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ABSTRACT 

As a part of the Cyrosphere ecosystem, Arctic sea ice is one of the focal points 

when studying Arctic climate change. Arctic sea ice image has been documented by 

remotely sensed data since the 1970s. By examining these data, some climate patterns 

can be revealed. In this research, Arctic region is divided into 9 sections to analyze the 

regional differences of the ice coverage and variability. Data used are bootstrapped 1979 

to 2006 SSM/I and SMMR images from NSIDC to perform a time series analysis to 

examine the sea ice trends and spatial/temporal anomalies detection by conducting a 

descending sort of sea ice coverage by years in the sub-regional scale. Then, the temporal 

mixture analysis developed by Piwowar & LeDrew is applied to the data to reveal the 

variability within each subregion. Fractional images produced by TMA highlight the 

temporal signature concentration in the entire Arctic region. And the color-mix image 

derived from TMA highlights and overlaps temporal signatures that have over 80% 

concentrations from highest to lowest. The color mix image can reveal the spatial 

distribution of similar temporal characteristics and the evolution of time series in the 

same area during the 30-year period. Through this analysis, the spatial and temporal 

variability of Arctic sea ice can be perceived that in the subpolar regions, Arctic sea ice 

has a higher seasonal pattern which varies a lot each other. The Arctic sea ice extent 

endures an overall decline trend, which the decline speed increases every ten years. But 

this trend is not statistically significant in every subregion. The spatial/temporal anomaly 

analysis reveals several patterns of Arctic sea ice variability. The seasonal variability of 

Arctic sea ice in the eastern and western side of the Arctic Basin resemble each other in 
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the long term, which may coincide with the North Atlantic Oscillation. In addition, within 

a subregion, different areas may have significantly different temporal characteristics, 

such as the Greenland Sea and Seas of Okhotsk. Moreover, the temporal characteristics 

some areas in the Arctic region have changed through time significantly regarding early 

melt or late freeze. Hopefully this analysis will provide undiscovered temporal evolution 

through time and some new insights on the dynamics of the Arctic sea ice cover. 
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CHAPTER ONE 

INTRODUCTION 

The Arctic region is surrounded by Eurasia and North America continents, and 

largely covered by the Arctic Ocean and a number of smaller seas, such as, Laptev Sea, 

Greenland Sea, and Baffin Bay. In climatology, the climate in the Arctic region plays an 

important role in global climate change. Since the Arctic Ocean is covered mostly by ice 

most of time, the variability of the ice reflects local climate change. Recently, due to 

global warming, the polar cap ice began to melt at an accelerating rate. As the ice melts, 

there is reflective surface to reflect the solar radiation and results more absorbing of the 

sun heat. This creates a positive feedback cycle that leads to more melting of the ice cap.  

From previous research of sea ice variability, a decadal oscillation pattern for 

Arctic sea ice was in the eastern and western side of the Arctic Ocean due to North 

Atlantic Oscillation (Wang and Ikeda, 2000). 

In this research, the question to be examined is how does the sea ice extent vary in 

time and in space in the Arctic region, where and when these changes happened, and are 

there regional differences. In order to answer these questions, a general analysis of sea ice 

extent variability is performed, followed by a small-scale regional ice extent ranking, 

then the temporal mixture analysis.  

The following gives an introduction of Arctic sea ice and its role in the global 

ecosystem. Next, a brief summary of the recent development of remote sensing and its 

significance in monitoring sea ice is provided. Last, the North Atlantic Oscillation is 

introduced and its significance when applied with Arctic sea ice.  
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1.1 INTRODUCTION OF ARCTIC SEA ICE AND ITS IMPORTANCE TO ECOSYSTEM 

According to the National Snow and Ice Data Centre (NSIDC, 2006), sea ice is 

defined as sea water that freezes and becomes ice that floats on the ocean surface. Arctic 

sea ice is a major form of surface water in the Arctic Ocean. Sea ice covers the Arctic 

Ocean and its adjacent areas with a thin, uneven sheet of sea ice formed by frozen ocean 

surface water, all year round or seasonally.  

Sea ice is a major component of the polar environment on the planet. In the 

northern hemisphere, sea ice covers approximately 15.9 million km2 of the north polar 

and sub-polar oceans in midwinter and typically 6 million km2 at its summer minimum 

(NSIDC, 2006). Sea ice limits energy exchange between the ocean and the atmosphere, 

reflecting a high percentage of the solar radiation. Furthermore, as sea ice forms and ages, 

salt is rejected to the deeper ocean, so that sea ice tends to have lower salinity than sea 

water. Consequently, as the ice forms and melts, the salinity content of the underlying 

ocean increases and decreases, impacting overturning and ocean circulation (Parkinson 

and Cavalieri, 2008). When the ice moves, it transports cold, low-salinity mass, affecting 

surface temperature and salt gradients (Aagaard and Carmack, 1989; Barry et al., 1993; 

Parkinson, 1996). Changes in the sea ice volume hence have potential broad-range 

climate consequences. For instance, a numerical model demonstrates that 37% of the 

global warming simulated for a doubled CO2 scenario was attributable explicitly to a 

changing sea ice volume (Rind et al., 1995).  

Sea ice in the Arctic region undergoes a seasonal variability. Based on past 

research, the maximum extent of sea ice is expected on March, while the minimum is 
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expected in September (Carsey, 1992). The seasonal melting and freezing period is 

different in various regions. In terms of annual variability, the melting period may be 

delayed by two or three months in the summer. In most cases, there is a layer of snow on 

top of sea ice covering ice from wind and direct solar insulation (Parkinson, 1996), which 

causes the freezing and melting delay. In addition, the latent heat in the ocean is also a 

factor. Ocean storages heat applies buffer effect on the sea ice freezing and melting when 

the season changes by releasing or absorbing large amount of energy. Figure 1.1 gives a 

brief illustration of the air-sea-ice interaction and microwave emissions and scattering 

from various surfaces.  
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Figure 1.1 Physical process of air sea ice interaction (Carsey, 1992) 
 

Sea ice buffers the interaction between ocean and atmosphere constantly (see 

Figure 1.1). The incoming solar insolation will be partly absorbed by sea ice/water and 

becomes heat which changes the sea temperature, sea ice freeze/melt time, and sea ice 

extent. Because both sea ice extent and thickness is very sensitive to the temperature of 

the ocean surface, solar insolation can greatly influence sea ice variability. Beneath the 

ocean surface, the melt ice rises to the sea surface can increase the melt of small floes. 

While under a large floating multiyear sea ice, water stirring, upwelling warm sea water, 
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and water stress can greatly influence the sea ice melt process. If these phenomena 

happened in the center of a large floe, these might be a significant chance to form 

polynyas and leads.  

In Arctic regions, sea ice endures seasonal freeze and melt cycle, which is 

influenced by a combination of factors, including age of ice, air temperature, and solar 

insolation. The freshly formed sea ice is called the first-year ice (FYI), while sea ice that 

survived at least one melt season is called the multi-year ice (MYI) (Parkinson, 1996). 

The multi-year ice is usually thicker than first year ice.  

A few Arctic sea ice characteristics have been summarized: sea ice extent, 

concentration, type, thickness, and seasonality (Piwowar & LeDrew, 1995). Generally, 

sea ice is considered to play an important role in the Arctic biosphere from the following 

perspective which is solar radiation reflection, thermal connection with the ocean and 

atmosphere, brine capacitance, and the physical conditions, thickness and concentration. 

Any analysis of climate change and variability using sea ice as a proxy indicator must 

ultimately reference one or more of these physical properties (Piwowar & LeDrew, 1995).  

Sea ice concentration indicates the relative amount of sea space covered by ice. 

Usually sea ice concentration is compared to some reference area. While sea ice extent is 

defined as the cumulative areas of all grid cells having at least 15% sea ice concentration, 

and sea ice area is the sum of the pixel areas times the ice concentration for all pixels 

with ice concentration of at least 15%. Therefore, sea ice extent is often larger than sea 

ice area.  

Research regarding the sea ice extent from satellite images has accelerated since 
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the 1970s. Numerous studies have investigated the changes of Arctic sea ice extent, area, 

and concentration. In general, the regression analysis of average mean Arctic sea ice 

extent in September for the past 30 years showed an undoubted downward tendency. 

From 1979 to 2006, the three minimum summer Arctic sea ice extents are within 2001 to 

2006. A later start of freeze-up and an earlier start to the melt season leading to longer 

melt period contributes to the severe sea ice loss (Serreze et al. 2007). Western arctic, 

including the Beaufort Sea, Chukchi Sea, East Siberian Sea, Laptev Sea and Kara Sea, 

has the most significant summer sea ice loss in 2007 when compared to the averaged 

summer sea ice extent for 1979-2000 (Comiso et al., 2008). 

Sea ice thickness is a very important feature for the estimation of sea ice volume. 

Unlike sea ice extent which is easily retrieved from remote sensing technology, sea ice 

thickness is much harder to attain. Sea ice thickness determines a number of important 

fluxes such as heat flux between the air and ocean surface as well as salt and fresh water 

fluxes. Any decline in sea ice extent might indicate loss of sea ice and serves as signal for 

warm or cold year, sea ice thickness is also very critical in this issue. According to NASA, 

(2008), the Arctic sea ice thickness has dramatically declined which leads a wide concern 

about global warming and sea level rising. 
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Figure 1.2 Sea ice physical features and relationship with ocean, atmosphere, and solar 
radiation (Piwowar & LeDrew, 1995) 
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1.2 SEA ICE OBSERVATION AND MONITORING USING REMOTE SENSING 

Routine observations of the Polar Regions are necessary to examine changes of 

sea ice. Thanks to the incredible technological advancements that have undergone in the 

last thirty years, the development of satellite observation and imagery contributes 

significantly in understanding the polar geophysical processes. Remote sensing provides 

a relatively easy-to-obtain source of data with which we can view the entire planet and 

monitor changes in the nature of the surface of large areas through time, in a consistent, 

integrated, and numerical manner (Davis, et al., 1991). Since the electrically scanning 

microwave radiometer (ESMR) in 1972, a multichannel satellite passive microwave data 

record that began with the deployment of the Scanning Multichannel Microwave 

Radiometer (SMMR) following the launch on NASA’s Nimbus 7 satellite in October 

1978 makes scientists capable to examine the Arctic sea ice coverage on a large scale. In 

1987, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave 

Imagers (SSM/I) was launched and continued to operate since then. A few of those Arctic 

researches are based solely on the SMMR data, while the most are based also on data 

from SSM/I. (Johannessen et al., 1995; Maslanik et al., 1996; Bjørgo et al., 1997; 

Cavalieri et al., 1997; Parkinson et al., 1999; Stroeve et al., 2005; Comiso, 2006; Meier et 

al., 2007) 

Apart from measurement of Arctic sea ice coverage, the remote sensing 

technology nowadays can measure the thickness and volume of Arctic sea ice. Laxon et 

al., (2013) stated in paper “CryoSat-2 estimates of Arctic sea ice thickness and volume” 

that results from the Pan-Arctic Ice-Ocean Modeling and Assimilation system (PIOMAS) 
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suggest the decline in sea ice extent has been accompanied by a decline in volume. Using 

data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ 

data, sea ice volume for winters of 2010/11 and 2011/12 can be estimated. In addition, 

Kwok, (2011) described a method of estimating sea ice thickness by using altimeter-

derived free-board together with the assumption of hydrostatic equilibrium in paper 

“Satellite remote sensing of sea-ice thickness and kinematics: a review”. The basic idea 

of measuring sea ice thickness is to measure the surface elevation of the ocean and the 

surface elevation of ice first. And then, given the volume of sea ice above the ocean 

surface, the whole volume of sea ice can be extrapolated. To convert freeboard to 

thickness, sophisticated approaches are employed by modifying the snow loading from 

Warren et al (1999) and ice density (Kwok, 2011).  
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1.3 NORTH ATLANTIC OSCILLATION  

Climate change and global warming have caused much discussion recently. From 

previous research, the North Atlantic Oscillation (NAO) is the most prominent and 

recurrent pattern of atmospheric variability in high latitudes.  

 
Figure 1.3 North Atlantic Oscillation Index (Marsupilami, 2010) 
 

The North Atlantic Oscillation refers to the swings in the atmospheric sea level 

pressure difference between the Arctic and the subtropical Atlantic that are most 

noticeable during the boreal cold season (November - April). The oscillations are 

associated with changes in seasonal heat and moisture transport between the Atlantic and 

the neighboring continents, as well as the intensity and paths of storms (Hurrell, Kushnir, 

Ottersen, & Visbeck, 2003). Similar changes can also be induced by NAO(Hurrell, 

Kushnir, Ottersen, & Visbeck, 2003). 
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From the background research, North Atlantic Oscillation, the atmosphere, and 

sea ice are widely considered to be highly correlated with each other. These climatic 

fluctuations affect agricultural harvests, water management, energy supply and demand, 

and fisheries yields (Hurrell, Kushnir, Ottersen, & Visbeck, 2003). According to recent 

observations, sea ice coverage and thickness in the north Arctic have dramatically 

decreased (NSIDC, 2007) , which makes finding the interaction mechanism between 

these climate factors necessary. Any climate mitigation and adaptation measurements 

must be based on the full and thorough understanding of the natural environment and its 

relevant climate factors. 

North Atlantic Ocean and the Arctic Ocean are also under the influence of North 

Atlantic Oscillation. The responses of the marine ecosystems, terrestrial ecosystems, and 

the freshwater ecosystems to the climate variability are highly correlated with the North 

Atlantic Oscillation. Speaking of the ocean’s response to the NAO alone, which is highly 

interested in this research, can be divided into the following subtopics: the sea surface 

temperature response pattern; the air sea flux interaction pattern including momentum 

flux, heat flux, water flux, and the buoyancy flux; the response of the ocean circulation, 

including the wind driven ocean circulation, buoyancy driven ocean circulation, poleward 

heat transport affect to circulation changes, and the ocean circulation response in 

dynamical ocean models; and changes in water masses, including observed NAO induced 

changes in the subtropical mode water, Labrador sea water, and in the Nordic Seas 

(Visbeck et al., 2003).  

Since NAO has a profound influence on the polar atmosphere and ocean 
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ecosystems and the polar ice consequently. There are a number of key processes that 

influences the sea ice more than others, such as the changes in the air ice flux momentum 

and the heat and the changes in the divergence of the oceanic heat transport (Visbeck et 

al., 2003). Variations in cloud interact with the heat flux in changing the Arctic radiation 

budget, which are the main factors contributing to the ice change. As for sea ice motion, 

enhanced wind stress associated with a positive NAO index generally forces the sea ice 

edge southward in the Labrador Sea and further to the northeast in the Barents Seas 

(Deser et al., 2000). During a positive NAO index phase, strong winds bring warm air 

masses towards the Nordic Seas and Arctic Ocean thus reducing the winter sea ice 

production (Dickson et al., 2000).  

From the sea ice extent variability research by Parkinson and Cavalieri, (2008), 

Arctic sea ice coverage has a decrease rate of approximately 3% per decade. The NAO 

impacts might also be involved in this downward trend. Modeling studies of Zhang et al. 

(2008) suggest that the NAO impacts the winter time sea ice thickness in the Arctic, 

which may precondition the summer ice concentrations even in the absence of additional 

anomalous atmospheric forcing during summer. Coincidentally, the long term decline of 

the summer sea ice cover shares the same period of increasing NAO index since the mid-

1960s. Through this coincidence cannot be used to for any conclusion, it provides a hint 

for future research. However, reliable long term Arctic sea ice data are mostly restricted 

to the position of the sea ice edge during the pre-satellite era and sea ice concentration 

thereafter. Only a few decades of satellite recorded sea ice motion, and only the Fram 

Strait has a continuous record of sea ice thickness for several years (Vinje et al., 1997).   



13 

 

1.4 LITERATURE REVIEW 

1.4.1 Synthesis of Arctic sea ice variability and trend during the recent 30 years 

In the paper “Arctic sea ice variability and trends, 1979-2006 by Claire L. 

Parkinson and Donald J. Cavalieri”, the analysis of arctic sea ice extents is performed, 

derived from satellite passive microwave data for the 28 years 1979-2006. The analysis 

yields an overall negative trend of -45,100 ± 4,600 km2/a (-3.7 ± 0.4%/decade) in the 

yearly averages, with negative ice extent trends also occurring for each of the four 

seasons and each of the 12 months. And separate analyses have also been done within 

different Arctic sections, such as the Kara and Barents Seas, Arctic Ocean, Baffin 

Bay/Labrador Sea, the Greenland Sea, Hudson Bay, Seas of Okhotsk and Japan, the 

Bering Sea, Canadian Archipelago, and Gulf of St. Lawrence.  

Monthly sea ice extents in this article are retrieved by calculating sea ice extents 

on a daily basis (or every other day in the case of SSMR data) and then combined to 

monthly, seasonal, and yearly averages. The monthly sea ice extents are displayed 

temporally to present the overall long term variation and seasonal changes inside each 

individual year. Monthly deviations were extracted by taking the individual monthly 

averages and subtracting the 28 year average of a particular month. A line of linear least 

squares fit is used to determine the monthly deviations from the long term averages. In 

addition, seasonal averages are calculated (Spring, Summer, Fall, and Winter) to show 

the seasonal variation of each year. Seasonal variations can be used to identify whether 

sea ice in this region is dominated by non-seasonal or seasonal characteristics. Yearly and 

seasonally averaged sea ice extents for the years 1979–2006 divides the winter (W), 
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spring (Sp), summer (Su), and autumn (A) values cover the periods January–March, 

April–June, July–September, and October–December, respectively (Parkinson and 

Cavalieri, 2008). 

All these regions showed a negative trend of sea ice extent but with different 

confidence level. The 28 year trends in ice areas for the Northern Hemisphere total are 

also statistically significant and negative in each season, each month, and for the yearly 

averages.  

In this article, a perspective is provided for analyzing the long term Arctic sea ice 

time series by displaying the monthly data in their temporal order as well as their 

averaged seasonal variations. However, this Arctic seasonal sea ice extent view does not 

give a straightforward method in analyzing the long-term sea ice variability trend. 

Therefore, average monthly sea ice data of each month is compared with average sea ice 

extent data of each month with individual monthly data. The difference in this 

comparison formed a line that greatly helped in analyzing the long-term sea ice 

variability trend. In addition, the author utilized a linear regression analysis to test 

whether sea ice extent has decreased. The linear least squares fit analysis was chosen to 

create a line with its slope and estimated standard deviation. These methods provide a 

way in analyzing the general variability and trend of Arctic sea ice extent for this 

research. However, because of limited sample size of the remote sensing sea ice extent 

data, it is difficult to determine the parametric or nonparametric nature of these data. In 

addition, the seasonal effects and the both spatial and temporal autocorrelation have not 

been taken into consideration. Therefore, in this research, these problems will be avoided. 
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Arctic Sea Ice Extent and Anomalies, 1953-1984. Lawrence A. Mysak and 

Davinder K.  Manak, 1989. Atmosphere-Ocean, 27:2, 376-405 

In this article, s 32-year period of seasonal and interannual variability of sea ice 

extent in the Arctic region from 1953 to 1984 is investigated. The major findings of this 

article can be summarized in the following 4 sections.  

The first section is the climatological ice edge positions in the various sub-regions 

of the Arctic are closely related to the surface ocean circulation patterns at high latitudes.  

The second section is the time scale of the areal sea ice anomaly fluctuations 

varies across the Arctic region exhibited an approximate 4-6 year cycle, and according to 

the author, this cycle is most likely due to the interannual variability of the sea level 

pressure in the North Pacific and the Beaufort Sea region. Also, a strong decadal cycle in 

the smoothed anomalies for the Kara and Barents Seas is found. Though the data are 

highly correlated, they do not imply a causal relationship between the decadal pattern and 

the North Atlantic Oscillation/Arctic Oscillation. The time scale of these cycle fluctuation 

appears to vary from interannual to decadal. 

The third section is the anomalies found in the Beaufort and Chukchi sea region.  

There are plausible atmospheric pressure anomalies associated with the see-saw in winter 

air temperature between northern Europe and western Greenland. The air temperature and 

pressure see-saw pattern is also very similar with the NAO/AO patterns in the Arctic 

region, but no interaction is found between sea ice variability and atmospheric pressure 

and temperature anomalies.  
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The fourth section is to propose a plausible explanation for the sea ice anomalies, 

especially the maximum sea ice extent observations. The plausible explanation could be 

the presence of a large negative salinity anomaly that moved cyclonically around the 

subarctic region. Apart from interactions with salinity, other environmental factors such 

as wind, sea surface temperatures can also be related to sea ice extent anomalies.  

Overall, this article studies the Arctic sea ice extent and anomalies in the 1989 in 

different Arctic sub-regions. Also, other climatological data such as sea ice motion, 

salinity, air pressure/temperature, are used to find variability patterns. Apart from the 

anomalies, the seasonal cycles of sea ice are also found in some sub-regions.  

In another paper “Sea ice conditions and melt season duration variability within 

the Canadian Arctic Archipelago (CAA): 1979-2008” by Howell et al. (2009), the sea ice 

conditions and melt season duration within the Canadian Arctic Archipelago are 

investigated with a conclusion of sea ice extent within the Canadian Arctic Archipelago 

decreases in average September sea ice area at -8.7% per decade and the melt season 

duration increased by 7 days per decade. Unlike the Parkinson paper, this paper focuses 

more on the variability of first year ice and multiyear ice. Also, the Canadian Ice Service 

Digital Ice Chart Archive (CISDA) data is used to explore the links between sea ice 

conditions and melt season duration as well as the SMMR and SSM/I data.  

The September and October sea ice extent in CAA is analyzed in this paper to 

show the spatial distribution of average September multiyear ice concentration. And the 

linear least squares fit average method is used to create the long-term trend of average 

September total ice and multiyear ice. In addition, the melt duration analysis concludes 
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that the 7 days per decade increase contains a 3.1-days per decade earlier melt and a 3.9-

days per decade later freeze.  

In this paper, the author noted that the majority of CAA’s multiyear ice is 

generated within or imported into the Queen Elizabeth Islands region from the Arctic 

Ocean and multiyear ice flow into the Northwest Passage. In addition, the input source of 

CAA multiyear ice changes through time with multiyear sea ice flow into the Northwest 

Passage and a anomaly year that in 2007, multiyear ice within the Northwest Passage was 

removed. Some physical dynamics examined the sea ice variability through ice import 

from the Arctic Ocean and the sea level pressure, and concluded the future conditions of 

the current variability trend that the supply of multiyear ice from the Arctic Ocean to 

CAA could reduce but unlike to stop (Howell, 2008). The physical process of Arctic sea 

ice variability helped analyze the sea ice motion between CAA and the Arctic Ocean, 

understanding the dynamics of sea ice. 

The change of speed of Arctic sea ice decline is not fully analyzed in the Howell 

(2008) study. In the paper “Accelerated decline in the Arctic sea ice cover” by Comiso  et 

al. (2008) examined the evolution of speed of Arctic sea ice extent decline. First of all, 

sea ice extent in summer 2007 was observed as the minimum. Furthermore, it is 24% 

lower than the previous record minimum observed in 2005. The acceleration in the 

decline is evident and area trends of the entire ice cover have shifted from -3% per 

decade in 1979-1996 to -10.7% per decade from 1997 to 2007 (Comiso et al., 2008).  

Overall, Arctic sea ice extent in the summer of 2007 shows a very large low 

anomaly of 37% less than the climatological averages. And the surface temperature data 
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indicated that the growth of sea ice was likely hindered and the retreat likely enhanced by 

the anomalously high temperatures in previous months (Comiso et al., 2008). This 

phenomenon is probably due to the result of pre-conditioning of Arctic Ocean through 

abnormally low perennial ice coverage in recents (Serreze et al., 2007). According to this 

paper, the rate of Arctic sea ice decline dramatically increased in the last decade 

compared to the 1979 to 1997 average, especially in the summer period. And this 

provides a view to analyze the decline trend and rate in this thesis that in the 30 year time 

series how Arctic sea ice extent decline by decade. 

There is another paper “Arctic sea ice decline: Faster than forecast” by Juliene 

Stroeve et al., (2007) which found the decline rate is faster than anticipated. In this paper, 

late September Arctic sea ice extents are analyzed from 1953 to 2006, and compare 

actual sea ice extent observations with several forecasting models in the 

Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). All 

participating models show that sea ice cover declines over the 50 year period. The 

atmospheric greenhouse gas (GHG) loading response to the variability of Arctic sea ice 

extent is also examined.  

In particular, Stroeve et al., (2012) wrote another paper “Trend in Arctic sea ice 

extent from CMIP5, CMIP3 and observations” that specific described two climate model 

comparisons, the World Climate Research Program Coupled Model Intercomparison 

Project Phase 3, and updated that to CMIP5. Similar conclusions are made that trends 

from most ensemble members and models nevertheless remain smaller than the observed 

value, pointing to strong impacts of internal climate variability (Stroeve et al., 2012).  
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The Hadley Center sea ice and sea surface temperature data set are the primary 

data source. And estimates of sea ice concentration before 1979 are based on early 

satellite observations, aircraft and ship reports. Through a number of IPCC AR4 

simulations, it concludes that observations indicating a downward trend in September 

Arctic sea ice extent from 1953 to 2006 are larger than any of the model estimates. In 

addition, the current summer minimum extent is approximately 30 years ahead of the 

ensemble mean model forecast (Stroeve et al., 2007). Also, the impact of GHG loading 

on the Arctic sea ice extent in September is strong and growing, and may also impact the 

March sea ice extent.  

The seasonal variability of the Arctic sea ice extent involves an important part of 

the melt onset dates. Anderson et al., (2010) studied the calculation of melt onset dates of 

the Arctic sea ice in paper “A comparison between SSM/I passive microwave melt onset 

dates and satellite-derived albedo melt onset dates in the Arctic”. In this paper, the rapid 

decline of Arctic sea ice extent in the past few years is also noted. Many factors 

contribute to the melting of sea ice, among which the ice albedo feedback plays an 

important role in energy absorbing and melt intensification. In order to study the albedo 

conditions during the melt season, the start of melt could help to determine when albedos 

change due to melting. As it is difficult to obtain albedo data directly from satellite 

remote sensing due to cloud cover, especially in the polar regions, passive microwave 

remote sensing data have a large chance to see through clouds and determine snow 

characteristics such as melting on the sea ice surface (Anderson et al., 2010). Satellite 

derived passive microwave brightness temperature data has been used to determine the 
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onset of sea ice melt in the Arctic region since 1997 (Anderson et al., 2010). The change 

in the passive microwave emissivity from crystallization changes in the snow ice 

continuum can be used to determine the onset dates of sea ice melt. Hence, passive 

microwave data during melt onset could be used as a proxy for the changing albedo 

conditions during melt (Anderson et al., 2010).   



21 

 

1.4.2 Synthesis of climatology dynamics of Arctic sea ice variability 

After the 2007 record minimum Arctic sea ice cover was observed, the following 

deformation of the Arctic sea ice cover was examined by Kwok and Cunningham (2012) 

in “Deformation of the Arctic Ocean ice cover after the 2007 record minimum in summer 

ice extent”.  

The behavior of sea ice cover after significant thinning at the end of summer is of 

great interest in studying the response of the ice cover to external forcing of the 

environment (Kwok and Cunningham, 2012). If the significant deformation at the 

beginning of the growth season were unaccounted for in the mass and area balance of ice 

cover, any deformation-induced decrease in ice coverage could be incorrectly attributed 

to ice export with a concurrent decrease in Arctic sea ice volume when in fact the ice 

volume is conserved but compensated by redistributions in thickness (Kwok and 

Cunningham, 2012). This paper quantifies the deformation of ice cover after the summer 

of 2007 using RADARSAT-1 imagery and ice drift sampling from the radar imagery.  

Generally speaking, the high resolution ice drift data from sequence of radar 

imagery provides a view of how sea ice cover behaves after the significant thinning at the 

end of this record -setting summer. The net divergence and vorticity are ~3% and -0.43 

respectively. The ice cover is divergent with a rotation in the same sense as that of 

circulation pattern imparted by the persistent high sea level pressure pattern centered in 

the southern Beaufort Sea (Kwok and Cunningham, 2012). In addition, two distinct 

regimes of ice motion and deformation with differing characteristics that contributed to 

the observed mean: one poleward of 80°N and the other to the south. Poleward of 80°N, 
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we find a net convergence of more than 14% over the period that is a result of the strain 

rates associated with the response to on-shore wind and motion (Kwok and Cunningham, 

2012). The divergence and drift of sea ice cover after an anomalously low extent can help 

explain the similarities of Arctic sea ice seasonal characteristics. The decreased stability 

by the water column and thus promoting overturning with warmer and deeper waters can 

affect the brine rejection interference with the ice cover. McPhee et al. (2005) suggest 

that confined zones of upwelling of the pycnocline associated with significant shear 

motion of sea ice may greatly enhance local ocean-to-ice heat transfer and thinning of the 

winter ice cover. Therefore, the relationship between sea ice extent variability with other 

environmental factors can be explored. In addition, in the anomaly analysis of this thesis, 

the deformation process plays an important role in influencing the sea ice cover in the 

following years. Also, in analyzing similar seasonal characteristics across the Arctic 

region, the sea ice cover divergence would help in explaining these phenomena.  

The causes of Arctic sea ice coverage decline have gain much research since the 

last decade. In paper “Recent changes of Arctic multiyear sea ice coverage and the likely 

causes” by Polyakov et al. (2012), the multiyear Arctic sea ice variability is studies and 

the causes of the variability are explored. Over the period 1979 to 2010, Arctic sea ice 

extent for September declined by 11% per decade and steeper for the last decade. Winter 

ice extents also declined but in a slower speed. The reason of the variability of Arctic 

multiyear sea ice is that a large fraction of MYI area loss is due to wind-driven export of 

sea ice through the straits connecting the Arctic Ocean with the subpolar basins 

(Polyakov et al., 2012), among which the Fram Strait in the Greenland Sea contributed 
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the majority of Arctic sea ice export. The atmospheric thermodynamics and melt also 

contributed to the Arctic MYI variability. Warming in the Arctic since 1987 is evident in 

the time series of sea air temperature anomalies from three coastal stations. Strong 

warming in the central Arctic is also evident in fields from the ERA-Interim reanalysis. 

In addition to atmospheric thermodynamics, Arctic sea ice cover is affected by the 

thermal state of the Arctic Ocean. Observational and modeling results suggest that 

gradual warming of intermediate waters of Atlantic origin, the so-called Atlantic Water 

(AW) of the Arctic Ocean helped precondition the polar ice cover for the extreme ice loss 

observed in recent years (Polyakov et al., 2012). In this paper, the possible causes of 

Arctic MYI variability are explored. Three environmental factors: wind-driven sea ice 

export, atmospheric thermodynamics, and the ocean heat contributed to the MYI decline 

during last 30 years. And it provides further research opportunities of quantifying the 

relationship between other environmental factors with sea ice variability.  

In the paper “Wind-driven trends in Antarctic sea ice drift” by Holland and Kwok, 

(2012) through data of satellite tracked sea ice motion from 1992 to 2010, it reveals large 

and statistically significant trend in Antarctic sea ice drift can be linked to local winds in 

most sectors. The dynamic and thermodynamic processes in the internal ice pack are 

quantified and wind driven changes in ice advection are the dominant driver of ice 

concentration trend around much of West Antarctica. The strong correlation between 

observed ice motion and reanalysis winds in most of the sea ice zone implies that ice 

motion trends are largely caused by wind trends (Holland and Kwok, 2012). In 

conclusion, the fundamental importance of this paper is to rectify the failure of current 
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climate models to hindcast the recent increase of Antarctic sea ice. The large scale 

climate variability of the southern hemisphere is the substantial cause of the wind and ice 

changes in the Antarctic areas.  

Stroeve  et al. (2012) summarized the processes influencing the sea ice cover in 

2011 in “The Arctic’s rapidly shrinking sea ice cover: a research synthesis”. In this study, 

the phenomenon that accelerated sea ice decline over the past decade was also noted. And 

from the paper “Arctic sea ice decline: Faster than forecast” by Stroeve et al. (2007) 

noted that September Arctic sea ice extent decline becomes steeper with time lower than 

any of the IPCC AR4 simulation. Stroeve  et al. (2012) stated that although the statistical 

evidence for accelerating ice loss is only beginning to emerge, a couple of physical 

evidences of growing non-linear response to external climate forcing has already showed 

up. The linked processes through analysis of satellite derived sea ice extent, ice 

concentration, ice age, and atmospheric data are synthesized to provide evidence. Apart 

from several environmental factors raised by Polyakov et al. (2012), the summer ice 

albedo feedback and ice cover thickness are taken into consideration.  

As the synthesis points out, Arctic air temperatures are rising in all seasons which 

leads to more open water in September and thinner ice cover in the coming spring. The 

summer ice albedo would also promote more open water in September. Warm 

atmosphere in autumn enhances the sea ice melting. And atmospheric patterns that favor 

ice retention are becoming less effective than they used to be (Stroeve et al., 2012). As 

Arctic continues to be warm in the most recent years, the probability of a sequence of 

unusually cold years in the Arctic that could bring recovery declines (Stroeve et al., 
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2012). 

Ocean forcing is another potential major player in affecting the sea ice retreat, 

which hasn’t been fully understood. There are evidences showing warm Atlantic waters 

enter the Arctic Ocean through eastern Fram Strait and the Barents Sea and form an 

intermediate layer as they subduct below colder and less dense Arctic surface waters 

(Stroeve et al., 2012). However, it is still not clear to know how much heat it will bring to 

the surface to influence the ice cover. As with the Pacific water inflow, Shimada et al. 

(2006) noted a concurrence between increases in Pacific Surface Water temperature in 

the Arctic Ocean beginning in the late 1990s and the onset of sharp summer sea ice 

reductions in the Chukchi and Beaufort seas (Stroeve et al., 2012). An imbalance 

between winter ice growth and summer melt results acceleration of sea ice reduction in a 

large area. Jackson et al., (2010) focus on changes in the near surface temperature 

maximum in the Canada Basin. And a near surface halocline forms below the mixed 

layer which stores heat gained in summer. Compared with data in the early 1990s, the 

near surface temperature maximum warmed and expanded northward in shallower depth 

that increases ice melt for longer periods of time (Jackson et al., 2010). 

In conclusion, after the 2007 record September sea ice minimum, it is widely 

speculated that Arctic Ocean is rapidly changing to seasonally ice free conditions. And 

the above-summarized processes worked together to support further ice loss, anomalous 

atmospheric forcing, and dramatic summer ice loss. However, because of the short time 

series of Arctic sea ice, the current apparent steepening downward trend may not be 

sustained (Stroeve et al., 2012). Also, because of the natural variability in the ice-ocean-
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atmosphere system, sea ice recovery happened in 2007 and 2009 should come in the 

future. 
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1.4.3 Spatial-Temporal Variability of Northern Hemisphere Sea Ice Concentrations and 

Concurrent Atmospheric Teleconnections. M. Piwowar and C.P. Derksen, 2008 

In this research, the authors explored the spatial and temporal variability of Arctic 

sea ice and its relationship with concurrent atmospheric teleconnections. The paper 

explores the relationship between global warming and polar ice cap variations. 

 Introduction 

Since the Earth’s climate is always changing, the analysis of temperature records 

shows that the Earth has warmed an average of 0.6 degree Celsius over the past century 

(NRC, 2000). From 1980s and 1990s, there was an overall decrease in the Arctic sea ice 

extent of approximately 5% (Parkinson et al., 1999). The variability of sea ice can greatly 

impact the radiation reflection and absorption conditions. When the sea ice cover retreats, 

therefore, lower albedo ocean is exposed to the radiation, absorbing more energy. The 

ocean layers are thus heated, setting up a positive feedback loop further enhancing the 

warming of the polar regions (Piwowar, 08). 

The primary research objective in this research is to find a better way of exploring 

the Arctic sea ice cap by comparing its spatial and temporal characteristics with the 

atmospheric circulation patterns. Also, the sea ice atmospheric teleconnections can be 

used to validate observed climate changes in the future.  

The remote sensing sea ice concentration data was obtained from the National Ice 

and Snow Data Center (NSIDC), which were calculated from microwave brightness 

temperatures using the Bootstrap algorithm (Comiso et al., 1997). The passive microwave 

brightness temperatures were collected from SMMR and SSM/I sensors, which were on 
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the Nimbus-7 and DMSP series satellites (Piwowar, 2008). The atmospheric data were 

from the National Center for Environmental Prediction gridded data product from the 

National Center for Atmospheric Research) (Jenne, 1970). Additional Pacific Decadal 

Oscillation, and the Arctic Oscillation data were acquired from University of Washington.  

 Methodology 

The Principal Components Analysis is used to analyze the remote sensing and 

atmospheric data. The main objective of a PCA analysis is to enhance the separability, 

hence discriminability, of elemental features in the original data (Piwowar, 2008). The 

PCA analysis can help remove the inter-variable correlation, and create new channels 

which have no correlation between them.  

In this research, the first five components will be analyzed to create a component 

image and corresponding loadings plot. The component image shows the spatial 

associations by each component. The component loadings are derived from the 

eigenvectors calculated during the PCA procedure, which can reveal the similarity 

between the PCA component and the original data ranging from -1 to +1. The larger the 

loadings are, the more similar the PCA component and its original data will be. The 

component image will be utilized to interpret where the component is correlated with the 

original data and when the spatial pattern of that component was strongest.  

The processing procedure was conducted by analyzing the positive and negative 

mode of each PCA component by identifying their strongest positive ice anomalies. 

These anomalies can be found on the component image and compare with the original 

data image in both positive and negative model. Also, the atmospheric 500Z Composite 
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image went through a rotated PCA to assess the within group variability, which means 

the greater the similarity among the pentads, the greater the variance that will be 

explained by the leading atmospheric component and the greater the predictive potential 

of this analysis (Piwowar, 2008). From the 500Z Composite image, the sea ice extent 

anomalies can be implied. Also, by comparing the observed anomaly patterns with the 

AO indexes, the relationship between sea ice extent variability and the atmospheric 

teleconnections can be examined by providing the observational evidence for the linkages 

between the ice and the global atmospheric system. 

From results of this research, the author captured the five largest temporally 

repeating ice concentration anomaly patterns in the Northern Hemisphere and identified 

their contemporary 500Z pressure patterns using the Principal Component Analysis. The 

strongest spatial-temporal ice concentration anomaly pattern over the 1980 to 1999 was 

the phase-shifted anomalies between the Greenland and Barents Seas and the Labrador 

Sea and in Davis Strait (Piwowar, 2008). Each PCA component has revealed a 

relationship with certain climatic phenomenon in the Arctic region, such as anomalies, 

oscillations, El Nino series, etc. However, only did a study of finding the linkages 

between the ice and the global atmospheric system, and did not perform a follow-up 

study to identify the cause and affect relationships. Therefore, all these results and 

conclusions were based on observations and any relationship between ice and 

atmospheric system were from sheer data coincidence, which statistically might be the 

ecological fallacy. However, this research does provided a benchmark of sea ice-

atmospheric teleconnections for the two decades from 1980 to 1999, which gives the 
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follow-up researches to validate the actual ice and atmospheric conditions with the 

observations in this paper.  
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1.4.4 Sea ice response to an extreme negative phase of the Arctic Oscillation during 

winter 2009/2010. Julienne C. Stroeve, James Maslanik, Mark C. Serreze, Ignatius Rigor, 

Walter Meier, and Charles Fowler, 2010 

Based on previous studies, there exists a relationship between Arctic Oscillation 

and the Arctic sea ice extent variability. The Arctic sea ice extent is very sensitive to 

changes in the atmospheric circulation, where in the Arctic region, the Arctic Oscillation 

is generally considered as an important component of this atmospheric variability.  

In this research, the authors examined an extreme negative phase of Arctic 

Oscillation during winter 2009/2010, and analyzed the sea ice response. According to the 

research, the Arctic sea ice extent in September 2010 was the third lowest in the satellite 

record. This phenomenon reflects the differences in atmospheric circulation during the 

winter 2009/2010 compared to the mean anomaly pattern based on past negative AO 

winters, low ice volume at the start of the melt season, and summer melt of much of the 

multiyear ice that had been transported into the warm southerly reaches of the Beaufort 

and Chukchi seas (Stroeve, et al., 2011).  

Temporal behavior of the AO has been implicated in the downward trend in 

summer sea ice extent evident in the passive microwave satellite record, 1979 to present 

[e.g., Rigor et al., 2002; Rigor and Wallace, 2004]. Also, traditionally defined as the 

leading stationary mode of northern hemisphere sea level pressure (SLP) variability 

based on Empirical Orthogonal Function (EOF) analysis, the AO can be interpreted as an 

exchange of atmospheric mass between the Arctic and the mid‐latitudes [Thompson and 

Wallace, 1998]. 
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The author indicates that Arctic sea ice was motivated by an anticyclone centered 

over the northern Beaufort Sea, known as the Beaufort Sea High (BSH), and a trough of 

low pressure from the Icelandic Low northeastward into the Kara Sea. These surface 

winds drive the sea ice motion, and the Transpolar Drift Stream, indicating sea ice motion 

from the Siberian across the Arctic and into the North Atlantic through the Fram Strait. 

Otherwise when the winter AO is in its positive mode, the cyclone is counter clockwise 

and drives sea ice motion because of the weak BSH, which can be represented as 

decreased ice transport from the Beaufort Sea to the Chukchi Sea, and increased ice 

transport out of the Arctic Ocean through the Fram Strait (Rigor et al., 2002). In winter 

2009/2010, the AO was strongly negative. According to established relationships, this 

phenomenon should favor the survival of ice through the 2010 melt season. However, the 

sea ice extent in summer 2010 ended up third lowest in the satellite record.  

The author used monthly sea ice concentration from 1979 to 2010 obtained from 

the National Snow and Ice Data Center. Also, the sea ice motion data at 250km spatial 

resolution was utilized in this research. Fields of SLP and air temperature at T925 were 

obtained from the National Centers for Environmental Prediction/National Center for 

Atmospheric Research (NCEP/NCAR) reanalysis data (Kalnay et al., 1996). The author 

focuses on winter months (December through February), and derive anomalies of SIC, 

SLP and T925 relative to baseline means for 1979–2009. Changes in ice age and ice 

transport between October and March are also evaluated. Net transports were calculated 

through several gates: Western Beaufort, Eastern Beaufort, and western portion of the 

ocean area adjacent to the Canadian Archipelago, Transpolar Drift Stream and Fram 
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Strait (Stroeve et al., 2010). The weekly ice motions were used to calculate the velocity 

component. These were totaled across the gate and by time to get net areal transports by 

month.  

Typically, the negative phase of the winter AO is associated with a strong 

Beaufort Gyre that sequesters sea ice in the Canada Basin where it can thicken and 

survive summer melt (e.g., Proshutinsky and Johnson, 1997). The winter of 2009/2010 

had the most extreme negative phase of AO since 1951; however the September of 2010 

sea ice extent ended up third lowest. The explanation of this phenomenon lies in the 

differences of atmospheric circulation compared to other normal negative AO events. The 

wind field may drive the older sea ice directly across the Beaufort into Chukchi Sea as 

opposed to curving northward in the western Beaufort. While lending credence to 

arguments that the character of the AO may be changing (e.g., Wang et al., 2009; 

Overland and Wang, 2010), one must also recognize that the AO only explains roughly 

50% of the SLP variability (Rigor et al., 2002). Furthermore, ice conditions can be 

sensitive to slight shifts in the position of high and low pressure centers (e.g., Maslanik et 

al., 2007a) that are not captured by EOF loading patterns. In the 80s, wind associated 

with the strong Beaufort Gyre during negative AO winters would carry the older and 

thicker sea ice from the Canadian Arctic towards the Eurasian Arctic, and older and 

thicker ice in the Eurasian Arctic towards the Canadian and central Arctic (Stroeve et al., 

2010).  
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1.4.5 Synthesis of Temporal Mixture Analysis 

 Temporal Mixture Analysis of Arctic Sea Ice Imagery: A New Approach for 

Monitoring Environmental Change. Joseph M. Piwowar, Derek R. Peddle, and 

Ellsworth F. LeDrew, 1998 

Temporal mixture analysis is a new change detection approach for spectral 

mixture analysis. Spectral mixture analysis utilizes the isolation of the main spectral 

contributions in each pixel to estimate the components in mixed pixels. Summing the 

fractional components of a set of spectral end members drives spectral mixture analysis 

(Piwowar, Peddle, & LeDrew, 1998). End members represent the most extreme or “pure” 

spectra for a certain land cover feature in the image. Images are assumed to contain a 

number of spectrally mixed data and then unmixed to find the fractional contribution of 

each of its end members.  

In temporal mixture analysis, it is expected that an overview of the temporal 

characteristics of Arctic sea ice processes could be derived and subsequently used as a 

proxy of the long term normal (Piwowar, Peddle, & LeDrew, 1998). 

 
Figure 1.4 Endmember selection using scatterplot in TMA (Piwowar, Peddle, & LeDrew, 
1998) 
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Three end members will be selected which are the non-seasonal sea ice, and open 

water. End members should be the “purest” spectra in the image. In spectral mixture 

analysis, this indicates pixels that represent a certain land cover component best or 

“purest”. Whereas in the temporal mixture analysis, end members can be selected in a 

purification formula developed by Piwowar to derive pure end member spectra from a 

sampled set of image spectra. 

 

 

Once the end members are selected, temporal mixture analysis can be conducted 

in a similar way with spectral mixture analysis. In temporal mixture analysis, pixel 

unmixing will be applied to pixels belong to different time while they share the same 

geographical location. 

THE TWO-ENDMEMBER MODELING 
 

The two end members: nonseasonal ice and seasonal sea ice were used to extract 

Figure 1.5 Endmember selection in each spectral (Piwowar, Peddle, & LeDrew, 1998) 



36 

 

their relative fractions from the SMMR data. Hudson and Baffin Bays and the Barents, 

Kara, and Chukchi Seas have very high ice concentrations in March and become ice free 

in September. In the RMS error image, lighter tones show areas where the model has a 

good fit with the data.  

THE FOUR-ENDMEMBER MODELING 
 

The RMS error image from the two-endmember model highlighted areas that 

were not well described by that model, suggesting the need for additional end members. 

New seasonal ice end members were added to the model by using an empirical approach. 

The spectrum for each end member was defined from a purified selection of temporal 

spectra extracted at locations with high RMS errors. Two end members were added to the 

original spectra.  

The RMS error image generally reveals a well-fitting model with low errors, 

particularly in the non-seasonal sea ice zone, with some slightly higher errors observable 

in the areas covered by the seasonal end members. Thus, we can conclude that there are 

four basic temporal models that can be used to describe the annual cycle of the sea ice 

concentration for any point in the arctic.  

TMA AS A TOOL FOR CHANGE ANALYSIS 
 

If they were applied to annual subsets of the SMMR data, it was expected that the 

fractional images could serve as a historical record or summary describing the spatial 

distribution of ice for each year. Further, they could form the basis for inter-annual 

comparison by relating the spatial distributions of each end member. 
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This method is primarily used in this research to analyze the spatial distribution of 

different temporal signatures selected from different Arctic sub-regions. However, at that 

time, the author performed the two-endmember analysis and the four end-member 

analysis was based on the error image created in the two end-member analysis. However, 

if the endmembers could be selected from Arctic regions with different temporal 

signatures, the accuracy and representativeness of these endmembers can be greatly 

improved. Also, in the original paper, even in the second analysis, only four endmembers 

are selected to unmix the entire Arctic region, which are not enough to describe the 

various temporal characteristics across the Polar region. After the analysis is done, the 

error image is the sole source for error analysis, without comparing the fractional images 

with the actual temporal characteristics in different Arctic regions.  

 The derivation of an Arctic sea ice normal through temporal mixture analysis of 

satellite imagery, Joseph M. Piwowar, 2008, International Journal of Applied Earth 

Observation 

Later in 2008, Piwowar further improves the Temporal Mixture Analysis in the 

endmember selection and unmixing process to create a long-term baseline for the Arctic 

sea ice data.  

Unlike the first paper of TMA, the improved TMA utilizes the minimum noise 

fraction (MNF) transform to determine the inherent dimensionality of the data, pixel 

purity index (PPI) to find the most temporally “pure” pixel, and similar unmix processes 

(Piwowar, 2008). The MNF function can greatly help to remove the redundant and 

correlation to ensure the effectiveness of TMA procedures. The principal component 

analysis is well acknowledged transformation to minimize inter-band correlation and 
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concentrate the information from the original data (Jensen, 2005). And MNF also 

embodied this concept. After that, the pixel purity index function is applied to find the 

most extreme representations of different temporal characteristics in the data. 

Endmembers will then be specified. There’re a total of nine endmembers selected across 

the Arctic from the MNF and PPI functions.  

The linear temporal unmixing process was similar with the 1997 TMA paper with 

endmember description and error analysis. But the temporal mixture images provide a 

different view with the endmember fraction images. It presents similar endmembers in 

one image with color compositions assigned to each endmember. These images provide a 

view of how the endmembers are distributed across the arctic region with their 

concentrations. In addition, in areas with compositions of different endmembers, the 

fraction of endmembers is displayed to give a numerical perspective of concentrations of 

different endmembers in a regional scale.  

In the improved TMA process, the endmembers were statistically selected 

compared to manually select from various Arctic sub-regions for better accuracy and 

RMS error minimization. And it provides a better view in analyzing the compositions of 

endmembers in some regional areas. However, the larger scale endmember composition 

image is also of great interest to researchers and a comprehensive endmember 

distribution and composition image of the entire Arctic region would greatly help to find 

similar seasonal variability in different Arctic areas as well as find the evolution of 

seasonal variability through the 30-year time series.   



39 

 

1.5 RESEARCH RATIONALE OF ARCTIC SEA ICE VARIABILITY AND ANOMALIES 

Numerous studies have been reported on the study of the sea ice extent variability 

and anomalies during the past 50 years. From these studies, the anomalies of the Arctic 

sea ice’s spatial and temporal structures provide great value in understanding the 

processes and mechanisms of sea ice variability and insights in estimating sea ice future 

trend. As the climate or the regional ecosystem changes, the Arctic sea ice is most likely 

to change accordingly. In the first literature review, Parkinson and Cavalieri did a 

research of the Arctic sea ice extent variability and trend over the past few decades, and 

concluded that sea ice extent is declining at 3.7% per decade in the Arctic region scale. 

While in different sub-regions, the decline rate varies from 1.5% to 9.5% per decade. 

 

Figure 1.6 Observed and IPCC Model projected Arctic sea ice from 1900 to 2100 
(European Environment Agency, 2011) 

However, based on previous long-term time series analysis of Arctic sea ice 

extent variability and its comparison with previously generated forecast models, the 
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Arctic sea ice extent is decreasing faster than estimated (Figure 1.6) (Stroeve et al., 2012; 

Holland and Kwok (2012); Comiso et al., 2008). Therefore, the emerging changes would 

show up as anomalies. And through a period of time, these anomalies would probably be 

the beginning of a new phase of sea ice decline. Thus the study of Arctic sea ice 

anomalies can provide useful clue in estimating future trend in the development of the 

cyrosphere ecosystem. Moreover, by relating these anomalies with a number of Arctic 

climate phenomena can help explain the air/sea and air/ice/sea interaction processes and 

mechanisms.  

Generally speaking, the anomaly analysis of Arctic sea ice extent focuses on the 

spatial structures and scales of anomalies in previous researches. For instance, in the 

second literature review, Mysak and Manak studied the Arctic sea ice variability and 

anomalies in seven different sub-regions in the Arctic region. At first, the seasonal cycles 

of sea ice extent variability were found. And the seasonal variation can be used to analyze 

the freeze and melt time of the year. In addition, the speed of sea ice freeze and melt also 

provides useful data in interpreting the climate condition of that particular year. Within 

different sub-regions, the seasonal variation pattern varies accordingly. But the sea ice 

extent variability or trend in the long term needs more discussion. Also, too few sub-

regions were classified and analyzed. The sea ice extent anomalies were studied through 

various time series analysis focusing on the fluctuations of areal sea ice extent. The 

deviations from the usual seasonal cycle would represent the structure of high-latitude 

climatic fluctuations on time-scales of years to decades. But the anomalies were 

diagnosed by comparing the individual monthly sea ice data with the short or long term 
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average. From the deviation chart between monthly sea ice data and average, the overall 

fluctuation and approximate decadal cycle of sea ice variability can be perceived. From 

the anomaly distribution, the amplitude and scale of anomaly in different sub-regions can 

be classified. Moreover, the multiyear variation trend of Arctic sea ice extent happened to 

coincide with other environmental data, such as the atmosphere air temperature, sea 

surface temperature, and sea level pressure. In other researches, for example, Torrence 

and Compo, 1998, the wavelet analysis was utilized to model the long term sea ice extent 

variation compared to the windowed Fourier transform, and deal with edge effects due to 

finite length time series. The wavelet analysis provides much more detailed insight 

information for analyzing time series with different time scales and changes in variance. 

In addition, anomalies classified from the wavelet models are more accurate than the 

deviation-from-mean method.  

The limitation of the previous anomaly researches is obvious that anomalies must 

be inspected in a pre-designated spatial scale, and this scale is usually too large for a 

single temporal signature to describe. Hence, no applicable method to combine the spatial 

and temporal anomaly analysis was introduced in previous sea ice extent anomaly 

researches. Fortunately, in the fifth literature review, Piwowar and LeDrew developed the 

temporal mixture analysis, which can separate the temporal features of the remote 

sensing sea ice image by selected temporal signatures. Although, the original TMA paper 

only introduced the two-endmember and four-endmember unmix analysis, its concept of 

unmixing the spatial distribution of different temporal signatures can be implemented by 

introducing more and carefully selected endmembers. With the improved TMA, the 



42 

 

spatial and temporal characteristics of sea ice extent anomalies can be found, which none 

of the previous sea ice anomaly researches achieved.  

Apart from the variability of Arctic sea ice extent, its relationship with other 

environmental elements is also a big research interest. The interaction between Arctic sea 

ice and atmosphere has gained attention decades ago, and the third and fourth literature 

review indicated severe atmospheric impact to Arctic sea ice variability. These articles 

provide a useful insight in explaining the anomalies. The variability of Arctic sea ice 

reflects the overall ecosystem in the Arctic region, and can be used as an index for 

explaining other environmental phenomena. Moreover, the mechanisms between 

different cyrosphere environmental elements, such as sea ice, atmosphere, ocean, solar 

radiation, haven’t been thoroughly understood. Hence future research could continue on 

this topic, especially in the global scale. In addition, the purpose of studying the past 

Arctic sea ice extent variability history is to construct a better model for forecasting its 

trend and variability in the future.  
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1.6 RESEARCH OBJECTIVE 

a. What are the long-term sea ice extent variability pattern and trend in entire Arctic 
region, as well as different subregion? What is the sea ice extent in recent years 
compared to the 1980s? 

b. What are the significant spatial/temporal Arctic sea ice anomalies in the Arctic region 
from 1979 to 2006? 
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CHAPTER TWO 

METHODOLOGY 

In this chapter, the research methodology is introduced to analyze the general 

variability and trend of Arctic sea ice extent during the past decades. In addition, based 

on studying its variability, the spatial and temporal anomalies of Arctic sea ice extent in 

the time series will be detected and analyzed. The structure of this chapter is as follows. 

First, the data used in this research is introduced as well as the environment situations of 

the study area. Second, the general sea ice variability and trend analysis utilizing the 

Sen’s Slope. Third, the sea ice extent ranking charts are created to reveal years with 

unusual sea ice extent and their potential inner relationships. Last, the Temporal Mixture 

Analysis is applied to further subdivide each subregion to pixels and find sea ice extent 

anomalies within each subregion. 

2.1 DATA DESCRIPTION 

The data set is from the National Snow and Ice Data Center (NSIDC) using 

measurements from the Scanning Multichannel Microwave Radiometer (SMMR) on the 

Nimbus-7 satellite and from three Special Sensor Microwave/Imager (SSM/I) sensors 

(Comiso, J. 1999). The most recent version of sea ice concentration data, version 2, is 

used released in September 2007. The second version of sea ice concentration data has 

tie-points adjusted to be consistent with the AMSR-E Bootstrap algorithm (Comiso, J. 

1999). The time series generated using the AMSR-E Bootstrap algorithm consists of 

SMMR data from November 1978 to August 1987, and SSM/I data from July 1987 to 

2006 (Comiso, J. 1999).  
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The data set coverage includes the northern and southern Polar Regions. In this 

research, only the northern Polar Regions are included. Through SSM/I instrument 

coverage is global, the circular sectors centered over the north pole, 311 km in radius, 

located poleward of 87.2°, are never measured due to orbit inclination. The 50° scan 

pattern provided a swath width of 780 km at the Earth's surface. The spatial resolutions at 

the various frequencies ranged from approximately 27 km at 37 GHz to 148 km at 6.6 

GHz. Same situation with the SMMR instrument which has 611 km in radius located 

poleward of 84.5°.  

The bootstrap sea ice concentration data are provided at a resolution of 25km with 

a temporal coverage from October 26 1978 to December 31 2006 at the time when this 

research starts in 2010. SMMR data were collected every other day. Monthly means are 

generated by averaging all available files for each individual month, excluding pixels of 

missing data (Comiso, J. 1999). Ice concentrations are provided for each day and as 

monthly means. Monthly mean files are generated by averaging all available daily files 

for each individual month, excluding pixels of missing data (Comiso, J. 1999). 

The bootstrap algorithm used in creating the sea ice concentration data uses basic 

radiative transfer equations and takes advantage of unique multichannel distributions of 

sea ice emissivity (Cosmiso and Sullivan, 1986). In order to derive sea ice concentration, 

the bootstrap algorithm only utilizes two microwave channels, but other additional 

channels may be required to mask the open ocean (Comiso, 1992). The bootstrap 

algorithm has several advantages in creating sea ice concentration data, for example, it 

provides the best resolution from the set of channels, provide better accuracies suitable 
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for the Arctic region where the percentage of open water is usually less than 5% in 

winter, it considered the surface temperature variations, the slope of line used to find the 

tie point for consolidated ice is consistently close 1.0 in every winter data set from either 

SMMR or SSM/I (Comiso, 1992).  

However, the uncertainties of the bootstrap algorithm are mainly from the 

changing emissive surfaces. For example, errors are higher in seasonal ice region than in 

the central Arctic because of higher standard deviations of consolidated ice. In addition, 

when the leads open up in winter, the open water exposed to the cold atmosphere will 

quickly freeze to grease ice then metamorphoses to nilas, young ice, and then first year 

ice with snow cover (Comiso, 1992), causing emissivity of the surface change 

considerably (Grenfell and Comiso, 1986). These situations have not been accounted for 

in the sea ice concentration algorithm. Also, in spring and summer when the surface of 

multiyear ice starts to melt, the emissivity of thick ice changes accordingly. Despite all 

adjustments, the error remains substantial and can be larger than 20% due to spatial 

variations in melt and effects of meltponding (Comiso, 1992). Apart from the 

uncertainties in sea ice concentration measurement, validation of satellite ice 

concentration data is difficult because of the limited coverage of field data compared with 

large area captured by satellite sensors.  Data files are stored in the original Goddard 

Space Flight Center flat binary two-byte integer format, and are scaled by a factor of 10 

in a 304*448 dimension (Comiso, J. 1999). A mask image is provided to retrieve 

geographical information for these gridded images. By referring the location in the data 

matrix to the mask image, the coordinates of each pixel can be retrieved.   
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2.2 STUDY AREA DESCRIPTION 

The Arctic Ocean is located on the north end of the earth, surrounded by the 

Europe, Asia, and North America continent (Michael Pidwirny 2006). The Arctic Ocean 

covers area of approximately 15 million km2. The Arctic Ocean is partly covered by sea 

ice throughout the year. In winter, the Arctic Ocean is almost completely covered by sea 

ice.  

 
 

For scale studies, the Arctic region is usually divided into nine sections, which is 

introduced by Parkinson and Cavalieri (2008): the seas of Okhotsk and Japan, the Bering 

Sea, Hudson Bay, Baffin Bay/Labrador Sea, the Gulf of St. Lawrence, the Greenland Sea, 

the Kara and Barents seas, the Arctic Ocean, and the Canadian Archipelago. The 

classification scheme of the subregion was firstly introduced by Parkinson, (1999), which 

is based on previous empirical data of sea ice variability and dynamics research. These 

Figure 2.1 Sea Ice sub-regions (Parkinson and Cavalieri, 2008) 
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sub-regions are considered to have their own and unique temporal variability based on 

previous observations. Also, these sub-regions contain the majority of the sea ice 

coverage in the northern hemisphere and the sea ice-ocean-atmosphere dynamics are 

more similar within a sub-region than other areas based on previous researches. Sea ice 

extents for each year can be examined within each Arctic section. Besides, sea ice extents 

are measured for both winter and summer time for both maximum and minimum sea ice 

extent analysis to find the anomalies, freeze, and melt patterns.  
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2.3 DATA PROCESSING 

 
Figure 2.2 Sea ice concentration image 
 

The remote sensing image raw data downloaded from NSIDC is in a flat binary 

data in a matrix with a 304*448 dimension (Figure 2.2). However these raw data have no 

geographical information, each number in this matrix represents the sea ice concentration 

of a 25*25 km2 area, which is a pixel in the remote sensing image. Fortunately, the pixel 

coordinates can be retrieved from the mask image. Hence the nine sub-regions in Arctic 
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can be identified by strict edge segmenting the columns and rows in the matrix.  

837  887  924 971  971 992 980 975 974 964 980 965 936 972 968 986 

982  987  978 984  988 965 980 972 981 985 992 988 989 983 993 986 

985  984  982 983  982 981 974 990 982 983 978 977 983 987 981 992 

985  979  978 982  981 969 966 972 977 984 973 976 980 970 972 977 

980  984  980 982  977 973 973 969 968 972 980 951 887 877 928 936 

1200 1200 1200 969 1200 951 956 980 980 980 975 982 982 961 937 863 

791  710  706 706  678 . . . . .  

Figure 2.3 Sea ice concentration data matrix 
 

The segmenting process will firstly retrieve the corner coordinates of each 

subregion. After then, these coordinates will be projected to the mask image. From the 

mask image, the row and column number of a certain coordinate or the digital number 

(DN) can be determined. As there is not fuzzy edge process introduced in this research, 

any edge pixels will be divided evenly to its adjacent sub-regions.  

After the monthly sea ice extent data of the entire Arctic Region is divided into 9 

sub-regions, sea ice extents in these sub-regions may be extracted individually on a 

monthly basis. Therefore, monthly sea ice extent data are available for the whole Arctic 

region and these sub-regions as well. Later, the variability of monthly sea ice extents 

from 1979 to 2006 can be displayed chronologically for each subregion and the entire 

Arctic Region.  
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2.4 TREND ESTIMATION USING SEN’S SLOPE 

In order to reveal the long-term sea ice variation trend, Sen’s Slope Estimator is 

introduced for the trend estimation analysis of the residuals between individual monthly 

sea ice extent and 28-year average of the particular month. However, the long term of sea 

ice extent variability pattern has large amounts of uncertainties in determining the most 

suitable statistical model to describe the sea ice variability trend mathematically.  The 

1979-2006 period of sea ice variability, which is of interest in this research, is only part 

of the long-term time series. As the Arctic sea ice is always changing in either increase or 

decrease phase, remote sensing captured sea ice concentration data since 1978 could 

possibly be one of the increase or decrease phase, even both.  

From Figure 1.6, the Arctic sea ice extent trend forms a nonlinear decline which 

shows that sea ice extents before year 2000 are still within the model estimated range, but 

after 2000, sea ice extents start to fell below the minimum confidence level threshold. 

Therefore, theoretically one slope estimation that describes the long-term sea ice 

variability trend is not the most precise and ideal given the small period of satellite 

remotely sensed data. A more suitable method is to divide the sea ice variability into two 

periods, one is the “normal” sea ice trend that coincides with the model estimates, and the 

other one is the intensified melting period. A big problem from doing so is the difficulty 

in defining the breakpoint that separates the two periods. In addition, many related 

articles in Arctic sea ice extent trend analysis computed slopes to give an overall 

impression of the sea ice extent variability in the recent decades. In this research, given 

the small sample size and the research methods from other journal articles, the Sen’s 
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Slope is used to find the slope of the sea ice extent variability. 

 
Figure 2.4 Comparisons of Methods for Estimating Trends (Brauner, 1997) 
 

Apart from Sen’s Slope Estimator, there are a number of other methods to 

estimate and/or quantify the trends of a dataset, their applicability and performances vary 

when applied on different datasets. In Figure 2.4, five trend estimation procedures are 

listed, namely, the graphical methods using visual estimate of trend, linear regression, 

Box-Jenkins Model, Man-Kendall Model, and Sen’s Slope Method. The visual estimate 

method apparently does not meet the requirements in this research because of its non-

quantifiable results. The linear regression method does provide an estimate of slope, 

however, its incapability in handling missing data and may be greatly influenced by 

outliers and cyclic data makes it unsuitable for analyzing the Arctic sea ice extent time 

series data which has considerable amount of outliers and seasonal/oscillation cyclic 

pattern. The Box-Jenkins Model is most suited for analyzing long-term and regularly 

spaced data, which is suitable for estimating the long-term monthly sea ice data. However, 
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because of the small dataset in this research, it is unsuitable to utilize the Box-Jenkins 

Model because it requires large data set (Box and Jenkins, 1976). The Mann-Kendall 

method is not an estimate of a slope, instead it evaluate an existing slope by providing a 

yes/no test (Kendall, 1980). Since in this research, it is essential to provide trend 

estimation and after that a slope estimation validation can be performed. The last one is 

Sen’s Slope method which is most suitable for this research with its virtues in allowing 

missing, making no assumptions on data distribution, and not affected by outliers (Sen, 

1968). The introduction of the Sen’s Slope Estimator is as follows.  

The Sen’s Slope Estimator is a robust linear regression analysis which chooses the 

median slope among all lines through pairs of two-dimensional sample points (Wilcox, 

Rand R. 2001). In this research, the entire dataset will be used as the test sample with 95% 

confidence level. Its efficiency in computing and insensitivity to outliers make it more 

accurate than simple linear regression analysis, which makes it very suitable for this 

research. Also, the Sen’s Slope is widely used in environmental science researches 

because of its nonparametric technique, which is suitable for time series analysis 

compared with parametric techniques. Sen’s Slope is defined by Theil, (1950), which 

takes a set of two dimensional points, measures the median of the slopes determined by 

all pairs of sampled points. Once the slope is determined, a line is drawn through the 

sample points by setting the intercept to be the median (Rousseeuw, Peter J.; Leroy, 

Annick M. 2003). The confidence interval of Sen’s Slope can be determined as the 

interval of the 95% of the slopes of lines determined by pairs of points.  

In non-parametric statistics, any model or interpretation does not depend on the 
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parameters or rely on data, which is generally regarded as a robust analysis. Non-

parametric statistics, unlike parametric statistics, does not rely on any assumptions that 

the sample data are drawn from certain probability distribution, indicating less 

assumptions and parameters compared to parametric statistics (Corder, G.W. & Foreman, 

D.I. 2009). In this research, since the size of the data is small with 28*12 monthly 

deviations, there is no need for a test sample data collection and analysis. 

The Sen’s Slope can be applied in Matlab based on the code developed by Cathy 

Akritas, 2004, with 95% confidence interval to each subregion and the north hemisphere. 

The computation algorithm follows the same concept from Sen and Theil that compute 

slopes for every pair of points and find the medium slope with 95% confidence level.  

2.5 SEA ICE EXTENT RANKING 

In previous sea ice extent variability and anomalies analysis, sea ice extents are 

usually displayed according to their temporal order and try to find and analyze anomalies 

from the wave crests or troughs. A number of journal articles focused on identifying 

anomalies statistically. In paper “Arctic Sea Ice Extent and Anomalies, 1953-1984” by 

Mysak, sea ice extent data in different sub-regions are compared with each other yearly 

and seasonally. In addition, the sea ice extent anomalies are statistically detected by 

comparing individual monthly/yearly data with long-term averages. But this method 

lacks rigid statistical validation of anomalies. However, in some other journal articles 

which anomalies are detected in a more sophisticated method, the long term declining 

nature of Arctic sea ice is not considered. In this research, sea ice extents are ranked 

according to their actual extents from largest to smallest regardless of their temporal 
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order. Sea ice extents of close by years are also more likely to be close to each other in 

the sea ice extent ranking. Therefore, any different year that happened to be among the 

cluster of other continuous years can be identified as anomalies.  

Compared with other types of time series analysis, the sea ice extent ranking 

analysis provides a different view of the sea ice extent variability and anomalies as well 

as observing the sea ice extent change with the North Atlantic Oscillation. By performing 

this ranking analysis, it breaks the temporal autocorrelation pattern in other conventional 

time series and makes anomaly detection easier and more effective, which no longer 

requires complicated statistical validation of anomalies and the ranking analysis won’t be 

affected by the sea ice’s declining nature because anomalies are detected by colors 

regardless of the long-term trend. In addition, the long-term trend of sea ice variability 

would also be easily identified which would otherwise be considered as normal 

fluctuations in conventional time series analysis.  

The data of the Arctic region are ranked using monthly sea ice extent data from 

January 1979 to December 2006. In this sea ice extent ranking, the yearly sea ice extent 

(Jan to Dec) is ranked from largest to smallest according to years. And the colors of the 

bars are used to differentiate the decades to help identify different periods. 

This color differentiation of years uses a transitional color scale to present the 

clustering years. The color transition is from blue to red, and through each year, its color 

slightly changes. Any sea ice extent anomalies can be identified in the case of a different 

color among cluster bars of similar colors. Apart from anomalies detection, the clustering 

of years in the ranking chart can also provide a view of the cold/warm conditions in the 
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multiyear scale. And through these climate conditions in different sub-regions, the 

relationship between sea ice extent variation and North Atlantic Oscillation can be 

explored. In addition, the sea ice extent ranking in different sub-regions provides an 

insight view of the similarities and differences of climate in adjacent areas.  

2.6 APPLICATION OF TEMPORAL MIXTURE ANALYSIS FOR ANOMALY ANALYSIS 

Temporal Mixture Analysis, developed by Piwowar and LeDrew, (1998) is 

utilized to create the fractional images, and it’s the only technique available nowadays to 

reveal the spatial distribution of temporal features across the different sub-. The TMA can 

unmix each pixel into a composition of several endmembers as the temporal 

characteristics of a particular subregion. Usually, an endmember is considered to have a 

large number of high concentration pixels in the subregion that it’s been selected from. 

However, as TMA strictly performs the unmixing process based on endmembers, which 

can reveal pixels that have a high fraction of temporal characteristics of endmembers 

selected in other areas instead of its own subregion, therefore, TMA can help to analyze 

the temporal variation of sea ice extent within a subregion, which is very useful in some 

large sub-regions such as the Greenland Sea and Baffin Bay. Moreover, the clustering of 

endmembers can be not only found in its selection subregion, it can also be found in other 

sub-regions. This phenomenon is greatly useful in identifying the North Atlantic 

Oscillation and climate similarities among different Arctic regions. After the unmixing 

process, an error image is created to help identify the temporal anomalies within sub-

regions, which might not be found in the sea ice extent ranking analysis. The scales of the 

sea ice extent variability and ranking analysis are the sub-regions while the TMA narrows 



57 

 

the scale of analysis to each pixel, which can reveal the temporal variability and 

anomalies within each subregion.  

The temporal mixture analysis (TMA) is derived from the Spectral Mixture 

Analysis (SMA). Spectral mixture analysis is a procedure that attempts to extract the 

fractional radiance components from the pixels in an image. Spectral mixture analysis has 

been used extensively for the analysis of hyperspectral data from imaging spectrometers 

where conventional image analysis techniques have been shown to be inadequate 

(Boardman, 1989; Adams et al., 1993; Harsanyi et al., 1994).  

The dataset preparation for TMA is different than SMA. In SMA, a remote 

sensing image with multiple bands would facilitate the endmember unmixing process, 

while in TMA, the monthly sea ice extent data from 1979-2006 will be averaged by 

month to create a 12-month summary of mean sea ice concentrations.  

Similar to spectral mixture analysis, TMA also has endmembers, which can be 

used to identify the fractional contributions of each pixel. In TMA, endmembers are used 

to represent the time series or seasonal variability of sea ice concentration.  

Endmembers, as is the case with spectral mixture analysis, represent the most 

extreme examples. In time series analysis, the “purest” spectra can be thought of having 

one of the three fundamental temporal characteristics: ice absent all year long; sea ice 

varies through the season; perennially present sea ice. The pure non-seasonal sea ice is 

defined as 100% sea ice concentration all year round. Pure absent sea ice is defined as 0% 

ice concentration all year. Pure seasonal ice is ideally defined as 100% ice concentration 

in winter and 0% ice concentration in summer.  
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In this research, endmembers will be selected within each Arctic subregion 

through the scatterplot between March and September sea ice concentrations. In Figure 

2.4(a), if sea ice concentration in both March and September are 0%, it means open water. 

However, if in both March and September are 100%, it means non-seasonal sea ice. An 

endmember will be selected in this scatterplot in the lower right corner, which has 0% sea 

ice concentration in March, but has 100% in September. 

 
Figure 2.5 (a) TMA endmember selection using scatterplot of sea ice concentration in 
September vs. March. (b) the temporal characteristics of a endmember presents (Piwowar, 
1997) 

In each subregion, according to the sea ice concentration scatter plot, a seasonal 

sea ice endmember will be selected for the unmixing process. And the sea ice absent and 
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non-seasonal endmembers will not be selected from each subregion, but manually set to 

default that 0% sea ice concentration as absent sea ice endmembers, and 100% sea ice 

concentration as non-seasonal sea ice endmembers.  

 The unmixing model that will be used to determine the temporal feature 

fractions follows the same algorithm with spectral mixture analysis. For each pixel in the 

image a linear mixing model is defined as (after Adams et al., 1993): 

DN = (EM1 * F1) + (EM2 * F2) + ... +(EMn * Fn) + e 

Where the DN is the pixel number, EMi is the spectrum of the ith endmember of a 

total of n endmembers, Fi is the fractional contribution of the ith endmember in this 

particular pixel and e is the residuals. Given the pixel number and endmembers, the 

fractional contribution of each endmember can be calculated by reverting this equation.  

Therefore, the fractional contribution of a certain endmember can be represented 

as a fraction image. In temporal mixture analysis, it assumes that each pixel is a mixture 

of several time series; hence each pixel can be represented by several endmembers. For 

example in spectral mixture analysis, a pixel in the Arctic Ocean can be spatially 

unmixed as 20% of sea ice endmember selected in the Baffin Bay and 80% of sea ice 

endmember selected in the Greenland Sea. While in temporal mixture analysis, this pixel 

can be unmixed as 20% of seasonal sea ice and 80% of non-seasonal sea ice. By 

revealing the temporal component fraction of each pixel, the sea ice variability attribute 

of each pixel can be examined. For example, a pixel in the Canadian Archipelago can be 

unmixed in temporal mixture analysis to be 70% seasonal sea ice and 30% and non-

seasonal ice.  
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In addition, the temporal mixture analysis not only can reveal the seasonal versus 

non-seasonal sea ice, but it also can reveal the seasonal pattern in different sub-regions. 

According to the North Atlantic Oscillation, sea ice extent growth generally behaves in a 

shifting pattern between the eastern and western hemisphere. Hence, the sea ice 

variability can be quite different between these two regions. In other words, each 

subregion may have its own temporal variability pattern. For example, the sea ice in the 

Bering Sea usually has a complete melt in summer and will freeze again in winter; while 

the sea ice in the Hudson Bay does not complete melt in summer, but has approximately 

100000 km2 ice left. Temporal mixture analysis can be utilized to unmix a pixel to show 

the temporal variability pattern for a number of different sub-regions, which is of great 

value to reveal the sea ice interactions among these sub-regions. 
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CHAPTER THREE 

RESULTS 

The results of this research will be presented in the following sections: sea ice 

extent variability charts, sea ice extent ranking, and the temporal mixture analysis.  

3.1 GENERAL ARCTIC AND REGIONAL SEA ICE VARIABILITY  

In the general arctic and regional sea ice variability analysis, the sea ice extent 

variability from 1978 to 2006 will be presented in the graphs below generated from the 

monthly sea ice concentration data retrieved from NSIDC. In these graphs, for example, 

monthly average chart in Figure 3.1, the seasonal variation of sea ice extent can be 

identified clearly, but the long-term sea ice extent variability trend wasn’t identical. In 

addition, the averages of each individual month are calculated and created a general 

seasonal sea ice variation chart. Therefore, the seasonal sea ice variation chart will 

provide an overview of the sea ice freeze and melt pattern of the particular region. 

Moreover, a Sen’s Slope Estimator will be applied to the monthly deviation data. 

The Sen’s Slope Estimator is used to analyze the subtraction between individual monthly 

sea ice data and the average of this particular month from 1979 to 2006. From the 

monthly deviation data and the trend estimation, the long-term sea ice extent variation 

trend can be identified. Besides, sea ice anomalies can also be seen from the regression 

line.  
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Figure 3.1 Monthly Sea Ice Extent Graph of the Whole Arctic, and Monthly Deviation 
Trend Estimation 
 

From 1979 to 2006, the Arctic sea ice extent has exhibited seasonal changes 

(Figure 3.1). Traditional seasonal sea ice usually has maximum coverage in March and 

melts up to its minimum in September. In the monthly average sea ice extent figure (the 

upper graph of Figure 3.1) of the whole Arctic from 1979 to 2006, it does not show a 

clear sign of sea ice extent trend. The entire Arctic sea ice extent usually has a maximum 

of 15 million km2 while in summer; the entire Arctic sea ice extent decreases to 6 million 
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km squared. But in the sea in the monthly deviations chart, the 30-year monthly sea ice 

extent average is calculated and compared with each monthly data. In this chart, linear 

trend estimation indicates a trend of sea ice extent decrease despite of several anomalies. 

From 1979 to 1995, the sea ice extent monthly deviations are above the 30-year average. 

Especially after 2000, the majority of monthly deviations are below the 30-year average. 

The monthly deviation decline rate is -45000±2000 km2 per year. But in the long-term 

trend analysis, this decline rate is not clear enough to conclude that sea ice extent 

decreased from 1979 to 2006. 
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Figure 3.2 Monthly Sea Ice Extent Graph of the Seas of Okhotsk and Japan, and Monthly 
Deviation Trend Estimation 
 

Sea ice extent variability in the Seas of Okhotsk and Japan (Figure 3.2) freezes up 

to 1.6 million km2 in winter and usually completely melts in summer with a minimum of 

0 sea ice coverage. And the monthly deviation shows a decline trend of -3800 ± 800 km2 

per year. The slope of this subregion is very close to zero, but in the 95% confidence 

level, it still indicates a positive decline trend. 
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Figure 3.3 Monthly Sea Ice Extent Graph of the Bering Sea, and Monthly Deviation 
Trend Estimation 
 

 Sea ice in the Bering Sea (Figure 3.3) is very similar to that in the Seas of 

Okhotsk and Japan, which has a maximum of 0.9 million km2 in winter and completely 

melts in summer. And the majority of monthly deviations are very close to the 30-year 

average. Both sub-regions are typical seasonal sea ice region. However, in the Sen’s 

Estimator, it is not clear that sea ice extent in this subregion either decreased or increased 

in the study period. The slope indicates a -400 ± 600 km2 trend that the upper boundary of 

the 95% confidence level implies an increase trend. Therefore, the general trend of sea 
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ice extent variability in this subregion remains uncertain. 

 
Figure 3.4 Monthly Sea Ice Extent Graph of the Hudson Bay, and Monthly Deviation 
Trend Estimation 
 

Sea ice in the Hudson Bay (Figure 3.4) is very different from the above two sub-

regions, which has a very steady winter freeze ice extent of approximately 1.23 million 

km2 from January to early May, and in summer, sea ice melt to approximately 0.1 

million km2. It can be concluded that the entire region freezes up in winter and only part 

melt in summer. The monthly deviations have most of above average deviation values 
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before 1995, and after 1998, sea ice extent deviations are more likely to be below the 28 

year average.  

 
Figure 3.5 Monthly Sea Ice Extent Graph of the Baffin Bay/Labrador Sea, and Monthly 
Deviation Trend Estimation 
 

Sea ice in the Baffin Bay and Labrador Sea (Figure 3.5) shows a seasonal pattern 

which freezes up to 1.5 million km2 in winter and melt to 0.1 million km2 in summer. 

Two top winter sea ice extents happened in 1983 and 1993 and summer sea ice extent is 

very close. Monthly deviation shows a clear decline trend of -8000±800 km2 per year. 



68 

 

 
Figure 3.6 Monthly Sea Ice Extent Graph of the Gulf of St. Lawrence, and Monthly 
Deviation Trend Estimation 
 

Sea ice in the Gulf of St. Lawrence (Figure 3.6) usually completely melts in late 

June, July, August, September, and early October, while winter freeze up extent varies a 

lot from 0.2 to 0.3 million km2 compared to summer extent variation. The monthly 

deviations are very close to 30 year average. 



69 

 

 
Figure 3.7 Monthly Sea Ice Extent Graph of the Greenland Sea, and Monthly Deviation 
Trend Estimation 
 

The Greenland Sea ice (Figure 3.7) also shows a strong seasonal pattern, but 

unlike the other regions whose summer and winter sea ice extents are more likely to be 

close with its adjacent years, while sea ice extent in Greenland Sea varies a lot each year. 

The monthly deviation trend is -7000 ±600 km2 per year, and deviations that are above 

the 30 year average are clustered before 1995; after 2000, deviations are below average. 
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Figure 3.8 Monthly Sea Ice Extent Graph of the Kara and Barents Seas, and Monthly 
Deviation Trend Estimation 
 

The sea ice in the Kara and Barents Seas (Figure 3.8) is similar to that in the 

Greenland Sea with an approximately 1.8 million km2 in winter and 0.5 million km2 in 

summer. In winter, the sea ice extent gradually increases from November to April and 

reaches the top in April. The monthly deviation trend is -10600±1100 km2 per year. 
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Figure 3.9 Monthly Sea Ice Extent Graph of the Canadian Archipelago, and Monthly 
Deviation Trend Estimation 
 

Sea ice variability in the Canadian Archipelago (Figure 3.9) is similar to that in 

the Arctic Ocean which melts from late May to October. In winter, the entire region 

completely freezes up. And the least summer sea ice extent happened in 1998. And the 

monthly deviation trend is steady of -500±1100 km2 per year.   
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Figure 3.10 Monthly Sea Ice Extent Graph of the Laptev Sea, and Monthly Deviation 
Trend Estimation 
 

Sea ice in the Laptev Sea (Figure 3.10) shows a string seasonal pattern, which is 

very similar with sea ice in the Baffin Bay. Sea ice in the Laptev Sea freezes up to 1.5 

million km2 in winter and melt to 0.1 million km2 in summer. Two top winter sea ice 

extents happened in 1983 and 1992 and summer sea ice extent is very close. The monthly 

deviation shows a clear decline trend of -8200±700 km2 per year. The decline rate is also 

very similar to that of Baffin Bay. 
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Figure 3.11 Monthly Sea Ice Extent Graph of the Arctic Ocean, and Monthly Deviation 
Trend Estimation 
 

The Arctic Ocean contains majority of non-seasonal sea ice (Figure 3.11). From 

December to June, sea ice complete freezes and starts to melt in July and freezes again in 

late November. The monthly deviation shows a clear decline trend of -9900±1300 km2 

per year. The least sea ice extent happened in 1998 and 2005. In addition, in the recent 5 

years, the Arctic sea ice extents are far below the average implying global warming 

resulting Arctic sea ice decrease. Although non-seasonal sea ice is found in the central 
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Arctic Basin, it is not always identifiable in passive microwave imagery because summer 

melt water flooding the surface of the ice pack is frequently mistaken as ice with reduced 

concentration (Kwok, 2000; Meier, 2005). 

 
Figure 3.12 A chart of monthly sea ice extent in the Arctic region from 1979 to 2006, in 
10000 km2 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

1979 1554 1631 1645 1546 1406 1259 1047 815 720 939 1116 1354

1980 1496 1598 1613 1549 1404 1231 1039 804 785 946 1169 1372

1981 1503 1565 1561 1512 1390 1257 1062 786 725 919 1117 1374

1982 1526 1606 1615 1557 1417 1269 1075 826 745 998 1191 1383

1983 1510 1602 1610 1530 1354 1235 1091 836 752 964 1164 1344

1984 1461 1532 1562 1515 1368 1220 1015 787 717 884 1129 1318

1985 1486 1567 1606 1534 1423 1240 1009 746 693 888 1139 1319

1986 1502 1589 1608 1515 1352 1210 1047 801 754 989 1178 1340

1987 1520 1611 1595 1533 1381 1257 998 769 748 929 1152 1355

1988 1515 1561 1613 1521 1369 1202 1004 790 749 947 1169 1378

1989 1512 1556 1552 1444 1298 1231 1038 792 704 952 1150 1347

1990 1495 1556 1588 1468 1330 1168 962 682 624 935 1131 1327

1991 1446 1526 1550 1493 1351 1223 968 740 655 916 1112 1317

1992 1472 1550 1547 1470 1325 1213 1061 786 755 960 1187 1346

1993 1508 1573 1588 1518 1354 1199 966 729 650 918 1173 1352

1994 1482 1561 1558 1495 1373 1210 1022 761 718 948 1130 1353

1995 1462 1524 1532 1459 1304 1155 915 668 613 894 1097 1298

1996 1421 1517 1513 1422 1306 1210 1036 817 788 939 1056 1314

1997 1447 1552 1558 1459 1332 1191 959 730 674 876 1091 1329

1998 1481 1577 1566 1489 1380 1185 962 749 656 885 1075 1326

1999 1447 1537 1540 1513 1386 1210 959 738 624 910 1099 1288

2000 1441 1518 1527 1463 1318 1171 975 721 632 892 1054 1281

2001 1431 1527 1561 1486 1372 1169 922 747 675 859 1092 1284

2002 1445 1536 1544 1437 1312 1169 949 653 596 881 1078 1282

2003 1446 1525 1549 1457 1300 1177 946 685 615 865 1029 1282

2004 1403 1493 1505 1411 1258 1151 960 683 605 848 1065 1272

2005 1366 1436 1474 1407 1299 1129 893 630 557 845 1047 1247

2006 1360 1442 1443 1397 1262 1106 867 652 592 833 984 1227
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Figure 3.13 Seasonal Sea Ice Extent Average Line (in 106 km2) 
 

 From the seasonal sea ice extent averaged line graph (Figure 3.13), it can be seen 

that sea ice extent seasonal average lines for years after 2000 are significantly below the 

lines of 1979-1990 average and 1979-2000 average all year round. The 1979-1990 sea ice 

extent average line gives an overall idea of the seasonal sea ice extent variability in a 

period which is widely considered with no intensified sea ice extent decline. The 1979-

2000 average line gives an idea of the remotely sensed seasonal sea ice extent variability 

in the last century.  

By visual inspection, the sea ice extent difference for years after 2000 and 1979-

1990&1979-2000 was minimal in late April and May, which the melting process begins. 

And in September, the difference reaches maximum throughout the year, which implies 

intensified melting process in summer. In winter time, the difference decreases gradually 

and reaches minimum in May. However, the 1979-1990 average line is not far away from 

the 1979-2000 average line with a slightly visible difference. From the 1979-1990 
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average line and the 1979-2000 average line, it can be concluded that because the sea ice 

extent average from 1990-2000 is smaller than the 1979-1990 sea ice extent average, 

therefore the 1979-2000 average line is lower than the 1979-1990 average line.  

From the Arctic sea ice extent variability graph and the trend estimation of the 

whole Arctic region and its sub-regions, it can be concluded that although there’re 

variations through interannual, regional, and seasonal reasons, the 1979-2006 Arctic sea 

ice record is overall in a downward trend. According to the trend estimation, the Arctic 

sea ice shows a downward trend in all the sub-regions. Except the Canadian Archipelago, 

Bering Sea, and the Gulf of St. Lawrence, the downward trend is very small in the trend 

estimation, which is not very significant; the downward trend was significant in all other 

sub-regions. In particular, the trend estimation of the whole Arctic region indicates a 

strong sea ice extent decrease of 45100±2000 km2 per year. Also, from the Arctic average 

lines chart, it can be concluded that Arctic sea ice extent average was highest in year 

1979-1990, and become less in year 1990-2000, and even lesser after year 2000.  

The reasons for the Arctic sea ice decrease has been studied for decades, and 

according to Serreze et al. (2000), this decrease has been caused in part by and has 

impacted the widespread Arctic warming. As warmer temperature increases melt and 

reduce freezing, less ice cover allows more solar radiation absorbed in the Arctic climate 

system (Johannessen et al., 2004). The reduced sea ice coverage would increase more 

open water which reflects less radiation and allows more radiation to be absorbed into the 

ocean which in turn increases the temperature and accelerates the sea ice melting process. 
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Numerous studies have focused on the interactions between the Arctic sea ice 

extent variability and the large scale ice/ocean/atmosphere system (Visbeck, et al., 2003). 

It is almost certain that the Arctic sea ice cover is impacted by various oscillation patterns 

in the North Hemisphere, for example, the North Atlantic Oscillation (NAO), the Arctic 

Oscillation (AO), and the El Nino/Southern Oscillation (ENSO) (Visbeck, et al., 2003). 

But the actual mechanism of how these oscillation patterns affect the Arctic sea ice extent 

remains under research. By understanding the real mechanism of the interaction between 

Arctic sea ice and oscillation patterns, it would provide researchers with opportunities for 

analyzing various arctic phenomena in the large scale. In addition, researches of the long 

term climate trend in not only the northern hemisphere, but also the entire earth would 

benefit a lot from the discovery of interaction mechanism.   
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3.2 SEA ICE EXTENT RANKING ANALYSIS 

The Arctic sea ice extent will be ranked from the largest to the smallest yearly sea 

ice extent in the whole Arctic region and the nine sub-regions as well to find the years 

with sea ice extent anomalies and the long term variability trend. 

 
Figure 3.14 Color differentiation chart of the sea ice extent ranking 
 

This chart (Figure 3.14) shows how the color varies by sequential year. This color 

scale gradually changes from visually cold color (1979 to 1983) to visually warm color 

(2001 to 2006). In the sea ice extent ranking chart, the color clustering can be used to 

visually highlight the clustering of adjacent years in sea ice extent ranking. This 

technique has been used for similar illustrations of temperature by WMO (World 

Meteorological Organization, 2011).  
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Figure 3.15 Sea Ice Extent Ranking Chart of whole Arctic region 
 

 
Figure 3.16 Sea Ice Extent Ranking Chart of the Arctic Ocean 
 

 
Figure 3.17 Sea Ice Extent Ranking Chart of the Seas of Okhotsk and Japan 
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Figure 3.18 Sea Ice Extent Ranking Chart of the Bering Sea 
 

 
Figure 3.19 Sea Ice Extent Ranking Chart of the Hudson Bay 
 

 
Figure 3.20 Sea Ice Extent Ranking Chart of the Gulf of St. Lawrence 
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Figure 3.21 Sea Ice Extent Ranking Chart of the Greenland Sea 
 

 
Figure 3.22 Sea Ice Extent Ranking Chart of the Kara and Barents Seas 
 

 
Figure 3.23 Sea Ice Extent Ranking Chart of the Baffin Bay 
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Figure 3.24 Sea Ice Extent Ranking Chart of the Canadian Archipelago 
 

In section 3.1, analyzing the general trend of the Arctic sea ice extent variability, 

it can be concluded that in majority of the Arctic sub-regions, sea ice extent is decreasing 

in the long term. From the sea ice extent ranking chart of the whole Arctic region, it 

reaches the similar conclusion with the Arctic sea ice extent variability and trend 

estimation. There is a downward trend in the sea ice extent variability. However, the sea 

ice extent ranking chart provides more and detailed information of the sea ice extent 

variability than the general trend. The sequential color scheme of the ranking chart 

provides the most intuitive method for analyzers to identify the clustering of years with 

similar colors and sea ice extents. Also, the anomalies can be easily identified as a 

different color bar among a cluster of bars with similar color.  

According to the sea ice extent ranking chart of the whole Arctic region, in the 

late 1970s and early 1980s, sea ice extent is high, while after 1998, sea ice extent starts to 

decrease dramatically, especially the last five years, from 2002 to 2006. From this chart, 

sea ice anomalies can be easily found. For example, 1992 and 1995 are two significant 

anomalies which 1992 ranked fourth in sea ice extent in this nearly 30 year sequence, 
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while 1995 is ranked between 2000 and 2002 as the last but five sea ice extent ranking. 

These anomalies, which do not fall within their adjacent years, can be utilized to study 

the Arctic variability and trends. According to this chart, it can be generally concluded 

that over the past 30 years, Arctic sea ice extent is decreasing.  

Similar sea ice extent ranking charts are created for all the sub-regions. The 

anomalies and sea ice variability trends can be identified through these charts. For 

example, in the chart for the Seas of Okhotsk and Japan, 2001 ranked second largest sea 

ice extent which indicates an incredibly cold year, while 1989 is the least sea ice extent 

year indicating a warm year in this region. In addition, the clustering of years indicates 

these years share very similar sea ice variability. For example, sea ice extent in the Baffin 

Bay and Labrador Sea has an obvious clustering between 2002 and 2006 as the least sea 

ice extent.  

 
Figure 3.25 Anomaly years from the sea ice extent ranking charts 
 

In Figure 3.25, years with unusual sea ice extents are selected based on visual 

color inspection. In addition, based on the sea ice variability and trend analysis, sea ice 

extent in the Arctic scale is decreasing over the last 30 years; therefore an assumption is 

Arctic region Anomaly Years with large extent Anomaly Years with small extent

Whole Arctic 1992 1995

Seas of Okhotsk and Japan 2001, 2000 1991, 1989, 1984, 1990

Bering Sea 1999, 2000, 2006 1996, 1989, 1979, 1982

Hudson Bay 1992, 1989 1998, 1995

Baffin Bay/Labrador Sea 1992, 1990, 1991 1981

Gulf of St. Lawrence 1994 1981, 1983

Greenland Sea 1988, 1989, 1997 1991, 1984

Kara and Barents Seas 1998, 1999, 2003 1995, 1984

Arctic Ocean 1996, 1994 1990, 1995, 1993

Canadian Archipelago 1992, 1997, 2002, 2004 1998, 1981, 1985, 1988
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made that sea ice extent of years after 1995 is more likely to be smaller than that of years 

before 1990 in the Arctic sub-regions except the subpolar. And this assumption has got 

some evidences that sea ice extent is decreasing in majority of the Arctic sub-regions, and 

in the sea ice extent ranking chart, sea ice extent bars for years after 1995 are more likely 

to be in the lower rankings. Therefore, in the anomaly year selection process, years after 

1998 with small sea ice extent will not be counted as anomalies. On the other hand, years 

before 1985 with large sea ice extent will also not be counted as anomalies.  

The advantages of performing this sea ice extent ranking in the whole Arctic and 

its sub-regions are several. The most important advantage of doing this analysis is that it 

gives a straightforward visualization of sea ice extent anomalies and its overall variability 

through time. The gradual color scheme allows easy identification of years with unusual 

sea ice extent, i.e., very different from its adjacent years. Also, given the overall trend of 

sea ice extent variability from the previous trend estimation, the sea ice extent ranking 

should follow a similar downward trend. However, the ranking results of some sub-

regions did not show a clear sign of a downward trend. In some sub-regions, for example, 

the sea ice extent ranking charts of the Canadian Archipelago, the Bering Sea, and the 

Seas of Okhotsk and Japan could not give its viewers a first impression that sea ice extent 

in these areas are under a downward trend. Therefore, the sea ice extent ranking chart of 

these sub-regions provides a different perspective than the trend estimation, which in the 

trend estimation, the monthly sea ice extent deviations, especially the extreme ones, are 

sometimes not visually identical to viewers.  

The second advantage is that in the sea ice extent variability and slope estimation 
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analysis, through the outliers or anomalies can be detected using various kinds of 

statistical approaches, the small size of sample set in this research limited the 

performance and credibility of statistical analysis. But in the sea ice extent ranking 

analysis, any alien color bars that happened to be among a cluster of different color bars 

can be classified as anomalies. The easiness and effectiveness in anomaly analysis 

constitutes the second advantage.  

The third advantage is that the sea ice extent ranking charts can be used for future 

research of studying the Arctic sea ice interaction with the North Atlantic Oscillation. 

Assuming Arctic sea ice extent variability is impacted by NAO, the growth and retreat of 

sea ice extent would sync with NAO. For example, the Bering Sea and Greenland Sea are 

in the opposite position of the Arctic region. In Bering Sea, year 1999 ranked first in sea 

ice extent and in Greenland Sea, year 1999 ranked last but five. In addition, year 1981 

ranked first in sea ice extent in Greenland Sea while in the Bering Sea, year 1981 ranked 

in the middle. Same situation occurs in 1991, 1982, and 1979. In addition to the Bering 

Sea and Greenland Sea, sea ice extents in the Canadian Archipelago and the Kara and 

Barents Seas indicate the same sea ice oscillation pattern. These coincidences can be used 

as clues for further studies of the mechanism of NAO impact on Arctic sea ice.   
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3.3 SEA ICE EXTENT RANKING ANOMALIES WITH NORTH ATLANTIC OSCILLATION  

 
Figure 3.26 North Atlantic Oscillation Index Table (Marsupilami, 2010) 
 

The North Atlantic Oscillation is a climatic phenomenon which refers to the 

fluctuations in the difference of atmospheric pressure at sea level between the Icelandic 

low and the Azores high, which is an east-west oscillation motions (R. Seager, Y. 

Kushnir, J. Nakamura, M. Ting, and N. Naik , 2010).  

 A high index year usually leads to increased westerlies, cool summers and 

mild wet winters in Central Europe and its Atlantic coast. On the other hand, if the index 

is low, westerlies are suppressed which leads to cold winters and the storms then track 

southerly toward the Mediterranean Sea (Hurrell et al., 2003). During the winter, when 

the index is high, the Icelandic low draws a stronger south-westerly circulation over the 

eastern half of the North American continent which prevents Arctic air from plunging 
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southward. In combination with the El Niño, this effect can produce significantly warmer 

winters over the northeastern United States and southeastern Canada (Hurrell et al., 2003). 

Conversely, when the NAO index is low, the eastern seaboard and southeastern United 

States can incur winter cold outbreaks (R. Seager et al., 2011).  

The North Atlantic Oscillation Index from 1978 to 2006 (Figure 3.26) is above 

zero for the majority of years except 1979, 1985, 1987, 1996, 1997, 2001, 2004, 2006. In 

1991 and 1992, the NAO indexes shares the same situations with the AO indexes, which 

are the top two highest indexes in a temporal span from 1860 to 2009.  

Many of the very identical anomalies in the sea ice extent ranking charts can find 

their corresponding index peaks in the NAO index chart or the AO index chart. For 

example, sea ice extent of 1998 in the Kara and Barents Sea ranked 3rd largest from 1978 

to 2006, surrounded by 1982, 1979, and 1981. And in the NAO index chart, there is a 

significant low index (lowest in the last 50 years) in the same period. In addition, sea ice 

extent of 1992 in the Hudson Bay ranked first followed by that of 1983 and 1986, while 

sea ice extent of 1993 and 1991 are in the middle ranking, which indicating that year 

1992 in the Hudson Bay might be an unusual cold winter and/or cool summer. In the 

meantime, NAO index of 1992 is the highest in all the data available (from 1860 to 2009). 

Not only did these associations be found between sea ice extent anomalies and NAO 

indexes, but also with the AO indexes. The sea ice extent from 1989 to 1994 in the Gulf 

of St. Lawrence ranked in the first six places in the nearly 30 year sea ice extent ranking. 

While according to sea ice extent ranking in other sub-regions and the entire Arctic, it can 

be generally considered that in the early 1980s, sea ice extents kept a high level with a 
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considerable amount of high ranks. Since the Gulf of St. Lawrence and the Seas of 

Okhotsk and Japan are the most distant sub-regions away from the Arctic center, it can be 

implied that these sub-regions have a higher possibility of getting influenced by the 

Arctic Oscillation with increased amount of Arctic frigid air entering the middle latitude 

region. By the Arctic Oscillation Index chart, from 1989 to 1997 the indices formed a 

cluster of particular high peak over the past 100 years from 1900 to 2011.  
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3.4 TEMPORAL MIXTURE ANALYSIS 

The Temporal Mixture Analysis developed by Piwowar and LeDrew, 1998 is 

utilized to create the fractional images to reveal the spatial distribution of temporal 

features of different sub-regions in this research. 

3.4.1 Endmember selection and description of its seasonal variability 

Endmembers are selected in each of the 9 sub-regions by finding the most 

“seasonal” pixel in the scatterplot approach by displaying sea ice concentration in March 

versus September.  

The endmember selected from the Seas of Okhotsk and Japan behaves as a 

seasonal signal which has maximum sea ice coverage in late February and March to ice 

free in August. Any other months are in transition for freeze or melt. The maximum ice 

concentration in this region is about 80%. 

The endmember selected from the Bering Sea is similar to the endmember of the 

Seas of Okhotsk and Japan but has a longer ice free period, and transition period.  

The endmember selected from Hudson Bay represents a typical seasonal signal, 

where sea ice covers the entire region from December to May and almost melt up from 

July to early November.  

The endmember selected from Baffin Bay and Labrador Sea behaves like 

endmember of Bering Sea with a much longer transition period. The maximum sea ice 

coverage usually happens in March with 50-60% concentration. 

The endmember selected from the Gulf of St Lawrence shares the same 
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characteristics of that from Hudson Bay. Sea ice in the Gulf of St Lawrence usually 

reaches maximum concentration around 75% percent in February and March and 

completely melts up between May to December.  

The endmember selected from the Greenland Sea is another typical seasonal 

pattern which reaches maximum sea ice extent in March with an ice concentration of 

80% and starts to melt in April. In summer, sea ice concentration has a minimum to 10%. 

Usually in this region, sea ice extent kept varying every month with a long transition 

period.  

The endmember selected from the Kara and Barents Seas is similar to the 

endmember of the Greenland Sea.  

The endmember selected from the Arctic Ocean represents the non-seasonal 

pattern. Only late June to late October has little ice melt, and other months have 100% 

sea ice concentration. In summer, the minimum sea ice concentration is 70%.  

The endmember selected from the Canadian Archipelago is very similar to the 

endmember of the Arctic Ocean. But this region has one more melt month and the 

minimum summer sea ice concentration is 50%.  

3.4.2 Fractional images of the Temporal Mixture Analysis 

After the 9 endmembers are selected from each region, the fractional image is 

created by unmixing each pixel. After the fractional images are created, the endmember 

fractions of each pixel can be used to see the spatial distribution of temporal features. 

Each endmember represents a certain temporal signature. In addition, because the 
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endmembers are selected in each subregion, pixels that are unmixed can be revealed to 

have temporal signatures similar to these of other sub-regions. 

From the first image (Figure 3.27), it can be seen that this endmember selected in 

Hudson Bay represents a classic seasonal signal. This endmember describes a temporal 

characteristic of total ice cover from December to May and completely ice free from July 

to November. The majority of Hudson Bay is dominated sea ice that shares the temporal 

characteristics of this endmember. However, the northern part of Hudson Bay does notfit 

with this endmember very well with less than 30% segmentation. Not only does this 

endmember show positive observations in Hudson Bay, but also it can be found in the sea 

shore line along the Davis Strait and in the Chukchi Sea. This indicates some temporal 

similarity among these regions. 



92 

 

 
Figure 3.27 Fraction Image of Endmember 1 
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Figure 3.28 Fraction Image of Endmember 2 
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The second image (Figure 3.28) shows the endmember fraction selected in the 

Gulf of St. Lawrence. This endmember describes temporal characteristics of short ice 

cover duration and never make it to full ice cover in this region. Since the Gulf of St. 

Lawrence is not part of the Arctic region with lower latitude, the sea ice extent and 

concentration is much smaller compared to other regions. In this region, the maximum 

sea ice concentration is about 75% in February and March and become completely ice 

free from May to December. This temporal pattern describes the majority of area in the 

Gulf of St. Lawrence indicating high accuracy and less error in both raw data and 

endmember selection process. Interestingly, thousands of miles away in the opposite side 

of the Arctic region, the Seas of Okhotsk has a considerable amount of positive 

observations with approximately 70% of sea ice in that region. These positive 

observations in the Seas of Okhotsk formed a band started from the northeast then goes 

southwest until reaches the seashore. However, in the northwest corner of the Seas of 

Okhotsk, it’s completely dark indicating no temporal fitting with this endmember at all. 
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Figure 3.29 Fraction Image of Endmember 3  
 

 The third image (Figure 3.29) describes the fraction distribution in the Laptev 

Sea which is in the edge of the Arctic Basin with full sea ice coverage from October to 

May. In summer, sea ice concentration drops to almost zero in September. This 

endmember does not find any other positive observations outside of the Laptev Sea. 
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Figure 3.30 Fraction Image of Endmember 4 
 

 The fourth image (Figure 3.30) shows the endmember fraction selected in 

Kara and Barents Seas. This endmember shares similar temporal characteristics with the 

third endmember that is selected in the Laptev Sea. But this endmember has a one-month 
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shorter summer period. This endmember gives positive observations in the middle of 

Baffin Bay. In addition, it can also be found in the north part of the Kara and Barents 

Seas. 

 
Figure 3.31 Fraction Image of Endmember 5 
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The fifth image (Figure 3.31) shows the endmember fraction selected in the 

Bering Sea. The temporal characteristics of this endmember are also a classic seasonal 

one. Sea ice coverage in this region is completely free from July to early November, than 

rapidly freeze to approximately 90% from late November to early December, then 

gradually freeze to full coverage until March, then slowly melt to 90% concentration 

from April to May, and rapidly melt to ice free in June. The majority of positive 

observations can be found in the northern part of Bering Sea. However, unlike other 

endmembers, this endmember has positive observations in many other regions with 70% 

to 90% confidence, such as the Kara and Barents Seas, Greenland Sea, Canadian 

Archipelago, and Baffin Bay. These positive observations are only found in smaller area 

or spots instead of a continuous large area. 

The sixth image (Figure 3.32) shows the endmember fraction selected in the 

Greenland Sea. This endmember describes the temporal characteristics of a six months 

ice free duration followed by a two months winter. The maximum ice concentration 

reaches only 80% in March, then gradually melts to ice free until late May. This 

endmember only fits a small area in the Greenland Sea. Apart from the Greenland Sea, it 

also can be found in the Seas of Okhotsk, and the Bering Sea. Similar to the fifth 

endmember, this endmember also fits small areas. The second endmember fits the Seas of 

Okhotsk but completely not fit the northwest corner. The sixth endmember can fit that 

corner in the Seas of Okhotsk. 
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Figure 3.32 Fraction Image of Endmember 6 
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Figure 3.33 Fraction Image of Endmember 7 
 

 The seventh image (Figure 3.33) shows the endmember fraction selected in 

the Canadian Archipelago. This endmember describes a temporal characteristic of full ice 
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coverage from November to May, then starts to melt to a minimum of 40% ice 

concentration in late September then freezes again. This endmember fits part of the 

Canadian Archipelago, and interestingly it fits the west edge of the Greenland Sea. 

 
Figure 3.34 Fraction Image of Endmember 8 
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The eighth image (Figure 3.34) shows the endmember fraction selected in the 

Seas of Okhotsk. The temporal characteristics of this endmember are similar to 

endmember 6, but have longer summer duration for one month. This endmember fits the 

majority of area in the Seas of Okhotsk. Compared with endmember 2, endmember 8 has 

less positive observations in the Gulf of St. Lawrence. In addition, it has some minor fits 

in the Greenland Sea, Kara and Barents Seas, and the Bering Sea. 

The ninth image (Figure 3.35) shows the endmember fraction selected in the 

Baffin Bay. The endmember selected in this region shares the same temporal 

characteristics with that selected in the Gulf of St. Lawrence, but with a month shorter 

summer duration. This endmember fits only the north part of the Baffin Bay, since Baffin 

Bay is a narrow long band, which makes it difficult to select an endmember that fits the 

entire region. Apart from the Baffin Bay, this endmember also fits the north part of the 

Bering Sea and the Seas of Okhotsk, but with less confidence.  
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Figure 3.35 Fraction Image of Endmember 9 
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The RMS error image (Figure 3.36) is created in the process of temporal mixture 

analysis, which is a measure of the spectral residue that cannot be explained by the 

unmixing model. The amount of error is related to the performance of the model. If the 

error is large, it might indicate that the endmembers or unmixing rules are not selected or 

characterized correctly. In Figure 3.36, the RMS error statistics shows a mean error of 6% 

with a maximum error of 47%. From the RMS error image, it shows that in the central 

circle of the Arctic Ocean, because there is no data collected in that region, therefore, 

there is no error. Besides the central blank circle, level of RMS error remains low in the 

Arctic Basin, especially in high latitude. The boundaries between different sub-regions 

and sea shoreline are usually places with high RMS errors. In addition, the clustering of 

RMS errors can also be found in the eastern shoreline in the Baffin Bay and the Labrador 

Sea, north part of the Gulf of St. Lawrence, west part of the Greenland Sea, shoreline of 

the Kara and Barents Seas, and west part of the Seas of Okhotsk. The reason of why 

RMS errors would occur in these areas will be discussed in the discussion part.  
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Figure 3.36 RMS Error Image of TMA 
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Figure 3.37 Color Mix of Endmembers 
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The endmember color mix image (Figure 3.37) is created to provide an overall 

view of the spatial distribution of temporal signatures derived from each subregion. This 

image is created by highlighting endmember fractions that are above 80% concentration 

with colors representing where they belong to. If a pixel does not have any endmember 

that has over 80% will be displayed as black. In addition, if a pixel has multiple 

endmember matchups, endmember with the highest concentration will be displayed 

above others. From Figure 3.37, it can be seen that the temporal characteristics of sea ice 

in the opposite side of the Arctic Basin are more likely to be similar with each other. In 

Hudson Bay and Gulf of St. Lawrence, their respective endmembers dominates these sub-

regions with little fraction of other endmembers. However, most of other sub-regions 

contain multiple endmembers. The Seas of Okhotsk and Japan has a large amount of 

endmembers selected in other subregion. These endmembers are all seasonal endmember 

with different temporal characteristics, indicating sea ice in the Seas of Okhotsk and 

Japan is difficult to be described by using only one endmember, which can be proved in 

the RMS error analysis. If there is an overlay of colors, it might be two similar 

endmembers.  

 From Figure 3.37, the composition of endmembers can be analyzed in each 

sub-region. In the Seas of Okhotsk and Japan and the Greenland Sea, multiple 

endmembers can be found in this region with over 80% concentration. This indicates 

different temporal characteristics can be found in these regions that match a variety of 

different temporal signatures. However, different endmembers rather match different 

areas separately instead of overlaying each other indicating different temporal signatures 
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may exist within these subregions. Therefore further classification may be required in 

these two sub-regions for optimized endmember selection. In the Bering Sea and Baffin 

Bay, endmembers are more likely to overlap each other indicating complex and 

ambiguous temporal characteristics in these two regions. According to the sea ice 

variability and trend analysis, seasonal variations are higher in these two regions 

compared to others. This might explains the endmember lap that the temporal variability 

of sea ice in these regions may match one endmember in one period, and after a few years, 

it may match other endmembers. In the Hudson Bay, Canadian Archipelago, and the Gulf 

of St Lawrence, one endmember dominates the majority of the area. This indicates that 

endmembers selected in these regions match the majority of areas and high consistency in 

seasonal variation.   

TMA describes the spatial distribution of different temporal signatures selected 

within these sub-regions; it also shows the spatial and temporal sea ice extent anomalies. 

In Figure 3.37, any other color appearance in a certain area is a signal of unconsidered 

temporal signature or inappropriate endmember selection. Also, in Figure 3.37, the large 

amount of black color implies none of the endmembers would match these areas with 

over 80% concentration. In addition, the black color in each subregion indicates a 

different temporal characteristic that has not been accounted for in the endmember 

selection process, because of the scale in the subregion classification. In the RMS error 

image, the clusters of errors can be considered as potential new endmembers following 

the same approach with Piwowar and LeDrew, 1997, which the four endmember 

modeling is a derivative from the two endmember modeling with two extra endmembers 
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selected from the error image. The TMA reveals sea ice temporal variability within each 

subregion and finds areas with different temporal characteristics.   
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3.5 SYNTHESIS OF ARCTIC SEA ICE VARIABILITY, TREND, AND ANOMALY ANALYSIS 

From the above Arctic sea ice variability and trend analysis, ranking analysis, and 

temporal mixture analysis, the general sea ice variability, trend, and anomalies are found.  

The variability of the Arctic sea ice extent is spatially and temporally. And it 

forms a clustering nature to be similar with each other either spatially or temporally. Any 

phenomena that are different from the clustering nature can be classified as anomalies. 

Arctic sea ice extent varies from month to month, but forms a seasonal cycle that usually 

reaches its maximum extent at March and minimum at September mainly because of the 

latent heat. A variety of other environmental factors contribute greatly in sea ice 

variability such as the sea surface temperature, solar radiation, atmosphere, and ocean 

currents. Generally, sea ice covers larger area and lasts longer in the central Arctic 

compared with areas away, and sea ice variability varies accordingly. Apart from the 

seasonal variation, the yearly variation forms the long-term trend of Arctic sea ice extent. 

In addition, yearly averaged sea ice extents of years after 2000 are more likely to be 

smaller than those of years before 1985.  

From the trend analysis using Sen’s Slope Estimator and decadal averaged line 

(Figure 3.13), the overall trend of Arctic sea ice extent can be found. The sea ice extent is 

decreasing in the scale of the whole Arctic region and speed of decreasing grows from 

decade to decade. All subregions except the Bering Sea, Canadian Archipelago, and Gulf 

of St Lawrence show a clear decreasing trend according to the 95% confidence level 

Sen’s Slope Estimator.   

From the Arctic sea ice variability and trend analysis, the anomalies cannot be 
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easily statistically found. The sea ice extent ranking analysis and the temporal mixture 

analysis are used to analyze the anomalies both spatially and temporally. The sea ice 

extent ranking analysis gives years with abnormal high and low sea ice extent in Figure 

3.25. And the temporal mixture analysis is used to find the spatial distribution of 

temporal anomalies within each sub-region. From the anomaly analysis, it shows years 

after 1995 are more likely to have abnormal low sea ice extents, and this phenomenon 

becomes very obvious after year 2000. This phenomenon coincides with the sea ice 

extent trend analysis that the Arctic sea ice extent is decreasing from 1979 to 2006 and 

the speed of decreasing increased from decade to decade.  

The spatial distribution of temporal signatures shows different seasonal variation 

patterns across the Arctic region. Sub-regions that are close to the Arctic basin usually 

have their own and unique temporal signatures that do not occur in other sub-regions. 

This phenomenon might due to the high latitude cold environment while the lower 

latitude sub-regions do not have the same cold temperature to create similar multiyear ice 

dominated seasonal variation with the high latitude areas.  

On the contrary, the lower latitude sub-regions such as the Bering Sea and 

Greenland Sea have more anomalies in the TMA analysis. The inconsistent seasonal 

variation and first-year ice dominated nature make sea ice extent in the lower latitude 

sub-regions easily affected by other environmental factors. Therefore, multiple temporal 

signatures can be found within one sub-region. In the Bering Sea and Hudson Bay, 

different endmembers overlay each other indicating different seasonal variations through 

the long-term time series. However, some other low latitude sub-regions such as the 



112 

 

Greenland Sea and the Seas of Okhotsk and Japan, have different endmembers matching 

different areas without overlaying each other. This phenomenon implies that these sub-

regions have considerable amount of areas with different and similar to endmember from 

other sub-regions temporal characteristics.  

Through the anomaly analysis, finding endmember clusters in other sub-regions 

across the Arctic basin can help support the oscillation pattern influence of the Arctic sea 

ice variability. Also, as the sea ice extent is decreasing, other temporal signatures would 

show up in several sub-regions as indicators of less winter maximum sea ice extent or 

delayed freeze time, which is similar to endmembers selected from lower latitude sub-

regions. Therefore, the spatial location of anomalies implying the long-term decline trend 

can be revealed.  
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CHAPTER FOUR 

DISCUSSION 

Based on this research, there is a statistically significant trend that the Arctic sea 

ice extent is decreasing from 1979 to 2006. Analysis of arctic sea ice extents derived 

from satellite passive microwave data for the 28 years from 1979 to 2006 has found an 

overall downward trend of -45,100 ± 4,600 km2 per year. Also, this downward trend has 

been found in all the sub-regions. The Arctic sea ice extent ranking analysis provides 

more information of the sea ice variability, trend, and of great use in anomaly detection 

of both the whole Arctic and its sub-regions. But in the ranking analysis, anomalies can 

only be found on the temporal resolution of year, and it cannot reveal anomalies within 

each subregion. Also, there is no effective assessment that could be applied to the ranking 

analysis to validate its credibility. Fortunately, the Temporal Mixture Analysis provides 

detailed analysis of the spatial distribution of temporal characteristics observed in the 

sub-regions. TMA cannot only provide the endmember distribution within its own 

subregion, but in other sub-regions as well.  

4.1 RESULTS INTERPRETATION 

 From the Arctic sea ice variability and regression, ranking analysis, and 

Temporal Mixture Analysis, the general concept of Arctic sea ice temporal and spatial 

characteristics can be perceived. In the sea ice variability and trend estimation, the 

monthly sea ice extent data are presented in its temporal order with seasonal fluctuations. 

It is difficult to find the 28-year sea ice variability trend by visual inspection. With the aid 

of monthly deviation trend estimation, the regression line provides an answer that sea ice 
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extent is decreasing in the spatial scale of the whole Arctic. When it comes to different 

sub-regions, the trend estimation also gives the answer that sea ice extent is decreasing 

but with different confidence level. Regression analyses of the Bering Sea, Canadian 

Archipelago, Hudson Bay, and Gulf of St. Lawrence give very small ratios with 95% 

confidence level, which hold back the thoughts of making a conclusion that sea ice 

extents in these area are really decreasing.  

The seasonal sea ice extent average line chart (Figure 3.13) pushed the trend 

estimation a step forward by revealing the fact that Arctic sea ice extent is decreasing not 

only in the 28-year time series analysis, but on a decadal basis. In Figure 3.13, sea ice 

extent of 1979-1990 average was larger than the 1979-2000 average, indicating sea ice 

decrease between 1990 and 2000. After 2000, the individual monthly sea ice extent data 

are far below the 1979-1990 average line and the 1979-2000 average line, indicating 

intensified sea ice decrease.  

In the monthly deviation and trend estimation, the anomalies of monthly sea ice 

extent data can be identified by selecting the peaks and troughs. However, there is great 

uncertainty in whether a peak or trough is an anomaly or whether it’s normal fluctuations. 

Therefore, except for a few extreme years, many peaks or troughs are left as uncertainties 

and cannot be classified as anomalies. The difference between an anomaly and normal 

fluctuations are determined by comparing the seasonal variation of sea ice extent of one 

year with its adjacent 2 years. If the seasonal difference is less than 10%, it will be 

counted as normal fluctuation; otherwise, it will be suspected as an anomaly, but not 

confirmed.  
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The sea ice extent ranking analysis can help solve the above problem in 

identifying anomalies. Instead of comparing each monthly sea ice extent data with the 28 

year average, sea ice extents are ranked on a year basis from largest to smallest regardless 

of their temporal order. In these colored ranking charts, anomalies can be easily selected. 

This approach is effective in groupings that have clustering of bars with similar colors, 

allowing easy detection of a different color. But areas, for example, the Canadian 

Archipelago and the Gulf of St. Lawrence, that have small ratios in the trend estimation 

coincidentally have shuffle mixed color bars in the ranking analysis. In this case, 

anomalies cannot be easily detected, which make it a limitation for anomaly analysis. 

The limitations of the ranking analysis can be summarized in three perspectives. 

Apart from the first one has been issued on the above paragraph, the second one is that it 

analyses data on a yearly basis, which fails to reveal the seasonal variations. The third 

one is that all the rankings treat its analyzed region as an integral unit, and fail to reveal 

the variations within its subregion.  

In order to solve the limitations of the ranking analysis, the Temporal Mixture 

Analysis utilizes endmembers to best describe various seasonal variation signatures 

across the whole Arctic region, and then through the unmixing process to provide the 

fractional image of each endmember. The fractional images provide a visual impression 

of the spatial distribution of endmembers. The concentration of endmembers, i.e. 

temporal characteristics can be found not only in the subregion where the endmember is 

selected, but sometimes, other sub-regions also have high concentration of that particular 

endmember.  
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In the TMA analysis, the long-term variation of seasonal variations can be found 

in the Color Mix Figure of Endmembers (Figure 3.37). If a sub-region contains a number 

of and overlapping endmembers, the seasonal variation in this region is considered to 

have changed in the 30-year period. And this phenomenon is more likely to occur in areas 

far away from the central Arctic because these areas are dominated by first year ice. First 

year ice can be easily influenced by the changing atmospheric and temperature conditions 

that makes the seasonal variations different each year. While in the central Arctic, 

multiyear ice dominates the majority of areas, and multiyear ice is less sensitive to the 

changing atmosphere and temperature because of its large volume and latent heat from 

the ocean.  

Apart from the seasonal variations, different temporal characteristics can also be 

found through TMA. In the Greenland Sea and Seas of Okhotsk and Japan, a number of 

endmembers can be found but covering different areas with little overlap. This indicates 

that part of this sub-region is temporally more similar to other sub-region than its own 

sub-region. Therefore, sub-regions like this should be further classified as two or more 

sub-regions instead of one in future researches.  

In the sea ice extent ranking analysis, the oscillation pattern can be found by 

comparing the clustering of bars sharing similar colors. The TMA push it forward by 

displaying where exactly these areas are. If an endmember is found covering large areas 

in sub-regions that are in the opposite side of the Arctic basin, it can be considered that 

these sub-regions are likely to share similar temporal characteristics. With the help of the 

ranking charts, the time interval of the oscillation can be found. Piwowar, (2008), 
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published a paper analyzing the Arctic sea ice variability using TMA, and he used the 

Minimum Noise Fraction and Pixel Purity Index to help select the endmember while in 

this research, endmembers are selected based on known sea ice temporal/spatial 

variability in each sub-region. In the results analysis part, he used regional color mix of 

similar endmember to reveal the fraction of different endmembers. But in this research, 

the color mix image is improved to present the fraction distribution in the entire Arctic 

region. In addition, the detection of temporal signatures in other subregions, areas with 

different temporal characteristics within a subregion, and evolution of temporal 

characteristics through decades in certain areas can be identified in the color mix image, 

which improved from the regional color mix image that only gives fraction concentration 

without any interpretations.  

4.2 THE ERROR ANALYSIS OF TEMPORAL MIXTURE ANALYSIS AND RMS IMAGE 

In spectral mixture analysis, there are a number of ways to evaluate the 

performance of the unmixing process. In this research, approaches utilized in SMA will 

be introduced for error evaluation for TMA through some minor adaptations. 

4.2.1 RMS Error Analysis 

A root mean square (RMS) is used to compare the model prediction results with 

the actual observations. In an unmixing process, a small RMS error of a pixel indicates 

the model suits this pixel well. If the error is large, it may indicate that it is an 

inappropriate model or endmember selection/categorization or unmixing rules, which 

requires changes in the modeling process.  

From previous spectral mixture analysis studies, researchers usually make a RMS 
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error image of the unmixed study area. This method applied to temporal mixture analysis 

as well. When unmixing the Arctic sub-regions using the nine endmembers, a RMS error 

image is produced. In the RMS error image, it follows the same recognition pattern with 

the endmember fraction image, which areas with lighter color indicate a good condition 

of model fit. In the contrary, darker color areas indicate high errors.  

From an overall view of the RMS error image derived from nine endmembers, it 

can be seen that the central Arctic basin has low errors for most of the endmembers 

because of the dominant non-seasonal sea ice all year round with little seasonal change 

throughout the year. In addition, sub-regions, which have large amounts of non-seasonal 

ice, also have less error than the seasonal sea ice areas. The reasons of why non-seasonal 

ice has less error than the seasonal ice can be from a number of perspectives.  

First of all, temporal mixture analysis endmembers describe the seasonal sea ice 

variation within a year, i.e., the seasonal changes of sea ice. For all areas covered by non-

seasonal sea ice, the non-seasonal sea ice endmember can fit them equally without any 

difference among different regions, which means that a single TMA endmember can 

easily describe all non-seasonal sea ice covered regions with low error. However, the 

seasonal sea ice has a wide range of temporal characteristics. For example, sea ice in the 

Hudson Bay covers the entire region from December to May and this area is completely 

ice free from July to November. The endmember of Hudson Bay describes when the sea 

water start to freeze and become sea ice, how fast is the freeze process, how much area is 

covered by sea ice, how long the frozen sea ice will last, when the sea ice will start to 

melt, and also in what speed, and how much ice will melt, and so on. Temporal 
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characteristics of sea ice in the Fram Strait, Greenland Sea, have unusual patterns in the 

melting process. Sea ice started to melt after March and slowly melt to approximately 50% 

around late July, then interestingly, it stopped melt and remain that sea ice coverage for 

almost a month until late August, then it resumed melting and reached the minimum sea 

ice coverage in September. The above-mentioned temporal characteristics of 

endmembers derived from two different regions differ a lot from each other, and so do 

the other seven endmembers. Hence, the seasonal sea ice requires multiple seasonal 

endmembers to describe the various kinds of temporal characteristics of sea ice in 

different regions. Therefore, the effectiveness of the nine endmembers to describe all the 

seasonal sea ice temporal characteristics is clearly not as good as the non-seasonal 

endmember, which is by default set to a condition that sea ice remains frozen all year 

round.  

Second, in this research, a total of nine endmembers are selected from nine sub-

regions. These nine sub-regions cover the entire Arctic region, but this fact does not 

imply that endmembers selected from these nine regions can well fit every pixel in the 

entire Arctic region. For example, the endmember selected in the Greenland Sea is 

located within the Fram Strait which is an important sea ice “tunnel” connecting the 

Arctic Ocean and the Atlantic Ocean. Therefore, the temporal characteristics in the Fram 

Strait are very different compared to other parts in the Greenland Sea. Hence, any 

endmember selected in the Greenland Sea would fail to describe the whole region. This 

issue will inevitably lead to errors in the unmixing process. The most feasible way to 

overcome this issue is add more endmembers which can better describe different 
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temporal characteristics. However, because of the limitless variation of climate 

conditions, such as ocean currents, atmospheric circulation, cyclones, solar radiation, etc., 

it is impossible to describe every temporal characteristics observed in the Arctic region. 

Therefore only the significant ones can be measured and analyzed.  

Third, from the RMS error image, it can be seen that the boundaries between 

different sub-regions usually have a large amount of RMS errors compared to the central 

areas of a certain subregion, especially in boundaries between sub-regions which have 

very different temporal characteristics, or the edge effect. For example, the boundaries 

between Kara and Barents Seas and Greenland Sea, Baffin Bay and Hudson Bay, Gulf of 

St. Lawrence and Baffin bay. The more different the temporal characteristics are, the 

more error there might be in these boundaries. The most obvious reason is that the 

endmembers of each subregion is selected through the scatterplot of all the monthly sea 

ice averages, and it leads to a problem that the “purest” pixel representing temporal 

characteristics in this region usually happens to be within that area with a considerable 

distance away from the boundaries, while the temporal characteristics of sea ice vary a lot 

along the path connecting the “purest” pixel in one subregion and that in its adjacent 

subregion. In some situations, the changes of sea ice’s temporal characteristics can be 

gradual and proportional to the distance between the two endmembers. For instance, the 

temporal signatures of sea ice in the Laptev Sea and the Kara and Barents Seas are very 

similar, therefore, the RMS error changes gradually along the path between two 

endmembers and there is no significant error clustering across the boundaries. On the 

other hand, the Hudson Bay and Baffin Bay are close-by sub-regions but their temporal 
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characteristics are dramatically different. Therefore, the edge effects of these two sub-

regions are significant with RMS errors and errors in the Hudson Strait which indicates 

model unsuitability. The most obvious reason is that the climate systems of these two 

sub-regions are very different. The Hudson Bay is more like an inland lake surrounded by 

the North American continent and Baffin Island with small amount of water connected to 

the Baffin Bay and the Canadian Archipelago, while the Baffin Bay is directly connected 

to the Atlantic Ocean with large amount of open water. The difference between two 

climate systems in Hudson Bay and Baffin Bay causes the difference in their 

corresponding temporal characteristics.  

4.2.2 Qualitative Evaluation 

Qualitative evaluation can be made from the spatial patterns highlighted in each 

of the fractional images based on globally acknowledged characteristics of the analyzed 

zone. For example, any patterns that may not obvious belongs to this zone based on 

concomitant knowledge, however, actually appear in this zone. This occurrence may 

indicate possible incorrect construction of the model or some unaccounted features. 

Temporal mixture analysis is well acknowledged as efficient and effective for revealing 

hidden anomalies from other time series analysis.  

In temporal mixture analysis, the qualitative evaluation process will be performed 

by comparing the distribution of endmember fractions with the actual sea ice variability 

trend in their corresponding area. In this analysis, since the endmembers are selected in 

each subregion, the sea ice variability of pixels in the lighter tones of the fraction images 

in each subregion undoubtedly matches the temporal characteristics of selected 
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endmembers. But other darker tones in these sub-regions do not seem to match the 

temporal characteristics of selected endmembers. However, the clustering of lighter tones 

of pixels of a certain endmember does not always fall within the endmember selection 

subregion. For instance, an endmember selected in the Gulf of St. Lawrence has a lot of 

lighter tones in the Gulf of St. Lawrence; however, far away from the gulf in the opposite 

side of the Arctic Ocean, there are another large area of clustering of lighter tones in the 

Seas of Okhotsk. In addition, similar situation can also be found in Greenland Sea and 

Bering Sea.  

Through inspection of temporal sea ice variability in both the Gulf of St. 

Lawrence and the Sea of Okhotsk, the endmember clustering in these two regions does 

match the local sea ice seasonal variability. However, through the 28 year data of sea ice 

variability time series information, it can be seen that though the Gulf of St. Lawrence 

and Seas of Okhotsk shares a very similar temporal characteristics, their individual sea 

ice trend did not match with each other. By identifying the peaks of extraordinary high 

sea ice extent in both sub-regions, the similar conclusion can be made the sea ice trend 

and anomaly analysis that sea ice extent seasonal variability in Gulf of St. Lawrence and 

Seas of Okhotsk has a time shift for peak sea ice extents about 10 years, which implies 

Arctic oscillation which is also a decadal pattern. When looking into the seasonal sea ice 

extent of the two sub-regions, the decadal oscillation pattern is clearer especially in the 

winter sea ice extent averages. The Gulf of St. Lawrence and the Seas of Okhotsk are in 

the outer range of the Arctic region which indicates seasonal sea ice dominates these sub-

regions.  According to the sea ice extent seasonal averages, sea ice is completely melted 
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to sea water in summer time, and in spring and fall, sea ice extent remains at a low level, 

while in winter time, sea ice extent reaches to approximately three times of that in spring 

or fall. In the Seas of Okhotsk, sea ice extent in winter time is highest of 1.5 million km2 

in 1979, then have three lows in 1984, 1991, and 1996, while in the Gulf of St. Lawrence, 

sea ice extent reaches three high peaks in 1985, 1989, and 1994. The sea ice extent peak 

area in the Seas of Okhotsk was observed in 1979, then in 1989, sea ice extent in the Gulf 

of St. Lawrence, reaches its peak area. Meanwhile, sea ice extent in the Gulf of St. 

Lawrence remains above the 28 year average between 1983 and 1997, but for the Seas of 

Okhotsk remains below the 28 year average for most of the years during that period.  

Through the seasonal sea ice extent variability data, the qualitative evaluation 

validates the clustering of lighter tones in other sub-regions in the Gulf of St. Lawrence 

and Seas of Okhotsk situation. The reason may relate to climate perspectives such as 

similar latitude, ocean conditions, atmospheric circulation, etc., in these two sub-regions. 

And the time shift between peak sea ice extents may relate to the Arctic oscillation and 

the Atlantic oscillation.  

However, not all the lighter tones indicating the endmember’s temporal 

characteristics can successfully reveal the temporal characteristics of local pixels. For 

instance, the endmember fraction from Bering Sea which has a complete different 

temporal characteristics with the Greenland Sea, but there are a cluster of lighter tones 

along the Fram Strait. And as discussed before, the endmember selected from the 

Greenland Sea happens to be within the Fram Strait which has a very different climate 

system with other areas of the Greenland Sea. This issue shows the incapability of 
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describing the temporal patterns of pixels in the Greenland Sea. The reason of this issue 

is because of the very different types of temporal characteristics within one subregion, 

which a sub-regions is assumed to have a temporal characteristics that fits the majority of 

pixel in this area without too much variance.  

4.3.3 Overflow Evaluation 

In spectral mixture analysis, the sum of each endmember fraction must be 1.0 and 

each endmember fraction must be between 0 and 1. This rule should be effective in 

temporal mixture analysis as well. By examining the endmember fraction sum whether 

beyond the desired range 1.0, the TMA model can be evaluated for its effectiveness in 

describing each of the endmembers. In spectral mixture analysis, it is usually hard to find 

the purest spectral pixel of a certain land cover or band and use that pixel as an 

endmember. A fraction overflow generally shows up because pixels are more spectrally 

pure than the spectra defined by one or more of the endmember (Piwowar, 2008). Luckily, 

there is no large amount of overflow in this research. The only few are scattered in the 

central Arctic Ocean, and the subpolar region where there have most seasonal sea ice. 

The overflow in the Arctic Basin is probably because of the flooding of water over the 

multiyear ice. Although non-seasonal sea ice is found in the central Arctic Basin, it is not 

always identifiable in passive microwave imagery because summer melt water flooding 

the surface of the ice pack is frequently mistaken as ice with reduced concentration 

(Kwok, 2000; Meier, 2005). The overflow in the subpolar region is probably because of 

the limitation in the algorithm designed to estimate sea ice concentration data. According 

to the data documentation from NSIDC, this algorithm does not work well over open 
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ocean which instead predicting the expected zero value, it might predict sea ice 

concentration values as high as 35%, particularly in regions with excessive winds and 

stormy weather (Comiso, J. 1999).  

In addition, in the endmember selection process of TMA, overflow can be 

detected from the scatter plot of sea ice extent in March versus September. If a pixel that 

happens to have higher sea ice concentration in September than in March, this pixel is an 

overflow which is due to land and atmospheric contamination of the SMMR signal of 

subpolar regions (Piwowar et al., 1997).  

4.3 ADVANTAGES, LIMITATIONS, AND UNCERTAINTIES OF THIS RESEARCH 

In the sea ice extent calculation process, only sea ice concentration above 15% 

can be counted as sea ice extent. This process is used to avoid any interference of the 

atmosphere or random ice floes that might be accidentally counted as stable sea ice extent.  

Also, as stated in the RMS error analysis, the manual classification of the Arctic 

sub-regions based on previous research gives a good understanding of the seasonal sea 

ice extent variability in these different areas. However, it would provide better 

consolidated and convincing results in all research to perform these classification 

analyses solely based on the data instead of arbitral segmentation. For example, to create 

possible processes that could find the boundaries between different temporal 

characteristics, and use these boundaries for subregion classification.  

However, even if the subregion classification has been optimized, the boundaries 

would still be the region of high RMS errors. According to the Tobler’s first law of 

geography (Tobler, 1970), things are more likely to share similar characteristics with 
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things that are close by than things are apart. Though the boundary area is divided by two 

sub-regions, its spatial and temporal characteristics still remain as an integral unit. Trying 

to analyzing the boundary region with two different endmembers would definitely cause 

error. The ideal situation is that the TMA would select endmember from every temporal 

signature to minimize the boundary effects.  

Because of the complexity of sea ice variability, long term sea ice trend is usually 

hard to conclude its whether decrease or just normal fluctuation. In addition, any 

overfitting should be avoided in this sea ice extent trend trend estimation. Long term sea 

ice extent trend analysis incorporates strong seasonal effects that can greatly influence the 

trend estimation. Monthly sea ice extent regression can be influenced by the seasonal 

variation throughout the year, especially when the winter is particularly cold than usual 

year or an extremely hot summer. But a yearly average sea ice extent would be biased by 

arbitrarily averaging the 12 monthly data from January to December. In order to reveal 

the true long-term sea ice extent trend, seasonal adjustment would help greatly by 

alleviating the seasonal effects. 

Another limitation of the TMA analysis is that it takes the 28 year sea ice extent 

data and tries to extract the temporal signatures in different regions. Though anomalies 

can be revealed, TMA does not consider the overall trend in sea ice extent variability. 

Seasonal sea ice variation in the 1980s might not be the same in years after 2000. 

Therefore, endmember selected in regions like that would not correctly describe the 

changes in seasonal sea ice variation.  

Uncertainties, mostly recognized as “an information deficit”, cannot be avoided in 
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any modeling analysis. But it takes on an added dimension by utilizing scientific 

knowledge to support any modeling analysis by alleviating systematic error and bias 

(Brown, 2010). In Temporal Mixture Analysis, the spatial distributions of different 

temporal signatures are presented, which provides a new opportunity for analyzing past 

remote sensing record. But uncertainties also exist in TMA. For example, endmember 

selection, unmixing process, or error analysis could influence the model output. In 

addition, the remote sensing data capturing process is another source of uncertainty, such 

as atmospheric influence, sea water flood over ice, even the SMMR algorithms.  

Algorithms designed to estimate sea ice concentration using passive microwave 

data frequently do not work well over Open Ocean (Comiso, J. 1999). When applied, 

instead of predicting the expected zero value, the algorithms predict sea ice concentration 

values as high as 35 percent, particularly in regions with excessive winds and stormy 

weather (Comiso, J. 1999). A climatological sea surface temperature mask was applied to 

remove pixels from regions where the ocean surface is above freezing. Also, land 

contamination (false ice along the coast due to pixels containing a mixture of land and 

ocean) were removed using a filter adapted from Cho et al. (1996). Even with these 

quality-control measures, some residual sea ice concentrations remain in the open ocean 

and along the coast. 

4.4 FUTURE RESEARCH OPPORTUNITIES FOLLOWING THIS RESEARCH 

In future research of sea ice extent variability analysis, the most up-to-date sea ice 

extent data will be used. In this research, only monthly sea ice extent data is used for 

variability and trend analysis. But in future, by utilizing the daily sea ice extent data 
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would greatly improve the temporal resolution, and serves better in measuring the 

seasonal variability. 

In temporal mixture analysis, endmembers will be selected in a different method. 

Through principle component analysis, minimum noise fraction, and pixel purity index, 

endmembers selected will better describe the temporal signatures across the study area 

instead of manual selection in each of the sub-regions. In addition, from the RMS error 

image, any clusters of error would also be potential endmembers. Incorporating new 

endmembers derived from the RMS error image could further improve the accuracy of 

TMA. As stated before, increased number of endmembers could subdivide the temporal 

signatures, which could better describe various kinds of temporal situation across the 

Arctic region. 

Comparing the decadal oscillation pattern in sea ice variability trend and 

anomalies with the North Atlantic Oscillation index over the last few decades, there is a 

coincidence between them. Unfortunately, lack of reliable and continuous Arctic sea ice 

data, especially before the remote sensing era restricted systematic research of how North 

Atlantic Oscillation impact the Arctic sea ice, and whether NAO is the driving force in 

sea ice variability, motion, trend, etc.  

The sea ice extent only is measured and analyzed in this research. The variability 

of sea ice thickness and volume is also very important in understanding the global climate. 

In particular, if Arctic sea ice volume decreases, it implies temperature rises and 

intensified sea ice melt. Therefore ice melts in glaciers, permafrost, ice sheet, etc., would 

also increase. If the temperature rises, it would imply global warming and intensified ice 
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melt in glaciers and ice sheet in the Antarctica. In future researches, by incorporating the 

sea ice thickness data, it would provide a more comprehensive understanding of Arctic 

sea ice.   
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CHAPTER FIVE 

CONCLUSION 

Most of the Arctic sea ice extent time series research focus on the identifying 

anomalies display the data in their temporal order, and try to identify the anomalies 

through various kinds of statistical methods. Two main questions were proposed in this 

research. The first one is to find the general trend in Arctic sea ice variability from 1979-

2006 as well as different sub-regions. The second one is to find the spatial and temporal 

anomalies in sea ice extent variability across the Arctic region and different sub-regions. 

Traditional statistical methods would focus on the outliers in the time series, but fail to 

reveal the temporal characteristics or the inner relationship between clusters of anomalies 

in different regions.  

In this research, the Arctic sea ice extent variation trend and anomalies from 1979 

to 2006 are analyzed. In the sea ice anomaly analysis, the temporal anomalies of the 

whole Arctic region and the sub-regions are analyzed through the sea ice extent ranking. 

The sea ice extent ranking analysis provides a visual way to understand the anomalies in 

sea ice variation. The gradual color scheme adopted in the sea ice extent ranking is very 

useful for visual inspection of anomalies. Also, the comparison of sea ice extent ranking 

charts of some sub-regions reveals an oscillation pattern in sea ice growth/retreat in the 

east/west region of the Arctic Ocean. This pattern coincides with North Atlantic 

Oscillation to some extent, which provides a clue for future research to thorough 

investigates the sea ice feedback to North Atlantic Oscillation. The sea ice extent ranking 

analysis only treats the sub-regions as a whole unit, but in reality, there is sea ice 
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variation within each sub-region. And sometimes, sea ice variation within a sub-region 

could be more than that of different regions.  

However, the spatial distribution of the temporal anomalies has not gained equal 

attention with the temporal anomalies in the long-term sea ice extent time series analysis. 

The Temporal Mixture Analysis, derived from spectral mixture analysis, is utilized to 

show the spatial distribution of temporal characteristics calculated in different sub-

regions. TMA can reveal the spatial distribution of temporal characteristics, i.e. 

endmember, in other sub-regions. It can also reveal the concentration of that endmember 

in the subregion where it's selected, which is very useful for detection of any 

inappropriate subregion classification or endmember selection.  

The TMA fraction images provide a straightforward method to understand the 

spatial distribution of temporal characteristics. Also, the inner variation of sea ice 

temporal characteristics can be revealed, which perfectly solved the limitation of sea ice 

extent ranking. In the sea ice extent general variability and trend analysis, the seasonal 

sea ice variation charts of different sub-regions indicates that some sub-regions share 

very similar temporal characteristics despite that they are far apart from each other. 

The anomaly analysis in this research utilizes the sea ice extent ranking and 

temporal mixture analysis to reveal the spatial and temporal anomalies in the 1979 to 

2006 period. The sea ice extent ranking analysis provides years with abnormal high or 

low sea ice extent in the Arctic region as well as different sub-regions. While the 

temporal mixture analysis provides an insight view of areas that anomalies would like to 

occur. Also, some sub-regions such as the Greenland Sea and Seas of Okhotsk and Japan 
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are revealed to have are multiple temporal characteristics in different parts of the sub-

region.   

This research provides a synthesized view of the spatial and temporal variability 

and anomalies of Arctic sea ice extent from 1979 to 2006. The sea ice ranking analysis 

provides a straightforward and non-statistical method of visualizing anomalies and see-

saw oscillation pattern in the eastern and western area of the Arctic basin. And the TMA 

provides an unprecedented perspective of viewing the spatial and temporal variability at 

same time with scale insensitive entire Arctic analysis. The detection of temporal 

signatures in other subregions, areas with different temporal characteristics within a 

subregion, and evolution of temporal characteristics through decades in certain areas are 

the main improvements from previous researches.  

In future research, the most up-to-date data can be used to analyze sea ice 

variability. Apart from using the monthly averaged sea ice concentration data, daily sea 

ice concentration data can be used for more detailed analysis. In the temporal mixture 

analysis, endmember selection process can be improved based on results of this research 

by utilizing more endmember in the Greenland Sea and Seas of Okhotsk. The sea ice 

dynamics could be explored to interpret the rapid sea ice cover decline in the recent 

decades. At last, not only the sea ice extent is of concern in understanding the Arctic 

climatology, but the sea ice thickness, volume, concentration, and motion. The analysis 

of variability in sea ice could help to build a comprehensive understanding of the Arctic 

environment and its interactions with the entire globe.   
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