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Abstract

This manuscript based thesis examines and advances methods for constraining sources
of atmospheric trace constituents with a Lagrangian particle dispersion model. The method
of Bayesian inversion is demonstrated, and a new method is introduced to a class of simi-
lar problems where established methods are not applicable. First, A new regression based
methodology was developed and applied to observations of atmospheric methanesulfonic
acid mass concentrations at Alert, Nunavut. The methodology was used to compare the
importance of phytoplankton blooms vs. the ice-free ocean as sources of the dimethyl-
sulfide precursor, and to compare the importance of bromine monoxide vs. hydroxyl as
agents oxidizing dimethylsulfide to methanesulfonic acid. These issues are relevant to the
application of methanesulfonic acid concentrations in ice cores to determine historic sea
ice properties. The analysis indicated that source regions to Alert during the spring are
primarily ice-free ocean with a significant contribution from ice edge blooms, and during
the summer to be dominated by the ice-free ocean. The model also indicated that oxida-
tion of DMS by BrO was the dominant source of MSA in the spring, while DMS oxidation
by OH was the dominant source in the summer. Secondly, Bayesian inversion was applied
to observations of atmospheric elemental carbon mass concentrations at Tsinghua Univer-
sity in Beijing, China. The analysis provided evidence that current bottom-up elemental
carbon emissions estimates in northern China are likely underpredicted. Global chemical
transport models show ubiquitous underestimates of the atmospheric burden of elemental
carbon, especially near large sources of emissions. Northern China is among the regions
with the most intensive elemental carbon emissions in the world, and an underestimate
of emissions in this region may be partially responsible for the global chemical transport
model underestimates.
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Chapter 1

Introduction

Lagrangian particle dispersion modeling is a method of computing an ensemble of air
parcel trajectories through a turbulent flow. This method is most commonly applied
to problems relating to the transport of atmospheric trace constituents. In this thesis,
we will explore and expand upon methodologies that apply the Stochastic Time-Inverted
Lagrangian Transport (STILT) model, a Lagrangian Particle Dispersion Model (LPDM).
This introductory chapter introduces the LPDM in a historical perspective and prepares
for the advancements in application that are presented in this thesis.
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1.1 A Brief History of Lagrangian Particle Dispersion

Models

This section contains a brief description of the history of Lagrangian models of the at-
mosphere, following the works of Thomson and Wilson, 2012 [122], and Rodean, 1996
[95].

There are two frames of reference in which fluids can been modeled; the Eulerian and
Lagrangian frames. In the Eulerian frame, properties of a fluid are specified as a function
of time, t, and a position, (x, y, z), relative to an observer fixed to a point on the Earth’s
surface. In the Lagrangian frame the observer “rides” the fluid element as it moves along
its trajectory. Co-ordinates in the Lagrangian frame are time, t, relative to an initial time,
t0, and the position of the fluid element, (x, y, z), relative to its position at t0.

The first significant work leading to the development of Lagrangian models of the
atmosphere was Langevin’s 1908 [58] equation describing Brownian motion of a single
particle as a stochastic differential equation in the Lagrangian frame of reference. This is
the so-called “Langevin Equation”:

dv

dt
= −av + bη (t) . (1.1)

Where v is the velocity of the particle, a is a coefficient of damping due to viscous drag,
and the product of b and η (t) form a random acceleration with a Gaussian probability
distribution, due to molecular collisions.

The Eulerian equivalent to the Langevin equation (Eqn. 1.1) is the “Fokker-Planck
equation”, which predicts the evolution of the probability density of the locations of fluid
elements, P ≡ P (x,u, t) [122]:

∂P

∂t
= − ∂

∂xi
(uiP )− ∂

∂ui
(aiP ) +

1

2

∂2

∂uj∂uj

(
b2P
)
. (1.2)

Where x is the velocity of a fluid element, u is the velocity of a fluid element, ai is a
(possibly anisotropic) coefficient of damping, b is an empirical constant describing the rate
of diffusion, and i is an index for direction (1, 2, or 3).

The direct application of the Lagrangian frame of reference to problems of atmospheric
transport began with the work of Taylor in 1921 [119]. Taylor derived analytical equations
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describing the dispersion of a plume of pollutant through the atmosphere under stationary,
homogeneous turbulence. Taylor’s solution describes the evolution of a plume as:

dσ2
z

dt
= 2

t∫
0

w (t′)w (t′ + ξ)dξ. (1.3)

Where σ2
z is the variance of vertical displacement, w is the vertical component of air

parcel velocity, t′ is an integration dummy variable for time, and ξ is a time scale over
which the autocorrelation of velocity of an air parcel is quantified.

The argument of the integral on the right side of Equation 1.3 contains an autocorre-
lation in time, and so the equation can be recast as:

dσ2
z

dt
= 2σ2

w

t∫
0

Rww (ξ) dξ. (1.4)

Where σ2
w is the variance of the vertical component of air parcel velocity, and Rww is

the “Lagrangian autocorrelation function”.

In the limit of short time of travel from the source, Equation 1.4 yields root-mean-
square displacements that are proportional to the travel time. In the limit of long time,
the root-mean-square displacements are proportional to the square root of travel time.
These limits are of fundamental importance and provide a test for the behaviour of all
contaminant transport models. The application of Taylor’s work to dispersion in the
complex environment of the real atmosphere was limited by the idealization to homogenous
and stationary turbulence that was necessary to derive an analytical solution. It was not
until the era of computer modeling that realistic problems with atmospheric conditions
and turbulence varying in time and space could be addressed.

The first step towards creating a more practical analog to the work of Taylor came
in 1959, when Obukhov [79] suggested that the Fokker-Planck equation could be applied
to model evolution of fluid parcels undergoing turbulent diffusion. As work progressed,
the focus shifted from the Fokker-Planck equation (Eqn. 1.2) to the Langevin equation
(Eqn. 1.1). By the early 1970’s numerical simulations of complex environments with
inhomogeneous turbulence had begun to take place.

Early numerical simulations based on the Langevin equation (Eqn. 1.1) resulted in
particles that drifted toward the direction of negative gradients in turbulent kinetic en-
ergy. This led to particles collecting around the local minima of turbulence, and models
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predicting an increase of entropy in violation of the second law of thermodynamics. To
correct this, Wilson, 1981 [137, 138, 139] proposed adding an ad hoc corrective acceleration
(the “drift correction” ) to the Langevin equation (Eqn. 1.1).

Thomson, 1987 [121] evaluated general forms of the Langevin and Fokker-Planck equa-
tions (Eqns. 1.1 and 1.2) to establish design criteria for stochastic Lagrangian models of
turbulent diffusion. This work showed that the well-mixed criterion — that an initially
uniform concentration field remains uniform in the absence of sources and sinks — served
as the superlative criteria for selection of a model, and that random forcing terms must
have Gaussian probability distributions. After the publication of this paper the founda-
tions of Lagrangian stochastic models were sufficiently established to produce well behaved
and practically applicable models.

The first popularized Lagrangian model was the HYbrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT) model [23]. HYSPLIT has most often been used as a
mean trajectory model, ignoring the effects of turbulence. It is also capable of being run as
puff dispersion model, where the modeled air parcel grows in dimension in accordance with
Taylor’s solution (Eqn. 1.4), as an LPDM, or as a hybrid of the two. HYSPLIT remains
the most popular Lagrangian model today, largely due to its well established community
and its web interface, which is accessible to a broad range of users. HYSPLIT is used for
emergency preparedness in the United States and other nations (e.g., Draxler et al., 1994
[24]), and has also been used extensively for identifying source regions of atmospheric trace
constituents (e.g., Wang et al., 2011 [130])

Another popular LPDM is FLEXPART [113, 112]. FLEXPART was originally devel-
oped for emergency preparedness, but has been applied to a wide variety of applications.
FLEXPART has the capability to be run as a Langevin equation (Eqn. 1.1) model, or (with
lower computational cost for emergency situations) as a random walk dispersion model. It
includes native schemes for deposition and radioactive decay, which have made it popular
for the estimation of effects of radioactive releases (e.g., Arnold et al., 2010 [4]).

STILT was introduced by Lin et al., 2003 [68], and provides numerous innovations that
allow for the development of advanced methods of constraining the strength of sources of
atmospheric trace constituents. One innovation is the “footprint”, a function that computes
the sensitivity of tracer concentrations at a receptor to emissions in the planetary boundary
layer above a source region. Also, the propagation of transport and boundary layer height
errors has been incorporated in STILT to improve the treatment of model uncertainty
[67, 32].
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Since the development of these and the many other Lagrangian transport models the
field has flourished, and the number of published works has grown dramatically [64]. A sig-
nificant community of specialists in Lagrangian modeling has evolved. The community met
in Grindelwald, Switzerland in October 2011 for the Chapman Conference on Lagrangian
Modeling of the Atmosphere. This conference resulted in the publication of the monograph
“Lagrangian Modeling of the Atmosphere” [66], a collection of reviews, application studies,
and theoretical explorations of methodology that provide the state of the science today.
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1.2 Thesis Outlook

This is a manuscript based thesis, comprised of two manuscripts. The first has been
published in the American Geophysical Union’s Geophysical Monograph Series book “La-
grangian Modeling of the Atmosphere”. It has been reproduced here with the expressed
written consent of the American Geophysical Union. The second has been prepared for
submission to The Journal of Geophysical Research-Atmospheres.

Both of these works deal with the application of STILT to the problem of using surface
based ambient air monitoring sites as top-down constraints on sources of atmospheric trace
constituents. When approaching these types of problems we strive to produce predictive
models, and solve for a best estimate of the emissions field by Bayesian inversion.

This is not possible for all of the atmospheric constituents that we may be interested in,
as gaps in the understanding of chemical and physical processes involving the constituent
can prevent a sufficient model from being constructed. Simpler methods are available that
leverage variations in a time series of observations to predict potential source regions. These
methods take the lack of information to an unnecessary extreme, assuming that there is
no scientific understanding of sources and transformations. In the first manuscript of this
thesis, work to improve this situation is presented. A method was derived that writes
a full model for the constituent, replaces poorly understood terms with a variable, then
solves for this variable with a linear regression. The resulting model can be used to predict
source regions, but can also be used to test hypotheses about the regression variables.
In many cases, there are alternate chemical pathways for transformations, and physically
different sources of the constituent. The method was designed to test the significance of
these alternate processes, and quantify their contributions to the observed concentration.

The second manuscript presents a problem where a model amenable to Bayesian in-
version can be developed. Results from this study demonstrate the strength of Bayesian
inversion by providing evidence of an underprediction bias in a bottom-up emissions in-
ventory, and providing constrained emissions with a reduction of uncertainty.
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Chapter 2

Quantitative attribution of processes
affecting atmospheric chemical
concentrations by combining a
time-reversed Lagrangian particle
dispersion model and a regression
approach

Reproduced by permission of American Geophysical Union.

Benmergui, J., Sharma, S., Wen, D. and Lin, J. C., Quantitative Attribution of Pro-
cesses Affecting Atmospheric Chemical Concentrations by Combining a Time-Reversed
Lagrangian Particle Dispersion Model and a Regression Approach, in Lagrangian Mod-
eling of the Atmosphere, (eds J. Lin, D. Brunner, C. Gerbig, A. Stohl, A. Luhar and
P. Webley), DOI: 10.1029/2012GM001254, 2013. Copyright [2013] American Geophysical
Union.
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This chapter is extracted from a paper [8] that was published in the American Geo-
physical Union’s Geophysical Monograph Series book “Lagrangian Modeling of the At-
mosphere”, released 16 April 2013. Co-authors included Sangeeta Sharma, Deyong Wen,
and John C. Lin. Sangeeta Sharma provided the motivation for the modeling experiment.
Measurements and previous modeling work led her to questions about the cycle of methane-
sulfonic acid in the Arctic. Conversations between her and myself led to ideas about how
the STILT model could be applied to answer these questions. She provided input at all
stages of work to ensure a relevant methodology and adequate treatment of chemistry. She
wrote the third paragraph in section 2.2, detailing the measurement of methanesulfonic
acid at Alert. Deyong Wen contributed R and BASH scripts that facilitated the treatment
of deposition in the model. He also helped in the acquisition of MOZART model output
that was used for fields of hydroxyl concentration. John C. Lin contributed greatly to
the development of the methodology, provided leadership, and guided the writing of the
manuscript. All authors contributed to the editorial process of the paper.
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Overview

A framework is presented for analyzing time series of atmospheric constituent measure-
ments with respect to hypothesized processes by combining a Lagrangian particle dispersion
model and a linear regression. This study illustrates the method by using the example of
methanesulfonic acid (MSA) measured at Alert, Canada (82.45◦N, 62.52◦W). The model
is used to compare the seasonal dependence of MSA concentrations at Alert on (1) the
chemical source through oxidation of dimethylsulfide (DMS) by bromine monoxide (BrO)
versus hydroxyl (OH) and (2) emissions of DMS from ice-edge phytoplankton blooms ver-
sus ice-free ocean. A linear regression model is fitted to the measurements, relating them
to sources, transformations, and deposition in the upwind source region, as predicted by
trajectories from a backward in time Lagrangian particle dispersion model. The model in-
cludes explicitly modeled processes as well as terms to be solved through linear regression,
with each term comprised of a variable and the associated regression parameter. Processes
that are modeled as linear regression terms are ones that can be carried out by multiple
mechanisms — e.g., transformation from a precursor by different chemical mechanisms.
Regression parameters for various mechanisms for the same process are compared to de-
termine which are most significant. Predicted concentrations from the regression model
are partitioned into contributions from mechanisms being contrasted for a given process.
The model is used to determine source regions of the target constituent. Model predictions
of MSA at Alert were calculated between January 1981 and December 2006. The model
showed a net under-prediction, but clearly indicated the source regions during the spring
to be primarily ice-free ocean with a significant contribution from ice edge blooms, and
during the summer to be dominated by the ice-free ocean. The model also indicated that
oxidation of DMS by BrO was the dominant source of MSA in the spring, while DMS
oxidation by OH was the dominant source in the summer.
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2.1 Introduction

Lagrangian Particle Dispersion Models (LPDM’s) have been used to analyze concentration
time series of atmospheric constituents since the 1980’s (e.g., [139], [102], [124]). Reviews
of the mathematical and practical basis of LPDM’s can be found in [95], [136], [65], as well
as many papers in this Monograph [38, 64, 122, 135].

Several methodologies have been developed that use LPDM’s to analyze trajectories
from a receptor site. These methods can be contrasted by the required level of prior sci-
entific understanding about sources and atmospheric transformations (i.e., reactions with
other constituents, deposition) of the constituent. If sources are well constrained and
transformations are well understood, then a predictive model of the concentration of the
constituent can be formulated (e.g., [132]). If a prior estimate of source strength can be
constructed, and transformations and atmospheric transport are well understood, then
Bayesian inversion modeling approaches [29, 94, 33, 52] use the concentration of a con-
stituent at a point to provide top down constraints on the estimates of source strength.
However, if knowledge of sources and transformations is insufficient for use in a Bayesian
inversion, then the “potential source contribution function” [6] can be calculated to elu-
cidate regions in the source field that are likely contributing to variations in measured
concentrations. There exists a gap in this spectrum between the Bayesian inversion and
potential source contribution function. If there are hypotheses about which sources are
important contributors to a time series of an atmospheric constituent, but insufficient
knowledge of these sources is available to provide an a priori estimate of fluxes for use in
Bayesian inversion, then a framework to test the hypotheses would be useful. This paper
develops such a modeling framework (Figure 2.1) by combining Lagrangian atmospheric
modeling and a traditional method of hypothesis testing used in the statistics of linear
models.

This method is intended to deduce key processes contributing to the observed concentra-
tion variations of a chemical species. Many earlier studies have compared measurements of
one compound to another to make inferences about chemistry (examples include [103, 89],
and [31]). These methods can provide important insights, but they neglect the fact that
concentrations of an atmospheric constituent are mostly dependent on the history of the
air mass and the processes during that history, prior to arrival at the receptor. Laboratory
experiments have also been used to make inferences about atmospheric processes (cf., [20],
[7], and [22]). These experiments can provide valuable information, such as rate constants
for reactions; however, they do not account for the complexity of the real atmosphere. In
our work, the concentrations of a constituent at a measurement site are correlated with
the history of atmospheric conditions in the airmass through the use of an LPDM.
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In our regression method, a complete model for the concentration of a single atmo-
spheric constituent at a point is constructed, and terms in the model where large uncer-
tainties exist are replaced with linear regression terms. This allows measurements at the
receptor site to be used within a regression to determine the strength and significance of
association for the substituted terms. The regression formulation is useful when there are
multiple mechanisms for individual processes affecting the constituent that, without con-
straints from the presence of sources and reactants in the upwind region, may lead to equal
time series of concentrations. The different mechanisms can be compared to determine the
most relevant in different atmospheric situations.

To test the significance of different mechanisms to the various processes and assess
the validity of model results, the following analyses can be carried out: estimating the
size of the regression coefficients, testing of statistical significance, computing confidence
intervals, applying the Akaike Information Criterion (AIC) [1, 2, 3], and analyzing residuals.
A statistically optimal model can be selected from nested subsets of the model with all
parameters hypothesized to be important. Once the optimal model is achieved, the source
regions can be estimated, and the concentrations can be partitioned into contributions from
various mechanisms for the process of interest. This enables the investigator to determine
the relative contributions from each mechanism to the concentration at the receptor site.

There have been previous studies that correlated atmospheric constituent time series
with properties of airmass trajectories. Simpson et al., 2007 [108] correlated the concentra-
tions of bromine monoxide (BrO) in Barrow, Alaska, USA with the amount of time that a
single particle trajectory spent over surfaces of first year sea ice and “potential frost flower
fields”. Longhetto et al., 1997 [74] correlated carbon dioxide (CO2) concentrations with
average curvature, altitude, and potential temperature of clusters of homogeneous trajec-
tories. In our paper, a methodology is developed that can be used to conduct these types
of studies with a state of the art LPDM, that takes into account the atmospheric transport,
which determines the sensitivity of atmospheric concentrations to surface emissions.

The method developed in this paper is applied to address the importance of ice-edge
phytoplankton blooms to the concentration of methanesulfonic acid (CH3SO3H a.k.a.
MSA) in the High Arctic and the relative importance of oxidation of dimethylsulfide
((CH3)2S a.k.a. DMS) by hydroxyl (OH) and BrO. A regression model for MSA con-
centrations at Alert is calculated for the period between January 1981 and December
2006.
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2.2 Application of Framework: Methanesulfonic Acid

in the Arctic

MSA is a biogenic sulfur aerosol and stable oxidation product of DMS [41]. DMS is emitted
from the ocean by phytoplankton metabolism and decay. The branching ratio of MSA from
DMS oxidation is temperature dependent, but is on the order of 10% in the atmosphere [5].
Although phytoplanktons live in all surface ocean waters, there are blooms of very large
populations along the edge of melting sea ice [98]. This is believed to be due to the influx
of fresh water, nutrients, and exposure to solar radiation as the ice melts. Phytoplankton
blooms along the edge of melting sea ice have been shown to be nearly ubiquitous (occurring
in 77-89% of receding ice regions) by Perrette et al., 2011 [81].

Atmospheric MSA in the Arctic is studied as a proxy for DMS production at lower
latitudes and its transport to the Arctic because it is the most abundant stable oxidation
product of DMS that has no other sources [99]. Sulfate (SO4

2−) is the most abundant
oxidation product, but other sources exist, and so sulfate concentration cannot be used as
a proxy for DMS concentration. Significant scientific interest exists in studying DMS over
the past few decades because its production was hypothesized to act as a negative climate
feedback through increasing cloud albedo [15]. Warmer climate has been shown to increase
DMS production, but the hypothesis of a significant negative feedback has recently been
rejected by a wide ranging body of evidence [86]. MSA concentrations in ice cores continue
to be used as a proxy for sea ice extent, atmospheric patterns and biological activity in the
oceans (e.g., [109]). Variations of MSA concentrations in ice cores have been shown to be
associated with sea surface temperature and sea ice extent [80], and the rate of glaciation
[40, 100]. Recently, an increase in the MSA concentrations at three Arctic locations since
2000, in relation to declining sea ice extent in the Arctic, has been investigated by Sharma
et al., 2012 [107]. This work expressed that further modeling exercises are required to
examine MSA source region contributions and transport mechanisms to the Arctic.

Concentrations of MSA have been measured at Alert, Nunavut, Canada (82.45◦N,
62.52◦W) since 1980 by Li et al., 1993 [63], and Sharma et al., 2012 [107]. Weekly integrated
samples of aerosol particles were collected on 20×25 cm2 Whatman 41D filters with no size
cut; integrated air volumes were approximately 16,000 m3. The filters were cut into eight
equal strips, and one strip was used for MSA analysis. Samples were analyzed for MSA by
ion chromatography [63]. Details of the sampling inlet, handling procedures and chemical
analyses can be found in Li et al., 1993 [63]. The detection limit for MSA measurements
is 0.15 ngm−3. The weekly climatology of MSA concentrations from 1980 to 2009 at Alert
is shown in Figure 2.2.
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Figure 2.2: Weekly climatology of methanesulfonic acid at Alert (ngm−3), Nunavut,
Canada during the years 1980–2009, from measurements by Sharma et al., 2012 [107].

There are two clear peaks in the MSA concentration seasonal cycle. The peaks are
hypothesized to occur due to variations of oxidants that convert DMS into MSA, and the
increase in near-field sources of DMS, related to the retreat of sea ice in the summertime.
The first peak is thought to be caused by an increase in BrO concentrations in the arctic
springtime [78, 107] (the so called “bromine explosion” [133]). The second peak is believed
to occur because sources of DMS are in closer proximity to Alert in the summer. Melting
sea ice allows for phytoplankton growth in the waters that become ice-free, and bloom de-
velopment at the ice-edge could contribute a significant amount of DMS to the atmosphere.
The sea ice minimum usually occurs in September [13, 76].
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2.3 Methodology

A general form of the framework used in this work is given in Equation 2.1. This is a
model for the concentration of an atmospheric constituent, X, at a receptor site, from an
LPDM trajectory with N particles.

X =
1

N

N∑
n=1

[Xinit,n + ∆Xflux,n + ∆Xprec init,n + ∆Xprec flux,n] . (2.1)

There are four contributions to the receptor concentration: Xinit,n, ∆Xflux,n, ∆Xprec init,n

and ∆Xprec flux,n. The concentration of X at the end of the trajectory (the “background”)
is advected to the receptor. The contribution from the background may be diminished due
to deposition and chemical transformations. The resulting contribution is Xinit. There
may be surface fluxes of the constituent along the trajectory ∆Xflux. The portion of con-
stituent contributed by these fluxes also may experience deposition and transformation
along their journey to the receptor site. Furthermore, many atmospheric constituents are
formed by secondary production where other “precursor” species react to form the con-
stituent. It is necessary to include the initial concentrations and fluxes of these precursor
species along the trajectory. The precursor species will also undergo transformations and
deposition in a similar fashion as the target constituent, but these transformations produce
the constituent, and thereby contribute to the receptor concentration. The initial and flux
contributions of the precursor are ∆Xprec init and ∆Xprec flux, respectively.

In order to implement this model, each of the four contributions to the concentration
at the receptor site must be modeled. An LPDM is used to calculate the path of air
parcels arriving at the receptor. In this study the Stochastic Time-Inverted Lagrangian
Transport (STILT) model [68] was used to generate 10 day back trajectories with 1000
particles, driven by National Centers For Environmental Prediction / The National Center
for Atmospheric Research (NCEP/NCAR) Reanalysis meteorological data [50]. Required
inputs to the model are: fluxes of precursors and the target constituent, concentrations
of reactants involved in transformation processes, initial concentrations of the modeled
constituent, and deposition of all species.
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2.4 Fluxes

The flux of a constituent into an LPDM air parcel is dependent on the emission rate at a
given upwind location and time, and the sensitivity of the concentrations at the receptor
site to these upwind emissions. Emission rates are often an external input in the model.
They may be supplied by an inventory or calculated using a parameterization. Some
LPDM’s, including the STILT model adopted in this study, can calculate the footprint –
i.e., the sensitivity of the measurements to fluxes at the surface of the Earth, with units
of ppm/ (µmolm−2 s−1) [68]. The enhancement of a constituent’s concentration in the
trajectory (in units of ppm) is then the product of the footprint and the emission rate (in
units of µmolm−2 s−1).

The emission rate provides an opportunity to introduce a regression variable. It might
be hypothesized that the emission of the constituent or a precursor is dependent on some
characteristic of the Earth’s surface. A map of this surface characteristic can then be
categorized, and the amount of contact between the trajectory and the categorizations
can be used as a variable in the linear regression model. In many cases the emission is
dependent on a transfer velocity for surface-atmosphere interactions. The transfer velocity
can be calculated by parameterizations such as the “piston velocity” formulation [70, 131]
over the ocean and models that include plant stomatal conductance such as the Simple
Biosphere Model [106] over land.

The concentration increment added to the trajectory during a time step i is written
αsWiFi,s. Fi,s is the proportion of footprint falling in the sth land surface categorization
at time step i, in units of ppm/ (µmolm−2 s−1). Wi is the value of the transfer velocity at
time step i, in units of ms−1. The regression parameter for the surface categorization s is
αs, which represents an effective concentration for the emission, in units of µmolm−3.

The only atmospheric source of MSA is oxidation of DMS. There are no direct emis-
sions of MSA from the Earth’s surface. Therefore, only emissions of the precursor DMS
concentration need to be calculated. The emission of DMS from the Earth’s surface can
be categorized into three categories: (1) ice-edge blooms, (2) the ice-free ocean, and (3)
non-emitting surface (i.e., land, sea ice). This is a great simplification as it removes the
heterogeneity of the emission strength of the open ocean and among various blooms, but
allows for tests of significance of ice-edge blooms against the ice-free ocean.
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In order to determine the regions of ice-free ocean and ice-edge bloom, sea ice concentra-
tions derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR),
the Defense Meteorological Satellite Program (DMSP) -F8, -F11 and -F13 Special Sensor
Microwave/Imagers (SSM/Is) [13, 76] were used. This product is a daily percentage sea
ice cover in the Northern Hemisphere, on a 25x25km spatial resolution. In this work,
“ice-free ocean” is defined to be ocean that contains less than 10% surface coverage by sea
ice. Blooms are defined by following the example of Perrette et al., 2011 [81]. An ice-edge
bloom grid cell is defined as one in which there was greater than 10% ice some time within
the last 10 days and that the ice has been present for at least 10 days, and where there is
less than 10% ice for all of the next 10 days. This ensures that any grid cell counted as
a bloom is indeed recently melted ice that had survived long enough to produce the con-
ditions necessary for a bloom. The definition used was qualitatively found to prevent the
advection of ice through a grid cell from being misrepresented as the retreating ice-edge.

The emissions in this model are oceanic, and are thus scaled by an ocean-atmosphere ex-
change parameterization. The piston velocity formulation of Liss and Merlivat, 1986 [70]
is adopted, with sea surface temperatures from National Oceanic and Atmospheric Ad-
ministration (NOAA) Optimum Interpolation [91] and surface winds from NCEP/NCAR
Reanalysis [50]. This parameterization relates the rate of emission of any constituent to
the wind speed, sea surface temperature and the concentration of the constituent in the
surface ocean relative to the atmosphere. The flux of DMS into the atmosphere for each
of the two categories is then calculated as the product of the regression parameter (αbloom
or αice free), the STILT footprint (Fi,bloom or Fi,bloom), and the piston velocity (Wi).
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2.5 Deposition

All contributions to the concentration at the receptor site must be decreased by the fraction
of the initial contribution that undergoes deposition. The rate of deposition for a given
species can often be calculated by the LPDM. This feature is included in the HYbrid Single
Particle Lagrangian Integrated Trajectory (HYSPLIT) model [23]. HYSPLIT can be used
to calculate an exponential deposition rate υ. The amount of a constituent X remaining
from an initial value X0 after a time ∆t is X = X0e

−υ∆t. For any contribution to the
concentration at the receptor site, the deposition must be calculated as a fraction of the
initial concentration surviving transport from the time of emission to the time that the
trajectory meets the receptor site. When deposition is included, the concentration of a
constituent contributed by fluxes from surface s at time step I, with previous time steps i
of length ∆ti is αsWiFi,se

∑I
i=1−υi∆ti .

Since STILT was based originally on the HYSPLIT model, it contains many core fea-
tures of HYSPLIT. For the MSA example, the deposition rate was calculated with a HYS-
PLIT subroutine within STILT. MSA exists in both marine and continental air masses
with particulate diameters ranging between 0.1 and 10µm [87]. Wyslouzil et al., 1991 [140]
showed that the peak in the particle number diameter distribution varied with nucleation
rate, but was always on the order of 1 µm. A single number is required by the HYSPLIT
subroutine of STILT, so a value of 1µm was assumed. The dry deposition velocity Vdry
can be estimated as a function of the mass mean diameter D as Vdry = 0.388(D)0.76 [77].
Kerminen et al., 1997 [54] measured the mass median diameter of MSA in the Arctic at-
mosphere to be 0.28µm, giving a deposition velocity of 1.47× 10−4ms−1. The deposition
scheme resulted in an atmospheric lifetime of MSA that ranged from 12 hours in the win-
ter to 48 hours in the summer, with a mean of 24 hours. This calculated lifetime is too
short when compared against the globally averaged lifetime of 7 days for MSA as predicted
by Chin et al., 2000 [16], and so a scale correction was implemented to extend the mean
lifetime of MSA to 7 days.
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2.6 Reactions and Initial Concentrations

Chemical transformations provide a second opportunity to introduce a regression param-
eter. This regression requires the rate of any reactions in the form of a second order rate
constant. Let Cp be the concentration of the pth of P precursors (i.e., DMS in the MSA
example), Cm,i be the concentration of the mth out of M reactant species that transforms
the precursor into the target constituent (i.e., OH or BrO in the MSA example) at time
step i. Let βm be the rate constant for the reaction, multiplied by the branching ratio to
give a constant for the production rate of X from Cp. Then,

dXprec

dt
=

M∑
m=1

βmCpCm,i. (2.2)

Equation 2.2, along with the initial condition Xprec (t = 0) = 0 gives the concentration
of X contributed from the precursor. For fluxes of the precursor at the time step i, this
differential equation has the solution:

Xprec = Cp

I∑
i=1

M∑
m=1

βmCm,i∆ti. (2.3)

Similarly, the remaining concentration of the target constituent, Xrem, from the portion
XI released at time step I, after reactions with the mth of M reacting compounds Cm is:

Xrem = XI

(
1−

I∑
i=1

M∑
m=1

−βmCm,i∆ti

)
. (2.4)

Chemical removals of the target constituent created from the precursor are not taken
into account in this model, since the target constituent is assumed to be stable.

The concentrations of the target constituent and any precursors may be added at the
end of the trajectories (the initial concentrations). A three-dimensional global chemical
transport model such as the Goddard Earth Observing System Chemical Model (GEOS-
Chem) [9] can be used to generate the required concentration fields. If the atmospheric
lifetime of the constituent with respect to chemical removal, wet and dry deposition less
than the duration of the trajectory, then the background concentration can be neglected.
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For the MSA example, oxidation of DMS by BrO and OH that partially results in
MSA was modeled. OH concentrations were taken from the Model for OZone And Related
chemical Tracers (MOZART) [44], and BrO concentrations were taken from the parallel
Toulouse Off-line Model of Chemistry And Transport (p-TOMCAT) [59, 141]. Both of
these products provide global time-varying three dimensional fields of concentration.

Table 2.1: Explanations of Symbols Used in Equations.
Symbol Explanation
X Concentration of the constituent.
Xinit Contribution to X from initial concentration of X.
∆Xflux Contribution to X from fluxes of the constituent.
∆Xprec Contribution to X from initial concentration of precursors.
∆Xprec flux Contribution to X from fluxes of precursors.∑N

n=1 The sum across the N LPDM particles of index n.∑I
i=1 The sum across I LPDM time steps of index i.∑i
j=1 The sum across time steps j less than or equal to the time step i.∏I
i=1 The product across I time steps of index i.∑M
m=1 The sum across M reactant species of index m.∑S
s=1 The sum across S surface categorizations of index s.∑P
p=1 The sum across P precursor species of index p.

∆ti The length of the ith time step.
υi The total (wet + dry) exponential rate of deposition at time step i.
Cp,i The concentration of the pth precursor species at time step i.
Cm,i The concentration of the mth reactant species at time step i.
Wi The scaling from the surface-atmosphere parameterization at time step i.
Fi,s The footprint residing in surface categorization s at time step i.
αs The regression parameter for the effect of surface categorization s.
βm The regression parameter for the effect of the mth reactant species.
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2.7 Model Synthesis

Combining the results of Sections 2.3 to 2.6, a general model with the form of Equa-
tion 2.1 can be created. The model for each contribution is shown in Equations 2.5 to
2.8. Each contribution is written in the form (precursor or constituent concentration) ×
(chemical reactions)× (deposition). Table 2.1 provides a summary of the explanations for
each symbol used in these equations.

Xinit = XtI

(
I∑
i=1

M∑
m=1

−βmCm,i∆ti

)(
I∏
i=1

e−υi∆ti

)
. (2.5)

∆Xflux =
I∑
i=1

[(
S∑
s=1

αsWiFi,s

)(
i∑

j=1

M∑
m=1

−βmCm,j∆tj

)(
i∏

j=1

e−υj∆tj

)]
. (2.6)

∆Xprec init =
P∑
p=1

[
Cp,I

(
i∑

j=1

M∑
m=1

βmCm,j∆tj

)(
I∏
i=1

e−υi∆ti

)]
. (2.7)

∆Xprec flux =
I∑
i=1

[(
P∑
p=1

S∑
s=1

αs,pWiFi,s,p

)(
i∑

j=1

M∑
m=1

βmCm,j∆tj

)(
i∏

j=1

e−υj∆tj

)]
. (2.8)

This model becomes linear with respect to the regression parameters when the variables
are multiplied out and the appropriate substitutions are made. Anywhere a term is the
product of two regression parameters α and β, a new regression parameter can be substi-
tuted and solved. If only one process affects X (i.e. chemical reactions or surface fluxes,
but not both) then this is not necessary. When a new regression parameter is substituted
in place of a product the α and β can no longer be solved independently.

When applying Equations 2.5 to 2.8 to the specific example of MSA, the following
Equations (numbered 2.9 to 2.13; see below) are derived. The initial concentrations of
MSA and DMS can be assumed to be zero, since the sum of the lifetimes are shorter than
the trajectory duration (10 days), and the direct surface flux of MSA is zero for both bloom
and ice-free ocean.

Xinit = 0. (2.9)

∆Xprec init = 0. (2.10)

∆Xflux = 0. (2.11)
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DMS is emitted from blooms and the ice-free ocean and then oxidized to MSA by OH
or BrO. The following equation gives the contribution from the precursor flux. The only
precursor species is DMS, so for brevity the subscript p for precursor type is dropped.

∆Xprec flux =
I∑
i=1

[
(αbloomWiFi,bloom + αice freeWiFi,ice free)

×
i∑

j=1

(βOHCOH,j∆tj + βBrOCBrO,j∆tj)

(
i∏

j=1

e−υj∆tj

)]
.

(2.12)

Writing this into the general model for MSA concentration:

MSA =
1

1000

1000∑
n=1

I∑
i=1

[
(αbloomWiFi,bloom,n + αicefreeWiFi,icefree,n)

×
i∑

j=1

(βOHCOH,j,n∆tj + βBrOCBrO,j,n∆tj)

(
i∏

j=1

e−υj,n∆tj

)]
.

(2.13)

The regression parameters that are solved in this model are αIceFree × βOH , αBloom ×
βOH , αIceFree × βBrO and αBloom × βBrO. The individual α’s and β’s cannot be solved
independently.
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2.8 Interpretation of Regression Results

A synthesis of the methods used for analyzing linear regression models can be found in
McCullagh et al., 1989 [75]. Relevant analyses are the estimation of coefficients, test
of statistical significance, the computation of confidence intervals and residual analysis.
When deciding which regression parameters are necessary, and which might be left out of
the model, Akaike’s Information Criterion (AIC) [1, 2, 3] can be employed. AIC is defined
as 2k−2ln(L), where k is the number of regression parameters and L is the maximized value
of the likelihood function for the regression model. AIC analysis is conducted by removing
one parameter from a model and comparing the AIC value. If removing the parameter
from the model lowers the AIC, then the model is better parameterized by removing that
regression term. A statistically optimum model has the lowest possible AIC. AIC is a
relative measure among nested models; a single score is meaningless by itself.

Once the regression parameters are estimated, a predicted value for the constituent’s
concentration at the receptor site can be calculated using the regression model. These pre-
dicted concentrations should be compared to the measured concentration to assess whether
the model captures the magnitudes and variability of the measured time series. A plot of
residuals versus the fitted values of the model illustrates whether or not the model is well
parameterized, and if the assumption that the model is linear is appropriate. The residuals
should be normally distributed with a mean of 0 and standard deviation of 1, and should
show no trend with the fitted values.

The regression parameters can be used to partition the concentration that arrives at
the receptor site into contributions from different land surfaces or different chemical mech-
anisms. Each contribution to the predicted concentration can be calculated independently
and then the results compared to each other. For instance, to partition the chemical
mechanisms, set βm = 0 for all but a single m, then calculate the predicted concentration.
Repeat this for each m and the result will be a partitioning of concentration changes due to
different m’s. This analysis determines which processes are most important in controlling
the constituent concentration at the receptor.

The estimated regression parameters can be used for the estimation of source regions.
The footprint of the trajectory can be scaled by the amount of the constituent that is
associated with that trajectory. The footprint can be separated into segments created
during discrete time intervals within the duration of the trajectory. Each of these segments
is scaled by the amount of deposition and the transformation processes that create and
destroy the constituent. The scaled footprint represents a spatial plot of the contributions
to the predicted concentrations.
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2.9 Results of MSA Analysis

A time series of the model inputs was constructed, and then separated by the month of
the year in order to account for seasonal variability in the productivity of the sources and
temperature dependence of reactions. A linear regression was fitted and analyzed for each
month using the R software package [21]. The model was calculated for the period January
1981 to December 2006.

Table 2.2 shows a summary of the linear regression coefficients for May and August,
the months when there are peaks in the concentration observed at Alert (Fig. 2.2). Table
2.3 shows the AIC analysis for May and August. In May, all parameters except for BrO
oxidized emissions from the open ocean were significant (p ≤ 0.05). The AIC analysis
showed that the statistically optimal model for predicting MSA concentration in May
excluded only BrO oxidized emissions from the open ocean. In August, both parameters
involving the ice-free ocean were significant, and both parameters involving blooms were
insignificant (p > 0.05). The AIC analysis showed that the statistically optimal model
for predicting MSA concentration in August included emissions from the ice-free ocean,
oxidized by OH or BrO.

Table 2.2: Regression Coefficients and Wald Tests of Significance for methanesulfonic
acid Regression Model for May and August. “Ice-Free” is the variable for ice-free ocean
dimethylsulfide emissions, “Bloom” is the variable for phytoplankton bloom dimethylsul-
fide emissions, “OH” is the variable for oxidation by hydroxyl, and “BrO” is the variable
for oxidation by bromine monoxide. ? signifies a regression variable that is significant at a
p-value of p ≤ 0.05.
Factor Estimate Std. Error t value Pr (Z(0, 1) > |t|)
May
Ice-Free, OH 5.614× 109 1.117× 109 5.027 2.11× 10−6?
Bloom, OH −1.245× 1011 5.232× 1010 −2.380 0.0192?
Ice-Free, BrO 5.252× 10−5 1.628× 10−3 0.032 0.9743
Bloom, BrO 2.045 4.807× 10−1 4.255 4.61× 10−5?
August
Ice-Free, OH 2.701× 109 5.120× 108 5.275 7.38× 107?
Bloom, OH 7.115× 1010 4.459× 1010 1.596 0.1136
Ice-Free, BrO 2.630× 10−3 1.165× 10−3 2.258 0.0260?
Bloom, BrO −2.184× 10−2 1.150× 10−1 −0.190 0.8498
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Table 2.3: Akaike Information Criterion For a Series of Nested MSA Regression Models,
for May and August. Variables in this table are described fully in text. ? signifies the
statistically optimal model for each month
Model AIC
May
αIceFree × βOH , αBloom × βOH , αIceFree × βBrO, αBloom × βBrO 838
αIceFree × βOH , αIceFree × βBrO, αBloom × βBrO 841.7
αIceFree × βOH , αBloom × βOH , αIceFree × βBrO, 853.3
αIceFree × βOH , αBloom × βOH , αBloom × βBrO 836?
αBloom × βOH , αIceFree × βBrO, αBloom × βBrO 859.4
αBloom × βOH , αBloom × βBrO 861.8
αIceFree × βOH , αIceFree × βBrO 851.4
αIceFree × βOH , αBloom × βBrO 840.1
αIceFree × βBrO, αBloom × βBrO 857.6
August
αIceFree × βOH , αBloom × βOH , αIceFree × βBrO, αBloom × βBrO 762.2
αIceFree × βOH , αIceFree × βBrO, αBloom × βBrO 762.8
αIceFree × βOH , αBloom × βOH , αIceFree × βBrO, 760.3?
αIceFree × βOH , αBloom × βOH , αBloom × βBrO 765.4
αBloom × βOH , αIceFree × βBrO, αBloom × βBrO 785.8
αBloom × βOH , αBloom × βBrO 789.2
αIceFree × βOH , αIceFree × βBrO 760.9
αIceFree × βOH , αBloom × βBrO 765.7
αIceFree × βBrO, αBloom × βBrO 796.8

Residuals (observed - predicted) of the regression model are plotted in Figure 2.3. The
residuals of this model have a standard deviation of 6.17, and a mean of 3.31, suggesting
that the model has an under-prediction bias. The residual plot has a slope of -0.44 and an
intercept of 4.47 (R2 = 0.10). A climatology of the residuals is plotted in Figure 2.4. The
climatology of the residuals shows that the under-prediction occurs mostly at the peaks
in MSA concentration. To help understand this result, the measured and model predicted
MSA concentrations at Alert for the year 2006 were plotted (Figure 2.5). Peaks in the
measured concentration do not always correspond in time to peaks in the predicted MSA
concentration. We speculate that this is a result of transport error created by errors in
the wind fields that drive the LPDM. The paucity of observations and presence of extreme
conditions in the Arctic can produce erroneous values in the wind fields of reanalysis data
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[27]. Other sources of error to the model that could have contributed to the lack of fit
include: (1) uncertainty in the input concentration fields of reactant species, (2) failure
of assumptions about the form of chemical processes, (3) error in the parameterization of
atmosphere-sea exchange and uncertainty in the wind fields and sea surface temperatures
used to calculate it, (4) uncertainty and aggregation error in the sea ice concentration fields,
(5) error in the parameterization used to define blooms and failure of the assumption that
blooms are ubiquitous at the receding ice-edge, (6) heterogeneity in the production of
DMS in the open ocean and among blooms and (7) small amounts of MSA produced from
continental water bodies and waters in the ice-pack where ice concentration is greater than
10% that were assumed negligible. Quantification of these errors is beyond the scope of
this paper.

Figure 2.3: Residual (observed - predicted (ngm−3)) plot for methanesulfonic acid regres-
sion model.
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Figure 2.4: Annual climatology of residuals (observed - predicted (ngm−3)) for the
methanesulfonic acid regression model during the years 1981–2006.

Figure 2.5: Model predicted and measured methanesulfonic acid (ngm−3) at Alert for
2006.
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The weekly climatology of MSA at Alert, as predicted by the model (Figure 2.6) shows
that the model roughly replicates the double-peak pattern of the measured climatology.
Since the model reproduces the seasonal pattern of the MSA concentration time series,
inferences can be made about the relative strength of the sources.

Figure 2.6: Climatology of methansulfonic acid (ngm−3) at Alert, Nunavut, Canada as
predicted by regression model during the years 1981–2006.

The predicted climatology of MSA was partitioned into mean contributions from ice-
edge blooms versus ice-free ocean, and by oxidation by BrO versus OH. Figure 2.7 shows
the partitioning of the predicted MSA into contribution from oxidation of DMS by BrO
versus OH. The mean proportion of model predicted MSA that was created by oxidation
by OH was 76%, while that created by oxidation by BrO was 24%. Oxidation by BrO
dominated during the spring, with a maximum of 95% of the model predicted MSA being
oxidized by BrO. This is evidence that the extra strength of the first peak might be caused
by the extra oxidation by BrO, as hypothesized. Figure 2.8 shows the partition of the mean
predicted concentration into ice-free ocean and ice-edge blooms. The mean proportion of
model predicted MSA that was created from DMS emitted from the ice-free ocean was
94%, while that created by DMS emitted from blooms was only 6%. Emissions from
blooms became more important during the spring, with a maximum of 37% of the model
predicted MSA being created from DMS emitted from blooms.
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Figure 2.7: Stacked bar plot climatology of methanesulfonic acid (ngm−3) at Alert,
Nunavut, Canada during 1981–2006, as predicted by regression model, showing partition-
ing between contributions from hydroxyl (OH) and bromine monoxide (BrO) Oxidation.

Figure 2.8: Stacked bar plot climatology of (ngm−3) at Alert, Nunavut, Canada during
1981–2006, as predicted by regression model, showing partitioning between contributions
from dimethylsulfide emissions from ice-edge blooms and the ice-free ocean.
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Figure 2.9 shows the mean across all model years (1981–2006) of the distribution of
regions contributing MSA to Alert for the months of May and August; the months where
there are peaks in the concentration of MSA at Alert. The STILT footprint was separated
into 12 hour time intervals, and the averages for each regression variable in the model are
calculated for each time interval. The model was then reconstructed in each time interval
to yield the spatial distribution of sources. The seasonal differences are clearly evident,
as in August there are indeed sources that are much closer to Alert, especially in the
Davis Strait (located between Greenland and the Canadian Archipelago), and in the many
channels within the Canadian Archipelago. In May there are several regions at the edge
of the sea ice extent that show strong sources. These are regions where the emissions are
elevated by the presence of ice-edge phytoplankton blooms.
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Figure 2.9: Mean spatial contributions of methanesulfonic acid (ngm−3) to Alert, Nunavut,
Canada in May and August 1981–2006, as predicted by regression model.
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2.10 Discussion

The use of a regression type model based on a time-reversed Lagrangian particle dispersion
model has been demonstrated to have utility in making inferences about processes affecting
atmospheric chemical concentrations at a measurement site (Fig. 2.1). The method was
driven by two motivations: (1) to improve upon knowledge of the chemical transformations
of a constituent when there is an intermediate level of scientific understanding to that
required by the potential source contribution function method and Bayesian Inversion,
and (2) to combine observations of the real atmosphere with knowledge of airmass history
to determine the processes important to the concentration at the measurement site.

This method was applied to concentrations of MSA measured in the High Arctic at
Alert, Nunavut, Canada. The linear regression model reproduced the seasonal cycle of
MSA in Alert, but had a significant under-prediction bias. The reproduction of the sea-
sonal cycle allowed inferences to be made about the relative strength of the sources. The
relative importance of DMS emissions from ice-edge phytoplankton blooms and the ice-free
ocean, as well as their oxidation by OH and BrO, to concentrations of MSA at Alert were
compared. It was seen that the ice-free ocean was the dominant source of MSA, represent-
ing 94% of the model predicted MSA at Alert. Ice-edge blooms were important for the
spring peak in MSA concentration, contributing up to 37% to the median climatology of
MSA contributions for a single week. It was also seen that MSA was created primarily by
the oxidation of DMS by OH, accounting for 76% of the model predicted MSA at Alert.
During the peak in the spring BrO was the dominant oxidant, and was responsible for up
to 95% of the MSA for a single week in the median contribution climatology. Spatial plots
of MSA sources contributing to concentrations at Alert were created that illustrated the
strong sources associated with blooms at the ice-edge in May, and a dramatic increase in
near-field open ocean sources in August.
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Chapter 3

Inverse analysis of elemental carbon
aerosol in northern China: Evidence
of an underprediction in bottom-up
emissions

This chapter is adapted from a paper that is to be submitted to the Journal of Geophysical
Research-Atmospheres. Co-authors on the paper include John C. Lin, Lin Huang, Qiang
Zhang, Sicong Kang, and Myung Gwang Kim. Lin Huang provided the scientific motivation
for the study. Samples of elemental carbon that were collected at Tsinghua University were
analyzed in her lab at Environment Canada. These measurements were well suited to be
used in an inversion framework to constrain the very uncertain emissions of black carbon in
northern China. Qiang Zhang and Sicong Kang provided bottom-up emissions inventories
that served as a priori estimates. Myung Gwang Kim provided assistance and R scripts
that aided in the evaluation of transport and boundary layer height errors. John C. Lin
provided leadership and training in the use of STILT and Bayesian inversion, and aided in
the editorial process.
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Overview

Atmospheric concentrations of elemental carbon aerosol were measured on weekly inte-
grated filter samples collected at Tsinghua University in Beijing (40.00◦N, 116.33◦E) from
1 January 2006 through 31 December 2008, and used as top-down constraints on a bottom-
up emissions inventory with a Bayesian inversion technique. Model predicted elemental
carbon concentrations were calculated using a spatially resolved emission inventory, air par-
cel trajectories from the Stochastic Time-Inverted Lagrangian Transport (STILT) model,
background concentrations from the Goddard Earth Observing System Chemical Transport
Model (GEOS-Chem), and modeled removal processes. Scaling factors for the magnitude
of emissions were derived, and an uncertainty analysis was performed. Results showed
that emissions of elemental carbon in northern China were likely underpredicted by the
bottom-up inventory. The severity of the underprediction increased during the winter
months, coinciding with the increased use of coal for residential heating, suggesting that
the portion of the inventory attributable to residential coal use was underestimated. An
apparent interference by emissions outside of the domain obfuscated results for the early
summer emissions scaling, resulting in poorly constrained emissions during this period.
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3.1 Introduction

Black carbon has a major effect on the climate system through direct absorption of solar
radiation, influence on cloud properties, and the reduction of snow/ice albedo. Bond et
al., 2013 [10] recently estimated the net global mean climatic forcing of industrial era black
carbon in the year 2000 as +1.1 W m−2 with 90% uncertainty bounds of (+0.17, +2.1).
Estimates from previous studies ranged from +0.4 to +1.4 W m−2 [42, 47, 17, 101, 88], and
the Intergovernmental Panel on Climate Change, 2007 [110] estimated the total industrial
era forcing as +0.44 W m−2 with 90% uncertainty bounds of (+0.09, +0.79). The estimate
of Bond et al., 2013 [10] places black carbon as the second most important agent of global
anthropogenic climate forcing, behind only carbon dioxide. With an atmospheric lifetime
on the order of days to weeks [73, 111, 88], elemental carbon aerosol emission reductions
would likely be quick to yield reductions in the anthropogenic climate forcing [62].

Elevated black carbon concentrations are also known to cause adverse health effects
in humans. Short term elevations in atmospheric black carbon concentrations have been
shown to increase rates of cardiovascular and all-cause mortality, and cardiopulmonary
hospital admissions [48]. Black carbon is not itself toxic or carcinogenic, but can increase
the bioavailability of carcinogenic compounds by carrying and depositing them into the
respiratory system [126, 118].

China’s State Council has recently approved its first national standard for limiting the
amount of fine particulates in the atmosphere [144]. A major component of the urban
fine particulate aerosol is black carbon. Efforts to reduce particulate pollution are likely to
reduce black carbon as well, both improving the health of the local population and reducing
the anthropogenic radiative forcing. A thorough understanding of existing emission sources
is necessary in order to make targeted emissions reductions. Black carbon emissions from
northern China have been identified as some of the strongest in the world [11].

In this study we used the Stochastic Time-Inverted Lagrangian Transport (STILT)
model [68], a Lagrangian particle dispersion model, and elemental carbon measurements
from weekly integrated fine aerosol at Tsinghua University, Beijing, from 1 January 2006
through 31 December 2008 in a Bayesian inversion analysis to constrain bottom-up inven-
tory estimates of black carbon emissions in northern China [145].

The terms “elemental carbon” and “black carbon” are often used synonymously in
the literature on carbonaceous aerosols. There is an important distinction, as each is
operationally defined by different measurement methodologies. Elemental carbon is defined
by its thermal refractory property and measured as a mass concentration. Black carbon
is defined by an optical property, i.e., measured as light absorption, and related to a
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mass concentration by a mass attenuation coefficient. The relation between the mass
concentration of black carbon and elemental carbon concentration in a given sample are
generally close to one-to-one, except in the case when there are significant concentrations
of dark organic carbon [90]. Also, methods are not standardized, and so differences exist
between the results of measurements of elemental carbon or black carbon carried out at
different sites.

Measurements utilized in this study were of elemental carbon, but many of the model
inputs were reported in the literature as relating to black carbon. We assumed that model
inputs relating to black carbon are valid for the prediction of elemental carbon. In most
cases this is exactly true, as black and elemental carbon are used synonymously in the
literature describing the model inputs. In the model description we followed the source
literature in describing parameters as relating to black or elemental carbon.

The global black carbon modeling literature reports a ubiquitous underestimate in
model predicted surface concentrations in East Asia [57]. This may be partially explained
by an inadequate representation of the effects of internal mixing on the optical properties
of atmospheric aerosol, but a major component of the underestimate must be due to under-
prediction of the atmospheric burden of black carbon by either underpredicting emissions
or overpredicting removal processes [10]. Since measurements of elemental carbon were
used in our study, we avoided having to consider any optical properties of the aerosol and
were left to focus on the component relating to the atmospheric burden. Furthermore, the
site of measurement is in close proximity to sources, limiting the effect of biases in the
modeling of removal processes.

Bottom-up inventories of black/elemental carbon emissions in China have reported
large uncertainties, with ranges as large as (-100%, +500%) [117, 11, 145, 60, 147]. A
major source of uncertainty is difficulty in quantifying emission factors from the use of coal
for residential cooking and heating. The emission factor for coal is highly dependent on
both the coal type and preparation. Bituminous coal has a much higher emission factor
than anthracite coal, and raw coal stones have a much higher emission factor than coal
processed into briquettes. The emission factor for raw, bituminous coal can be as large
as 500 times the emission factors for anthracite coal briquettes. The fractions of coal
types and preparations are poorly constrained, leading to the large uncertainties in the
emission factors. In the region that we analyzed emissions were dominated by residential
coal use, comprising 55% of the bottom-up emissions estimate [145]. Differences between
the bottom-up emissions estimates and the inversion retrieval were likely caused by biases
in the bottom-up estimates of residential coal emissions.
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Top-down constraints have been applied to black carbon concentrations in the vicinity
of Beijing in the past. Wang et al., 2011 [130] examined the ratio of black carbon to
the trace gasses CO, CO2, NOy, and SO2 from April to October of 2010. By analyzing
measurements with air parcel trajectories from the HYbrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT) model they found that residential coal use must either
have a smaller total share of black carbon emissions than predicted in the Zhang et al., 2009
[145] inventory, or the total emissions must have a lower than predicted BC/CO emission
ratio. They suggested that the industrial and transportation sectors may be the primary
source of black carbon to Beijing, in contrast to the predictions of the bottom-up inventory.
The time frame that was studied in this work did not include the winter residential heating
season, which limited the ability of the study to make inferences on the impact of residential
coal. Also, the use of a single particle trajectory model may have over-simplified transport
processes and led to a poor constraints on potential source regions.

Hakami et al., 2005 [39] conducted a four-dimensional variational data assimilation
study to constrain emissions of black carbon during the Asian Pacific Regional Aerosol
Characterization Experiment. By applying the adjoint version of the STEM-2k1 model
with a bottom-up inventory from Streets et al., 2003 [117], they found model assimilated
emissions of black carbon in northeastern China that were 74% higher than a priori values.
This study used direct mass concentration observations of black carbon from several sites,
and with a high time resolution. This study only analyzed the month of April 2001, and
so extrapolations to analyze the annual emissions budgets are not possible.

Schutgens et al., 2012 [104] applied a fixed-lag Kalman smoother to constrain aerosol
emissions in the MIROC-SPRINTARS global aerosol model, with top-down constraints
from aerosol optical thickness (AOT) measurements from the MODIS Terra AOT over
oceans and AERONET AOT over land. They found that global emissions of carbonaceous
aerosol are underpredicted by 64%. This work is dependent on the relationship between
the mass concentration of black carbon and the AOT, which is poorly understood and has
been an ongoing research goal of the black carbon modeling community [10].

The data and model that were available for the current study permitted an analysis
of a region that is important to the global burden of elemental carbon. They included
both the heating and non-heating seasons, allowing for the interpretation of differences
between the seasons with relation to differences in fuel usage. The use of elemental carbon
measurements allowed for a direct analysis of the atmospheric burden, without having to
consider the relationship between mass concentrations and aerosol optical properties. The
use of the STILT model in our study allowed us to attribute variations in concentrations
directly to emissions. The present study therefore provided an inversion with a temporal
coverage and spatial targeting in a manner that previous studies have not achieved.
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3.2 Inverse Modeling Framework

Bayesian inversion frameworks have been applied to Lagrangian particle dispersion models
many times in the past by a variety of authors, (e.g., [69, 28, 114, 147, 120, 53, 66]).
Rodgers, 2000 [96] provides a detailed review of the subject. Here we present only the
aspects relevant for the application to the problem at hand.

The methodology is based on the linear relationship between the observation vector y
and the vector of quantities λ to be inverted for:

y = Kλ+ b + ε. (3.1)

In this study, the vector y represents measured concentrations of elemental carbon.
The vector λ represents scaling factors applied to emissions within the modeling domain.
Solving for an optimized estimate of λ, λ̂, was the goal of this study. The vector b
is the background concentration — the concentration of elemental carbon at the site of
measurement that originated from outside of the spatial or temporal domain of the model.
The matrix K represents the STILT model predicted influence of emissions within the
modeling domain, accounting for the effects of transport and deposition. Each column
of K corresponds to a grid cell in the emissions data, and each row corresponds to a
time represented by an element of y. The vector ε is the uncertainty associated with the
prediction of y by the model, including uncertainties in the measurements. The uncertainty
covariance matrix associated with ε is denoted Sε.

To a close approximation, the model responds linearly to uniform scaling of the emis-
sions. There is one deviation from linearity; an increase in emissions will increase the
coagulation of particulates, increasing the sensitivity to wet deposition (see Section A.1.2).
We can write K ≈ KEdiag (φ), where φ is a vector of emission strength and KE is a
matrix representing transport and removal processes.

λa, the a priori value of λ, is a vector with all entries equal to 1. This represents no
scaling of the a priori emissions estimates. There is an associated uncertainty covariance
matrix, Sa.
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A posteriori values of λ are given by:

λ̂ = λa + G (y − b−Kλa) . (3.2)

Where G is the gain matrix, given by:

G = SaK
T
(
KσεK

T + Sa
)−1

. (3.3)

And the a posteriori uncertainty covariance matrix is:

Ŝ =
(
KTSε

−1K + Sa
−1
)−1

. (3.4)
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3.3 A Priori Emissions Estimates

A Priori emissions estimates were taken from Zhang et al., 2009 [145]. These are bottom-up
estimates, spatially resolved at 0.5◦ × 0.5◦ and temporally resolved at one month.

The measurement site at Tsinghua University was in close proximity to an area of high
emissions intensity, making modeled elemental carbon concentrations particularly sensitive
to potential errors associated with coarse resolution [51, 34]. To reduce this error, emissions
in each 0.5◦×0.5◦ grid cell were distributed according to 0.1◦×0.1◦ coal consumption data
from Lei et al., 2011 [60]. Magnitudes of emissions from Lei et al., 2011 [60] were not used
directly as a priori emissions estimates because the dataset contained only fuel usage data,
and did not relate the fuel usage to emissions of elemental carbon. A time series of the
magnitude of total emissions in the domain is shown in Figure 3.1, and a map showing the
spatial distribution of the mean emissions for the period is shown in Figure 3.2.

Zhang et al., 2009 [145] reported uncertainties in the bottom-up black carbon emissions
for all of China as having a standard deviation of ±104%. This was used in our study as
the uncertainty in individual elements of of the a priori emissions estimate. Uncertainty
covariance was calculated with a spatial decorrelation length scale, D, so that the un-
certainty covariance between gridcells i and j, separated at their centers by a distance d
would be Sai,j =

√
var(i)var(j) exp (−d/D). D was found by following the suggestion of

Gerbig et al., 2006 [33]; by calculating the a posteriori model predicted elemental carbon
concentrations using a range of estimates of D, and choosing the value where the reduced
Pearson χ2 statistic approached 1. This resulted in a value of D = 50 km (see Fig. 3.3).

Figure 3.1: Total black carbon emissions in the northern Chinese domain shown in Figure
3.2, as predicted by the bottom-up inventory of Zhang et al., 2009 [145].
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Figure 3.3: Reduced Pearson χ2 statistic comparing a posteriori STILT model predictions
of elemental carbon concentrations at Tsinghua University (40.00◦N, 116.33◦E) to con-
centrations measured on weekly integrated PM2.5 filter samples with the EnCan-total-900
thermal method, as a function of a priori uncertainty decorrelation length scale. The ideal
χ2 statistic is equal to 1. The decorrelation length scale where the χ2 statistic is closest to
1 (50 km) is assumed correct.
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3.4 Measurements

Samples of PM2.5 were collected on weekly integrated quartz fiber filters with a 4.25 cm
radius and 77.56 Lmin−1 flow rate at Tsinghua University in Beijing (40.00◦N, 116.33◦E)
from 1 January 2006 through 31 December 2008. The filter samples were shipped to the
Stable Isotope Research Lab at Environment Canada’s Atmospheric Science and Technol-
ogy Directorate in Toronto, where they were analyzed for elemental carbon concentrations
with the EnCan-total-900 thermal method [14], on a Sunset Laboratories thermal-optical
semi continuous OC/EC analyzer. A time series of the measurements are shown in Figure
3.4.

Figure 3.4: Measurements of elemental carbon aerosol concentration from weekly integrated
PM2.5 filter samples collected at Tsinghua University during the period 1 January 2006
through 31 December 2008. Concentrations were measured by the Stable Isotope Research
Lab at Environment Canada with the EnCan-total-900 thermal method.
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3.5 Simulating Elemental Carbon Concentrations

The model used to simulate elemental carbon concentrations in the inversion framework
is given by Equation 3.1. This is a model relating the concentration of elemental carbon
measured at Tsinghua University (the “receptor”, or “measurement site”) to emissions and
deposition on a regional scale, and the background concentration. This section describes
the algorithm used to calculate model estimates of elemental carbon concentrations. Each
component of the model is described in Sections 3.5.1 through 3.5.4, with the details of
calculation contained in the appendices.

Ensembles of 500 STILT air parcel trajectories were traced backwards in time for a
duration of 5 days, initialized at Tsinghua University in Beijing (40.00◦N, 116.33◦E, 7
m above ground level) twice daily (noon and midnight, local time) from 1 January 2006
through 31 December 2008. The model was driven by meteorological fields from the Global
Data Assimilation System (GDAS1), which are resolved at a 1◦× 1◦ spatial resolution and
represent instantaneous conditions at 3 hour time intervals. The trajectory of any particle
which left the domain of emissions (regions of specified emissions in Fig. 3.2) prior to 5
days was truncated. On average 99.77% of the particles in an ensemble exited the domain
before 5 days had elapsed. 27.24% of the ensembles had at least one particle remain within
the domain for the entire 5 day modeling period, and 11.03% of ensembles had at least
10% of their particles remain in the domain for the entire 5 day modeling period. The
mean total transit time of a particle was 1.34 days. A model predicted concentration was
calculated for each particle individually, and the mean of all 500 particles in the ensemble
was taken as the model predicted concentration at the receptor.

Pure elemental carbon is hydrophobic, but the processes of condensation, coagulation
and oxidation can lead to elemental carbon that is internally mixed with other constituents,
and vulnerable to wet deposition [71]. To account for this, separate models were calcu-
lated for the concentration of “hydrophobic” and “hydrophilic” elemental carbon, along
with a conversion of hydrophobic elemental carbon into hydrophilic elemental carbon. It
was assumed that hydrophobic-to-hydrophilic conversion does not affect the measured con-
centration of elemental carbon directly, since compounds in the internal mixed aerosol do
not cause significant interference in EC concentrations from the EnCan-total-900 method.

STILT outputs air parcel trajectory data at dynamically determined time intervals
ranging in duration from 20 to 60 min. The concentrations of both hydrophobic and hy-
drophilic elemental carbon were calculated on one minute time steps nested in each of the
STILT time steps, starting from the point where the trajectory was truncated, and moving
forward in time. Changes in the concentrations were due to emission, hydrophobic-to-
hydrophilic conversion, and deposition. Concentrations were calculated as a molar mixing
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ratio until arrival at the measurement site where they were converted to a mass concen-
tration. The model is unconditionally stable for all time step durations, and the error due
to time discretization was assumed to be negligible.

During each 1 minute time step the concentration of hydrophilic and hydrophobic
elemental carbon was calculated as follows. A graphical representation of the algorithm is
displayed in Figure 3.5.

1. The mixing ratios of hydrophilic and hydrophobic elemental carbon were initialized
to the final value from the previous time step. If the current time step was the first time
step for this particle’s trajectory, then the mixing ratios were initialized to the respective
background concentrations.

2. The influence of elemental carbon emissions was added to the mixing ratios in the
trajectory.

3. A fraction of the hydrophobic elemental carbon was converted to hydrophilic ele-
mental carbon, according to a time scale determined with a hydrophobic-to-hydrophilic
conversion scheme.

4. Removal by dry deposition was applied to the hydrophobic elemental carbon, and
removal by both dry and wet deposition were applied to hydrophilic elemental carbon.

5. The resulting mixing ratio was passed to the next time step in the trajectory. If
the current time step corresponded to arrival at the receptor site, the mixing ratio was
converted to a mass concentration.

6. The mean concentration for the trajectory ensemble was taken as the modeled
concentration.

3.5.1 Background Concentrations

Background concentrations of hydrophobic and hydrophilic black carbon were provided by
personal communication with Dylan Millet and Lu Hu at the University of Minnesota, who
calculated them using the Goddard Earth Observing System Chemical Transport Model
(GEOS-Chem) [9, 128] on a 2.5◦ × 2◦ grid with 47 vertical levels. Monthly mean concen-
trations were calculated for the year 2010, and applied to all years under the assumption
that the inter-annual variation is insignificant compared to the model uncertainty.
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Figure 3.5: Qualitative diagram of elemental carbon aerosol transport model implemented
with the STILT Lagrangian particle dispersion model. The size of black dots represent
a relative magnitude of elemental carbon concentration. + and − indicate the addition
or subtraction of elemental concentration at each model step, and multiple + or − signs
indicate a change in concentration that is typically large relative to other changes in the
same model step.
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3.5.2 Contribution of Emissions

Emissions contribute to the elemental carbon concentration along a particle’s trajectory
when the particle height drops below z?; one half the planetary boundary layer height.
The surface flux due to emissions is vertically diluted in a grid volume defined by the grid
of emissions in the horizontal and z? in the vertical [68]. This assumes that there is rapid
mixing in the planetary boundary layer, and that the sources of emissions are below the
height z?. The spatio-temporal distribution of sensitivity to emissions are then defined
as a “footprint”, in units of ppm/ (µmolm−2 s−1). The enhancement in concentration of
elemental carbon during the time step (in units of ppm) is then the product of the footprint
and the emission rate (in units of µmolm−2 s−1). A plot of the mean footprint during the
study period is shown in Figure 3.6.

3.5.3 Hydrophobic-to-Hydrophilic Conversion

Following several published studies [73, 56, 18, 19], it was assumed that 80% of freshly
emitted elemental carbon is in a hydrophobic form. In order to calculate hydrophilic-to-
hydrophobic conversion, the condensation and coagulation scheme of Riemer et al., 2005
[93], and the oxidation algorithm of Tsigaridis and Kanakidou, 2003 [123] were adapted.
Details of the implementation are given in Appendix A.1.

3.5.4 Deposition

Dry and wet deposition were calculated independently as timescales of exponential decay,
and then converted into fractions of the elemental carbon concentration that is removed
during a one minute time step. Dry deposition was estimated using an adapted version
of the size-segregated and land use dependent scheme of Zhang et al., 2001 [143]. Details
of the calculations are given in Appendix A.2. Wet deposition was estimated by adapting
the GEOS-Chem wet deposition scheme described by Jacob et al., 2000 [46] and Liu et al.,
2001 [72]. Details of these calculations are given in Appendix A.3.

49



F
igu

re
3.6:

M
ean

fo
otp

rin
t

for
a

recep
tor

lo
cated

at
T

sin
h
gh

u
a

U
n
iversity

d
u
rin

g
th

e
p

erio
d

1
J
an

u
ary

2006
th

rou
gh

31
D

ecem
b

er
2008.

C
alcu

lated
w

ith
S
T

IL
T

u
sin

g
m

eteorological
fi
eld

s
from

G
D

A
S
1.

50



3.6 Uncertainty Characterization

In order to properly apply a Bayesian inversion methodology, it is imperative to have
a good handle on model uncertainty. In this section we describe the calculation of the
contribution to model uncertainty for all known major sources of error in the model.

3.6.1 Measurements

The uncertainty in measurements was reported by Chan et al., 2010 [14] as a standard
deviation of 10% of the measured concentration. This was assumed to be a random error,
and uncorrelated with any of the other sources of error.

3.6.2 Aggregation

In reality, anthropogenic elemental carbon is emitted from from point-like sources. The
emissions inventory used in this work has a resolution of 0.1◦ × 0.1◦, introducing a spatial
emissions aggregation error to the model.

Zhao et al., 2009 [146] evaluated the spatial aggregation error of methane emissions
resolved at 1◦ × 1◦. The emission inventory investigated in their work included emissions
from landfill, which were fully resolved. By aggregating this subset of emissions to a 1◦×1◦

grid, and evaluating the difference in influence on the concentration at the receptor they
were able to obtain an estimate of the spatial aggregation error. They obtained a value of
5%.

In the present study, we did not have access to fully resolved emissions. We therefore
could not explicitly calculate the aggregation error in such a straightforward manner. An
alternative method was implemented, where emissions were successively aggregated and
the model was calculated with each resolution. A third degree multiple polynomial re-
gression relating the predicted concentration to the latitudinal and longitudinal resolution
was calculated for every point in time during the study period. A reference concentration
was estimated by extrapolating the regression to zero grid spacing in latitude and lon-
gitude. The error due to aggregation was taken as the difference between the reference
concentration and the regression estimate of the 0.1◦ × 0.1◦ resolution concentration.

The mean standard deviation of the errors in modeled elemental carbon concentrations
was 1.45 µgm−3 with a mean bias of +10.7% of the predicted concentration. The bias was
corrected for in the model by scaling the effect of emissions.

51



3.6.3 Transport

Uncertainty in transport pathways represents a large source of uncertainty in any atmo-
spheric transport model. This was especially true for the present study because of the
proximity of the receptor to large emission sources. Small variations in transport could
cause an air parcel to deviate between regions of highly variable emissions. Uncertainty
due to transport error was evaluated by adopting the method of Lin and Gerbig, 2005 [67],
where an added stochastic velocity component representing uncertainty in wind fields is
propagated through the model. Uncertainty in model predictions made with a trajectory
ensemble is then equivalent to the difference in spread of concentrations among particles
caused by the added stochastic component.

Observations of wind profiles from the Universal RAwinsonde OBservation program
(RAOB) for 32 stations in China (see Figure 3.7) from 1 January 2006 through 31 December
2008 were downloaded from the National Oceanic and Atmospheric Administration/Earth
System Research Laboratory (NOAA/ESRL) Radiosonde Database. These observations
were compared to estimates of winds interpolated from GDAS1 to the sub-grid scale by
STILT.

The residual error (STILT estimate - RAOB observation) was calculated at each station,
each available elevation, and each available point in time. A standard deviation of 4.3
ms−1 was found. Error covariance statistics in space and time were calculated by fitting
exponential variogram models to the data using the geoR package for the R Project for
Statistical Computing [92]. Figure 3.8 shows a comparison between the winds predicted by
STILT and observations from RAOB, for all available RAOB data points between ground
level and 15000 m.

Error decorrelation time scales were calculated by fitting an exponential variogram in
time to wind errors for each of the stations. These fittings resulted in mean value of 157
min for the error decorrelation timescale. Vertical decorrelation of horizontal wind errors
were calculated independently for each station at each point in time, and independently
for winds blowing in the zonal and meridional directions. The error decorrelation was
found to be nearly isotropic, with mean values of 1103.1 m for zonal winds and 1066.1 m
for meridional winds. The arithmetic mean of 1084.6 m was applied to the trajectories.
For horizontal decorrelation of horizontal winds the error decorrelation length scales were
calculated across all stations using all height levels. A mean of 329.2 km was found for zonal
winds and 337.1 km for meridional winds, with no dependence on height. The arithmetic
mean of 333.1 km was applied to the trajectories.

The mean standard deviation of errors in modeled elemental carbon concentrations due
to transport uncertainty was 1.71 µgm−3.
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Figure 3.7: Locations of RAOB stations that provided data for the analysis of transport
uncertainty in a STILT model of elemental carbon concentration at Tsinghua University
(40.00◦N, 116.33◦E).

Figure 3.8: A comparison between winds predicted by STILT (an interpolation GDAS1
reanalysis), and observations from RAOB for all stations shown in Figure 3.7, during the
period 1 January 2006 through 31 December 2008. All available data below a height of
15000 m above ground level was used. Regression slopes were calculated with an ordinary
least squares method. a) Zonal wind, b) Meridional wind.
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3.6.4 Planetary Boundary Layer

STILT computes an estimate of the planetary boundary layer (PBL) height. The PBL
height affects the model predicted concentration by dictating the height of emissions influ-
ence, the volume over which emissions are diluted, and the height where boundary layer
turbulent diffusion affects transport.

Errors in the estimation of the PBL height were calculated by comparing the STILT-
predicted PBL height to observations estimated by applying the bulk Richardson number
method to RAOB radiosonde profiles. The bulk Richardson number was taken as:

RiB =
g∆θv∆z

θv
[
(∆U)2 + (∆V )2] . (3.5)

Where g = 9.8msec−2 is the gravitational acceleration, θv is virtual potential temper-
ature, z is height above ground level where RiB is evaluated, U is the zonal wind velocity
component, V is the meridional wind velocity component, and ∆ denotes a difference in
a quantity between the height where RiB is evaluated and the lowest RAOB level (i.e.
∆x = x(z)− x(lowest level)).

The top of the PBL was assumed to be where the bulk Richardson number falls below a
critical value of 0.25. STILT-predicted PBL heights are discretized to model vertical levels.
A comparison of the STILT-predicted PBL heights with the bulk Richardson Number
derived RAOB PBL heights is shown in Figure 3.9.

The effect of PBL errors on the model was quantified in a manner similar to the treat-
ment of transport errors in Section 3.6.3. This method is described in Gerbig et al., 2008
[32]. The standard deviation of relative error in the planetary boundary layer height was
93.8%, the horizontal decorrelation length scale was 573.5 km, and the decorrelation time
scale was 31.1 hr.

The mean standard deviation of errors in predicted elemental carbon concentrations
due to PBL errors was 1.35 µgm−3.
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Figure 3.9: A comparison between Planetary Boundary Layer (PBL) heights predicted
by STILT, and by a bulk Richardson number analysis of RAOB radiosonde profiles for
all stations shown in Figure 3.7, during the period 1 January 2006 through 31 December
2008. The RAOB PBL top corresponds with a critical bulk Richardson number of 0.25.
STILT-predicted PBL heights are discretized to model vertical levels. The regression was
calculated with a standard major axis method.
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3.6.5 Deposition

There were no available measurements with the spatio-temporal coverage to quantify the
uncertainty in the deposition scheme applied in this work. To obtain a conservative esti-
mate the model was run in the absence of any deposition, and the uncertainty was taken
as 100% of the difference in predicted concentration. Since the greatest emissions occur
close to the receptor site, deposition has a relatively small effect on the contribution from
regional emissions, but is important for its effect on background concentrations.

The mean standard deviation of errors in modeled elemental carbon concentrations due
to deposition uncertainty was 0.24 µgm−3.

3.6.6 Background

Background concentrations were taken from a GEOS-Chem output that has no published
uncertainty analysis. Since global black carbon models have been shown to underpredict
surface level concentrations in Asia by a mean factor of 2, but overpredict concentrations
aloft [57], we made a conservative assumption that the standard deviation of uncertainty
in the background concentrations input to the model was 200%. A scaling was not applied
to correct for the net underestimate because airmass trajectories are often aloft when
they reach the background. Biased input parameters can introduce biases in the results
of a Bayesian inversion, and so it was necessary to treat periods of larger background
concentrations with caution during interpretation.

The mean standard deviation of errors in the model predicted elemental carbon con-
centrations due to uncertainty in the background concentrations was 1.91 µgm−3.
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3.6.7 Particle Number

A STILT particle represents a parcel of air that includes enough molecules to have macro-
scopic properties, but few enough such that it can be represented by a point in space.
Close to an infinite number of particles (of order 1023—i.e., Avogadro’s number) would be
required in order to achieve a perfect representation of the dispersion of molecules [66].
This is impossible in practise, as the number of particles used is limited by computational
resources.

To quantify particle number error, and to choose the most appropriate number of
particles for model computation, the model was computed for every fifth date in the study
period using a number of particles ranging between 1 and 3000. Plots of the bias and
root-mean-square error of models with respect to 3000 particle trajectory ensembles (the
largest number of particles that was practical to use) are shown in Figure 3.10. At 500
particles the plots both approach an asymptote. 500 particle ensembles were therefore used
for all other analyses. The particle error was estimated as a normal random error with
standard deviation equal to the difference in concentration predicted with 500 particles
and 3000 particles. This resulted in an estimate of the mean standard deviation of errors
in modeled elemental carbon of 0.08 µgm−3.

Figure 3.10: Plots demonstrating the effect of using a finite number of particles to simu-
late transport in a STILT model of elemental carbon aerosol concentrations at Tsinghua
University (40.00◦N, 116.33◦E). a) Root-mean-square error for models computed with a
varying number of particles compared against a model computed with 3000 particles. b)
Mean bias for model computed with a varying number of particles compared against a
model computed with 3000 particles.
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3.6.8 Construction of the Sε Matrix

A time series of total model uncertainty, along with each of the components of uncertainty,
is shown in Figure 3.11. It was assumed that the individual components contributing to
the error were uncorrelated.

The model uncertainty covariance matrix was calculated with a temporal decorrelation
length scale, τε cov, so that the uncertainty covariance of model estimated elemenatal carbon
concentrations separated by a time t would be Sεi,j =

√
var(i)var(j) exp (−t/τε cov). τε cov

was found by fitting the experimental autocorrelation function to an exponential decay
function. This yielded a decorrelation time scale of 10.1 days.

Figure 3.11: Time series of standard deviation of error in a STILT model of elemental
carbon concentration at Tsinghua University (40.00◦N,116.33◦E). Individual sources of
error variance were calculated with a variety of numerical experiments.
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3.7 Results

Figure 3.12 shows the mean value of the model predicted influence of emissions — the mean
row of the K matrix. Figure 3.13 shows measured concentrations of elemental carbon at
Tsinghua University, along with the a priori model predicted concentration. A regression
analysis is shown in Figure 3.14. The a priori model underpredicted the concentrations,
with a standard major axis linear regression slope of 0.32, intercept of 0.90, and a squared
coefficient of correlation of 0.43.

Figure 3.12: STILT model estimate of the mean influence of elemental carbon emissions
to Tsinghua University for the period 1 January 2006 through 31 December 2008, using
bottom-up inventory (a priori) estimates of emissions.
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Figure 3.13: Concentrations of elemental carbon aerosol at Tsinghua University (40.00◦N,
116.33◦E) as predicted by a STILT model using bottom-up inventory (a priori) estimates
of emissions (red), and as measured on weekly integrated PM2.5 filter samples with the
EnCan-total-900 thermal method (blue).

Figure 3.14: A comparison between STILT model predictions of elemental carbon concen-
trations at Tsinghua University (40.00◦N, 116.33◦E) made using bottom-up inventory (a
priori) estimates of emissions to concentrations measured on weekly integrated PM2.5 filter
samples with the EnCan-total-900 thermal method. A standard major axis regression fit
is included.
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Due to the high uncertainty and possible bias in the background concentrations, there
was concern about periods where they made up a large portion of the total modeled
concentration of elemental carbon. In order to asses this, Figure 3.15 shows the percentage
of the a priori modeled elemental carbon concentration that was a result of the background
concentrations. If the background concentrations are biased low, then the scaling factors
will be biased high during periods when the background makes up a significant portion of
the model.

Figure 3.15: The percentage of background concentrations in STILT model predicted ele-
mental carbon at Tsinghua University (40.00◦N, 116.33◦E). Model predictions were made
using bottom-up inventory (a priori) estimates of emissions.
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The inverse analysis of Section 3.2 was applied to calculate scaling factors for emissions
that optimize the model. A violin plot of the resulting scaling factors is shown in Figure
3.16. This plot shows the kernel density smoothed distribution of scaling factors, where
the width of each element is representative of the number of grid cells with a particular
scaling factor. Figure 3.17 shows a plot of the mean spatial distribution of scaling factors.
Figure 3.18 shows a map of the mean a posteriori uncertainty variance.

Figure 3.19 shows model predicted concentrations of elemental carbon at Tsinghua Uni-
versity, created using a posteriori scaled emissions, along with the measured concentrations.
A standard major axis regression analysis was computed, and is shown in Figure 3.20. A
portion of the underprediction persisted as a result of the inclusion of a priori emissions
in the inversion framework. The regression slope was 0.68, the intercept was 1.46, and the
squared coefficient of correlation was 0.60. This represents a marked improvement from
the a priori model, as the model is both closer to one-to-one and explains a greater portion
of the variability.

Figure 3.16: Violin plot of a posteriori scaling factors for elemental carbon emissions in
the northern Chinese domain shown in Figure 3.2, calculated using a Bayesian inversion
analysis of a STILT model of the concentration at Tsinghua University (40.00◦N, 116.33◦E).
The width of each element is representative of the number of emissions grid cells as a
function of the scaling factor.

62



Figure 3.17: Mean spatial distribution of a posteriori scaling factors for elemental carbon
emissions in nortnern China for the period 1 January 2006 through 31 December 2008,
calculated using a Bayesian inversion analysis of a STILT model of the concentration at
Tsinghua University (40.00◦N, 116.33◦E).

Figure 3.18: Mean spatial distribution of a posteriori uncertainty of elemental carbon
emissions in nortnern China for the period 1 January 2006 through 31 December 2008,
calculated using a Bayesian inversion analysis of a STILT model of the concentration at
Tsinghua University (40.00◦N, 116.33◦E).
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Figure 3.19: Concentrations of elemental carbon aerosol at Tsinghua University (40.00◦N,
116.33◦E) as predicted by a STILT model using a posteriori estimates of emissions cal-
culated with a Bayesian inversion analysis (red), and as measured on weekly integrated
PM2.5 filter samples with the EnCan-total-900 thermal method (blue).

Figure 3.20: A comparison between STILT model predictions of elemental carbon con-
centrations at Tsinghua University (40.00◦N, 116.33◦E) made using a posteriori estimates
of emissions calculated with a Bayesian inversion analysis to concentrations measured on
weekly integrated PM2.5 filter samples with the EnCan-total-900 thermal method. A stan-
dard major axis regression fit is included.

64



A second set of scaling factors were calculated to elucidate seasonal patterns in the
scaling. Scaling factors were calculated for each month of the year, using data across all
years. A violin plot of these “monthly climatology” scaling factors are shown in Figure
3.21. Figure 3.22 shows a plot of the mean spatial distribution of scaling factors. Figure
3.23 shows a map of the mean a posteriori uncertainty variance.

Figure 3.24 shows model predicted concentrations of elemental carbon at Tsinghua
University, created using the monthly climatology a posteriori scaled emissions, along with
the measured concentrations. A standard major axis regression was computed, and is
shown in Figure 3.25. The regression slope was 0.64, the intercept was 1.94, and the
squared coefficient of correlation is 0.52. While the relationship is weaker and the slope
is further from unity than in the case with scaling factors for each of the 36 months of
the model period, the difference is small considering the much smaller number of scaling
factors.

Figure 3.21: Violin plot of monthly climatology a posteriori scaling factors for elemental
carbon emissions in the northern Chinese domain shown in Figure 3.2, calculated using a
Bayesian inversion analysis of a STILT model of the concentration at Tsinghua University
(40.00◦N, 116.33◦E). The width of each element is representative of the number of emissions
grid cells as a function of the scaling factor.
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Figure 3.22: Mean spatial distribution of monthly climatology a posteriori scaling factors
for elemental carbon emissions in nortnern China for the period 1 January 2006 through
31 December 2008, calculated using a Bayesian inversion analysis of a STILT model of the
concentration at Tsinghua University (40.00◦N, 116.33◦E).

Figure 3.23: Mean spatial distribution of monthly climatology a posteriori uncertainty of
elemental carbon emissions in nortnern China for the period 1 January 2006 through 31
December 2008, calculated using a Bayesian inversion analysis of a STILT model of the
concentration at Tsinghua University (40.00◦N, 116.33◦E).
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Figure 3.24: Concentrations of elemental carbon aerosol at Tsinghua University (40.00◦N,
116.33◦E) as predicted by a STILT model using monthly climatology a posteriori estimates
of emissions calculated with a Bayesian inversion analysis (red), and as measured on weekly
integrated PM2.5 filter samples with the EnCan-total-900 thermal method (blue).

Figure 3.25: A comparison between STILT model predictions of elemental carbon con-
centrations at Tsinghua University (40.00◦N, 116.33◦E) made using monthly climatology
a posteriori estimates of emissions calculated with a Bayesian inversion analysis to con-
centrations measured on weekly integrated PM2.5 filter samples with the EnCan-total-900
thermal method. A standard major axis regression fit is included.
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3.8 Discussion

The results of the Bayesian inversion analysis presented in Section 3.7 demonstrated that
bottom-up emissions were likely underpredicted at nearly all times during the study. This is
a significant underestimation in a region that includes some of the most intensive elemental
carbon emissions on Earth [11]. This result could help to explain the underestimation in
the atmospheric burden of black carbon in global chemical transport models [10].

There was a bimodal seasonal cycle in a posteriori scaling factors. One mode peaked in
the wintertime, when residential heating by coal use increases in the domain of emissions,
while other sources of emissions remain fairly constant. The emission factor for residential
coal has been cited as a large uncertainty in bottom-up emissions inventories, as the relative
use of anthracite versus bituminous coal, and raw coal versus briquettes have very strong
influences on the emission factor, but are poorly constrained [145].

A second peak in the seasonal pattern of emissions scaling factors occurred in the
early summer, when background concentrations were largest. If the GEOS-Chem model
underpredicts the atmospheric burden, then an artifact will appear in the model and drive a
bias in the scaling factors. This source of error was reflected in the conservative assumption
of 200% uncertainty in the background concentration, but a bias would have affected the
position of the center of the a posteriori emissions distribution.

There were two possible sources for the increased background concentrations observed
during the early summer. Air parcel trajectories had a tendency to originate from the
south during the summer, where larger anthropogenic emissions lay just outside of the
domain of emissions. If GEOS-Chem used underestimated emissions, then emissions south
of the domain could have increased the burden of elemental carbon at the boundary of
the domain. Also, Wiedinmyer et al., 2011 [134] showed that forest fire emissions in the
tropical and subtropical Northern Hemisphere peak between February and May, coinciding
with the period of increased background concentrations. These emissions had the potential
to be advected to the receptor, and if they were underestimated in GEOS-Chem, then they
could have driven a high bias in the scaling factors. It is thus probable that background
concentrations were underestimated during the summer peak, and the emission scaling was
overestimated.
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We speculate that the true emission scaling has a single mode that peaks in the win-
tertime, but is considerably above 1 for at all times. The use of residential coal has been
identified as a target for particulate emissions reductions in the regions around Beijing. We
suspect that residential coal likely made up a larger portion of elemental carbon emissions
than had been previously believed. This means that future efforts to replace coal as a
household fuel may provide an even greater efficacy than previously expected.

Wang et al., 2012 [129] predicted black carbon emissions for the period 2008–2050.
They predicted that black carbon emissions changes could range from decreases of up to
53% to increases of up to 12%. Included in this prediction was an estimated 45% decrease
in residential emissions. If residential emissions are initially underestimated by more than
the rest of the inventory, these predicted reductions could be greater than anticipated.

Future research needs to better constrain the proportion of the inventory relating to
residential coal use. Methods could include analyses similar to this study, but utilizing
carbon isotope ratio measurements of elemental carbon. The contribution of various fuel
types to the bottom-up inventory, along with their isotopic signatures, could be used in the
model presented in this paper to predict the isotopic signature of elemental carbon samples.
The model could then be inverted, providing top-down constraints on relative rates of fuel
use. The method of Huang et al., 2006 [45] could provide measurements suitable for such
a study.
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3.9 Conclusions

In this work we have provided evidence that bottom-up emissions inventories of elemental
carbon emissions in northern China are underestimated. We speculate that an apparent
interference by emissions outside of the domain obfuscated results for the early summer
emissions scaling. Seasonal patterns in the magnitude of the underestimate suggest that
the portion of the inventory relating to the use of coal for residential heating and cooking
may be underestimated by a greater degree than the rest of the inventory.
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Chapter 4

Conclusions

In this thesis we have examined methods that constrain sources of atmospheric constituents
and processes affecting their concentration. The Bayesian inversion method worked well,
providing effective and informative constraints on the sources of elemental carbon in the
important region of northern China. A new method was derived and applied to methanesul-
fonic acid concentrations in Alert, Nunavut. This method yielded information that would
not have been available with previously existing methods. It proved to be particularly
powerful for testing hypothesis about which processes dominate the variation of concen-
trations. Information such as this would be especially powerful for defining a direction
that research should take to improve future modeling efforts. Statistical tests called into
question the quality of the model estimates. The method may work better in less remote
regions where sources are nearer to the receptor, and driving meteorological fields are of
higher quality.
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Appendix A

Description of Algorithms Used for
Elemental Carbon Removal Processes

A.1 Hydrophobic-to-Hydrophilic Conversion

A.1.1 Hydrophobic-to-Hydrophilic Conversion by Condensation
of Sulphate and Nitrate

Riemer et al., 2005 [93] computed the conversion timescales due to condensation of sulphate
and nitrate onto carbonaceous aerosols, and of coagulation of carbonaceous aerosols onto
other hydrophilic aerosols. They found that condensation was the dominant process during
the daytime, and that coagulation became dominant during the night. We followed their
suggestion of using a time scale for conversion by condensation during the daytime of 2 h
for aerosols above 250 m above ground level and 8 h for those below 250 m. Daytime was
defined as any time with a non-zero downward short-wave radiation flux. We applied an
infinite time scale (no conversion) for conversion by condensation during the nighttime.
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A.1.2 Hydrophobic-to-Hydrophilic Conversion by Coagulation

An adapted version of the algorithm of Riemer et al., 2005 [93] was implemented for
hydrophobic-to-hydrophilic conversion by coagulation. The timescale for conversion is
given by:

τcoag =
A

N
+

B

N2
. (A.1)

Where N is the number density of all aerosols in coagulating mixture, in cm−3, A =
6× 104 h cm−3 and B = 3× 108 h cm−6 are empirical constants.

For the number density of all aerosols, it was assumed that the mixture of aerosols
was constant in composition, and that the modeled elemental carbon concentration was
representative of the mixture. The mean contribution of elemental carbon to total mass of
PM2.5 in Beijing is about 10% [25], and so the total mass concentration of aerosol in the
mixture, M , was estimated as 10 times the modeled elemental carbon.

Including the concentration of elemental carbon in this calculation introduced a non-
linearity to Equation 3.1. An increase in the emissions rate will increase the concentration
of elemental carbon, increasing the rate of coagulation, and thus the sensitivity to wet
deposition. The deviation from linearity was assumed to be negligible. This was the only
deviation from linearity with respect to emissions in K.

Conversion from mass concentration to number concentrations was calculated following
Lesins and Lohmann, 2005 [61] and Croft, 2005 [19], assuming a log-normal size distribution
with a mode radius ra = 0.069µm, and a geometric standard deviation of σg = 1.538. The
number concentration of particles in the mixture was then:

Na =
ρM

ρi

(
π

6
2r3

aexp

(
9

2

)
ln2 σg

)−1

. (A.2)

Where it was assumed that the collective mass density of the aerosol mixture was
ρi = 1.5 g cm−3, based on the work of Pitz et al., 2003 [85]. ρ is the density of air.
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A.1.3 Hydrophobic-to-Hydrophilic Conversion by Oxidation

The oxidation algorithm of Tsigaridis and Kanakidou, 2003 [123] calculates a timescale for
hydrophobic-to-hydrophilic conversion by oxidation, dependent on concentrations of ozone
and water vapor at the locations of the particles in time and space as:

τox =
1 +KO3 [O3] +KH2O[H2O]

K∞KO3 [O3]
. (A.3)

Where K∞ = 0.015 s−1 is the pseudo-first-order decay rate coefficient in limit of high
ozone concentration, and the reaction rates KO3 and KH2O are:

Ki =
S0iωiτi
4SSs

. (A.4)

Where i denotes the species H2O or O3, S0,H2O = 0.4× 10−3 and S0,O3 = 3.3× 10−3 are
dimensionless sticking coefficients for water vapor and ozone, respectively, τH2O = 3×10−3 s
and τO3 = 5 s are the residence times of water vapor and ozone on a surface site, and
[SS]s = 5.7× 1014 sites cm−2 is the surface concentration of adsorption sites.

ωi are the mean thermal velocities, given by:

ωi =

(
8kbT

Miπ

) 1
2

. (A.5)

Where kb = 1.38×10−23 J K−1 is Boltzmann’s constant, T is the ambient temperature,
MH2O = 2.99× 10−26 kg is the mass of a single water vapour molecule, and MO3 = 7.97×
10−26 kg is the mass of a single ozone molecule.

Ozone concentrations were taken from the Model of Ozone And Related Tracers, ver-
sion 4 [26], with National Centers for Environmental Protection, National Center for At-
mospheric Research Reanalysis meteorology (MOZART-4/NCEP). The model output was
provided on a 2.8◦ × 2.8◦ grid with 28 vertical levels and a 6 hour temporal resolution.
Water vapor concentrations and temperature were taken directly from the STILT output,
which interpolates them from the GDAS1 meteorology fields.
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A.1.4 Consolidation of Hydrophobic-to-Hydrophilic Conversion
Time Scale

It was assumed that the hydrophobic-to-hydrophilic conversion from each mechanism acts
independently. If the initial concentration of hydrophobic elemental carbon is MPO,i, then
the mass, Mconv, converted to hydrophilic elemental carbon after a time step ∆t is:

Mconv = MPO,i

[
1− exp

(
−∆t

τox

)
exp

(
−∆t

τcond

)
exp

(
−∆t

τcoag

)]
= MPO,i

[
1− exp

(
−∆t

τoxτcond + τoxτcoag + τcondτcoag
τoxτcondτcoag

)]
. (A.6)

And so the effective time constant for hydrophobic-to-hydrophilic conversion is:

τ =
τoxτcondτcoag

τoxτcond + τoxτcoag + τcondτcoag
. (A.7)
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A.2 Dry Deposition

The size-segregated and land use dependent dry deposition scheme of Zhang et al., 2001
[143] was adapted for use in this work. The dry deposition velocity, Vdry was calculated
with a gravitational settling velocity Vg, and aerodynamic and surface resistances Ra and
Rs as:

Vdry = Vg +
1

Ra +Rs

. (A.8)

Where the gravitational settling velocity is given by:

Vg =
ρD2gCc

18η
. (A.9)

Where D is the diameter of the aerosol, g = 9.8msec−2 is the acceleration due to
gravity, η = 1.81× 10−5 kg m−1 s−1 is the dynamic viscosity of air.

Cc is the Cunningham slip correction, given by:

Cc = 1 + 2
λmfp
D

[
1.257 + 0.4exp

(
−0.55D

λmfp

)]
. (A.10)

λmfp is the mean free path of air molecules, given by:

λmfp = λstp

(
ρstp
ρ

)
. (A.11)

Where λstp = 6.53 × 10−8m and ρstp = 1.2754 kg m−3 are the mean free path of air
molecules and mass density of air at standard temperature and pressure.

Ra is is the aerodynamic resistance:

Ra =
ln
(

z
Z0

)
− ψh

κu?
. (A.12)

Where z is the height of the STILT particle above the ground, u? is the friction velocity,
κ = 0.4 is the von Karman constant, and the roughness length Z0 is taken from the land
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use category. ψh is the Businger profile estimate of a dimensionless temperature gradient
[12].

Rs is the vegetative resistance:

Rs =
1

ε0u?R1 (EB + EIM + EIN)
. (A.13)

Where ε0 = 3 is [143]’s empirical constant for surface resistance.

The efficiency of surface collection by Brownian diffusion, EB, impaction EIM , and
interception EIN are given by:

EB =

(
nu
kbT

3ηπD

)−γLUC

. (A.14)

EIM =

(
St

αLUC + St

)2

. (A.15)

EIN = 0.5

(
D

ALUC

)2

. (A.16)

With Stokes number Stveg for vegetated surfaces and Stsmo for smooth surfaces are
given by:

Stveg =
Vgu?
gALUC

. (A.17)

Stsmo =
Vgu

2
?

ν
. (A.18)

and R1 is given by:

R1 = exp
(
−St

1
2

)
. (A.19)

No specific size distribution data were available, and so a typical accumulation mode
size distribution was assumed, with size bins of 0.1(8.3% of particulate mass distribution),
0.5(16.7%), 1(25%), 1.5(25%), 2(16.7%) and 2.5(8.3%) µm. Densities of the particles were
taken to have bins of 1(16.7%), 3(33.3%), 5(33.3%) and 7(16.7%) g cm−3.
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Land use categorizations from the IGBP global vegetation classification scheme in the
Land Cover Type Climate Modeling Grid product (MCD12C1 Type 1) were provided by
the United States Geological Survey Land Processes Distributed Active Archive Center for
use in the dry deposition scheme. The theoretical basis of the algorithm is described in
Strahler et al., 1999 [116].

The land use categories of the MCD12C1 product were translated into the categories of
Zhang et al., 2001 [143] as described in Table A.2. The seasonal categories used in Zhang et
al., 2001 [143] were applied to date ranges that roughly correspond to the seasonal climate
patterns. The correspondence between dates and seasonal categories are shown in Table
A.1.

Table A.1: Date correspondence for seasonal categories from Zhang et al., 2001 [143].
Date Range Zhang et al., 2001 [143] category
May-Aug Midsummer with lush vegetation.
Sep-Oct Autumn with cropland that has not been harvested.
Nov Late autumn after frost, no snow.
Dec-Feb Winter, snow on ground and subfreezing.
Mar-Apr Transitional spring with partially green short annuals.
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A.3 Wet Deposition

The GEOS-Chem wet deposition scheme described by Jacob et al., 2000 [46] and Liu et al.,
2001 [72] was adapted for application to this work. This parameterization includes losses
due to wet convective updrafts, in cloud scavenging (rainout), and below cloud scavenging
(washout). It was assumed that only hydrophilic elemental carbon was susceptible to wet
deposition.

A.3.1 Convective Updraft

As air is lifted through a wet convective updraft, a fraction of the hydrophilic elemental
carbon is removed by the conversion of cloud condensate to precipitation. The fraction of
elemental carbon, Fupdraft, removed during a single time step is given by:

Fupdraft = 1− exp (−βupdraft∆t) . (A.20)

Where the rate constant, βupdraft, is given by:

βupdraft = k
w

wupdraft
. (A.21)

Where w is the vertical velocity, and k = 5 × 10−3 sec−1, is the rate constant for
conversion of cloud condensate to precipitation, relative to the reference velocity, wupdraft =
10msec−1.

The GDAS1 meteorological data used to drive the STILT model is of insufficient hor-
izontal resolution to capture convective updrafts. Vertical velocities in GDAS1 are typi-
cally on the order of 0.1ms−1. This results in an underprediction of deposition due to wet
convective updrafts, and may result in slightly overpredicted concentrations of elemental
carbon at the receptor.

A.3.2 Rainout

The fraction of elemental carbon removed by rainout during a time step is given by:

Frainout = f [1− exp (−βrainout∆t)] . (A.22)
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The rate constant for removal by rainout, βrainout, was assumed to be constant and
equal to k.

In the GEOS-Chem deposition scheme f is the fraction of a grid cell that is experiencing
precipitation. STILT particle locations are resolved at points, so f was adapted to be
a probability of a STILT particle experiencing precipitation. STILT outputs the total
precipitation rate P for a GDAS1 grid cell, along with precipitation rates for convective
and stratiform rain, Pstrat and Pconv. The contributions of each type of precipitation to the
probability of precipitation at the particle point were calculated separately:

f =
Pstrat
P

fstrat +
Pconv
P

fconv. (A.23)

Where fstrat is the fractional area coverage of stratiform rain, given by:

fstrat =
CQ

kstrat (L+W )
. (A.24)

Where C is the fractional area of cloud cover in the grid box containing a particle, and
L+W is the condensed water content (liquid + ice) within the precipitating cloud, taken
as a constant 1.5× 10−6m3waterm−3 air.

Q is the rate of precipitation formation, estimated as in Giorgi, 1986 [36]:

Q = CβclLWC. (A.25)

Where LWC is the in-cloud liquid water content for a precipitating cloud, taken as a
constant 0.0004 kg m−3, and βcl is the frequency of conversion of cloud water to rainwater,
in units of sec−1.

The rate constant for rainout loss in stratiform clouds takes the form:

kstrat = kmin +
Q

L+W
. (A.26)

with a minimum value of kmin = 10−4 sec−1.

fconv, the fractional area coverage of convective rain, is given by:

fconv =
0.3CQ

Q+ 0.3k (L+W )
. (A.27)
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A.3.3 Washout

The fraction of elemental carbon removed by washout during a time step is given by:

Fwashout = f [1− exp (−βwashout∆t)] . (A.28)

Where the rate constant for removal by washout is given by:

βwashout =
kwashoutP

C
. (A.29)

Where kwashout = 0.01m−1 is a constant relating precipitation rate to washout rate.

The total fraction of elemental carbon aerosol removed by wet deposition during a time
step is then:

Fwet = Fupdraft + Frainout + Fwashout. (A.30)
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