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Abstract

With the rapid development of network visual communication technologies, digital

video has become ubiquitous and indispensable in our everyday lives. Video acquisi-

tion, communication, and processing systems introduce various types of distortions,

which may have major impact on perceived video quality by human observers. Ef-

fective and efficient objective video quality assessment (VQA) methods that can

predict perceptual video quality are highly desirable in modern visual communi-

cation systems for performance evaluation, quality control and resource allocation

purposes. Moreover, perceptual VQA measures may also be employed to optimize a

wide variety of video processing algorithms and systems for best perceptual quality.

This thesis exploits several novel ideas in the areas of video quality assessment

and enhancement. Firstly, by considering a video signal as a 3D volume image, we

propose a 3D structural similarity (SSIM) based full-reference (FR) VQA approach,

which also incorporates local information content and local distortion-based pooling

methods. Secondly, a reduced-reference (RR) VQA scheme is developed by tracing

the evolvement of local phase structures over time in the complex wavelet domain.

Furthermore, we propose a quality-aware video system which combines spatial and

temporal quality measures with a robust video watermarking technique, such that

RR-VQA can be performed without transmitting RR features via an ancillary loss-

less channel. Finally, a novel strategy for enhancing video denoising algorithms,

namely poly-view fusion, is developed by examining a video sequence as a 3D vol-

ume image from multiple (front, side, top) views. This leads to significant and

consistent gain in terms of both peak signal-to-noise ratio (PSNR) and SSIM per-

formance, especially at high noise levels.
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Chapter 1

Introduction

1.1 Motivation

Digital video has become ubiquitous and indispensable in our everyday lives. With

the rapid development of communication technologies, video has played a significant

role in multimedia communication systems. Therefore, it is crucial to maintain the

quality of video at an acceptable level in diverse application environments such as

network visual communications.

The first problem is how to define and measure video quality. The definition of

video quality in Wikipedia is as follows:

Video quality is a characteristic of a video passed through a video transmis-

sion/processing system, a formal or informal measure of perceived video degradation

(typically, compared to the original video). Video processing systems may introduce

some amounts of distortion or artifacts in the video signal, so video quality evalu-

ation is an important problem.

Because the video quality measure is a fundamental problem related to the

majority of video processing applications, it has attracted a large amount of effort
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from academia and industry during the past decades. In recent years, extensive

studies have identified the drawbacks of traditional video quality measurements:

mean squared error (MSE) or peak signal-to-noise ratio (PSNR). They have been

criticized for their low correlation with the perceptual quality measurement of the

human visual system (HVS). Specifically, the MSE/PSNR do not take into account

the correlation among adjacent pixels, not to mention that among neighboring

frames for video. They also do not consider the properties of HVS, such as multi-

scale and multi-channel characteristics.

Steady progress has been made recently in still image quality assessment (IQA).

Successful IQA approaches include structural similarity (SSIM) [1] and its deriva-

tives (multi-scale SSIM [2], information-weighted SSIM [3], complex-wavelet SSIM

[4], feature SSIM [5]), and visual information fidelity (VIF) [6]. However, for VQA,

theoretically cohesive and practically effective methods are still lacking. Although

IQA approaches can be easily extended to VQA scenarios on a frame-by-frame

basis, some significant aspects of video, in particular, the temporal correlation or

motion information among adjacent frames, are ignored.

According to the availability of a reference video, there is a general agreement

[7] that objective VQA metrics can be divided into three categories: full-reference

(FR), no-reference (NR), and reduced-reference (RR) methods. In order to eval-

uate the quality of a distorted video, FR-VQA always assumes full access to the

original video. Thus, FR methods usually provide the most-precise evaluation re-

sults in comparison with NR and RR methods. However, it is hard or expensive to

satisfy this assumption in practical applications. NR-VQA methods are designed

to support quality measurement without the corresponding reference, but existing

methods perform reasonably well only when distortions are known and modeled pre-

cisely. To provide a compromise between FR and NR, RR-VQA approaches have

been proposed that employ partial information (quality features) of the reference.
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This thesis mainly focuses on FR and RR VQA research.

Firstly, by considering video as a 3D volume image, it proposes a 3D structural

similarity (3D-SSIM) based FR-VQA approach. Instead of evaluating the video

quality frame-by-frame, 3D-SSIM is able to capture spatial and temporal distortion

simultaneously. In addition to the quality estimation, a local information content

and local distortion based weighting method is developed to pool the quality map

into a single quality measure.

Secondly, the thesis proposes an RR-VQA method in which the evolvement of

local phase structures is traced over time in the complex wavelet domain. Temporal

motion smoothness, a novel descriptor of motion, is developed for the evaluation of

perceptual video quality. The proposed measure is capable of detecting a variety of

common distortions, including noise contamination, blurring, line or frame jittering,

and frame dropping. Moreover, it does not require a costly motion estimation

process and has a very low RR data rate, both of which make its adoption in visual

communication applications much easier.

Thirdly, a quality-aware video (QAV) system is constructed for the deployment

of RR-VQA method. In RR-VQA literature, the quality features are extracted from

the reference video at the sender side and used to measure the quality of distorted

video at the receiver side. Those features are assumed to be transmitted through

an ancillary error-free channel. However, it is generally impossible or very costly to

provide such an additional channel in practical scenarios. To resolve this problem,

a digital watermarking technique is employed to embed features into the original

video invisibly and extract them when needed. The error-control coding scheme is

also integrated to enhance the robustness of the QAV system.

The last problem of interest is how to improve video quality based on the idea

behind the effective VQA method. One of the most useful applications is video de-
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noising, because video signals are subject to noise contamination during acquisition,

compression, transmission, and reproduction. Therefore, an effective video denois-

ing algorithm that can remove or reduce the noise is highly desirable. Such as algo-

rithm improves not only video signals’ perceptual quality, but also the performance

of subsequent processes such as compression, segmentation, resizing, de-interlacing,

and object detection, recognition, and tracking [7].

1.2 Contribution

The focuses of this thesis are to develop effective and efficient VQA methods for

multimedia communication systems and improve perceptual video quality based on

novel VQA measures. The major contributions of this thesis are as follows.

• For FR-VQA, a video signal is considered to be a 3D volume image, and a

“region” in the image is defined as a localized 3D block. A 3D quality map

can then be generated by applying a block-wise quality measure within local

regions. This step is followed by a pooling stage that merges the quality

map into an overall quality score. Based on the assumption that a video

region that contains more information (computed based on statistical image

models) or more-severe distortion is more likely to attract visual attention,

local information content and local distortion-weighted pooling for VQA is

developed. The combination of quality measurement and pooling strategies

leads to consistent gain when tested using several independent databases.

• For RR-VQA, discovering quality features that can capture video quality

degradation is crucial, especially those related to motion (because the capa-

bility of representing motion is probably the most critical feature that distin-

guishes video from still images). Thus, this thesis presents a novel method
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for quantifing the temporal motion smoothness [8] of video sequences, which

is affected by many types of distortions commonly encountered in real-world

video acquisition, communication and processing systems.

• A novel QAV system is constructed based on spatial and temporal RR-VQA

and a robust video watermarking technique. At the sender side, two quality

features are extracted: (1) intra-frame features based on a statistical model

of the marginal distribution of wavelet coefficients [9] and (2) inter-frame fea-

tures calculated by temporal motion smoothness measurement in the complex

wavelet transform domain [10]. An error-control encoding scheme is employed

to improve the robustness in the subsequent transmission of the quality fea-

tures. This is followed by embedding the encoded features into the original

video invisibly using a robust video watermarking approach. The angle quan-

tization index modulation (AQIM) [11] is employed to hide those features

in the video after a 3D discrete cosine transform (3D-DCT). The resulting

video is called a QAV, which is transmitted to the receiver through a lossy

communication channel. At the receiver side, the same feature-extraction

process as at the sender side is applied to the distorted video. Meanwhile, the

hidden messages are extracted, followed by error-control decoding to recover

the quality features. The recovered features, together with the corresponding

features extracted from the distorted video, are employed by an RR-VQA

algorithm, that evaluates the perceptual quality degradation of the distorted

QAV.

• For video denoising, a novel strategy called polyview fusion (PVF) is pro-

posed to boost existing video denoising approaches. In particular, the same

noisy video volume is denoised using 2D approaches but from three different

views, i.e., front-, top-, and side-views. An optimal fusion scheme is then
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employed to combine the three denoised versions of the video. By doing so,

each pixel is denoised by its neighboring pixels from all three dimensions.

Moreover, a variance-weighted PVF (VPVF) scheme is proposed. After three

denoised videos from three views are obtained, a normalization procedure in-

spired by the SSIM measure [1] and a fusion process based on local variance

are employed to produce better denoised video. It is shown that those two

strategies lead to significant gain of video denoising performance over different

base-denoising algorithms, especially at high noise levels.

1.3 Organization

Following the above introductory section, the remainder of this thesis is organized

as follows. Chapter 2 gives a detailed literature review of the VQA problem and

video denoising. State-of-the-art algorithms are briefly introduced and summarized

in chronological order. Chapter 3 focuses on a description of the proposed FR-

VQA method using 3D-SSIM. A novel RR-VQA approach and the QAV system

based on temporal motion smoothness are introduced in Chapter 4. The proposed

methods for video denoising enhancement are depicted in Chapter 5. Finally, the

conclusion of the research work in this thesis and potential future work topics are

discussed in Chapter 6. In the Appendix, the performance of existing VQA methods

is investigated under the context of video compression, with the aim of raising new

problems regarding both objective VQA and video coding schemes.
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Chapter 2

Literature Review

This chapter provides an overview of video quality assessment (VQA) techniques

and video denoising approaches. Generally, existing VQA approaches can be di-

vided into two classes:

• Subjective methods, which seek opinions from the observer about the percep-

tual quality [12].

• Objective methods, which provide a computational model for automatic qual-

ity estimation [13].

In the most of network visual communication systems, subjective VQA experi-

ments offer the most reliable quality measure because human eyes are the ultimate

receivers. Groups of trained or untrained subjects are recruited to watch videos

and rate the quality. In addition, the setup of a subjective test environment needs

to be carefully designed (e.g., following the ITU-T recommendations [14]) in terms

of viewing distance, room illumination, test duration, subject selection, and qual-

ity rating strategy. The results of subjective VQA in terms of mean opinion score

(MOS) are generally considered to be the benchmark for performance evaluation
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of objective VQA methods. The MOSs are provided by all of the existing VQA

databases, including VQEG FR-TV Phase I Database, VQEG HDTV Database

[15], LIVE Video Quality Database [16], LIVE Mobile Video Quality Database

[17], EPFL-PoliMl VQA Database [18], and IRCCyN/IVC Databases [19]. A de-

tailed introduction and analysis of publicly available image and video databases for

quality assessment can be found in [20]. However, a major drawback of the sub-

jective VQA is the high costs in terms of time, labor, and money. Therefore, the

subjective VQA approach is infeasible or extremely difficult to deploy in practical

communication systems.

In contrast, objective VQA metrics can be employed for video quality evaluation

fully automatically. They can play an essential role in network visual communica-

tion systems for the evaluation, control, and improvement of the perceptual quality

of video. The benefits to video service providers of measuring video quality are

manifold:

• Video service providers can choose the best equipment or technique among

available products based on an effective VQA metric as benchmark.

• The parameters of existing equipments can be adjusted to maximize output

video quality.

• It allows video service providers to control the visual quality of videos that

are produced/processed/encoded/transcoded/bought/sold.

As the traditional video quality measurements, PSNR and MSE are widely accepted

because they are computationally simple and tractable for algorithm optimization.

However, their major drawback is that they are inconsistent with subjective opinion.

Therefore, an effective and efficient objective VQA approach is urgently needed.

Based on the availability of reference videos, objective VQA approaches can be fur-

ther categorized into full-reference (FR), reduced-reference (RR), and no-reference

8



(NR) methods. Because of the broad scope of VQA research, major contributions

in each category are reviewed in chronological order.

2.1 Full-reference Video Quality Assessment

Quality 

Assessment

Original 

Video

Distorted 

Video
Distortion

Channel
Quality 

Score

Figure 2.1: Framework of full-reference video quality assessment

For FR-VQA, the design principle is to measure the similarity or distance be-

tween reference and distorted videos. The basic framework of FR-VQA is depicted

in Fig. 2.1. A straightforward method is to study the characteristics of HVS and

simulate them using carefully designed algorithms to measure the similarity quan-

titatively. Because HVS is an extremely complex system for which we have only

limited knowledge, FR-VQA is still a difficult task. Recent FR-VQA has achieved

notable success in predicting perceived video quality [13].

The simplest method for FR-VQA is applying the mature FR-IQA to video on

a frame-by-frame basis. During the past several decades, the key FR-IQA meth-

ods have included Sarnoff’s just noticeable difference (JND) metrics [21], picture

quality scale (PQS) [22], noise quality measure (NQM) [23], structural similarity

(SSIM) [1] and its derivatives (multi-scale SSIM [2], information weighted SSIM [3],

complex wavelet SSIM [4], feature SSIM [5]), and visual information fidelity (VIF)

[6]. They were used to measure the quality of a video without taking into account

the correlation among adjacent frames. The advanced FR-VQA approaches inte-
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grated the motion information by either a searching procedure or calculating the

optical flow between neighboring frames.

• In 1993, Webster et al. [24] from the institute for telecommunication sciences

(ITS) described several objective video quality measures that are able to

predict the subjective ratings. They claimed that the color distortions were

insignificant relative to the spatial and temporal artifacts.

• In 1996, Christian and Olivier [25] proposed a FR-VQA model based on a

multi-channel model of human spatio-temporal vision. A spatio-temporal

filter bank was adopted to simulate the mechanisms of vision. The contrast

sensitivity and masking effect were also taken care of by the decomposition.

• In 1997, Olsson et al. [26] introduced several perceptual objective models for

quality assessment and compared them with PSNR/MSE.

• In 1998, Tan et al. [27] proposed a two-stage objective quality model for

MPEG-coded video. After detection of several coding artifacts, a cognitive

emulator was employed to simulate human high-level processing of visual

information. This technique is suitable for evaluating the temporal quality

variations in long sequences. Based on the DCT transform, Watson [28] devel-

oped a FR-VQA metric that incorporated human spatial, temporal, chromatic

sensitivity, light adaptation, and contrast masking.

• In 1999, for MPEG-coded color videos, Winkler [29] proposed a distortion

metric, which took into account the spatial and temporal aspects of vision,

as well as the color perception. Wolf and Pinson [30] developed a spatial-

temporal distortion metric for quality monitoring over a wide range of qual-

ity levels. Tong et al. [31] introduced a spatial-temporal quality model for

MPEG-coded videos in the CIE-LAB color domain.
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• In 2000, Tan and Ghanbari [32] designed a multi-metric quality model for

MPEG video, which comprises a perceptual quality model and a blockiness

detector. After a review on HVS based VQA, Yu and Wu [33] introduced how

to incorporate the characteristics of HVS into quality metrics. Rohaly et al.

[34] described the progress of VQEG at that time.

• In 2001, Kwon and Lee [35] developed a FR-VQA system based on a recursive

biorthogonal wavelet transform. It took reference and distorted videos as

input and applied different weights to different spatial frequencies according

to the sensitivity of HVS.

• In 2002, Hekstra et al. [36] proposed a perceptual video quality measure

(PVQM), in which three quality indicators (“edginess” of the luminance, nor-

malized color error, and temporal de-correlation) are linearly combined. This

method aims to predict the degree of distortion generated by video coding

systems. Tested by the video quality expert group (VQEG), it was recognized

as the best-quality model at that time.

• In 2004, Wang et al. [37] introduced an effective and efficient FR-VQA ap-

proach based on the design philosophy of Structural SIMilarity (SSIM). The

masking effect of HVS was integrated for weighted pooling in the spatial-

temporal domain. Based on the multi-channel properties of HVS, Guo et al.

[38] employed Gabor filtering to imitate the psycho-perceptual properties of

HVS for quality measurement.

• In 2007, Wang and Li [39] proposed a statistical model of human visual speed

perception for VQA under the information theory framework. It is able to

estimate the motion information content and perceptual uncertainty of video

so as to facilitate the weighting process. Yang et al. [40] proposed a percep-

tual temporal quality metric (PTQM) that focuses on the temporal quality
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degradation caused by both regular and irregular frame loss. The PTQM is

capable of estimating perceived visual discomfort induced by temporal dis-

tortion under various combinations of scenes and motion activities.

• In 2008, an extensive review was conducted by Winkler and Mohandas in [41],

which described the evolution of VQA techniques. They analyzed the merits

and drawbacks of a wide range of VQA models, from the traditional PSNR

to state-of-the-art models. The potential research directions in this area were

also discussed.

• In 2009, Liu et al. [42] studied the effects of packet losses in low bit-rate wire-

less network and lossy compression of H.264/AVC coding. They proposed

a FR-VQA scheme by considering five distortion factors: error length, loss

severity, loss location, number of losses, and loss patterns. Focusing on tem-

poral evolutions of spatial distortions, Ninassi et al. [43] proposed dividing

a sequence into short-term spatio-temporal segments to calculate a quality

map. A long-term temporal pooling strategy was adopted to compute the

overall score. The temporal characteristics of video have also been studied

and employed by Barkowsky et al. [44] in their temporal trajectory aware

video quality measurement system.

• In 2010, the motion-based video integrity evaluation (MOVIE) index was

proposed by Seshadrinathan and Bovik [45, 16]. This general-purpose spatio-

spectrally localized multiscale framework employs Gabor decomposition to

integrate both spatial and temporal (and spatio-temporal) aspects of distor-

tion evaluation. Moorthy et al. [46] made an in-depth study of the subjec-

tive and objective quality assessment of H.264 compressed videos transmitted

over a wireless channel. Moorthy and Bovik [47] also developed an efficient

VQA algorithm based on the motion compensated structural similarity index.
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Huynh-Thu and Ghanbari [48] reported that the impact of spatial quality on

overall video quality is dependent on the temporal quality and vice-versa. The

spatial quality contributes more than temporal quality to the overall quality.

• In 2011, You et al. [49] proposed a visual-attention-driven FR-VQA frame-

work under the motivations that attention mechanism plays an important role

in HVS and that unattended stimuli can still contribute to the perception of

visual content. Based on the advanced attention selection theory, the overall

quality score was computed by combing global and local quality features using

an adaptive fusion technique. Zhao et al. [50] introduced the perceptual qual-

ity index (PQI) by incorporating a series of fundamental HVS characteristics.

After examining the influence of temporal video quality variation, Yim and

Bovik [51] proposed a VQA algorithm that combines a simple frame-based

VQA method with a temporal quality variance factor. Ćulibrk et al. [52]

explored the effect of bottom-up motion saliency features for the problem of

MPEG-2 coded VQA and proposed a video quality estimator by employing

the selected best features. Narwaria and Lin [53] combined MOVIE, multi-

scale SSIM, and motion vector similarity into one metric based on adaptive

basis function regression-based machine learning.

• In 2012, Li et al. [54] incorporated the motion information and temporal

HVS characteristics with two types of spatial distortions (detail losses and

additive impairments) for objective VQA. Narwaria et al. [55] developed a

low-complexity VQA approach that combines the temporal quality fluctua-

tions, worst case pooling strategy, and machine learning scheme. Leszczuk

et al. [56] employed both SSIM and temporal pooling techniques to derive

a quality of experience (QoE) model for high definition video with different

patterns of packet losses artifact. Wang et al. [57] proposed to deal with the
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motion information by structural features in the localized spatio-temporal

regions. Three dimensional structure tensors was employed to extract two

descriptors for structural information representation.

• In 2013, Park et al. [58] proposed a content adaptive spatial and temporal

pooling strategy based on the distribution of spatio-temporal local quality

scores to account for the effect of severe distortion on overall perceived video

quality. The “worst” local scores along the spatial and temporal dimensions

of a video were emphasized implicitly.

2.2 No-reference Video Quality Assessment

Quality 
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Original 
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Distorted 

Video
Distortion

Channel
Quality 
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Figure 2.2: Framework of no-reference video quality assessment.

No-reference (NR) VQA, whose framework is shown in Fig. 2.2, aims to estimate

the quality of a received video without any access to reference video. In this case,

the natural video statistics and distortion model become much more important for

quality evaluation. Most of existing NR-VQA approaches are application-specific

and aim for one or several specific distortions.

• In 2005, Farias and Mitra [59] introduced a real-time NR-VQA measure based

on the detection of three artifacts (blockiness, blurriness, noisiness) and their

combination. Yang et al. [60] took into account the temporal dependency

among neighboring frames to create a general-purpose NR-VQA method.

14



• In 2008, Kawayoke and Horita [61] suggested a continuous scored NR-VQA

system which used the information from both video content and motion for

frame-level quality evaluation. Tao et al. [62] developed a loss-distortion

model for real-time video quality monitoring in IP networks. It accounts for

the impact of various network-dependent and application-specific factors on

the quality of decoded video. Based on this model, a relative metric was

also defined to evaluated the video quality without parsing or decoding the

transmitted video bitstream.

• In 2009, Naccari et al. [63] proposed a NORM (no-reference video quality

monitoring) system to evaluate the quality change of H.264/AVC compressed

video with transmission errors. Keimel et al. [64] combined blocking and

blurring measurement with temporal pooling scheme for high-definition (HD)

NR-VQA. Saad and Bovik [65] studied the potential of using natural motion

statistics for NR-VQA. They mainly cared about Internet Protocol (IP) trans-

mission distortion. Ćulibrk et al. [66] focused on the MPEG-2 coded video

sequences and developed a multi-layer neural network based feature selection

scheme for NR-VQA. Huynh-Thu and Ghanbari [67] developed a no-reference

temporal quality metric based on a proposed freeze event detector to model

the impact of frame freezing artifacts on perceived video quality.

• In 2010, Brandão and Queluz [68] proposed a NR-VQA metric for H.264/AVC

encoded videos by combining the coding error estimation and corresponding

perceptual weighting. Discrete cosine transform (DCT) was used to mea-

sure the quantization noise, and spatio-temporal contrast sensitivity function

(CSF) was applied to pool the error map into a single score. Hemami and

Reibman [69] conducted a survey about the NR-VQA problem and related ap-

plications. The proposed three-stage framework provides a potential scheme
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to facilitate NR-VQA system design. Yang et al. [70] proposed a NR-VQA

method using transmitted bitstream only. They considered the quantization

distortion, packet loss and error propagation, as well as the temporal effects

of HVS. Based on the estimation of the spatio-temporal complexity of video

content, Liao and Chen [71] developed a packet-layer model for quality mon-

itoring. They also studied the interaction between content features and the

influence of error concealment and propagation. Kawano et al. [72] proposed

a media-layer model through blockiness and blurring detection for compressed

video. Specifically for mobile devices, Liu et al. [73] presented a real-time

quality monitoring system, which provided valuable information for network

diagnosis and quality-scalable service planning.

• In 2011, Argyropoulos et al. [74] proposed a NR-VQA model for the qual-

ity evaluation of SD and HD H.264/AVC sequences distorted by packet loss.

Based on continuous estimation of packet loss visibility, support vector re-

gression (SVR) was employed to build the relationship between subjective

quality ratings and a set of spatiotemporal features from bitstream. Boujut

et al. [75] combined spatio-temporal saliency maps with macro-block error

detection for HDTV quality estimation. The compressed bitstream doesn’t

need to be fully decoded in this system. Liu et al. [76] studied the effects

of video compression on perceived quality and proposed a NR-VQA model

considering three artifacts (blurring, blocking, jittering) for luminance and

chrominance, separately. Shi and Jiang [77] studied the video quality degra-

dation effected by lossy compression and proposed a fully-decoding-free VQA

model based on three factors (average quantization parameters (QP), number

of skipped macroblock, average motion vectors).

• In 2012, Valenzise et al. [78] developed a NR video quality monitoring ap-
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proach for packet loss distorted videos which are transmitted through error-

prone network. With decoded pixel value only, the described system was

able to provide an accurate estimation of mean-square-error distortion intro-

duced by channel errors. Wang et al. [79] claimed that the subjective quality

of MPEG-2 encoded video is best correlated with three features, including

quantiser-scale factor, bit rate, and statistics of intra macroblock. Lin et al.

[80] proposed to estimate the video quality by measuring the effect of blocki-

ness and blur distortions. The distortion measure is incorporated with region

of interest (ROI) which is identified by bitstream information and HVS char-

acteristics. Boujut et al. [81] considered the semantics of the visual scene

for a bottom-up spatio-temporal saliency map enhancement and developed a

NR-VQA model for broadcasted HD video over IP networks. Yao et al. [82]

proposed to measure the spatial distortion for individual frame using statistics

of wavelet coefficients and temporal distortion using a motion-compensated

approach based on block and motion vector. Bailey et al. [83] presented a

full analytic NR-VQA model for pause intensity, which is based on the video

playout buffer behavior at the receiver side.

• In 2013, Zhang et al. [84] tried to solve the NR-VQA problem using addi-

tive log-logistic model (ALM) which adds the distortions due to each type

of impairment in a log-logistic transformed space of subjective opinions. A

large amount of features, which may effect the perceived quality, were inves-

tigated. The final selected key features include average QP, visible error rate,

freezing duration, spatial-temporal complexity of the video clip, as well as

the mean of motion vectors. Staelens et al. [85] proposed a bitstream-based

NR-VQA model that is constructed by genetic programming-based symbolic

regression. They studied 42 different parameters extracted from bitstream to

characterizing the encoding settings, type of distortions, and video content
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characteristics. It was reported that only 20% of those parameters signifi-

cantly contributes to the final VQA, including temporal duration of distor-

tion, percentage of slices lost of the picture where the loss originates, loss

originates from I- and P-picture, slices per picture, number of B-pictures,

number of consecutive slice drops. For HEVC encoded video, Lee and Kim

[86] proposed a reference-free PSNR estimation approach based on Laplacian

mixture probability density function, which characterized the distribution of

transformed residual coefficients in different quadtree depths.

2.3 Reduced-reference Video Quality Assessment
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Figure 2.3: Framework of reduced-reference video quality assessment.

The FR-VQA approaches may not applicable in visual communication scenarios,

because full access to the original video is expensive or not available. Meanwhile,

NR-VQA, especially general-purpose NR-VQA, is extremely difficult to design due

to our limited knowledge about HVS and video signal statistics. Reduced-reference

(RR) VQA measure provides a compromised solution, which evaluates video quality

with only partial information about the original video. One or more RR features

are extracted from the original video at the sender side [13] and transmitted to

the receiver side through an extra ancillary channel. The general framework of

RR-VQA is showed in Fig. 2.3. The most challenging task in the design of RR-

VQA is to find appropriate RR features that 1) provide an efficient summary of the
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reference video; 2) are sensitive to the targeted types of video distortions; 3) are

relevant to the perceptual characteristics of the HVS; and 4) have relatively low

data rate (so that they do not add too much burden to the visual communication

systems that need to transmit the RR features) [9]. Most existing RR-VQA models

are developed and trained for specific applications such as lossy compression [13].

This makes the design task easier because the distortion types are known and fixed.

However, it also significantly limits their application scope at the same time.

• In 2004, Pinson and Wolf [87] proposed a highly complex VQA scheme, known

as national telecommunications and information administration (NTIA) Gen-

eral Model, which, along with its associated calibration techniques, has been

accepted as a North America Standard for objective video quality estimation.

Its competitive performance has been demonstrated on the VQEG FR-TV

Phase II data set. However, the major drawbacks of this approach include

that 1) a large number of parameters need to be trained beforehand, and 2)

a lossless ancillary channel is required, which is hard to satisfy in practical

scenarios.

• In 2006, LeCallet et al. [88] employed a convolutional neural network to

explore the nonlinear relationship between subjective quality scores and RR

features. The MOS were obtained from a subjective test with single stimulus

continuous quality evaluation protocol. The considered RR features include

power of frame difference, blockiness measure, blurring detection, and tiling

evaluation.

• In 2007, Oelbaum and Diepold [89] employed multivariate data analysis to

combine a set of detected features (blurring, blocking) for RR-VQA of H.264/AVC

encoded sequences.

• In 2008, Gunawan and Ghanbari [90] used a discriminative analysis of har-
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monic strength, combined with motion information for weighting, for RR-

VQA. Later, they [91] also presented an efficient RR-VQA approach for con-

tinuous quality monitoring based on local harmonic strength (LHS), in which

harmonics gain and loss corresponding to blockiness and blurriness.

• In 2010, Lu et al. [92] employed three-dimensional wavelet transform, com-

bined with spatio-temporal CSF and perceptual threshold, to mimic the char-

acteristics of HVS, including multichannel structure, nonlinearity processing,

and distortion tolerance. Temporal perceptual mechanism, namely short-term

memory, is also considered for temporal pooling of quality scores. Garcia and

Raake [93] described a parametric packet-layer RR-VQA model for HD and

SD sequences. The proposed model took into account variable factors, in-

cluding bit-rate, packet-loss-rate, burstiness factor, as well as the information

about the codec configurations.

• In 2011, Wang et al. [94] investigated the perceptual video quality score ef-

fected by the content features, including AC energy of DCT coefficients for

picture activity, spectral entropy for randomness of DCT coefficients, the per-

centage of intra coded macroblock and skipped macroblock, bit-rate, as well

as the mean and standard deviation of quantizer-scale factors over each frame

and the whole video. They reported that a statistic of proportion of skipped

block possesses the best correlation with subjective quality. Based whether

or not the video quality was effected by the contents, Yang et al. [95] catego-

rized quality-related features into two classes: (1) semantically dependent and

(2) semantically independent. They reported that the semantic-independent

features showed more promising performance in terms of subjective qual-

ity estimation. The investigated semantic-independent features include mo-

tion space, hand-shaking, color harmonic, and composition. Meanwhile, the
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semantic-dependent features include motion direction entropy, color satura-

tion and value, and lightness.

• In 2012, Niu and Liu [96] tackled the problem of what makes a professional

video and proposed a computational aesthetics approach for RR-VQA. A va-

riety of features were selected to distinguish professional videos from amateur

ones, including noise, focus control, exposure control, color palette, camera

motion, shot length, and visual continuity. Ma et al. [97] proposed a RR-VQA

approach by exploiting the spatial information loss and temporal statistical

characteristics of the inter-frame histogram. Energy variation descriptor is

employed to evaluate the individual frame quality and simulate the texture

masking property of HVS. The temporal quality degradation was captured

by the city-block distance between generalized Gaussian density distribution

of reference and distorted video. Yang et al. [98] designed a content-adaptive

packet-layer model for RR-VQA of networked video services. Only packet

headers are employed for real-time and non-intrusive video quality monitor-

ing. Aiming for the compression artifacts and packet losses, the proposed

model was composed by information extracted from packet headers, frame

type detection, temporal complexity estimation, as well as a two-level tem-

poral pooling strategy. Atzori et al. [99] proposed an efficient visual quality

estimator based on probability of starvation. It was embedded into a wireless

channel based video streaming system for source rate control. This approach

allows the video streaming provider adjust the system settings automatically

to optimize the user-perceived video quality. Karacali and Krishnakumar

[100] focused on the video conference-type applications and proposed a real-

time RR-VQA scheme based on the face detection and discrepancies of face

location between sent and received video frames. Ou et al. [101] thoroughly

studied the impact of spatial, temporal, and amplitude resolution on perceived
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video quality and proposed an effective RR-VQA model, Q-STAR, with high

performance on several databases. Q-STAR is consisted by three three dif-

ferent models to account for the relationship between normalized subjective

quality with spatial resolution, quantization, and temporal resolution.

2.4 Video Denoising

Existing video denoising algorithms can be roughly classified into three categories.

In the first category, the video signal is denoised on a frame-by-frame basis, where

all that is needed is a 2D still image denoising algorithm applied to each frame

of the video sequence independently. Well-known and state-of-the-art still image

denoising algorithms include spatially adaptive Wiener filtering [102], Bayes least

square estimation based on Gaussian scale mixture model (BLS-GSM) [103], non-

local means denoising (NLM) [104], K-SVD method [105], Stein’s unbiased risk

estimator-linear expansion of threshold algorithm (SURE-LET) [106], and block

matching and 3D transform shrinkage method (BM3D) [107]. For the purpose of

video denoising, the major advantage of these approaches is memory efficiency, as

no storage of previous frames are necessary in order to denoise the current frame.

However, since the correlation between neighboring frames is completely ignored,

the denoising process does not make use of all available information and thus cannot

achieve the best denoising performance.

In natural video signals, there exists strong correlation between adjacent frames.

The second category of video denoising approaches exploited such correlation by

incorporating both intra- and inter-frame information. It was found that mo-

tion estimation and compensation could further enhance denoising performance

[108, 109, 110]. In [108], a motion estimation algorithm was employed for recur-

sive temporal denoising along estimated motion trajectory. Motion compensation
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processes had also been incorporated into BLS-GSM and SURE-LET methods,

leading to the ST-GSM [109] and video SURE-LET algorithms [110]. In [111], it

was claimed that finding single motion trajectory may not be the best choice for

video denoising. Instead, multiple similar patches in neighboring frames are found

that may not reside along a single trajectory. This is followed by transform and

shrinkage based denoising procedures. One of the most successful video denois-

ing methods in recent years is the extension of BM3D method for video, namely

VBM3D [112], which searches similar patches in both intra- and inter-frames and

uses 3D bilateral filtering for noise removal after aggregating the similar patches

together.

The third category of denoising algorithms treat video sequences as 3D vol-

umes. The algorithms can operate in the space-time domain by adaptive weighted

local averaging [113], 3D order-statistic filtering [114], 3D Kalman filtering [115], or

3D Markov model based filtering [116]. They may also be applied in 3D transform

domain, where soft/hard thresholding or Bayesian estimation are employed to elim-

inate noise, followed by an inverse 3D transform that brings the signal back to the

space-time domain. The method in [117] is one such example, where 3D dual-tree

complex wavelet transform was employed that demonstrates some interesting and

desired properties. Recently, several authors investigated 3D-patch based methods

and achieved highly competitive denoising performance [118, 119].

Ideally, to make the best use of all available information, the best video denoising

algorithms would need to operate in 3D (Category 3). However, when there exists

significant motion in the video, direct space-time 3D filtering or 3D transform

based approaches are difficult to effectively cover all motion-related video content

within local region. Meanwhile, 3D-patch based methods are expensive in finding

similar 3D-patches in the 3D volume. By contrast, 2D denoising algorithms that

use intra- and/or inter-frame information (Categories 1 and 2) can be made much
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more efficient, but their performance is restricted by not fully making use of the

neighboring pixels in all three dimensions simultaneously.
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Chapter 3

Full-reference Video Quality

Assessment

In this chapter, we mainly focus on full-reference video quality assessment (FR-

VQA) approach. The design of FR-VQA algorithms depends on how a video signal

is interpreted. If we consider it as a stack of still images, a natural approach is to

apply still image quality assessment (IQA) algorithms on a frame-by-frame basis,

followed by pooling the frame level quality measures into a single quality score.

However, this approach missed the temporal correlation between adjacent frames.

Specifically, it disregards the motion information, which is the most critical charac-

teristic that distinguishes a video sequence from a stack of independent still image

frames. As a result, advanced FR-VQA algorithms take into account the temporal

correlation or motion information. This can be done by combining multichannel

spatio-temporal filtering and spatio-temporal just noticeable difference (JND) mod-

els [120, 50]. It can also be implemented by block- or optical flow-based motion

estimation, followed by weighted pooling based on models of human visual motion

perception [37, 43]. More sophisticated method combines both spatio-temporal fil-

tering and motion estimation, and then incorporates both spatial and temporal
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distortion measures [45].

In this study, we consider a video signal as a 3D volume image and define a

“region” in the image as a localized 3D block. We can then generate a 3D quality

map by applying a block-wise quality measure within local regions. This is followed

by a pooling stage that merges the quality map into an overall quality score. Re-

cently, pooling has become an active research topic in IQA/VQA research. Most

existing methods are based on the hypothesis that the regions that are more likely

to attract visual attention should be assigned larger weights. The critical issue here

is how visual attention is predicted, which may include a spectrum of approaches,

ranging from saliency-based low-level vision models [3] to motion detection and

object tracking based high-level cognitive methods [39, 45, 49, 121]. In [3], a num-

ber of different pooling strategies were compared in the context of IQA. It was

found that the approaches that lead to the most significant performance gain are

local information content and local distortion weighted pooling, which are based on

the assumptions that the image regions that contain more information (computed

based on statistical image models) or more severe distortions are more likely to

attract visual attention. Moreover, these methods can be implemented with low

computational cost, which is often an important factor in real world deployment of

VQA techniques. In this research, we extend these pooling strategies to FR-VQA

and find that they lead to consistent gain when tested using several independent

video quality databases.

3.1 3D Structural Similarity for RR-VQA

The diagram of the proposed method, namely three-dimensional structural similar-

ity (3D-SSIM) algorithm, is shown in Fig. 3.1. The input reference and distorted

videos are first divided into non-overlapping 3D blocks. Within each block, a local
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Figure 3.1: Framework of 3D-SSIM algorithm.
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3D-SSIM measure and a local information content measure are computed. The

local 3D-SSIM values collected from all blocks form a 3D quality map of the video,

which are used to compute a local distortion-based weight map. Both the local

information content and local distortion based weights are involved in the weighted

pooling stage of the 3D-SSIM map, resulting in an overall 3D-SSIM score.

Let x = {xi|i = 1, · · · , N} and y = {yi|i = 1, · · · , N} be two sets of pixel

values collected from corresponding 3D blocks from the reference and distorted

videos, respectively. As in the spatial domain SSIM method [1], the local 3D-SSIM

between the 3D blocks is computed as

S(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.1)

where where µx, σ
2
x and σxy represent the mean, variance and covariance of the

image blocks, respectively, and C1 and C2 are small positive constants to avoid

instability when the means and variances are close to zero.

Effective estimation of perceptual information content relies on good statisti-

cal models of both natural images and perceptual distortion channels [3]. While

sophisticated models such as the Gaussian scale mixtures [3] are available for still

images, they often lead to substantially increased complexity, which becomes a

major barrier to overcome when applied to large volume video data. To achieve

a good compromise between accuracy and simplicity, here we assume a simple

model, where Gaussian distributed image source passes through an additive Gaus-

sian channel and the mutual information between the source and received signals

is employed to quantify the perceived information content. When this model is

applied to local 3D image blocks of both the reference and distorted video signals,

a simple computational model of the overall perceptual information content is given
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by [122]

wic(x,y) =
1

2
log

[(
1 +

σ2
x

σ2
0

)(
1 +

σ2
y

σ2
0

)]
, (3.2)

where, as in [123], σ2
0 is a constant that accounts for the noise power of the additive

Gaussian channel. This measure is computationally efficient because the values of

σ2
x and σ2

y are readily available in the local 3D-SSIM computation.
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Figure 3.2: Samples of sorted local 3D-SSIM curves and local distortion based
weighting functions.

Previous studies had shown that assigning larger weights to higher distortion

regions generally has positive effect on the performance of IQA/VQA algorithms

[122, 3, 121]. In Fig. 3.2, the local 3D-SSIM measures computed from different

regions are sorted in ascending order for three different distorted video sequences.

It can be observed that the shapes of the ascending curves vary for different video

sequences, which may depend on the nature of the videos as well as the type and

level of the distortions. It was demonstrated in [121] the usefulness of adapting the

weight assignment strategy based on the shape. In this work, we propose to use

a width-adapted exponential weighting function applied upon sorted block index.
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Assume that there are totally K 3D blocks extracted from the video, and let yk

be the block with the k-th lowest local 3D-SSIM value. The local distortion-based

weighting function is defined upon the normalized index αk = k/K by

wd(yk) = e
− |αk|

α0 , (3.3)

where α0 is a width parameter that controls the speed of falloff of the exponential

function. As shown in Fig. 3.2, the ascending speeds of the sorted local 3D-SSIM

curves vary for different video sequences. This motivates us to adapt the weighting

function accordingly which can be readily implemented by adjusting α0. Specifi-

cally, we preset an S∗ parameter on the normalized 3D-SSIM value and find the

corresponding block index α∗ value on the sorted 3D-SSIM curve. We then compute

the α0 parameter by

α0 = βα∗ , (3.4)

where β is a scaling parameter to control the relative widths of the sorted 3D-SSIM

curve and the weighting function. Examples of the weighting functions computed

based on the sorted 3D-SSIM curves are shown in Fig. 3.2.

Finally, the local 3D-SSIM map is pooled based on both local information con-

tent and local distortion based weighting and the overall 3D-SSIM measure of the

entire video sequence is given by

3D-SSIM =

∑K
k=1[wic(xk,yk)]

µ[wd(yk)]
νS(xk,yk)∑K

k=1[wic(xk,yk)]
µ[wd(yk)]ν

. (3.5)

where µ and ν are two parameters used to control the relative importance of the

two weighting functions.
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Table 3.1: Specifications about the tested VQA databases. SRC denotes the number
of source reference videos and HRC denotes the number of distorted videos created
from each source video.

Database # of video SRC HRC Resolution
VQEG FR-TV I 320 20 16 480i, 576i
IRCCyN/IVC 192 24 7 720×576
EPFL-PoliMI 156 16 9 CIF, 4CIF

LIVE 150 10 15 768×432p

3.2 Implementation and Experiment

The implementation details of the proposed 3D-SSIM algorithm are as follows.

As in the default SSIM implementation [124], the input reference and distorted

video signals first go through an automatic downsampling (or auto-scale) process

on a frame-by-frame basis. This is followed by dividing the 3D volume image into

non-overlapping 7 × 7 × 7 blocks, within which the local 3D-SSIM measure (3.1),

the local information content weighting function (3.2), and the local distortion

weighting function (3.3) are calculated. The parameters C1, C2 and σ2
0 are the same

as in the default SSIM [124] and VIF [123] implementations. The other parameters

are obtained empirically to optimize the performance on the EPFL-PoliMI VQA

database and are given by S∗ = 0.95, β = 0.4, µ = 4.5 and ν = 1, respectively.

Our simulation shows that the values of those parameters are stable across different

VQA databases and will have slightly change if trained on other databases. The

information content weights go through another normalization step so that its value

is between 0 and 1 before being plugged into the final computation of the overall

3D-SSIM measure.

The proposed approach was tested on four publicly available VQA databases,

as described in Table 3.1, where the main distortion types include standard video

compression (MPEG and H.264) at different bit rates and simulated transmission
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errors. The subjective scores are in the form of either mean opinion score (MOS)

or difference of mean opinion score (DMOS) (difference between the MOS values

of the reference and distorted videos). The following two evaluation metrics are

adopted to compare the performance of different VQA measures[125, 126, 127].

• Pearson Linear correlation coefficient (PLCC) after a nonlinear mapping be-

tween the subjective and objective scores. For the i-th image in an image

database of size N , given its subjective score oi (MOS or DMOS between

reference and distorted images) and its raw objective score ri, we first apply

a nonlinear function to ri given by [126]

q(r) = a1

{
1

2
− 1

1 + exp[a2(r − a3)]

}
+ a4r + a5 , (3.6)

where a1 to a5 are model parameters found numerically using a nonlinear

regression process in MATLAB optimization toolbox to maximize the corre-

lations between subjective and objective scores. The PLCC value can then

be computed as

PLCC =

∑
i(qi − q̄) ∗ (oi − ō)√∑

i(qi − q̄)2 ∗
∑

i(oi − ō)2
. (3.7)

• Spearman’s rank correlation coefficient (SRCC) is defined as:

SRCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
, (3.8)

where di is the difference between the i-th image’s ranks in subjective and

objective evaluations. SRCC is a non-parametric rank-based correlation met-

ric, independent of any monotonic nonlinear mapping between subjective and

objective scores.
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PLCC is adopted to evaluate prediction accuracy [125], and SRCC is employed to

assess prediction monotonicity [125]. A better objective VQA measure should have

higher PLCC and SRCC values.

Table 3.2: PLCC performance comparison of VQA algorithms

Database VQEG IRCCyN EPFL-PoliMI LIVE

PSNR 0.7683 0.4160 0.7351 0.5621
2D-SSIM [124]

0.8113 0.6139 0.6770 0.7177
(auto-scale)
VQM [87] 0.8170 0.4850 0.8434 0.7236

MOVIE [45] 0.8210 0.4850 0.9210 0.8116
You et al. [49] 0.8170 0.7680 0.9470 0.8450

2D-SSIM [1]
0.8215 0.5012 0.6781 0.5444

(no weighting)
2D-SSIM

0.8301 0.5206 0.7685 0.5985
(wic only)
2D-SSIM

0.8297 0.5827 0.8716 0.7062
(wd only)
2D-SSIM

0.8311 0.6612 0.9092 0.7621
(with both weighting)

3D-SSIM
0.8079 0.6212 0.7591 0.7026

(no weighting)
3D-SSIM

0.8203 0.7357 0.8136 0.7497
(wic only)
3D-SSIM

0.8295 0.7209 0.9091 0.7832
(wd only)
3D-SSIM

0.8403 0.8194 0.9621 0.8353
(with both weighting)

The evaluation results in terms of PLCC and SRCC are given in Tables 3.2 and

3.3, respectively. First, the proposed 3D-SSIM approach in (3.5) is compared with

other pooling options (that are based on the same local 3D-SSIM map), where no

weighting or only one of the weighting approaches (wic in (3.2) or wd in (3.3) only)

is applied. Apparently, either information content or distortion based weighting

scheme significantly improves upon the no-weighting case and the best results are

obtained when both of them are applied. The proposed 3D-SSIM algorithm is
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Table 3.3: SRCC performance comparison of VQA algorithms

Database VQEG IRCCyN EPFL-PoliMI LIVE

PSNR 0.7714 0.4510 0.7440 0.5398
2D-SSIM [124]

0.7919 0.6058 0.6949 0.6947
(auto-scale)
VQM [87] 0.7760 0.4820 0.8383 0.7026

MOVIE [45] 0.8330 0.5930 0.9200 0.7890
Yu et al. [49] 0.8030 0.7910 0.9450 0.8180

2D-SSIM [1]
0.7880 0.5126 0.6770 0.5257

(no weighting)
2D-SSIM

0.7941 0.5382 0.7655 0.5752
(wic only)
2D-SSIM

0.7917 0.5971 0.8612 0.6878
(wd only)
2D-SSIM

0.8085 0.6301 0.9034 0.7490
(with both weighting)

3D-SSIM
0.7804 0.6147 0.7483 0.6810

(no weighting)
3D-SSIM

0.8147 0.7143 0.8003 0.7397
(wic only)
3D-SSIM

0.8208 0.7012 0.9016 0.7712
(wd only)
3D-SSIM 0.8396 0.7916 0.9608 0.8244
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Figure 3.3: Scatter plots of 3D-SSIM versus subjective score for four VQA
databases.
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also compared with six other VQA approaches: peak signal-to-noise-ratio (PSNR),

direct 2D-SSIM [1], 2D-SSIM with auto-scaling [124], video quality model (VQM)

[87], motion-based video integrity evaluation index (MOVIE) [45], and a most recent

method proposed by Yu et. al [49]. In addition, the results of applying 2D version

of two weighting approaches to direct 2D-SSIM are also included in two tables,

so that the effect of weighted pooling can be better examined. The best results

obtained for each database are highlighted in bold. It can be observed that 3D-

SSIM appears to be the most reliable measure across all four databases and achieves

the best performance in most cases. The scatter plots of 3D-SSIM values versus

subjective quality scores over the four databases, together with the nonlinear fitting

functions, are shown in Fig. 3.3.

It is worth emphasizing that the highly competitive performance of 3D-SSIM is

obtained with vastly reduced computational complexity. Our Matlab implementa-

tion of the 3D-SSIM algorithm takes around 4.64 seconds (excluding data loading

time) to evaluate a video sequence of 768×432 in spatial resolution and 217 frames

in length on a computer with Intel Core2 Duo CPU E8600 processor at 3.33GHz.

This is estimated to be only less than 1% and 0.1% of the well known VQM [87]

and MOVIE [45] algorithms, respectively. This could be a critical advantage in

many real world applications.

3.3 Summary

In this chapter, a novel FR-VQA algorithm, namely 3D-SSIM, is proposed. It re-

gards a video signal as a 3D volume image, which can be further divided into mul-

tiple local regions. Localized SSIM is employed to create a 3D quality map, which

is further merged into a single quality score using two pooling strategies. The first

one is local information content weighted pooling, which is calculated based on the

36



assumption of Gaussian distribution of source signal and channel noise. The sec-

ond one is local distortion based pooling method, which is based on the philosophy

that more severe distortion would attract more attention. The resulting 3D-SSIM

measure is computationally efficient and achieves highly competitive performance

when compared with state-of-the-art VQA approaches. One potential drawback of

the proposed approach is the memory requirement to store 3D volume data. This

problem may be alleviated by dividing the video sequence into segments based on

the size of the 3D block involved in the computation. Additionally, the proposed

FR-VQA approach is directly useful in video codec and video processing system

development, but may require excessive computational power to be applied in real-

time communication systems, such as video streaming and conferencing, due to its

complexity. In the future, the proposed method may be improved by incorporating

more accurate statistical models in the estimation of local information content and

investigating more advanced adaptive strategies for local distortion based pooling.

In addition, because all local quality measure and weights calculation are conducted

in 3D block, the size of 3D block should be adaptive to the spatial and temporal

resolution of target videos, so that the frame size and rate can be better accounted

for.

37



Chapter 4

Reduced-reference Video Quality

Assessment

Objective FR-VQA models typically require the full access to the reference video

that is assumed to have perfect quality. In practical visual communication appli-

cations, such methods may not be applicable because the reference video are un-

available [13]. On the other hand, NR-VQA is extremely difficult, especially when

the types of distortions between senders and receivers are unknown [13]. Reduced-

reference video quality assessment (RR-VQA) methods provide solutions that lies

between FR and NR models. They are designed to evaluate the visual quality of the

distorted video with only partial information about the reference video. One diffi-

culty in the deployment RR-VQA approaches is that they require the RR features

to be transmitted to the receiver through a lossless ancillary channel [13], which is

often hard to provide in real-world application environment. This motivated the

ideas of quality-aware image (QAI) [9] and quality-aware video (QAV) [128], where

the extracted RR features are embedded into the original image/video signal as

invisible messages and transmitted to the receiver together with the image/video

content. In this chapter, we develop a novel RR-VQA measurement and further
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construct a more effective QAV system.

4.1 Temporal Motion Smoothness Measurement

for RR-VQA

Because of the high correlation between adjacent frames in natural video signals,

we explore temporal statistics using phase difference in complex wavelet domain.

The simulation demonstrates that it is effective to be employed in an RR-VQA

framework as a feature to capture several kinds of common quality degradations.

4.1.1 Temporal Motion Smoothness

Let f(x) be a given real static signal, where x is the index of spatial position. When

f(x) represents an image, x is a 2-D vector. For simplicity, in the derivations below,

we assume x to be one dimensional. However, the results can be easily generalized

to two and higher dimensions. A time varying image sequence can be created from

the static image f(x) with rigid motion and constant variations of average intensity:

h(x, t) = f(x+ u(t)) + b(t) . (4.1)

Here b(t) is real and accounts for the time-varying background luminance changes,

and u(t) indicates how the image positions move spatially as a function of time. We

call the motion N -th order smooth if the (N + 1)-th and higher order derivatives

of u(t) with respect to t are all zeros [8]. Because the video is transformed into

complex wavelet domain, this assumption is valid for the local regions covered by

a wavelet envelop.

Now consider a family of symmetric complex wavelets whose “mother wavelets”
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can be written as a modulation of a low-pass filter w(x)= g(x) ejωcx, where ωc is the

center frequency of the modulated band-pass filter, and g(x) is a slowly varying and

symmetric function. The family of wavelets are dilated/contracted and translated

versions of the mother wavelet: ws,p(x) = 1√
s
w
(
x−p
s

)
, where s ∈ R+ is the scale

factor, and p ∈ R is the translation factor. Using the convolution theorem and the

scaling and modulation properties of the Fourier transform, we can compute the

complex wavelet transform of f(x) as

F (s, p) =

∫ ∞
−∞

f(x)w∗s,p(x) dx

=
1

2π

∫ ∞
−∞

F (ω)
√
sG(s ω − ωc) ejωp dω , (4.2)

where F (ω) and G(ω) are the Fourier transforms of f(x) and g(x), respectively.

Applying such a complex wavelet transform to both sides of Eq. (4.1) at time

instance t, we have

H(s, p, t) =
1

2π

∫ ∞
−∞

F (ω)
√
sG(s ω − ωc) ejω(p+u(t)) dω

≈ F (s, p) ej(ωc/s)u(t) . (4.3)

Here b(t) is eliminated because of the bandpass nature of the wavelet filters. The

approximation is valid when the envelope g(t) is slowly varying and the motion u(t)

is small. A more convenient way to understand Eq. (4.3) is to take a logarithm on

both sides, which gives

logH(s, p, t) ≈ logF (s, p) + j(ωc/s)u(t) . (4.4)

The key point here is that at a given scale s and a given spatial position p, the first

term is a constant and the imaginary part of the logarithm of the complex wavelet

coefficient changes linearly with u(t). In other words, the local phase structures
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over time can be fully characterized by the movement function u(t).

In order to relate temporal motion smoothness with the time-varying complex

wavelet transform relationship, we must examine the complex wavelet coefficients

at multiple time instances. A convenient choice is to start from a time instance t0

and sample the sequence at consecutive time steps t0 + n∆t for n = 0, 1, ..., N . We

define the N -th order temporal correlation function as [8]

LN(s, p) =
N∑
n=0

(−1)n+N
(
N

n

)
logH(s, p, t0 + n∆t) . (4.5)

When the motion is (N -1)-th order smooth, i.e., u(N)(t0) = 0, then it can be

derived that LN(s, p) ≈ 0 [8]. It needs to be kept in mind that this approximation

is achieved based on the ideal formulation of Eq. (4.1) and the ideal assumption

of (N -1)-th order temporal motion smoothness. Real natural image sequences are

expected to deviate from these assumptions. However, by looking at the statistics

of the imaginary part of LN(s, p), one may be able to quantify such deviation and

use it as an indicator of temporal motion smoothness.

As a counterpart of the temporal correlation function LN(s, p), we can also

define a temporal energy function

MN(s, p) =
N∑
n=0

(
N

n

)
logH(s, p, t0 + n∆t) , (4.6)

which is useful for us to observe the strength of temporal motion smoothness as a

function of local energy. An example of the imaginary part of LN(s, p) conditioned

on the real part of MN(s, p) is shown in Figure 4.1(a), where each column in the 2-D

histogram is normalized to one. The conditional histogram shows strong temporal

motion smoothness (when the values of imag{L2(s, p)} are close to zero), and such

a statistical regularity becomes stronger with the increase of local signal strength
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(as the width of the column in the 2D histogram becomes narrower). This is not

surprising because small magnitude coefficients typically come from the smooth

background regions in an image and are easily disturbed by background noise.

4.1.2 RR Video Quality Assessment

A full RR-VQA system consists of three modules: 1) RR feature extraction at the

sender side; 2) Transmission of RR features from the sender to the receiver (maybe

through an ancillary channel [13] or through the same channel as video transmission

[9, 128]); 3) Feature extraction and quality evaluation of the distorted video at the

receiver side. This section focuses on the first and the third modules.

At the sender side, the given reference video sequence is first divided into groups

of pictures (GOPs), each containing three consecutive frames. For each GOP, all

three frames were decomposed using the complex version [129] of the steerable

pyramid [130], an overcomplete wavelet transform that avoids aliasing in subbands.

The second order temporal correlation and temporal energy functions L2(s, p) and

M2(s, p) are then computed for each subband. Instead of using the marginal his-

togram of imag{L2(s, p)} to quantify temporal motion smoothness (as in [8]), here

we extract RR features based on the conditional histogram of imag{L2(s, p)} versus

real{M2(s, p)}. The reason behind this choice is that temporal motion smoothness

is much stronger at high energy coefficients (as can be seen in Figure 4.1(a)), but

marginal histogram of imag{L2(s, p)} cannot distinguish such differences and takes

all coefficients into equal account. Furthermore, the trend of how temporal motion

smoothness varies with the increase of local signal energy provides additional in-

formation that can help characterize the reference video. Specifically, we use the

circular variance (CV) [131] of each column in the conditional histogram to quan-

tify the spread of the angle variables. For each column, the circular variance is
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computed as

CV = 1−

∣∣∣∑M
i=1 hie

jθi

∣∣∣∑M
i=1 hi

, (4.7)

where M is the total number of histogram bins, and hi and θi are the height and cen-

ter angle of the i-th histogram bin, respectively. The column CV values computed

based on the conditional histogram of Figure 4.1(a) are shown in Figure 4.1(b) as

a dashed curve, which provides an adequate description about the variation trend

of temporal motion smoothness. Depending on the application environment, trans-

mitting the CV curve as the RR features to the receiver may not be a realistic

solution because it requires a fairly large RR data rate. To overcome this prob-

lem, we use a parametric model to describe the CV curve and only send the model

parameters to the receiver. In particular, we find that a fourth order polynomial

can very well approximate a typical CV curve, as demonstrated by the solid fitting

curve in Figure 4.1(b). Consequently, only 5 parameters (that uniquely define the

fourth order polynomial) are employed for every three consecutive frames as RR

features and are transmitted to the receiver. They have been further quantized into

integer numbers to reduce the necessary transmission data rate.

At the receiver side, the distorted video sequence is processed the same way as

at the sender side, i. e., GOP division and complex wavelet signal decomposition,

followed by the computation of the conditional histogram and the CV curve. Mean-

while, the received RR features (polynomial parameters) are used to reconstruct

the model CV curve. Finally, we quantify the overall video quality distortion as

D =

{
1

K

K∑
k=1

[CV (k)− CVmodel(k)]2

}1/2

, (4.8)

where K is the total number of columns in the conditional histogram, and CV (k)

and CVmodel(k) are the CV values of the k-th column of the distorted CV curve and
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Figure 4.1: Typical conditional histogram and variation of circular variance. (a)
Conditional histogram of imag{L2(s, p)} versus real{M2(s, p)} of a natural video
sequence; (b) Variation of circular variance and the best fourth order polynomial
fitting.

the model CV curve, respectively. Because the CV values are bounded between 0

and 1, this distortion measure is also bounded by the same range.

4.2 Quality Aware Video based on Intra- and Inter-

Frame Features

One of the most significant differences of video from image is the temporal redun-

dant information between frames. Therefore, both intra- and inter- frame knowl-

edge has been considered in the proposed quality-aware video (QAV) system, whose

framework is shown in Figure 4.2. Basically, the system consists of three parts: (1)

feature extraction for VQA; (2) error control coding and decoding; (3) information

hiding by watermarking technique.
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4.2.1 RR-VQA Method

In order to capture the video degradation more effectively, both intra- and inter-

frame RR features are considered in the complex wavelet transform domain. The

marginal distribution of the amplitude of complex wavelet coefficients in each sub-

band can be employed as quality indicator within a frame [132]. Meanwhile, the

temporal motion smoothness can be calculated using local phase coherence of con-

secutive frames as quality indicator along temporal direction [10].

Figure 4.2: Framework of the proposed QAV system.

4.2.1.1 Feature extraction and distortion measure

In [9], it is demonstrated that the distance between the wavelet coefficient distri-

butions of a reference and a distorted image can be used to characterize perceptual

degradations. Let p(x) and q(x) denote the probability density functions of the

wavelet coefficients in the same subband of the same frame in the reference and

distorted images, respectively. The Kullback-Leibler distance (KLD) between them

is

d(p||q) =

∫
p(x) log

p(x)

q(x)
dx . (4.9)

q(x) can be easily calculated from the distorted frame at the receiver. p(x) needs

to be transmitted from the sender. To do that efficiently, it is useful to summarize

it using a 2-parameter generalized Gaussian density model that provides a good
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approximation [9]

pm(x) =
β

2αΓ(1/β)
e−(|x|/α)

β

, (4.10)

where Γ(a) =
∫∞
0
ta−1e−tdt (for a > 0) is the Gamma function. The model approx-

imation error is computed as the KLD between pm(x) and p(x):

d(pm||p) =

∫
pm(x) log

pm(x)

p(x)
dx . (4.11)

In the end, only three RR parameters, α, β and d(pm||q), are extracted from each

subband. At the receiver side, the intra-frame distortion is computed as an estimate

of d(p||q) given by

Dintra = d̂(p||q) = d(pm||q)− d(pm||p) . (4.12)

For inter-frame case, we adopted those features introduced in Section 3.1, as

equation (4.8) which is rewritten as follows

Dinter =

{
1

N

N∑
n=1

[CV(n)− CVmodel(n)]2

}1/2

, (4.13)

where N is the number of samples in CV curve, and CV(n) and CVmodel(n) are

the n-th sample computed from the distorted video and the model CV curve, re-

spectively. Finally, the overall distortion is computed as the average of intra- and

inter-frame distortions:

D =
1

2
(Dintra +Dinter) . (4.14)

4.2.2 Robust Information Embedding

Robustness of information embedding is a critical issue to the success of QAV

systems. To achieve it, the scalar RR features are first quantized to 7-bit represen-
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tations, resulting in a binary RR bitstream. The bitstream is then expanded by a

16-bit CRC code for error detection, and then encoded using a binary LDPC code

for error correction [133]. The column number of the sparse parity-check matrix of

LDPC encoder was designed to be twice of the row number, so that it can correct

up to 1 bit of error out of every 2 bits.

Figure 4.3: Illustration of AQIM for ∆ = π/4.

The error control coded bitstream is embedded invisibly into the original video

using a watermarking scheme. Our method is based on an AQIM approach, which

was shown to be highly robust to contrast scaling attacks [11]. The novelty of our

scheme is to apply it to pairs of coefficients in 3D-DCT domain, so that it is not

only robust to scaling, but also to blur and other types of attacks. An example is

illustrated in Figure 4.3, where one bit of information is embedded into the plane

composed of two 3D-DCT coefficients. The plane is divided into R0 and R1 regions,

corresponding to 0 and 1, respectively. The division is based on angular values and

the angular quantization step is ∆ = π/4. Let a and b be the values of a pair

coefficients, and ∠c be the angle of the complex number c = a + jb. Then the
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AQIM embedding scheme is given by an angular quantization operation

∠cnew = Q(∠c+ d(m))− d(m) ≡ Qm(∠c) ,

cnew = |c| exp(j∠cnew) , (4.15)

where m is the bit being embedded, Q is an angular quantization operator as

exemplified by Figure 4.3, cnew is the complex coefficient pair after embedding, and

d(m) is a dithering operator defined as

d(m) =

 −∆/4, if m = 0

∆/4, if m = 1 .
(4.16)

At the receiver side, after a distorted version (denoted as cd) of the embedded

complex coefficient pair cnew is received, the embedded bit can be estimated using

a minimum angular distance criterion:

m̂(∠cd) = argmin
m∈{0,1}

‖∠cd −Qm(∠cd)‖ . (4.17)

3D-DCT often leads to strong energy concentration when applied to natural

video signals. As a result, the coefficients corresponding to low spatial and tem-

poral frequencies have much higher energy than that of the high frequency ones.

To maximize robustness, we choose the low frequency coefficients for AQIM em-

bedding that are much less sensitive to typical distortions such as compression and

noise contamination. Since both 3D-DCT and contrast scaling are linear operators,

3D-DCT domain AQIM is automatically robust to contrast scaling attack because

the angular value in Figure 4.3 is invariant to scaling. In addition, the coefficients

selected for embedding are paired so that two coefficients that form a pair corre-

spond to the same spatial and temporal frequencies (though may be different in
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orientation). This is critical to make the AQIM scheme robust to blur attack, be-

cause blur causes the two coefficients to scale down by the same ratio, such that the

angular value in Figure 4.3 remains unchanged. The value of ∆ is tuned to achieve

a compromise between robustness and imperceptibility of information embedding.

The locations of the selected 3D-DCT coefficients are shared between the sender

and receiver as the embedding key, as illustrated in Figure 4.2.

4.3 Experimental Results

4.3.1 Temporal Motion Smoothness for RR VQA

The proposed RR video distortion measure is tested using simulated five distortion

types at different distortion levels. These include 1) Gaussian noise contamination,

where the distortion level is defined as the standard deviation of the noise; 2)

Gaussian blur, where the standard deviation of the Gaussian filter size defines the

distortion level; 3) Line jittering, where each line in a frame is shifted horizontally by

a random number uniformly distributed between [−S, S], and S defines the jittering

level; 4) frame jittering, where the whole frame is shifted together by a random

number uniformly distributed between [−S, S]; and 5) frame dropping, which is

simulated by discarding every 1 of N frames and repeating the previous frame to

fill the empty frame, and 12−N defines the distortion level. All distortion types are

associated with certain real-world scenarios. For example, line jittering occurs when

two fields of interlaced video signals are not synchronized; frame jittering is often

caused by irregular camera movement such as hand shaking; and frame dropping

usually happens when the bandwidth of a real-time communication channel drops

and some video frames have to be discarded to reduce the bit rate of the video

signal being transmitted.
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Figure 4.4: Experimental results for proposed RR-VQA approach on Gaussian
noise contamination. Top row: three images contaminated by Gaussian noise at
low, middle and high levels. Middle row: conditional histograms of Imag{L2(s, p)}
versus Real{M2(s, p)} of Gaussian noise contamination at low, middle and high
distortion levels; Bottom left: circular variance as a function of Real{M2(s, p)}
for the reference video sequence and distorted sequences at different distortion
levels; Bottom right: proposed distortion measure as a function of Gaussian noise
contamination level.
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Figure 4.5: Experimental results for proposed RR-VQA approach on Gaussian blur.
Top row: three images distorted by Gaussian blur at low, middle and high levels.
Middle row: conditional histograms of Imag{L2(s, p)} versus Real{M2(s, p)} of
Gaussian blur at low, middle and high distortion levels; Bottom left: circular vari-
ance as a function of Real{M2(s, p)} for the reference video sequence and distorted
sequences at different distortion levels; Bottom right: proposed distortion measure
as a function of Gaussian blur level.
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Figure 4.6: Experimental results for proposed RR-VQA approach on line jittering.
Top row: three images distorted by line jittering at low, middle and high levels.
Middle row: conditional histograms of Imag{L2(s, p)} versus Real{M2(s, p)} of line
jittering at low, middle and high distortion levels; Bottom left: circular variance
as a function of Real{M2(s, p)} for the reference video sequence and distorted
sequences at different distortion levels; Bottom right: proposed distortion measure
as a function of line jittering level.
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Figure 4.7: Experimental results for proposed RR-VQA approach on frame jittering.
Top row: three images distorted by frame jittering at low, middle and high levels.
Middle row: conditional histograms of Imag{L2(s, p)} versus Real{M2(s, p)} of
frame jittering at low, middle and high distortion levels; Bottom left: circular vari-
ance as a function of Real{M2(s, p)} for the reference video sequence and distorted
sequences at different distortion levels; Bottom right: proposed distortion measure
as a function of frame jittering level.
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Figure 4.8: Experimental results for proposed RR-VQA approach on frame drop-
ping. Top row: three images distorted by frame dropping at low, middle
and high levels. Middle row: conditional histograms of Imag{L2(s, p)} versus
Real{M2(s, p)} of frame dropping at low, middle and high distortion levels; Bot-
tom left: circular variance as a function of Real{M2(s, p)} for the reference video
sequence and distorted sequences at different distortion levels; Bottom right: pro-
posed distortion measure as a function of frame dropping level.
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Figure 4.4 to 4.8 shows the results of the experiment. First, it is interesting

to observe that different distortions lead to different changes to the conditional

histogram of imag{L2(s, p)} versus real{M2(s, p)}. For example, noise contami-

nation and jittering cause the histogram to spread, but Gaussian blur results in

shrinkage of the histogram (as the energy reduces, especially at high frequencies).

The observed changes are well captured by the departure of the CV curves of the

distorted video sequence from the reference CV curves. Specifically, for each distor-

tion type, the CV curve moves away from the reference CV curve with the increase

of distortion level. This is further confirmed by computing the overall distortion

measure D, which is monotonically increasing with the distortion level. From this

experiment, we observe that the same objective distortion measure D works con-

sistently for each individual type of distortion. This demonstrates the potential of

the proposed method for general-purpose RR VQA, which is different from most

approaches in the literature where ad-hoc features tuned to specific distortion types

(such as blocking and ringing artifacts) are often used. Another interesting obser-

vation is regarding the frame jittering and frame dropping distortions. Notice that

with these two types of distortions, the quality of each individual frame remains

high quality, and thus frame-by-frame quality assessment approaches would give

high quality scores to the image sequences undergoing these distortions, but the

proposed method can capture them quite effectively without any specific change to

the algorithm.

The effectiveness of the proposed temporal motion smoothness (TMS) measures

for capturing temporal artifacts has been demonstrated above. They are useful

novel RR features but do not take into account all distortions in VQA, which

needs to include features that measures spatial distortions. The existing VQA

databases usually include compression artifacts and transmission errors only and

are not sufficient to fully test the usefulness of the current approach. In the next
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section, TMS will be combined with a spatial quality measure to construct a quality-

aware video system..

4.3.2 Quality Aware Video

In our implementation, every 30 consecutive frames form a group of picture (GOP),

where each frame is decomposed using a complex version [129] of a two-orientation

steerable pyramid transform [130]. The subband statistics are carried out on the

two orientation subbands at the finest scale by accumulating the coefficients of all

frames in the GOP. These include the marginal statistics of real coefficients for intra-

frame features and the statistics of the temporal correlation function conditioned on

the energy function for inter-frame features. The intra- and inter-frame RR features

are then extracted using the methods described in Section 4.2.1. This results in

8 features for each subband (3 intra- and 5 inter-frame features) and a total of

16 scalar features for both subbands. They are converted to 116 bits after 7-bit

quantizations, and 256 bits after CRC and LDPC coding. The resulting encoded

RR bitstream is then embedded into a 3D-DCT transform of the GOP using the

method described in Section 4.2.2.

We simulated six types of distortions to test the proposed QAV system, which

include 1) Gaussian noise contamination, where the distortion level is defined as

the standard deviation of noise; 2) Gaussian blur, where the standard deviation

of the blur filter defines the distortion level; 3) line jittering, simulated by shifting

each line horizontally by a random number uniformly distributed between [−S, S],

and S defines the jittering level; 4) frame jittering, which is similar to line jittering

except that the whole frame shifts together; 5) frame dropping, simulated by dis-

carding every 1 out of N frames (empty frames are filled by repeating their previous

frame) and 12-N defines the distortion level; and 6) MPEG2 compression, where
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the quantization parameter (QP) defines the distortion level. All distortion types

are observed in real-world scenarios. For example, frame dropping occurs when the

bandwidth of a real-time communication channel drops; and frame jittering is often

caused by irregular camera movement such as hand shaking.

Figure 4.9 shows the test results for the robustness of information embedding,

where the bit-error rates are calculated without LDPC correction, which can further

improve the robustness. Compared with the traditional “3DDCT+QIM” method,

“3DDCT+AQIM” leads to consistent improvement for all distortion types. As

expected, the improvement is the most significant for blur distortions. Since in-

formation embedding alters the original video signal and thus its statistics, it is

important to verify that such alteration does not have significant impact on the

performance of the VQA algorithm. A comparison between the RR-VQA evalua-

tion results with and without QAV information embedding is shown in Figure 4.10

for six types of distortions. It appears that the differences are generally small rela-

tive to the distortion measures. This may be explained by the fact that the VQA

algorithm mostly relies on the variations of the statistics of the fine scale coeffi-

cients, while information embedding mainly affects relatively lower frequencies of

the video content.

4.4 Summary

In this chapter, we first introduce a novel representation for motion information in

natural video, termed temporal motion smoothness (TMS). The proposed measure

is computed in complex wavelet transform domain and is demonstrated to be a po-

tential solution for general-purpose RR-VQA. The TMS is supposed to capture the

temporal artifacts only and should be combined with a spatial distortion measure

to form a overall VQA method. This is also one of the reasons that TMS doesn’t
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Figure 4.9: Robustness test of information embedding schemes.
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Figure 4.10: RR VQA consistency with and without QAV information embedding.
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applied to any subjective VQA database. The tests on five simulated distortions

demonstrated the usefulness of TMS. Because there is no assumption about the

distortion type, TMS is applicable to measure the quality of video with any arti-

facts. Generally, motion estimation requires a time consuming search process [134]

or solving simultaneous equations at every spatial location of the image [135], but

TMS is able to capture the motion characteristics without explicit motion estima-

tion. In addition, it has a very low RR data rate, which makes it easily adapted to

practical visual communication system. Further improvement of the TMS can be

gained by taking the frame rate into account, because higher frame rate generally

leads to smoother motion between neighboring frames. Based on TMS and another

quality feature, we propose a QAV system which also incorporates a novel robust

information data hiding technique. This system does not need a error-free channel

to transmit the RR features and does not require any changes of existing video

compression and transmission systems. However, the performance of this system

heavily relies on the watermarking technique because the RR features need to be

recovered perfectly at the receiver side.

60



Chapter 5

Polyview Fusion for Video

Denoising Enhancement

Instead of designing a video denoising algorithm, this section focuses on enhancing

existing video denoising algorithm using a novel polyview fusion scheme. A video

signal can be expressed as a 3D function f(u, v, t), where u and v are the horizontal

and vertical spatial indices and t is the time index, respectively. A video is typically

played along the time axis. At any time instance t = t0, the video is displayed as a

2D front-view image g
(t0)
FV (u, v) = f(u, v, t0) and the image changes over time t. If we

think of a video signal as 3D volume data, then it can also be viewed from the side

or the top. This gives two other ways to play the same video − a sequence of 2D

top-view images g
(u0)
TV (v, t) = f(u0, v, t) for different values of u0 and a sequence of

2D side-view images g
(v0)
SV (u, t) = f(u, v0, t) for different values of v0. An example is

given in Fig. 5.1, where the rarely observed side- and top-view images demonstrate

some interesting regularized spatiotemporal structures.
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(a)

(b) (c)

Figure 5.1: A video signal observed from (a) front view; (b) side view; and (c) top
view.
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5.1 Video Denoising Algorithm Enhancement by

Polyview Fusion

Let x be an original noise-free video signal, which is contaminated by additive noise

n, resulting in a noisy signal

y = x+ n . (5.1)

A video denoising operator D takes the noisy observation y and maps it to an

estimator of x:

x̂ = D(y) , (5.2)

such that the difference between x and x̂ is as small as possible. How to quantify

the difference between x and x̂ is another subject of study. The most typically used

ones are the mean squared error (MSE) and equivalently the peak-signal-to-noise

ratio (PSNR). However, recent studies showed that the structural similarity index

(SSIM) [1] may be a better measure in predicting perceived image distortion.

The proposed ployview fusion (PVF) method relies on a base video denoising

algorithm, which could be as simple as frame-by-frame spatially adaptive Wiener

filtering (Matlab Wiener2 function) or as complicated as VBM3D [112]. The base

denoiser is applied to the same noisy signal y multiple times but from different

views, which yields multiple versions of denoised signal

z1 = D1(y) ,

z2 = D2(y) ,

...... ,

zN = DN(y) . (5.3)

In this study N = 3, as we have three different views, but in principle the
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(a) (b)

(c)

Figure 5.2: Denoised frames from three different views using different denoising
algorithms. (a) Original frame; (b) Noisy frame with σn = 50; (c) Top to bottom:
denoised frames by SURE-LET, BLS-GSM, K-SVD, and VBM3D; Left to right:
denoised frames from front-, top-, and side-views, respectively.
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general approach also applies to the cases of less or more views, or multiple de-

noising algorithms. Figure 5.2 shows sample denoised frames created by applying

different denoising algorithms from three different views. It can be observed that

the denoised frames have quite different appearances even when the same denoising

method is applied (from different views). Some image structures preserved in one of

the views may be missing in the other views, and some artifacts appear in one view

may be absent from another. This suggests that the denoised frames from different

views could complement each other, and fusing them (in appropriate ways) could

potentially improve the denoising result. Let z = [z1, z2, ..., zN ]T be a vector that

contains all denoised results, then the final denoised signal x̂ is given by applying

a fusion operator F to z:

x̂ = D(y) = F (z) = F (D1(y), D2(y), ..., DN(y)) . (5.4)

In the case that the base denoisers are predetermined, all the remaining task is

to define the fusion rule F , which would be desired to achieve certain optimality.

Here we employ a weighted average fusion method given by

x̂ = wT (z− µz) + µx , (5.5)

where µx = E(x) (we use E to denote the expectation operator), µz is a col-

umn vector of expected values [E(z1),E(z2), ...,E(zN)]T , and w is a column vector

[w1, w2, ...wN ]T that defines the weight assigned to each denoised signal. To find the

optimal weights w in the least-square sense, we define the following error energy

function

E = E[(x− x̂)2] + λ‖w− 1

N
1‖2 , (5.6)

where 1 is a length-N column vector with all entries equaling 1. The second term
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is to regularize the weighting vector towards all equal weights, and the parameter

λ is used to control the strength of regularization. Taking the derivative of E with

respect to w and setting it to zero, we obtain

(Cz + λI)w = b +
λ

N
1 , (5.7)

where I denotes the N ×N identity matrix, Cz is the covariance matrix

Cz = E[(z− µz)(z− µz)
T ] , (5.8)

and b is a column vector given by

b = E[(x− µx)(z− µz)] . (5.9)

We can then solve for optimal w, which gives

wopt = (Cz + λI)−1
(
b +

λ

N
1

)
. (5.10)

Here the λI term plays an important role in stabilizing the solution, especially

when Cz is close to singular. It is a forgetting factor which may be optimized

under information theoretic framework. The improvement of fusion performance

is expected if this factor is adaptive to video content and changes over time. The

computation of b requires the original signal x, which is not available. But by

assuming n to be zero-mean and independent of z, we have

b = E[(y − n− µx)(z− µz)] = E[(y − µy)(z− µz)] . (5.11)

When applying the above approach to real signals, the expectation operators

would need to be replaced by sample means. In our implementation, we apply the
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weight calculation to individual non-overlapping 16 × 16 × 16 blocks, resulting in

block-wise space-time adaptive weights in the 3D volume. Eq. (5.5) is then applied

to each block to obtain the final denoised signal.

5.2 Variance Weighted Polyview Fusion

The previous section presents a PVF scheme which is optimal in the least-square

sense. However, the estimation error of necessary statistics limits the final perfor-

mance. In this section, we proposed an improved PVF, namely variance-weighted

PVF (VPVF). Before the fusion step, we first apply a normalization process to each

zi. This is inspired by the SSIM index [1], which has been shown to be a much bet-

ter predictor of perceived image quality than the MSE. Given two image patches,

the SSIM index separate the similarity measure into the luminance, contrast and

structure components. Since the luminance and contrast (measured by mean in-

tensity and standard deviation, respectively) of an image patch can be adjusted

freely without changing its structure, we can improve the SSIM measure by adapt-

ing the luminance and contrast of each zi to match those of x while maintaining its

structure. Specifically, we compute

ẑi =
σx
σzi

(zi − µzi) + µx , (5.12)

where µx and µzi , and σx and σzi , denote the means and standard deviations of x

and zi, respectively. The computation in (5.12) requires the mean and standard

deviation of x, which is not available. Fortunately, we can estimate them from the

noisy signal y using (5.1) and the known noise properties (independence, zero-mean,
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and known standard deviation) by

µx = µy and σx =
√
σ2
y − σ2

n , (5.13)

where µy and σ2
y are the mean and variance of y, respectively.

Our fusion rule is based on variance weighted averaging, which can be expressed

as

x̂ =

∑N
i=1 σ

2
zi
ẑi∑N

i=1 σ
2
zi

. (5.14)

This is determined by our empirical studies on the relationship between the vari-

ance and quality of denoised video patches using state-of-the-art video denoising

algorithms. Specifically, for three given 3D patches denoised by the same video de-

noising algorithm but from three different views, we compute their corresponding

variances and PSNR values between the denoised and original patches. We then

calculate the Spearman rank-order correlation coefficient (SRCC) between the three

variance and three PSNR values. Table 5.1 shows the average SRCC values (over

all patches) for nine video sequences denoised with four denoising algorithms. It

can be seen that although a fairly large variations are observed (depending on both

denoising algorithm and video sequence), the correlations are all positive. This sug-

gests that the patches of larger variances tend to have better image quality, thus

justifying variance-based weighting.

5.3 Experimental Results

We use publicly available video sequences to test the proposed algorithm, which in-

clude “Akiyo”, “Carphone”, “Miss America”, and “News”. The size of all sequences

is 144×176×144, and are contaminated by independent white Gaussian noise with

standard deviation, σ, covering a wide range between 10 and 100. After the noisy
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Table 5.1: SRCC between local variance and PSNR for σn = 50

SURE-LET BLS-GSM K-SVD VBM3D
Akiyo 0.436 0.658 0.718 0.747

Carphone 0.316 0.498 0.596 0.559
Mobile 0.645 0.882 0.891 0.748

Foreman 0.321 0.579 0.537 0.590
Miss America 0.288 0.418 0.470 0.581

Mother Daughter 0.439 0.721 0.746 0.820
News 0.566 0.767 0.779 0.772

Salesman 0.734 0.769 0.788 0.820
Suzie 0.291 0.458 0.531 0.420

sequences are denoised using a base denoiser along three different views, the noisy

and denoised sequences are divided into 16×16×16 non-overlap 3D patches, within

which sample means and variances are computed and employed in the normaliza-

tion and fusion processes described in Section 5.1 and Section 5.2, respectively. The

choices of non-overlapping patches and size 16 are based on compromises between

the denoising performance and complexity.

All sequences are in YCrCb 4:2:0 format, but only the denoising results of the

luma channel was reported here to validate the algorithm. In order to evaluate

the quality of denoised video quantitatively, three objective criteria were employed:

PSNR, SSIM [1], as well as 3D-SSIM developed in Chapter 3 of this thesis. PSNR

is the most widely used method in the literature, but SSIM has been recognized as

a much better measure to predict subjective quality measurement. 3D-SSIM has

been proved to be a better video quality measure in Chapter 3. Assume that x and

x̂ are the noise-free and denoised images, respectively, and L is the dynamic range

of intensity values, then

PSNR(x, x̂) = 10 log10

(
L2

MSE(x, x̂)

)
. (5.15)
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The SSIM value between two image patches is computed as

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
(5.16)

where C1 and C2 are small positive constants to avoid instability when the means

and variances are close to zero. This computation is applied at each location in the

image using a sliding window that moves pixel-by-pixel across the image, resulting

in an SSIM quality map, as demonstrated in Fig. 5.4. The SSIM value between two

images is then computed as the mean of the SSIM map. Both PSNR and SSIM

were computed on a frame-by-frame basis along the temporal direction and then

averaged over all frames to yield the PSNR and SSIM values of the whole sequence.

Meanwhile, 3D-SSIM will take a video as 3D-volume data and give one quality

score.

Many state-of-the-art denoising algorithms are publicly available that facilitate

direct comparisons. For simplicity, here we report our comparison results for 5

noise levels (σ equals 10, 15, 20, 50, and 100, respectively) using three base de-

noising methods with and without using our PVF and VPVF approach. The base

algorithms are Matlab Wiener-2D, BLS-GSM [103] and VBM3D[112]. The denois-

ing computations are conducted using the default parameter settings of the code

available to the public at [136], [137], and [138], respectively. We have also ap-

plied our PVF approach to a list of other highly competitive algorithms, including

NLM [111], K-SVD [105], and SURE-LET [110], and other popular test sequences,

such as “Foreman”, “Salesman”, “Mobile”, and “Football”. Similar results were

observed.

Table 5.2 and Table 5.3 show the comparison results using PSNR, SSIM and

3D-SSIM measures at 5 noise levels using 3 base denoising algorithms with and

without PVF and VPVF. The average improvement over 4 test sequences is given
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Table 5.2: PSNR, SSIM, and 3D-SSIM comparisons for three video denoising algo-
rithms with and without PVF and VPVF for “Akiyo” and “Carphone”

Video Sequence Akiyo Carphone
Noise std (σ) 10 15 20 50 100 10 15 20 50 100

PSNR Results (dB)
Wiener-2D 33.22 30.38 28.33 21.58 15.94 32.66 29.84 27.86 21.35 15.86
with PVF 34.69 31.91 29.89 23.15 17.52 33.90 31.20 29.29 22.87 17.42
with VPVF 35.02 32.51 30.80 25.82 22.58 34.20 31.70 29.99 24.87 21.38
BLG-GSM 36.12 33.73 32.09 27.32 24.36 35.34 33.00 31.40 26.47 23.15
with PVF 39.95 37.58 35.88 30.78 27.43 37.01 34.92 33.50 29.02 25.81
with VPVF 40.13 37.81 36.20 31.22 27.76 37.11 35.05 33.63 29.33 25.26
VBM3D 42.01 39.76 37.91 30.79 24.39 38.50 36.64 35.35 29.82 23.30
with PVF 42.33 40.08 38.36 32.64 26.93 38.50 36.71 35.46 30.97 25.76
with VPVF 42.32 40.06 38.35 32.66 27.13 38.52 36.66 35.38 30.99 26.00

SSIM Results
Wiener-2D 0.876 0.788 0.700 0.364 0.164 0.885 0.803 0.722 0.408 0.205
with PVF 0.906 0.833 0.757 0.432 0.213 0.909 0.840 0.771 0.472 0.255
with VPVF 0.917 0.864 0.814 0.615 0.470 0.923 0.876 0.830 0.634 0.477
BLG-GSM 0.952 0.924 0.898 0.765 0.636 0.951 0.927 0.902 0.773 0.627
with PVF 0.977 0.964 0.949 0.866 0.749 0.964 0.947 0.930 0.839 0.718
with VPVF 0.978 0.965 0.952 0.872 0.753 0.965 0.948 0.932 0.844 0.732
VBM3D 0.983 0.976 0.965 0.874 0.616 0.972 0.961 0.951 0.874 0.628
with PVF 0.986 0.978 0.967 0.903 0.684 0.972 0.961 0.952 0.892 0.691
with VPVF 0.986 0.978 0.968 0.904 0.697 0.972 0.962 0.952 0.893 0.703

3D-SSIM Results
Wiener-2D 0.848 0.788 0.727 0.480 0.287 0.878 0.836 0.794 0.606 0.396
with PVF 0.916 0.874 0.826 0.563 0.298 0.937 0.906 0.874 0.678 0.416
with VPVF 0.935 0.904 0.870 0.658 0.390 0.947 0.924 0.900 0.746 0.503
BLG-GSM 0.922 0.892 0.859 0.649 0.403 0.926 0.907 0.887 0.744 0.523
with PVF 0.933 0.912 0.889 0.749 0.537 0.936 0.914 0.890 0.774 0.624
with VPVF 0.952 0.937 0.922 0.815 0.664 0.948 0.937 0.900 0.836 0.712
VBM3D 0.946 0.930 0.912 0.777 0.446 0.933 0.920 0.905 0.816 0.565
with PVF 0.954 0.945 0.921 0.806 0.501 0.946 0.938 0.931 0.850 0.613
with VPVF 0.958 0.947 0.933 0.858 0.660 0.947 0.939 0.932 0.873 0.728
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Table 5.3: PSNR, SSIM, and 3D-SSIM comparisons for three video denoising algo-
rithms with and without PVF and VPVF for “Foreman” and “Miss America”

Video Sequence Foreman Miss America
Noise std (σ) 10 15 20 50 100 10 15 20 50 100

PSNR Results (dB)
Wiener-2D 32.22 29.49 27.55 21.17 15.77 34.36 31.35 29.17 21.91 16.07
with PVF 33.11 30.53 28.70 22.59 17.30 35.74 32.80 30.67 23.47 17.65
with VPVF 33.16 30.65 28.93 23.79 20.41 37.49 35.23 33.63 28.59 24.98
BLG-GSM 34.22 31.92 30.32 25.44 22.21 38.69 36.54 35.09 30.61 27.52
with PVF 35.83 33.65 32.12 27.36 24.05 41.03 38.99 37.59 33.16 30.02
with VPVF 35.89 33.73 32.24 27.66 24.35 41.14 39.16 37.76 33.30 29.82
VBM3D 37.37 35.50 34.12 28.47 22.46 41.93 40.19 38.81 33.55 26.57
with PVF 37.68 35.80 34.44 29.28 24.14 42.34 40.57 39.24 34.69 28.93
with VPVF 37.70 35.84 34.49 29.41 24.38 42.37 40.60 39.28 34.62 29.08

SSIM Results
Wiener-2D 0.887 0.812 0.738 0.432 0.220 0.848 0.737 0.633 0.275 0.107
with PVF 0.906 0.843 0.778 0.488 0.267 0.879 0.785 0.692 0.331 0.138
with VPVF 0.911 0.856 0.802 0.578 0.414 0.935 0.899 0.865 0.709 0.567
BLG-GSM 0.938 0.910 0.884 0.746 0.591 0.958 0.939 0.922 0.841 0.751
with PVF 0.952 0.930 0.908 0.792 0.646 0.972 0.960 0.948 0.884 0.791
with VPVF 0.953 0.931 0.910 0.796 0.649 0.973 0.961 0.949 0.885 0.793
VBM3D 0.961 0.947 0.933 0.844 0.601 0.976 0.968 0.959 0.901 0.669
with PVF 0.962 0.948 0.934 0.857 0.643 0.978 0.970 0.962 0.915 0.685
with VPVF 0.962 0.948 0.935 0.858 0.648 0.978 0.970 0.962 0.915 0.703

3D-SSIM Results
Wiener-2D 0.849 0.814 0.779 0.573 0.374 0.865 0.802 0.739 0.470 0.257
with PVF 0.921 0.897 0.869 0.662 0.399 0.938 0.903 0.866 0.638 0.352
with VPVF 0.928 0.909 0.886 0.722 0.479 0.950 0.924 0.897 0.711 0.432
BLG-GSM 0.889 0.876 0.860 0.741 0.537 0.935 0.903 0.866 0.666 0.429
with PVF 0.912 0.900 0.885 0.755 0.566 0.939 0.909 0.880 0.726 0.515
with VPVF 0.926 0.917 0.905 0.812 0.648 0.961 0.944 0.926 0.830 0.701
VBM3D 0.889 0.887 0.879 0.807 0.538 0.945 0.917 0.883 0.686 0.420
with PVF 0.908 0.909 0.907 0.836 0.566 0.964 0.952 0.936 0.835 0.557
with VPVF 0.915 0.911 0.908 0.848 0.658 0.966 0.954 0.942 0.871 0.721
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in Table 5.4. It can be seen that the proposed PVF approach consistently leads to

performance gain over all base denoising algorithms, for all test video sequences,

and at all noise levels. And VPVF could further improve the denoising effect in most

cases. The gain is especially significant at high noise levels, where the improvement

can be as high as 2-3 dB in terms of PSNR over state-of-the-art algorithms such as

VBM3D, which is among the best algorithms ever reported in the literature. We

also observe that the gain is reduced for video sequences with significant amount

of large motion. This is mainly due to the high complexity texture pattern in the

top- and side-views, which leads to reduced performance of the base denoisers.

Another important observation is that VPVF consistently performs better than

PVF on the tested sequences with different noise levels. It is not surprising that

the SSIM results are better for VPVF because it introduces the SSIM-inspired nor-

malization process. However, the same situation is also applied for PSNR results,

which is counter-intuitive because PVF is designed to optimize the PSNR value.

The reasons behind these phenomena might be two-fold: (1) one of the assumptions

for PVF is that the noise is additive white noise and independent of the noisy and

all denoised videos. This assumption might be too strong. In practice, the noise

and noisy/denoised videos always correlates to a certain extent and may be more

pronounced at high noise levels. (2) in order to limit the pixel values of all sequences

to be within the range of [0 255], any value outside this range will be clipped to the

nearest valid number. This is another reason that puts the assumption of PVF in

question. On the other hand, the motivation of VPVF comes from our observation

of the correlation between local variance and local quality, which is more realistic

and may explain why VPVF achieves better PSNR performance than PVF.

To demonstrate the performance improvement for individual video frames, Fig-

ure 5.3 depicts PSNR and SSIM comparisons as functions of frame number for

“Foreman” sequence. Because 3D-SSIM is based on 3D data and only offers a
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Table 5.4: Average PSNR, SSIM, and 3D-SSIM improvement over all test sequences

Noise std (σn) 10 15 20 50 100
PSNR Improvement (dB)

Wiener-2D
PVF 1.2450 1.3450 1.4100 1.5175 1.5625

VPVF 1.8525 2.2575 2.6100 4.2650 6.4275

BLS-GSM
PVF 2.3625 2.4875 2.5475 2.6200 2.5175

VPVF 2.4750 2.6400 2.7325 2.9175 2.4875

VBM3D
PVF 0.2600 0.2675 0.3275 1.2375 2.2600

VPVF 0.2750 0.2675 0.3275 1.2625 2.4675
SSIM Improvement

Wiener-2D
PVF 0.0260 0.0402 0.0513 0.0610 0.0443

VPVF 0.0475 0.0887 0.1295 0.2642 0.3080

BLS-GSM
PVF 0.0165 0.0252 0.0322 0.0640 0.0748

VPVF 0.0175 0.0262 0.0342 0.0680 0.0805

VBM3D
PVF 0.0015 0.0013 0.0018 0.0185 0.0473

VPVF 0.0015 0.0015 0.0023 0.0193 0.0592
3D-SSIM Improvement

Wiener-2D
PVF 0.0680 0.0850 0.0990 0.1030 0.0378

VPVF 0.0800 0.1053 0.1285 0.1770 0.1225

BLS-GSM
PVF 0.0120 0.0143 0.0180 0.0510 0.0875

VPVF 0.0287 0.0393 0.0453 0.1233 0.2083

VBM3D
PVF 0.0148 0.0225 0.0290 0.0603 0.0670

VPVF 0.0183 0.0242 0.0340 0.0910 0.1995
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single quality score for whole sequence, it is not applied for frame-based analysis.

Again, consistent improvement is observed for almost all frames, indicating the

robustness of the proposed PVF and VPVF approach.

Figure 5.4 provides visual comparisons of the denoising results of one frame

extracted from “Akiyo” sequence, for which the original and noisy frames are given

in Figure 5.2 (a) and (b), respectively. From left to right columns are 1) original

denoised frame, 2) with PVF, 3) with VPVF, separately. From top to bottom odd

rows are figures for 1) Wiener-2D, 2) BLS-GSM, 3) VBM3D, and even rows are

corresponding SSIM quality maps, in which brighter pixels indicate higher SSIM

values and thus better quality. Visual quality improvement by the proposed PVF

and VPVF approach can be easily discerned at various locations in the denoised

frames. The observation is also verified by the SSIM quality map, which provides

a useful indicator of local image quality variations.

Furthermore, another experiment has been conducted to measure the compu-

tational complexity of the PVF and VPVF operation and how they compare with

the complexity of the base denoisers. The results are reported in the Table 5.5,

where the speed is measured in seconds based on Matlab implementations of the

algorithms on a computer with Intel Core Duo CPU E8600 processor at 3.33GHz.

Although the implementations are not speed-optimal, they give us a general idea

about the amount of added complexities due to the PVF or VPVF process. As can

be observed, generally the PVF/VPVF procedure is of low complexity relative to

the base denoising algorithms. The percentage of time spent on PVF ranges from

0.0386% to 3.8471% of the overall denoising process (where a base denoiser needs

to be run 3 times and thus the overall process increases the computational cost by

a factor of 3 or more), and from 0.0431% to 4.2756% for VPVF. In conclusion, the

complexity of the overall denoising algorithm mainly depends on the complexity of

the base denoiser, and the PVF/VPVF portion is mostly negligible.
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Figure 5.3: PSNR and SSIM comparisons as functions of frame number for “Fore-
man” sequence. Noise level σ = 50.
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Figure 5.4: Comparison of one denoised frame from “Akiyo” sequence with and
without PVF and VPVF using three base denoising algorithms.
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Table 5.5: Computational complexity analysis

Base One view denoising PVF time PVF VPVF time VPVF
denoiser time (second) (second) (%) (second) (%)

Wiener-2D 1.353 3.8471 4.2756
BLS-GSM 140.3

0.1624
0.0386

0.1813
0.0431

VBM3D 8.791 0.612 0.6828

5.4 Summary

We propose two approaches that can improve video denoising performance of exist-

ing algorithms by fusing the denoising results from multiple views of video. The first

one, PVF, was derived under a least-square framework to seeking an optimal solu-

tion for fusion. The performance was limited by the assumption of independence

between noise and signal and estimation error of statistics. The second one, VPVF,

was inspired by SSIM and successful fusion techniques. Variance based weighting

scheme has also been justified by the correlation between local variance and quality.

Our experimental results demonstrate consistent improvement over some of the best

video denoising algorithms in the literature. The proposed method is conceptually

simple, easy-to-use, and computationally efficient.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This thesis focused on two problems related to the perceptual quality of video: (1)

video quality assessment and (2) video denoising for quality enhancement.

For full-reference VQA, a novel algorithm, namely 3D-SSIM, has been proposed

in which a video signal is considered as a 3D volume image and a local SSIM-based

quality measure is combined with information content and distortion weighted pool-

ing methods. Based on the experimental results across four public VQA databases,

the current implementation is computationally efficient and achieves superior per-

formance compared with state-of-the-art VQA approaches. The low complexity

mainly comes from the auto-scale process, that accounts for the influence of nor-

mal viewing distance for VQA, and the non-overlapping block-based scheme that

significantly reduces the computational burden for weighted pooling. Compared

with pixel- and frame-based VQA approaches, a potential disadvantage of the pro-

posed strategy is the large amount of memory required to buffer 3D-volume data.

However, this problem may be alleviated by simply dividing the whole video se-

quence into several segments or clips based on the adopted size of the 3D block
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involved in the computation. Then, a parallel computation scheme can also be

employed to facilitate the VQA process.

For reduced-reference VQA, a complex wavelet transform domain temporal mo-

tion smoothness measure has been proposed and its potential for general-purpose

RR-VQA demonstrated. The proposed algorithm has several useful properties:

• it is applicable to a wide range of practical distortion types;

• it captures relevant motion characteristics without explicit motion estimation,

which often involves a complicated search procedure [134] or requires solving

simultaneous equations at every spatial location of the image [135];

• it has a very low RR data rate (current implementation only uses 15 scalar

features per video sequence).

All these properties make it an attractive approach in real-world visual commu-

nication applications. For example, it can be directly adopted in a quality-aware

video system [128]. The proposed approach may fail under scene changes or very

large motion (where distances of moving objects between frames are beyond the

coverage of the wavelet filter envelopes) due to the locality of the wavelet-based

approach in the measurement of temporal motion smoothness. Therefore, to create

a practical VQA system, such measurement needs to be combined with intra-frame

quality measures, such as [9].

A quality-aware (QAV) system has been proposed that incorporates novel RR-

VQA algorithms with a novel robust information data hiding approach. Such a

QAV system has a number of attractive properties:

• It provides the useful functionality of “quality-awareness” without affecting

the conventional use of the video content;
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• It avoids the necessity of an ancillary channel in the deployment of RR-VQA

schemes;

• It allows the video content to be converted and distributed using any existing

or user-defined formats, provided the embedded messages are not corrupted

during lossy format conversion;

• It also provides an opportunity at the receiver side to partially “repair” the

distorted video signal using the embedded RR features.

Two new approaches, PVF and VPVF, have been proposed to improve the video

denoising performance of existing algorithms by fusing the denoising results from

multiple views. The experiments detailed in Section 5.3 demonstrate significant

and consistent improvement over existing video denoising methods. The proposed

methods are conceptually simple, easy-to-use, and computationally efficient. The

complexity of the whole algorithm mainly depends on that of the base denoising

method, but not the PVF or VPVF procedure. In principle, the PVF and VPVF

strategies could be applied to any existing video denoising algorithm, but the major

intention here is to apply it to 2D approaches (Categories 1 and 2 described in

Section 2.4). Because the denoising results obtained by applying 2D approaches

from different views tend to complement one another. By contrast, 3D approaches

(Category 3 in Section 2.4) such as those using 3D patches have already considered

the dependencies between neighboring pixels from all directions. Thus applying

them from different views may lead to similar results that would not complement

each other to any significant extent. In practice, to apply PVF or VPVF, one would

need to store all video frames involved in the denoising and fusion processes in the

memory. This may be a problem in practical systems, especially when the video

sequence is long. It is therefore preferable to divide long sequences into segments

along the temporal direction, and then denoise each segment independently. By
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adjusting the length of the segments, the memory requirement can be controlled.

6.2 Future Research

The approaches described in this thesis can be further improved in many aspects

by employing advanced mathematical models or technologies. In the future, the

proposed full-reference VQA method will achieve better performance by incorporat-

ing more accurate statistical models in the estimation of local information content.

Currently, the derivation of the local information content model requires the as-

sumption of Gaussian source and additive Gaussian noise model, which may not

be consistent with real/practical signals, because video is usually a non-stationary

non-Gaussian distributed signal, and the type of noise also depends on the spe-

cific application scenario. In addition, more advanced adaptive strategies for local

distortion weighting can be further explored. Superior VQA performance may be

obtained by using local distortion to control the weighting function with more free-

dom.

The proposed RR-VQA approaches maybe improved and extended in several

ways. First, higher-order temporal correlation functions may be employed to char-

acterize the smoothness of higher-order motion (such as acceleration). Second,

appropriate adjustments are needed to accommodate the cases of scene changes

and very large motion (which may be solved by adopting a multi-scale, coarse-to-

fine strategy). Third, temporal motion smoothness is only one aspect that affects

perceived video quality. Other RR features (such as intra-frame statistical features

[9]) may be incorporated under a unified framework to provide a full solution to the

problem of RR-VQA. For QAV, future work includes improving the performance

of both the accuracy of RR-VQA and the robustness of information embedding,

and providing meaningful video quality evaluations when RR features cannot be
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fully recovered (for example, by relating the decoding error rate to perceived video

quality).

For video denoising, the performance of our current PVF and VPVF approaches

may be further improved by incorporating more advanced base denoising algorithms

or by improving the fusion method. Future work may also attempt to fuse the

denoising results not only from multiple views but also by multiple algorithms.

Although the current implementation only fuses the denoising results by the same

base denoiser applied along three views, the general PVF and VPVF approaches

facilitate fusing the results of any finite number of denoising algorithms. Two

issues are critical to the success of this approach. First, the denoising algorithms

need to be complementary to one another. Second, the fusion algorithm needs to

select the best denoising result among many or optimally assign weights to multiple

denoising results. In our current experiment, we observe that 2D approaches from

different views tend to be more complementary to each other than 3D approaches,

which have already considered the dependencies between neighboring pixels from all

directions. Since the structural regularities exhibited in the top- and side-views are

substantially different from those in the front-view (as can be observed in Fig.5.2),

it is preferable to use different denoising methods best suited to the corresponding

views before fusing the results. Currently, no denoising algorithm specifically tuned

to denoise from top- and side-views has been developed. This gap suggests another

interesting topic for future study.

Finally, the idea of the proposed PVF and VPVF strategies can be extended to

solve the video frame rate up-conversion problem using image interpolation algo-

rithms. The frame rate up-conversion technique, which increases the frame rate of

the moving pictures by inserting newly generated frames into the original sequence,

is highly desirable in the video industry, especially for high-definition TV. If a side-

or top- view video frame is considered as an image, the problem of frame rate up-
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conversion can be transformed to estimate the missing column/row of that image,

which is an image interpolation issue. In this case, existing image interpolation algo-

rithms (such as the curvature interpolation method (CIM) [139] and edge-directed

interpolation [140]) can be applied for frame rate up-conversion and be combined

with the PVF and VPVF fusion methods for enhancement. In addition, because

of the different characteristics between front-view and side-/top- view frames, new

interpolation approaches tuned to the latter will be an interesting research topic to

explore.
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Appendix A

Objective Quality Assessment in

Video Compression

In response to the development of multimedia communication systems and video

technology, the amount of data for video signals is exponentially increasing accord-

ing to a forecast white paper by Cisco Systems Inc. [141]. Video compression or

coding plays a critical role in this process and deserves a huge global market. Sig-

nificant progress has been made recently towards the next generation video-coding

standards by the joint collaborative team on video coding (JCT-VC). Recently re-

ported preliminary subjective tests, conducted by JCT-VC members, show that the

test model of high efficiency video coding (HEVC) draft codec HM5.0 achieves an

average of more than 50% rate savings over H.264 JM18.3 codec without sacrificing

subjective quality. Here we study the performance of well-known objective video

quality assessment (VQA) models and find that state-of-the-art models, including

the structural similarity (SSIM) [1], the multi-scale SSIM index (MS-SSIM) [2],

the video quality metric (VQM) [87], and the motion-based video integrity evalua-

tion index (MOVIE) [45], all provide significantly better predictions of subjective

video quality than peak signal-to-noise ratio (PSNR) model. Surprisingly, com-
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pared with subjective evaluation scores, all objective VQA models systematically

underestimate the coding gain of HEVC-HM5.0 upon H.264-JM18.3. We carried

out further subjective tests to study this somewhat unexpected phenomenon by

comparing JM18.3 and HM5.0 coded videos in terms of frame-level and sequence-

level quality, as well as flickering and ghosting effects. The results provide new

insights for the future development of subjective/objective VQA and perceptually-

tuned video coding methods.

A.1 Introduction

Since the official joint call for proposals (CfP) [142] on the next generation video

compression standard was announced in January 2010 by ISO/IEC moving pic-

ture experts group (MPEG) and ITU-T video coding experts group (VCEG), the

JCT-VC has made significant progress in developing the test model, HEVC, which

targets reducing the 50% bit-rate of the MPEG4/H.264 AVC standard while main-

taining the same level of subjective quality. Recently, a preliminary subjective test

was conducted by JCT-VC members to quantify the rate-distortion (RD) gain of the

HEVC draft codec HM5.0 against a similarly-configured H.264/AVC JM18.3 codec

[143]. The results show that an average RD-gain of 57.1% is achieved based on the

subjective test data in the form of mean opinion scores (MOSs). A more detailed

objective and subjective evaluation of HM5.0 was reported in [144], which again

suggested that HM5.0 has achieved the target of 50% RD gain over H.264/AVC

and that the actual savings can be even higher. Although these subjective tests and

evaluations were on random access coding configuration only and more comprehen-

sive tests are still to be conducted, it is speculated that similar improvement may

be achieved under other test conditions, and thus HEVC is very likely to achieve

its initial RD performance target.
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While subjective quality assessment is essential in fully validating the perfor-

mance of video codecs, it is also highly desirable to know how the existing objective

image and video quality assessment (IQA/VQA) models predict the subjective test

results and the coding performance. In recent decades, objective IQA/VQA models

have been an active research topic, in which aimed to develop ways to automatically

predict perceived image and video quality of human subjects. These models are

useful in real world applications to control and maintain the quality of image/video

processing and communication systems on the fly, where subjective quality assess-

ment is often too slow and costly. They may also be embedded into the design and

optimization of novel algorithms and systems to improve perceived image/video

quality. Compared with IQA, VQA is a much more challenging problem because

of the additional complications due to temporal distortions and our limited under-

standing of motion perception and temporal visual pooling. Traditionally, PSNR

has been used as the “default” criterion in the video coding community in the

design, validation and comparison of video codecs. Although PSNR is widely crit-

icized for its poor correlation with perceived image quality and many perceptual

objective IQA/VQA models have been proposed in the literature [145], currently

PSNR is still the primary objective quality reference in codec development (such

as HEVC) mostly by convention and its low complexity.

Given the subjective test data in the form of MOSs collected by JCT-VC mem-

bers that compare H.264-JM18.3 and HEVC-HM5.0 [143], here we reexamine well-

known objective VQA algorithms that emerged in the past decade by observing how

well they predict the subjective scores of compressed video sequences and how well

they predict the RD-gain between HEVC-HM5.0 and H.264-JM18.3. Moreover, we

carry out further subjective tests to exploit the relationship between frame-level

and sequence-level subjective quality, and to investigate special temporal coding

artifacts created by standard video codecs. This study may help the video coding
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community select useful VQA models for their future validation and comparison

of novel video codecs, may provide new insights about the perceptual aspects of

H.264 and HEVC coding schemes and how they may be further improved, and may

also help VQA researchers discover the problems in the current subjective testing

methodologies and objective VQA models and find ways to improve these models.

A.2 Test of Objective Video Quality Assessment

Models

Five existing objective VQA models are being examined here:PSNR, VQM [87],

SSIM [1, 37] (As in [1], a preprocessing step of spatial downsampling by a factor of

2 is applied to each frame before the SSIM index is computed), MS-SSIM [2], and

MOVIE [45]. All five models are well-known in the IQA/VQA and video coding

communities. In particular, VQM has been recommended by the video quality

experts group (VQEG) and adopted as a north America standard. SSIM (together

with PSNR) is commonly included in popular video codecs such as x264 and VP8

as a quality index automatically computed after the video frames are encoded.

MOVIE achieved superior performance in the widely noted LIVE video database

[16].

In the subjective data given in [143], a total of 72 HM5.0 and JM18.3 compressed

video sequences were tested, which were generated from 9 original source video

sequences, including 5 Class B sequences of 1080p resolution (1920 × 1080) and 4

Class C sequences of WVGA resolution (854× 480). The encoding configuration of

HM5.0 was set as random-access high-efficiency (RA-HE), and for fair comparison,

the JM18.3 configuration was adjusted accordingly to best match that of HM5.0.

No rate control scheme has been applied to either JM18.3 or HM5.0 encoding. The
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specific details of coding configurations can be found in [143]. The subjective test

results were recorded in the form of MOS for each test video sequence.

Table A.1: Quality prediction performance comparison of PSNR, VQM, MOVIE,
SSIM and MS-SSIM

VQA Model PLCC MAE RMS SRCC KRCC

PSNR 0.5408 1.1318 1.4768 0.5828 0.3987
VQM [87] 0.8302 0.7771 0.9768 0.8360 0.6243

MOVIE [45] 0.7164 0.9711 1.2249 0.6897 0.4720
SSIM [1] 0.8422 0.8102 0.9467 0.8344 0.6279

MS-SSIM [2] 0.8526 0.7802 0.9174 0.8409 0.6350

Table A.2: Complexity and coding gain prediction performance comparison of
PSNR, VQM, MOVIE, SSIM and MS-SSIM

Computational
VQA Model Complexity RD-gain RD-gain RD-gain

(normalized) (Class B) (Class C) (Average)

PSNR 1 -45.0% -34.1% -39.6%
VQM [87] 1083 -43.1% -31.9% -38.6%

MOVIE [45] 7229 -36.4% -25.1% -33.8%
SSIM [1] 5.874 -45.5% -32.8% -39.2%

MS-SSIM [2] 11.36 -46.8% -34.6% -40.7%

MOS - -66.9% -47.2% -57.1%

The following criteria were used to evaluate the quality and coding gain predic-

tion performance of each objective VQA model, as well as the relative complexities.

• Pearson linear correlation coefficient (PLCC) and Spearman rank-order cor-

relation coefficient (SRCC), which were introduced in Section 3.2.

• Mean absolute error (MAE) is calculated using the converted objective scores

after the nonlinear mapping described above:

MAE =
1

N

∑
|qi − oi| . (A.1)
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• Root mean-squared (RMS) error is computed similarly as

RMS =

√
1

N

∑
(qi − oi)2 . (A.2)

• Kendall’s rank correlation coefficient (KRCC) is a non-parametric rank-order

based correlation evaluation measures, which is given by

KRCC =
Nc −Nd

1
2
N(N − 1)

, (A.3)

where Nc and Nd are the numbers of concordant and discordant pairs in the

data set, respectively. It is independent of any fitting function that attempts

to align the scores.

• Because speed is often a major concern in real-world applications of VQA

models, the computational complexities of the VQA models, which are re-

ported as their relative computation time normalized by the computation

time of PSNR (this should be considered as only a crude estimate of the

computational complexities of the VQA models because no algorithm and/or

code optimization has been conducted to accelerate the speed).

• the RD-gain of HM5.0 over JM18.3 is estimated for each source video sequence

by comparing the RD curves of HM5.0 and JM18.3, where R denotes bit-rate

and D denotes the distortion measure based on the specific VQA model and

each RD curve is created by piecewise linear interpolation of the rate and

distortion values of four coded video sequences generated by the same coding

scheme [143]. The average RD-gain of HM5.0 over JM18.3 is then computed

as the average of the RD-gains of all source videos.

The premium performance of objective quality models is represented by higher

PLCC, SRCC, and KRCC, and lower MAE and RMS values for quality predic-
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tion, less computation time, and better RD-gain prediction compared with that of

subjective score.

The quality prediction performance of the objective models over all test video

sequences are showed in Table A.1, where the best performances are highlighted

with bold face. In Table A.2, the normalized complexity and coding gain prediction

performance for each VQA model is summarized. The scatter plots of objective

scores versus MOSs are shown in Fig. A.1. From Table A.1, A.2, and Fig. A.1,

it can be observed that all four state-of-the-art VQA models clearly outperform

PSNR in terms of PLCC, MAE, MSE, SRCC and KRCC, where on average MS-

SSIM obtains slightly better results than the other three. On the other hand,

VQM and MOVIE are extremely expensive in computational cost, while SSIM and

MS-SSIM achieves a much better balance between quality prediction accuracy and

computational complexity.

Table A.3 reports the paired statistical significance comparison (t-test), which

assumes that the MOS residuals are Gaussian distributed, using the approach in-

troduced in [126], where a symbol “1” denotes the objective model of the row is

statistically better than that of the column, “0” denotes that the column model is

better than the row model, and “-” denotes that the two objective models are sta-

tistically indistinguishable. The Wilcoxon-Mann-Whitney test (h-test) [146], which

is a non-parametric test and does not require a Gaussian distribution of MOS resid-

uals, is also conducted to measure the statistical significance among different VQA

methods. Exactly the same results as those in the t-test are obtained.

Perhaps the most surprising results here is in the RD-gain columns in Table A.2

− the five objective VQA models predict the average RD-gain of HM5.0 against

JM18.3 to be between 33.8% to 40.7% , which largely underestimates the 57.1% gain

obtained from subjective scores. Similar behaviors are also observed for individual

test classes. This suggests that all objective VQA models are systematically in favor
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Figure A.1: Scatter plots of VQA measure vs. MOS
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Figure A.2: Rate-quality comparison of JM18.3 and HM5.0 compressed 1080p
“ParkScene” sequence, where the quality measures are MOS (left), PSNR (middle)
and MS-SSIM (right), respectively. The RD-gain of HM5.0 upon JM18.3 computed
using MOS, PSNR, and MS-SSIM are -63.6%, -36.8%, and -39.4%, respectively.
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Table A.3: Statistical significance test for PSNR, MOVIE, VQM, SSIM and MS-
SSIM

PSNR MOVIE VQM SSIM MS-SSIM
PSNR - - 0 0 0

MOVIE - - - 0 0
VQM 1 - - - -

SSIM 1 1 - - -

MS-SSIM 1 1 - - -

of H.264 JM18.3 while human subjects tend to prefer HEVC HM5.0. This can also

be seen in Fig. A.1, where in all scatter plots, the clusters of HM5.0 and JM18.3

coded video sequences are visually separated (though with overlaps), and HM5.0

sequences tends to have higher MOS values. Fig. A.2 provides an example using

1080p “Parkscene” sequence, where we can observe how subjective and objective

video quality measures change as a function of bit rate. Again, it can be seen that

the gap between the HM5.0 and JM18.3 MOS-rate curves is significantly larger

than those of the PSNR-rate and (MS-SSIM)-rate curves. Similar phenomena had

been observed partially in previous studies. In [144], it was reported that PSNR

accounts for 39% rate savings of HM5.0 over JM18.3, as compared to more than

50% by human subjective scores. Similar results are also found in [147]. In [148],

the coding performance of HM5.0 and JM16.2 was compared under the RA-HE

test conditions over 15 test sequences in terms of perceptual quality index (PQI)

[50], PSNR and SSIM [1], and the results showed that the predicted RD-gain by

all VQA models are almost the same.
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A.3 Subjective Study of Spatial and Temporal

Video Quality

To better understand the significant bias of objective VQA models towards H.264-

JM18.3 as opposed to HEVC-HM5.0, we carried out a series of subjective experi-

ments to inspect the quality of coded video sequences at both frame and sequence

levels. Ten compressed sequences (5 by JM18.3 and 5 by HM5.0) were selected

and 5 frames were chosen randomly from each sequence, resulting in totally 50 still

image frames. 17 näıve observers participated in the subjective assessment session.

The test method conforms with ITU-T BT.500 [149]. Absolute categorical rating

(ACR) was adopted to collect the MOS which is the average of subjective opinion

from all observers. Four tests have been carried out. The first test is to assess

frame-level image quality, where the subjects give scores regarding the quality of

the 50 individual still image frames. The second test is on sequence level, where

the subjects report a single score for each test video sequence. In the third and the

fourth tests, the subjects are asked to evaluate the flickering and ghosting effects

of the test video sequences, where flickering refers to the discontinuities of local

average luminance over time, and ghosting refers to the traces of video content in

previous frames that are remained in the current frame (often created by the Skip

mode in the video codec).

From our subjective test, we have the following observations. First, there are

significant conflicts between frame-level and sequence-level quality assessment. This

can be seen from the top plot in Fig. A.3, where frame-level MOSs (computed by av-

eraging all still frame MOS values of a sequence) and sequence-level MOSs obtained

in our subjective experiment do not correlate well with each other. In addition,

there is a clear tendency that HM5.0 coded videos obtain higher sequence-level

MOSs and lower frame-level MOSs in comparison with JM18.3. A visual example
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Figure A.3: Relationship between subjective test results for JM18.3 and HM5.0
coded sequences. Left: sequence-level MOS vs. average frame-level MOS; middle:
sequence-level MOS vs. flickering MOS; right: sequence-level MOS vs. ghosting
MOS.
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is given in Fig. A.4, which shows a still frame extracted from a JM18.3 and an

HM5.0 coded “Horse” sequences. They are both B-frames with double bit-rate

for H.264 than HEVC encoded sequences. On a high quality monitor, the JM18.3

frame appears to better preserve the image details and thus has better quality.

The same phenomenon has been observed in all frames throughout the whole video

sequences. By contrast, the sequence-level MOS of the HM5.0 video is significantly

higher than that of the JM18.3 video. Fig. A.5 depicts an example of the contra-

diction between frame-level objective quality score and sequence-level MOSs. This

observation, combined with the fact that frame-based objective VQA measures

often well predicts frame-level MOS (in our experiment, the SRCC between still

frame MOS and MS-SSIM is 0.8627), provides an explanation for why objective

VQA tends to underestimate sequence-level subjective quality.

Second, significant annoying temporal artifacts may appear in coded video se-

quences that may dominate subjective evaluation of video quality. We have in-

cluded flickering and ghosting assessment in our subjective tests. The scatter plots

of sequence-level MOS versus flickering and ghosting are shown in the middle and

right plots of Fig. A.3, respectively, where higher flickering or ghosting MOS indi-

cates less flickering or ghosting effect. From these plots, we observe that JM18.3

coded sequences have clearly stronger flickering and ghosting effects than HM5.0

sequences. This is in clear contrast to the left plot in Fig. A.3 and provides strong

support of the conjecture that compared with frame-level quality, temporal artifacts

contribute strongly to the overall sequence-level quality. Third, there is significant

spatial and temporal quality non-uniformity of coded video sequences. Such non-

uniformity is partially predicted by the objective VQA models (for example, using

the SSIM maps) and is more evident in JM18.3 coded video sequences.

The observations above give us useful insights to address several issues in sub-

jective tests. First, the past experience of the subjects and the context of the
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H.264/AVC

HEVC

Figure A.4: An example of visual comparison between H.264-JM18.3 and HEVC-
HM5.0 coded videos. Top: H.264 frame, PSNR = 28.36dB, SSIM = 0.8012, MS-
SSIM = 0.8601. Bottom: HEVC frame, PSNR = 27.64dB, SSIM = 0.7437, MS-
SSIM = 0.8259. When comparing individual frames, H.264 frame appears to have
clearly better visual quality, but when the video is played at normal speed, the
H.264 video receives a significantly lower quality score likely due to strong temporal
artifacts.
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subjective experiment need to be better taken into account. For example, is the

subject a näıve observer or a video quality expert? Is there an pre-training session

before the test and what videos are shown in the pre-training phase? What instruc-

tions/tasks are given to the subjects − to tell the story behind a movie or to pick

artifacts (possibly specified during pre-training) from the video? The subject qual-

ity scores could be extremely sensitive to these contexts. Second, questions may be

asked to the subjects about what strategies they use to make an overall decision

on an entire video sequence that has significant quality non-uniformity over space

and/or time. For example, one highly undesirable artifact may appear at a specific

location for a short time period, and an subject may give a low quality score to

the whole video sequence regardless of the good quality in the rest of the video,

but if the subject is attracted into other content and does not see the artifact, then

the video may end up with a high subjective quality score. Third, it is desired to

record eye movement in the subjective experiments. The importance is not only to

detect the regions of interest (ROIs) in the video content, but also to study whether

compression artifacts change eye fixations and how the context (e.g., tasks given to

the subjects) affects visual attention − are the subjects trying to understand the

story of the video content or to detect the distortion artifacts? Previous studies

suggest that compression artifacts generally have little impact on visual attention

[150], but is this still true when extremely annoying artifacts occur?

A.4 Further Discussion

The observations in the current study raise new questions that need to be answered

in the development of objective VQA models. First, there is a strong need to de-

velop novel approaches to capture specific temporal artifacts (such as flickering and

ghosting) in compressed video. PSNR, SSIM and MS-SSIM are completely IQA
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methods, where no inter-frame interactions are considered. It is not surprising

that temporal artifacts are missing from these models. However, both VQM and

MOVIE consider temporal features, but are still not fully successful in capturing

and penalizing the temporal artifacts. Second, many VQA models such as SSIM

and MS-SSIM generate useful quality maps that indicate local quality variations

over space and time. In the case of significant spatial and temporal non-uniformity

in these quality maps, how to pool the maps into a single quality score of the entire

video is not a fully resolved problem. There have been attempts to use non-linear

models and temporal hysteresis for temporal pooling [151, 152]. However, our cur-

rent test shown in Table A.4 indicates that they only lead to small improvement over

MS-SSIM, and the large gap between subjective and objective RD-gain predictions

still exists. Third, it would be useful to incorporate visual attention models. These

attention models may be saliency predictors based on both low-level and high-level

vision features, and may also be based on detections of severe visual artifacts.

Meanwhile, what we learned from this study may help us improve the design

and implementation of video coding technologies. It is useful to be aware of and

to avoid certain temporal artifacts such as flickering and ghosting effects, which

may vastly change subjects’ opinions about the quality of the entire video sequence.

Many of these artifacts occur when quantization parameters are not carefully chosen

and when Skip mode is selected in low- to mid-energy regions with slow motion.

Moreover, rate control and rate-distortion optimization (RDO) schemes may be

adjusted not only to achieve the best average quality over the whole video sequence,

but also to reduce significant quality fluctuations across both space and time.
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Table A.4: The impact of temporal pooling strategies on MS-SSIM method

VQA Model PLCC MAE RMS SRCC KRCC RD-gain (Average)

MS-SSIM [2] 0.8526 0.7802 0.9174 0.8409 0.6350 -40.7%

MS-SSIM with
min temporal 0.8670 0.6859 0.8749 0.8645 0.6663 -43.2%
pooling [151]

MS-SSIM with
temporal hysteresis 0.8544 0.7498 0.9123 0.8467 0.6400 -42.4%

pooling [152]

MOS - - - - - -57.1%

A.5 Conclusion and Future Work

In conclusion, based on recently published comparative results regarding the sub-

jective quality of HEVC and H.264/AVC coded sequences, our study about the

performance of popular objective VQA models shows that advanced models clearly

outperform conventionally used PSNR/MSE in terms of predicting quality scores

given by human subjects. One consequence of this observation is that PSNR/MSE

may result in incorrect direction for video compression. This also suggests that the

video coding community and the standard development body may consider replac-

ing PSNR with a perceptually more meaningful VQA model in not only the testing

but also the development phases of novel video codecs. This could lead to substan-

tial changes in the structural design and system optimization of the next generation

video codec. In terms of RD-gain prediction, however, none of the objective VQA

models aligns well with the subjective test results. We conjecture that this may be

due to one (or the combination) of the following issues:

• The ambiguities in subjective testing methodology lead to unreliable or un-

stable subjective benchmark scores;

• The ability of current VQA models to capture specific types of temporal
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artifacts (such as flickering and ghosting) is limited;

• A good spatio-temporal pooling strategy able to account for human percep-

tual importance weighting is still missing;

• An effective saliency- or artifacts-based visual-attention model may needs to

be embedded.

The current discussions are non-conclusive but hopefully could inspire future im-

provement in both VQA and video coding methodologies.

In terms of VQA in the context of video coding, the analysis conducted in our

work mainly contributes to the future development of both VQA models and video

coding schemes. For example, it has been shown that an advanced VQA approach

capable of capturing specific temporal artifacts (such as flickering and ghosting)

in compressed video is urgently needed. An effective spatial and temporal pooling

strategy, which is able to combine the highly non-uniform local quality score into

one more meaningful final mark, would also be appreciated. In addition, for a

successful VQA model, it would be useful to incorporate visual attention models.

These attention models may be saliency predictors based on both low-level and

high-level vision features, and may also be based on detection of very obvious

visual artifacts.
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