMB), carbon dioxide (CO2) as well as for cases of LBP and noLBP.  

Measure Low Back Ventilation Mean St Dev 

StbIndx lbp  amb 773.24 113.99 

StbIndx lbp  co2 785.03 108.17 

StbIndx nlbp amb 723.59 68.67 

StbIndx nlbp co2 692.93 162.25 

     

StbArea lbp  amb 4922.91 4484.25 

StbArea lbp  co2 4942.87 4526.97 

StbArea nlbp amb 4606.58 4342.36 

StbArea nlbp co2 4414.66 3789.20 

     

Max root lbp  amb 387.10 122.35 

Max root lbp  co2 772.30 593.04 

Max root nlbp amb 387.33 158.04 

Max root nlbp co2 391.95 131.58 

     

Comp lbp  amb 3042.07 394.65 

Comp lbp  co2 2978.96 349.69 

Comp nlbp amb 2837.65 303.40 

Comp nlbp co2 2689.55 700.18 

     

Angle lbp  amb 32.98 12.25 

Angle lbp  co2 33.78 13.56 

Angle nlbp amb 26.66 7.82 

Angle nlbp co2 28.26 8.15 

     

RMS lbp  amb 53.96 20.61 

RMS lbp  co2 82.67 40.60 
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RMS nlbp amb 46.56 11.29 

RMS nlbp co2 52.37 26.23 
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Figure 4.1: The plot depicts the abdominal EMG (right side 1 & 3; left side 2 & 4) of a subject 

with a history of LBP during a CB trial (top 2) and an AMB trial (bottom 2). A subtle increase in 

activity of the abdominal muscles at the 25 sec mark of the CO2 trial causes a dramatic increase in 

stability (figure 4.2) as well as compression (figure 4.3). 
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Figure 4.2:  The graph depicts lumbar compression, flexion angle and muscle optimization error 

of a subject with a LBP history. The increase in stability caused by increased muscle activity at 

25 sec of the CO2 trial comes at the cost of increased compression. Note, in third panel, that a 

spike in the muscle gain given by the optimization causes a spike in the ambient compression. 

This spike in gain is a result of the optimization converging on a new local minimum; generally 

the RMS of gain is very close to one which means minimal change in the input EMG to balance 

the external moment. Y-axis units in the top panel are Newtons, the middles panel in degrees and 

the last panel has no units. All X-axis units are time in seconds. 
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Figure 4.3: The plot depicts the abdominal EMG (right side 1 & 3; left side 2 & 4) of a subject 

with no history of LBP during a CB trial (top 2) and an AMB trial (bottom 2). Abdominal 

coactivation is minimal. The Y-axis in all panels is %MVC while the X-axis is time in seconds. 
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Figure 4.4: In a subject with no LBP stability varies more in the CO2 (top panel) than the 

ambient trials (bottom panel) but comparatively less than a subject with LBP. Ventilation units 

have no meaning; they have been scaled to superimpose stability so that relative trends could be 

seen. Stability units are Nm/rad2. 



 

 

 69 

 

Figure 4.5: In a subject with no LBP differences in compression values (first panel) between 

trials are minimal, even given the difference in flexion angle (second panel). The third panel 

indicated the gains applied to muscle forces by the optimization. A RMS gain of one means 

minimal change of muscle force. Y-axis units in the top panel are Newtons, the middles panel in 

degrees and the last panel has no units. All X-axis units are time in seconds. 
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Figure 4.6: A few elements stiffness 

contributing to stability are shown (muscles 

pressurized abdomen and passive tissue aided by 

flexed forward posture. 
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5.1 Abstract: 

5.1.1 Introduction 

The spine requires stiffness from muscles, ligaments and other passive tissues to ensure 

sufficient stability. While stiffness of the osteoligamentous spine has been quantified, question 

remains as to the interaction of muscle contraction (VC) and intra-abdominal pressure (IAP) in 

creating stiffness in vivo. The purpose of this study was to evaluate the modulation of spine 

stiffness from changing levels of IAP. 

5.1.2 Methods: 

Bending stiffness was directly measured about each principle axis of the spine, during 

each trial, as the slope of the applied torque-resultant bending angle relation. Bending torque was 

applied on a frictionless jig that supported the subject's torsos and neutralized gravitational effects 

(McGill et al. 1994). 3-D Lumbar angular displacement was measured by means of a 3-SPACE 

isotrak unit. Audio feedback of abdominal muscle activity was provided to the subjects. IAP was 

measured via a rectal catheter. Stability was also calculated in a model and compared between 

condition. A repeated measures ANOVA was performed with the dependent variable of stiffness 

and independent variables of plane of motion (extension, flexion, twist, lateral bend), type of 

activation (relaxed, 50% VC, maximum VC, 50% IAP, maximum IAP), curve section, pressure 

magnitude and activation magnitude. 

5.1.3 Results: 

Stiffness showed a mild dependence on activation type where stiffness ranged from 1.30 

Nm/deg in relaxed trials to 3.82 Nm/deg in maximum IAP (p = 0.0673) and plane of motion (0.34 

Nm/deg in axial twist to 4.09 Nm/deg in flexion p = 0.1222). Friedman's ranks test on the 

pressure-muscle activity ratios suggests current stability calculations leave a substantial amount 

of stiffness unaccounted for (p < 0.01). The IAP to VC ratio of stiffness divided by the IAP to VC 

ratio of stability ranges from 1.4 in twist to 3.6 in side bend.  
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5.1.4 Discussion: 

Although there is interaction between pressure and activation, pressure appears to be an 

important modulator of torso stiffness. A comparison of externally measured stiffness to modeled 

stability for the same trials suggests that muscle activation does not fully account for the 

additional stiffness generated in the IAP trials. This effect varies with levels of activation and 

direction of motion. While the effect is more prominent in resisting flexion and side bend it 

appears to be more pronounced nearer the neutral zone of torso posture for both. The implication 

is that the interaction of VC and IAP appears most important in tasks where the spine is neutral 

and stability is required. 
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5.2 Introduction: 

Stiffness of the in vivo human torso is necessary for ensuring stability of the spine 

(Cholewicki and McGill 1996; Gardner-Morse and Stokes 1998; Granata and Orishimo 2001).  

Some studies have quantified stiffness in the osteoligamentous spine (Adams 1995; Panjabi et al. 

1976; Schultz et al. 1979) while others have attempted to address the issue of stiffness in vivo and 

the influence of passive tissues i.e. visceral tissue, fat and skin (McGill et al. 1994; Scholten and 

Veldhuizen 1986). Questions remain concerning the role of these various contributors to spine 

stability and including intra-abdominal pressure (IAP). IAP is an interesting variable since 

muscular contraction is required to create it, but it also imposes hydraulic forces on the pelvic 

floor and diaphragm, modulating spine compression (along with concomitant muscular forces). 

These forces cause moments on the spine although it remains uncertain if the IAP and the muscle 

moments balance to zero. This impact of compressive preload on stiffness is important and has 

been investigated but only in the osteoligamentous spine (Edwards et al. 1987; Janevic et al. 

1991; Stokes et al. 2002). Nevertheless it is clear from this work that pre-load influences stiffness. 

Several researchers have also speculated that intra-abdominal pressure (IAP) might affect 

stiffness in the torso (Cholewicki et al. 1999b; Hodges 1999, Daggfeldt and Thorstensson 1997; 

McGill et al. 1995; Morris et al. 1961; Thomson 1988). Hodges et al. (2001a) have since 

quantified the moment created by IAP alone but stopped short of implications this might have on 

stiffness, limiting interpretation of its role in trunk stability. Questions remain as to the 

contribution of intra-abdominal pressure (IAP) in creating stiffness in vivo given the interaction 

of muscle activation and compressive pre-load. Using pressure vessel mechanics (e.g. a balloon 

filled with air derives stiffness from tension in the walls of the balloon Figure 3), McGill and 

Norman (1987) have stated that the muscle activation required to increase IAP may be a source of 

stiffness together with passive stiffness derived from the tensioned elastic walls of the abdomen. 



 

 

 75 

This paper is an attempt to decipher the interaction between IAP and muscle activation and their 

relationship to torso stiffness.  

Intra-abdominal pressure (IAP) was long ago proposed to create a 'passive' extensor 

moment that relieves spine compression by requiring less extensor muscle activation for torso 

extension (Morris et al. 1961). Some have argued that the absence of abdominal muscles and 

unrealistic diaphragm-pelvic floor geometry produced erroneous impressions (McGill and 

Norman 1987).  Specifically, the magnitude of the IAP extensor moment is not sufficient to 

counter the net flexion effects of muscle activation. Hodges et al. (2001a) directly stimulated the 

phrenic nerve to activate the diaphragm and elevated IAP in the absence of abdominal wall 

activation. They measured the development of an extensor moment proving that pressure alone 

has a small hydraulically based effect (15Nm), but only in the artificial circumstance of no 

abdominal wall activity. In reality however, increases in IAP are always associated with 

abdominal wall activity (McGill et al. 1995). Daggfeldt and Thorstensson (1997) have 

incorporated the interaction of IAP with muscle activation in a model which Hodges et al. 

(2001a) have used to reproduce a reasonable approximation of the extensor torque measured in 

their experimental results with simulations. Recent hypotheses have proposed that IAP in 

conjunction with transversus abdominis (TrA) to increase stiffness in the lumbar spine (Hodges, 

1999) produces minimal spine compression since TrA is modeled as having an angle of greater 

than 55 degrees to the vertical (Daggfeldt and Thorstensson 1997). However tasks of daily living 

involve all muscles of the abdominal wall (Juker et al. 1998) suggesting that more in-depth 

analysis is required.  

Given the unresolved controversy over the stiffening role of IAP, this study measured the 

stiffness of the lumbar torso using several combinations of isotonic/isometric activation and IAP 

in three planes of motion over as much of each subject’s range of motion as possible. The 

stiffness achieved with and without pressure was compared with the stability modeled for each 
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condition. It was hypothesized that an elevation of IAP within a constant level of muscle 

activation would produce greater torso stiffness and greater spine stability. 

5.3 Methods: 

Data collection: This study was approved by the University Research Ethics 

Committee. Electromyography (EMG) and spine kinematics were collected from eight healthy 

males with the following mean characteristics: Ht = 177.4(SD = 5.83); mass = 80.1(SD = 6.3); 

age = 26.4(SD = 3.96). Initially maximum voluntary contractions (MVC) were collected from the 

abdominal, extensor and latissimus dorsi muscles for EMG normalization purposes (see McGill, 

1991 for detailed explanation). Spine kinematics were recorded with a 3Space Isotrak unit 

(Polhemus) which recorded (T12 to sacrum) flexion-extension, lateral bend and axial twist at a 

sampling rate of 60 Hz. The electromagnetic field (EMF) source of the Isotrak was place over the 

sacrum and a sensor was worn over the twelfth thoracic vertebrae, both were held with elastic 

straps. EMG signals were recorded using bipolar surface electrodes 25 mm apart from 7 channels 

bilaterally (14 total): rectus abdominis (2 cm lateral to the umbilicus), internal oblique 

(perpendicular to the midline, medial to the anterior superior iliac spine), external oblique (15 cm 

lateral to the umbilicus positioned obliquely in line with the fibres), latissimus dorsi (15 cm 

lateral to T9 positioned obliquely in line with the fibres), thoracic erector spinae (5 cm lateral to 

T9 over the muscle belly), lumbar erector spinae (3 cm lateral to L3) and the multifidus (2 cm 

lateral to L5, angled slightly with superior electrode more medial). The collected signals were 

A/D converted at a sample rate of 1024 Hz (frequency response: 10 to 1000 Hz, common mode 

rejection ratio: 115dB @ 60 Hz, input impedance: ~10 GOhm) and  normalised to the amplitudes 

measured during the MVC procedure following rectification and low pass filtering at 2.5 Hz. 

Protocol: Torso bending was induced, from a neutral position, by applying torque to 

subjects' torsos in each of the three anatomical planes (left side bend, left twist, flexion and 

extension). For flexion-extension and bending the pelvis and limbs were immobilized while the 
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torso, supported in a cradle, was moved across a frictionless jig in response to an applied torque 

(see Figure 5.1). Axial twist was achieved by immobilizing the upper body as the subject stood on 

a turntable to which torque was applied, rotating the lower body with respect to the torso (see 

Figure 5.2). Audio feedback of internal oblique EMG was provided to the subjects to assist them 

in controlling the intensity of their effort, after having heard a maximal contraction. Internal 

oblique was used for feedback because it was found to be most consistently related to IAP and 

least likely to vary between subjects. IAP was measured via a rectal catheter normalized to 

atmospheric pressure. The subjects were instructed to contract isometrically before being pulled; 

once they were in motion they were asked to maintain an isotonic contraction rather than to 

consciously resist the experimenter's pull. Torque was applied to subjects under five conditions 

(activation types): relaxed (RELX), at approximately 50% (VC50) and 100% (VCMX) of (MVC) 

maximum abdominal wall activation (breathing normally) followed by developing approximately 

50% IAP (AP50) and 100% IAP (APMX) as targets. They were instructed that a Valsalva 

maneuver was necessary to increase IAP and shown how to produce IAP in this way.  To reduce 

variability, the resulting spine motion was normalized (as a percentage) to their maximum 

voluntary range in a standing position (Adams and Dolan, 1991).  

Data processing: The shapes of the resulting torque versus angular displacement 

curves were quite variable depending on the activation type. The necessity of comparing the 

curves between conditions precluded fitting different types of functions to the curves. An 

algorithm was developed that separated the curves into four linear sections with the minimum 

residual based on a user selected maximum line length, minimum line length, and the search step 

length. The linear fit on each of the four sections yielded the slope and intercept values. This 

algorithm was developed so that processing would not be affected by individual bias; the same 

combination of lines would always be selected for any curve assuming similar initial inputs. In 

addition to this EMG and pressure data was retrieved for each of the corresponding sections; for 

each section the muscle activation and pressure magnitude was estimated by integrating (IEMG 
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and IIAP) the curve for a given section. A ratio of IEMG was obtained for each right-left muscle 

pair and this ratio was averaged across all muscles and used as an indicator of activation 

symmetry in side bend and twist trials. A similar procedure estimated the activation symmetry in 

the sagittal plane (flexion-extension). To compare activation magnitude between trials the sum of 

squares of IEMG was tallied for all muscles for each section selected by the algorithm. It was 

then possible to incorporate all these parameters in a repeated measures ANOVA which was 

weighted for activation symmetry and controlled for the covariates of magnitude of activation and 

IAP generated. The dependent variable was the slope in each of four torque-angle curve sections 

with fixed factors of curve section, direction of motion and activation type.  

These data were also processed in a stability model (Cholewicki and McGill 1996 or 

Appendices A and B). Although described in detail elsewhere, in the interest of clarity a brief 

description of this model is provided. The skeleton of the model consisted of 5 lumbar vertebrae 

between a rigid pelvis/sacrum and a rigid ribcage. The vertebrae were linked by lumped 

parameter elastic discs allowing 3 degrees of freedom for rotational movement at each vertebral 

level (i.e. rotation about three orthogonal axes but no translation). The angular data obtained from 

the 3space Isotrak indicated the total lumbar angular change between the sacrum and T12. This 

angular change was allocated as a constant proportion distributed among all vertebrae in three 

directions based on a formula provided by White and Panjabi (1978). The rotational stiffness of 

the discs was represented by torsional springs tuned to include stiffness of the discs, ligaments, 

fascia, skin and viscera according to McGill et al. (1994). The muscle force and stiffness, 

calculated by a distribution-moment muscle model (Ma and Zahalak, 1991), were modulated by 

activation level, coefficients for instantaneous muscle length, velocity of shortening and 

maximum force generating potential. The muscle forces were then applied through 118 muscle 

fascicles to the skeletal components such that the moment they created balanced the moment 

generated by the hand held load and upper body mass minus the passive moment. It is important 

to note that stability, in the engineering sense, is defined by the maintenance of column 
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equilibrium (or the ability to survive an applied perturbation) relative to a calculated potential 

energy. The stability was quantified by using the system stiffness to calculate the potential energy 

in the linear springs (muscles and ligaments) and that in the torsional springs (discs). The stability 

index was given by the arithmetic average of the 18 roots output by the eigenvalue solution of the 

second derivative matrix  (see Cholewicki and McGill 1996 for full explanation). 

Ratios of stiffness measured in IAP trials to that measured in muscle activation trials 

were calculated for each direction of motion, curve section (1-4) and activation level (50% or 

100%). These ratios were compared to equivalent ratios obtained from the stability output. The 

mean stability was calculated for each direction of motion, curve section and activation type 

based on the angles reported in Table 5.2 plus or minus the associated standard deviation. A 

Freidman's rank test was used to detect a difference among the stiffness versus stability derived 

pressure to activation ratio. A Wilcoxon's signed ranks test was used to isolate the location of 

these differences among each direction by activation level stiffness-stability pair.  

5.4 Results: 

 Intra-abdominal pressure contributes a significant portion of the stiffness measured in 

torso. A Friedman's rank test confirms that IAP to voluntary contraction (VC) ratios from 

measured stiffness were significantly different from those obtain from the stability model (p = 

0.01). A Wilcoxon's signed ranks test specifies that the stability model underestimates stiffness by 

possibly over 2 times (on average) in side bend and flexion, particularly in sections 1, 2 and 3 of 

the range of motion (approximately 0 to 30% of maximum range). The effect was significant for 

several combinations of direction and intensity (Table 5.1) but flexion is more affected at 100% 

while side bend is affected at both activation levels. The effect in extension and twist is less 

consistent. 

For measured stiffness high within subject variability resulted in activation type, whether 

modulation of pressure or muscle at 50% or 100%, having no statistically significant impact on 
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torso stiffness. Specifically, a repeated measures ANOVA, comparing subjects to themselves, 

with the dependent variable of slope and independent variables of plane of motion (extension, 

flexion, twist, lateral bend), type of activation (RELX, VC50, VCMX, AP50, APMX), curve 

section, pressure magnitude and activation magnitude showed no significant differences. Muscle 

activation type stiffness, the means of which ranged from 1.30 Nm/deg in relaxed trials to 3.82 

Nm/deg in maximum IAP (Table 5.2), was closest to statistical significance (p = 0.0673). 

Direction of motion, the means ranging from 0.34 Nm/deg in axial twist to 4.09 Nm/deg in 

flexion was next (p = 0.1222). The maximum predicted statistical power was reached in this test;  

δ = .71 for activation and δ = .64 for direction of motion. The variability in muscle recruitment 

especially among directions of motion was too high to ever reach the requisite p < 0.05. Failure of 

the ANOVA to adequately control the variability of activation is likely a direct result of 

redundant muscle recruitment patterns, all achieving increased stiffness but contributing to 

variability to the point of affecting statistical outcomes. Hence the result of this study, although 

not statistically significant, should not be categorically dismissed. Results may be biologically 

significant. Visual inspection of box plots and the mean values in Table 5.2, indicate that 

maximal muscle activation with maximal pressure (APMX) created the highest stiffness and 

maximal activation with no pressure (VCMX) was next especially in flexion (Figure 5.3). No 

interactions of plane of motion, activation type, and curve section were significant at p = 0.05. 

Subjects were fairly accurate in their subjective estimation of the target value, for both muscle 

activation and IAP, given the auditory EMG feedback they were given (Figure 5.4 and Figure 

5.5). The 100% IAP values were roughly twice those of the 50% IAP and the same for 50 and 

100% muscle activation. Activation symmetry, both coronal and sagittal, was evaluated 

independently of its weighting in the ANOVA. Subjects were most symmetrical in side bend and 

twist (coronal) but least symmetrical in flexion (sagittal, Figure 5.6) however across activation 

types symmetry was relatively constant especially when compared to the relaxed condition. 
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Greater angles were reached in flexion and least in twist (Figure 5.7) and in all cases greater 

angles were reached in later sections of the curve fit (Figure 5.8).  

5.5 Discussion and Conclusions: 

Activation type does appear to have an effect on torso stiffness; further IAP contributes a 

significant portion of the stiffness measured externally. The hypothesis was that the addition of 

IAP to a constant level of activation would create a significantly greater stiffness. Biological 

variability in recruitment patterns and activation magnitudes due to redundancy and 

indeterminacy in recruitment of the muscular system had a dramatic impact on the ANOVA. 

Figure 5.9 to Figure 5.12 illustrate that this is the case even within the trial of an individual 

subject, where for example the three abdominal muscles interchange their roles as dominant 

agonist or antagonist. Despite this high variability, activation type almost attained statistical 

significance (p = 0.0673) which would suggest the presence of a potentially powerful effect that 

warrants closer inspection. Although it is impossible to completely physiologically uncouple 

muscle activation and IAP, statistical indications are that they have an additive mechanical effect 

on stiffness of the torso. This is demonstrated by the change in pressure to activation ratios which 

suggest that without the effect of pressure, stability is underestimated by approximately 2 times. 

If IAP contributes to stiffness then the stability model should underestimate stability when 

compared with voluntary contraction (VC) trials because no IAP component is included in the 

model. Thus, the ratio of IAP to VC stability should be less than the ratio of IAP to VC stiffness 

for the same trials, which was in fact, the case. Since the model did not include an IAP stabilizing 

mechanism the lower values indicate that something other than activation created the stiffness in 

the IAP trials, otherwise stability and stiffness should follow similar ratio patterns. The internal 

relative ratio comparison confirms the trends observed in the analysis of externally measured 

stiffness and suggests that IAP has a significant effect on stability.  
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Among the limitations of this research are the difficulties involved in controlling 

variables such as muscle activation, symmetry of activation, and the magnitude of pressure 

generated.  Audio feedback of the muscle activation was an attempt to control the magnitude of 

activation and seemed to work reasonably well (Figure 5.4). Subjects seemed to have a good 

sense of what 50% entailed versus 100% nevertheless the variability in the activation magnitude 

was controlled for statistically as a covariate in the ANOVA. EMG (abdominal and Extensor), 

pressure, force and angle leading to measured stiffness for a flexion trial at 100% muscle 

activation. Although 50% and 100% MVC were targeted this was not always achieved due to the 

constraints of requiring moments to balance in all three directions. The control of pressure 

magnitude was very similar in its variability. Even during a voluntary contraction with no 

valsalva maneuver high pressures may be generated, in fact there was little difference between 

pressure in the two 50% conditions (AP50, VC50), thus the effect of pressure was also controlled 

as a covariate in the ANOVA. The problem of activation symmetry is important because the force 

generated by the subject affects the torque-angle curve. Although the hope was that subjects 

would be able to maintain an isotonic contraction for the duration of the motion, the symmetry 

ratios suggest that they did not quite succeed. Despite the weighting of the ANOVA by these 

ratios the fact remains that the force to EMG relationship is not exact. This analysis relies on the 

symmetry of activation representing symmetry of force in the isotonic contraction, but this may 

not be the case since by forcing subjects beyond a neutral posture an eccentric contraction would 

have resulted.  

There have been many attempts to quantify stiffness in the spine, both in vitro (Adams 

and Dolan 1991; Edwards et al. 1987; Janevic et al. 1991; Panjabi et al. 1976) and in vivo 

(McGill et al. 1994; Scholten and Veldhuizen 1986). In vitro measures have shown that pre-

loading an osteoligamentous spine in compression increases stiffness (Edwards et al. 1987; 

Janevic et al. 1991; Panjabi et al. 1976; Stokes et al. 2002). In vivo stiffness measures have been 

useful to quantify the effect of passive tissues such as viscera, skin and other tissues that do not 
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directly affect the osteoligamentous spine (McGill et al. 1994; Tesh et al. 1985). In fact Scholten 

and Veldhuizen (1986) have measured sagittal bending stiffness in vivo at ten times that 

measured in vitro. The effect of activation on stiffness has been calculated, though indirectly, by 

modeling the stiffness of muscles based on EMG and calculating via a kinetic analysis their effect 

on the spine (Cholewicki and McGill 1996). Only recently the effect of increased pressure has 

been investigated at low levels (Hodges et al. 2001a). They demonstrated that pressure can 

generate an extensor moment without activation of the torso muscles by stimulating the phrenic 

nerve to contract the diaphragm and using a belt to prevent the abdomen from expanding. They 

have also shown that IAP can increase sagittal plane translational stiffness (Hodges et al. 2001b). 

However the fact remains that in vivo performance of daily activities requires activation of the 

abdominal wall along with rectus abdominis act as a “belt”; pressure cannot be generated without 

activation (McGill et al. 1996) (Figure 5.13). Theoretically TrA may fill this role without creating 

the flexor moment that would counter the effect of IAP (Cresswell et al. 1994a; Hodges et al. 

2001a. Marras and Mirka (1996) have suggested that IAP may in fact merely be a byproduct of 

muscle activation. Cresswell and Thorstensson (1989) have suggested a similar phenomenon but 

for transient or unexpected loading where a spike in pressure will correspond to a spike in TrA, 

thereby demonstrating that TrA opposes pressure in unexpected loading. The voluntary muscle 

activation conditions in the present work support the notion that significant levels of IAP are 

generated involuntarily (Figure 5.5). However there seems to be a difference between the 

pressure generated by a muscle contraction versus that generated by a deliberate Valsalva. This 

study has shown that IAP adds stiffness and stability beyond that achieved by activation 

especially at high levels of activation in flexion and side bend (ie. creating extension stiffness) 

and in the neutral zone at lower levels of activation. This is consistent with what is known about 

how deliberated generation of IAP is used in that it is generally reserved for excessive efforts. 

Interestingly, however, the direction of motion elicited different proportions of activation to 

pressure (Table 5.4). The contribution of IAP to stiffness of each activation type differs 
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depending on the motion. For example, muscle activation appears important for achieving 

greatest stiffness in extension while in flexion or side bend IAP seems more dominant. Although 

the model did underestimate stability in twisting trials the effect was not consistent. Nevertheless, 

the discrepancy between externally measured stiffness in twist and the stability reported by the 

model suggests that the effect in twist requires further investigation. As expected, stiffness was 

most affected earlier in the range of motion, or in the "neutral zone".  

Although the intricacies of co-contraction and recruitment pattern redundancy confounds 

the issue (Cholewicki et al. 1999a), the fact that the stability is underestimated by as much as over 

2 times (on average) suggests that pressure does provide stiffness and stability above and beyond 

what activation does. This effect seems predominant at higher levels of activation and particularly 

prominent in resisting flexion and side bend, particularly in the neutral zone. Surprisingly, 

although activation in general does not have a dramatic effect on twisting, pressure also seems to 

play a larger role in resisting axial twist than muscle activation does which has not, to our 

knowledge, been reported previously. This may be significant in that a prominent injury 

mechanism in the lumbar spine in the combination loading of compression and torsion.  
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Table 5.1: The IAP to VC ratio of stiffness divided by the IAP to VC ratio of stability. The 

asterisks indicate where the Wilcoxon's signed ranks test found a significant effect. This effect 

was always that the stiffness rank was greater than the stability rank. The stability model 

underestimated stiffness due to the absence of an IAP mechanism. 

Section Intensity Extension Flexion Side Bend Twist 

1 50 1.75* 2.11* 4.54* 1.34 

2 50 9.19 1.78 4.69* 1.46* 

3 50 0.77 1.73 6.08* 2.36* 

4 50 1.01 1.36 1.03 1.15 

1 100 1.10 3.29* 4.28* 0.79* 

2 100 0.67 2.67* 5.38* 1.84 

3 100 1.72* 7.06* 1.13* 1.23* 

4 100 1.51 3.16 2.31* 1.24 

avg. all 2.40 2.89 3.67 1.42 
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Table 5.2: Mean and standard deviation values for each combination of direction of motion, 

curve section and activation type. Stiffness is expressed as Nm / degree normalized to maximum 

voluntary standing range. 

direction of 

motion 

section 

number 

type of 

activation 

slope(stiffness) 

Nm/deg(norm) 

SD ANGLE 

degrees 

SD 

extension 1 relx 1.15 2.7448 6.5575 7.3194 

  vc50 1.5975 2.043 8.6019 9.7215 

  ap50 1.8985 1.6725 8.9831 8.5031 

  vcmx 2.256 2.3816 5.8693 5.8976 

  apmx 1.2408 1.6028 6.4283 5.7621 

 2 relx 0.1965 0.1949 11.1282 11.8648 

  vc50 0.6244 1.0188 8.7812 8.0752 

  ap50 1.1862 1.7344 9.8869 7.9492 

  vcmx 2.0153 2.8749 6.5927 6.0492 

  apmx 0.75 0.571 11.3 6.9555 

 3 relx 0.625 0.5003 20.3038 13.2698 

  vc50 0.715 1.2483 11.6675 9.7229 

  ap50 0.9138 1.3949 11.8631 10.2942 

  vcmx 1.0653 1.796 6.4453 5.9296 

  apmx 0.8083 1.1483 9.6433 7.3146 

 4 relx 0.9394 0.5668 26.3125 13.355 

  vc50 0.7162 0.9781 19.2994 11.1982 

  ap50 0.5492 0.5049 18.1185 12.4293 

  vcmx 0.8413 1.0075 13.0327 7.8756 

  apmx 1.1458 1.69 12.8792 4.4098 

flexion 1 relx 7.4239 15.2925 9.6494 11.8637 

  vc50 6.0788 13.3467 10.4144 11.8699 

  ap50 4.4193 5.0772 10.7186 10.2964 

  vcmx 3.5336 3.8537 11.2243 14.1468 

  apmx 10.7306 21.1698 9.3306 11.1807 

 2 relx 0.7729 2.09 13.92 12.5414 
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  vc50 2.115 4.3877 15.3175 9.9835 

  ap50 1.3443 2.226 12.3407 10.3825 

  vcmx 4.1957 5.3707 13.645 13.5875 

  apmx 15.1475 26.8913 11.8219 10.0121 

 3 relx 2.03 4.4744 21.96 12.097 

  vc50 1.5087 1.8389 22.0194 7.5848 

  ap50 2.0129 2.3392 23.7193 9.3355 

  vcmx 3.2271 5.9705 20.7336 12.5785 

  apmx 5.0956 9.3206 16.74 8.9713 

 4 relx 1.8624 1.914 28.8353 15.3248 

  vc50 2.0094 2.6046 30.0481 9.5971 

  ap50 2.3857 1.5952 31.5329 9.8891 

  vcmx 2.1279 1.4491 25.8143 10.1859 

  apmx 2.6875 1.9758 26.4556 11.3114 

side bend 1 relx 0.32 0.2099 2.824 2.4371 

  vc50 1.9315 3.4433 0.9108 0.5138 

  ap50 3.2031 5.2597 2.3485 1.1483 

  vcmx 3.1085 7.3477 1.8615 1.3633 

  apmx 12.6973 37.4174 2.778 2.0765 

 2 relx 0.295 0.3724 6.725 5.5788 

  vc50 0.9669 1.6218 5.0269 4.8671 

  ap50 0.8077 1.5955 4.8438 2.9422 

  vcmx 1.1638 0.9448 6.1954 8.4948 

  apmx 1.98 2.1934 5.5587 5.4253 

 3 relx 1.31 2.466 17.105 7.9874 

  vc50 10.5369 35.5065 17.6677 7.8209 

  ap50 0.5854 0.4113 16.5992 6.0949 

  vcmx 1.9177 2.5043 11.4438 10.2538 

  apmx 0.7153 0.7979 9.6967 8.1896 

 4 relx 1.122 0.6991 27.596 7.1371 

  vc50 2.8854 4.4382 26.31 9.2559 

  ap50 1.2631 0.753 28.1323 5.3742 

  vcmx 5.1969 13.4038 19.9138 10.7565 
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  apmx 2.652 5.2174 18.244 11.4815 

twist 1 relx 0.4467 0.5559 2.5607 2.4315 

  vc50 0.3786 0.2446 2.4571 1.9577 

  ap50 0.4092 0.4029 2.0908 2.2493 

  vcmx 0.746 0.9199 2.979 2.4817 

  apmx 0.4513 0.3165 2.5247 2.2119 

 2 relx 0.194 0.2921 3.8007 3.4573 

  vc50 0.39 0.5042 3.3271 2.4498 

  ap50 0.2123 0.1615 3.3731 2.8667 

  vcmx 0.334 0.3823 3.163 2.8077 

  apmx 1.084 3.121 3.5347 2.8208 

 3 relx 0.1907 0.1774 7.114 3.6631 

  vc50 0.1471 0.1218 4.0686 3.4845 

  ap50 0.2669 0.2447 5.7815 3.7312 

  vcmx 0.299 0.3442 6.523 4.9393 

  apmx 0.2373 0.2355 5.2987 3.6215 

 4 relx 0.2013 0.156 11.2227 3.8314 

  vc50 0.1471 0.09942 8.8471 4.3176 

  ap50 0.2292 0.2302 8.8385 4.3448 

  vcmx 0.128 0.08917 10.436 4.6235 

  apmx 0.1953 0.1139 8.7233 3.3575 
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Table 5.3: The ratio of the sum of squares IEMG to integrated pressure on a case by case basis. A 

ratio greater than one suggests that muscle activation contributes a greater proportion of stiffness 

while a ratio less than one suggests that pressure contribute a greater proportion of stiffness  

Activation Type   Activation/Pressure  

 ap50              Mean            1.1 

                   Std. Deviation  1.3 

                   N               212.0 

 apmx              Mean            0.8 

                   Std. Deviation  0.7 

                   N               232.0 

 relx              Mean            8.8 

                   Std. Deviation  65.9 

                   N               232.0 

 vc50              Mean            1.1 

                   Std. Deviation  1.4 

                   N               236.0 

 vcmx              Mean            1.4 

                   Std. Deviation  2.4 

                   N               207.0 
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Table 5.4: Activation/Pressure ratios by direction. Clearly activation contributes a greater 

proportion of stiffness in extension but surprisingly, pressure contributes the greater proportion in 

twist. 

Direction of Motion   Activation/Pressure  

Extension             Mean            7.86 

                   Std. Deviation  59.12 

                   N               288.0 

Flexion            Mean            1.18 

                   Std. Deviation  3.30 

                   N               309.0 

side bend             Mean            .92 

                   Std. Deviation  .93 

                   N               255.0 

twist              Mean            .62 

                   Std. Deviation  .51 

                   N               267.0 
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Figure 5.1: The jig used for lateral bend and flexion-extension. The cradle rolled on nylon 

bearings the experimenter applied torque to the cradle. 



 

 

 92 

 

Figure 5.2: To measure twisting stiffness the subject stood on a turntable and 

the torso was immobilized while a torque was applied to the turntable. 
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Figure 5.3: The trend is towards pressure having a larger effect in flexion while 

activation has a greater effect in extension. N.B. In this box and whisker plot 

and all of those to follow the dark bar represents the median, the box represents 

the standard deviation and the whiskers represent the range. 
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Figure 5.4: Activation was similar in the 100% trials as well as the 50% trials. 

Also note that the 100% trials were approximately twice the 50% trials in 

magnitude. 
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Figure 5.5: The trend was generally for pressure to be greater in the pressure 

conditions (100% pressure (apmx) tended to have greater pressure than 100% 

activation, (vcmx)) 
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Figure 5.6: Symmetry was best in twist and lateral bend and worst in flexion. 

The reference line indicates a ratio of one (either right to left or flexor-

extensor). 
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Figure 5.7: Flexion trials attained the largest angles while twist reached the 

smallest. Lateral bend and extension were similar but extension seemed more 

affected by pressure. 
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Figure 5.8: The angle (percentage of maximum) reached in the trials increased 

with the curve fit section number. Both maximum trial groups reached lesser 

angles in sections 3 and 4. Section 1 is considered the "neutral zone". 
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Figure 5.9: A representative case demonstrates the variablility (even within a trial) of (from top down) 

combined muscle activation (A,B), pressure (C) and applied force (D) all versus time which results in the 

stiffness displayed in the last panel (E versus angel). In this case 50% muscle activation The next three 

panels represent the same situation for different activation conditions which are labelled at the top. 
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Figure 5.10: EMG (abdominal and Extensor), pressure, force and angle leading to measured stiffness for 

a flexion trial at 100% muscle activation. Although 50% and 100% MVC were targeted this was not 

always achieved due to the constraints of requiring moments to balance in all three directions. 
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Figure 5.11: EMG (abdominal and Extensor), pressure, force and angle leading to measured stiffness for 

a flexion trial at 50% pressure activation. 
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Figure 5.12: EMG (abdominal and Extensor), pressure, force and angle leading to measured stiffness for 

a flexion trial at 100%IAP. 
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Figure 5.13: The pressurized vessel of the abdomen (blue 

balloon) contained by the elastic tension of the muscles 

(springs) lead to an increase in IAP. 
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6.1 Abstract: 

6.1.1 Background and Purpose: 

 Transversus Abdominis (TrA) has been proposed as an important contributor to spine stability.  

Abdominal hollowing (HLW) is a clinical recommendation thought to isolate TrA. The purpose 

of this research was to quantify the mechanical impact of this strategy (HLW) on spine stability 

when compared to bracing (BRC). 

6.1.2 Subjects:  

Electromyography (EMG) and spine kinematics were collected from eight healthy males between 

the ages of 20 and 33.  

6.1.3 Methods:  

First, a modelled simulation adjusted abdominal muscle activation to imitate "ideal" hollowing 

and bracing strategies. Second, real muscle activation was measured and processed to assess the 

impact on stability. 

6.1.4 Results: 

BRC improved stability over HLW by 32% with only a 15% increase in lumbar compression. 

Removing only TrA from the BRC pattern only decreased stability by 0.14% with a 0.0004% 

decrease in compression. 

6.1.5 Discussion and Conclusion: 

BRC appears to be a more beneficial strategy ensure sufficient spine stability, where sufficient 

stability is the maintenance of stability while still maximizing movement parameters.  

Keywords: Transversus Abdominis, abdominal hollowing, spine stability, low back 
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6.2 Introduction: 

Lumbar spine stability is an important issue, especially given its potential link to 

mechanisms of injury and associated clinical efforts directed towards enhancing stability in 

patients. The recruitment of transversus abdominis (TrA) through abdominal hollowing may be 

advantageous because if it increases stability, though this has yet to be demonstrated, it may do so 

without increasing the compressive load on the spine. Motivation to focus on TrA in the clinic 

has been provided by the Queensland group (eg. Richardson and Hodges) who documented 

recruitment onset deficiencies in this muscle in those with a history of low back disorders 

(Hodges and Richardson 1996). They conceived the hollowing technique to retrain perturbed TrA 

recruitment patterns which, when corrected, they hypothesized could lead to a more stable spine. 

Abdominal hollowing (HLW), so called because the navel is drawn inward toward the spine, was 

intended to only recruit TrA. In contrast, abdominal bracing (BRC) is a technique where all 

muscles in the abdominal wall are isometrically contracted, namely TrA, internal oblique (IO), 

external oblique (EO), and rectus abdominis (RA) but in a way that does not change the shape the 

abdomen (McGill et al. 1996).  In both cases the lumbar spine should maintain a neutral lordotic 

curve. This paper evaluates the clinical practice of hollowing versus bracing to improve lumbar 

spine stability through, for the first time, an approach to quantify stability. 

Until now, most of the supporting evidence for TrA being an important contributor to 

stability has been indirect and qualitative. Hodges and Richardson (1999a) have suggested that 

TrA responds early to upper limb movements in healthy people but this pre-activation is deficient 

in those with a low back pain history, though this result has not been confirmed in recent reports 

(Allison and Henry 2002; Newcomer et al. 2002). The early onset of TrA activation (Hodges and 

Richardson 1996) in combination with its limited ability to produce sagittal torque (McGill 1996) 

led to the hypothesis that it is activated for stability enhancement. Hodges et al. (1999a) have also 

shown that the magnitude of the arm movement perturbation impacts the magnitude of the pre-

activation time while the direction of limb movement does not. There is also evidence that TrA is 
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activated independently of other abdominal muscles, although it also seems to be a synergist of 

internal oblique, especially for neutral, static and anticipated motions (McGill et al. 1996). While 

our Australian colleagues have developed HLW as a TrA motor pattern re-training technique, but 

the question remains: is the isolated TrA recruitment resulting from this strategy an efficient 

stabilizer or is a full abdominal girdle co-contraction better? 

Given our previous work to quantify stability and examine the role of many torso 

muscles, we were motivated to quantify the mechanical impact of HLW versus BRC on lumbar 

stability. The important question for therapists is: should abdominal hollowing be taught as means 

of ensuring sufficient spine stability? It was hypothesized that the abdominal HLW strategy 

would be inferior to that of a BRC strategy for enhancing stability. A comprehensive lumbar 

spine model was used to quantify stability (Cholewicki and McGill 1996) but enhanced to include 

a representation of transversus abdominis. Since pilot work has shown that few people can 

perform an ideal "hollow", that is activating only TrA and internal oblique, simulations were 

conducted to activate the muscles in an “ideal” way together with real data collected in vivo, with 

the understanding that subjects may have had imperfect technique. In this way, we were able to 

evaluate "perfect hollowing" and bracing as well as the imperfect clinical reality. 

6.3 Methods: 

6.3.1 Data Collection:  

This study was approved by the university ethics committee and all subjects provided informed 

consent. Electromyography (EMG) signals and three dimensional spine kinematics were collected 

from eight healthy males between the ages of 20 and 33 (see Table 6.1 for subject characteristics). 

Since the task was static, whole body kinematics were generated by software and scaled to the 

subjects’ height and weight since all subjects were in a neutral standing posture. Initially 

maximum voluntary contractions (MVC) were collected from the torso muscles for EMG 

normalization purposes (McGill 1991). After an explanation and demonstration of the HLW and 
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BRC strategies, the subjects practised until they were able to easily achieve the required internal 

oblique activity target of 20% as displayed on an oscilloscope. This compares to a range of 

approximately 12% MVC in bracing and 32% MVC in hollowing measured by Richardson et al. 

(2002). Over a period of twenty-five seconds the subjects were then asked to relax for five 

seconds, "hollow" the abdomen for five seconds, relax for five, "brace" the abdomen for five and 

relax for the final five seconds. These trials were repeated three times each with no load in the 

hands, with 10 kg in each hand, 10 kg in the right hand only and finally with 10 kg in the left 

hand only. Spine kinematics were recorded with a 3Space Isotrak unit (Polhemus3) which 

sampled flexion-extension, lateral bend and axial twist at a rate of 60 Hz. The electromagnetic 

field (EMF) source of the Isotrak was place over the sacrum and a sensor was worn over the 

twelfth thoracic vertebrae, both were held with elastic straps. EMG signals were recorded using 

bipolar surface electrodes 25 mm apart at 1024 Hz from 7 channels bilaterally (14 total): rectus 

abdominis (2 cm lateral to the umbilicus), internal oblique (perpendicular to the midline, medial 

to the Anterior Superior Iliac Spine), external oblique (15 cm lateral to the umbilicus positioned 

obliquely in line with the fibres), latissimus dorsi (15 cm lateral to T9 positioned obliquely in line 

with the fibres), thoracic erector spinae (5 cm lateral to T9 over the muscle belly), lumbar erector 

spinae (3 cm lateral to L3) and the multifidus (2 cm lateral to L5, angled slightly with superior 

electrode more medial). The collected signals were A/D converted at a sample rate of 1024 Hz 

(frequency response: 10 to 1000 Hz, common mode rejection ratio: 115dB @ 60 Hz, input 

impedance: ~10 GOhm) and normalized to the amplitudes measured during the MVC procedure 

following rectification and low pass filtering at 2.5 Hz. 

6.3.2 Model:  

The model used in this experiment has been fully described elsewhere (Cholewicki and 

McGill 1996 or see Appendices A and B), although a brief overview is provided here. To 
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quantify stability, the critical parameter required by the model is stiffness, this means joint 

stiffness (in three dimensions) as affected by external load, passive tissues and muscle stiffness as 

a function of activity level. Anatomical improvements were made to better represent TrA. 

Specifically, the fascial attachment of TrA on the lumbar vertebrae was represented with ten 

fascicles bilaterally on the five segments (two originating on the posterior tip of the lumbar 

spinous processes and the other two originating on the transverse process of the lumbar 

vertebrae). To capture the line of action of the fascial attachments, the ten fascicles converge on a 

nodal point 60 cm directly lateral of L5 (that moves dynamically with L5). This arrangement also 

closely approximated  Tesh et al.’s (1987) experimental finding that the compression cosine of 

the lateral TrA force was 39% of its magnitude. 

The skeleton of the model consisted of 5 lumbar vertebrae between a rigid pelvis/sacrum 

and a rigid ribcage. The vertebrae were linked by lumped parameter (ie. all passive anatomical 

contributors lumped into one mathematical function) elastic discs allowing 3 degrees of freedom 

for rotational movement at each vertebral level (i.e. rotation about three orthogonal axes but no 

translation). The angular data obtained from the 3space Isotrak indicated the total lumbar angular 

change between the sacrum and T12. This angular change was allocated as a constant proportion 

distributed among all vertebrae in three directions based on a formula provided by White and 

Panjabi (1978). The rotational stiffness of the discs was represented (Figure 6.2) by torsional 

springs tuned to include stiffness of the discs, ligaments, fascia, skin and viscera according to 

McGill et al. (1994). Since the stiffness of the lumbar spine varies with angle, the restorative 

passive moments (the moment which counters the external load moment) for flexion and lateral 

bending were adjusted based on the range of lumbar motion of each individual (Cholewicki and 

McGill 1996). Twisting and extension coefficients were left as constants for all subjects, as was 

the coupling coefficient. 

In addition to the restorative moment of the passive tissues, the muscles also contributed 

a restorative moment to balance the external load. Physiological cross sectional area and a 
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maximum stress of 35 N/cm2 were used as an estimate of maximum force generating potential of 

the muscles. The muscle force and stiffness calculated by a distribution-moment muscle model 

(Ma and Zahalak 1991) were modulated by activity level, coefficients for instantaneous muscle 

length, velocity of shortening and maximum force generating potential (Cholewicki and McGill 

1995). The muscle forces were then applied through 118 muscle fascicles to the skeletal 

components such that the moment they create balance the moment generated by the hand held 

load and upper body mass. The optimization procedure normally used to distribute muscle forces 

based on muscle activity profiles and balance the moments was disabled so that it would not 

change the chosen activity profile for the simulation tests. It was also disabled for the in vivo data 

because the adjustment of the rectus abdominis moment arm for the HLW trials had a dramatic 

impact on its redistribution of forces (Figure 6.3). Nevertheless, the neutral posture and 

kinematically static nature of the task permitted the calculated moments to balance the external 

load moments within 20 Nm, even for the in vivo data. Spine compression and shear were 

estimated from the vector sum of muscle, ligament, body segment and external load forces. 

It is important to note that stability is defined by the maintenance of column equilibrium 

(or the ability to survive an applied perturbation) relative to a calculated potential energy in the 

engineering sense. The muscle force and stiffness calculated by the distribution-moment model 

(Ma and Zahalak 1991) permitted this estimate for the lumbar spine. Stability is calculated by 

computing potential energy of musculoskeletal as the sum of the elastic energy stored in the 

linear springs (UL) (muscles and tendons), elastic energy stored in the torsional springs (UT) 

(lumped intervertebral joint discs, ligaments and other passive tissues) in each degree of freedom 

minus the work performed by the external load. The second derivative of this potential indicates a 

stable system IF it is greater than or equal to zero (Cholewicki and McGill 1996). It should be 

noted that this method of quantifying stability has been applied to mechanical structures and 

validated repeatedly in civil and mechanical engineering. Its application to the osteoligamentous 

spine has also been validated by Lucas and Bresler (1961) as well as Crisco and Panjabi (1992). 
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The addition of muscles was initially undertaken by Bergmark (1989). Since then Cholewicki and 

McGill (1996) have modified a pre-existing model (McGill and Norman 1985), by adding 

components to quantify stiffness. While each of the added components has been validated 

independently, more biofidelity was achieved by further enhancing the very detailed model of the 

spine. Simulation with the model as a whole have reproduced both Lucas and Bresler (1961) and 

Crisco and Panjabi’s (1992) experimental results. As well, the muscle model has also reproduced 

experimental results (Cholewicki and McGill 1996). 

6.3.3 Analyses: 

Since pilot work revealed that few subjects could perform an ideal "hollow", the first 

approach was to simulate "ideal" abdominal activity assuming perfect technique Richardson et al. 

2002. The second approach used real muscle activity measured from the subjects. In the 

simulation (first approach) the abdominal muscle activity levels were artificially adjusted to 

imitate "ideal" HLW and BRC strategies. In simulating the HLW strategy, the measured TrA and 

internal oblique EMG signals were replaced by activity at 20% MVC while the rectus abdominis 

and external oblique were activated at 2% MVC. The BRC strategy was simulated with all 

abdominal EMG signals being replaced by activity at 20%. In both cases (BRC and HLW), the 

extensor activity levels were simply those measured.  The effect of TrA was evaluated by 

removing it from the BRC trial (BRC-NoTA) in addition to randomly selecting a 2 hand load trial 

from which each abdominal muscle pair was taken out of the analysis in turn, similar to 

Cholewicki and VanVliet IV (2002). In the case of HLW the moment arm of rectus abdominis 

(and consequently the attachments of internal and external oblique) was shortened by 5 cm when 

compared to BRC to mimic the "drawing in" of the abdomen (Figure 6.4).  

The output from these simulations was a stability index, which indicates if the 

equilibrium of the system is stable. The magnitude of the index is also important. Unpublished 

simulations have shown that as the external load approaches the maximum tolerance of the 
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equilibrium that stability decreases; they are inversely correlated. Hence, the magnitude of the 

stability index represents a level of risk; the closer it is to zero the greater the risk; below the 

system (ie. spine) is not stable. 

The second approach used data collected from the recruited subjects (i.e. not simulated) 

and was processed using the same model. Since it was of interest to know if increased stability 

came at the cost penalty of greater spine compression, the statistical analysis was performed on 

both the stability index and L4-5 compression. A two way repeated measures ANOVA for the 

dependent variables of stability and compression required that the data were sorted into two 

groups of independent variables each with several sub-groups. The first independent group 

(muscle activity pattern) had two subgroups of HLW and BRC while the second independent 

group (load) had four subgroups: 1) load in both hands, 2) no load, 3) right hand load and 4) left 

hand load. The change in (dependent) compression and stability between BRC and HLW trials 

was expressed as a percentage change (equation 1).  

  

%change
BRC HLW

BRC
=

−





×100
  Equation 1 

6.4 Results:  

Simulations showed that as a means of increasing stability in the lumbar spine HLW is 

not as effective as BRC. BRC improved stability over HLW by 32% with only a 15% increase in 

compression (Figure 6.5, Figure 6.6 and Table 6.2). Removing only TrA from the BRC pattern 

(BRC_NoTrA) decreased stability by 0.14% with a 0.0004% decrease in compression (Figure 

6.6). The importance of TrA relative to other abdominal muscles is not significantly different (P = 

0.01) (Figure 6.7). 

In reality, the in vivo data demonstrated that the stability differences between BRC and 

HLW were not as dramatic because none of the subjects recruited for this study succeeded at 

coordinating an "ideal" hollow pattern (Figure 6.8). One of the subjects' results were excluded 
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because the abdominal recruitment patterns were not at all consistent with what had been 

requested for the trials. Nevertheless, multivariate test results from a repeated measures ANOVA 

of the strategies used, showed that across trials stability was significantly different (P > 0.05) 

between activity patterns (Table 6.3), but the loading types (no load, both hands, right hand, left 

hand) were not (P = 0.207). Univariate results showed that the stability was different between 

strategies (P = 0.023) but compression was not (P = 0.647). BRC had a greater mean stability 

index and there were no significant interactions between load and activation (P = 0.944). Since 

the multivariate showed no differences in the load variable the univariate output for this variable 

was ignored. The stability index plots from the simulation trials clearly show that stability was 

lower in the abdominal HLW condition. While in the simulation the BRC pattern resulted in 

greater compression, when subjects were request to perform an abdominal hollow, compression 

was greater. 

6.5 Discussion: 

 The question central to this research is: should HLW be taught as a means of increasing 

spine stability? BRC provided greater stability than HLW in both the simulation and in vivo data. 

Further, the compression/stability ratio favoured BRC. Clearly bracing is superior to hollowing 

for people wishing to prevent instability. This should not diminish abdominal HLW as a tool for 

training or retraining the recruitment of TrA because this forms a component of the abdominal 

girdle. 

Several limitations should be addressed. The first is that TrA in the model was activated 

by the internal oblique activity profile. Although it has been shown to have a synergistic activity 

for neutral static postures (Cresswell et al. 1994a) the individual variability in recruitment 

patterns that our subjects showed might have changed the outcome.  Nonetheless, our simulation 

trials did test the contribution of TrA, assuming perfect technique “hollowing” technique by the 

subject. Secondly, while a TrA representation was modelled, the interaction between TrA and 
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intra-abdominal pressure (IAP) was not accounted for. However, recent data suggests that a HLW 

strategy is unlikely generate greater pressure than full BRC (Grenier and McGill 2001). Pressure 

generated in a HLW strategy would not overcome its stability deficit to a BRC strategy. No 

sudden perturbations were involved in this research. The stability response was measured only 

with fully anticipated loads in isometric neutral postures for symmetric and asymmetric loads. It 

is possible that for a sudden load the pressurization response might maintain sufficient stability 

until the remainder of the torso muscles are recruited. Lastly, there were considerable variations 

in the recruitment patterns used to achieve HLW. HLW trials were collected when subjects could 

demonstrate a decrease in external oblique and rectus abdominis along with an increase in 

internal oblique, but often the increase in internal oblique was minimal. The in vivo data were 

supplemented with simulations where technique was under complete control of the experimenters 

to elucidate the differences between ideal techniques as well in vivo trials, with all of their 

variability. The simulations serve to increase the strength of these data in two ways. First, the 

difficulty in training a hollowing pattern is highlighted, thereby limiting its use in difficult tasks. 

Second, even if an “ideal” hollowing had been achieved it still falls short of the stability provided 

by bracing. Finally, while the stability quantification approach has been tested before there are 

other variations of the approach. For example, Gardner-Morse et al. (1995) search for the critical 

load in attempting to better converge on the “magnitude” of stability. In the approach documented 

here, one can simply state that a larger stability index indicates a more stable structure. On the 

other hand a twofold increase in the stability index magnitude may not translate in the doubling of 

stability. 

The mechanical effect of TrA on lumbar stability has not, to our knowledge, been 

reported in the literature prior to this, nor has the effect of hollowing. The work of Tesh et al. 

(1987) provides some insight as to the modelling of this muscle as well as for how the muscle and 

the associated abdominal pressure resist lateral bending moments in full flexion. The force 

generated by our TrA equivalent was on the order of 5 N for a 20% MVC contraction. Using their 
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mean gain of 0.39 in converting this resultant to a compressive force yields a compressive force 

of 1.9N, as compared with their reported thoracolumbar fascia tissue tolerance of 335N. They 

also report that IAP may contribute as much as 40% of the restorative moment in lateral bending. 

Our own work shows that IAP contributes significant stiffness especially in the neutral posture 

(Grenier and McGill 2001). However for comparison purposes this can be safely neglected 

because a HLW strategy is unlikely to generate greater IAP than BRC. Recent work done with 

co-contraction of the abdominals and its effect on stability supports our findings (Granata et al. 

2001). A general co-contraction of the abdominal wall balanced against antagonists and the load 

is most effective in attaining lumbar stability and maintaining it. It may be misleading to assume 

that a muscle exerts greater force based on increased thickness (and shortening) viewed through 

ultrasound. This can only show whether a muscle is active, or not. Further, this assumption 

overlooks the possibility of an eccentric contraction and the significant force that this type of 

contraction can generate. Assuming that a shortened muscle exerts a given amount of force is a 

misinterpretation of the force-length curve. This curve merely indicates the force advantage that a 

muscle has at a given length, if the required activity is present. 

6.6 Conclusion:  

Bracing of the abdominal muscles achieves higher lumbar spine stability than hollowing 

and should be advocated where greater spine stability is required. While the success of abdominal 

hollowing as a tool to return normal recruitment patterns to transverses abdominis is it not 

disputed (Hodges and Richardson 1999b), the use of this technique to “stabilize” the spine 

appears inappropriate based on quantification of stability during a simple loading task. Perhaps, 

under conditions of surprise perturbation prompt recruitment of TrA countering increased IAP 

may be critical until the remaining torso muscles can be recruited, once the central nervous 

system has determined the nature of the perturbation. 
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Table 6.1: Subject characteristics. 

Table 1: Height  Weight Age 

Mean 1.82 79.8 23.8 
Maximum 1.88 93.6 33 
Minimum 1.73 60.5 20 
Standard Deviation 0.056 11.5 4.33 

 

Table 6.2: The percent increase in stability of BRC over hollow is clear, especially for the the 

ideal simulation of BRC. Each condition in BRC was compared to its counterpart in HLW. Note 

that in the subject data compression increased under right hand load HLW conditions, though 

only by 1.7%. 

% change from BRC  Stability  Compression 

No load HLW  7.2  2.3 
2 hand load  6.0  3.0 
Left hand load  6.7  2.8 
Right hand load  2.3 -1.7 
Simulation HLW   32.5  15.3 
Simulation BRCnoTA     0.14          0.0004 
Simulation BRCnoEO 16.5  11.0 
Simulation BRCnoIO 32.5  12.7 
Simulation BRCnoRA 12.6  10.6 
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Table 6.3: Mean stability and compression value from in vivo data trials. In the case of stability 

activation types (BRC and HLW) were significantly different from each other but load types were 

not. The compression values had differences between loads and between activation types. Note 

that the asymmetric lifts had the highest compressions but in the case of BRC this lead to greater 

stability.  

Trial Mean Stability 

Index 

 Std Error Mean Compression Std. Dev. 

HLW - no load 474.6 20.1 1866.5 106.4 
HLW - 2 hand load 495.6 16.7 1929.2 84.9 
HLW - left hand load 517.7 13.2 2003.0 62.4 
HLW - right hand load 533.4 13.6 2042.7 67.6 
BRC  - no load 511.3 9.3 1911.0 44.6 
BRC  - 2 hand load 527.3 14.1 1989.1 58.4 
BRC  - left hand load 555.0 16.5 2060.4 52.6 
BRC  - right hand load 546.1 14.1 2008.6 62.7 
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Figure 6.1: A schematic representation of the spine motion segment  

incorporating the linear and torsion springs working against an applied load. 

 

 

 

 

 

 

 

 

 

Figure 6.2: Adjustment of the moment arm of rectus abdominis relative to the lumbar joints 

has a large effect on the resulting moment and consequently stability as well.  
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Figure 6.3: The moment arm of rectus abdominis was reduced by 5 cm (B in left panel) when 

compared to the bracing condition (right panel) to account for the change in mechanics during the 

hollowing strategy. 

 

 

 

 

 

 

 

 

 

 

A: flaccid 

B: hollowed 
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Figure 6.4: Lumbar stability increased by a significant margin (32%) under the simulated BRC 

condition. Note that the stability index scale is larger due to greater stability in the simulations. 
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Figure 6.5: Although lumbar compression due to the external load is equal among conditions, 

compression due to muscle activation differs between the simulation BRC and HLW condition by 

a maximum of 500N. 
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Figure 6.6: Removal of TrA from the BRC had such a marginal effect on the stability index that, 

it was not graphically visible.  Note that the stability index scale is larger due to greater stability 

in the simulations. 
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Figure 6.7: When abdominal muscle pairs (right and left) were removed from the analysis, each 

in turn, the relative importance of each muscle became apparent. The difference between the 

original intact (all muscles included) trial and the muscle removed trial is plotted. The shorter 

bars mean that the stability changed to a lesser degree when that pair was removed. Note that as 

in Cholewicki and VanVliet IV, 2002 none of these was significantly different from the original 

at p = 0.01 
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Figure 6.8: A composite of two trials of  In vivo subject data (a 2 hand load trial chosen at 

random) shows that BRC had greater stability than HLW but, in general, not to the same degree 

as in the simulations. The large spike at the beginning of the trial is an artefact resulting from the 

transition between relaxed and hollowed. 
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Chapter 7: Summary 

This collection of experiments unveiled several salient aspects of spine stability and how 

it is controlled in vivo.  

Chapter 3: A simulated ramp increase in compressive load on the spine in neutral lordosis under 

different activation conditions demonstrated several characteristics.  

•  Muscle activation provides the spine with some protective mechanical impedance.  

•  Two important consequences of this are that: 

1. Given a steady state, buckling events are delayed.  

2. The magnitude of three-dimensional buckling is reduced.  

•  Although greater loads were supported on a straighter spine, buckling was less 

dramatic in the lordotic spine: a neutral posture seems to be beneficial in reducing 

injury risk.  

•  Including a modeled increase in passive stiffness for each increase in compression 

also had the effect of delaying the buckling event. Allowing for a 250 ms muscle 

activation response to a perturbation and the additional 60-80 ms required for tension 

build up, this combination of delay and reduction in buckling magnitude for a given 

muscle activity pattern could reduce risk of injury. 

Chapter 4: The combination of applied perturbation and predetermined activation patterns 

indicate that: 

•  Based on the natural tendency to brace, given a choice, healthy individuals will select 

the most appropriate stabilization strategy.  

•  Applying a perturbation of challenged breathing showed that healthy subjects were 

skilled at maintaining optimal stability while minimizing compression (relative to 

LBP subjects) and still maintain the elevated ventilation task.  
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•  LBP subjects, perhaps due to a more variable stability index, maintained an elevated 

stability level but at the expense of greater spine compression.  

•  Healthy subjects balanced risk of injury against the task requirements while LBP 

subjects seemed to skew their response toward safety, inadvertently (though possibly 

necessarily) placing themselves at risk. 

Chapter 5: Testing stability under various predetermined activation patterns also suggests that 

healthy people will naturally select the best stabilizing alternative.  

•  For example, measuring the trunk stiffness produced by deliberate IAP increase 

versus deliberate muscle activation increase indicates that IAP provides stiffness and 

stability above and beyond what activation alone can contribute, particularly in 

resisting lateral bend and flexion.  

•  This would explain the seemingly natural response of skilled lifters to pressurize the 

abdomen in response to heavy loads.  

Chapter 6: The comparison of muscle bracing versus abdominal hollowing also points in this 

direction.  

•  Regardless of load symmetry the natural tendency to brace provided greater stability 

as well as a greater stability to compression ratio.  

•  The more contrived abdominal hollowing maneuver, while it may be useful for 

retraining deficient recruitment patterns, does not provide as much stability as the 

muscle brace. 

 

The main thrust of this thesis was to begin addressing the interaction between stability, 

the various sources of stiffness and how they might be consciously controlled (Figure 1). The 

preceding summary, detailing the outcomes of various experiments indicates some headway has 

been made. It seems likely that individuals have some control over stability though how much of 
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this is conscious is still not clear. Nevertheless it does appear that sources of stiffness such as 

compression, and muscle stiffness can be affected on a conscious level through motor control. In 

addition passive sources of stiffness may be affected by consciously controlling posture (i.e. 

lordosis). Whether these strategies may be taught to those who are deficient in lumbar stability 

remains to be seen, though it does look promising. 

 Closing on a philosophical note, it appears that 'Mother Nature' really does know best. 

Rarely is there benefit in second guessing instinctive choices. Rather, the benefit is in 

understanding them, why they change and how to reproduce them.  Motor control errors appear to 

be rare and deficient or corrupted control strategies are difficult to identify given the redundancy 

of the system. It seems plausible that, in healthy individuals, ensuring stability exclusive of any 

other task is not extremely challenging, unless that task strains the limits of an individuals 

capacity. A combination of tasks appears to produce the neuromechanical conflict necessary to 

challenge stability.  There are indications that a very small amount of damage to passive tissues 

“corrupts” the sensory feedback to active control in the spine (Holm et al. 2002). The 

deterioration of motor control necessary for stability may be gradual, though its momentary 

disappearance coincident with a challenging event resulting in an injury may seem quite sudden. 

Clinically, the training or retraining of such individuals necessitates consideration of the factors 

contributing to stability and interactions among them. All of these issues bring up the questions of 

validity and reliability of the model. When the model is applied to a clinical population are we 

measuring stability? Verification of this a challenge which we have no answer to at this stage, 

however by mimicking the physiology and mechanics of the system and validating these parts, 

we can achieve some level of content validity. This content validity provides some confidence, at 

least for relative measures. There is no question that empirical validation is a challenge for the 

future. 
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7.1.1 Future Work: 

 Although a compression pre-load stiffness mechanism was added to the stability model a 

limited amount of data on this mechanism means that it will almost certainly require adjustment, 

especially at higher loads. In addition, the finding regarding IAP’s contribution to stability is an 

advancement but understanding the mechanism by which it works is slow in coming. Certainly 

this should be a focus of future research and given indications of interaction between IAP and 

translational stiffness it may be aided by adding the possibility of translational instability to the 

model (currently underway). The evaluation of abdominal hollowing, a clinical retraining 

strategy, illustrates the possible clinical use of this model. The method described here to assess 

post-buckling behaviour has potential to indicate areas and tissues at risk of injury. For this to 

occur however, the lumped parameter passive stiffness, in its current form, must partitioned 

among the passive tissues. Evaluation of clinical instabilities and their cause would then also be 

possible. By removing or “damaging” specific tissues, simulating the actual injury, its impact on 

stability could then be assessed, versus decreasing the lumped parameter stiffness. 



 

 

 130 

 

 

 

 

Appendix A:  

Flow chart of lumbar spine model 
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Adapted from McGill 1992 
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Appendix B 

Stability analysis 
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Exerpt from Cholewicki and McGill 1996 

 

At any given frame, the potential of the spine (V) is expressed as the sum of the elastic energy 

stored in the linear springs (UL) (muscles and tendons), elastic energy stored in the torsional 

springs (UT) (lumped intervertebral joint discs, ligaments and other passive tissues) minus the 

work performed on the external load (W): 

                                                                                                                       B1L TV U U W= + −  

Partial derivatives of the potential V were calculated separately for each component taking the 

Euler angles αI (3 rotation angles x 6 joints = 18 df) as the generalized coordinates: 

 

The energy stored in the linears springs (UL) can be expressed as follows: 

 

where  

Fm = instantaneous muscle force (N) 

Km = instantaneous muscle stiffness (N/m) 

lom,lpm = original ('frozen' in a given frame) and perturbed muscle lengths (M) and 
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Since the partial derivatives are evaluated at the unperturbed point of equilibrium, lpm-lom = 0 and 

the Equation (B4) reduce to the following: 

 

 

If the muscle length is represented with a sum of n sections (when the muscle passed through the 

nodal point), its potential energy derivatives consist of a sum of its sections with some additional 

terms. Thus, if lom = lom1 + lom2 + …  + l omn  and lpm = lpm1 + lpm2 + …  + l pmn then 

 

Since the length of a given muscle lp (dropping muscle subscript at this point) is given by the 

vector sum of the length components in the X, Y, and Z axes direction, 
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then 

 

and 

 

substituting B6, B7 and B8 into B4 yields 

 

and 

 

It remains to evaluate partial derivatives of the muscle length components lpx, lpy, and lpz in 

relation to all 18 rotation angles αi. If the muscle originates on a skeletal segment 'w' and inserts 

onto segment 'u', then its length vector is: 
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where  

λ is a rotation matrix 

L is the vector of vertebral segment lengths taken between the adjacent joints,  

X,Y,Z are coordinates of the muscle attachment points in the reference posture 

OX,OY,OZ are coordinates of the rotation centre (a joint) of a given segment 

Partial derivatives of the elements of rotation matrices were easily programmed on a computer by 

inserting the appropriate derivatives of trigonometric functions. 

 To obtain the elastic energy, which is stored in all the torsional springs, we need to 

integrate the following: 

 

where  

Mij is the moment about the ith  axis of a jth joint  

a,b are coefficients (negative for negative angles) 

K is a coupling coefficient between twist and lateral bend 
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which leads to: 

 

The first partial derivatives of Ut will have two terms belonging to the two adjacent intervertebral 

joints: 

 

For negative angles, coefficients 'a' and 'b' will appear with a minus signe and the appropriate 

constants will be inserted in the case of flexion. Now there are six partial derivatives of the Ut 

possible for the general case: 
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An identical equation format results if the UT formulation of twist is differentiated twice. 

Flexion/extension has the same general format as (B16), except K=0 in the case. 

 The external work (W) performed by the load is a dot product of the force and 

displacement vectors: 

 

where hp and ho are the perturbed and the original points of force application. Thus, 

 

 

Since the load P is always applied to the ribcage, 
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where  

n = 1 to 18 

V =  potential energy  

Q = generalized coordinate 

 

Mathematically, a complete relative minimum of the potential energy (V) of the system is a 

necessary and sufficient condition to satisfy the mechanical stability criteria. This is equivalent to 

stating that the second variation of the potential V must be positive definite. Therefore the 

determinant as well as the principal minors of the Hessian matrix (second derivatives of the 

potential V with respect to each of the generalized coordinates Qi) must be positive. The 

determinant D is called the stability determinant.
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