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Abstract

Achieving a higher transmission rate had always been a goal in the field of communications.

Having a two-way channel in which two nodes transmit and receive data at the same time,

is an important tool to achieve this goal. A two-way channel is the first step from point-

to-point communication channel toward multi-user networks. In its ideal form, we can

transmit data two times faster by using a perfect two-way channel. However, the area

of two-way channels had not been of interest of researchers during the past years and

number of articles on this area is considerably low comparing to other types of multi-

user communication networks, such as multiple-access channel, broadcast channel and

interference channel.

On the other hand, use of analog-to-digital converters (ADC) is a must in modern

systems to enable us to analyze data faster; nevertheless, presence of ADC add some other

difficulties to the system.

In this thesis, different scenarios about two-way channel are studied. The Shannon’s

model of two-way channel and his inner and outer bounds on the capacity of this channel

are presented. For the Gaussian Two-Way Channel with quantized output, in which the

ambient noise has a Gaussian distribution, the expression of Shannon’s inner bound for

both Gaussian and discrete inputs are derived.

The best uniform quantizer to obtain the maximum achievable rate for Gaussian input

is found numerically. Then we will evaluate the additive noise model for the quantizer

from an information theoretic point of view.

For the discrete input, the method of rotating one input with respect to other one is

employed to enlarge the achievable rate region.

At last, two scenarios will be studied in which, minimizing the power of interference,

does not necessarily maximizes the transmission rate.
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Chapter 1

Introduction

In this chapter we will study a variety of subjects related to our works. We will have a

glance on prior arts and what has been done by researchers so far.

First of all, in the next section, basics of Two-way Channel, which is the main topic of

this thesis, is presented. A short history of this channel is given and different features will

be investigated.

In the next section, a study on quantization is presented. We will see how we can

model a quantizer in our systems and it affects the performance. Quantization noise is

then looked at and best model of its pdf will be introduced.

In section 3, we will see a scenario which is called erasure channel for a point to point

communication. This type of channel has been also studied in this thesis for Two-Way

channel.

But, we need first to know what has been done on this topic before. So, a short

discussion on very important paper on this topic will be given.
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1.1 Two-Way Channel: A short review

Two-way channel, for the first time, has been introduced by Shannon [1] in 1961. In that

paper Shannon described properties of a two- way channel in general. A two-way channel

consists of two users, trying to send information to each other through a common path. A

simple model of two-way channel has been depicted in Fig. 1.1.

Figure 1.1: A simple model of Two-way Channel

To study a two-way channel we will enter the field of network information theory. The

capacity of a two-way channel in its general form is still an open problem. But, in [1],

Shannon derived both an inner bound and an outer bound for the capacity region of a

two-way channel. These two bounds, coincide in some cases of two-way channel. But, in

most cases there is a gap between Shannon’s proposed bounds. For example, for MOD 2

adder (Fig 1.2) as a Two-way channel introduced in Shannon’s paper, these two bounds

coincide.

Figure 1.2: An Example of Two-way channel in which Shannon’s bounds coincide

But, for Binary Multiplying Channel (BMC) (Fig. 1.3), where the adder is substituted

with an AND gate, these bounds do not coincide.
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Figure 1.3: An Example of Two-way channel in which Shannon’s bounds do not coincide

For the BMC channel shown in the above figure, Schalkwijk in [2] proposed a new coding

scheme that leads to a achievable rate beyond Shannon’s inner bound. He also improved

this achievable rate later in [3] and [4]. In 1995, an even better scheme introduced for this

particular channel in [5].

Each node at two-way channel has both transmitter and receiver antennas. These two

antennas are close to each other. A very common phenomenon in two-way channel is

self-interference or leakage signal, which is the signal from transmitter to receiver of one

node.

In 1984, for the general case of two-way channel, Han derived a higher achievable rate

than Shannon’s inner bound in [6]. In this paper, he also calculated the exact capacity

of Gaussian Two-Way (GTW) channel, and showed that for this scenario, the two-way

channel can be modelled as two parallel channels with Gaussian noise and the capacity

region is rectangular.

A new outer bound on the capacity of two-way channel has been introduced in [7]. In

this work the bound is derived by introducing two auxiliary random variables.

After these works the area of capacity of two-way channel has not been investigated so

much.

Throughout this thesis we will consider two independent codebooks for users and try

to enlarge Shannon’s achievable rate region.
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1.2 Quantization in Communication

Another topic that will play an important role in this thesis is Quantization. In the modern

communication systems, quantization is an inevitable part. Most of signal processing at

the receiver side are performed after an analog-to-digital conversion and quantization is a

part of this conversion.

Our model of two-way channel is also Gaussian, with uniform quantizers at receivers.

Use of quantizer at receivers has been studied recently in some works. In [8] and [9], it has

been shown that for point-to-point channel, when we quantize the output of the channel,

the capacity achieving input distribution has to be discrete. In fact it has been proven

that use of quantizer imposes an additional peak-power constraint on the input random

variable and according to [10] the input has to be discrete. In [11] and [12] the author

considered output quantization for MAC and Broadcast channel with discrete input.

Different aspects of quantization has been studied so far. In this thesis, the main feature

that we will face through using a quantizer is Quantization error or Quantization noise.

We will consider an additive model for this error. So it is defined as the difference between

the value of the quantizer’s input signal and the value of the quantizer’s output. This

quantization noise is well-studied at [13] and [14].

We will use both Gaussian and discrete random variables as the channel input.

1.3 Gaussian Erasure Channel

In the third chapter of this thesis we will consider a Gaussian Erasure two-way channel.

In this channel the messages can be completely erased with some probability distribution

of erasure, and receiver only receives the channel noise. In [15] the capacity of Gaussian

Erasure point-to-point channel is studied and the asymptotic expressions for the capacity

is found.
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Chapter 2

Two-Way Channel with Output

Quantization

2.1 Introduction and Preliminaries

In this chapter we will discuss about basics of two-way channel and the model which intro-

duced by Shannon in 1961. Then Gaussian Two-Way (GTW) channel and Han’s argument

([6])about this particular, but important, type of two-way channel will be presented. Then

we will discuss about our own model in which, a quantizer is added at both receiver ends.

2.1.1 Shannon’s Model of Two-way channel and Prior Arts

Shannon proposed a discrete memoryless two-way channel. His model of two-way channel

has been shown in Fig. 2.1 [1].

In this figure, f and g are encoding functions and ϕ and ψ are decoding functions.

m1 and m2 are input messages for user1 and user2 respectively. m1 is chosen from set

M1 = {1, 2, ...,M1} and m2 is chosen from set M2 = {1, 2, ...,M2}. P (y1, y2|x1, x2) is

the channel transition probability function. X1 and X2 are channel inputs and Y1 and Y2
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Figure 2.1: Shannon’s model of Two-Way channel

are channel output alphabet sets. For encoding a message, each user, uses both current

message and a sequence of received symbols from the other user. Similarly, decoding at

each receiver end depends on the message sent and the sequence of received symbols. For

a block code of length n, the encoding functions are as follow:

xn1 = (f0(m1), f1(m1, y11), f2(m1, y11, y12), ..., fn−1(m1, y11, ..., y1,n−1))

xn2 = (g0(m2), g1(m2, y21), g2(m2, y21, y22), ..., gn−1(m2, y21, ..., y2,n−1))

(2.1)

The probability of error at each terminal is then defined as the following:

Pe1 = 1
M1M2

M1∑
m1=1

M2∑
m2=1

P (m1 6= m̂1|m1,m2were sent)

Pe2 = 1
M1M2

M1∑
m1=1

M2∑
m2=1

P (m2 6= m̂2|m1,m2were sent)

(2.2)

Let us denote the rate of the code-book that carries information from transmitter 1 to

receiver 2 by R1 and from transmitter 2 to receiver 1 by R2.

Now, pair (R1, R2) is an achievable pair rate if for η > 0 and any 0 < λ < 1 there exists

a code (n,M1,M2) such that:

( 1
n
)logM1 ≥ R1 − η

( 1
n
)logM2 ≥ R2 − η

(2.3)
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and
Pe1 ≤ λ

Pe2 ≤ λ
(2.4)

The set of all achievable pair rates form the capacity region of two-way channel [6].

Shannon bounds on the capacity of Two-Way channel

The capacity region of a two-way channel in its general form is still unknown. In [1],

Shannon established inner and outer bounds on the capacity region of a two-way channel.

The outer bound includes all pairs of (R1, R2) satisfying the inequalities

R1 ≤ I(X1;Y2|X2)

R2 ≤ I(X2;Y1|X1)

, (2.5)

where X1 and X2 have an arbitrary joint distribution p(x1, x2). As for inner bound,

these expressions still hold, however, X1 andX2 are independent random variables p(x1, x2) =

p(x1)p(x2).

In this thesis we will try to enlarge this achievable rate region introduced by Shannon

for different scenarios.

New inner bound

For this model, Han in [6] introduced a new achievable rate region. According to his work

the new achievable rates can be found by defining a new random variable and block Markov

coding strategy. This new achievable rate region completely includes Shannn’s proposed

inner bound and so it is a new inner bound for two-way channel. The cardinality of the

auxiliary random variable is assumed to be finite and thus the inner bound is computable.

7



To understand the achievable rate region of Han, a test channel is needed to be intro-

duced. This test channel is depicted in figure 2.2.

Figure 2.2: Han’s test channel

As it is shown in this figure, each channel input Xi is generated using three auxiliary

random variables, Ui, Ũi and W̃i. Where Ui carries the new message information, Ũi carries

previous message information, and W̃i carries the feedback information from the output

terminals [6]. These three auxiliary random variables then produce channel inputs under

fi’s as the encoding functions:

X1 = f1(U1, Ũ1, W̃1)

X2 = f2(U2, Ũ2, W̃2)
(2.6)

The relation between auxiliary random variables is defined as the following (for i = 1, 2):

Ũ t
i = U

(t−1)
i

W̃i = X
(t−1)
i Y

(t−1)
i

(2.7)

Han’s encoding scheme is different from Shannon’s scheme in [1]. Shannon updates the

channel input signal bit by bit using the current message and the received feedback. But

here, Han’s scheme uses a completely similar encoding scheme stated in [23]. Actually a

block Markov technique.

The main theorem of Han is the following:
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Theorem 2.1.1. (Han [6]) If we define these inequalities:

R1 ≤ I(Ũ1;X2Y2Ũ2W̃2)

R2 ≤ I(Ũ2;X1Y1Ũ1W̃1)
(2.8)

and set R as below:

R =
⋃

(R1, R2) (2.9)

Then every element of R is achievable.

New outer bound

After Han’s work, in 1986, a new outer bound to the capacity of two-way channel derived

in [7]. This new outer bound also derived by using auxiliary random variables. The main

theorem of this paper is the following:

Theorem 2.1.2. ( Zhang [7]) The capacity region R of a two-way channel is a subset of

the region

R∗ ≡ {((R1, R2) :

R1 ≤ min[H(X1|Z1), I(X1;Y2|X2, Z2)] (2.10)

R1 ≤ min[H(X2|Z2), I(X2;Y1|X1, Z1)]

where X1, X2, Y1, Y2, Z1, Z2 are random variables whose joint distribution is of the form:

p(z1, z2)p(x1|z1)p(x2|z2)p(y1, y2|x1, x2)

and p(y1, y2|x1, x2) is the channel transition probability.

Xi can be assumed to be generated by Zi. Zi itself can be considered as the combination

of the past message information and the feedback of the terminal i. Therefore, the amount

of new information in Xi is actually H(Xi|Zi). I(Xi;Yj|Xj, Zj) (and i 6= j) is an upper

9



bound that is imposed by two-way channel itself. Consequently, the forward direction rate

is less than the minimum of these two values.

2.1.2 Gaussian Two-Way Channel (GTWC)

A Gaussian Two-Way Channel (GTWC) has been shown in figure 2.3.

Figure 2.3: Gaussian Two-Way channel, Z1 and Z2 are Gaussian random variables

According to this figure we have:

Y1 = h11X1 + h21X2 + Z1

Y2 = h12X1 + h22X2 + Z2

, (2.11)

where X1 and X2 represent the transmitted signals and Z1 and Z2 are additive noises at

the receiver sides. Moreover, Z1 and Z2 are Gaussian independent random variables. For

each terminal the signal from transmitter to its own receiver is not desired and acts as

an interference signal. Because this signal goes from transmitter to receiver of one node

we call it Self-Interference. Due to the nature of this system, the interfering signal has

much higher power than the desired signal, i.e., h11 and h22 are much larger than h12

and h21, respectively. Using RF techniques, one may considerably reduce self-interference

[22]. Because this signal is known for the receiver, the receiver tries to cancel it. In a

scenario where we impose a power constraint over input signals, Han in [6], derived the

10



exact expression for the capacity region of GTWC. He presented this result in the following

theorem

Theorem 2.1.3. [6] The capacity region of GTWC with power constraint P1 and P2 is the

set of all (R1, R2) such that

R1 ≤ 1
2

log
(

1 + h12
2P1

σ2
z

)
R2 ≤ 1

2
log
(

1 + h21
2P2

σ2
z

) . (2.12)

It is seen that the capacity achieving inputs are Gaussian and each side can completely

cancel the self-interference. As such, GTWC is equivalent to two orthogonal (parallel)

Gaussian point-to-point channels.

2.1.3 Gaussian Two-Way Channel with output Quantization

Quantization is an inevitable part of modern communication systems. Most of signal pro-

cessing operations at the receiver side are performed after the analog-to-digital conversion

stage. In the rest of this chapter, we address a GTWC with quantized outputs. The system

model is shown in figure 2.4

Figure 2.4: Model of Two-Way channel with output quantization
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Using this figure we have the following:

Y1 = Q(Ỹ1) = Q(h11X1 + h21X2 + Z1)

Y2 = Q(Ỹ2) = Q(h12X1 + h22X2 + Z2)

, (2.13)

where Y1 and Y2 are the quantized outputs and Q(·) is quantization function. Since quanti-

zation is not a linear operation, users cannot cancel the effect of self-interference anymore.

Therefore, in contrast to GTWC, Gaussian inputs are not necessarily optimal.

We utilize identical quantizers with a finite number of quantization levels at both ends.

The step size of the quantizers is denoted by q. The output of the quantizer can assume

any of the M real numbers in the set Y = {l1, l2, ..., lM}. In fact, Q(y) = li whenever

y ∈ Ri = [bi−1, bi] where

b0 = −∞
bM = +∞

bi =
(
i− M

2

)
q, i ∈ {1, 2, ...,M − 1}.

(2.14)

We take SNR , P
σ2
z

as a measure of SNR. In [8, 9], it is shown that in a point-to-

point Gaussian channel with quantized output, the capacity achieving input distribution

is discrete with a finite number of mass points. In the setup of a GTWC with quantized

outputs, our results confirm the supremacy of discrete inputs over Gaussian inputs at least

in the low SNR regime. As such, the majority of this chapter is devoted to constellation-

based transmitters.

In [8] it is proposed that the loss in mutual information between the input and output

of a point-to-point channel due to low-precision quantization is tolerable and even for high

values of SNR (20 dB), 3-bit quantizers do not decrease the performance more than 15%

compared to infinite precision quantization. Motivated by this observation, we rely on

8-level (3-bit) quantizers in our simulations unless otherwise stated.

The rest of this chapter is organized as follow. In section 2.2, performance of Gaussian

12



inputs is studied and optimum step size of quantizer is computed numerically for some

SNRs. In section 2.3, for 1-dimensional and 2-dimensional scenarios the expression for

channel capacity with constellation-based inputs is derived. Then, we consider a θ degrees

rotation in constellation of one of the users, and investigate its effects on capacity region.

2.2 Gaussian Inputs

Although Gaussian inputs are not necessarily optimal for our problem, it is still of interest

to evaluate their performance in this model.

2.2.1 Why Gaussian?

Achieving a high rate data transmission is a goal in modern communication systems, spe-

cially in mobile devices. An important obstacle that these systems experience is multipath

fading. To overcome this problem, a common way is to employ multi-carrier signals,

such as OFDM [25]. The main advantages of OFDM signal are: robustness against fading

caused by multipath propagation and against Inter-Symbol Interference, robustness against

narrow-band co-channel interference, easily adaption to severe channel conditions with-

out complex equalization, and simple implementation using Fast-Fourier Transform(FFT).

But, an important problem of OFDM signals is their high Peak to Average Power Ratio

(PAPR), specially when number of carriers is large.

On the other hand, as we stated above, use of analog-to-digital converter is a must in

modern systems. This means that the received signal first goes through a quantizer.

In this section, we utilize the OFDM signals as the input of a two-way channel.

We suppose the channel inputs are chosen from constellations with N points S1 and S2.

S1 = {s11, s12, ..., s1N}

S1 = {s21, s22, ..., s2N}
, (2.15)
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sij’s are complex numbers. These points are then transmitted over the channel under

OFDM modulation. We denote the modulated signal by Si(t), for i ∈ {1, 2}:

Si(t) =
N∑
k=1

sike
−jωkt. (2.16)

where:

Si(t) = Xi(t) + jYi(t) (2.17)

In [16], it has been rigorously proven that bandlimited OFDM signal converges to a sta-

tionary complex Gaussian random process when number of sub-carriers goes to infinity,

i.e. both real and imaginary part of the signal will converge to a Gaussian random process.

For the sake of simplicity, we just study the real part of the signal. The results can be

extended to the imaginary part as well. We suppose N is large enough such that we can

substitute Xi(t) by Xi which is a Gaussian random variable.

Because we would like to study the achievable rate region introduced by Shannon [1]

we consider two independent Gaussian signals as the channel inputs. We also assume that

h11 = h22 and h12 = h21. Moreover, we impose the same power constraint over inputs, i.e.

P1 = P2 = P . In this condition Ỹ1 and Ỹ2 in figure 2.4 are Gaussian random variables with

the following pdf’s.

fỸ1(ỹ1) =
1√

2π((h11
2 + h21

2)P + σz1
2)

exp
(
− ỹ21

2((h11
2 + h21

2)P + σz1
2)

)
(2.18)

fỸ2(ỹ2) =
1√

2π((h12
2 + h22

2)P + σz2
2)

exp
(
− ỹ22

2((h12
2 + h22

2)P + σz2
2)

)
(2.19)

Due to symmetry, we focus on computing R1. According to (2.5), we need to compute

I(X1;Y2|X2). Note that Y2 is a quantized version of Ỹ2 and is a discrete random variable.

Deriving a closed form for this conditional mutual information is unlikely. However, we

can compute it numerically and find the optimum quantizer.

In the next subsections we consider a uniform finite-level quantizer Q at both receiver

14



ends. In subsection 2.2.2 for differnt values of input power (P ) we find the optimum step-

size of quantizer. In subsection 2.2.3 we will try to find a model for additive quantization

noise.

For the rest of this chapter we suppose: σZ1 = σZ2 = σZ .

2.2.2 Optimum step size for Gaussian Input

In this subsection, we will find the best uniform quantization step size for a fixed number of

levels (M is fixed) that maximizes the Shannon acheivable rate from terminal 1 to terminal

2. To do so we utilize the expression for conditional mutual information.

I(X1;Y2|X2) = H(Y2|X2)−H(Y2|X1, X2) (2.20)

Fig. 2.5 demonstrates the optimum step size of output quantizers, which maximizes

the rate, for different values of SNR.

Figure 2.5: Optimum quantizer step size for GTWC with Gaussian inputs at different
SNRs

The following observations can be made from this figure:
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1- Low-precision quantizing does not affect performance considerably. For example, at

SNR = 4.77 dB, the best rate we can achieve is 0.89 bits/sec/hz with step size 1.3. If we

do not use a quantizer, this rate would be 1 bits/sec/hz according to (2.12). This implies

that there is about 10% loss due to 3-bit quantization in contrast to the case with no

quantization.

2- Given number of quantization levels, M , there is only one optimum step size. In

fact, for small step sizes, the quantizer cannot cover the whole dynamic range of its input.

On the other hand, as we increase the step size, the resolution decreases. This results in

loss of information as well. The reduction continues until we reach a point in which almost

the whole signal lies in one step and the amount of I(X1;Y2 | X2) converges to a certain

number (e.g., 0.37814 for SNR = 4.77 dB).

3- As SNR increases the dynamic range of the signal at the quantizer input grows and

the optimum step size increases accordingly.

2.2.3 How to model the Quantization noise?

In this subsection we want to replace the quantizer with an additive noise and then see how

appropriate is this model by comparing the achievable rates obtained using each model.

Let’s consider n as the additive quantization noise which is defined as the following:

N = X −Q(X) (2.21)

where X is the input signal of the quantizer. In [13] and [14] quantization noise is well

studied. In both of these works for an infinite-level quantizer a necessary and sufficient

condition for the quantization noise to be white and uniform is expressed. A condition

under which the input signal and quantization noise are uncorrelated is also proposed.

It can be easily shown that the pdf of quantization noise is:
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fN(n) =


1
q

+ 1
q

∑
i 6=0

ΨX(2πi
q

)exp(−j 2πin
q

) q/2 ≤ n < q/2

0 otherwise.

(2.22)

Where ΨX(.) is the characteristic function of the random variables X and is defined as

below:

ΨX(u) = E[exp(jux)] (2.23)

Theorem 2.2.1. (Sripad [14]) The pdf of quantization noise is uniform

fN(n) =

1
q

q/2 ≤ n < q/2

0 otherwise.
(2.24)

if and only if the characteristic function of the input random variable has the following

property:

ΨX(2πi
q

) = 0, for all i 6= 0

The above theorem explains the necessary and sufficient condition for the quantization

noise to be uniform. So N is a uniform random variable with zero mean and variance:

σ2
N = q2/12. The same condition is a sufficient condition for quantization input signal and

quantization noise to be uncorrelated [14].

But according to our model, the input signal of the quantizers in the receiver sides are

Gaussian (see (2.19) ). We also know that the characteristic function and pdf of a random

variable are Fourier pair. This issues together with the fact that the Fourier transform of

Gaussian signals is also Gaussian, yields that the input signal of our quantizers does not

satisfy the condition in the above theorem.

In [13] it is shown that if the quantization step size is fine enough, we can approximately

use the results of the above theorems.

Now, we would like to evaluate this approximation from an information theoretic point

of view, i.e. we model the quantizer by an additive uniform noise which is independent
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of quantizer’s input signal (however in the above theorem, if the condition is satisfied,

quantizer noise and the input signal are assumed to be uncorrelated).

Again we calculate R1 (transmission rate from user 1 to user 2) and results are extend-

able to R2. According to this assumption we have:

Y2 = Q(Ỹ2) = h12X1 + h22X2 + Z2 +N2 (2.25)

where N2 is the additive uniform quantization noise at receiver 2.

Now the expression of achievable rate according to Shannon’s inner bound is:

R1 ≤ I(X1;Y2|X2) = h(Y2|X2)− h(Y2|X1, X2) (2.26)
a
= h(h12X1 + h22X2+Z2+N2|X2)−h(h12X1+h22X2 + Z2 +N2|X1, X2)

b
= h(h12X1 + Z2 +N2|X2)− h(Z2 +N2|X1, X2)
c
= h(h12X1 + Z2 +N2)− h(Z2 +N2)

Where (a) comes from (2.25), (b) comes from properties of differential entropy, and (c)

comes from independence of random variables.

In the above expression, h12X1 +Z2 +N2 and Z2 +N2 are both sum of two independent

Gaussian and uniform random variables1. We know that the pdf of sum of two independent

random variable is equal to convolution of their pdf. For a Gaussian random variable

G ∼ N(0, σg
2) and uniform random variable U ∼ Unif(−q/2, q/2) we have:

S = G+ U

So fS(s) = (fG ∗ fU)(s), where fG is Gaussian pdf and fU is Uniform pdf.

fS(s) =

∫ q/2

−q/2

1

q

1√
2πσg2

exp(−(s− x)2

2σg2
)dx =

1

q

(
φ(
−q/2− s

σg
)− φ(

q/2− s
σg

)
)

(2.27)

1In h12X1 + Z2 +N2 the Gaussian random variable is h12X1 + Z2 with variance h12
2P1 + σZ

2.
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Now, for the last line of (2.26), suppose the following expressions:

S1 = h12X1 + Z2 +N2

S2 = Z2 +N2

(2.28)

Then:

R1 ≤ I(X1;Y2|X2) = h(S1)− h(S2) (2.29)

where pdf of S1 and S2 are as below:

fS1(s) =
1

q

(
φ(

−q/2− s√
h12

2P1 + σZ2
)− φ(

q/2− s√
h12

2P1 + σZ2
)
)

(2.30)

fS2(x) =
1

q

(
φ(
−q/2− s

σZ
)− φ(

q/2− s
σZ

)
)

(2.31)

To evaluate the additive noise model for the quantizer we compare the Shannon’s

achievable rate obtained from (2.29) (additive model) with achievable rate obtained by

using quantizer itself. Figures below show this comparison. For these simulations we

suppose that the power of channel noise is 1 and the power of signal is 3. Channel gains

are identical and equal 1.

In the first figure, quantizer has 16 levels. According to this figure three phases can be

observed:

• For the additive noise model, when q is small, the power of quantization noise is very

low. On the other hand, for the quantizer model, because there is limited number of

quantization levels, it can not completely cover the dynamic range of received signal.

So the achievable rate for the additive model is higher.

• When q increases the achievable rate obtained from these two models meet each

other.

• As q get larger, the power of additive noise still grows and achievable rate decreases

monotonically. But in the quantizer model as q increases the whole received signal
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Figure 2.6: Comparison of Shannon’s Achievable rate for two models. Number of levels:
16

Figure 2.7: Comparison of Shannon’s Achievable rate for two models. Number of levels:
128

lies in one quantization bin and the achievable rate saturates, and after this point

increasing quantization step size does not change the rate.
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In the second figure, we increase number of levels to 128 and nothing else is changed.

As we expected the effect of this increment is only on the first phase and the other two

phases remain the same as the previous figure.

2.2.4 Reducing Truncation noise

Because quantizers have limited number of bits, their dynamic range can not be infinity.

Consequently, the input signal will be clipped if its amplitude is beyond the dynamic range

of the quantizer. There is some works ([17]-[21]) on the effect of clipping the OFDM signals

and methods of mitigating the clipping error. The well-known effects of clipping OFDM

signals are in-band distortion and out-band noise emission.

In this subsection, we assume that the quantizer is fixed and from the receiver point of

view try to increase the performance of the system.

Now, consider the receiver at terminal 2 in the Fig. 2.8 (results can be used for the

other receiver).

Figure 2.8: Receiver at terminal 2

The desired signal for this receiver is X1, and X2 is self-interference. Let’s denote the

power of X1 and X2 by P1 and P2 respectively. That is:

P1 = E[X1
2]

P2 = E[X2
2]

(2.32)
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As we mentioned earlier, at each receiver, power of self-interference signal is much

higher than power of desired signal. In the other word h22 � h12. But, X2 is known for

receiver 2. Now we introduce a new random variable, W2, which is defined as the following:

W2 = h12X1 + Z2. (2.33)

Since X1 and Z2 are two independent Gaussian random variables, we have:

PW2 = h12
2P1 + σ2

z2
(2.34)

So we may re-write (2.25) and power of Ỹ2 as follows:

Ỹ2 = h22X2 +W2 (2.35)

PỸ2 = h22
2P2 + PW2 (2.36)

Ỹ2 goes through a quantizer and whenever its absolute value is greater than T , the

truncation point, it’s truncated. Let’s denote the truncation error in receiver 2 by γ2.

We would like to calculate the power of this error. To do so, we need first to present a

formulation. We introduce a new variable, IT , which takes two values (0 and 1) according

to the following expression:

IT (ξ) =

0 if |ξ| 6 T,

1 if |ξ| > T.
(2.37)

Using this new variable, the power of γ2 is defined as:

E[γ2
2] =

∫ ∞
−∞

IT (Ỹ2)(Ỹ2 − T )2fỸ2(ỹ2)dỹ2, (2.38)

where:

fỸ2(ỹ2) =
1√

2πPỸ2
e
− ỹ22

2P
Ỹ2 (2.39)
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The amount of this error power depends on power of quantizer input, Ỹ2, and truncation

point, T .

Our method to decrease E(γ2
2) is based on our knowledge about X2. Since we know

X2, we can compensate error in truncation to some extend. Suppose we have clipper C
which clips its input signal if its absolute value is larger than T ′. We pass h22X2 through C.
Now, whenever Ỹ2 > T , we check if h22X2 > T ′. If this is the case, then we add h22X2−T ′

to T to produce the output of Q. So the output would be T + (h22X2 − T ′). Besides, if

Ỹ2 < −T and h22X2 < −T ′ the output of the quantizer would be −T − (−h22X2 − T ′). In

this way, we decrease the amount of error. In general, by this method, error γ2 is as the

following:

γ2 =



|Ỹ2| − T if


Ỹ2 > T and h22X2 < T ′

or

Ỹ2 < −T and h22X2 > −T ′

|W2 − T + T ′| if Ỹ2 > T, and h22X2 > T ′,? 1

|W2 + T − T ′| if Ỹ2 < −T, and h22X2 < −T.†

0 otherwise

(2.40)

Where (?) and (†) come from the following expressions:

(?) if Ỹ2 > T and h22X2 > T ′ then the error is: |Ỹ2 − (T + (h22X2 − T ′))| = |W2 − T + T ′|

(†) if Ỹ2 < −T and h22X2 < −T ′ then the error is:

|Ỹ2 − (−T − (−h22X2 − T ′))| = |W2 + T − T ′|

Now, we need to calculate the power of γ2 based on this new definition and new pa-

rameters and find the optimum value of T ′ which minimizes the error power. We take α
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as the ratio of the received power from signal X2 to the one from W2 at receiver 2.

α =
h22

2P2

PW2

(2.41)

Figure 2.9 , shows the result of simulations for the optimum value of T ′ for different values

of T and α. It is clear that for very large T ′, results are the same as the scenario without

clipper C.

Figure 2.9: Optimum value of T ′ for different quantizers

2.3 Constellation-based Inputs

Next, we evaluate the Shannon achievable region in a GTWC with constellation-based

inputs. In [11] and [12] use of constellation-based input for Gaussian MAC and Gaussian

broadcast channel with quantized output is investigated. Simulation results in Table 1
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compares the values of R1 in constellation-based GTWC with PAM signals and GTWC

with Gaussian inputs. According to this Table, at least at low SNR discrete input has

supremacy over Gaussian. We didn’t optimize over all discrete inputs though, and just

used identical 8-points PAM with different power constraint for both transmitters. For

subsections 2.3.1 to 2.3.4, we assume that the noise power is equal to 1, i.e., σ2
z = 1 and

channel gains are symmetrical, i.e., h11 = h22 and h12 = h21.

Table 2.1: Performance of Gaussian and Discrete Inputs in a GTWC with Output Quan-
tization

SNR
Gaussian Inputs Discrete Inputs (PAM)

R1 Opt. step Size R1 Opt. step Size
1 0.46432 0.95 0.46972 0.85
2 0.71814 1.2 0.72418 1.05
3 0.88916 1.4 0.89247 1.2
4 1.0162 1.55 1.0165 1.4
5 1.116 1.65 1.1125 1.5
6 1.1976 1.8 1.1911 1.7
7 1.2659 1.9 1.2564 1.8

Suppose X1 and X2 are generated uniformly over finite constellations X1 and X2 with

cardinality K1 and K2, respectively, i.e., Xi = {xi,1, xi,2, ..., xi,Ki
} for i ∈ {1, 2}. One may

express I(X1;Y2|X2) as

I(X1;Y2 | X2) = H(Y2 | X2)−H(Y2 | X1, X2). (2.42)

For I(X2;Y1 | X1) we will have exactly the same arguments as (2.42) and just need to

exchange the indexes.

We study both 1-dimensional and 2-dimensional scenarios in the following subsections.
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2.3.1 1-Dimensional Constellations

In this subsection we consider a constellation with points along one axis. For such constel-

lation, H(Y2 | X2) in (2.42) has the following form:

H(Y2 | X2) =
1

K2

K2∑
i=1

H(Y2 | X2 = x2,i) (2.43)

and
H(Y2 | X2 = x2,i) =

−
∑M

k=1 P (Y2 = lk | X2 = x2,i) log2 P (Y2 = lk | X2 = x2,i).

(2.44)

On the other hand,

P (Y2 = lk | X2 = x2,i) =

1
K1

∑K1

j=1 P (Y2 = lk | X2 = x2,i, X1 = x1,j)

(2.45)

We need to discuss about (2.45). Note that Y2 is a quantized version of Ỹ2 and the

probability density function of Ỹ2 is

f(Ỹ2 | X2 = x2,i, X1 = x1,j) =
1√
2π

exp(−(Ỹ2 − h22x2,i − h12x1,j)2

2
). (2.46)

This leads us to (2.47) where φ(·) is the cumulative distribution function of a standard

Gaussian random variable.

P (Y2 = lk | X2 = x2,i, X1 = x1,j) = P (Ỹ2 ∈ Rk | X2 = x2,i, X1 = x1,j)

=
∫ bi
bi−1

1√
2π

exp(− (Ỹ2−h22x2,i−h12x1,j)2
2

)dỸ2

= φ(bi − h22x2,i − h12x1,j)− φ(bi−1 − h22x2,i − h12x1,j)

(2.47)
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As for H(Y2 | X1, X2),

H(Y2 | X1, X2)= 1
K1

1
K2

∑K1

j=1

∑K2

i=1H(Y2 |X1 =x1,j, X2 =x2,i). (2.48)

Similarly, H(Y2 | X1 = x1,j, X2 = x2,i) can be written as follows:

H(Y2 | X1 = x1,j, X2 = x2,i)

= −
∑M

k=1 P (Y2 = lk | X2 = x2,i, X1 = x1,j) log2 P (Y2 = lk | X2 = x2,i, X1 = x1,j)

(2.49)

2.3.2 2-Dimensional Constellations

Next, we consider 2-Dimensional Constellations. The ambient noise at both ends is modeled

as circularly symmetric complex Gaussian noise with unit variance.

We require to perform 2-dimensional quantization at outputs. Quantization is per-

formed independently on each dimension. Due to uniform quantization, the quantizer

regions, Rmn, will be rectangular with horizontal boundaries bm−1 and bm and vertical

boundaries dn−1 and dn. Let us denote the quantization regions by lmn. Assume that

the quantizers have M horizontal and N vertical levels. If yi ∈ Rmn then Q(yi) = lmn

(for i = 1, 2). Basically, expressions for obtaining conditional mutual information in 2-

dimensional case can be derived in an almost similar manner to 1-dimensional problem.

However, they are slightly different. Equations (2.43) and (2.48) remain unchanged. How-

ever, equations (2.44) to (2.47) and (2.49) change to equations (2.50) to (2.54) where V (1)

and V (2) denote components of variable V , V = V (1) +
√
−1V (2). Note that we need to

rely on numerical computations.

H(Y2 | X2 = x2,i) = −
M∑
m=1

N∑
n=1

P (Y2 = lmn | X2 = x2,i) log2 P (Y2 = lmn | X2 = x2,i) (2.50)
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P (Y2 = lmn | X2 = x2,i) =
1

K1

K1∑
j=1

P (Y2 = lmn | X2 = x2,i, X1 = x1,j) (2.51)

f(Ỹ2 | X2 = x2,i, X1 = x1,j) =
1

π
e−|Ỹ2−x2,i−x1,j |

2

(2.52)

P (Y2 = lmn | X2 = x2,i, X1 = x1,j) = P (Ỹ2 ∈ Rmn | X2 = x2,i, X1 = x1,j)

=
∫ bm
bm−1

∫ dn
dn−1

1
π
e−|Ỹ2−x2,i−x1,j |

2
dỸ

(1)
2 dỸ

(2)
2

=
[
φ(
√

2(bm − x(1)2,i − x
(1)
1,j))−φ(

√
2(bm−1 − x(1)2,i − x

(1)
1,j))

]
×
[
φ(
√

2(dn − x(2)2,i − x
(2)
1,j))−φ(

√
2(dn−1 − x(2)2,i − x

(2)
1,j))

]
(2.53)

H(Y2 | X1 = x1,j, X2 = x2,i)

= −
∑M

m=1

∑N
n=1 P (Y2 = lmn | X2 = x2,i, X1 = x1,j) log2 P (Y2 = lmn | X2 = x2,i, X1 = x1,j)

(2.54)

In the next subsection, the rate region will be sketched for 4-PAM and QPSK at some

SNRs.

2.3.3 Rotation of Constellation

In this section we extend the concept of Uniquely Decodable (UD) alphabet pairs proposed

in [24]. For given constellations X1 and X2, Xsum1 and Xsum2 are defined as follow (given
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h11 = h22 = a and h12 = h21 = b):

Xsum1 = {Q(ax1 + bx2) | ∀x1 ∈ X1, x2 ∈ X2}
Xsum2 = {Q(bx1 + ax2) | ∀x1 ∈ X1, x2 ∈ X2}

(2.55)

In fact, Xsum1 and Xsum2 denote the quantized version of received constellations at each

receiver. Given the mappings ψ1 : X1 × X2 7→ Xsum1 and ψ2 : X1 × X2 7→ Xsum2, we call

the pair (X1,X2) to be a UD pair if ψ1 and ψ2 are one-to-one mappings.

If the pair (X1,X2) is UD, probability of error in decoding the received signal decreases

and information can be transmitted through the channel at higher rates.

A simple way to achieve such UD pairs is to rotate the constellation of one user, i.e,

X2 = X1e
jθ. As such, we let K1 = K2 = K. Our goal is to find an angle of rotation that

maximally enlarges the Shannon achievable region. Let us denote such an angle by θ∗.

Numerical simulations show that the rotation of one constellation enlarges the achievable

region and in some cases, results in a rectangular region. According to the definition of UD

pairs, it is clear that in some cases, constellation rotation does not help us in reaching our

goal, i.e., θ∗ = 0, specially for quantizers with large step size. In fact, the optimum value

of θ depends on the structure of the quantizer. Generally, for 1-dimensional constellations,

θ∗ = 90 for most of the cases. For 2-dimensional constellation, by increasing the number

of constellation points, the optimum angle decreases.

For a UD constellation pair, both Xsum1 and Xsum2 haveK2 elements. As SNR increases,

sum rate converges to log2K
2 = 2 log2K, which is the maximum achievable sum-rate for

a channel with K-point constellations at inputs.

It is necessary to mention that, if we do not quantize the output, rotation of constel-

lation would not help, because the receiver knows the constellation and rotating it does

not give any further information. However, since the quantizer does not operate linearly,

its output is not completely clear for the receiver. From a mathematical point of view, we

can say without quantization (2.53) is an integral from −∞ to +∞ and rotation (which is

equivalent to changing the mean value of the random variable Ỹ2) does not have any effect

on the results. But, because here we are integrating on a bounded interval, location of the
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mean value of Ỹ2 is important.

2.3.4 Applying Rotation method to some known Constellations

In this subsection the effect of rotation of constellation is studied for some practical con-

stellation choices. In all of the results of this section, we assume all channel gains are equal

to 1, and step size of the quantizer is also equal to 1.

We first apply this method to a 4-PAM constellation. As it is illustrated in figure

2.10, rotation enlarges the achievable rate region considerably, specially for higher values

of SNR. Without rotation we have only one dimension in transmission. Through applying

rotation, we are adding another dimension which decreases the effect of self-interference.

Figure 2.10: Result of Rotation of Constellation for 4-PAM at different SNRs- Dashed:
with rotation, Solid: without rotation

Figure 2.11 shows the results of rotation of one QPSK constellation. Here, we can see

the advantage of rotation as well. In a moderate SNR (10 dB) we can almost achieve 2

bits/sec/hz for each user which is the maximum achievable rate when we use this particular

constellation.
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Figure 2.11: Result of Rotation of Constellation for QPSK at different SNRs- Dashed:
with rotation, Solid: without rotation

We can also compare the performance of these two constellations. For all amounts

of SNR, QPSK works better than PAM, as it was expected. But, for PAM, improve-

ment obtained by rotation of constellation is much larger than QPSK. This is due to the

orthogonality (θ∗ = 90 for PAM) caused by rotation for 1-dimensional constellations.

2.3.5 Adjusting self-interference channel gain

In this subsection we consider a fixed quantizer at each receiver side, i.e. users are not able

to manipulate the structure of output quantizer to obtain a better achievable rate. But,

there is another parameter in their hand to play with and achieve a higher rate. Actually,

they can adjust the self-interference channel gain. We suppose that each user can adjust

the power of signal that goes to its own receiver, but because of some obstacles (such

as system inaccuracy or analog-to-digital conversions) they can not completely remove

this interference. In other words, each leakage channel gain hii is always beyond some

constant αi. So hii ∈ [αi,∞). We would like to show, although the signal from one’s

node transmitter to its receiver is an interfering signal, due to presence of quantizer at

each endpoint, minimizing the power of this signal does not help us to obtain a higher
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transmission rate.

We consider K-point PAM as the channel input. Each user uniformly chooses one of

these K points to transmit.

Again we work on R1. We can use expressions in subsection 2.3.1 to calculate the

achievable rate. In these expressions every thing is given except h22. We change this

parameter to obtain maximum achievable rate. The channel gain at which this maximum

rate is achieved is denoted by h22
∗.

Figure below demonstrates the R1 versus h22. For this simulation we consider a 4-point

PAM, forward channel gain is 1 (h12 = 1), and quantizer has 16 levels with step size equal

to 2. According to this figure it is obvious that rate is not a monotone decreasing function

of leakage channel gain.

Figure 2.12: Effect of changing leakage channel gain on achievable rate

Figure 2.13 , shows the received constellation at receiver 2, without noise. According to

this figure and our other observations, whenever the the received constellation is uniformly

placed at quantization bins, the rate increases. This result can be justified by saying that

when the points are uniformly placed, they become distinguishable. So the effect of channel
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Figure 2.13: location of points before adding noise, the dashed lines are boundaries of
quantizer’s bins

noise becomes low.
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Chapter 3

Gaussain Erasure Two-Way Channel

3.1 Introduction

In this chapter Gaussian Erasure Two-Way channel is studied. In an erasure channel the

received signal is erased and the erasure factor has some probability distribution. Under

this situation the receiver just receives the channel noise. We will use discrete random

variables as the channel inputs. So the pdf of received signal at each endpoint is mixed-

Gaussian. Before we start to describe our model in this chapter, a very important and

useful theorem is expressed as the following:

Theorem 3.1.1. 1 Let X be a random variable with PDF

p(x) =
M∑
m=1

pm√
2πP

e−
(x−xm)2

2P , (3.1)

1Derived by K. Moshksar, Ph.D. (kmoshksa@uwaterloo.ca), Supposed to be submitted in a joint paper
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where x1 < · · · < xM and (pm)Mm=1 is a discrete probability sequence. Define

am = pme
−x2m

2P , bm =
xm
P
, m = 1, · · · ,M, (3.2)

c+m =
am
aM

, d+m = bm − bM , m = 1, · · · ,M − 1, (3.3)

c−m =
am
a1
, d−m = b1 − bm, m = 2, · · · ,M, (3.4)

η+(x) = ln

(
1 +

M−1∑
m=1

c+me
d+mx

)
, x ∈ R+, (3.5)

η−(x) = ln

(
1 +

M−1∑
m=1

c−me
d−mx

)
, x ∈ R+. (3.6)

Let x+∗ ≥ 0 be the unique root of η+(x) = ln 2 for aM < 1
2

and x+∗ = 0 otherwise. Similarly,

let x−∗ ≥ 0 be the unique root of η−(x) = ln 2 for a1 <
1
2

and x−∗ = 0 otherwise. For any

N lb
1 , N

ub
1 , N2 ∈ N ∪ {0},

β + α2N lb
1 +1,N2

≤ h(X) ≤ β + α2Nub
1 ,N2

, (3.7)

where αN,N ′ and β are given in (3.8) and (3.9), respectively. Finally, the errors α2Nub
1 ,N2

+

β − h(X) and α2N lb
1 +1,N2

+ β − h(X) scale like O
(

1
Nub

1

)
+O

(
1
N2

)
and O

(
1
N lb

1

)
+O

(
1
N2

)
,

respectively.

Proof. See appendix A.

This theorem helps us to find arbitrarily tight bounds on the entropy of a Mixed-

Gaussian random variables.

35



αN,N ′ := log e
N∑
n=1

(−1)n

n

∑
j1,··· ,jM−1≥0
j1+···+jM−1=n

n!∏M−1
m=1 jm!

θ+(j1, · · · , jM−1)
M−1∏
m=1

(c+m)jm

+ log e
N∑
n=1

(−1)n

n

∑
j2,··· ,jM≥0
j2+···+jM=n

n!∏M
m=2 jm!

θ−(j2, · · · , jM)
M∏
m=2

(c−m)jm

− log e
N ′−1∑
n=0

M∑
m=1

pmη
+(x+n )

(
Q

(
x+n − xm√

P

)
−Q

(
x+n+1 − xm√

P

))

− log e
N ′−1∑
n=0

M∑
m=1

pmη
−(x−n )

(
Q

(
x−n + xm√

P

)
−Q

(
x−n+1 + xm√

P

))
. (3.8)

β :=
1

2
log(2πP ) +

log e

2P

(
P +

M∑
m=1

pmx
2
m

)

− log aM

M∑
m=1

pmQ

(
− xm√

P

)
− log a1

M∑
m=1

pmQ

(
xm√
P

)

− log e bM

M∑
m=1

pm

(√
P

2π
e−

x2m
2P + xmQ

(
− xm√

P

))

− log e b1

M∑
m=1

pm

(
xmQ

(
xm√
P

)
−
√
P

2π
e−

x2m
2P

)
. (3.9)

θ±(j1, · · · , jM−1) :=
M∑
s=1

as e
1
2
P(±bs+

∑M−1
m=1 jmd

±
m)

2

Q

(
1√
P

(
x±∗ − P

(
±bs +

M−1∑
m=1

jmd
±
m

)))
.(3.10)

x+n :=
nx+∗
N2

, x−n :=
nx−∗
N2

, n = 0, · · · , N2. (3.11)

36



3.2 System Model

Let us consider a two-way channel where the received signal at endpoints 1 and 2 are given

by

Y1 = E1(h11X1 + h21X2) + Z1 (3.12)

and

Y2 = E2(h12X1 + h22X2) + Z2, (3.13)

respectively. Here, Xk ∈ Xk = {−
√
Pk,
√
P k} are such that

Pr{Xk = x} =
1

2
, x ∈ Xk, k = 1, 2. (3.14)

This yields

E[Xk] = 0, E[X2
k ] = Pk, k = 1, 2. (3.15)

Moreover, Z1 and Z2 are independent N(0, 1) random variables and E1 and E2 are inde-

pendent Ber(e1) and Ber(e2) random variables, respectively, for known e1, e2 ∈ (0, 1) at

both ends. We emphasize that E1 and E2 are unknown to both ends. The gain hi,i can be

set at any value in [αi,∞) for i = 1, 2.

3.3 Shannon achievable rate in Gaussian Erasure Two-

Way channel with binary input

We know that the Shannon achievable rate is given by

R1 ≤ R∗1 := I(X2;Y1|X1), R2 ≤ R∗2 := I(X1;Y2|X2). (3.16)

We have

R∗1 := h(Y1|X1)− h(Y1|X1, X2), (3.17)
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where

h(Y1|X1) =
1

2

∑
x1∈X1

h(E1(h11x1 + h21X2) + Z1) (3.18)

and

h(Y1|X1, X2) =
1

4

∑
x1∈X1,x2∈X2

h(E1(h11x1 + h21x2) + Z1). (3.19)

To calculate h(E1(h11x1 + h21X2) + Z1) note that E1(h11x1 + h21X2) + Z1 is a mixed

Gaussian random variable where all its Gaussian components have unit variance and means

0, h11x1 − h21
√
P2 and h11x1 + h21

√
P2 with corresponding probabilities 1− e1,

e1
2

and e1
2

.

Also, in computing h(E1(h11x1 + h21x2) + Z1), we note that E1(h11x1 + h21x2) + Z1 is a

mixed Gaussian random variable where both its Gaussian components have unit variance

and means 0, h11x1+h21x2 with corresponding probabilities 1−e1 and e1. As such, Theorem

1 can be utilized to derive arbitrarily tight upper and lower bounds on R∗1.

For example, let us consider a scenario where α1 = α2 = 1, h1,2 = h2,1 = 1 and

P1 = P2 = 2dB. Setting h1,1 = h2,2 = a, Fig. 3.1(a) and Fig. 3.1(b) present plots of lower

and upper bounds on R∗1 +R∗2 in terms of a for (e1, e2) = (0.4, 0.2) and (e1, e2) = (0.8, 0.7),

respectively. Setting N (lb) = 5 and N (ub) = 6 guarantees a uniform distance of less than

0.01 between the upper and lower bounds on R∗1 + R∗2. Moreover, it is seen that R∗1 + R∗2

is an increasing function of a and eventually saturates as a grows sufficiently.

The previous example motivates us to study the behaviour of R∗1 + R∗2 in the large

leakage regime where h1,1 = h2,2 = a tends to infinity. As a increases, the kth user is enable

to recognize the realization of Ek. As such the achievable rate for the kth user increases to

I(X2;Y1|X1, E1) that is larger than I(X2;Y1|X1, E1)
2. To explore this in more detail, let

us define3

U1(x1) := E1(ax1 + h2,1X2) + Z1, x1 ∈ X1 (3.20)

and

V1(x1, x2) := E1(ax1 + h2,1x2) + Z1, xk ∈ Xk, k = 1, 2. (3.21)

2Note that I(X2;Y1|X1, E1) = h(X2) − h(X2|Y1, X2, E1) that is larger than h(X2) − h(X2|Y1, X2) =
I(X2;Y1|X1) due to the fact that conditioning reduces differential entropy.

3The random variables U2(x2) and V2(x1, x2) are similarly defined for xk ∈ Xk, k = 1, 2.
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Figure 3.1: Plots of lower and upper bounds on the sum rate R∗1 +R∗2 in a scenario where
h1,2 = h2,1 = 1 and P1 = P2 = 2dB. It is seen that the bounds meet as the indices N lb

1 and
Nub

1 increase.

Then

R∗1 =
1

2

∑
x1∈X1

h(U1(x1))−
1

4

∑
x1∈X1,x2∈X2

h(V1(x1, x2)). (3.22)

If a is sufficiently large, then pU1(x1)|E1(u|0)pU1(x1)|E1(u|1) ≈ 0. This together with the fact

that pU1(x1)(u) = (1− e1)pU1(x1)|E1(u|0) + e1pU1(x1)|E1(u|1) yields

h(U1(x1)) ≈ h(U1(x1)|E1)

= e1h(ax1 + h2,1X2 + Z1) + (1− e1)h(Z1)

= e1h(h2,1X2 + Z1) + (1− e1)h(Z1)

= e1h(h2,1X2 + Z1) +
1− e1

2
log(2πe), (3.23)

for any x1 ∈ X1. Similarly, for sufficiently large a, we have pV1(x1,x2)|E1(v|0)pV1(x1,x2)|E1(v|1) ≈
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0. Then

h(V1(x1, x2)) ≈ h(V1(x1, x2)|E1)

= e1h(ax1 + h2,1x2 + Z1) + (1− e1)h(Z1)

= e1h(Z1) + (1− e1)h(Z1)

= h(Z1)

=
1

2
log(2πe), (3.24)

for any xk ∈ Xk, k = 1, 2. By (3.22), (3.23) and (3.24),

R∗1 ≈ R̃∗1 := e1h(h2,1X2 + Z1)−
e1
2

log(2πe). (3.25)

Similarly,

R∗2 ≈ R̃∗2 := e2h(h1,2X1 + Z2)−
e2
2

log(2πe). (3.26)

Hence, we come up with an approximation for the sum rate given by

R̃∗1 + R̃∗2 = e1h(h2,1X2 + Z1) + e2h(h1,2X1 + Z2)−
e1 + e2

2
log(2πe). (3.27)

Note that h2,1X2 +Z1 and h1,2X1 +Z2 are mixed Gaussian random variables with densities

ph2,1X2+Z1(w) =
1

2

(
g(w;−h2,1

√
P2, 1) + g(w;h2,1

√
P2, 1)

)
(3.28)

and

ph1,2X1+Z2(w) =
1

2

(
g(w;−h1,2

√
P1, 1) + g(w;h1,2

√
P1, 1)

)
, (3.29)

respectively. It is worth mentioning that in this case the bounds offered in Theorem 1 take

on a very simple form. For example,

β + α2N(lb)+1,0 ≤ h(h2,1X2 + Z1) ≤ β + α2N(ub),0, (3.30)
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where β is given by (3.9),

αN,0 = log e
N∑
n=1

(−1)n

n
θ(n), N ∈ N (3.31)

and

θ(n) := e2h
2
2,1P2n(n−1)Q

(
h2,1
√
P2(2n− 1)

)
+ e2h

2
2,1P2n(n+1)Q

(
h2,1
√
P2(2n+ 1)

)
. (3.32)

Let us consider a symmetric scenario where e1 = e2 = e and h1,2 = h2,1 = b. Then

R̃∗1 + R̃∗2 = e (2h(bX1 + Z2)− log(2πe)) , (3.33)

where we have used the fact that h(bX1 + Z2) = h(bX2 + Z1).
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Chapter 4

Conclusion and Future Works

Two-way channel, as an important type of communication channels, has not been well

investigated by researchers in the past years. In this thesis, some aspect of two-way channel

was studied.

We presented the previous work which have been on this area by other researchers.

We explained the inner and outer bounds on the capacity region of the channel and then

introduced our models.

In the first part, to get closer to the real world of communication, we considered a two-

way channel in which we add a uniform quantizer at both receiver ends. Then we employed

both Gaussian and discrete inputs. For Gaussian input, we derived the best step size of the

uniform output quantizer that maximizes the Shannon achievable rate. We also evaluate

the uniform distribution for the additive quantizer noise from an information theoretic

point of view. Then we tried to find a way to reduce the effect of noise that is generated

due to presence of quantizer. We split this noise into two parts: Quantization noise and

truncation noise and for both of them introduce a way for decreasing the noise impact on

the system. For the constellation-based input, like Gaussian input, using numerical method

we first obtained the best uniform quantizer at receiver. Then for both 1-dimensional and

2-dimensional constellations we derived the expression of Shannon achievable rate. Then

we employed the idea of rotation of one constellation with respect to the other one to
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enlarge the Shannon achievable rate region. We observed that using this method, in some

cases, the rate region significantly enlarges. At the end of this part, we assumed that each

user is able to control the power of self-interference. Actually user can adjust the channel

gain between its own receiver and transmitter (but user cannot completely cancel it). Then

we showed that in this condition, minimizing the self-interference power is not necessarily

a solution for the problem of maximizing the achievable rate.

In the second part we analyzed the Gaussian Erasure Two-Way Channel with discrete

input. In this scenario, we chosen a similar approach to the previous section to show that

when we are able to set the self-interference channel gain, we need to be aware that we do

not always need to decrease this gain as much as possible. Specifically in this case, we can

asymptotically understand the erasure factor by increasing the self-interference channel

gain.

Contrary to the most communication channel types, such as interference channel,

multiple-access channel, broadcast channel,..., Two-way channel has not been studied

deeply. There is lots of open problem in this area that can be look at. For example

finding the best input distribution for this channel when we are using output quantization

is an interesting one.

We believe, as the need of having high-speed communication increases, two-way channel

will be one of the most attractive problems among researchers in the field of network

information theory.
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APPENDICES

Appendix A

One can write p(·) as

p(x) = g(x;P )
M∑
m=1

ame
bmx, (4.1)

where g(x;P ) = 1√
2πP

e−
x2

2P . It is easy to see that

∫
p(x) ln p(x)dx = −1

2
ln(2πP )− E[X2]

2P
+ Pr{X > 0} ln aM

+ Pr{X < 0} ln a1 + bME[X1(X > 0)] + b1E[X1(X < 0)]

+

∫ ∞
0

p(x)η+(x)dx+

∫ ∞
0

p(−x)η−(x)dx. (4.2)

Straightforward calculations show that

E[X2] = P +
M∑
m=1

pmx
2
m, (4.3)

Pr{X > 0} =
M∑
m=1

pmQ

(
− xm√

P

)
, (4.4)
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and

Pr{X < 0} =
M∑
m=1

pmQ

(
xm√
P

)
. (4.5)

Moreover,

E[X1(X > 0)] =
M∑
m=1

pm

(√
P

2π
e−

x2m
2P + xmQ

(
− xm√

P

))
(4.6)

and

E[X1(X < 0)] =
M∑
m=1

pm

(
xmQ

(
xm√
P

)
−
√
P

2π
e−

x2m
2P

)
. (4.7)

Next, let us consider the term
∫∞
0
p(x)η+(x)dx. We write

∫ ∞
0

p(x)η+(x)dx =

∫ x+∗

0

p(x)η+(x)dx+

∫ ∞
x+∗

p(x)η+(x)dx. (4.8)

We treat the integrals in (4.8) separately.

1- For x > x+∗ , we have
∑M−1

m=1 c
+
me

d+mx < 1. Therefore, applying Leibniz test1 for

alternating series and for any N lb
1 ∈ N ∪ {0},

η+(x) ≤
2N lb

1 +1∑
n=1

(−1)n−1

n

(
M−1∑
m=1

c+me
d+mx

)n

(4.9)

and the difference between the right and left side in (4.9) is less than or equal to:

1

2(N lb
1 + 1)

(
M−1∑
m=1

c+me
d+mx

)2(N lb
1 +1)

.

1An alternating series
∑∞

n=1(−1)n−1an where an > 0 converges if an is decreasing and limn→∞ an = 0.

Moreover, for any N ∈ N,
∑2N

n=1(−1)n−1an ≤
∑∞

n=1(−1)n−1an ≤
∑2N+1

n=1 (−1)n−1an.
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This yields

0 ≤
2N lb

1 +1∑
n=1

(−1)n−1

n

∫ ∞
x+∗

p(x)

(
M−1∑
m=1

c+me
d+mx

)n

dx

−
∫ ∞
x+∗

p(x)η+(x)dx

≤ 1

2(N lb
1 + 1)

∫ ∞
x+∗

p(x)

(
M−1∑
m=1

c+me
d+mx

)2(N lb
1 +1)

dx.

(4.10)

Similarly, for any Nub
1 ∈ N,

0 ≤
∫ ∞
x+∗

p(x)η+(x)dx

−
2Nub

1∑
n=1

(−1)n−1

n

∫ ∞
x+∗

p(x)

(
M−1∑
m=1

c+me
d+mx

)n

dx

≤ 1

2Nub
1 + 1

∫ ∞
x+∗

p(x)

(
M−1∑
m=1

c+me
d+mx

)2Nub
1 +1

dx.

(4.11)

It is remarkable that the right side of (4.10) is less than or equal to 1
2Nub

1 +1
which is

O
(

1
Nub

1

)
. This implies that the upper and lower bounds derived on

∫∞
x+∗
p(x)η(x)dx are

asymptotically tight. One may calculate the terms
∫∞
x+∗
p(x)

(∑M−1
m=1 c

+
me

d+mx
)n

dx for any

n ∈ N as in (4.12).

2- Note that η+(·) is a decreasing function on [0,∞). Let us show that η+(·) is also

convex on [0,∞). One can write
(

1 +
∑M−1

m=1 c
+
me

d+mx
)

d2

dx2
η+(x) as in (4.14). Using Cauchy-
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∫ ∞
x+∗

p(x)

(
M−1∑
m=1

c+me
d+mx

)n

dx = (4.12)

∑
j1,··· ,jM−1≥0
j1+···+jM−1=n

n!∏M−1
m=1 jm!

(
M−1∏
m=1

(
c+m
)jm)∫ ∞

x+∗

p(x)e
∑M−1

m=1 jmd
+
mxdx,

∫ ∞
x+∗

p(x)e
∑M−1

m=1 jmd
+
mxdx = (4.13)

M∑
s=1

as e
1
2
P(bs+

∑M−1
m=1 jmd

+
m)

2

Q

(
1√
P

(
x+∗ − P

(
bs +

M−1∑
m=1

jmd
+
m

)))
.

(
1 +

M−1∑
m=1

c+me
d+mx

)
d2

dx2
η+(x) =

M−1∑
m=1

c+m(d+m)2ed
+
mx +

(
M−1∑
m=1

c+m(d+m)2ed
+
mx

)(
M−1∑
m=1

c+me
d+mx

)

−

(
M−1∑
m=1

c+md
+
me

d+mx

)2

. (4.14)
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Schwartz inequality and noting that cm > 0, and we this expression:(
M−1∑
m=1

c+md
+
me

d+mx

)2

=

(
M−1∑
m=1

(
(c+m)

1
2d+me

1
2
d+mx
)(

(c+m)
1
2 e

1
2
d+mx
))2

(4.15)

≤

(
M−1∑
m=1

c+m(d+m)2ed
+
mx

)(
M−1∑
m=1

c+me
d+mx

)
.

Applying this in (4.14) yields d2

dx2
η+(x) > 0 for any x ∈ R, i.e., η+(·) is convex.

We partition the interval [0, x+∗ ] into N2 subintervals with end-points x+n = nx+∗
N2

for

n = 0, · · · , N2. Define

η(x) :=

N2−1∑
n=0

η+(x+n+1)1(x+n ≤ x < x+n+1) (4.16)

and

η(x) :=

N2−1∑
n=0

η+(x+n )1(x+n ≤ x < x+n+1) (4.17)

for x ∈ [0, x+∗ ]. Then

η(x) ≤ η+(x) ≤ η(x), x ∈ [0, x+∗ ], (4.18)

and we get

∫ x+∗

0

p(x)η+(x)dx ≤
∫ x+∗

0

p(x)η(x)dx

=

N2−1∑
n=0

η+(x+n )

∫ x+n+1

x+n

p(x)dx. (4.19)
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Similarly,

∫ x+∗

0

p(x)η+(x)dx ≥
∫ x+∗

0

p(x)η(x)dx

=

N2−1∑
n=0

η(x+n+1)

∫ x+n+1

x+n

p(x)dx.

(4.20)

The term
∫ x+n+1

x+n
p(x)dx can be expressed as

∑M
m=1 pm

(
Q
(
x+n−xm√

P

)
−Q

(
x+n+1−xm√

P

))
. To

bound the difference
∫ x+∗
0

p(x)η(x)dx−
∫ x+∗
0

p(x)η+(x)dx, note that η(x)−η+(x) ≤ η+(xn)−
η+(xn+1) for x ∈ [x+n , x

+
n+1]. Hence,

0 ≤
∫ x+∗

0

p(x)η(x)dx−
∫ x+∗

0

p(x)η+(x)dx

≤
N2−1∑
n=0

(η+(xn)− η+(xn+1))

∫ x+n+1

x+n

p(x)dx. (4.21)

The upper bound
∑N2−1

n=0 (η+(x+n )−η+(x+n+1))
∫ x+n+1

x+n
p(x)dx tends to 0 asN2 grows to infinity.

To see this note that by the Mean Value Theorem, there are yn ∈ (x+n , x
+
n+1) and zn ∈

(x+n , x
+
n+1) such that

η+(x+n )− η+(x+n+1) = − d

dx
η(yn)(x+n+1 − x+n ) = −

x+∗
d
dx
η+(yn)

N2

(4.22)

and ∫ x+n+1

x+n

p(x)dx = p(zn)(x+n+1 − x+n ) =
x+∗ p(zn)

N2

. (4.23)

Therefore,
∑N2−1

n=0 (η+(x+n ) − η+(x+n+1))
∫ x+n+1

x+n
p(x)dx is equal to

∑N2−1
n=0

(x+∗ )
2(− d

dx
η(yn))p(zn)
N2

2
.

Since p(·) and − d
dx
η+(·) are continuous on [0, x+∗ ], there are constants k1, k2 ∈ R+ such
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that − d
dx
η+(yn) ≤ k1 and p(zn) ≤ k2 for all values of n. This yields

N2−1∑
n=0

(η+(x+n )− η+(x+n+1))

∫ x+n+1

x+n

p(x)dx ≤ k1k2(x
+
∗ )2

N2

, (4.24)

which approaches 0 as N2 tends to infinity. Similarly, we can show that the difference

between both sides of (4.24) is O(N−12 ).

Finally, note that
∫ 0

−∞ p(x)η−(x)dx =
∫∞
0
p(−x)η−(−x)dx. One can treat

∫ 0

−∞ p(x)η−(x)dx

exactly as we treated
∫∞
0
p(x)η+(x)dx. The details are omitted for brevity.
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