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ABSTRACT

This research was to assess the potential of tomographic imaging in a variety of
geotechnical processes, with emphasis on matrix-based inversion algorithms.
While most prior research in tomography has been based on simulated data, this
research centers on case histories gathered under well-controlled, yet realistic
field conditions. The goal is to invert a velocity image which reflects the state or
evolution of a given soil parameter (e.g., stress, pore pressure, ion
concentration) using a set of picked travel times.

Among inversion methods, matrix inversion methods are versatile and robust.
However, efficient storage and computation are required. The sparsity of
matrices involved in tomographic problems enable us to employ efficient storage
and solvers.

In general, it is assumed that “picked travel times" correspond to paths of
shortest travel path (Fermat's principle). If the velocity contrast in the medium is
more than 15 to 20 percent, rays bend toward higher velocity regions. In this
case, entries in the coefticient matrix depend on a prior estimate of the velocity
field. Therefore, the relation between pixel velocities and travel times is non-
linear in general. This non-linear inversion problem can be solved by employing
iterative solutions with ray tracing.

Ray tracing methods can be categorized as: one-point methods, two-point
methods, and whole-field methods. The computational time demand for ray
tracing methods for each category is evaluated based on the number of
segmental travel time calculations. The computational efficiency of the ray
tracing methods is also compared for fundamental cases. Some evidence of the
accuracy needed in ray tracing to solve the inversion problem, within the context
of other errors in CE-tomography, are given.
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Prior experience with simulated data has shown that the quality of inversion is
unrealistically good when compared to inversions with real data. In part, this
reflects the compatibility of forward simulation algorithms with hypotheses made
in the inversion stage. A central goal of this thesis is to assess the potential of
inversion with real data. A database of case histories has been compiled for this
purpose. Part of this study is dedicated to the testing of pre-processing
strategies in each case history. It is shown that data pre-processing can be
employed to provide foresight about the medium, and help the selection of
proper constraints. Distribution and amount of information, presence of
accidental and systematic errors, degree of heterogeneity and anisotropy, and
analysis of shadows are analyzed for all case histories.

A tomographic program based on sparse matrix algorithms was encoded as part
of this study. The selected tomographic inversion methods are based on matrix
analyses. Data structures are used to take advantage of the sparsity of the
coefficient matrix and to avoid high memory and computational demand. Sine-
arc ray tracing and straight rays are two possibilities. The program is in
structured form to facilitate future additions and modifications.

Tomographic data are usually mixed-determined and ill-conditioned. Damped
Least squares (DLSQ) and regularization add information in the form of
constraints in order to decrease the ill-conditioning of the probiem. The optimum
damping or regularization coefficient gives the best solution. Optimal damping or
regularization coefficients should be determined in an inversion process. In this
study, several guidelines are proposed to determine optimal damping or
regularization coefficients.

Inverted images for all case histories in this study are given in Appendix F. The
results indicate the ability of the method to invert large size, ill-conditioned, and

noisy problems.
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CHAPTERI

INTRODUCTION

Tomography (tomo: to cut or slice-Greek) is the inversion of measurements of
multiple planes of a body. CE'-tomography is the inversion of boundary
measurements to determine the field of a physical parameter within a

geoenvironment.

Although tomography was introduced early in this century, its applications in the
geosciences and engineering only commenced in the early 1970's. Tomographic
methods are widely applied in nuclear medicine (Cormak, 1973; Scudder, 1978),
radio astronomy (Bracewell and Riddle, 1967), applied geophysics (Aki and
Richards, 1980; Dines and Lytle, 1979; Lytle and Dines, 1980; Dyer and
Wortington, 1988), earthquake seismology (Spencer and Gubbins, 1980), mining
engineering (Paul, 1993), and civil engineering (Santamarina, 1994; Henrique,
1990) among other applied fields.

Possible tomographic applications in geosciences and engineering include: the
detection of hazardous regions ahead of a mine face, assessing nuclear reactor
and waste storage sites, mapping resources at a mine to detect deposits that
pinch out but are suspected of reappearing elsewhere, determining the location
and volume of oil present in possible secondary oil recovery fields, detecting
fracture zones, assessing the field of stress, assessment of existing

infrastructure, etc.

1 CE stands for Civil Engineering



The purpose of this research was to assess the potential of tomographic imaging
in a variety of Civil Engineering processes with emphasis on matrix-based
inversion algorithms. While most prior civil engineering research in tomography
has been based on simulated data, this research centers on case histories
gathered under well-controlled, yet realistic field conditions.

1.1 Physical Issues

CE-tomographic imaging faces several difficulties related to its implementation in
the field and to the mathematical/computational nature of the problem
(Santamarina, 1994). A brief discussion follows, starting with physical

restrictions.

1.1.1 Penetration vs. Resolution

Computerized Axial (Aided) Tomography Scanning (CAT Scan) has
revolutionized medical X-ray imaging because of its ability to display the spatial
distribution of X-ray attenuation over cross-sections of the body (Hounsfield,
1973). Tomographic reconstruction methods are applicable to imaging situations
where the line integral of a parameter, such as X-ray attenuation or time delay,
is available as the data is collected (Mersereau and Oppenheim, 1974; Scudder,
1978).

CE-tomography often requires sampling over large distances compared to
medical applications. Therefore, low frequencies must be used to obtain
adequate signal-to-noise levels over practical distances. This long wavelength



restriction limits the resolution of CE-tomographic images (resolution is in the
same order of magnitude as wavelength 1).

1.1.2 Scanning and Geometry

Medical scans are reconstructed with a fixed data collection geometry.
Conversely, CE-tomographic problems generally require a "new" scanning
capability for each application. In a typical tomographic problem in the field,
transducers are placed in boreholes (Figure 1-1), which may deviate from a
straight line. Furthermore, the scanning geometry is quite restricted and the
object can only be illuminated in a few preferential directions.

1.1.3 Testing Difficuities

This set of problems includes: source restrictions (directivity of different
propagation modes, amplitude, repeatability), triggering errors (difficulties in
stacking), noise (ambient, mechanical, electromagnetic, filtering and phase
shift), source and receiver coupling to object, detection of true first arrivals, and
accessibility to different faces of the object. The latter will reflect on the uneven
distribution of information content, which is discussed later.

1.1.4 Wave Propagation Effects

Heterogeneity. Heterogeneity modifies spherical wave fronts, elongating them in
the direction of higher velocity. When rays are drawn normal to wave fronts, ray
bending is observed.



Anisotropy. Wave propagation in anisotropic media is complex: energy in shear
waves splits, the ray direction is given by the direction of energy transport, the
ray is not perpendicular to the wave front ("quasi* P or S waves), and the ray
direction does not necessarily remain in the plane (Auld, 1973). Anisotropy
alone does not lead to curved ray paths; however, anisotropy couples with
vertical heterogeneity to deviate rays from the simplest straight-path condition.

Reflection and Refraction. At the interface between two materials with different
impedance I=p.v (p: material density; v: velocity), part of the energy is
transmitted and part of the energy is reflected. Furthermore, mode conversion
takes place: incident P-waves are reflected and refracted as P and S-waves, and
the same occurs with the S-wave component normal to the interface.
Generalized Snell's laws characterize the effect of interfaces.

1.2 Mathematical Issues

Data for seismic CE-tomographic imaging are line integrals of a physical
parameter, along a specific path through the medium. For example, the travel
time accumulated along a ray path between a source and a receiver can be
expressed as the integral of slowness, and amplitude is the integral of
attenuation. All examples given in this document use travel time observations
that are imaged to determine a velocity distribution, but the method is completely
general; any observation that can be defined as a line integral through the
medium can be substituted throughout.

When seismic pulses are emitted in one well and detected in another well, the
first arrival time of a ray Jj is the integral of ds/V(x,z) from source to receiver,
where ds is a differential length along the path and V(x,z) is the seismic velocity
field between the wells. There are two interrelated problems:



(1) The forward problem is the computation of first arrival times corresponding to
a given velocity distribution. The forward problem presents no theoretical
difficulty, yet there are computational restrictions and experimental difficulties
(e.g. detection of first arrivals). One determination is made for each source-
receiver pair. The problem is often treated in the two-dimensional case, i.e.,
seismic rays traveling within the plane of the wellis.

(2) The Inverse problem is the determination of the field of seismic velocities
from measured first arrival times. ll-conditioning' and non-uniqueness of the
solution are the major difficulties in the inverse problem. The problem is either
under-determined, over-determined, or mixed-determined with no exact solution.

1.3 Organization of the Thesis

The goal of this research was to compute the tomographic inversion of travel

time data in reference to civil engineering problems.

Chapter 2 presents a review of tomographic inversion methods. It includes
matrix inversion methods, iterative methods, transform methods, and other
methods (fuzzy logic, probability-based, and parameteric characterization of the

unknown space).

Chapter 3 summarizes ray theory and ray tracing methods. This chapter starts
with a description of ray theory and with the derivation of the Eikonal equation.
Ray tracing methods are discussed (one-point methods, two-point methods, and
whole field methods). A detailed description of each method is followed by a
summary of advantages and short-comings.

! A problem is ill-conditioned, if the solution is sensitive to small changes in the data.



Chapter 4 describes tomographic software developments and design decision.
Computational issues in inversion methods and a discussion of matrix inversion
limitations are given to highlight the reasons for selecting matrix inversion
methods. Implementation of ray bending, a comparative analysis of
computational efficiency, and issues in non-linearity are discussed. Then, a
detailed description of the development and current structure of the tomographic
software running on sparse matrix methods is presented.

Chapter 5 describes a database of well documented case histories that was

compiled for this study.

Chapter 6 centers on the development of data pre-processing strategies to
identify possible errors and trends present in each data set. All case histories
are inspected with the selected data pre-processing procedures.

Chapter 7 centers on the tomographic inversion of the case histories. Strategies
for identifying regularization and damping coefficients for optimal solutions are
investigated. A method based on statistical parameter estimation (maximum
likelihood) is proposed and examined for selected case histories.

Chapter 8 presents a summary of main observations and salient conclusions of

this research.
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Figure 1-1: Definition of notation. The unknown region between source and

receiver boreholes is divided into pixels.



CHAPTERI

INVERSION

2.1 The CE-Tomographic Problem

The following linear model is considered for the relationship between two
vectorial quantities x and b in the classical tomographic problem:

L.x=b (2-1)

In velocity inversion, L is the matrix of segment lengths, x is the vector of
slownesses, and b is the vector of measured travel times. The non-negative
matrix L is adequately estimated by the forward ray tracing problem. However,
the vector of travel times may include considerable systematic and accidental
measurement errors (t=b+&). Then, the problem is to determine a vector s from

the set of equations

L.s=t (2-2)

Methods that have been used to solve the inverse tomographic problem can be

categorized as:

. Matrix inversion methods
. Iterative methods

. Transform methods



° Other methods.

A brief discussion of these approaches follows.

2.2 Matrix Inversion Methods

A linear system in matrix form (Equation 2-2) can be solved by matrix inversion
methods. These methods are briefly formulated in Table 2-1 (Santamarina,
1994).

2.2.1 Least Squares Method

Usually, the set of Equations 2-2 is sparse, mixed-determined, and inconsistent.

This set of equations has no exact solution. Hence, a least squares solution s

can be selected such that
HLs-til (2-3)

is minimal, where ILll denotes the Euclidean norm. The vector s is the least
squares solution of Equation 2-2 if, and only if, (Ls-t) L R(L), where R(L) denotes
the range of matrix L, i.e. the set of all vectors Ls. Rewriting (Ls-t) L R(L) as LT
(Ls-t)=0, s is a least squares solution of (2-3) if and only if

L"Ls=L"t (2-4a)
hence,

s=(LTL)'L"t (2-4b)



Problem definition:

Table 2-1: Matrix inversion methods (Santamarina, 1994).

e Given: a space discretized in m-pixels, n-integral measurements obtained at
boundaries t[n,1], and the matrix L[n,m] that characterizes how measurements
scanned the space. The rank of L is r<min(m,n).

¢ Then: determine the distribution of the field parameter s[m,1], such that Ls=t

Goal - Case Objective Function inversion Equation
Even-determined: r=m=n | L-s=t s=L"1-t
Over-determined: n>m=r | min{E} where

least square solution

E=(t-L-sg) (t-L-sg)

S =(LT-L)'LT-¢

Under-determined: r<n<m
minimum distance
solution

min{D} such that L-s-t=0
where D=(s-s,)T(s-s,) and s, is an
initial estimate of s

S =LT(L-LT)-t  or,

Sex = So + LT (L-LT)! -(t—Ls,)

Mixed-determined:
damped least squares

min{E +7n-D}
where 1 is a constant

Se =(LT-L+02D)'LT -t

Mixed-determined:
singular vaiue
decomposition

L=U-Q-VT whereU;is
eigenvector i of LLT, V;is
eigenvector i of LTL and the
diagonal of Q are the square root
of eigenvalues i (other entries=0)

Seat =V-Q71-UT -t

Noise in the data:

min{E+A-[R-o*}

e =(LTL+ARTR)' LTt

regularization where A is a constantand R is a
regularization matrix
Note: Prediction error E=(t—L-s )T (t—L-s_)
Solution length D=sTs
All solutions are of the form  s,=M.t
Forward simulation tored=L-Sest
Replacing tred=b-Mingas and  Sp=M.L.Spaq)
Data resolution matrix =L.M ideal  P=Identity
Model resolution matrix Ps=M.L ideal P =ldentity

Comments:

The matrix L is called the data kernel
if rem and E=0 the problem is "purely underdetermined”
The narrower the band of P and Py, the better the prediction
All equations can be generalized for initial guess s, (see
underdetermined case)

10




2.2.2 Minimum Norm Method

If the rank(L) is less than the number of unknowns, then there are an infinite
number of vectors s that satisfy Equation 2-2. There is a unique vector in this set
of solutions whose norm (s-s;)7(s-s,) is minimal and satisfies:

Lst=0 (2-5)
The solution is:

s =LT(L.LT)t (2-6a)
or

s = s +LT(L.LT)"(t-Ls,) (2-6b)

where s, is an initial estimate of s. This is referred to as the minimum norm

solution of Equation 2-2.

2.2.3 Damped Least Squares Method

An alternative solution may be to seek a balance between minimum norm and
least squares error solutions by solving the following system of equations

[f<lo] an

This solution is known as the damped least squares solution, and may be

expressed as
s=[LL+n] LTt (2-8)
where n is a constant to be optimized. The damped least squares algorithm

stabilizes the solution in cases where data contain noise.

11



2.2.4 Regularization and Data Errors

The measured vector of travel times t can be assumed to be equal to b+¢, where
b is the set of travel times, and g, is a vector of errors whose components
average zero and have equal variance 2. Then, the least squares solution s of
Equation 2-2 is the best estimate of the vector x in Equation 2-1, with minimum
variance (The Gauss-Markov theorem, Silvey 1970). However, the variance can
be very large for the least squares solution. In fact, the variance matrix P(AsAsT)
in the full rank case equals

PI(LTL)'LTeg,TL(LTL) 'J=0?(LTL)", (2-9)

where P denotes the probabilistic expectation, and As denotes the error vector.

From Equation 2-9 we have
Pllasf?] = 0?tracefL"L] " = “’22;,12" (2-10)
i i

Therefore, small singular values can generate large errors in the solution s
(Sluis and Vorst, 1987). An efficient way to avoid this effect is regularization. It
consists of adding information in the form of constraints in order to decrease the
ill-conditioning of the problem. The goal is to find a kernel that captures some
aspects of physics that can constrain the problem.

The implementation of regularization resembles the damped least squares
method, where the identity matrix | is replaced by a smoothing matrix R to avoid
the fluctuation behavior of the solution due to the presence of data errors. In this
case, Equation 2-8 becomes

s=[L"L+ARR[ LTt (2-11)

12



The matrix R can be formed by calculating the second spatial derivative of the
image (Laplacian of s in two dimensions: the product of R.s reflects the spatiai
variation of the image). The matrix R can also include filtering kernels, either to
smooth images, to enhance contrast, or to highlight edges in preferential
directions. Figure 2-1 shows some sample kernels. These kemels are moving
windows placed on the original image to create the new filtered image.
Mathematically speaking, regularization is a convolution of the inverted image
with a kernel (Santamarina, 1994). Physically, these kermnels tend to decrease
the degree of fluctuation in pixel values by chopping-off the high frequencies.
For instance, the first kernel which applies general smoothing tends to evaluate
the value of a pixel by averaging the values of that pixel and its eight neighbors.
The highest weighting is given to the main pixel at the center of the window. The
advantage of this smoothing is to avoid sudden changes in the image. However,

it blurs the sharp edges of an image.

In cases where edge detection of interest, other kermels should be used. Another
alternative for detecting edges is using the Walish transform (Golubov, et. al.,
1991). Unlike the Fourier series which is a decomposition of functions into
sinusoidal waves, the Walsh functions are rectangular waves. Therefore, the
Walsh functions try to detect the edges rather than smoothing the peripheries of

an image.

2.2.5 Singular Value Decompaosition (SVD)

Any nxm matrix L can be written as an orthogonal nxn matrix U, an orthogonal

mxm matrix V, and a nxm diagonal matrix Q with diagonal elements @, > a, 2 @,
2 @, 20 such that

L=UQVT (2-12)

13



This is the singular value decomposition of matrix L (Michelena, 1993). The
entries ay are the singular values of L, and the columns of U and V are the left
and the right singular vectors of L, respectively. The columns of the matrix U are
the eigenvectors of LLT and the corresponding eigenvalues are w?. Similarly, @2
are eigenvalues for LTL and its eigenvectors are the columns in matrix V.

A geometrical interpretation of this method relates the linear mapping between
orthonormal bases in source and image spaces (given the right and left singular
vectors, respectively), where the mapping is represented by the diagonal matrix
(Sluis and Vorst, 1987). Singular value decomposition facilitates the
characterization of the level of information in the system and the “conditioning”
of the problem. In addition, diagonal matrices are computationally efficient.

2.3 Iterative Methods

Data storage and computation time requirements in CE-tomography stimulate
the implementation of iterative methods. The best kniown algorithms in this group
are (Gordon, 1974): Algebraic Reconstruction Technique (ART), and
Simultaneous lterative Reconstruction Technique (SIRT).

The following procedure describes the ART algorithm:

For ray #

1- Trace ray,

2- Calculate the lengths of ray segments in each pixel traced by ray /i from
source to receiver,

3- Compute the residual for the ray: (measured minus calculated time),

4- Adjust the siowness of each touched pixel to cancel the time residual,

14
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in which sgn( ) is the sign function and s3 denotes slowness of the ith pixel in
the qth iteration. The choice of w=2 (minimal energy corrections) leads to
Kaczmarz's method which is a typical least squares solution of this equation.

p=1/(w-1) (2-13)

5- Repeat steps 1 to 4 for each ray until the total time residual for each ray
becomes less than a previously defined acceptable value.

This method converges to a solution if the problem is even-determined (number
of independent equations and unknowns is equal). Errors in the data or in the
tracing model may cause fluctuation in pixel values in the vicinity of the optimal

solution.

The SIRT method is an averaging form of ART, designed to improve
convergence. Corrections for all rays are computed prior to updating the
approximation for s. SIRT converges slower than ART, but has advantages with
regard to stability (McMechan, 1987).

The procedure to solve the inversion problem by SIRT follows:

1- Trace ray,

2- Calculate the lengths of the ray segments in each of the pixels that the ray
passes through, from source to receiver,

3- Compute the time residual for the ray (observed time minus calculated time)
using the current slowness distribution, and save the values,

4- Repeat steps 1 to 3 for all rays,

5- Adjust the slowness in each pixel taking into consideration all corrections,

6- Repeat steps 1 to S until the time residuai becomes less than an acceptable
value that was previously defined.



Step 5 involves the averaging of all slowness values or other weighting schemes
(Dines and Lytle, 1979). The general expression is (Sluis and Vorst, 1987):

d;.t.9
s =g +(_l‘,”_m,}2(_ia_l‘_.) O<w<?2 (2-14a)

2-v

Un=Xdal . Q=Yg 0<vs2 (2-14b)

The algorithm by Dines and Lytle (1979) is obtained for v=0 and w=1.

An image represented by (s,,s., ... ,S,), can be considered as a single point in an
n-dimensional space (Krylov subspace). In this space, each of the equations
represents a hyper-plane. Therefore, if a unique solution to these equations
exists, the intersection of these hyperplanes is a single point, which is the
desired solution.

Other examples of this type of method are MART which is a multiplication form of
ART:

a)"
sjq+1 _| Ati_ s, (2-15)
PN

and WART which is a weighted form of ART, where the weighting is based on
the length of the rays (Peterson et al., 1985).

2.4 Transform Methods

Fourier transform methods are commonly used in medical X-ray tomography,

16



where a full range of radiation angles can be imposed. The object can be
“illuminated” by:
- Parallel beam projections (Figure 2-2)

- Fan beam projections
a- Equi-distance projections (Figure 2-3)
b- Equi-angular projections (Figure 2-4)
¢- Equi-distance and equi-angular projections (Figure 2-5)
Modifications are required to apply parallel beam projections and fan beam

projections to geophysical applications within cross-hole and vertical seismic
profiling.

2.4.1 High Frequency lllumination - Fourier Slice Theorem

The Fourier Slice Theorem states that a slice of the two-dimensional Fourier
transform of an object is equal to the one-dimensional Fourier transform of the
corresponding parallel beam projection of the object (Figure 2-6). The

mathematical verification of this theorem foilows (Kak and Slaney 1988).

Recall the Fourier transform of a function, f(t) as F(w):
Flw)= J’ f(t)e Pt (2-16)

Likewise, the two-dimensional Fourier transform of a function in a two-
dimensional space, f(x,y), is F(u,v):



F(u,v) = j I f(x, y)e PO Wixdy (2-17)

Therefore, the Fourier transform of the object along the line v=0 is

F(u,0) = J' j (x, y) e 2P dxdy (2-18)

——) =00

In this integral, the exponential term is not a function of y; thus, the integral can
be separated by the transitivity rule:

Fuo) = j [ j f(x,y)dy] e PP dx (2-19)

The term in brackets is equal to the parallel projection of f(x,y) along the y axis
(or 8=0)

Pa(t) = jf(x, y)dy (2-20)

The function Py(t) is known as the Radon transform of the function f(x.y).
Substituting Pg(t) in Equation (2-19),

F(u.0)= [P, (He®ax (2-21)

This equation, which resembles Equation (2-16), is the simplest form of the
Fourier Slice Theorem and shows that a one-dimensional projection of a function
in the space domain can be defined by its two-dimensional Fourier transform in
Fourier space. Thus, multiple projections in the time domain, defined as P(t), can

18



be used to form F(u,v) in the Fourier space. A complete picture of the object
requires projections for different angles 6.

Algorithm_with _interpolation in the frequency domain. The following steps are

involved in tomographic inversion based on the Fourier Slice Theorem:

« Determine projections, Py(t). These are either travel time or amplitude
“shadows". Each shadow is defined on a t-axis which is at an angle 8 with
respect to the x-axis.

» Compute the one-dimensional Fourier transform of each projection, Sy(w).

« Assemble the 2-dimensional frequency domain function of the space, F(u,v),
by placing each S (w) along a radial line from the origin (u=0, v=0).

+ Interpolate the values of each S () in the polar coordinate system (6,w), onto
the Cartesian grid (u,v).

« Compute the 2-D inverse Fourier transform of F(u,v) to determine the space

function f(x,y).

Interpolation in th main: Eilter -Projection Algorithm. There are
two sources of error in the above algorithm: one is in transferring values in polar
coordinates (6,w) onto Cartesian coordinates (u,v) in the frequency domain. The
second one is the fan-effect of polar measurements S,(w) away from the origin.

Several observations are highlighted (Kak and Slaney, 1988). First, projections
in the Fourier space S,(w) are nearly independent, as they only share the origin
(u=0, v=0), which is the DC component. Second, the Fourier transform of the
space F(u,v) is obtained by a summation of transformed projections S,(w); thus,
given the linearity of the Fourier transform, the x,y space can be constructed as
a summation of inverted S,(w). Third, the fanning difficulty can be corrected by
multiplying transtormed projection S,(w) by a pie-shaped wedge, i.e., a linearly
increasing high pass filter. This filtering process cancels the common DC

19



component, hence, filtered transformed projections FS,(w) are totally
independent. Therefore, one of the main advantages of this aigorithm is the
ability to start the reconstruction procedure as soon as the first projection has
been obtained, which increases time efficiency and decreases memory

requirements.

The filtered back-projection algorithm is summarized in the following steps:

» Determine projections, Py(t)

« Compute the one-dimensional Fourier transform of each projection, S ()

« Multiply each S,(w) by the width of the wedge at that frequency, or by its
distance to the origin. For example, if there are N equally spaced projections
in 180°, the wedge at frequency @ has width 2ra/N.

» Invert filtered projections FS,(w) to obtain filtered projections FPy(t) in the
space domain.

« "Smear” the inverted filtered projections FPg(t) onto the x,y space, along the
ray paths, interpolating among cells in the x,y grid.

» Add the contribution of all filtered back-projections onto the cells in the xy
space.

2.4.2 Diffraction: Fourier Diffraction Theorem

The wavelength of some frequency components may approach the size of
typical structures within the body. In this case, diffraction wiil play an important
role in reconstructing the image. The filtered back-projection algorithm was
based on the Fourier slice theorem and assumed that energy travels in straight
ray paths. This assumption is not true when diffraction phenomena prevail; in
this case, the flow of energy is described by the wave equation. The 2-
dimensional wave equation is:
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32u(r)  9%u(r) 1 au(r)
R aml. (2-22)

where the wavefield u(r,t) represents the particle motion in a seismic wave or the
electromagnetic field amplitude at location r and time t. The field u(r,t) can be
decomposed into muiltiple frequency components. The wave equation can be re-
written for one component, u(r), for a temporal frequency @ (Kak and Slaney
1988):

32u(r) . 22u(r)

S oy +k2u(r)=0 (2-23)

where the wavenumber k=2rw/v is constant in homogeneous media. A solution
to this equation is

u(r)=e*’ (2-24)

where the vector k=(k,k,) and lki=k>+k,2 is the 2-dimensional propagation
vector and u(r) represents a 2-dimensional plane wave of spatial frequency k.
This form of u(r) can represent any 2-dimensional function as a weighted sum of
plane waves. This fact can be verified by substituting Equation 2-24 into
Equation 2-23 (Kak and Slaney 1988). The presence of anomalies in the
medium invalidates the homogeneity assumption.

Born Approximation. The total wavefield, u(r), can be considered as a sum of an
incident field, u(r) which is a solution of Equation 2-23, and a scattered field,

ug(r), as u(r)=u,(r)+ug(r).

The wave equation for the scattered component ug(r) can be obtained by
substituting the total field in Equation 2-23,



32u (r) % (r)
ox2 + ayz

+ko2u,(7) =—u(r)o(r) (2-25)

where ofr) is the object field
o(r) :kz[nz(?)-1] (2-26)

and n is the refractive index. Equation 2-25 is the scalar Heimholtz equation. It
can not be solved for ug(r) directly, but a solution can be written in terms of
Green's function (Witten et al, 1993; Kak and Slaney, 1988). The Green's
function represents the solution of the wave equation for a single delta function.

2 10 o 2.2 o - - - -
’ g;;z 0,2 ga(;z ") s ko2g(r ) = -8(r-F) (2-27)

Therefore, a solution in terms of Green's function assumes the total scattered
field as a summation of point scatterers, which is a valid assumption based on

Huygens' principle:
- - = e T T ]
ug(r)= jg( r—r’Yo(r’)u(r’)dr’ (2-28)

This convolution equation for the scattered field is in terms of the total field, i.e.,
the scattered field u, is a function of the incident field u, and the scattered fieid
itself. The Born approximation assumes that the scattered field is much smaller
than the incident field, u,<<u,. Then, Equation 2-28 is re-written as a first

approximation:

[us(?)] =ug(r)= j a(r-r)o(r)u, (r')dr’ (2-29)
1st



Knowing the first estimate of the scattered field, ug, the total field can be better
approximated as u=u,+u; and replaced back into equation 2-28. The new
estimate of the scattered field is Born's second approximation.

Rytov Approximation. The Rytov approximation is derived by considering the
total field as an exponential of a complex phase ¢(r),

W(r) =e*" (2-30)

where the total complex phase ¢ is taken as the sum of the incident ¢, and

scattered phase o,

=9, +0, (2-31)

_’
The three phases are complex quantities, and functions of r . The solution of
the wave equation, expressed as an integral equation, is (Kak and Slaney, 1988)

U@ = j‘v,g(?— r )uo[(V(psf +off’ )]dr_’ (2-32)

where the complex phase of the scattered field is a function of itself. The Rytov
approximation considers:

(Vo, )2 +0o(r) = o(r) (2-33)
Then, the first Rytov approximation to Equation 2-31 becomes

U,P, = J' g(r - ofr)dr’ (2-34)
§

Therefore,



0, ()= I o(r-r)u,ofr')dr’ (2-35)

uy(r)™

and, recalling Equation 2-29

s(r) = "B(') (2-36)
uo(r)

Projections in_Frequency Domain=Circular Arcs. If a single plane wave is

considered for the incident field, Equation 2-29 can be rewritten as (Kak and
Slaney, 1988)

ug(7) =L j o )u, () J' %eil“("-*’**ﬂ(v-ﬂldadF’ (2-37)

where the plane wave is shown decomposed as (this is a crucial step in the
derivation),

1 j 1 gilate-x 18-y gg (2-38)
For an array of receivers located along y=y,, Equation 2-37 becomes
Ug (Y =Yo) = _4]; I Q%lei[a(x-!')*ﬂ(vo -Y')le.*ov'd;:"'da (2-39)

The first integral is the two-dimensional Fourier transform of the object function
o(r). The Fourier transform of the scattered field ug (x,y,) is Ug(a.y,),

___j__ Ni2-a?y, , 2 _ o2 _ -
Ug(ony,) = 2\/'(—2-——(126 *O(a,vk® —a® ~k) (2-40)
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where O(a.f(k)) is the Fourier transform of the object function ofr). In this
derivation, the following property of Fourier integrais was used

el*~=%gx = 27t5(w - o) (2-41)

§ S

Equation 2-40 relates the two-dimensional Fourier transform of the object O(k) to
the one-dimensional Fourier transform of the scattered field at the receiver line.
Ug in the Fourier domain (k-k, space) is a set of points on a semicircular arc
which has a radius equal to k. The range of changes in point positions is from -k
to k.

In summary, the Fourier diffraction theorem is based on the wave equation, and
states that the Fourier transform of the scattered field of a projection is equal to
the Fourier transform of the gbject over a semicircular arc (Figure 2-7). Note that
the high frequency limit of the Fourier diffraction theorem is the Fourier slice
theorem.

Inversion Procedure. Inversion of different fields can also be done by
implementing interpolation in the frequency domain (Kak and Slaney, 1988) or in
the space-domain (*back propagation® Devaney, 1984). However, unlike the
Fourier Slice Theorem, frequency domain interpolation appears more efficient.
The following steps are involved in tomographic inversion based on the Fourier
Diftraction Theorem for a set of data gathered at a specific illuminating angle, o

» Determine projections, Pq(t).
o Compute the one-dimensional Fourier transform of each projection, Og{w).

« Compute the 2-dimensional Fourier transform of the wave field, U(kk,),
along the receiver line, y=y, , based on Equation 2-39.



« Interpolate U(k,k) along semicircular arcs up to the end points vk, in a
Cartesian gird.

» Compute the 2-D inverse Fourier transform of the wavefield U(k.k)) in order
to determine the object wavefield in space domain o(x,y).

2.5 Other Methods
2.5.1 Fuzzy Logic (Backprojection and min-max)

Projections capture the "shadows® of anomalies. Backprojection and
superposition of these shadows on the space of the problem helps define
position, size, and type (high or low velocity) of anomalies. It can be shown that
if superposition is implemented with min-max operators, the procedure
corresponds to fuzzy-logic-based constraining of the anomaly (Santamarina,
1991).

2.5.2 Probability-Based

This group of methods is based on the distribution of data and model
parameters. Gaussian and Poisson distributions are frequently selected,
obtaining explicit expressions for the estimated model parameters (see Menke,
1989; Shepp and Vardi, 1982). The maximum likelihood and the maximum
entropy solutions are two weli-studied methods in this category.

2.5.3 Parametric Characterization of the Unknown Space

If the number of independent observations is limited, pixel-based solutions offer
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either limited resolution or a high degree of under-determination. An alternative
approach is to represent the medium by a limited number of parameters (e.g.,
background velocity, anomaly location, size and velocity). These parameters are
then inverted by sequential forward simulation and minimization of the residual
of measurements (Santamarina, 1994; Santamarina and Reed, 1994).

26 Summary and Conclusions

Several methods have been used to solve the inverse tomographic problem;
they can be categorized as: (i) matrix inversion methods, (ii) iterative methods,
(iii) transform methods, and (iv) other methods.

lterative methods are not stable in ill-conditioned problems. Transform methods
are restricted to straight ray projections (space transformations could be invoked
to generalize the solution to heterogeneous, anisotropic media). Matrix methods
are versatiie and computationally efficient. However, efficient storage and
computation are required.

Small singuiar values can generate large errors in the solution. Regularization
adds information in the form of constraints in order to decrease the ill-
conditioning of the problem. Hybrid solutions can be attempted to enhance the
resolvability of inverted images (e.g., fuzzy logic pre-processing followed by
regularization).
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Figure 2-1: Filtering kernels for different types of regularization smoothing

(Santamarina, 1994).
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Figure 2-2: Parallel beam projections are taken by measuring a set of parallel

rays for a number of different angles (Kak and Slaney, 1988).
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Figure 2-3: Equi-distance fan beam projections (Kak and Slaney, 1988).
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Figure 2-4: Equi angular fan beam projections (Kak and Slaney, 1988).
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Slaney, 1988).
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Figure 2-6: The Fourier slice theorem relates the Fourier transform of a
projection to the Fourier transform of the object along radial line (Pan and Kak,
1983).
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Figure 2-7: The Fourier diffraction theorem relates the Fourier transform of a
diffracted projection to the Fourier transform of the object along a semicircular
arc (Pan and Kak, 1983).
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CHAPTER Il

RAY THEORY AND RAY TRACING

3.1 Introduction

The analysis of wave propagation is often simplified to exercises with straight
lines connecting sources and receivers. In this case, the matrix L is fixed and the
inversion problem is linear. However, geoenvironments of interest are not
homogeneous and isotropic. If the velocity contrast in the medium is more than
15 to 20 percent, rays bend toward higher velocity regions (Dines and Lytle,
1979). In this case, entries in the matrix L depend on a prior estimate of the
velocity field, the inversion problem becomes non-linear, and iterative solutions
are used to solve the tomographic inversion.

In general, it is assumed that “picked travel times®" correspond to paths of
shortest travel path (Fermat's principle). Ray tracing is implemented to determine
shortest travel paths. This chapter presents a comprehensive review of solutions

that have been proposed to solve the forward, ray tracing problem. Advantages
and limitations are highlighted.

3.2 Ray Theory-Eikonal Equation

The wave surface or wave front is the locus of points which have the same
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phase of motion at a given instant of time. Rays are normal to wave surfaces and
give the direction of energy propagation in the medium. A "normal mode" is a
preferred frequency of the system. Therefore, a solution based on normal modes
involves the summation of contributions from the various preferred frequencies
of vibration of the system.

There are many ways to solve the wave equation, meeting boundary and initial
conditions. One solution is to transform the wave equation into the Eikonal
equation and to solve it in terms of wave surfaces and rays, i.e., group velocity.
Another solution is a development through specific boundary conditions and
solutions in terms of normal modes, i.e., phase velocity. In some instances, the
physical conditions of the problem lead to the simpler solution in terms of rays; in
others, the soiution in terms of normal modes is more satisfactory (Officer,
1974).

Three fundamental concepts in wave mechanics are frequently invoked in ray

tracing:

o Fermat's principle states that the ray path between two points is such that
travel time is minimum, i.e. the travel time between two points is stationary.

o Shnell's law states that the change in the product of the refraction index and a
direction cosine along the ray path is equal to the space rate of variation of
the refraction index with respect to the appropriate coordinate n=n(x,y,z).
Snell's law satisfies Fermat's principle.

e Huygens' principle states that the disturbance at time t=t_+dt can be obtained
from each point on the wave surface at time t=t, acting as a secondary

source.
The term head wave is often encountered in the ray tracing literature. It refers to

a refracted wave front that arrives before the direct wave (Figure 3-1). Thus,
these arrivals are picked in first-arrival procedures. Another frequently
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encountered term is shadow zones. Shadows can be observed in refraction
surveys as a result of unique layering and velocity conditions (Figure 3-2); in this
case, the shadow zone is relatively devoid of first arrivals (head waves).
Shadows also take place in transmission surveys behind anomalies with high
impedance mismatch with respect to the background medium, as shown in

Figure 3-3.

3.2.1 Eikonal Equation: Derivation, Importance and Limitations

The three-dimensional wave equation for an isotropic medium is:

% 9%¢ 9% 1 9%
ox> +8y2 Y o (3-1)

where ( is the displacement of an element in rectangular coordinates (x,y,z) at
time t, and ¢ is the velocity of the wave. A general solution for Equation 3-1 is a
simple harmonic solution, with a varying amplitude in space

C = A(x' y' z) eh:(u(!.yz)lco—t] (3-2)

where u is the wave front position. The condition that relates amplitude A and u
is obtained by substituting Equation 3-2 into the wave equation (Equation 3-1)
Equating imaginary and real parts, respectively (Officer, 1974),

JudA JudA  oJuodA d°u  d%u  d%u
A = 3-
2(axax+ayay+azaz)+ (ax2+ay2+az=) 0 (3-3)
and
3?A  *A A , @ [(u) (au)’ ()| o?
- — e —| |==-— 34
T dy? T2 Acf [(axJ +(ay) +(az) c? A (3-4)

Equation 3-4 can be reordered as:
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0 (3-5)

(au)z auY’ (au)2 . ).02[1(3’—/\ A azA)
—| +|—| +|—] -n*- — + +
ax oy dz 4rn? I_A ox? ody? oz2

where A, is the wavelength of the wave with reference velocity c,. If the last term
in Equation 3-5 is assumed to be equal to zero, then

(553 -

where n is the refractive index and ¢, is the wave velocity in a reference medium.
Equation 3-6 is the Eikonal equation. This time-independent equation can be
applied in the solution of cases where ¢ is a function of the space coordinates

(heterogeneous media).

Let us focus on Equation 3-5 and review the conditions that lead to the Eikonal
equation. It is assumed that the second term in Equation 3-5 is equal to zero. In
general, the expression in parentheses is not zero. Hence, this assumption is
valid only if A,=0, that is, in the high frequency limit. However, the order of
magnitude of A  is defined by the physical conditions of the problem. Therefore,
the Eikona! equation is a good approximation to the wave equation if the
curvature of the wave front is small over a wavelength, but it is not a good
approximation to the wave equation in regions with rapid changes in velocity
over the dimensions of the wavelength (Officer, 1974). In other words, the

Eikonal equation is a solution_of the wave equation_if the rate of change of
parameters is small with respect to the parameters themselves.

The Eikonal equation leads directly to the concept of rays. Rays are the normals
to the wave fronts with direction of propagation (Lee and Stewart, 1981):

(_ 3“; ax)dx =(-au; ay)dy:(' au;az)dz 3-7)
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where the denominators are the direction numbers of the normal. The relation
between direction cosines and direction numbers yields

=d) 1Y) @) e

where k is a constant and dL is an element of the ray path. Squaring and adding
the three Equations 3-8, and recalling Equation 3-6,

(&) (@) e () @ e

The sum of the three terms on the left is equal to 1.0 because they are direction
cosines in three dimensions. Then, k=1/n and Equations 3-8 become

o) _au @) &) _
"(dL)‘ax a) " 3y aL) " 3z (3-10)

Taking a derivativa along the ray d/dL for each of these equations resuits in
(only shown for the first equation),

d( dx)_d(fdu)_ od(dudx dudy dudz X
dL("dL)'dL(ax)'ax(ax dL T aydL oz dL) (311)

The three Equations 3-10 can be multiplied by the term in parentheses in each
case, and replaced into the last term of Equation 3-11. Considering the definition
of direction cosines, the right-hand side of Equation 3-11 reduces to d(n)/ox.
Repeating the same procedure for the other two Equations in 3-10,

d(p9x)_on d _d.l)-a_" _E’_( E)-Qﬂ ]
dL(ndL) ax dL(ndL "%  al"al)": (3-12)

These are three members of the ray equation in which the index of refraction n
characterizes the medium. They may be considered as a generalized form of
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Snell's law. Therefore, these equations could be used to trace rays in three
dimensional heterogeneous media (Lee and Stewart, 1981). The general form of
Equations 3-12 is:

d( dr)_ .
I(naf) =Vn (3-13)

The ray solution is a complete solution to any particular propagation problem
within the validity of the approximation of the Eikonal equation to the wave
equation. In other words, a solution based on the ray assumption first carries the
approximation of the Eikonal equation, and second, it assumes that energy
propagates in a narrow bundle of rays.

Since ray theory is based on the Eikonal equation approximation, spatial
frequencies corresponding to scales smaller than the first Fresnel zone width
would not be accurately recovered by the ray assumption (Wiliamson and
Worthington, 1993). Hence, ray theory can not be employed to compute travel
times in cases where the diffraction phenomenon takes place. This phenomenon
can be explained by Huygens' principle and the concept of Fresnel zone. The
Fresnel zone is that portion of a reflecting interface that produces in-phase
reflected waves at a detecting point, i.e., constructive interference (Figure 3-4).
Therefore, a large region is responsible for the reflected energy rather than just
a point on the reflector (ray theory assumption-Sheriff, 1978). Figure 3-5 shows
that as the body becomes smaller than the Fresnel zone, it becomes in effect a
point reflector, and it is nearly indistinguishable from a diffractor.

Ray Assumption. The interaction of waves with inclusions depends primarily on
the size of the inclusion D with respect to the wave length A. The ray assumption
applies when D>>A. More specifically, ray tomography is applicable when the
scale length of the anomaly is at least the radius of the first Fresnel zone: if the
average ray length is n wavelengths, the size of the inclusion must be at least &



A-(n)os, where & varies between 0.5 and 1 (Santamarina, 1994). The "straight
ray" assumption dominated the development of engineering tomography during
the 80's, as an extension of X-ray tomographic imaging in medical applications.
From optics, the straight ray approximation applies if the travel length L>>A/2r, if
the wavelength is significantly smailer than the size of the anomaly, and if
velocity changes are less than 20% to 30%.

Diffraction. When the size of inclusions is within the same order of magnitude as
the wavelength, the ray approximation does not hold, and propagation must be
considered from the point of view of the wave front and scattered energy.
Diffraction degrades the quality of tomograms when the linear ray assumption is
made: low velocity inclusions are imaged smaller than real size (high velocity
anomalies are imaged larger). Low velocity anomalies are difficult to detect when
the plane of receivers is located about twice the diameter of the inclusion away

from it.

Fresnel's ellipse. The position of scatterers that affect wave arrival at the source
is related to the wave length A. Indeed, waves scattered from diffractors within
an ellipse, so that the travel distance is the straight distance d plus A/4 or A/2,
will arrive in phase with the direct wave traveling the straight path d. This
observation is relevant in selecting ray-tracing algorithms (often a “thick ray*
assumption is used), and in selecting source and receiver configuration:
transducers too close together do not necessarily add information content.

3.3 Ray Tracing Methods

Ray tracing is a two-point boundary value problem: the end points are specified
(the source and receiver positions), and the propagation path and time must be
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determined. Ray theory is used in the development of some ray tracing
algorithms. However, there are more general solutions. In all cases, ray tracing
fulfills Fermat's principle. Ray tracing techniques are categorized as: One-point
methods, Two-point methods, and Whole field methods.

3.3.1 One-Point Methods

These methods are also known as initial value methods or shooting methods. In
this case, the two-point boundary value problem is approached by iteratively
solving an initial value problem with one fixed end point, and subsequently
varying the initial ray trajectory or take-off angle. Therefore, the main purpose of
these methods is integrating the initial value formulation of the problem and
employing a procedure to find the starting direction which yields the desired ray
path. Figure 3-6 shows a schematic view of this type of methods. Primary ray
tracing assumes “point velocities" and interpolates values, rather than selecting
rigid pixels boundaries.

There are two important steps in one-point methods: first, the initial guess of the
take-off angle, and second, the algorithm which traces the ray from the initial

point to the end point.

The equations for the initial value problem can be defined in a simple form if the
ray path is specified parametrically in terms of position vector r(t) and a
slowness vector s(t) where the parameter t is the cumulative travel time. The
slowness vector s(t) is defined in the direction tangent to the ray and as the
inverse of the local seismic wave velocity in that direction, v (Chernov, 1960;
Eliseevnin, 1965). This definition leads to
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s (Note: v.g = T unit vector) (3-14)

=W (3-15)
v

in three-dimensional space, these equations represent a system of six first order
differential equations which must be integrated numerically to find the ray path.
However, because of the relation between slowness and velocity, one equation
is redundant and it may be eliminated (Julian and Gubbins, 1977). Appendix A
gives computationally convenient forms of these equations in Cartesian
coordinates; redundancy has been eliminated by expressing s in terms of two
angles giving its direction (Gheshlaghi, 1992). The spherical form of these
equations can be found in Julian and Gubbins (1977).

The system of first order differential equations may be solved with standard
numerical integration techniques. Sambridge and Kennett (1990) solved these
equations with a fourth-order Runge-Kutta algorithm. Their method also
employed the paraxial boundary value ray tracing of Cerveny, et. al. (1984)
which may be applied to ray tracing in laterally varying layered media. Julian and
Gubbins (1977) employed a step-size extrapolation method. Lytle and Dines
(1980) started from Snell's law and derived a refractive index equation in two
dimensions rather than the ray equation. In their approach, the differential
equation describing ray paths can be obtained by considering that

Sin(a+Aa) _Vv+av (3-16)
Sina v

In the limit, this equation leads to the differential form of Snell's law:
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Cosa.do = (Sina)(dv/ v) (3-17)

If Equation 3-17 is written in terms of coordinates (x,y) and the ray tangent angle
08, the refractive index equation can be derived as follows (see Lytle and Dines,
1980)

de 1|an an ..

= | ~—Sin® 18

oL n[ay Coso axSm ] (3-18)
where n is the refractive index and dL is the arc length of the ray path. They
used the Runge-Kutta algorithm to determine the ray path based on a given
initial angle (The algorithm is summarized in Appendix B).

The determination of the starting direction which causes the ray to pass through
the desired end point involves finding solutions to two nonlinear simuitaneous
equations specified implicitly in terms of the differential Equations 3-14 and 3-15:

(i, @)=X and y(i,. 9)=Y (3-19)

where the x and y are the calculated coordinates of the end of the ray with
starting shooting angle i, and starting azimuth ¢, and X and Y are the desired
end coordinates of the ray, i.e., the coordinates of the receiver.

Several methods are employed to solve these equations. Newton-Raphson's
method and an extension of the “false position® method are the common
approaches. Since the above equations are generally nonlinear, both methods
must be applied iteratively.

The improved estimate of (i, ¢) is obtained by solving the system of linear
equations



X 9dx

3, do i, —i"]_[X —xG".e") 2.20
5 Sl TV S o=
di, dg

where the superscripts indicate the value of the corresponding parameter in
each iteration. The calculation of the partial derivatives consumes a lot of time.
As with the ray path system, two additional systems of ordinary differential
equations of the same order should be solved (Julian and Gubbins, 1977).

The method of “false position®" employed by Julian and Gubbins (1977)
calculates only the ray path at each iteration. However, it converges more slowly
(Julian and Gubbins, 1977): an improved estimate of (i) is obtained at each
stage of the iteration. This improved estimate is calculated by approximating the
functions x(i,,) and y(i,,p) by planes passing through the values calculated from
three previous estimates. These planes take on the values X and Y, respectively
along two straight lines. The desired improved estimate can be obtained from
the intersection of these two straight lines. A compact form for the desired
equations is

1 =2 <3
o I IO lO o IO

X=X x¥¥-X xX-X[=0 (3-21)
y'-Y y*-Y y'-¥Y

-

and similarly for ¢

?-
X —

-

Q'
-X X 2-X/=0 (3-22)
~Y yA-Y y-Y

S M

y' -

where the superscripts indicate the three previous estimates. This method is
more efficient than Newton-Raphson's method (Julian and Gubbins, 1977).
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Advantages of One-Point Methods.

+ One-point methods are suitable to perform 3-D ray tracing in which receivers
are distributed along some line profile, e.g. line, curved, piece-wise, etc.
(Nolet, 1987).

+ These methods can be employed where source location is initially unknown,
e.g. earthquake location.

+ One-point methods are easy to apply and need less computer memory
storage than two-point methods (lyer and Hirahara, 1993).

Limitations of One-Point Methods.

« Do not find diffracted ray paths (Moser, 1991).

o Do not always converge to a solution (Asakawa and Kawanaka, 1993).
o Are not able to handle head waves (Asakawa and Kawanaka, 1993).

¢ Can not find ray paths in shadow zones (Moser, 1991).

3.3.2 Two-Point Methods

Two-point methods are also known as bending methods. These methods start
with specific initial and end points, and choose the ray path which satisfies

Fermat's principle.

Bending Method

In this method, an initial ray path is assumed and then perturbed while keeping
end points fixed (Figure 3-7). The procedure is repeated until an acceptable
stable minimum time is found. Generally, the first guess is the straight path. Um
and Thurber (1987) applied this method to a variety of laterally heterogeneous
velocity models. They suggested a three-point perturbation scheme and



considered two approaches for perturbation (Figure 3-8 and 3-9). One approach
is that points in a new path are sought starting from one end-point. The other
approach is that new points are sought simuitaneously starting from both end-
points. They finally adopted the second approach. Travel time is computed as a
summation. Um and Thurber (1987) defined the rate of perturbation R (Figure 3-
10). The direction of offset n is based on the curvature direction of a minimum
time ray path. Their derivation of the ray equation is:

dvydr
dr _[(VV)'(E I)l (3-23)
a2 v

where r is the position vector along the ray path. The second term on the right
hand side of this equation is the component of the velocity gradient parallel to
the ray path. Therefore, this equation states that the component of the velocity
gradient normal to the ray vector is normal to the curvature of the ray path. If one
considers the local ray direction as the direction of the line that connects two
contiguous end points, as in Figure 3-8, the component of the velocity gradient
normal to that direction gives the curvature direction. Thus, the offset direction
for the point x',,which satisfies Equation 3-23, may be defined as:

[(VV)(X.‘;-X:)](FM =~ %c1) (3-24)

n’ =(Vv)-

where the second term is the component of the velocity gradient parallel to the
ray direction. The unit vector direction is obtained as n=n"/In'l.

Santamarina and Cesare (1995) proposed another perturbation procedure for
ray tracing in vertically heterogeneous and anisotropic media (Figure 3-10). In
this method, the straight segment between contiguous nodes is split in half and
the new node is displaced in the normal direction until time is minimized. The

process is repeated recursively.
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Advantages of Bending Methods
e Always converge to a solution.
« Diffracted rays and rays which pass through shadow zones can be found.

Limitations of Bending Methods

o There is no certainty as to whether the path corresponds to the absolute
minimum travel time or to a local minimum (Thurber and Elisworth, 1980).

« There may be more than one solution for a source and receiver pair.

« These methods can not be applied to problems where the location of one end
point is known while the location of the other point must be determined, e.g.
earthquake location.

Sine-Arcs and Simplex Optimization

The method proposed by Prothero et al. (1988) starts by specifying the velocity
at nodal points. Then, interpolation is used to estimate velocity at an arbitrary
location:

V= (xm - X)(an - Y)(zk+1 = Z)vi,j,k +(X - xi)(Y}n = Y)(zk+1 - Z)Vm.j.k
(X, = X)Y - Y[)(zk+1 - Z)Vu,mx +(X=X)(Y - Y[)(Zk+1 = Z)Vk»t,[ﬂ.k
+(xm - x)(Ym - Y)(Z - Zk)vl,um + (X - xl)(Ym - Y)(Z - Zk)vm.um
(X = XNY = YUZ = Z ) Vg + (X = XY = Y HZ = Z,) Vo poagens

(3-25)

where the i, j, and k indices are used for surrounding points and X, Y, and Z
characterize the location of the point of interest.

The starting ray path is found by searching the minimum travel time along

circular arcs connecting the source and the receiver. If an inappropriate arc is
chosen, convergence to local travel time minima may occur. The selected
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starting ray is perturbed until the minimum travel time is obtained. Prothero et al.
(1988) distorted the selected circular path by adding sine waves, systematically
varying their amplitudes to minimize travel time. The distortion is expressed as

dx(n,i) = A (n).Sin(n.r.d.i/L)

dy(n,i) = A,(n).Sin(n.n.d.i/L) (3-26)

where n is the harmonic number, dx(n,i) and dy(n,i) are the translation of the ith
point on the path due to nth order sine wave, Ay(n) and Ay(n) are the vertical and
horizontal amplitudes of the nth order sine wave, d is the spacing between points
on the path, i is the index of the ith point, and L is the arc length of the circular
path.

The amplitude of each perturbing sine arc is optimized with the Simplex
optimization algorithm. The Simplex method is used for the minimization of a
function of n variables. The procedure consists of comparing the values of the
function at (n+1) vertices of a general polygon or “simplex”, followed by the
replacement of the vertex with the highest value by another point (Nelder and
Mead, 1965). The simplex in the two-dimensional space is a triangle, and it is a
tetrahedron in the three-dimensional space.

A schematic of the "Simplex" search is shown in Figure 3-11. B, O, and W are
three arbitrary points in the two-dimensional space of A,(n) and Ay(n). To reach
the lowest value of the travel time function the Simplex, i.e. triangle, should be
moved downhill. Find the vertex with the highest travel time (worst: W) and the
one with shortest time (best: B). Reject W and substitute it with another point.
Point R is obtained as a reflection of W. If the travel time corresponding to Ay(n)
and Ay(n) at R, t(R) is lower than t(o) and t(B), increase the distance twice (E). If
t(B)<t(R)<t(W), R is selected. If t(R)>t(W), then a contraction occurs. If the
contraction (C) produces a better value than W, C is selected; otherwise, a
shrinkage occurs and all vertexes, except the best one, move directly toward B
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by half of the original distance from it (points S in Figure 3-11). Figure 3-12
shows the contours for travel time values in Ay-A,, space. The minimum value of
the travel time is located at the center of these contours. The points marked W,
O, and B are the three initial guesses. The procedure is repeated for each

harmonic.

Advantages of the Sine-Arc + Simplex Optimization

o This method is fast, and it always converges (Prothero et al., 1988).

o Diffracted rays and rays that pass through shadow zones can also be found
by this method.

Limitations of the Sine-Arc + Simplex Optimization
e It is assumed that the medium is continuous and has a unique minimum
(Nelder and Mead 1965). In real cases, the search may converge to a local

minimum.

Polygonal Path Method

This method was proposed by Stockli (1984) for transversely isotropic media. It
assumes that wave surfaces are polygonal surfaces (Recall that wave surfaces
are ellipsoidal in transversely isotropic materials). Therefore, if 2 is the axis of

symmetry (Figure 3-13),

slp + %r) (3-27)

Then, the true wave surface can be approximated as,

V)=

F(x,2) = (

G(x,y,2) =F{(0® +y* + 2%)"?,2} =1 (3-28)
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The more general case, where z is not the axis of symmetry, can be obtained by
an orthogonal change of axes. Optimization involves finding the value of p in
Equation 3-27 that satisfies Fermat's principle for each ray path.

Aadvantages of the Polygonal Path Method
e A simple iteration gives the best value of p.
o This method is useful for ray tracing in layered media.

Limitations of the Polygonal Path Method
« This method can not solve the ray tracing problem in media with high velocity
contrast where the wave surface changes rapidly.

3.3.3 Whole-Field Methods

Whole field methods compute local travel times between nodes in the whole
space of interest before ray paths are identified for each source-receiver pair.
These methods are also known as network methods (Moser, 1994).

Finite Difference Method

Vidale (1988 in 2D and 1990 in 3D) proposed a wave front tracing technique
based on a finite-difference approximation of the Eikonal equation. Matsuoka
and Ezaka (1990) proposed a finite-difference solution based on the reciprocity
principle (see method by Asakawa and Kawanaka, 1993). More recently, a
systematic application of Huygens' principle within a finite-difference
approximation was proposed by Podvin and Lecomte (1991).
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Vidale's method creates a mesh of points (Figure 3-14). Assume that the travel
time at point A is t,. Travel times at the four points B; adjacent to A are
determined as follows:

k= g'(sa« +8,)+1, (3-29)

where d is the mesh spacing, s, is the slowness at point A, and sg is the
slowness at the grid point Bi. The travel time at C1 is determined using the
Eikonal equation and the assumption of a plane wave front:

(gt;)2 + (gi)2 =s(x2)® (3-30)

In finite differences, the terms in Equation 3-30 can be approximated as follows

(see Figure 3-14):

a 1
and
o 1
5 =E(to +t,—-t, —t,) (3-31b)

Substituting Equation 3-31a and Equation 3-31b into Equation 3-30 leads to:

t, =t, +y2(d.s)> —(t, - t, (3-32)

Similar equations for travel times can be computed for spherical wave fronts.
Assume that the travel time to the center of curvature of the wave front is t,.
Then travel times to A, B1, B2, and C are (see Figure 3-14)

t, =t, +syx2+2,° (3-33)
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t,=t, +sJ (x,+d)*+2? (3-34)

t, =t, +syX.2 +(z, +d)? (3-35)

t, =t, +5y(x, +d)* +(z, +0d) (3-36)

Once all travel times through the media are calculated, the steepest gradient in
the travel time data is used to identify the shortest travel time paths for each
source and receiver pair.

Advantages of the Finite Difference Method

+ This method allows for the subsequent assignment of ray paths and arrival
amplitudes, reducing the computation time significantly by eliminating the trial
and error process of ray shooting (Asakawa and Kawanaka, 1993; lyer and
Hirahara 1993).

¢ Aligorithms are simple and robust, solutions are generally acceptable for
various velocity fields (Geoltarine and Brac, 1993).

« These algorithms can be used in conjunction with Kirchhoff depth migration.

Limitations of the Finite Difference Method

» Finite difference methods present difficulties when applied to models with
sharp velocity contrasts.

o The ray path consists of line segments connecting grid points between cells
of different velocities (no refraction). This problem is overcome by Ishii,
Rokugawa and Suzuki (1988) by placing nodes on ceil boundaries
(Asakawa and Kawanaka, 1993).

Multiple Segment, Network Methods

These methods are also known as grid methods. In Moser's method, the area of
interest is divided into a grid of pixels (Moser, 1991). Each point on the grid is
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connected to all other near neighboring points (Figure 3-15). The travel time
between two connected nodes is defined as their Euclidean distance multiplied
by the average slowness of the two nodes. The velocity in a pixel is assumed
constant. Travel times for all ray segments are computed in the forward stage.
Minimum time rays between source-receiver pairs are selected in the backward
stage. The search for optimal ray paths within the network is based on search
algorithms in graph theory (see Nilsson, 1980). Moser (1991) implemented
breadth-first search. The tree starts with the source t=0, and it is expanded
following network nodes and their links.

The method by Asakawa and Kawanaka (1993) is also a network technique but
in this case, the space is searched for each shot (Figures 3-16 and 3-17). The
method attempts to find optimal crossing points on all boundaries so that travel
time is minimized. Consider a ray path crossing the segment AB on a certain cell
boundary and reaching point D on the opposite side of the boundary. Assume
that we want to calculate travel time t, at point D. Travel times t, at Aand t; at B
are known. Then, the travel time t.is linearly interpolated:

te =t ——+t,— (3-37)

Finally, the time at D is:

to = te + Syl + (L, +r)? (3-38)

where |,=x,-x,, | =y,"y,, and s is the pixel slowness. Combining Equations 3-37
and 3-38

tL=t, 9;—r+ta-:-;-+ s‘fl,(2 +(l, +r)? (3-39)

If Equation 3-39 is differentiated with respect to r, and equated to zero, the value

of r for minimum t;, is obtained:
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ATL (3-40)

= ——E

and replacing back in Equation 3-39:

t,=t, +At-lé-+-l§1/szd2-At2 (3-41)
The condition for the correct ray path to cross the segment AB and reach the
point D is:

s.d.cosa < At<s.d.cosf (3-42)

or

2 2
P < (ATR < 7P D
Lo+l I +(l, +d)®

(3-43)

The forward algorithm starts from the selected shot point and advances the
network column-by-column, accumulating travel time (see Figure 3-16). The
lowest travel time is assigned at nodes. At the end of the forward process,
minimum “source times" have been assigned to nodes along vertical cell
boundaries. The backward algorithm starts at each receiver and moves back
towards the source. At a given node on a vertical boundary, the "ray time"® can
be computed as the addition of "source time" and "receiver time". The crossing
point is optimized to minimize the ray time, as described above. This method
resembles heuristic graph search strategies (Nilsson, 1980).

The method proposed by Sassa et al. (1989) is a shot-based network method
similar to the forward algorithm by Asakawa and Kawanaka (1993). The authors
view it as a Huygens' based approach (Figures 3-18). The backward algorithm in
Asakawa and Kawanaka (1993) is replaced by a second forward scan of the
network, whereby crossing points are optimized (Figures 3-19),
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Advantages of Multiple Segment Network Methods

o« These methods successfully compute diffracted ray paths and paths in
shadow zones.

« All source-receiver pairs are preprocessed at once (forward process common
to all rays).

o These methods avoid the numerical instabilities in spaces where velocity
changes abruptly.

Limitation of Multiple Segment Network Methods

« They require large computer memory.

o The computation time is significant, yet linearly dependent on the number of
nodes (at least in Moser's method). Computational efficiency increases for
large problems, such as 3D surveys.

 In Moser's method, the angle of refraction does not change continuously
with the angle of incidence, and the ray path may refract between cells of

equal velocity.

3.4 Summary and Conclusions

Ray theory is a complete solution to any particular propagation problem within
the validity of the approximation of the Eikonal equation to the wave equation. In
other words, a solution based on the ray assumption first carries the
approximation of the Eikonal equation and second, it assumes that energy

propagates in a narrow bundle of rays. Therefore, ray tracing methods based on

ray theory (one point methods) can not predict travel times in shadow zones and
diffracted regions. Qther ray tracing methods can successfully overcome these
problems, give a solution for shadow zones, and estimate diffracted travel times.

Closed-form solutions are possible for simple velocity fields.

56



One-point methods are efficient and have low memory demands, yet, they have
all the restrictions inherent in ray theory. Furthermore, they may never converge.

Two-point methods are flexible and efficient, require low memory storage, and
can solve travel times in shadow zones and diffracted ray paths. However, they
may not be able to find the global minimum.

Whole-field methods can identify global minimum travel times, including shadow
and diffracted zones. While the solution is computer demanding, all rays from a

given shot are solved at once.

A summary of ray tracing methods is given in Tabie 3-1.
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Table 3-1: Ray tracing methods.

Method Procedure Abilities Short comings
. Initial guess of Suitable for 3D Not for diffracted
the take-off ray tracing. rays or ray paths
) angle. Useful for cases in shadow
One-Point with Unknown Zones.
Methods | 2. Trace rays from source location. Not always
f::erﬁrae :o Easy to apply. converge.
’ Limited computer Unable to handie
memory. head waves.
. Assuming an Always Solution may
initial ray path. converge to a converge to local
Two-Point solution. minima.
Methods - Perturb the path Diffracted rays Demand more
to minimize and rays in computer
travel time. shadow zones memory than
can be found. one-point
methods.
. Compute travel Compute Significant
time for different diffracted ray computation time
segments. paths and paths and memory
Whole-Field . in shadows. demand.
Methods . Find the best Avoid the Angle of
path by graph numerical refraction may
search. instabilities in not change
spaces where continuously
velocity changes with angle of
abruptly. incidence.
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Figure 3-1: Head waves from a horizontal refractor (layer 2). Head waves begin

at the critical distance and overtake the direct waves at the crossover distance

(Sheriff, 1989).
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(Sheriff, 1989).
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SHADOW
ZONE

Figure 3-3: Shadow zone in the presence of a high impedance region.

-IaST FREINEL ZONE—

Figure 3-4: The first Fresnel zone: Interaction between a wave front and the

interface between two media (Sheriff, 1978).
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Point 1

Point 2
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Figure 3-6: One point method in two dimensions - A schematic representation.

Point 1

Point 2

Figure 3-7: An example of perturbing rays in bending methods.
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Figure 3-8: Three-point perturbation scheme in three dimensions. (Um and
Thurber, 1987).

SECOND

FIRST THIRD

Figure 3-9: Two approaches to perturb ray paths (Um and Thurber, 1987).
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Figure 3-10: Perturbing the ray path by mid-point method (Santamarina and
Cesare, 1994).

Figure 3-11: Two-dimensional simplex BWO illustrating the four mechanisms of

movement: reflection (R), expansion (E), contraction (C), and shrinkage(S).
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Figure 3-13: True wave surface and approximating wave surface F. For each

direction of the ray; e is taken as indicative of goodness of fit (Stockli, 1984).
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Figure 3-14: The source grid point A and the eight points in the ring surrounding
point A (Vidale, 1988).
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Figure 3-15: Cell organization of a network, (a) Dashed lines: cell boundaries.

Black circles: nods. Solid lines: connections. (b) Shortest path from one node to

other nodes in a homogeneous model (Moser, 1991).
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(a)

(d) f)
Figure 3-16: Forward process in the LTI method (Asakawa and Kawanaka,
1993).
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Figure 3-17: A ray path crosses segment AB at point C and reaches point D in a

cell (Asakawa and Kawanaka, 1993).
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Figure 3-18: Rays from a seismic Huygens' source toward sixteen grid points
(Sassa, 1989).
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Figure 3-19: Example of initial and modified ray paths in Sassa's method (Sassa,
1989).
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CHAPTER IV

SOFTWARE FOR CE-TOMOGRAPHIC STUDIES
(DESIGN DECISIONS)

4.1 Introduction

A program for tomographic inversion was written as part of this study. The
selected tomographic inversion methods are based on matrix analysis methods
(Chapter 2). Ray bending and straight ray algorithms are included (refer to
Chapter 3). The program is in structured form to facilitate future additions and
modifications. This chapter starts with an overview of numerical issues involved
in inversion and ray tracing algorithms. Design decisions are highlighted.

4.2 Numerical Issues in Inversion Algorithms

The inverse tomographic problem can be solved with several methods
categorized as: (i) lterative methods (ii) Transform methods, (iii) Matrix inversion
methods, and (iv) other methods. The methods were reviewed in Chapter 2.

lterative methods are not always stable in ill-conditioned problems. Transform
methods are restricted to straight ray projections (space transformations could
be invoked to generalize the solution to heterogeneous, anisotropic media).
Matrix methods are versatile, computationally efficient, and robust. However,
efficient storage and computation are required. Hybrid solutions can be
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attempted to enhance the resolvability of inverted images (e.g., fuzzy logic pre-
processing followed by regularization).

The coefficient matrix (L) is sparse. Storage and computation time can be
decreased more than one order of magnitude when adequate computational
techniques are used. In a dense nxn matrix, the order of computation complexity
is O(n®) and O(n?) for storage. The application of direct methods with sparse
matrix techniques requires O(n2) and O(n-'4), respectively (Golub & Van Loan,
1983). However, efficient iterative algorithms combined with sparse matrix
techniques can reduce the order of computational complexity to O(n1-3) and

storage requirements to O(n).

Consider a space discretized into equal numbers of columns and rows and
tested in a cross-hole; the resulting matrix L contains =1.5Vn non-zero elements
in each row of n entries, e.g. if there are n=20x20 pixels, the length of each row
is 400 and only about 30 entries are non-zero. Adequate data structures can be
very effective to avoid storage problems (see also Tallin and Santamarina,
1989).

43 Computational and Physical Issues in Ray Tracing

If ray bending takes place, ray paths depend on inverted pixel velocities, thus
the tomographic problem becomes non-linear. If it is appropriate to consider
propagation in terms of rays, ray bending can be taken into consideration in
iterative algorithms and matrix methods. In this non-linear problem, ray paths
depend on the velocity field. Thus, the matrix of travel lengths Ljj is not constant
and must be recalculated with a digital ray-tracing algorithm as the field of
velocity evolves during successive iterations or inversions. Ray tracing
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algorithms assume Fermat's shortest time criterion (Santamarina and
Gheshlaghi, 1995).

This section presents an attempt to compare the computational efficiency of ray
tracing methods. It also provides some evidence of the accuracy needed in ray
tracing to solve the inversion problem, within the context of other errors in CE-

tomography.

4.3.1 Assumptions and Fundamental Cases

The computational time demand for ray tracing methods is based on the number
of segmental travel time calculations. Discretize the medium into pixels (Figure

4-1) and assume that:

o The medium is divided into n rows and n columns. Therefore, the number of
pixels is n2.

o Full cross-hole tomographic measurements are conducted: all rays are shot
from a source to all receivers on the opposite side.

« Sources and receivers are located at the mid-height of pixels along verticai

boundaries.
» Rays can cross from one pixel to its vertical or horizontal neighbor, but not

directly to its diagonal neighbor.
Case 1: Straight Rays
Based on these assumptions, the total number of travel time calculations can be

computed for the simplest case where straight rays are assumed. This is the
lowest bound to all methods.



Tabie 4-1: Computation of total number of travel times, assuming straight rays.

Vertical Step Number of rays No. of seg. perray | Tot. No. of segments
0 Ayl n n n2
1Ay 2(n-1) (n+1) 2(n2-1?)
2 Ay 2(n-2) (n+2) 2(n2-22)
(n-1) Ay™m 2[n~(n-1)] [n+(n-1)] 2[n>(n-1)9
Total Number of Segmental Travel Times = nf1+2(n-1)]-2[12422+... +(n-1)3]
[i] Horizontal ray, [ii] Most diagonal ray

in Table 4-1, Ay is of one-pixel height. Mathgram 4-1 (case 1) shows a plot of the
number of segmental travel time computations for the straight ray assumption
(nttcs) as a function of n. Note that the trend can be approximated by n?2 function.
The least squares fit results in the following approximate equation

nttcs = 1.33 n3.

if the number of pixels is very large, the computation of accurate travel lengths
loses relevance to the solution, and the Pythagorean computation can be
reduced to "touched=1" and "not-touched=0". Such a method was proposed by
Dines and Lytle (1979). A related optimized method can be found in Tallin and
Santamarina (1992).

Case 2: Curved Rays

Assume that curved rays are concave and that they extend between the upper-
most and lower-most positions of the source and receiver (Figure 4-2, rays #2
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and #3). Apparently, such rays have the same number of segments and
intersections as the corresponding straight rays (Figure 4-2, ray #1). However,
the number of segments in horizontal rays is sensitive to the curvature of the ray
(compare ray paths in Figure 4-2 versus the corresponding ray paths in Figure
4-3). This is true even when the ray is similar to path #3 in Figure 4-2, but when
the curvature of the ray exceeds the new position of either source or receiver
(e.g. path #4 in Figure 4-2 and curved path in Figure 4-3), two more segments
are added to each ray for each additional row difference.

Assume that the number of segments is increased only in horizontal rays
deflecting one pixel out of their positions. Then, each horizontal ray will have
(n+2) segments. All together, horizontal rays will involve n(n+2) segmental travel
time computations rather than n2. Thus, the total number of segmental travel
time computations is increased by 2n. Given that the process is of order 3, this
additional number of computations can be disregarded (Mathgram 4-1, case 2).

One-Point Methods. The method introduced by Lytle and Dines (1980) is
selected for analysis. In this method, the computation of a fourth-order Runge-
Kutta method is based on the number of selected points during the ray tracing
procedure (primary ray tracing assumes "point velocities" and interpolates
values, rather than selecting rigid pixels boundaries). If a n step ray is assumed,
to have a parameter comparable with other methods, the fourth-order Runge-
Kutta method will require 4xn calculation for each ray to be traced (four
evaluations are needed at each step, Forsythe et al., 1977). Suppose that for
each pair of source and receiver, the ray path is defined for m shooting angles.
Then, the number of calculations needed for only primary ray tracing by this
method is in the order of 4xmxn3 (see Mathgram 4-2). Final pixel values must
still be computed (similar demand as curved rays). In addition, overhead
calculations are required for determining shooting angles. This overhead
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computation demand can not be defined by a specific number, and it can differ
from one algorithm to another.

Some tricks may be implemented to decrease the amount of computation. For
example, ray paths from a given source are computed for different shooting
angles only once. Optimization for each receiver is based on interpolation
between these primary paths.

In this case, there are: m primary paths (i.e., m shooting angles) and n
interpolated paths (i.e., one for each receiver). Then, the problem for the n
sources has the following level of computational demand: nx(m primary paths) +
1.32n3 nttes (as in curved rays) + additional overhead. The optimization
overhead is proportional to the number of rays n2.

Two-Point Methods. In the Sine-Arc two-point method (Mathgram 4-3), the
number of computations will be a factor (A) times the number of calculations
needed for curved rays (Mathgram 4-1, Case 2). This factor is the number of
Sine-Arc amplitudes which may be considered for each ray. Thus, the process
remains n3. The optimization overhead is proportional to the number of rays, n2

In the multiple segment two-point method by Santamarina and Cesare (1995),
the number of segmental travel time calculations depends on the number of
segments, degrees of freedom, and the sweeping area. In this case, every row in
the range of sweeping outside the source and receiver position demands two
more travel time calculations. Each node moved to minimize the travel time
requires the re-evaluation of all segments on both sides of the node. Table 4-2
gives an estimate of the number of calculations for this method (refer to Figure
4-4): The overhead demand is proportional to the number of nodes times n2.
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Table 4-2: An estimate of the number of calculations in multiple segmentation

two-point method.

Nodes No. of travel time calculations
0 1.3xn3
1 1.3x6n3
3 1.3x15n3
7 1.3x25n3

All two-point methods can be optimized by computing all rays from a given
source simultaneously. In this case, the search space is reduced for each ray as
it becomes constrained by its neighbors (two rays from a source never meet).
Savings are proportional to n® (plus overhead) shifting curves parallel down
toward the straight ray solution.

Whole-Field Methods. Two types of node patterns for whole-field methods are
shown in Figure 4-5a&b. Both patterns have B=24 possible segments. In “case
a", there are no connections along pixel boundaries. However in "case b",
neighboring nodes can be connected.

The main point in this type of method is that if all cells are of equal geometry,
lengths are computed for only one cell during the forward process:

Total number of travel time calculations=pn2

but in reality, only § computations are necessary to obtain lengths
In the backward process, we assume that the time required for "if-statements” in
these methods is similar to the computation time required for other arithmetic
operations (multiplication, division, and exponentiation). In addition, the following
assumptions for graph search algorithms are made: (1) do not check backward
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at connections; (2) expand nodes on right vertical wall first, then those on
horizontal boundaries (Figure 4-6); and (3) the search advances by columns.

Based on these assumptions, the number of connections in the pixels that
contain the source (or receiver) is six. For the other pixels on that column the
number of connections is twelve, and for the pixels in all other columns is twenty
four (Figure 4-7). Therefore, the number of computations for a single source or

receiver is
n rays: [(nx12)-6]+(n-1)xnx24=24n2-12n-6
and for the total (n) sources and receivers is
n2 rays: nx{[(nx12)-6]+(n-1)xnx24}=24n3-12n2-6n

Case 3 in Mathgram 4-2 shows the total number of computations vs. n for whole
field methods.

4.3.2 Other Comments

« The density of overhead computations varies among methods and it may be
a decisive factor (e.g. computation time required for determining shooting
angles in one-point method).

- Two rays from a source never cross. Hence, one-point methods and two-
point methods can be readily optimized by searching all rays from a given

source at once. The reduction in computational demand is proportional to n3,
shifting curves parallel towards the straight-ray case.

4.3.3 Accuracy in Travel-Time Measurements and Ray Tracing

Amplitudes of first arrivals may be smaller than the amplitudes of later arrivais
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(This case has been often observed in our laboratory). If diffracted waves have
noticeable amplitude, they can influence travel time observations, whereby late
arriving diffracted waves can be chosen as first arrivals. Moser (1994) suggested
that such problems can be solved by constrained shortest time paths, and
showed that the effect is not as severe as indicated by Geoltarine and Brac
(1993). He also argued that the mechanism that causes later arrivals to have
larger amplitudes than first arrivals could be compensated by the wave-front
healing effect so that amplitudes of first arrivals may not be as systematically
smaller as predicted by Geoltarine and Brac (1993).

Figure 4-8 compares computed travel times by the multi-segment method and
the closed-form solution for a vertically heterogeneous and anisotropic medium
(Santamarina and Cesare, 1995). The accuracy is striking, at least for this
simple case of continuous velocity fields.

Significant deviations in ray path can often imply only minor differences in travel
time, e.g., compare the time along a straight path between two points with
respect to the time along a bi-linear path (Figure 4-8). Thus, one must question
the accuracy needed in ray tracing algorithms, not for time prediction, but for the
computation of pixel travel lengths in L. In order to study this effect, a central
high velocity anomaly simulated case was considered (Figure 4-10). The test
method follows: (1) the vector of travel times t,, and the matrix of lengths L, are
determined for optimal travel paths (wide scanning with small step), (2)
alternative paths are selected by restricting the scanning step in the ray tracing
algorithm and corresponding times are computed, L' and t', (3) the image is
inverted in each case and the velocity vector is obtained for the optimal case
and other cases, V,, and V', and (4) the error in path, time, and velocity are
computed.
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Two error norms were used, the sum of absolute values (Equation 4-1) and the
sum of squared values, producing similar trends.

ng;"'-v,'"l 1
AAE% = - y 100 (4-1)

Figure 4-11a shows that the average absolute error AAE in pixel travel time
computed with rays of different curvature is related to the AAE in travel length
per pixel. However, only a 1% error in time relates to an average 4-pixel widths
difference in travel length per pixel (400%); given that the average travel length
per pixel is 20 pixel widths, the percent average error is 4/20=20%. Figures 4-
11b&c show that the error in pixel velocities can be justified as a result of error in
measurement or error in ray paths, i.e., ray model.

It can be concluded that while more accurate travel paths can improve the

inverted image, the demand on accurate ray paths must not exceed
measurement accuracy on travel times, which is usually about 1%.

4.4 WAaTowm-l: General Approach

The main structure of the Waterloo Tomographic software (WATOM-I) is based
on matrix inversion solutions, using sparse matrix algorithms. Straight rays and
Sine-Arc are two ray tracing possibilities in version-i.

4.4.1 Ray Tracing

Encoded ray tracing algorithms allow either straight rays or two-point Sine-Arc
rays. The Sine-Arc ray path deviates from the straight ray path of length L as
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prescribed by a Sine-Arc with wavelength 2L. The parameter being optimized is
the amplitude of the sine that renders the minimum integral time. The Sine-Arc
method is fast, precise for a wide range of problems, and it enforces some
smoothness to the solution. The region scanned during the search for minimum
time ranges from five pixels above to five pixels bellow the straight path that
connects the source to the receiver. The scanning step is "0.2x(pixel height)".
Shorter time paths outside this region would be greatly attenuated and would be
probably overlooked while picking first arrivals (Geoltarine and Brac, 1993;
Laboratory observations in the Wave-Geomedia Laboratory, University of
Waterloo). Only one parameter is optimized for the full ray.

4.4.2 Matrix Inversion

Direct matrix inversion techniques are usually not employed because of data
storage and computation time requirements. However, L-matrices are highly
sparse: the number of non-zero elements is about the number of pixels across
the discretized space. The sparsity of matrices involved in tomographic problems
enables us to employ efficient storage and solvers. If iterative methods are
employed, acceleration can be used to increase the rate of convergence.

Data Structures. The ia-ja data structure for a nxm matrix with N non-zero entries

needs:
« A single subscript array (length n), which is used to store all non-zero
elements of the coefficient matrix.

o An index array (length n+1) to store the location of the starting point of each

row.

« An index array (length n) to store the column location of each non-zero
element of matrix L.
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Given the following sparse matrix L,

5 0 0 1 3]

9 800 1

00620 (4-2)
07750

0 08 4 4

the arrays in the ia-ja representation are:
e a=(51398162775844)

e ia=(14791215)

e jaz(14512534234345).

A row-index data structure is also employed in the WATom-I program and differs
from the ia-ja data structure. Elements in the row-index data structure are:

s An array of length n+1 which includes non-zero elements in matrix L.

« An index array of length n+1 which contains the locations of non-zero and
diagonal elements.

For the previous example, these two arrays are:

e 8a=(58654x139127784)
e ija=(7911121416451542334).

where x is an arbitrary number.

Link-lists can also be used as a data structure. The main advantage of link-lists
as compared to the ia-ja and row-index data structures is the ability to insert a
value by modifying just a single row. This advantage resuits from storing pointers
which show the location of the next value in the main array (which is used to
store non-zero values). The location of the first value can be shown by a header
variable, and there is a terminator which gives the location of the last value.
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Inversion: Conjugate Gradient. If the coefficient matrix is symmetric and positive-

definite, then, the conjugate gradient method is a very efficient inversion method.

Regularization and damped least squares methods are implemented in WATOM-
I. Since matrices LTL, R'R, and | are square, symmetric, and positive-definite,
the conjugate gradient method is used (Note that regularization and damped
least squares methods produce coefficient matrices with different structures).

4.4.3 WATowm-l: Structure

WAToM-l runs in a workstation. The dimensions of arrays are not strictly
restricted in the workstation environment. However, they are clearly subjected to
size limitations in DOS-based systems. Two parameters are pre-defined in
WAToMm-l to control convergence: (i) Maxiter fixes the maximum number of
iterations, and (ii) Contol sets the convergence tolerance or maximum toierable

error.

Schematic flowcharts of steps in L and R matrix entries computation are given in
Appendix C. A global flowchart gives the WAToMm-I algorithm (Appendix C).

Input-Output

Input parameters are encoded in an arbitrarily named file (name must not
exceed twelve characters including the three letters for file name extension).
This text file is prepared in advance using spread sheet programs or text editors.
The format of the input file is (an example of the data file is given in Figure 4-
12):
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« First and second lines: header lines for comments and descriptions, file
specification, and other necessary information. There is no restriction on the
format of these two lines. The total length of each line should be less than
72 characters.

« Parallel lines of data in eight columns, separated by one or more spaces.
The first column is a line number, or ray number. The next seven columns
include source coordinates (Xs, Ys, Zs), receiver coordinates (Xr, Yr, Zr)
and travel time for source-receiver pair. Note that the source and the
receiver coordinates are given in three dimensions even though this version
of the program assumes a two-dimensional inversion plane (X-2).
Therefore, the *Y" dimension or second coordinate should be zero in all
cases.

» Sources and receivers may be located anywhere in the region.

All other required information is interactively requested. A typical input dialog
follows:

>0

1. "Input No. of rays and pixels ..
*No. of rays" is the number of lines of data in the data file. "No of pixels" is
the number of discrete elements in the selected mesh (number of unknowns).

2. "Input No. of rows and columns ... ====>:"
“No of rows" is the number of pixels in the vertical direction of the selected
mesh. "No of columns® is the number of pixels in the horizontal direction of
the selected mesh.

3. "Width and Height of the region .. ====>""'
These are the dimensions of the region to be inverted (in the same units of
length). The inverted velocity is in units of these lengths over the unit of input
travel times.



*(R)egularization or (D)LSQR ... ====>"

The inversion problem can be solved by regularization or damped least
squares. Characters R/r or D/d allow the user to select between these two
options.

Depending on the answer to the previous question, one of the following

questions will be asked (5a or 5b).

5a.

5b.

*Input Reguiarization coefficient value ====>:'

The smoothness of the inverted image is proportional to this parameter. The
"best value” depends on the amount of noise in the given data. Thus, this
parameter is a variable to be parametrically studied by the user.

"Input DLSQR coefficient value ====>:'

This is the coefficient to the identity matrix for the damped least squares
solution and balances least squares and solution norm. It is case specific.
Thus, this parameter is a variable to be parametrically studied by the user.

*Name of input data file ......... ====>:"
The structure of this ASCI! file was previously described.

*(S)traight rays or (C)urved rays ====>:'
Straight ray tracing (choose "S*" or "s"), or curved ray tracing ("C" or “c") can
be selected. Curved rays use the Sine-Arc method.

*Name of the initial velocity file ... ====>:

If "curved rays" is selected, a velocity field shouid be input. This velocity field
can be the inverted image from the last inversion (obtained with the same set
of travel times), or a velocity pattern based on prior information about the
region. This is an ASCII file. Arbitrary or computed pixel values for this file



can be given in a sequence of numbers in (a) row(s) or in a column. One or
more spaces or a comma should be used to separate two successive
numbers. A typical file is given in Figure 4-13.

If “straight paths" are assumed, the average velocity of the fieid should be
input. This value is used as an initial condition by WATom-1. Therefore, not
only the rate of convergence but also the inverted image can be improved by
a proper input of average velocity.

A typical output of pixel velocities is presented in Figure 4-14. This output can
be imaged by specialized display softwares, as a contour map, pixel map, etc. A
second output file (Figure 4-15) gives: No. of iterations (before fulfilling an
specific RMS value criterion), RMS value in each iteration, and final maximum
error (gives the closeness to the given data).

Appendix D includes the Waterloo Tomographic software (WATOM-I).

4.5 Summary and Conclusions

The coefficient matrix (L) is large and sparse. In a dense nxn matrix, the order of
computation complexity is O(n3) and O(n?) for storage. However, efficient
iterative algorithms combined with sparse matrix techniques can reduce the
order of computational complexity to O(n1-3) and storage requirement to O(n).

Travel time is relatively insensitive to variations in ray path. Often, most
computational efforts in ray tracing are spent in optimizing travel times to the
point that the estimated time error becomes significantly lower than
measurement errors. However, optimization alters ray paths and the length that
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rays traverse different cells. This affects tomographic reconstruction. The
significance of this effect was evaluated with simulated data to facilitate
comparison. It was shown that while more accurate travel paths can improve the
inverted image, the accuracy in ray paths does not need to exceed measurement
accuracy on travel times, which is usually about 1% (at best).

A program for tomographic inversion was written as part of this study. The
selected tomographic inversion methods are based on matrix analyses. Damped
Least Squares and Regularization solutions have been encoded. Straight rays
and optimal Sine-Arc algorithms were implemented for ray tracing in the case of
linear and non-linear problems.
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n=n(rows)=n(columns)
Number of pixels=nxren®

Figure 4-1: A region divided by 4x4 pixels.

|

Figure 4-2: A source and receiver pair connected by different paths.
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Figure 4-3: A source and receiver pair connected by the straight path and a

curved path.

(a)

in first step
(b)
1
1DOF ——
1 3 2
3DOF . o - ——

1 5§ 2 6 3 7 4
7DOF ——0—8—0—=08——0——0——&

Figure 4-4: Ray paths in a Muiti-Segment method. (a) Cases when path has

one and two degrees of freedom. (b) Order of moving nodes in a path.
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Figure 4-5. Number of connections per pixel for two selected whole-field
methods.

12 7 5

Figure 4-6: Path connections from each node to the other nodes in a pixel. The

number on top of each pixel shows the number of connections.
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Figure 4-7: Number of connections in each pixel for a receiver.

L, =10m tis]

0.0893

0.0931

Ly =10m t[s)

Figure 4-8: A comparison between the calculated travel times by multi-segments
method and the corresponding close form solution (Santamarina and Cesare,
1994).
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Figure 4-9: Travel time along different paths (Santamarina and Cesare 1992).
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Figure 4-10: Simulated model, high velocity anomaly at center.
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Balloon data. Units in ft, ms.

#/256 Source (x,y,z) Receiver (x,y,z) Travel time
0 0.0 0.0 5.2501 59.50 0.0 5.2500 4.41
1 0.0 0.0 5.2501 59.50 0.0 8.5000 443
2 0.0 0.0 5.2501 59.50 0.0 11.750 444

3 0.0 0.0 5.2501 59.50 0.0 15.000 4.48
4 0.0 0.0 5.2501 59.50 0.0 18.250 4.52
5 0.0 0.0 5.2501 59.50 0.0 21.500 4.58
6 0.0 0.0 5.2501 59.50 0.0 24.750 4.63

7 0.0 0.0 5.2501 59.50 0.0 28.000 4.66
8 0.0 0.0 5.2501 59.50 0.0 31.250 4.7
9 0.0 0.0 5.2501 59.50 0.0 34.500 4.76
10 0.0 0.0 5.2501 59.50 0.0 37.750 4.85
1 0.0 0.0 5.2501 59.50 0.0 41.000 4.92
12 0.0 0.0 5.2501 59.50 0.0 44.250 5.05
13 0.0 0.0 5.2501 59.50 0.0 47.500 5.15
14 0.0 0.0 5.2501 59.50 0.0 50.750 5.32
15 0.0 0.0 5.2501 59.50 0.0 54.000 5.44

Figure 4-12: Data file for one source and sixteen receivers placed in two parallel

boreholes separated at 59.5 (m) distance.
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1,110,111 1,1,
LI BV DU I U DR DU B DO
1,110,000, 11,11,
1,110,001, 101,
LI U DS U (VR IV DS DR DR, N
LI IR U U D S IO DO DO, X

11,101,111,

Figure 4-13: Typical input velocity file. Assuming a homogeneous region divided
into 66 pixels with same velocities equal to 1..

v(1)= 3.44
v(2)= 3.32
v(3)= 3.43
v(4)= 3.55
v(5)= 3.54
v(6)= 3.53
v(7)= 3.55
v(8)= 3.42

v(9)= 3.43

Figure 4-14: Example of a section of a velocity output file.
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iter= 1 ms = 0.573254324408763851E-12
iter = 2 rms = 0.797918658182052098E-25
iter= 3 rms = 0.901146719950356492E-39
iter = 4 rms = 0.558238485838429981E-52
iter = § rms = 0.376780910927233054E-65
iter = 6 rms = 0.248253025017300200E-78
iter = 7 rms = 0.190678642189774752E-91
iter = 8 rms = 0.230596113047614409E-104
iter= 9 rms = 0.142712113588909162E-117
iter= 10 ms = 0.304794942904023085E-130
iter= 11 ms = 0.202263862556677051E-143
iter= 12 ms = 0.429720579581301554E-156

max error = 1.65598720952372580

Figure 4-15: Example of the inversion performance output file.

95



COMP-T.MCD

Mathgram 4-1: Computational demand (straight and curved rays)

Case 1. Straight Rays
N :=100 n=lt.N
n-1
atics_:=n’(1 +2:(n— 1)) - 2- 2 i2 nttes, i< 1
i=1
approximation: z = 1330’
[ 2 7
1°10 .
1°10% |}~
1°16° = ~
nacs, 1210 ~ -
_zn 1000 |- -
100p- -
o} -
b
1 10 100

Computational demand for straight ray assumdbn (medium divided into nxn pixels with
n sources and n receivers).
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COMP-T.MCD

n-1
aue_ =n*(1+2-(a= 1)) = 2- Z iZ +2.0 atc. =1

i=1

approximation:  z :=133-0’

1 10 100

Computational demand for curved ray assumption (medium divided into nxn pixels with
n sources and n receivers).
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COMP-TB.MCD

Mathgram 4-2: Computational demand for ray tracing methods

Parameters:
N :=100 n:=1.N
Approximation: z = 1.33-0°
Case 1; One-Point Methods
Number of trial shots: m:=10
nttcln :=4-|n-n3 nm:ll =1
1108 T
110 - -~
1r10® [~ .
10 P ~
oticl -
o .-
— rw* - . -
Zn - -
© T 1000p= .- T
100~ P -
wE /- -
. L
1 10 100

Approximate computational demand for typical One-Point method (medium divided
into nxn pixels with n sources and n receivers).
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COMP-TB.MCD

Case 2a: Two-Point methods (Sing-A hod)

number of searched paths: A :=7

n-1
ac2_ = A 02(1+ 20— 1)) - 2- Z P +20 anc2, :=1
i=1
approximation: z = 1.33-0
1107 r
110% - .-
110 - - ’ -
anc2, 1°10* [- L ~
1000 - ~
100 {— T -
10— P -7 -
. .
1 10 100

Approximate computational demand for Sine-Arc Two-Point ray tracing method (medium
divided into nxn pixels with n sources and n receivers).
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number of searched paths:

auc2b_:=Ad 01+ 2:(a= 1)) - 2- Z i2

approximation:

z = l:i'.’o-n3
o

mtc2!)l =1

COMP-TB.MCD

100

Approximate computational demand for Multi-segment Two-Point method for seven degrees of
freedom (medium divided into nxn pixels with n sources and n receivars).
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COMP-TB.MCD

Case 3: Whole field methods

awhole,_ :=-(24-0% - 12-0- 6) awhole, := 1

approximation: z :=1330°

Approximate computational demand for Whole-Field methods (medium divided into nxn pixels
with n sources and n receivers).
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Mathgram 4-3: Sine-Arc Two-Point Method

Parameters:

L:=20 i:=0.. 100 j:=0..8
_il —ri an.
xi.-lw Aj (j—4)2+1.
ys :=§ =5
- r-(x. -
X100~ %t L X100~ %y
15
Y0 ’ )
i
st
Yis g,
s ?
Yi.8
T -
=
) 4 8 12 16 20

Sin-Arc paths for the case when source and receiver are at the same level.
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Case 2:

15

Sin-Arc paths for the case when source and receiver locations are at one-row

different elevation.
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COMP-TC.MCD

Case 3

Source and Receiver locations: ys :=9 yr:=1

- L b -
y. . Tys+ xi.._yr__ys._.+ [A,-sin[.._"_').]] yst. :Sys 4+ X -y

15

'
¥,
°

~%

-
-
-

’-

-
~

I..‘.‘
3
W
)

-
»

-
“w

'-

-
-
w

13215 12
o0 -4

12 16 20

o
-~
[ J

Sin-Arc paths for the case when source and receiver locations are at a two-row
different elevation.
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CHAPTER YV

DATA BASE OF CASE HISTORIES

5.1 Introduction

Prior experience with simulated data has shown that the quality of inversion is
unrealistically good when compared to inversions with real data. In part, this
reflects the compatibility of forward simulation algorithms with hypotheses made
in the inversion stage. A central goal of this study was to assess the potential of
inversion methods with real data, for which a database of well documented case
histories was compiled. This chapter presents these cases.

5.2 Case Histories

A database of case histories was compiled. The main characteristics of these
cases are summarized in Table 5-1. A detailed description of each case is
presented in the text. All corresponding input files to be used with WAToM-1 are
printed in Appendix E.

5.2.1 High Velocity Circular Anomaly - Acoustic Waves

The purpose of these tests was to permit visualization of the anomaly and to
operate with simple wave propagation physics (only P-waves are possible in air).
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Table 5-1: Case Histories.

Case history Description Characteristic Purposes
High Velocity Circular
Balfloon Anomaly Acoustic waves Visualization of anomaly
(Four C ) Left-Side Off-Centered
Top-Side Off-Centered Simplicity (only P-waves)
and Centered
Simulated Crack
Side-to-Side shooting S
Tomographic imaging of
Concrete Block Top to Left-Side shooting Well controlled | well defined defects
(Two Cases) Top to right-Side shooting features (Crack and Column)
Concrete Column
: . Assess the condition of a
Kosciuzko Shooting from top and one - : ;
: - Very noisy data | massive, large size
Bridge :g: to bottom and the other concrete pier
Chute . Picture the internal
Hemmings gt?gp&g%:‘:::sps;?::‘m Asymmetric | condition of a pillar and
Dam face structure state of shotcrete
Korean DMZ Seven sets of parallel Heterogeneous tll\]sses's the location of a
shootings , anisotropic nnel
background
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Data acquisition: Real data were obtained in the laboratory using a 1.5mX1.5m
frame to represent the plane under study. Air was the homogeneous medium,
V=355m/s (Santamarina, et. al. , 1991). Figure 5-1 shows a schematic diagram
of the test configuration for the following four cases.

Balloon 1: A 0.23m diameter circular high velocity inclusion was simulated with a
balloon filled with helium (V=921m/s). The balloon was located on the left-side,
off-centered within the frame (Figure 5-1a). Signals were detected at 7 equally
spaced receivers (capacitor microphones) that were installed on one side of the
frame representing the receivers borehole. The source (miniature hammer-and-
plate) was activated at 7 equally spaced locations along the opposite side to
generate cross-hole data. A PC-based digital storage oscilloscope was triggered
with the source.

Balloon 2 A 0.23m diameter circular high velocity inclusion was simulated with a
balloon filled with helium (V=921m/s). The balloon was located on the top-side,
off-centered within the frame (Figure 5-1b). The source-receiver configuration
was the same as for Balloon 1.

Balloon 3. A 0.23m diameter circular high velocity inclusion was simulated with a
balloon filled with helium (V=921m/s). The balloon was located on the center of
the frame (Figure 5-1c¢). The source-receiver configuration was the same as for

Balloon 1.

Balloon 4. A 0.46m diameter circular high velocity inclusion was simulated with a
balloon filled with helium and placed at the center of the instrumented frame
(Figure 5-1d). In this case, 16 equally spaced receivers (capacitor microphones)
were instailed on one side of the frame to represent a borehole. The source
(miniature hammer-and-plate) was activated at 16 equally spaced locations
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along the opposite side to generate cross-hole data. The PC-based digitai
storage oscilloscope was triggered with the source.

5.2.2 Concrete Block - Well Controlled Features

The purpose of these tests was to assess tomographic images in concrete with
well defined internal features (Gheshlaghi, et. a/, 1995).

Data Acquisition. The medium was a concrete monolith (1.2x1.2x6.1m)
containing a variety of model defects (Figure 5-2). Defects were pre-constructed
and placed in the form prior to casting. The monolith was allowed to cure for
three months prior to testing. The data were collected in a laboratory by Ontario
Hydro. A Soniscope was used for data collection (central frequency: 50 Khz).

Two cases are discussed.

Simulated Crack: An open crack was simulated with a slot that was cut in the
concrete monolith using a diamond wire saw, 3 months after casting. The slot
was 12mm wide and extended across the width of the block at an inclination of
26°. Readings were taken from the top to both vertical faces (11x10 rays for
each side) and across the monolith (10x10 rays), giving a total of 320 travel time
readings. Figure 5-3a shows details of this case.

Concrete Slab: A Sonotube (0.46 m diameter by approximately 2 m high) was
placed vertically in the monolith form and loosely filled with crushed limestone
(nominally 20 mm size) to a height of 0.91 m. As the concrete was poured into
the monolith form, the Sonotube was raised to leave a column of aggregate
supported by the fresh concrete. The stone was selected to be the same as the
coarse aggregate in the monolith concrete. Readings were taken at 23 locations
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from 23 shootings on the opposite side giving a total of 529 travel time readings
(Figure 5-3b).

5.2.3 Kosciuzko Bridge - Very Noisy Environment

The purpose of this tomographic study was to assess the condition of a massive,

large concrete pier.

Data Acquisition: The pier dimensions were 5.52m x 5.52m. Two sides of the pier
were instrumented with 14 receivers (piezo-pads) each (28 total). The same
number of sources (hand sledge hammer) were activated on the other two sides
of the pier (Figure 5-4). A longitudinal closed crack was visible and possibly
extended from one side to the other side of the pier (Santamarina, C., Tallin, A.,
Wakim, T., 1991). High traffic and vibration levels made data acquisition difficult.

5.2.4 Chute Hemmings Dam - Asymmetric Structure

The objective was to give a picture of the internal condition of the pillar and
some information on the mechanical characteristics of shotcrete.

Data Acquisition: The medium was the pillar of a concrete dam (Figure 5-5).
Acoustic waves were generated by explosives (boosters) at 15 locations,
triggering them with low electrical voltage. A set of fifteen accelerometers of
constant sensitivity in the frequency-band 1-15 KHz was located on the
downstream face of the dam. Sixty-one traces (out of 225 traces) were rejected
because the received energy was not sufficiently high to enable travel time
determination (Rhazi, J., 1995).
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5.2.5 Korean DMZ - Heterogeneous, Anisotropic Background

The purpose of this tomographic study was to assess the location of a tunnel in
a heterogeneous and anisotropic medium (Figure 5-6).

Data Acquisition: The tunnel was located 81 m below the surface. It was
approximately 2.7m wide and 2.2m high. The source was an electric arc
discharge device with a frequency range of 1.4-1.7 KHz. The receivers were
hydrophones with appropriate amplification and frequency filtering.

Seven cross-hole data sets were collected by simultaneously lowering both
source and receiver in parallel vertical holes, 15.2m apart. Measurements were
repeated every 0.2 meter. One hundred and fifty trave! times were measured in
each set. In the first data set, source and receiver were positioned at the same
elevation.

The elevation differences between source and receiver, for the next six sets,
were 3.90m=(S90-R86.1), 8.90m=(S92-R83.1), 14.90m=(S95-R80.1), -4.10m=
(S86.-R90.1), -8.90m=(S84-R93.1), -15.1m=(S81-R96.1), respectively. The
minus sign indicates that source elevation is lower than receiver elevation
(Rechtien et al., 1995).

53 Summary

The quality of inversions using simulated data is unrealistically good when
.compared to inversions with real data. In parn, this reflects the compatibility of
forward simulation algorithms with hypotheses made in the inversion stage. A
central goal of this study was to assess the potential of inversion methods with
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real data, for which a database of well documented case histories was compiled.
The database consists of five case data sets of histories (eleven cases)
including both laboratories and field cases.

The four balloon cases permit physical visualization of the anomaly and allow a
corroboration of resuits. This case is based on simple wave propagation physics
(only P-waves are possible in air).

The three cases in the concrete specimen with defects permit studying
tomographic imaging in a real civil engineering material with controlled defects.

The Kosciuzko bridge pier data involves a massive, large concrete pier. The
data were collected in a very noisy environment.

The Chute Hemmings dam data permits the study of a massive structure with

poor illumination angles.
The tomographic data from the Korean Demilitarized Zone involved a low

velocity anomaly (tunnel) in a heterogeneous and anisotropic medium. The
difficulties of inverting these data are assessed in the following chapter.
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CHAPTER VI

DATA PRE-PROCESSING STRATEGIES

6.1 Purpose

In an inversion process with simulated data, the inverted image can simply be
tested with the simulated model. However, the inversion of real data usually
faces problems of nonuniqueness due to mixed-determination, uneven
distribution of information, and the presence of noise (Morozov, 1993).

Additional information can be added in the form of constraints to avoid
unrealistic solutions. For instance, knowing the geological formation of the rock
at a given site can be helpful to avoid unrealistic values for the rock properties.
However, this additional information has its own uncertainties.

Another option to provide foresight into the problem is to preprocess the data.
The following strategies could be employed in a pre-processing study:
quantification of systematic and accidental errors, source coupling, global
information content (SVD), distribution of information content, synograms, plots
of average velocity and residuals. Emphasis will be placed on the distribution of
information content, detection of errors, anisotropy, gradual changes, and
anomalies (SVD is addressed in Chapter Vil).
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6.2 Distribution of Information Content

Gathering data in CE-tomographic testing is almost always restricted to some
limited illumination angles. Hence, the distribution of information is not even
throughout the medium. For example, the number of rays crossing a pixel is
different for each pixel. This means that there is more information in some
regions of the medium than in others. It is possible that no information would be
available from some parts. Therefore, knowing the distribution of information can
be helpful in designing adequate source and receiver configurations to assess
the optimal even distribution of information.

The simplest characterization of information content is to compute the total travel
length for all rays that traverse a pixel. If the tomographic problem is cast in
matrix form, the length of the columns of the matrix L provide this information for
each pixel. Figure 6-1 shows the information density for three different shooting
patterns. If the final image is correlated with the corresponding image of
information, the analyst is well advised to skeptically review the inversion.

6.3 Systematic and Accidental Errors

The presence of accidental and systematic errors can be investigated with travel
length vs. travel time plots. The boundary condition is zero travel time for zero
length of rays. Therefore, the regression of (t, ;) should go through the origin.
The ordinate crossing of the regression line marks the average systematic error
(e.qg., trigger delay) data. This analysis is weakened when all rays are of about
the same length (e.g. pure cross-hole case).

Single off-line data carry accidental errors. These errors are usually due to
reading errors or missing true first arrivals etc. Accidental errors can be
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identified by plotting the projections corresponding to a source or to a receiver,
herein called shadows.

Accidental Gaussian errors are canceled out in least squares solutions. This is
not the case for systematic errors. The best alternative is to identify them and
remove them. Otherwise, the measurements are equivalent to (t+At) and the

solution becomes

§ = [Ohsosao™ ]+ [Oponnc 1] 6-1)
where (L')meuso i the pseudo-inverse obtained with any of the methods
described before.

The analysis of systematic and accidental errors is a helpful tool in determining
the order of magnitude of damping and regularization coefficients. Furthermore,
systematic errors can be corrected.

6.4 Analysis of Shadows

The analysis of projections, or “shadows”, might be the best way to pre-assess
the position and size of inclusions in the medium and the presence of accidental
errors. This study can be conducted in different ways. Fan ray paths and paralliel
ray paths are two possibilities. In the case of fan ray paths, average velocities
are computed for each source and receiver pair assuming a straight ray path,
and then plotted against receiver iocations.

6.5 Heterogeneity and Anisotropy

The polar and spatial distributions of velocity in a medium can be used to
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evaluate heterogeneity and anisotropy. Only estimated average velocities can
be computed before inversion:

L
(V). =(—°g"—;—"““‘ (6-2)

The straight ray assumption is employed as a first approximation to L.

The plot of average velocities versus average depth of the shot can highlight the
presence of anomalies as well as any global trend such as vertical

heterogeneity.

The degree of anisotropy can be inspected by plotting average velocities vs. the
inclination of rays in either polar or Cartesian plot.

This pre-processor can be used to evaluate a proper initial guess for the velocity
of the background. For instance, in the case of a vertically heterogeneous
medium, velocity can be defined as a function of depth (V=a+bZ). This study can

also be employed to estimate an initial value for thresholding.

6.6 Case Histories and Pre-Processing

6.6.1 Balloon 1

Assuming straight ray paths, the distribution of information for this case is given
in Figure 6-2. The figure shows a high concentration of information in the center
of the medium. The first and last rows of pixels have the lowest information
content. This plot can be used to design the configuration of sources and
receivers before the test is implemented and decrease the mixed-determination

of the problem.
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The systematic triggering error can be evaluated from Figure 6-3a. The linear
regression analysis shows an 0.15ms average systematic error in the data. Off-
line data indicates the presence of an anomaly and the effect of accidental
errors (Figure 6-3b). This well-behaved data indicate that the optimum
regularization coefficient should be selected in a low range .

For the purpose of heterogeneity inspection, Figure 6-4a shows changes in
average velocity versus depth. An average depth for each pair of source and

receivers is computed as:

= Zsourca +zraoeiver (6"3)

ave 2

While most paths show an average velocity of 13.8 (in/ms), some rays in depths
20-40 (inches) indicate higher velocity, about 14.5 (in/ms). This suggests the
presence of a high velocity region at mid-depth. The value of the high velacity
region helps to select a proper threshold during post-processing for image
enhancement to differentiate between the anomaly and the background in the

image.

The plot to inspect for anisotropy is shown in Figure 6-4b. The analysis of a
single fan is biased by the presence of the anomaly. However, when all the
shots are plotted at once there is no conclusive trend to suggest an anisotropic
background, which is indeed the case for air.

Figure 6-5 shows the analysis of individual projections or shadows for this case.
For sources 1 and 2, the presence of an inclusion can not be seen until the last
rays. The presence of the inclusion has affected the average velocity for that
part of the medium scanned with rays shot from sources 3, 4, and 5. The effect
of the inclusion on the average velocity is almost diminished for the source 6 and
7. The inclusion has affected the rays emitted from source 4 more than sources
3 and 5. Therefore, the inclusion should be located in front of source 4.



The average velocities for the rays emitted from sources 1 and 2 only increased
for the last two rays. For sources 6 and 7 average velocities decreased for the
last 3 rays. Therefore, it can be deduced that the size of the inclusion is about
one receiver interval or 9in(=0.23m).

The presence of accidental error can be noted in many cases, e.g., note the
fluctuation in the shadow of the first source (Figure 6-5a).

6.6.2 Balloon 2

The pre-processing of the data for Balloon 2 followed a similar procedure
outlined for Balloon 1. Figures 6-6 to 6-8 show the results. The distribution of
information content for this case history is the same as for the Balloon 1 case
(Figure 6-2). A proper setup configuration for sources and receivers can be the
same as for Balloon 1. Due to high degree of systematic and accidental errors
(Figures 6-6a & b) a higher degree of smoothing should be expected for this
case, compared to Balloon 1.

Data preprocessing shows a homogenous isotropic background with a high
velocity anomaly in the upper part above the center (Figure 6-7). The value of
average velocity for anomaly can be used as an initial guess for thresholding.

Figure 6-8 shows the analysis of shadows for this case. The location of the
inclusion has affected the rays shooting from sources 1, 2, and 3 more than the
other rays emitted from the other sources. The rays emitted from the last three
sources have not been affected by the inclusion presence, except for the first
two receivers. The location of the inclusion can be inspected from source 3
shootings where a symmetric trend for the first 4 rays with a peak at ray 3 can be
seen. Therefore, the inclusion should be located in front of source 3.
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The first two rays emitted from source 1 are not affected by the inclusion and for
sources 6 and 7 the average velocities for the last 4 rays are decreased. Thus,
the size of the inclusion should be about one receiver interval or 9in(=0.23m).

6.6.3 Balloon3

The distribution of information content for Balloon 3 is similar to that for Balloon
1 (Figure 6-2). The pre-processing of the data for this case history followed a
similar procedure, outlined for Balloon 1. Figures 6-9 and 6-10 show the results.
Data preprocessing shows a homogenous isotropic background with a high

velocity anomaly in the center.

The optimal configuration for source and receiver locations can be evaluated
from the distribution of information content (Figure 6-2). The plots for systematic
and accidental errors indicate low accidental errors for this case history (Figure
6-9). This well-behaved data suggest a low value for the optimum regularization
coefficient.

Figure 6-10a shows a high velocity region in the center of the medium (depths
25 to 35 inches). The presence of the anomaly can hardly be deduced from
Figure 6-10b. Since the anomaly is in a location where most of the rays pass
through, the average velocity of the anomaly has been averaged with the
background velocity. Therefore, a proper threshold to differentiate between the
anomaly and the background in the image can hardly be selected.

Figure 6-11 shows the analysis of shadows for this case. The inclusion has
affected rays shooting from sources 3 and 4. The symmetry, in average
velocities, of rays emitted from source 4, and the symmetry for rays emitted from
sources 2 and 6, suggest the location of the inclusion in the center of the region.
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6.6.4 Balloon 4

The information content for this case history is given in Figure 6-12. A high
concentration of information in the center and a iow concentration in the first and
last row are the main characteristics of this case history.

The plots of travel time vs. travel length for this case are given in Figure 6-
13a&b, respectively. An apparently high average systematic error of 0.676ms is
calculated by linear regression of the whole data set (Figure 6-13a). However,
this is biased by the higher effect of the high velocity anomaly on the shorter
rays (Figure 6-13b). The low level of accidental errors suggests a low value for
the optimal regularization coefficient.

Figure 6-14a shows that the central location of the anomaly affects all long rays
at depth 20-45 (inches). This plot can be used to select a proper threshold and
to differentiate between the anomaly and the background in the inverted image.
Anisotropy inspection in Figure 6-14b indicates an isotropic background.

Figure 6-15 shows the analysis of shadows for this case. The presence and

location of an inclusion can be deduced from these plots. Accidental errors can
also be noted.

6.6.5 Crack in Concrete (Side-to-Side Shootings)
The information content of this case history is given in Figure 6-16. The low

information contents which are apparent in the two dark pixels in third and
seventh row are due to the absence of sources or receivers in those regions.
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The plots of travel times vs. travel lengths for this case are given in Figure 6-
17a&b. It is clear that there are two fundamentally different ray paths. The same
average velocities would be calculated if the velocity for data in the upper set
would be computed with a shorter length (I-Al). An average systematic error of
0.003ms is calculated for the lower set, using a regression process (Figure 6-
17a). This plot could also be interpreted as a very systematic difference between
2 sets of measurements, such as different equipment, different operators, etc.
Once such a plot is available, the analyst must identify the physical or
experimental cause before processing.

For those rays which do not cross the crack (lower set) the average velocity is
about 4.65km/s (Figure 6-18). It appears that the real ray paths are out of plane.
The extra distance Al can be computed from these data assuming a
homogeneous medium with V=4.64km/s: Al=1.2m. For comparison, the width of

crack is 12mm.

Figure 6-19 shows the plots of the average velocities vs. receiver locations and
inclination: the dual trend is the most indicative of spatially related bias.
Projections follow similar trends for all sources, except for sources number 9 and
10. The high velocities correspond to paths which do not cross the crack. A
sudden drop in velocities appears for rays crossing the crack. However, the
computed average velocity increases as the distance from source-to-receiver
increases. Indeed, the wave front travels around the open crack and out of the
plane of the transducers. Thus, shorter straight paths are affected more by the
three-dimensional deviation.

6.6.6 Crack in Concrete (Top-to-Left Side Shootings)

Figure 6-20 shows the information content for this case history. The highest
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information content is in the central source area. Low information comes from
the crack area and only the last part of the crack is crossed by a few rays.

The plots of systematic and accidental error for this case are given in Figure 6-
21a. A low average systematic error of -0.006ms is calculated with a regression
analysis (Figure 6-21a). Figure 6-21b shows that with a straight path assumption
an average velocity of 4.6km/s can be calculated for those parts of the medium
traversed by rays which do not cross the crack. Those few rays crossing the
crack show lower average velocity (3.65km/s to 4.2km/s).

The plots of average velocity vs. receiver locations, i.e. shadows, are given in
Figure 6-22. The average velocity remains 4.6km/s until the rays cross the crack
(rays from all sources to receivers 9 and 10). This shows a homogenous medium
for the left part of the block from receiver 1 to 8. A low velocity anomaly should
be expected for the lower part.

6.6.7 Crack in Concrete (Top-to-Right Side Shootings)

Figure 6-23 shows the information content of this case history. The information
content for the right part of the block is almost even. However, the highest
information content is in the central receiver area. No information content can be
found in the left side.

The plots of systematic and accidental errors for this case are given in Figure 6-
24a. A low average systematic error of 0.03ms is calculated with regression

analysis (Figure 6-24a).

Figure 6-24b shows that with a straight path assumption an average velocity of
4.6km/s is calculated for those rays which do not cross the crack (rays
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connecting first and second receivers to all sources). Those rays crossing the
crack have lower average velocities of 2.5km/s to 4.0km/s. As the ray paths
increase, the effect of out-of-plane rays decreases, and the average velocity
approaches the value in the uncracked concrete.

The analysis of shadows is given in Figure 6-25. The plots shows that the data
from the first two receivers are not affected by the crack.

6.6.8 Column of Aggregate

The information content of the column of aggregate is given in Figure 6-26. Due
to the symmetry of the medium and the source-receiver pattern, the central pixel
carries the highest information content. This study helps design the setup
configuration of sources and receivers to decrease the mixed-determination of
the problem.

A systematic error of -2.16ms was computed with regression analysis (Figure 6-
27a). A number of accidental errors in the data are revealed in Figure 6-27b.

The heterogeneity analysis (Figure 6-28a) shows that the medium should consist
of two different parts. The main part has an average velocity of about 4.4km/s,
which is the average of the concrete and aggregate velocities. The velocity of
the other part is higher and about 4.6km/s, which is the velocity of concrete. The
presence of aggregate can be noted from depth 0.3m where the average velocity
starts to decrease. The velocity values of these two regions can be used in
determining the proper thresholds for post-processing of the final image.

Figure 6-29 shows the analysis of shadows for this case history. A reasonable
drop in average velocities of the rays from source 7 to receivers 7 to 13 shows
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the location of the top part of the aggregate column. The drop indicates that the
rays have traveled in the shortest time path (Fermat's principle) and have started
to bend toward the high velocity concrete, rather than traveling in a straight path
through the aggregate column. The rays then travel in straight paths from
receiver 13 to 23. Therefore, the average velocity have dropped from 4.6km/s
(good concrete) to 4.4km/s, which is an average velocity for the concrete and
aggregate column. The ray bending effect can be found for the rays connecting
sources 8 and 9 to receivers 7 to 13. Note the presence of clearly noisy data
points. These should be identified and removed or “regularized” before

inversion.

6.6.9 Kosciuzko Bridge Pier

The distribution of information content for this case history is given in Figure 6-
30. The information content distribution on the two main diagonals is asymmetric
due to sources and receivers configurations. The configuration appears well-
designed.

A high number of accidental errors occur in the upper triangular part of the plot,
affecting primarily short rays (Figure 6-31a). Also, an average systematic error of
0.51ms is calculated with regression analysis. The level of errors indicates that
the optimum regularization coefficient should be very high.

Figure 6-31b shows a very homogeneous medium with average velocity of 170

in/ms. Therefore, a constant initial velocity should be selected for all pixels. A
reasonable guess is the evaluated average velocity.

129



Two sets of shadow analysis are given in Figures 6-32 and 6-33 for the top to
bottom and side to side shootings, respectively. A highly homogeneous medium
is revealed based on the top to bottom shootings (Figure 6-32). The crack
presence can not be seen in the top to bottom shootings since all the rays have
to cross the crack, and therefore an average velocity of 170in/ms is calculated in
all shadows. However, in the side to side data (Figure 6-33), a low average
velocity for rays connecting sources 16 to 21 to receiver 19 and receiver 22 can
be seen. This is due to the presence of a crack across the pier in that region.

6.6.10 Chute Hemmings Dam

The distribution of information content is given in Figure 6-34. A high
concentration of information in the center and left upper part of the medium and
a lack of data in the lower part (foundation) are the main characteristics of this
plot. The configuration of sources and receivers is very poor in this case history.

Figure 6-35a shows high accidental errors in this data. Therefore, the optimum
regularization coefficient should be selected in a very high range.

A homogeneous medium with an average velocity of about 4.1km/s can be seen
in Figures 6-35b and 6-36a. Figure 6-36b shows a very isotropic medium.
Therefore, a constant initial velocity should be selected for all pixels. A
reasonable guess is the evaluated average velocity.

The analysis of shadows for this case history indicates a high degree of error in
the data (Figure 6-37). The average velocity trend for sources 4, 5, 6, 7, 8 and 9
may reflect the higher velocity of massive-densified concrete in the center of the
dam, as compared to the peripheries.
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6.6.11 Korean Demilitarized Zone

The information content for this case history shows a smooth coverage of rays in
the region of interest in the center of the figure (Figure 5-42). However, due to
lack of information in the upper and lower part of the medium, it is possible that
some ghosts appear in the inverted image of those regions.

Figure 6-39a shows that the velocity increases with depth, and Figure 6-39b
shows a global anisotropic variation of velocity. Thus, the background medium is
vertically heterogeneous and anisotropic. Hence, the initial velocity should be
defined as a function which reflects the background characteristics (e.g.
V=a+bZ).

The analysis of shadows in this case history is based on parailel ray projection
rather than fan rays as for previous case histories (Figure 6-40). A similar drop
in the average velocities at a depth of about 160m suggests the possibility of a
low velocity zone at that depth.

6.7 Discussion and Conclusions

The main problem in inversion is non-uniqueness. To avoid some of the
unrealistic solutions, the solution could be constrained. However, how are

constraints selected?

in this chapter, it was shown that data pre-processing can be employed to
preview the characteristics of the medium (anisotropy, heterogeneity, and
presence of anomalies), to check the quality of the data (errors), and to identify
possible biases such as the distribution of information content.
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The polar and spatial distributions of velocity in a medium can be used to
evaluate heterogeneity and anisotropy. However, only estimated average
velocities can be computed before the inversion process.

The presence of accidental and systematic errors can be investigated with travel
length vs. travel time plots. This analysis is weakened when all rays are of about
the same length.

The distribution of information can be helpful in designing adequate transducer
configurations and in improving the inversion strategy.

The analysis of projections, or “shadows”, might be the best way to pre-assess

the position and size of inclusions in the medium. Fan ray paths and parallel ray

paths are two possibilities.
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Figure 6-2: Distribution of information content for small balloons. Assuming
straight ray paths.
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Figure 6-3: Systematic and accidental errors for Balloon 1.
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Figure 6-7: Heterogeneity and anisotropy inspections for Balloon 2.
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Figure 6-9: Systematic and accidental errors for Balloon 3.
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Figure 6-10: Heterogeneity and anisotropy inspections for Balloon 3.
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Figure 6-11: Analysis of shadows for Balloon 3.
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Figure 6-12: Distribution of information content for balloon 4. Assuming straight
ray paths.
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Figure 6-13: Systematic and accidental errors for Balloon 4.
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Figure 6-14: Heterogeneity and anisotropy inspections for Balloon 4.

146



0 40 SQ 60
Recsiver Locations (in)

10

e3P —o— §10 ~eme §1] ~w- 513
20

4 SO 60

30

Recmver Locations (in)

o o

(coswwi/uy)} Aipojen eBuseny (cesw/wy) AitooA eBuseny
8 8

3 ]
P [3 § (2

8 € 5
bee {Is

y : ]
{ mw i ig

Pl i
8 ?

| ¥

.0.. [=]
_w - o0 [ 5 -uo [} - ] ~ (1] —.u
I ¥ 2 d 9 o ¥ 2 d @ ¢

(osaw/uy) Aidoep sBuseay

(oeswyuy) Aisoep eBuseny

Receiver Locations (in)

f shadows for Balloon 4

iSO

Analys

Figure 6-15

147



Figure 6-16: Distribution of information content for Concrete Crack (Side-to-Side
shootings). Assuming straight ray paths.
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Figure 6-17: Systematic and accidental errors in Concrete Crack (Side-
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Figure 6-18: Heterogeneity and anisotropy inspections for Concrete

Crack (Side-to-Side shootings).
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Figure 6-20: Distribution of information content for Concrete Crack (top to left-
side shootings). Assuming straight ray paths.
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Figure 6-23: Distribution of information content for Concrete Crack (top to right-
side shootings). Assuming straight ray paths.
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Figure 6-24: Systematic error and heterogeneity inspections for
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Figure 6-26: Distribution of information content for Concrete Column. Assuming
straight ray paths.
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Figure 6-30: Distribution of information content for Kosciuzko bridge pier.
Assuming straight ray paths.
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Figure 6-31: (a) Systematic and accidental errors and (b)
Heterogeneity inspections for Kosciuzko bridge pier.

163



Averags Velocity (in/msec) Average Velocity (in/maec)

Average Velocity (in/msec)

Source 2&3

2109

N PN

—== Source 2 —— Source 3

150
1203 4 s [ 10 12
Receiver Numbers ()
Source 4&5
2104
1804 W'
1501
1207 4 6 8 10 12
Receiver Numbers ()
Source 6&7
210
180 Mi
150
120
2 4 ] 8 10 12

Receiver Numbers ()

Average Velocity (in/maec) Average Velocity (in'msec)

Average Velocity (in/meec)

Source 8&9

2101

150

NN

1207 4 s s 10 12
Receiver Numbers ()
Source 10&11
210
180 S
W.
1501
’202 4 8 8 10 12
Receiver Numbers ()
Source 12&13
210
1801 L
\W
150
' 4 s [ 10 12
Receiver Numbers ()

Figure 6-32: Analysis of shadows for Kosciuzko bridge pier (Top-to-
Bottom shootings).
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Figure 6-34: Distribution of information content for Chute Hemmings dam.
Assuming straight ray paths.
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Figure 6-35: (a) Systematic and accidental errors and (b)
Heterogeneity inspections for Chute Hemmings dam.
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Figure 6-37: Analysis of shadows for Chute Hemmings dam.
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Figure 6-38: Distribution of information content for Korean DMZ. Assuming
straight ray paths.
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Figure 6-39: Heterogeneity and anisotropy inspections for Korean
Demilitarized Zone.
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CHAPTER VI

INVERSION OF CASE HISTORIES
- OPTIMAL INVERSION STRATEGIES -

7.1 Introduction

Tomographic problems are usually mixed-determined, in which some linear
combinations of the image parameters are over-determined and some are under-
determined. Under-determination (or mixed-determination) and noise in the data
make tomographic inversion problems ill-conditioned.

If the problem is under-determined, then the data contains information about
only some parts of the image and no information is provided about the other
parts, which is called the null space. In other words, the null space is not
illuminated by the data (refer to distribution of information content for case
histories in Chapter 5). Any choice of the image parameters can satisfy the data
in the null space. The size of the null space is crucial, since it determines the
degree of ill-conditioning of the problem and thus the number of mesh elements
in the inversion process.

A priori information can be added to decrease the size of the null space, i.e., to
specify those image parameters (unknowns) that reside in the null space. The
DLSAQ solution is a combination of the least squares and the minimum length
solutions (refer to Chapter 2)
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s=[LL+n3 'Lt (7-1)

The method overcomes the singularity of the coefficient matrix. The “best
solution” is obtained for a certain damping coefficient, which is case dependent.

In the case of a mixed-determined problem and noisy data, the regularization
method is applied by adding information in the form of constraints (refer to
Chapter 2),

s=["L+A?R"R] 'Lt (7-2)

Regularization can be performed in different ways. For example, if the solution
must be smooth, the regularization matrix R is the second derivative operator.
The “optimal regularization coefficient” that gives the best solution is not known
in advance. Therefore, the optimal damping and regularization coefficients
should be determined when the inverse probiem is to benefit from DLSQ and
regularization solutions. This chapter begins with a view of possible imaging
errors. Then, procedures are investigated to determine optimal damping and

regularization coefficients.

7.2 Null Space and Singular Values (Global Information)

Spectral decomposition or Singular Value Decomposition (SVD) is one of the
possibilities to identify the size of the null space. As discussed in chapter Il, any
nxm matrix can be written as the product of three matrices:

L=UuQV’ (7-3)
Matrix Q is a diagonal matrix whose entries are called the singular values (03,2).

The number of non-zero singular values indicates the rank of the matrix, or the
number of independent equations in the data space. On the other hand, the
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number of zero singular vaiues determines the size of null space. The problem is
to assess how close should a singular value be to zero before it stops
contributing to the solution.

The matrix U is an nxn matrix and its vectors are eigenvectors of LL" and span
the data space. The eigenvalues of LL" are a’. The matrix V is an mxm matrix
and its vectors are eigenvectors of L'L and span the image parameter space.
The eigenvalues of L'L are %

One way to determine the size of the null space is to plot the sizes of the
singular values against their index numbers (Figure 7-1). This is the spectrum of
the data kernel. As shown in the figures, the selection of the cut-off point may be
fuzzy. If small singular values are considered, the solution variance will be very
large since it is proportional to 1/ay 2 (refer to Equation 2-10). On the other hand,
excluding small singular values resuits in degraded image resolution.

Plots of the sizes of the singular values against their index number for three
case histories are shown in Figure 7-2. It can be seen that the global information
content can be much less than expected from the number of rays.

Figure 7-3 shows the effect of adding a priori information, using regularization,

on the size of the null space of Balloon 1 data (Figure 5-1a) . The number of
zeros decreases with an increase in regularization coefficient.

7.3 Damped Least Squares Solution - Optimal n

Simulated cases (Figure 7-4) were investigated to determine the optimal
damping coefficient n. Straight paths were used, therefore, the matrix L is the
same in all cases. Results are evaluated in terms of the average absolute error

175



(AAE) in pixel velocity between the input (real) image and the inverted output
(inverted) image (normalized with respect to the average pixel velocity).

S|

0, _Wols 4 * .
AAE% = - Y, 100 (7-4)

Results for the four simulated cases in Figure 7-4 are presented in Figure 7-5. It
can be seen that the quality of the image worsens with either lack or excessive
damping, and that optimal damping is not unique but depends on the velocity
field.

7.4 Regularization Solution - Optimal A

The previous cases were investigated to determine the optimal regularization
coefficient A. Straight paths were used in all cases. Figure 7-6 shows the results
in terms of average absolute error in pixel velocity. it can be seen that the
optimal regularization coefficient for each case is different and depends on the
velocity field.

7.5 Damped Least Squares vs. Regularization - Noisy Data

Simulated data obtained with straight-rays for the high velocity central anomaly
(Figure 7-4a) were made “noisy”, first by adding random noise t=t+md(1), and
second, by adding a proportional systematic error t=t+0.5 where 0.5 is about 5%
of tase. The noisy data set was inverted using damped least squares and
regularization.
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Damping and regularization coefficients n and A were gradually changed until
optimal images were obtained. Mathgrams 7-1 to 7-4 show the optimal solutions

for each case.

Results indicate that regularization, in comparison to DLSQ, is an effective
alternative to lessen the problem of noise (systematic and random cases) in
mixed-determined problems. Furthermore, it is seen that both methods give
better solutions in the case of presence of systematic noise (error) rather than
random noise (error) presence.

7.6 Regularization - Straight and Bent Rays

The high velocity helium balloon in Figure 5-1d was inverted with different
values of the regularization coefficient A, using straight rays. The resuiting pixel
values were used to re-trace rays for a second iteration with bent rays. The
second inversion for each set was repeated with the same regularization
coefficient used in the corresponding first iteration.

The average square error ASE in pixel velocity between inverted images and the
known real pixel velocities are plotted versus the regularization coefficient A in
Figure 7-7, where

vy

ASE% = || Bets *——*100 (7-5)
m Vave

The increase in reguiarization diminishes the effect of high pixel variability and
the squared error ASE. However, excessive reguiarization flattens pixel values
within the anomaly, increasing the deviation of the image from the true condition.
Curved rays magnify the effect of variability at low A; however, they lead to better
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images for all values of A above a threshold of smoothness. This plot highlights
the underlying trade-off between resolution and variance. A similar study was
conducted with a smaller high velocity anomaly placed off-center left (Figure 5-
1a). The result was identical to the one shown in Figures 7-7. Tomograms for
these two cases are shown in Figure 7-8. It is important to highlight that these
data could not be successfully inverted with standard ART and SIRT algorithms.

7.7 Optimal A in Real Situations (Unknown Solution)

The optimal coefficient of reguiarization is case dependent, and must be
determined by comparing data and image/mode! parameters. Several guidelines
have been proposed (Morozov, 1993; Hansen 1992). The same study conducted
in Figure 7.7 was analyzed, but recognizing that in real situations the “true
image” is “unknown”; thus, inversion-based results must be used. The coefficient
of variation for pixel values in each image is plotted in Figure 7-9. The coefficient
of variation (COV) is the ratio of the standard deviation and the mean of pixel
values. The figure shows three regions: high variability for low A, very low
variability for high A (the velocity field becomes uniform for excessive
smoothing), and an intermediate region with acceptable inversions for a
relatively wide range in regularization coefficient A..

Inversions with curved rays lead to higher variability because they tend to
preserve the contrast in the region. However, the trend of COV vs. A is very
similar in both cases. Thus, optimal regularization coefficients can be selected
with straight rays.

Criteria were evaluated for the side-to-side shootings case in concrete crack
data. Results are presented in Figure 7-10. Figure 7-10a shows the change in
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the coefficient of variation of pixel slowness with the coefficient of regularization.
This definition of COV(s) is based on the whole set of pixel slownesses, and
tends to promote global smoothness. An altermative approach is to define local
measures of variability. The difference in siowness between a pixel and its local

average is
As, = ';’(3.. +S,+S,+5, +4s,) -5, or As= %B-.ﬁ (7-6)

The plot of lIASII with the coefficient of regularization shows a similar trend as
observed in Figure 7-10a. On the other hand, over-smoothness increases the
residual liLs-tll. Following Hansen (1992), Figure 7-10b shows L-shape curve of
norm of the local error liRsll vs. the residual liLs-tll for different regularization

coefficients.

The coefficient of regularization can be selected to correspond to the value
where these measures of image/solution adequacy change, e.g., the maximum
curvature of the L-shape curve (Hansen and O'leary, 1993). Images
reconstructed with regularization coefficients close to the break in these curves
were visually analyzed (0.001<A<0.01). The optimal image was generated with
regularization coefficient A=0.005. The value of A at the break in lIRsll-vs.-liLs-tll
curves leads to under-smoothed images.

7.8 Statistical Parameter Estimation - Maximum Likelihood

The statistical parameter estimation techniques incorporate several methods that
use certain measurements of a system and estimate other parameters
associated with the system. Parameter estimators use knowledge of the system
and sample data. In a tomographic inversion, these methods can be employed
to estimate the image values using gathered data. The maximum likelihood
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method is one such technique that can be employed to estimate the required

system parameters.

The maximum likelihood method asserts that the optimum values of the system
parameters maximize the probability that the observed data are in fact observed.
Theretore, if the data have a certain statistical distribution, then the best system
parameters are those which give the maximum probability for that distribution.
For instance, if the data are Gaussian, their distribution can be characterized in
terms of a variance and a mean. In this case, the system parameters can be
found by selecting different variance and mean values until maximum probability
is obtained.

In the case of using DLSQ or regularization, the unknown parameter is optimal
damping or regularization coefficient for a certain image. While the previously
mentioned methods used slowness to determine optimal coefficient, the ML
method can be employed to determine the optimal coefficient based on
assuming a certain distribution for travel times (data). In this case, the optimal
coefficient is the one which gives the maximum value of the joint distribution of
the observed data (tus) and computed data (teomp=Lcomp-Siw). during a forward
process using the inverted image values. In fact, the joint distribution gives the
correlation between these two data sets.

To assess the distribution of a tomographic data set, the histograms of travel
times are evaluated. The number of appearances are computed for each of 10
ranges between the highest and the lowest measured travel times. Figures 7-11
and 7-12 show the plots for case histories discussed in Chapter V.

A common characteristic of all side-to-side data is a peak value at the beginning

followed by a slight decrease at the end. The data distribution is different for the
top to side data (ref. to crack data in Figure 7-11bé&ac).
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Assuming Gaussian distributions for the observed data t..s and computed data
tomp in the linear inverse problem L.s=t, their joint distribution can be

characterized as:

' 2 1 T 1
() = [COV(t s teomp )] (27) 2 D) (1 —L &) [0Vt et berg)] (L) (7-7)
where n is the number of data (rays) (Menke, 1984).

The results for the small balloon (Balloons 1 to 3) data (Figure 5-1a, b, and c)
are presented in Figure 7-13. The plots show a flat area followed by a sudden
decrease in the probability values as the regularization factors are increased.
The optimal regularization factor can be evaluated at the intersection point of the
two best lines passing through the data points in these two areas. The results
show under-smoothed images similar to the L-shape method.

The results for the concrete crack data (Figure 7-14) are the same as the
previous cases; except for the side-to-side data, the two lines are hardly
distinguishable (Figure 7-14a).

The exponential distribution is an alternative to the Gaussian distribution. The
exponential distribution has a longer tail and sharper peak than the Gaussian
distribution (Figure 7-15). Assuming exponential distributions for the observed

and computed data in the linear inverse problem L.s=t, their joint distribution can
be characterized as:

P8 = 00Vt gm ] (2" €30 <22 {00V( s tcmp)] L (7-8)
where n is the number of data (rays) (Menke, 1984).

The results for the small balloon data (ref. to Figure 5-1a,b,and c) give the
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exact optimal regularization coefficient (A) as a peak for all three cases (Figure
7-16). However, a higher peak (post peak=0.05) is apparent in Figure 7-16¢
(Balloon 3, center balloon). Figure 7-17 gives the inverted images for Balloon 3
case with optimal A=5 and A=0.05 (post peak). It can be realized that the
inverted image with A=0.05 is under-smoothed. Therefore, for the purpose of
programming, the safe way to evaluate optimal regularization coefficients is to
start with large regularization values. The optimal value is the first available
peak.

Figure 7-18 shows the plots for crack data. The optimal value for top-to-side
data is correctly evaluated (Figure 7-18b&c). However, the optimal value for
side-to-side crack data (Figure 7-18a) is underestimated.

It is appropriate to inquire why the exponential distribution gives more accurate
results than the Gaussian distribution. In fact, the exponential distribution has
the same relationship to the L; norm as the Gaussian distribution has to the L,
norm. If the data are very accurate, then the fact that one prediction falls far from
its observed value is important. A L. norm is employed, since it weights the
larger errors preferentially. On the other hand, if the data are expected to scatter
widely about the trend, then no significance can be placed upon a few large
prediction errors. A L norm is used, since it gives more equal weight to errors of
different size. A long-tailed distribution, like pure tomographic data (Ref. to
Figures 7-11 to 7-12a), implies many scattered data points, and therefore an
exponential distribution is more appropriate.

7.9 Tomographic Inversion of Case Histories - Procedure

Using the exponential distribution assumption for travel time data, the maximum
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likelihood value of the joint distribution of measured and computed travel times
for all case histories was obtained. All the case histories were inverted with the
evaluated optimal regularization coefficients with this method.

7.9.1 Balloon 1

Figure 7-8b shows the results of inverting this case history assuming straight
(left) and bent rays (right). The output velocity of the first iteration (straight rays)
was used as the initial velocity for the ray tracer to compute the matrix L (bent
rays). The heterogeneity and anisotropy inspections (Figure 6-4) and the
analysis of shadows (Figure 6-5) for this case history indicate a two phase
medium. Therefore, a threshold value equal to the evaluated average velocity in
the region of the anomaly (14.5 in/ms) was selected to differentiate between the
anomaly and the background. The threshold value was gradually increased until
only one anomaly clearly remained in the inverted image. Figure 7-19a shows
the exact location of the high velocity helium balloon in the medium. The initial
and the enhanced images for this case history are given in the corresponding

mathgram in Appendix F.

7.9.2 Balloon 2

This case history was examined with both straight and bent rays. The output
velocity of the first iteration (straight rays) was used as the velocity field for the
ray tracer (bent rays). Figures 6-7 and 6-8, which represent heterogeneity and
anisotropy inspections and analysis of shadows for this case history, indicate a
two phase medium. Therefore, a threshold value equal to the evaluated average
velocity for the region of the anomaly (14.5 in/ms) was selected to differentiate
between the anomaly and the background in the inverted image. The threshold
value was gradually increased until only one anomaly clearly remained in the
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image. Figure 7-19b shows the inverted image with straight rays; the highest
value in the medium appeared in a pixel adjacent to the real location of the
balloon. Using curved rays, the exact location of the high velocity helium balloon
was evaluated in the inverted image (Figure 7-20a). Note that a higher velocity is
computed for the balloon in the inverted image with ray tracing compared to the
one with straight rays. The initial and the enhanced images for this case history,
for both straight and bent rays, are given in the corresponding mathgrams in

Appendix F.

7.9.3 Balloon 3

Because of the similarity in geometry between this case history and balloon 4,
this case was onily examined with straight rays. The inverted image is given in
Figure 7-20b. Figures 6-10a and 6-11, which represent heterogeneity inspection
and analysis of shadows for this case history, indicate a two phase medium.
Therefore, a threshold value equal to the evaluated average velocity for the
region of the anomaly (14.0 in/ms) was selected. The threshold value was
gradually increased until only one anomaly remained in the inverted image.
Figure 7-20b shows the enhanced inverted image for this case history. The initial
and the enhanced images for this case history are given in the corresponding
mathgram in Appendix F.

7.9.4 Balloon 4

The results of inverting this case history assuming straight (left) and bent rays
(right) are given in Figure 7-8a. Inverted images show the effect of the
distribution of information content with two low velocity regions which appear on
the top and bottom of the high velocity balloon in both images. The output
velocity of the first iteration (straight rays), was used to retrace rays (bent rays).
The heterogeneity and anisotropy inspections (Figure 6-14) and the analysis of
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shadows (Figure 6-15) indicate a two phase medium for this case history.
Therefore, a threshold value equal to the evaluated average velocity for the
region of the anomaly (14.15 in/ms) was selected to differentiate between the
anomaly and the background. The threshold value was gradually increased (up
to 15.2) until only one anomaly appeared in the inverted image. Figure 7-21a
shows the exact location of the high velocity helium balioon in the medium.
Appendix F presents the corresponding mathgram of the initial and the
enhanced images for this case history.

7.9.5 Crack in Concrete (Side-to-Side shootings)

Due to the out-of-plane nature of this problem (Chapter 6), this case history was
inverted only with straight ray paths. The information from pre-processors
indicates that this is a two phase medium consisting of a high velocity concrete
and a low velocity region due to presence of the crack. Therefore, a threshold
value based on the average velocity of the concrete (4.8 km/s) was selected to
differentiate between the background concrete and the region of the crack in the
inverted image. In this case history, as opposed to the last four cases, the
anomaly is a low velocity zone. Therefore, the selected threshold was based on
applying a limitation on the maximum velocity. The threshold value was
increased up to 6 (km/s). However, the enhancement in the image was minute.
The enhanced inverted image is given in Figure 7-21b. The crack can be traced
in this figure. Appendix F presents the initial and enhanced inverted images for
this case history in the corresponding mathgram.

7.9.6 Crack in Concrete (Top to Left-Side shootings)

Only half of the medium was illuminated due to the geometry of the source and
receiver locations in this case history. The rays traveled out of the plane of the
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tomogram. Therefore, this case history was inverted only with straight ray paths.
The information from pre-processors indicate that this is a two phase medium
consisting of a high velocity concrete and a low velocity region. However, due to
the presence of pixels with zero values, the image could not be enhanced with a
thresholding criterion. The inverted image is given in Figure 7-22a. The effect of
the crack can be seen in the eighth pixel of the first column and its neighbor
pixels. Appendix F presents the mathgram of the inverted image for this case
history.

7.9.7 Crack in Concrete (Top to Right-Side shootings)

Due to the configuration of source and receiver locations, only half of the
medium was illuminated in this case history. The out-of-plane probiem for this
case history exists as it was for the last two cases. Therefore, straight ray paths
were used during the inversion process. The information from pre-processors
indicate that this is a two phase medium consisting of a high velocity concrete
and a low velocity crack. However, due to the presence of pixels with zero
values, the image could not be enhanced with a thresholding criterion. Figure 7-
22b shows the inverted image for this case history. That part of the crack which
was illuminated can be traced in this figure. Appendix F presents the mathgram

for this case history.

7.9.8 Column of Aggregate

This case history was studied with both straight and bent rays. Figures 7-23a
and 7-23b show the enhanced inverted images. The information from pre-
processors indicate that this is a two phase medium consisting of the high
velocity concrete and the low velocity region, due to the presence of the
aggregate column. Therefore, a threshold value based on the evaluated average
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velocity for the concrete (4.65 km/s) was selected to differentiate between the
background concrete and the column of aggregate region in the inverted image.
In this case history the anomaly is a low velocity zone. Therefore, the selected
threshold was based on limiting the maximum velocity in the corresponding
mathgram. Using curved rays, the size and location of the aggregate column can
be seen clearly in the enhanced inverted image. The initial and enhanced
images with straight and bent rays, for this case history, are given in the
Appendix F.

7.9.9 Kosciuzko Bridge Pier

The analysis of this case history with pre-processors indicates a very
homogeneous medium. Hence, straight rays were used during the inversion
process and no thresholding was applied. Due to the high degree of
homogeneity in the region, thresholding was used. Figure 7-24a shows the
inverted image for this case history. A high velocity in the center of the pier and
an extended crack from the left to the right side are apparent in this figure.
These two features can also be seen in the inverted image with contour mapping
in the corresponding mathgram file in Appendix F.

7.9.10 Chute Hemmings Dam

The pre-processor analyses for this case history indicate a homogeneous-
isotropic medium. Hence, no thresholding was applied and straight rays were
used during the inversion process. The inverted image for this case history is
given in Figure 7-24b. The figure shows a very homogeneous medium in all
parts except for the shotcrete parts. Note the effect of high velocity in the
shotcrete region on increasing velocity of the adjacent pixels. The effect
decreases for more distant pixels. The corresponding mathgram file is given in

Appendix F.
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7.9.11 Korean Demilitarized Zone

This case history was studied with both straight and bent rays. The inverted
images for both cases were identical. The pre-processor analyses for this case
history show a vertically heterogeneous and anisotropic medium. However, due
to the presence of the two very low information content regions at the top and
bottom of the tomogram, a high and a low threshold values were selected. The
enhanced inverted image is given in Figure 7-25. The location of the tunnel can
clearly be seen in the middle of the image. However, the heterogeneity of the
medium is diminished in this process. The initial and the enhanced inverted
images for this case history are given in the corresponding mathgram in
Appendix F.

7.10 Summary and Conclusions

Tomographic problems are usually mixed-determined. Under-determination (or
mixed-determination) and noise in the data make the tomographic inversion

problems ill-conditioned.

Adding a priori information is one way to decrease the size of the null space. A
priori information in the form of constraints helps to specify those image
parameters (unknowns) that reside in the null space. Constraints can be readily
implemented in damped least squares (DLSQ) and regularization solutions.

The quality of the image worsens with either lack of or excessive damping or

regularization coefficients. The optimal coefficient is not unique, but depends on
the velocity field, the reality of the data, and other problem parameters.
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One way to determine the size of the null space is to plot the sizes of the
singular values against their index numbers. This is the spectrum of the data
kernel and highlights the true amount of global information, which is often much
less than the number of measurements.

Criteria were evaluated to determine the optimal coefficient. The coefficient of
variation (COV), based on the whole set of pixel slownesses, tends to promote
global smoothness. An alternative approach is to define local measures of

variability.

The maximum likelihood method asserts that the optimum values of the system
parameters maximize the probability that the observed data are in fact observed.
Assuming a Gaussian distribution for the travel time data, the optimal
regularization coefficient can be obtained from a cumulative number of
appearances of the data vs. travel time data plot. However, the results show
under-smoothed images similar to the previous methods. Another option is to
assume an exponential distribution for the travel times data. The results
obtained for the optimal regularization coefficient lead to certain peak values
which give the optimal regularization coefficients in the different case histories.
The exponential distribution has the same relationship to the L; norm as the
Gaussian distribution has to the L, norm. A high-order norm should be employed
for short-tailed data. The tomographic data, and especially side-to-side
shootings, appear to have a long-tail distribution.
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Figure 7-1: (a) Singular values of a matrix with clearly identifiable cut-off point
(b) Singular values of a matrix where cut-off point must be selected arbitrarily.
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Figure 7-2: Distribution of singular values for different case histories.
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Figure 7-7: Straight and curved rays. The effect of regularization
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(a)

(b)

Figure 7-8: Inversion of laboratory data with regularization: straight (left) and
curved (right) rays. (a) Central, high velocity anomaly, 256 rays, A=10 (refer to
Figure 5-1d) (b) Off-center high velocity anomaly, 49 rays, A=2 (refer to Figure 5-
1a).
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Figure 7-9: Straight and curved rays. The effect of regularization
coefficient (variability).
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Figure 7-10: Optimization of regularization coefficient.
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Figure 7-11: Distribution of travel times in small balloons.
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Figure 7-14: Maximum likelihood of concrete crack (Gaussian distribution).
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(b)

Figure 7-17: Inverted images for Balloon 3 casa with (a) optimal A=5 and (b) with
A=0.05 (post peak) (Thresholded, refer to Appendix F).
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Figure 7-18: Maximum likelihood of concrete crack (Exp. distribution).
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(b)

Figure 7-19: Inverted images with optimal regularization coefficient, for (a)
Balloon 1 (curved rays) and (b) Balloon 2 (straight rays) (thresholded, refer to

Appendix F).
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(b)

Figure 7-20: Inverted images with optimal regularization coefficient for (a)
Bailoon 2 (curved rays) and (b) Balloon 3 (straight rays) (Thresholded, refer to
Appendix F).
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(b)

Figure 7-21: Inverted images with optimal regularization coefficient for (a)
Balloon 4 (curved rays) and (b) Side-to-side shootings data of concrete crack
(straight rays).
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(b)

Figure 7-22: Inverted images with optimal regularization coefficient, using
straight rays, for concrete crack (a) Top to left-side shootings and (b) Top to
right-side shootings.
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(a)
A
(b)

Figure 7-23: Inverted images with optimal regularization coefficient for concrete
column Using (a) straight rays and (b) Curved rays (Thresholded, refer to
Appendix F).
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(b)

Figure 7-24: Inverted images with optimal regularization coefficient, using
straight rays, for (a) Kosciuzko bridge pier and (b) Chute Hemmings dam data.
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Figure 7-25: Inverted images with optimal regularization coefficient for Korean
Demilitarized Zone data (Thresholded, refer to Appendix F). Same resuits for
both straight and curved rays.
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VRESDLQR.MCD

Mathgram 7-1: DLSQ solution (HV-Center model). Random error is added to the

data.

Random error is added as: t =t + md(1)

Definitions:
ij:=l.n(n+85)

Input File:

Enhancement:

Histogram:

2D Image

n:=10
nh :=n

V :=READPRN(vd50)
Vmin = 1.025

L]

int“l =Vmin+(m- 1)

A T Vo me

initial velocity=10

izl_n+5
m:=l..nh

Vmin :=min( V)
Vmax =8.154

V,; =iV, <Vmin, Vmin, V )

Vmax - Vmin

n=350

jr=lan
k:=l.oh-1

Vmax '=max(V)
mean(V) =1.929

A ::if(Vij>2.,2., V;j)

histog :=hist(int, V)

B, (acitn+1 A

Histogram of the inverted velocity fisid
\
2 3 4 5 6 7
inty
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VRESDLQS.MCD

Mathgram 7-2: DLSQ solution (HV-Center model). Systematic error is added to
the data.

Systematic erroris added as: t=t + 0.5 initial velocity=10 n=0.05
Definitions: n:=10 i=l.n+$§ j=l.n
ij:=l.n(n+9) nh :=n m:=]_.nh k=Il.nh-1
input File: V :=READPRN(vd005s) Vmin :=min(V) Vmax :=max( V)
Vmin =0.964 ~ Vmax =1226 mean(V) =1.079
Enhancement: V.. :=if(V, <Vmin, Vmin, V) vV, =(V,>Vmax, Vmax, V)

Vmax - Vmin

Histogram: iutlll =Vmin+(m- UT histog :=hist(int, V)
20 Image A Ve maei B amie 41 A
Histogram of the inverted velocity field
100
—
0 / e e
095 1 1.05 L 115 1.2
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Mathgram 7-3: Regularization solution (HV-Center model). Random error is added
to the data.

Random error is added as: t=t + md(1) initial velocity=10 n=95
Definitions: n:=10 ir=l.n+5 j=l.n
ijf=l..n(n+5) nh :=n m:=l..nh k:=1l.ph-1
input File: V :=READPRN( vr5) Vmin :=min( V) Vmax :=max(V)
Vmin =0.891 Vmax =1322 mean(V) = 1.064
Enhancement: V.= if(V..<Vmin.Vmin.V..) v, =if(V>2.2, vnl)
U] U [ i ij i
. ) P Vmax - Vmin . —aps
Histogram: int_ :=Vmin+(m- 1)————— histog :=hist(int, V)
2D Image AT Vi tyme Biamirn st =Ay
Histogram of the inverted veiocity field
100
oty
/—-‘ "
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Mathgram 7-4: Regularization solution (HV-Center model). Systematic error is
added to the data.

Systematic error is added as:t=t + 0.5 initial velocity=10 A=0.05
Definitions: n:=10 i=l.n+S j=1l.n
ij:=1l.n(n+5) nh :=n m:=1.nh k=1.nh-1
input File: V :=READPRN( vr005s) Vmin :=min{ V) Vmax :=max(V)

Vmin =0.945 Vmax =1.257 mean(V) = 1.078
Enhancement: V. = if(V..<Vmin.Vmin, VT) V. = if(V_>Vmax, Vmax.V..)

[1] ij i ] ij 1,
Hi N e Nps Vmax - Vmin . —beape
istogram: int_ :=Vmin+ (m-~ l)—nh—- histog :=hist(int, V)
2D Image A5 = Vic o By amien 41 =AY
Histogram of the invertad velocity field
100
histog,

09 0.95 | L.0§ L1 115 1.2
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CHAPTER Vil

SUMMARY AND CONCLUSIONS

Tomography (tomo: to cut or slice-Greek) is the inversion of measurements of
multiple planes of a body. CE-tomography is the inversion of boundary
measurements to determine the field of a physical parameter within civil
engineering systems. Data for seismic CE-tomographic imaging are line
integrals of a physical parameter, along a specific path through the medium, e.g.
the travel time accumulated along a ray path between a source and a receiver.

The purpose of this research was to assess the potential of tomographic imaging
in a variety of civil engineering infrastructures, placing emphasis on matrix-
based inversion algorithms. While most prior research in tomography has been
based on simulated data, this research centered on case histories gathered
under well-controlied, yet realistic field conditions.

All examples given in this document used travel time observations that were
inverted to determine the velocity field. However, the method is completely
general; any boundary observation that can be defined as a line integral through
the medium can be substituted throughout.

8.1 Summary

Inversion
e Several methods have been proposed to solve the inverse tomographic
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problem; they can be categorized as: (i) matrix inversion methods, (ii)
iterative methods, (jii) transform methods, and (iv) other methods.

o |terative methods are not stable in ill-conditioned problems. Transform
methods are restricted to straight ray projections (space transformations
could be invoked to generalize the solution to heterogeneous, anisotropic
media). Matrix methods are versatile, computationally efficient, and robust.
However, efficient storage and computation are required.

¢ Matrix inversion methods have been rarely employed in tomographic inversion
because of high memory demand and computational efficiency. The
coefticient matrix (L) is large and sparse. In a dense nxn matrix, the order of
computation complexity is O(n%) and O(n2) for storage. However, efficient
iterative algorithms combined with sparse matrix techniques can reduce the
order of computational complexity to O(n1-3) and storage requirement to O(n).

e Damped least square (DLSQ) and regularization methods are used to avoid
the ill-conditioning which is inherent in tomographic inversion problems.

e The coefficient matrix during an inversion process, in both DLSQ and
regularization methods, is symmetric and positive definite. Therefore, a
conjugate gradient method is used (note that regularization and damped least
squares methods produce coefficient matrices with different structures).

o Hybrid solutions can be attempted to enhance the resolvability of an inverted
image (e.g., fuzzy logic pre-processing followed by regularization).

Ray Tracing
e The analysis of wave propagation is often simplified to exercises with straight
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lines connecting sources and receivers. However, civil engineering problems
of interest are not homogeneous and not isotropic. If the velocity contrast in
the medium is more than 15 to 20 percent, rays bend toward higher velocity
regions. In this case, entries in the coefficient matrix depend on a priori
estimates of the velocity field. The inversion problem becomes non-linear,
and ray tracing should be implemented during an iterative solution of the
tomographic inverse problem. In general, based on Fermat's principle, it is
assumed that "picked travel times®" correspond to the shortest travel time
paths.

o Ray tracing is a two-point boundary value problem: the end points are
specified (the source and receiver positions), and the propagation path and
time must be determined. Ray theory is used in the development of some ray
tracing algorithms. However, there are more general solutions. Ray tracing
techniques can be categorized as: One-point methods, Two-point methods,
and Whole-field methods.

e One-point methods are efficient and have low memory demands. Yet, they
have all the restrictions inherent in ray theory. Furthermore, they may never
converge. Two-point methods are flexible and efficient, require low memory
storage and can solve travel times in shadow zones and diffracted ray paths.
However, they may not be able to find the global minimum. Whole-field
methods can identify global minimum travel times, including shadow and
diffracted zones. While the solution is computer demanding, all rays from a
given shot are solved at once.

Optimization of DLSQ and Regularization Coefficients

e In a tomographic inversion process, under-determination (or mixed-
determination) and noise in the data result in ill-conditioned problems. A
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solution can be obtained using matrix based, Damped Least Squares (DLSQ)
or regularization methods.

Addition of a priori information is one way to decrease the size of the null
space by specifying image parameters (unknowns) that reside in the null
space.

The DLSQ method overcomes the singularity of the coefficient matrix. In the
case of a mixed-determined problem and noisy data, the regularization
method is applied by adding information, in the form of constraints. In both
cases, the best solution can be obtained for a certain damping or
regularization coefficient. The quality of the image worsens with either lack of
or excessive damping or regularization coefficients. These coefficients are
not unique but depend on the velocity field.

One way to determine the size of the null space is to plot the sizes of the
singular values against their index numbers. This is the spectrum of the data
kernel. This plot also highlights the true amount of information relative to the
number of measurements that were conducted.

As a part of this study, criteria were evaluated to determine the optimal
values for DLSQ and regularization coefficients. The selection based on the
coefficient of variation (COV) of the whole set of pixel slownesses tends to
promote global smoothness. Another alternative approach is to define local
measures of variability.

The maximum likelihood method asserts that the optimum values of the
system parameters maximize the probability that the observed data are in
fact observed. In this study the maximum likelihood method was used to
evaluate the optimal regularization coefficient. Assuming a Gaussian
distribution for the travel time data, the optimal regularization coefficient can
be obtained from a cumulative number of appearances of the data vs. travel
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time data plot. In this case, the method fails to evaluate the optimal
coefficients in most cases. However, the optimal coefficients can be
evaluated if the intersection point of the two best lines passing through the
data points is computed. The resuits show under-smoothed images similar to
the previous methods. Another option is to assume an exponential
distribution for the travel times data. In this case, the method has shown
certain values for the optimal coefficients in all cases. However, since in
some cases a post peak appears, for the purpose of programming, the safe
way to evaluate the optimal regularization coefficient is to start with large
regularization values. The optimal value is the first available peak. The
reason that the exponential distribution gives more accurate resuits than the
Gaussian distribution lies in the relationship between these two distributions
and the L norms. The exponential distribution has the same relationship to
the L, norm as the Gaussian distribution has to the L. norm. A high-order
norm should be employed for short-tailed data. The tomographic data, and
especially side-to-side shootings, appear to have a long-tailed distribution.
Therefore, it is more appropriate to use the exponential distribution.

Computational Efficiency and Accuracy in Ray Tracing Methods

As a part of this research, the computational efficiency and accuracy in ray
tracing methods were studied. The following are concluded:

e An n step ray is assumed to have a parameter comparable with all ray tracing
methods. An example of one-point methods will require 4n calculations for
each ray to be traced. If the ray path is defined for m shooting angles, then,
the number of calculations needed for only primary ray tracing by one-point
methods is in the order of 4mn3.
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e The density of over-head computations varies among methods and it may be
a decisive factor (e.g. computation time required for determining shooting
angles in one-point method).

o Two rays from a source never cross. Hence, one-point methods and two-point
methods can be readily optimized by searching all rays from a given source at
once. The reduction in computational demand is proportional to n° shifting
curves paraliel towards the straight-ray case.

o Travel time is relatively insensitive to variations in ray path. Often, most
computational efforts in ray tracing are spent in optimizing travel times to the
point that the estimated time error becomes significantly lower than
measurements errors. However, optimization alters ray paths and the length
rays traverse different cells. This affects tomographic reconstruction. The

significance of this effect was evaluated.

Pre-Processing

Data pre-processing can be employed to provide foresight about the medium,
and help provide proper constraints for the solution. Selected pre-processors
designed during this study are: distribution and amount of information, presence
of accidental and systematic errors, degree of heterogeneity and anisotropy, and
analysis of shadows. All the pre-processors were tested with all case histories.

WATom-I Software

e A program for tomographic inversion has been written as part of this study.
The selected tomographic inversion methods are based on matrix analyses.
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To avoid high memory and computational time demands, sparse matrix
algorithms are employed. Ray bending and straight rays are two possibilities.
The program is in structured form to facilitate future additions and
modifications. The Sine-Arc two-point ray tracing method is used for non-
linear cases. The conjugate gradients method is used to determine the
inverse of the coefficient matrix.

8.2 Conclusions

e Matrix based inversion methods are mathematically robust and facilitate
analyzing the available information and adding additional constraints.
However, efficient storage and computation are required. Sparse matrix data
structures and algorithms were used in the written software (WATom-I).

¢ [t was shown that while more accurate travel paths can improve the inverted
image, the ray paths accuracy does not need to exceed measurement
accuracy on travel times, which is usualiy about 1%.

e The effect of model error was evaluated. Ray tracing optimization alters ray
paths and the length that rays traverse different cells. This affects
tomographic reconstruction. The significance of this effect was evaluated with
simulated data to facilitate comparison. It was shown that only 1% error in
time relates to an average 4-pixel widths difference in travel length per pixel
(400%); given that the average travel length per pixel is 20 pixel widths, the
percent average error is 4/20=20%.

e While most tomographic studies are based on simulated data, a data base of
case histories with real data was compiled and employed in this study. The
inversion of real data is significantly more challenging than would be
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expected from the extensive number of studies with simulated data that are
found in the literature.

Before any inversion process, the measurement set can be analyzed to learn
about system parameters and trends. Pre-processing methods were
employed as a pre-looking into the data and as an integral part of “enhanced

inversion”.

Small singular values can generate large errors in the solution.
Regularization adds information in the form of constraints in order to
decrease the ill-conditioning of the problem. It is shown that regularization is
a robust solution if random or systematic noise is added to the data.

The number of independent equations in a data set is not equal to the
number of data. Singular value decomposition was used to indicate this fact
for selected case histories. The size of null space can be improved by

regularizing the data.

Optimal DLSQ and regularization coefficients can be identified on the bases
of global and local variability of the inverted image and the error between the
measured and predicted travel times. It was concluded that the values of
coefficients selected with these approaches is higher than the optimal value.

The optimal value of regularization coefficient was evaluated based on the
maximum correlation (maximum likelihood) of the joint distribution of the
observed and calculated travel times. The optimal regularization coefficients
were located in most cases. However, multiple solutions were possible in
some cases. In those cases, the best way to approach the optimal coefficient
is to start with high values of the regularization coefficient. The optimal value
is the first maximum value of the probability.
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APPENDIX A: Ray Paths and Direction
Cosines
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The relations between a, B, i, and azimuth ¢ are based on the Figure (A-1) and
the following equations (Gheshlaghi, 1992).

(A-1)

A

A A
Sini,.COSQ. i+ Sini,.SiNQ. j+ COSi,.k

il

Therefore, the initial value formulation of the ray equation from the eikonat
equation may be written as (Eliseevnin, 1965):

d,X= v.cosa

d,y =v.cosf (A-2a)
0,2 = V.COS|,
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da= ﬂ.sina —-gyl.cota.cosﬂ -%.cota.cos i

ax
dap -—— cosa cotp +gy!— smﬁ-%cotﬂ cosi, (A-2b)
dy, =-%v— cosa.coti, -g;— cosf.coti, +gv sini,

where o denotes differentiation with respect to time; x, y, and z describe the
endpoint position of the ray at a particular time, v(x,y,2) is the wave velocity; and
coso, cosp, and cos i, are the local direction cosines related by the expression,
cosa? +cosp? +cosi® =1 (A-3)

Because of the relationship between direction cosines, only five of the equations
in (A-2a&b) are independent and therefore only five variables are required to
describe the ray at any point of its trajectory. If ¢ and i, angles are used the
following equations can be derived.

d,X = Vv.sini,.cos ¢
o0,y = v.sini,.sin¢
0,2 = V.COSi,

dj, =—Ccos io.(-al.cosq; + iv-.sinq))-biv-.sin [ (A-4)

oy oz

ov
sm dy
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APPENDIX B: Lytle and Dines’s One-Point
Method ALGOL
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The following steps are involved in a ray tracing aigorithm based on the one-
point method by Lytle and Dines (1980).

Main program:

o.

Choose a shooting angle 8, from an specific source position.

Define a parameter *h" as the step length.

Go to subroutine SPLINE and determine the smoothed local refractive
index variation for the next point, based on values of four neighborhood
points [(i,i), (i.,j+1), (i+1,j), and (i+1,j+1)].

Calculate A81, AB2, AB3, and AB4 to obtain four parameters required for the
fourth order Runge-Kutta method' , and determine the next 8 value (8;,1).

Repeat steps 3 and 4 until the ray reaches a boundary.
Repeat steps 3 to 5 for different lunching angles 8y (m=1,2,...,n) from a

specific source location.

Go to subroutine ANGLE and build a continuos function based on the
position of exit points and lunching angles.

Go to subroutine ZEROIN and determine the lunching angle for a given
receiver position, using function obtained in the step 7. This is implemented
with Newton-Raphson's method.

Repeat step 8 for all of the receiver locations.

10. Repeat steps 3 to 9 for all of source locations..

' The numerical solution of a differential equation by the Runge-Kutta method avoids
the computation of high-order derivatives needed in Taylor Series expansion. Instead,
the method uses extra values of the function within the step h.

240



APPENDIX C: General Algorithms and
Flowcharts in WATom-1
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1
Ray Tracing

Input
Parame ters

IR

Compute segment
lengths in each
pixel for a ray

'

Shortest No
time path?

lm

Call spyara
sub—directory

Figure C-1: A general view of the ray tracing algorithm and computation steps for
calculating the entries of the “L” matrix.
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2
Regularization
matrix

Read size of
solution space

:

Compute regularization

coeff. using Laplacian

smoothing function with
adequate correction

'

11 Spara
sub- toctgry to
construc regula.
matrix

Figure C-2: Computation steps in calculating the entries of the regularization

matrix.
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Change ia-ia
‘ struacture to ’
row—-index st.
>
Call ConJjugate-
adient subdir

:
N\ No

itexr {(maxiter

@ Contol DTS

Figure C-3: WAToM-1 inversion algorithm (this figure shows only the inversion
part). Entries 1+2 refer to the algorithms for ray tracing and regularization
(Figures C-1 and C-2).
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APPENDIX D: WAToM-| Software
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Tomographic Imaging Using Sparse Matrix Algorithm
and Ray Tracing (WATOM-I)

T+ ++

I+ 44+ 4+

character®20 datf, ray_path, method
character*132 note1

integer nray, npix, ndim, sn, m

double precision div, add, lambda, w, h
double precision contol, tolcon

integer k, n, nja, maxiter, itermax, ikmax

Parameters Decleration +
k = No. of rays, +
n = No. of pixels +
nja = No. of elements in +

matrix A. +
maxiter = No. of iterations +

++ 4+

parameter(maxiter=50, contol = 1.d-10)

write(*,'(/7x,a\))'Input No. of rays and pixels....====>"'
read (*,*) nray, npix

nja= nray**2

ndim= nray

if(npix .gt. nray) then
nja= npix**2
ndim= npix

endif

+ Inputfile forinitial data  +

open(4 file="sdat’, status="unknown’)

ntry=1

ntry1=1

write(",'(/5x,a\)')’'No. of Sources and Receivers .... ====>:'
read(4,”) sn, m

write(",'(/5x,a\)")'Input No. of rows and Columns ... ====>""
read(4,”) m,ncol

write(*,'(/5x,a\)’) Width and Height of the region .. >:'
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read(4,”) w,h

write(*,'(/5x,a\)")’(R)egularization or (D)LSQR ..... ====>"'
read(4,'(a)’) method

if((method .eq. 'R’) .or. (method .eq. 'r')) then
write(*,'(/5x,a\)’) Input Regularization coeff. value ====>"'
read(4,") lambda

elseif((method .eq. 'D’) .or. (method .eq. 'd)) then
write(*,'(/5x,a\)")'Input DLSQR coeff. value ........ ====>'
read(4,") lambda

elseif(ntry1 .. 3) then

write(*,'(/////10x,a\)’)'..... You typed a wrong letter, try R/r

+orbMd ...

ntry1 = ntry1+1
write(*,'(///1a\)’)’ *
goto 4
else
stop
endif
write(*,'(/S5x,a\)')’Name of input datafile ............. ====>:
read(4,'(a)") datf
write(",'(/5x,a\)")'(S)traight rays or (C)urved rays ====>:"
read(4,'(a)’) ray_path

L}

if((ray_path .eq. 'S’) .or. (ray_path .eq. 's")) then
ikmax=1
div=1.
add=1.
elseif((ray_path .eq. 'C') .or. (ray_path .eq. 'c’)) then
read(4,*) ikmax, div, add
read(4,”) itermax, tolcon
elseif(ntry .Iit. 3) then
write(",'(/////10x,a\)’)"..... You typed a wrong letter, try S/s

+or Rir_ ...

+ +

ntry = ntry+1
write(*,'(///fa\)?)' *
goto 5
else
stop
endif

+ output files +

open( unit=16, file="vio.out',status="unknown’)
open( unit=18, file='out.out',status="unknown’)

call mainsub(nray, npix, ndim, nja, sn, mn,
m, ncol, w, h, fambda, datf,
ikmax, div, add, ray_path, method,
maxiter, itermax, contol, tolcon)
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++ +

end

+ +
+ MAIN SUBROUTINE +
+ +

subroutine mainsub(k, n, ndim, nja, sn, m,
m, ncol, w, h, lambda, datf,
ikmax, div, add, ray_path, method,
maxiter, itermax, contol, tolcon)

character*20 datf, ray_path, viof, method

integer ia(ndim+1), ja(nja), ier, iconj,
ija(nja+1), iat(ndim+1), jat(nja)

integer ir(ndim+1), jr(nja)

integer i, ii, sn, rn, kk
integer icount, itermax, maxiter,ikmax

double precision row(ndim), a(nja), b(n), at(nja),
x(n), v(n), btime(k), r(nja),
aft(ndim), a2(n,n), sa(nja+1), btem(k)

double precision tmpx, avex, veloc, vav
double precision div, add, lambda, w, h
double precision contol, toicon, tsqrt

if((ray_path .eq. 'C") .or. (ray_path .eq. 'c')) then
write(*,'(/5x,a\)")"Input velocity file-name ......... ====>'"'
read(4,*) viof
open(1 file=viof, status="unknown’)
read(1,*) (v(ii), ji=1.n)
doi=1,n
v(i)= 1./()
enddo
elseif((ray_path .eq. 'S') .or. (ray_path _eq. 's')) then
write(*,'(/5x,a\))'Input average velocity ......... ====>'
read(4,") vav
doi=1,n
v(i)= 1./vav
enddo

endif
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write(*, (///18x,a\)))***** ... PLEASE WAIT ...... ***

icount= 1
continue
tsqrt= 0.

call ray(k, n, ndim, nja, a, v, btime, at, iat,
jat, m, ncol, w, h, lambda, datf, kk,
ikmax, div, add, sn, m, btem)

+ operations with matrices +

call transa(k, n, kk, iat, jat, at,
nja, ndim, ia, ja, a)

iparcham= 0
call ata(iparcham, k, n, nja, ndim, ia, a, a,
aft, iat, jat, at)

call atb(k, n, nja, ndim,
ia, ja, a, btime, b)

if((method .eq. ‘D) .or. (method .eq. 'd’)) then
call DLSQR(n, nja, ndim, r, ir, jr)

elseif((method .eq. ‘R’) .or. (method .eq. 'r')) then
call reguia(k, m, ncol, n, ndim, nja, a, r, ir, jr, kk)

else
write(*,”) 'Input error in matrix method'

endif

+ constructing matrix rt and irt-jrt +

call transa(k, n, Kk, ir, jr. r,
nja, ndim, ia, ja, a)

+ constructing rtr +

iparcham= 1
call ata(iparcham, k, n, nja, ndim, ia, ja, a,
aft, ir, jr, r)

call combin(n, nja, ndim, at, iat, jat,
r, ir, jr, aft, row, lambda, a, ia, ja)

249



+ change storage mode for sparse matrix +

O000

call repic(n, nja, ndim, a, ia, ja, a2)

c
call sprsin(a2, n, nja, sa, ija)
c
c
c + conjugate gradient inversion +
c
c
call linbcg(nja, contol, n, b, v, maxiter,
+ ija, sa, x)
c
if((ray_path .eq. 'C’) .or. (ray_path .eq. 'c')) then
icount= icount+1
doi=1k
tsqrt= tsqrt+(btime(i)-btem(i))2
e
tsqrt= dsqri(tsqrt)
if((tsqrt it tolcon) .or.
+ (icount .gt. itermax)) then
goto 22
else
do2i=1,n
v(i)= 1./x(j)
2 continue
goto 1
endif
endif
c
22 tmpx= 0.
c
c
do3i=1,n

x(i)= dabs(x(i))
tmpx=tmpx+x(i)
3 continue
avex= tmpx/dfioat(n)

C
dodi=t,n
if (v(]) .q. 0.) goto 4
if (x(i) .le. 0.) then
v(i)= 1./avex
else
v(i)= 1./x()
endif
4 continue
(o
5 continue
do6i=1,n
write(16,'(5x,£20.5)")v(i)
6 continue
(o
retum
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end
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+ calculating ray segments in each +
+ pixel, assuming Arc-Sine or Straight paths  +

subroutine ray (k, n, ndim, nja, a, v, btime, at, iat,
jat, m, ncol, w, h, lambda, datf, kk,
ikmax, div, add, sn, m, btem)

character*20 datf
character*100 note_s, note_r, note_t

integer iflag, iflag1, sn, m, ns, nr

double precision Lnt(n), v(n), pint(n),
sx(sn), sz(sn), x(m), rz(m)

real sxtmp, sztmp, rtmp, rztmp, txtmp, tztmp,
xtmp, 2tmp, ytmp, ytmp1

double precision tem, lambda, tmpt, tmp, Xx, y, tx, tz,
w, h, tmpsx, tmpsz, ak, div, add, yy,
tmpb, xb, xbh, zbh, pi, txb, tzb, zb,
txb1, tzb1 .txb2, tzb2, tem1, vav, In

integer k, n, ndim, nja, j, ki, ij,
iiv numv i'naxv kjl kk! i' i'
ik, ikk, in, im, ikmax

double precision a(nja), btime(k), at(nja)
integer iat(ndim+1), jat(nja)

xb= w/dfloat(ncol)
xbh= xb/2.

zb= h/dfloat(m)
2bh= zb/2.

+ intializing +

-

doi=1,n
pint(i)= 0.
enddo
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do i=1,ndim+1
iat(i)=0
enddo

do i=1,nja
jat@)=0
a(i)=0.
at(i)=0.
enddo
iat(1)=1
in=0
kk=1
kj= 1
num=0
jmax= ncol
pi=3.141592
ic= 1

+ [Input data-file +

open(2, file=datf, status="'unknown’)

read(2,'(/a)’) note_s
do i=1,sn
read(2,*)sx(i), sz(i)
sx(i)= sx(i)/xb
sz(i)= sz(i)/zb
enddo

read(2,'(a)’) note_r
doi=1,m
read(2,*)rx(i), rz(i)
mx(i)= rx(i)/xb
rz(i)=rz(i)/zb
. enddo

read(2,'(a)") note_t

continue

read(2,”.err=3) ns, nr, btime(kj)

In= 0.
tem=0.
tmpt= 1.20
iftag= 0
ytmpi=1.e20

if(sz(ns) .gt. dfioat(m)) then
write(*,")' waming!!! “source location value out of range™

pause

endif
if(rz(nr) .gt. dfloat(m)) then
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write(*,*)'waming!!! “receiver location value out of range™
pause
endif

if (sx(ns) .gt. rx(nr))then
tmpsx= sx(ns)
sx(ns)= rx(nr)
x(nr)= tmpsx
tmpsz= sz(ns)
sz(ns)= rz(nr)
rz(nr)=tmpsz
iflag1=3

endif

sxtmp= sx(ns)

sztmp= sz(ns)

rxtmp= rx(nr)

rztmp= rz(nr)

txb= fioat(ifix(sxtmp))+0.5
tzb= float(ifix(sztmp))+0.5

if (sx(ns) .eq. rx(nr)) then
if (sz(ns) .gt. rz(nr)) then
tmpsx= sx(ns)
sx(ns)= rx(nr)
x(nr)= tmpsx
tmpsz= sz(ns)
sz(ns)= rz(nr)
rz(nr)= tmpsz
sxtmp= sx(ns}
sztmp= sz(ns)
iflag1=3
txb= float(ifix(sxtmp))+0.5
tzb= float(ifix(sztmp))+0.5
endif
doi=1,n
Lnt(i)= 0.
enddo
s2tmp= sz(ns)
ni= ifix(sztmp)+1
if(ni .ge. m) ni= ifix(sztmp)
ntmp= rx{nr)
rztmp= rz(nr)
mi= ifix(rztmp)+1
if(mi .ge. m) mi= ifix(rztmp)
do i= ni,mi
ii= (tzb+0.5)
ijj= (txb+0.5)
ji= (ii-1)"jmax+ijj
Lnt(j)=zb
In= In+Lnt(jj)
tem= tem+Lnt(ji)/v(ji)
tzb= tzb+1.
fi= ji+ncol
enddo
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tzbn= tzb-0.5

if(abs(rztmp-float(ifix(tzbn))) .gt. 0.) then
Lnt(jj)= abs(rztmp-float(ifix(izbn)))
in= In+Lnt(jj)
tem= tem+Lnt(jj)/v(jj)

endif

tmpt=tem

tem=0.

doi=1,n
a(i)= Lnt(i)

e
iflag=1
goto 143
endif
if(sz(ns) .eq. dfloat(m)) sz(ns)= sz(ns)-0.00001
if(rz(nr) .eq. dfloat(m)) rz(nr)= rz(nr)-0.00001

do 142 ik= 1,ikmax
do i=1,n
Lnt(i)= 0.
enddo
ak=(dfloat(ik)/div)-add

+ if source and receiver located in same pixel +

if((ifix(sztmp) .eq. ifix(rztmp)) .and.
+ (ifix(sxtmp) .eq. ifix(ncimp))) then
ii= (sztmp+1.)
ifj= (sxtmp+1.)
jir= (ii-1)"jmax+ijj
Lnt(jjr)= dsqrt(({sz(ns)-rz(nr))**2)*zb**2
+ +{(sx(ns)-mx(nr))**2)*xb**2)
In= In+Lnt(jjr)
tem= tem+Lnt(jjr)/v(jjr)
iflag= 2
goto 141
endif

sxtmp= sx(ns)

sztmp= sz(ns)

txb= float(ifix(sxtmp))+0.5
if(sz(ns) .eq. m) sztmp= m-0.00001
tzb= fioat(ifix(sztmp))+0.5
tx= sx(ns)

tz= sz(ns)

sxtmp= sx(ns)

il= ifix((sxtmp+1.))

ill= ifix{(ntmp+1.))

if(ill .gt. ncol) ill= ncol

do 140 i=ilill
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continue
x= float(i)

+ Half Sine-Arc "Sin(kx)=Sin(2°pi*x/lambda)" lambda=rx-sx +

y= sz(ns)+(x-sx(ns))*((rz(nr)-sz(ns))/(rx(nr)-sx(ns)))
+ak*sin(pi*(x-sx(ns))/(rx(nr)-sx(ns)))

if (ak .ne. 0.) then
if (v .&. 0.) .or. (y .gt. m)) goto 142
endif

ytmp=y
if(abs(y-float(ifix(ytmp))) 1. 0.000001) y= y+0.00001

tzbtmp: tzb
if((y-float(ifix(tzbtmp+0.5))) .gt. 0.000001) then

yy=Yy
y: th+0.5
ytmpi=y
x= (((y-12)" (x-))/(1z-yy))+x
if(x .gt. rx(nr)) then
x= rx(nr)
y=rz(nr)
iflag= 4
endif
ii= (1zb+0.5)
ijj= (bb+0.5)
ji= (ii-1)"jmax+ijj
Lnt(jj)= dsqri((y-tz)* (y-tz)*zb* zb+(x-tx)*(x-tx) *xb*xb)
In= In+Lnt(jj)
tem= tem+Lnt(ji)/v(jj)
if((iflag .eq. 4) .or. (x .eq. rx(nr))) goto 141
tx=x
tz=y
tzb= tzb+1.
ji= ij+ncol
iflag=0
goto 130
endif

tzbtmp: tzb
if({y-float(ifix(tzbtmp-0.5))) .LT. 0.000001) then

yy=y
y=tzb-0.5
ytmpi=y
x= (((y-12)*(tx-x))/(1z-yy)) +tx
#(x .gt. rx(nr)) then
x= rx(nr)
y=rz(nr)
iflag= 4
endif
ii= (tzb+0.5)
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ijj= (txb+0.5)
ji= (ii-1) " jmax+ijj
Lnt(j)= dsqrt{(y-tz)* (y-tz)"zb"zb+(x-tx)"(x-tx) "xb“xb)
In= In+Lnt(jj)
tem= tem+Lnt(jj)/v(jj)
if((iflag .eq. 4) .or. (x .eq. rx(nr))) goto 141
tx=x
tz=y
tzb= tzb-1.
ii= ji-ncol
iflag=0
goto 130

endif

ii= (1zb+0.5)

ijji= (xb+0.5)

ji= (1) jmax+ijj

if(x .gt. tb) txb=txb+1.

Lnt(jj)= dsqrt((y-tz)*(y-1z)"zb*zb+(x-tx)"(x-1x) “xb*xb)
in= In+Lnt(jj)

tem=tem+Lnt(jj)/v(jj)

tx= x

tz=y

= ji+1

140 continue

141
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C

continue

+ choosing shortest time path +

if (tem .It. tmpt) then
tmpt=tem
tem=0.

+ using array "a" to store lenghts +

doi=1,n
a(i)= Lnt())
enddo
endif
tem=0.
if(ifiag .eq. 2) goto 143

142 continue
143 continue

C

doi=1,n
pint(i)= pint(i)+a(i)
enddo

call spara(n, ndim, nja, kk, kj, a, at, iat, jat)
if (iflag? .eq. 3) then
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rx(nr)= sx(ns)
sx(ns)= tmpsx
rz(nr)= sz(ns)
sz(ns)=tmpsz
iflag1=0

endif

if(kj .ge. k) goto 2

ki: kj+1

iflag= 1

goto 1

continue

doi=1,n
if (pint(i) .eq. 0.) then

v(i)=0.

endif

enddo

close(2)

retum

write(*,'(a@))**** error in input file *****
stop
end

------ g *HNe ettt vdd

+ Generating a sparse matrix with ~ +
+ ia-ja structure +

subroutine spara(n, ndim, nja, kk, kj, a, at, iat, jat)
double precision a(nja),at(nja)

integer iat(ndim+1), jat(nja)

integer n, ndim, nja, j, kk, kj

iat(1)=1

doj=1,n
if(a(j) .ne. 0.) then
at(kk)= a(j)
jat(kk)=j
kk= kk+1
endif

enddo

iat(kj+1)= kk

retum
end
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+ construcling franspose
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+

subroutine transa(k, n, kk, iat, jat, at,
+ nja, ndim, ia, ja, a)

double precision a(nja),at(nja)

integer ia(ndim+1), ja(nja),
+ iat(ndim+1), jat(nja)

integer k, n, ndim, nja, jj, kk,
+ i, num, i, j, ik, in

in=0
num=0
ia(1)=1
iat(1)=1
doii=1,n
do ji=1,kk-1
if(jat(jj) -eq. ii)then
num= num+1
a(num)= at(jj)
endif
enddo
ia(ii+1)= num+1
enddo

if(jat(1) .eq. 1) then
ja(1 )= 1
in=in+1

endif

doi=1.n
do j= 1,kk-1
if(jat(j) .eq. ijthen
do ik= 1,k+1
if (j .R. iat(ik)) then
ja(in)= ik-1
in= in+1
goto 155
endif
enddo
endif
155 continue
enddo
enddo
retum
end
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+ Multiplying a matrix +
by its transpos +

*0O0
+

subroutine ata(iparcham, k, n, nja, ndim,
+ ia, ja, a, aft, iat, jat, at)

double precision a(nja), at(nja), aft(ndim)
double precision tmp

integer ia(ndim+1),ja(nja),
+ iat(ndim+1) jat(nja)

integer k, n, ndim, nja, jj, kk,
¥ ii, i, j, ik, ikk

k=0
ikk= 1
ia(1)=1
jat(1)=1
160 continue
if(ikk .gt. n) goto 165
do j= 1,ndim
aft(j=0.
enddo

do ii= ia(ikk),ia(ikk+1)-1
aft(ja(ii))= a(i)
ddo

en
doi=1,n

tmp= 0.
do ii= ia(i),ia(i+1)-1

tmp= tmp-+a(ii)*aft(ja(i))
enddo

+ Determining the best lambda +

QOO0

if (iparcham.eq.0) then
write(*,*)imp

elseif(iparcham.eq.1)then
write(*,*)tmp

write(*,*)iparcham
pause ‘error in iparcham'

endif

if(tmp .ne. 0.)then
ik= ik+1
at(ik)= tmp
jat(ik)=i
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endif

enddo
c
iat(ikk+1)= ik+1
ikkk= ikk+1
c
goto 160
165 continue
retum
end
c
c
c + Multiplying a matrix +
c + by a vector +
c
subroutine atb(k, n, nja, ndim,
+ ia, ja, a, blime, b)
c
double precision a(nja), btime(k), b(n), tmpb
integer ia(ndim+1),ja(nja)
integer k, n, ndim, nja,
+ il, i, j, im
c
c + initializing vector +
[
c
doi=1,n
b(i)=0
enddo
c
doi=1,n
c
tmpb= 0.
do ii=ia(i),ia(i+1)-1
impb= tmpb+a(ii)"btime(ja(ii))
enddo
c
b(i)= tmpb
enddo
retum
end
c
c + Generating (aTa + lambda‘rTr) +
c

Subroutine combin(n, nja, ndim, at, iat, jat,
+ r, ir, jr, aft, row, lambda, a, ia, ja)
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double precision r(nja), a(nja), at(nja),
aft(ndim). row(ndim), lambda

integer ir(ndim+1), jr(ndim), ia(ndim+1), ja(nja),
iat(ndim+1), jat(nja)

integer n, nja, ndim, i, ii, kk,
ikk, ik, j

kk=1

jkk=1

ia(1)=1

iat(1)=1

do kik=1, n

do j= 1,ndim
row(j)= 0.
aft(j)=0.

enddo

do ii= iat(jkk),iat(jkk+1)-1
aft(jat(ii))= at(ii)
enddo

do ii= ir(jkk),ir(jkk+1)-1
row(jr(ii))= r(ii)

enddo

doi=1,n
aft(i)= lambda“row(i)+aft(i)
enddo

+ generating ia-ja structure +

do i: i,n
if(aft(j) .ne. 0.) then
a(kk)= aft(j)
jalkk)=j
kk= kk+1
endif
enddo
ia(jkk+1)= kk
ikk: ik|(+1
enddo

retum
end
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Generating identity matrix in ia-ja format

Subroutine DLSQR (n, nja, ndim, r, ir, jr)
double precision r(nja)
integer ir(ndim+1), jr(nja)

integer n, nfa, i, il

+ initialization +

doi=1,n
r()=0.
=0

enddo

do i= 1,ndim+1
ir=0

enddo

+ Constructing matrix *I* and il, ji for DLSQR +

ii=1

if(ii .le. n) then
r(ii)=1.
jrit)=ii
ii= li+1
goto 6

endif

ir(1)=1

do i= 2,ndim+1
ir@)=i

enddo

retum

end

*Ree LA A A a4 g o s dda g aa g g

GENERATING REGULARIZATION MATRIX

* * &

Subroutine regula(k, m, ncol, n, ndim, nja, a,
r,ir, jr, kk)

double precision r(nja), a(nja)
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integer ir(ndim+1), jr(nja)

integer k, n, ndim, nja, jj, kij, ij, m,
+ il, num, jmax, kj, Kk, i, j, ncol

kk=1
ki=0
ir(1)=1
num=0
ikr= 1
in=0
jmax= ncol

dod4i=1m
do 3 j= 1,ncol
ki= ki+1
doij=1,n
a(ii): 0.
enddo
if ((i .eq. 1) .and. (j .eq. 1)) then
a(t)=-4.
a(2)=2.
a(1+ncol)= 2.
elseif ((i .eq. m) .and. (j .eq. 1)) then
ii= (F1)jmax+j
a(ji-ncol)= 2.
a(jj)= -4.
a(jj+1)=2.
elseif ((i .eq. 1) .and. (j .eq. ncol)) then
ii= (i-1)"jmax+j
a(jj-1)=2.
a(jj)= -4.
a(ji+ncol)= 2.
elseif ((i .eq. m) .and. (j .eq. ncol)) then
ji= (i-1)*jmax+j
a(jj-ncol)= 2.
a(jj)= -4.
a(jj-1)=2.
elseif ((i .gt. 1) .and. (j .eq. 1) .and. (i .it. m)) then
ii= (i-1)“jmax+j
a(jj-ncol)= 1.
a(j])= -4,
a(ji+1)=2.
a(ji+ncol)=1.
elseif ((i .gt. 1) .and. (j .eq. ncol) .and. (i .it. m)) then
fi= (1) jmax+]
a(jj-ncol)=1.
a(jj)= -4.
a(jji-1)=2.
a(jj+ncol)=1.
elseif ((j .gt. 1) .and. (i .eq. 1) .and. (j .it. ncol)) then
ii= (i-1)‘jmax+j
a(j-1)=1.
a(jj)= -4.
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a@j+1)=1.
a(jj+ncol)= 2.
elseif ((j .gt. 1) .and. (i .eq. m) .and. (j .&. ncof)) then
ii= (F1)"imax+j
a@ji-1)=1.
a(jj)= -4.
a(j+1)=1.
aj-ncol)=2.
else
ii= (i-1)"jmax+j
a(jj-ncol)= 1.
a(j-1)=1.
a(lj)=-4.
affi+1)=1.
a(jj+ncol)=1.
endif

call spara(n, ndim, nja, kk, kj, a, r, ir, jr)

continue
continue

W

return
end

» VTR T AN RS AT AR AN e R s det R d et otet

+ Conjugate gradient +

SUBROUTINE linbcg(nja, contol, n, b, v, maxiter,
+ ija, sa, x)

INTEGER iter,maxiter,itol,n,nja,ija(nja+1)

DOUBLE PRECISION contol, b(n), x(n), eps, v(n), sa(nja+1)

INTEGER j

DOUBLE PRECISION ak,akden,bk bkden,bknum,bnrm,dxnrm,.xnrm,zm1nrm,
+ znrm,p(n),pp(n),r(n),rr(n),z(n),zz(n),snrm,err

parameter (eps=1.d-14)

iter=0

itol= 1

doi=1,n

r(i)= 0.
enddo

cali atimes(nja,ija,sa,n,v,r,0)
do 11 j=1,n
r(j)=b()-r()
rr()=r()
11 continue
call atimes(nja,ija,sa,n,r.ir,0)
znrm=1.d0
if(tol.eq.1) then
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100

12

13

14

15

16

bnrm=snrm(n,b,itol)
else if (itol.eq.2) then
call asolve(nja,ija,sa,n.b,z2,0)
bnrm=snrm(n,z,itol)
else if (itol.eq.3.or.itol.eq.4) then
call asolve(nja,ija,sa.n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(nja,ija,sa.n.r,z,0)
znrm=snrm(n,z.itol)
else
pause ‘illegal itol in linbcg’
endif
call asolve(nja,ija,sa,n,r,z,0)
if (iter.le.maxiter) then
iter=iter+1
zminrm=znrm
call asolve(nja,ija,sa,n,ir,zz,1)
bknum=0.d0
do12j=1n
bknum=bknum+2z(j)*rr(j)
continue
if(iter.eq.1) then
do13j=1,n
p@)=z()
pp()=22()
continue
else
bk=bknumvbkden
do 14 j=1,n
P)=bk’p()+2()
pp()=bk’pp(i)+zz(j)
continue
endif
bkden=bknum
call atimes(nja,ija,sa,n,p,z,0)
akden=0.d0
do15j=1,n
akden=akden+2z(j)“pp(j)
continue
ak=bknum/akden
call atimes(nja,ija,sa,n,pp,zz,1)
do16j=1,n
x()=x(j}+ak’p()
r()=r(j)-ak°z(j)
r(j)=rr(j)-ak"2z(j)
continue
call asolve(nja,ija,sa,n,r,z,0)
if(itol.eq.1.or.itol.eq.2)then
znrm=1.d0
emr=snrm(n,r.itol)ybnrm
else if(itol.eq.3.0or.itol.eq.4)then
znrm=snrm(n,z,itol)

if(abs(zm1nrm-znrm).gt.eps*znrm) then
dxnmim=dabs(ak)*snrm({n,p,itol)
emr=znmvdabs(zm1nrm-znrm)“dxnrm

else
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err=znrm/bnrm
goto 100
endif
xnrm=snrm(n,x, itol)
if(err.le.0.5d0*xnmn) then
err=err/xnrm
else
emr=znm/bnrm
goto 100
endif
endif
write (18,°) ' iter='iter,’ err=".err
if(err.gt.contol) goto 100
endif

101 continue

c

write(18,°)' max error =, err

return
END

C (C) Copr. 1986-92 Numerical Recipes Software

OO0 0

o000

TR AVT T TSI NR AR PR RSN NN AN

+ storing matrix A into a two

+
+ dimensional matrix +

subroutine replc(n, nja, ndim, a, ia, ja, a2)
integer n, ia(ndim+1), ja(nja)
double precision a(nja), a2(n,n)

doi=1,n
doj=1,n
a2(i.j)=0.
enddo
enddo

doi=1,n
do j=ia(i),ia(i+1)-1
a2(ija(@))= a()
enddo

enddo
retum
end

+ Normof avector +

FUNCTION snrm(n,sxitol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm
if (itol.le.3)then
snrm=0.
do1ti=1,n
snrm=snrm+sx(i)**2
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11 continue
snrm=dsqrt(snrm)
else
isamax=1
do12i=1,n
if(dabs(sx(i)).gt.dabs(sx(isamax))) isamax=i
12 continue
snm=dabs(sx(isamax))
endif
retum
END
(C) Copr. 1986-92 Numerical Recipes Software

*ete

+ Muitiplying a matrix by a vector +
AR TE RN TSR TN RN OO AN P AR S SR R et O R e R ety

o
c
c
c
c

SUBROUTINE atimes(nja.ija,sa,n,x.r.itrnsp)
INTEGER n,itrnsp,ija(nja+1),nja
DOUBLE PRECISION x(n),r(n),sa(nja+1)
if (itmsp.eq.0) then
call dsprsax(nja,sa.ija,n,x.r)
else
call dsprstx(nja,sa.ija,n,x,r)
endif
retumn
END
C (C) Copr. 1986-92 Numerical Recipes Software

OO0
+
=
=
v
<
a
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=
=,
*
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>
+

SUBROUTINE dsprsax(nja,sa,ija,n,x,b)
INTEGER n,jja(nja+1)
DOUBLE PRECISION b(n),sa(nja+1),x(n)
INTEGER i,k
if (ijla(1).ne.n+2) pause ‘mismatched vector and matrix in dsprsax’
do12i=1,n
b(i)=sa(i)*x(i)
do 11 k=ija(i),ija(i+1)-1
b(i)=b(i)+sa(k)"x(ija(k))
11 continue
12 continue
retumn
END
(C) Copr. 1986-92 Numerical Recipes Software

+ Multiplying transpose ofa  +
+ matrix by a vector +

e s a2 d

Cc
c
¢ reesesreeses v
c
c
c

ettt erw

SUBROUTINE dsprstx(nja,sa,ija,n,x,b)
INTEGER n,ija(nja+1)
DOUBLE PRECISION b(n),sa(nja+1),x(n)
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INTEGER i,k
if(ija(1).ne.n+2) pause ‘'mismatched vector and matrix in dsprstx’
do1tli=1,n
b(i)=sa(i)"x()
11 continue
do 13i=1,n
do 12 k=ija(i),jja(i+1)-1
i=iia(k)
b(H)=b(j)+sa(k)"x(i)
12  conlinue
13 continue
retum
END
(C) Copr. 1986-92 Numerical Recipes Software

+ row-index sparse format +

C

c

c + changing format of a two dimensional matrix to +
c

c

SUBROUTINE sprsin(a2,n,nja,sa,ija)
INTEGER n,nja,ija(nja+1)
double precision a2(n,n),sa(nja+1)
INTEGER i j,k
do 11 j=1,n
sa(j)=a2(.j)
11 continue
ijla(1)=n+2
k=n+1
do 13i=1,n
do12j=1,n
if(dabs(a2(i,j)).gt.0.)then
if(i.ne.j)then
k=k+1
if(k.gt.(nja+1))pause 'nja too small in sprsin’
sa(k)=a2(;,)
ija(k)=j
endif
endif
12  continue
ija(i+1)=k+1
13 continue
retumn
END
(C) Copr. 1986-92 Numerical Recipes Software
AT AN T RN O SRR AR AN AR A A O TN S AT R AR O RO R ENaNd

+ or its trnspose +

RN SER

C

c

c +  Make a division using a matrix  +
c

c

SUBROUTINE asolve(nja,ija,sa,n,b,x,itrnsp)
INTEGER n,itmsp,ija(nja+1),nja,i
DOUBLE PRECISION x(n),b(n),sa(nja+1)
do 11i=1,n
x(i)=b(iy/sa(i)
11 continue
retumn
END
C (C) Copr. 1986-92 Numerical Recipes Software
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APPENDIX E: Corresponding Input Files for
All Case Histories
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Hellium Balloon 1, Located in off-center 1o the left
Locations in inches, Travel times in miliseconds.

Source locations (X,2) Reciver locations (X,2)
3

0 603 3
0 12 603 12
0 21 60.3 21
0 30 60.3 30
0 39 60.3 39
0 48 60.3 48
0 57 60.3 57

Source number= Sn, Receiver number= Rn, Travel times=T-T

Sn Rn T-T Sn Rn T-T
1 1 4.38 5 1 484
1 2 4.42 5 2 456
1 3 4.54 5 3 4.38
1 4 4.80 5 4 426
1 5 5.06 5 5 432
1 6 5.42 5 6 444
1 7 5.78 5 7 458
2 1 4.50 6 1 5.30
2 2 4.42 6 2 5.00
2 3 4.50 6 3 4.74
2 4 4.62 6 4 4.60
2 5 4.84 6 5 4.46
2 6 510 6 6 442
2 7 5.36 6 7 444
3 1 4.68 7 1 5.86
3 2 452 7 2 5.46
3 3 4.46 7 3 5.10
3 4 4.32 7 4 4.82
3 5 434 7 5 458
3 6 452 7 6 444
3 7 4.92 7 7 436
4 1 4.90
4 2 4.46
4 3 4.20
4 4 414
4 5 4.22
4 6 442
4 7 478
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Hellium Balloon 2, Located in off-center to the top
Locations in inches, Travel times in miliseconds.

Source locations (X,2) Receiver locations (X,2)

03 603 3
0 12 603 12
0 21 60.3 21
0 30 60.3 30
0 39 60.3 39
0 48 60.3 48
0 57 60.3 57

Source number= Sn, Receiver number= Rn, Travel times= T-T

Sn RAn T-T Sn RAn T-T
1 1 4.52 5 1 4.92
1 2 456 § 2 468
1 3 458 5 3 456
1 4 474 5 4 452
1 5 5.06 5§ 5 448
1 6 5580 5§ 6 450
1 7 5890 5 7 460
2 1 4.54 6 1 5.32
2 2 430 6 2 508
2 3 4.8 6 3 492
2 4 432 6 4 470
2 5 460 6 5 456
2 6 500 6 6 448
2 7 556 6 7 4582
3 1 4.50 7 1 5.80
3 2 424 7 2 554
3 3 412 7 3 516
3 4 428 7 4 488
3 5 454 7 §5§ 468
3 6 482 7 6 452
3 7 6524 7 7 442
4 1 4.62
4 2 438
4 3 424
4 4 436
4 5 446
4 6 462
4 7 49
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Hellium Balloon 3, Located in the center
Locations in inches, Travel times in miliseconds.

Source locations (X.2) Receiver locations (X,2)

03 603 3
0 12 60.3 12
o2 60.3 21
0 30 603 30
0 39 603 39
0 48 60.3 48
0 57 60.3 57

Source number= Sn, Receiver number= Rn, Travel times=T-T

Sn Rn T-T Sn Rn T-T
1 1 4.38 5 1 514
1 2 4.42 5 2 4.78
1 3 4.58 5 3 452
1 4 4.79 5 4 4.42
1 5 5.06 5 5 4.38
1 6 5.38 5 6 4.44
1 7 5.76 5 7 4.60
2 1 4.46 6 1 542
2 2 4.40 6 2 504
2 3 4.42 6 3 4.74
2 4 454 6 4 4.56
2 5 4.76 6 5 4.46
2 6 5.04 6 6 4.42
2 7 5.44 6 7 4.46
3 1 4.58 7 1 5.86
3 2 44 7 2 5.46
3 3 4.34 7 3 5.12
3 4 439 7 4 4.82
3 5 4.5 7 5 4.58
3 6 4.76 7 6 4.46
3 7 5.08 7 7 4.40
4 1 4.82
4 2 4.56
4 3 4.36
4 4 43
4 5 438
4 6 4 .56
4 7 484
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Hellium Balloon 4, Located in the center.
Locations in inches, Travel times in miliseconds.

Source locations (X,2) Receiver locations (X,2)
0.0 5.2501 59.5 5.2500
0.0 8.501 59.5 8.5000
00 11.7501 59.5 11.750
0.0 15.001 59.5 15.000
0.0 18.2501 59.5 18.250
00 21.501 59.5 21.500
0.0 24.7501 59.5 24.750
0.0 28.001 59.5 28.000
0.0 31.2501 59.5 31.250
0.0 34501 59.5 34.500
0.0 37.7501 59.5 37.750
00 41.001 595 41.000
0.0 44.2501 59.5 44.250
0.0 47501 595 47.500
0.0 50.7501 59.5 50.750
0.0 54.001 59.5 54.000

Source number= Sn, Receiver number= Rn, Travel times=T-T

Sn Rn T-T Sn Rn T-T
1 1 4.41 9 1 4.71
1 2 443 9 2 459
1 3 444 9 3 449
1 4 448 9 4 441
1 5 452 9 5 4.33
1 6 458 9 6 4.27
1 7 4.63 9 7 424
1 8 4.66 9 8 423
1 9 4.71 g 9 4.2
1 10 4.76 9 10 422
1 11 485 9 11 424
1 12 492 9 12 43
1 13 5.05 9 13 435
1 14 5.15 9 14 445
1 15 5.32 9 15 4.53
1 16 5.44 9 16 4.69
2 1 44 10 1 4.77
2 2 44 10 2 4.65
2 3 4.41 10 3 455
2 4 4.42 10 4 445
2 5 4.47 10 & 437
2 6 4.49 10 6 4.31
2 7 4.51 10 7 4.28
2 8 4.52 10 8 4.25
2 g 4.6 10 9 421
2 10 461 10 10 4.23
2 11 473 10 11 425
2 12 477 10 12 429
2 13 4.92 10 13 434
2 14 5.00 10 14 442
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4.29
4.26
429
431
438
442
4.51
4.6
474
483
4.63
4.52
445
435

4.24
423
4.21
424
425
431
435

4.52
4.65
475

453
447
4.37
4.31
425
424

4.21
422
429
431
44
446
4.59
4.69
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Concrete Crack (Side-to-Side shootings)
Locations in meters, Travel times in miliseconds.

Source locations (X,Z) Receiver locations (X,2)
o 0.1

nN

- -

0 1

0 1.2

0 03 1.2 04
0 04 12 05
0 05 1.2 06
G 06 12 07
0 07 12 o038
0 08 12 09
0 1.0 12 10
0 11 1. 1.1

Source number= Sn, Receiver number= Rn, Travel times= T-T
Sh An T-T Sn Bn T-T Sn Rn T-T

1 1 260 5 1 272 9 1 368
1 2 258 5 2 266 9 2 332
1 3 300 5 3 288 9 3 .284
1 4 206 5 4 282 9 4 276
1 56 302 5 5 282 9 5 .268
1 6 308 5 6 286 9 6 .264
1 7 316 5 7 200 9 7 .260
1 8 33 5 8 206 9 8 256
1 9 344 5 9 302 9 9 254
1 10 358 5 10 310 9 10 .256
2 1 258 6 1 282 10 1 .360
2 2 256 6 2 272 10 2 346
2 3 292 6 3 286 10 3 .294
2 4 294 6 4 280 10 4 .286
2 5 294 6 5 280 10 5 .276
2 6 302 6 6 282 10 6 .270
2 7 308 6 7 286 10 7 .264
2 8 32 6 8 290 10 8 .258
2 9 33 6 9 296 10 9 .256
2 10 338 6 10 302 10 10 .256
3 1 264 7 1 290
3 2 200 7 2 .278
3 3 292 7 3 .290
3 4 286 7 4 286
3 5 288 7 5 282
3 6 294 7 6 .284
3 7 302 7 7 .28
3 8 310 7 8 .288
3 9 32 7 9 294
3 10 .330 7 10 .300
4 1 268 8 1 .300
4 2 262 8 2 288
4 3 288 8 3 .300
4 4 284 8 4 294
4 5 284 8 5 .288
4 6 288 8 6 .290
4 7 206 8 7 .290
4 8 302 8 8 204
4 9 312 8 9 296
4 10 322 8 10 .304
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Concrete Crack (Top to left-Side shootings)
Locations in meters, Travel times in miliseconds.
Source locations (X,Z) Receiver locations (X,2)

o1 0 0 o1
02 0 0 02
03 0 0o 03
04 O 0 04
05 0 0 05
06 0 0 06
0.7 0 o 07
08 0 0 08
09 O 0 1.0
10 © 0o 11
i1 0

Source number= Sn, Receiver number= Rn, Travel times=T-T
Sn Rn T-T Sn Rn T-T Sn Rn T-T

1 1 .028 5§ 1 113 9 1 199
1 2 .049 5 2 115 9 2 200
1 3 .070 § 3 123 9 3 204
1 4 .092 § 4 138 9 4 212
1 &5 117 § 5 1853 9 5 222
1 6 .137 § 6 170 9 6 24
1 7 .156 5 7 18 9 7 244
1 8 179 S 8 206 9 8 .260
1 9 .266 5 9 278 9 9 316
1 10 272 5 10 288 9 10 .324
2 1 .08 6 1 136 10 t 218
2 2 .062 6 2 137 10 2 218
2 3 .078 6 3 144 10 3 222
2 4 .099 6 4 .155 10 4 232
2 5 120 6 5 .169 10 5 .242
2 6 143 6 6 .186 10 6 .252
2 7 .59 6 7 200 10 7 .260
2 8 .182 6 8 216 10 8 .272
2 9 266 6 9 286 10 9 328
2 10 276 6 10 294 10 10 .338
3 1 .070 7 1 157 11 1 242
3 2 .077 7 2 158 11 2 242
3 3 .090 7 3 163 11 3 244
3 4 109 7 4 174 11 4 252
3 5 128 7 5 186 11 5 .258
3 6 .149 7 6 200 11 6 .268
3 7 .166 7 7 212 11 7 278
3 8 .188 7 8 232 11 8 292
3 9 .268 7 9 294 11 9 342
3 10 .280 7 10 306 11 10 .352
4 1 .091 8 1 .176

4 2 .095 8 2 .178

4 3 .106 8 3 .18

4 4 21 8 4 .192

4 5 .138 8 § .202

4 6 .159 8 6 216

4 7 473 8 7 .228

4 8 .195 8 8 242

4 9 270 8 9 .302

4 10 284 8 10 314
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Concrete Crack (Top to right-Side shootings)

Locations in meters, Travel times in miliseconds.

Source locations (X,Z) Receiver locations (X,Z)
0. . 0.1

1 0 1.2
02 0 12 02
03 0 i2 03
o4 O 12 04
05 0 12 05
06 0 12 06
0.7 0 12 07
08 0 12 08
09 0 12 1.0

.0 0 12

0

1.1
Source number= Sn, Receiver number= Rn, Travel times= T-T
Sn An T-T Sn Rn T-T Sn Rn T-T

1 1 244 5 1 .156 9 1 .070
1 2 244 5 2 .159 9 2 .080
1 3 294 5 3 .220 9 3 a72
1 4 292 5 4 222 9 4 174
1 &5 .296 5 5§ 230 g 5 .186
1 6 .308 5 6 .242 9 6 204
1 7 314 5 7 .254 9 7 220
1 8 328 5 8 272 9 8 242
1 9 .340 5 9 .288 g 9 258
1 10 352 5 10 .300 9 10 274
2 1 220 6 1 135 10 1t .049
2 2 224 6 2 .139 10 2 .063
2 3 272 6 3 .206 10 3 .63
2 4 272 6 4 .208 10 4 A7t
2 §5 .278 6 5 .216 10 5 .184
2 6 .286 6 6 .228 10 6 .200
2 7 300 6 7 244 10 7 .216
2 8 316 6 8 .262 10 8 .238
2 9 324 6 9 278 10 9 256
2 10 336 6 10 .290 10 10 274
3 1 .200 7 1 11 11 1 .028
3 2 .202 7 2 116 11 2 048
3 3 .256 7 3 A9 11 3 .62
3 4 258 7 4 193 11 4 167
3 5 .260 7 5 204 11 5 179
3 6 272 7 6 216 11 6 .199
3 7 .286 7 7 232 11 7 216
3 8 .29 7 8 240 11 8 242
3 9 314 7 9 .268 11 9 252
3 10 324 7 10 284 11 10 270
4 1 .183 8 1 .092

4 2 .186 8 2 .099

4 3 242 8 3 .180

4 4 242 8 4 .185

4 5 248 8 5 .194

4 6 260 8 6 .208

4 7 270 8 7 226

4 8 .288 8 8 .246

4 9 .302 8 9 264

4 10 .314 8 10 .280
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Concrete Column
Locations in meters, Travel times in milisecond

Source locations (X,Z) Receiver locations (X,2)
0.05 1.2 0.05

0 .

0 0.1 1.2 0.1
0 0.15 12 0.15
0 0.2 1.2 02
0 0.25 12 025
0 03 1.2 03
0 0.35 12 035
0 04 1.2 04
0 0.45 12 045
0 0.5 1.2 0.5
o 0.55 12 055
0 0.6 1.2 0.6
0 0.65 12 065
0 0.7 1.2 0.7
0 0.75 12 075
0 08 1.2 0.8
0 0.85 12 085
0 0.9 1.2 0.9
0 0.95 1.2 095
0 1 1.2 1

o 1.05 1.2 1.05
0 11 1.2 1.1

0 1.15 1.2 1.18

Source number= Sn, Receiver number= Rn, Travel times= T-T
Sn Rn T-T Sn Rn T-T Sn Rn T-T

1 1 0.258 89 1 0276 17 1 0.326

1 2 0256 9 2 0274 17 2 032

1 3 0.256 9 3 027 17 3 0314

1 4 0258 9 4 0.266 17 4 031

1 5 0.258 9 5 027 17 5 0.306

1 6 0258 9 6 0276 17 6 03

1 7 0262 9 7 0264 17 7 0298

1 8 0264 9 8 0.282 17 8 0294

1 9 0266 9 9 029 17 9 0.292

i1 10 0274 9 10 03 17 10 0.286
1 11 0278 9 11 0306 17 11 0.286
1 12 0.278 9 12 0284 17 12 0.28
1 13 0.288 9 13 0.284 17 13 028
1 14 0294 9 14 0284 17 14 0.278
1 15 0.304 9 15 0.292 17 15 0.278
1 16 0.308 9 16 0292 17 16 0.278
1 17 0318 9 17 03 17 17 0278
1 18 0.328 9 18 0306 17 18 0.276
1 19 0334 9 198 0.308 17 19 0.278
1 20 0344 9 20 0.31 17 20 0.278
1 21 035 9 21 0314 17 21 0278
1 22 0358 9 22 0322 17 22 0.278
1 23 0364 9 23 0348 17 23 0.278
2 1 026 10 1 0.28 18 1 0332

2 2 026 10 2 0274 18 2 0.328
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0.26
0.256
0.258
0.258
0.262
0.264
0.266
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0.258
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0.27

0.278

10 3 0272
0.27
0.268
0.268
027
0.268
0.272
0.278
0.284
0.278
0.282
0.284
0.286
0.288
0.292
0.294

10 17

0.28
0.278
0.276
0.278
0.286
0.282
12 0.282
12 10 0284
12 11 0.284
12 12 0.282

18 3 0322
18 4 0316
18 5§ 031
18 6 0.306
18 7 0302
18 8 0.296
i8 9 02%4
18 10 0.292
18 11 0.286
18 12 0.284
18 13 028
18 14 028
18 15 0278
18 16 0.276
18 17 0.276
18 18 0.274
18 19 0.276
18 20 0.276
18 21 0.276
18 22 0.276
18 23 0.278
19 1 0338
19 2 0334
19 3 0328
19 4 0316
19 5 0314
19 6 0.308
19 7 0306
19 8 0304
19 9 0.298
19 10 0.292
19 11 0.29
19 12 0.286
19 13 0.284
19 14 0.282
19 15 0.284
19 16 0.282
19 17 03
19 18 0.274
19 19 0.272
19 20 0.272
19 21 o0.272
19 22 0.272
19 23 0.274
20 1 0.346
20 2 0.342
0334
0.316
0314
0314
0.308
0.306
03
20 10 0.294
20 11 0.292
20 12 0.286
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12
12

13 0.282
14 028

12 15 0.284

12

16 0.284
17 0.286
18 029
19 0.292
20 0.294
21 0298
22 0.306
23 03
1 0298
2 0292
3 029
4 0284
5 0.286
6 0284
7 0284
8 0.284
9 0.284
10 0.284
11 0284
12 0.282
13 028
14 0.284
15 0.284
16 0.284
17 0.286
18 0.288
19 0.292
20 0.292
21 0.292
22 0.294
23 0.298
1 0.302
2 0.298
3 0.296
4 0292
5 0.292
6 0.292
7 029
8 0.286
9 0.286
10 0.284
11 0284
12 0284
13 0.282
14 0.284
15 0.282
16 0.284
17 0.282
18 0.282
19 0.284
20 0.286
21 0286
2 029

20 13 0.284
20 14 0284
20 15 028
20 16 0.278
20 17 0.276
20 18 0.276
20 19 0.272
20 20 0.272
20 21 027
20 22 027
20 23 0.268
1 0348

2 0344

3 0334

4 0328

21 5§ 0322
6 032

7 0314

8 031

9 0304
21 10 0.298
21 11 0294
21 12 029
21 13 0.284
21 14 0284
21 15 0282
21 16 0.278
21 17 0276
21 18 0.272
21 19 0.272
21 20 027
21 21 027
21 22 027
21 23 027
22 1 0358
2 2 035
22 3 034
22 4 0336
22 5 0334
22 6 0328

2 7 032
22 8 0314
22 9 0308
22 10 0.302
22 11 0.298
22 12 0.292
22 13 0.288
22 14 0.284
22 15 0.282
22 16 028
22 17 0.278
22 18 0.276
22 19 027
22 20 027
2 21 027
22 22 0.268
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0.334
0.268
0.264
0.264
0.262

0.26
0.258
0.258
0.258
0.262

0.27

0.282

0314

0.336

0.286

0.292

0.294

03

0.306

0.31

0.316

0.322

0.322

0.328
0.274
0.268
0.264
0.264

0.26
0.262
0.262
0.264
0.266

0.27
0.276

14 23 0.298
1 03t
2 0.306
3 03
4 0298
15 5 0.296
6 0.294
7 0.292
8 0.288
15 9 0.286
15 10 0.284
15 11 0.282
15 12 0278
15 13 0278
16 14 0278
15 15 0.278
16 16 0278
15 17 0.278
15 18 0.28
15 19 0.282
15 20 0.284
15 21 0.284
15 22 0.284
15 23 029
16 1 0316
2 0312
3 0.306
4 0304
16 5 03
6 0.296
7 0292
8 0.288
16 9 0.288
16 10 0.284
16 11 0.284
16 12 0.28
16 13 0.278
16 14 0.28
16 15 0.278
16 16 0.278
16 17 0.278
16 18 0.278
16 19 0.278
16 20 0.282
16 21 0.282
16 22 0.276
16 23 0.284

22 23 027
23 1 0364
23 2 0358
23 3 035
23 4 034
23 5 0336
23 6 0328
23 7 0322
23 8 0316
23 9 0314
23 10 0.306
23 11 03
23 12 0.294
23 13 0.292
23 14 0.286
23 15 0.284
23 16 0.282
23 17 0.278
23 18 0.272
23 19 0.272
23 20 027
23 21 0.268
23 22 0.268
23 23 027
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Kosciuszko bridge pier
Locations in inches, Travel times in milisecond.

Source locations (X,2) Receiver locations (X,2)
187.1 202.6 304 148
167.0 2175 50.5 0
156.5 2175 61.0 0
146.0 2175 715 0
135.5 2175 82.0 0
125.0 2175 925 0
1145 2175 103.0 0
104.0 2175 1135 0

93.5 2175 124.0 0
83.0 217.5 1345 0
725 217.5 145.0 0
62.0 2175 1555 0
515 217.5 166.0 0
30. 202.6 187.1 148
14.8 187.1 202.6 304
0 167.0 2175 50.5
0 156.5 2175 61.0
0 146.0 2175 715
0 135.5 2175 820
0 125.0 2175 925
0 1145 2175 103.0
0 104.0 2175 1135
0 93.5 2175 124.0
0 83.0 2175 1345
0 725 2175 1450
0 62.0 217.5 1585.5
0 515 217.5 166.0
14.8 304 202.6 187.1

Source number= Sn, Receiver number= Rn, Travel times= T-T
Sn Rn T-T Sn Rn T-T Sn Rn T-T

1 1 149 1 11 122 1 21 0.60
2 1 134 2 11 127 2 21 068
3 1 146 3 11 129 3 21 oM
4 1 133 4 11 128 4 21 085
5§ 1 130 5 11 1258 5 21 077
6 1 127 6 11 132 6 21 0.85
7 1 126 7 11 131 7 21 1.04
8 1 119 8 11 127 8 21 121
9 1 1265 9 11 129 9 21 1.09
10 1 122 10 11 128 10 21 121
11 1 125 11 11 13868 11 21 t21
12 1 115 12 11 134 12 21 132
13 1 117 13 11 134 13 21 134
14 1 1.09 14 11 134 14 21 145
15 1 0.99 i5 11 134 15 21 144
16 1 091 16 11 128 16 21 1.51
17 1 084 17 11 130 17 21 148
18 1 0.76 18 11 117 18 21 147
19 1 0.78 19 11 132 19 21 142
20 1 068 20 11 1.1 20 21 135
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127 1 20 0.63
1.31 2 20 072
1.31 3 20 o077
1.31 4 20 089
129 5 20 0.80
136 6 20 0.89
132 7 20 107
127 8 20 1.25
130 9 20 1.08
1.30 10 20 1.20
1.36 11 20 124
1.32 12 20 1.30
1.36 13 20 136
135 14 20 143
1.32 15 20 1.39
1.26 16 20 148
1.30 17 20 144
1.18 18 20 1.43
1.36 19 20 148
1.14 20 20 1.36
106 21 20 135
1.04 22 20 139
098 23 20 1.35
099 24 20 1.32
1.01 25 20 127
098 26 20 138
1.01 27 20 123
075 28 20 1.29
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Chute Hemmings Dam, Locations in meters, Times in ms (only 164 rays)
Data is revised. Locations are originated to zero W=10.5, H=14.5

Source locations (X,Z)  Receiver locations (X,2)
2.36 0

0 0 .

0 1 2.36 1
0 2 296 1.8
0 3 356 26
0 4 416 34
0 5 476 42
0 6 5.36 5
0 7 596 58
0 8 656 6.6
0 9 716 74
0 10 776 82
0 11 8.36 9
0 12 896 98
0 13 96 106
0 14 102 114

Source number= Sn, Receiver number= Rn, Travel fimes= T-T

Sn Rn T-T Sn Rn T-T
1 1 0.889 8 2 2.20
1 2 094 8 3 2.04
1 3 121 8 4 143
1 4 145 8 5 1.50
1 5 1.80 8 6 1.67
1 6 211 8 7 1.56
1 7 205 8 8 1.42
1 8 232 8 9 1.51
1 g9 239 8 10 1.67
1 10 257 8 1 1.78
1 11 4.18 8 12 2.00
1 13 447 8 13 217
2 1 090 8 14 2.61
2 2 078 8 15 4.19
2 3 097 9 2 249
2 4 120 9 3 2.41
2 5 140 9 4 2.06
2 6 1.19 9 5 2.02
2 7 149 9 6 1.92
2 8 1.88 9 7 1.39
2 9 208 9 8 1.43
2 10 230 9 9 148
3 1 135 9 10 1.60
3 2 0933 9 1 1.63
3 3 0979 9 12 1.79
3 4 117 9 13 1.98
3 5 138 9 14 215
3 6 106 9 15 2.86
3 7 223 10 2 247
3 8 212 10 3 238
3 9 233 10 4 207
3 10 246 10 5 2.01
3 11 298 10 6 2.68
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Korean Demilitarized Zone
Locations in meters, Travel times in seconds.

S.L.= Source Locations, R.L.= Receiver Locations

S.L. (X.2)

OOOOOODOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOODOOOOOOOO

10
10.2
10.4
10.6
10.8

1
1.2
114
11.6
11.8

12
12.2
12.4
12.6
12.8

13
13.2
13.4
13.6
13.8

14
14.2
14.4
14.6
14.8

15
15.2
15.4
15.6
15.8

16
16.2
16.4
16.6
16.8

17
17.2
17.4
17.6
17.8

18
18.2
18.4
18.6
18.8

19
19.2
19.4
19.6
19.8

R.L (X.2)

15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
18.2
15.2
15.2
15.2
15.2
15.2
18.2
16.2
15.2
15.2
15.2
16.2
16.2
16.2
15.2
15.2
18.2
15.2
15.2
15.2
15.2
156.2
15.2
15.2
16.2
16.2
15.2
15.2
15.2
152

10
10.2
10.4
10.6
10.8

1
11.2
11.4
11.6
11.8

12
12.2
124
12.6
12.8

13
13.2
134
13.6
13.8

14
14.2
14.4
14.6
14.8

15
15.2
15.4
15.6
158

16
16.2
16.4
16.6
16.8

17
17.2
17.4
17.6
17.8

18
18.2
18.4
18.6
18.8

19
19.2
19.4
19.6
19.8

OOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOQOOOOOOOOOOOOOO

S.L. (X,2)

22
22.2
22.4
226
22.8

23
23.2
234
236
23.8

24
24.2
24.4
24.6
24.8

25
25.2
25.4
25.6
25.8

26
26.2
26.4
26.6
26.8

27
27.2
27.4
27.6
27.8

28
28.2
28.4
28.6
28.8

29
29.2
29.4
29.6
29.8

30
30.2
30.4
30.6
30.8

31
31.2
314
31.6
31.8

R.L. (X.2)

15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
16.2
15.2
15.2
168.2
15.2
15.2
15.2
18.2
15.2
15.2
15.2
15.2
168.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
162
15.2
16.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
18.2
156.2
15.2
15.2
15.2
15.2

291

13.1
13.3
13.5
13.7
13.9
14.1
14.3
14.5
14.7
14.9
15.1
15.3
15.5
15.7
15.9
16.1
16.3
16.5
16.7
16.9
171
17.3
17.5
17.7
179
18.1
18.3
18.5
18.7
18.9
19.1
19.3
19.5
19.7
19.9
20.1
20.3
20.5
20.7
20.9
21.1
21.3
21.5
21.7
21.9
221
22.3
225
2.7
229

OOOOOOOOOOOOOOOOOOOQOOQOOOQOOQQOOOQOOOOQQOQOQOOOOQ

S.L.(X.2)

26
26.2
264
26.6
26.8

27
272
274
276
27.8

28
28.2
284
28.6
288

29
29.2
294
296
298

30
30.2
30.4
30.6
30.8

31
31.2
314
316
31.8

32
322
324
32.6
32.8

33
33.2
33.4
33.6
33.8

34
342
44
346
348

35
3.2
354
35.6
35.8

R.L. (X.2)

152 30.1
15.2 30.3
152 30.5
18.2 30.7
152 309
1582 311
152 N3
152 3.5
152 317
152 319
152 32.1
152 323
15.2 325§
18.2 32.7
16.2 329
16.2 33.1
15.2 3338
15.2 335
16.2 337
16.2 33.9
15.2 34.1
182 343
152 345
15.2 347
162 34.9
16.2 35.1
152 353
1562 355
162 35.7
152 35.9
152 36.1
182 36.3
162 365
18.2 36.7
16.2 36.9
152 371
152 373
162 375
15.2 377
162 37.9
15.2 38.1
162 383
152 385§
152 38.7
15.2 389
152 39.1
152 39.3
162 395
15.2 39.7
162 39.9



S.
0
0
0
0
Q
1]
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o]
0
0
0
0
0
0

L (X.2)
20
20.2
204
20.6
20.8
21
21.2
214
21.6
21.8
22
2.2
2.4
226
2.8
23
23.2
234
23.6
238
24
24.2
24.4
24.6
24.8
25
25.2
254
25.6
25.8
26
26.2
26.4
26.6
26.8
27
27.2
274
27.6
27.8
28
28.2
28.4
286
28.8
29
29.2
29.4
29.6
298
30
30.2
304

R.L (X2)

15.2
15.2
15.2
18.2
152
15.2
15.2
15.2
15.2
15.2
16.2
15.2
15.2
i5.2
15.2
15.2
156.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
158.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
152
15.2
162
16.2
16.2
15.2
15.2
152
15.2
15.2
15.2
15.2

20
20.2
204
20.6
20.8

21
21.2
21.4
21.6
21.8

22
222
22.4
22.6
228

23
23.2
23.4
23.6
23.8

24
24.2
244
246
24.8

25
25.2
25.4
25.6
25.8

26
26.2
26.4
26.6
26.8

27
27.2
274
27.6
27.8

28
282
28.4
28.6
28.8

29
29.2
294
29.6
29.8

30
30.2
304

S.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

L. (X,2)

32
32.2
32.4
32.6
32.8

33
33.2
334
33.6
33.8

34
34.2
344
34.6
34.8

35
35.2
354
35.6
35.8

36
36.2
36.4
36.6
36.8

37
37.2
37.4
37.6
37.8

38
38.2
38.4
38.6
38.8

39
39.2
39.4
39.6
39.8

40
40.2
40.4
40.6
40.8

41
412
414
41.6
418

15
152
15.4

R.L. (X.2)

15.2
15.2
15.2
15.2
18.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
1582
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
156.2
15.2
15.2
15.2
15.2
16.2
15.2
16.2
15.2
16.2
15.2
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23.1
233
235
23.7
239
24.1
243
245
247
249
25.1
25.3
255
25.7
259
26.1
26.3
26.5
26.7
26.9
271
27.3
275
27.7
279
28.1
28.3
28.5
28.7
28.9
29.1
29.3
29.5
29.7
29.9
30.1
30.3
30.5
30.7
309
311
31.3
31.8
31.7
319
32.1
32.3
32.5
32.7
329
0.1
0.3
0.5

S.
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(0]
0
0
0
0
o
0
]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0]

0

0

L. (X.2)

4
42
44
4.6
48

5
52
54
56
58

6
6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8
8.2
8.4
8.6
8.8

9
92
9.4
9.6
9.8

10
10.2
104
10.6
10.8
11
11.2
114
116
118
12
12.2
12.4
12.6
12.8
13
13.2
134
13.6
138
14
142
144

R. L. (X,2)

15.2
15.2
15.2
15.2
16.2
15.2
156.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2

13.1
13.3
135
13.7
13.9
14.1
14.3
14.5
147
149
158.1
1563
15.5
15.7
15.9
16.1
16.3
16.5
16.7
16.9
171
17.3
175
17.7
17.9
18.1
18.3
18.5
18.7
18.9
19.1
19.3
195
19.7
19.9
20.1
20.3
20.5
20.7
209
211
21.3
215
21.7
219
22.1
22.3
2.5
2.7
229
23.1

152 233
182 235



S.L. (X2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

30.6
30.8
31
31.2
314
31.6
31.8
32
32.2
324
32.6
32.8
33
33.2
334
33.6
338
34
34.2
344
346
348
35
35.2
354
356
35.8
36
36.2
36.4
36.6
36.8
37
37.2
37.4
37.6
37.8
38
38.2
38.4
38.6
388
39
39.2
394
39.6
39.8
10
10.2
10.4
10.6
10.8
11

R.L. (X.2)
16.2

16.2
16.2
15.2
15.2
158.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
18.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
18.2
15.2
16.2
15.2
152
15.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
15.2
16.2
15.2
15.2

30.6
30.8
31
31.2
314
31.6
31.8
32
322
324
32.6
328
33
33.2
334
33.6
33.8
34
342
34.4
34.6
34.8
35
35.2
354
356
35.8
36
36.2
36.4
36.6
36.8
37
37.2
374
37.6
378
38
38.2
38.4
38.6
388
39
39.2
39.4
39.6
39.8
6.1
6.3
6.5
6.7
6.9
71

S. L. (X.2)

0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
Y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

15.6
15.8
16
16.2
16.4
16.6
16.8
17
17.2
174
17.6
17.8
18
18.2
184
18.6
18.8
19
19.2
19.4
19.6
19.8
20
20.2
204
20.6
208
21
21.2
21.4
21.6
21.8
2
22.2
224
226
22.8
23
23.2
23.4
23.6
238
24
242
24.4
24.6
248
25
25.2
25.4
25.6
25.8
26

R.L.(X.2)
152 07
152 09
152 11
152 13
152 15
15.2 17
152 19

152 21
15.2 23
1582 25
162 27
152 29
152 31
152 33
152 35
152 3.7
152 3.8

15.2 4.1
15.2 43
15.2 45
152 47
15.2 49
152 541
152 63
152 55
152 5.7
152 69
152 641
152 6.3
152 6.5
15.2 6.7
152 6.9
152 74
152 73
152 75
152 77
152 79
152 8.1
152 8.3
152 8.5
15.2 87
152 89
152 9.1
15.2 93
152 95
15.2 97
152 99
15.2 101

15.2 103

162 105

152 107

152 109

15.2 1141
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S. L. (X,2)
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14.6
14.8
15
15.2
15.4
15.6
15.8
16
16.2
16.4
16.6
16.8
17
17.2
17.4
17.6
17.8
18
18.2
18.4
18.6
18.8
19
19.2
19.4
19.6
19.8
20
20.2
204
20.6
208
21
21.2
214
21.6
21.8
22
222
224
226
22.8
23
23.2
234
236
238
24
24.2
244
246
248
25

R.L. (X.2)

15.2
16.2
15.2
15.2
18.2
18.2
15.2
16.2
15.2
16.2
15.2
15.2
15.2
16.2
152
15.2
15.2
16.2
16.2
15.2
15.2
152
15.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
16.2
15.2
156.2
15.2
16.2
15.2
15.2
15.2
18.2
16.2
15.2
18.2
158.2
158.2
15.2
18.2
18.2
15.2

23.7
23.9
241
243
245
24.7
24.9
25.1
25.3
255
25.7
259
26.1
26.3
26.5
26.7
26.9
271
273
27.5
27.7
279
28.1
28.3
285
28.7
289
29.1
29.3
29.5
29.7
29.9
30.1
30.3
30.5
30.7
30.9
311
31.3
315
31.7
319
321
32.3
325
32.7
329
33.1
33.3
335
33.7
33.9
34.1



S.L. (X,2) R. L. (X,2) S.L.(X.2) R.L.(X,2) S.L.(X,2) R. L. (X,2)

0 112 152 7.3 0 262 152 11.3 0 252 152 34.3
0 114 152 75 0 264 152 115 0 254 152 345
0 116 152 77 0 266 152 1.7 0 256 152 347
0 11.8 152 79 0 268 152 119 0 258 152 349
0o 12 152 8.1 0o 27 152 12.1 0 26 152 35.1

0 122 152 83 0 272 152 123 0 262 152 35.3
0 124 152 8§ 0 274 152 125 0 264 152 355
0 126 152 87 ¢ 276 152 127 0 266 152 357
0 128 152 8.9 0 278 152 129 0 268 152 359
o 13 152 91 0 28 152 13.1 0o 27 152 36.1

0 13.2 152 93 0 282 152 133 0 272 152 36.3
0 134 152 95 0 284 152 135 0 274 152 365
0 136 152 97 0 286 152 137 0 276 152 367
0 138 152 99 0 288 152 139 0 278 152 369
0 14 152 10.1 0 29 152 14.1 0 28 152 371

0 142 152 103 0 292 152 14.3 0 282 152 37.3
0 144 152 105 0 294 152 145 0 284 152 375
0 146 152 107 0 29.6 152 147 0 286 152 377
0 148 152 109 0 298 152 149 0 288 152 37.9
0 15 152 11.1 0 30 152 15.1 0 29 152 38.1
0 15.2 152 113 0 302 152 153 0 292 152 38.3
0 154 152 115 0 304 152 155 0 294 152 385
0 156 152 117 0 306 152 157 0 296 152 387
0 158 152 119 0 308 152 15.9 0 298 152 38.9
0 16 152 121 0 3 152 16.1 0 30 152 39.1

0 16.2 152 123 0 312 152 16.3 0 302 152 39.3
0 164 152 125 0 314 152 165 0 304 15.2 395
0 166 152 127 0 316 152 16.7 0 306 152 397
0 168 152 129 ¢ 318 152 169 0 308 152 399
o 17 152 131 0 32 152 1741 0 31 152 40.9

0 17.2 152 133 0 322 1562 17.3 0 312 152 403
0 17.4 152 135 0 324 152 175 0 314 152 405
0 17.6 152 137 0 326 152 17.7 0 3186 152 407
0 17.8 152 139 0 328 152 179 0 318 15.2 409
0 18 152 141 0 33 152 18.1 o 32 152 411

0 18.2 152 143 0 332 152 18.3 ¢ 322 152 413
0 18.4 152 145 0 334 152 185 0 324 152 415
0 18.6 152 147 0 336 152 187 0 326 152 417
0 188 152 149 0 338 152 189 0 328 152 419
o 19 152 151 0 4 152 19.1 0 33 152 421

0 19.2 152 153 0 342 152 19.3 0 332 152 423
0 19.4 152 155 0 344 152 195 0 334 152 425
0 19.6 152 157 0 346 152 19.7 0 336 152 427
¢ 19.8 152 159 0 348 152 19.9 0 338 152 429
0 20 152 16.1 0 35 152 20.1 0o 1 152 16.1

0 202 152 16.3 0 35.2 152 203 0 1.2 152 163
0 204 152 165 0 354 152 205 0 14 152 165
0 206 152 16.7 0 356 15.2 207 0 1.6 152 16.7
0 208 152 169 0 358 152 209 0 1.8 152 16.9
0o 21 152 174 0 36 152 21.1 0o 2 158.2 17.1

0 212 152 173 0 36.2 152 213 0 22 152 173

0 21.4 152 175 0 364 152 215 0 24 152 175
0 21.6 152 17.7 0 366 15.2 217 0 26 152 17.7
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S.
0
0
0
0
4]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

L. (X.2)
21.8
22
2.2
224
226
2.8
23
23.2
234
23.6
23.8
24
24.2
24.4
246
248
25
25.2
25.4
25.6
25.8
26
26.2
26.4
26.6
26.8
27
27.2
27.4
27.6
27.8
28
28.2
284
28.6
28.8
29
29.2
29.4
29.6
29.8
30
30.2
30.4
30.6
30.8
31
31.2
314
31.6
31.8
32
32.2

R.L. (X.2)

15.2
15.2
152
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
156.2
15.2
15.2
15.2
15.2
15.2
156.2
15.2
15.2
15.2
15.2
15.2
158.2
15.2
15.2
16.2
15.2
15.2
18.2
16.2
15.2
15.2
15.2
156.2
156.2
18.2
18.2
16.2
16.2
15.2
158.2
15.2
18.2
16.2
18.2
16.2
15.2
15.2
15.2

179
18.1
18.3
18.5
18.7
18.9
19.1
19.3
19.5
19.7
19.9
20.1
20.3
20.5
20.7
20.9
211
213
2185
21.7
21.9
22.1
223
225
22.7
229
23.1
23.3
235
23.7
23.9
24.1
24.3
245
247
24.9
25.1
25.3
25.5
25.7
25.9
26.1
26.3
26.5
26.7
26.9
271
27.3
275
27.7
27.9
28.1
28.3

S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.L. (X.2)

36.8
37
37.2
374
37.6
378
38
38.2
384
38.6
38.8
39
39.2
394
39.6
39.8
40
40.2
404
40.6
40.8
41
41.2
414
41.6
41.8
42
42.2
424
42.6
42.8
43
43.2
43.4
43.6
43.8
44
44.2
444
44.6
44.8
6
6.2
6.4
6.6
6.8
7
7.2
74
76
7.8
8
8.2

R.L. (X.2)

15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
16.2
16.2
15.2
15.2
15.2
15.2
18.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
18.2
15.2
15.2
15.2
16.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2
18.2
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21.9
22.1
22.3
225
227
229
23.1
233
235
23.7
23.9
24.1
24.3
245
24.7
24.9
25.1
253
255
257
25.9
26.1
26.3
26.5
26.7
26.9
27.1
27.3
275
27.7
279
28.1
28.3
28.5
28.7
28.9
29.1
29.3
29.5
29.7
29.9
10.1
10.3
10.5
10.7
10.9
1.1
11.3
11.5
1.7
11.9
12.1
12.3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S.L.(X,.2)
2.8

3
32
3.4
3.6
3.8
4
42
44
4.6
4.8
5
52
5.4
5.6
58
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
8.2
8.4
8.6
8.8
9
9.2
9.4
9.6
9.8
10
10.2
104
10.6
10.8
1
11.2
114
11.6
11.8

12
12.2
124
12.6
12.8

13
13.2

R.L. (X.2)

15.2
15.2
15.2
18.2
18.2
15.2
15.2
15.2
15.2
15.2
16.2
16.2
16.2
15.2
15.2
16.2
15.2
152
15.2
16.2
18.2
15.2
15.2
15.2
158.2
15.2
168.2
156.2
158.2
15.2
15.2
15.2
15.2
15.2
15.2
156.2
15.2
15.2
15.2
15.2
15.2
16.2
15.2
16.2
16.2
18.2
18.2
15.2
18.2
15.2
15.2
18.2
15.2

17.9
18.1
18.3
18.5
18.7
18.9
19.1
19.3
19.5
19.7
19.9
20.1
20.3
20.5
20.7
20.9
21.1
21.3
215
21.7
219
22.1
223
22.5
22.7
22.9
23.1
23.3
23.5
23.7
23.9
24.1
24.3
245
24.7
24.9
25.1
25.3
25.5
25.7
259
26.1
26.3
26.5
26.7
26.9
27.1
27.3
27.5
27.7
27.9
28.1
28.3



n

S.L (X.2) R.L. (X.2) S.L.(X.2) R.L.(X.2) -L.(X.2) R. L. (X.2)

0 324 152 285 0 84 152 125 0 134 152 285
0 326 152 28.7 0 86 152 127 0 136 152 28.7
0 328 152 289 0 88 1562 129 0 138 152 289
0 33 152 29.1 0 9 152 13.1 0 14 152 29.1
0 332 152 29.3 0. 92 162 133 0 142 152 29.3
0 334 15.2 295 0 94 152 135 0 144 152 295
0 336 15.2 29.7 0 96 152 137 0 146 1562 29.7
0 338 15.2 299 0 98 152 139 0 148 152 299
0 34 152 301 o 10 15.2 141 0 15 152 30.1
0 34.2 152 30.3 0 102 152 143 0 152 152 303
0 344 152 305 ¢ 104 152 145 0 154 152 305
0 346 152 307 0 106 152 147 0 156 182 307
0 3438 152 309 0 108 152 149 0 158 152 30.9
0 35 15.2 311 0 11 162 15.1 0 16 152 311
0 352 152 313 0 112 152 153 0 16.2 152 31.3
0 354 152 315 0 114 152 155 0 164 152 315
0 356 152 31.7 0 116 152 157 0 166 162 317
0 358 152 319 0 118 1562 159 0 168 152 319
0 36 16.2 321 0 12 152 16.1 0 17 152 3241
0 36.2 152 323 0 122 15.2 163 0 172 162 32.3
0 364 152 325 0 124 162 165 0 174 162 325
0 36.6 152 327 0 126 15.2 16.7 0 176 152 327
0 368 152 329 0 128 15.2 169 0 178 152 329
0 37 16.2 331 0 13 15.2 171 0 18 152 33.1
0 372 152 333 0 13.2 162 173 0 182 152 33.3
0 374 162 335 0 134 18.2 175 0 184 16.2 335
0 376 152 337 0 136 18.2 17.7 0 186 16.2 33.7
0 378 152 339 ¢ 138 15.2 179 0 188 152 339
0 38 162 34.1 0 14 16.2 18.1 0 19 18.2 341
0 382 152 343 0 142 15.2 183 0 192 16.2 343
0 384 152 345 0 144 15.2 185 0 194 152 345
0 38.6 152 347 0 146 152 18.7 0 196 16.2 347
0 388 152 349 0 148 15.2 189 0 198 15.2 349
0 39 182 35.1 0 15 15.2 19.1 0 20 152 35.1
0 39.2 152 353 0 152 16.2 193 0 202 162 35.3
0 394 152 355 0 154 15.2 195 0 204 15.2 355
0 396 152 357 0 156 182 197 0 206 152 357
0 398 152 359 0 158 152 199 0 208 16.2 359
0 12 152 31 0 16 162 20.1 0 21 1562 36.1
0 122 152 33 0 162 1562 203 0 21.2 152 36.3
0 124 152 35 0 164 152 205 0 214 162 365
0 126 152 37 0 16.6 152 207 0 216 152 36.7
0 128 152 39 0 16.8 152 209 0 218 152 369
0 13 152 4.1 0 17 152 211 0 22 152 37.1
0 132 152 43 0 172 162 213 0 222 152 37.3
0 134 152 45 0 174 162 215 0 224 152 375
0 136 152 47 0 176 152 21.7 0 226 162 37.7
0 138 152 49 0 178 156.2 219 0 228 15.2 379
0 14 152 541 0 18 162 221 0 23 152 38.1
0 142 152 53 0 182 162 223 0 232 152 383
0 144 162 55 0 184 152 225 0 234 152 38.5
0 146 152 57 0 186 162 227 0 236 1562 38.7
0 148 152 59 0 1838 18.2 229 0 238 15.2 38.9
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S. L (X.2) A.L (X.2) S. L. (X,2) R.L. (X,2) S.L. (X.2) R.L. (X.2)
0 15 152 6.1 0 19 16.2 234 0 24 152 391
0 152 152 6.3 0 192 162 233 G 242 1582 393
0 154 152 6.5 0 194 162 235 0 244 16.2 395
0 156 152 6.7 0 196 152 23.7 0 246 156.2 397
0 158 152 6.9 0 198 152 23.9 0 248 152 399
0 16 152 741 0 20 152 241 0 25 16.2 40.1
0 16.2 152 73 0 202 152 243 0 252 152 40.3
0 164 162 75 0 204 162 245 0 254 152 405
0 16.6 182 7.7 0 206 152 24.7 0 256 15.2 407
0 16.8 152 7.9 0 208 15.2 24.9 0 258 15.2 409
\] 17 162 8.1 0 21 152 25.1 ¢ 26 152 411
0o 172 15.2 8.3 0 212 152 253 0 262 152 4413
0 174 152 85 0 214 162 255 0 264 152 415
0 176 152 8.7 0 216 152 257 0 266 15.2 4417
0 178 15.2 8.9 0 218 152 259 0 268 152 419
0 18 162 9.1 0 2 152 26.1 0 27 16.2 421
0o 18.2 152 93 0 222 152 26.3 0 272 152 423
0 184 152 9.5 0 224 162 26.5 0 274 15.2 425
0 18.6 152 9.7 0 226 152 26.7 0 276 18.2 427
o 1838 152 9.9 0 228 1562 26.9 0 278 16.2 429
0 19 15.2 101 0 23 162 271 0 28 15.2 43.1
0 19.2 152 103 0 232 152 273 ¢ 282 16.2 433
0 194 152 105 0 234 152 275 0 284 16.2 435
c 19.6 152 10.7 0 236 152 27.7 0 286 16.2 437
0 198 182 109 0 238 152 279 0 288 15.2 439
0 20 182 114 0 24 152 28.1 0 29 15.2 441
0 20.2 152 113 0 242 152 28.3 0 292 15.2 443
0 204 152 115 0 244 1562 285 0 294 15.2 445
0 206 182 11.7 0 246 152 28.7 0 296 16.2 447
0 208 152 11.9 0 248 152 289 0 298 1562 449
0 21 18.2 1241 0 25 152 29.1 0 30 15.2 451
0 21.2 152 123 0 252 162 293 Q0 302 182 453
0 214 152 125 0 2654 152 29§ 0 304 1562 455
0 216 152 127 0 256 152 297 0 306 16.2 457
0 218 152 129 0 25638 152 299 0 3038 16.2 459

Source number= Sn, Receiver number= Rn, Travel times=T-T

Sn Rn T-T Sn Rn T-T Sn Rn T-T
0.003610 351 351 0.003856 701 701 0.003542
0.003618 352 352 0.003854 702 702 0.003555
0.003603 353 353 0.003869 703 703 0.003567
0.003588 354 354 0.003869 704 704 0.003570
0.003578 355 355 0.003876 705 705 0.003570
0.003562 356 35 0.003887 706 706 0.003570
0.003555 357 357 0.003887 707 707 0.003575
0.003552 358 358 0.003894 708 708 0.003575
0.003542 359 359 0.003899 709 709 0.003570
10 10 0.003542 360 360 0.003899 710 710 0.003570
11 " 0.003534 361 361 0.003887 711 711 0.003555
12 12 0.003532 362 362 0.003879 712 712 0.003545
13 13 0.003534 363 363 0.003874 713 713 0.003540
14 14 0.003542 364 364 0.003876 714 714 0.003534
15 15 0.003542 365 365 0.003879 715 715 0.003529

©CONOGTHE N =
©COENOALE N =
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Sn
16
17
18
19
20
21

23
24

26
27
28
29
30
31
32
33

35
36
a7
38
39

41

SHRER

47
48

50
51
52
53
54
85
56
57
58
59
60
61
62
63
64
65
66
67
68

An
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

T
0.003550
0.003552
0.003562
0.003562
0.003567
0.003575
0.003580
0.003585
0.003583
0.003585
0.003583
0.003588
0.003590
0.003588
0.003585
0.003585
0.003583
0.003588
0.003588
0.003588
0.003583
0.003578
0.003583
0.003593
0.003585
0.003583
0.003567
0.003562
0.003565
0.003565
0.003562
0.003552
0.003550
0.003542
0.003534
0.003527
0.003519
0.003512
0.003512
0.003507
0.003506
0.003509
0.003501
0.003502
0.003496
0.003491
0.003491
0.003494
0.003496
0.003491
0.003496
0.003501
0.003496

Sn
366
367
368
369
370
37
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

Rn

366
367
368
369
370
an
ar2
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

TT
0.003854
0.003838
0.003843
0.003836
0.003838
0.003838
0.003841
0.003846
0.003856
0.003866
0.003869
0.003879
0.003894
0.003897
0.003904
0.003899
0.0039807
0.003907
0.003914
0.003909
0.003907
0.003904
0.003899
0.003899
0.003902
0.003904
0.003894
0.003879
0.003871
0.003859
0.003851
0.003859
0.003849
0.003831
0.003826
0.003813
0.003788
0.003740
0.003742
0.003729
0.003724
0.003719
0.003719
0.003714
0.003722
0.003722
0.003719
0.003719
0.003722
0.003724
0.003729
0.003737
0.003747

298

Sn

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

An

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

T-T
0.003522
0.003517
0.003514
0.003514
0.003514
0.003512
0.003509
0.003509
0.003509
0.003507
0.003507
0.003507
0.003504
0.003496
0.003496
0.003481
0.003476
0.003466
0.003453
0.003451
0.003448
0.003443
0.003446
0.003448
0.003443
0.003443
0.003443
0.003446
0.003451
0.003451
0.003446
0.003443
0.003446
0.003451
0.003443
0.004120
0.004130
0.004137
0.004143
0.004130
0.004132
0.004143
0.004143
0.004132
0.004122
0.004125
0.004120
0.004110
0.004107
0.004112
0.004105
0.004089
0.004089



Sn
69
70
71

72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Rn
69
70
7
72
73
74
75
76

78
79
80
81
82
83
84
85
86
a7
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1
112
113
114
115
116
117
118
119
120
121

TT
0.003504
0.003502
0.003504
0.003534
0.003557
0.003570
0.003583
0.003603
0.003590
0.003575
0.003565
0.003545
0.003540
0.003532
0.003524
0.003522
0.003522
0.003514
0.003514
0.003507
0.003504
0.003496
0.003486
0.003479
0.003474
0.003469
0.003453
0.003436
0.003433
0.003420
0.003410
0.003405
0.003405
0.003403
0.003398
0.003395
0.003397
0.003384
0.003389
0.003393
0.003398
0.003395
0.003393
0.003395
0.003400
0.003398
0.003400
0.003398
0.003400
0.003384
0.003390
0.003390
0.003390

Sn
419
420
421
422
423
424
425
426
427
428
429

464
465
466
467
468
469
470
47

Rn
419
420
a1
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

463
464
465
466
467
468
469
470
471

TT
0.003745
0.003745
0.003745
0.003752
0.003750
0.003750
0.003755
0.003752
0.003750
0.003747
0.003747
0.003737
0.003737
0.003742
0.003745
0.003745
0.003745
0.003734
0.003737
0.003734
0.003737
0.003732
0.003724
0.003724
0.003704
0.003704
0.003707
0.003709
0.003702
0.003707
0.003709

0.003704
0.004813
0.004808
0.004808
0.004803
0.004793
0.004793
0.004730
0.004793
0.004798
0.004796
0.004801
0.004796
0.004793
0.004785
0.004783
0.004780
0.004778
0.004783
0.004780
0.004788
0.004790

299

Sn

769
770
™
772
773
774
775
776

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

Rn
769
770
7
772
773
774
775
776

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

T-T
0.004084
0.004074
0.004061
0.004056
0.004049
0.004041
0.004028
0.004028
0.004013
0.004008
0.004003
0.003998
0.004001
0.003998
0.003996
0.003990
0.003998
0.004001
0.004006
0.004023
0.004034
0.004049
0.004054
0.004054
0.004054
0.004054
0.004054
0.004051
0.004049
0.004056
0.004064

0.004084
0.004092
0.004105
0.004127
0.004127
0.004140
0.004143
0.004148
0.004148
0.004148
0.004148
0.004145
0.004148
0.004153
0.004153
0.004155
0.004155
0.004163
0.004155
0.004153
0.004132
0.004117



Sn

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Rn

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174

T-T
0.003387
0.003390
0.003392
0.003389
0.003389
0.003380
0.003377
0.003369
0.003367
0.003361
0.003356
0.003354
0.003359
0.003354
0.003346
0.003351
0.003356
0.003356
0.003356
0.003339
0.003339
0.003339
0.003341
0.003338
0.003333
0.003323
0.003323
0.003326
0.003323
0.003625
0.003622
0.003620
0.003630
0.003630
0.003620
0.003627
0.003620
0.003622
0.003620
0.003617
0.003627
0.003637
0.003625
0.003640
0.003643
0.003643
0.003678
0.003668
0.003665
0.003655
0.003648
0.003650
0.003668

Sn
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
430
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
21
522
523
524

Rn
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

T-T
0.004785
0.004783
0.004773
0.004765
0.004768
0.004768
0.004768
0.004763
0.004755
0.004757
0.004768
0.004775
0.004773
0.004770
0.004775
0.004773
0.004768
0.004755
0.004745
0.004735
0.004666
0.004719
0.004722
0.004714
0.004712
0.004709
0.004699
0.004694
0.004689
0.004687
0.004681
0.004681
0.004681
0.004679
0.004681
0.004687
0.004684
0.004676
0.004676
0.004674
0.004674
0.004679
0.004676
0.004684
0.004674
0.004671
0.004674
0.004676
0.004666
0.004666
0.004674
0.004664
0.004664

300

Sn

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

844
845
846
847
848
849
850
851
852
853
854
855
856
857
as8
859
860
861
862
863
864
865
866
867
868
869
870
87N
872
873
874

An

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870
871

872
873
874

T-T
0.004099
0.004087
0.004056
0.004039
0.004011
0.004008
0.004001
0.003957
0.003960
0.003950
0.003925
0.003925
0.003927
0.003927
0.003925
0.003912
0.003919
0.003927
0.003919
0.003927
0.003930
0.003927
0.003930
0.003932
0.003932
0.003932
0.003930
0.003927
0.003919
0.003917
0.003925
0.003922
0.003927
0.003925
0.003927
0.003927
0.003927
0.003925
0.003919
0.003919
0.003917
0.003925
0.003927
0.003935
0.003942
0.003935
0.003919
0.003914
0.003919
0.003914
0.003902
0.003899
0.003889



Sn
178
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

223
224
225
226
227

Rn

175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

223
224
225
226
227

T-T
0.003655
0.003650
0.003627
0.003627
0.003627
0.003627
0.003637
0.003632
0.003637
0.003635
0.003632
0.003622
0.003610
0.003607
0.003607
0.003599
0.003589
0.003579
0.003572
0.003582
0.003569
0.003554
0.003546
0.003544
0.003559
0.003539
0.003541
0.003546
0.003546
0.003539
0.003551
0.003554
0.003559
0.003564
0.003574
0.003584
0.003589
0.003589
0.003615
0.003627
0.003637
0.003630
0.003620
0.003617
0.003607
0.003599
0.003597
0.003587
0.003579
0.003587
0.003569
0.003554
0.003564

Sn
5§25
526
527
528
529
530
531
532
533
534
5835
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
57
572
573
574
575
576

Rn
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
6§43
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

T-T
0.004664
0.004669
0.004676
0.004676
0.004679
0.004684
0.004674
0.004674
0.004671
0.004669
0.004669
0.004666
0.004651
0.004649
0.004649
0.004656
0.004654
0.004654
0.004636
0.004628
0.004608
0.004598
0.004600
0.004598
0.004585
0.004578
0.004565
0.004565
0.004565
0.004555
0.004537
0.004517
0.004504
0.004496
0.004494
0.004481
0.004479
0.004471
0.004471
0.004474
0.004461
0.004453
0.004441
0.004438
0.004425
0.004433
0.004431
0.004433
0.004438
0.004436
0.004433
0.004436
0.004436

301

Sn

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

Rn
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
202
903
904
905
906
907
208
909
910
911
912
913
914
915
916
97
918
919
920
921
g22
923
924
925
926
927

T-T
0.003881
0.003884
0.003884
0.003879
0.003879
0.003866
0.003861
0.003861
0.003859
0.003861
0.003864
0.003874
0.003871
0.003869
0.003869
0.003869
0.003874
0.003874
0.003884
0.003887
0.003884
0.003879
0.003879
0.003866
0.003869
0.003866
0.004812
0.004807
0.004802
0.004784
0.004779
0.004769
0.004751
0.004761
0.004744
0.004736
0.004746
0.004731
0.004728
0.004718
0.004721
0.004716
0.004708
0.004708
0.004708
0.004703
0.004693
0.004703
0.004703
0.004708
0.004703
0.004701
0.004693



Sn
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
27
272
273
274
275
276
277
278
279
280

Rn

228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

T-T
0.003564
0.003564
0.003566
0.003574
0.003574
0.003579
0.003572
0.003577
0.003574
0.003554
0.003551
0.003551
0.003546
0.003526
0.003511
0.003513
0.003513
0.003506
0.003498
0.003488
0.003488
0.003480
0.003470
0.003465
0.003452
0.003450
0.003457
0.003457
0.003445
0.003445
0.003447
0.003455
0.003455
0.003447
0.003440
0.003430
0.003432
0.003435
0.003440
0.003432
0.003437
0.003435
0.003435
0.003435
0.003427
0.003427
0.003447
0.003457
0.003445
0.003445
0.003445
0.003440
0.003435

Sn
578
579
580
581
582
583

585

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

Rn

578
579
580
581
582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

TT
0.004438
0.004443
0.004466
0.004464
0.004469
0.004464
0.004481
0.004481
0.004469
0.004474
0.004479
0.004494
0.004484
0.004489
0.004499
0.004496
0.004486
0.004481
0.004476
0.004486
0.004476
0.004466
0.004466
0.003814
0.003791
0.003793
0.003781
0.003778
0.003770
0.003768
0.003760
0.003758
0.003763
0.003770
0.003770
0.003775
0.003773
0.003765
0.003755
0.003750
0.003743
0.003740
0.003745
0.003750
0.003753
0.003763
0.003773
0.003770
0.003778
0.003778
0.003775
0.003770
0.003758

302

Sn

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

946
947

949
950
951
952
953
954
955
956
957
958
959
960
861
962
963
964
965
966
967
968
969
970
971
972
873
974
975
976
977
978
979
980

Rn
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

TT
0.004693
0.004688
0.004690
0.004696
0.004690
0.004693
0.004690
0.004690
0.004693
0.004596
0.004690
0.004630
0.004716
0.004711
0.004713
0.004708
0.004711
0.004708
0.004708
0.004723
0.004736
0.004731
0.004736
0.004739
0.004749
0.004756
0.004764
0.004761
0.004756
0.004741
0.004739
0.004744
0.004746
0.004746
0.004766
0.004777
0.004787
0.004805
0.004805
0.004807
0.004805
0.004784
0.004784
0.004769
0.004716
0.004701
0.004701
0.004678
0.004668
0.004640
0.004625
0.004625
0.004619



Sn
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

Rn
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

T-T
0.003425
0.003432
0.003437
0.003430
0.003430
0.003419
0.003397
0.003399
0.003394
0.003397
0.003399
0.003402
0.003394
0.003381
0.003379
0.003366
0.003361
0.003364
0.003349
0.003349
0.003932
0.003937
0.003945
0.003937
0.003930
0.003930
0.003930
0.003940
0.003950
0.003957
0.003952
0.003950
0.003952
0.003947
0.003942
0.003945
0.003942
0.003942
0.003940
0.003940
0.003945
0.003945
0.003947
0.003950
0.003940
0.003940
0.003932
0.003930
0.003930
0.003930
0.003925
0.003930
0.003922

Sn
631
632
633
634
635
636
637
638
639

Rn
631
632
633

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681

682
683

T
0.003750
0.003737
0.003737
0.003730
0.003725
0.003720
0.003705
0.003699
0.003697
0.003687
0.003681
0.003687
0.003687
0.003687
0.003689
0.003702
0.003712
0.003712
0.003709
0.003709
0.003717
0.003717
0.003727
0.003737
0.003732
0.003732
0.003732
0.003725
0.003725
0.003722
0.003730
0.003752
0.003750
0.003752
0.003763
0.003763
0.003760
0.003742
0.003722
0.003702
0.003681
0.003674
0.003664
0.003661
0.003656
0.003651
0.003643
0.003628
0.003626
0.003621
0.003616
0.003608
0.003598

303

Sn
981
982
983
984
985
986
987
988
989
990
991
992
993
994
ags
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Rn
981
982
g83
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

T-T
0.004614
0.004614
0.004609
0.004609
0.004609
0.004602
0.004597
0.004589
0.004584
0.004587
0.004584
0.004584
0.004581
0.004576
0.004576
0.004569
0.004574
0.004569
0.004566
0.004566
0.004564
0.004564
0.004569
0.004559
0.004556
0.004556
0.004549
0.004554
0.004554
0.004559
0.004549
0.004541
0.004541
0.004538
0.004531
0.004533
0.004521
0.004521
0.004518
0.004526
0.004523
0.004516
0.004516
0.004516
0.004511
0.004511
0.004513
0.004518
0.004518
0.004518
0.004523
0.004516
0.004511



Sn
334
335

337

339

341
342

346
347
348
349
350

T-T
0.003907
0.003907
0.003902
0.003892
0.003894
0.003894
0.003884
0.003884
0.003876
0.003879
0.003876
0.003879
0.003874
0.003866
0.003861
0.003856
0.003854

Sn
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

Rn
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

T-T
0.003595
0.003588
0.003575
0.003570
0.003560
0.003552
0.003547
0.003547
0.003537
0.003529
0.003524
0.003529
0.003522
0.003524
0.003524
0.003529
0.003540
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Sn
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

Rn
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

T-T
0.004511
0.004516
0.004511
0.004518
0.004518
0.004513
0.004505
0.004511
0.004503
0.004500
0.004495
0.004493
0.004503
0.004508
0.004503
0.004505
0.004503



APPENDIX F: Corresponding Inversion
Mathcad Files for All Case
Histories
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Inverting Velocity Field (Balloon 1): -2
Definitions n:=7 i=l.n j=l.a
fj:==I.on oh :=n m:=l._.nh k:=1l.oh-1
input File V :=READPRN(vblsc) Vmia:=min(V) Vmax :=max( V)
Vmin = 13.262 Vmax =16.137 mean(V) =14.384
. s Vmax - Vmin . —teaps
Histogram it :=Vmin+(m- 1)—— histog :=hist(int, V)
Histogram of the inverted vejocity fieid
100
histog, )
0
13 135 14 14.5 15 155
inty
2D Image A Vie e B, (a1 =AY
A
B

VRESB1SN.MCD
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VRESB1SN.MCD

Enhancement V. :=it'(V.,<15.8. ls.s,v..) V.= if(V._>Vmax. Vmax.V‘.)
i ij if, []] ] 1),

2D Image A5 =V me B amin et =A

Enhanced inverted velocity field
A. .
B
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Definitions n:=7 i=l.n j=i.n
ij==l.nn nh :=n m:=1.oh k:=l.ph~1
Input File V :=READPRN(vb2sc) Vmin :=min(V) Vmax :=max(V)
Vmin = 13277 Vmax = 1594 mean(V) =14.253
. . e aps Vmax - Vmin . —htars
Histogram int_ :=Vmin+(m- 1) —— histog :=hist(int, V)
Histogram of the inverted veiocity fieid
100
histog,
0 \-__"_’=_———-
13 ns 14 145 15 15.5
inty
2D Image A T Vim ) B et =AY
A
B
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VRESB2SN.MCD

Enhancement v, =if(V,<158,158.V;) v, =if(V;>Vmax, Vmax, V)
2D image A= Ve B ta-in 41 =

A
B
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VRESB2SR.MCD

Inverting Velocity Field (Balloon 2):  -300
Ray Tracing (Second iteration)
Definitions n:=7 i=l.n j=l.n
ij==1l.nn oh :=n m:=l.noh k:=l.oh-1
Input File V :=READPRN(vb2scr) Vmin :=min(V) Vmax :=max(V)
Vmin =13.8 Vmax =23.73 mean(V) =16.729
. s Vmax — Vmin . P
Histogram int_ :=Vmin+(m- 1)-——nh—-— histog :=hist(int, V)
Histogram of the inverted velocity fieid
100
histog,,
o —
13 14 15 16 17 18 19 20 21
inty
2D Image A = Ve 1y B it A
Inverted velocity fieid
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VRESB2SR.MCD
The chop-off threshold value is selected based on computed value for the highest velacity in the medium.

Enhancement V. :=if(V..<23.5.23.5,V..) V. :=if(V..>Vmax,Vmax,V..)
11 1] 1 (1] ] 1
20 Image AL =Vl B; ta—i41 TA

A
B
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VRESB3SN.MCD

Inverting Velocity Field (Bailoon 3): -5

Definitions n:=7 i=l.n j=l.n
j:r=I.an nh :=n m:=l.oh k:=l.nh-1
input File V :=READPRN(vb3sc) Vmin:=min(V) Vmax :=max(V)
Vmin = 13.875 Vmax = 1[4.969 mean(V) = 1427

. s Vmax - Vmin . —brags

Histogram int_ = Vmin+ (m-~ l)—T histog :=hist(int, V)
Histogram of the inverted velocity field
100
!u'.stngt
0 — [t
138 13.9 14 14.1 142 14.3 144 145 14.6 14.7
ity

2D Image A5 VoD Biamier TA

Inverted velocity field

A
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VRESB3SN.MCD
Enhancement V. :=if(Vij<l4.8, 143-Vs;) A :=it’(Vij>Vmax,Vmax.Vij)

20 Image A Vionasi B a1 TA

Enhanced inverted velocity field
A. .
B
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VRESB16N.MCD

Inverting Velocity Fieid (Balloon 4):  »~10
Definitions n:=10 i=l.n j=l.n
j==l.on oh :=n m:=l.noh k:=l.nh-1
input File V :=READPRN(vbl6) Vmin:=min(V) Vmax :=max(V)
Vmin = 13.429 Vmax =15.564 mean(V) = 14.194
. e wrs Vmax - Vmin . —braars
Histogram mt-.-me-i-(m- 1) ——————— histog :=hist(int, V)
Histogram of the inverted veiocity field
100
h.iswgk
—_—
0 F —%
134 136 138 14 142 144 14.6 148 15 152
inty
2D Image AT Vaotyme B oyt Ay
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VRESB16N.MCD

Enhancement V.= if(V..<15.2. 152, v..) V. = if(V.->Vmax.Vmax.V..)
] j ij ij i i
2D Image A= Vio e Bicaminer =4
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VRSCKSSN.MCD

Definitions n:=10 ir=l.n j=l.n
jj:=l.nn oh :=n m:=1.ph k:=1l.oh-1
Input File V :=READPRN( verkss) Vmin :=min(V) Vmax =max(V)
Vmin =4.098 Vmax =6.894 mean(V) =5.065
. s Vmax — Vmin . —bcars
Histogram int :=Vmin+(m- l)«-—-——r— histog :=hist(int, V)

Histogram of the inverted vefocity field

100
histogy .
"_’\4
0 / ——————
4 45 5 55 6 6.5
ity
2D Image A= Vhio B, (amin41 A
A B
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VRSCKSSN.MCD

Enhancement v, =if(V, <Vmin, Vmin, V) v, =if(V;.>6..6.V,)

ij

2D image '=Ai'j

AT Vio o B, (amitt’

Enhanced inverted velocity field
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VRESCKTL.MCD

Definitions

ijj:=1..n0n

Input File

Enhancement

Histogram

2D Image

i=l.n

m:=1.oh

V :=READPRN( vcril) Vmin :=min( V)

Vmin =0

Vmax =1.613

v, if(vij <Vmin, Vmin, v,)

int_:=Vmin+(m- 1)

-

3=Vt D i

Vmax - Vmin

A=V 021654, ] B,

j=l.n
k=l.oh~1

Vmax :=max(V)
mean(V) =0.724

V= if(Vij>Vmax. Vmax.Vi,.)
histog =hist(int, V)

iamiy 41 =B

Histogram of the inverted velocity field

AN
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VRESCKTR.MCD

Definitions n:=10 i:=l.n j=l.n
ij==l.nn nh :=n m:=l.nh k:=1l.nh-1
Input File V :=READPRN( verktr) Vmin :=min( V) Vmax :=max(V)
Vmin =0 Vmax =1.797 mean(V) =0.728
Enhancement V. :=if(V,<Vmin, Vimin, V) V; =i(V,;>Vmax, Vmax, V)
. . . Vmax - Vmin . —beaps
Histogram int_ :=Vmin+(m- 1) ——owur histog :=hist(int, V)

2D Image A TVomnaes ATV 0184 ] B o =A

Histogram of the inverted veiocity tield
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VRSCONCN.MCD

Inverting Velocity Field (Concrete Column): 1-o0.2

Definitions n:=12 i:=l.n i=l.n
ij:=l.nn nh :=n m:=1_.nh k:=1l_.ph~1
Input File V :=READPRN(vconc) Vmin :=min(V) Vmax :=max(V)
Vmin =4.189 Vmax =4.84 mean(V) =4.514
. e xpe Vmax - Vmin . —tieor s
Histogram int_:=Vmin+ (m- l)-—T histog '=hist(int, V)
100
histog,
_‘_______../\‘\ /\
o 41 42 43 a4 45 46 47 48
inty
2D Image A Vi e Blainer =A:,
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Enhancement

2D Image

Vv, =if(V;<42,42,V,)

A =V
N

j

r—

=V lim 1)k B(--i)+x.i =

Enhanced inverted velocity field

A .
1,2

V; =iE(V;>45,45,v)

j

VRSCONCN.MCD
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Inverting Velocity Field (Concrete Column): =02
Ray Tracing (Second Heration)

Definitions n:=12 i:=l.n

j=l.nn ph :=n m:=[..oh

Input File V :=READPRN(v) Vmin :=min( V)

Histogram

2D Image

Vmin =2.119 Vmax =5.486

int_ :=Vmin+ (m- 1)-Ymax — Vmin

Vmax :=max(V)
mean(V) =3.867

histog :=hist(int, V)

Histogram of the inverted velocity fieid

VRSCONCR.MCD

2.5 3 35 4 45
inty
A i F Vi Blaoiyer A
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VRSCONCR.MCD

The chop-off threshold value is selected based on computed average velocity and assuming that the wave
velocity in the confine concrete is more than 3.5 km/s.
Enhancement £ :=if(Vij<Vmiu,Vmin, V;,») vy :=if(Vij>3.7,3.7,Vij.)

2D Image A T Vic g Bty =A

Enhanced inverted velocity field
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VKOS.MCD

inverting Velocity Field (Kosciuzko Bridge Pier) A= 1000
Initial velocity= 400
Definitions n:=15§ i=l..n j=l.n
j:=L.nn nh :=n m:=1.oh k:=1.oh-1
input File V :=READPRN(vkos) Vmin :=min(V) Vmax :=max(V)
Vmin =93.13 Vmax =383.08 mean(V) =174.225

Enhancement v, =if(V,<Vmin, Vmin, V,.) v, =if(V,;>Vmax, Vmax, V)

. ey Vmax — Vmin . e beps
Histogram inr ‘=Vmin+(m- 1) —m———— histog :=hist(int, V)
20 Image A Ve B camine1 =

Histogram of the inverted velocity field
100
histog,
0 50 100 150 200 -250 300 350
inty
Inverted velocity field
A R
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Inverting Velocity Field (Chute Hemming Dam)

initial velocity=400

Definitions n:=10 i=l.n

fj==1l.on nh :=a m:=1.nh

Input File V :=READPRN(vhem) Vmin :=min( V)
Vmin =0 Vmax =6.79

Enhancement V,, :=if(V,<Vmin, Vmin, V,)

Vmax - Vmin

Histogram int_ :=Vmin+(m- 1)
2D Image A5 Vicnmes AT Vi m B0-68.4,;

] Bi-(n-iH-l ’

VRESHEM.MCD
A= 1000

j=1l.n
k:=l.oh-1

Vmax :=max(V)
mean(V) =2.705

v :=if(Vij>Vmax.Vmax.Vi’.)

histog -=hist(int, V)

=A
i.j

100
mt
o \ _ -
0 1 2 3 4 L) 6
inty
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VRESKORN.MCD

Inverting Velacity Field (Korean DMZ) A= 50000
Initial velocity = 400 Same results for Straight and Ray tracing
Definitions n:=10 i:=l.n+20 j=l.n
ij=1.0(n+20) ah :=n m:=1.nh k:=l.ph~-1
input File V :=READPRN(vkor) Vmin:=min(V) Vmax :=max(V)
Vmin = 609.749 Vmax =1.018°10°  mean(V) =726.737
. . . Vmax — Vmin . g
Histogram int_:=Vmin+(m- 1 )T histog :=hist(int, V)

600 650 100 150 800 850 900 950
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VRESKORN.MCD

2D Image A= Vi yae B0 g1 ™A

Inverted velocity fieid
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VRESKORN.MCD

Enhancement v, =if(V;<600.,600.,V ) v, =if(V,>650.,650.,V, )
2D Image A Vo By as20—iye1 =AY

Enhanced inverted velocity field
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