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This research was to assess the potenaal of tornographic imaging in a variety of 

geotechnical processes, with emphasis on matrix-based inversion algorithms. 

While most prior research in tomography has been based on simulated data, this 

research centers on case histories gathered under well-controlled. yet realistic 

field conditions. The goal is to invert a velocity image which reflects the state or 

evolution of a given soi1 parameter (e-g., stress, pore pressure, ion 

concentration) using a set of picked travel tirnes. 

Among inversion methods. matrix inversion methods are versatile and robust. 

However, efficient storage and computation are required. The sparsity of 

matrices involved in tornographic problems enable us to employ efficient storage 

and solvers. 

In general, it is assumed that 'picked travel times' correspond to paths of 

shortest travel path (Fermat's principle). If the velocity contrast in the medium is 

more than 15 to 20 percent, rays bend toward higher velocity regions. In this 

case, entries in the coefficient matrix depend on a prior estimate of the velocity 

field. Therefore, the relation between pixel velocities and travel times is non- 

linear in general. This non-linear inversion problern can be solved by employ ing 

iterative solutions with ray tracing. 

Ray tracing methods can be categorized as: one-point methods. two-point 

methods, and whole-field methods. The computational time demand for ray 

tracing methods for each category is evaluated based on the number of 

segmental travel tirne calculations. The computational efficiency of the ray 

tracing methods is also compared for fundamental cases. Some evidence of the 

accuracy needed in ray tracing to solve the inversion problem, within the context 

of other errors in CE-tomography, are given. 



Prior experience with shulated data has shown that the quality of inversion is 

unrealistically good when compared to inversions with real data. In part, this 

reflects the corn patibility of forward simulation algorithms with hypotheses made 

in the inversion stage. A central goal of this Viesis is to assess the potential of 

inversion with real data. A database of case histories has been cornpilad for this 

purpose. Part of this study is dedicated to the testing of pre-processing 

strategies in each case history. It is show that data pre-processing can be 

employed to provide foresight about the medium. and help the selection of 

proper constraints. Distribution and amount of information. presence of 

accidental and systematic errors, degree of heterogeneity and anisotropy. and 

analysis of shadows are analyzed for al1 case histories. 

A tornographic program based on sparse matrix algorithms was encoded as part 

of this study. The selected tornographic inversion methods are based on matrix 

analyses. Data structures are used to take advantage of the sparsity of the 

coefficient matrix and to avoid high memory and computational dernand. Sine- 

arc ray tracing and straight rays are two possibilities. The program is in 

structured form to facilitate future additions and modifications. 

Tomographic data are usually mixed-detemined and ill-conditioned. Darnped 

Least squares (DLSQ) and regularization add information in the fom of 

constraints in order to decrease the ill-conditioning of the problem. The optimum 

damping or regularization coefficient gives the best solution. Optimal darnping or 

regularization coefficients should be determ ined in an inversion process. In th is 

study, several guidelines are proposed to detennine optimal damping or 

regularization coefficients. 

lnverted images for al1 case histories in this study are given in Appendix F. The 

results indicate the ability of the method to invert large size. iil-conditioned, and 

noisy problems. 
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CHAPTER I 

INTRODUCTION 

Tomography (tomo: to cut or slice-Greek) is the inversion of measurements of 

multiple planes of a body. CE'-tomography is the inversion of boundary 

measurements to determine the field of a physical parameter within a 

geoenvironment. 

Although tomography was introduced early Ri this century, its applications in the 

geosciences and engineering only commenced in the early 1970's. Tomographie 

methods are widely applied in nuclear medicine (Cormak, 1973; Scudder, 1978). 

radio astronorny (Bracewell and Riddle, 1 967), applied geophysics (Aki and 

Richards, 1980; Dines and Lytle. 1979; Lytle and Dines, 1980; Dyer and 

Wortington, 1988), earthquake seisrnology (Spencer and Gubbins, 1980), mining 

engineering (Paul, 1993), and civil engineering (Santamarina. 1 994; Henrique, 

1990) among other applied fields. 

Possible tomographie applications in geosciences and engineering include: the 

detection of hazardous regions ahead of a mine face, assessing nuclear reactor 

and waste storage sites, mapping resources at a mine to detect deposits that 

pinch out but are suspected of reappearing elsewhere. determining the location 

and volume of oil present in possible secondary oil recovery fields. detecting 

fracture zones, assessing the field of stress, assessment of existing 

infrastructure, etc. 

CE stands for Civil Engineering 



The Durnose of this research was to assess the potential of tomographie imaging 

in a variety of Civil Engineering processes with emphasis on matrix-based 

inversion algorithms. While most prior civil engineering research in tomography 

has been based on simulated data, this research centers on case histories 

gathered under well-controlled, yet realistic field conditions. 

1.1 Physical Issues 

CE-tornographic imaging faces several difficulties related to its implementation in 

the field and to the mathematicaVcomputational nature of the problern 

(Santamarina. 1994). A brief discussion follows. starting with physical 

restrictions. 

1.1.1 Penetration vs. Resolution 

Computerized Axial (Aided) Tomography Scanning (CAT Scan) has 

revolutionized medical X-ray imaging because of its ability to display the spatial 

distribution of X-ray attenuation over cross-sections of the body (Hounsfield, 

1973). Tomographie reconstruction methods are applicable to imaging situations 

where the line integral of a parameter, such as X-ray attenuation or time delay. 

is available as the data is collected (Mersereau and Oppenheim, 1974; Scudder, 

1 978). 

CE-tomography often requires sampling over large distances cornpared to 

medical applications. Therefore, low frequencies must be used to obtain 

adequate signal-to-noise levels over practical distances. This long wavelength 



restriction limits the resolution of CE-tomographic images (resolution is in the 

same order of magnitude as wavelength k). 

1.1.2 Sccinning and Oeometry 

Medical scans are reconstructed wÎth a f ixed data collection geometry. 

Conversely, CE-tomographie problems generally require a 'new' scanning 

capability for each application. In a typical tornographic problem in the field, 

transducers are placed in boreholes (Figure 1-l), which may deviate from a 

straight line. Furthermore, the scanning geometry is quite restricted and the 

object can only be illuminated in a few preferential directions. 

1.1.3 Testing Diff iculies 

This set of problems includes: source restrictions (directivity of different 

propagation modes, amplitude, repeatability), triggering errors (difficulties in 

stacking), noise (ambient, mechanical, electromagnetic, filtering and phase 

shift), source and receiver coupling to object, detection of true first arrivais, and 

accessibility to different faces of the object. The latter will reflect on the uneven 

distribution of information content, which is discussed later. 

1.1.4 Wave Propagation Effects 

Heterogeneity. Heterogeneity modifies spherîcal wave fronts, elongating them in 

the direction of higher velocity. When rays are drawn normal to wave fronts, ray 

bending is observed. 



Anisotropy. Wave propagation in anisotropic media is cornplex: energy in shear 

waves splits, the ray direction is given by the direction of energy transport, the 

ray is not perpendicular to the wave front Cquasi' P or S waves), and the ray 

direction does not necessarily remain in the plane (Auld, 1973). Anisotropy 

alone does not lead to curved ray paths; however, anisotropy couples with 

vertical heterogeneity to deviate rays from the simplest straight-path condition. 

Reflection and Refraction. At the interface between two materials with different 

impedance I=p.v (p: material density; v: velocity), part of the energy is 

transmitted and part of the energy is reflected. Furthemore, mode conversion 

takes place: incident P-waves are reflected and refracted as P and S-waves, and 

the same occurs with the S-wave component normal to the interface. 

Generalized Snell's laws characterize the effect of interfaces. 

1.2 Mathematical Issues 

Data for seismic CE-tomographic irnaging are line integrals of a physical 

parameter, along a specific path through the medium. For example, the travel 

time accumulated along a ray path between a source and a receiver c m  be 

expressed as the integral of slowness, and amplitude is the integral of 

attenuation. All exam ples given in this document use travel time observations 

that are imaged to determine a velocity distribution. but the method is completely 

general; any observation that can be defined as a line integral through the 

medium can be substituted throughout. 

When seismic pulses are emitted in one well and detected in another well, the 

first arriva1 time of a ray i is the integral of ds/V(x,z) from source to receiver, 

where ds is a differential length along the path and V(x,z) is the seismic velocity 

field between the wells. There are two interrelated problems: 



(1 ) The fornard problem is the computation of fint arrival times corresponding to 

a given velocity distribution. The forward problem presents no theoretical 

difficulty, yet there are cornputational restrictions and experimental difficulties 

(e.g. detection of first arrivais). One detemination is made for each source- 

receiver pair. The problem is often treated in the lwoaimensional case. Le., 

seismic rays traveling within the plane of the wells. 

(2) The Inverse problem is the detenination of the field of seismic velocities 

from measured first arrival times. Ill-conditioningl and non-uniqueness of the 

solution are the major difficulties in the inverse problem. The problern is either 

under-detemiined, over-determined, or mixed-detennined with no exact solution. 

1.3 Organization of the Thesis 

The goal of this research was to compute the tomographic inversion of travel 

time data in reference to civil engineering problems. 

Chapter 2 presents a review of tomographic inversion methods. It includes 

matrix inversion methods, iterative methods, transfomi methods, and other 

methods (fuuy logic, probability-based, and parameteric characterization of the 

unknown space). 

Chapter 3 summarizes ray theory and ray tracing methods. This chapter starts 

with a description of ray theory and with the derivation of the Eikonal equation. 

Ray tracing methods are discussed (one-point methods, two-point methods, and 

whole field methods). A detailed description of each method is followed by a 

summary of advantages and short-comings. 

A problem is ill-condiaonad, if the solution is sensitive to small changes in the data. 



Chapter 4 describes tornographic software developments and design decision. 

Computational issues in inversion methods and a discussion of rnatrïx inversion 

limitations are given to highlight the reasons for seleding ma ta  inversion 

methods. lmplernentation of ray bending, a comparative analysis of 

computational efficiency, and issues in non-linearity are discussed. Then, a 

detailed description of the development and current structure of the tornographic 

software running on spane matrix methods is presented. 

Chapter 5 describes a database of well documented case histories that was 

compiled for this study. 

Chapter 6 centers on the development of data pre-processing strategies to 

identify possible errors and trends present in each data set. All case histories 

are inspected with the selected data pre-processing procedures. 

Chapter 7 centers on the tornographic inversion of the case histories. Strategies 

for identifying regularization and damping coefficients for optimal solutions are 

investigated. A method based on statistical parameter estimation (mm*mum 

likelihood) is proposed and examined for selected case histories. 

Chapter 8 presents a surnmary of main observations and salient conclusions of 

this research. 



Source Borehple Receiver Borehole 

Figure 1-1: Definition of notation. The unknown region between source and 

receiver boreholes is divided into pixels. 



CHAPTER II 

INVERSION 

2.1 The CE-Tomographie Problem 

The following linear model is considered for the relationship between Iwo 

vectorial quantities x and b in the classical tomographie problem: 

In velocity inversion. L is the matrix of segment lengths. x is the vector of 

slownesses, and b is the vector of measured travel thes. The non-negative 

matrix L is adequately estimated by the forward ray tracing problem. However, 

the vector of travel times may include considerable systernatic and accidental 

measurement errors (t=b+~). Then, the problem is to detemine a vector s from 

the set of equations 

Methods that have been used to solve the inverse tornographic problem can be 

categorized as: 

Mafrix inversion methods 

/terative methods 

Transform methods 



Other methods. 

A brief discussion of these approaches follows. 

2.2 Matrix Inversion Methods 

A linear system in matrix fom (Equation 2-2) can be solved by matRx inversion 

methods. These methods are briefly fonulated in Table 2-1 (Santamarina, 

1994). 

2.2.1 Least Squares Method 

Usually, the set of Equations 2-2 is sparse, mixed-determined, and inconsistent. 
A 

This set of equations has no exact solution. Hence, a least squares solution s 

can be selected such that 

is minimal, where II.II denotes the Euclidean nom. The vector s is the least 

squares solution of Equation 2-2 if, and only if, (Ls-t) l R(L), where R(L) denotes 

the range of matrix L, Le. the set of al1 vectors Ls. Rewriting (Ls-t) I R(L) as LT 

(Ls-t)=O, s is a least squares solution of (2-3) if and only if 

hence, 



Table 2-1 : Matrix inversion methods (Santamarina, 1994). 

Problem definition: 
Given: a space discreüzed in m-pixels, n-integral measurements obtained at 
boudaries t[n.l], and the matrix L[n,m] that characterizes how meawrements 
scanned the space, The tank of L is rlmin(m,n). 
Then; determine the distribution of the field parametet s(m.l]. such that b t  

Over-deterrnined: n>m=r 
least square solution 

1 

Under-determirid: rsncrn 
minimum distance 
solution 

Mixed-detemined: 
singular value 
decornposlion 

Mixeddetermined: 
damped least squares 

min(E) where 
E = ( t - ~ - s , ) ~ ( t - ~ - s & )  

tnin(D) such that L-s-t4 
where D=(s-sJT(s-sn) and s, is an 
inlial estimate of s 

s, =(L= -L)-'L*- t  

S , = L ~ ( L - L ~ ) - ' - ~  or. 
set =S. + L'(L-L~)" + ( t - k 0 )  

min(E +q - D) 
where is a constant 
L = u - Q  - v T  whereUiis 
eigenvector i of UT, Vi is 
eigenvector i of L T ~  and the 
diagonal of n are the square mot 

Note: Predicüon error E = ( t - L - S , ) ~ ( C - L - S ~ )  

Solution length D=s% 
AU solutions are of the form seeM.t 
Forwaid simulation $ m x ~ ~ s ~ t  
Repiacing ~,L=~M.tma. and saifM.L.sreal 
Data resolution matrix ideal Ppldentity 
Model resolution matrix Ps=M.L ideal P,=ldentity 

s, = ( L ~ - L + ~ ~ I ) - ~ L ~ - ~  

s,,, = V -a-' -uT - 1  

Noise in the data: 
reguhrization 

Comments: 
The matrix L is called the data kernel 
If rtrn and €=O the problem is 'purely underdetermineda 
The n e m e r  the band of P, and Pt, the better the prediction 
All equations can be generalizeâ for initial guess s, (see 
underdeteminecl case) 

of &envalues i [other entries&) 
m i n ( ~ + h - ( ~ - d ~  } 

where k is a constant and R is a 
reg ularization matrix 

S.n = +mTWL LTt 



2.2.2 Minimum Norm Method 

If the rank(L) is less than the number of unknowns. then there are an infinite 

number of vectors s that satisfy Equation 2-2. There is a unique vector in this set 

of solutions whose nom (s-s,)T(s-so) is minimal and satisfies: 

t.s-t = O 

The solution is: 

s = LT(L.LT)-'t 

where s, is an initial estimate of s. This is referred to as the minimum nom 

solution of Equation 2-2. 

2.2.3 Damped Least Squares Method 

An alternative solution may be to seek a balance between minimum nom and 

least squares error solutions by sohring the foflowing system of equations 

This solution is known as the damped least squares solution, and may be 

expressed as 

where q is a constant to be optimized. The damped least squares algorithm 

stabilizes the solution in cases where data contain noise. 



2.2.4 Regulaiization and Data Errors 

The measured vector of travel times t can be assumed to be equal to b+q where 

b is the set of travel times, and E, is a vector of errors whose cmponents 

average zero and have equal variance 3. Then, the least squares solution ô of 

Equation 2-2 is the best estimate of the vector x in Equation 2-1. with minimum 

variance (The Gauss-Markov theorem, Silvey 1970). However, the variance can 

be very large for the least squares solution. In fact, the variance matrix P(AsAs3 

in the full rank case equals 

where P denotes the probabilistic expectation, and As denotes the error vector. 

From Equation 2-9 we have 

Therefore, small singular values can generate large errors in the solution s 

(Sluis and Vorst, 1987). An efficient way to avoid this effect is regularization. It 

consists of adding information in the fom of constraints in order to decrease the 

ill-conditioning of the problem. The goal is to find a kernel that captures some 

aspects of physics that c m  constrain the problem. 

The implementation of regularization resembles the damped least squares 

method, where the identity matrix I is replaced by a smoothing matrix R to avoid 

the fluctuation behavior of the solution due to the presence of data errors. In this 

case, Equation 2-8 becomes 



The matrix A can be formed by calculating the second spatial derivative of the 

image (Laplacian of s in two dimensions: the product d R.s reflects the spatial 

variation of the image). The matrix R can also include filtering kemels. either to 

smooth images. to enhance contrast, or to highlight edges in preferential 

directions. Figure 2-1 shows some sample kemels. These kemels are rnoving 

windows placed on the original image to create the new filtered image. 

Mathematicaliy speaking, regularization is a convolution of the inverted image 

with a kemel (Santamarina, 1994). Physically, these kemels tend to decrease 

the degree of fluctuation in pixel values by chopping-off the high f requencies. 

For instance, the first kernel which applies general smoothing tends to evaluate 

the value of a pixel by averaging the values of that pixel and its eight neighbors. 

The highest weighting is given to the main pixel at the center of the window. The 

advantage of this smoothing is to avoid sudden changes in the image. However. 

it blurs the sharp edges of an image. 

In cases where edge detection of interest, other kemels should be used. Another 

alternative for detecting edges is using the Walsh transfomi (Golubov, et. al., 

1991). Unlike the Fourier series which is a decomposition of functions into 

sinusoïdal waves, the Walsh functions are rectangular waves. Therefore, the 

Walsh functions try to detect the edges rather than smoothing the peripheries of 

an image. 

2.2.5 Singular Value Decomposition (SVD) 

Any nxm matrix L can be written as an orthogonal nxn rnatrix U, an orthogonal 

mxm matrix V, and a nxrn diagonal matrix R with diagonal elements a, 2 q 2 y 

2- yn 20 such that 



This is the singular value decomposition of math L (Michelena, 1993). The 

entries a, are the singular values of L, and the columns of U and V are the left 

and the right singular vectors of L, respectively. The columns of the matrix U are 

the eigenvectors of LLT and the corresponding eigenvalues are a+? Similarly, 9 2  
are eigenvalues for LTL and its eigenvectors are the columns in matrix V. 

A geometrical interpretation of this method relates the linear mapping between 

orthonormal bases in source and image spaces (given the right and left singular 

vectors, respectively), where the mapping is represented by the diagonal matrix 

(Sluis and Vorst, 1987). Singular value decomposition facilitates th8 

characterization of the level of information in the system and the 'conditioning" 

of the problem. In addition. diagonal matrices are computationally efficient. 

2.3 lterative Methods 

Data storage and cornputation time requirements in CE-tomography stimulate 

the implementation of iterative methods. The best known algorithms in this group 

are (Gordon, 1974): Algebraic Reconstruction Technique (ART), and 

Simultaneous lterative Reconstruction Technique (SIRT). 

The following procedure describes the ART algorithrn: 

For ray t 
1 - Trace ray, 

2- Calculate the lengths of ray segments in each pixel traced by ray i from 

source to receiver, 

3- Compute the residual for the ray: (measured minus calculated time). 

4- Adjust the slowness of each touched pixel to cancel the time residual, 



in which sgn( ) is the sign function and q q  denotes slowness of the ith pixel in 

the qth iteration. The choice of w-i! (minimal energy corrections) leads to 

Kacsrnarz's method which is a typical least squares solution of this equation. 

5- Repeat steps 1 to 4 for each ray until the total time residual for each ray 

becornes less than a previously defined acceptable value. 

This method converges to a solution if the problem is evendetermined (number 

of independent equations and unknowns is equal). Errors in the data or in the 

tracing model may cause fluctuation in pixel values in the vicinity of the optimal 

solution. 

The SIRT method is an averaging form of ART, designed to improve 

convergence. Corrections for al1 rays are computed prior to updating the 

approximation for S. SIRT converges slower than ART. but has advantages with 

regard to stability (McMechan, 1987). 

The procedure to solve the inversion problem by SIRT follows: 

1 - Trace ray, 

2- Calculate the lengths of the ray segments in each of the pixels that the ray 

passes through, from source to receiver, 

3- Compute the time resiciual for the ray (observed time minus calculated time) 

using the current slowness distribution, and Save the values, 

4- Repeat steps 1 to 3 for al1 rays. 

5- Adjust the slowness in each pixel taking into consideration al1 corrections, 

6- Repeat steps 1 to 5 until the time residual becomes less than an acceptable 

value that was previously defined. 



Step 5 involves the averaging of al1 slomiess values or other weighting schemes 

(Dines and Lytle, 1979). The general expression is (Sluis and Vorst, 1987): 

The algorithm by Dines and Lytle (1979) is obtained for v=O and w=l. 

An image represented by (s,,s, ... ,sJ, can be considered as a single point in an 

n-dimensional space (Krylov subspace). In this space, each of the equations 

represents a hyper-plane. Therefore, if a unique solution to these equations 

exists, the intersection of these hyperplanes is a single point, which is the 

desired solution. 

Other examples of this type of method are MART which is a multiplication fom of 

ART: 

and WART which is a weighted fom of ART, where the weighting is based on 

the length of the rays (Peterson et aL, 1985). 

2.4 Transform Methods 

Fourier transform methods are commonly used in medical X-ray tomography, 



where a full range of radiation angles can be impsed. The obiect can be 

'illuminatedm by: 

- Parallel beam projections (Figure 2-2) 

- Fan beam projections 

a- Equi-distance projections (Figure 2-3) 

b- Equi-angular projections (Figure 2-4) 

c- Equi-distance and equi-angular projections (Figure 2-5) 

Modifications are required to apply parallel beam projections and fan beam 

projections to geophysical applications within cross-hole and vertical seismic 

profiling. 

2.4.1 High Frequency Illumination - Fourier Slice Theorem 

The Fourier Slice Theorem States that a slice of the two-dimensional Fourier 

transfon of an object is equal to the one-dimensional Fourier transfonn of the 

corresponding parallel beam projection of the object (Figure 2-6). The 

mathematical verification of this theorem follows (Kak and Slaney 1988). 

Recall the Fourier transfomi of a function, f(t) as F(o): 

Likewise, the two-dimensional Fourier transfonn of a function in a two- 

dimensional space, f(x.y), is F(u,v): 



Therefore, the Fourier transfomi of the object along the line v=O is 

In this integral, the exponential term is not a function of y; thus, the integral can 

be separated by the transitivity rule: 

The terni in brackets is equal to the parallel projection of f(x.y) along the y axis 

(or e=o) 

The function P,(t) 

Substituting P,(t) in 

is known as the Radon transfomi of the function f(x,y). 

Equation (2-1 9), 

This equation, which resembles Equation (2-16), is the simplest fomi of the 

Fourier Slice fheorem and shows that a onsdimensional projection of a function 

in the space domain can be defined by its two-dimensional Fourier transfomi in 

Fourier space. Thus, multiple projections in the tirne domain, defined as P(t), can 



be used to fomi F(u,v) in the Fourier space. A complete picture of the object 

requires projections for different angles 8. 

Aluorithm with intemdation in the f ~ u e n c v  dbmain. The following steps are 

involved in tornographic inversion based on the Fourier SIice Theorern: 

Determine projections, P,(t). These are either travel time or amplitude 

'shadows'. Each shadow is defined on a t-axis which is at an angle 0 with 

respect to the x-axis. 

Compute the one-dimensional Fourier transfomi of each projection, S,(o). 

Assemble the Pdimensional frequency domain function of the space, F(u,v), 

by placing each Se(a) along a radial line from the origin (u=O, v=O). 

Interpolate the values of each S,(o) in the polar coordinate system (8,u), onto 

the Cartesian grid (u,v). 

Cornpute the 2-D inverse Fourier transform of F(u.v) to determine the space 

function f(x.y). 

In temola tion in the soace domain: Filtered Back-Proiection A Iaorithrn. The re are 

two sources of error in the above algorithm: one is in transferring values in polar 

coordinates ( 0 , ~ )  ont0 Cartesian coordinates (u,v) in the frequency domain. The 

second one is the fan-effect of polar rneasurements S,(w) away from the origin. 

Several observations are highlighted (Kak and Slaney. 1988). First. projections 

in the Fourier space Se(@ are nearly independent, as they only share the origin 

(u=O, v=O), which is the OC component. Secmd, the Fourier transfom of the 

space F(u,v) is obtained by a summation of transfomed projections S,(o); thus, 

given the linearity of the Fourier transform, the x,y space can be constructed as 

a summation of inverted Se(tN). Third, the fanning difficulty can be corrected by 

multiplying transformed projection S,(o) by a pie-shaped wedge, i.e., a linearly 

increasing high pass filter. This filtering process cancels the common DC 



component, hence, filtered transformed projections FS,(o) are totally 

independent. Therefore, one of the main advantages of this algorithm is the 

ability to start the reconstruction procedure as soon as the first projection has 

been obtained. which increases time efficiency and decreases memory 

req uirements. 

The f iltered back-projection algorithm is summarized in the following steps: 

Detemine projections, P,(t) 

Compute the one-dimensional Fourier transforrn of each projection, S,(o) 

Multiply each Se(@ by the width of the wedge at that frequency, or by its 

distance to the origin. For example, if there are N equally spaced projections 

in 1 80°, the wedge at frequency o has width 2 d N .  

lnvert filtered projections FS,(o) to obtain filtered projections FP,(t) in the 

space domain. 

'Srnear" the inverted filtered projections FP,(t) onto the x,y space, along the 

ray paths, interpolating among cells in the x,y grid. 

Add the contribution of al1 filtered back-projections onto the cells in the x,y 

space. 

2.4.2 Diffraction: Fourier Diffraction Theorem 

The wavelength of some frequency components may approach the size of 

typical structures within the body. In this case, diffraction will play an important 

role in reconstructing the image. The filtered back-projection algorithm was 

based on the Fourier slice theorem and assumed that energy travels in straight 

ray paths. This assumption is not true when diffraction phenornena prevail; in 

this case, the flow of energy is described by the wave equation. The 2- 

dimensional wave equation is: 



where the wavefield u(r,t) represents the particle motion in a seismic wave or the 

electromagnetic field amplitude at location r and time t. The field u(r,t) can be 

decomposed into multiple frequency components. The wave equation can be re- 

written for one component. u(r), for a temporal frequency o (Kak and Slaney 

1988): 

where the wavenumber k=Zzolv is constant in homogeneous media. A solution 

to this equation is 

where the vector k=(k,&) and IkP=kXrtkY2 is the 2-dimensional propagation 

vector and u(r) represents a 2-dhensional plane wave of spatial frequency k. 

This form of u(r) can represent any Pdimensional function as a weighted sum of 

plane waves. This fact can be verified by substituting Equation 2-24 into 

Equation 2-23 (Kak and Slaney 1988). The presence of anomalies in the 

medium invalidates the homogeneity assumption. 

Born AD~roximation. The total wavefield, u(r), can be considered as a sum of an 

incident field, u,(r) which is a solution of Equation 2-23. and a scattered field. 

uS(r). as u(r)=u,(r)+u,(r). 

The wave equation for the scattered component u,(r) can be obtained by 

substituting the total field in Equation 2-23, 



where o(r) is the object field 

and n is the refractive index. Equation 2-25 is the scalar Helmholtz equation. It 

can not be solved for u,(r) directly, but a solution can be written in terrns of 

Green's function (Witten et ai., 1993; Kak and Slaney, 1988). The Green's 

function represents the solution of the wave equation for a single delta function. 

Therefore, a solution in terms of Green's function assumes the total scattered 

field as a summation of point scatterers. which is a valid assumption based on 

Huygens' principle: 

This convolution equation for the scattered field is in terms of the total field, i.e., 

the scattered field us is a function of the incident field u, and the scattered field 

itself. The Born a~~roximation assumes that the scattered field is much smaller 

than the incident field, u,<eu,. Then, Equation 2-28 is re-written as a first 

approximation: 



Knowing the first estimate of the scattered field, u,, the total field can be better 

approximated as u=u,+u, and replaced back into equation 2-28. The new 

estimate of the scattered field is Born's second approximation. 

Rvtov &proximation. The Rytov approximation is derived by considering the 

total field as an exponential of a complex phase g(r), 

where the total complex phase cp is taken as the sum of the incident q, and 

scattered phase cp, 

+ 
The three phases are complex quantities, and functions of r . The solution of 

the wave equation. expressed as an integral equation, is (Kak and Slaney, 1988) 

where the complex phase of the scattered field is a function of itsel. The Rvtov 

a ~ ~ r o x i m  ation considers: 

Then. the first Rytov approximation to Equation 2-31 becomes 

Therefore, 



and, recalling Equation 2-29 

Proiections rii Freauencv Domaii7=Circular Arcs. If a single plane wave is 

considered for the incident field, Equation 2-29 can be rewritten as (Kak and 

Slaney, 1988) 

where the plane wave is shown decomposed as (this is a crucial step in the 

de rivation), 

For an array of receivers located along y=y,, Equation 2-37 becomes 

The first integral is the two-dimensional Fourier transform of the object function 

~ ( r ) .  The Fourier transform of the scattered field u, (x,y,) is U, (a,yJ), 



where O(a,f(k)) is the Fourier transform of the object function o(r). In this 

derivation. the following property of Fourier integrais was used 

Equation 2-40 relates the two-dimensional Fourier transform of the object O(k) to 

the one-dimensional Fourier transfomi of the scattered field at the receiver line. 

U, in the Fourier domain (k& space) is a set of points on a semicircular arc 

which has a radius equal to k. The range of changes in point positions is from -k 

to k. 

In summary, the Fourier diffraction theorem is based on the wave equation, and 

States that the Fourier transform of the scaftered field of a projection is equal to 

the Fourier transform of the obiect over a semicircular arc (Figure 2-7). Note t hat 

the high frequency limit of the Fourier diffraction theorem is the Fourier slice 

theorem. 

Inversion Procedure. Inversion of different fields can also be done by 

implementing interpolation in the frequency domain (Kak and Slaney, 1988) or in 

the space-domain ('back propagation' Devaney, 1984). However, unlike the 

Fourier Slice Theorem, frequency domain interpolation appears more efficient. 

The following steps are involved in tornographic inversion based on the Fourier 

Diffraction Theorem for a set of data gathered at a specific illuminating angle, a: 

Determine projections, P,(t). 

Compute the one-dimensional Fourier transform of each projection, O,(@. 

Compute the 2-dimensional Fourier transfom of the wave field, U(k&, 

along the receiver Iine, y=y, . based on Equation 2-39. 



Interpolate U(k&) along semicircular arcs up to the end points d2k0, in a 

Cartesian gird. 

Cornpute the 2-D inverse Fourier transfomi of the wavefield U(kkJ in order 

to detemine the objet wavefield in space domain o(x,y). 

2.5 Other Methods 

2.5.1 Funy Logic (Backprojection and min-rnax) 

Projections capture the 'shadowsm of anomalies. Backprojection and 

superposition of these shadows on the space of the problem helps define 

position, size, and type (high or low velocity) of anomalies. It c m  be shown that 

if superposition is implemented with min-max operators, the procedure 

corresponds to fuuy-logic-based constraining of the anomaly (Santamarina, 

1991). 

This group of methods is based on the distribution of data and model 

parameters. Gaussian and Poisson distributions are frequently selected, 

obtaining explicit expressions for the estimated model parameters (see Menke, 

1989; Shepp and Vardi, 1982). The maximum Iikelihood and the maximum 

entropy solutions are two well-studied methods in this category. 

2.5.3 Parametric Characterization of the Unknown Space 

If the number of independent observations is limited, pixel-based solutions offer 



either Iimited resolution or a high degree of under-determination. An alternative 

approach is to represent the medium by a limited number of parameters (e.g., 

background velocity, anomaly location. size and velocity). These parameters are 

then inverted by sequential fomard simulation and m inimization of the residual 

of measurements (Santamarina. 1994; Santamarina and Reed, 1994). 

2.6 Summary and Conclusions 

Several methods have been used to solve the inverse tomographie pmblem; 

they can be categorized as: (i) matrix inversion methods, (ii) iterative methods, 

(iii) transfomi methods. and (iv) other methods. 

Iterative methods are not stable in ill-conditioned problerns. Transfon methods 

are restricted to straight ray projections (space transformations could be invoked 

to generalize the solution to heterogeneous, anisotropic media). Matrix rnethods 

are versatile and corn putationally efficient. However, efficient storage and 

computation are required. 

Small singular values can generate large errors in the solution. Regularization 

adds information in the fom of constraints in order to decrease the ill- 

conditioning of the problem. Hybrid solutions can be attempted to enhance the 

resolvability of inverted images (e-g.. fuuy logic pre-processing followed by 

regularization). 
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Figure 2-1 : Filtering kernels for different types of regularization smoothing 

(Santamarina, 1 994). 



Figure 2-2: Parallel beam projections are taken by measuring a set of parallel 

rays for a numbei of different angles (Kak and Sfaney, 1988). 



Figure 2-3: Equ i-distance fan barn projections (Kak and Slaney, 1 988). 
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Figure 2-4: €qui angular fan beam projections (Kak and Slaney, 1988). 



Figure 2-5: Equi-distance and equiangular fan beam projections (Kak and 

Slaney, 1 988). 



Figure 2-6: The Fourier slice theorem relates the Fourier transfonn of a 

projection to the Fouder transfomi of the object along radial line (Pan and Kak, 

1983). 



Figure 2-7: The Fourier diffraction theorem relates the Fourier transfomi of a 

diffracted projection to the Fourier transfomi of the object along a semicircular 

arc (Pan and Kak, 1983). 



CHAPTER III 

RAY THEORY AND RAY TRAClNG 

3.1 Introduction 

The analysis of wave propagation is often simplified to exercises with straight 

lines connecting sources and receivers. In this case. the matrix L is fked and the 

inversion problem is linear. However, geoenvironments of interest are not 

homogeneous and isotropic. If the velocity contrast in the medium is more than 

15 to 20 percent, rays bend toward higher velocity regions (Dines and Lytle, 

1979). In this case, entries in the matrix L depend on a prior estimate of the 

velocity field, the inversion problern becomes non-linear, and iterative solutions 

are used to solve the tomographic inversion. 

In general, it is assumed that 'picked travel timesm correspond to paths of 

shortest travel path (Fermat's principle). Ray tracing is implemented to determine 

shortest travel paths. This chapter presents a comprehensive review of solutions 

that have been proposed to solve the forward, ray tracing problem. Advantages 

and limitations are highlighted. 

3.2 Ray Theory-Eikonal Equation 

The wave surface or wave front is the locus of points which have the same 
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phase of motion at a given instant of time. Rays are normal to wave surfaces and 

give the direction of energy propagation in the medium. A "normal modem is a 

preferred frequency of the system . Therefore. a solution based on normal modes 
involves the summation of contributions from the various preferred frequencies 

of vibration of the system. 

There are many ways to soive the wave equation. meeting boundary and initial 

conditions. One solution is to transform the wave equation into the Eikonal 

equation and to solve it in terms of wave surfaces and rays, Le., group velocity. 

Another solution is a development through specific boundary conditions and 

solutions in terms of normal modes, Le., phase velocity. In some instances, the 

physical conditions of the problem lead to the simpler solution in tems of rays; in 

others, the solution in terms of normal modes is more satisfactory (Officer, 

1 974). 

Three fundamental concepts in wave mechanics are frequently invoked in ray 

tracing: 

Fermat's principle states that the ray path between two points is such that 

travel time is minimum, Le. the travel time between two points is stationary. 

Snell's /aw states that the change in the product of the refraction index and a 

direction cosine along the ray path is equal to the space rate of variation of 

the refraction index with respect to the appropriate coordinate n=n(x,y,z). 

Snell's law satisfies Fermat's principle. 

Huygens' principle states that the disturbance at time t=to+dt can be obtained 

from each point on the wave surface at time t=to, acting as a secondary 

source. 

The term head wave is often encountered in the ray tracing literature. It refers to 

a refracted wave front that arrives before the direct wave (Figure 3-1). Thuç, 

these arrivals are picked in first-arriva1 procedures. Another frequently 



encountered terni is shadow zones. Shadows can be obsewed in refraction 

surveys as a result of unique layering and velocity conditions (Figure 3-2); in this 

case, the shadow zone is relatively devoid of first arrivals (head waves). 

Shadows also take place in transmission suweys behind anomalies with h igh 

impedance mismatch with respect to the background medium, as show in 

Figure 3-3. 

3.2.1 Eikonal Equation: Derivation, Importance and Limitations 

The three-dimensional wave equation for an isotropie medium is: 

where is the displacement of an element in rectangular coordinates (x,y,z) at 

time t, and c is the velocity of the wave. A general solution for Equation 3-1 is a 

simple harrnonic solution, with a varying amplitude in space 

6 = A(% y, =) e q ~ ( ~ ~ ~ ) f % - ' I  (3-2) 

where u is the wave front position. The condition that relates amplitude A and u 

is obtained by substituting Equation 3-2 into the wave equation (Equation 3-1) 

Equating imaginary and real parts, respectively (Officer, 1974), 

and 

Equation 3-4 can be reordered as: 



where A, is the wavelength of the wave with reference velocity c,. If the last terni 

in Equation 3-5 is assumed to be equal to zero, then 

where n is the refractive index and c, is the wave velocity in a reference medium. 

Equation 3-6 is the Eikonal equation. This time-independent equation can be 

applied in the solution of cases where c is a function of the space coordinates 

(heterogeneous media). 

Let us focus on Equation 3-5 and review the conditions that lead to the Eikonal 

equation. It is assumed that the second term in Equation 3-5 is equal to zero. In 

general, the expression in parentheses is not zero. Hence, this assumption is 

valid only if h,=O, that is. in the high frequency limit. However, the order of 

magnitude of ho is defined by the physical conditions of the problem. Therefore. 

the Eikonal equation is a good approximation to the wave equation if the 

cuwature of the wave front is small over a wavelength, but it is not a good 

approximation to the wave equation in regions with rapid changes in velocity 

over the dimensions of the wavelength (ûfficer, 1974). In other words, 

Eikonal eauation is a solution of the wave eauation if the rate of chanae of 

parameters is small with resoect to the Darameters themselves. 

The Eikonal equation leads directly to the concept of rays. Rays are the normals 

to the wave fronts with direction of propagation (Lee and Stewart, 1981): 



where the denominators are the direction numbers of the normal. The relation 

between direction cosines and direction nurnbers yields 

where k is a constant and dL is an element of the ray path. Squaring and adding 

the three Equations 3-8, and recalling Equation 3-6. 

The sum of the three ternis on the left is equal to 1 .O because they are direction 

cosines in three dimensions. Then, k=l ln and Equations 3-8 become 

Taking a derivativa along the ray d/dL for each of these equations results in 

(only shown for the first equation), 

The three Equations 3-10 can be multiplied by the terni in parentheses in each 

case, and replaced into the last term of Equation 3-1 1. Considering the def inition 

of direction cosines. the right-hand side of Equation 3-1 1 reduces to a(n)/ax. 

Repeating the same procedure for the other two Equations in 3-10, 

These are three members of the ray equation in which the index of refraction n 

characterizes the medium. They may be considered as a generalized form of 



Snell's law. Therefore, these equations could be used to trace rays in three 

dimensional heterogeneous media (Lee and Stewart, 1981). The general forrn of 

Equations 3-1 2 is: 

The ray solution is a complete solution to any particular propagation problem 

within the validity of the approximation of the Eikonal equation to the wave 

equation. In other words. a solution based on the ray assumption first carries the 

approximation of the Eikonal equation, and second, it assumes that energy 

propagates in a narrow bundle of rays. 

Since ray theory is based on the Eikonal equation approximation, spatial 

frequencies corresponding to scales smaller than the first Fresnel zone width 

would not be accurately recovered by the ray assumption (Williamson and 

Worthington. 1993). Hence, ray theory can not be employed to compute travel 

times in cases where the diffraction phenomenon takes place. This phenomenon 

can be explained by Huygens' principle and the concept of Fresnel zone. The 

Fresnel zone is that portion of a reflecting interface that produces in-phase 

reflected waves at a detecting point, Le., constructive interference (Figure 3-4). 

Therefore, a large region is responsible for the reflected energy rather than just 

a point on the reflector (ray theory assumptionQheriff, 1978). Figure 3-5 shows 

that as the body becomes smaller than the Fresnel zone. it becomes in effect a 

point reflector, and it is nearly indistinguishable f rom a diff ractor. 

Ray Assumption. The interaction of waves with inclusions depends primarily on 

the size of the inclusion D with respect to the wave length h. The ray assumption 

applies when D>A. More speclically, ray tomography is applicable when the 

scale length of the anomaly is at least the radius of the first Fresnel zone: i f  the 

average ray length is n wavelengths, the size of the inclusion must be at least 5- 



h-(n)O", where 5 varies between 0.5 and 1 (Santamarina, 1994). The 'straight 

ray' assumption dominated the development of engineering tomography during 

the 80's. as an extension of X-ray tomographie imaging in medical applications. 

From optics, the straight ray approximation applies if the travel length Lz>U2ic, if 

the wavelength is significantly smaller than the size of the anomaiy, and if 

velocity changes are less than 20% to 30%. 

DHraction. When the size of inclusions is within the same order of magnitude as 

the wavelength, the ray approximation does not hold. and propagation must be 

considered from the point of view of the wave front and scattered energy. 

Diffraction degrades the quality of tomograms when the Iinear ray assumption is 

made: low velocity inclusions are imaged smaller than real size (high velocity 

anomalies are imaged larger). Low velocity anomalies are difficult to detect when 

the plane of receivers is located about twice the diameter of the inclusion away 

from it. 

Fresnel's ellipse.. The position of scatterers that affect wave arriva1 at the source 

is related to the wave length h. Indeed, waves scattered from diffractors within 

an ellipse, so that the travel distance is the straight distance d plus 7d4 or U2, 

will arrive in phase with the direct wave traveling the straight path d. This 

observation is relevant in selecting ray-tracing algorithms (often a 'thick ray' 

assumption is used), and in selecting source and receiver configuration: 

transducers too close together do not necessarily add information content. 

3.3 Ray Tracing Methods 

Ray tracing is a two-point boundary value problem: the end points are speclied 

(the source and receiver positions), and the propagation path and time must be 



determined. Ray theory is used in the developrnent of some ray tracing 

algorithms. However, there are more general solutions. In al1 cases, ray tracing 

fulf il ls Fermat's principle. Ray tracing techniques are categorized as: One-point 

methods, Two-point methods, and d o i e  field methods. 

3.3.1 One-Point Methods 

These methods are also known as initial value methods or shooting methods. In 

this case. the two-point boundary value problem is approached by iteratively 

solving an initial value problem with one fixed end point, and subsequently 

varying the initial ray trajectory or take-off angle. Therefore, the main purpose of 

these methods is integrating the initial value formulation of the problem and 

employing a procedure to find the starting direction which yields the desired ray 

path. Figure 3-6 shows a schematic view of this type of methods. Primary ray 

tracing assumes 'point velocities' and interpolates values, rather than selecting 

rigid pixels boundaries. 

There are two important steps in one-point methods: first, the initial guess of the 

take-off angle, and second, the algorithm which traces the ray from the initial 

point to the end point. 

The equations for the initial value problem can be defined in a simple fom if the 

ray path is specified parametrically in terms of position vector r(t) and a 

slowness vector s(t) where the parameter t is the cumulative travel tirne. The 

slowness vector s(l) is defined in the direction tangent to the ray and as the 

inverse of the local seismic wave velocity in that direction, v (Chemov, 1960; 

Eliseevnin, 1 965). This definition leads to 
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(Note: v. s = 1 unit vector) 

The rate of change of slowness along the ray is 

In three-dimensional space, these equations represent a system of six first order 

differential equations which must be integrated numerically to find the ray path. 

However, because of the relation between slowness and velocity, one equation 

is redundant and 1 may be eliminated (Julian and Gubbins, 19ïï). Appendix A 

gives computationally convenient forms of these equations in Cartesian 

coordinates; redundancy has been eliminated by expressing s in ternis of two 

angles giving its direction (Gheshlagghi, 1992). The spherical fom of these 

equations can be found in Julian and Gubbins (1 9n). 

The system of first order differential equations may be solved with standard 

numerical integration techniques. Sambridge and Kennett (1 990) solved these 

equations with a fourth-order Runge-Kutta algorithm. Their method also 

employed the paraxial boundary value ray tracing of Cerveny. et. ai. (1984) 

which may be applied to ray tracing in laterally varying layered media. Julian and 

Gubbins (1977) employed a step-size extrapolation method. Lytle and Dines 

(1 980) started from Snell's law and derived a refractive index equation in two 

dimensions rather than the ray equation. In their approach, the differential 

equation describing ray paths can be obtained by considering that 

In the limit, this equation leads to the differential form of Snell's law: 



If Equation 3-17 is written in ternis of coordinates (x,y) and the ray tangent angle 

8, the refractive index equation can be derived as follows (see Lytle and Dines, 

1980) 

where n is the refractive index and dL is the arc length of the ray path. They 

used the Runge-Kutta algorithm to determine the ray path based on a given 

initial angle (The algorithm is summarized in Appendix B). 

The detemination of the starting direction which causes the ray to pass through 

the desired end point involves finding solutions to two nonlinear simultaneous 

equations specified implicitiy in t e n s  of the differential Equations 3-14 and 3-15: 

where the x and y are the ~ lcu lated coordinates of the end of the ray with 

starting shooting angle i, and starting azimuth 9, and X and Y are the desired 

end coordinates of the ray, Le., the coordinates of the receiver. 

Several methods are employed to solve these equations. Newton-Raphson's 

method and an extension of the 'false positiona method are the common 

approaches. Since the above equations are generally nonlinear, both methods 

must be applied iteratively. 

The improved estimate of (i,, cp) is obtained by solving the systern of linear 

equations 



where the superscripts indicate the value of the corresponding parameter in 

each iteration. The calculation of the partial derivatives consumes a lot of time. 

As with the ray path system, two additional systems of ordinary differential 

equations of the same order should be soived (Julian and Gubbins, 1917). 

The rnethod of 'false position' employed by Julian and Gubbins (1977) 

calculates only the ray path at each iteration. However, it converges more slowly 

(Julian and Gubbins, 19ïï): an improved estimate of (io,cp) is obtained at each 

stage of the iteration. This im ptoved estimate is calculated by approximating the 

functions x(io,g) and y(io.q) by planes passing through the values calculated from 

three previous estimates. These planes take on the values X and Y. respectively 

along two straight lines. The desired improved estimate can be obtained from 

the intersection of these two straight lines. A compact fom for the desired 

equations is 

and similarly for <p 

where the superscripts indicate the three previous estimates. This method is 

more efficient than Newton-Raphson's method (Julian and Gubbins. 197ï). 



Advantages of One-Point Methods. 

One-point methods are suitable to perfomi 3-0 ray tracing in which receivers 

are distributed along some fine profile. e.g. Iine, cuived, piece-wise. etc. 

(Nolet, 1 987). 

These methods can be employed where source location is initially unknown, 

e.g. earthquake location. 

One-point methads are easy to apply and need less cornputer memory 

storage than two-point methods (lyer and Hirahara. 1993). 

Limitations of One-Point Meümds. 

Do not find diffracted ray paths (Moser, 1991). 

Do not always converge to a solution (Asakawa and Kawanaka. 1993). 

Are not able to handle head waves (Asakawa and Kawanaka, 1993). 

Can not find ray paths in shadow zones (Moser, 1991). 

3.3.2 Two-Point Methods 

Two-point methods are also known as bending methods. These methods start 

with speclic initial and end points, and choose the ray path which satisfies 

Fermat's principle. 

Ben- Method 

In this method, an initial ray path is assumed and then perturbed while keeping 

end points fixed (Figure 3-7). The procedure is repeated until an acceptable 

stable minimum time is found. Generally, the first guess is the straight path. Um 

and Thurber (1987) applied this method to a variety of laterally heterogeneous 

velocity models. They suggested a three-point perturbation scheme and 



considered two approaches for perturbation (Figure 3-8 and 3-9). One approach 

is that points in a new path are sought starting from one end-point. The other 

approach is that new points are sought simultaneously starting from both end- 

points. They finally adopted the second approach. Travel time is computed as a 

summation. Um and Thurber (1 987) defined the rate of perturbation R (Figure 3- 

10). The direction of offset n is based on the cuwature direction of a minimum 

time ray path. Their derivation of the ray equation is: 

where r is the position vector along the ray path. The second terni on the right 

hand side of this equation is the component of the velocity gradient parallel to 

the ray path. Therefore, this equation States that the component of the velocity 

gradient normal to the ray vector is normal to the curvature of the ray path. if one 

considers the local ray direction as the direction of the line that connects two 

contiguous end points, as in Figure 3-8, the component of the velocity gradient 

normal to that direction gives the curvature direction. Thus, the offset direction 

for the point xtk,which satisfies Equation 3-23, may be defined as: 

n' = (Vv) - [(vv) @k+l - ~ k - 1  ) X ~ k + 1  - xk-1 ) 
1% - x-Il2 

where the second temi is the component of the velocity gradient parallel to the 

ray direction. The unit vector direction is obtained as n=nB/ln'l. 

Santamarnia and Cesare (1995) proposed another perturbation procedure for 

ray tracing in vertically heterogeneous and anisotropic media (Figure 3-1 0). In 

this rnethod. the straight segment between contiguous nodes is split in half and 

the new node is displaced in the normal direction until time is minimized. The 

process is repeated recursively. 



Advantages of Bending Methods 

Always converge to a solution. 

Diffracted rays and rays which pass through shadow zones can be found. 

Limitations of Bending Methods 

There is no certainty as to whether the path corresponds to the absolute 

minimum travel time or to a local minimum (Thurber and Ellsworth, 1980). 

There may be more than one solution for a source and receiver pair. 

These methods can not be applied to problems where the location of one end 

point is known while the location of the other point must be detemined, e.g. 

earthquake location. 

Sine-Arcs end Simplex Optimiradfon 

The method proposed by Prothero et al. (1 988) starts by specifying the velocity 

at nodal points. Then, interpolation is used to estimate velocity at an arbitrary 

location: 

where the i, j, and k indices are used for surrounding points and X, Y, and Z 

characterite the location of the point of interest. 

The starting ray path is found by searching the minimum travel tirne along 

circular arcs connecting the source and the receiver. If an inappropriate arc is 

chosen. convergence to local travel time minima may occur. The selected 



starting ray is perturbed until the minimum travel time is obtained. Prothero et al. 

(1 988) distorted the selected circular path by adding sine waves, systematically 

varying their amplitudes to minimize travel time. The distortion is expressed as 

where n is the harmonic number. dx(n,i) and dy(n,i) are the translation of the ith 

point on the path due to nth order sine wave, A,(n) and Ay(n) are the vertical and 

horizontal amplitudes of the nth order sine wave, d is the spacing between points 

on the path, i is the index of the ith point, and L is the arc length of the circular 

path. 

The amplitude of each perturbing sine arc is optimized with the Simplex 

optimization algorithm. The Simplex method is used for the minimitation of a 

function of n variables. The procedure consists of comparing the values of the 

function at (n+l) vertices of a general polygon or 'simplei, followed by the 

replacement of the vertex with the highest value by another point (Nelder and 

Mead, 1965). The simplex in the two-dimensional space is a triangle, and it is a 

tetrahedron in the three-dimensional space. 

A schematic of the 'Simplex" search is shown in Figure 3-1 1. 6, 0, and W are 

three arbitrary points in the two-dimensional space of A,(n) and Ay(n). To reach 

the lowest value of the travel time function the Simplex, i.e. triangle, should be 

rnoved downhill. Find the vertex with the highest travel time (worst: W) and the 

one with shortest time (best: 0). Reject W and substitute it with another point. 

Point R is obtained as a reflection of W. If the travel time corresponding to Ax(n) 

and Ay(n) at R, t(R) is lower than t(o) and t(B), increase the distance Nice (E). If 

t(B)G(R)a(W), R is selected. If t(R)>t(W), then a contraction occurs. If the 

contraction (C) produces a better value than W, C is selected; otherwise, a 

shrinkage occurs and al1 vertexes, except the best one, move directly toward B 



by half of the original distance from it (points S in Figure 3-1 1). Figure 3-12 

shows the contours for travel time values in A,-Ay space. The minimum value of 

the travel time is locateâ at the center of these contours. The points marked W. 

0, and B are the three initial guesses. The procedure is repeated for each 

harmonie, 

Advantages of the SineArc + Simplex Optimriration 

This method isfast. and it always converges (Prothero etal., 1988). 

Oiffracted rays and rays that pass through shadow zones can also be found 

by this method. 

Limitations of the SineArc + Simplex Optirniration 

It is assumed that the medium is continuous and has a unique minimum 

(Nelder and Mead 1965). In real cases, the search may converge to a local 

minimum, 

Polygonal Path Method 

This method was proposed by St6ckli (1984) for transversely isotropic media. It 

assumes that wave surfaces are polygonal surfaces (Recall that wave surfaces 

are ellipsoidal in transversely isotropic materials). Therefore, if z is the axis of 

symmetry (Figure 3-1 3), 

Then. th8 true wave surface can be approximated as, 



The more generaf case. where z is not the axis of symrnetry, can be obtained by 

an orthogonal change of axes. Optimuation involves finding the value of p in 

Equation 3-27 that satisfies Fermat's principle for each ray path. 

Advantages of the Poiygonal Path Method 

A simple iteration gives the best value of p. 

This method is useful for ray tracing in layered media. 

Limitations of the Polypnal Path Method 

This method can not solve the ray tracing problem in media with high velocity 

contrast where the wave surface changes rapidly. 

3.3.3 Whole-Field Methods 

Whole field methods compute local travel times between nodes in the whole 

space of interest before ray paths are identified for each source-receiver pair. 

These rnethods are also known as network rnethods (Moser, 1994). 

Finite Diffemnce Method 

Vidale (1988 in 20 and 1990 in 30) proposed a wave front tracing technique 

based on a finite-difference approximation of the Eikonal equation. Matsuoka 

and Gaka (1990) proposed a finite-difference solution based on the reciprocity 

principle (see method by Asakawa and Kawanaka. 1993). More recently, a 

systematic application of Huygens' principle within a finite-difference 

approximation was proposed by Podvin and Lecomte (1 991). 



VidaleBs rnethod creates a mesh of points (Figure 3-14). Assume that the travel 

time at point A is f. Travel times at the four points Bi adjacent to A are 

determined as follows: 

where d is the mesh spacing, s, is the slowness at point A, and s, is the 

slowness at the grid point Bi. The travel tirne at Cl is determineci using the 

Eikonal equation and the assumption of a plane wave front: 

In finle differences. the terms in Equation 3-30 can be approximated as follows 

(see Figure 3-1 4): 

and 

Substituting Equation 3-31 a and Equation 3-31 b into Equation 3-30 leads to: 

Similar equations for travel times cm be computed for spherical wave fronts. 

Assume that the travel time to the center of curvature of the wave front is ts. 

Then travel times to A, BI ,  62, and C are (see Figure 3-14) 



Once al1 travel times thrwgh the media are calculated, the steepest gradient in 

the travel t h e  data is used to identify the shortest travel time paths for each 

source and receiver pair. 

Advantages of the Finite Difference Method 

This method allows for the subsequent assignment of ray paths and arrivai 

amplitudes. reducing the computation time significantly by eliminating the trial 

and error process of ray shooting (Asakawa and Kawanaka, 1993; lyer and 

Hirahara 1993). 

Algorithms are simple and robust, solutions are generally acceptable for 

various velocity fields (Geoltarine and Brac, 1993). 

These algorithms can be used in conjunction with Kirchhoff depth migration. 

Limitations of the Flirite Ditference Method 

Finite difference methods present difficulties when applied to models with 

sharp velocity contrasts. 

The ray path consists of Iine segments connecting grid points between cells 
of different velocities (no refraction). This problem is overcome by Ishii, 

Rokugawa and Suzuki (1988) by placing nodes on cell boundaries 

(Asakawa and Kawanaka. 1 993). 

Multiple Segment, Netwofk Methods 

These methods are also known as grid methods. In Moser's method, the area of 

interest is divided into a grid of pixels (Moser, 1991). Each point on the grid is 



connected to al1 other near neighboring points (Figure 3-15). The travel time 

between two conneded nodes is defined as their Euclidean distance multiplieci 

by the average slowness of the two nodes. The velocity in a pixel is assumed 

constant. Travel thnes for al1 ray segments are computed in the forward stage. 

Minimum time rays be-n source-receiver pairs are selected in the backward 

stage. The search for optimal ray paths within the network is based on search 

algorithms in graph theory (see Nilsson, 1980). Moser (1991) implemented 

breadth-first search. The tree starts with the source t=O. and it is expanded 

following network nodes and their links. 

The method by Asakawa and Kawanaka (1993) is also a network technique but 

in this case. the space is searched for each shot (Figures 3-16 and 3-17). The 

method attempts to find optimal crossing points on al1 boundaries so that travel 

time is minirnized. Consider a ray path crossing the segment AB on a certain cell 

boundary and reaching point D on the opposite side of the boundary. Assume 

that we want to calculate travel time t, at point D. Travel times t, at A and t, at B 

are known. Then, the travel tirne t, is linearly interpolated: 

d-r r 
t c = t ~ d + b d  

Finally, the time at D is: 

where I,=&-x,, IY=y2-y,, and s is the pixel slowness. Combining Equations 3-37 

and 3-38 

d-r 
b =tA-+ t , '+SJ5:+02 d ci 

If Equation 3-39 is differentiated with respect to r, and equated to zero, the value 

of r for minimum t, is obtained: 



and replacing back in Equation 3-39: 

The condition for the correct ray path to cross the segment AB and reach the 

point D is: 

The fonnrard algorithm starts from the selected shot point and advances the 

network column-by-column, accumulating travel tirne (see Figure 3-16). The 

lowest travel time is assigned at nodes. At the end of the forward process, 

minimum 'source timesm have been assigned to nodes along vertical cell 

boundaries. The backward algorithm starts at each receiver and moves back 

towards the source. At a given node on a vertical boundary. the 'ray time' can 

be cornputed as the addition of 'source tirne' and 'receiver time'. The crossing 

point is optimized to minimize the ray tirne. as described above. This method 

resem bles heu ristic graph search strategies (Nilsson, 1 980). 

The method proposed by Sassa et al. (1989) is a shot-based network method 

similar to the foward algorithm by Asakawa and Kawanaka (1993). The authors 

view it as a Huygens' based approach (Figures 3-18). The backward algorithm in 

Asakawa and Kawanaka (1993) is replaced by a second forward scan of the 

netwotk, whereby crossing points are optim ized (Figures 3- 1 9), 



Advantages of Muîti@e Segment Nelwporlc Methods 

These methods successfully compute diffracted ray paths and paths in 

shadow zones. 

All source-receiver pairs are preprocessed at once (forward process cornmon 

to al1 rays). 

These methods avoid the numerical instabilities in spaces where velocity 

changes abruptly. 

Limitation of Mult&~le Segment Network Methods 

They reguire large cornputer memory. 

The computation time is significant, yet linearly dependent on the number of 

nodes (at least in Moser's method). Computational efficiency increases for 

large problems, such as 30 suweys. 

In Moser's method, the angle of refraction does not change continuously 

with the angle of incidence, and the ray path may refract between cells of 

equal velocity. 

3.4 Summary and Conclusions 

Ray theory is a complete solution to any particular propagation problem within 

the validity of the approximation of the Eikonal equation to the wave equation. In 

other words, a solution based on the ray assurnption first carties the 

approximation of the Eikonal equation and second, it assumes that energy 

propagates in a narrow bundle of rays. Therefore. rav tracina methods based on 

rav theorv (one point methods) can not predict travel times in shadow zones and 

dinracted regions. Other rav tracina methods can successfully overcome these 

problems, give a solution for shadow zones, and estimate diffracted travel times. 

Closed-forrn solutions are possible for simple velocity fields. 



One-point methods are efficient and have low memory demands. yet, they have 

al1 the restrictions inherent in ray theory. Furthermore. they may never converge. 

Two-point methods are flexible and efficient, require low memory storage, and 

can sohre travel times in shadow zones and diffracted ray paths. However. they 

may not be able to find the global minimum. 

Whole-field rnethods can identify global minimum travel times, including shadow 

and diffracted zones. While the solution is cornputer demanding. al1 rays from a 

given shot are solved at once. 

A surnmary of ray tracing methods is given in Table 3-1. 



Table 3-1 : Ray tracing methods. 

Met hod 

One-Point 
Methods 

Two-Point 
Methods 

Whole-Field 
Methods 

-- -. - - - - - 

1. Initial guess of 
the take-off 
angle. 

2. Trace rays from 
source to 
receive r. 

1. Assuming an 
initial ray path. 

2. Perturb the path 
to minimize 
travel tirne. 

1. Compute travel 
tirne for different 
segments. 

2. Find the best 
path by graph 
search. 

Suitable for 30 
ray tracing. 

Useful for cases 
with Unknown 
source focation. 

Easy to apply. 

Limited computer 
memory . 

Always 
converge to a 
solution. 

Diffracted rays 
and rays in 
shadow zones 
can be found. 

Compute 
diffracted ray 
paths and paths 
in shadows. 

Avoidthe 
numerical 
instabilities in 
spaces where 
velocity changes 
abruptly. 

Short comings 

Not for 
rays or ray paths 
in shadow 
zones. 

Notalways 
converge. 

Unable to handls 
head waves. 

Solution may 
converge to local 
minima. 

Dernand more 
corn pu ter 
memory than 
one-point 
methods. 
- - - - - - 

Significant 
computation time 
and memory 
demand. 

Angle of 
iefraction may 
not change 
continuously 
with angle of 
incidence. 

- 

diffracted 

! 

- 

- 

d 



Figure 3-1: Head waves from a horizontal refractor (fayer 2). Head waves begin 

at the critical distance and overtake the direct waves at the crossover distance 

(Sheriff, 1989). 



Figure 3-2: Arrival time-distance curves for diving waves. Starting angles= 0°, 10 

0200,and 30'; velocity gradient is (a) continuous velocity gradient; (b) velocity 

gradient interrupted by a low-velocity zone from q,q resulting in a shadow zone 

(Sheriff, 1 989). 



Figure 3-3: Shadow zone in the presence of a high irnpedance region. 

Figure 3-4: The first Fresnel zone: Interaction between a wave front and the 

interface between two media (Sheriff. 1 978). 





Point 1 

Figure 3-6: One point method in two dimensions - A schematic representation. 

Point 1 

Figure 3-7: An example of perturbing rays in bending methods. 



Figure 3-8: Three-point perturbation scheme in three dimensions. (Um and 

Thurber, 1987). 

Figure 3-9: Two approaches to perturb ray paths (Um and Thurber, 1987). 



[ml 
Figure 3-10: Perturbing the ray path by mid-point method (Santamarina and 

Cesare, 1 994). 

O 

Figure 3-1 1 : Two-dimensional simplex BWO illustrating the four rnechanisms of 

movement: reflection (R), expansion (E), contraction (C), and shrin kage(S). 



Figure 3-1 2: An example of the Sirnplex moving on the response surface contour 

plot. 

Figure 3-13: True wave surface and approximating wave surface F. For each 

direction of the ray; e is taken as indicative of goodness of fit (Stockli, 1984). 



Figure 3-14: The source grid point A and the eight points in the ring surrounding 

point A (Vidale, 1988). 

Figure 3- 1 5: Cell organization of a network, (a) Dashed lines: cell boundaries. 

Black circles: nods. Solid lines: connections. (b) Shortest path from one node to 

other nodes in a homogeneous rnodel (Moser, 1991). 



(dl 

Figure 3-16: Forward 

1 993). 

Figure 3-1 7: A ray path 

(el 

process in the LTI rnethod 

tf) 

(Asakawa and Kawanaka. 

crosses segment AB at point C and reaches point D in a 

cell (Asakawa and Kawanaka. 1993). 
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Figure 3-18: Rays from a seismic Huygens' source toward sixteen grid points 

(Sassa, 1 989). 

1-: ln itial ray-path 

M-: Modif ied ray-path 

Figure 3-1 9: Example of initial and modified ray paths in Sassa's method (Sassa, 

1989). 



CHAPTER IV 

SOFmARE FOR CE-TOMOGRAPHIC STUDIES 

(DESIGN DECISIONS) 

4.1 Introduction 

A program for tornographic inversion was written as part of this study. The 

selected tornographic inversion rnethods are based on matrix analysis methods 

(Chapter 2). Ray bending and straight ray algorithms are included (refer to 

Chapter 3). The program is in structured fom to facilitate future additions and 

modifications. This chapter starts with an ovewiew of numerical issues invoived 

in inversion and ray tracing algorithms. Design decisions are highlighted. 

4.2 Numerical Issues in Inversion Algorithms 

The inverse tornographic problem can be solved with several methods 

categorized as: (i) lterative methods (ii) Transform methods, (iii) Matrix inversion 

methods, and (iv) other methods. The methods were reviewed in Chapter 2. 

lterative rnethods are not always stable in illconditioned problems. Transform 

methods are restricted to straight ray projections (space transformations could 

be invoked to generalize the solution to heterogeneous. anisotropic media). 

Matrix methods are versatile, computationally efficient, and robust. However, 

efficient storage and computation are required. Hybrid solutions can be 



attempted to enhance the resohrability of inverted images (e-g., fuzzy logic pre- 

processing followed by regularization). 

The coefficient matrix (L) is sparse. Storage and computation time can be 

decreased more than one order of magnitude M e n  adequate computational 

techniques are used. In a dense nxn m a t a  the order of computation complexity 

is O(n3 and O(n2) for storage. The application of direct methods with sparse 

mat rix techniq ues requires O(n2) and O(nel -4), respect ively (Gol u b & Van Loan, 

1983). However, efficient iterative algorithms combined with sparse matrix 

techniques can reduce the order of computational complexity to O(nl-3) and 

storage requirements to O(n). 

Consider a space discretized into equal nurnbers of columns and rows and 

tested in a cross-hole; the resulting matrix L contains -1.5dn non-zero elements 

in each row of n entries, e.g. if there are n=2Ox20 pixels, the length of each row 

is 400 and only about 30 entries are non-zero. Adequate data structures can be 

very effective to avoid storage problems (see also Tallin and Santamarina. 

1 989). 

4.3 Computational and Physical Issues in Ray Tracing 

If ray bending takes place, ray paths depend on inverted pixel velocities, thus 

the tornographic problem becomes non-linear. H it is appropriate to consider 

propagation in terms of rays, ray bending can be taken into consideration in 

iterative algorithms and matrix methods. In this non-linear problern, ray paths 

depend on the velocity field. Thus, the matrix of travel lengths Lij is not constant 

and must be recalculated with a digital ray-tracing algorithm as the field of 

velocity evolves during successive iterations or inversions. Ray tracing 



algorithms assume Fermat's shortest time criterion (Santamarina and 

Gheshlaghi, 1995). 

This section presents an attempt to compare the computational efficiency of ray 

tracing methods. It also provides some evidence of the accuracy needed in ray 

tracing to sohre the inversion problem, within the context of other mors in CE- 

tomography. 

4.3.1 Assumptions and Fundamentai Cases 

The cornputational time demand for ray tracing methods is based on the number 

of segmental travel time calculations. Discretize the medium into pixels (Figure 

4-1) and assume that: 

The medium is divided into n rows and n colwnns. Therefore, the number of 

pixels is n2. 

Full cross-hole tornographic measurements are conducted: al1 rays are shot 

from a source to al1 receivers on the opposite side. 

Sources and receivers are located at the mid-height of pixels along vertical 

boundaries. 

Rays can cross from one pixel to its vertical or horizontal neighbor, but not 

directly to its diagonal neighbor. 

Case 1: Stmight Rays 

Based on these assumptions, the total number of travel time calculations can be 

computed for the simplest case where straight rays are assumed. This is the 

lowest bound to al1 methods. 



Table 4-1: Computation of total number of travel tirnes, assuming straight rays. 

No- of seg. per ray Tot- No. of segments 

In Table 4-1, Ay is of one-pixel height. Mathgram 4-1 (case 1) shows a plot of the 

number of segmental travel time computations for the straight ray assumption 

(nttcs) as a function of n. Note that the trend can be approximated by n3 function. 

The least squares fit results in the following approximate equation 

(n-1) A P  2[n-(n-1)] 

nttcs = 1.33 n3. 

If the number of pixels is very large, the computation of accurate travel lengths 

loses relevance to the solution, and the Pythagorean computation can be 

reduced to 'touched=lm and 'not-touched=O'. Such a method was proposed by 

Dines and Lytle (1 979). A related optimized method can be found in Tallin and 

Santamarina (1 992). 

Total Number of Segmental Travel Times = n*[1+2(n-1))-2[12+22+.. . +(no1)2] 

[il Horizontal ray, [ii] Most diagonal ray 

iir 

I I  

[n+(n01 11 

Case 2: Cuwed Rays 

- 
I 

2[n2-(n- 1 )2] 

Assume that curved rays are concave and that they extend between the upper- 

most and lower-most positions of the source and receiver (Figure 4-2, rays #2 



and #3). Apparently. such rays have the same number of segments and 

intersections as the corresponding straight rays (Figure 4-2, ray el). However, 

the number of segments in horizontal rays is senslive to the curvature of the ray 

(compare ray paths in Figure 4-2 versus the corresponding ray paths in Figure 

4-3). This is true even when the ray is similar to path #3 in Figure 4-2, but when 

the curvature of the ray exceeds the new position of either source or receiver 

(e.g. path #4 in Figure 4-2 and curved path in Figure 4-3), two more segments 

are added to each ray for each additional row difference. 

Assume that the number of segments is increased only in horizontal rays 

deflecting one pixel out of their positions. Then, each horizontal ray will have 

(n+2) segments. All together, horizontal rays will involve n(n+2) segmental travel 

time computations rather than n2 Thus, the total number of segmental travel 

time computations is increased by 2n. Given that the process is of order @, this 

additional number of computations can be disregarded (Mathgram 4-1, case 2). 

One-Point Methods. The method introduced by Lytle and Dines (1980) is 

selected for analysis. In this rnethod, the computation of a fourth-order Runge- 

Kutta method is based on the number of selected points during the ray tracing 

procedure (primary ray tracing assumes 'point velocities' and interpolates 

values, rather than selecting rigid pixels boundaries). If a n step ray is assumed, 

to have a parameter comparable with other methods, the fourth-order Runge- 

Kutta method will require 4m calculation for each ray to be traced (four 

evaluations are needed at each step, Forsythe et al., 1977). Suppose that for 

each pair of source and receiver, the ray path is defined for m shooting angles. 

Then, the number of calculations needed for only primary ray tracing by this 

method is in the order of 4xmxn3 (see Mathgram 4-2). Final pixel values must 

still be computed (similar demand as curved rays). In addition, overhead 

calculations are required for detemining shooting angles. This overhead 



cornputation demand can not be defined by a specific number, and it can differ 

from one algorithm to another. 

Sorne tricks rnay be irnplemented to decrease the amount of computation. For 

example, ray paths from a given source are computed for different shooting 

angles only once. Optimization for each receiver is based on interpolation 

between these primary paths. 

In this case, there are: rn primary paths (Le., nt shooting angles) and n 

interpolated paths (i.e., one for each receiver). Then, the problem for the n 

sources has the following level of computational demand: nx(m primary paths) + 
1.32n3 nttcs (as in curved rays) + additional overhead. The optimization 

overhead is proportional to the number of rays n2. 

Two-Point Methods. ln the Sine-Arc two-point method (Mathgram 4-3), the 

number of computations will be a factor (A) times the number of calculations 

needed for curved rays (Mathgram 4-1. Case 2). This factor is the number of 

Sine-Arc amplitudes which may be considered for each ray. Thus, the process 

remains n? The optimization overhead is proportional to the number of rays, n? 

In the multiple segment two-point method by Santamarina and Cesare (1995), 

the number of segmental travel time calculations depends on the number of 

segments, degrees of freedorn, and the sweeping area. In this case, every row in 

the range of sweeping outside the source and receiver position demands two 

more travel time calculations. Each node rnoved to minimize the travel time 

requires the re-evaluation of al1 segments on both sides of the node. Table 4-2 

gives an estirnate of the number of calculations for this method (refer to Figure 

4-4): The overhead demand is proportional to the number of nodes tirnes #. 



Table 4-2: An estimate of the num ber of calculations in multiple segmentation 

two-point method. 

All two-point methods can be optimized by computing al1 rays from a given 

source sirn ultaneously. In this case, the search space is reduced for each ray as 

it becomes constrained by its neighbors (two rays from a source never meet). 

Savings are proportional to n3 (plus overhead) shifting curves parallel down 

toward the straight ray solution. 

Whole-Field Methods. Two types of node patterns for whole-field methods are 

shown in Figure 4-Sa&b. Both patterns have 8=24 possible segments. In 'case 

a', there are no connections along pixel boundaries. However in 'case ff, 

neighboring nodes can be connected. 

The main point in this type of rnethod is that if al1 cells are of equal geometry, 

lengths are computed for only one cell during the forward process: 

Total n u m k  of tmvd tima calculatIons=$n2 

but in reality, only $ cornputatbns a n  mcessary to obtain Irngths 

In the backward process, we assume that the time required for 'if-statements' in 

these methods is similar to the computation time required for other arithmetic 

operations (multiplication, division, and exponentiation). In addition, the following 

assumptions for graph search algorithms are made: (1) do not check backward 



at connections; (2) expand nodes on right vertical wall first. then those on 

horizontal boundaries (Figure 4-6); and (3) the search advances by columns. 

Based on these assumptions, the number of connections in the pixels that 

contain the source (or receiver) is six. For the other pixels on that column the 

number of connections is tweive. and for the pixels in al1 other columns is twenty 

four (Figure 4-7). Therefore, the number of computations for a single source or 

receiver is 

and for the total (n) sources and receivers is 

na rays: nx{[(nxl 2)-6]+(ctl)rnx24]=24n3-1 2nqn 

Case 3 in Mathgram 4-2 shows the total number of computations vs. n for whole 

field methods. 

4.3.2 Other Comments 

The density of overhead computations varies among methods and it may be 

a decisive factor (e.g. computation time required for determining shooting 

angles in one-point method). 

Two ravs from a source never cross. Hence, one-point methods and two- 

point methods can be readily optimized by searching all rays from a given 

source at once. The reduction in computational demand is proportional to rP, 

shifting cuwes parallel towards the straight-ray case. 

4.3.3 Accuiacy in Travel-Time Measuremnts and Ray Tracing 

Amplitudes of first arrivals may be smaller than the amplitudes of later arrivals 



(This case has been often observed in ouf laboratory). If diffracted waves have 

noticeable amplitude, they can influence travel time observations. whereby late 

arriving diffracted waves can be chosen as first arrivals. Moser (1994) suggested 

that such problems can be sohred by constrained shortest time paths, and 

showed that the effect is not as severe as indicated by Geoltarine and Brac 

(1993). He also argued that the mechanism that causes later arrivais tu have 

larger amplitudes than first arrivals could be compensated by the wave-front 

healing effect so that amplitudes of first arrivals rnay not be as systematically 

smaller as predicted by Geoltarine and Brac (1 993). 

Figure 4-8 compares computed travel times by the multi-segment method and 

the closed-fom solution for a verticalfy heterogeneous and anisotropic medium 

(Santamarina and Cesare, 1995). The accuracy is striking, at least for this 

simple case of continuous velocity fields. 

Significant deviations in ray path can often imply oniy minor differences in travel 

time, e.g., compare the time along a straight path between two points with 

respect to the time along a bi-linear path (Figure 4-9). Thus, one must question 

the accuracy needed in ray tracing algorithms, not for time prediction, but for the 

computation of pixel travel lengths in L. In order to study this effect, a central 

high velocity anomaly simulated case was considered (Figure 4-10). The test 

method follows: (1) the vector of travel times tw and the matrix of lengths L, are 

determined for optimal travel paths (wide scanning with small step), (2) 

alternative paths are selected by restricting the scanning step in the ray tracing 

algorithm and corresponding times are computed, L' and tu, (3) the image is 

inverted in each case and the velocity vector is obtained for the optimal case 

and other cases, V, and Y, and (4) the error in path, time, and velocity are 

computed. 



Two 

sum 

error noms were used, the sum of absolute values (Equation 4-1) and the 

of squared values, producing similar trends. 

Figure 4-1 la shows that the average absolute error AAE in pixel travel time 

computed with rays of different curvature is related to the AAE in travel length 

per pixel. However, only a 1% error in time relates to an average 4-pixel widths 

difference in travel length per pixel (400%); given that the average travel length 

per pixel is 20 pixel widths, the percent average error is 4/20=20%. Figures 4- 

1 1 b&c show that the error in pixel velocities can be justified as a result of error in 

measurement or error in ray paths, Le., ray model. 

It can be concluded that while more accurate travel paths can improve the 

inverted image, the demand on accurate ray paths must not exceed 

measurement accuracy on travel times, which is usually about 1%. 

4.4 WATOM-1: General Approach 

The main structure of the Waterloo Tomographie software (WATOM-1) is based 

on matrix inversion solutions, using sparse matrix algorithms. Straight rays and 

Sine-Arc are two ray tracing possibilities in version-l. 

4.4.1 Ray Tracing 

Encoded ray tracing algorithms allow either straight rays or two-point SineArc 

rays. The Sine-Arc ray path deviates from the straight ray path of length L as 



prescribed by a Sine-Arc with wavelength 2L The parameter being optimùed is 

the amplitude of the sine that renders the minimum integral time. The SineArc 

method is fast, precise for a wide range of problerns, and it enforces some 

smoothness to the solution. The region scanned during the search for minimum 

tirne ranges from five pixels above to five pixels bellow the straight path that 

connects the source to the receiver. The scanning step is '02x(pixel height)'. 

Shorter time paths outside this region would be greatly attenuated and would be 

probably overlooked while picking first arrivals (Geoltarine and Brac. 1993; 

Laboratory observations in the Wave-Geomedia Laboratory, University of 

Waterloo). Only one parameter is optimized for the full ray. 

4.4.2 Matrix Inversion 

Direct matrix inversion techniques are usually not employed because of data 

storage and computation time requirements. However. L-matrices are highly 

sparse: the number of non-zero elements is about the number of pixels across 

the discretized space. The sparsity of matrices involved in tornographic problerns 

enables us to employ efficient storage and solvets. If iterative methods are 

ernployed, acceleration can be used to increase the rate of convergence. 

Data Structures. The ia-ja data structure for a nxrn matrix with N non-zero entries 

needs: 

A single subscript array (length n). which is used to store all non-zero 

elements of the coefficient matrix. 

An index array (length n+l) to store the location of the starting point of each 

row. 

An index array (length n) to store the colurnn location of each non-zero 

element of rnatrix L. 



Given the following sparse matrix L, 

the arrays in the ia-ja representation are: 

A row-index data structure is also employed in the WATOM-I program and differs 

from the ia-ja data structure. Elements in the row-index data structure are: 

An array of length n+l which includes non-zero elements in matrix L. 

An index array of length n+l which contains the locations of non-zero and 

diagonal elements. 

For the previous example, these two arrays are: 

~ a = ( 5 8 6 5 4 ~ 1 3 9 1 2 7 7 8 4 )  

ija=(7911 121416451 5 4 2 3 3 4 ) .  

where x is an arbitrary nurnber. 

Link-lists can also be used as a data structure. The main advantage of linklists 

as compared to the ia-ja and row-index data structures is the ability to insert a 

value by modifying just a single row. This advantage results from storing pointers 

which show the location of the next value in the main array (which is used to 

store non-zero values). The location of the first value can be shown by a header 

variable, and there is a terminator which gives the location of the last value. 



-te Gradient If the coefficient matrix is syrnmetric and positive- 

definite, then, the mjugate gradient method is a ver '  efficient inversion method. 

Regularization and damped least squares rnethods are implemented in WATOM- 

1. Since matrices L*L. WR, and I are square. syrnmetric, and positivedefinite, 

the conjugate gradient method is used (Note that regularization and damped 

least squares methods produce coefficient matrices with different structures). 

WATOM-I runs in a workstation. The dimensions of arrays are not strictly 

restricted in the workstation environment. However, they are clearly subjected to 

size limitations in DOS-based systems. Two parameters are pre-def ined in 

WATOM-I to control convergence: (i) Maxiter fixes the maximum number of 

iterations, and (ii) Contol sets the convergence tolerance or maximum tolerable 

error. 

Schematic flowcharts of steps in L and R matrix entries computation are given in 

Appendix C. A global flowchait gives the WATOM-I algorithm (Appendix C). 

Input-Output 

Input parameters are encoded in an arbitrarily narned file (name must not 

exceed twelve characters including the three letters for file name extension). 

This text file is prepared in advance using spread sheet programs or text editors. 

The format of the input file is (an example of the data file is given in Figure 4- 

12): 



First and second lines: header lines for comments and descriptions, file 

specification, and other necessary information. There is no restriction on the 

format of these hivo lines. The total length of each lin8 should be less than 

72 characters. 

Parallel lines of data in eight columns, separated by one or more spaces. 

The first column is a line number. or ray number. The next seven cdumns 

include source coordinates (Xs, Ys, 2s). receiver coordinates (Xi, Yr, Zr) 

and travel time for source-receiver pair. Note that the source and the 

receiver coordinates are given in three dimensions even though this version 

of the program assumes a two-dimensional inversion plane (X-2). 

Therefore, the 'Y" dimension or second coordinate should be zero in al1 

cases. 

Sources and receiven may be located anywhere in the region. 

All other required information is interactively requested. A typical input dialog 

follows: 

1 . 'Input No. of rays and pixels .. =>:' 
'No. of rays' is the number of lines of data in the data file. 'No of pixelsn is 

the number of discrete elernents in the selected mesh (number of unknowns). 

2. 'Input No. of rows and colurnns ... -- -->: a 

'No of rows' is the number of pixels in the vertical direction of the selected 

mesh. 'No of columns' is the number of pixels in the horizontal direction of 

the selected mesh. 

3. 'Width and Height of the region .. ===XI 

These are the dimensions of the region to be inverted (in the same units of 

length). The inverted velocity is in units of these lengths over the unit of input 

travel times. 



4. '(R)egularization or (D)LSQR ... =xa 

The inversion problem can be sohreâ by regularization or damped least 

squares. Characters Rh or D/d allow the user to select between these two 

options. 

Depending on the answer to the previous question, one of the following 

questions will be asked (Sa or 5b). 

Sa. 'Input Reguiarization coefficient value ====>:' 

The smoothness of the inverted image is proportional to this parameter. The 

'best value' depends on the amount of noise in the given data. Thus, this 

parameter is a variable to be parametrically studied by the user. 

Sb. 'Input DLSQR coefficient value =a>:' 

This is the coefficient to the identity matrix for the damped least squares 

solution and balances least squares and solution nom. It is case specific. 

Thus, this parameter is a variable to be parametrically studied by the user. 

'Name of input data file ......... ==xm 

The structure of this ASCII file was previously described. 

'(S)traight rays or (C)unred rays ===>:' 

Straight ray tracing (choose 'Sa or 'se), or curved ray tracing ("Ca or 'cm) can 

be selected. Cunred rays use the Sine-Arc method. 

'Name of the initial velocity file ... =>: 
If 'curved rays' is selected, a velocity field should be input. This velocity field 

can be the inverted image from the last inversion (obtained with the same set 

of travel times), or a velocity pattern based on prior information about the 

region. This is an ASCII file. Arbitrary or computed pixel values for this file 



can be given in a sequence of numbers in (a) row(s) or in a column. One or 

more spaces or a comma should be us& to separate (wo successive 

numbers. A typical file is given in Figure 4-13. 

If 'straight pathsm are assumed, the average velocity of the field should be 

input. This value is used as an initial condition by WATWI. Therefore. not 

only the rate of convergence but also the inverted image can be improved by 

a proper input of average velocity. 

A typical output of pixel velocities is presented ni Figure 4-1 4. This output can 

be imaged by specialized display softwares, as a contour rnap, pixel map. etc. A 

second output file (Figure 4-15) gives: No. of iterations (before fulfilling an 

specific RMS value criterion), RMS value in each iteration, and final maximum 

error (gives the closeness to the given data). 

Appendix D includes the Waterloo Tornographic software (WATOM-1). 

4.5 Summary and Conclusions 

The coefficient matrix (L) is large and sparse. In a dense nxn matrix, the order of 

computation cornplexity is O(n3) and O(n2) for storage. However, efficient 

iterative algorithms combined with sparse matrix techniques can reduce the 

order of cornputational complexity to O(nl 03) and storage requirernent to O(n). 

Travel time is relativeiy insensitive to variations in ray path. men, most 

computational efforts in ray tracing are spent in optirnizing travel times to Me 

point that the estimated time error becornes significantly lower than 

measurement ertors. However, optimization alters ray paths and the length that 



rays traverse different cells. This affects tomographic reconstruction. The 

significance of this effect was evaluated with simulated data to facilitate 

cornparison. It was shom that while more accurate travel paths can improve the 

inverted image, the accuracy in ray paths does not need to exceed measurement 

accuracy on travel times. which is usualiy about 1 % (at best). 

A program for tornographic inversion was written as part of this study. The 

selected tornographic inversion methods are based on matrix analyses. Damped 

Least Squares and Regularization solutions have been encoded. Straight rays 

and optimal Sine-Arc algorithms were implemented for ray tracing in the case of 

linear and non-linear problems. 



n=n(rows)=n (columns) 

Number of pixels=nx~n2 

Figure 4-1 : A region divided by 4x4 pixels. 

Figure 4-2: A source and receiver pair connected by different paths. 



Figure 4-3: A source and receiver pair connected by the straight path and a 

curved path. 

1 
1 DOF I - 

Figure 4-4: Ray paths in a Multi-Segment method. (a) Cases when path has 

one and two degrees of freedom. (b) Order of moving nodes in a path. 



Figure 4-5: Number of connections per pixel for two selected whole-field 

methods. 

1 2 2 

Figure 4-6: Path connections from each node to the other nodes in a pixel. The 

number on top of each pixel shows the nurnber of connections. 
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Figure 4-7: Number of connections in each pixel for a receiver. 

Figure 4-8: A corn parison between the calculated travel times by multi-segments 

method and the corresponding close f o m  solution (Santarnarina and Cesare. 

1 994). 



Figure 4-9: Travel time along different paths (Santamarina and Cesare 1992). 

Figure 4 4  0: Sirnulated model, high velocity anomaly at center. 



Figure 4-1 1 : Image quaiity venus the accuracy in travel time measure 
and ray tracing. 



Balloon data. Units in ft, ms. 

Source (x,y,z) 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0.0 5.2501 

0.0 0-0 5.2501 

0.0 0.0 5.2501 

Receive r (x, y ,z) 

59.50 0.0 5.2500 

59.50 0.0 8.5000 

59.50 0.0 11 -750 

59.50 0.0 15.000 

59.50 0.0 18.250 

59.50 0.0 21-500 

59.50 0.0 24-750 

59.50 0.0 28.000 

59.50 0.0 31.250 

59-50 0.0 34.500 

59.50 0.0 37.750 

59.50 0.0 41 .O00 

59.50 0.0 44.250 

59.50 0.0 47.500 

59.50 0.0 50.750 

59.50 0.0 54.000 

Travel tirne 

1-41 

4.43 

4.44 

4.48 

4.52 

4.58 

4-63 

4.66 

4.71 

4.76 

4.85 

4.92 

5.05 

5.1 5 

5.32 

5.44 

Figure 4-12: Data file for one source and sixteen receivers placed in two parallel 

boreholes separated at 59.5 (*) distance. 



Figure 4-1 3: Typical input velocity file. Assurning a homogeneous region divided 

into 66 pixels with same velocities equal to 1 .. 

Figure 4-1 4: Example of a section of a velocity output file. 



iter = 1 mis = 0.573254324408763851 €01 2 

iter = 2 rms = 0.79791 86581 82052098535 

iter = 3 mis = 0.901 14671 9950356492E-39 

iter = 4 mis = 0.558238485830429981 E-52 

iter = 5 mis = 0.37678091 0927233054E-65 

iter = 6 m s  = 0.24825302501 7300200E-78 

iter = 7 mis = 0.1 906786421 89774752E-91 

iter = 8 mis = 0.2305961 1304761 4409E-104 

iter = 9 mis = 0.1 4271 21 135889091 62E-117 

iter = 10 mis = 0.3W794942904023085E-130 

iter = 1 1 m s  = 0.202263862!%6677OS 1 E-143 

iter = 1 2 rms = 0.429720579581 301 554E-156 

max error = 1.65598720952372580 

Figure 4-15: Example of the inversion peiformance output file. 



Mathgmm 4-1 : Computational demand (straight and curved rays) 

Cornputathal demand for stra'it ray assumption (mediun dvided Mo nm pkeis with 
n sources and n receivers). 



approximation: zm:=133-n3 

1-10' 7 I 

1-io6 - 
l*loS - 

rn*, 1-IO* - a - 
5, l m -  - - - 

LOO - u 

I 

IO 100 

a 

Cornputetional Qmcnd for cunred ray assumpüon (medium d-vided into rn pix& wil i  
n sources and n receivers). 



Mathgrni 4-2: Computational demand for ray tracing rnethods 

Parameters: 

N := 100 

e 1 : One-Po- 

Number of trial shots: 

Appmxünate oomputatknal dunad for typical One-Point method (medium diiided 
into nm pixek wW n rouiees and n ieceurnr). 



nurnber of searched paths: A := 7 

approximation: 

~~piwrmpte ewnputatiorral demand for Sine-AIC Twa-P oint tay lracng method (medium 
divided into nm pixels wih n eources and n receivers). 



number of seaicheci paths: A :=25 

approximation: z := 133-n3 

Approxîmate cunputetional d e m d  for Muloaegment Tm-Point method for sevm degrues of 
freedom (mediun dvided nto nm pixels wiîh n sources and n receiueis). 

LOO 



approximation: := 1.33-LI 3 

Appmxhte computatbnal demand for W e - F i e H  methais (mediun dMded into nm pkeh 
with n sources and n roceiv9rs). 



Mathgram 63: SineArc Two-Point Method 

i-L 
Xi :=- LOO 

Yi. 1 I i  I 

O 4 8 12 16 
- 

20 

'i 

Sin-Arc paths for the case when source and receiver are 1 the same ievel. 



G a s e  

Source and Receiver btions: 

Sh-Am paths for the case when soume and meiver locations aie at one-mw 
different elevation. 



Source and Receiver kcations: 

x- 

Sin-Aie paths for the case when source and ieceiver bcaaais are al a t w o - i ~ v  
different devath. 



DATA BASE OF CASE HISTORIES 

5.1 Introduction 

Prior experience with simulated data has shown that the quality of inversion is 

unrealistically good when compared to inversions with real data. In part, this 

reflects the compatibility of forward simulation algorithms with hypotheses made 

in the inversion stage. A central goal of this study was to assess the potential of 

inversion methods with real data, for which a database of well documented case 

histories was compiled. This chapter presents these cases. 

5.2 Case Histories 

A database of case histories was compiled. The main characteristics of these 

cases are summarized in Table 5-1. A detailed description of each case is 

presented in the text. All corresponding input files to be used with WATOM-I are 

printed in Appendix E. 

5.2.1 High Velocity Ciicular Anomaly - Acoustic Waves 

The purpose of these tests was to permit visualkation of the anomaly and to 

operate with simple wave propagation physics (only P-waves are possible in air). 



Table 5-1: Case Histories. 

Concrete Block 

m s @ s &  

Kosciuzk0 
Bridge 

Chute 
Hemrnings 

Dam 

Description 

High Vekcity Circuiar 
b m a l y  
Left-Side On-Centered 

TopSide off-Centered 

and Centered 

Simuhted Crack 

Side-to-Side shooting 

Top to Left-Side shooting 

Top to right-Side shooting 

Concrete Column 

Shooting from top and one 
side to bottom and the ottier 
side 

Stiooting from downstrearn 
face of the dam to upstream 
face 

Seven sets of parallel 
shoot ings 

Characteristic 

Well controlled 
features 

Very noisy data 

Asymmetnc 
structure 

Hetemgamus 
, anisotmpic 
background 

Purposes 

Tornographic irnaging of 
well defined defects 
(Crack and Column) 

Assess the condiion of a 
massive, brge size 
concrete pier 

Picture the intemal 
condition of a piliar and 
sîate of shotcrete 

Assess the location of a 
tunnel 



Data acquisitbn: Real data were obtained in the Iaboratory using a 1 SmX1.5m 

frarne to represent the plane under study. Air was the homogeneous medium, 

V=355mls (Santamarina. et. al. , 1991). Figure 5-1 shows a schematic diagram 

of the test configuration for the followhg four cases. 

Bal lm 1: A 0.23m diameter circular high velocity inclusion was sirnulated with a 

balloon filled with helium (V=921m/s). The balloon was located on the left-side. 

off-centered within the frame (Figure 5-1 a). Signals were detected at 7 equally 

spaced receivers (capacitor microphones) that were installed on one side of th8 

frame representing the receivers borehole. The source (miniature hammer-and- 

plate) was activated at 7 equally spaced locations dong the opposite side to 

generate cross-hole data. A PC-based digital storage oscilloscope was triggered 

with the source. 

Balloon 2 A 0.23m diameter circular high velocity inclusion was simulated with a 

balloon filled with helium (V=921m/s). The balloon was located on the top-side, 

off-centered within the frame (Figure 5-1 b). The source-receiver configuration 

was the same as for Balloon 1. 

Balloon 3 A 0.23111 diameter circular high velocity inclusion was simulated with a 

balloon filled with helium (Vt921mls). The balloon was located on the center of 

the frame (Figure 5-lc). The source-receiver configuration was the same as for 

Balloon 1. 

Balloon 4 A 0.46m diameter circular high velocity inclusion was simulated with a 

balloon filled with helium and placed at the center of the instnimented frame 

(Figure 5-1 d). In this case, 16 equally spaced receivers (capacitor microphones) 

were installed on one side of the frame to represent a borehole. The source 

(miniature hammer-and-plate) was activated at 16 equally spaced locations 



along the opposite side to generate cross-hole data The PC-based digital 

storage oscilloscope was triggered with the source. 

5.2.2 Concrete Block - Well Contrdled Featums 

The purpose of these tests was to assess tomographie images in concrete with 

well defined intemal features (Gheshlaghi, et. al, 1 995). 

Data Acquisfiion: The medium was a concrete monolith (1 2x1 -2~6.1 m) 

containing a variety of model defects (Figure 5-2). Defects were pre-constructed 

and placed in the fom prior to casting. ihe monolith was allowed to cure for 

three months prior to testing. The data were collected in a laboratory by Ontario 

Hydro. A Soniscope was used for data CO-ection (central frequency: 50 Khz). 

Two cases are discussed. 

Simulated Crack An open crack was simulated with a slot that was cut in the 

concrete monolith using a diamond wire saw, 3 months after casting. The slot 

was 12mm wide and extended across the width of the block at an inclination of 

26". Readings were taken from the top to both vertical faces (1 1x10 rays for 

each side) and across the monolith (10x10 rays), giving a total of 320 travel tirne 

readings. Figure 5-3a shows details of this case. 

Concrete Slab: A Sonotube (0.46 rn diameter by approximateiy 2 m high) was 

placed verticalîy in the monolith fom and loosely filled with crushed limestone 

(nominally 20 mm sire) to a height of 0.91 m. As the concrete was poured into 

the monolith fonn, the Sonotube was raised to leave a column of aggregate 

supported by the fresh concrete. The Stone was selected to be the same as the 

coarse aggregate in the monolith concrete. Readings were taken at 23 locations 



from 23 shootings on the opposite side giving a total of 529 travel time readings 

(Figure 5-3b). 

5.2.3 Kosciuzko Bridge - Very Noisy Environmnt 

The purpose of this tornographic study was to assess the condition of a massive, 

large concrete pier. 

Data Acquisition: The pier dimensions were 5.52m x 5.52m. Two sides of the pier 

were instrumented with 14 receivers (piezo-pads) each (28 total). The same 

number of sources (hand sledge hammer) were activated on the other two sides 

of the pier (Figure 5-4). A longitudinal closed crack was visible and possibly 

extended from one side to the other side of the pier (Santamarina, C., Tallin, A., 

Wakim. T., 1991 ). High traffic and vibration levels made data acquisition difficult. 

5.2.4 Chute Hemmings Dam - Asymmehic Structure 

The objective was to give a picture of the intemal condition of the pillar and 

some information on the mechanical characteristics of shotcrete. 

Data Acquisition: The medium was the pillar of a concrete dam (Figure 5-5). 

Acoustic waves were generated by explosives (booste rs) at 1 5 locations, 

triggering them with low electrical voltage. A set of fifteen accelerorneters of 

constant sensitivity in the frequency-band 1-15 KHz was located on the 

downstream face of the dam. Sixty-one traces (out of 225 traces) were rejected 

because the received energy was not sufficiently high to enable travel time 

determination (Rhazi, J., 1 995). 



5.2.5 Korean DMZ - Heterogeneous, Anisotiopic Background 

The purpose of this tomographic study was to assess the location of a tunnel in 

a heterogeneous and anisotropic medium (Figure 5-6). 

Data Acquisition: The tunnel was located 81 m below the surface. It was 

approximately 2.7m wide and 2.2m high. The source was an electric arc 

discharge device with a frequency range of 1.4-1.7 KHz. The receivers were 

hydrophones with appropriate amplification and frequency filtering. 

Seven cross-hole data sets were collected by simultaneously lowering both 

source and receiver in parallel vertical holes, 15.2m apart. Measurements were 

repeated every 0.2 meter. One hundred and fifty travel times were measured in 

each set. In the first data set, source and receiver were positioned at the same 

elevation. 

The elevation differences between source and receiver, for the next six sets, 

were 3.90m=(S90-R86.1), 8.90m=(S92-R83. l), 14.90m=(S95-R80.1), -4.1 Om= 

(S86.-R90.1). -8.90m=(S84-R93.1), -1 5.1 m=(S8 1 -R96.1), respectively. The 

minus sign indicates that source elevation is lower than receiver elevation 

(Rechtien et aL, 1995). 

5.3 Summary 

The quality of inversions using simulated data is unrealistically good when 

-compared to inversions with real data. In part, this reflects the compatbility of 

forward simulation algorithms with hypotheses made in the inversion stage. A 

central goal of this study was to assess the potential of inversion methods with 



real data, for which a database of well documented case histories was compiled. 

The database consists of five case data sets of histories (eleven cases) 

incl uding both laboratories and field cases. 

The four balloon cases permit physical visualkation of the anomaiy and allow a 

corroboration of results. This case is based on simple wave propagation physics 

(only P-waves are possible in air). 

The three cases in the concrete specimen with defects permit studying 

tomographic irnaging in a real civil engineering material with controlled defects. 

The Kosciuzko bridge pier data invohres a massive. large concrete pier. The 

data were collected in a very noisy environment. 

The Chute Hemmings dam data permits the study of a massive structure with 

poor illumination angles. 

The tornographic data from the Korean Demilitarized Zone involved a low 

velocity anomaly (tunnel) in a heterogeneous and anisotropic medium. The 

difficulties of inverting these data are assessed in the followins chapter. 
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Figure 5-1: Nelium filled balloons in aii; different sites and locations. 
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Figure 5-2: Concrete monolith with controlled defects. 
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Figure 5-3: Concrete block: (a) Simulated crack. (b) Concrete column. 
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Figure 5-4: Kosciuzko bridge pier - Source and receiver locations and location 
of the cracks. 



Figure 5-5: Chute Hernmings dam - source and receiver locations. All scales are 
in meters. 



Figure 5-6: Korean Demilitarized Zone (DMZ) - source and receiver locations. 
Seven sets of 150 rays, total of 1050. 



CHAPTER VI 

In an inversion process with simulated data, the inverted image can simply be 

tested with the simulated model. However, the inversion of real data usually 

faces problems of nonuniqueness due to mixed-determination, uneven 

distribution of information, and the presence of noise (Morozov, 1 993). 

Additional information can be added in the form of constraints to avoid 

unrealistic solutions. For instance, knowing the geological formation of the rock 

at a given site can be helpful to avoid unrealistic values for the rock properties. 

However, this additional information has its own uncertainties. 

Another option to provide foresight into the problem is to preprocess the data. 

The following strategies could be employed in a pre-processing study: 

quant if ication of systematic and accidental errors, source coupling , global 

information content (SVD), distribution of information content. synograms. plots 

of average velocity and residuals. Emphasis will be placed on the distribution of 

information content, detection of errors, anisotropy, gradua1 changes, and 

anomalies (SVD is addressed in Chapter VII). 



6.2 Distribution of Information Content 

Gathering data in CE-tomographie testing is almost always restricted to some 

limited illumination angles. Hence, the distribution of information is not even 

throughout the medium. For example, the number of rays crossing a pixel is 

different for each pixel. This means that there is more information in some 

regions of the medium than in others. It is possible that no information wouM be 

available from some parts. Therefore, knowing the distribution of infomation can 

be helpful in designing adequate source and receiver configurations to assess 

the optimal even distribution of information. 

The simplest characterization of information content is to com pute the total travel 

length for all rays that traverse a pixel. If the tornographic problem is cast in 

matrix form, the length of the columns of the matrix L provide this information for 

each pixel. Figure 66-1 shows the information density for three different shooting 

patterns. If the final image is correlated with the corresponding image of 

information, the analyst is well advised to skeptically review the inversion. 

6.3 Systematic and Accidental Errors 

The presence of accidental and systematic errors can be investigated with travel 

length vs. travel time plots. The boundary condition is zero travel time for zero 

length of rays. Therefore, the regression of (t, Ii) should go through the origin. 

The ordinate crossing of the regression line marks the average systematic error 

(e.g., trigger delay) data. This analysis is weakened when al1 rays are of about 

the same length (e-g. pure cross-hole case). 

Single off-line data carry accidental errors. These errors are usually due to 

reading errors or missing true first arrivais etc. Accidental errors can be 



identified by plotting the projections corresponding to a source or to a receiver, 

herein called shadows. 

Accidental Gaussian errors are canceled out in least squares solutions. This is 

not the case for systematic errors. The best alternative is to identify them and 

remove them. Otherwise, the measurements are equivalent to (ti+At) and the 

solution becomes 

s = [ ( L ) ~ ~ "  ] + [(L)~,-' ~t ] (6-1 1 

where (L-')- is the pseudo-inverse obtained with any of the methods 

described before. 

The analysis of systernatic and accidental errors is a helpful tool in deterrnining 

the ordei of magnitude of dam ping and regularization coefficients. F urthemore, 

systematic erron can be corrected. 

6.4 Analysis of Shadows 

The analysis of projections, or 'shadows", rnight be the best way to pre-assess 

the position and site of inclusions in the medium and the presence of accidental 

errors. This study can be conducted in different ways. Fan ray paths and parallel 

ray paths are two possibilities. In the case of fan ray paths, average velocities 

are computed for each source and receiver pair assuming a straight ray path. 

and then plotted against receiver locations. 

6.5 Heterogeneity and Anisotropy 

The polar and spatial distributions of velocity in a medium can be used ta 



evaluate heterogeneity and anisotropy. Only estimated average velocities can 

be computed before inversion: 

The straight ray assumption is employed as a first approximation to L. 

The plot of average velocities versus average depth of the shot can highlight the 

presence of anomalies as well as any global trend such as vertical 

heterogeneity. 

The degree of anisotropy can be inspected by plotting average velocities vs. the 

inclination of rays in either polar or Cartesian plot. 

This pre-processor can be used to evaluate a proper initial guess for the velocity 

of the background. For instance, in the case of a vertically heterogeneous 

medium, velocity can be defined as a function of depth (V=a+bZ). This study can 

also be employed to estimate an initial value for thresholding. 

6.6 Case Histories and Pre-Processing 

6.6.1 Balloon 1 

Assuming straight ray paths, the distribution of infomation for this case is given 

in Figure 6-2. The figure shows a high concentration of information in Vie center 

of the medium. The first and last rows of pixels have the lowest infomation 

content. This plot can be used to design the configuration of sources and 

receivers before the test is implemented and decrease the mixed-determination 

of the problern. 



The systematic triggering error can be evaluated frorn Figure 6-3a. The linear 

regression analysis shows an 0.15ms average systematic error Ri the data. Off- 

line data indicates the presence of an anomaiy and the effect of accidental 

errors (Figure 6-3b). This well-behaved data indicate that the optimum 

regularization coefficient should be selected in a low range . 

For the purpose of heterogeneity inspection, Figure 6-4a shows changes in 

average velocity versus depth. An average depth for each pair of source and 

receivers is computed as: 

While most paths show an average velocity of 13.8 (inlms), some rays in depths 

20-40 (inches) indicate hig her velocity, about 14.5 (in/ms). This suggests the 

presence of a high velocity region at middepth. The value of the high velocity 

region helps to select a proper threshold during post-processing for image 

enhancement to differentiate between the anomaly and the background in the 

image. 

The plot to inspect for anisotropy is shown in Figure 64b. The analysis of a 

single fan is biased by the presence of the anomaly. However, when al1 the 

shots are plotted at once there is no conclusive trend to suggest an anisotropic 

background, which is indeed the case for air. 

Figure 6-5 shows the analysis of individual projections or shadows for this case. 

For sources 1 and 2. the presence of an inclusion can not be seen until the last 

rays. The presence of the inclusion has affected the average velocity for that 

part of the medium scanned with rays shot from sources 3, 4. and 5. The effect 

of the inclusion on the average velocity is almost diminished for the source 6 and 

7. The inclusion has affected the rays emitted frorn source 4 more than sources 

3 and 5. Therefore, the inclusion should be located in front of source 4. 



The average velocities for the rays emittd from sources 1 and 2 only increased 

for the last two rays. For sources 6 and 7 average velocities decreased for the 

last 3 rays. Therefore, it can be deduced that the size of the inclusion is about 

one receiver interval or 9in(=0.23m). 

The presence of accidental error can be noted in many cases. e.g., note the 

fluctuation in the shadow of the first source (Figure 6-5a). 

6.6.2 Balloon 2 

The pre-processing of the data for Balloon 2 followed a similar procedure 

outlined for Balloon 1. Figures 6-6 to 6-8 show the results. The distribution of 

information content for this case history is the same as for the Balloon 1 case 

(Figure 6-2). A proper setup configuration for sources and receivers c m  be the 

same as for Balloon 1. Due to high degree of systematic and accidental errors 

(Figures 6-6a & b) a higher degree of smoothing should be expected for this 

case, compared to Balloon 1. 

Data preprocessing shows a hornogenous isotropie background with a high 

velocity anomaly in the upper part above the center (Figure 6-7). The value of 

average velocity for anomaly can be used as an initial guess for thresholding. 

Figure 6-8 shows the analysis of shadows for this case. The location of the 

inclusion has affected the rays shooting f r m  sources 1, 2, and 3 more than the 

other rays emitted from the other sources. The rays emitted from the last three 

sources have not been affected by the inclusion presence. except for the first 

two receivers. The location of the inclusion can be inspected from source 3 

shootings where a symmetric trend for the first 4 rays with a peak at ray 3 can be 

seen. Therefore, the inclusion should be located in front of source 3. 



The first two rays ernitted from source 1 are not affected by the inclusion and for 

sources 6 and 7 the average velocities for the last 4 rays are decreased. Thus, 

the size of the inclusion should be about one receiver interval or 9in(=O.23m). 

The distribution of information content for Balloon 3 is similar to that for Balloon 

1 (Figure 6-2). The pre-processing of the data for this case history followed a 

similar procedure, outlined for Balloon 1. Figures 6-9 and 6-10 show the results. 

Data preprocessing shows a homogenous isotropie background with a high 

velocity anomaly in the center. 

The optimal configuration for source and receiver locations can be evaluated 

from the distribution of information content (Figure 6-2). The plots for systematic 

and accidental errors indicate low accidental errors for this case history (Figure 

6-9). This well-behaved data suggest a low value for the optimum regularization 

coefficient. 

Figure 6-10a shows a high velocity region in the center of the medium (depths 

25 to 35 inches). The presence of the anornaly c m  hardly be deduced from 

Figure 6-1 Ob. Since the anomaly is in a location where most of the rays pass 

through, the average velocity of the anomaly has been averaged with the 

background velocity. Therefore, a proper threshold to differentiate between the 

anomaly and the background in the image can hardly be selected. 

Figure 6-1 1 shows the analysis of shadows for this case. The inclusion has 

affected rays shooting from sources 3 and 4. The symmetiy, in average 

velocities, of rays emitted from source 4, and the symrnetry for rays emitted from 

sources 2 and 6, suggest the location of the inclusion in the center of the region. 



The information content for this case history is given in Figure 6-12. A high 

concentration of information in the center and a low concentration in the first and 

last row are the main characteristics of this case history. 

The plots of travel tirne vs. travel length for this case are given in Figure 6- 

13a&b, respectively. An apparently high average systematic error of 0.676ms is 

calculated by linear regression of the whole data set (Figure 6-1 3a). However, 

this is biased by the higher effect of the high velocity anomaly on the shorter 

rays (Figure 6-13b). The low level of accidental errors suggests a low value for 

the optimal regularization coefficient. 

Figure 6-1 4a shows that the central location of the anomaly affects al1 long rays 

at depth 20-45 (inches). This plot can be used to select a proper threshold and 

to differentiate between the anomaly and the background in the inverted image. 

Anisotropy inspection in Figure 6-1 4b indicates an isotropie background. 

Figure 6-15 shows the analysis of shadows for this case. The presence and 

location of an inclusion can be deduced from these plots. Accidental errors can 

also be noted. 

6.6.5 Crack in Concrete (Side-teSide Shootings) 

The information content of this case history is given in Figure 6-16. The low 

information contents which are apparent in the two dark pixels in third and 

seventh row are due to the absence of sources or receivers in those regions. 



The plots of travel times vs. travel lengths for this case are given in Figure 6- 

i7aBb. It is clear that there are two fundamentally different ray paths. The same 

average velocities would be calculated if the velocity for data in the upper set 

would be cornputed with a shorter length (li-dl). An average systematic error of 

0.003rns is calculated for the lower set, using a regression process (Figure 6- 

17a). This plot could also be interpreted as a very systematic difference between 

2 sets of measurernents, such as different equipment, different operators, etc. 

Once such a plot is available, the analyst must identify the physical or 

experimental cause before processing. 

For those rays which do not cross the crack (lower set) the average velocity is 

about 4.65km/s (Figure 6-18). It appears that the real ray paths are out of plane- 

The extra distance Al can be computed frorn these data assuming a 

homogeneous medium with V=4.64km/s: Al=1.2m. For cornparison, the width of 

crack is 12mm- 

Figure 6-19 shows the plots of the average velocities vs. receiver locations and 

inclination: the dual trend is the most indicative of spatially related bias. 

Projections follow similar trends for al1 sources, except for sources nurnber 9 and 

10. The high velocities correspond to paths which do not cross the crack. A 

sudden drop in velocities appears for rays crossing the crack. However, the 

computed average velocity increases as the distance from source-to-receiver 

increases. Indeed, the wave front travels around the open crack and out of the 

plane of the transducers. Thus, shorter straight paths are affected more by the 

three-dimensional deviation. 

6.6.6 Crack in Concrete (Topto-Left Side Shootings) 

Figure 6-20 shows the information content for this case history. The highest 



information content is in the central source area, Low information cornes from 

the crack area and oniy the last part of the crack is crossed by a few rays. 

The plots of systematic and accidental error for this case are given in Figure 6- 

21a. A low average systematic error of -0.006ms is calculated with a regression 

analysis (Figure 6-21a). Figure 6-21 b shows that with a straight path assumption 

an average velocity of 4.6km/s can be calculated for those parts of the medium 

traversed by rays which do not cross the crack. Those few rays crossing the 

crack show lower average velocity (3.65kmls to 4.2kmls). 

The plots of average velocity vs. receiver locations, Le. shadows, are given in 

Figure 6-22. The average velocity remains 4.6km/s until the rays cross the crack 

(rays from al1 sources to receivers 9 and 10). This shows a homogenous medium 

for the left part of the block from receiver 1 to 8. A low velocity anomaly should 

be expected for the lower part. 

6.6.7 Crack in Concrete (Top-to-Right Side Shootings) 

Figure 6-23 shows the information content of this case history. The information 

content for the right part of the block is almost even. However, the highest 

information content is in the central receiver area. No information content a n  be 

found in the left side. 

The plots of systematic and accidental errors for this case are given in Figure 6- 

24a. A low average systematic error of 0.03ms is calculated with regression 

analysis (Figure 6-24a). 

Figure 6-24b shows that with a straight path assumption an average velocity of 

4.6kmls is calculated for those rays which do not cross the crack (rays 



connecting first and second receivers to al1 sources). Those rays crossing the 

crack have lower average velocities of 2.5km/s to 4.0kmls. As the ray paths 

increase, the effect of out-of-plane rays decreases. and the average velocity 

approaches the value in the uncracked concrete. 

The analysis of shadows is given in Figure 6-25. The plots shows that the data 

from the first two receivers are not affected by the crack. 

6.6.8 Colurnn of Aggregate 

The information content of the column of aggregate is given in Figure 6-26. Due 

to the symmetry of the medium and the source-receiver pattern, the central pixel 

carries the highest information content. This study helps design the setup 

configuration of sources and receivers to decrease the mixed-detemination of 

the problem. 

A systematic error of -2.16ms was computed with regression analysis (Figure 6- 

27a). A number of accidental errors in the data are revealed in Figure 6-27b. 

The heterogeneity analysis (Figure 6-28a) shows that the medium shoutd consist 

of two different parts. The main part has an average velocity of about 4.4km/s, 

which is the average of the concrete and aggregate velocities. The velocity of 

the other part is higher and about 4.6kmls, which is the velocity of concrete. The 

presence of aggregate can be noted from depth 0.3m where the average velocity 

starts to decrease. The velocity values of these two regions can be used in 

determining the proper thresholds for post-processing of the final image. 

Figure 6-29 shows the analysis of shadows for this case history. A reasonable 

drop in average velocities of the rays from source 7 to receivers 7 to 13 shows 



the location of the top part of the aggregate column. The drop indicates that the 

rays have traveled in the shortest time path (Fermat's principle) and have started 

to bend toward the high velocity concrete. rather than traveling in a straight path 

through the aggregate column. The rays then travel in straight paths from 

receiver 13 to 23. Therefore. the average velocity have dropped from 4.6kmls 

(good concrete) to 4.4kmls. Mich is an average velocity for the concrete and 

aggregate column. The ray bending effect can be found for the rays connecting 

sources 8 and 9 to receivers 7 to 13. Note the presence of clearly noisy data 

points. These should be identif ied and removed or uregularized" before 

inversion. 

6.6.9 Kosciuzko Bridge Pier 

The distribution of information content for this case history is given in Figure 6- 

30. The information content distribution on the two main diagonals is asymmetric 

due to sources and receiven configurations. The configuration appears well- 

designed. 

A high number of accidental errors occur in the upper triangular part of the plot, 

affecting primarily short rays (Figure 6-31 a). Also. an average systematic error of 

0.51ms is calculated with regression analysis. The level of errors indicates that 

the optimum regularization coefficient should be very high. 

Figure 6-31b shows a very homogeneous medium with average velocity of 170 

in/ms. Therefore, a constant initial velocity should be selected for al1 pixels. A 

reasonable guess is the evaluated average velocity. 



Two sets of shadow analysis are given in Figures 6-32 and 6-33 for the top to 

bottom and side to side shootings. respectively. A highiy homogeneous medium 

is revealed based on the top to bottom shootings (Figure 6-32). The crack 

presence can not be seen in the top to bottom shootings since al1 the rays have 

to cross the crack, and therefore an average velocity of l?Oin/ms is calculated in 

al1 shadows. However, in the side to side data (Figure 6-33), a low average 

velocity for rays connecting sources 16 to 21 to receiver 19 and receiver 22 can 

be seen. This is due to the presence of a crack across the pier in that region. 

6.6.1 0 Chute Hemmings Dam 

The distribution of information content is given in Figure 6-34. A high 

concentration of information in the center and left upper part of the medium and 

a lack of data in the lower part (foundation) are the main characteristics of this 

plot. The configuration of sources and receivers is very poor in this case history. 

Figure 6-35a shows high accidental errors in this data. Therefore, the optimum 

regularization coefficient should be selected in a very high range. 

A homogeneous medium with an average velocity of about 4.1 km/s can be seen 

in Figures 6-35b and 6-36a. Figure 6-36b shows a very isotropie medium. 

Therefore, a constant initial velocity should be selected for al1 pixels. A 

reasonable guess is the evaluated average velocity. 

The analysis of shadows for this case history indicates a high degree of enor in 

the data (Figure 6-37). The average velocity trend for sources 4, 5, 6, 7, 8 and 9 

may ref lect the higher velocity of massive-densif ied concrete in the center of the 

dam, as compared to the peripheries. 



6.6.1 1 Korean ûemilitarized Zone 

The information content for this case history shows a smooth coverage of rays in 

the region of interest in the center of the figure (Figure 5-42). However, due to 

lack of information in the upper and lower part of the medium, it is possible that 

some ghosts appear in the inverted image of those regions. 

Figure 6-39a shows that the velocity increases with depth, and Figure 6-39b 

shows a global anisotropic variation of velocity. Thus, the background medium is 

vertically heterogeneous and anisotropic. Hence, the initial velocity should be 

def ined as a function which reflects the background characteristics (0.g. 

V=a+bZ). 

The analysis of shadows in this case history is based on parallel ray projection 

rather than fan rays as for previous case histories (Figure 6-40). A similar drop 

in the average velocities at a depth of about 160m suggests the possibility of a 

low velocity zone at that depth. 

6.7 Discussion and Conclusions 

The main problem in inversion is non-uniqueness. To avoid sorne of the 

unrealistic solutions, the solution could be constrained. However, how are 

constraints selected? 

In this chapter, it was show that data pre-processing can be employed to 

preview the characteristics of the medium (anisotropy, heterogeneity, and 

presence of anomalies), to check the quafity of the data (errors), and to identify 

possible biases such as the distribution of information content. 



The polar and spatial distributions of velocity in a medium can be used to 

evaluate heterogeneity and anisotropy. However, only estimated average 

velocities can be computed before the inversion process. 

The presence of accidental and systematic errors can be investigated with travel 

length vs. travel time plots. This analysis is weakened when al1 rays are of about 

the same fength. 

The distribution of information can be helpful in designing adequate transducer 

configurations and in improving the inversion strategy. 

The analysis of projections, or Shadowsn, might be the best way to pre-assess 

the position and sire of inclusions in the medium. Fan ray paths and parallel ray 

paths are two possibilities. 



Figure 6-1: The information density for three different shooting patterns. '." 
indicates source and a-" indicates receiver locations. 



Figure 6-2: Distribution of information content for small balloons. Assuming 
straight ray paths. 



Ray Length (in) 

(a) 

6.0 1 

4.0 ! 
60 65 70 75 80 I 

Ray Length (in) 

Figure 6-3: Systematic and accidental mors for Bafloon 1 . 
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Figure 6-4: Heterogeneity and anisotropy inspections for Balloon 1. 
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Figure 6-5: Analysis of shadows for Balloon 1. 
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Figure 6-6: Systematic and accidental errors for Balloon 2. 
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Figure 6-7: Heterogeneïty and anisotropy inspections for Bailoon 2. 



Figure 6-8: Analysis of shadows for Bdloon 2. 
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Figure 6-9: Systematic and accidental enors for Balloon 3. 
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Figure 6-1 0: Heterogeneity and anisotropy inspections for BaiIoon 3. 
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Figure 6-1 1 : Anaiysis of shadows for Balloon 3. 



Figure 6-12: Distribution of infoimation content for balloon 4. Assuming straight 
ray paths. 
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Figure 8-1 3: Systematic and accidental mors for Bailoon 4. 



13.34 r r v w 

5 10 15 20 25 30 35 4û 45 50 5 

Average Depth (in) 

13.04 rn v I . t 

-40 -30 -20 -10 O 10 20 30 40 

Angle (degree) 

Figure 6-1 4: Heterogeneity and anisotropy inspections for Bailoon 4. 
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Figure 6-1 5: Anaiysis of shadows for Balloon 4. 



Figure 6-1 6: Distribution of information content for Concrete Crack (Side-to-side 
shootings). Assum ing straight ray paths. 
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Figure 6-1 7: Systematic and accidentai emrs in Concrete Crack (Side- 
to-Side s hootings). 
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Figure 6-1 8: Heterogemïty and anisotropy inspenions for Concrete 
Crack (Side-to-Side shootings). 
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Figure 6-1 9: Anaîysis of shadows for Concret8 Crack (Side-to-Side shootings). 



Figure 6-20: Distribution of information content for Concrete Crack (top to left- 
side shootings). Assuming straight ray paais. 
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Figure 6-21 : Systernatic error and heterogeneity inspections for 
Concrete Crack (Top to Left-Side shootings). 
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Figure 6-22: Analysis of shadows for Concret8 Crack r o p  to Left-Side shootings). 



Figure 6-23: Distribution of information content for Concrete Crack (top to right- 
side shootings). Assuming straight ray paais. 
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Figure 6-24: Systematic enor and heterogeneity inspections for 
Concret0 Crack (Top to Right-Side shootings). 
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Figure 6-25: Anaiysis of shadows for Concrete Crack (Top to RigM-Side shootings). 



Figure 6-26: Distribution of information content for Concrete Colurnn. Assurning 
straight ray paais. 
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Figure 6-27: Systematic and accidentai errors for Concm 
Column. 
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Figure 6-28: Heterogeneity and anisotropy inspections for 
Concrete Column. 



Figure &29: Analysis of shsdows for Concrete Calumn. 



Figure 6-30: Distribution of information content for Kosciuzko bridge pier. 
Assuming straight ray paths. 
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Figure 631 : (a) Systematic and accidental emrs and (b) 
Heterogeneity inspections for Kosciuzko bridge pier. 
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Figure 632: Analysis of shadows for Kosciuzko bridge pier ropto- 
Bottom shootings) . 
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Figure 633: Amiysis of shadows for Kosciuzko bridge pier (Side-to- 
Side shootings). 



Figure 6-34: Distribution of information content for Chute Hemmings dam. 
Assum ing straight ray paths. 
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Figure 635: (a) Systematic and accidental mors and (b) 
Heterogeneity inspections for Chute Hemmings dam. 
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Figure 6-36: Heterogeneity and anisotropy inspections for Chute 
Hemmings dam. 
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Figure 6-37: Analysis of shadows for Chute Hemmings dam. 



Figure 6-38: Distribution of information content for Korean D M .  Assuming 
straight ray paths. 
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Figure 6-39: Heterogeneity and anisotro py inspections for Korean 
Demilitarized Zone. 
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Figure 6-40: Analysis of shadows for Korean Demilitarited Zone. 



CHAPTER VI1 

INVERSION OF CASE HISTORIES 

- OPTIMAL INVERSION STRATEGIES - 

7.1 Introduction 

Tornographic problems are usually mixed-determined, in which some linear 

combinations of the image parameters are over-detemined and some are under- 

deterrnined. Under-detenination (or mixed-determination) and noise in the data 

make tornographic inversion problems ill-conditioned. 

If the problem is under-determined, then the data contains information about 

only some parts of the image and no information is provided about the other 

parts, which is called the nuIl space. In other words, the nuIl space is not 

illuminated by the data (refer to distribution of information content for case 

histories in Chapter 5). Any choice of the image parameters can satisfy the data 

in the nuIl space. The size of the nuIl space is crucial. since it determines the 

degree of ill-conditioning of the problem and thus the number of mesh elements 

in the inversion process. 

A primiinformation can be added to decrease the size of the nul1 space, Le.. to 

specify those image parameters (unknowns) that reside in the nuIl space. The 

DLSQ solution is a combination of the least squares and the minimum length 

solutions (refer to Chapter 2) 



The method overcomes the singularity of the coefficient matrix. The abest 

solution" is obtained for a certain damping coefficient, which is case dependent. 

In the case of a mixed-detemiined problem and noisy data, the regularization 

method is applied by adding information in the fom of constraints (refer to 

Chapter 2), 

Regularization can be performed in different ways. For example, if the solution 

must be smooth, the regularization matrix R is the second derivative operator. 

The uoptimal regularization coefficientn that gives the best solution is not known 

in advance. Therefore, the optimal dam ping and regularization coefficients 

should be determined when the inverse problem is to benefit from DLSQ and 

regularization solutions. This chapter begins with a view of possible imaging 

errors. Then, procedures are investigated to determine optimal darnping and 

reg ularization coefficients. 

7.2 Null Space and Singular Values (Global Information) 

Spectral decomposition or Singular Value Decomposition (SVD) is one of the 

possibilities to identify the size of the nuIl space. As discussed in chapter II, any 

n m  matrix can be written as the product of three matrices: 

w n v T  (7-3) 

Matrix R is a diagonal matrix whose entries are called the singular values (of). 

The number of non-zero singular values indicates the rank of the matrix, or the 

number of independent equations in the data space. On the other hand, the 



number of zero singular values detemines the size of nuIl space. The problem is 

to assess how close should a singular value be to zero before it stops 

contributing to the solution. 

The matrix U is an nm matrix and its vectors are eigenvectors of LL' and span 

the data space. The eigenvalues of LL' are q2. The matrix V is an mmn matrix 

and its vectors are eigenvectors of L'L and span the image parameter space. 

The eigenvalues of L ~ L  are CII, *. 

One way to detemine the size of the nuIl space is to plot the sises of the 

singular values against their index numben (Figure 7-1). This is the spectrurn of 

the data kernel. As show in the figures, the selection of the cut-off point may be 

fuuy. If small singular values are considered, the solution variance will be very 

large since it is proportional to l/q (refer to Equation 2-10). On the other hand, 

excluding small singular values resuts in degraded image resolution. 

Plots of the sizes of the singular values against their index number for three 

case histories are show in Figure 7-2. It can be seen that the global inforrnation 

content cm be much less than expected from the number of rays. 

Figure 7-3 shows the effect of adding a priori information, using regularization, 

on the size of the nuIl space of Balloon 1 data (Figure 5-la) . The number of 

zeros decreases with an increase in regularization coefficient. 

7.3 Damped Least Squares Solution - Optimal q 

Simulated cases (Figure 7-4) were investigated to determine the optimal 

damping coefficient q. Straight paths were used, therefore, the matrix L is the 

same in al1 cases. Results are evaluated in terms of the average absolute error 



(ME) in pixel velocity between the input (real) image and the inverted output 

(inverted) image (nomaked with r8spect to the average pixel velocity). 

Results for the four simulated cases in Figure 7-4 are presented in Figure 7-5. It 

can be seen that the quality of the image worsens with either lack or excessive 

damping, and that optimal damping is unique but depends on the velocity 

field. 

7.4 Regularizatîon Solution - Optimal Â 

The previous cases were investigated to determine the optimal regularization 

coefficient h. Straight paths were used in al1 cases. Figure 7-6 shows the results 

in terms of average absolute error in pixel velocity. It can be seen that the 

optimal regularization coefficient for each case is different and depends on the 

velocity field. 

7.5 Damped Least Squares vs. Regularization - Noisy Data 

Simulated data obtained with straight-rays for the high velocity central anomaly 

(Figure 7-4a) were made "noisy", first by adding randorn noise ti=ti+md(l), and 

second. by adding a proportional systematic error t ~ t M . 5  where 0.5 is about 5% 

of t-. The noisy data set was inverted using damped least squares and 

regularization. 



Damping and regularization coefficients q and h were gradually changed until 

optimal images were obtained. Mathgrams 7-1 to 7-4 show the optimal solutions 

for each case- 

Results indicate that regularization, in cornparison to DLSQ, is an effective 

alternative to lessen the problem of noise (systematic and randorn cases) in 

mixed-detemined problerns. Furthemore. it is seen that both methods give 

better solutions in the case of presence of systenatic noise (error) rather than 

random noise (error) presence. 

7.6 Regularization - Straight and Bent Rays 

The high velocity heliurn balloon in Figure 5-Id was inverted with different 

values of the regularization coefficient b, using straight rays. The resulting pixel 

values were used to re-trace rays for a second iteration with bent rays. The 

second inversion for each set was repeated with the same regularization 

coefficient used in the corresponding first iteration. 

The average square error AS€ in pixel velocity between inverted images and the 

known real 

Figure 7-7, 

pixel velocities are plotted versus the regularization coefficient Â in 

where 

The increase in regularization diminishes the effect of high pixel variability and 

the squared error AS€. However, excessive regularization flattens pixel values 

within the anomaly, increasing the deviation of the image from the true condition. 

Curved rays magnify the effect of variability at low 5; however, they lead to better 





the coefficient of variation of pixel slowness with the coefficient of regularization. 

This definition of COV(s) is based on the whoie set of pixel slownesses. and 

tends to prornote global smoothness. An alternative approach is to define local 

measures of variability. The difference in siomess between a pixel and its local 

average is 

The plot of IIASII with the coefficient of regularization shows a sirnilar trend as 

observed in Figure 7-10a. On the other hand, over-smoothness increases the 

residual IlLs-111. Following Hansen (1992), Figure 7-1 Ob shows L-shape curve of 

nom of the local error IlRsll vs. the residual IlLs-tll for different regularization 

coefficients* 

The coefficient of regularization can be selected to correspond to the value 

where these measures of image/solution adequacy change, e.g.. the maximum 

curvature of the L-shape curve (Hansen and O'leary, 1993). Images 

reconstructed with regularization coefficients close to the break in these curves 

were visually analyzed (0.001d0.01). The optimal image was generated with 

regularization coefficient bQ.005. The value of h at the break in IIRsll-vs.-l ILS-111 

cuwes leads to under-smoothed images. 

7.8 Statistical Parameter Estimation - Maximum Li kelihood 

The statistical parameter estimation techniques incorporate several methods that 

use certain measurements of a system and estimate other parameters 

associated with the system. Parameter estimators use knowledge of the system 

and sample data. In a tomographic inversion, these methods can be employed 

to estimate the image values using gathered data. The maximum likelihood 



method is one such technique that can be employed to estimate the required 

system parameters. 

The maximum likelihood method asserts that the optimum values of the system 

parameten maximite the probability that the obsewed data are in fact observed. 

Therefore, if the data have a certain statistical distribution. then the best system 

parameters are those which give the maximum probability for that distribution. 

For instance, if the data are Gaussian, their distribution can be characterized in 

terms of a variance and a mean. In this case, the system parameten can be 

found by selecting different variance and mean values until maa*rnum probability 

is obtained. 

In the case of using DLSQ or regularization, the unknown parameter is optimal 

damping or regularization coefficient for a certain image. While the previously 

mentioned methods used slowness to determine optimal coefficient, the ML 

method can be employed to determine the optimal coefficient based on 

assuming a certain distribution for travel times (data). In this case, the optimal 

coefficient is the one which gives the maximum value of the joint distribution of 

the observed data (b) and computed data (~mp=Lw.~m). during a foiward 

process using the inverted image values. In fact, the joint distribution gives the 

correlation between these two data sets. 

To assess the distribution of a tomographic data set. the histograms of travel 

times are evaluated. The number of appearances are computed for each of 10 

ranges between the highest and the lowest measured travel times. Figures 7-1 1 

and 7-12 show the plots for case histories discussed in Chapter V. 

A common characteristic of al1 side-to-sida data is a peak value at the beginning 

followed by a slight decrease at the end. The data distribution is different for the 

top to side data (ref. to crack data in Figure 7-1 1 b&c). 



Assurning Gaussian distributions for the observed data t h  and computed data 

1- in the Iinear inverse problem Ls4, their joint distribution can be 

characterized as: 

where n is the number of data (rays) (Menke, 1984). 

The results for the small balloon (Balloons 1 to 3) data (Figure 5-la, b, and c) 

are presented in Figure 7-13. The plots show a flat area followed by a sudden 

decrease in the probability values as the regularization factors are increased 

The optimal regularization factor can be evaluated at the intersection point of the 

two best lines passing through the data points in these two areas. The results 

show under-smoothed images similar to the L-shape method. 

The results for the concrete crack data (Figure 7-14) are the same as the 

previous cases; except for the side-to-side data, the two lines are hardly 

distinguishable (Figure 7-1 4a). 

The exponential distribution is an alternative to the Gaussian distribution. The 

exponential distribution has a longer tail and sharper peak than the Gaussian 

distribution (Figure 7-1 5). Assuming exponential distributions for the observed 

and computed data in the linear inverse problem L.st. theif joint distribution can 

be characterized as: 

where n is the number of data (rays) (Menke. 1984). 

The results for the small balloon data (ref. to Figure 5-la,b,and c) give the 



exact optimal regularization coefficient (h) as a peak for al1 three cases (Figure 

7-1 6). However. a higher peak (post peak=0.05) is apparent in Figure 7-16c 

(Balloon 3. center balloon). Figure 7-17 gives the inverted images for Balloon 3 

case with optimal M and W.05 (post peak). It can be realized that the 

inverted image with m.05 is under-smoothed. Therefore, for the purpose of 

prograrnm ing, the safe way to evaluate optimal regularization coefficients is to 

start with large regularkation values. The optimal value is the first available 

peak. 

Figure 7-18 shows the plots for crack data. The optimal value for top-to-side 

data is correctly evaluated (Figure 7-18bBc). However, the optimal value for 

side-to-side crack data (Figure 7-1 8a) is underestimated. 

It is appropriate to inquire why the exponential distribution gives more accuiate 

results than the Gaussian distribution. In fact. the exponential distribution has 

the same relationship to the LI nom as the Gaussian distribution has to the 4 
nom. If the data are very accurate, then the fact that one prediction falls far from 

its observed value is important. A 4 nom is employed. since it weights the 

larger errors preferentially. On the other hand, if the data are expected to scatter 

widely about the trend, then no significance can be placed upon a few large 

prediction errors. A LI nom is used, since it gives more equal weight to errors of 

different size. A long-tailed distribution, like pure tornographic data (Ref. to 

Figures 7-1 1 to 7-12a), implies many scattered data points, and therefore an 

exponential distribution is more appropriate. 

7.9 Tomographie Inversion of Case Histories - Procedure 

Using the exponential distribution assumption for travel time data, the maximum 



likelihood value of the joint distribution of measured and cornputed travel thes 

for al1 case histories was obtained. Atl the case histories were inverted with the 

evaluated optimal regularkation coefficients with this method. 

7.9.1 Balloon 1 

Figure 7-8b shows the results of inverting this case history assurning straight 

(left) and bent rays (right). The output velocity of the first iteration (straight rays) 

was used as the initial velocity for the ray tracer to compute the matrix L (bent 

rays). The heterogeneity and anisotropy inspections (Figure 6-4) and the 

analysis of shadows (Figure 6-5) for this case history indicate a two phase 

medium. Therefore, a threshold value equal to the evaluated average velocity in 

the region of the anomaly (14.5 in/ms) was selected to differentiate between the 

anomaly and the background. The threshold value was gradually increased until 

only one anomaly clearly remained in the inverted image. Figure 7-19a shows 

the exact location of the high velocity helium balloon in the medium. The initial 

and the enhanced images for this case history are given in the corresponding 

mathgram in Appendix F. 

7.9.2 Balloon 2 

This case history was examined with both straight and bent rays. The output 

velocity of the first iteration (straight rays) was used as the velocity field for the 

tay tracer (bent rays). Figures 6-7 and 6-8. which represent heterogeneity and 

anisotropy inspections and analysis of shadows for this case history, indicate a 

two phase medium. Therefore, a threshold value equal to the evaluated average 

velocity for the region of the anomaly (14.5 in/ms) was selected to differentiate 

between the anornaly and the background in the inverted image. The threshold 

value was gradually increased until only one anomaly clearly remained in the 



image. Figure 7-1 9b shows the inverted image with straight rays; the highest 

value in the medium appeared in a puel adjacent to the real location of the 

balloon. Using curveâ rays, the exact location of the high velocity heliurn balloon 

was evaluateâ in the inverted image (Figure 7-20a). Note that a higher velocity is 
- computed for the balloon in the inverted image with ray tracing compared to the 

one with straight rays. The initial and the enhanced images for this case history, 

for both straight and bent rays, are given in the corresponding mathgrams in 

Appendix F. 

7.9.3 Balloon 3 

Because of the similarity in geometry between this case history and balloon 4, 

this case was only examined with straight rays. The inverted image is given in 

Figure 7-20b. Figures 6-1 0a and 6-1 1 , which represent heterogeneity inspection 

and analysis of shadows for this case history, indicate a two phase medium. 

Therefore, a threshold value equal to the evaluated average velocity for the 

region of the anomaly (1 4.0 inlms) was selected. The threshold value was 

gradually increased until only one anomaly rernained in the inverted image. 

Figure 7-20b shows the enhanced inverted image for this case history. The initial 

and the enhanced images for this case history are given in the corresponding 

mathgram in Appendix F. 

7.9.4 Balloon 4 

The results of inverting this case history assuming straight (left) and bent rays 

(right) are given in Figure 7-8a. lnverted images show the effect of the 

distribution of information content with two low velocity regions which appear on 

the top and bottom of the high velocity balloon in both images. The output 

velocity of the first iteration (straight rays), was used to retrace rays (bent rays). 

The heterogeneity and anisotropy inspections (Figure 6-1 4) and the analysis of 



shadows (Figure 6-15) indicate a two phase medium for this case history. 

Therefore, a threshold value equal to the evaluated average velocity for the 

region of the anomaiy (14.15 in/ms) was selected to differentiate between the 

anomaly and the background. The threshold value was gradually increased (up 

to 1 5.2) until only one anomaly appeared in the inverted image. Figure 7-21 a 

shows the exact location of the high velocity helium balloon in the medium. 

Appendix F presents the corresponding mathgram of the initial and the 

enhanced images for this case history. 

7.9.5 Crack in Concrete (SideteSide shootinp) 

Due to the out-of-plane nature of this problem (Chapter 6). this case history was 

inverted on ly with straigh t ray paths. The information from pre-processors 

indicates that this is a two phase medium consisting of a high velocity concrete 

and a low velocity region due to presence of the crack. Therefore, a threshold 

value based on the average velocity of the concrete (4.8 km/s) was selected to 

differentiate between the background concrete and the region of the crack in the 

inverted image. In this case history, as opposed to the last four cases, the 

anomaly is a low velocity zone. Therefore, the selected threshold was based on 

applying a limitation on the maximum velocity. The threshold value was 

increased up to 6 (kds). However, the enhancement in the image was minute. 

The enhanced inverted image is given in Figure 7-21 b. The crack can be traced 

in this figure. Appendix F presents the initial and enhanced inverted images for 

this case history in the corresponding mathgram. 

7.9.6 Crack in Concrete (Top to Léft-Side shootings) 

Only half of the medium was illuminated due to the geometry of the source and 

receiver locations in this case history. The rays traveled out of the plane of the 



tomogram. Therefore, this case history was inverted only with straight ray paths. 

The information from pre-processors indicate that this is a two phase medium 

consisting of a high velocity concrete and a low velocity region. However, due to 

the presence of pixels with zero values, the image could not be enhanced with a 

thresholding criterion. The inverted image is given in Figure 7-22a. The effect of 

the crack can be seen in th8 eighth pixel of the first column and its neighbor 

pixels. Appendix F presents the mathgram of the inverted image for this case 

h istory. 

7.9.7 Crack in Concmte (Top to RigM-Side shoatings) 

Due to the configuration of source and receiver locations, only half of the 

medium was illuminated in this case history. The out-of-plane problem for this 

case history exists as it was for the last two cases. Therefore, straight ray paths 

were used during the inversion process. The information from pre-processors 

indicate that this is a two phase medium consisting of a high velocity concrete 

and a low velocity crack. However, due to the presence of pixels with zero 

values, the image could not be enhanced with a thresholding criterion. Figure 7- 

22b shows the inverted image for this case history. That part of the crack which 

was illuminated can be traced in this figure. Appendix F presents the mathgram 

for this case history. 

7.9.8 Column of Aggtegate 

This case history was studied with both straight and bent rays. Figures 7-23a 

and 7-23b show the enhanced inverted images. The information from pre- 

processors indicate that this is a two phase medium consisting of the high 

velocity concrete and the low velocity region, due to the presence of the 

aggregate column. Therefore, a threshold value based on the evaluated average 



velocity for the concrete (4.65 krn/s) was selected to differentiate between the 

background concrete and the column of aggregate region in the inverted image. 

In this case history the anomaly is a low velocity zone. Therefore, the selected 

threshold was based on limiting the maximum velocity in the conesponding 

mathgram. Using curved rays, the site and location of the aggregate column can 

be seen clearly in the enhanced inverted image. The initial and enhanced 

images with straight and bent rays, for this case history. are given in the 

Appendix F. 

7.9.9 Kosciuzko Bridge fier 

The analysis of this case history with pre-processors indicates a very 

homogeneous medium. Hence, straight rays were used during the inversion 

process and no thresholding was applied. Due to the high degree of 

homogeneity in the region, thresholding was used. Figure 7-24a shows the 

inverted image for this case history. A high velocity in the center of the pier and 

an extended crack from the left to the right side are apparent in this figure. 

These two features can also be seen in the inverted image with contour mapping 

in the corresponding mathgram file in Appendix F. 

7.9.10 Chute Hemmings Dam 

The pre-processor analyses for this case history indicate a homogeneous- 

isotropie medium. Hence, no thresholding was applied and straight rays were 

used during the inversion process. The niverted image for this case history is 

given in Figure 7-24b. The figure shows a very homogeneous medium in all 

parts except for the shotcrete parts. Note the effect of high velocity in the 

shotcrete region on increasing velocity of the adjacent pixels. The effect 

decreases for more distant pixels. The corresponding mathgram file is given in 

Appendix F. 



7.9.1 1 Korean Demilitarized Zone 

This case history was studied with both straight and bent rays. The inverted 

images for both cases were identical. The pre-processor analyses for this case 

history show a vertically heterogeneous and anisotropic medium. However, due 

to the presence of the two very low information content regions at the top and 

bottom of the tomogram, a high and a low threshold values were selected. The 

enhanced inverted image is gben in Figure 7-25. The location of the tunnel can 

clearly be seen in the middle of the image. However, the heterogeneity of the 

medium is diminished in this process. The initial and the enhanced inverted 

images for this case history are given in the conesponding mathgram in 

Appendix F. 

7.1 0 Summary and Conclusions 

Tomographic problerns are usually mixed-determined. Under-determ ination (or 

mixed-determination) and noise in the data make the tornographic inversion 

problems ill-conditioned. 

Adding a priori information is one way to decrease the size of the nuIl space. A 

priori information in the fom of constraints helps to specify those image 

parameters (unknowns) that reside in the nuIl space. Constraints can be readily 

implemented in damped least squares (DLSQ) and regularization solutions. 

The quality of the image worsens with either lack of or excessive damping or 

regularization coefficients. The optimal coefficient is unique, but depends on 

the velocity field. the reality of the data, and other problem parameters. 



One way to detemine the sire of the nul1 space is to plot the sizes of the 

singular values against their index numbers. This is the spectrum of the data 

kernel and highlights the tnie amount of global information. which is often much 

less than the number of measurements. 

Criteria were evaluated to determ ine the optimal coefficient. The coefficient of 

variation (COV), based on the Ho le  set of pixel slownesses. tends to promote 

global smoothness. An alternative approach is to define local rneasures of 

variability . 

The maximum likelihood method asserts that the optimum values of the systern 

parameten maximize the probability that the observed data are in fact obsewed. 

Assuming a Gaussian distribution for the travel time data. the optimal 

regularization coefficient can be obtained from a cumulative number of 

appearances of the data vs. travel tirne data plot. However, the results show 

under-smoothed images similar to the previous rnethods. Another option is to 

assume an exponential distribution for the travel times data. The results 

obtained for the optimal regularization coefficient lead to certain peak values 

which give the optimal regularization coefficients in the different case histories. 

The exponential distribution has the same relationship to the LI nom as the 

Gaussian distribution has to the L2 norm. A high-order n o n  should be employed 

for short-tailed data. The tomographie data, and especially side-to-side 

shootings, appear to have a long-tail distribution. 
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Figure 7-1: (a) Singular values of a matrix wiai clearly identifiable cut-off point 

(b) Singular values of a matrix where cut-off point must be selected aibitrarily. 
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Figure 7-2: Distribution of singular values for diffewent case histories. 
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Figure 7-3: Distribution of sing ular values for different reguIariration 
coefficients. 



Figure 7-4: Simulated cases: low and high velocity anomalies at center and off- 
center. 
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Figure 7-5: Dam ping coefficient and image quality. Four simulated cases. 
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Figure 7-6: Regularization coefficient and image quality. Four sirnulated 
cases* 
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Figure 7-7: Streght and cunreû rays. The effect of regulaiization 
coefficient (msohrability) . 



Figure 7-8: Inversion of laboratoty data with regularization: straight (left) and 

curved (right) rays. (a) Central. high velocity anomaiy, 256 rays. h l  0 (refer to 

Figure 5-1 d) (b) Off-center high velocity anomaly, 49 rays. k2 (refer to Figure 5- 

1 a). 
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Figure 7-9: Straight and curved rays. The eflbct of regularization 
coefficient (wability). 
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Figure 7-1 0: Optimization of reguhrization coefficient. 
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Figure 7-1 1 : Distribution of travel times in smail baîloons. 
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Figure 7-1 2: Distribution of travel times in concrete crack. 
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Figure 7-1 3: Maximum likelihood of srnail balloons (Gaussian distribution). 
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Figure 7-1 4: Maximum likelihood of concrete crack (Oaussian distribution). 



Figure 7-1 5: Gaussian (curve A) and exponential (curve 8) distribution mth zero 
mean and un& variance. The exponential distribution has the longer tail (Menke, 
1984). 
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Figure 7-1 6: Maximum likelihood of smdl balloons (Exp. distribution). 



Figure 7-1 7: Inverted images for BalIoan 3 case with (a) optimal A=5 and (b) with 
h-0.05 (post peak) (Thresholded, refer to Appendix F). 
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Figure 7-1 8: Maximum likelihood of concrete crack (Exp. distribution). 



Figure 7-19: Inverteci images with optimal regularization coefficient, for (a) 
Balloon 1 (curved rays) and (b) Balkon 2 (straight rays) (thresholded, refer to 
Appendix F). 



Figure 7-20: lnverted images with optimal regularization coefficient for (a) 
Balloon 2 (curved rays) and (b) Balloon 3 (shaight rays) (Thresholded, refer to 
Appendix F). 



Figu re 7-2 1 : lnverted images with optimal regularization coeff Ment for (a) 
Balloon 4 (cunred rays) and (b) Side-to-side shootings data of concrete crack 
(straight rays). 



Figure 7-22: lnverted images with optimal regularization coefficient, using 
straight rays, for concrete crack (a) Top to left-side shootings and (b) Top to 
right-side shootings. 



Figure 7-23: lnverted images with optimal regularization coefficient for concrete 
column Using (a) straight rays and (b) Curved rays (Thresholded. refer to 
Appendix F). 



Figure 7-24: lnverted images with optimal regularization coefficient, using 
straight rays, for (a) Kosciuzko bridge pier and (b) Chute Hemmings dam data. 



Figure 7-25: lnverted images with optimal regularization coefficient for Korean 
Demilitarized Zone data (Thresholded, iefer to Appendix F). Sarne results for 
both straight and cuived rays. 



Mathgram 7-1 : DLSQ solution (HV-Center model). Randorn error is added to the 
data. 

Random error is added as: t = t + mâ(t) initiai vekcitytI0 q= 50 

Input File: V := WADPRN(vâ5û) Vmin := miP(V) 

Vmin = 1.025 Vmax =8,154 

Enhancement V.. := if(v..cvmin. vmin. v.. 
1J 'J 3 

Vaut - Vmin Histograrn: iq:=Vmiu+(m- 1) 
nh 





Mathgram 7-2: DLSQ solution (HV-Center model). Systematic enor is added to 
the data. 

Systematic enipr is; added as: t = t + 0.5 riilid vekcay=lO q= 0.05 

Input File: V :=READPRN(vdoOSs) Vmin := min(V) 

Vmio=O964 Vmax = L226 

intm :=Vrnin+ (m- 1) Vmax - Vmia Histogram: 
ah 

v.. := lf(vij>v~* vmax* v.-) 
'J '1 





Mathgram 79: Regularization solution (HV-Center model). Random enor is added 
to the data. 

Random enor is added as: t = t + md(1) in- vebcryi0 t\= 5 

Input file: V := READPRN(vr5) Vmin := min( V) 

Vmin = 0.89 1 Vmax = 1322 

Histogram: intm:=Vmin+(m- 1)- Vmax - Vmin 
nh 

v.. 11 :=E(v..>?..z.~v-J 'J 





Mathgrm 74: Reg ularization solution (HV-Center rnodel) . Systematic enor is 
added to the data. 

Systmtic m r  is added as: t = t + 0.5 inhl vekcity=iO L= 0.05 

Input File: V := READPRN( MOO5s) Vmia := min(V) vmax :=max(V) 

Vmin = 0-5 Vmax = 1257 man(V) = 1.078 

Enhancement: V.. :=if(~,c~aim.~~nh,. vij) 
1J 

v.. 'J := 8(vij>vrnPx. vmix. vij) 

Vmax - Vmin intm:=Vmin+(m- 1)- 
nh 





CHAPTER Vlll 

SUMMARY AND CONCLUSlONS 

Tomography (tomo: to cut or slice-Greek) is the inversion of measurements of 

multiple planes of a body. CE-tomography is the inversion of boundary 

rneasurements to detemine the field of a physical parameter within civil 

engineering systems. Data for seismic CE-tomographie imaging are line 

integrals of a physical parameter, along a specific path through the medium, e.g. 

the travel time accumulated along a ray path between a source and a receiver. 

The purpose of this research was to assess the potential of tomographic imaging 

in a variety of civil engineering infrastructures, placing emphasis on matrix- 

based inversion algorithrns. While most prior research in tomography has been 

based on sirnulated data, mis research centered on case histories gathered 

under well-controlled, yet realistic field conditions. 

Ail examples given in this document used travel time observations that were 

inverted to determine the velocity fieM. However, the method is completely 

general; any boundary observation that can be defined as a line integral through 

the medium can be substituted throughout. 

8.1 Summary 

Inversion 

Several methods have been proposed to solve the inverse tornographic 



problem; they can be categorized as: (i) matrix inversion methods, (ii) 

iterative methods, (iii) transfomi methods. and (iv) other rnethods. 

lterative methods are not stable in ill-conditioned. problems. Transfomi 

rnethods are restricted to straight ray projections (space transformations 

could be invoked to generalize the solution to heterogeneous, anisotropic 

media). Matrix methods are versatile, computationally efficient. and robust. 

However, efficient storage and camputation are required. 

Matrix inversion methods have been rarely employed in tornographic inversion 

because of high memory demand and computational efficiency. The 

coefficient matrix (L) is large and sparse. In a dense nxn matrix, the order of 

computation complexity is O(n3) and O(n2) for storage. However, efficient 

iterative algorithms combined with sparse matrix techniques can reduce the 

order of computational complexity to 0(n1e3) and storage requirement to O(n). 

Damped least square (DLSQ) and regularization methods are used to avoid 

the ilkonditioning which is inherent in tornographic inversion problems. 

The coefficient matrix during an inversion process, in both DLSQ and 

regularization methods, is syrnrnetric and positive definite. Therefore, a 

conjugate gradient method is used (note that regularization and damped least 

squares methods produce coefficient matrices with different structures). 

Hybrid solutions can be atternpted to enhance the resokability of an inverted 

image (0.g.. fuzzy logic preprocessnig followed by regularization). 

Ray Tracing 

The analysis of wave propagation is often simplified to exercises with straight 



lines connecting sources and receivers. However. civil engineering problems 

of interest are not hmogeneous and not isotropic. If the velocity contrast in 

the medium is more than 15 to 20 percent, rays bend toward higher velocity 

regions. In this case, entries in the coefficient matrix depend on a priori 

estimates of the velocity field. The inversion problem becomes non-linear, 

and ray tracing should be implemented during an iterative solution of the 

tornographic inverse problem. In general, based on Fermat's principle, it is 

assumed that 'picked travel times' correspond to the shortest travel time 

paths. 

Ray tracing is a two-point boundary value problem: the end points are 

specified (the source and receiver positions), and the propagation path and 

time must be detemined. Ray theory is used in the development of soma ray 

tracing algorlhms. However, there are more general solutions. Ray tracing 

techniques can be categorized as: One-point methods, Two-point methods, 

and Whole-field methods. 

One-point methods are efficient and have low memory demands. Yet, they 

have al1 the restrictions inherent in ray theory. Furthermore, they may never 

converge. Two-point methods are flexible and efficient, require low memory 

storage and can solve travel times in shadow zones and diffracted ray paths. 

However, they may not be able to find the global minimum. Whole-field 

rnethods can identify global minimum travel times, including shadow and 

diffracted zones. While the solution is computer demanding, al1 rays from a 

given shot are sohred at once. 

Optimization of DLSQ and Regulariution Coefficients 

In a tornographic inversion process, under-determ ination (or mixed- 

determination) and noise in the data result in ill-conditioned problems. A 



solution can be obtained using matrix based, Damped Least Squares (DLSQ) 

or regularization rnethods. 

Addition of a priori information is one way to decrease the size of the nuIl 

space by specifying image parameters (unknowns) that reside in the nuIl 

space. 

The DLSQ method overcomes the singularity of the coefficient matrix. In the 

case of a mixed-determined problem and noisy data. the regularization 

method is applied by adding information, in the form of constraints. In both 

cases, the best solution can be obtained for a certain damping or 

regularization coefficient. The quality of the image worsens with either lack of 

or excessive damping or regularization coefficients. These coefficients are 

unique but depend on the velocity field. 

One way to determine the size of the nuIl space is to plot the sizes of the 

singular values against their index numbers. This is the spectrum of the data 

kernel. This plot also highlights the true amount of information relative to the 

nurn ber of measurernents that were conducted. 

As a part of this study, criteria were evaluated to detemine the optimal 

values for DLSQ and regularization coefficients. The selection based on the 

coefficient of variation (COV) of the mole set of pixel slownesses tends to 

promote global smoothness. Another alternative approach is to define local 

measures of variability. 

The maximum likelihood method asserts that the optimum values of the 

system parameters maxrœmize the probability that the obseived data are in 

fact observed. In this study the maximum likelihood method was used to 

evaluate the optimal regularization coefficient. Assuming a Gaussian 

distribution for the travel time data, the optimal regularization coefficient can 

be obtained from a cumulative number of appearances of the data vs. travel 



time data plot. In this case, the method fails to evaluate the optimal 

coefficients in most cases. However, the optimal coefficients can be 

evaluated if the intersection point of the WQ best lines passing through the 

data points is computed. The results show under-smoothed images similar to 

the previous methods. Another option is to assume an exponential 

distribution for the travel times data. In this case, the method has shown 

certain values for the optimal coefficients in al1 cases. However, sime in 

some cases a post peak appears, for the purpose of programming, the safe 

way to evaluate the optimal regularization coefficient is to start with large 

regularization values. The optimal value is the first available peak. The 

reason that the exponential distribution gives more accurate resuks than the 

Gaussian distribution lies in the relationship between these two distributions 

and the L noms. The exponential distribution has the sarne relationship to 

the LI norm as the Gauçsian distribution has to the L2 norm. A high-order 

nom should be employed for short-tailed data. The tomographie data. and 

espeeially side-to-side shootings, appear to have a long-tailed distribution. 

Therefore, it is more appropriate to use the exponential distribution. 

Computational EHiciency and Accuracy in Ray Tracing Methods 

As a part of this research, the computational efficiency and accuracy in ray 

tracing methods were studied. The following are concluded: 

An n step ray is assumed to have a parameter comparable with al1 ray tracing 

methods. An example of one-point methods will require 417 calculations for 

each ray to be traced. If the ray path is defined for m shooting angles, then, 

the number of calculations needed for only primary ray tracing by one-point 

methods is in the order of 4mn3, 



The density of over-head computations varies among methods and it may be 

a decisive factor (8.g. computation time required for determining shooting 

angles in one-point method). 

Two rays frorn a source never cross. Hence. onapoint methods and twogoint 

methods can be readily optimized by searching al1 rays from a given source at 

once. The reduction in computational demand is proportional to tP, shifting 

curves parallel towards the straight-ray case. 

Travel time is relativeiy insensitive to variations in ray path. Often, most 

computational efforts in ray tracing are spent in optirniring travel times to the 

point that the estimated time error becomes significantly lower than 

measurements erron. However, optimization alters ray paths and the length 

rays traverse different cells. This affects tomographic reconstruction. The 

signlicance of this effect was evaluated. 

Data pre-processing can be employed to provide foresight about the medium, 

and help provide proper constraints for the solution. Selected pre-processors 

designed during this study are: distribution and amount of information. presence 

of accidental and systematic errors, degree of heterogeneity and anisotropy, and 

analysis of shadows. All the pre-processors were tested with al1 case histones. 

WATOM-l Software 

A program for tornographic inversion has been written as part of this study. 

The selected tornographic inversion methods are based on matrix analyses. 



To avoid high memocy and cornputational tirne demands. sparse matrix 

algorithrns are employed. Ray bending and straight rays are two possibilities. 

The program is in structured fonn to facilitate future additions and 

modifications. The Sine-Arc two-point ray tracing method is used for non- 

linear cases. The conjugate gradients method is used to determine the 

inverse of the coefficient matrix 

8.2 Conclusions 

Matrix based inversion methoûs are rnathematically robust and facilitate 

analyzing the available information and adding additional constraints. 

However, efficient storage and computation are required. Sparse matrix data 

structures and algorithms were used in the written software (WATOM-1). 

It was show that white more accurate travel paths can improve the inverted 

image, the ray paths accuracy does not need to exceed measurement 

accuracy on travel times, which is usualiy about 1%. 

The effect of model error was evaluated. Ray tracing optimization alters ray 

paths and the length that rays traverse different cells. This affects 

tomographic reconstruction. The significance of this effect was evaluated with 

simulated data to facilitate cornparison. It was shown that only 1% error in 

time relates to an average 4-pixel widths difference in travel length per pixel 

(400%); given that the average travel length per pixel iç 20 pixel widths, the 

percent average error is 4/20=20%. 

While rnost tomographic studies are based on simulated data. a data base of 

case histories with real data was cornpiled and employed in this study. The 

inversion of real data is significantly more challenging than would be 



expected from the extensive number of studies with simulated data that are 

found in the literature. 

Before any inversion process, the measurement set can be analyzed to leam 

about system parameters and trends. Pre-processing methods were 

employed as a pre-looking into the data and as an integral part of menhanad 

inversion". 

Srnall singular values can generate large mors in the solution. 

Regularization adds information in the form of constraints in order to 

decrease the ill-conditioning of the problem. lt is shown that regularization is 

a robust solution if random or systematic noise is added to the data. 

The number of independent equations in a data set is not equal to the 

number of data. Singular value decomposition was used to indicate this fact 

for selected case histories. The sire of nuIl space can be improved by 

regularizing the data. 

Optimal DLSQ and regularization coefficients can be identified on the bases 

of global and local variability of the inverted image and the error between the 

measured and predicted travel times. It was concluded that the values of 

coefficients selected with these approaches is higher than the optimal value. 

The optimal value of regularization coefficient was evaluated based on the 

maximum correlation (maximum likelihood) of the joint distribution of the 

obsewed and calculated travel times. The optimal regularization coefficients 

were located in most cases. However. multiple solutions were possible in 

some cases. In those cases, the best way to approach the optimal coefficient 

is to start with high values of the regularization coefficient. The optimal value 

is the first maximum value of the probability. 
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APPENDIX A: Ray Paths and Direction 

Cosines 



The relations between a, p, i, and azimuth @ are based on the Figure (A-1) and 

the following equations (Gheshlaghi, 1992). 

cosi, 

Figure A-1 Graphic relation between the a. P, io and azimuth @. 

Therefore, the initial value formulation of the ray equation from the eikonal 

equation may be written as (Eliseevnin, 1965): 

a,x= V . C O S ~  

a,y = v. cos p 
a,z = v. cos i, 



av av 
ilta =-.sina -- av 

av . cot  COS --.cota. COS io a~ az 

av ati0 = -- av av 
.cos a. cot io --.cos p. cot io + -. sin i, 

ax aY az 

where q denotes differentiation wah respect to time; x, y, and z describe the 

endpoint position of the ray at a particular tirne, v(x,y,z) is the wave velocity; and 

cosa, cosp, and cos i, are the local direction cosines related by the expression, 

cosa2 +cos~~*+cos~ ,~  = 1 (A-3) 

Because of the relationship between direction cosines, only five of the equations 

in (A-2a&b) are independent and therefore only fïwe variables are required to 

describe the ray at any point of ils trajectory. If @ and C angles are used the 

following equations can be derived. 



APPENDIX 8: Lytîe and Dînes's OrePoint 

Method ALGOL 



The following steps are involved in a ray tracing algorithm based on the one- 

point method by Lytle and Dines (1 980). 

Main program: 

Choose a shooting angle B. from an specific source position. 

Define a parameter 'hm as the step length. 

Go to subroutine SPLINE and determine the srnoothed local refractive 

index variation for the next point. based on values of four neighborhood 

points [(i,j), (i,j+l), (i+l ,j), and (i+l ,j+l)]. 

Calculate A91, A02. A@, and A84 to obtain four parameters required for the 

fourth order Runge-Kutta method' , and detemine the next 0 value (Bi+l). 

Repeat steps 3 and 4 until the ray reaches a boundary. 

Repeat steps 3 to 5 for different lunching angles em (m=1.2, ..., n) frorn a 

specif ic source location. 

Go to subroutine ANGLE and build a continuos function based on the 

position of exit points and lunching angles. 

Go to subroutine ZEROlN and detenine the lunching angle for a given 

receiver position, using function obtained in the step 7. This is implemented 

with Newton-Raphson's method. 

Repeat step 8 for al1 of the receiver locations. 

Repeat steps 3 to 9 for al1 of source locations.. 

The numerical solution of a differentiai equation by the Runge-Kutta method avoids 

the computation of high-order derivatives needed in Taylor Series expansion. Instead, 

the method uses extra values of the function within the step h. 



APPENDIX C: Genenil Algorithms and 

Flowcharts in WATOM-l 
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Figure C-1: A general view of the ray tracing algorithm and computation steps for 

calculating the entries of the 'Ln matrix. 
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Figure C-2: Computation steps in calculating the entries of the reguhrüation 

matrix. 



Pax'- te- - 
Figure C-3: WATOM-I inversion algorithm (this figure shows oniy the inversion 

part). Entries 1 +2 refer to the algorithms for ray tracing and reguhrization 

(Figures C-1 and C-2). 



APPENDIX D: W A ' ~ O M ~  Software 



C + + 
c + Tomographie lmaging Using Spa- MatW Algorithm + 
c + and Ray Tracing (WATOW) + 
C + + 

characterm20 datf, ray-path, met hod 
charactefi32 notel 

integer nray, npix, ndim, sri, m 

double precisbn di, add, lambda, W. h 
double precision contol, tokon 

integer k, n, nja, maxiter, i t e m ,  ikmax 

-. . 

+ Parameters Dederation + 
+ k=No. of rays, + 
+ n = No. of pixels + 
+ nja = No. of elernents in + 
+ rnatrix k + 
+ maxiter = No. of iterations + 

writeC,'(/ïx,a\))'lnp No. of rays and pixels....->:' 
read (+,*) riray, npix 

nja= nray"2 
ndim= nray 
if(npix .gt. nray) then 

nia= npix"2 
ndim= npix 

endii 

-IWII 

+ Input file for initial data + 

ntry=l 
ntry1=1 
write(','(/5x,a\)~'No~ of Sources and Receivers .... -a:' 
read(4,') sn, m 
write(','(/5x,a\)')'lnput No. of mws and Columns ... ->:' 
read(4,') m, ncol 
write~,'(/5x,a\)')'Wdth and Height of the region .. -:' 



rd(4,') w,h 
4 write~,'(l5x,a\)')'(R)eguhrization or (D)LSQR ...-- -3:' 

reaâ(4,'(a)') methoâ 
if((meth0d .eq. IR3 .or. (methoci .eq. 'r')) then 
write(*,'(l5x,a\)3'lnput Reg ulan'zation coeff. value -:' 
read(4;) lambda 
efseif((meth0d .eq. ID') .or. (methcd .eq. 'dl) then 
write(*,'(lSx,a\)9'input DCSQR coeff. value ........ -a-' 
read(4,') lambda 
elseif(ntîy1 .B. 3) then 
wiite~.'(/////l ûx,a\)')' ..... You typed a m g  letter, tiy Wr 

+or D/d ..,.,' 
ntryl= nUyl+l 
~e~,'( l l l la\) ' ) l  @ 

goto 4 
else 

stop 
endif - -1 write(','(/5x,a\) ')'Name of input data file ........-..-. ->. 
read(4, '(a)') datf 

5 write(*,'(lSx,a\)~'(S)tiaight rays or (C)uved rays -:' 
read(4,'(4') raymth 

C 

if((raygath .eqt 'S3 .or. (ray-path .eq. 's')) then 
ikmax=l 
div= 1. 
add= 1, 

elseif((raygath .eq. %') .or. (raygath .eq. 'c')) then 
read(4,*) ikmax, div, add 
read(4,*) itermax, tolmn 

elseif(ntty .IL 3) Vien 
write(P8(/////1 Ox,a\) ')'..... You typed a wrong letter. try S/s 

+or Für -2 
ntry = ntry+l 
writeC,'(////a\)')' ' 

goto 5 
else 

stop 
endif 

C 
C 

c + output files + 

cal1 mainsub(nray, npix, ndim, nia, sn, m. 
+ m, mol, w, h, lambda, datf, 
+ ikmax, div, add, raypth, rnethod, 
+ maxiter, itermax, contol. tolcon) 



+ + 
+ MAIN SUBROUTINE + 
+ + 
+- 

subroutine mainsub(k, n, ndim, nja, sn, m. 
m, ncd, w, h, lambda, datf, 
ikmax, div, adcl, ray-th, method, 
maxiter, itemm, contoi, tokon) 

charactera20 datf, ray-path, vlof, method 

integer ia(ndirn+l ), ja(nja), ier, icon j, 
ija(nja+l ), iat(ndim+l ), jat(nja) 

integer ir(ndim+l ) , jr(nja) 

integer i, ii, sn, rn, kk 
integer 'munt, i t e m ,  maxiter,i)anax 

double precision row(ndim), a(nja), b(n), at(nja), 
x(n), v(n), btime(k), r(nja), 
aft (ndim) , a2(n, n) , sa(nja+l ) , btem(k) 

double precision tmpx, avex, veloc, vav 
double precision div, add, lambda, w, h 
double precision contd, tolcan, tsqrt 

if((raygath .eq. 'C') .or. (raygath .W. 'c3) then - .& wnte(*,'(/5x,a\)')'lnput velocity file-name ... .,. ... -W. 

read(4,') vbf 
open(1 ,file=vbf, statusdmknown') 
read(1 ,O) (vo, jj=1 ,n) 
do i=l ,n 

v(i)= 1 h(i) 
enddo 

elseif((rayjath .eq. 'S') .or. (raypth .eq. '$7) then 
write(*,'(f5x,a\)')'lnput average vefocity ......... ->:' 
read(4,') vav 
do i=l ,n 

v(i)= 1 Jvav 
enddo 



icount= 1 
continue 
tsqfr= O* 

cal1 ray(k, n, ndim, nia, a, v, Mime, at, iat, 
jat, rn, nad, w, h, lambda, datf, kk, 
ikmax, div, add, sn, m, btem) 

+ operations with matrices + -- 
cal1 transa(k, n, kk, iat, jat, at, 

nia, ndim, ia, ja, a) 

iparcharns O 
cal1 ata(iparcham, k, n, nia, nâirn, ia, ja, a, 

aft, iat, jat, at) 

cal1 atb(k, n, nja, ndim, 
ia, ja, a, btime, b) 

if((method .eq- 'D9 .or. (method .eq. Id')) then 

cal1 DLSQR(n, nia, ndim, r, ir, jr) 

cal1 reguia(k, m, ncol, n, ndim, nja, a. r, ir, jr, kk) 

else 
write(',') 'Input enor in mata metMo 

endif 

cal1 transa(k, n, kk, ir, jr, r, 
nja, ndim, ia, ja, a) 

--mUUllll-UWIICII 

+ constructing rtr + 

iparcham= 1 
cal1 ata(iparcham, k, n, nja, ndim, ia, ja, a, 

aft, ir, jr, t) 

cal1 combin(n, nja, ndim, at, iat, jat, 
r, ir, jr, aft, row, lambda, a, ia, ja) 



c + change &rage mode for spime mat* + 

C 

cal1 replc(n, nja, ndim, a, ia, ja, a2) 
C 

cal1 sprsin(a2, n, nja, sa, ija) 
c 

c + mnjugatte gradient inversion + 

C 
cal1 linbcg(nja, contol, n, b, v, maxiter, 

+ ija, sa, x) 
C 

if((ray_path .eq. 'C3 ,or. (raygath -eq. 'c')) then 
icounk icaunt+l 
do i= 1,k 

tsqrt= tsqrt+(btime(i)-btem(i))-2 
enddo 
t q t =  dsqrt(tsqrt) 
if((tsqrt .It. tolcon) .or. 

+ (icount .gt, itermax)) then 
goto 22 

else 
da 2 i= 1 ,n 

v(i)= 1 ./x(i) 
continue 
goto 1 

endii 
endif 

C 
22 tmpx= 0. 

C 

C 
& 3 i = l , n  

x(i)= dabs(x@) 
trn px=trnpx+x(i) 

3 continue 
avex= tmpx/dfloat(n) 

C 
& 4 i=l, n 

if (v(i) .eq+ O.) goto 4 
if (x(i) .le. O.) then 

v(i)= 1 ./avex 
else 
v(i)= 1 Jx(i) 

endii 
4 continue 

C 

5 continue 
do 6 i= 1 ,n 

write(l6,'(5x,f20,5)~v(i) 
6 continue 

C 

retum 



end 

+ cakuhting ray segments in each + 
+ pixel, assuming Arc-Sine or Straight paths + 
t t 

submutine ray (k, n, ndim, nja, a, v, Mime, at, iat, 
jat, m, ncol, w, h, hmbda, datf, kk, 
ikmax, di, add, sn, m. Rem) 

character'20 datf 
character'100 note-s, note-r, noteet 

integer #hg, Thgl , sn, m. ns, nr 

double precision Lnt(n), v(n), plnt(n), 
sx(sn), sz(sn), m(m), n(m) 

double precision tem, hmbda, tmpt, tmp, x, y, tx, b, 
w, h, trnpsx, tmpsz, ak, div, add, yy, 
tmpb, xb, xbh,zbh, pi, txb, tzb, zb, 
txbl , ttbl ,txb2, ttb2, teml , vav, In 

integer k, n, ndim, nja, jj, kjj, ij, 
ii, num, jmax, kj, kk, i, j, 
ik, ikk, in, im, ikmax 

double precision a(nja) , btime(k) , at(nja) 

integer iat(ndirn+l ), jat(nja) 

xb= w/df loat (ncol) 
Xbh= -2. 
tb= h/dfioat(m) 
zbh= zw2, 

-.- 
+ intializing + 
&--NUI 



+ Input data-file + 

read(2,'(//a) 7 note-s 
do i= 1 ,sn 

read(2,*)sx(i), sz(i) 
sx(i)= sx(i)/xb 
sz(i)= sz(i)hb 

enddo 

continue 

read(2,',ed) ns, nr, btime(kj) 

if(sz(ns) .gt. dfbat(m)) then 
vwite(*.*)kraming!!! 'source location value out of range" 
Pa- 

endif 



write(",')'warning!!! 'receiver kation value out of range" 
Pau= 

endif 

if (sx(ns) .gL rx(nr))then 
t mpsx= sx(ns) 
sx(ns)= nr(nr) 
rx(nr)= tmpsx 
tmpsz= sz(ns) 
sz(ns)= rz(nr) 
n(nr)= tmpsz 
iflag1= 3 

endif 

if (sx(ns) -eq, rx(nr)) then 
if (sz(ns) .gt. rz(nr)) then 

tmpsx= sx(ns) 
sx(ns)= rx(nr) 
rx(nr)= tmpsx 
tmpsz= sz(ns) 
sz(ns)= rz(nr) 
rz(nr)= tmpsz 
sxtmp= sx(ns) 
sztmp sr(ns) 
iflagl = 3 
txb= float(ifix(sxtmp))+0,5 
tzb= f bat (ifix(sztmp))+O.S 

endii 
do i= 1 ,n 

Lnt(i)= O. 
enddo 
samp= Wns) 
ni= ifix(sztmp)+l 
#(ni ,ge- m) ni= ifix(sztmp) 
rxtmpt rx(nr) 
rztmp= n(nr) 
mi= ifix(rztmp)+l 
if(mi .ge- m) mi= ifix(ntrnp) 
do i= ni,mi 

ii= (tzb+0.5) 
ijj= (txb4.5) 
jj= (ii-i)'jmax+i~ 
Lnt(jjj= zb 
In= In+Lrit(Y) 
tem- tern+Lnt(jj)/v(jj) 
tzb= t~b+l .  
jj= jj+ncd 

enddo 



mm= tzb-0.5 
if(abs(rztmp-fkat(iC~~(tzbri))) .gL O.) then 

Lnt(ii)= abs(rrtmp-tioat(ii(tzbn))) 
In= In+Lnt(jjjj 
t e e  tem+Lnt(jj)&(jj> 

endif 
t mpt= tem 
tem= O. 
do i= 1 ,n 

a(i)= Lnt(i) 
enddo 
mag= i 
goto 143 

endif 
if(sz(ns) .eq. dfkat(rn)) sr(ns)= sz(ns)-0.00001 
ir(n(nr) .eq. dfkat(m)) rz(nr)= rz(nr)-0.00001 

C 

C 
do 142 ik= 1.i- 
do i= 1,n 

Lnt(i)= O. 
enddo 

ak=(âfbat(ik)/div)-add 
C 

c + if source and receiver lacatteâ in same pixel + 

C 

if((ix(sztmp) .eq. ifix(rzt mp)) .and. 
+ (iio((sxtmp) .eq. ifix(iAtmp))) then 

ii= (sztmp+l.) 
ijj= (sxtmp+l-) 
jjr= (ii-1 )*imax+ijj 
LntÜjr)= dsqrt(((sz(ns)-iz(nr))"2)*zb"2 

+((sx(ns)-rx(nr))"2)*xb*2) 
In= In+Lnt(Ur) 
tem= tern+Lnt(jjr)/v(jjr) 
iflag= 2 
goto 141 

endif 
C 



continue 
x= fioat(i) 

if (ak .ne. O.) aien 
if ((y .It. O.) .or. (y .gt. m)) goto 142 

endif 

&btmp= tzb 
if((y-fioat(ii(tzbtmp+û.5))) .gt. 0.000001 ) then 

YY= Y 
y= tzb+O.S 

ytmpi= Y 
x= (((y-&)'(tx-x))/(tz-yy))+tx 

if(x .gt. m(nr)) then 
x= ot(nr) 
y= rz(nr) 
iflag= 4 

endif 
ii= (tzb+0.5) 
ijj= (txb4.5) 
jj= (ii-1 )*jrnax+ijj 
Lnt(jj)= dsqrt((YItz)*Ur..&)*&'rb+(x-tx)'(x-tx)*~*~) 
In= In+Lnt(jjjj 
te- tem+Lnt(jj)/v(jj) 
it(Cïg .W. 4) .or. (x .eq. ~(nr)))  goto 141 

tx= x 
tz= y 
tzb= &b+l . 
jj= jj+ncoi 

iflag= O 
goto 130 

endif 
C 

tzMrnp= tzb 
if(&-float(ifii(îzbtmpO.5))) .LT. 0,ûûWOl) then 

YY= Y 
y= t~b-0 .5  
ytmpl= Y 
x= (((y-tz)*(tx-x))l(tz-yy))+tx 
if(x .gt. m(nr)) then 

X= m(nr) 
y= rz(nr) 
iflag= 4 

enâii 
ii= (tzb+0.5) 



qj= (W34.5) 
jj= (ii-1 )*jmax+ijj 
kt@)= d~qrt((y-t~)*(~-tz)'~b'zb+(it-tx)*(~-tx)*~~xb) 
ln= In+Lnt(#) 
tem= tem+Lnt(jj~hr(jj 
îf((ïïg .eq. 4) .or, (x .eq. m(nr))) goto 141 

tx= x 
tz= y 
tzbi tzb- 1 - 
jj+ncol 
mg= O 

goto 130 
endii 

fi= (t~b+0.5) 
ijj= (tXb+o-5) 
jj= (ii-1 )*jmax+ijj 
if# .gt. txb) txb=t%b+l . 
Lnt(jj)= dsqrt((YItz)*(y-tz)*zbtzb+(x-bc) *(x-U) *a*&) 
In= In+Lnt(jj) 
tem= tem+Lnt(jj)h(jjj 
tx= x 
tz= y 
jjt jj+1 

continue 
continue 

+ choosing shortest time path + 

if (tern .it. tmpt) then 
tmpt= tem 
tem= O. 

+ using array 'a' to store lenghts + 

do i= 1 ,n 
a@= Lnt(i) 

enddo 
endif 
tem= O. 
#(Mas .eq. 2) goto 143 

continue 
continue 

cal1 spara(n, ndim, nja, kk, kj, a, at, iat, jat) 



m(nr)= sx(ns) 
sx(ns)= tmpsx 
n(nr)= sz(ns) 
sz(ns)= tnpsz 
iflagl=O 

endif 
if(@ .ge. k) goto 2 
kj= kj+1 
iflag= 1 
goto 1 
continue 
do i= 1,n 

if (plnt(i) .eq. O,) then 
v(i)= O. 

endif 
enddo 

+ Generating a sparse mat* with + 
+ ia-ja structure + 

subroutine spara(n, ndim, nia, kk, kj, a, at, iat, jat) 

double precision a(nja) ,at (nja) 

integer iat(ndim+l ), jat(nja) 

integer n, ndim, nja, j, kk, kj 

iat(l)= 1 
do j=l,n 

if(a(j9 .ne. O.) then 
at(kk)= a(j) 
jat(kk)= j 
kk= kk+l 
endif 

enddo 
iat(l<i+t)= kk 

retum 
end 



submutine tmnsa(k, n, kk, kt, jat, at, 
+ nja, ndim, ia, ja, a) 

integer ia(ndim1). ja(n ja), 
+ iat(ndim+l ), jat(n ja) 

integer k, n, ndim, nja, jj, kk, 
+ ii, nurn, i, j, ik* in 

in= in+l 
endif 

C 

do i= 1 ,n 
do j= 1 ,kk-1 

ïf(iat(i) .eq. i)then 
do ik= 1 ,k+l 

if (j .it, iat(ik)) then 
ja(in)= ik-1 
in= in+l 
goto 155 

endif 
enddo 

endif 
155 continue 

enddo 
enddo 

retum 
end 

C 
C 
C 
C 

C 



subroutine ata(iircharn, k, n, nja, ndim, 
ia, ja, a, aft, iat, jat, at) 

chuMe precisbn a(nja), at(n ja), abt(ndim) 

double precisbn tmp 

integer ia(ndim+l ) ,ja(nja), 
iat(ndim+l ) ,jat(nja) 

integer k, n, ndim, nja, jj, kk, 
ii, i, j, ik, ikk 

ik= O 
ikk= 1 

ia(l)= 1 
iat(l)= 1 

160 continue 
if(ikk .gt. n) goto 165 
do j= 1 ,ndim 

aft(jj= O. 
enddo 

+ Determining the best lambda + 

if (iparcham.eq.0) then 
writec ,')tmp 

elseif(iparcham.eq.l)then 
w-(':)tmp 

else 
write(',*)iparcham 
pause 'emr in iparcham' 

endif 

if(tmp .ne. 0,)then 
ik= ik+l 
at(ik)= tmp 
jat(ik)= i 



endi 
enddo 

C 
iat (ikk+l)= ik+l 
il&= ildr+l 

C 
goto 160 

continue 
retum 
end 

+ Multipfying a rnatnx + 
+ by a vector + 

subroutine atb(k, n, nja, ndim, 
ia, ja, a, btime, b) 

integer ia(ndim+l ), ja(n ja) 

integer û, n, ndim, nja, 
ii, i, j, im 

b(i)= trnpb 
enddo 
retum 
end 

+ Generating (ara + lambda*rTr) + 
T- 

Subrouthe combin(n, nja, ndim, at, iat, jat, 
r, ir, jr, aft, row, lambda, a, ia, ja) 



double piecision r(nja), a(nja). at(nja), 
+ aft(ndim). row(ndim), lambda 

C 

integei ir(ndiml), jr(ndim). ia(ndim+l ), ja(n ja) . 
+ iat (ndim+l ), jat(n ja) 

C 

integer n, nja, ridirn, i, ii, kk, 
+ 

C 
jkk, Wk, j 

kk= 1 
jùk= 1 
ia(l)= 1 
iat(1 )= 1 
do Iq'k=l, n 

C 

do j= 1 ,ndim 
row(j)= O. 
afC(j)= O. 

enddo 
C 

do ii= iat(jkk),iat(jkk+l)-1 
aft(iat(ii))= at (ii) 

enddo 
C 

do ii= ir(jkk),ir(jkk+i)-1 
row(jr(ii))= r(Q 

enddo 
C 

do i= 1 ,n 
aft(i)= lambda*row(i)+aft(i) 

enddo 

C 
c + generating ia-ja structure + 
C 

do j= 1 ,n 
if(aft(j) .ne- O.) then 

a(kk) = aft(j) 
ja(kk)= j 
kk= kk+1 

endif 
end& 
ia(jkk+l)= kk 

jkk= jkk+1 
enddo 

C 

retum 
end 



* Generating ide* matrix in ia-ja format 

Sobroutine DLSQR (n, nja, ndim, r, ire jr) 

double precision r(nja) 

integer ir(ndim+l ), jr(nja) 

integer n, nja, i, ii 

+ Constructing matrix 'lm and il, jl for DLSQR + 

ii= 1 
if@ .le. n) then 

r(ii)= 1. 
jr(n)= ii 
ii= ii+t 
goto 6 

endif 
ir(q)= 1 
do i= 2,ndim+l 

ir(i)= i 
enddo 
retum 
end 

GENERATING REGULARIZATION MATRJX 
* 

Subrouthe reguîa(k, m, mol, n, ndim, nja, a, 
+ r, ire jr, kk) 

double precision r(nja), a(nja) 



integer ir(ndim+l ), jr(n ja) 
C 

integer k, n, M m ,  nja, jj, kjj, ij, m. 
+ ii, num, jmax, kj, kk, i, j, ncd 

C 

kk= 1 
kj= O 
ir(1 )= 1 
num= O 
ikr= 1 
in= O 
jmax= ncol 

C 
C 

do4 i=l,rn 
& 3 j= 1 ,ncol 

kj= kj+l 
do ij= 1 ,n 

a(ij)= O. 
enddo 
if ((i .eq. 1) .and. (j .eq. 1)) then 

a(l )= -4. 
a(2)= 2. 
a(l +mol)= 2. 

elseif ((i .eq. m) .and. (j .eq. 1)) then 
jj= (i-l)*jmax+j 
a@-ncoi)= 2, 
a(jj)= -4. 
a(U+l)= 2. 

elsel ((i .eq. 1) and. (j .eq. ncol)) then 
jj= (i-1 )'jmax+j 
a@-1 )= 2, 
a@)= -4. 
a(jj+ncol)= 2. 

elsel ((i .eq. m) .and. (j .eq. nco9) Ulen 
jj= (i-l)*jmax+j 
a(jncol)= 2. 
a(jj)= -4. 
a(jj-1)= 2. 

elseif ((i .gt. 1) .and. (j .eq. 1) .and. (i .It. m)) then 
jj= (i-l)*jmax+j 
a(jj-ncoi)= 1.  
a@= -4, 
a(jj+l)= 2. 
a(jj+ncol)= 1. 

elsei ((i .gt. 1) .and. (j .eq. ncd) .and. (i .it. m)) then 
jj= (i-1 )*jmax+j 
a@ncoi)= 1. 
adj)= -4. 
a(j-1)= 2. 
a(jj+ncoi)= 1. 

eisel ((j .gt. 1) .and. (i .eq. 1 ) .and. (j .it. mol)) then 
jj= (i-1 )*jmax+j 
a(jj-1)= 1. 
a(jj)= -4. 



a(jj+l )= 1. 
a(U+ncol)= 2- 

elseif ((j .gt. 1) .and. (i .eq- m) .and. (j . t ml)) then 
l= (iil)*jma~~+j 
a(U-l)= 1 . 
a(jj]= -4- 
a(jj+l)= 1 . 
a@-moi)= 2. 

eise 
jj= (iit)*jmax+j 
am-ncoi)= 1. 
a@-1 )= 1 - 
a@>= 4- 
a(jj+l)= 1. 
a(jj+ncol)= 1. 

endii 
C 

C 

cal1 spara(n, ndim, nja, kk, kj, a, r, ir, jr) 

3 continue 
4 continue 

ret um 
end 

*-'y'--"-y'tmc. 

+ + Conjugate gradient + 
t 

SUBROUTiNE Iinbcg(nia, contol, n. b, v, miter. 
+ iia, sa, x) 

INTEGER iter,maxiter,itol,n,nja,ija(nja+l) 
DOUBLE PREClSlON contoi, b(n), x(n). eps. v(n). sa(nja+l ) 
INTEGER j 
DOUBLE PREClSlON akaMen,b~bkderi,blai~m,bnmi~dmll~l,xnmi,zml nrm, 
+ znmSp(n),pp(n),r(n),rt(n),z(n),n(n),snm,en 
parameter (eps-1 .d-14) 
iter= O 
itok 1 

C 

do i= 1 ,n 
r(i)= O. 

enddo 
C 

cali atimes(nja,ija,se,n,v,r,O) 
do Il j=l,n 
r(j)=b(j)-r(jj 
rr(j)=r(jj 

11 continue 
cal1 atimes(nja,ija,sa,n,r,n,O) 
znrm=l .do 
if(itol.eq.1) then 



bnrm=snrm(n,b,itd) 
else if (iid.eq.2) then 
cal1 am)ve(nja,ija,sa,n,bt,O) 
bnmi=srirm(n,z,itd) 

else if (iflol.q.3.or.itol.q.4) then 
cal1 asobe(nja,ija,sa,n,bz,O) 
bnmi=snrrn(n,z,itd) 
cal1 asobe(nja,ija,=,n,r,z,O) 
znmi--snmi(n,z,itol) 

else 
pause 'illegal itol in linbcg' 

endif 
cal1 asobe(nja,ija,sa,n,r,z,O) 

100 if (iter.le.rnaxiter) then 

zml nm=znrm 
cal1 asolve(nja,i~,sa,n,rrt~,1) 
bknum=O.dO 
do 12 j=l ,n 
bknum=bknum+z(jj'n(j)j 
continue 

if(iier.eq-1) then 
do 13 j=1 ,n 
pO)=z(i) 
PP(D ==O3 
continue 

else 
bk=bknurn/bkden 
do 14 j=l ,n 
~o)=bk*~Oi+zo') 
PP(li=bk*~~(liI+aï) 
continue 

endif 
bkden=bknum 
cal1 atimes(nja,ijp,sa,n,p,z,O) 
akden=O.dO 
do 15 j=l ,n 
akden=akden+z(j~*pp(j) 
continue 

ak&knum/akden 
cal1 atimes(nja,ija,sa,n,pp,n,l ) 
do 16 j=l,n 
x(jj =x(jj+ak8p(j) 
r(jj=r(ij)-ak*z(j) 
rr(j]=rr(i)-ak*n(j) 
continue 
cal1 asolue(nja,ija,sa,n,r,r,O) 
if(iiol.eq.1 .or.itol.eq.2)then 
znmi=l .dO 
en=snrm(n, r,itol)/bnnn 

else if(iiol.eq.3.or.itol.eq.4)then 
znrm=snm(n,z,itoi) 
if(abs(zm1 nrm-znnn).gt.eps*znm) t hen 
dxnrm=dabs(ak)*snrm(n,p~ itol) 
en=znnn/dabs(zml nm-znrm)*dxnrm 

else 



enrznmilbnrrn 
goto 100 

endi 
xnrm=snrm(n,x,itd) 
if(en-le~O.SdO*mimi) then 

en~emIXnmi 
eise 
errenrmibnrm 
goto 100 

endif 
endif 
write (1 8,') ' iter=',iter,' err=',en 
if(en,gt.contol) goto 1 00 

endii 
101 continue 

write(l8,')' max e m  = ', en 
C 

retum 
END 

C (C) Copr. 1986-92 Numerical Recipes Software 

c + storing rnatrbc A into a hNQ + 
c + dimensional matrix + 
C 

subrouthe replc(n, nja, ndim, a, ia, ja, a2) 
ïnteger n, ia(ndim+l ), ja(nja) 
double precision a(nja), aZ(n,n) 

C 
do i= 1 ,n 

do j= l,n 
a2(i,j)= O. 

enddo 
enddo 

C 
do i= 1,n 

do j= ia(i),ia(i+l )-1 
a(i,iao))= Ni) 
enddo 

enddo 
retum 
end 

C 
C -- 
c + Nom of avector + 
C 

FUNCTION snm(n,sx,ital) 
INTEGER n,itol,i,isarnax 
DOUBLE PRECISION sx(n),snnn 
if (io t k3)then 
snrm=O, 
do Il i=l ,n 
snrm=snm+sx(i)**2 



11 continue 
snnn=dsqrt(snrm) 

else 
isamax=l 
do 12 kl ,n 
if(dat?s(sx(i)) .gt.daôs(sx(ïsamax))) isamax=i 

12 continue 
snrm=dabs(sx(isamax)) 

enâii 
retum 
END 

(C) Copr, 1986-92 Numerical Recipes Software 

+ Multiply ing a matrix by a vector + 

SU BROUTINE aümes(nja,ija,sa,n,x,r,Àrnsp) 
INTEGER n,itmsp,ija(nja+l),nja 
DOUBLE PRECISION x(n),r(n),sa(nja+l ) 
if (itmspeq-O) then 
cal1 dsprsax(nja,sa,ija,n,x,r) 

else 
cal1 dsprstx(nja,sa,ija,n ,x,r) 

endii 
return 
END 

(C) Copr. 1986-92 Numerical Recipes Software 

+ Multiplying matrix sa by vector x + 

SUBROUTINE dsprsax(nja,sa,ija,n,x,b) 
INTEGER n,Ïjj(nja+l ) 
DOUBLE PREClSlON b(n).sa(nja+l ),x(n) 
INTEGER i,k 
if (ija(l).ne.n+2) pause 'mismatched vector and matrix in dsprsax' 
do 1 2 i=l ,n 
b(i)=sa(i) *x(i) 
do 1 1 k=ijj(i) ,ija(i+l )-1 
b(i)=b(i)+sa(k) *x(ija(k)) 
continue 

12 continue 
retum 
END 

C (C) Copr. 1 986-92 Numerical Recipes Software 
C 
C c - - - ' y l ' m f .  

c + Multiplying transpose of a + 
c + matrixbyavector + 
C --- 

SUBROUTINE dsprstx(nja,sa,ija,n,x,b) 
INTEGER n,ïj(nja+l) 
DOUBLE PREClSlON b(n),sa(nja+l),x(n) 



INTEGER i,j,k 
if(ija(l).ne.n+2) pause 'misrnatched vector and rnatrix in dsprstx' 
do 11 i4 ,n  

b(i)=sa(i)*x(i) 
continue 
do 13 kl ,n  
do 12 k=iB(i),ïj(i+l)-1 
j=ija(k) 
b@=ô(j)+sa(k)*x(i) 
continue 

continue 
retum 
END 

C (C) Copt- 1986-92 Numeiical Recipes Software 
C 
c- 

c + changing format of a two dimensional maîrix to + 
c + raw-index sparse f o m t  + 
C c- 

SUBROUTINE sprsin(a2,n,nja,sa,ija) 
INTEGER n,nja,iia(nja+l) 
double precisiin a2(n,n) ,sa(nja+l ) 
INTEGER i,j,k 
do Il j=l,n 
=(i)=Wi9i) 

II continue 
ija(1 )=n+2 
k=n+i 
do 13 i=1 ,n 
do 1 2 j=l ,n 
if(dabs(sS(i,D).gt.O.)then 
if(i.ne.j)then 
k=k+1 
if(k.gt,(nja+l ))pause 'nja too srnaIl in spin' 
=(k)=a2(i,D 
ija(k)=j 

endii 
endif 

12 continue 
ïp(i+i) =k+l 

13 continue 
retum 
END 

C (Cl Copr, 1986-92 Numerical Recbes Software 

c + Make a diiisim using a matiix + 
c + or its tmspose + 
C c - Y 1 ' - - - " " - - -  

SUBROüTlNE asolve(nja.ijatsatn,b,xlitmsp) 
INTEGER n,itmsp,ija(nja+l),nja,i 
DOUBLE PRECISION x(n),b(n),sa(nja+t ) 
do Il i=l ,n 

x(i)=b(i)/sa(i) 
11 continue 

retum 
END 

C (C) Copr. 1986-92 Numerical Recipes Software 



APPENDIX E: Coiresponding Input Files for 

All Case Histories 



Hellium Baibon 1, Located in off-center to the Ceft 
Locations in inches, Tmvel tirnes in miliseconds. 

Source hxations (X,Z) 
0 3 
O 12 
O 21 
O 30 
O 39 
O 48 
O 57 

Reciver locations (X,Z) 
60.3 3 
60.3 12 
60-3 21 
60.3 30 
60.3 39 
60.3 48 
60.3 57 

Source number= Sn, Receiver number= Rn, Travel times= T-T 
T-T 
4.38 
4.42 
4.54 
4.80 
5-06 
5.42 
5.78 
4.50 
4-42 
4.50 
4.62 
4.84 
5-1 0 
5.36 
4.68 
4.52 
4.46 
4.32 
4.34 
4.52 
4.92 
4.90 
4.46 
4.20 
4.1 4 
4.22 
4.42 
4.78 

T-T 
4.84 
4.56 
4.38 
4.26 
4.32 
4-44 
4.58 
5.30 
5.00 
4.74 
4.60 
4-46 
4-42 
4-44 
5.86 
5.46 
5-1 O 
4.82 
4.58 
4.44 
4.36 



Hellium Balkon 2, Located in officeriter to the top 
Locations in inches. Travei tirnes in m i l i i d s .  

Source kcations (X,Z) 
O 3 
O 12 
O 21 
O 30 
O 39 
O 48 
O 57 

Receiver locations (X,Z) 
60.3 3 
60.3 12 
60.3 21 
60.3 30 
60.3 39 
60.3 48 
60.3 57 

Source numbet= Sn, Receiver number= Rn, Travel times= T T  
T-T 
4.52 
4.56 
4-58 
4-74 
5-06 
5.50 
5 -90 
4.54 
4.30 
4.1 8 
4.32 
4-60 
5.00 
5.56 
4.50 
4.24 
4.1 2 
4.28 
4-54 
4.82 
5.24 
4.62 
4.38 
4.24 
4.36 
4.46 
4.62 
4.90 



Hellium Balkon 3, Located in the center 
Locations in inches, Tiavel times in milibccmds- 

Source bcations ( X Z )  
0 3 
O 12 
O 21 
O 30 
O 39 
O 48 
O 57 

Receiver iocatians (X, t )  
60.3 3 
60.3 12 
60.3 21 
60-3 30 
60.3 39 
60-3 48 
60.3 57 

Source number: Sn, Receiver number= Rn, Travel tirne- T-T 
Sn Rn T-T Sn Rn T-T 

1 1 4.38 5 1 5-14 
1 2 4-42 5 2 4-78 
1 3 4.58 5 3 4.52 
1 4 4.79 5 4 4-42 
1 5 5.06 5 5 4.38 
1 6 5.38 5 6 4.44 
1 7 5.76 5 7 4.60 
2 1 4.46 6 1 5-42 
2 2 4.40 6 2 5.04 
2 3 4.42 6 3 4-74 
2 4 4.54 6 4 4.56 
2 5 4-76 6 5 4.46 
2 6 5.04 6 6 4.42 
2 7 5.44 6 7 4-46 
3 1 4.58 7 1 5.86 
3 2 4.4 7 2 5.46 
3 3 4.34 7 3 5-12 
3 4 4.39 7 4 4.82 
3 5 4.5 7 5 4.58 
3 6 4.76 7 6 4.46 
3 7 5-08 7 7 4.40 
4 1 4.82 
4 2 4.56 
4 3 4.36 
4 4 4.3 
4 5 4.38 
4 6 4.56 
4 7 4-84 



Hellium Balkon 4, Located in the center, 
Locations in inches, Travel times in rniliseconds. 

Source locations (X,Z) Receiver locations (X,Z) 
0.0 5.2501 59.5 

Source number= Sn, Receiver number= Rn, Travel times= T-T 
T-T 

4.41 
4.43 
4-44 
4.48 
4.52 
4.58 
4.63 
4.66 
4.71 
4.76 
4.85 
4.92 
5.05 
5.1 5 
5.32 
5.44 

4.4 
4.4 
4.41 
4.42 
4.47 
4.49 
4-51 
4.52 
4.6 
4.61 
4.73 
4.77 
4.92 
5.00 

Rn T-T 
1 4.71 
2 4.59 
3 4.49 
4 4-41 
5 4.33 
6 4.27 
7 4.24 
8 4.23 
9 4.2 
10 4.22 
11 4.24 
12 4.3 
13 4.35 
14 4.45 
15 4.53 
16 4.69 
1 4.77 
2 4.65 
3 4.55 
4 4.45 
5 4.37 
6 4.31 
7 4.28 
8 4.25 
9 4.21 
10 4.23 
11 4.25 
12 4.29 
13 4.34 
14 4.42 







Concrete Crack (Skbto-Side shootings) 
Locations in meters, Travel times in miliseconds. 

Source bcations (X.2) Receiver W o n s  (X.2) 
O 0.1 1.2 0.1 
O 0.2 1.2 0.2 
O 0.3 1.2 0.4 
O 0.4 1.2 0.5 
O 0.5 1.2 0.6 
O 0.6 1.2 0.7 
O 0.7 1.2 0.8 
O 0.8 1.2 0-9 
O 1.0 1.2 1-0 
O 1-1 1.2 1.1 

Source nurnber= Sn. Receiver numbert Rn. Travel tirne$= TOT 
Sn Rn T-T 
1 1 -260 
1 2 .258 
1 3 -300 
1 4 -296 
1 5 .302 
1 6 -308 
1 7 -316 
1 8 .330 
1 9 -344 
1 10 -358 
2 1 -258 
2 2 -256 
2 3 -292 
2 4 -294 
2 5 -294 
2 6 -302 
2 7 -308 
2 8 -322 
2 9 -330 
2 10 -338 
3 1 -264 
3 2 -260 
3 3 -292 
3 4 -286 
3 5 -288 
3 6 .294 
3 7 -302 
3 8 .310 
3 9 ,322 
3 10 -330 
4 1 .268 
4 2 -262 
4 3 .288 
4 4 .284 
4 5 .284 
4 6 .288 
4 7 ,296 
4 8 .302 
4 9 .312 
4 10 .322 



Concrete Crack (Top to len-Side shootings) 
Locations in meters, Travel times in miliseumis. 
Source locations (X.2) Receiver h t i o n s  (X.2) 
0.1 O O 0.1 
0.2 O O 0.2 
0-3 O O 0.3 
0.4 O O 0.4 
0.5 O O 0.5 
0.6 O O 0.6 
0.7 O O 0-7 
0.8 O O 0.8 
0.9 O O 1-0 
1.0 O O 1.1 
1.1 O 

Source number= Sn, Receiver number= Rn, Travel times= T-T 
Sn Rn T-T 
1 1 .O28 
1 2 .O49 
1 3 ,070 
1 4 .O92 
1 5 -117 
1 6 .137 
1 7 -156 
1 8 .179 
1 9 -266 
1 10 .272 
2 1 .O52 
2 2 .O62 
2 3 .O78 
2 4 .O99 
2 5 .120 
2 6 -143 
2 7 -159 
2 8 -182 
2 9 ,266 
2 10 .276 
3 1 .O70 
3 2 .O77 
3 3 .O90 
3 4 -109 
3 5 ,128 
3 6 -149 
3 7 .166 
3 8 -188 
3 9 .268 
3 10 -280 
4 1 .O91 
4 2 -095 
4 3 .Io6 
4 4 ,121 
4 5 -138 
4 6 .159 
4 7 .173 
4 8 .195 
4 9 .270 
4 10 -284 

Sn Rn T-T Sn 
5 1 ,113 9 1 
5 2 ,115 9 2 
5 3 ,123 9 3 
5 4 ,138 9 4 
5 5 -153 9 5 
5 6,170 9 6 
5 7 ,185 9 7 
5 8 .206 9 8 
5 9 -278 9 9 
5 10 ,288 9 10 
6 1 ,136 10 1 
6 2 -137 10 2 
6 3 -144 10 3 
6 4 ,155 10 4 
6 5 .169 10 5 
6 6 -106 10 6 
6 7 .200 10 7 
6 8 .216 10 8 
6 9 .286 10 9 
6 10 294 10 10 
7 1 -157 11 1 
7 2 -158 il 2 
7 3 1 11 3 
7 4 -174 11 4 
7 5 1 11 5 
7 6 -200 1 1  6 
7 7 .212 11 7 
7 8 -232 11 8 
7 9 .294 11 9 
7 10 3 11 IO 
8 1 -176 
8 2 ,178 
8 3 -182 
8 4 -192 
8 5 .202 
8 6 .216 
8 7 ,228 
8 8 .242 
8 9 -302 
8 10 -314 



Concrete Crack CTop to right-Si shoatings) 
Locations in meters, Tmvel times in milisecoiids. 
Source locations (X, t )  Receivet bcaîions (X.2) 

0-1 O 1.2 0.1 
0.2 O 1.2 0.2 
0.3 O 1.2 0.3 
0.4 O 1.2 0.4 
0.5 O 1.2 0.5 
0.6 O 1.2 0.6 
0.7 O 1.2 0-7 
0.8 O 1.2 0.8 
0.9 O 1.2 1.0 
1.0 O 1.2 1.1 
1.1 O 

Source numbert Sn, Receiver number- Rn, Travel tirne* T-T 
Sn Rn T-T 

5 1 -156 
5 2 -159 
5 3 220 
5 4 ,222 
5 5 -230 
5 6 -242 
5 7 .254 
5 8 -272 
5 9 ,288 
5 10 .a0 
6 1 -135 
6 2 ,139 
6 3 .206 
6 4 208 
6 5 216 
6 6 228 
6 7 .244 
6 8 .262 
6 9 278 
6 10 -290 
7 1 . i l1 
7 2 ,116 
7 3 .191 
7 4 -193 
7 5 204 
7 6 ,216 
7 7 -232 
7 8 .240 
7 9 ,268 
7 10 .284 
8 1 .O92 
8 2 .O99 
8 3 .18û 
8 4 -185 
8 5 .194 
8 6 -208 
8 7 .226 
8 8 .246 
8 9 -264 
8 10 -280 

Sn Rn T-T 
9 1 .O70 
9 2 .O80 
9 3 -172 
9 4 -174 
9 5 -186 
9 6 -204 
9 7 .220 
9 8 -242 
9 9 258 
9 10 274 
10 1 -649 
10 2 .O63 
10 3 ,163 
10 4 -171 
10 5 -184 
10 6 .200 
10 7 .216 
10 8 -238 
10 9 -256 
10 10 .274 
11 1 .O28 
11 2 -048 
11 3 -162 
11 4 ,167 
11 5 -179 
11 6 ,199 
11 7 .216 
11 8 -242 
f 1 9 .252 
11 10 .270 



Concrete Column 
Locations in meters, Travd times in milisecorid 

Source locations o(,t) Receiver locations (X.2) 
0.05 

Source nuMer= Sn. Receiver number= Rn. Travel times= T-T 
T-T 

0.258 
0.256 
0.256 
0.258 
0.258 
0.258 
0.262 
0.264 
0.266 
0.274 
0.278 
0.278 
0.288 
0.294 
0.304 
0.308 
0.31 8 
0.328 
0.334 
0.344 
0.35 
0.358 
0.364 
0.26 
0.26 

Sn Rn T-T 
9 1 0276 
9 2 0.274 
9 3 0.27 
9 4 0.266 
9 5 0.27 
9 6 0.276 
9 7 0.264 
9 8 0.282 
9 9 0.29 
9 10 0.3 
9 11 0.306 
9 12 0.284 
9 13 0.284 
9 14 0.284 
9 15 0.292 
9 16 0.292 
9 17 0.3 
9 18 0.306 
9 19 0.308 
9 20 0.31 
9 21 0.314 
9 22 0.322 
9 23 0.348 

10 1 0.28 
10 2 0.274 









Kosciusrko bridge pier 
Locations in inches, Travel times in rnil i ind. 

Source locations OU) Receiver locations (X,Z) 

Source number= Sn, Receiver number= Rn, Travel times= TT 
Sn Rn T-T Sn Rn T-T Sn Rn T-T 
1 1 1.49 1 11 1.22 1 21 0.60 
2 1 1.34 2 11 1.27 2 21 0.68 
3 1 1.46 3 11 1.29 3 21 0.71 
4 1 1.33 4 11 1.28 4 21 0.85 
5 1 1.30 s I i 1-25 5 21 o n  
6 1 1.27 6 11 1.32 6 21 0.85 
7 1 1.26 7 Il 1.31 7 21 1.04 
8 1 1.19 8 11 1.27 8 21 1.21 
9 1 1.25 9 11 1.29 9 21 1.09 
10 1 1.22 10 11 1.28 10 21 1.21 
11 1 1.25 11 11 1.35 11 21 1-21 
12 1 1-15 12 11 1.34 12 21 1.32 
13 1 1-17 13 11 1.34 13 21 1.34 
14 1 1.09 14 11 1.34 14 21 1.45 
15 1 0.99 15 11 1.34 15 21 1.44 
16 1 0.91 16 11 1.28 16 21 1.51 
17 1 0.84 17 11 1.30 17 21 1.48 
18 1 0.76 18 11 1.17 18 21 1.47 
19 1 0.78 19 11 1.32 19 21 1-42 
20 1 0.68 20 11 1.11 20 21 1.35 













Chute Hemmings Dam. Locations in meters. Times in ms (only 164 rays) 
Data is revised. Locations are onginated to zero W40.5, H44.5 

Source locations (X,Z) 
O O 
O 1 
O 2 
O 3 
O 4 
O 5 
O 6 
O 7 
O 8 
O 9 
O 10 
O t l  
O 12 
O 13 
O 14 

Receiver locations ( X , f )  
2.36 O 
2.36 1 
2-96 1.8 
3.56 2.6 
4.16 3.4 
4.76 4.2 
5.36 5 
5-96 5.8 
6.56 6.6 
7.16 7.4 
7.76 8.2 
8.36 9 
8.96 9.8 
9.6 10.6 
10.2 11.4 

Source nuMer= Sn, Receiver number= Rn. Travel times= T-T 
Rn T-T 
1 0.889 
2 0.94 
3 1.21 
4 1.45 
5 1.80 
6 2.11 
7 2.05 
8 2.32 
9 2.39 
10 2.57 
11 4.18 
13 4.47 
1 0.90 
2 0.78 
3 0.97 
4 1.20 
5 1.40 
6 1.19 
7 1.49 
8 1.88 
9 2.08 
10 2.30 
1 1.35 
2 0.933 
3 0.979 
4 1.17 
5 1.38 
6 1.06 
7 2.23 
8 2.12 
9 2.33 
10 2.46 
11 2.98 

T-T 
2.20 
2.04 
1 -43 
1 -50 
1.67 
1 -56 
1 -42 
1.51 
1.67 
1 -78 
2-00 
2.1 7 
2.61 
4.19 
2-49 
2.41 
2.06 
2.02 
1.92 
1 -39 
1 -43 
1 -08 
1.60 
1 -63 
1 -79 

1 -98 
2.1 5 
2.86 
2.47 
2.38 
2.07 
2.01 
2.68 





Korean Demillarized Zone 
Locations in meters, Tiavel tirnes in seconds. 
S.L= Source Locations, RL= Receiver Locations 







R- L- (Ka s- L- (X t )  
15.2 7.3 O 26.2 
15.2 7.5 O 26-4 
15.2 7.7 O 26.6 
15.2 7.9 O 26-8 
15.2 8.1 O 27 
15.2 8.3 O 27.2 
15.2 8.5 O 27-4 
15-2 8-7 O 27-6 
15.2 8.9 O 27.8 
15.2 9.1 O 28 
15.2 9.3 O 28.2 
15.2 9.5 O 28.4 
15.2 9.7 O 28.6 
15.2 9.9 O 28.8 
15.2 10.1 O 29 
152 10.3 O 29.2 
15.2 10.5 O 29.4 
15.2 10.7 O 29.6 
15.2 10.9 O 29.8 
15.2 11.1 O 30 
15.2 11.3 O 30.2 
15.2 11.5 O 30-4 
15.2 Il.? O 30.6 
15.2 11.9 O 30.8 
15-2 121 O 31 
15.2 123 O 31.2 
isa 12s O 31.4 
15.2 12-7 O 31.6 
15.2 129 O 31.8 
15.2 13-1 O 32 
15.2 13.3 O 32.2 
15.2 13.5 O 32.4 
15.2 13.7 O 32.6 
15.2 13-9 O 32.8 
15.2 14.1 O 33 
15.2 14.3 O 33.2 
15.2 14.5 O 33.4 
15.2 14.7 O 33.6 
15.2 14.9 O 33.8 
15.2 15.1 O 34 
15.2 15.3 O 34.2 
15.2 15.5 O 34.4 
15.2 15.7 O 34.6 
15.2 15.9 O 34.8 
15.2 16-1 O 35 
15.2 16.3 O 35.2 
15.2 16.5 O 35.4 
15.2 16.7 O 35.6 
15.2 16.9 O 35.8 
15.2 17.1 O 36 
15.2 17.3 O 36.2 
15.2 17.5 O 36.4 
15.2 17.7 O 36.6 







Source number= Sn, Receiver number= Rn, Travel times= T-T 
Sn Rn T-T Sn Rn T-T Sn Rn 
1 1 0.003610 351 351 0.003856 701 701 
2 2 0.003618 352 352 0.003854 702 702 
3 3 0.003603 353 353 0.003869 703 703 
4 4 0,003588 354 354 0.003869 704 704 
5 5 0.003578 355 355 0.003876 705 705 
6 6 0.003562 356 356 0.003887 706 706 
7 7 0.003555 357 357 0.003887 707 707 
8 8 0,003552 358 358 0.003894 708 708 
9 9 0.003542 359 359 0.003899 709 709 
10 10 0.003542 360 360 0.003899 710 710 
11 11 0.003534 361 361 0.003887 711 711 
12 12 0.003532 362 362 0.003879 712 712 
13 13 0.003534 363 363 0.003874 713 713 
14 14 0,003542 364 364 0.003876 714 714 
15 15 0,003542 365 365 0.003879 715 715 

s- l- om 
O 24 
O 24.2 
O 24.4 
O 24.6 
O 24.8 
O 25 
O 25.2 
O 25.4 
O 25-6 
O 25.8 
O 26 
O 26.2 
O 26.4 
O 26.6 
O 26.8 
O 27 
O 27.2 
O 27.4 
O 27.6 
O 27.8 
O 28 
O 28.2 
O 28.4 
O 28.6 
O 28.8 
O 29 
O 29.2 
O 29.4 
O 29.6 
O 29.8 
O 30 
O 302 
O 30.4 
O 30.6 
O 30.8 

T-T 
0.003542 
0.003555 
0.003567 
0.003570 
0.003570 
0.003570 
0.003575 
0.003575 
0.003570 
0.003570 
0.003555 
0.003545 
0.003540 
0.003534 
0.003529 



T-T 
0.003854 
0.003838 
0,003843 
0.0038.36 
0.003838 
0.003838 
0.00384t 
0.003846 
0.003856 
0.003866 
0.003869 
0.003879 
0,003894 
0.003897 
0.003904 
0.003899 
0.003907 
0.003907 
0.00391 4 
0.003909 
0.003907 
0.003904 
0.003899 
0.003899 
O .OOWO2 
0.003904 
0.003894 
0.003879 
0.003871 
0.003859 
0.003851 
0.003859 
0.003849 
0.003831 
0 .O03826 
0.00381 3 
0.003788 
0 .O03740 
0.003742 
0.003729 
0-003724 
0.0037 t 9 
0.00371 9 
0.00371 4 
0.003722 
0.003722 
0.00371 9 
0.00371 Q 
0.003722 
0.003724 
0.003729 
0.003737 
0 .O03747 

T-T 
0.003522 
0.00351 7 
0.00351 4 
0.003514 
0.003514 
0.00351 2 
0.003509 
0.003509 
0.003509 
0.003507 
0.003507 
0,003507 
0.003504 
0.003496 
0.003496 
0.003481 
0.003476 
0.003466 
0.003453 
0,003451 
0.003448 
0,003443 
0.003446 
0.003448 
0,003443 
0,003443 
0,003443 
0.003446 
0.003451 
0.003451 
0.003446 
0.003443 
0,003446 
0.00345 1 
0.003443 
0,0041 20 
0.0041 30 
0.0041 37 
0.0041 43 
0.0041 30 
0.0041 32 
0.0041 43 
0.0041 43 
0.0041 32 
0.0041 22 
0.0041 25 
0.0041 20 
0.0041 10 
0.0041 07 
0.0041 1 2 
O.OO4lO5 
0.004089 
0.004089 



T-T 
0.003504 
0.003502 
0.003504 
0.003534 
0,003557 
0,003570 
0.003583 
0.003603 
0,003590 
0.003575 
0.003565 
0.003545 
0,003540 
0,003532 
0,003524 
0.003522 
0.003522 
0.00351 4 
0.00351 4 
0.003507 
0,003504 
0.003496 
0.003486 
0.003479 
0.003474 
0.003469 
0.003453 
0.003436 
O. 003433 
0.003420 
0.00341 O 
0.003405 
0.003405 
0.003403 
O -003398 
0,003395 
0,003397 
0.003394 
0.003389 
0.003393 
O.W3398 
0.003395 
0.003393 
0.003395 
0.003400 
0.003398 
0,003400 
0,003398 
0.003400 
0.003394 
0.003390 
0.003390 
0,003390 

T-T 
0,003745 
0.003745 
0.003745 
0.003752 
O .OO3?5O 
0.003750 
0.003755 
0.003752 
0.003750 
0.003747 
0.003747 
0.003737 
0.003737 
0.003742 
0.003745 
0.003745 
0.003745 
0.003734 
0.003737 
0.003734 
0.003737 
0.003732 
0.003724 
0.003724 
0.003704 
0.003704 
0.003707 
0.003709 
0.003702 
0.003707 
0.003709 
0.003704 
0.00481 3 
0.004808 
0.004808 
0.004803 
0.004793 
0.004793 
0.004790 
0.004793 
0.004798 
O,Oû4796 
0.004801 
O.Oû479ô 
0.004793 
0.004785 
0.004783 
0.004780 
0.004778 
0.004783 
0.004780 
0.004788 
0.004790 

T-T 
0.004084 
0,004074 
0.00406 1 
0.004056 
0.004049 
0,004041 
0.004028 
0.004028 
0.00401 3 
0.004008 
0,004003 
0.003998 
0.004001 
0.003998 
0.003996 
0,003990 
0,003998 
0.004001 
0,004006 
0.004023 
0.004034 
0.004049 
0.004054 
0,004054 
0,004054 
0.004054 
0.004054 
0,004051 
0.004049 
0.004056 
0.004064 
0-004084 
0,004092 
0.0041 05 
0.0041 27 
0,0041 27 
0.0041 40 
0.0041 43 
0.0041 48 
0-0041 48 
O.OWl48 
0.0041 48 
O.OO414tS 
0.0041 48 
0.0041 53 
0.0041 53 
0.0041 55 
0.0041 55 
O.OO4163 
0.0041 55 
0.004153 
0.0041 32 
0.0041 17 



T-T 
0.004785 
0-004783 
0.004773 
0.004765 
0.004768 
0.004768 
0-004768 
0-004763 
0.004755 
O-ûû4757 
O.ûû4768 
0.004775 
0.004773 
0,004770 
0.004775 
0,004773 
0.004768 
0.004755 
0.004745 
0.004735 
0.004666 
0.00471 9 
0.004722 
0.00471 4 
0.00471 2 
0.004709 
0,004699 
0,004694 
0.004689 
0.004687 
0,004681 
0.004681 
0.004681 
0.004679 
0.004681 
0.004687 
0.004684 
0.004676 
0.004676 
0.004674 
0.004674 
0-004679 
0.004676 
0.004684 
0.004674 
0.004671 
0.004674 
0.004676 
0.004666 
0.004666 
0.004674 
0-004664 
0.004664 

T-T 
0.004099 
0,004087 
0.004056 
0.004039 
0,00401 1 
0.004008 
0,004001 
0,003957 
0.003960 
0.003950 
0,003925 
0,003925 
0,003927 
0.003927 
0.003925 
0.00391 2 
0,00391 9 
0,003927 
0,00391 9 
0.003927 
0,003030 
0,003927 
0,003930 
0.003932 
0.003932 
0.003932 
0.003930 
0.003927 
0.00391 9 
0,00391 7 
0.003925 
0,003922 
0,003927 
0.003925 
0.003927 
0.003927 
0-003927 
0,003925 
0.00391 9 
0.00391 9 
0.00391 7 
0.003925 
0.003927 
0.003935 
0.003942 
0.003935 
0.00391 9 
0.0039t 4 
0.00391 9 
0.00391 4 
0.003902 
0.003899 
0.003889 



T-T 
0.003655 
0.003650 
0.003627 
0.003627 
0.003627 
0-003627 
0,003637 
0.003632 
0.003637 
0.003635 
0.003632 
0.003622 
0,00361 0 
0.003607 
0.003607 
0.003599 
0.003589 
0,003579 
0,003572 
0.003582 
0.003569 
0.003554 
0.003546 
0.003544 
0.003559 
0.003539 
0.003541 
0.003546 
0.003546 
0 ,003539 
0.003551 
0.003554 
0.003559 
0.003564 
0.003574 
0,003584 
0,003589 
0.003589 
0.00361 5 
0,003627 
0.003637 
0.003630 
0.003620 
0.00361 7 
0.003607 
0.003599 
0.003597 
0,003587 
0.003579 
0.003587 
0.003569 
0.003554 
0.003564 

T-T 
0,0046ô4 
0.004669 
0.004676 
0.004676 
0.004679 
0,004684 
0.004674 
0.004674 
0.004671 
0.004669 
0.004669 
0,004666 
0.004651 
0.004649 
0.004649 
0.004656 
0.004654 
0,004654 
0.004636 
0.004628 
0.004608 
0.004598 
0.004600 
0.004598 
0.004585 
0.004578 
0.004565 
0,004565 
0.004565 
0.004555 
0.004537 
0.00451 7 
0.004504 
0.004496 
0.004494 
0.004481 
0.004479 
0.004471 
0.004471 
0.004474 
0,004461 
0.004453 
0.004441 
0.00443a 
0.004425 
0,004433 
0.004431 
0.004433 
0.004438 
0.004436 
0.004433 
0.004436 
0.004436 

T-T 
0,003881 
0.003804 
0,003884 
0.003879 
0.003879 
0.003866 
0,00386 1 
0.00386 1 
0.003859 
0.003861 
0.003864 
0.003874 
0.003871 
0.003869 
0.003869 
0.003869 
0.003874 
0.003874 
0,003884 
0.003887 
0.003884 
0.003879 
0.003879 
0.003866 
0.003869 
0,003866 
0.00481 2 
0,004807 
0,004802 
0.004784 
0.004779 
0.004769 
O.OO47S 1 
0.004761 
0.004744 
0.004736 
0.004746 
0,00473 1 
0.004728 
0.00471 8 
0.004721 
0.00471 6 
0.004708 
0,004708 
0.004708 
0.004703 
0.004693 
0.004703 
0.004703 
0.004708 
0.004703 
0.004701 
0.004693 



T-T 
0,003564 
0.0035ô4 
0.003566 
0.003574 
0,003574 
0.003579 
0.003572 
0,003577 
0,003574 
0.003554 
0,003551 
0,003551 
0.003546 
0.003526 
0.00351 1 
0.00351 3 
0.00351 3 
0.003506 
0,003498 
0.003488 
0.003488 
0 .O03480 
O ,003470 
0.003465 
0.003452 
0 .O03450 
0.003457 
0,003457 
0.003445 
0,003445 
O .O03447 
0 .OOUSS 
0.003455 
0,003447 
0,003440 
0.003430 
0.003432 
0,003435 
0.003440 
0,003432 
0.003437 
O .O03435 
0.003435 
0.003435 
0.003427 
0,003427 
0.003447 
O. 003457 
0 .O03445 
0.003445 
0.003445 
0 -003440 
0.003435 

T-T 
0.004438 
0.009443 
0.004466 
0.004464 
0,004469 
0.004464 
0.004481 
0.00448 1 
0-004469 
O.ûû4474 
0.004479 
0.004494 
0.004484 
0.004489 
0.004499 
0.004496 
0.004486 
0,004481 
0.004476 
0.004486 
0,004476 
0.004466 
0-004466 
0.0038 1 4 
0.003791 
0.003793 
0.00378 1 
0.003778 
0,003770 
0.003768 
0,003760 
0.003758 
0,003763 
0.003770 
0.003770 
0.003775 
0.003773 
0,003765 
0.003755 
0.003750 
0.003743 
0.003740 
0.003745 
0-003750 
0.003753 
0.003763 
0.003773 
0.003770 
0.003778 
0.003778 
0.003775 
0.003770 
0.003758 



T-T 
0,003750 
0.003737 
0.003737 
0.003730 
0.003725 
0.003720 
0.003705 
0.003699 
0.003697 
0.003687 
0,003681 
0,003687 
0.003687 
0.003687 
0-003689 
0.003702 
0,00371 2 
0.00371 2 
0.003709 
0.003709 
0.00371 7 
0.00371 7 
0.003727 
0.003737 
0.003732 
0.003732 
0.003732 
0.003725 
0.003725 
0.003722 
0.003730 
0.003752 
0.003750 
0.003752 
0,003763 
0.003763 
0.003760 
0.003742 
0.003722 
0.003702 
0.003681 
0.003674 
0.003664 
0.003661 
0.003656 
0.003651 
0,003643 
0.003628 
0.003626 
0.003621 
O.OO36Y 6 
0.003608 
0,003598 



T-T 
0,003907 
0.003907 
0.003902 
0,003892 
0,003894 
0.003894 
0.003884 
0.003884 
0,003876 
O .O03879 
0.003876 
0.003879 
0,003874 
0.003866 
0.003861 
0.003856 
0.003854 

T-T 
0-003595 
0.003588 
0.003575 
0.003570 
0,003560 
0,003552 
0-003547 
0.003547 
0.003537 
0.003529 
0.003524 
0.003529 
0.003522 
0.003524 
0,003524 
0,003529 
0,003540 



APPENDIX F: Coimsponding Inversion 

Mathcad Files for All Case 

Histories 



Definitions n :=7 

ij :=l,n-n nh :=n 

Input File V :=READPRN(vûlsc) Vmiu :=min(V) 

Vmin r: 13262 Vmax = 16.137 

i s  := Vmin + (m- 1) Vmax - Vmin 
nh 





Input Fiie V :=READPRN(vb&) Vmin := min(V) Vmax :=max( V) 

Vmin = 1327î Vmax = 15-94 mean(V) = 14.253 

Vmax - Vmin H i s t o g ~  intm := Vmïn t (m- 1 1% histog :=hist(iat, V) 
nh 

20 Image 



VRESB2SN.MCD 

Enhancement Y.. :=z(v,,c~s~, 15.8 ,~~~)  V.. :=if ~ . - > ~ m u . ~ m a r , ~ . . )  
'J 1J ( 4 '1 

2 0  Image Ai.j :='ci- i,*r+j Bj.(i-i>+i :=Aivj 



Invertina Veloclty Fidd [BgUoon 21; a,= 300 

Ray Tmeing ( m n d  lyuatkn) 

Definitions n:=7 

ij := L ., n-n nh :=a 

Input File V :=READPRN(vb2scr) Vmin :=min(V) Vmax := max(V) 

Vmin = 13.8 Vmax = 23-73 xneau(V) = 16.729 

Histogram 

20 Image 



VRESB2SR.MCD 

The chop~ff threshold value is selected based on cornputed value for the highest velocity in the medium. 

Enhancement V.. := if(vij ~235.235, vij) 
Y v-. IJ : = X ( V ~ ~ > V ~ ~ X , V ~ ~ X , V . .  IJ 1 

20 Image %., :=Vci- il.&+i B j.(m-i)+l :=%.j 



Def initions n:=7 

ij := 1 ,, n-n :=II 

Input File V := READPRN( vb3sc) Vmin := min(V) 

Vmin = 13.875 Vmax = 14269 

Vmax - Vmin i q  :=Vmin+ (m- 1)- 

20 Image 



VRESB3SN.MCD 

Enhancement V.. :=i€(~~,d4.8.14.8. vij) 
'J v.. 13 :=~(v~>vinu, vma~, vij) 

2 0  Image 5.j '=v( i- L)+*+, B j . (a - i )+~  '='?.j 



Input File V := READPRN(vbl6) Vmin :=&(V) 

Vmin = 13.429 Vmax = 15564 

VLUX - Vmin in, :=VI&+ (m- 1)- 
nh 





Defmitions n := 10 
ij := 1 ., n-a & :=n 

Input Fik V := READPRN( vcrkss) Vmin := min(V) Vmart :=max(V) 

Vmin = 4.098 Vmax = 6.894 man(V) =SB65 

Vmax- Vmia 
Histogram "r= :=Vmin+(m- 1)- llb histog :=hist(int, V) 



Enhancement V.- := if& cvmin. vmin, Vq) V. := if(vq>6.. 6.. vij) 
IJ IJ 

20 Image %,j '='(i-  LI-^+^ Bj.<m-il +l :=%.j 



Enhancement 

20  Image 

Iniüaivebcity=4ûû 

n := 10 i : = L n  j:=l,n 

ah :=n m:=l..nh k:=L,ab- L 

V := READPRN(vcrltl) Vmin := mia(V) Vmax :=marr(V) 

Vmin =O Vmax = 1.613 mean(V) = 0.724 

v.. := i€(vij<vmin, vmin. VJ v.. :=K(V~>V~~C.V~~X.V~~> 
'J 'J 



k 0.01 

Defimitions 

ij :=l..a.n 

Input File 

Initiai vekcity= 000 

a := 10 i := l . ,n  j :=Ln 

nb :=n m:=l,nh k:=l,nb- 1 

V :=READPRN(vcrlrtr) Vmin :=mio(V) Vmax :=mm(V) 

Vmin =O Vmax = 1.797 meaa(V) =0.728 

v.. 'J :=it(vi.tvmia.vmm.v..) 
1 V.. := it(vpmax. vmut , VJ 

IJ 

Vxnax - Vmin inm :=Vmin+ (m- 1)- histog :=hist(int, V) 
ah 



Input File V :=READPRN(vcdoc) Vmio :=mh(V) Vniax :=mart(V) 

Vmin = 4.189 Vmax r4.84 mtan(V) r4.514 





VRSCONCR-MCD 

Definitions n := 12 i :=L,n j :=I,,n 

Input File V := READPRN( V) Vmin :=min(V) Vmax := max(V) 

Vmin = 2.1 19 Vmax = 5.486 nïeap(V) =3.867 

Histogram Vmax - Vmin intm :=Vmin+(m- 1)- 
nb 



VRSCONCR.MCD 

The chopoff threshoid value is selected basecl on computed average velocity and assumhg îhat the wave 
velocity in the confme concrete is more than 3.5 km/s. 

Enhancement V.. :=if(v.. 4 imin .  vmin, vu) 
'J 'J 

V.. := ~(~~23.7.3.7, vij) 
'J 

20 Image %.j '= '(i- :=A, 
B(n-i)+i.j t . j  



Definitions a := 15 

ij := 1 ,, n-n nh :=n 

Input File V := READPRN(vk0s) Vmin :=min(V) Vmax :=max(V) 

Van = 93.13 Vmax ~383 .08  man(V) = 174.225 

Histograrn Vmax- Vmin iurm :=Vmii+(m- 1)- histog := hist( int, V ) 
nh 

Image 



Histogram 

n := IO i :=l..n j :=1..n 

:=n m:=l,& k:=l..nb- 1 

V := READPRN(vbcm) Vmin:=min(V) Vmax :=max(V) 

Vmin =O Vmax = 6.79 -(V) =2-705 

V.. := if(v.. cvmin. Vmin, vij) 
'1 1J vij := i€(vij>vLMX. vma~. v ~ )  



Input File V :=READPRN(vkor) Vmin :=uiin(V) Vmax :=max(V) 

Vmh = 609.749 ~ m s x  = 1.018~ ld -(v) = 726.737 





VRESKORN-MC0 

V.. :=i€(~~t600..600..~.-) 
'J 'I 

V.. := if(vii>65o.. 650.. v ~ )  
'1 

. - 
%.j '=v(i- t ) - d + j  B j . ( a + ~ -  il+* *-Ai.j 




