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Abstract 

 With the development of various derivative instruments and index products, 

commodities have become a distinct asset class which can offer enhanced diversification 

benefits to the traditional asset allocation of stocks and bonds. In this thesis, we begin by 

discussing some of the key properties of commodity markets which distinguish them 

from bond and stock markets. Then, we consider the informational role of commodity 

futures markets. Since commodity prices exhibit mean-reverting behaviour, we will also 

review several mean-reversion models which are commonly used to capture and describe 

the dynamics of commodity prices. In Chapter 4, we focus on discussing a two-factor 

mean-reverting model proposed by Hikspoors and Jaimungal, as a means of providing 

additional degree of randomness to the long-run mean level. They have also suggested a 

method to extract the implied market prices of risk, after estimating both the risk-neutral 

and real-world parameters from the calibration procedure. Given the usefulness of this 

model, we are motivated to investigate the robustness of this calibration process by 

applying the methodology to simulated data. The capability to produce stable and 

accurate parameter estimates will be assessed by selecting various initial guesses for the 

optimization process. Our results show that the calibration method had a lot of difficulties 

in estimating the volatility and correlation parameters of the model. Moreover, we 

demonstrate that multiple solutions obtained from the calibration process would lead to 

model uncertainty in extracting the implied market prices of risk. Finally, by using 

historical crude oil data from the same time period, we can compare our calibration 

results with those obtained by Hikspoors and Jaimungal.    
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Chapter 1 

Introduction 

For a long time, commodities were viewed as consumption assets that were either 

consumed or used as production inputs to generate refined goods, such as wheat for bread, 

crude oil for gasoline, copper for electrical wire, and etc. In the beginning, the 

commodity markets started off with the trading of agricultural products like corn and 

cattle. With the advancement of human civilization, the scope of commodities has grown 

to include metals and energy. Trading in commodity markets has also evolved 

significantly from the days when in the absence of money, barter systems were organized 

at town marketplaces to exchange goods. Forward agreements were then established 

between producers and merchants as pledges to make certain transactions at future dates. 

In the 17
th

 century, the Dojima Rice Exchange in Osaka, Japan constituted the world’s 

first organized futures market with standardized contracts and clearing houses 

guaranteeing the creditworthiness of transactions. At that time, rice was used as the basic 

unit of account for financial purposes and hence the Dojima futures market played an 

important role in the economy by providing price discovery and price stability in the rice 
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market. Today, producers and users of commodity products can use a wide range of more 

complex commodity derivatives (e.g. options, swaps, swaptions and spread options) to 

mitigate their risk.  

 The historically low interest rates environment and sluggish stock market 

performance in recent years, along with the development of various commodity 

derivatives and commodity index products, have helped to turn commodities into an 

alternative investable asset class, which could be a part of the strategic asset allocation in 

one’s portfolio. Over the last decade, a huge demand from China and other emerging 

markets for energy and industrial metals to support their manufacturing and infrastructure 

development has driven the prices of commodities higher and made them an attractive 

asset class with superior returns. An increasing number of pension funds and sovereign 

wealth funds are allocating more investments into commodities as a protection against the 

risk of rising inflation and to further diversify their allocation beyond the tradition asset 

classes – stocks, bonds and cash. Since commodities are directly linked to the 

components of inflation, any deviations from the expected inflation level should be 

reflected in the price movements of commodities. Therefore commodities, like crude oil 

and gold, are a useful hedge against the risk of rising price levels. On the contrary, 

nominal bond yields are priced to compensate investors for expected inflation over the 

course of holding the bond. Any deviations from the expected inflation will then erode 

the real purchasing power of the investor. When the general price level rises dramatically, 

businesses will have to pay more for wages and raw materials. In the short run, this will 

bring down the profitability of businesses and will negatively impact their stock’s 

performance. On the other hand, commodity spot prices and commodity futures prices 
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have historically outpaced inflation. Commodities as a distinct asset class can also offer 

enhanced diversification benefits to traditional asset allocation because of their low or 

negative correlation to stocks and bonds. According to Gorton and Rouwenhorst (2005), 

commodities tend to perform well during the early stage of a recession when stocks and 

bonds returns are generally disappointing. Commodities, especially precious metals, have 

traditionally been perceived as a “safe haven” to hedge against the event risk during 

periods of stress and uncertainty in the economies or politics. For example, during the 

Persian Gulf War, the average prices of crude oil doubled while equities faltered. Some 

commodities can also be used as a means of preserving value during a fiat currency crisis. 

Since most commodities are priced in US dollars, devaluation of the currency will drive 

commodity prices up. To better demonstrate the effects of adding commodities in a 

strategic asset allocation, we can compare the efficient frontiers of two portfolios with 

and without commodities. For the purpose of creating the efficient frontiers, we used the 

Barclays Capital U.S. Aggregate Bond Index (formerly the Lehman Aggregate Bond 

Index) to represent the performance of bond investments during the period of January 

1987 to the end of 2007.  The performance of equities investments was described by the 

Standard and Poor’s 500 Total Return Index. In addition, we chose the Gorton and 

Rouwenhorst Commodity (GRC) Index as the proxy for commodities’ performance 

during the same time period. The GRC Index is an equally-weighted collateralized 

commodity futures index that includes every commodity futures contract traded in the 

U.S. and the London Metal Exchange. The index is reweighted monthly with an equal 

weight given to each contract. We obtained the monthly returns data for the bond and 

stock market indices from a database maintained by the International Traders Research 

Inc., while the data for the GRC Index is obtained from the National Bureau of Economic 
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Research’s website.
1
 Figure 1.1 shows these efficient frontiers constructed using 

historical data over the period of 01/01/1987 to 31/12/2007. It is rather obvious that by 

including commodities in the strategic asset allocation, the risk-return tradeoff was 

improved and the resultant efficient frontier dominated that without any investment in 

commodities. From 1987 to 2007, the average improvement in historical annualized 

return for a given risk level was roughly 111 basis points with a maximum improvement 

of 160 basis points. 

 

Figure 1.1: Efficient frontiers with and without commodities 

At this point, we should certainly recognize commodities as an asset class in its 

own right. However, there are some fundamental differences between commodities and 

other conventional asset classes, like stocks and bonds. First of all, commodities cannot  

 

1
 www.nber.org/data-appendix/w10595 
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be priced by the net present value of the expected future cash flows. The financial 

purpose of bonds and stocks is to raise external capital for the issuer. Investors are then 

compensated for the time value of the money put upfront and for the risk of possible low 

future cash flows. Therefore, a bond is valued by its discounted expectation of future 

coupon and principal payments, while a stock is priced with dividend payments and/or 

share repurchases as future cash flows. On the other hand, commodities are not capital 

assets but rather resources primarily used as inputs in production processes to generate 

refined goods. Hence, commodity spot prices are determined by the intersection of their 

supply and demand curves. Besides that, some commodities also exhibit noticeable 

seasonality in their price levels and volatilities, due to changes in supply and demand, in 

fairly consistent patterns. To illustrate the seasonality in commodity prices, we obtained 

the historical spot prices of lean hogs from a database maintained by the Commodity 

Systems Inc. (CSI). The CSI database contains daily spot and futures prices for over 

hundreds of commodity markets worldwide. This database will be used as the primary 

data source to conduct all studies in this thesis here onwards unless stated otherwise. 

From Figure 1.2, strong seasonality can be observed in the lean hogs market. The price of 

lean hogs has a tendency to move higher from early March until July as inventories drop 

ahead of summer grilling season. 

Given the differences stated above, commodities should be perceived as a distinct 

asset class, and, when it comes to pricing commodities derivatives, they should be treated 

differently from other conventional asset classes. In Chapter 2, we subsequently consider 

the informational role of commodity futures markets. Since commodity prices exhibit 

mean-reverting behaviour, we will review several mean-reversion models that are  
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Figure 1.2 Lean hogs spot price and its estimated seasonality component
2 

commonly used to describe the dynamics of commodity prices in Chapter 3. In Chapter 4, 

we discuss a two-factor mean-reverting model proposed by Hikspoors and Jaimungal, as 

a means of providing additional degree of randomness to the long-run mean level. They 

also suggested a method to extract the implied market prices of risk, after estimating both 

the risk-neutral and real-world parameters from the calibration procedure. The usefulness 

of this model motivates us to investigate the robustness of this calibration process by 

applying the methodology to simulated data. In Chapter 5, the capability to produce 

stable and accurate parameter estimates will be assessed by selecting various initial 

guesses for the optimization process. When multiple solutions are provided by the  

 
2 

The seasonality term,   , is described by the function                                 where 

C is the intercept at time t = 0. 
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calibration method, we further show the presence of model uncertainty in the calculation 

of market prices of  risk. Finally, we compare our calibration results with those obtained 

by Hikspoors and Jaimungal by using historical crude oil data from the same time period. 
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Chapter 2 

Commodity Futures Contracts 

There are several ways an investor or a hedger can gain exposure to the price movements 

of a commodity. Investors or hedgers can choose to take positions in the physical 

commodity by carrying out transactions in the spot market with producers or 

intermediaries. However, they have to deal with the issues of transporting and storing the 

physical commodity. This can be a costly process for investors to profit from the price 

movements of commodities or for hedgers to mitigate their price risk. Buying the stocks 

of commodity-related companies can also be a way of benefiting from the anticipated rise 

in commodity prices. By doing so, investors are also exposed to the idiosyncratic risk that 

is unique to the company. Poor corporate governance and geopolitical risk (i.e. 

government intervention) can have major effects on the stocks’ performance. The 

exposure to potential upsides in commodity prices is also limited by the fact that 

companies are practicing risk management activities to smooth out their earnings over 

time. In year 2011, there was an apparent disconnection between gold prices and the 

stocks of gold mining companies. The spot gold price had risen about 11% for the year, 
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but mining stocks in the S&P/TSX Global Gold Index declined more than 14% in the 

same time period due to the rising cost of mining the precious metal. Most commodity-

related equities have positive betas to the stock market as a whole. This makes 

commodity-related equities less effective in diversifying a strategic asset allocation. 

 With the creation of futures contracts, investors or hedgers have a more direct 

way to build targeted exposure to commodities. A futures contract is a standardized 

agreement struck between two parties to exchange at a specified future date a 

standardized quantity and quality of a commodity for a price agreed today. These 

contracts are traded on a futures exchange such as the Chicago Mercantile Exchange 

(CME) and the London Metal Exchange (LME) with clearing houses standing behind the 

exchange to deal with both the buyers and sellers of the futures. By having a clearing 

house acting as an intermediary between buyers and sellers, any counterparty risk from 

the two participants engaged in the transaction is essentially taken away. Additionally, 

investors or hedgers can attain a leverage effect through the trading of futures contracts 

since they are only required to pay upfront a margin deposit which is a small fraction of 

the futures contract’s face value. Futures contracts also provide market participants the 

flexibility of going long or short the contract, hence the choice of a positive or negative 

exposure to a rise in commodity prices. A buyer and a seller of a futures contract can 

choose either to go into physical delivery of the commodity at maturity or to terminate 

the position prior to settlement by taking a symmetric position in the futures contract with 

the same maturity in order to nullify the position. The ability to close out a position by 

taking the opposite position enables investors and hedgers to avoid the cumbersome and 

costly procedure of physical delivery. According to the CME, only a small percentage of 
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the futures contracts are held to settlement and are obligated to make physical delivery. 

Given the price transparency and liquidity provided by futures contracts, they appear to 

be an ideal and cost-efficient way for investors and hedgers to gain exposure to 

commodities. Hedge funds and Commodity Trading Advisors (CTA) are using futures 

contracts as a substitute for the spot market to gain access to commodities. 

2.1 Hedging with Futures and Basis Risk 

From the start, a commodity futures contract was designed to meet the needs of hedgers 

to mitigate their exposure to price risk. Today, futures contracts are still widely used by 

producers and commodities users to lock in their prices in advance. For instance, an 

airline company that wants to reduce its exposure to volatile and possibly rising fuel 

prices will buy futures contracts in crude oil to hedge against the risk. A farmer who 

anticipates a forthcoming oversupply of corn might want to sell corn futures to lock in the 

prices for his harvest. However, when hedgers are using futures contracts to eliminate 

price risk, they should be aware of the basis risk that exists in the hedging practice. Basis 

is defined as the difference between the futures price and the spot price and can be 

written as: 

                             

where       is the price at time t of a futures contract with maturity T. Since the buyer of 

a futures contract may immediately sell the commodity in the spot market after taking 

delivery at maturity, the no arbitrage condition between the spot and futures markets 

implies that: 
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whereby the futures price should converge to the spot price at maturity. In the case where 

a hedger decides to terminate his futures position prematurely, he will be exposed to the 

basis risk we mentioned above. When the time horizon of a hedging position is different 

from the maturities of all available futures contracts, the position should be set up such 

that the basis is as small as possible. Basis risk also exists when the underlying of the 

futures contract is similar but not identical to the source of risk meant to be hedged. For 

example, an airline company that wants to hedge its exposure to rising jet fuel prices can 

only do so by buying either the crude oil futures or the heating oil futures since there is 

no futures contract on jet fuel. However, this hedging practice is subject to basis risk 

when the futures price of heating oil does not change by the same amount over time as 

that of the spot price of jet fuel resulting in non-convergence of the two prices at maturity.  

Therefore, basis risk refers to the risk remaining after putting on the hedge and can be 

measured by the variance of the basis as follows: 

  (         )             (     )                  

where ρ is the correlation coefficient between the spot and the futures prices. This 

equation shows that basis risk depends highly on the degree of correlation between spot 

and futures prices, and futures contracts that are highly correlated to the spot position 

should be chosen for hedging purposes. To gauge the effectiveness of hedging a spot 

position with futures contracts, Geman (2005) suggested the following measurement:  

     
         

         
. 
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From this equation, one can speculate that a hedger will be more certain about the 

outcomes of his hedging position when the variance of basis is small. Subsequently, a 

hedge will be more effective when h is closer to 1. Going back to the previous example 

we have, if both the crude oil and heating oil futures are available to hedge the price risk 

of jet fuel, the airline company should choose the contract that leads to a higher value of 

h.    

2.2 Informational Role of Futures Markets  

Given the lack of liquidity in both the spot and forward markets, one of the important 

roles of futures markets is to provide price discovery in the commodity market. A variety 

of market participants (such as hedgers and speculators) interact on the futures exchanges 

to bring liquidity and price transparency to the marketplace. No arbitrage conditions 

between the spot and futures markets can also be maintained with the presence of 

arbitrageurs to quickly absorb any price abnormalities that appear between the two 

markets. Futures prices are determined through competitive and transparent trading on 

the exchange to reflect the supply and demand of the underlying and the traders’ 

expectation of spot prices at various time points in the future. Hence, the informational 

content of the futures curve, i.e., the set of all available futures prices as a function of 

their maturity, is of particular interest to all agents in the economy. One of the important 

social utilities offered by the futures markets is the forecasting power of futures curve to 

predict the future spot prices which directly affects the effectiveness of using futures 

contracts in hedging activities. The fact that one can make better speculations about 

future spot prices based on the current future curve allows companies to more accurately 

assess the future supply and demand, which can benefit the decision making process on  
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production, consumption and storage of commodities. The price discovery process in 

futures markets helps companies to mark-to-market their positions in a trading book 

without relying on the view of a specific trader. In his influential article, Grossman (1977) 

stressed the informational role of futures markets. He argued that futures markets serve 

the role as a marketplace where information is exchanged and market participants collect 

and analyse information about future states of the world to earn a return on their 

investment. According to Grossman, information about the future spot prices is 

transmitted at the futures markets from the “informed” traders to the “uninformed” 

traders.   

2.3 Theory of Storage and Convenience Yield 

Over the past decades, some economists have tried to explain the differences between 

spot and futures prices with the theory of storage. By investigating the reasons why 

economic agents hold inventories, these models stress the importance of knowing the 

quantities produced and the storage level in deriving the term structure of storable 

commodities. For storable commodities, the futures price acts as a measure of inventory 

allocation. In contrast, the futures market serves as a source of price stability for non-

storable commodities such as lean hogs, live cattle, and electricity. Since commodities 

are mostly used as inputs in production, holding the physical commodity as inventory 

allows us to meet unexpected demand and to avoid any disruption in production in the 

event of a supply shortage. Kaldor (1939) and Working (1948, 1949) propose the notion 

of convenience yield as the advantages associated with physical owning the commodity. 

The owner of physical commodity enjoys the benefit of conveniently gaining access to 

the asset when needed, which is not obtained from holding the futures contract. In 
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principle, this may be viewed as analogous to the dividend yield for a stock, where a 

dividend is paid to the shareholder while the holder of a derivative contract written on the 

stock will not receive the distribution. Some economists also view convenience yield as a 

timing option embedded to physically owning the commodity. Brennan (1958) and Telser 

(1958) argue that owner of the physical commodity keeps an option between selling the 

commodity in the market when prices are high and holding it for future utilization when 

prices are low.        

The convenience yield, y, is defined as the present value of the benefit of holding 

the physical commodity minus the present value of the cost paid for storing the goods. 

Therefore, y can take different signs depending on the inventory level, the time period, 

and the type of commodity. Routledge, Seppi and Spatt (2000) suggest that the 

convenience yield is inversely related to the level of inventories, as the gain from holding 

the physical commodity will be high when inventories are low. The different values of 

convenience yield can also help us to account for the various shapes of futures curves, 

such as contango and backwardation, which will be further explained in Section 2.5. 

Given the importance in explaining the different shapes of futures curves, many studies 

have chosen to introduce the convenience yield as an additional state variable to improve 

the quality of modeling the price process dynamics. Gibson and Schwartz (1990) first 

introduced a two-factor model with the convenience yield that follows a mean-reverting 

stochastic process. On the contrary, Routledge et al proposed an equilibrium model for 

storable commodities, such that convenience yield is an endogenous variable that 

depends on the storage process. The authors developed a model for which predictions 

about the volatilities of forward prices are able to be made at different time horizons. 
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Other than explaining the different shapes in futures curves, the level of storage 

also has great influence on the volatility of commodity prices. By studying the behaviour 

of futures prices for metals, wood and animal products, Fama and French (1987) 

conclude that the standard deviation of prices increases when the level of inventory is low. 

A more recent study by Geman and Nguyen (2005) on the worldwide soybean 

inventories over a 10-year period shows that price volatility can be written as an inverse 

function of inventory. When the market is experiencing a supply or a demand shock, 

inventories can be used as buffers to absorb any changes to the supply and demand 

curves, so that changes to the commodity prices will be less dramatic. At the same time, 

low inventory levels normally coincide with high commodity prices, and hence there 

exists a strong negative correlation between prices and the levels of inventory. Figure 2.1 

depicts the negative correlation between the spot price of wheat and its storage level in 

the U.S. over a 10-year period from January 1990 to December 1999. Monthly ending 

stocks data for the U.S. wheat market is obtained from the United States Department of 

Agriculture’s website.
3
 We observe that the wheat price rises sharply during periods of 

low inventory level while the decline in price is modest in comparison since the physical 

stock of wheat can only be replenished gradually. Since the commodity price and its 

volatility are both negatively correlated to the inventory level, this implies that the price 

and volatility of a commodity market are positively related to each other. This 

phenomenon in commodity markets is in sharp contrast to the so-called “leverage effect” 

in the equity markets. The “leverage effect” refers to the well-established inverse 

relationship between stock volatility and stock returns, i.e., volatility tends to increase  

 

3 
www.ers.usda.gov/data-products/wheat-data.aspx#25377 
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Figure 2.1 The relationship between wheat spot price and its inventory level 

when stock prices fall. In his paper published in 1965, Samuelson asserts that, ceteris 

paribus, the volatility of futures prices tends to decrease with their time-to-maturity. This 

well-known property of futures curves is also known as the “Samuelson effect”. The 

“Samuelson effect” can be explained by the fact that any shock to the demand and supply 

curves should have an immediate impact on the prices of short-term futures contracts 
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while the longer-term contracts tend to be less affected by the news since production can 

be adjusted to accommodate this new information before these contacts mature. Figure 

2.2 presents monthly term structures of the Sugar No. 11 futures contract traded at the 

Intercontinental Exchange (ICE) over the period January 2007 to December 2011. The 

fact that the nearest-maturity contract has the largest variation in futures prices when 

compared to longer-term contracts reaffirms the existence of the “Samuelson effect” in 

the world sugar market. In the graph, we can also observe different shapes of futures 

curves (contango and backwardation) that appear in the sugar market. In addition to 

inventory level, reserves estimates also have a huge impact on price movements and  

 

Figure 2.2 Monthly term structures of the Sugar No. 11 futures contract
4 

 

4
 Here, F1 denotes the first-nearest contract, which is the futures contract that has the shortest time-to-

maturity, while F2 represents the futures with the second shortest time-to-maturity, and so on. Typically, 

the maturities of these contracts are 2 months, 4 months, 9 months, 12 months and 14 months.
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volatilities of commodities. This phenomenon is particularly observed in the energy 

markets, such as crude oil and natural gas markets, where the reserves are limited and 

expected to be depleted after a finite amount of time, usually within decades. 

2.4 Rational Expectations Hypothesis   

Given the informational role of futures markets, one of the natural questions that comes 

to mind is whether the futures price at time t can be considered as a predictor, in some 

sense, of the future spot price at maturity T. In mathematical terms, we can write the 

statement as: 

       [     |          (2.1)                                                                                                      

where    represents the information available in the market at time t. If equation (2.1) is 

satisfied, then we can consider futures price as an unbiased predictor for the unknown 

future spot price. Muth (1961) and Lucas (1976) put forward the Rational Expectations 

Hypothesis to argue that economic agents make rational predictions about future states of 

the economy based on available information and past experiences, and these expectations 

do not differ systematically from the true future values. A study performed by Frenkel 

(1977) on the German Mark shows that observed data from the forward market can 

provide rational expectations of the future exchange rate. However, for the broader 

commodity market, evidences from previous studies to support the hypothesis have been 

inconclusive and most tests conducted have led to the rejection of equation (2.1). Hence, 

the futures price       is considered a biased estimator of the future spot price     , 

since equation (2.1) does not hold. If the future price is always higher than the expected 

spot price at maturity T, then       is an upward-biased estimator. This scenario can be 
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caused by the fact that commodity users are so eager to secure access to the commodity at 

maturity that they are willing to pay a premium on top of the expected spot price. In 

contrast, when the market is expecting an excess supply of the commodity, the futures 

price       might be lower than the expected spot price     , as producers are anxiously 

seeking to hedge the price risk of their output.  

2.5 Backwardation and Contango 

Keynes (1930) and Hicks (1939) proposed the theory of normal backwardation to explain 

this market behaviour and stated that in order for speculators to take on risky positions in 

the futures markets, futures prices have to be, in general, downward-biased estimates of 

the future spot prices. They argue that the futures markets are primarily dominated by 

commodity producers who are seeking to lock in the future prices of their output and 

would buy protection in the futures markets to hedge against the price risk. Speculators, 

on the other hand, would like to provide this insurance and buy the futures provided that 

they receive a premium in return to compensate for the risk they have taken. Therefore, 

the futures price has to be set lower than the expected spot price at the maturity and the 

difference between these two prices represents the risk premium producers would have 

paid to the speculators for bearing the risk of future price fluctuations. Figure 2.3 gives us 

a graphical illustration of normal backwardation. Assume that the current spot price for a 

barrel of crude oil is $50 and the market is expecting the price to go down $5 in three 

months to become $45 per barrel. In order to attract speculators to take on the risk of 

future price fluctuations, the 3-month futures contract will be priced at $43, which is a $2 

discount to the expected spot price. The two dollars difference between the 3-month 

futures price and the expected future spot price is the risk premium earned by speculators 
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for providing insurance to the hedgers. However, the theory of normal backwardation 

may be obsolete for current futures markets, as the theory is built on the assumption that 

hedgers as a whole are net short in the futures markets. This assumption is no longer 

 

Figure 2.3 An example of normal backwardation 

valid due to market evolvement from a producer-dominated futures market to the current 

market shared by a variety of market participants such as producers, intermediaries, and 

hedge funds, as well as commodity users who want to hedge the price risk of their future 

consumption by buying futures contracts. In certain commodity markets, the signs of risk 

premiums along the same futures curve can also be different depending on the futures 

contract’s maturity. The electricity markets are known to have very volatile spot markets 

due to the fact that storage is not possible for electricity. Therefore, in order to avoid any 
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disruptions in their production, electricity consumers are willing to pay a premium on top 

of the expected future spot price to secure short-term delivery of power. On the other 

hand, utilities are ready to sell long-dated futures contracts at a discount to the expected 

future spot price so that they can secure financing for their physical assets and maintain 

smooth cash flows in the long-term. These market behaviours cause the electricity futures 

curves to be upward-biased at the short end while they experience normal backwardation 

for longer-dated contracts. 

From Section 2.3, we note that the convenience yield y plays an important role in 

explaining the term structure of storable commodity prices. Hence, under the assumption 

of no arbitrage, it can be shown that futures price       is related to the spot price    by 

the following relationship: 

         
                    (2.2) 

where r is the continuously compounded interest rate. If we further decompose 

convenience yield y into two components, then y becomes: 

       

where    represents the benefit from holding the physical commodity while c denotes the 

cost of storage.
5
 We can then re-write equation (2.2) as: 

         
             .     (2.3) 

If the current futures price       is greater than the right-hand side of equation (2.3), then  

 

5
 c is expressed as a continuously compounded rate. 
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an arbitrageur can take advantage of this opportunity by selling the contract in the futures 

market and buying the cash commodity through a loan. He or she will then carry the 

commodity over the interval (t, T) and deliver it against the futures when the contract 

expires at T. Conversely, if the current futures price       is cheaper than the right hand 

side of equation (2.3), a trader would buy the futures contract and open a short position in 

the commodity spot market at the same time. At maturity, the trader would accept 

delivery and use it to cover the short position in order to capitalize on this arbitrage 

opportunity. With the presence of arbitrageurs to absorb any price abnormalities, these 

arbitrage opportunities should disappear quickly and equation (2.3) should hold under the 

arbitrage-free assumption.   

 From equation (2.3), we notice that when the benefit from holding the physical 

commodity,   , is greater than the sum of interest rate and storage cost (i.e.,       ), 

this will result in a downward-sloping term structure and we will have a situation of 

backwardation: 

 

Figure 2.4 An illustration of backwardated futures curve 
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Normally, backwardated term structures can be observed when convenience yields are 

positive and high during periods of tight supply in a commodity. Conversely, when 

benefits of physical ownership of a commodity are low relative to the interest rate and 

storage costs (i.e.,       ), the commodity term structure will be upward sloping and 

the futures market is in contango: 

 

Figure 2.5 An illustration of futures curve in contango 

Hence, convenience yield is essential in determining the shapes of futures curves. 

However, we should note that the spot-futures relationship stated in equation (2.2) is 

based on the assumption that both the interest rate r and convenience yield y are constant 

over the futures contract’s holding period. This assumption may be true in the short term 

but it becomes quite unrealistic for pricing long-dated contracts. Therefore, many studies 

have proposed the inclusion of a stochastic convenience yield as an additional variable in 

modeling the futures curves. We should also keep in mind that this spot-futures 
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relationship will collapse for non-storable commodities such as electricity, as the notion 

of convenience yield does not exist in these markets. 

2.6 Rational Expectations Hypothesis under Risk-Neutral Measure 

In the past, many studies by economists to test the validity of the rational expectations 

hypothesis in the futures market have been largely inconclusive. However, by following 

the methodology adopted by Geman (2005), we can show that under the assumption of 

no-arbitrage, the futures price is an unbiased predictor of the future spot price when the 

expectation is calculated under the risk-neutral measure Q. First of all, let us assume that 

the commodity spot price    can be described by the following stochastic differential 

equation: 

   

  
                (2.4) 

where   is the drift term of the process and    denotes a standard Brownian motion, 

which is a process with independent increments and such that        follows a normal 

distribution with mean 0 and standard deviation √   . If we take the expectations on 

both sides of the equation, we obtain: 

   
 

  
   [

   

  
 |   ] 

which indicates that   is the expected rate of return per unit of time where the only source 

of uncertainty is coming from the Wiener process   . Since the buyer of a futures 

contract is not entitled to the convenience yield and the Arbitrage Pricing Theory (Ross, 

1976) states that the expected return of a risky asset can be modeled as a linear function  
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of various risk factors, we can further decompose   into:   

        

where r is the risk-free interest rate, b is the risk premium and y is the convenience yield. 

Next, we can introduce   that represents the expected risk premium per unit of volatility 

given by    
 

 
. By plugging   into the equation above, we have: 

        . 

Then, we substitute this expression into the stochastic differential equation (2.4) to 

obtain:  

   

  
                    . 

From Girsanov’s Theorem, there exists a special probability measure Q, which we call 

a risk-neutral measure, such that the process  ̂  defined as: 

  ̂             

is a Q-Brownian motion. Therefore, under the risk-neutral probability measure Q, the 

price dynamics of a storable commodity take the form of: 

   

  
             ̂ .     (2.5) 

To justify that the futures price is an unbiased predictor of the future spot price at 

maturity and to show that the futures price is a martingale under the risk-neutral 

measure, we have to revisit the spot-futures relationship in equation (2.2): 

         
          . 
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We then differentiate both sides to obtain: 

      

     
  

   

  
        .     (2.6) 

By subtracting the dynamics of spot price (2.5) from the equation above, we get: 

      

     
     ̂      (2.7) 

which represents the risk-neutral dynamics of the futures price.  

Finally, we integrate equation (2.7) over the interval [t,   ] to provide: 

                 { 
  

 
          ̂      }. 

Since  ̂       follows a normal distribution,        is a log-normal variable with 

parameters             
  

 
       and      √       . The expected value of 

a log-normal variable with parameters   and   is known to be    
  

 . Hence, the 

expectation of        under the risk-neutral probability measure Q is given by 

        
        

  
        

  and this leads us to: 

         [       |           for any     .  (2.8) 

From equation (2.8), we can see that under the risk-neutral measure Q, the futures 

price process is a martingale and       should on the average remain constant. At 

maturity time T, the futures price is denoted by       and under the no-arbitrage 

assumption, this value should be equal to the spot price   . By substituting the spot 
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price at maturity into equation (2.8), we show that the futures price fulfills the 

condition for an unbiased predictor of the future spot price:  

        [   |    . 

Hence, in the geometric Brownian motion setting, we have demonstrated that the rational 

expectations hypothesis holds for futures prices when the expectations are computed 

under the risk-neutral probability measure Q. In the context of interest rates, Bjork (1998) 

further showed that the forward interest rate is an unbiased estimator of the future spot 

rate when the expectation is computed under the forward neutral measure whereby the 

numeraire depends on the maturity of the payoff.    
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Chapter 3 

Stochastic Modeling of Commodity Prices 

The ability to formulate models to describe the dynamics of commodity prices is essential 

for traders and hedgers to properly price derivative contracts written on these assets. 

Many researchers have since proposed various stochastic models to represent the 

dynamics and seemingly random behaviour of commodity spot prices and futures curves. 

Rather than to provide accurate future price forecasts, these models are created to offer 

rigorous mathematical descriptions of commodity price dynamics by using properties 

observed in historical data. Such models should be chosen so that the stochastic process 

of commodity prices S(t) results in a probability distribution that agrees with the 

empirical moments and other statistical features presented in the price data. The price 

trajectories simulated from these stochastic models should also be consistent with the 

dynamics of commodity prices that have been observed. 

3.1 Returns Distribution of Commodity and Their Empirical Moments 

Before we start discussing stochastic models that are commonly used in the 

representation of commodity price dynamics, we should first investigate the probability 
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distributions and empirical moments of commodity prices. Over long periods, stock 

prices generally exhibit upward trends as investors are rewarded for the long term growth 

in companies’ earnings and dividend yields. In contrast, since supply and demand dictate 

the pricing in commodity markets, commodity prices typically show mean-reverting 

behaviour over a long period when demand and supply remain relatively stable. Figure 

3.1 provides the best illustration of this scenario whereby the spot price of corn tends to 

mean-revert to its equilibrium level over the time span of 30 years with occasional spikes 

in price due to short term shocks to the supply and demand curves. In agreement with the 

theory of storage, we also observe that volatility increases when corn prices soar during 

periods of low inventories or adverse weather conditions. Next, we study the empirical 

 

Figure 3.1 Spot price of corn over the period January 1973 to December 2003 
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moments of commodity returns to help us better understand the shapes of commodity 

returns distributions. Table 3.1 presents the first four moments calculated from daily 

logarithmic returns for several commodity spot prices, where the logarithmic return at 

time t is defined as               ⁄  . The mean and standard deviation of daily log-

returns are then being transformed into their annual equivalents (which are presented in 

the first two columns of Table 3.1) through the following formulas: 

                        and                 √   . 

Among all the commodities listed in Table 3.1, natural gas has the highest annualized 

volatility due to the fact that natural gas is expensive to store with limited storage 

facilities around the world. Moreover, price volatility increases during severe weather 

conditions when surging demand for natural gas coincides with the lack of pipeline 

capacity to deliver gas supply to meet the demand. On the other hand, metals (especially  

Commodity Mean 

 

 

Standard Deviation Skewness Kurtosis 

Light Sweet Crude Oil 0.1200 0.3980 -0.2496 7.5271 

Natural Gas 0.1317 0.8940 1.2594 46.5225 

Corn -0.0558 0.2490 -0.1334 5.0005 

Soybeans -0.0207 0.2381 -0.5884 7.7576 

Wheat -0.0436 0.3014 0.1384 5.1103 

Live Cattle 0.0352 0.2297 -0.4692 20.3232 

Lean Hogs 0.0300 0.4837 0.5280 20.7038 

Gold 0.0291 0.1333 0.5395 10.7159 

Silver 0.0570 0.2162 -0.3680 7.6401 

Copper 0.0532 0.2413 -0.6068 9.7800 

Cocoa 0.0167 0.2871 0.3940 9.8483 

Sugar No. 11 0.0249 0.3280 -0.4141 9.3942 

Cotton -0.0405 0.2828 0.0057 5.6872 

Table 3.1 First four moments of commodity log-returns over the period January 1996 to 

December 2005 
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gold and silver) are less volatile than other commodities, since they are easy to stock and 

inventories are available to absorb any shocks in demand. We also observe that for all 

commodities in Table 3.1, their kurtoses are greater than 3, which indicate that their 

return distributions have heavier tails than the normal distribution and the occurrence of 

extreme or “black swan” events are relatively more frequent. It is important that these 

high values of kurtosis are properly represented when we are designing methodology to 

compute the Value-at-Risk or other risk measures for commodity investments, so that the 

true risk of these investments is not understated.    

3.2 Geometric Brownian Motion 

In 1965, Paul Samuelson proposed the use of geometric Brownian motion to model the 

dynamics of stock price. Currently, geometric Brownian motion is still widely used 

among practitioners to describe the behaviour of stock prices and it forms the basis for 

Black-Scholes option pricing model. The stock price    is considered to follow a 

geometric Brownian motion if its stochastic process satisfies the following equation: 

   

  
              

where   and   are respectively the constant drift and constant volatility terms and    is a 

Wiener process. From the equation above, we note that under the assumption of 

geometric Brownian motion, the expected stock price grows over time by a rate given by 

the drift term  . Since commodity prices exhibit mean-reverting behaviour and do not 

generally display trends over long periods, geometric Brownian motion might not be an 

appropriate model for commodity prices. Therefore, in Section 3.3, we will introduce a 



32 
 

mean-reversion model that aims at capturing and describing the dynamics of commodity 

prices. Moreover, the assumption of constant volatility is not in line with the fact that 

volatility of commodity prices varies over time as a consequence of changing storage 

level. Later in this chapter, we discuss models which allow for changing volatility 

through the introduction of stochastic volatility or by adding a jump component to the 

model. Lastly, geometric Brownian motion also implies that log-returns for stocks are 

normally distributed since the quantity               is a normal variable. From 

Section 3.1, we observe that commodity returns show obvious deviations from normality 

and therefore we should carefully examine the robustness of using geometric Brownian 

motion to model commodity prices. 

3.3 Mean-Reverting Model for Commodities 

In this section, we will look at several mean-reverting models which are commonly used 

to describe the random evolution of commodity prices. In 1977, Vasicek suggested that 

short-term interest rates, which typically fluctuate in a narrow range, can be modeled 

with an Ornstein-Uhlenbeck process which satisfies the following stochastic differential 

equation:  

                     . 

In this equation, b represents the mean level where the short rate will evolve around in 

the long run and a is the rate of reversion that characterizes the speed at which future 

trajectories will revert back to b. However, we should note that the model allows the 

short rate    to take negative values, which is an undesirable feature for modeling 
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commodity prices. To remedy this problem, Schwartz (1997) considers the following 

model for commodity spot prices: 

   

  
                        (3.1) 

where the rate of return for commodity 
   

  
 is a normal variable, which demonstrates the 

fact that negative values are admissible for commodity returns. If we introduce         

and apply the Ito’s lemma, we have: 

     (  
  

  
   )              (3.2) 

meaning that the log price    can be described in the form of an Ornstein-Uhlenbeck 

stochastic process. We further define variable          and again, by using Ito’s 

lemma, we get:  

                       . 

By substituting equation (3.2) into the equation above, we obtain: 

      (  
  

  
)                 .           (3.3) 

Next, we integrate equation (3.3) over the interval [t, T] to get:  

      (  
  

  
)            ∫     

 
    .    (3.4) 

Since         , equation (3.4) becomes: 

               (  
  

  
) (          )        ∫     

 
    . 
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We notice from the equation above that process    is normally distributed with mean 

            (  
  

  
) (          ) and variance: 

           (      ∫     

 
    )            [(∫     

 
    )

 

]. 

With Ito’s Isometry, we have: 

                  [(∫    
 

 

    )

 

]           ∫     
 

 

   

                                                                   
  

  
(           ). 

Since       , process    will follow a log-normal distribution with parameters 

               (  
  

  
) (          ) and    

  

  
(           ). Under the 

assumption that the rational expectations hypothesis holds, we have shown in the 

previous chapter that futures price       can be computed by equating       

 [   |    . Given that the expected value of log-normal variable    is known to be 

   
  

 , we have: 

          {             (  
  

  
) (          )  

  

  
(           )}. 

Therefore, the process (3.1) provides a simple one-factor model that is capable of 

describing the mean-reverting feature of commodity prices and yields a closed-form 

solution for futures prices. 
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3.4 Stochastic Convenience Yield Model 

In Chapter 2, we argued that convenience yield plays an important role in explaining the 

term structure of commodity prices. Gabillon (1991) remarked that dissimilar shapes of 

contango and backwardation manifested over time in commodity markets contradict the 

assumption of a constant convenience yield. Hence, it is reasonable to introduce 

convenience yield as an additional state variable to improve the quality of modeling. 

Gibson and Schwartz (1990) developed a two factor model by including the 

instantaneous net convenience yield    as the second state variable to model oil 

contingent claims. The joint diffusion process of Gibson and Schwartz model is specified 

in the form: 

   

  
                 

  

                      
  

where the two Brownian risk factors are correlated such that    
     

      . 

According to the model, the process of commodity price    is a geometric Brownian 

motion where the growth rate is adjusted by a net convenience yield   . Motivated by 

their study on the time series properties of forward convenience yields of crude oil, the 

stochastic convenience yield    follows an Ornstein-Uhlenbeck process to assert its 

mean-reverting pattern. Since convenience yield is positively correlated to the spot price 

(that is    ), a decline in spot price    will result in a decrease in the convenience yield 

  . A lower convenience yield will cause the spot price process to have a larger drift rate 

and hence will drive up the spot price for next period. Therefore, the spot price process 
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exhibits some kind of mean-reversion behaviour through the influence of convenience 

yield from both the correlation coefficient and the drift term of the process. Under the 

risk-neutral measure Q, the risk-adjusted stochastic processes can be re-written as follows: 

   

  
                ̅ 

  

    [                    ̅ 
  

  ̅ 
    ̅ 

       

with   representing the market price of convenience yield risk. Since the risk associated 

with convenience yield cannot be hedged with any tradable products, the risk neutral 

convenience yield process will contain a risk premium for bearing the risk. By using Ito’s 

lemma and with the absence of any arbitrage opportunity, it can be shown that futures 

price              must satisfy the following partial differential equation (see Gibson 

and Schwartz (1990) for a detailed derivation): 

 

 
  

   
                

 

 
  

                                   

subject to the terminal boundary condition                . Jamshidian and Fein 

(1990) and Bjerksund (1991) derived an analytical solution to this equation, which can be 

expressed as: 

                   [   

          

 
       ] 

where  
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. Hence, Gibson and Schwartz have provided a tractable model to value 

commodity futures contracts, which includes convenience yield as the second stochastic 

factor. 

3.5 Stochastic Volatility Models and Jump Diffusion Process 

The stochastic models that we have discussed in previous sections are based on the 

assumption that volatility stays constant over time. However, the volatility of commodity 

prices tends to increase when the price level is high. On the other hand, commodity prices 

are less volatile when abundant inventory is available to buffer any shocks in the 

demand-supply balance. Therefore, it will be desirable for us to relax the assumption of 

constant volatility by introducing stochastic volatility model or by adding a jump 

component to the existing models. 

 By extending the Heston (1993) model, Eydeland and Geman (1998) proposed a 

stochastic volatility model that maintains the mean-reversion behaviour in commodity 

spot prices. The joint stochastic process of the two state variables is described as follows: 

   

  
              √      

  

                 √      
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where   is the volatility of volatility which determines the variance of   . Since 

commodity price is more volatile when the price level increases, the correlation 

coefficient   which relates the two Brownian motions is typically positive. In this model, 

the instantaneous variance    is characterized by a Cox-Ingersoll-Ross (CIR) model to 

represent the mean reversion of the price variance towards its long run mean level   and 

to ensure the process    remains strictly positive if the parameters obey the condition of 

      . As standard deviation of the instantaneous variance process is defined by 

          √  , when price variance    approaches zero, the effect of random shock 

component becomes minimal and the evolution of    is mainly dominated by the drift 

term that pushes the price variance away from zero towards the mean level to prevent the 

possibility of negative volatility. In order to further improve the quality of this model, 

Richter and Sorensen (2002) proposed a model that incorporates stochastic convenience 

yield and stochastic volatility. Without the stochastic volatility component, the model 

suggested by Richter and Sorensen corresponds to the Gibson and Schwartz model we 

discussed in Section 3.4.   

 For certain commodity markets which exhibit higher volatility in their price 

movements, particularly electricity and natural gas, it is quite common for us to observe 

sharp and unanticipated spikes in the price data. The sudden jumps in commodity prices 

are normally the result of political unrests or severe weather conditions which cause 

disruptions in the supply or escalations in consumer demand. Figure 3.2 depicts the 

evolution of the Henry Hub natural gas spot price for period in between May 1995 and 

May 2006. We notice that cash price of natural gas has occasional spikes over this period, 
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generally due to sustained cold weather in the winter which causes a hike in heating 

demand.   

 

Figure 3.2 Daily Henry Hub Natural Gas spot price from May 1995 to May 2006 

In order to accommodate this phenomenon in commodity prices, it is appropriate 

to include a jump component to the diffusion process (3.1) we discussed above. In an 

influential paper published in 1976, Merton first introduced a jump diffusion model for 

stock returns. To better represent the heavy tails in returns distribution, the spot price 

dynamics can be described with the following stochastic differential equation: 

   

  
                   

where    accounts for the frequency of jumps. Here,    follows a Poisson process with 

parameter   which is the expected number of jumps that occur per year. Furthermore, the 
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size or magnitude of jumps is denoted by    which is a normally distributed random 

variable that takes positive and negative values. We can further extend this model to 

include mean-reversion behaviour by having the following stochastic process: 

   

  
                           

where the model is a mixture of a jump component and a diffusion process governed by 

Schwartz’s (1997) one-factor model. However, since the process has to mean-revert 

quickly after a huge jump, the mean-reversion rate   necessary to bring the spike back to 

its normal levels would be unrealistically large. This in turn will cause the diffusion 

components for standard daily moves to revert to the mean level instantaneously and the 

paths would appear deterministic.     
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Chapter 4 

Stochastic Long-Run Mean Models 

In the previous chapter, we have presented models that incorporate the empirical fact that 

in the long run commodity prices will mean-revert to a constant price level. In this 

chapter, we are going to provide an additional degree of randomness to this long-run 

mean level by allowing it to follow a stochastic process. This in turn will offer a more 

flexible model and, as a result, help better describe the term structure of commodity 

futures prices with maturities extending into months or years. Pilipovic (1997) first 

adapted the idea of a changing mean level by introducing a two-factor stochastic model 

that satisfies the following differential equations: 

                         
  

   

  
            

  

   
     

      . 
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Here, the spot price process will mean-revert to a stochastic long-run mean denoted by   . 

Meanwhile, the stochastic mean level    follows a geometric Brownian motion with a 

drift term  . Therefore, according to the model, long-run mean will grow over time at a 

rate of  . However, a Brownian motion with a positive drift term may, with a positive 

probability, never return to the origin. Hence, one possible limitation to this model is that 

the long-run mean might grow without bound and causes the spot price process to be 

non-stationary. In order to get around this problem, Hikspoors and Jaimungal (2007) 

proposed a two-factor model such that the stochastic mean level also mean-reverts to a 

second long-run mean to maintain the stationary behaviour of the underlying spot price 

process. To translate the seasonal feature in commodity prices, the spot price    is 

defined as: 

                   (4.1) 

where    represents the seasonality term, which is normally a function expressed as a 

sine or cosine with annual periodicity. In addition, Hikspoors and Jaimungal complete the 

specification of the two-factor model by assuming    to satisfy the following joint 

stochastic process: 

                           (4.2) 

                          (4.3) 

where the two Brownian motions,    and    are correlated such that            . In 

this model,    mean-reverts to the stochastic mean level    with the rate denoted by   

while   dictates the mean-reversion speed of    towards the constant long-run mean  . 
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To relax the assumption of constant volatility, Hikspoors and Jaimungal (2008) further 

extend this model to allow for a stochastic volatility component in the spot price process. 

The joint stochastic process for this model can be written in the form: 

                √      
  

                     
  

                 √      
  

with the correlation structure, 

   
    

      ,    
    

      , and    
    

   .  

This structure allows the main driving factor    to be correlated to its own stochastic 

volatility component    and to the long-run mean-reverting level   . Since the volatility 

component    describes the short-term fluctuations in commodity prices, it is also 

reasonable to assume that    is not related to the long-run mean level    that changes 

slowly over time. The volatility of    is again being characterized by a mean-reverting 

stochastic process. 

4.1 Hikspoors and Jaimungal Two-Factor Mean-Reverting Model 

For the rest of the thesis, we will focus on studying the two-factor mean-reverting model 

proposed by Hikspoors and Jaimungal, which will be referred to as the “HJ Model” from 

here onwards. In their paper, Hikspoors and Jaimungal provide a framework for modeling 

spot prices of energy commodities and demonstrate that the calibration procedure 

produces stable estimation of the model parameters for the NYMEX Light Sweet Crude 
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Oil spot and futures data. Moreover, within this modeling framework, they are able to 

derive closed form pricing equations for futures contract and various spread options. 

Having successfully estimated both the risk-neutral and real-world parameters, the 

authors can subsequently extract the implied market prices of risk for these commodities. 

To examine the versatility of this framework, in this thesis we will focus on testing the 

robustness of the calibration process by applying the methodology to simulated data. The 

capability of this calibration process to produce stable estimates of the model parameter 

from various initial guesses will be assessed. We also explore the possible presence of 

model uncertainty which leads to the miscalculation of market prices of risk as a 

consequence of multiple solutions given by the calibration process.  

 In the HJ Model, the spot price,   , is an exponential function of the seasonal 

component,   , and the main driving factor,   , as we have seen in equation (4.1). Since 

seasonality represents an important feature observed in certain commodity prices, the 

authors have further specified    as a function of cosine and sine: 

       ∑                           
       (4.4) 

where n is typically chosen to have value of 1 or 2 to assure stability in the calibration 

process. The two-factor mean-reverting model which drives the spot price process is then 

being described by equations (4.2) and (4.3). To find a solution to these equations, we 

will first solve the stochastic differential equation that involves the long-run mean   . 

Since    follows the standard Ornstein-Uhlenbeck process, by applying Ito’s lemma to 

solve equation (4.3), we get: 

                        ∫             
 

 
.    (4.5) 
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Next, we substitute this result into equation (4.2) and solve for    while taking into 

account the correlation between    and    to obtain: 

                              ∫             
 

 
    ∫         

 

 
      (4.6) 

where      and      are two deterministic functions defined as: 

                              (4.7) 

      (          )            (4.8) 

and   
 

   
. Having the solutions (4.5)-(4.6) for the two-factor model, we can proceed 

with the valuation of commodity futures contracts in two distinct scenarios – real-world 

and risk-neutral. 

4.1.1 An Actuarial Approach for Pricing Commodity Futures 

For the purpose of pricing a derivative contract, it is common that one will adopt a risk-

neutral approach to this problem. Under the assumption that markets are arbitrage-free, 

there exists at least one risk-neutral measure such that all traded assets must have the 

same expected rate of return – the risk-free interest rate. The advantage of using this 

approach comes from the fact that once the risk-neutral probabilities are discovered, 

every asset in the market can be priced by taking the expectation of its future payoff 

without adjustment for any individual’s risk preference. However, Hikspoors and 

Jaimungal have suggested that it may be inappropriate to adopt a risk-neutral framework 

for pricing commodity derivatives based on the argument that commodity spot markets 

are fairly illiquid. Moreover, Hull (2005) justifies the use of an Actuarial approach for 
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pricing derivatives by assuming the risks associated with commodity prices are non-

diversifiable. Therefore, following Hikspoors and Jaimungal, we will present the 

derivation of commodity futures prices under an Actuarial valuation framework where 

expectations are computed to reflect real-world beliefs of possible future outcomes. 

 In their paper, Hikspoors and Jaimungal have defined the pseudo-forward price 

process,     , as the following: 

       [   |          (4.9) 

where the conditional expectation is computed under a real-world probability measure, P, 

with    signifying the information available in the market at time t. From what we have 

learned in Chapter 2, if the conditional expectation is computed under a risk-neutral 

measure Q, equation (4.9) represents the rational expectations hypothesis which implies 

that the futures price is an unbiased predictor of the future spot price at maturity.  

 By assuming that the rational expectations hypothesis holds in a real-world setting, 

equation (4.9) offers a method to derive a closed-form solution for commodity futures 

prices under an Actuarial valuation framework. By substituting the definition of spot 

price process from equation (4.1) into equation (4.9), we obtain:  

       [           |    . 

Using equation (4.6) for   , we can further expand the equation above and compute the 

expectation to get: 
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       [   (                            ∫             

 

 

   ∫         

 

 

) |    ] 

                        (                              )            (4.10) 

where the expressions for      and      are supplied in Equations (4.7) and (4.8) 

respectively while      is defined as follows: 

     
          

 
[                                 [              

 
         

 
       

with 

                       . 

Hence, with equation (4.10), we have a closed-form solution for the commodity futures 

price derived under the real-world probability measure P. 

4.1.2 Risk-Neutral Pricing of Commodity Futures Contract 

To preserve the fundamental assumption of no-arbitrage, the risk-neutral approach has 

been heavily used in the pricing of derivative products. In a complete market setting, 

there exists a unique risk-neutral measure that results in a unique arbitrage-free price for 

any derivative contract. Given the illiquidity in commodity spot trading and the fact that 

certain risks associated with commodity prices are non-diversifiable, there may exist a 

multitude of equivalent risk-neutral measures within such incomplete markets. It is then 
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through the trading of these derivative contracts that the market as a whole will determine 

which measure will prevail at any given point in time. In order to solve for futures prices, 

we proceed to introduce a class of equivalent risk-neutral measures that maintains the 

real-world structure of price dynamics.  

 To obtain a set of risk-neutral measures, Q, Hikspoors and Jaimungal begin with a 

change of measure by introducing the Radon-Nikodym derivative,   , such that: 

   (
  

  
)
 
  (∫    

 

 

          ) 

where       represents the Dolean-Dade’s exponential of   . By decomposing the 

correlated processes into uncorrelated processes and applying Girsanov’s Theorem, 

Hikspoors and Jaimungal go on to introduce the following Q-Wiener processes: 

 ̅     ∫            
 

 
    (4.11) 

 ̅     ∫         
 

 
        (4.12) 

where the two Q-Wiener processes are correlated such that   ̅   ̅     .  

 Due to the incompleteness of commodity markets, there exists a huge number of 

possible prices for a derivative contract, each corresponding to different risk neutral 

measures Q. Therefore, Hikspoors and Jaimungal have suggested that by applying some 

constraints on the market prices of risk, the risk-neutral dynamics of    and    will be of 

the same form as they were under the real-world probability measure. In particular,    

and    under the risk-neutral measure will be described in the form of: 
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     ̅                ̅     (4.13) 

     ̅  ̅              ̅ .    (4.14) 

However, we note that even though the risk neutral and the real-world dynamics are of 

the same form, the parameters  ̅,  ̅ and  ̅ which drive the risk-neutral dynamics may be 

significantly different from those under the real-world measure in Equations (4.2)-(4.3). 

This feature enables us to simultaneously calibrate the model parameters for the risk-

neutral and the real-world dynamics. Going back to the suggestion by Hikspoors and 

Jaimungal, they have shown in their paper that, if the market prices of risk are chosen 

such that: 

                   (4.15) 

                   (4.16) 

subject to the following constraints, 

             (4.17) 

            (4.18) 

                     (4.19) 

 ̅                   (4.20) 

 ̅ ̅  (           )     (4.21) 

 ̅                   (4.22) 
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then the risk-neutral dynamics will remain in the same class as those in the real-world 

settings.  

Once we have the risk-neutral dynamics of the diffusion processes to be in the 

form of equations (4.13)-(4.14), it will be straightforward for us to derive a closed-form 

solution for commodity futures price under the risk-neutral measure Q. Since the rational 

expectations hypothesis holds within the risk-neutral framework, the commodity futures 

price is defined as: 

       [   |     

which is analogous to the pseudo-forward price we defined in equation (4.9). Hence, by 

extracting from equation (4.10), the futures price associated with a risk-neutral measure is 

given by: 

        (    ̅     ̅       ̅         ̅     )   (4.23) 

where all the P-parameters are changed to Q-parameters. Therefore, with equation (4.23), 

we have obtained an expression for commodity futures price curves in terms of some 

elementary functions. 
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Chapter 5 

Model Calibration and Its Robustness 

After a detailed review of the HJ Model, in this chapter we will discuss the subjects of 

parameter estimation and the robustness of the calibration procedure. First, we present a 

calibration methodology proposed by Hikspoors and Jaimungal to estimate the 

parameters for this two-factor diffusion model. Using this method, both the risk-neutral 

and real-world parameters can be obtained through the calibration of the HJ Model to the 

spot and futures prices. Once the risk-neutral and real-world parameters are estimated, the 

authors further proposed an approach to extract the implied market prices of risk. Hence, 

in Section 5.4, we will investigate the robustness of this process by applying the 

methodology to simulated data to examine its ability to produce stable estimates of the 

true parameter values which are used in generating these data. In addition, we study the 

sensitivity of the calibration results with regard to different selections of initial guesses 

for the model parameters. Finally, we discuss how the calculation of market prices of risk 

might be exposed to model uncertainty as a result of multiple solutions produced by the 

calibration procedure.    
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5.1 Calibration Methodology 

From previous chapter, we recall that the log futures price under the risk-neutral 

measures Q is given by:  

            ̅     ̅       ̅         ̅          (5.1) 

     ̅     ̅       ̅                 ̅       (5.2) 

where    is the spot price of the commodity and    represents the seasonality component. 

To simplify the notation, the function  ̅    is being introduced such that: 

         ̅     ̅     .     (5.3) 

The long-run mean level    in equation (5.3) cannot be directly observed from the market 

price data. Hence, we have to express this latent factor as a function of the remaining 

model parameters and obtain a least-squares estimate of    that best fits the observed 

futures curves. For each given time   , we can obtain the long-run mean level in terms of 

risk-neutral model parameters  ̅ such that it minimizes the following sum of squared 

differences between the observed log futures price and the calculated value provided by 

equation (5.3): 

   (    ̅)  ∑ [ ̅      
   ̅      

          
      

 
   

  

      (5.4) 

where  
      

 
  refers to the observed futures price at time    with contract maturity time 

  
 
. Therefore, the optimal value for long-run mean level,    

   ̅ , can be solved to be:    
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   ̅  

∑  [ ̅
      

  (    
      

 
     ̅

      
 ) 

  
   

∑  [ ̅
      

   
  
   

.    (5.5) 

To estimate the risk-neutral model parameters   ̅   ̅  ̅         , we first substitute the 

optimal    
   ̅  into equation (5.4) and sum it over the range of times     . Subsequently, 

we look for the optimal risk-neutral parameters  ̅  by performing an optimization 

procedure described by the following function: 

 ̅          ̅̅̅   ̅  ∑ ∑ [ ̅      
   ̅      

     
      

      
 

   
  
   

 
   .  (5.6) 

Hence, by using this methodology, we are able to obtain a set of optimal risk-neutral 

model parameters  ̅  which provides a best fit of the model to the futures prices.   

 Next, we proceed to estimate the model parameters                 under the 

real-world measure P. From Girsanov’s Theorem, we know that the volatility structure 

will remain unaltered after a change of measure from the real-world to the risk-neutral. 

As a result,       and   under the P-measure can be easily obtained from the calibration 

results given by equation (5.6). To estimate the remaining set of P-parameters, we first 

assume that a one-factor mean-reverting model for    (equation (4.2)) will act as a proxy 

to our two-factor model. By discretizing the time steps of equation (4.2) and rearranging 

the terms, we get: 

                             .   (5.7) 

We further assume that the stochastic long-run mean level    in the equation above 

becomes our constant one-factor mean-reversion level  . Therefore, we can use equation 
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(5.7) to perform a linear regression on the spot price data to find least-squares estimates 

of   and  . We subsequently use the estimated hidden mean process   
  given by 

equation (5.5) as a data set to perform a similar linear regression for the discretized model 

of equation (4.3) in order to obtain the estimated value of  . 

 Once we have obtained the risk-neutral and the real-world model parameters, we 

can further extract the implied market prices of risk for the given commodity market. The 

evolutions of the implied market prices of risk    and    described as follows: 

                   (5.8) 

                   (5.9) 

can be easily solved subject to the constraints listed in equations (4.17)-(4.22). 

5.2 Light Sweet Crude Oil Futures Contract 

For the purpose of testing the robustness of the calibration procedure, we apply the 

methodology to simulated data obtained from a model fitted to the price dynamics of 

Light Sweet Crude Oil (WTI) futures contracts. For this reason, it will be useful for us to 

provide a brief description of the WTI futures contract. The WTI futures contracts trade 

on the New York Mercantile Exchange (NYMEX) and they represent the world’s most 

actively traded futures contract on a physical commodity. To offer liquidity and price 

transparency, crude oil futures have a well-developed term structure with maturities 

spanning over nine years. Monthly contracts are listed for the current year and the next 

five years while only the June and December contract months are traded from the sixth 

year onward. During the delivery month, a single futures contract calls for the delivery of 
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1000 barrels of crude oil at Cushing, Oklahoma. Meanwhile, the last trading day of a 

futures contract is the third business day prior to the 25
th

 calendar day of the month 

preceding the delivery month. In our calibration process, we therefore calculate the time-

to-maturity for different futures contract months by choosing the last day of trading as the 

expiration date of a contract.   

5.3 Simulation of the HJ Model 

For the purpose of our investigation, we simulate 30 distinct sample paths of crude oil 

prices on the assumption that the spot price dynamics follow the HJ Model. Each sample 

path is simulated with 1500 observations by using the following risk-neutral parameter 

values for HJ Model: 

 ̅  ̅  ̅         

0.15 0.31 3.27 0.33 0.63 -0.96 

Table 5.1 Parameter values used in simulating crude oil prices  

The parameter values in Table 5.1 are chosen for our simulation process since these 

values represent the calibration result obtained by Hikspoors and Jaimungal after 

applying the HJ Model to the NYMEX WTI futures data for the period of 01/10/2003 to 

25/07/2006.  

 To simulate a path following the HJ Model, we first apply the Euler method to 

discretize the joint stochastic process (4.2)-(4.3) with a time step equal to one trading day: 

                                (5.10) 

                             (5.11) 
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where the two Brownian motions    and    are correlated with a correlation  . Here,    

is set to be 
 

   
 where 260 is approximately the number of trading days in a year. The 

correlated Brownian motions    and    can be sampled by first generating two 

sequences of independent standard normal distributed random numbers     ,     . By 

performing a Cholesky decomposition, we further impose the correlation   on the 

independent series to obtain two sets of correlated random numbers     
      

 . By then, the 

paths for Brownian motions    and    in equations (5.10)-(5.11) can be easily generated 

as follows: 

        
 √   and              

 √  . 

Subsequently, we implement the updating functions (5.10)-(5.11) to compute the values 

of X and Y for any given times t. On each trading day, the log futures prices for different 

maturities are calculated by applying the known model parameter values, as well as the 

simulated values for log spot price and its mean level, to equation (5.1). For the purpose 

of our study, each futures curve is constructed to include 13 monthly contracts starting 

with the first contract maturing in 1 month and so forth, with the longest maturity  

contract expiring in 13 months.  In Figure 5.1, we plot a simulated sample path of the log 

spot price and the stochastic mean level   . Instead of plotting all the thirteen futures 

prices derived from the simulated path, three contract maturities, 3, 8, and 13-month log 

futures prices, are chosen to be illustrated in the figure. Interestingly, we observe that the 

simulated futures curves in Figure 5.1 maintain the well-known “Samuelson effect” 

which we mentioned in Chapter 2. For instance, it is apparent that the 13-month futures 

contract is less volatile than the 3-month futures since the former is less sensitive to the 



57 
 

noise in short term price fluctuations. Therefore, we have simulated the log spot and 

futures prices which allow us to proceed with investigating the robustness of the 

calibration procedure. 

 

Figure 5.1 Log spot and futures prices simulated with the parameters in Table 5.1 

5.4 Calibration Results and Sensitivity Analysis 

In this section, we present the calibration results of implementing the HJ Model to our 

simulated data. For the purpose of our investigation, simulated data are preferred over 

actual data because we know that the simulated data are generated from the HJ Model 

with parameter values given in Table 5.1, without the concerns of whether the HJ Model 

provides a good description to the actual data. Moreover, our study mainly focuses on the 
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capability of the calibration procedure to discover the risk-neutral model parameters 

  ̅   ̅  ̅          from the simulated data. To estimate the risk-neutral parameters, we 

perform an optimization to obtain a set of parameters that minimizes the objective 

function (5.6). However, this optimization result might be very sensitive to different 

initial guesses for the model parameters. In other words, when initial guesses are set to be 

too far from the true values, the calibration results might not converge to the correct 

parameter values. Therefore, this problem has motivated us to further our research on this 

issue under the HJ framework.  

 Before we proceed to show the calibration results, it is useful for us to examine 

how changing parameter values will affect the value of our objective function. For each 

simulated path, we perform the so-called “one-factor-at-a-time” method whereby we 

move the value of a parameter within a reasonable range while keeping other parameters 

at their correct values. Using this new set of parameter values, we obtain the hidden long-

run mean level    from formula (5.5), and subsequently compute the sum of squared 

differences (SSE) between the simulated futures data and the calculated log futures prices, 

as described by equation (5.4). Then, we plot a curve of SSE with respect to the 

parameter values to gain understanding of the relationship between parameter values and 

the objective function. In Figure 5.2, we show the 5
th

, 95
th

 percentile and mean SSE 

calculated for the 30 simulated paths while moving the values of  ̅ in the range of 0 to 1. 

From the figure, we observe that the minimum value of SSE is achieved when alpha is 

equal to 0.15. This observation matches our expectation since the simulated data are 

generated with  ̅      . Next, we repeat the same steps for  ̅ and Figure 5.3 illustrates 

the result that we have obtained. The graph shows that the SSE curve for every simulated    



59 
 

 

Figure 5.2 SSE curves with regard to changing values of  ̅ 

 

Figure 5.3 SSE curves with regard to changing values of  ̅ 
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path can be described as a convex function with a global minimum point at  ̅      . 

Similar analyses are performed to the remaining 4 parameters and the results are 

displayed in Figures 5.4-5.7. Due to small deviations between the SSE curves for 

  

Figure 5.4 Mean SSE curve with regard to changing values of  ̅ 

 

Figure 5.5 Mean SSE curve with regard to changing values of   
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Figure 5.6 Mean SSE curve with regard to changing values of    

 

Figure 5.7 Mean SSE curve with regard to changing values of    

different simulated paths, we have only plotted the mean SSE curve for the parameters  ̅, 

 ,    and   . As expected, the results for these 4 parameters concur with our previous 
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findings for  ̅ and  ̅, whereby the minimum value for SSE is attained with parameter 

values given in Table 5.1. Moreover, it is interesting to note that the mean SSE curve for 

   is relatively flat for values in between 0.5 and 1. This segment of the curve might 

suggest a potential problem for the optimization procedure to converge to the correct 

parameter value. After analyzing the SSE curves, we can be sure that when we are 

minimizing the objective function in the calibration procedure, we are in fact finding the 

parameter values that simulate these data. However, the “one-factor-at-a-time” approach 

does not fully explore all the possible outcomes because this method does not consider 

the simultaneous variation in the parameters. Therefore, this approach lacks the ability to 

identify the presence of interactions between parameters.     

 For the rest of this section, we will present the results of calibrating the HJ Model 

to our simulated data. Since the calibration process involves an optimization procedure, 

we are interested in investigating how different initial guesses for the parameter values 

can affect the calibration result. To solve the optimization problem in equation (5.6), we 

used the lsqnonlin function in Matlab. We begin by showing the calibration result of 

setting the initial guesses to the parameter values specified in Table 5.1. Table 5.2 shows 

the summary statistics of the optimal risk-neutral parameter values obtained from fitting  

 

Table 5.2 Calibration result by setting initial guesses to parameter value in Table 5.1 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.15 0.31 3.27 -0.96 0.33 0.63 1.69E-14 0

Standard Deviation 0 1.13E-16 0 6.78E-16 0 2.26E-16 2.3E-15 0

Minimum 0.15 0.31 3.27 -0.96 0.33 0.63 1.38E-14 0

25th Percentile 0.15 0.31 3.27 -0.96 0.33 0.63 1.52E-14 0

75th Percentile 0.15 0.31 3.27 -0.96 0.33 0.63 1.79E-14 0

Maximum 0.15 0.31 3.27 -0.96 0.33 0.63 2.4E-14 0

 ̅  ̅  ̅      
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the HJ Model to our 30 simulated paths. For comparison, we also include the square-root 

of the sum of squares (RSS) for our estimated model and the number of iterations taken 

to achieve the optimized result. When parameter values in Table 5.1 are used as the initial 

guesses, it is not surprising to observe from Table 5.2 that all the optimal risk-neutral 

parameters remain at the correct values. 

 Next, we investigate the sensitivity of the calibration results by changing the 

initial guess of a single parameter while maintaining the others at their true values. For 

each parameter, we will examine the capability of the optimization process to produce 

unbiased parameter estimates when the initial guess is fixed at 20 percent away from its 

actual value. We start by looking at the calibration results that we have obtained when the 

initial guess of  ̅ deviates from its true value. In Table 5.3, we show the estimated values 

of our model parameters when the initial guess of alpha is set to be 20% below its true 

value. In this case, the calibration process is able to produce parameter estimates which 

are very close to the actual values. Moreover, the parameter estimates attained for various 

simulated paths do not vary much and hence they have very low standard deviations. On 

average, the optimization process took 11.2 iterations to achieve the optimized result.
6
   

 

Table 5.3 Calibration result when initial guess of  ̅ is set to be 0.12 

 

6
 To prevent the optimization process from terminating prematurely, the maximum number of iterations 

allowed is 2000. 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149971 0.310026 3.272392 -0.95808 0.331319 0.629047 6.47E-06 11.2

Standard Deviation 4.16E-05 3.54E-05 0.001631 0.002741 0.001068 0.000575 4.16E-06 4.25

Minimum 0.149787 0.31 3.270026 -0.96395 0.330019 0.627989 3.46E-07 7

25th Percentile 0.14995 0.310006 3.271077 -0.95997 0.330451 0.628552 3.39E-06 9

75th Percentile 0.149995 0.310045 3.273558 -0.956 0.331967 0.629565 9.72E-06 13

Maximum 0.15 0.310178 3.2764 -0.95122 0.334086 0.629782 1.94E-05 27

 ̅  ̅  ̅       ̅  ̅  ̅      
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Table 5.4 Calibration result when initial guess of  ̅ is set to be 0.18 

Subsequently, we change the initial guess of alpha to be 20% above its true value and the 

calibration result is displayed in Table 5.4. Similarly, the differences between the mean 

estimates and the actual values are relatively small for all the model parameters. Hence, 

when the initial guess of alpha is 20% apart from its true value, the calibration process 

can provide very accurate estimates of the model parameters. To extend our investigation, 

we include initial guesses of alpha which are further apart from its actual value. As 

presented in Table 5.5, a very similar result is obtained from the calibration process when 

the initial guess of  ̅ is 0. However, approximately 10% of the results show slightly more 

obvious deviations between the actual values and the estimates of   and   . To complete 

our investigation for alpha, we ran the calibration process with an initial guess of 1. In 

Table 5.6, all of the model parameters have obvious differences between their mean  

 

Table 5.5 Calibration result when initial guess of  ̅ is set to be 0 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.150029 0.309974 3.276249 -0.95683 0.332926 0.627963 7.46E-06 14.1

Standard Deviation 4.67E-05 4E-05 0.006561 0.006171 0.003359 0.002282 4.38E-06 5.82

Minimum 0.149981 0.309834 3.26568 -0.96439 0.328184 0.623736 1.12E-06 7

25th Percentile 0.150004 0.309967 3.271359 -0.9612 0.33047 0.626019 4.69E-06 10

75th Percentile 0.150035 0.31 3.281223 -0.95116 0.33566 0.629669 9.79E-06 16.5

Maximum 0.1502 0.310022 3.288037 -0.94313 0.340521 0.631423 1.92E-05 31

 ̅  ̅  ̅       ̅  ̅       ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149973 0.310025 3.282222 -0.94964 0.337004 0.625489 9.12E-06 16.4

Standard Deviation 4.31E-05 3.68E-05 0.011156 0.01170 0.006436 0.004002 5.51E-06 7.27

Minimum 0.149813 0.309998 3.263983 -0.96416 0.328453 0.617344 1.03E-06 7

25th Percentile 0.149973 0.310005 3.275638 -0.95915 0.332036 0.62261 4.82E-06 12

75th Percentile 0.149995 0.310024 3.288406 -0.93999 0.342357 0.628003 1.43E-05 18.75

Maximum 0.150002 0.310159 3.307216 -0.92214 0.349909 0.63165 2.08E-05 42

 ̅  ̅  ̅       ̅  ̅  ̅      
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Table 5.6 Calibration result when initial guess of  ̅ is set to be 1 

estimates and the true values. This outcome is influenced by a few estimation results that 

are unsuccessful in providing accurate estimates of the model parameters. Figure 5.8 

suggests that, out of the 30 sample paths, more than 25% of the optimized results failed to 

converge to the true value of alpha. The reason may be that the standard local optimizer  

 

Figure 5.8 Histogram of estimated values of alpha when initial guess is 1 

used here stops in the local minima at  ̅       and 0.30 instead of proceeding further to 

reach the global minimum. Furthermore, when the value of  ̅ is inaccurately estimated,   

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.18846 0.27164 3.22202 -0.94362 0.46194 0.75772 0.00122 60

Standard Deviation 0.066 0.06594 0.28864 0.04057 0.30827 0.15953 0.00295 64.75

Minimum 0.14997 0.15552 2.38643 -1 0.11467 0.54277 3.9E-06 18

25th Percentile 0.15001 0.25084 3.02692 -0.96708 0.26086 0.63076 0.00004 26.25

75th Percentile 0.21116 0.30999 3.4631 -0.91435 0.43529 0.9624 0.00157 51.75

Maximum 0.30454 0.31003 3.61279 -0.84955 1 1 0.0155 272

 ̅  ̅  ̅       ̅  ̅      
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the estimation for other parameters will also be affected, as described in Table 5.7: 

 ̅  ̅  ̅             

0.3031 0.1569 3.5777 -0.9941 1 1 0.0028 

0.2315 0.2312 3.0475 -0.8734 0.2977 1 0.0155 

 

Table 5.7 Calibration result when estimates of  ̅ deviates from its true value 

However, we can easily distinguish these results from those obtained under global 

minimum since the RSS values in Table 5.7 are significantly greater than those seen in 

Table 5.3. Therefore, looking at all the results obtained by changing the initial guesses of 

alpha, we discover that the calibration procedure is very robust in providing accurate 

estimates of the model parameters. A few exceptions apply when the initial guesses are 

set to deviate too far from the true value, which might cause the optimization algorithm to 

get stuck in local minima.   

 We continue our analysis and study the calibration results when the initial guesses 

of  ̅ are specified to differ from its true value. Table 5.8 and Table 5.9 respectively show 

the estimation results when the initial values of beta are assigned to be 20% smaller and 

20% larger than the actual value. These results reaffirm the ability of the calibration 

process to obtain very stable yet accurate parameter estimates when the initial guesses of  

 

Table 5.8 Calibration result when initial guess of  ̅ is set to be 0.248 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.150023 0.30998 3.274188 -0.96031 0.331261 0.62875 5.4E-06 11.83

Standard Deviation 3.26E-05 2.81E-05 0.002439 0.00591 0.002319 0.000979 3.52E-06 3.7

Minimum 0.149996 0.309854 3.270164 -0.97276 0.327857 0.626727 7.71E-07 8

25th Percentile 0.150003 0.309969 3.272129 -0.96513 0.32898 0.628081 2.74E-06 9

75th Percentile 0.150033 0.309997 3.276111 -0.95838 0.332307 0.629581 7.08E-06 13

Maximum 0.150171 0.310005 3.27798 -0.94152 0.337821 0.630245 1.81E-05 22

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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Table 5.9 Calibration result when initial guess of  ̅ is set to be 0.372 

 ̅ are set to deviate 20% from the true value. To test the calibration technique to a greater 

extent, we change the initial guess of beta to 0. The result obtained under this setting is 

presented in Table 5.10. We observe some small differences between the mean estimates 

of the parameters and their actual values. This is mainly affected by 2 estimation results 

that eventually get stuck in local minima without proceeding to find the true parameter 

values at the global minimum. In fact, the estimation results for these 2 cases are identical 

to the parameter estimates which we have presented in the first row of Table 5.7. Next,  

 

Table 5.10 Calibration result when initial guess of  ̅ is set to be 0 

we assigned the initial guess of  ̅ to 1 and Table 5.11 summarizes the calibration results. 

The calibration process is able to provide very stable and accurate estimates of  ̅ and  ̅, 

with negligible differences between the mean estimates and their true values. On the 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149976 0.310021 3.274844 -0.95933 0.331754 0.628335 6.0E-06 13.57

Standard Deviation 4.09E-05 3.49E-05 0.006375 0.00452 0.002563 0.002066 4.05E-06 5.71

Minimum 0.149815 0.31 3.267043 -0.97290 0.328371 0.623243 9.34E-07 8

25th Percentile 0.149979 0.310003 3.269538 -0.96214 0.329652 0.627286 3.56E-06 10.25

75th Percentile 0.149997 0.310021 3.278025 -0.95733 0.333246 0.630046 7.54E-06 15

Maximum 0.15 0.310157 3.290853 -0.94943 0.337394 0.631042 1.91E-05 39

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.160312 0.299689 3.331837 -0.93284 0.398685 0.638618 0.000247 24.83

Standard Deviation 0.039148 0.039154 0.084448 0.02695 0.165574 0.100563 0.000837 16.83

Minimum 0.149997 0.155492 3.228619 -0.99998 0.318886 0.543694 4.93E-06 12

25th Percentile 0.150003 0.309961 3.264625 -0.94504 0.33378 0.599493 1.2E-05 15

75th Percentile 0.150042 0.309997 3.359234 -0.91365 0.377499 0.634218 4.0E-05 26

Maximum 0.304564 0.310004 3.555267 -0.87978 1 1 0.003389 88

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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other hand, we observe that the mean estimates for the remaining four parameters are 

slightly deviated from their actual values. Despite that, we find the calibration technique  

 

Table 5.11 Calibration result when initial guess of  ̅ is set to be 1 

to be capable of giving relatively good estimates of the model parameters when the initial 

guesses of  ̅ deviate from its true value. 

 We proceed to examine the robustness of the calibration process when the initial 

guesses of  ̅ deviate from its actual value. Table 5.12 contains the calibration result 

obtained by setting the initial guess of  ̅ to be 20% less than its true value. We discover 

the estimations of  ̅ and  ̅ remain at the correct values while the calibrated values of  ̅,  , 

   and    are significantly changed from their true values. On average, there is a 10-

percent difference between the estimated value of  ̅ and its correct value. Moreover, 

 

Table 5.12 Calibration result when initial guess of  ̅ is set to be 2.616 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149969 0.310028 3.305852 -0.91534 0.356856 0.615028 2.83E-05 21.33

Standard Deviation 4.72E-05 4.02E-05 0.069149 0.04416 0.034082 0.025115 2.41E-05 8.71

Minimum 0.149811 0.309997 3.21657 -0.98195 0.320703 0.555497 6.0E-06 11

25th Percentile 0.149963 0.310003 3.252355 -0.95177 0.330532 0.601738 1.21E-05 15

75th Percentile 0.149997 0.310034 3.33836 -0.89258 0.372899 0.634724 3.82E-05 24.75

Maximum 0.150004 0.31016 3.460895 -0.81731 0.441023 0.645373 9.22E-05 49

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149979 0.310019 2.941667 -0.79983 0.277421 0.718631 0.000108 13.87

Standard Deviation 4.0E-05 3.47E-05 0.021615 0.01414 0.003636 0.005336 7.08E-06 5.94

Minimum 0.149804 0.30999 2.907939 -0.81534 0.270247 0.708177 9.46E-05 7

25th Percentile 0.149982 0.310002 2.920478 -0.80913 0.274712 0.715732 0.0001 10

75th Percentile 0.149998 0.310015 2.953854 -0.79075 0.278918 0.723452 0.000115 15.75

Maximum 0.15001 0.310166 2.982169 -0.7683 0.285861 0.727063 0.000119 33

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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we note that when estimation of  ̅ fails to converge to the correct value, it is very likely 

for us to also get inaccurate calibrated values for parameters  ,    and   . This 

observation might suggest the presence of interactions among the four parameters. When 

 

Table 5.13 Calibration result when initial guess of  ̅ is set to be 3.924 

the initial guess of  ̅ is set to be 20% above its true value, the calibration result with a 

similar pattern is discovered in Table 5.13, whereby the optimization process fails to 

recover the original parameter values for  ̅,  ,    and   . To test whether initial guesses 

which are closer to the actual value can improve the calibration result, Table 5.14 and 

Table 5.15 respectively summarize the estimation results obtained by setting the initial 

guesses of  ̅ as 10% smaller and 10% larger than its true value. Even though differences 

between the estimated values and the actual values of  ̅,  ,    and    have become  

 

Table 5.14 Calibration result when initial guess of  ̅ is set to be 2.943 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.15001 0.309989 3.524731 -0.98590 0.414038 0.541219 0.00011 22.83

Standard Deviation 3.56E-05 4.62E-05 0.017252 0.01446 0.006385 0.006535 4.82E-05 36.47

Minimum 0.149973 0.309754 3.480792 -1 0.401687 0.523255 8.61E-05 9

25th Percentile 0.149997 0.309992 3.514185 -0.99725 0.410253 0.539271 9.86E-05 12

75th Percentile 0.15001 0.310004 3.530905 -0.97140 0.415734 0.544296 0.000103 16

Maximum 0.150183 0.310027 3.56764 -0.95638 0.432818 0.556242 0.000363 200

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149989 0.310011 3.116857 -0.88814 0.303358 0.673216 5.2E-05 12.17

Standard Deviation 5.06E-05 4.35E-05 0.010106 0.01188 0.001601 0.002504 2.52E-06 4.04

Minimum 0.149917 0.3098 3.089511 -0.92728 0.299909 0.668195 4.84E-05 7

25th Percentile 0.149976 0.310005 3.113734 -0.88712 0.302247 0.671539 5.0E-05 10

75th Percentile 0.149995 0.310024 3.12228 -0.88439 0.304324 0.67411 5.25E-05 14.75

Maximum 0.150235 0.310071 3.142058 -0.86392 0.305975 0.680161 6.0E-05 27

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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Table 5.15 Calibration result when initial guess of  ̅ is set to be 3.597 

smaller, the calibration process still fails to converge to the correct values for these 

parameters. These results suggest that the optimization process is likely trapped inside a 

flat region around the global minimum. Therefore, it is not surprising for us to observe 

from Table 5.16 that the estimates for these four parameters are largely deviated from 

their true values when the initial guess of  ̅ is chosen to be 2. We conclude that the  

 

Table 5.16 Calibration result when initial guess of  ̅ is set to be 2 

calibration technique is unsuccessful in providing the correct parameter estimates for  ̅, 

 ,    and    even when the initial guesses of  ̅ are set in close proximity to the actual 

value. Moreover, the presence of interactions among these four parameters might be the 

reason why the estimates of  ,    and    are also inaccurate when the initial guess of  ̅ 

deviates from its correct value.  

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.15001 0.309992 3.41589 -0.9766 0.37471 0.581841 5.64E-05 11.33

Standard Deviation 2.55E-05 2.18E-05 0.010891 0.00903 0.005602 0.004132 5.0E-06 4.54

Minimum 0.149964 0.309906 3.396909 -0.99207 0.363076 0.573205 4.68E-05 5

25th Percentile 0.15 0.30999 3.408786 -0.9874 0.37028 0.579383 5.19E-05 9

75th Percentile 0.150011 0.31 3.422479 -0.97025 0.378571 0.585152 5.93E-05 12.75

Maximum 0.150113 0.310035 3.441694 -0.96612 0.383157 0.589465 6.61E-05 28

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149989 0.310009 2.677859 -0.64862 0.246402 0.780784 0.000191 14.2

Standard Deviation 1.56E-05 1.42E-05 0.050059 0.01865 0.012516 0.011835 1.69E-05 3.96

Minimum 0.149939 0.309996 2.588086 -0.67292 0.218425 0.76255 0.000166 9

25th Percentile 0.149987 0.309999 2.639859 -0.66451 0.240441 0.7685 0.000173 11.25

75th Percentile 0.150001 0.310012 2.730858 -0.63493 0.257152 0.78942 0.00020 15

Maximum 0.150003 0.31005 2.753491 -0.61175 0.264191 0.802253 0.000222 26

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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As we can see from Table 5.17, the calibration process is once again having 

difficulty estimating the correct parameter values of  ̅,  ,    and   , when the initial 

guess of   is set to be 20% larger than its true value. In this case, the calibrated values of 

  are hugely deviated from its actual value, with an average estimation error of 17%. 

Moreover, the results in Table 5.17 also reaffirm our hypothesis that interactions might 

exist among these four parameters. In hopes of improving the accuracy of the calibration 

result, we assign the initial guess of   to have a 10% deviation from the true value.  

 

Table 5.17 Calibration result when initial guess of   is set to be -0.768 

 

Table 5.18 Calibration result when initial guess of   is set to be -0.864 

However, Table 5.18 demonstrates that this initial input still does not facilitate the 

optimization process to recover all the correct parameter values. In fact, none of the 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149996 0.310003 3.193902 -0.78989 0.359218 0.645244 1.36E-05 8.97

Standard Deviation 2.74E-05 2.5E-05 0.006839 0.00668 0.004634 0.002577 3.0E-06 2.58

Minimum 0.149918 0.309953 3.181236 -0.8025 0.350495 0.638294 7.9E-06 5

25th Percentile 0.149979 0.309987 3.189671 -0.79531 0.355847 0.643669 1.15E-05 7.25

75th Percentile 0.150014 0.310018 3.197984 -0.78631 0.361875 0.64693 1.5E-05 10.75

Maximum 0.150051 0.310071 3.212065 -0.77256 0.371756 0.650025 1.92E-05 15

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149985 0.310012 3.233207 -0.87176 0.344748 0.637323 9.0E-06 9.2

Standard Deviation 5.36E-05 4.63E-05 0.006222 0.00411 0.003352 0.002221 4.1E-06 4.24

Minimum 0.149802 0.309932 3.220414 -0.87946 0.338118 0.632293 3.22E-06 4

25th Percentile 0.149979 0.309991 3.229481 -0.87495 0.342286 0.63649 5.85E-06 6

75th Percentile 0.150008 0.310019 3.235249 -0.87049 0.345782 0.638904 1.05E-05 11

Maximum 0.150077 0.310168 3.247476 -0.86245 0.352491 0.641759 2.09E-05 21

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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calibration results given in Table 5.19 can precisely estimate the parameter value of  , 

even when the initial guess is set to -1 which is pretty close to the true value. By 

 

Table 5.19 Calibration result when initial guess of   is set to be -1 

comparing the RSS values in Table 5.19 with those in Table 5.17, we may infer that the 

differences between these values are quite insignificant. Hence, it is very likely that the 

optimization algorithm is again trapped inside a wide and flat valley, without being able 

to move forward to reach the global minimum. 

 We perform similar analyses for parameter    and calibration results that 

resemble our previous observations for   are obtained. As presented in Table 5.20 and 

Table 5.21, the calibration process fails to recover the correct parameter values of  ̅,  , 

   and   , when the initial guesses of    are respectively set to deviate by 20% and 10%   

 

Table 5.20 Calibration result when initial guess of    is set to be 0.396 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.150007 0.309993 3.286527 -0.99082 0.3266 0.626145 5.14E-06 6.37

Standard Deviation 1.38E-05 1.25E-05 0.000655 0.00132 0.000171 0.000126 1.56E-06 2.16

Minimum 0.149978 0.30997 3.284555 -0.99218 0.326482 0.625862 3.35E-06 4

25th Percentile 0.15 0.309986 3.286604 -0.99141 0.326508 0.626082 3.75E-06 5

75th Percentile 0.150014 0.31 3.286845 -0.99121 0.326558 0.62618 6.32E-06 7.75

Maximum 0.150035 0.31002 3.287661 -0.98696 0.327046 0.62648 8.8E-06 11

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.150011 0.309991 3.35921 -0.91187 0.37501 0.597913 4.06E-05 10.03

Standard Deviation 2.52E-05 2.26E-05 0.001492 0.00284 0.000621 0.000359 6.08E-07 2.58

Minimum 0.149959 0.309927 3.356571 -0.91877 0.373722 0.597125 4.0E-05 4

25th Percentile 0.15 0.309981 3.358654 -0.91315 0.374649 0.597753 4.0E-05 9

75th Percentile 0.15002 0.310001 3.360337 -0.91135 0.375436 0.598174 4.1E-05 11.75

Maximum 0.150087 0.310043 3.361969 -0.905 0.376592 0.598475 4.23E-05 16

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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Table 5.21 Calibration result when initial guess of    is set to be 0.363 

from the true value. Lastly, we proceed to examine how different selections of initial 

guesses for    can affect the calibration results. Table 5.22 summarizes the estimation 

result obtained by setting the initial guess to deviate by 20% from its true value. In this 

case, the calibration process still has not managed to provide accurate estimates for  ̅,  ,  

 

Table 5.22 Calibration result when initial guess of    is set to be 0.504 

 

Table 5.23 Calibration result when initial guess of    is set to be 0 

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.150012 0.30999 3.315731 -0.93452 0.352595 0.613976 2.1E-05 9.27

Standard Deviation 3.39E-05 3E-05 0.000939 0.0018 0.000293 0.000168 1.18E-06 2.89

Minimum 0.149942 0.309877 3.313331 -0.93707 0.35225 0.613636 2.0E-05 5

25th Percentile 0.15 0.309979 3.315605 -0.93537 0.352431 0.613899 2.0E-05 7

75th Percentile 0.150022 0.31 3.316251 -0.93486 0.352663 0.614033 2.14E-05 11

Maximum 0.150143 0.310055 3.317177 -0.9293 0.353627 0.614332 2.55E-05 18

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149969 0.310028 3.321645 -0.96193 0.346301 0.61329 2.13E-05 14.4

Standard Deviation 4.38E-05 3.73E-05 0.008983 0.00301 0.003558 0.003054 4.19E-06 5.79

Minimum 0.149822 0.310001 3.300247 -0.96823 0.337376 0.609369 1.15E-05 8

25th Percentile 0.149956 0.310006 3.320001 -0.96283 0.345702 0.611362 1.94E-05 10.25

75th Percentile 0.149995 0.31004 3.327569 -0.95958 0.348332 0.613929 2.34E-05 17

Maximum 0.15 0.310151 3.333525 -0.95691 0.350145 0.620679 2.74E-05 33

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.149921 0.310074 3.832744 -0.99527 0.601644 0.362151 0.000281 22.93

Standard Deviation 0.000138 0.000127 0.02641 0.01103 0.030264 0.027503 2.41E-05 7.23

Minimum 0.149526 0.309999 3.790345 -1 0.555629 0.311338 0.000242 8

25th Percentile 0.149946 0.310011 3.809432 -0.99999 0.573566 0.342458 0.00026 18

75th Percentile 0.149991 0.310053 3.854081 -0.99729 0.62299 0.385606 0.0003 25

Maximum 0.150002 0.310459 3.874108 -0.95573 0.658384 0.403054 0.000324 43

 ̅  ̅  ̅       ̅  ̅  ̅       ̅  ̅  ̅      
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  , and   , even though the estimation errors between the calibrated values and the actual 

values have become significantly smaller. To magnify the problem, we can set the initial 

guess of    to 0. From Table 5.23, we observe that the estimates for these four 

parameters are widely deviated from their actual values. We suspect that this outcome is 

mainly caused by our standard optimization method which tends to find a local minimum 

in the flat region and terminates before reaching the global minimum. Overall, we 

conclude that the calibration procedure is capable of providing very stable and accurate 

estimates of  ̅ and  ̅. On the other hand, the method has a lot of difficulty in estimating 

the correct parameter values of  ̅,  ,   , and   , when their initial guesses are deviated 

from their respective true values. With the presence of interactions among these 

parameters, the ability to accurately estimate one of the parameters will also greatly 

depend on the initial guesses of the other parameters.  

 Realistically, we will never know the true parameter values which best describe 

an empirical dataset before performing a calibration procedure. Therefore, it is difficult to 

determine the appropriate values to use as initial guesses for the optimization process and 

whether these values can lead to convergence to the true parameter values. Moreover, we 

should not rely solely on a single calibration result obtained with a particular set of initial 

guesses since the optimization results might be very sensitive to the selections of initial 

guesses. To imitate better the problems we might face in reality, we make a few 

modifications to our previous investigations. For each model parameter, we specify a 

reasonable range of values in which the true parameter value is likely to fall. By using 

uniformly distributed random numbers, we arbitrarily select initial guesses for all the 

parameters from their respective ranges. Then, the calibration procedure is performed 
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multiple times on the same simulated path by applying distinctive sets of initial guesses. 

Since we only have one empirical price process in real life, this analysis will help us to 

gain an insight into how calibration results attained from the same data series can be 

affected by various selections of initial guesses. Table 5.24 summarizes the estimation 

results obtained after applying the calibration method with 200 different sets of randomly  

 

Table 5.24 Calibration results obtained from a simulated path after performing 

optimization with 200 distinctive sets of random initial guesses 

selected initial guesses. As we can see, all the mean estimates for the model parameters 

are significantly biased from their respective true values. Moreover, we note that there 

are two instances whereby the optimization process fails to converge to a solution after 

2000 iterations. To have a better picture of the estimation results, we plotted histograms 

of the calibrated values for each risk-neutral parameter in Figure 5.9. We observe that the 

calibration process only produces two possible outcomes for the estimations of  ̅ and  ̅, 

which is either   ̅            ̅        or   ̅            ̅       . Out of the two 

possible results, there is an 18% chance that the latter combination of parameter estimates, 

which widely deviate from the true values, could be provided by the optimization process. 

As mentioned before, this outcome is obtained from the local minima since the 

optimization method fails to reach the global minimum, when selections of initial guesses  

RSS Iterations

True Value 0.15 0.31 3.27 -0.96 0.33 0.63

Mean 0.17897 0.28112 3.32226 -0.52874 0.70739 0.59982 0.001 79.54

Standard Deviation 0.06097 0.06077 0.32529 0.31061 0.22188 0.24874 0.00169 249.07

Minimum 0.14999 0.15366 2.45818 -1 0.23499 0.07115 1.1E-06 8

25th Percentile 0.15 0.31 3.09912 -0.79163 0.51819 0.44321 0.0001 15

75th Percentile 0.15 0.31 3.50773 -0.27013 0.92436 0.74375 0.00045 29

Maximum 0.30682 0.31001 3.81882 0.09377 1 1 0.00802 2000

 ̅  ̅  ̅      
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Figure 5.9 Histograms of estimated parameter values when calibration is performed on a 

simulated path with 200 distinctive sets of random initial guesses. Blue-colored bars 

correspond to the correct estimates of  ̅  and  ̅ , while red-colored bars correspond to 

incorrect estimates of  ̅ and  ̅.  



77 
 

are far from the true values. However, we can easily distinguish the accurate parameter 

estimates from the local optimums because the SSE values given by the latter are 

significantly greater than those obtained at global minimum. Another interesting 

phenomenon noticed is that the estimated values of  ̅ and  ̅ from one of the possible 

outcomes appear to be the reverse of the other, that is, the  ̅ of one outcome has the same 

value as the  ̅ of the other and vice versa. This implies the estimation of one parameter is 

strongly dependent on the estimation of the other and may suggest the presence of 

interaction between  ̅  and  ̅ . Proceeding to the estimation of  ̅ , we observe that the 

calibrated values lie within the interval of 2.45 and 3.8, with the highest frequency at 

 ̅     . Even though a lot of the calibration results of  ̅ cluster around the value of 3.5, 

these results can be misleading for someone to think that the highest frequency in the 

histogram is exactly where the true parameter value lies. Moreover, judging from the lack 

of significant differences between the SSE values calculated from various estimations of 

 ̅, we cannot easily identify which calibrated value is actually the best estimate for this 

parameter. Therefore, without knowing the true values of  ̅, we can only conclude that 

there is a high probability that the true value lies within the interval [2.45, 3.8], and all 

parameter values in this range are equally possible to become the best estimate of  ̅. 

Similar situations are observed for other parameters, namely  ,    and   , whereby the 

estimations of these parameters are provided by a range of possible values. 

One speculation to help explain this observation is that the gradient-based 

optimization algorithm might have difficulties in finding the global minimum when it is 

applied to calibrate the HJ Model, since this method has the tendencies of getting trapped 

inside the suboptimal regions. To verify our speculation, we look at how the value of the 
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objective function (5.6) changes when we simultaneously alter the values of two model 

parameters. Figure 5.10 presents a three-dimensional graph of SSE surface when we 

concurrently change the parameter values of   and   . As we can see, the global 

minimum, which is denoted by a blue dot in the graph, lies within a wide, flat valley 

where gradients of the objective function are nearly zero. A similar situation is seen in 

Figure 5.11 when we alter the parameter values of both    and   . Under these 

circumstances, the optimization method tends to find the flat region and terminates before 

reaching the global minimum. This helps to explain why the estimates of  ̅,  ,   , and    

can take multiple possible solutions, instead of a unique solution at the global minimum.  

 

Figure 5.10 SSE surface when parameter values of   and    are simultaneously altered 
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Figure 5.11 SSE surface when parameter values of    and    are simultaneously altered 

5.5 Model Uncertainty 

As mathematical models play an increasingly important role in the valuation of derivative 

products, many studies have stressed the importance of “model risk” or “model 

uncertainty” in understanding the risk associated with derivative instruments. According 

to Cont (2006), model uncertainty can lead to the mispricing of derivatives and it 

represents a major factor of risk as significant as the market risk. This type of risk is tied 

to ambiguity in the choice of the model, which can be caused by the uncertainty about 

either the model type (for example, local volatility versus jump diffusion model) or the 
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specification of model parameters. Furthermore, Cont recognized that any calibration 

problem, which has multiple solutions, can lead to model uncertainty in the valuation of 

derivatives. Based on the discussion in Section 5.1, we know that the evolutions of 

implied market prices of risk depend on the specifications of risk-neutral model 

parameters. However, we obtain many possible solutions for parameters  ̅,  ,   , and    

from the calibration process and this can cause the implied market prices of risk to have 

model uncertainty. Therefore, we are interested to examine how the choice of calibrated 

values can impact the evolutions of implied market prices of risk. To compare the 

evolutions of implied market prices of risk, two sets of calibrated values (Table 5.25), 

which have the same RSS values, are chosen to solve equations (4.17)-(4.22). The fsolve 

function in Matlab is used to solve these equations so that we can obtain the implied 

market prices of risk. From Figure 5.12, we observe that the implied market prices of risk, 

   and   , which are extracted with “Parameter Set 2” are significantly larger than those 

obtained with “Parameter Set 1”. Moreover, we also note that the processes of    for 

these two parameter sets will evolve differently over time. Hence, even with two sets of 

parameters that have the same RSS values, we will still face the problem of model 

uncertainty in extracting the implied market prices of risk.  

  ̅  ̅  ̅         RSS 

Set 1 0.15 0.31 3.1128 -0.5171 0.4515 0.649 0.000001 

Set 2 0.15 0.31 3.2705 -0.9641 0.329 0.63 0.000001 

Table 5.25 Parameter values used in extracting the implied market prices of risk 
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Figure 5.12 Market prices of risk,    and   , extracted from two different parameter sets 
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Chapter 6 

Application to Real Data 

In this chapter, we present the results of calibrating the HJ Model to actual historical data 

of NYMEX Light Sweet Crude Oil (CL) prices. To compare our calibration results with 

those obtained by Hikspoors and Jaimungal, the spot and futures data used in our study 

are from a similar time period, 01/10/2003 to 25/07/2006, as that used in their paper. For 

each trading day, thirteen monthly futures contracts, with maturities from 1 month to 13 

months, will be used to construct the futures curves in our analysis. The total amount of 

trading involving these 13 contracts represents the majority of the trading volumes in the 

CL market and hence these data should provide accurate price information. Figure 6.1 

illustrates the evolutions of spot prices together with the 7-month and 13-month futures 

prices for the given time period. 

 We start our analysis by calibrating for the risk-neutral model parameters. With 

the aim of achieving a better estimation result, we use the calibrated risk-neutral 

parameter values obtained by the authors as the initial guesses for our optimization 

process. Table 6.1 presents our calibration result along with the SSE value obtained when  



83 
 

  

Figure 6.1 Crude oil spot and futures prices for the period 01/10/2003 to 25/07/2006 

  ̅  ̅  ̅         SSE 

New 1.0037e-10 1.3322 4.0505 -0.9907 0.7459 0.1830 0.3584 

HJ’s 

values 

0.15 0.31 3.27 -0.96 0.33 0.63 0.6795 

Table 6.1 Comparison between the SSE values acquired from our estimation result 

(“New”) and that obtained with Hikspoors and Jaimungal’s (HJ’s) parameters 

the HJ Model with authors’ parameters is applied to our dataset. We can notice very 

obvious differences between our calibrated risk-neutral parameters and those provided by 

the authors. However, judging by the SSE values acquired from both sets of the 

parameters, we discover that our estimation actually provides a better fit to the dataset. 

We also notice from our calibration result that the estimated value of  ̅, which denotes 

the mean-reversion rate of the stochastic mean level   , is very close to zero. This might 
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suggest that the evolution of    can be better described by a Brownian motion. 

Subsequently, we perform several linear regressions, as mentioned earlier in Section 5.1, 

to estimate the real-world model parameters. Table 6.2 shows the estimation results 

obtained for the real-world model parameters, namely  ,   and  . 

Parameters       

Estimated Values 0.4263 1.1413 4.1854 

Table 6.2 Estimated values of the real-world parameters 

 Since the calibration of risk-neutral model parameters involves an optimization 

process, we are interested in examining how various selections of initial guesses can 

affect estimation results. To achieve this goal, we repeat the same procedure mentioned 

in the previous chapter, whereby we randomly select the initial guesses of all the 

parameters from their respective ranges of reasonable values. Table 6.3 summarizes the 

calibration results obtained after performing the optimization process with 200 sets of 

distinctive initial guesses. From this table, we notice that the estimates of  ̅,  ̅ and    are 

extremely stable with very low standard deviations among the parameter estimates 

obtained from various initial guesses. On the contrary, multiple possible solutions are  

 

Table 6.3 Calibration results obtained from actual CL data after performing optimization 

with 200 distinctive sets of random initial guesses 

SSE Iterations

Mean 2.3E-10 1.33221 3.82818 -0.65680 0.79859 0.18303 0.35844 44.09

Standard Deviation 3.8E-10 2.3E-05 0.36564 0.29330 0.04850 7.64E-05 3.06E-09 10.08

Minimum 1.0E-10 1.33209 3.34885 -1 0.74450 0.18293 0.35844 13

25th Percentile 1.0E-10 1.33220 3.42285 -0.88118 0.76227 0.18298 0.35844 38

75th Percentile 2.5E-10 1.33223 4.19381 -0.52592 0.81818 0.18306 0.35844 49.25

Maximum 4.8E-09 1.33224 4.34407 0.39166 0.98381 0.18339 0.35844 78

 ̅  ̅  ̅      
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attained for parameters  ̅ ,   and    from the optimization process. Furthermore, we 

cannot easily identify which calibrated values provide the best estimates since they have 

all yielded the same SSE values of 0.35844. We speculate that this phenomenon is again 

due to the fact that the optimization algorithm fails to converge to the global minimum, 

after getting trapped inside an extremely flat region that surrounds the global minimum. 

Figure 6.2 shows the histograms of all the solutions obtained for  ̅ ,   and   , after 

performing the calibration process with 200 sets of different random initial guesses.  

 

Figure 6.2 Histograms of estimated values for  ̅,   and    when calibration is performed 

on actual CL data with 200 sets of distinctive random initial guesses 
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 Since the calibration procedure has produced multiple possible solutions for the 

risk-neutral model parameters, it is natural to ask whether these results will lead to model 

uncertainty in the computation of implied market prices of risk. Figure 6.3 illustrates that 

the evolutions of implied market prices of risk can be significantly different when two 

distinctive sets of calibrated parameter values are used to extract the results. Hence, given 

that we have multiple solutions for the risk-neutral parameters, we will encounter model 

uncertainty in extracting the implied market prices of risk. 

  

Figure 6.3 Market prices of risk,    and   , for the CL market which are extracted from 

two different parameter sets 
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Chapter 7 

Conclusions 

In this paper, we discussed a two-factor mean-reverting stochastic model proposed by 

Hikspoors and Jaimungal for modelling the spot prices of commodities. Within this 

modeling framework, the authors successfully derived a closed-form solution for pricing 

futures contracts. Furthermore, they suggested a calibration method which can be used to 

simultaneously calibrate the risk-neutral and the real-world model parameters. By 

knowing the values of these parameters, one can proceed to extract the implied market 

prices of risk for a given commodity market. Given the usefulness of this model, we were 

motivated to examine the robustness of the calibration procedure to provide stable and 

accurate parameter estimates. Hence, we presented some of the observations and 

problems which we have encountered over the course of our investigation. 

 Based on our analysis, the calibration technique was capable of providing very 

stable and accurate estimates of  ̅ and  ̅, when their initial guesses were deviated from 

the true values. However, a few exceptions applied when the initial guesses were set to 

deviate too far from the true values, which caused the optimization algorithm to find 
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locally optimal solutions. Meanwhile, the calibration technique had a lot of difficulties in 

estimating the correct parameter values of  ̅,  ,   , and   , when their initial guesses 

differed from the actual values. Therefore, it is interesting to note that our results do not 

support previous findings that the drift parameters are generally more difficult to estimate 

than the diffusion parameters (see, Phillips and Yu (2005) and Tang and Chen (2009)). 

Moreover, we detected the presence of interactions among these four parameters since 

the estimation of one parameter would also depend on the initial guesses of other 

parameters.  

 When the calibration procedure was performed multiple times with different sets 

of randomly selected initial guesses, there was an 18% chance that the estimations of  ̅ 

and  ̅ failed to converge to the correct values. However, one could easily distinguish the 

accurate parameter estimates from the local optimums by simply comparing the SSE 

values obtained. On the other hand, multiple possible solutions were acquired for the 

estimations of  ̅,  ,   , and   . Since the SSE values attained for these estimations were 

relatively similar, we could hardly identify which calibrated values would provide the 

best parameter estimates. To analyze the cause of this problem, we considered the three-

dimensional graphs of SSE surface by simultaneously altered the values of any two 

parameters. We noticed that the global minimum was surrounded by a wide, flat region 

where gradients of the objective function were nearly zero. Under these circumstances, 

the optimization method had the tendency of finding multiple solutions from the flat 

region, without proceeding further to reach the global minimum. Moreover, we illustrated 

that multiple solutions attained for the risk-neutral parameters would lead to model 

uncertainty in extracting the implied market prices of risk.  
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 To compare our estimation results with those obtained by Hikspoors and 

Jaimungal, a dataset acquired from the same time period was used to perform the 

calibration procedure. We noticed that our calibrated risk-neutral parameters were 

significantly different from those provided by the authors. However, with a smaller SSE 

value obtained by our calibration result, we were confident that our estimation would 

actually provide a better fit to the dataset. Moreover, our estimation of  ̅ was pretty close 

to zero and this might suggest that the evolution of    could be better described by a 

Brownian motion. Hence, one would question the validity of those parameters provided 

by the authors and extra caution should be taken when these values were used in the 

valuation of a derivative. Finally, multiple possible solutions were provided for the 

estimations of  ̅,   and   , when the calibration procedure was performed many times 

with different sets of randomly selected initial guesses. Hence, one would expect the 

presence of model uncertainty in the calculation of implied market prices of risk. 

 Overall, we found the lack of robustness in the calibration method proposed by 

Hikspoors and Jaimungal. Given that the calibration process failed to accurately estimate 

the values of certain parameters, namely  ̅,   and   , additional steps should be taken to 

ensure the quality of the estimation results. Moreover, one should also be very careful 

with the presence of model uncertainty in the valuation of a derivative, when multiple 

solutions were given by the calibration method. Further work might involve the use of a 

global optimization method (for example, genetic algorithm) to eliminate the problems of 

finding locally optimal solutions by a standard local search method. In addition, a 

Kalman filter can be applied to calibrate the model parameters while simultaneously 

extracting the hidden long-run mean process   . 
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