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ABSTRACT

With the rise of mobile computing and an ever-growing variety of ubiquitous sensors, computers are
becoming increasingly context-aware. A revolutionary step in this process that has seen much progress
will be user-awareness: the ability of a computing device to infer its user's emotions. This research project
attempts to study the effectiveness of enabling a computer to adapt its visual interface to counter user

frustration.

A two-group experiment was designed to engage participants in a goal-oriented task disguised as a simple
usability study with a performance incentive. Five frustrating stimuli were triggered throughout a single
15-minute task in the form of complete system unresponsiveness or delay. An algorithm was implemented
to attempt to detect sudden rises in user arousal measured via a skin conductance sensor. Following a
successful detection, or otherwise a maximum of a 10-second delay, the application resumed
responsiveness. In the control condition, participants were exposed to a “please wait” pop-up near the end
of the delay whereas those in the adaption condition were exposed to an additional visual transition to a
user interface with calming colours and larger touch targets. This proposed adaptive condition was

hypothesized to reduce the recovery time associated with the frustration response.

The experiment was successfully able to induce frustration (via measurable skin conductance responses)
in the majority of trials. The mean recovery half-time of participants in the first trial adaptive condition
was significantly longer than that of the control. This was attributed to a possibility of a large chromatic
difference between the adaptive and control colour schemes, habituation and prediction, causal
association of adaptation to the frustrating stimulus, as well as insufficient subtlety in the transition and

visual look of the adaptive interface.

The study produced findings and guidelines that will be crucial in the future design of adaptive affective

user interfaces.
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1. INTRODUCTION

With the rapid growth of mobile computing, smartphone devices are equipped with more and increasingly
complex sensors. The ability of a device to collect information on its surroundings, as well as its user,
allows it to provide more context-aware output and thereby improve the user’s experience. Some
examples of this include providing relevant search results, nearby food locations, and changing between
landscape and portrait display modes depending on how the user is physically orienting the device. In a

sense, the device can be said to adapt to the user’s preferences, location, and behaviour.

Adaptive computing is not new. There exists decades of research studying the effects and feasibility of
software programs that are able to partially map their outputs to the state of their users. An early example
of adaptive technology in consumer software is the ability to view recently opened files on desktop
computer programs. Several such examples exist where software programs are designed to customize

their content to the behaviour of their users.

There is another dimension to computing that is far less studied, however. With the rise of neuroscience
and emotion research in psychology, more emphasis was put on understanding the “human” component
of human-computer interaction. The area of research that studies human emotion as it relates to

computing was coined “affective computing” (Picard, 1995).

As progress is made in the development of computers that can adapt to user preferences, as well as their
understanding of human emotion, it is easy to imagine that our everyday devices may someday
understand how we feel and attempt to soothe or excite us through visual, auditory, or tactile stimuli. One
significant application of this technology is its potential ability to address its user’s frustration with the
device itself. Frustration with computers is commonplace and is often sourced in back-end issues (e.g.

non-interface problems such as bandwidth or connection) (Ceaparu et al., 2004).

This specific research project draws on previous research and attempts to break new ground into adaptive
affective computing. With the use of a Galvanic Skin Response sensor and a tablet computer, it aims to

take a first step at exploring a tablet application that can:



a. trigger frustrating events that intentionally frustrate the user,
b. attempt to detect if a user is frustrated via a rise of in-context arousal, and if so,

c. adaptitslook and feel in an attempt to counter the frustration.

1.1 OBJECTIVES

The purpose of this project was to determine if an appropriate visual adaptation of the user interface

could decrease the recovery half-time of a user’s skin conductance response to a frustrating stimulus.

There were two hypotheses for the results of the experiment:

1.

Frustration would be induced in the majority of trials and represented by a skin conductance
response peak when the application was triggered to be unresponsive.

The recovery halftime for the skin conductance response peak to the frustrating stimulus would
be significantly shorter for participants in the adaptive condition than those in the control
condition, implying faster recovery from the frustrated state. This is because adaptive user
interfaces have been known to decrease cognitive load, and visual aesthetics have been known to
provide calming and pleasing experiences synonymous with low levels of psychophysiological

arousal.

1.2 STRUCTURE OF THESIS

The following sections of the thesis are briefly introduced below:

Chapter 2 introduces the different fields and concepts associated with this project and provides a
background review of each. This includes a study of adaptive interfaces, affective computing, the
relationship between cognition and emotion, and finally the motivation behind the research.
Chapter 3 discusses how the research experiment was designed and how the experiment was set
up and executed.

Chapter 4 describes how the raw data gathered from the experiment was analyzed for outliers and

also the statistical tests that were applied.



Chapter 5 presents the observations and findings of the experiment.
Chapter 6 will discuss the findings and attempt to explain them based on existing research.
Chapter 7 draws conclusions and lessons learned from the research project and lists suggestions

for future research based and commercial devices on what was learned from the current study.



2. BACKGROUND

The following sections provide a literature review of various fields of study related to this thesis
experiment, ranging from adaptive computing in human-computer interaction to the basics of the

neuroscience of emotion. The section will conclude by providing the motivation behind the current study.

2.1 ADAPTIVE COMPUTING

Adaptive computing refers to the automatic personalization of a computer interface to its user(s) (Benyon
and Murray, 1993) and has been a topic of research and experimentation at least as early as the 1970’s
(Chu and Rouse, 1979). As with many studies of human-centered automation, it had its beginnings in the
fields of aviation and defense — which fell under the umbrella of human factors research in complex

systems.

As with much of technological advancement developed for aerospace and military applications, adaptive
computing eventually made its way into the consumer world — in this case, the rapidly growing consumer
computing industry. Its applications were focused on “users” instead of “operators” and became its own

field of research in Human-Computer Interaction (or HCI).

Although Human Factors and Human-Computer Interaction view adaptive computing in the same light,
they vary in their approach, implementations, and terminology of the matter. The following two sub-
sections will outline the approaches taken by Human Factors and Human-Computer Interaction,

respectively.

2.1.1 HumAN FACTORS APPROACH TO ADAPTIVE COMPUTING

In human factors, adaptive computing often takes on the label “Intelligent Adaptive Automation” (IAA) or
“Augmented Cognition” (AC) and its applications are largely focused around aviation and defense

(Morrison et al., 1992).



At its core, the purpose of intelligent adaptive automation is to improve an operator’s judgment and
decision-making ability in complex systems (Geddes and Shalin, 1997). This can be done at a high level
through directing an operator’s attention, regulating their arousal and workload, as well as providing
lower-level decision support to an operator — based on various factors such as the nature of the task and

the state of the operator (Prinzel et al., 1999; Young & Eggleston, 2002).

In general, IAA has been proven to be effective in improving operator task performance (Chu and Rouse,
1979; Freedy et al., 1985; Morris and Rouse, 1986). Although there is no shortage of successful
experimentation with IAA, its real-world adoption has been scarce. Several aviation and defense
organizations have existing IAA programs but have yet to produce feasible products due to limitations

imposed by real-world complexity and technology (Joubert et al., 1995).

2.1.2 HuMAN-COMPUTER INTERACTION APPROACH TO ADAPTIVE COMPUTING

In Human-Computer Interaction, adaptive computing is a subset of personalized computing, which also
includes adaptable user interfaces. Adaptable interfaces are ones that allow users to manually alter, or
personalize, parts of the interface to suit their needs. Adaptive interfaces, on the other hand, are ones that
perform this personalization automatically (Benyon and Murray, 1993; Velsen et al., 2008). Although
personalization in interfaces have been shown to be beneficial over traditional static graphical user
interfaces (e.g. Gajos et al., 2006; McGrenere et al., 2002), each of these approaches offer distinct
advantages. For example, Findlater and Mcgrenere (2004) found an advantage of an adaptable over an
adaptive interface in the context of menu design, recommending a mixture of both to cater to a variety of

users.

Adaptive computing in HCI has also been dubbed “intelligent adaptive interfaces” (IAI) and has been
focused on less complex systems. Its studies and applications are user-centered and are more focused on

the commercial consumer industry.

The purpose of IAI is to improve a user’s interaction with a system by making it more “efficient, effective,

and easy to use” (Banbury et al., 2005). As with its human factors counterpart, IAI is also focused on



improving task performance by decreasing workload. It also employs very similar means of doing so:

augmenting cognition by supporting the user’s memory, perception, and decision-making processes.

Notable applications of adaptive computing in HCI include the ability to view recently opened files in
software applications. This aids memory and reduces cognitive workload by providing quick access to files
to which the user is likely seeking access. Another popular implementation was the Microsoft Office
Assistant, which manifested itself as an animated paper clip, “Clippy”. This example of IAI would offer
assistance on the user’s tasks — which it inferred from the user’s actions and typed phrases. Despite the
promising idea of an intelligent agent, Microsoft removed the Microsoft Office Assistant in their later
products in response to overwhelming user frustration and academic research, which proved the agent to

be obtrusive (Veletsianos, 2007).

All is not lost, however, since adaptive computing has seen much use since the introduction of
smartphones. Developers of mobile applications commonly make use of location, weather, orientation,
acceleration, and ambient light detection capabilities of modern smartphones to provide users with
relevant content. Another type of implementation has been used by Google’s Ads feature, which collects
information from a user’s emails and caters relevant ads. Similarly, a commonplace practice in e-
commerce is to suggest products in which the user might be interested in, depending on his or her
purchase or view history. Studies in HCI have also shown promise in systems which can infer a person’s

emotional state and make appropriate suggestions (Lee et al., 2011; Picard, 2001; Duric et al., 2002).

It becomes apparent, then, that most successful applications of affective computing in HCI occur at a
relatively basic level: suggesting relevant information to the user. Despite the potential cognitive benefits
of more complex adaptive interfaces (e.g. agents), their realization has been limited by challenges in their
implementation — such as poor context awareness and aesthetics (Veletsianos, 2007). Both of these
factors are essential to this project in its pursuit of a realistic and commercial-like application of affective
computing. Specifically, the study involves the design of a mobile map application that is familiar to the
user in terms of function and design, as well as unobtrusive, meaning without the added clutter of

automated cognitive suggestions.



2.1.3 SuMMARY

Regardless of the field of research, adaptive computing has yet to become a mainstream concept in
existing complex systems or consumer products (Findlater and McGrenere, 2008), even in light of its
benefits that have been shown by research in both fields. For example, Microsoft Office featured adaptive
menus in its early-2000 versions, only to be removed in more recent versions due poor user experience.
Few examples exist today, such as responsive web design and a small number of graphical user interface
elements, such as self-resizing text boxes. It is also important to note most of these existing adaptive
interfaces involve changing the layout of interfaces, whereas the user interface developed in this project

involves no layout or functionality changes.

In HCI, adaptive computing has yet to mature beyond its application of providing the user with
suggestions. With the existence of unprecedented amounts of user-specific data and device sensors, surely
there must be a solution for more integrated and practical intelligent personalization without hindering
user adoption. The study outlined in this report attempts to add an emotional dimension to adaptive

graphical user interfaces, built upon existing research in the field of Affective Computing.

2.2 AFFecTIVE COMPUTING

Sensory perception, memory, information processing and decision-making cannot be sufficient in
describing how humans think and behave. Affect, as well, plays a significant role in how we experience the
world. It plays a significant role in how we experience computers: frustration with technology has become
part of the human experience — so perhaps there is more to computer development and intelligence than
building cognitive assistants. Perhaps adapting an application interface to a user’s cognition — though
beneficial — stands to gain by considering human affect in its pursuit of personalized computer

intelligence.

The following sections will discuss the current state of affective computing, methods for the measurement

of affect, and a comparison to adaptive interfaces.

2.2.1 EmOTION IN HUMAN COMPUTER INTERACTION



The realization of this apparent gap in computing research led to creation of the phrase, “Affective
Computing” (Picard, 1995). By her definition, affective computing is one that “relates to, arises from, or
influences emotions.” Affective computing has since become a branch of research under HCI with a
variety of approaches to the unlikely duo of emotions and machines. The approach which is of most
interest to this project, and arguably the most practical given current technological limitations in artificial

intelligence, is one in which computers are able to read and “understand” emotions.

The ability of computers to detect or infer user affect can have many practical implications. Thus far, the
major practical focus of affective computing revolves around the detection of user frustration and
attempts to make displays of sympathy or empathy to address a user’s apparent emotional state (e.g.
Picard & Klein, 2002; Picard, 2001; Nasoz et al., 2003). For example, Klein et al. (2002) found that even
by simply using empathetic language in a post-study questionnaire, users chose to interact with a
frustrating game significantly longer. This finding hinted at the likeliness that the display of emotion from
the side of automation can potentially undo the negative emotional effect of failure or frustration by the
automation itself. Of course, this success is not limited to the “treatment” of negative emotions caused by
automation - it can also be used therapeutically (e.g. Krijn et. al, 2004). In the affective computing realm,

empathetic agents have been shown to decrease user stress (Prendinger et al., 2003).

2.2.2 MEASURING AFFECT

There is still one major hurdle — perhaps the most challenging of all — which has thus far limited affective
computing to the research world and prevented it from becoming a mainstream commercial reality. That
is the question of “how” — how to enable a machine to infer a user’s affect? The answer is, by necessity, as

complex as the study of human emotion.

Inferring human affect would, at the very least, require the simultaneous detection of user-specific and
task-specific variables (Scheirer et al., 2002). Environmental variables also play a role, but reasonable
inferences can be made without the latter — at least in the context of laboratory-controlled affective

computing experiments. Once a piece of automation is able to detect these variables, it must make use of



appropriate models to recognize patterns (e.g. Hidden Markov Models as used by Scheirer et al. (2002))
or even learn the user’s behavior using neural networks. Access to a larger number of appropriate sensors
with the use of appropriate models to consolidate the data in real-time has been shown to predict user
frustration with a significantly better than chance probability (Kapoor et al., 2007). Kapoor et al. made
use of Gaussian process classification to combine data from a pupil tracking camera, a pressure-sensitive
mouse, a skin conductance sensor, and a pressure-sensitive chair, and self-reported frustration data to
attempt to learn a user’s non-verbal and physiological response to frustration. Patterns based purely on
periodic self-reports of affect have also been used as an attempt to predict user affect with better-than-

chance results (LiKamWa et al., 2011).

Several techniques are available in detecting user affect, based on proven physiological and behavioural
methods. An example of a physiological measure is the use of Galvanic Skin Response sensors, which
detect changes in skin conductance that vary with a user’s level of physiological arousal. Other general
physiological measures can be detected via several categories of sensors: temperature sensors, heart-rate
sensors, facial recognition, blood pressure sensors, electroencephalograms (EEG) for monitoring brain
waves, respiration rate sensors, and eye-trackers or similar technology for detecting eye movement or

blink rate (Lisetti & Nasoz, 2004).

Various combinations of these physiological sensors have been used to reliably infer basic human
emotions (Lisetti & Nasoz, 2004). Although simple self-ratings of emotion can be used, they are subjective
ratings — they are not verifiable and ultimately not as vigorous as objective, quantifiable, physiological

measures.

What is meant by basic human emotions? One of the most common methods to classify human emotion is
through the use of dimensional models of emotion. These models were developed on the assumption that
emotions could be considered as continuous elements which could vary along different dimensions.
Although several attempts have been made to develop dimensional models of emotion, the most
commonly used model in HCI and affective computing research has been the circumplex model (Russel,
1980). Russel proposed a two-dimensional model of affect. The first dimension was valence, which varied

from negative to positive. The second was activation or arousal, which varied from low to high. Individual



affective states could then be plotted along this 2D model. As an example, boredom and
calmness/peacefulness are both low-arousal states, but boredom has a negative valence while
calmness/peacefulness is attributed with positive valence. Figure 1 below shows an example plot of the
circumplex model with different positions on the 2D plot representing distinct emotional states which

were derived based on the arousal and valence axis.

High Negative Affect Strong Engagement High Positive Affect
Distress Arousal xcitement
Astonished - Sy

SURP
* Aro

Pleasantness

Unpleasaniness
Misery Pleasure
/ \ = ]
Depression Contentment

Sleepiness
Low Positive Affect

Disengagement Low Negative Affect

FIGURE 1: (ADAPTED FROM GOKCAY, 2011): CIRCUMPLEX MODEL OF EMOTION WITH VALENCE AS THE X-AXIS AND AROUSAL AS THE Y-AXIS
In order to plot the affective states of a user on the continuous dimensional circumplex model, separate
measurements must be taken along each dimension. Many of the previously stated physiological sensors
enable the measurement of physiological arousal — both combined as a model or separately. The most
commonly used physiological measure of arousal is Galvanic Skin Response. Since a person’s
physiological signals vary throughout the day, any physiological sensor would need an initial calibration,
as well as an algorithm to re-establish a baseline reading for quick successive time intervals (Picard et al.,

2001). Other sensors such as heart rate and temperature may be combined to provide redundancy in an

attempt to verify GSR measurements.
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Detecting valence physiologically is more technically difficult and less reliable than that of arousal. The
most common physiological method of sensing valence is via facial recognition — subtle changes in a
person’s facial expression can be used to infer if they are experiencing positive or negative emotions

(Nasoz et al., 2003).

Measurements of valence and arousal can be combined to plot a user’s affective state on the 2D
circumplex model. Picard et al. (2001) were able to obtain 81% accuracy in distinguishing between a
user’s eight different affective states, including neutral. This is a promising level of reliability for machine
affect detection. In other studies, computers were able to infer affect with 80-98% accuracy (Yacoob &
Davis, 1996; Gardner & Essa, 1997) whereas humans obtained 70-98% accuracy (Bassili, 1979) for a

similar type of study (facial expression recognition) (Picard et al., 2001).

Although physiological measures provide the major advantage of real-time, unobtrusive, and continuous
monitoring, it has its own set of challenges. The technology is still regarded as immature for
commercialization due to its relatively high potential of noise interference (Wilson, 2002; St john et al.,
2003, Prinzel et al., 2003). In addition, there are currently no standards of real time physiological data
analysis (Scheirer et al., 2002). The physiological fluctuations experienced by people in a day require any

physiological sensor to constantly re-calibrate itself and calculate new baselines.

Behavioural measures of affect can be task-dependant and thus can vary. For example, Scheirer et al.
(2002) recorded the number of mouse clicks the user made in combination with physiological measures
in order to infer the user’s arousal state. Further behavioural measures of arousal and confusion can also
be gained by observing how fast a user moves the mouse, the force with which they click, and the path
they use to navigate to a clickable object (Duric et al., 2002). Caution must be exercised when using
behavioural measures, however, due to the risk of subjective biases when interpreting behavior, and the

context under which it is taking place.

2.2.3 ADAPTATION IN AFFECTIVE COMPUTING

Although some examples of affective computing imply adaptation of some kind, the majority do not

involve any real-time emotional feedback. Several examples can be found in the literature review
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performed by Akgun et al. (2011). Past studies include positive enjoyment caused by a computer’s use of
flattery, as well as the use of empathy by Klein (2002). Also mentioned were several studies which
investigated the use of sympathetic (e.g. apologetic) feedback to the user upon system failure (Nielsen,
1998; Tzeng, 2004; Tzeng, 2006). These interfaces simply provided an affective failure message instead
of the usual mechanical failure message, and as such were not truly providing feedback to user frustration.
Another branch of studies has explored the use of text-based and embodied agents (Akgun et al., 2011)
with greater support for the latter. However, the commercial feasibility of agents may be questionable due
to similar issues faced by the Microsoft Office Agents — aesthetics, obtrusiveness, and difficulty in

inferring the user’s current task or state.

It should also be noted that none of the studies reviewed thus far have exhibited a bi-directional adaptive
affective nature where not only is user affect measured in real-time, but adaptive feedback is provided to

the user in real-time as well.

2.2.4 SUMMARY

The scientific understanding of emotion in psychology and neuroscience paved the way to a new way of
thinking about human-computer interaction. The promise of affective computing was to imbue computers
with the ability to infer, process, and express affect. Its benefits to user experience have been shown to

provide improvements over the traditional emotionless and mechanical user-machine interactions.

The success of the studies in affective computing gives promise to its eventual commercialization and
widespread use. As technology advances, the accuracy of affect-recognition systems will improve. The

commercialization of affect-recognition devices is already under way (e.g. Affectiva, www.affectiva.com)

and it may be a matter of time before computers are able to detect human affect more accurately than

humans themselves.

The study outlined in this report heavily relied on existing groundwork in the field of affective computing.
Specifically, the basis of measuring and inferring affect, inducing frustration in participants, and
experimental design of this study were derived, as closely as possible, from existing literature in this

research area.
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2.3 COGNITION AND EMOTION

Following the era of behavioural psychology, and with the onset of the technological revolution, cognitive
psychology popularized a new way of thinking about the human mind — the information-processing
model. In many ways it mirrored the technical innovations of that era: computing. Several analogies can
be formed between the information processing model of the human mind and that of the computer. For
example, permanent storage and temporary storage correspond to long-term memory and working
memory, respectively. The same applied to the processor and its resources — even the concept of cognitive

overload and its PC counterpart.

Overall, the early manifestation of cognition generally disregarded emotion (Phelps, 2006). It was merely
involved with the mechanics of information processing: input (or stimulus), output (or response),

memory, motor control, bandwidth, processing resources, and so on.

The following section will discuss the relationships found between cognition and emotion in the contexts

of psychology, psychophysiology, and neuroscience.

2.3.1 LiNkS BETWEEN COGNITION AND EMOTION

With the maturation of neuroscience and our understanding of the brain, research began to show links
between the information processing view of the brain and emotions (Damasio, 1996). This paved the way
for further research into the brain to discover how emotion manifests itself in the neural networks of our
minds and what effects it has on how we process information. In order to develop adaptive systems, it is
necessary to understand the links between cognition and emotion. These links can provide context to
designing affective adaptive experiments and also interpreting their results. Topics such as coping
strategies and arousal will be discussed. To that end, the following paragraphs will attempt to provide a
brief summary of the links between cognition and emotion in the fields of psychology, neurophysiology

and cognitive neuroscience.

The study of vigilance in the field of psychology has attempted to describe the decrease in human

performance observed in sustained-attention tasks. The most recent and integrated model has been the
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attentional resources theory (e.g. Matthews et al., 1990, Matthews, 2001). A significant finding (relevant
to cognition and emotion) of this field of research was that low physiological arousal states brought about
by sustained attention tasks were decreasing the availability of information processing resources
(Caggiano & Parasuraman, 2004). In addition, Hitchcock et al. (2003) found that cerebral blood flow in
the right hemisphere decreased along with vigilance performance, which agrees with the attentional
resource model due to the right hemisphere being responsible for the allocation of attention. This field of
research provided a fundamental link between affect and the information-processing model by suggesting

that physiological arousal (affect) and attentional resources (cognition) were closely related.

Perhaps the strongest psychological indicator of the affect-cognition relationship lies in our strategies of
regulating emotion. Based on a thorough review of the matter by Gross (2002), humans have several ways
of inhibiting or “down-regulating” emotion — both internally and externally. First of all, the emotional
impact of an event can be limited by how the event is perceived — known as cognitive change. This refers
to the ability to perceive an emotional event in a non-emotional way. The second strategy is cognitive
reappraisal, through which one can choose to evaluate negative emotion-provoking thoughts and choose

to replace them. The third strategy is to suppress emotions prior to making an emotional response.

A more thorough view of the relationships between cognition and emotion inherent in human nature was
provided by neuroscience. This view starts with the limbic system. The limbic lobe consists of several
brain components and is a distinct region of the brain in close proximity to the brain stem. Situated
within the limbic lobe are a set of closely situated and thoroughly entwined networks known as the
hypothalamus, hippocampus, and the amygdala, among others (Erdem & Karaismailoglu, 2011). It is the
working relationship between these components that provides the neurological links between cognition

and emotion.

The hippocampus plays a significant role in memory formation and information processing (Erdem &
Karaismailoglu, 2011). It has been deemed responsible for the recollection of episodic memory, and is also
in a close neural connection with the proposed link between cognition and emotion: the amygdala
(Phelps, 2006). Phelps explained that the amygdala has been directly related to emotional changes in

various studies, and that damage to it has caused a change in emotional behaviour. Due to this close
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proximity and vast connections to the cognition center of the brain (hippocampus and the prefrontal
cortex — Young et al., 1994), it is thought to have direct influence on information processing. Phelps
(2006) also pointed at the observed influence of emotions on the encoding and recall of episodic memory,
which is described by the close interactions of the amygdala and the hippocampal complex. Richards and

Gross (2000) also found a close interaction between memory and emotional processes.

Phelps (2006) also found similar links between high-level cognitive processes (such as perception and
attention) as were described in the vigilance studies. In addition to those findings, Anderson and Phelps
(2001) presented a direct link between the amygdala itself and the attentional resource theory. They
found that participants with a damaged amygdala failed to show increased attentional processing
resources as a result of induced arousal. This also provided a link between the effect of arousal brought

about by the amygdala and information processing performance.

The relationship between the amygdala and cognitive processes of the brain is not unidirectional,
however. Evidence also exists for the influence of cognition on the amygdala itself. For example in a study
by Phelps et al. (2001), it was observed that the amygdala is influenced by cognitive or learned emotional
properties of a stimulus (e.g. being instructed what a stimulus will feel like, as opposed to having

experienced it).

The psychological coping strategies of emotion that were discussed previously were identified through
psychological studies, but now a deeper explanation has become apparent: the cognitive centers of the
brain and its decision making processes make frequent and significant regulations on the amygdala
(Phelps, 2006). This, in part, is what makes us function in society. We constantly make decisions to

regulate our emotional outbursts (Gross, 2002).

The hypothalamus is another essential component of the limbic lobe. It controls much of the human
emotional behaviour (Erdem & Karaismailoglu, 2011). It too is in close proximity to the amygdala and the
hippocampus: information is constantly passed between the hippocampal formation (cognition) and
hypothalamus (emotion). This is the fundamental physiological link behind the design of adaptive

affective interfaces. The notion that the human brain’s processing of perceptual information is closely

15



interconnected with what humans feel as emotion, gives designers of adaptive systems the ability to create

perceptual elements that can invoke specific types of emotions in users.

2.3.2 SUMMARY

The role of emotion in human cognitive processes can no longer be neglected. Studies in psychology have
hinted at the interaction of the two for some time. In addition, neuroscientists have already found distinct
relationships between the parts of the brain responsible for information processing and the experience of
emotion. A close two-way interaction exists between these two phenomena. First, cognition can be used to
regulate emotion at different stages and emotion — we do this on a regular basis in order to function in
society. Second, emotion also makes a significant impact on our cognition: from modulating our

attentional resources via arousal to determining how our memories are stored and recalled.

The relationship between cognition and emotion is a deep but essential foundation of the study outlined
in this report. Specifically, it provides a basis for why visual perception of graphical user interface

elements such as colour and animation can have direct effects on physiological emotion.

2.4 AFrFecTIVE ADAPTIVE COMPUTING

By the mid-90’s it had become apparent that emotion played a significant role in how we interact with
computers (Picard, 1995). The concept of Affective Computing was introduced and opened a new path for
computing. Despite all this, nearly two decades later, computers still show little sign of affect, regardless
of its commercialization potentials. The argument can be made that affect-inference technology has not
yet matured for commercialization, but that could be attributed to a lack of interest by the computing

industry.

The potential for affective computers is growing, however. With Apple’s introduction of its intelligent
vocal agent “Siri”, it may have found a feasible solution to the Microsoft agent problem. “Siri” is not void
of affect, either: it (or, rather, she) also displays sympathetic behaviour for its failures — surely one of the

factors behind its quick adoption and use (Vascellaro, 2012).

16



Despite the advances in consumer products and research, there is still a gap — and it exists between the
realms of affective and adaptive computing. Filling this gap with research and development would pave
the way for adaptive affective systems: intelligent computers which adapt themselves in real-time to user
affect. Of course, the goal is for them to do so with usability and consumer adoption in mind. The
components of such a system already exist: the field of adaptive automation has made advances into
adapting computers to user cognition for complex systems (e.g. Chu and Rouse, 1973; Morris and Rouse,
1986; Geddes and Shalin, 1997; Hitchcock et al., 2003, St John et al., 2003). Affective computing
researchers have developed agents which make positive impacts on user performance and emotional
states (e.g. Picard, 2001; Klein et al., 2003; Tseng, 2004). The significance of affect on how we think has

already been shown through neuroscience and psychology.

2.4.1 MOTIVATION OF RESEARCH

Little work has been done on adapting a commercial Ul to user affect. In one instance, researchers
developed a system on the Android operating system (Lee et al., 2011) which displayed certain
applications to users based on their measured mood states. Although interesting, no real user
interface/interaction modifications were made to the system. A new, additional application was simply
developed with suggested content. There are currently no published studies looking at real time
automated adaptation of a user interface look-and-feel based on a user's real time physiological readings.
This is despite the growing emotional attachment to mobile phones (Vincent, 2005), which necessitates at
the least a consideration for affect in the design and function of these devices. Even more relevant to this
study is demand for devices that automatically adapt their colour schemes according to their users’ moods

(LiKamWa et al., 2011).

The motivation behind this project was to explore the feasibility of adapting the visual look-and-feel of a
software application to human emotion as measured in real-time - as opposed to existing research that
attempts to adapt content and functionality to a user’s cognitive state. This fills a gap that currently exists
in the research on adaptive affective computing. The study also links together the three general areas

covered in this background report: adaptive computing, affective computing, and emotion research. It is
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closely based on existing studies in affective computing for the measurement and induction of negative
affect (frustration), while using emotion research coupled with adaptive computing guidelines to develop

an adaptive graphical user interface aimed at reducing the effects of said frustration.

Although this work is exploratory, it is expected to lead to further research on visual adaptations to real-

time human affect. Advancements in this area of research could potentially lead to an improved user

experience of every day computing devices by making them emotionally aware and adaptive.
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3. EXPERIMENT

This chapter first familiarizes the reader on certain characteristics of the electro-dermal response, and
then provides the rationale and theoretical basis behind the experimental design via reviewing similar
experiments in affective computing. The experimental protocol is then presented in detail. Finally, it

presents the design and rationale of the affective adaptive graphical interface.

3.1 THE ELECTRO-DERMAL RESPONSE

The galvanic skin response sensor used in this experiment measures the skin conductance response or
electro-dermal activity of the user. The unit of the output for this sensor (further discussed in the

Apparatus section) is a micro-Siemen.

When the user experiences a rise in emotional arousal such as frustration or excitement, the sweat glands
on their skin activate and a proportional physiological response can be detected via a GSR sensor. These
types of events generally show as local peaks in the EDA (Electro-Dermal Activity) data, also referred to as
Skin Conductance Response (or SCR) (Andreassi, 2006). Although participants can simply be queried for
self-reported frustration data, it can be disruptive to the task at hand and therefore not a practical
solution for real-world commercial products. In addition, self-reported emotion data is notoriously

variable (Scheirer et al., 2002).

Once an emotional trigger or stimulus has been presented, there is a latency of typically 1-2 seconds
(Figner, 2010) before the occurrence of an SCR. In other words, it takes time for the body’s sweat glands

to activate in response to an emotional stimulus.

The SCR is characterized by certain parameters, shown below in Figure 2.
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FIGURE 2: PARAMETERS OF A SKIN CONDUCTANCE RESPONSE PEAK (FIGNER, 2010).

Since this experiment is concerned with how users recover from their frustrated states, the parameter
selected for analysis was the recovery half time, or the amount of time it takes for the SCR to reach half of
its peak value, measured from the occurrence of the peak value. The recovery half-time has been shown to
vary with stimulus and thus can be treated as an independent variable (Janes, 1982; Venables and

Fletcher, 1981).

3.2 EXPERIMENTAL DESIGN

In order to test for the effects of affective adaptation, a single factorial (two-group), between-subjects

experiment was designed as follows:

Group 1: Control: Presentation of frustrating stimuli without affect-support adaptation

Group 2: Adaptive: Presentation of frustrating stimuli followed by affect-support adaptation

In a similar study by Klein et al. (2002), a 2x3 factorial design was used. The first factor was the existence
of frustrating stimuli and the second included 3 degrees of affect-support in the form of questionnaires.
This factorial design was feasible for their study due to the fact that the affect-support provided could also
apply to, and have an effect on, the no-frustration conditions. In the current experiment, however, the

affect-support adaptation depends on the existence of a frustrating stimulus. It was decided that little
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knowledge would be gained by applying an affect-support adaptation at a random point in the experiment

where no frustrating stimulus is present.

Participants were equally divided into each experimental group and were run in individual sessions.

The study in both experimental conditions involved participants undergoing a timed map navigation
challenge while wearing a GSR sensor. Participants were asked to use a customized map application to
provide answers to a set of particular geographic questions. A $100 incentive was provided for the
participant with the most correct answers provided. The compensation scheme and amounts were based

closely on Scheirer et al. (2002).

During each experimental session, the customized application was manually triggered to freeze for a fixed
amount of time while the participant was interacting with the application. Unresponsiveness was selected
as the method of choice to frustrate the user because its effectiveness was demonstrated by Scheirer et al.
(2002). Following the freezing event, the application would either unfreeze with a “Please wait” message
(control condition) or unfreeze with a “Please wait” message and a gradual visual change of the user
interface (Adaptive condition). The application would automatically revert to the standard look-and-feel

after a fixed time.

The visual perception of colour is able to induce measurable and physiological emotional states in
humans. Of a number of examples, Kuller et al. (2009) found significant changes in physiological arousal
as measured by EEG (brain waves) and EKG (heart rate) when participants were placed inside rooms of
different colour, concluding that use of good colour design can be a practical way to improve the overall

mood and well-being of people.

The specific colour selection for the adaptive interface was based on existing literature on the
relationships between human emotion and colour. First, it has been shown that the colours blue and
green (used extensively in the adaptive look-and-feel) are quieting and calming, as opposed to stimulating
and arousing (Elliot et al., 2007). Aside from the induction of emotional states, there is some limited
evidence of the effects of colour on the rates of physiological recovery. Ali (1972) found that the cortical

response to a constant blue light stimulus, as measured by EEG, recovers with less delay than that of a
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constant red stimulus. A change in colour scheme is also a rather practical and easy-to-implement
solution in commercial devices and involves no major (e.g. functionality or layout) changes to the user
interface. This was another reason why it was selected as the driving force behind the adaptive user

interface.

Another transition element designed into the adaptive user interface was further rounding of the corners
of buttons. Rounded corners have been shown to be easier to visually process (Troncoso et al., 2009), and
they avoid the negative emotions (e.g. avoidance) caused by visually perceiving sharp edges (PR
Newswire, 2010). Furthermore, larger touch targets are easier to tap on with fingers, leading to a more

user-friendly design.

The purpose of the freezing event was to cause frustration in the participants. The time limit and
incentives were provided to amplify the sense of urgency and therefore the frustration felt once the

application became frozen or unresponsive.

In order to avoid participant suspicion of the true purpose of the experiment (e.g. frustrating the
participant on purpose), deception was used and approved by the Office of Research Ethics at the
University of Waterloo. Recruitment posters and emails, as well as pre-study consent forms and
information package made no mention of frustration and disguised the study as simply testing how

participants respond to a map game developed by the experimenters.

3.3 METHODOLOGY

The experimental protocol is outlined in the following section in further detail.

3.3.1 PARTICIPANTS

A total of forty undergraduate and graduate students between the ages of 19 to 36 from the University of
Waterloo were recruited through e-mail and posters for this study. The participants were equally split into
one of two experimental conditions. All participants were asked to complete an initial questionnaire,

detailed in the Procedure section. The purpose of the questionnaire was to collect information on
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participant gender, age, neuroticism or emotional stability, and computer experience. Both groups were
gender-balanced and there were no significant differences between the groups in terms of age, self-
reported neuroticism (emotional stability), or experience with tablets, touchscreen devices, and map
applications. Although all participants completed the experiment, only twenty-four data sets were
required. Extra participants were recruited to compensate for several cases where participant data was

discarded:

* Two participants’ data were discarded due to equipment malfunction during the experiment.

* Three participants reported suspecting that the frustrating events were presented on purpose, and
their data was discarded. All participants were verbally asked after the main task if at any point
they suspected the true nature of the experiment.

e Eleven participants showed a relatively flat electrodermal response throughout the entire
experiment and were excluded from the main dataset. This was in part due to early limitations in
the device’s true sensitivity (fixed through a firmware update), as well as individual differences in

the amount of sweat gland activation.

In the remaining data set, one participant’s data was excluded from the control condition following outlier
analysis (see section 4.2). Another participant’s data was excluded from the Adaptive condition to reduce
the age range of the study to 19 to 30 years old, as well as to equalize the cell sizes for data analysis. The
remaining and final data set was composed of twenty-two participants (N=11 in each group) with n=6
males and n=5 females in each of the two experimental groups. All participants were compensated $10
for their time. One participant from each group was compensated an additional $100 for having the best

performance in their respective group.

3.3.2 APPARATUS

The experiment occurred in an experiment room with a desk, two chairs, a desktop computer, a monitor,
a Blackberry Playbook tablet computer, and a GSR sensor. The experimenter was situated in the

experiment room for the duration of the experiment. The GSR sensing system consisted of an Affectiva Q-

23



Sensor attached to the bottom of the participant’s non-dominant hand via the included Velcro strap

(Figure 3).

FIGURE 3: AFFECTIVA Q-SENSOR (FROM DIEGOMENDES.COM)

The GSR was wirelessly paired with a desktop computer in the experiment room via a Bluetooth
connection. The desktop computer created a local log file containing all raw data from the GSR sensor and
also streamed the data onto a MySQL database hosted locally on the computer itself. This database was
accessed by the experimenter web page and also the main map application web page. The experimenter
accessed the experimenter web page in order to monitor the real-time readings from the GSR sensor, as

well as to manually trigger freezing events (Figure 4).
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FIGURE 4: EXPERIMENTER WEB PAGE
The map application web page was accessed from the Blackberry Playbook, which would be used by the
participant to complete the experiment (Figure 5). The application was designed to be familiar to most

users by following the general layout and functionality of Google Maps (www.maps.google.com). The

desktop version of Google Maps was selected as a basis due to the larger amount of user experience with
desktop computers compared to mobile computers. The application was designed to be not as full-
featured as commercial map applications of today due to the difficulty in implementation, but also
because extra features were not required for the purposes of the experiment. The application was reduced
to a simple search text input field, a search button, a “Clear Search Field” button for quick deleting of
inputted text, and a “Center Marker” button that allowed users to center the map display onto the search
result pin. The text input field was coded to allow instantaneous location suggestions as the user entered a

search query.
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FIGURE 5: DEFAULT APPLICATION
The adaptive look-and-feel of the main application shown above is displayed in Figure 6 below. A green

and blue colour scheme was used in this design to induce calmness.

Palmerston Arthur
)/
4 Erin
Dra @ 7\
A\
N ‘/ Fergus
Cmo‘w Lake Eors Brampton\
Sea Conservation Area ¢ @ . 3
£ Georgetown >
ey A AN Haiton Hils /
-~ O Rockwood '» b4y
= (=] Wallenstein Elmira _QE \ //4:,./
Clear Search Field 99\ /
. 00000000000 =] :
St Jadobs. Guelph, y /;»/
St Clements | —
Center marker G 1 * ® o / Mitton
i T igud ] 3
Mm:he\l Perth East Yleskey. p Waterloo \ Breslau 4 4 "
e Kigghe\ne[
=] BT IR
e N
Stratford (8] Shakespeare Hamburg
Tavistock
@y Vi
,// A
TN [
® r
® B>
Zoma A

b 4
~ Brantford

A Els L0E |

FIGURE 6: ADAPTIVE LOOK-AND-FEEL OF MAIN APPLICATION
The custom map application was developed for the Blackberry Playbook using HTML. It was designed

with the ability to transition its look-and-feel between two states, one with the standard mobile look-and-
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feel using a standard mobile framework (JQuery Mobile) and one with a larger search button and input

field, rounded corners, more defined borders for user-interface elements, and cooler colours.

3.3.3 TRIGGERS

Participants were allowed 15 minutes to answer as many questions as possible using the map application

on the Blackberry Playbook tablet. The specific question sheets can be found in the Appendix.

During this time, the experimenter manually and secretly (using an experimenter dashboard not visible to
the participant) triggered a total of five instances where the participant’s map application became
unresponsive to any touch gestures. These five instances were spread apart roughly evenly in the 15
minutes, with at least two minutes between each trigger. Since participants spent a significant amount of
time not interacting with the tablet (e.g. reading or answering questions), the unresponsiveness needed to
be triggered manually by the co-located experimenter in order to ensure that they occurred at a time when

the participant was using the application.

In both experimental conditions, when unresponsiveness was triggered by the experimenter, the
application was frozen until a built-in algorithm detected a significant rise in EDA for up to 10 seconds.
This algorithm compared a moving value to the moving average baseline recorded before the stimulus was
triggered to determine if a peak has occurred. This algorithm was tuned to be conservative in its selections
so it would only catch exaggerated peaks and be less susceptible to noise. As a result, the algorithm was
largely unsuccessful and automatic peak detections were uncommon. The 10 second unresponsiveness
limit was determined through pilot testing, which revealed that significantly longer delays may have
caused participants to disengage from the task, but was long enough to allow for the participant to
discover the extent of the unresponsiveness. Also, it allowed the experimenter enough time to silently
cancel the triggered event if, at that moment, the participant stopped interacting with the tablet and

therefore would not realize that the tablet had become unresponsive.

In the control condition, a “Please wait” pop-up was displayed for one second following the end of the 10-

second unresponsiveness window (see Figure 7).
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FIGURE 7: CONTROL SCREEN WITH “PLEASE WAIT” POP-UP WHILE RESUMING RESPONSIVENESS

The adaptive condition featured a similar response, but also transitioned, via gradual animation, its look-
and-feel while the “Please wait” pop-up was being displayed (see Figure 8). The “Please wait” label was
displayed in the adaptive condition in order to control for the effect of providing visual feedback to the

user in the control condition.
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