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Abstract 
 

With the rapid proliferation of carbon nanotube technologies and consumer 

products comes a need to research the toxicological and ecotoxicological effects of these 

materials. This research attempted to develop a baseline knowledge of the effects of bulk, 

unmodified multi-walled carbon nanotubes on commonly studied soil toxicology test 

organisms: earthworms, springtails, and agricultural plants. In order to minimize 

confounding factors in the study, a slurry composed of bulk multi-walled carbon 

nanotubes, silica sand, and water was used to amend test soil without the use of 

surfactants or functionalization.  

Analysis of data produced by these experiments showed no significant trends 

resulting from the exposure of the test organisms to artificial soil amended by the multi-

walled carbon nanotube slurry. It was observed, however that carbon nanotubes 

accumulated in the gut of the earthworm Eisenia andrei and were expelled as castings in 

the test soil. 
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1.0 Introduction 

1.1 General Introduction 

Through the majority of the approximately 200 000 years of human innovation, 

technological advances have generally come in the form of the large scale, the grandiose. 

With the advent of the computer age, this trend began to slow, and then to reverse. 

Instead of “bigger is better”, high technology is becoming smaller and smarter. Today 

nanomaterials – objects that are often mere molecules in size – are not the future of 

technological innovation; they are an aspect of our everyday lives. 

This nanotechnology is the making and manipulating of materials on the 

nanometer scale. The fundamental principle is that materials within the nano size range 

have novel and exploitable properties. 

In science fiction, from Arthur C. Clarke’s 1956 short story The Next Tenants to 

Michael Crichton’s 2002 novel Prey, nanotechnology has been a subject of caution and 

apprehension. While we are not (yet) under threat from marauding nanomachines, the 

introduction rate of nanotechnology into human affairs has increased tremendously. This 

has been unaccompanied by knowledge of their impact on human and environmental 

health. As a result, consumer advocacy groups focused on nanoparticles are becoming 

more common. For example, PEN, the Project on Emerging Nanotechnologies is an 

online database containing lists of consumer products containing (or claiming to contain) 

nanomaterials (http://www.nanotechproject.org/inventories/consumer/). 

Clearly there is a need to know how nanotechnology is impacting all aspects of 

the environment, but any discussion of this requires a clarification of terminology. Yet 
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even terminology can be controversial (Hansen et al., 2007; Lovestam et al., 2010; 

Maynard, 2011; Stamm, 2011). According to Hansen et al. (2007), for something to be 

considered nanotechnology, two criteria must be met: the technology must have some 

structure that has at least one dimension in the approximate range of 1-100 nm, and the 

nanostructure must provide the system with properties different from the bulk properties. 

Nanomaterials possess different properties to bulk materials of the same type due to their 

size and increased surface area, often even expressing different colouring than bulk 

material. For example, gold nanoparticles appear to be red (Tiede et al., 2008). 

Differences in physicochemical properties have generally been attributed to the influence 

of atomic forces such as Van der Waals forces that would not be seen in bulk form 

materials, as well as the dramatic increase in surface to volume ratio (Kennedy et al., 

2008; Tiede et al., 2008).  

Part of the terminology debate revolves around the distinction between 

nanomaterials and nanoparticles, which in this document will be referred to as NM and 

NP, respectively. Most agree that both have at least one dimension in the 1-100 nm range 

and NP should be considered a subset of NM. Klaine et al. (2008) adopted this 

distinction.  Any substance with one dimension measuring less than 100 nm is a NM. 

Substances that possess two or more dimensions between 1 and 100 nm are NP.  For 

example, a nanomaterial, nanowire (composed of Ni, Si, SiO2, or one of several other 

possible materials) could have a diameter of 1-2 nm, while having a length more than 

1000 times longer. Conversely, a buckminsterfullerene, as a spheroid with diameter less 

than 1 nm, would be considered a NP. In this case a NP has a dimension less than 1 nm, 

emphasizing that 1 nm is not always an absolute cut off.  Hansen et al. (2007) suggested 
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that NM should be categorized on “the location of the nanoscale structure in the system”. 

This led to three main categories: materials were either nanostructured in the bulk, have 

nanostructure on the surface, or contain nanostructured particles (NP). The NP in turn 

could be surface bound, suspended in liquids, suspended in solids or airborne. However, 

in the literature the terms NM and NP are not applied consistently, but despite this, for 

the purpose of this thesis, the terminology used in the papers being cited will be 

maintained. Because the research in this thesis is on carbon nanotubes, which can 

conform to the descriptor NP, NP will be used most often. The final classification of NM 

and NP revolves around their origins. NP and NM can arise from natural processes, as 

inadvertent or incidental by-products of industrial processes, or through intentional 

preparations. The latter is referred to as engineered NP or engineered NM. 

1.1.1 Natural nanoparticles 

There have always been NP and NM present in the environment, albeit 

historically at exceedingly low concentrations. Carbon nanotubes (from forest fires and 

volcanic activity), silver, gold, and iron oxides, organic colloids (suspended aggregates 

ranging in diameter from 1 nm to 1 µm), biogenic magnetite (produced by bacteria, 

mollusks, arthropods, birds, the brains of humans and presumably other mammals), and 

viruses are all naturally occurring nanoparticles (Nowack & Bucheli, 2007; Oberdörster 

et al., 2005). Biological NP are released into the environment directly by the organisms 

in the form of exudates, or through the degradation of organic matter (Handy et al., 

2008). NP of non-biological origins are typically the result of the weathering of rock 

materials or precipitates (e.g. clay minerals, iron oxyhydroxides found in soils or in 
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aquatic environments), or through volcanic eruptions or meteorite impacts (e.g. carbon 

nanoparticles) (Handy et al., 2008). 

1.1.2 Nanoparticles as byproducts  

NP are also inadvertently produced as the byproducts of industry and the 

combustion of fossil fuels (Nowack & Bucheli, 2007).  NP produced and released in this 

manner are sometimes referred to as combustion-derived nanoparticles (CDNP).  

Examples and sources include: diesel exhaust particles from combustion of diesel oil, 

welding fume from welding processes, and fly ash from combustion of coal or oil 

(Donaldson et al., 2005). In the combustion of gas and diesel fuels in engines, CDNP are 

produced from diesel (Donaldson et al., 2005). It has been estimated that up to 36% of all 

NM produced (as of 2008 – this number is likely much lower today) are the byproduct of 

gasoline combustion (Klaine et al., 2008). NM produced and released in this manner are 

not likely to be as serious a toxicological or ecotoxicological risk due to the low levels of 

production. Greater concern is placed upon the accidental release of purposefully 

engineered NP from consumer goods.  

1.1.3 Engineered nanoparticles 

The intentional engineering and production of NP and NM has quickly become a 

widespread and profitable industry, as well as a major area of research interest. In 2008, it 

was estimated that nanotechnology would become a $3 trillion industry by 2014 

(Wardack et al., 2008). The commercial uses of NP and NM include cosmetics, 

sunscreen, electronics, construction, aerospace, sporting goods, textiles (clothing), energy 

storage, and medical applications (Theng & Yuan, 2008; Marchant et al., 2010; 

Oberdörster et al., 2005). The engineered NM can be divided into two main classes based 
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on their chemical composition: metal-based nanoparticles (MBNP) and carbon-based 

nanoparticles (CBNP). 

1.1.4 Toxicology and ecotoxicology of nanoparticles and nanomaterials 

NP from all three sources have toxicological and/or ecotoxicological implications. 

Most naturally occurring NM are normal components of the environment and regularly 

interact with the biota, or are in some cases part of the biota (Pan & Xing, 2012). Some of 

these naturally occurring NM are a concern to human and environmental health; bismuth 

oxide and cristobalite are found in volcanic dust and ash, and have been shown to cause 

lymph node granulomas and lung inflammation to rats exposed via inhalation (Lee & 

Richards, 2003).  

Combustion-derived nanoparticles (CDNP) have been a subject of study by 

respiratory toxicologists for some time (Donaldson et al., 2005; Stone et al., 2007). In the 

air, NP are often referred to as ultrafine particles, and measurements are made for 

particles of a certain size rather than for particles of specific types. Two much-studied 

fractions are particulate matter 10 (PM10) and particulate matter 2.5 (PM 2.5). PM10 

contains particles up to 10 µm in size; PM2.5, particles up 2.5 µm in size. They both will 

contain CDNP. PM10, PM2.5, and CDNP are a hazard to the lungs where they can cause 

oxidative stress, inflammation and cancer (Donaldson et al., 2005). Epidemiological 

studies suggest that PM10 can even have effects on the cardiovascular system 

(Donaldson et al., 2005).  

Research into the environmental and health implications of engineered NP has 

increased dramatically in recent years, undoubtedly in an attempt to catch up to the 

incredible rate of the technologies’ proliferation. Like other sources, engineered NP have 
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an increased potential for pulmonary damage due to the increased surface-to-volume ratio 

compared to bulk forms of comparable materials (Oberdörster et al., 2005; Tiede et al., 

2008; Smart et al., 2006). The risk of toxicological effects are also greatly increased due 

to this effect, as well as the increased likelihood of imperfections on the surface of the 

materials, which become active sites (Tiede et al., 2008). 

The toxicology and ecotoxicology of engineered NP is just beginning, but is 

important to investigate and understand for several reasons. First, it is of the upmost 

importance to protect both the general population and the environment from dangerous 

levels of exposure to potentially damaging substances. Second, it must be determined 

how to safely and responsibly continue the potentially world-changing technological 

innovations provided by pursuing nanotechnology. However, studying the toxicology and 

ecotoxicology of NP is quite difficult and complex. One reason for this is the wide 

variety of engineered nanomaterials. Another is the uniqueness of the problem. As a 

whole, NP are defined as a different class of substance with different properties and 

behavior than the corresponding bulk materials (Forloni, 2012). This means that 

conventional toxicological exposure regimens and methods of deriving dose-effect 

relationships might not apply (Forloni, 2012).  Some researchers have estimated that 

toxicity testing on existing NP and NM in the United States would take up to 54 years 

and cost up to one billion dollars (Choi et al., 2009). 

Some thoughts have been expressed on how NPs might generally exert toxic 

effects (Pan & Xing, 2012). NP might generate reactive oxygen species (ROS), which 

could result in oxidative stress in organisms. NP might also disrupt cell membranes by 

puncturing them. They might interfere with the flow of electrons in energy metabolism, 
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and can interact directly with proteins (and other biomolecules) and change their 

conformation, possibly leading to the disruption of cell signaling pathways.  

Engineered NP can potentially be released into air, water, and soil. Materials of 

particular interest have been TiO2, Ag, Cu, Al2O3, and CNT due to their widespread use 

in consumer products (McShane et al., 2011; Petersen & Henry, 2011; Lin & Xing, 

2007). The focus of this thesis is on engineered NP in soil, which might be the most 

complex environment.  

1.2 Soil 

Soil is the outermost layer of the planet earth. The upper limit is the air/soil 

boundary; the lower limit is often set arbitrarily at 2 m. Soil is characterized by having 

layers (horizons) and/or the ability to support plants (Coleman, 1994). Three main 

components make up soil: minerals, organic matter, and living organisms. Minerals come 

from rocks below or nearby. Organic matter (humus) arises from the decay of microbes, 

plants and animals that use the soils. The living organisms in soil are very diverse: from 

bacteria to mammals. Innumerable aggregates of matter interspersed with innumerable 

number of small pores gives soil enormous surface area and stable habitats for 

microorganisms. Three large particle size classes are clays (0.1 -2 µm in diameter), silts 

(2-25 µm in diameter), and sands (0.05-2 mm diameter), but soil also contains NP and 

NM. 

1.2.1 Natural nanoparticles in soil 

With the dynamic nature of soil ecosystems, and the diversity of potential 

components, it is unsurprising that there is a wide variety of naturally occurring NM 

present in a given system. Table 1 lists a number of commonly occurring natural (and a 
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few manufactured or byproduct) NP and NM that could be found in a typical soil sample. 

Nanoclays and metal oxides and hydroxides are common, as they are products of the 

natural weathering of soil components (Nowack & Bucheli, 2007; Theng & Yuan, 2008). 

Biological soil NP include viruses, enzymes and the byproducts of microbial 

decomposition of organic matter (Handy et al., 2008). Although they would be rare and 

depend on geographical location, carbon NP and NM from meteorite impacts or volcanic 

activity could also be present (Handy et al., 2008). 

 

Table 1. List of engineered and naturally occurring nanoparticles in soil (Nowack & 
Bucheli, 2007; Theng & Yuan, 2008). 
General Particle 
Description 

Formation Class Examples 

Nano clay Abiotic weathering 
processes of rock 

Planar 
Hydrous 
Phyllosilicates 

Saponite, hectorite, 
monomorillonite 

Metal (hydr)oxides Abiotic weathering Al-oxides, iron-
oxides, Mn-oxides 

Biggsite, boehmite, 
goethite, hematite, 
birnessite, vernadite 

Humic substances 
(biologically 
derived molecules) 

Aggregates bound 
by weak dispersive 
forces and forming 
micelles in solution 

Organic, carbon-
containing, some 
inorganic 

Bacterial enzymes, 
biogenic magnetite 

Viruses Released from 
infected prokaryotic 
and eukaryotic 
organisms 

Bacteriophages, 
animal and plant 
viruses 

T4, MS2* 

Mobile colloids Aggregation of 
above particle types 

Varies Biopolymers, metal 
oxide aggregates 

Combustion by-
products 

By-product Carbon-containing CNT, fullerenes, 
carbon black 

Oxides Engineered Inorganic TiO2, SiO2 
Metals Engineered Inorganic Silver, gold 
Salts Engineered Inorganic Metal phosphates 

*T4 and MS2 are bacteriophages: viruses that infect bacteria. 
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1.2.2 Engineered nanoparticles in soil ecosystems 

As detailed in Table 1, there are a number of engineered NP and NM found in soil 

ecosystems. The release of bulk, raw-form engineered NM into the environment is likely 

to be an extremely rare event, with industrial spill incidents being the most common. 

Carbon NP and NM could be found in low concentrations, as the byproducts of fossil fuel 

combustion and industrial processes (Nowack & Bucheli, 2007). The most likely and 

most problematic pathway for NP and NM into the soil ecosystem is through waste 

treatment biosolids, as components of medications, cosmetic products, and clothing 

(Turco et al., 2011). The other major form of NP and NM contamination in soil is 

believed to be that of nanocomposites from the degradation and recycling of consumer 

products (Turco et al., 2011).  

1.2.3 The soil ecosystem 

Soils contain a wide variety of microhabitats that support a very diverse biota 

(Coleman, 1994). The biota is the combined flora and fauna of a region, and soil biota 

can be classified in several ways, a traditional one being size. The microflora are less 

than 0.1 mm in size, and viruses, archaea, bacteria, fungi, and algae can be organized into 

this class. The macroflora would include mosses and the roots of vascular plants, which 

are continuously growing and dying in soil, supplying food to soil organisms. The fauna 

is divided into micro-, meso-, and macro-fauna. The microfauna is less than 0.1 mm in 

size and includes protozoa and nematodes, although nematodes sometimes can be 

considered to transition into the next size class. Mesofauna are 0.1 to 2 mm in size and 

the most abundant members are Collembola (springtails) and mites. Mesofauna use 

existing pore spaces, cavities, or channels to move about the soil, whereas the next size 
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class has the ability to reshape the soil. Macrofauna are larger than 2 mm in size and 

include earthworms, spiders, termites, and ants. A few mammals such as voles would 

also be put in this class.  

The physical and chemical components of soil are as complex and diverse as the 

biological component. The composition of soil varies based on parent materials, climate, 

topography, and the biological components (Kilham, 1996). 

1.2.4 Soil ecotoxicology 

Soils often become the recipients of a wide range of hazardous or potentially 

hazardous materials generated by human activities. Soil ecotoxicology is the study of the 

toxicity of these chemical, physical or biological substances to the organisms of soil (Van 

Gestel, 2012). The discipline includes exploring the sources, fate (biodegradation), 

transport, and effects of the contaminants. Two approaches to ecotoxicological risk 

assessment can be distinguished: the predictive (prognosis) approach aims to forecast 

possible effects of new materials in order to regulate their usage or restrict their 

introduction into the market, while the diagnostic approach tries to assess the actual 

ecological harm arising from a contamination event and may give insight into 

remediation and management of contaminated land. 

The predictive approach uses laboratory tests to derive toxicity data (empirical) 

that can be used to set “safe” exposure levels. Two variables in these tests are the types of 

soil in which the tests are done and the kinds of organisms tested. Artificial soil is often 

the medium of choice. Artificial soil is composed of 70% (by mass) silica sand, 20% 

kaolin clay, and 10% dried Sphagnum sp. peat, pH adjusted to 6.0 - 7.5 with calcium 

carbonate, and hydrated with deionized water. It is designed to approximate a natural soil 
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and to be easily and consistently produced in a laboratory setting (Environment Canada, 

2004).  A variety of soil organisms has been used in toxicity tests. Some important 

criteria for choosing a particular organism and test have been pointed out by Van Gestel 

(2012). One is how practical the maintenance and use of the organism is, another is the 

ecological relevance of the test.  

1.2.5 Earthworms in ecotoxicology 

Earthworms are ubiquitous in soil ecosystems worldwide (excepting permafrost), 

and can account for more than 90% of soil macrofauna biomass (Doube & Brown, 1998; 

Bonkowski & Schaefer, 1997). Organism density can reach up to 2000 individuals, or 

roughly 1 L of earthworm gut per square meter of soil (Drake & Horn, 2007). 

Decomposition and movement of soil organic matter, soil aeration and penetrability, 

nutrient movement, and soil microbial activity are all influenced by earthworm activity 

(Doube & Brown, 1998; Killham, 1996).  

There are generally held to be approximately 19 species of earthworm in Ontario, 

17 of which are considered invasive (Reynolds, 1977). All three of the commonly used 

test species (Eisenia andrei, Eisenia fetida, Lumbricus terrestris) are indigenous to 

Europe (Reynolds, 1998). Eisenia andrei and Eisenia fetida are the most commonly used 

species in toxicity testing, as their gregarious nature translates well into the contexts of 

reproduction tests (Environment Canada, 2004). 

Earthworm endpoints for toxicity testing are adult survival, juvenile production 

and survival, and juvenile wet/dry mass and percent moisture content after a 63-day 

exposure period (Environment Canada, 2004). 
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1.2.6 Springtails in ecotoxicology 

Springtails (members of the class Collembola) are arthropods, although they are 

not considered to be insects (class Insecta) based on phylogenetic data (Nardi et al., 

2003). Like earthworms, collembolans are extremely widespread in their distribution. 

They are typically found in the leaf litter layer, and consume fungi and the 

aforementioned leaf litter (Fountain & Hopkin, 2005). The “springtail” common name is 

a descriptive one, attributable to the presence of a furca, which is an organ that allows 

springtails to propel themselves over relatively large distances when disturbed. 

Folsomia candida is a parthenogenic species of springtail that is commonly used 

in soil toxicology (including this research), largely because it can be easily cultured and 

large numbers of age-synchronized individuals can be produced for testing (Fountain & 

Hopkin, 2005). 

Folsomia candida endpoints for toxicity testing are adult survival and progeny 

production and survival after a 21-day exposure (Environment Canada, 2007). 

1.2.7 Seedling emergence and growth in soil ecotoxicology 

Plant species are the most visible members of the soil community, and the most 

directly vital to human civilization. A wide variety of plant species are commonly used in 

soil ecotoxicology testing. The species recommended in experimental procedures are 

generally agronomic, garden, and grassland species; typically species that are commonly 

found in the area of concern, and are of ecological or agricultural importance 

(Environment Canada, 2005). It is common to test both a monocotyledonous (single seed-

leaf, or grass-like) and dicotyledonous (two-leaf seed) in order to account for differences 

among these two major groups of flowering plants (Environment Canada, 2005). 
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Plant exposure endpoints (after 14 or 21-day exposures, depending on the species) 

are seedling emergence, root length and dry weight, and shoot length and dry weight 

(Environment Canada, 2005). 

1.2.8 Soil ecotoxicology studies on nanoparticles and nanomaterials 

Soil nanotoxicology as a field of study is relatively new, but growing quickly. Pan 

and Xing (2012) have recently stressed the need for more information on the behavior of 

NP in soil and the impact on the soil ecosystem. The entry of NP into soil will likely 

depend on the product. One example is personal care products, such as cosmetics and 

dietary ingredients. In these kinds of products, NP are well dispersed and enter the 

environment mostly via sewage treatment plants. NP could accumulate in biosolids and 

the sludge could be applied to the soil as an organic amendment. Most work on toxicity 

to soil organisms has been done with earthworms and the NP have been metal-based 

(Tourinho et al., 2012). MBNPs have been a focus because they are in a wide range of 

consumer products already in circulation. The metals include aluminum oxide, copper, 

gold, silver, titanium oxide, and zinc oxide. Copper, silver and titanium oxide have 

received perhaps the most attention.  

Eisenia fetida exposed to copper nanoparticles in artificial soil did not exhibit any 

sub chronic effects, however nano-sized copper particles were found to accumulate in the 

tissues of the earthworms (Tourinho et al., 2012; Unrine et al., 2010). A significant 

decrease in reproduction was seen in the same species when exposed to copper 

nanoparticles in sandy loam, or soil with a low organic content (Tourinho et al., 2012; 

Shoults-Wilson et al., 2011). Nano-sized copper has also been found to inhibit the growth 

and function of various plant species; however, the toxicity has not been found to be 
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significantly different from that of bulk copper, which is itself highly phytotoxic 

(Musante & White, 2010). 

Silver nanoparticles have been studied extensively because they are used as 

bactericides in clothing and other products. They have been found to accumulate in and 

inhibit the reproduction of the earthworm Eisenia fetida at concentrations of 1000 mg/kg 

in artificial soil (Tourinho et al., 2012; Heckmann et al., 2011). 

Titanium dioxide NM are commonly found as additives in cosmetics (make-up, 

skin lotions, sunscreen) and food products, particularly sweets (Weir et al., 2012). 

Eisenia andrei and Eisenia fetida were exposed to nano-sized titanium dioxide particles, 

resulting in the inhibition of reproduction at 1000 mg/kg in sandy loam (Heckmann et al., 

2011). In the same study, micro-sized titanium dioxide did not show the same inhibitory 

effects (Heckmann et al., 2011). A similar set of experiments conducted in an artificial 

soil medium did not result in any effect on reproduction, survival, or growth (McShane et 

al., 2011). This conflicting data present in the literature indicates that standardized 

materials and test conditions be utilized in the future. 

In reviewing the literature on MBNPs in soil, Tourinho et al. (2012) conclude that 

overall the toxicity of MBNPs in soil is something to be concerned about, but the subject 

needs more study. This is because the results often conflict. Some of this has been 

attributed to the use of different types of soils. Another set of variables is the 

characteristics of the metal NM. They can differ in size, shape and coating. The endpoints 

in the toxicity tests and the experimental design of the toxicity tests have also been 

variable. All of this makes drawing conclusions about the toxicity of metal NM 

challenging. Tourinho et al. (2012) recommend that more standardized testing be done. 



15 

1.3 Carbon Nanotubes 

Carbon nanotubes (CNT) are allotropes of carbon and members of the fullerene 

structural family.  Their discovery is often attributed to Iijima in 1991 (Iijima, 1991), but 

carefully perusal of the scientific literature, especially the Russian literature of 1950s, 

suggests that CNT were first described sixty years earlier and had been identified 

sporadically in the intervening years (Monthioux & Kuznetsov, 2006). The importance of 

the 1991 article by Iijima appears to have been in bringing CNT to a broader audience 

that was ready to consider nanotechnology. The Iijima study was the first to show the 

laboratory synthesis of CNT without the need for any catalysts. CNT can to be 

synthesized during natural events such as volcanic activity, and their presence identified 

in a 10,000 -year old ice core (Murr et al., 2004). CNT levels in the environment from 

natural processes are extremely low (Pan & Xing, 2012). The ability to synthesize CNT 

has led to considerable knowledge of their properties, the development of applications for 

them, and concerns about their environmental impacts. 

Discovered in 1991 by Japanese C60 fullerene researchers, carbon nanotubes 

(CNT) are essentially graphene sheets formed into a tube; carbon atoms arranged into 

fused benzene rings (Iijima, 1991). The two main types of CNT are single-walled CNT 

(SWCNT) and multi-walled CNT (MWCNT). SWCNT generally have a diameter 

ranging between 0.5 and 2.5 nm, with lengths that are varied, but can be engineered to 

theoretically any conceivable size. MWCNT, combining between 2 or more (sometimes 

up to 30) concentric layers of SWCNT, are far more common, and can have diameters up 

to several hundred nm, depending on the number of layers (Sellers et al., 2009; Petersen 
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& Henry, 2011). It is also possible, but less common, for MWCNT to consist of one long, 

rolled sheet of graphene, resembling rolled parchment. 

Properties common to all unaltered species of CNT include insolubility in water 

and solvents, an extremely high strength-to-weight ratio (460x that of steel), flexibility, 

light weight, and unique electrical and thermal conductivity (Sellers et al., 2009; Klaine 

et al., 2008). Aqueous suspensions of CNT can be achieved through various methods, 

including sonication, the addition of natural organic matter, use of surfactants such as 

sodium dodecyl sulfate (SDS), and polymers including polyvinylpyrrolidone, 

polyethyleneimine (Petersen & Henry, 2011).  

Solubility in water can be attained through the addition of functional groups to the 

surface wall of CNT. These are molecules or polymers, referred to as chemical functions, 

bound to surface imperfections, often covalently (Petersen et al., 2011a). A wide variety 

of chemical functions are commonly employed, including polyethyleneimine (PEI) 

ammonium, acetamido fluorescein isothiocyanate, methotrexate, and amphotericin 

groups (Kostarelos et al., 2007). The ability to be functionalized is a key factor in the 

usefulness (and potential danger) of CNT. The addition of these chemical functions 

completely alters the surface chemistry of the particle, resulting in a new set of chemical 

properties (Kostarelos et al., 2007). 

Compared to SWCNT, the multi-walled forms tend to be more chemically active, 

due to an increased tendency for imperfections in the outer wall structure. These 

discrepancies include pentagonally arranged C (as opposed to the usual hexagonal 

arrangement), sp3 hybridization (instead of sp2), and lattice vacancies (Petersen et al., 

2011b; Köhler et al., 2008). 
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CNT have special properties that have led to worldwide interest in their scientific 

and technological applications. These properties include high electrical conductivity, 

rapid heat transport, large surface/mass ratios, and great strength. Compared to other fiber 

materials, CNT have a unique combination of stiffness, strength, and tenacity and at the 

same time being very lightweight. The properties of CNT can vary with the method of 

fabrication and whether the CNT are chemically functionalized, long or short, open or 

closed at the ends, and single-, or multi-walled. 

1.3.1 Commercial applications of carbon nanotubes 

CNT are being produced commercially and are found in a growing list of 

products. The worldwide production has been estimated at between 350 and 500 tons per 

year (Mueller & Nowack, 2008). Their unique set of properties has resulted in a wide 

range of commercial applications, from drug delivery, water purification, chemical 

sensors, molecular computing, super capacitors and energy storage (fuel cell electrodes 

and batteries), to structural components of high-end tennis racquets and bicycles (Klaine 

Fig. 1.1 Artist’s rendering of the structure of a multi-walled carbon nanotube. Note the hexagonally 
arranged carbon, and concentric tubes of graphene sheets (Iijima, 2002). 
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et al., 2008). Undoubtedly, these products will eventually enter the soil, either through 

landfill or industrial byproducts. 

CNT are often used in the production of composite materials. Composites are 

made from two or more natural or engineered components, often a strong fiber and a 

surrounding matrix. CNT have been incorporated into various resins because as well as 

their strength and lightness, CNT are very pliable and have elasticity. The resins are used 

in hockey sticks, tennis rackets, baseball bats, skis, and vehicle parts. The breakdown of 

these composites is expected to be a major source of CNT contamination in the 

environment. 

1.3.2 Ecotoxicology of carbon nanotubes 

Although beneficial, CNT are being scrutinized for their potential impacts on both 

human and ecosystem health. This is being looked at from two very different 

perspectives. One consideration focuses on the manufacturing and cradle-to-grave life 

cycle assessments (LCA) (Upadhyayula et al., 2012).  The life cycle of CNT products 

can be considered to have four interconnected phases: the acquisition of raw material, 

manufacturing, use, and disposal. Several conclusions were made from a recent LCA. 

The first is that manufacturing can dominate the environmental impact because of the 

energy-intensive processes required for CNT production (Upadhyayula et al., 2012). The 

second consideration is the toxicity/ecotoxicity of CNT released into the environment 

through the course of manufacturing, use, and disposal. This approach needs more data 

on the toxicity/ecotoxicity of specific CNT and is the focus of this thesis. 

Little information is available on the release of CNT from the use and disposal of 

CNT products, but speculation on possible routes has begun (Petersen et al., 2011c). A 
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frequently used example is a CNT/polymer composite framed tennis racket. Whenever a 

racket frame is scratched on the court, some CNT might be released. In a landfill, the 

composite could undergo hydrolytic degradation. Washing and rain falling onto 

nanocomposite surfaces might release loosely bound CNT. Incineration of CNT products 

might release carbon nanofibers (CNF). CNF are larger than CNT, with diameters of 50 

to 150 nm and lengths of up to 100 µm. 

A wide range of organisms has shown sensitivity to the effects of CNT exposure. 

Both functionalized and non-functionalized single and MWCNT have been shown to be 

internalized by a wide variety of cells, including mammalian fibroblasts, protozoa, yeast, 

fungi, and bacteria (Ghafari et al., 2008; Kostarelos et al., 2007). Of particular concern is 

the evidence of carcinogenic effects when CNT are introduced to the lungs of mammals 

(Smart et al., 2006). Cellular damage caused by CNT is thought to be due to micro 

abrasion, similar to the effect seen with asbestos, and through oxidative stress caused by 

free radicals (Smart et al., 2006).  

In ecotoxicology testing with aquatic organisms, carbon nanotubes have been 

found to accumulate on and cause damage to the gill surface of exposed rainbow trout 

(Handy et al., 2008). Daphnia magna (an ecotoxicological mainstay known as the water 

flea) were immobilized and killed when CNT accumulated in their gut (Zhu et al., 2009; 

Eddington et al., 2010). Conversely, when the fruit fly Drosophila melanogaster was 

given food spiked with SWCNT, no effects on health or reproduction were noted (Leeuw 

et al., 2007). 
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1.4 Carbon nanotubes in soil toxicology and ecotoxicology 

Consumer products containing CNT are still relatively rare, consisting mainly of 

sports equipment. There will soon be an influx of CNT waste material and contamination 

in soil ecosystems. CNT soil contamination will most likely come in the form of 

polymers and CNT nanocomposites (Petersen et al., 2011b). This composite 

contamination will be the result of degradation during the usage and disposal of CNT-

containing products, due to ultraviolet radiation, biological decomposition, 

abrasion/physical damage, incineration, hydrolytic and thermodegradation (Petersen et 

al., 2011b). There will also be a certain amount of “raw” carbon nanotube contamination 

due to industrial production, manufacturing, and spills.  

Carbon nanotubes have not yet been found to be toxic in a soil medium (Petersen 

et al., 2008; Scott-Fordsmand et al., 2008). In a reproductive test in which the earthworm 

Eisenia veneta was given food spiked with double-walled carbon nanotubes, the 

production of cocoons was significantly decreased at concentrations of 495 mg/kg food 

dry weight and up (Scott-Fordsmand et al., 2008). 

Petersen and his colleagues have focused on the effects of carbon nanotubes on 

earthworms in soil media (Petersen et al., 2008; Petersen et al., 2011 a & b). After a 28-

day exposure to MWCNTs, Eisenia fetida had mass lower than expected (Petersen et al., 

2008). A 2011 study examining the accumulation of carbon nanotubes in oligochaete 

tissues showed no significant accumulation in Lumbriculus variegatus tissues (Petersen 

& Henry, 2011).  

Studies involving crop and garden plant species are more common than those 

involving invertebrates, largely due to the health and economic implications of 
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contaminated food crops. Root growth inhibition was noted in lettuce and tomato 

seedlings exposed to both  SWCNT and MWCNT (Cañas et al., 2008). In contrast, this 

same study found that this exposure actually stimulated root growth in cucumber and 

onion seedlings (Cañas et al., 2008).  

No significant effects on germination or root elongation were seen in zuccini 

seeds exposed hydroponically to non-functionalized MWCNT dispersed with SDS 

(Stampoulis et al., 2009). Similarly, rapeseed, radish, lettuce, corn, and cucumber seeds 

exposed hydroponically to non-functionalized MWCNT sprouted normally, with no 

effect on root growth (Lin & Xing, 2007). A study in which tomato seeds were grown in 

MWCNT-spiked agar medium showed a significant decrease in seedling emergence time, 

suggesting that the nanotubes may have penetrated the seed coat resulting in imbibation 

(Khodakovskaya et al., 2011). Further study found MWCNT in tomato roots, leaves, and 

fruit of plants grown in a simlar medium, as well as those grown in spiked commercial 

soil mix (Khodakovskaya et al., 2011). This suggests the possibility for uptake and 

translocation of CNT by plants. 

1.5 The Carbon Nanotube Slurry 

A method of delivering non-functionalized nanotubes without the use of a 

surfactant is a great challenge. The propensity for the nanotubes to aggregate together, 

and their insoluble nature required that a novel procedure be developed for amending 

soils with nanotubes. A “slurry” of MWCNT was used. This slurry was composed of 

silica sand, de-ionized water, and at one point ethanol.  The silica sand was from the 

same stock used to produce the artificial soil. Its purpose was to provide a physical matrix 

for the nanotube dispersal without reacting with the tubes, and without the tubes 
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adsorbing strongly to their surface. Ethanol was originally used in order to act as a 

solvent, but was excluded from the definitive tests. 

1.6 Research Objectives 

1. To develop a method of amending artificial soil with non-functionalized carbon 

nanotubes. 

2. To determine the effects of carbon nanotube-amended artificial soil to the survival 

and reproduction of the soil invertebrates Eisenia andrei and Folsomia candida 

3. To determine the effects of carbon nanotube-amended artificial soil to seedling 

emergence and growth of the crop plants Hordeum vulgare and Medicago sativa 

 

In order to achieve these objectives, a series of range-finding and definitive 

(chronic) toxicity tests were conducted on two plant species (H. vulgare and M. sativa) 

and two invertebrate species (E. andrei and F. candida). A method was developed to 

amend soil using a MWCNT slurry (Fig. A.1, Appendix). The test organisms were 

exposed to artificial soil amended with the MWCNT slurry. The results of these toxicity 

tests and the method of development of the slurry are the focus of this thesis. 
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2.0 Chapter 2: Material and Methods 

2.1 Production of Artificial Soil 

Artificial soil was formulated in the Stantec laboratory in Guelph, ON using 

procedures that closely follow those outlined in “Biological Test Method: Tests for 

Toxicity of Contaminated Soil to Earthworms” (Environment Canada, 2004). While 

wearing a p95 facemask to avoid inhalation of particles, 1 kg of dry Sphagnum sp. peat 

(obtained by weighing a sample of peat that was dried for 48 hours in a drying oven at 

105 ºC, then determining the % moisture content) was added to 2 kg pulverized EPK 

kaolinite clay in a large Rubbermaid container and mixed inside a fume hood. When this 

mixture was homogeneous (by visual inspection), 7 kg of silica sand was added, and the 

mixture was once again mixed until homogeneous. Two liters (2 L) of deionized H2O 

was then added (to achieve an approximate moisture content of 20%). The hydrated 

substrate was then homogenized using a hand blender. Approximately 160 mL of sieved 

CaCO3 was added to the water-soil mixture in order to adjust the soil pH to 6.0-7.5 and 

mixed thoroughly. The amount of CaCO3 tended to vary depending on the peat being 

used, and generally varied between batches of soil. The container was then labeled with 

the batch number, preparation date, name of the preparer, and the amount of added 

CaCO3. The soil was allowed to sit for at least 3 days before being tested for pH once 

again. 
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2.2 Production of multi-walled carbon nanotube slurry 

Non-functionalized multi-walled carbon nanotubes were obtained from Cheap 

Tubes Inc. (Brattleboro, VT). Energy dispersive X-ray spectroscopy was used to 

determine a purity of 95% by weight, with impurities consisting of approximately 1.5% 

carbon ash, 0.21% Cl, 0.56% Fe, 1.87% Ni, and 0.02% S, of total weight. The outer 

diameters of the tubes ranged in length from 30-50 nm; the inner diameters ranged from 

5-15 nm. Nanotube lengths were stated to be between 10 and 20 um by the supplier. 

1 kg of MWCNT (all from the same batch) was packaged in a large zip-lock bag. 

For health and safety reasons, they were stored within a fume hood at all times, and the 

package was opened to accommodate a scoopula. Future studies should utilize either pre-

solublized tubes or request that the tubes be aliquoted into smaller, more easily handled 

packages.  

When planning for screening tests involving E. andrei and F. candida, it was 

believed that the addition of a small amount of ethanol in the slurry would improve the 

emulsification of the slurry, while not significantly affecting toxicity. In order to produce 

250 g of the required slurry, inside a fume hood, 11.89 g of dry MWCNT was weighed 

with an analytical balance and transferred to a sealable volumetric flask. Ethanol (2.5 mL 

of 98%) was added to the flask followed by 51.70 g of silica sand and approximately 184 

mL of deionized H2O. The slurry was then agitated, physically mixed, and sealed. 

The creation of the slurry for the definitive tests was completed in the same 

manner; however, the ethanol component was omitted because toxic effects were 

observed in the screening tests and attributable to ethanol (Fig. 2 – 5, Appendix). 

Therefore, for the definitive tests, 49.16 g of dry MWCNT, 211.93 g of silica, and 52.98 
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mL of diH2O were used in the formulation of the slurry. The soils were prepared 

concurrently for the earthworm and springtail tests; however, those used for the plant 

tests were prepared separately (Fig. A.1).  

 

2.3 Culture of the Test Organisms 

2.3.1 Eisenia andrei  

Eisenia andrei cultures were developed and maintained at the Stantec soil 

laboratory in Guelph, ON according to requirements detailed by Environment Canada 

(Environment Canada, 2004). Genetically verified cultures of worms are grown in culture 

bins (Rubbermaid or similar bins ranging in volume from 10-50 L with perforated lids to 

allow for air exchange) containing a substrate consisting of approximately 43% potting 

soil and 57% Sphagnum sp. peat moss. This substrate is kept at a consistent moisture 

level (e.g., 70% of water-holding capacity). The substrate pH was adjusted with CaCO3 

to approximately pH 6. New substrate was allowed to stabilize for three days (at which 

point the moisture content and pH are confirmed) before worms were introduced. Culture 

bins were kept in a temperature (20+-2oC) and humidity controlled culture room, with a 

regulated photoperiod (12h light, 12h dark) of at mean light intensity of 568 lux 

(Environment Canada, 2004).  

The worms in culture were fed weekly a mixture of hydrated and cooked quick 

oats prepared with deionized water and allowed to cool for at least two hours before 

adding to the culture substrate. A supplement of decomposing lunchroom compost 

(fruits/vegetables) was also added to each culture monthly. 



26 

Cultures were inspected on a regular basis (usually done during weekly feeding) 

and checked for excess moisture, mold, dead worms, and worm density. Environment 

Canada protocols dictate a maximum density of 0.03 g wet wt/cm3 in each culture. 

Population reduction was achieved through the splitting of a densely populated culture 

bin into two bins with fresh substrate. Culture age, condition, and feeding records were 

recorded and kept in a logbook for future reference. 

Sexually mature, clitellate earthworms (250-600 mg wet weight) were used in the 

tests (see Fig. 2.1).  

 

 

 

2.3.2 Folsomia candida 

Folsomia candida  (Fig. 2.2) cultures were developed and maintained at the 

Stantec soil laboratory in Guelph, ON according to requirements detailed by Environment 

Canada (Environment Canada, 2007). Genetically verified springtail cultures were kept in 

culture bins (1-6 L capacity translucent plastic Rubbermaid or similar containers with 

manually perforated lids for aeration) with a substrate mixture of 8:1 Plaster of Paris: 

activated charcoal (375 µm mesh) at a depth of approximately 1 cm. Springtail culture 

Fig. 2.1. Basic anatomy with alimentary canal of a standard oligochaete (Drake & Horn, 2007). 
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bins were kept in culture rooms along with earthworm cultures at the same temperature, 

humidity, and lighting cycle. Cultures were monitored for population density and quality, 

and moisture every week.  

Folsomia candida were fed commercially purchased activated dry yeast. The 

yeast was placed directly onto the surface of the Plaster of Paris/charcoal substrate 

weekly and then hydrated with a small amount of deionized water sprayed onto the 

surface. 
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Fig. 2.2. Adult Folsomia candida (A) and juvenile Folsomia candida (B). Illustration denotes basic anatomy including “springing” appendages 
(furca and tenaculum) and the osmoregulation and excretion structure (collophore or ventral tube). 
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2.4 Earthworm Survival, Growth and Reproduction test  

Test units for the chronic (63-d) earthworm test with Eisenia andrei were 500 mL 

glass, wide-mouth, mason jars. Ten (10) replicate jars were required for each treatment. 

The jars were labeled with the date, species, identifying name of the test, treatment, and 

treatment replicate. Soil used for the test was the artificial soil. A treatment series of 

exposure concentrations (100, 180, 320, 560, 1000, 1800, 3200, 5600, and 10 000 mg/kg 

multiwalled carbon nanotubes) was created using the stock slurry of MWCNT, silica 

sand, and diH2O (described above). Experimental control treatments were unaltered 

artificial soil, a 1000 mg/kg activated carbon treatment, as well as a treatment of sand and 

water matching that of the 1000 mg/kg MWCNT treatment (without nanotubes added). 

The amended soil was added to each test unit (270 g in each); test units were then 

covered with lids. The units were then left to sit overnight to allow settling of the soil. 

On the day the exposure was to begin, adult Eisenia andrei were isolated from the 

Stantec stock cultures. All organisms were sexually mature, each with a clitellum, and 

between 250 and 600 mg (wet weight). Worms were transferred using gloved hands and 

rounded forceps, taking care not to drop or roughly handle them. Any dropped or 

damaged worms were discarded. Two adult worms per unit, 10 units per treatment, and 

12 treatments, 240 earthworms were required, so approximately 260 worms were 

collected from the cultures. 

E. andrei collected for the test were transferred from the cultures into plastic bins 

lined with moist paper towel, after being cleaned in diH2O. A sampling of 20 worms was 

weighed to ensure compliance with mean minimum weight requirements. 
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The test units were randomized, and a small amount (about 5 mL) of cooked 

oatmeal was added to each test unit (a small hole was hollowed out, then the oatmeal 

added, and then covered over). Two of the collected worms were then added to each test 

unit, and were observed until they had burrowed into the test soil (failure to enter the soil 

would suggest an acute avoidance response behavior). Units were then hydrated with 

diH2O applied with a spray bottle. Each unit was then covered with aluminum foil, which 

was perforated 5 times to allow for some air exchange. The aluminum foil was secured 

with the ring portion of the mason jar lid. Units were then transferred to the test 

chambers, which were set at 20 ± 1oC, 400-800 lux on a 16 h light, 8 h dark cycle, and 

constant humidity.  

After 14 days of exposure, the units were removed from the chambers, and 

feeding and hydration were repeated. Units were randomized and returned to the 

chambers. This process was repeated on day 28. 

On day 35, adult removal occurred. Test units were removed from the chambers, 

and reorganized according to treatment. Working from lowest concentration to highest 

concentration (sand and carbon controls were completed separately on clean aluminum 

foil to avoid cross contamination), the contents of each test unit are placed onto a sorting 

tray, one at a time, and the two adults were carefully removed, washed, weighed, and 

placed into the drying oven at 90 ºC. The condition of the adults, the presence of cocoons 

(egg packets), juveniles, and springtails or mites (common co-inhabitants of the worm 

cultures) were noted. The soil was carefully returned to the test unit, which was then 

hydrated with diH2O from a spray bottle. After this process was completed in every test 

unit, they were randomized and returned to the test chambers. After 48 hours in the 
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drying oven, the dry weight of the adults was obtained.  Feeding was completed again on 

days 42 and 56. 

Processing of offspring occurred on day 63. Procedures for the processing were 

similar to those for the removal of adults. The soil was carefully separated using a spoon 

and forceps, into the smallest pieces possible to ensure that no juveniles were missed. The 

number of hatched (hollow and translucent) and unhatched (turgid and opaque) cocoons 

was also recorded. Juveniles were washed, dried with blotting paper, placed into labeled 

and pre-weighed aluminum pans, weighed, and placed into the drying oven for 48 hours, 

after which a dry weight was obtained. 

All dried juvenile Eisenia andrei were retained and frozen, in order to be used for 

thermogravimetric analysis, Raman spectroscopy analysis, and possible SDS analysis at a 

future date. 

2.5 Springtail Survival and Reproduction test  

2.5.1 Age synchronization of Folsomia candida 

In order to reduce variability in survival and reproductive ability during test 

procedures, Folsomia candida to be used for testing were age-synchronized. Paper strips 

were dipped into wet springtail culture media and allowed to dry. Small culture 

containers were also created in Petri dishes using the same method for large-scale 

culturing. When synchronization begins, the Petri cultures were hydrated with deionized 

water to the point of saturation, and then allowed to drain. Culture strips (usually 2) were 

then added to the Petri cultures. 

Eggs from the main culture bins were carefully collected with a damp fine 

paintbrush and transferred to culture strips. For these experiments, 420 springtails 
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between the ages of 10 and 12 days were required. Culture strips were then placed into a 

Petri culture dish that had been hydrated with deionized water. The synchronization 

cultures were monitored daily, using a moist paintbrush method to transfer offspring 

found each day into a new culture dish. Egg strips were temporarily removed from the 

Petri culture, and a small amount of deionized water was used to wash any remaining 

offspring from the main dish into the new culture dish. The parent culture dish was then 

inspected once more for springtails. Applying pressure to them with the paintbrush 

destroyed all individuals found in this way. A small amount of yeast was added and the 

hydration of the new culture was assessed and adjusted. The new culture was then labeled 

with the date, and the number of offspring recorded. 

This process was repeated each day, using a new recipient Petri culture dish, until 

the required number of Folsomia candida (in this case 420) between the ages of 10 and 

12 days were obtained. During the synchronization process, cultures of cohorts in Petri 

dishes were labeled and stored within an empty Rubbermaid or a similar container with 

translucent sides, inside the culture room. Synchronized cohorts became the test 

organisms for the 28-day definitive test.  

2.5.2 Procedures for Springtail test 

Fifty-four (54) clean, 100-mL, wide-mouth, mason jars served as the test units for 

the test. Six (6) units were needed for each of the three (3) control treatments (5 replicates 

and one blank – a unit containing soil but no organisms), while four (4) units were 

required for each of the nine (9) carbon nanotube-amended treatment (3 replicates and 

one blank). Thirty (30) grams of each amended soil were weighed and placed into the 

appropriately labeled jars that corresponded to each treatment. A 25-g sample of soil 
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from each treatment was also collected and the pH and conductivity were determined. 

Ten (10) age-synchronized F. candida were then added to each unit (except the blanks, 

which contain no organisms). Springtails were placed onto black construction paper for 

ease of counting and transfer to the units. A small amount of dried yeast was added to 

each unit containing organisms. The units were then hydrated with a small amount of 

diH2O applied with a spray bottle, and the lids tightened lightly to allow air exchange. 

Test units were randomized and placed into test chambers, which were set at 20o C, 400-

800 lux on a 16 h light, 8 h dark cycle, with constant humidity. 

On day 7 (7 days after the addition of organisms), the test units were removed 

from the chamber, and the lids removed to allow aeration. The contents in the test units 

were hydrated, as required. Test units were randomized and returned to the environmental 

chamber. On day 14, the units were once again removed, and a small amount of dry 

active yeast was added to each unit, which was then hydrated if required. Units were 

again randomized and replaced into the chambers. On day 21, the aeration procedure 

completed on day 7 was repeated.  

Twenty-eight (28) days after the addition of the test organisms, the test units were 

removed, organized by treatment, and processed. The number of surviving adults and the 

number of progeny produced in each test unit were determined by manually counting 

individuals in each unit. This was achieved by adding a small amount of water to the test 

unit, which was then transferred into an empty Petri dish. Due to the hydrophobic nature 

of the springtail’s waxy epicuticle, the F. candida would float to the surface, where they 

were counted using a lighted magnifying glass. Individuals were considered to be alive if 

movement was present. This process was repeated until there was no substrate remaining 
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in the test unit. The “Blank” test units with substrate but no tubes were used to measure 

the pH and conductivity of each treatment. 

2.6 Plant Tests: Seedling emergence and growth tests 

2.6.1 Hordeum vulgare - Barley  

Five hundred grams (500 g) of amended or un-amended test soil was added to 

each 500-mL food-grade plastic container: 6 test units for each of 3 control treatments, 4 

units for the 100, 180, 320, 560 mg/kg treatments, and 3 units for the 1000, 1800, 3200, 

5600, and 10000 mg/kg treatments. Barley seeds were added to the soils the same day 

that the soils were prepared. Using forceps and working from lowest to highest 

concentrations of CNT amendment, 5 barley seeds were carefully planted in a pattern 

with a uniform distribution in the soil of each unit. Each seed was inspected for quality 

before it was chosen for the experiment. Seeds were planted at a depth of approximately 

2x their width within the test soil, pushed down and covered with soil using a glass rod. 

Planted test vessels were then hydrated with nutrient solution using a spray bottle. The 

lids were applied, and the units were transferred to the plant growth chambers located at 

the University of Guelph. Units were randomized and placed within the chambers, which 

were set to a regular light cycle of 16h light, 8h dark, with constant temperature (22 ± 

2oC) and humidity. 

Every 48 hours, the test vessels were checked for hydration. If required, the 

surface was saturated with either de-chlorinated tap water (tap water left to sit for at least 

48 hours) or nutrient solution. Water and nutrient solution were used on alternating 

watering events. After each watering, the lids were replaced and the units randomized 

once again. 
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After 7 days, the lids were removed from the units to allow for shoot growth 

beyond the crest of the test unit. After the initial 7-day period, watering and 

randomization was completed daily because water evaporation occurred more quickly. 

Again, plants were watered with de-chlorinated tap water, and on alternating days, with a 

weak nutrient solution. 

On the 14th day following the planting of the Hordeum vulgare seeds, the units 

were returned to the laboratory at Stantec (Guelph, ON) for processing. First, the number 

of emerged seedlings was counted and recorded. Any growth 3 mm or more above the 

soil surface was counted as “emerged”. The seedlings were then carefully liberated from 

the soil, with care taken to ensure that all soil was removed from the roots without 

damage to their structure. A spray bottle, and occasionally a spray extension from the tap 

were used to dislodge soil particles. Once the seedling roots were separated from the soil 

(See Fig. 2.3), the health of the plants was noted. The root and shoot were then separated 

by cutting through the seedling at the point between root and shoot. Root and shoot 

length were then measured with a ruler, and the roots and shoots of each unit were placed 

into separate previously labeled and weighed weigh boats, and placed into a drying oven 

at 90 ºC for 48 hours. These were weighed after the drying period. 



36 

Fig. 2.3. Illustration of Medicago sativa (left) and Hordeum vulgare (right) denoting severing points between 
root and shoot of seedlings for measurements. Note the root nodules present on the roots of M. sativa. 
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2.6.2 Medicago sativa - Alfalfa  

The method for the measurement of seedling emergence and growth of Medicago 

sativa in multi-walled carbon nanotube-amended soil is identical to that for Hordeum 

vulgare (previous section), with two important differences. Ten (10) alfalfa seeds were 

planted in each test unit, and exposure time was 21 days rather than 14 days. Soils were 

from the same batch as that used for the test with barley, and the experiments ran 

simultaneously in the same growth chamber, under the same conditions. 

2.7 Statistical analysis of test results 

All data processing and statistical analyses were completed using Graphpad Prism 

4 (Graphpad Software, Inc, 2003). Assumptions for analysis of variance testing were 

tested using Bartlett’s test for equal variances (p ! 0.05) (homogeneity of variance), and 

Shapiro-Wilk normality test (p!0.05) (normality). When found to be appropriate based 

on the distribution of data, one way analysis of variance (ANOVA), procedures with a 

significance level established at p ! 0.05 was used to determine whether there were 

significant differences among means for each amendment and for each parameter 

measured. Bonferroni’s multiple comparisons post-hoc test with a significance value p ! 

0.05 was utilized to determine where the significant variation occurred, when present. 

When data were not normal and variances were found to be non-homogenous, Kruskal-

Wallis non-parametric test with a significance value of p ! 0.05 was used. Differences 

among medians were identified by applying Dunn’s multiple comparisons post-hoc test 

(p ! 0.05). 
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3.0 Experimental Results 

3.1 Eisenia andrei 

3.1.1 Effects of 35-day exposure on adult survival 

After 35-days of exposure of adult Eisenia andrei to artificial soil amended with 

varying concentrations of multi-walled carbon nanotubes, no significant (p = 0.2503) 

adult mortality was observed in any of the control treatments (artificial soil, sand, 

activated carbon) or the MWCNT amendments (Fig. 3.1.1). Controls of sand slurry and 

activated carbon were compared to each other and to the 1000 mg/kg MWCNT treatment 

and artificial soil control. There were no significant differences between or among 

treatments. 

Individuals appeared healthy throughout the control treatments in terms of their 

vigor and colouration. Adults removed from MWCNT-amended soils were slightly less 

responsive and vigorous than their counterparts in the control treatments. This 

observation did not vary discernibly amongst MWCNT concentrations. There was mild 

discolouration amongst some individuals in MWCNT-amended treatments; however, this 

was not universal and did not trend with any significance. All units contained both 

cocoons and juvenile worms, and the presence of mites in the soil was observed amongst 

all treatments. 
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Fig. 3.1.1. A. Adult survival of Eisenia andrei exposed to various concentrations of MWCNT slurry. 
B. Box and Whisker plot showing data range for each treatment.  
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During the inspection of MWCNT-amended soils after removing from the test 

units and before breaking them apart to remove the adults, black deposits were observed 

throughout MWCNT-amended soils. Deposits increased in intensity and frequency as the 

concentration of nanotube amendment increased. Figure 3.1.2 is a collection of 

photographs of amended soils after being removed from the test units and before being 

processed. Figure 3.1.2-A is taken from test unit 560-4, 3.1.2-B is from test unit 1000-1, 

and 3.1.2-C is taken from 1800-8. Due to the randomization of the test units for adult 

removal and the unexpected discovery of this effect, the progression of this effect 

throughout the amendment series was not fully documented. These deposits are thought 

to be castings, containing MWCNT consumed in the test soil. 
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Fig. 3.1.2. Photographs of Eisenia andrei test soil from test units after the soil was removed and before adult removal. Image A is taken from test unit 560-4, 
B from 1000-1, and C from 1800-8. Note the black deposits (marked by arrows) seen in all three soil samples, with the most intense deposits found in C. 
 

 

41 



42 

3.1.2 Effects of 63-day exposure on progeny production and survival 

The soil colour and texture varied with the intensity of amendment; soils 

containing higher MWCNT concentrations were darker and wetter.  Analysis found that 

there were no statistically significant differences in the number of progeny produced 

between or among treatments (Fig. 3.2.3). 
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Fig. 3.2.3. A. Mean progeny production of Eisenia andrei in each treatment after 63-day exposure to 
various concentrations of MWCNT slurry. B. Box and Whisker plot showing data range for each 
treatment.  
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Analysis of progeny wet mass data showed a significant increase in mean progeny 

wet mass (Fig. 3.2.4) (p = 0.0001) for individuals exposed to treatment of 3200 mg/kg 

MWCNT dry soil compared to artificial soil control. Analysis also found significant 

difference increase in progeny wet mass in 1800, 3200, and 10 000 mg/kg MWCNT 

treatments compared to sand slurry control and activated carbon control, as well as an 

increase in progeny wet mass in 3200 mg/kg MWCNT treatment and 180 mg/kg 

MWCNT treatment.  
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Fig. 3.2.4. A. Mean Eisenia andrei progeny wet mass for each treatment after 63-day exposure to 
various concentrations of MWCNT slurry. Asterisks denote significant difference from the AS 
control, “s” denotes significant difference from sand control, “c” denotes significant difference from 
activated carbon control, “a” denotes significant difference from 180 mg/kg MWCNT amendment. B. 
Box and Whisker plot showing data range for each treatment. 
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Mean dry mass of individual progeny did not differ significantly from that in the 

control treatments (Fig. 3.2.5). This would suggest that the mass difference found in wet 

organisms was due to water mass; however, there was no significant variation found 

between any treatments when mean progeny percent moisture content was analyzed (Fig. 

3.2.6).  
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Fig. 3.2.5. A. Mean individual Eisenia andrei progeny dry mass for each treatment after 63-day 
exposure to various concentrations of MWCNT slurry. B. Box and Whisker plot showing data range 
for each treatment. 
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Fig. 3.2.6. A. Mean Eisenia andrei progeny moisture content for each treatment after 63-day exposure 
to various concentrations of MWCNT slurry. B. Box and Whisker plot showing data range for each 
treatment. 
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3.2 Folsomia candida 

3.2.1 Effects of 28-day exposure on adult survival 

Following 28-day exposure to amended soils, the appearance of surviving adult 

Folsomia candida was uniform throughout treatments, with largely vigorous, healthy-

looking adults common. Adults with dark abdomens were observed with consistent (low) 

frequency throughout treatments. Eggs were found in all treatments, with no noticeable 

differences in colour or morphology.  

No significant adult mortality was found in any amendment (see Fig. 3.2.1). 

Comparisons of mean adult survival among control treatments of artificial soil, sand 

slurry, activated carbon slurry, and equivalent multi-walled carbon nanotube treatment 

revealed no significant variation.  

 



48 

 

 

 

AS Sand C 100 180 320 560 1000 1800 3200 5600 10000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Treatment (mg/kg MWCNT)

AS Sand C 100 180 320 560 1000 1800 3200 5600 10000
0

5

10

15

20

25

Treatment (mg/kg MWCNT)

Fig. 3.2.1. A. Survival of adult Folsomia candida exposed to multi-walled carbon nanotube-amended 
artificial soil with controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). 
B. Box and Whisker plot showing data range for each treatment. 
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3.2.2 Effects of 28-day exposure on reproduction 

Following the 28-day exposure period, the number of surviving Folsomia candida 

progeny in each unit was determined using the floatation method.  Progeny were 

observed to be generally healthy and active, with no trends in differing morphology, 

colouring, or behavior noted. There was no significant difference in progeny production 

amongst treatments at p ! 0.05. Comparison of surviving progeny among control 

treatments of artificial soil, sand slurry, activated carbon slurry, and 1000 mg/kg multi-

walled carbon nanotube amendment showed no significant difference (See Fig. 3.2.2). 
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Fig. 3.2.2. A. Mean surviving Folsomia candida progeny exposed to multi-walled carbon nanotube-
amended artificial soil with controls of artificial soil (AS), sand slurry (Sand), and activated carbon 
slurry (C). B. Box and Whisker plot showing data range for each treatment. 
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3.3 Hordeum vulgare 

3.3.1 Effects of 14-day exposure on seedling emergence 

After the 14-day exposure period, test units containing Hordeum vulgare (barley) 

seedlings were removed from growth chambers at the University of Guelph and returned 

to the Stantec soil laboratory for processing (see Fig. 3.3.1). No Hordeum vulgare 

seedlings had emerged in the 10 000 mg/kg MWCNT treatment during the test period, 

although It is believed that this is a result of the test soil being over-watered on day 0, 

resulting in a sediment-like consistency in the test units. These units were therefore left 

out of final statistical analysis; however, it should be noted that statistical significance 

was found in all measured parameters when the 10 000 mg/kg units were included. 

During visual assessment of foliage, leaves were found to be generally healthy. 

Occasional chlorotic (yellowing/loss of colour) leaves, leaf wrinkling, and some necrosis 

(brown/black portions due to cell death) were observed among seedlings in all treatments; 

however this was a rare occurrence and is not considered to be a phytotoxic effect from 

amended soil.



52 

 

 

 

 

 

Fig. 3.3.1. Hordeum vulgare test units with seedlings after 14-day exposure, before processing. Units are arranged from left to right in ascending order 
according to nanotube amendment: Artificial Soil, Carbon, Sand, 100 mg/kg MWCNT, 180 mg/kg, 320 mg/kg, 560 mg/kg, 1000 mg/kg, 1800 mg/kg, 3200 
mg/kg, 5600 mg/kg, 10 000 mg/kg. Note that the 10 000 mg/kg amendment had no seedling growth due to over-saturation of the test units. 
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Fig. 3.3.2. Hordeum vulgare test units with seedlings after 14-day exposure, before processing as seen from above. Units are arranged from left to right in 
ascending order according to nanotube amendment: Artificial Soil, Carbon, Sand, 100 mg/kg MWCNT, 180 mg/kg, 320 mg/kg, 560 mg/kg, 1000 mg/kg, 
1800 mg/kg, 3200 mg/kg, 5600 mg/kg, 10 000 mg/kg. Note that the 10 000 mg/kg amendment had no seedling growth due to over-saturation of the test units. 
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As shown in Figure 3.3.3, there was no significant variation in seedling 

emergence and emergence among treatments. The 10 000 mg/kg treatment was not 

included in statistical analyses due to oversaturation of the soil which likely resulted in 

the inhibition of seedling emergence in this treatment. 

 

 

 

 

 

 

Fig. 3.3.3. A. Mean number of emerged Hordeum vulgare seedlings per test unit for each MWCNT 
treatment and controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). B. 
Box and Whisker plot showing data range for each treatment. 
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3.3.2 Effects of 14-day exposure on root and shoot growth 

Exposure to multi-walled carbon nanotube slurry-amended soil for 14 days 

resulted in no observable differences in barley shoots and foliage among treatments (See 

Fig. 3.3.4). Chlorosis was noted rarely, and without any correlation to treatment. Figure 

3.3.8 shows Hordeum vulgare seedlings after being liberated from the test soil. As seen 

in Figures 3.3.1, 3.3.2, and 3.3.8, shoots and foliage were generally health throughout all 

treatments.  
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Fig. 3.3.4. A. Mean shoot length of Hordeum vulgare exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). B. Box and 
Whisker plot showing data range for each treatment. 
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Shoot dry mass was similarly unaffected by exposure to the multiwalled carbon 

nanotube slurry (Fig. 3.3.5). 

 

 

  

Fig. 3.3.5.A. Mean shoot dry mass of Hordeum vulgare exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). B. Box and 
Whisker plot showing data range for each treatment.  
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Analysis of root elongation found no significant difference between treatments 

(Fig.3.3.6). Mean individual root dry mass was also unaffected by growth within the 

amended media (Fig. 3.3.7). Visual observation of root growth similarly found no 

physical variation (Fig. 3.3.8). 
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Fig. 3.3.6. A. Mean root length (mm) of Hordeum vulgare exposed to all MWCNT treatments as well 
as controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). B. Box and 
Whisker plot showing data range for each treatment. 
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Fig. 3.3.7. A. Mean root dry mass of Hordeum vulgare exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). B. Box and 
Whisker plot showing data range for each treatment.  
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Fig. 3.3.8. Hordeum vulgare seedlings after liberation from amended test soil. No visible difference was 
noted between seedlings grown in any concentration of MWCNT amendment. 
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3.4 Medicago sativa 

3.4.1 Effects of 21-day exposure on seedling emergence 

Following a 21-day exposure period, test units containing Medicago sativa 

(alfalfa) seedlings in amended soil were removed from growth chambers at the University 

of Guelph and returned to the soil laboratory at Stantec for processing (Fig. 3.4.1). Due to 

day-0 oversaturation of the test soil amended to 10 000 mg/kg multi-walled carbon 

nanotubes, these units were excluded from the final statistical analysis.  

Visual analysis of foliage health noted general good health among alfalfa 

seedlings in all treatments. Instances of chlorosis (loss of pigmentation) and necrosis 

(dead tissue) were rare, but noted in some seedlings from all treatments and without 

significant trend (Fig. 3.4.2). 
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Fig. 3.4.1. Medicago sativa test units with seedlings after 21-day exposure, before processing. Units are arranged from left to right in ascending order 
according to nanotube amendment: Artificial Soil, Carbon, Sand, 100 mg/kg MWCNT, 180 mg/kg, 320 mg/kg, 560 mg/kg, 1000 mg/kg, 1800 mg/kg, 3200 
mg/kg, 5600 mg/kg, 10 000 mg/kg. Note that the 10 000 mg/kg amendment had very little seedling growth likely due to over-saturation of the test units. 
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Fig. 3.4.2. Medicago sativa test units with seedlings after 21-day exposure, before processing as seen from above. Units are arranged from left to right in 
ascending order according to nanotube amendment: Artificial Soil, Carbon, Sand, 100 mg/kg MWCNT, 180 mg/kg, 320 mg/kg, 560 mg/kg, 1000 mg/kg, 
1800 mg/kg, 3200 mg/kg, 5600 mg/kg, 10 000 mg/kg. Note that the 10 000 mg/kg amendment had litle seedling growth, likely due to over-saturation of the 
test units. 
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Statistical analysis of seedling emergence showed some significant variation in 

seedling emergence among treatments at p ! 0.05 returned a p-value of 0.03. Using 

Bonferroni’s multiple comparisons post-hoc test, the significant difference was found to 

be between the means of the 560 mg/kg MWCNT treatment and the artificial soil control 

(Fig. 3.4.3). This decrease in germination in the 560 mg/kg MWCNT treatment, while 

statistically significant, was not found to be part of a trend, and could be interpreted as 

experimental error. 
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Fig. 3.4.3. A. Mean number of emerged Medicago sativa seedlings per test unit for each MWCNT 
treatment and controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). 
Astericks placed above columns denote a significant variation from the control (AS). B. Box and 
Whisker plot showing data range for each treatment.  
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Effects of 21-day exposure on root and shoot growth 

Shoot growth and foliage health in M. sativa seedlings exposed to MWCNT 

amended artificial soil did not differ significantly at any amendment concentration level 

when compared to seedlings grown in the negative control, artificial soil (p > 0.05). 

Seedlings grown in activated carbon amended soil, however, were found to have 

significantly less shoot growth than those plants grown in MWCNT treatments of 180, 

320, 1000, and 1800 mg/kg soil dry mass (p = 0.0001). Additionally, enhancement of 

shoot and foliage growth was also seen in the 180 mg/kg MWCNT amendment in 

comparison to those grown in sand amended soil. 
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Fig. 3.4.4. A. Mean shoot length of Medicago sativa exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). Columns marked 
with a “c” were found to be significantly different from activated carbon column, while columns 
marked with “s” were found to be significantly different from the sand treatment column. B. Box and 
Whisker plot showing data range for each treatment. 
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Fig. 3.4.5. A. Mean shoot dry mass of Medicago sativa exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). Asterisks above 
columns denote a significant difference from AS. B. Box and Whisker plot showing data range for 
each treatment. 
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Analysis of root elongation found significant variation among median root length 

of Medicago sativa after 21 days of growth in treated artificial soils (p ! 0.05). After 

returning a p value of less than 0.0001, it was determined using Dunn’ multiple 

comparisons test that seedlings grown in activated carbon amended soils had significantly 

shorter roots than those grown in 180 mg/kg and 320 mg/kg MWCNT amended soils. 

The same analysis found that seedlings grown in sand amended soil had significantly 

longer roots than those grown in 560 mg/kg MWCNT amended soils, and significantly 

shorter than those grown in 180 mg/kg amended soils. No treatments varied significantly 

from the artificial soil control (Fig. 3.4.6). 

Root dry mass analysis resulted in a p-value of 0.0074, suggesting significant 

variation among means. Dunn’s multiple comparisons test revealed that there were 

significant differences between the artificial soil control (AS) and the activated carbon 

(C) control (Fig. 3.4.7). Root mass was significantly lower in seedlings grown in 

activated carbon amended soils compared to those grown in artificial soil. 
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Fig. 3.4.6. A. Mean root length (mm) of Medicago sativa exposed to all MWCNT treatments as well 
as controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). Columns marked 
with a “c” were found to be significantly different from activated carbon column, while columns 
marked with “s” were found to be significantly different from the sand treatment column. B. Box and 
Whisker plot showing data range for each treatment. 
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Fig. 3.4.7. A. Mean root dry mass of Medicago sativa exposed to all MWCNT treatments as well as 
controls of artificial soil (AS), sand slurry (Sand), and activated carbon slurry (C). Asterisks above 
columns denote a significant difference from AS. B. Box and Whisker plot showing data range for 
each treatment. 
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Fig. 3.4.8. Medicago sativa seedlings after liberation from amended test soil. Seedlings are arranged from left to right in ascending order according to 
nanotube amendment: Artificial Soil, Carbon, Sand, 100 mg/kg MWCNT, 180 mg/kg, 320 mg/kg, 560 mg/kg, 1000 mg/kg, 1800 mg/kg, 3200 mg/kg, 5600 
mg/kg. No visible difference was noted between seedlings grown in any concentration of MWCNT amendment. 
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4.0 Discussion 

4.1 General discussion 

The toxicity of multiwalled-carbon nanotubes (MWCNT) in soil has been 

evaluated with earthworms, plants and springtails. This is the first study to examine the 

soil toxicity of MWCNT with this range of organisms. The overarching conclusion is that 

MWCNT had little impact on any of these organisms. This is discussed below in separate 

sections for the earthworms, plants and springtails. One interesting observation is the 

apparent ability of earthworms to aggregate MWCNT in soil. This observation is also 

discussed in consideration of how MWCNT in the soil might be degraded, measured, and 

transferred into terrestrial food chains. 

4.2 Earthworm toxicity tests 

The earthworm, Eisenia andrei, was not affected by MWCNT at exposure 

concentrations in soil of up to 10 000 mg/kg. Four earthworm response parameters were 

unchanged by the exposure to MWCNT: adult survival, reproduction, growth and 

moisture content of progeny. In general, this lack of a significant effect agrees with the 

overall conclusion of several reports on CBNP/NM and earthworms (Petersen et al., 

2008; Scott-Fordsmand et al., 2008).  

Perhaps the most studied class of CBNP/NM has been the fullerenes. These have 

been studied with three species of earthworms, E. fetida, E. veneta, and Lumbricus 

rubellus. Van der Ploeg et al. (2011) determined that for L. rubellus, exposure to C60 

reduced cocoon production and juvenile growth rate and increased juvenile mortality 

(van der Ploeg et al., 2011). The authors concluded that in the juvenile stage earthworms 
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were sensitive to C60 fullerenes and this could lead to long-term adverse effects on 

earthworm populations. In contrast, E. fetida, reproduction was impaired only at very 

high C60 concentrations, and even then, growth was not hindered (Li & Alvarez, 2011). 

The authors concluded that C60 in soil was unlikely to cause acute toxicity to E. fetida. A 

similar conclusion was reached with C60 and E. veneta (Scott-Fordsmand et al., 2008). 

No effect was seen on hatchability, survival, or mortality atconcentrations up to 1000 mg 

of C60/kg.  

Less attention has been given to CNT. Double-walled carbon nanotubes 

(DWCNT) were found to have a slight impact on E. veneta (Scott-Fordsmand et al., 

2008). Cocoon production was reduced at concentrations above 37 mg DWNT/kg. 

Conversely, hatchability, growth, and mortality were not affected at up to 495 mg 

DWNT/kg. Exposure of E. fetida to SWCNT and MWCNT at concentrations up to 3 g/kg 

had no effect on earthworm lipid content and dry mass (Petersen et al., 2009a).    

4.3 Springtail toxicity tests 

This study represents the first on the effect of CNT on springtails (Folsomia 

candida), and as with the only study of MBNP and springtails, no effect was seen. 

MWCNT at concentrations in soil of up to 10 000 mg/kg of dry soil were found to have 

no effect on the survival and reproduction of springtails. In the case of MBNP, zinc oxide 

nanoparticles (ZnO-NP) were found not to alter survival but inhibited springtail 

reproduction (Kool et al., 2011). This effect was not as a result of the presence of NP, but 

instead attributed to the release of zinc ions from the NP. The authors noted that the 

cuticle and ventral tube (diameter approximate 5 µm) were possible entry routes for 

chemicals and NP. Indeed the exoskeleton of arthropods might limit exposure to NP/NM. 
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Among arthropods, the most work on CBNP/CBNM has been done with Drosophila 

melanogaster, which is an insect rather than a member of the Collembola but still 

belonging to the subphylum hexapoda. When D. melanogaster larvae were exposed in 

their diet to fullerene C60, carbon black (CB), SWCNT, and MWCNT, egg to adult 

survivorship was unimpaired (Liu et al., 2009). When adult flies were exposed to the 

same CBNMs in dry form, CB and SWCNT adhered extensively to fly epicuticle 

surfaces. This overwhelmed natural grooming mechanisms, and led to impaired ability to 

climb test tube walls and ultimately to mortality. In contrast, C60 and MWCNT adhered 

weakly and could be removed by grooming. Locomotor function and survival were 

unchanged. Thus overall, MWCNT might just not be very toxic to arthropods.  

4.4 Plant toxicity tests 

MWCNT did not significantly influence seedling emergence, length of root 

growth, or dry mass of the two test species, Hordeum vulgare (barley) and Medicago 

sativa (alfalfa). This is similar to the majority of reports on the effects of CBNP/NM to 

plants.  Some researchers have found negative effects and increasingly other researchers 

are discovering positive responses. These three very different outcomes are briefly 

discussed below.  

Like many reports exploring the interactions between CBNP/NM and plants, 

MWCNT at 5600 mg/kg of dry soil had no effect on barley and alfalfa. MWCNT at up to 

2560 mg/L did not negatively affect either the germination percentage or the germination 

index (GI) for alfalfa (Miralles et al., 2012). Similar results have been seen for other 

species. The germination of lettuce, corn, cucumber, rape, radish or ryegrass was not 

affected by up to 200 mg/L CNT (Lin & Xing, 2007).  Seeds of mustard and mung bean 
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germinated normally in 40 mg/L CNT (Ghodake et al., 2010). MWCNT had no effect on 

wheat root and shoot growth (Wild & Jones, 2009).  

Some studies have found CBNP/NM to have negative effects on plants, although 

these appear to depend on plant species, to some extent. Several studies focused on rice.  

When rice cells in suspension were exposed to MWCNT, the MWCNT wrapped around 

the cell walls, elicited hypersensitive responses, and eventually killed cells (Tan et al., 

2007). At low concentrations, death appeared to be by apoptosis; but at high 

concentrations, death was by necrosis. Rice seeds exposed to SWCNT in complexes with 

natural organic matter (NOM) had reduced biomass and delayed flowering (Lin et al., 

2009). SWCNT also appeared to cause apoptosis in Arabidopsis sp. protoplasts (Shen et 

al., 2010). Functionalized and non-functionalized SWCNT inhibited root elongation in 

tomatoes but not in carrot and cabbage (Cañas et al., 2008). 

Reports of CNT having positive effects on plant development have sparked 

considerable interest as the results might be exploited in agriculture in the future (Gogos 

et al., 2012).  Non-functionalized SWCNT enhanced root elongation in onion and 

cucumber (Cañas et al., 2008).  Root elongation was also increased by MWCNT in 

alfalfa and wheat, but in alfalfa this was partially attributed to catalyst impurities 

(Miralles et al., 2012). The most excitement has been caused by the discovery that 

MWCNT at 10 to 40  µg/mL greatly stimulated germination rates in tomato seeds 

(Khodakovskaya et al., 2009). The mechanism appeared to be the mechanical penetration 

of the seed coat so that water uptake was enhanced, leading to increased germination. 

This led to a patent and to exaggerated claims in the popular press (Gogos et al., 2012). 

An example of an over-the-top title in open source articles is “CNT are super-fertilizers”. 
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Shockingly, the original research paper by Khodakovskaya et al. (2009) was withdrawn 

on August 20, 2012 “due to violations of the Ethical Guidelines to Publication of 

Chemical Research of the American Chemical Society for reasons of unacceptable 

redundant inclusion of text and graphics from two works previously published in other 

journals”. However, the core discovery seems to remain unchallenged. 

Clearly much more research is required in order to discover the full range of 

effects to plants arising from exposure to CBNP/NM. From the broader perspective of 

studies on all NP/NM, many factors have been found to influence their toxicity to plants 

(Rico et al., 2011), and possibly some of these might be important variables to consider 

in future studies with MWCNT. Some of these variables include: seed size, plant species, 

life cycle stage, and plant age. In addition, the exposure medium might be one of the 

critical factors influencing the outcome. In most of the studies to date, the growth media 

have varied. The strength of the current study is that the general toxicity testing was done 

as recommended by Environmental Canada guidelines, although there are no guidelines 

yet specifically for NP in soil. 

4.5 MWCNT aggregates in soil 

The structure of the test soil with high concentrations of MWCNT was noticeably 

changed in the presence of earthworms. Dark, irregular, cylindrical structures were 

evident in the soil after 35 days with MWNT but were not apparent when the MWNT 

were first mixed with the test soil, or when earthworms were absent. This was attributed 

to be the MWCNT being redistributed within the test soil through the activity of the 

earthworms. Soil structure has been defined as the arrangement of particles and 

associated pores (Oades, 1993). The soil particles are arranged into secondary units called 
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aggregates or peds. A hierarchy of soil aggregates has been proposed (Tisdall and Oades, 

1982). Free particles and silt-sized aggregates (< 20 µm) clump together into micro 

aggregates (20 -250 µm), and in turn these stable micro aggregates cluster together into 

macro aggregates (>250 µm) (Six et al., 2004).  Abiotic and biotic factors contribute to 

aggregation, aggregate stability, and soil structure (Oades, 1993).  The MWCNT might 

be considered as primary and secondary particles that during the course of the experiment 

selectively aggregate, and at high starting concentrations, become visible as dark streaks. 

Why MWNT would selectively aggregate is a matter of speculation. Earthworms 

are however one biotic factor contributing to soil particle aggregation: one way that they 

do this is through the production of casts (Six et al., 2004). Casts arise from earthworms 

ingesting soil, molding the material in their digestive tract, and egesting it. Many 

earthworm species (including Eisenia andrei) are selective in what they ingest. It is 

possible that earthworms selectively take up and egest MWNT-containing casts, which 

would be expected to be the black color of MWNT slurries. These casts could be more 

stable than conventional casts and be sites of additional aggregation, thus being 

responsible for the structures seen in the test soil. Little is known about the stability of 

MWCNT in soil.  

4.6 Transformation of MWCNT in soil 

To date, information on how CNT might change in the natural environment is 

limited (Petersen & Henry, 2011). Covalent reactions and biodegradation are thought to 

be the two types of transformations that are broadly possible.  

Despite being generally inert, CNT can still undergo covalent additions (Petersen 

& Henry, 2011). The fullerene-like end-caps and defects on the sidewalls are potential 
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oxidation sites, although strong oxidative forces are required for chemical oxidation of 

CNT. Photooxidation is the most likely way that this could occur in the natural 

environment. When exposed to sunlight, carboxylated SWCNT produced reactive oxygen 

species (ROS) and these oxidize CNT. Oxidative treatments introduced oxygen-

containing surface functional groups, such as hydroxyl, carboxyl, carbonyl, and ester 

groups, and open the end-cap (Petersen et al, 2011b). Inasmuch as the MWCNT were 

mixed into the test soil, light would be unlikely to penetrate sufficiently to cause any 

changes in the MWCNT. 

Potentially, MWCNT could undergo biodegradation during the course of the 

experiments but this appears unlikely based on the length of the exposures. Generally, 

little information is available on the biodegradation of CNT in the environment, however 

one suggestion for deriving a potential timeframe is to look at what is known about the 

degradation of black carbon, which has properties similar to CNT. Black carbon 

degradation varies strongly with the soil type. In tropical soil the half-life has been 

estimated at approximately 50 years, whereas values of between 182 to 541 years were 

found for Russian steppe soil (Hammes et al., 2008; Bird et al., 1999). 

Recently, possible biodegradation mechanisms have been investigated. 

Extracellular soil enzymes have been suggested to have a role in CNT degradation. This 

has been studied with horseradish peroxidase. This enzyme was found to modify 

carboxylated SWCNT but not SWCNT (Allen et al., 2009). The changes included 

shortening of CNT and the addition of carboxyl groups. In the current study the test soil 

is unlikely to have abundant peroxidase content, which commonly arises from white rot 

and soft fungi (Sinasbaugh, 2010). Internalization of CNT into the phagocytic cells of 
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animals could also expose them to an environment that would support degradation. This 

has been studied with myeloperoxidases of neutrophils and phagolysosomal stimulant 

fluid (PSF). PSF is designed to mimic the low pH and chemical environment of 

phagolysosomes, which is where microbes and particulates accumulate inside 

phagocytes. Both the myeloperoxidase and PSF were found to degrade SWCNT. Over 90 

days, PSF degraded carboxylated SWCNT to ultrafine solid carbonaceous debris (Liu et 

al., 2010).  It is known that earthworms contain peroxidases and phagocytes (Stein et 

al.,1977; Hassett et al.,1988) and thus might be able to degrade CNT. Springtails would 

also be expected to have peroxidases and phagocytes, although CNT might not be 

internalized as efficiently into springtails as in earthworms due to the comparatively 

impermeable Collembola epicuticle. Clearly the long-term fate of CNT in soil needs 

further work and whether CNT degradation will elicit different responses in the soil biota 

will be interesting to discover. One of the keys will be to develop effective methods to 

measure CNT in soil biota.  

4.7 Measuring MWCNT 

The analysis of the soil, earthworms, springtails, and plants for MWNT would be 

useful for understanding the movement of MWNTS in the environment but likely will be 

difficult. Imaging and/or analytical approaches could be tried. Localization of CNT in a 

carbonaceous background by transmission (TEM) or scanning (SEM) electron 

microscopy is difficult (Kammer et al., 2012). This is due to the lack of contrast. Several 

quantitative analytical approaches (e.g. thermogravimetric analysis (TGA)) could be 

tried. TGA determines changes in weight in relation to a heating program in a controlled 

atmosphere. Thermal oxidation of raw SWNT and MWNT has been documented to occur 
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between 390 and 730 °C (Musumeci et al., 2007).  However, TGA might have trouble 

distinguishing CNT from background black carbon in soil (Sobek & Bucheli, 2009). 

Another possible approach is a very new one, which could be described as 

microwave-induced heating (Irin et al., 2012). This method is based on the fact that 

unlike most conventional materials, CNT evolve extreme amounts of heat when exposed 

to microwave field due to their strong microwave absorption. Irin et al. (2012) grew 

alfalfa seeds in the presence of CNT or microinjected alfalfa roots with known amounts 

of SWNT and MWNT. A thermocouple was used to measure the temperature increase in 

roots upon microwaving. The level of temperature increase depended on the CNT present 

inside the root, and calibration curves were generated. With this method, the threshold for 

detectable CNT concentration was < 0.1 µg, and was found to be more sensitive than 

Raman spectroscopy. The developers of this technique hope to analyze CNT in soil, 

earthworms, and tissue samples (Irin et al., 2012). One question that could be addressed 

with development of effective measurement techniques is the possible transfer of 

MWCNT from soil into food chains.  

4.8 Food chain transfer of MWCNT 

As the earthworms appeared to have ingested and egested MWNT, as judged by 

the appearance of the casts, and as the earthworms still appeared healthy, the earthworms 

could act to transfer MWNT from the soil to food chains in the terrestrial ecosystems. In 

other words, the earthworms would be expected to have taken up MWNT into at least 

their digestive tract as a result of their geophagous behavior. Earthworms form the base 

of several food chains and thus could transfer internalized MWNT into a wide range of 

animals. Fish, amphibians, reptiles (e.g. snakes), mammals (e.g. moles), and birds (e.g. 
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robins) eat earthworms, as do invertebrates such as mites, beetles, snails and slugs 

(Edwards, 1994). Earthworms (Eisenia fetida) were placed in artificial soil media in 

which silver NP had been mixed and collected up to 15 days later and then fed to juvenile 

bullfrogs (Rana catesbeina) (Unrine et al., 2012). Silver accumulated in the liver, kidney, 

spleen, muscle, stomach and intestine of the frogs. The results suggest that engineered 

NPs in soil may be taken up by earthworms and transferred to higher order consumers. 

The springtail population appeared unaffected by exposure to MWNT, but 

whether springtails would pick up MWCT from the soil and potentially transfer MWNT 

up food chains is unclear. Springtails feed on fungal hyphae and possibly nematodes 

(Fountain & Hopkin, 2004). Therefore, if these organisms were to take up MWNT, 

springtails might internalize MWNT through ingestion. To date, little or no information is 

available on the uptake of NP by fungi and nematodes. Spiders, among other organisms, 

eat springtails, opening up the possibility of trophic level transfer of MWCNT (Vucic-

Pestic et al., 2010). 

A concern has been expressed about edible plants transferring ENM into the 

human food chain (Rico et al., 2011), but for this to occur plants would need to take up 

and store ENM. For carbon-based nanomaterial (CBNM), the literature available on these 

questions is limited. Research has been done on several crop species and on model 

research plants, such as Arabidopsis thaliana. The tested CBNMs have been the fullerene 

C70, SWNT and MWNT.  In some cases these materials formed complexes with natural 

organic matter (NOM).  

Several experiments suggest the uptake of CBNM by plants. SWNT appeared to 

enter A. thaliana leaf cells  and Nicotiana tabacum cells in suspension (Shen et al., 2010; 
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Liu et al., 2009) through an endocytotic process. In developing tomato seedlings, the 

seeds and root systems were reported to take up MWNT (Khodakovskaya et al., 2009).  

In another study MWNT were observed initially on the root surface of wheat seedlings 

and then piercing the epidermal and root hair cell walls and root cap (Wild & Jones, 

2009). NOM-suspended fullerene C70 appeared to be taken up into rice plants (Lin et al., 

2009). The presence of C70 in the form of black aggregates was seen in the seeds and 

roots, and was judged to be less abundant in the stems and leaves. The presence of NOM-

C70 aggregates in leaves suggests that they had travelled through the xylem. In mature 

plants, the stem’s vascular systems and leaves were the predominant sites of NOM-C70 

aggregates, whereas the roots seemed to be devoid of C70, supporting the claim that C70 

was translocated from the roots to the aerial parts of the plant. 

CBNM storage in plants and transfer up the food chain has yet to be demonstrated 

but at least two studies provide suggestive information. When a suspension of N. 

tobaccum cells was incubated with SWNT, this CBNM appeared to localize in vacuoles 

(Chan et al., 2010). In the study of C70-NOM in rice plants, a remarkable observation was 

made (Lin et al., 2009). As mentioned previously, black aggregates were found in stems, 

leaves, roots and seeds. Additionally, black aggregates were spotted in the leaf tissues of 

second -generation plants. Thus it is possible that CBNM could be transferred to the next 

trophic level, for example, into ruminants and humans.  

In the current study, visible signs of MWNT in plants were not apparent, and this 

is in agreement with other studies that show restricted movement of CBNM in plants. No 

uptake of SWCNT and functionalized SWCNT (F-SWCNT) was seen in the roots of 

cucumber seedlings (Cañas et al., 2008). However, the SWCNT were found in the form 
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of nanotube sheets on the external surface of the main and secondary roots. Another 

study found that the entry of MWCNT into suspended rice cells was restricted by the cell 

walls (Tan & Fugetsu, 2007). MWCNT appeared as black clumps surrounding the cells 

(Tan et al., 2009). It is clear that more research is needed on the potential of CBNM to 

enter the food chain through plants.  

4.9 Summary 

Multiwalled carbon nanotubes (MWCNT) in soil have been found to have no 

significant impact on ecological receptors, represented by the test species Eisenia andrei, 

Folsomia candida, Hordeum vulgare, and Medicago sativa. However, this should be 

considered just the beginning in evaluating the toxicity of introducing carbon nanotubes 

(CNT) into soil.  This is because the number of functionalized CNT is large and 

continues to grow and because soil toxicity tests can have many additional endpoints and 

be done in a variety of ways. Currently, data and governance gaps exist for CNT 

(Philbrick, 2010). This thesis represents a start at filling the data gap.  

Based on the analysis of data obtained in these tests, and the experience gained by 

their execution, a number of recommendations for future studies can be made: 

 

1.  The observation of black deposits in the earthworm test units after 35 days of 

exposure should be explored by conducting a test that is performed using the same 

procedures described for the definitive earthworm reproduction test used in this thesis. 

Instead of completing a 63-day reproductive test; however, the units should be processed 

after 35 days, with the deposits being harvested as a priority. Adults removed from the 
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units should be cleaned using deionized water, and placed into petri dishes lined with 

moistened filter paper (separate dishes for each treatment).  

After 24 hours, the earthworms would be removed and the castings harvested. 

These could then be compared among treatments for colour, appearance under SEM, and 

analyzed using Raman spectroscopy or thermogravimetric analysis. Castings found in 

petri dishes would also be compared to those found in the test soil. 

This test would continue to explore the hypothesis that E. andrei could be 

rearranging MWCNT in soil. 

 

2. In order to ensure the exposure of Folsomia candida to MWCNT, the nanotubes 

could be applied more directly to the organisms. MWCNT could be used to amend F. 

candida’s food source (baker’s yeast). Organisms would be placed into the standard test 

units containing artificial soil. A 28-day definitive test would be completed, with the 

organisms being fed the MWCNT amended food source. This would increase the 

likelihood of exposure and uptake of MWCNT in springtails through ingestion. 

  

3. To further explore the effects of MWCNT amended soils on the emergence and 

growth of plants, different test media could be used. Comparison of the effects of 

germination and growth of seeds in amended artificial soil and an amended hydroponic 

growth medium could offer insight into the wide variation in effects seen among tests 

involving CNT and plants. 
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A potential continuation of these experiments would be to repeat the definitive 

tests used in this thesis (E. andrei definitive tests on survival, reproduction and growth; 

F. candida test on survival and reproduction; H. vulgare and M. sativa test on seedling 

emergence and growth) with the addition of equivalent treatments using MWCNT with 

various functional groups, MWCNT suspended using surfactants, and different types of 

CNT (single walled, double walled). This large-scale analysis would be invaluable in 

developing a base of CNT toxicological data in order to prevent human or ecological 

damage caused by the release of these materials. 



86 

References 

Allen BL, Kotchey GP, Chen YN, Yanamala NVK, Klein-Seetharaman J, Kagan VE, 
Star A. 2009. Mechanistic investigations of horseradish peroxidase catalyzed degradation 
of single-walled carbon nanotubes. Journal of the American Chemical Society 131: 
17194-17205. 
 
Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P. 1999. Stability of elemental carbon 
in a savanna soil. Global Biogeochemical Cycles 12: 923-932.  
 
Bonkowski M, Schaefer M. 1997. Interactions between earthworms and soil protozoa: a 
trophic component in the soil food web. Soil Biology and Biochemistry 29 (3): 499-502. 
 
Cañas E, Long M, Nations S, Vadan R, Dai I, Luo M, Ambikapathi R, Lee E, Olszyk D. 
2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on 
root elongation of select crop species. Environmental Toxicology and Chemistry 27 (9), 
1922-1931. 
 
Chen T, Nasser F, St.-Denis C, Bols N, Tang S. 2010. Interactions between ciliates and 
single-walled carbon nanotubes (SWNT): ciliates package SWNT and SWNT interfere 
with ciliate bacterivory. In progress. 
 
Choi J-Y, Ramachandran G, Kandlikar M. 2009. The impact of toxicity testing costs on 
nanomaterial regulation.  Environmental Science and Technology 43: 3030-3034.  
 
Coleman D. 1994. The microbial loop concept as used in terrestrial soil ecology studies. 
Microbial Ecology 28 (2): 245-250. 
 
Crane M, Handy R, Garrod J, Owen R. 2008. Ecotoxicity test methods and environmental 
hazard assessment for engineered nanoparticles. Ecotoxicology 17: 421-437. 
 
Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. 
2005. Combustion-derived nanoparticles: a review of their toxicology following 
inhalation exposure. Particle and Fibre Toxicology 2 (1): 10. 
 
Doube B, Brown G. 1998. Life in a complex community: Functional interactions between 
earthworms, organic matter, microorganisms, and plants. In: Earthworm Ecology. 
Edwards, C.A., ed. St. Lucie Press, London. 179-211. 
 
Drake H, Horn M. 2007. As the worm turns: the earthworm gut as a transient habitat for 
soil microbial biomes. Annual Review of Microbiology 61 (1): 169-189. 
 



87 

Eddington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Mao J, Klaine 
SJ. 2010. The influence of natural organic matter on the toxicity of multiwalled carbon 
nanotubes. Environmental Toxicology and Chemistry 29 (11): 2511-2518. 
 
Edwards C. 1994.  Earthworm Ecology. 2nd Edition CRC Press, Boca Raton.  
 
Environment Canada. 2004. Biological Test Method: Tests for Toxicity of Contaminated 
Soil to Earthworms (Eisenia andrei, Eisenia fetida, Lumbricus terrestris). Method 
Development and Applications Section, Environmental Technology Centre, Environment 
Canada. 
 
Environment Canada. 2005. Biological Test Method: Tests for Measuring Emergence and 
Growth of Terrestrial Plants Exposed to Contaminants in Soil. Method Development and 
Applications Section, Environmental Technology Centre, Environment Canada. 
 
Environment Canada. 2007. Biological Test Method: Test for Measuring Survival and 
Reproduction of Springtails Exposed to Contaminants in Soil. Method Development and 
Applications Section, Environmental Technology Centre, Environment Canada. 
 
Forloni G. 2012. Responsible nanotechnology development. Journal of Nanoparticle 
Research 14:1007. 
 
Fountain MT, Hopkin SP. 2004. Biodiversity of Collembola in urban soils and the use of 
Folsomia candida to assess soil ‘quality’. Ecotoxicology 13: 555-572. 
 
Fountain MT, Hopkin SP. 2005. Folsomia candida (Collembola): a "Standard" Soil 
Arthropod. Annual Review of Entomology 50: 201-222. 
 
Ghafari P, St-Denis C, Power M, Jin X, Tsou V, Mandal H, Bols N, Tang X. 2008. 
Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated 
protozoa. Nature Nanotechnology 3: 347-351. 
 
Ghodake G, Seo YD, Park D, Lee DS. 2010. Phytotoxicity of carbon nanotubes assessed 
by Brassica juncea and Phaseolus mungo.  Journal of Nanoelectronics and 
Optoelectronics 5: 157-160. 
 
Gogos A, Knauer K, Bucheli TD. 2012. Nanomaterials in plant protection and 
fertilization: current state, foreseen applications, and research priorities. Journal of 
Agricultural and Food Chemistry 60: 9781-9792. 
 
Hammes K, Torn MS, Lapenas AG, Schmidt MWI. 2008. Centennial black carbon 
turnover observed in a Russian steppe soil.  Biogeosciences  5: 1339-1350. 
 
Handy R, Henry T, Scown T, Johnston B, Tyler C. 2008. Manufactured nanoparticles: 
their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17: 396-409. 
 



88 

Hansen SF, Larsen BH, Olsen SI, Baun A. 2007. Categorization framework to aid hazard 
identification of nanomaterials. Nanotoxicology 1-8.  
 
Hassett DJ, Bisesi MS, Hartenstein R. 1988. Earthworm peroxidase- distribution, 
microbicidal action and molecular-weight. Soil Biology and Biochemistry 20: 887-890. 
 
Heckmann L, Hovgaard L, Sutherland M, Autrup H, Besenbacher F, Scott-Fordsmand J. 
2011. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm 
Eisenia fetida. Ecotoxicology 20: 226-233. 
 
Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354: 56. 
 
Iijima S. 2002. Carbon nanotubes: past, present, and future. Physica B 323: 1-5. 
 
Irin F, Shrestha B, Cañas JE, Saed MA, Green MJ 2012. Detection of carbon nanotubes 
in biological samples through microweave-induced heating. Carbon 50: 4441-4449. 
 
Kammer FVD, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans 
AA, Horne N, Unrine JM. 2012. Analysis of engineered nanomaterials in complex 
matrices (environment and biota): general considerations and conceptual case studies.  
Environmental Toxicology and Chemistry 31: 32-49.  
 
Kang S, Herzberg M, Rodrigues D, Elimelech M. 2008. Antibacterial effects of carbon 
nanotubes: Size does matter! Langmuir 24: 6409-6413. 
 
Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA. 
2008. Factors influencing the partitioning and toxicity of nanotubes in the aquatic 
environment. Environmental Toxicology and Chemistry 27 (9): 1932-1941. 
 
Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Bris A. 2009. 
Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed 
germination and plant growth. ACS Nano 3 (10): 3221-3227. 
 
Kilham K. 1996. Soil Ecology. Cambridge University Press. New York. 
 
Klaine S, Alvarez P, Batley G, Fernandes T, Handy R, Lyon D, Mahendra S, McLaughlin 
M, Lead J. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and 
effects. Environmental Toxicology and Chemistry 27 (9): 1825-1851. 
 
Köhler A, Som C, Helland A, Gottschalk F. 2008. Studying the potential release of 
carbon nanotubes throughout the application life cycle. Journal Of Cleaner Production 16 
(8-9): 927-937. 
 
Kool PL, Ortiz MD, van Gestel CAM. 2011.  Chronic toxicity of ZnO nanoparticles, non-
nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in 
soil.  Environmental Pollution 159: 2713-2719. 



89 

Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J Godefroy S, 
Pantarotto D, Briand J, Muller S, Prato M, Bianco A. 2007. Cellular uptake of 
functionalized carbon nanotubes is independent of functional group and cell type. Nature 
Nanotechnology 2 (2): 108-113. 
 
Lee SH, Richards RJ. 2004. Montserrat volcanic ash induces lymph node granuloma and 
delayed lung inflammation. Toxicology 195: 155-165. 
 
Leeuw T, Reith M, Simonette R, Harden M, Cherukuri P, Tsyboulski D Beckingham K, 
Weisman R. 2007. Single-walled carbon nanotubes in the intact organism: Near-IR 
imaging and biocompatibility studies in Drosophila. Nano Letters 7 (9): 2650-2654. 
 
Li D, Alvarez PJJ. 2011. Avoidance, weight loss, and cocoon production assessment for 
Eisenia fetida exposed to C60 in soil.   Environmental Toxicology and Chemistry 30: 
2542-2545. 
 
Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and 
root growth. Environmental Pollution 150 (2): 243-250. 
 
Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. 
2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants.   
Small 5: 1128-1132.  
 
Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. 2009. Carbon nanotubes as 
molecular transporters for walled plant cells.  Nano Letters 9: 1007-1010.  
 
Liu X, Hurt RH, Kane AB. 2010. Biodurability of single-walled carbon nanotubes 
depends on surface functionalization. Carbon 48: 1961-1969.  
 
Liu X, Vinson D, Art D, Hurt RH, Rand DM. 2011. Differential toxicity of carbon 
nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes 
locomotor impairment and mortality. Environmental Science and Technology 43: 6357-
6383. 
 
Lovestam G, Rauscher H, Roebben G, Sokull Kluttgen B, Gibson N, Putaud J-P, Stamm 
H 2010. Considerations on a definition of nanomaterial for regulatory purposes EUR 
24403 EN, European Commission Joint Research Centre. 
http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_report_201007_nanomaterials.pdf 
 
Marchant G, Sylvester D, Abbott K. 2010. What does the history of technology 
regulation teach us about nano oversight? Journal of Law, Medicine, and Ethics 37 (4): 
724-31. 
 
Maynard AD. 2011. Don’t define nanomaterials. Nature 475:31. 
 



90 

McShane H, Sarrazin M, Shalen J, Hendershot W, Sunahara G. 2011. Reproductive and 
behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. 
Environmental Toxicology and Chemistry 31 (1): 184-193. 
 
Miralles P, Johnson E, Church TL, Harris AT. 2012. Multiwalled carbon nanotubes in 
alfalfa and wheat: toxicology and uptake.  Journal of the Royal Society Interface 9: 3514-
3527.   
 
Monthioux M, Kuznetsov VL. 2006. Who should be given the credit for the discovery of 
carbon nanotubes? Carbon 44 (9): 1621-1623. 
 
Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the 
environment. Environmental Science and Technology 42: 4447-4453. 
 
Murr LE, Esquivel EV, Bang JJ, de la Rosa G, Gardea-Torresdey JL. 2004. Chemistry 
and nanoparticulate compositions of a 10 000 year-old ice core melt water. Water 
Research 38 (19): 4282-4296. 
 
Musante C, White JC. 2012. Toxicity of silver and copper to Cucurbita pepo: Differential 
effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510-517. 
 
Musumeci AW, Silva GG, Martens WN, Waclawik ER, Frost RL. 2007. Thermal 
decomposition and electron microscopy studies of single-walled carbon nanotubes.  
Journal of Thermal Analysis and Calorimetry 88: 885-891.  
 
Nardi F,  Spinsanti G, Boore J, Carapelli A, Dallai R, Frati F. 2003. Hexapod origins: 
monophyletic or paraphyletic? Science 299 (5614): 1887-1889. 
 
Nowack B, Bucheli T. 2007. Occurrence, behavior and effects of nanoparticles in the 
environment. Environmental Pollution 150 (1): 5-22. 
 
Oades JM. 1993. The role of biology in the formation, stabilization and degradation of 
soil structure.  Geoderma 56: 377-400.  
 
Oberdörster G, Oberdörster E, Oberdörster J. 2005. Ecotoxicology of carbon-based 
engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Environmental 
Health Perspectives 113 (7): 823-839. 
 
Pan B, Xing B. 2012. Applications and implications of manufactured nanoparticles in 
soils: a review. European Journal of Soil Science 63 (4): 437-456. 
 
Petersen E, Huang Q, Weber W. 2008. Ecological uptake and depuration of carbon 
nanotubes by Lumbriculus variegatus. Environmental Health Perspectives 116 (4): 496-
500. 
 



91 

Petersen EJ, Pinto RA, Landrum PF, Weber WJ. 2009a. Influence of carbon nanotubes on 
pyrene bioaccumulation from contaminated soils by earthworms.  Environmental Science 
and Technology 43: 4181-4187.  
 
Petersen E, Akkanen J, Kukkonen J, Weber W. 2009b. Biological uptake and depuration 
of carbon nanotubes by Daphnia magna. Environmental Science and Technology 43 (8): 
2969-2975. 
 
Petersen E, Pinto R, Zhang L, Huang Q, Landrum P, Weber W. 2011a. Effects of 
polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on 
earthworm bioaccumulation and sorption by soils. Environmental Science and 
Technology 45: 3718-3724. 
 
Petersen E, Zhang L, Mattison N, O’Carroll D, Whelton A, Uddin N, Nguyen T, Huang 
Q, Henry T, Holbrook R, Chen K. 2011b. Potential release pathways, environmental fate, 
and ecological risks of carbon nanotubes. Environmental Science and Technology 45: 
9837-9856. 
 
Petersen E, Henry T. 2011c. Methodological considerations for testing the ecotoxicity of 
carbon nanotubes and fullerenes: Review. Environmental Toxicology and Chemistry 31 
(1): 60-72. 
 
Philbrick M. 2010. An anticipatory governance approach to carbon nanotubes.  Risk 
Analysis 30: 1708-1722.   
 
Reynolds JW. 1977. The Earthworms (Lumbricidae and Sparganophilidae) of Ontario. 
Life Sciences Miscellaneous Publications, Royal Ontario Museum, Toronto. 31-34, 116-
122.  
 
Reynolds JW. 1998. The status of earthworm biogeography, diversity, and taxonomy in 
North America revisited with glimpses into the future. In: Earthworm Ecology. Edwards, 
C.A., ed. St. Lucie Press, London. 15-34. 
 
Rico CM, Majumdar S, Duarte-Gardea M,  Peralta-Videa JR, Gardea-Torresday JL. 
2011. Interaction of nanoparticles with edible plants and their possible implications in the 
food chain. Journal of Agricultural and Food Chemistry 59: 3485-3498. 
 
Scott-Fordsmand J, Krogh P, Schaefer M, Johansen A. 2008. The toxicity testing of 
double-walled nanotubes-contaminated food to Eisenia veneta earthworms. 
Ecotoxicology and Environmental Safety 71: 616-619. 
 
Sellers K, Mackay C, Bergeson L, Clough S, Hoyt M, Chen J, Henry K, Hamblen J. 
2009. Nanotechnology and the Environment. CRC Press, Taylor & Francis Group. Boca 
Raton, Florida. 
 



92 

Shen CX, Zhang QF, Li J, Bi FC, Yao N. 2010. Induction of programmed cell death in 
Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany 54: 
97: 1-8. 
 
Shoults-Wilson W, Zhurbich O, McNear D, Tsyusko O, Bertsch P, Unrine J. 2011. 
Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). 
Ecotoxicology 20: 385-396. 
 
Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil.  
Soil Biology and Biochemistry 42: 391-404. 
 
Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between 
(micro)aggregates, soil biota, and soil organic matter dynamics.  Soil and Toilage 
Research 79: 7-33. 
 
Smart S, Cassady A, Lu G, Martin D. 2006.The biocompatibility of carbon nanotubes. 
Carbon 44: 1034-1047. 
 
Sobek A, Bucheli TD. 2009. Testing the resistance of single- and multi-walled carbon 
nanotubes to chemothermal oxidation used to isolate soots from environmental samples.  
Environmental Pollution 157: 1065-1071. 
 
Stone V, Johnston H, Clift MJD. 2007. Air pollution, ultrafine and nanoparticle 
toxicology: cellular and molecular interactions. IEEE Transactions on NanoBioscience 6 
(4): 331-340. 
 
Stamm H. 2011. Risk factors: nanomaterials should be defined. Nature 476:399. 
 
Stampoulis D, Sinha S, White J. 2009. Assay-dependent phytotoxicity of nanoparticles to 
plants. Environmental Science & Technology 43 (24): 9473-9479. 
 
Stein E, Avtalion RR, Cooper EL. 1977.  Celomocytes of earthworm Lumbricus-
terrestris-morphology and phagocytic properties. Journal of Morphology 153: 467-477.  
 
Tan XM, Fugetsu B. 2007. Multi-walled carbon nanotubes interact with cultured rice 
cells: evidence of a self-defense response. Journal of Biomedical Nanotechnology 3: 285-
288. 
 
Tan XM, Lin C, Fugetsu B. 2009. Studies on toxicity of multi-walled carbon nanotubes 
on Arabidopsis T87 suspension cells. Journal of Hazardous Materials 2009: 170: 578-
583. 
 
Theng B, Yuan G. 2008. Nanoparticles in the soil environment. Elements 4 (6): 395-399. 
 



93 

Tiede K, Boxall A, Tear S, Lewis J, David H, Hassellov M. 2008. Detection and 
characterization of engineered nanoparticles in food and the environment.Food Additives 
and Contaminants 25 (7): 795-821. 
 
Tisdall JM, Oades JM. 1982. Organic matter and water-stable aggregates in soils. Journal 
of Soil Science 62: 141-163.  
 
Tourinho P, Van Gestel C, Lofts S, Svendsen A, Soares V, Loureiro S. 2012. Metal-
based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. 
Environmental toxicology and chemistry 31 (8): 1679-1692. 
 
Turco R, Bischoff M, Tong Z, Nies L. 2011. Environmental implications of 
nanomaterials: are we studying the right thing? Current Opinion in Biotechnology 22 (4): 
527-532. 
 
Unrine J, Tsyusko O, Hunyadi S, Judy J, Bertsch P. 2010. Effects of particle size on 
chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed 
to copper nanoparticles. Journal of Environmental Quality 39: 1942-1953. 
 
Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV. 2012. Trophic 
transfer of Au nanoparticles from soil along a stimulated terrestrial food chain. 
Environmental Science and Technology 46: 9753-9760. 
 
Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA. 2012. Life cycle assessment 
as a tool to enhance the environmental performance of carbon nanotube products: a 
review. Journal of Cleaner Production 26: 37-47. 
 
Van der Ploeg MJC, Baveco JM, van der Hout A, Bakker R, Rietjens IMCM, van den 
Brink NW. 2011. Effect of C60 nanoparticle exposure on earthworms (Lumbricus 
rubelllus and implications for population dynamics. Environmental Pollution 159: 198-
203.   
 
Van Gestel CAM. 2012. Soil ecotoxicology: state of the art and future directions. 
ZooKeys 176: 275-296. 
 
Vucic-Pestic O, Birkhofer K, Rall BC, Scheu S, Brose U. 2010. Habitat structure and 
prey aggregation determine the functional response in a soil predator-prey interaction.  
Pedobiologia 53: 307-312.  
 
Wardak A, Gorman M, Swami N, Deshpande S. 2008. Identification of risks in the life 
cycle of nanotechnology‐based products. Journal of Industrial Ecology 12 (3): 435-448. 
 
Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide 
nanoparticles in food and personal care products. Environmental Science and Technology 
46 (4): 2242-2250. 
 



94 

Wild E, Jones KC. 2009. Novel method for the direct visualization of in vivo 
nanomaterials and chemical interactions in plants. Environmental Science and 
Technology 43: 5290-5294.  
 
Zhu X, Zhu L, Chen Y, Tian S. 2009. Acute toxicities of six manufactured nanomaterial 
suspensions to Daphnia magna. Journal of Nanoparticle Research 11: 67-75. 
 



95 

 

Appendix 

 

Fig. A.1 Flowchart describing the methods for the production of MWCNT slurry. 
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Prior to conducting the full definitive bioassays, range-finding tests using Eisenia 

andrei and Folsomia candida were employed to determine appropriate treatment ranges 

and experimental methods. These range-finding bioassays were completed using the 

same methods described for the definitive tests; however, a smaller treatment range was 

used with fewer units per treatment (in comparison to definitive tests). Two controls of 

artificial soil and slurry without MWCNT component were used, along with three 

concentrations of MWCNT amended soil (100, 1000, 10 000 mg/kg MWCNT). 

Additionally, a small amount of ethanol was included in the MWCNT slurry 

(approximately 1% of slurry final volume).  

After 28 days, analysis of surviving Folsomia candida showed a significant 

decrease in both the production of progeny and in the survival of adults in MWCNT-

treated soils. ANOVA with p ± 0.05 showed significant difference between treatment of 

10 000 mg/kg to the artificial soil control for mean number of surviving adults, as well as 

progeny production (Fig. A.2, A.3). Statistical power was very weak, but these tests were 

intended simply to provide an estimate for larger scale and longer termed tests. 
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After 35 days of exposure, adult E. andrei were removed from each test unit, 

leaving only progeny. There were no adult mortalities in the 35-day exposure. After 63 

days, the test was ended and the progeny were counted. Analysis of variance showed no 

significant difference between the treatments and the artificial soil control. 

 

 

 

  

Fig. A.2. Mean number of surviving adult F. 
candida found in test units after 28-day exposure to 
MWCNT amended soil, controls of artificial soil 
(AS), and sand slurry (Sand). Treatments marked 
with “*” were shown to be significantly different 
from the AS control. 

Fig. A.3. Mean number of F. candida progeny 
found in test units after 28-day exposure to 
MWCNT amended soil, controls of artificial soil 
(AS) and sand slurry (Sand). Treatments marked 
with “*” were shown to be significantly different 
from the AS control. 
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Fig. A.4. Mean E. andrei progeny production 
in 35-day range finding test exposure to soils 
amended with MWCNT, and controls of 
artificial soil (AS) and sand slurry (Sand). 
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After analysis of the data obtained from these tests, it was believed that while the 

“slurry” method of amending soils with MWCNT was successful, toxic effects found in 

the range-finding tests could possibly be attributed to the presence of ethanol in the 

slurry. This effect could be attributable to ethanol present in the amended soil, through 

direct toxicity to the organisms or by dehydration of the soil. It is also possible that there 

was an interaction between the ethanol component and the MWCNT. It was therefore 

decided that in future definitive testing, the ethanol would be left out of the slurry in 

order to avoid this complication. 

 

 

 

 


