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Abstract

The United States and NATO Allies have a national security problem that is the product of America

being the home of inexpensive and plentiful modern energy. A century of cheap and plentiful

domestic supplies of oil has resulted in the architecture of civilian and military systems that are

premised on the continued availability of cheap, high gradient conventional energy.   As the pre-

eminent military power of the last century, America ensured that access to secure “rear” areas, bases

and supply lines can be relied on – at least until recently.   With the increasing prevalence of

asymmetric warfare conducted primarily with non-state actors and the loss of America’s monopoly on

precision munitions (PGMs), or in the event of conflict with peer competitor states, security of supply

lines, staging and rear areas can no longer be taken for granted. For expeditionary forces, supply of

conventional liquid fuels represents a sizable amount of tonnage required to transport combat units to

battle and conduct operations. Supplies are primarily conveyed by inherently vulnerable platforms

like tankers and stockpiled in difficult to harden warehouses or dumps.  While there is no shortage of

petroleum or conventional fossil energy worldwide, the sheer volume of fuel presently needed to

conduct modern expeditionary military operations itself creates vulnerabilities. The DoD and

individual services have in place long-term programs to reduce the energy intensity with valuable

lessons for NATO allies as most military systems and doctrine are patterned after DoD architectures.

Transfer of techniques for reducing energy intensity from defense to the civilian sector has spinoff

benefits overall; for example, by making operations in remote locations such as the Arctic / Antarctic

more affordable and practical, and enabling a more energy / resource efficient civilian economy.

Benefits from reduction of energy use include the reduction of signatures from energy use that are

expensive and difficult to mask or hide, potentially reducing vulnerabilities in both the military and

civilian infrastructure.

Despite these benefits, legacy systems architectures in both defense and civilian limit energy

efficiency gains.   Technological advances of the past century have enabled many functions such as

HVAC and lighting to be met with low gradient, low density and intermittent energy if systems are

re-architectured. New designs, if standardized and rolled out quickly, offer the potential to benefit

from making use of renewables like solar, wind, micro-hydro, or to use conventional high gradient

energy more efficiently in combined cycle systems that often can be locally sourced even for remote

forward operating bases. Low gradient energy systems, by their nature, present a smaller emissions
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signature issue.  US-DoD has an opportunity to drive the development of the implementation of these

high efficiency technologies and institutions and accelerate their spread to the civilian economy.

This thesis presents a vision of a technically, politically, economically and logistically viable pathway

to a cleaner and more sustainable alternative to current dominant energy systems architecture and

provides a roadmap to implementation.
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Chapter 1
More Missions, Sustainability & Survivability for Less

“Necessity Hath No Law”

- Oliver Cromwell

The military as an institution is uniquely capable of sweeping reform in the face of necessity.   There is,

however, no pressing need for change when the United States remains the sole superpower and is unlikely

to be legitimately challenged by any other regime or existential threat in the first half of the 21st Century.

Existing conventional and Weapons of Mass Destruction (WMD) systems are superior to anything that

can be potentially fielded by an adversary for the foreseeable future. Energy needed to operate these

systems is derived from natural resources, such petroleum, natural gas or minerals, which are widely

available at modest prices on the world market.   Critically, America is on the path to total energy self-

sufficiency, and, within a decade, will likely become a net exporter of petroleum and shale gas.  Thus, at

least on the domestic sphere, there is no obvious necessity to alter national energy strategies in either the

civilian or military sector. The only current motivators are handling climate change and the anticipated

decline in the defense budget in the aftermath of the post 2008 fiscal environment.1

Policies to mitigate and adapt to climate change is a priority for the US-Department of Defense (DoD).

President Obama signed Executive Order (EO) 13514 on Oct. 5, 2009 that now requires all US Federal

Agencies to conserve resources, improve sustainability, reduce greenhouse gas emissions (GHG), and

produce annual reports documenting their progress. Typically exempted from environmental regulations,

the DoD was for the first time included in the EO, which directly complements its longstanding interest at

DoD in improving energy security and improving cost effectiveness. As the largest single consumer of

energy in the United States, the DoD’s contribution to increasing energy efficiency and reducing

greenhouse gas (GHG) emissions is critical to the overall national effort. The question is whether there

are sufficient mission, survivability and / or sustainment-enhancing motivators to ensure energy

conservation2 and efficiency should become a major priority at the DoD.

The issue of energy efficiency and conservation goes to the heart of DoD’s ability to perform its missions

at a time of shrinking budgets and rising costs. Improvements in efficiency directly translate into a
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simpler logistical “tail”, the vast and integrated infrastructure that supplies the “teeth” of the military,

from weaponry and machinery acquisition and development, to transportation and planning support ---

these services require complex supply chain management to ensure material readiness. Simplifying the

supply chain reduces both energy and cost expenditures, increasing resources over the longer term,

improving both flexibility and responsiveness to meeting mission requirements. These are clear benefits

to the DoD, whether “on base”, such as search and rescue, or in expeditionary warfare.

The true beneficiary of energy reform may be in the area of improving survivability.   Reduction in

energy consumption, specifically through implementation of more efficient systems that make better use

of exergy, directly contributes to survivability by reducing detectable electromagnetic and other

signatures emitted by energy producing, consuming and transmission systems. Benefits are achieved

indirectly by reducing the logistical tail. How is energy efficiency linked to stealthiness and, ultimately,

our survivability?

During the late 20th Century, the United States enjoyed a virtual monopoly on precision-guided munitions

(PGMs) that enabled missions to be accomplished with a fraction of the resources previously required.

Key to precision targeting is the ability to detect and identify signatures unique to the targets using

sensors, then process, interpret and act on the data.   Initially, such capabilities were monopolized by the

US, but over time, the capability became widespread.   A key reason is the changeover to using civilian

rather than military specification electronic parts for many systems.   When the Pentagon switched to

using Commercial Off-The-Shelf (COTS) based systems, particularly in electronics, it was able to take

advantage of the latest innovations in computing and commercial systems.   The “Perry Memo”3 written

by Defense Secretary William Perry in 1994 directed the DoD to purchase COTS components and

systems and to adopt commercial specifications and practices whenever possible.  This was formally

incorporated into law in the Federal Acquisition Streamlining Act (FASA, 1994), and in the Clinger-

Cohen Act (CCA, 1996) and elaborated on in Federal acquisition statues, regulations and directives.4 As

a result of the wholesale switch to COTS, the DoD cut back on its historical role of fostering

technological advances in the civilian economy via the “spinoff” model.5

The use of COTS initially enabled a major jump in capabilities while lowering costs; however, over time,

as the DoD gained experience with COTS, it became clear it would have to be more cautious and nuanced

in terms of the use of civilian technologies.   Notably, Gansler and Lucyshyn (2008) observed that the
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DoD now has little impact on COTS development and COTS vendors who make decisions based on the

need to remain competitive in fast paced and volatile markets, resulting in rapid shifts in availability and

obsolescence of components, which cripples development of long-lived systems. Moreover, many

commercial components are not engineered to meet security and environmental requirements; for

example, methods to improve stealth through temperature reduction (removing the heat signature targeted

by PGMs) is often achieved by adding a COTS cooling-unit, which expends more energy, rather than

reducing the heat expenditure, and ultimately the wasted energy, of the existing technology. In addition,

the commercial software expertise required to build code now resides outside the DoD.   COTS often

result in the DoD using proprietary architectures and standards, which results in long-term costs. Despite

these problems, generally, COTS have more positives than negatives, in particular, in enabling rapid rate

of technological change and reduction in costs as it is spread over a larger customer base.6

Over time, COTS have fundamentally changed the lay of the land in weapons systems. Using COTS

parts as the building blocks of military systems has enabled “open innovation” to a wide range of basic

technologies to any technically capable power. COTS have enabled PGMs to be developed and fielded

by any competent middle power, and often superior systems to be fielded by peer competitors.  Indeed,

the use of Improvised Explosive Devices (IEDs) in Iraq and Afghanistan foreshadows how far and fast

sophisticated capabilities based on consumer grade technologies have spread and how such rudimentary

systems can pose a major threat to major militaries.7 The widespread availability of PGMs mean that a

modern military can no longer be assured of secure staging areas and supply lines in the “tail” from

conventional, let alone nuclear threats. High tech sensors and sophisticated guidance and homing systems

can now be built out of and to target COTS parts. When guerilla forces have the capability to disrupt

supply lines and depots, a modern peer competitor will no doubt recognize that disruption of supply lines

is the best way to defeat an expeditionary force.  Stillion and Perdue’s 2008 study outlined how power

projection on the present model requires secure bases and seas.8 Competition in the age of intelligent

machines has shifted to this vulnerable area.   Adversaries that cannot count of defeating the

conventionally armed American “teeth” recognize that the “tail” is its greatest limitation.   Thus, we bring

the debate full circle to the weakest part of the system is in fact, the soft sided supply lines and “rear”

areas.

COTS-based systems have dramatically increased homeland vulnerability since the 1990s.   Whereas

nuclear war was regarded as a major risk and the ability to survive some effects of nuclear war a major
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consideration in pre-COTS revolution weapons systems, with the advent of COTS, at least in electronic

components, wholesale substitution of electronic parts with COTS semiconductor devices, particularly the

widespread use of MOS / CMOS devices in integrated circuits, resulted in a tradeoff against sensitivity to

known nuclear war effects such as Electromagnetic Pulse (EMP) and radiation.   This tradeoff was seen as

a very good bargain in the 1990s when the risk of an all out nuclear war was remote after the collapse of

the Soviet Union in 1989.  Substitution of COTS parts, and ultimately, the use of civilian microelectronics

allowed defense systems to enjoy the steady progress documented by Moore’s law.9 However, as systems

became more sophisticated and ran what became highly sophisticated software suites, the overall energy

consumption, particularly in electricity to run modern battlefield electronics grew exponentially. COTS

quickly became the only way that such large, sophisticated software suites could be run, and COTS

components, particularly CMOS, became dominant in most systems. While it is possible to improve the

survivability of metal semiconductor IC technologies, it is fundamentally difficult to harden them against

EMP and radiation – in the case of a nuclear, or even smaller scale, attack many defense-critical systems

would be rendered inoperable. To wit, Japan is recognized as a world leader in robotics, but yet could not

field a single radiation-hardened robot following the Fukushima disaster and had to secure them from

France and other nuclear powers.  While this state of vulnerability was acceptable at the turn of the 20th

Century, it is unacceptable in the current political climate.

The first decade of the 21st Century saw the expansion of nuclear weapons states beyond the original

“club” of US, UK, France, Soviet Union (Russia), and China; the world is upon what is termed a “Second

Nuclear Age” by Professor Paul Bracken.10 New nuclear weapons states, including India, Pakistan, Israel,

North Korea, and soon, Iran, are not likely to give up their nuclear weapons.  In a multi-polar world of

nuclear powers, it is unlikely that the dynamic that avoided war between the US and USSR will be so

readily duplicated.  The risk of nuclear war is real, and increasing over time.   What are the ramifications

for a modern industrial society? Technical limitations to shielding modern microelectronics mean that

only the most critical systems can be successfully shielded against reasonably foreseeable nuclear war

effects, and even then, it is by means of replacement of non-functional components with spares stored in

shielded warehouses. At the same time, recent introduction of conventionally pumped electromagnetic

pulse weapons means that localized disruption effects can be accomplished without crossing the nuclear

threshold. Finally, apart from direct military threats, our current systems are vulnerable to geomagnetic

storms, as seen in the 1989 corona mass ejection event that caused the collapse of the Hydro Quebec grid.

The world has been fortunate that we have not had similar and larger events since the beginning of the
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modern electronic age in the 1960s. All of these are issues that drive increasing concerns about the

vulnerability and fragility of existing systems and their heavy reliance on assured supplies of large

quantities of modern energy to function.

The vulnerability of defense energy systems goes beyond just COTS electronics and the need for secure

supply lines and bases.   The assumption that the United States and Canada can provide a rear-end safe

haven is no longer realistic if conflict broke out with a conventionally armed, let alone nuclear armed

middle power. Geographical barriers, such as oceans, mountains, and Arctic expanses, which formerly

limited conflict between North America and other powers are now bridgeable not just by a missile

equipped superpower like the Soviet Union, but by any capable middle power with or without nuclear

weapons. In other words, the civilian industrial base that supplies the forces is now no less vulnerable

than the homelands of Germany and Japan during World War II. Despite these changes, there is little

consideration to the issues of reducing, hardening or increasing the resilience of civilian infrastructure in

North America.11 Civilian systems, rather than becoming more resilient and hardened over time, have in

past decades, gone in the other direction, becoming more reliant on modern electronics and in the process

more fragile.

Vulnerability of North American civilian infrastructure arises from several major factors.  First, with the

exception of select infrastructures, most civilian installations are designed based on the premise that a

major disruption (whether natural or man made) will never come, and if there is a disruption, it will be

limited in duration and easily contained. Second, these installations are premised on North America

being able to plug into a worldwide network of suppliers, making it unnecessary to maintain strategic

stockpiles, with exception of a very select list of items (e.g. Petroleum reserves, etc.).   Third, the greatest

vulnerability comes from a long and well-entrenched history of low cost and abundant natural resources.

North America enjoys a rich endowment of domestic natural resources, such as clean, potable water (in

most areas), that are sold on an intensely competitive global market, resulting in extremely low prices for

most commodities.   What are the ramifications of this seemingly fortunate history?

Historically, low prices for commodities, including energy, have meant that North America, and the US in

particular, have incurred enormous economic benefits from low cost resource extraction facilitated by

rapid industrialization. Unlike most other jurisdictions, in which the resource belongs to the state, the US

has given property owners ownership of the resources on their land, making it simple to exploit the
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commodity market. Plentiful resources, however, had a perverse effect.  As the presumption of unlimited,

modestly priced resources was implicitly or explicitly assumed by architects of new systems, these norms

become engineered into the systems.   Once engineered in and standardized, it is extremely difficult to

make changes without explicit and compelling reasons.12 In the case of the defense energy systems, often

it is architectured with little consideration given to the true cost of sustainment at the point of final

consumption.

Thus, a gallon of fuel has, until very recently, been treated by Defense logistics as a commodity that is

acquired at market price in a secure base or staging area. Logisticians are only now calculating the actual

“delivered” cost of fuel and supplies required for sustaining a force in a remote area. It is quickly

becoming clear that the delivered cost is in fact far above the “market price” even before the cost of

enemy action is taken into account.   Now, while these economics apply to DoD, what about the civilian

sector?

In theory, the DoD is free to adopt different practices and standards from the civilian economy, and

generally will do so for weapons systems and specialized expeditionary equipment.   But in practice, the

DoD, like any government agency, is driven by bureaucratic rules of procurement that while allowing

wide latitudes for unique government specifications, in practice, “go with the flow” and adopt many de

facto civilian standards. For example, with exception of hardened facilities, there are no special

standards for basic infrastructure components like lighting, plumbing, and electrical systems, for much of

base operations. The DoD, with its unique capabilities to understand costs and with its critical mass, can

play a leading role in change.

The DoD has historically played a leading role in many technical advances that revolutionized the

American economy.  The innovations fostered by DARPA (Defense Advanced Projects Agency), such as

the internet, are probably the best known.  But what about advances in the area of energy?    Because

America is the home of the modern petroleum industry, secure domestic energy supplies that are safe

from distant enemies has always presumed and remains firmly embedded in the American consciousness.

Twice in the 20th Century, the US went to world wars without having to be seriously concerned with the

supply (as distinct from transport) of petroleum-based energy for its expeditionary forces.  The only other

power that shared a similar set of circumstances was the Soviet Union.   The Axis powers in World War



7

II had to constantly plan their war around the availability of fuel and logistics.   America’s plentiful

domestic energy supplies beget lackadaisical attitudes toward energy security.

American defense strategy only became concerned with the supply of oil as American oil production

peaked and the US became a net oil importer in the 1970s.13 This has, in turn, resulted in decades of

military involvement in the Middle East that included at least two major wars and the diversion of

American interests to maintaining stability in a volatile area with vital suppliers.  What’s more, the

dependence on imported oil fueled booms in Mexico, Venezuela, and Nigeria, each creating unique

security challenges for the US in these regions.

Up until the early-mid 2000s, it was presumed by many analysts that America was passé as an oil

producer, and that increasing dependence on imported energy was all but certain over the longer term.

This all changed, first, with the shale gas explosion, then followed by the shale oil revolution that saw

American oil and gas production reverse its trends, placing the US squarely on the path to becoming a net

Oil and Gas exporter by about 2020.   In other words, there is no longer a compelling economic case for

the US to materially alter its present mineral resource-based energy system - except to address GHG

reduction and the military and national security issues discussed above.

On the other hand, there is a compelling case that can be made that natural resources, and energy

commodities in particular, are grossly underpriced by the current economic and political regime.   The

underpricing of resources is a direct function of what economists will term “perfect competition”14, which

is appropriate for civilian needs, but problematic when national security is considered.   This thesis will

examine the historical reasons why current energy markets are structured as they are, how we got to

where we are today, and what the issues are with respect to transitioning to a structure that can

simultaneously reduce energy intensity, cut greenhouse gas emissions, and achieve improvements in

security goals at the same time. It is important to reiterate that there is no economic reason for the

civilian energy sector to make such a transition.  In fact, relatively minor changes to the extant system

(e.g. improving fuel economy of the US car and truck fleet, replacement of thermal coal power generation

with natural gas, selective use of carbon capture and sequestration, etc.) would probably be sufficient to

meet national GHG emission goals. However, there are compelling national security and defense

rationales for taking up this challenge from a military perspective. Chapter 2 addresses the dimensions of

the issues from a number of analytical perspectives, showing how institutions matter, and how broad-
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sweeping technological and policy transitions are intimately constrained by existing institutional

arrangements.   Chapter 3 addresses issues inherent to the dominant commodity-based high gradient

energy infrastructure and the challenges it poses to change.  Chapter 4 examines how new institutional

arrangements can alter, for the better, the current high gradient commodity-based energy infrastructure.

Chapter 5 applies these ideas in select areas that demonstrate the potential gains we can achieve from

institutional change.  Chapter 6 concludes by tying together the issues and relating them to how and why

the DoD must be a driver in this process.
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Chapter 2

The World As It Is

Modern militaries run primarily on liquid hydrocarbon fuels, or rely almost exclusively on traditional

stationary sources of grid power, such as hydro, coal, natural gas, and nuclear generated power.  In

peacetime, the defense energy system complements the civilian energy system.  While defense

establishments may maintain their own separate generation and distribution systems and have the ability

to activate dedicated capabilities to supply needs “in theater”, the basic source of fuel relies on the same

mineral deposits, refineries, and distribution and storage systems as the civilian sector.   Thus, it can be

said that vulnerabilities encompass not just the “teeth”, but the entire “tail” as well once it is

acknowledged that an adversary can strike at the “rear”. Thus, technical and strategic challenges

experienced in the civilian sector are also key challenges for defense; this is particularly true in the 21st

century as more and more regimes attain the ability to strike at the supply chain.

The supply chain for modern energy systems that primarily15 rely on “fossil” 16 fuels is one of the greatest

achievements of industrialization.   Around the world, present “fossil” fuel-based energy systems

accounted for 81% of primary energy production in 201017.   On a daily basis, modern energy systems

provide food, enable transportation and comfort, and fuel industry and commerce at a modest and

affordable cost worldwide.18 However, the system’s reliance on “fossil” fuels is responsible for more

than 90% of Carbon Dioxide (CO2) emissions around the world.19 Thus, limiting and reducing CO2

emissions central to the problem of addressing Greenhouse Gas (GHG) emissions and climate change go

hand in hand with reduction in the use of “fossil” fuels in net carbon emission cycles.20 Despite

concerted international action that resulted in the United Nations Framework Convention on Climate

Change (UNFCCC) signed in 1992 and subsequent agreements like the Kyoto Protocol (1997), it is

generally recognized that as of 2013, the world is not on track to halt the growth of CO2 emissions, let

alone reduce them.21 While emissions have been slowed somewhat after the global slump in 2008,

formulations by economists, such as the Kaya Identity22, have closely linked GHG emissions with
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economic and population growth, suggesting that any progress made will soon be lost as the world

economy recovers. Put together, the ongoing economic slump experienced in the European Union

(EU),23 formerly fast growing economies like China and India,24 and every OECD economy25 in the

aftermath of the downturn that began in 2008,26 the failure to reach agreement on legally binding

international emission targets in 2011 at Durban,27 and finally, Canada’s withdrawal from Kyoto

commitments28 have raised serious questions as to the likelihood of success in reaching a binding treaty

by 2015.   This history of policy failures has also raised questions as to whether “(t)his catastrophic and

ongoing failure of market economics and the laissez-faire rhetoric accompanying it (unfettered choice,

deregulation, and so on) could provide an opportunity to think differently about climate change.”29

This thesis presents a vision of a technically, politically, economically and logistically viable pathway to a

cleaner and more sustainable alternative to current dominant energy systems architecture and provides a

roadmap to implementation. This chapter will begin with an overview of the institutional properties of

the extant Integrative Panel on Climate Change (IPCC) regime, noting the theoretical and practical

limitations of branches of neo-classical economics30 that dominate current political dialogue,

demonstrating that the extant Framework Convention’s implementation31 is an institutional problem32,

rather than a technical, engineering, or logistical failure that has prevented the energy and climate change

issues from being effectively addressed in a timely manner. This thesis will then outline from, an

institutionalist perspective, how the DoD can lead critical change toward an alternative energy systems

architecture.  Such a new architecture must simultaneously address the issue of climate change, and

produce sustainable and affordable energy in a way that is technically and logistically feasible, rapidly

deployable33 and yet meets economic, fiscal, political, technical, and other constraints of the post 2008

recession era.34

2.1 Climate Change Mitigation as an Engineering Challenge

Climate change and efforts to mitigate it are engineering,35 or applied science, problems first, and an

economic36 problem second.  Many of the predicted impacts from climate change, ranging from rising sea

levels and flooding of low lying areas, to managing water resources in the face of too little or too much

water, are historically central to the domain of Civil and Environmental Engineering and the design of

new energy infrastructure.37 However, the engineering profession often takes a back seat to
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environmental issues.38 Engineers, after all, work for clients and within the broad limitations of legal and

professional obligations, the customer ultimately decides on the budget and assigns resources the task;

only then can engineers determine what can be built economically.39 The scope of the engineering

profession incorporates into it economics, and is defined as follows:

“The profession in which a knowledge of the mathematical and natural sciences gained by study,

experience, and practice is applied with judgment to develop ways to utilize, economically, the

materials and forces of nature for the benefit of mankind” (ABET)40

The definition begs the question of what economics?41 Engineers had been building structures,

machines, and devices long before the advent of modern Neo-classical economics in the late 19th and early

20th centuries.42 Ideas of what constitutes “economical” allocation of resources have changed over time

and space, and with them, what constitutes the art of the possible as defined by the applied economics43 of

the time.    Thus, the practice of engineering is often, but not always, limited by the dominant economic

paradigm, which is itself a subset of the neoclassical economics synthesis in UNFCCC. Many practical

areas of engineering, such as defense and combat engineering, are tasked to achieve outcomes using

resource allocations that sharply deviate from civilian economic constraints and ideas of acceptable cost

or economics.44 This leads us to a central problem of any major civil or environmental engineering

project:  the dimension of policies, rules, regulations, laws, protocols, standards, and tried and true ways

known in the profession as “Recognized Generally Accepted Good Engineering Practices” (RGAGEP),45

which every practicing Engineer must be cognizant of and practice in accordance with – institutions.

2.2 Institutionalism

Institutionalism46 is an analytical and operating perspective that makes the presumption that “rules

matter”.     Institutions are defined as the body of rules, regulations, norms, RGAGEPs, specifications,

standards47, and architectures48 that every practicing engineer must heed in his/her practice. Rules can

matter even if they don’t make any sense, rules can take on a life of their own and become their own

raison d’etre.49 The domain of engineering is replete with examples of persistent and unreasonable

adherence to rules that have far-outlived their original justifications. For example, the QWERTY

keyboard, which is now a world standard50 for input of written words into electronic devices, is the

product of an optimization patented in 1878 for a manual typewriter. The QWERTY keyboard was

specifically engineered to sufficiently slow the touch typist’s input to prevent the mechanical type bars

from jamming, a technical advantage that is no longer necessary.   Yet, decades after the passing of the
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manual typewriter, and in fact, well into the era of handheld devices and smartphones, a keyboard layout

originally designed for ten finger, two handed touch typing on mechanical machines continues to be

installed in electronic touchscreen devices, despite the negligible cost of and frictionless ability for the

same devices to switch to a different, more optimized layout.51 The switching cost often seems

impractical to operators and users who are familiar with the old layout and have no compelling reason to

learn a new one.   In the same vein, civil engineers must routinely design to meet building and fire codes

that were established long ago, often for reasons that are obscure, sometimes forgotten, and may have no

relevance to the problem(s) at hand. The notion of “rationality” and “optimization” are, in an engineering

sense, not necessarily relevant when such practices require major changes to the RGAGEP.   Things are

often completed as they have always been completed, and established designs or architectures are often

simply copied because it is deemed unnecessary to revisit the underlying rationale for the rules.

Revisiting, or questioning, the rules can be an uneconomic and risky (both professionally and practically)

process when the exigencies of having to complete projects on time and under budget is a priority.

Perhaps the most compelling of rules, or constraints, is what the customer is able and willing to pay for

and the simplest way to fulfill the minimum requirements with a minimum of effort.52 Deviations from

RGAGEP often involve risks, as unknowns are introduced for which there is insufficient experience in the

field.  Such risks are often not uncovered until it becomes a major problem.53 Finally, there is the inertia

of acceptability and convenience.  Any newly designed and architecture system, particularly in the

manufacturing sector, must be validated, tested, and critically reviewed prior to getting new regulatory

approvals, and so on.  Only then will creators and engineers discover whether the new design is actually

what customers want, and will therefore buy.  The specter that a customer may reject a product that is too

different or too much ahead of its time is a major concern.54 It is not surprising that many designs that

are not strongly and effectively protected by intellectual property laws are widely copied.   Very few

engineering designs are developed from a “clean sheet”.

2.3 Public Policy / Government Dimension

Large-scale civil engineering projects have always required some form of coordinated allocation of

resources toward the project at hand.  Coordination and diversion of societal resources toward a goal or

goals is not a trivial task; it is a complex political process, requiring sound planning and execution which

are every bit as important as a sound technical / engineering architecture. These policy processes are often

conducted in the non-market domain and are not necessarily based on a notion of rationality, let alone the

narrow rationality characterized by “the economic man” presumed in neoclassical economics.   A
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neoclassical economics version of market allocation is neither necessary nor sufficient to enable large-

scale projects55 to be done.  Indeed, a case can be made that any major engineering exercise that requires

an “up front” commitment of a large percentage of societal resources is inherently ex ante56 in its nature

and inherently non-market.   It is not surprising that in ostensibly market economies, large segments of the

economy, such as defense, are recognized as primarily non-market in nature.57 Likewise, large-scale

flood control,58 energy and infrastructure projects, or the control of emissions59 (including GHGs) in the

US, are often undertaken via primarily directed /regulatory rather than market measures, using ex ante

rather than ex post methods of coordination.60 In other words, it is unlikely in many cases that major

civil engineering projects will be conducted without the involvement, acquiescence and direct support

from the competent authority in a jurisdiction. Large-scale civil engineering projects by their nature

require the participation of the government in some shape or form and are unlikely to be done by private

parties,61 unless it involves hybrid partnerships that bring together both public and private sector

stakeholders.62 That, in turn, takes us to the role of governance structures in large organizations.

2.4 Interests / Stakeholders

Many large organizations, whether a state or a large corporation, provide (at least on paper) enormous power

to their nominal leaders, potentially just one or a few people. In large modern organizations, behind the

“face” of every major governance structure are found collections of interest groups.63 The more pluralistic an

organization or more diffuse its power, the greater the importance of these interests. Interests come in many

forms, ranging from diffused, difficult to assemble and unorganized groups, to highly organized groups that

are capable of collective action that can stymy the nominal leader of the organization.   Crafting a successful

policy requires that, at the very least, no interest groups with veto power are mobilized to do so and interests

that benefit can be assembled to “push” the project through.64 The present stalemate on efforts to reduce

carbon emissions via policy instruments such as Feed-in-tariffs (FIT), Renewable Portfolio Standards (RPS) /

Renewable Fuel Mandates (RFM) or subjecting “fossil” fuel to Carbon Taxes or Cap and Trade programs is

an example of how policy formation can be tied up in gridlock despite the marshaling of well-organized and

dispersed economic interests that benefitted from the schemes.65

2.5 Logistics

From antiquity onwards, engineers have practiced logistics management as a part of any engineering

practice.66 Yet, advocates of “clean” and “sustainable” technologies have paid scant attention to the issue of

logistics. For example, proposals put forward to move 100% of the world to renewables by 203067 (21 years
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from date of publication) without detailed logistical plans that give details on necessary resources and

implementation plans are not only overly optimistic, but are unlikely to be feasible once laid out as a proper

project.  On the other hand, the other end of the continuum that argues that energy infrastructure is long

lasting and that displacing it in 50 years is impossible may be overly pessimistic.68 History informs us that

when major governments are driven by the imperatives of survival, typically in war, the impossible often

rapidly becomes the actual.69 Whatever solution proposed must be cognizant of the logistical burden

implied, and identify how bottlenecks can be moved to expedite the program.  An engineered, as opposed to

a theoretical and speculative solution, cannot leave logistics to hope or chance, but has to subject it to

validation - from simulation to overcome normal project management issues to tangible achievement of

outcomes70 that deliver at least substantially what was promised. Engineered solutions can also be perfected

over time.71

2.6 History Matters

The preceding identification of institutional factors raises the question of “so what”?  How are the

constraints of institutionalism relevant to engineering problems?  Can the engineering community plausibly

ignore these issues in deference to a preferred focus on scientific principles and tried and true “Generally

Accepted Good Engineering Practice” (GAGEP)?   Perhaps. During much of the last century, basically from

the 1950s onwards, there was a long period of institutional stability.  Indeed, institutions, particularly in

energy, remained remarkably unchanged despite major transitions into the age of electronics and information

technology. 72 Small, often obscure, institutional changes can have enormous impacts not only for those who

understand the change, but often, as the law of unintended consequences informs us that not all outcomes can

be foreseen, even by the most perceptive observers. To recognize the importance of these factors

epistemologically requires historiography.  History, however, cannot be assumed to be efficient.73 Many

artifacts of history, especially in engineering, remain stubbornly unchanged despite the self-evident benefit

that will finally come from changing them.  For example, to this day, Japan presently operates two

incompatible electric grids, one based on 50hz for Tokyo and eastern Japan, and a 60hz grid for the rest of

the country.74 Likewise, there is no method other than historiography to explain how the world failed to

standardize on either left or right drive-side vehicles; instead we have ended up with two incompatible

standards that are likely to persist as long as the “standard” motor car remains in service. 75 In order to craft

practical and feasible engineering solutions, recognition and understanding of the relevant history is often

necessary to define the art of the possible.
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2.7 Feasible Policy Making

The problem of crafting feasible, implementable policy leads us to its components:

 Scientific-Technical / Engineering feasibility;

 Acceptable Economic / Financial / Resource allocations;

 Law / Regulatory / Public Policy considerations;

In a pluralistic76 system77, the constraint of a solution acceptable to interests or the willingness to override

“hold out” interests is required.  Finally, the proposed program must be logistically plausible, at least at

the outset.78 Once a consensus79 is crafted and implemented, it is likely to persist for decades or

generations, and unless it is disrupted or made obsolete80 by later architectures, it remains working.81

Applying this analytical framework to the UNFCCC deliberations using an institutionalist approach, it

becomes self-evident why nations have had so much difficulty committing to legally binding targets in the

absence of proven feasible pathway(s).  First, it is not at all clear that a large-scale conversion of present

energy systems to “renewables” is practical or even technically feasible.   Smil demonstrated that while

such transitions can happen quickly in the case of relatively small communities,82 transitions in larger

communities tend to take generations.83 Second, the cost of conversions based on known and deployable

technologies like solar and wind renewables have proven to be substantially higher than conventional

“fossil” sources even after large price declines as in the case of solar since 2008.84 With the decline in

prices of natural gas and oil, and the use of hydraulic fracking85 to exploit formerly inaccessible resources,

prices of both natural gas and oil are plunging as large deposits like the Bakken shale formation comes on

stream86.  The declining public appetite for subsidies to “renewable” energy in most OECD nations and

recognition of the blight caused by large renewable installations is a major issue.87 Any attempt to

transform an energy system on a large scale must reckon with the architecture of the existing system and

resolve the issues and interests associated with it.88

2.8 Compatibility and Conflict with Existing Interests

This is one of the most neglected aspects of major institutional transformation: how the existing interests

are arrayed, and how change might come about --- whether existing interests are defeated, sidelined,

coopted, or accommodated.   Two phenomena are observed.  One is compatibility that eases the pathway

to the new world, which was the case in the transition from sail to steam power for merchant and

warships.  Steam power initially found its way in niche-market merchant applications and gradually
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improved. Hybrids enabled more rapid adoption of what was then an untried and unreliable technology

(steam boilers fired by coal), which ultimately, as it improved, enabled heavier and larger vessels to be

built that ultimately, replaced the sail.89 The transition from on-site steam engine to off-site electric

power generation (a distance away) was eased initially by the replacement of local steam engine

technologies with a similar output, single large electric motor that distributed its power via belt galleys,

and over time, as the price of individual motors fell, replacement of the belt galley with individual motors

at each station, and ultimately, a motor at each device until motors became commonplace.   Transitions

can also be rife with conflict, as was the case during the phasing out of coal in UK.90 The transition from

manufactured gas to natural gas in the UK can result in both patterns.91

2.9 Energy Industry Architecture

The world energy system architecture has remained largely stable and unchanged92 since the 1950s. It

consists of many elements, from law, rules and regulations, interests, as well as technical and engineering

standards.   Standards apply to particular attributes and can be open, proprietary, or a mix of the two.  In

general, standards are published (even if they are private93), while a system’s architecture can be implicit.

IEEE 147194 defines architecture as:  “fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and evolution”. 95 Specifically,

it identifies these elements:

"Architecture" names that which is fundamental or unifying about a system as a whole; the set of

essential properties of a system which determine its form, function, value, cost, and risk.

An architecture is a conception of a system – i.e., it is in the human mind. An architecture may

exist without ever being written down. Therefore, the Standard distinguishes architectures and

architecture descriptions: just as it is said, "the map is not the territory", an architecture

description is not the architecture. An architecture description is what is written down as a

concrete work product. An architecture description represents an attempt to express a conception

of a system to share with others. The focus of the Standard is on requirements on architecture

descriptions.

An architecture is understood in context – not in isolation. To understand a system's fundamental

properties (i.e., architecture) is to understand how the system relates to, and is situated in, its

environment. Often, the architect cannot know what is fundamental about a system without
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knowing fundamental to whom? Therefore "fundamental" is to be interpreted in the context of a

system's stakeholders in its environment.

Finally, there are some things that an architecture definitely is not. An architecture is not merely

the overall structure of physical components that make up a system. While physical structure can

be fundamental to a system, it need not be.”96

Architecture is important because in most practice areas, engineers are not free to create new

architectures.   However, new architectures can readily be created in new industries.  For example, new

architectural models are being rapidly created and obsoleted in the present internet era.97 In the energy

industry, systems have stabilized to several “dominant designs” or architectures.

What is a dominant design or architecture?   It is the outcome of a three-phase process model described by

Abernathy & Utterback (1978-94):

 Fluid Phase:

Innovations begin with a fluid phase that encompasses both technological and market uncertainties.

 Transitional Phase:

Customer needs become understood and standardization emerges, leading to a dominant design.

 Specific Phase:

Characterized by the market coalescing into segments, specialized products are produced for every

segment with performance and cost as competitive drivers.

In the field of energy, dominant design, or architecture has emerged in the major electricity, natural gas,

petroleum, and nuclear energy segments. The incumbents that have thus far been displaced on the path to

modern energy were fuels like wood (displaced with coal, oil, etc.) and animal fats like whale oil for

illumination (displaced with kerosene), and fodder like oats (displaced by electricity powered vehicles or

petroleum fueled vehicles or coal / wood fired steam).98 The architecture of the world oil industry was

defined by several key events, the present day significance99 of which is often lost except to historians.
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Each of the major energy segments: oil & gas, electricity, and nuclear, arrived at a common architecture

by the 1950s, and since that time, no new set of architectures has emerged despite the proliferation of

renewables like solar, wind, and biomass energy. The question is, does the current architecture fit a world

trying to transition to cleaner and renewable energy sources that are fundamentally different?
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Chapter 3

Energy Industry Architecture

Oil is not the oldest form of modern energy in widespread use (coal is), but it is the one source of primary

energy that has had the most impact on the psyche of the world and a geopolitical impact that is second

only to nuclear energy.  The earliest modern adopter of oil as a fuel was the United States, which

discovered that it was sitting on plentiful supplies of petroleum --- often no more than a short dig into the

ground --- in the 19th Century.100 Oil was first used to extract kerosene, which substituted for whale oil as

a lamp fuel.101 Only later did oil begin to replace coal as a boiler fuel, and much later, after the invention

of the internal combustion engine, as a motor fuel.   Compared to almost any other commodity, oil is

extremely versatile, efficient, easy to handle102 and cheap;103 these factors were sufficient to alter

geopolitical paths of the British Empire in the 19th Century. At that time, the British had to secure intra-

empire supplies104 from Mesopotamia for its Royal Navy to support conversion from coal to oil fired

vessels, and ensure all potential choke points in transit, such as the Strait of Gibraltar, the Suez Canal and

the Strait of Hormuz, were in friendly hands. This ultimately led to a century of extensive western

involvement in the Middle East as a vital oil supplier. Early in the 20th Century, Japan became dependent

on oil imports from the plentiful deposits in Texas, which were shipped through the Panama Canal and

then California. Many Japanese regarded the American oil embargo against the Empire of Japan105 as the

proximate cause of war against the United States.106 The US and its allies have gone to war with major

oil suppliers, including both Iraq and Iran, and have a longstanding security guarantee with Saudi

Arabia107 --- the world’s largest oil suppler.   One can hardly imagine a commodity108 in greater demand

by the global community; nations dedicate significant resources to obtaining, securing and defending the

their oil supplies. Oil has indeed, shaped empires and altered the course of world history. This will be a

continuing trend, as it defines economies, societies, and becomes a major factor in whether goals for

sustainable development can be met.   How the world arrived at its present oil industry architecture is

essential to understanding how it can be transformed in the future.
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3.1 Managed Markets, Property Rights And Petroleum History

Petroleum began as a free market industry in a manner unique to America.  Whereas in most areas of the

world, mineral rights are the property of the sovereign, America, after it overthrew its King109 and in the

case of Texas, after secession from Mexico, enacted a different set of property regimes that granted

mineral rights to the property owner.110 This dynamic enabled rapid expansion of the oil industry and

exploitation of this invaluable natural resource. Since the only “deal” that had to be made was with the

surface property owner, and these land owners were then able to take their new found wealth to start new

companies --- often in the same industry --- it is unsurprising that the exploitation, overproduction, and

ultimately the depletion of this resource was swift. Overproduction has been a major “problem” since the

earliest days of the American petroleum industry.  By the early 1930s, with oil production growing

explosively in East Texas, prices fell from $3.50/bbl, to $1, and bottomed out at 5 cents a barrel.

Operators continued to produce because 5 cents is preferable to zero111, which resulted in the Texas

Railroad Commission expanding their regulatory role from railroads to oil and gas pipelines to becoming

the regulator for, at first, oil produced in Texas beginning April 1931112, and under President Roosevelt’s

New Deal, the lead US oil industry regulator under the umbrella of the Interstate Oil Compact

Commission beginning in 1935 with the mandate to both conserve resources and, in the case of Texas,

regulate supply via proration.113 Thus, the oil and gas industry has from its inception had to contend with

the failure of market forces to simultaneously ensure “best practices” for production while conserving and

protecting the supply. When American oil firms moved abroad, they brought this modus operandi with

them and again, unsurprisingly, replicated the domestic US characteristics of overproduction on the global

scale.

3.2 Energy and Anti-trust

Anti-trust law predates the rise of modern industry and was not initially targeted at the energy industry;

however, oil and other cartels have became the biggest targets of US anti-trust law, which formed the

basis of competition policy throughout the Organization of Economic Cooperation and Development

(OECD) after WWII.114 Since oil producers could not control supply and crude pricing during this early

stage in the American oil industry, refining and distribution (e.g. oil pipelines, service stations)

represented the most lucrative value-added activities. This was particularly the case for the Standard Oil

Company, which controlled much of the oil refinement and distribution effort.115.   These and other

“combines” monopolized the refining and distribution of oil and other commodities through rail

connections that often represented state-regulated monopolies.   Fear of these large combines and their
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market influence predate the rise of modern energy.   The US Congress responded quickly to these fears

by passing a series of legislative acts, including the Sherman Antitrust Act (1890),116 which would

effectively break up these monopolies and prevent market dominance by a few large terms. Electricity

went through its formative years, culminating in the “current wars,”118 which ultimately resulted in the

triumph of AC current over DC for almost all applications and then the standardization on the 120VAC-

60hz standard in US, followed by many provinces in Canada.   Once that happened, electric utilities were

successful in making the case that they are a “natural monopoly,” using the precedent of railroads

incorporated by acts of Congress119 beginning in 1907 in Wisconsin120.    Rather than being prohibited as

was previously done, electric utilities became legalized monopolies, and in exchange for their legal status,

came under government regulation to ensure that the consumer was protected and the public interest was

served.   Thus, electric utilities have service mandates that require that all customers within a jurisdiction

be served in accordance with rules set by the regulator.  Prices were set to give a reasonable rate of return

for investors in the case of privately owned and operated utilities, and in the case of public utilities, a rate

was established that was defensible for politicians. This system of regulated monopolies (either public or

private121) is now the model used almost universally around the world.122

Standard Oil, was successfully sued by the US Department of Justice and broken up into 34 separate

companies in 1911. This sharply constrained the margins in refining and distribution as the segment

became competitive --- a pattern that persists to this day --- while at the same time increasing the margins

available at the production / exploration side as refineries competitively bid up the price for oil.   The

“Seven Sisters”123 that resulted from the breakup of Standard Oil recognized this, and over time, exploited

their strength as large integrated oil companies with the technical and financial capacity to exploit large

oil deposits anywhere around the world and to survive the cyclical nature of a commodity business.   The

majors became pioneers in the global hunt for oil in remote places, which undercut domestic US

producers.124

One long lasting feature of the “robber baron” era of petroleum dominated by Standard Oil was the

patchwork of state laws in the US that required prices to be posted at filling stations, which ultimately

resulted in the general industry practice of posting prices inclusive of all taxes and charges125 at almost all

retail outlets.  Another feature from the early era of petroleum marketing was the ubiquitous “sight glass”

that was, until the 1980s, standard on every fuel pump.   The sight glass allowed customers to visually see

the product being sold and confirm that it is not turbid, cloudy, etc. which gives a good indication of how



22

widespread product adulteration was in the early years of petroleum retailing.126 Profit margins,

however, at retail outlets have gradually been squeezed down since the days of integrated service, and the

business of retailing gasoline is now a low-to-negative margin business that relies on the sale of

convenience items or other services for its profitability.127 Yet, customers perceive petroleum retailers

and the oil business as being highly profitable across the entire value chain.128 An industry that is

modestly (or minimally) profitable is not an industry that can be pressed to finance a major change in

architecture.

In the US, the largest oil companies of today, including Exxon, Mobil, Amoco, and Chevron,129 date back

to the breakup of Standard Oil. Around the same time, Britain decided to maintain competition with at

least two major oil suppliers.131 The natural gas industry, by and large, followed the same growth pattern

with regulated monopolies that regulated the transportation of supplies, but with competitive suppliers

that “fed” the pipeline.   Coal, which is by its nature dominated by relatively large mines and expensive to

transport long distances, largely conformed to this pattern. Electricity all became regulated monopolies.

This industrial pattern was to remain largely stable until the advent of deregulation in the 1990s.

3.3 Nuclear Energy – New Institutions

Once it coalesced, the relatively stable industry structure of the energy industry was not upset by the

USSR’s introduction of nuclear energy in 1954.132 Exploitation of civilian nuclear energy, however, did

require the passing of the Atomic Energy Act in the US and equivalent legislation in other countries that

enabled the civilian sector to gain access to technologies developed by the US military.  Notably, the act

limited a licensee’s liability.133 This is consistent with the model previously discussed whereby the

introduction of major new technologies and infrastructure tends to require new laws and regulations, or

institutional arrangements even though in this case, it was a relatively simple integration of a new

technology with well-defined and compatible characteristics into an existing electricity generation and

distribution infrastructure.

3.4 Energy Industry Deregulation

The relatively stable infrastructure of modern energy survived many crises throughout the OECD.  In

North America, deregulation, which originated in the 1970s with liberalization of controls in finance,

transportation, energy, and communications134, only reached electric utilities in 1992135.   In the US, oil

was subject to price controls between 1971-1980 while a windfall profits tax was levied on crude oil
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between 1980-1988.136 Similarly, in Canada, the National Energy Board regulated oil prices until the end

of the National Energy Program (NEP) in 1986.137 Electricity deregulation began in 1992 in the US, and

the movement ultimately spread throughout the OECD with varying degrees of implementation hurdles

and outcomes.   Innovations introduced since that time include time of use metering, and certainly for

commercial buyers, greatly increased competition in energy supply.   However, deregulation has, by and

large, had minimal impact on many salient characteristics of the energy industry that have remained the

same since its inception.    The most basic of these characteristics is the provision of a commodity,

indistinct product of high gradient, reliable energy at modest prices.

The most defining “signature” characteristic of the modern energy system architecture is low prices for a

high quality138, reliable and consistent product139.   In any reasonably well-governed nation, and certainly

in any OECD nation, it is a given that supplies of conventional (oil, gas, electricity) energy are plentiful

and widely available at market prices, despite natural disasters or emergencies.   An intricate system of

mutual aid and support through multilateral organizations like the International Energy Agency (IEA) and

International Atomic Energy Agency (IAEA) ensures that member states can count on mutual aid,

support, and emergency assistance.  This system has been reasonably successful in ensuring that when

major suppliers like Iraq, Kuwait, Iran, Libya, and the US Gulf Coast, were disrupted by war, natural

disaster, or other events, sufficient supply was never an issue.140

3.5 Conventional Energy Product Characteristics

The conventional energy industry has three major product lines for the end user: i) Petroleum-based fuels

like gasoline and diesel, ii) natural gas or similar gaseous fuels like propane, and iii) electricity generated

from a mix of fuels (nuclear, hydro, coal, natural gas, etc.) with “renewables” or “clean” fuels accounting

for a very small portion of total energy consumed.141 Regardless of the product line, the defining

characteristic of these products is that it is a high quality, high energy gradient142 product.  Furthermore, it

is mostly derived from primary sources143 that typically demonstrate high energy density and stability,

specifically in terms of throttleablity / dispatchability. Or, in the case of grid electricity, for all but major

commercial customers, electricity utilities virtually guarantee that they can meet demand --- brownouts

are not acceptable.  A natural gas or oil-fired gas turbine can be throttled from idle to full power in a very

short time, as can a gasoline / diesel internal combustion engine.  Civilian nuclear reactors like the

Canadian CANDU, however, are less throttleable unless they are engineered for the purpose as with

reactors originally designed for motive power.
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3.6 Customer Perceptions

The notion that high quality, high gradient energy from conventional sources is an undifferentiated

commodity is reinforced by many institutional factors.  At the most basic level, retail customers of the

product are constantly reminded that it is an undifferentiated product.  After all, the product is delivered in

bulk by a pipeline to their home (Natural Gas), via a “grid” (electricity) to a common, standardized outlet

that supplies electricity to devices, or is pumped into a vehicle (gasoline / diesel). This strongly reinforces

its image as an undifferentiated commodity144 product, where the only difference is price, which is

conspicuously posted outside every retailer.145 The constant reminder that price is the only differentiator

makes it difficult for the customer wedded to motorized transports based on the internal combustion

engine to avoid the cost of paying for fuel146 --- which is generally purchased without cash discounts.

Add to this the politicization of energy prices nearly everywhere around the world.    “Fossil” fuel

subsidies that price fuel below market levels at retail outlets are widespread in oil exporting countries in

the Middle East, but also in populous nations with fast growing demand like China and India.147 At the

same time, monopoly electric utilities that enable politicians to have a say in electricity prices

simultaneously provide for politicization of the rate setting process, while at the same time, with public

utilities, offer politicians the well-known benefits of being in charge of running a large state owned

enterprise.    Energy subsidies, much like subsidies for food and housing, which have a large base of

beneficiaries, result in populist sentiments that are easily stirred up by any obvious change, namely

reductions, to the subsidy.   There is no easier or better way in a pluralist system to foment unrest than to

make apparently large and abrupt changes to prices of subsidized products once the populace has become

accustomed to the subsidy.148 In effect, the conventional energy system’s dominant architecture has

become a victim of its own delusions of plenty.   By historically making their product / service available

for low prices, they have encouraged long lived systems149 to be built around the belief in continued long

term availability of cheap energy, which in turn, is upset by any changes to the customers’ expectations

for low cost and readily available product.  That leads us to the problem of price volatility.

3.7 Energy Price Volatility

Fuel prices are strongly influenced by the raw materials themselves, accounting for a large percentage of

the total cost.   Petroleum and natural gas prices, like many commodities, are often volatile.   Volatility in

prices is a boon to commodity traders and insiders, who stand to make trading profits on the volatility.

At the same time, volatility to the extent experienced by the petroleum industry, which is more volatile

than 95% of the commodities sold in by domestic US producers between 1945 to 2005150 has had perverse
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effects of making oil (or gasoline / diesel) prices a political issue everywhere, yet volatility has continued

and persisted.

There are many causes of oil price volatility, from the high fixed and low variable costs of most producing

oil and gas wells and distribution infrastructure and a similar high fixed low variable cost structure at

many coal mines in the US; the unique role played by the small volume of physical oil behind the most

common indexes of West Texas Intermediate Crude (WTI) and Brent Crude, low option contract margins

required at the exchanges where crude is traded, which makes it easy for traders to manipulate the

prices.151 The industry structure of low-to-modest margins at refining and distribution in turn contribute

to the rapid transmission of price swings from wholesale to retail. Furthermore, displaying prices for retail

fuel on prominent placards in front of nearly every store provides customers with a degree of awareness of

current prices, sensitivity to price increases and enables politicians to exploit political populism unlike any

other commodity --- the same politicians who rarely mention that taxation on energy is in fact one of the

largest stable and reliable sources of revenue in most OECD nations.   When managing retail energy

prices becomes the task of politicians, predictable consequences follow.

Regulated utilities, on the other hand, have generally moderated electricity and natural gas price swings

through a combination of building surcharges into the rate structure, long term contracts with suppliers,

and using a portfolio strategy where a mix of technologies and sources are used - diversification of the

supply mix. Energy retail customers, especially in applications like space heating and cooling, can find

themselves technologically locked into an energy source for decades or longer and given switching costs;

they have little recourse short of major retrofits or moving.152 Deregulation was supposed to bring

greater choice to customers, which appears to have worked well in many non-energy policy areas;

however, in the electricity sector, many North American customers, when given the choice, elect not to

choose.153 Customers are in general very satisfied with the cheap, commodity product that is widely

available for their energy needs.

3.8 Too Cheap To Meter

The energy industry can be said to be almost utility like in its organization.  To understand this, it may be

best to consider a similarly functioning utility that is less often in the news, but just as vital to everyday

life:  water.   The provisioning of water has historically seen many forms, ranging from a public works

based model used by ancient societies like Rome, China, and India, to the semi-private model used in
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London around the 19th century that evolved into a publically operated utility early in the 20th Century

until it was privatized again in 1989.    The basic idea behind the Anglo-Saxon utility model is that it is a

bounty from God. It is nature’s wealth over which man has dominion.  Natural resources are for man to

exploit for common benefit.  Therefore, those involved in providing services to transport it from its source

(the river or well) should only be paid a nominal sum for conveying something that is essentially free for

anyone who wanted to take the trouble to do so themselves.  The charges for water should only be for the

reasonable costs of collecting it, giving it whatever treatment is necessary to enhance its purity (in essence

aiding the natural process of purification), and then distributing it.154 Thus, a water works should provide

affordable, and in essence, nearly free water. We can contrast this model of water provisioning to places

where water is extremely scarce, for example, in 19th Century Arabia. Sources of water, namely natural

springs or wells that are few and far between, are tightly controlled by the governing authority and

jealously guarded only for the use of the sheik and their tribe.

How does the Anglo-Saxon water works model handle extreme scarcity when water demand greatly

exceeds local supply?   It is resolved by large-scale public works similar to the Roman model of building

aqueducts.  Great feats of engineering are done to bring water supplies from distant sources to satisfy

demand.  Dams are built to store and hold water, or deep wells sunk to obtain ground water. For much of

human history, civil engineering projects have generally kept up with demand and ensured a plentiful

supply of water nearly for free, at least in the western world.   This is despite a sharp rise in population

and an enormous increase in the standard of living that made such luxuries as water closets and daily

baths a normal part of life.   The purest expression of the success of this model is the universal availability

of clean, potable water, and the carefree nature with which water is used (in the Western world).155 In

many parts of Canada, water is so plentiful that at one time, municipal water authorities, including in

Toronto, offered “all you can eat”, or unlimited use meters based on the pipe diameter.   It is this model

that other utilities have sought to emulate.156

3.9 Energy As Utility

Historically, energy is scarce.  The chart below illustrates the amount of energy from just before the

industrial revolution to the present.   Energy before the industrial revolution came mostly from biofuels,

accounting for just a little over 20 gigajoules a year until the industrial revolution was underway.  Per
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capita energy use exploded again around 1960 when it reached the 70gj range; it is now on a path to rise

sharply again.157

Figure 2. World Per Capita Energy Consumption158

The energy utilities’ aspirations to mimic the water utility to cheap, nearly free product for all, was best

illustrated by the hopes shared at the beginning of the nuclear energy age in the Chairman of the US

Atomic Energy Commission, Lewis Strauss’s speech:

“Our children will enjoy in their homes electrical energy too cheap to meter... It is not too much

to expect that our children will know of great periodic regional famines in the world only as

matters of history, will travel effortlessly over the seas and under them and through the air with a

minimum of danger and at great speeds, and will experience a lifespan far longer than ours, as

disease yields and man comes to understand what causes him to age.”159

While many cited this remark with derision, it was reasonably and plausibly based on the facts available

at the time.160 In the United States, the completion of the Hoover Dam in 1936, followed by the Colorado
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River diversion and its aqueducts, which were largely completed by 1947, ensured water supplies for a

parched American southwest and greatly assisted the rapid economic development of California and other

states along the Colorado River’s watershed.   From an Ontario perspective, the Great Lake states

provided essentially limitless water and the completion of the Niagara Falls Hydroelectric Generating

Plant in the 1950s ensured virtually free power, excluding the cost of construction and nominal

maintenance charges.  It is interesting to note that many Municipal hydro utilities in the 1970s did in fact

offer unlimited use, all you can eat plans for residential hot water heaters --- not exactly as Lewis Strauss

promised, but certainly close, and well before the advent of nuclear energy.  Thus, it was not at all a pipe

dream that energy could have been too cheap to meter at the time the speech was made in 1957.   While

this dream was not realized in its entirety, the industry came close.   Energy costs per unit, measured by

wholesale prices before taxes in real dollars, are now lower than a century ago.161 All of this is achieved

within an energy industry that earns a modest profit for its efforts.162 While the system is not without

flaws, it is one of the greatest achievements of mankind that to this day and works well for the world. The

question is: Why change it?

3.10 Energy and Government Revenue

From the perspective of governments, modern energy systems are a great blessing because the industry

provided so many benefits to its customers at such a low price that it is possible to impose high levels of

taxation without materially changing demand.163 The industry also has many choke points where it is

possible to assess and collect taxes easily and efficiently at relatively low collection costs.   It is not

surprising that taxation on oil and gas, electricity is a stable and reliable source of revenue for many

governments. The International Monetary Fund estimated that the “fiscal breakeven” for many Middle

Eastern oil exporting states requires oil at over $130/bbl while the current IMF outlook has oil prices for

2012 at about $115/bbl.164 Royalties and revenues from oil and gas are the elixir that enables survival of

many oil exporters, and they have grown accustomed to the bounty.  Few countries have invested their oil

revenues wisely and as resources deplete, have witnessed the petrodollar rush decline.   On the

consumption side, petroleum products are heavily taxed in most oil consuming countries.  Electricity is

taxed either directly or indirectly, as a government directed enterprise whose resources can be diverted to

achieve political objectives.165 Governments, thus, whether producers of energy or generators (via

public monopolies) or collectors of taxes on the sale and use of energy, are among the biggest

beneficiaries of the system of cheap energy. This leads us to the Jevon’s Paradox for Governments

(JPG),166 which states that: reduction in the use of energy has the perverse effect of lowering revenues
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from a reliable stream that has relatively muted cycles compared to the overall economy, unless there is

growth in demand.   Governments have a strong vested interest in the maintenance of the system of cheap

energy and growing demand.   Should the price of energy rise to the point where demand becomes elastic,

governments stand to lose tax revenues. Few commentators recognize this fundamental conflict of

interest that drive government behavior.167 Talking conservation is cheap, and throwing a few hundred

million at programs makes for good public relations, but any sharp decline in energy consumption, for

example from adopting super-efficient hybrid vehicles, is an attack on the tax base.

3.11 Old Architecture, New Challenges

There is no compelling reason to change the energy industry’s architecture, with the exception of CO2 /

GHG emissions.   Arguments have been made that natural resources are finite168 and eventually there will

be issues relating to peak oil and depletion; however, the foreseeable next 20 years will not be an issue.169

In the relevant range for engineering purposes, the world energy system is nowhere close to facing the

problems of depletion put forward from Malthus to the Club of Rome’s early reports.170 Nor does the

argument for exponential growth prove compelling in the absence of evidence that such growth will

continue unabated until it fails, rather than taper off toward an S curve as is common in many natural

systems.171 The problem of exponential population growth straining resources is not known for

certain.172 What then, can motivate our government to create a new, more sustainable energy

architecture?

The reasons to create a new energy architecture, do not have to be economic (e.g. cheaper),173 more

secure,174 or compelling.  Time and time again in history, decisions to do the “right” thing turned out to be

for the wrong reasons, and the proximate cause for action, like “The Great Stink” that caused the

construction of sanitary sewers in London had nothing to do with the problem at hand, which was cholera

caused by sewage contaminated drinking water.   At that time, the science was not well established or

accepted by the governing elites even as the problem was solved.175 Thus, history tells us that there is no

necessary reason to wait for science to become undisputed before acting.  Acting before the science is

well established, in the tradition of engineering, or doing the right thing for the wrong reasons, as long as

it works, is at the heart of engineering.
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3.12 Energy and GHG Emissions

Reductions in GHG emissions and the absolute amount of “fossil” energy use goes hand in hand. “Fossil”

fuels reduction also directly impacts the world’s largest economies, which at present, have no viable

alternatives.176 It is empirically self-evident that the world energy system is intended to serve only a small

population, namely those of the OECD population and a select minority of the global elite out of a

population of 7 billion. Expanding the number of users who can afford to build, operate and benefit from

the present “fossil” fuel-based energy system under the existing industry architecture will cause GHG

emissions to explode further --- as has already happened in China.177 Everywhere in the developing

world, it can be seen that the advent of economic development results more often than not, in replication

of consumption patterns of the OECD nations adjusted for per capita or individual incomes rather than

invention of new, more appropriate architectures and systems.178 Indeed, increased wealth often results in

a brief transitional phase where, e.g., in transportation, use of scooters was widespread, and with the next

incremental increase in wealth, large scale moves to the world “standard” car.   Homes and offices acquire

local, then central heating and air conditioning and other creature comforts, and in due course, the entire

suite of energy intensive western tastes is transferred.179 The Chinese example illustrated how the decline

in energy intensity occasioned by the use of more efficient, modern industrial processes, etc. is dwarfed

by the increase in usage brought about by prosperity.180 The power, or should we say influence of the

developed world in setting architectures, standards and tastes can be seen by how follower nations

struggle to do something different, and in the end, end up with the same basic architecture.  This is also

illustrated in the auto sector; for example, the Indian Tata Nano --- a revolution in low cost auto

manufacturing and distribution --- that for all its creative genius, retained the same basic 2+2 seating

layout as the world “standard” car.    Likewise, despite the presence of numerous new automakers in

China and literally hundreds of makers of motorcycles and scooters and the absence of innovation

inhibiting issues like tightly written rules and liability concerns commonly found in OECD nations, no

Chinese auto maker has successfully put forward a radically different architecture for personal

transportation.   This brings us back to the problem of architecture --- and the key role that architecture of

systems plays in defining the field, and with it, largely defining the boundaries and borders of the

possible.  A coordinated, OECD-led change in the energy systems architecture is the easiest way to lower

energy consumption and GHGs quickly. The next Chapter will focus on the challenges of architectural

change.
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Chapter 4

Changing Energy Intensive Architectures

Most of the world’s modern energy system architectures originated in the presently developed world.

While prices (absolute and relative) of resources are supposed to play a key part in stimulating change in

the economy, in reality, as noted above, it is not self-evident that agents respond to prices as readily as

economists presume once an incumbent system is architectured in.  A major change in the architecture of

an energy system faces the classic problem of innovators:  that the incumbent or traditional energy

systems using “fossil” fuels are already there, are established based on powerful interests, with a built out

infrastructure that was paid for decades or longer ago, typically when public opposition to new

infrastructure or major projects was much more limited, and now only requires modest upgrades and

changes to keep operating.    Against this backdrop comes the new entrant with products and services that

have little or no infrastructure, often with unproven or untried technologies that may or may not scale, and

with that, large measures of risks even at the best of times.  Moreover, many new technologies that are

meant to displace the incumbent are inferior based on the standard metrics used to evaluate the current

system181.  For example, there is no known way to overcome solar and wind’s intermittent nature; these

low energy density products will require conversion and concentration to “match” conventional energy if

fed into the existing high gradient182 energy system. Advocates of alternative energy such as solar and

wind have responded to this problem by making the argument that “fossil” fuels have negative

externalities183 (or their price does not reflect scarcity), that it is finite or depleting, and have further

argued that their product is cleaner184 and can be made comparably affordable with subsidies.

4.1 “Renewable” Energy Integration Architecture

The integration of “renewable” energy into conventional energy systems is at present, handled in two

principal ways.  Liquid “renewable” fuels such as ethanol or biodiesel, which are deemed practical and fit

for existing engines are permitted to be blended into the fuel supply in small amounts up to a mandated

maximum that the population of existing engines are able to operate on.    Electricity produced from solar

and wind are fed into the grid and blended with conventional sources of energy and sold through the
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existing grid distribution system.   While there are micro-scale experiments with systems that do not

depend on the grid or require integration into existing conventional energy systems (e.g, a hydrogen

fueled vehicle which requires an entirely new infrastructure), they are the exception rather than the norm.

This is the crux of the problem.  There is a fundamental misfit between the new sources of intermittent

and low gradient / density energy and the existing infrastructure devised and architectured for high

gradient, high quality conventional power.     One workaround is to use biomass as an intermediate

concentrator that produces a liquid fuel (e.g., ethanol, biofuel, wood pellets, etc.). This route has the same

issue but can worked around by having microorganisms do the work of energy concentration to create a

high energy density product. However, the economics of liquid biofuel production and their cost, which

is generally higher than fossil fuels, preclude the use of such fuels to compete with low cost grid power.

The problems of infrastructure incompatibility manifest themselves in many ways.   Solar energy that is

inherently low voltage DC is captured by photovoltaics that have to convert the energy to (a minimum,

above line voltage) or distribution transformer voltage (600VAC) service so as to feed into the grid and

then be distributed.185 Moreover, there is the problem of intermittency, and the nature of the

intermittency.  Solar energy does not match well with the normal grid peaks of early morning and late

afternoon / early evening commonly seen in North American grids, though there can be a good match

with air conditioning loads.  Wind, on the other hand, tends to be strongest at night, when demand is the

lowest.   That brings it to the issue of the fit between energy supply and demand.

4.2 Energy Demand Disaggregated

A century of producing commodity products has dulled the marketing sense of an entire industry.   Few

question the logic or legitimacy of the ideas that electricity from the grid that arrives at high line voltages

(100V+) and alternating current is the best method.   Let’s go back to the fateful decision that led to the

logic of this voltage and its modern version (110-240VAC).    The first major practical use for electricity

was lighting with carbon arc lamps.186 Carbon arc lamps187, and Edison’s carbon filament lamps in

particular, used a DC system with a centralized generating plant and required higher voltage than later

metal filament bulbs.   Edison wanted to compete with gas lighting and selected 100VDC as a

compromise between transmission efficiency of DC from a central station and lamp costs for his DC

street lighting system.188 This led to a bruising contest between Edison and Westinghouse, who opted for

the advantages of longer distance transmission of AC, which enabled larger generating plants further

away189 to ease voltage increases (and decreases) – there was much debate about the safety of each
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system.190 Elsewhere in the world, different considerations led to the standardization on 200V+ or

higher AC as the “standard” voltage for the grid.191 In heating, residences and commercial enterprises

standardized on using coal, oil, or natural gas in furnaces to generate heat. Much later, electricity was

introduced to operate refrigerators that replaced the ice box, and later supported air conditioning.   Home

electronics that were vacuum tube based initially required high gradient power.  Transportation, likewise,

standardized on the internal combustion engine using petroleum products and only in select instances (e.g.

underground railways) were other modes of energy applied.    Vehicles standardized around one of 6, 12,

or 24V DC for low voltage (non-motive) applications such as headlamps.192 The effect of this

standardization on high gradient energy was profound. Early on, most of the applications required high

gradient energy, but as incomes rose and energy became more and more affordable, it became

increasingly used in other applications including those that have no necessity for high gradient energy.

The standardization meant that alternatives that might have become competitive economically were

crowded out by the relentless expansion of the electric grid and cheap energy --- abetted by mechanisms

like the regulated monopoly structure that, in effect, enabled the capital costs of expansion even to remote

communities to be subsidized by existing customers.193

The question that arises from the institutionalist perspective is, “what changed”?   On the demand side, an

explosion of applications beyond street lighting that would be unimaginable to Edison, his high gradient

voltage standard meant that many applications that may have only required low gradient energy are

instead using high gradient, high quality powered stepped down to meet their needs.    For example, in

North America, home heating, water heating, and clothes drying of large electricity consumers are often

powered by grid electricity.   They are all applications that generally only require low gradient energy ---

perhaps water heating requires “step up” once cold water is warmed to near room temperature.

Furthermore, many of these applications can be relatively insensitive to intermittency.194 There is no

technical reason why a majority of these needs cannot be met with low gradient, low quality energy.

Furthermore, where the low gradient energy involves heating or cooling, there are opportunities to store

heat in technologies such as geothermal (in ground) heat storage, which can take advantage of both daily

and seasonal fluctuations in heat that occurs naturally.195 Many applications, such as heating and cooling

can be designed around intermittent power. What about lighting and home electronics?   There is no

longer a technical reason why lighting requires high gradient energy.  Classical metal filament

incandescent light can operate, albeit inefficiently, at low voltages.   New technologies like semiconductor

lighting require only low or modest voltage DC to generate an intense, bright, light.196 Furthermore,
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semiconductor lighting can be rapidly switched on and off with effectively no impact on its lifespan, and

the light output is “instant on” in nature and can be paired with sensors and control systems to

automatically switch lights on and off as required. 197 In electronics, the wholesale replacement of

vacuum tube based devices with semiconductor technology has transformed the world into primarily low

voltage DC for a majority of electronic needs.198 The residual set of “by necessity” high gradient energy

used in an average household is for cooking and motors where the logic of transitioning from AC to DC is

not clear (washing machine, HVAC, etc.).    To sum up, the world has changed since the advent of

electrification and the advent of AC electricity in every home.    The standard AC grid system was a

brilliant and great achievement.    Its enormous success and low cost, and incumbent status, however, is

an obstacle toward new architectures.   Institutions are by their nature, hard to change --- especially when

they are incumbent, work reasonably well, and by and large, satisfies most of their customers and

constituents.

4.3 Technology Implementation Backlog

At the dawn of industrialization, it was not possible to track, let alone understand the nuances of demand

for energy once complexity extended beyond Edison’s original streetlamp system and customers were free

to “connect” any compatible device to the grid.   Metering is expensive.  Recall the cost of setting up

meters (or filling station pump gauges), and the expense of sending out meter readers to periodically

“read” the meter.199 Today, it is no longer necessary to do so and the cost of metering, and tracking

usage and demand, has fallen with the speed of Moore’s Law as computing, storage, and communication

capabilities exponentially increase.    The ability to track micro-level usage, and with it, the ability to

uniquely price the product or service for each occasion in accordance to customer utility and other factors

is in direct contrast to the industrial economic model where economies of scale and scope overrode unique

preferences and quashed micro-markets.    This is an enabler that empowers a century’s advances in

technologies that have been developed, perfected, and widely available and are now awaiting deployment

to support more efficient and effective use of energy and resources.200 At the micro-level, it is now

possible for every energy using device to be assigned a unique ID number (e.g. an IP number), and have

the device communicate --- via a network over existing grid / electrical wiring201 or via wireless networks

--- its usage pattern, purpose, and other information that allows energy (and resource use) to be tightly

monitored and related to the functional purpose being served.   Likewise, every automobile currently

made and sold in OECD nations contains the basic electronics and software to closely monitor, track, and

store operational data.   What does this mean for markets?
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4.4 Metrics, More Metrics

Energy markets worldwide are commodity markets where an undifferentiated product is sold at the same

price for each class of customers.   This is based on industrial age notions of efficiency that were premised

on averages and having the averages work out well, rather than any specific individual case.202 Industrial

notions that energy is an undifferentiated commodity203 that should be sold at one price for all customers

of a class is the underlying basis for the pricing of electricity, liquid fuels, an natural gas.   The very idea

of averaging and aggregating individual demand is key to how electric utilities can with relative ease

match supply with demand.  Every small individual change in demand (at each household, for example)

may be large relative to the account, but when aggregated into a group, it balances out and the utility only

“sees” the aggregate rise and fall and has time to adjust generating capacity to meet demand.    Electricity

utilities generally have relatively simple to understand tariff structures that have a few variables such as a

tiered usage / charge, and in the latest iteration, time of use as a factor in pricing.  But the utility is

generally indifferent to how and what the customer uses the energy for once it is delivered to the house.

What this means is that while there is broad concern over energy use per household, and metrics exist that

assess energy use per sq. ft. (size of house), there is little issue with whether the energy use is, a)

necessary, b) whether better alternatives exist, c) what can be done to manage use, and d) optimized for

opportunity costs.  At the residential customer’s end, with the exception of large industrial and

commercial customers, there is generally no provision for demand management, or “load shedding”

because appliances are connected to the grid, and their architecture do not permit it to be shut down / load

managed remotely. Demand management for retail customers via time of use pricing may, in and of

itself, offer insufficient inducements when most customers have only limited means to move their demand

around.204

The grid infrastructure is set to take “all comers” to meet demand at all times.    Previously, the discussion

centered on the lack of compelling need for high gradient, high quality energy for many applications.

What about the issue of necessity?   Does it make sense to use high quality, high grade energy for an

application like, for example, resistance space heating when the identical job can be done more

economically by natural gas heating, or by an electrically operated heat pump that “moves” more units of

energy than it consumes?    When the utility sells an undifferentiated product to the customer at one set of

prices, the option to understand the customer’s needs, and then to fill that need with the most effective and

efficient method possible rest entirely on the customer responding to the price signal properly.

Customers, in turn, have to choose devices and appliances based on metrics mandated by the US



36

Government (and adopted elsewhere) such as Energy Star Ratings, or the estimates of energy use over a

period of time.   Furnaces are rated by their efficiency.   None of these present rating systems, which have

to do with technical efficiency address the issue of whether it is the best device / appliance for the task ---

which involves an evaluation of alternatives.   Nor does it address the issue that the equipment has no

“intelligence” that would enable it to be connected and managed for effect.   This brings us to the problem

of metrics, and how the existing energy system is in need of new performance metrics that reflect

sustainability and effectiveness (at meeting needs) and efficiency (in the classical sense).

4.5 Metrics for Sustainability and Effectiveness First, Efficiency Next

The industrial age gave us few metrics to measure sustainability, or, effectiveness.205 It gave us many

measures of technical efficiency; for example, 97% efficient furnaces are measured in terms of energy

input and percent converted to, e.g., heat at the exit duct.    But what if the furnace uses a nonrenewable

fuel, while other options can utilize energy sources that are sustainable (net of embodied energy and

lifecycle support, maintenance, and decommissioning costs)?206. Similarly, vehicular fuel economy

ratings are widely used and published, but give numbers in fluid quantity of fuel used / distance travelled,

without consideration fore whether the vehicle is at capacity in terms of passengers or payload, or

traveling with one person.   It is akin to rating the fuel economy of a minivan used as mass transport

loaded with its maximum of (e.g.) 7 passengers against that of a hybrid car with a single passenger on

board.   The metrics that are presently in use only make sense if the question of effectiveness207 is not

addressed. While technical efficiency has greatly increased in the past century, what these metrics have

led us to is Jevon’s Paradox.

4.6 Jevon’s Paradox with Declining Prices

Jevon’s Paradox was originally formulated in 1865 and suggested improvements in efficiency may not

lead to lower, but higher consumption as users of energy adapt to the improvement and just use more.  It

is a formulation that is troubling and not generally accepted in the literature.  But it is of sufficient

importance, particularly in terms of its empirical support to warrant consideration and caution.  Jevon’s

formulation was summarized as:  “with fixed real energy prices, energy-efficiency gains will increase

energy consumption above what it would be without these gains”.208 While it may not be completely true

empirically, world energy prices, measured over a century, have fallen in real terms, and sharply fallen

measured in terms of the income of the richest population of the world, which mostly reside in the OECD
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nations and who are the consumers of modern energy.   Angus Madison, noted that “Over the past

millennium, world population rose 22-fold.  Per capita income increased 13-fold, world GDP near 300-

fold.”209 However, per capita incomes of the world between 1950-73 rose 3% annually while GDP grew

5% per annum.   Madison noted that post “Golden Age”, per capita incomes still rose at a little less than

half this rate.210 How does this compare to energy prices?

Prices for whale oil peaked about the middle of the 19th Century, and then actually fell in real terms as

competition came in from town gas, kerosene, and other sources of illumination.211 Petroleum prices fell

in real terms from the 1870s and only saw an uptick between 1973-78 and more recently between 2000-

08.212 Coal, a commodity that is less able to cartelize, also showed a steady fall.  Zellou’s recent study of

long-term price trends from the 1800s onwards concluded that,

“… real coal prices trending downward and crude oil trending upward in the post World War II

period.  Indeed, real crude oil prices have increased at an average rate of 2.0% over this period.

This suggests that the ongoing tug-of-war between depletion, exploration and technological

change is playing out quite differently for these two energy commodities. ”213

The one energy commodity states (governments) are most able to control, monopolize, seize the resource

rents and discourage consumption via excising and other forms of taxation, producers are only able to

increase prices an average of 2% per annum from the post-WWII period.   During the same period, global

GDP and per capita GDP rose well above this rate, resulting in declining shares of income spent for the

most expensive of energy sources --- oil.   Coal is now known to be cheaper in real terms.  Energy from

natural gas, nuclear and hydro, while not part of this data set, is known to be nominally priced well below

the price of oil.   While there may be doubt with respect to Jevon’s paradox formulated as a function of

flat real prices, there is little doubt that declining prices of energy of the magnitude described (2% annual

growth in real terms for oil and much less for other forms of energy vs. per capita GDP growth of 3%

(1950-73, <1.5% 1974-Present, and world GDP growth of 5% annually) is a major stimulus to increased

consumption.  Empirically, the extent to which low prices have stimulated consumption can be seen in the

history of growth in the use of modern energy.214 Given the recent revolutions in shale oil and shale gas

and the anticipated explosion of worldwide supply of oil and gas, it is likely that the price signals for these

resources, in the next few decades, is unlikely to send a sufficient signal to deter demand --- especially
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when their customers are mostly locked into, and continue to lock onto the oil and gas architecture and

infrastructure for the long term.

4.7 GHG Policies and GDP Growth

The perspective from these trends affirms the predictions of the Kaya Identity that showed GDP growth

and modern energy consumption go hand in hand.   It is a given that the modern political elite in almost

every nation around the world is ideologically committed to the notion of continued economic growth

(measured by GDP/GNP) for their economies.    Proposals to limit GHGs that will likely have large

negative impacts on GDP growth, which is a non-starter --- especially in the fragile economic and fiscal

environment faced by nearly all major governments around the world.    What are the GDP impacts of

current policy instruments? There are four major policy instruments and six other ones identified by the

Australian Flannery and Hueston Report215 that comprehensively surveyed instruments on the table for

mitigating GHG emissions.  They are all, in the neoclassical economic tradition, market based:

o “Feed-in-tariffs” (FIT)

o Renewable Portfolio Standards (RPS) / Renewable Fuel Mandates (RFM)

o Carbon Taxes

o Cap and Trade

Additional approaches are:

o Energy efficiency standard

o Fuel content mandate

o Direct government spending

o Investment in research and development

o Subsidy or grant

o Labeling scheme”216

As discussed earlier, market based solutions that are premised on agents responding to market signals

have not been well received.  It is only with great difficulty that a few nations have implemented them.

As of 2013, it is projected that carbon pricing will only cover about 33 nations plus 18 sub-national

jurisdictions and cover roughly 850 million people, or 30% of the world economy, or 20% of emissions.217

The price of carbon in these schemes is nominal.   But to truly deter demand growth for energy, prices
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have to rise in real terms at least equal to income growth and, ideally, should rise much faster than income

growth to deter consumption.   Proponents of carbon taxes acknowledge that a tax in the order of $200/ton

is the range required to materially change behavior. However, on a practical level, no jurisdiction in the

world has implemented a carbon tax, or implemented any other mechanism that is remotely close to this

level218.    Furthermore, it is improbable that in the next few years, such a drastic change in taxation of a

formerly free good is likely to transpire unless there is a legally binding treaty in place around the world.

To date, while other approaches like fuel efficiency standards have delivered limited gains and labeling

has raised awareness, it is unlikely that these approaches are going to sharply reduce carbon emissions

unless they materially impact GDP.   The question of how GDP/GNP is calculated is key to understanding

underlying institutional issues.

GDP is calculated using three principal methods.  The “spending method” sums up all expenditures by

consumers on goods and services in the domestic economy (net of exports and imports).   The “income

method” sums up the incomes of everyone and organizations.  Last, the “production method” adds up the

value of goods at each stage of production.   While national income has been intermittently estimated, it

was only in the aftermath of the great crash of 1929 and the subsequent depression that measures of

National Income became regular and official when the US Senate requested national income data for

1929-31 from an official agency (National Bureau of Economic Research) in June 1932.219 However, the

methodology is by nature an index of transactions in the marketplace that methodologically excludes

many non-market transactions.   Subsistence farmers that chose to grow their own food and not participate

in the exchange economy with the exception of trading small quantities of their surplus for cash needed to

pay taxes and purchases a few implements, would have the majority of their economic activity unrecorded

by the system of national accounting.220 Neoclassical economists would retort that is not material

because income not expended by having “internalized” production would be spent on other things that are

recorded if the assumption that consumers maximize utility were to hold --- which may or may not hold.

Let’s give this proposition some further consideration:  suppose a person invented a method to (at little

cost) capture a local source of energy (e.g. the classic windmill or low head hydro), and provided for their

entire household needs via that method.   The financial cost of this occurring on a large scale is neither

negligible nor insignificant to the utilities that would have otherwise have had the revenues from

supplying this customer.   Thus, the consequences of self-sufficiency in energy by a large number of

potential customers are not just a GDP growth problem.  It goes to the heart of the size of the utilities

market and their growth potential.
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4.8 Institutional Bias for Growth

The bias for growth is built into any large, public or private company or organization.221 Previously, it

was noted that growth is built into the system at the macro-level in terms of requirements for GDP / GNP

to grow as a central tenant of political legitimacy of regimes in the 20th century from the Great Depression

onwards.  Many of the institutions of a modern OECD state, in fact, rely on a growing economy to

support fiscally unsound policies, such as accumulating an outsized debt load from public spending, in

anticipation that the relative size of the cumulative deficit would be reduced by a growing economy.222

Countries in OECD, thus, rely on growth, if necessary secured by immigration, to bolster the economy

and to avoid the stagnation or exhaustion in countries that sharply restrict immigration.223 At the firm

level, public companies are held to the discipline of stock markets, where investors seek an attractive

combination of revenue and / or earnings growth, risks to choose where to invest.   In the absence of these

financial market pressures for growth, e.g. in the case of public monopolies, there is always a natural

inclination of all organizations to want to grow.  Growth provides those higher in the hierarchy with

benefits of greater perks, more resources to manage, and advancement.224 At a minimum, most

organizations have strong biases toward preventing decline --- or reduction measured by the standard

metrics of revenue, headcount, etc. and such reductions tend to be utilized typically when an organization

faced setbacks.225 Declines mean that growth that papered over mistakes result in the problems being

magnified.226 Managers and leaders everywhere are prized for their ability to defend their

organization.227 The defense of an organization can often take on forms and behavior that may be

economically “irrational” for the firm.228 Yet, the behavior is known to persist.

If organizations show growth, or at least, a bias against decline that is core to their behavioral pattern, and

the defense of the organization’s have a not necessarily economically rational component, then it makes it

much more difficult to formulate an explicit policy that requires such growth to be halted, or to decline.

Returning to the modern energy industry for a moment, the behavioral impetus of the industry is biased

toward growth at many levels.  At the production level, owners of fossil fuel resources generally show

little concern with the depletion of their assets and the necessity to pay for costlier replacements unless

comparable resources are found at similar or lower costs.229 The end result is that current prices of

resources are always governed by near term (e.g., spot market or contract (typically one year)) supply and

demand, and longer term considerations of replacement costs rarely factor into the picture despite the

well-known long transitional periods for new energy systems --- or the cost and timeline required of

transitioning from one to another conventional system (e.g. natural gas to oil, etc.)230.    With governments
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and firms both heavily dependent on revenues from conventional energy sales, and consumers with

growing incomes that can afford it, there is realistically, no impetus for the system to limit growth, or to

reduce production.  The schemes described above to alter this behavior (e.g. carbon pricing, etc.) should

in neoclassical economic theory, work over time in reducing overall demand.231 But the question is, is it

too little too late given the known lengthy times required for energy transitions?

4.9 Carbon Taxes: Too Little Too Late?

Resistance to change in any system of institutions is natural.  If limiting GHG emissions is indeed a high

priority for the international community, then it begs the question as to whether the current “standard

prescription” is sufficient to achieve the amount of reduction in GHGs in a timely manner to prevent

climate change beyond 2°C.  Given the lack of consensus to fully implement the existing protocols

pending a binding target by 2015 and implementation by 2020, it is likely to be too little too late.   At best,

even if carbon taxes in the $200/ton range were fully implemented today, and economic actors responded

to the price signal quickly, it may still not be sufficiently fast to alter the trend line.  The question then

becomes, what are alternatives that can be implemented in a relatively quick timescale in the absence of

carbon taxes / cap-and-trade being effective? The next chapter address: ‘What sort of program is required

to successfully and simultaneously solve the technical, public policy, and economic problems inherent to

the current system while meeting interests and achieving logistical feasibility?’
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Chapter 5

Feasibility and Logistics

Logistical hurdles to mobilization are the first challenges to feasibility any major program that targets

rapid reduction of GHGs.   Mobilization of any society’s resources, as in times of war, is in and of itself,

an intricate and difficult task.    It is extremely rare for new technologies to be successfully deployed

within a short timeframe unless decades are spent establishing a feasible implementation strategy

beforehand.232 Even then, the applied engineering required to turn a feasible concept into a practical

device, which includes validation and testing, ironing out production bottlenecks and the normal teething

problems inherent to first-time production, can consume both time and resources.233 Given the urgency

of deploying lower GHG emitting technologies, there is simply no time to consider any technology that is

not proven, off the shelf, and cannot be readily rolled out (with the considerable known and unknown

problems of scaling up production and deployment).   There is a historical precedent for this in energy.  In

the aftermath of the first oil crisis, France and England both embarked on crash programs to deploy

nuclear energy to replace unreliable supplies from the Middle East. The UK opted for a risky, bold, new

technology called Breeder Reactors at Dounreay.234 France, on the other hand, under the Messmer Plan

licensed an existing Westinghouse design, and mass-produced it leading to France becoming the largest

nuclear reactor operator in Western Europe while Britain’s program failed.235 So it is with the current

urgent need to reduce GHGs --- there is simply no time for untried technologies to be rolled out on a large

scale.   Whereas fiscally, OECD nations might have been able to afford the financial costs, risks and long

slog and travails from prototype to scaling up untried technologies, there is simply no time and less

money --- solutions must be practical and largely proven technology, capable of advancing from basic

priniciples to production and deployment from Day 1.

5.1 What Are Proven Technologies?

Proven technologies are defined as technologies that meet the test of both technology and manufacturing

readiness.   Technology Readiness Levels (TRL) are classified by US-DoD on a 1-9 scale, and in order to

be considered, a given technology must rank no lower than 6 on the scale.236 A technology that is ready,

however, does not necessarily mean it is manufacturable.    A Manufacturing Readiness Level (MRL) of 8
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is required on the US-DoD OSD MRL Deskbook Version 2.0.237 By these definitions, a technology has

to move from basic principles that can be reliably observed and repeated, to formulations as to how the

technology can be applied, followed by experimentation and proof of concept, validation in a laboratory

setting, to field trials, pilot testing in operational environment, through to qualification.238 Manufacturing

Readiness Levels, on the other hand, are defined by having a good Material solutions analysis,

demonstrated manufacturability in a production environment leading to pilot line capability.239

The perspective of logistical and practical feasibility goes to the heart of why climate change negotiators

have not been successful in reaching a legally binding agreement.   At no time in the climate negotiations

has the logistical and practical feasibility of targets (which were set by the scientific community – IPCC)

been addressed in the context of known, proven solutions.240 The economics community gleefully appeals

to the “invisible hand” of market forces, without any hard questions asked as to precisely how an

engineered solution is to be developed and deployed logistically.   It is not a surprise that politicians and

climate negotiators have met with skepticism as to the practical feasibility of the GHG goals and recoiled

at the consequences of making a legally binding commitment.   The approach here will only put forward

binding targets that have at least, a plausible logistical plan with TRLs and MRLs that pass muster and

have been published and independently reviewed.241

5.2 What can be done?

The above discussion suggests that a rapid reduction in GHGs cannot rely on new technologies.  Indeed,

the timeframe is so short that deployment of proven technologies (e.g. civilian nuclear reactors) with long

leads times242 is not likely to have sufficient impact to cut GHGs at the rate and volume required to meet

IPCC recommended targets.   This leads us back to the question of what can be done with methods and

means that are rapidly deployable and can have a large effect over a very short period of time.    Over and

over again, the discussions about modification of behavior via economic “carrots” and “sticks” that would

be sufficient to materially change GHG emissions have floundered due to public opposition to large

across the board increases in costs like a carbon tax.  The present instruments of RFS/RPS have, in

general, been costly. Unless the costs of those programs were to decline sharply, they are unlikely to make

more than a small contribution.   The question is, what then?

Institutionalism teaches us about the importance of history --- in understanding it, and recognizing how

we are both confined and limited by historical legacies.   In many instances, the legacy of history is just
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that --- a legacy that can be altered at will under the right set of circumstances.243 But these circumstances

tend to not just happen, they often involve an intricate dance between interests, laws, economics, and

technologies.244 So it is with major institutional changes.   What is the art of the possible?   The present

ways in which energy (broadly speaking) is used in the OECD originated from an age of plenty that saw

increasing per capita incomes, economic growth, and slow growing or declining real energy prices.    It is

no surprise that OECD economies have standardized on modes of use that presumed, at best, fixed or slow

rising real prices.    But suppose we are to go to a clean sheet and ask, what is the art of possible if energy

prices were in fact, two, three, or five times higher?   What would change?   The logical answer is that

OECD economies would be much more energy efficient.   The question is how to get there.

5.3 Implementing Energy Efficient Architectures

Incremental architectural changes that improve energy efficiency are the current modus operandi in most

OECD jurisdictions and in most policy areas.245 While these changes are generally positive and all

OECD nations demonstrate a decline in energy intensity,246 the progress is insufficient to achieve the level

of GHG emissions necessary to make a major difference in climate change.   The question then becomes,

what changes will make a major difference in a short period of time?  Architectural changes, by their

nature, can potentially offer a sharp break from the past.  By creating new architectures, many of the

legacy problems can be addressed.   It is beyond the scope of this dissertation to offer but a few examples

of the realm of possibility offered by architectural changes.  Below are two examples, one in personal

transportation, and the other in residential building energy consumption, that are examples of what is

possible should an architectural approach be taken.  Changes in architecture, however, will involve

coordinated change of public policy / law; technological / engineering challenges; economic / financial

structures, all the while maintaining a degree of realistic logistics and satisfying key interests at the same

time.

5.4 New Transportation Architecture

Transportation accounts for one fifth of energy usage within the world economy. 247 In advanced OECD

economies, personal transportation accounts for a large share of that, most of which is used for

commuting.   By far the simplest solution would be to implement an architectural solution that cuts the

amount of fuel used in the daily commute.  The world has standardized on the 2 front seat abreast form

factor; this has been the case from Roman times onward for both military and official traffic.   In its

modern form, the roads were standardized in England post 1726 when the British Crown began to
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centralize road building and specifications with funding from the Parish via rates that by 1843, resulted in

roads were standardized in construction (gravel / stone bed 10 inches thick, and 20ft wide, with a raised

center to permit water runoff).248 While this standard may have made sense when bulk transportation of

goods by animal or manpower at slow speeds was the norm, the standard is ill suited to high speed

transportation of one or two persons that account for a majority of modern commuter highway traffic.249

Converting a large share of this stream to half width (or narrow width) vehicles that are formatted to carry

two persons in tandem seating can have a large impact on energy consumption as quickly as capacity can

be added.250 This kind of solution is technically feasible, if it were to be utilized and deployed quickly,

the easiest means will be to power it with an off-the-shelf internal combustion drivetrain (diesel, gasoline,

natural gas, etc.) and a body structure built with existing uni-body technology rather than to iron out

issues with more radical technologies.   With frontal cross sections of 50% or less than a standard 2

abreast commuter car, and weight reductions of at least 1/3 from even the most economical “standard”

car, it goes without saying that such a vehicle if deployed in sufficient numbers quickly can slash

commuter fuel consumption considerably.    This is but one example of the kind of architectural changes

that is within the realm of the feasible --- if other issues, from marketing / customer acceptance, etc. can

be solved.251

5.5 Building Energy

What about energy use by buildings? Residential buildings are one of the largest consumers of energy in

OECD nations.   But it doesn’t have to be that way.  Germany and many other nations have successfully

demonstrated that “Net Zero” residential buildings are practical and feasible252.   That is, buildings that

consume zero energy net of what they produce themselves for only a small increase in construction

costs.253 Furthermore, it is likely that the same technology can be devised to achieve near net zero for

commercial buildings in the same timeframe.254 Energy audits have repeatedly shown that the largest

consumers of energy in OECD nations are for home comfort, or HVAC (heating and cooling), followed

by hot water heating, then cooking, lighting, etc.255 Whereas in the past, these were all serviced by high

gradient energy appropriately stepped down for the need, the needs can just as easily be met by low

gradient and intermittent energy such as solar or wind, with supplementation by conventional energy

sources.256 Furthermore, advances in low-grade energy storage by techniques like ground source

geothermal and heat pumps are practical, and already deployable options.257 To sum up, the technologies

to slash new construction in single-family residential buildings to the Net Zero standard is already
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available --- technology is off the shelf.  It is not a technological or manufacturability problem for the

most part.  It is an economics and policy issue.

5.6 Driving Policy:  New Economics Needed

The abundance of viable technological solutions that meet the technological and manufacturing readiness

test do not address the issue raised by the efficient market hypothesis:  why has it not already been done?

The answer is that efficient markets in fact only exist in the fertile imagination of the minds of

economists. In the course of research for this thesis, numerous examples were found of engineering

anachronisms that persisted long after their justification became irrelevant.  As the example of the

persistence of the QWERTY keyboard shows, it requires a large economic gradient to compel change

even in the face of inertia, economic, technical, and self-evident irrationality.   Humans are creatures of

habit, and the kind of economic inducements being talked about, like carbon taxes --- are plainly

insufficient nor can government and consumers afford the large subsidies to bring forward “clean”

mandates.     A new, or at least different economics is necessary to compel change.

What are the elements of the new economics?   It is clear that part and parcel of the change is prices of

energy from “fossil” resources must rise sharply. However, to date, price increases (e.g. $200/ton carbon

taxes) from carbon taxation proposals have been largely notable for their failure to be implemented.  The

alternative is to phase in the increase on a model that aims sharp price increases at the place where it can

be engineered in --- new vehicles or new construction.   A viable policy might envision a two-tiered

policy (between “old” and “new”) where prices for the identical product can be sharply different.   This

model has been successfully used, for example, in labor contracts where existing incumbent workers are

paid much higher wages than new hires.258 The key to being able to do so is to differentiate between the

supplier or consumer (e.g. individual worker) and their status.   Whereas in the past, in energy, it was not

possible to distinguish between individual suppliers and customers, technologies to do so are now so

advanced that not only can individual customers and suppliers be distinguished, but it is technically

possible to set different prices / supply for different applications of energy within one customer.  For

example, vehicles made after a certain date / model year can now be charged a different price for fuel

based on data that is routinely captured and stored in the vehicle’s engine computers.259 A sharply higher

price can thus, be phased in for the newest vehicles without affecting the oldest --- and least efficient

ones.     Such monitoring can also, for example, allow the efficiency of usage to be monitored --- and a

person traveling with a mostly empty vehicle with a large number of unfilled seats  can be charged a
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different price or penalized with taxation for inefficient usage.   At the household level, it is now easily

within the realm of possibility for every individual electricity or energy consumer to be assigned a unique

IP address, and their usage individually monitored and billed at different rates260 and for their demand to

be controlled to regulate demand.

On the supply side, there is no longer any need to treat supplies of energy as an undifferentiated

commodity.  It is technically possible, for example, to uniquely identify the source of every barrel of

crude oil261 or natural gas by its unique hydrocarbon signature by oil field, or for even more ready

identification, every barrel of oil or cubic meter of gas can be uniquely tagged.    Being able to do so

means that, for the first time, it is possible to exercise a degree of control over both production and

consumption that is unimaginable to economists as recently as two decades ago.    No longer do primary

energy sources, and energy in general, need to be an undifferentiated commodity, nor do consumers need

to be an undifferentiated “demand” whose usage is a “black box”.   The ramifications are that an

infrastructure can be architectured to, for example, control supply or manage demand to a degree

unthinkable in the 20th Century.  That leads us to the art of the policy possible.

5.7 What about Interests / Stakeholders?

Changes in laws and policy are always constrained by the art of the possible.   Traditionally, the

conventional energy industry, as one of the most powerful interests in the world, has been able to limit the

impact of new regulations and prevent any abrupt change in their business.262 Given the size, scale, and

scope of this industry, and the structural dependence on this industry by governments and consumers,

without the consent of this industry, realistically no major change is possible.  The question then becomes,

how can the industry’s consent be secured for a change that will materially affect and alter the demand for

their product in the negative?   The answer is to alter the economic system based on limitless resources at

low cost that is part and parcel of the present conventional energy industry architecture.

The “fossil” fuel industry has historically overproduced, and suffered from severe priced declines.   In

fact, the world is likely within a few years of another major price crash for oil,263 as it already happened

with natural gas.   With a price collapse possible, oil and natural gas interests, are ready to consider a

different economic model to save them from themselves. Such a model can take the form of placing

existing “fossil” fuels like oil, gas, and coal under a form of managed supply, whereby in exchange for an

agreement for the industry to cap their overall level of production of CO2 (including CO2 generated at
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consumption)264, that the industry will be relieved of their obligations under existing antitrust laws.265 In a

single stroke, the industry will be freed of the need to increase the production of conventional energy, as

there will be other, better pathways to improving profits --- raise prices.266 The industry is likely to

continue its trend toward relatively moderate prices increases for existing customers even in the absence

of antitrust.267 Thus, that, in and of itself, will not address the need for sharply higher prices to force the

acceptance of a new energy architecture.

To force the rapid adoption of new energy saving architectures, the conventional energy industry can be

given a mandate designed so that it is compelled to sell fuel to new customers – defined as new vehicles

or households or commercial customers (past a certain date) at sharply higher prices that are sufficient to

lower consumption.  Meanwhile price increases for existing customers can be grandfathered or price

increases moderated.268 Sharply higher prices would mean a multiple of at least two times current North

American prices, sufficient, for example, to force the transformation to make the tandem seat commuter

the standard vehicle of choice, or for the wholesale conversion to Net Zero homes.   A policy instrument

such as legal minimum prices269 for new customers can achieve this means.  Because only new customers

/ new construction are targeted, and existing customers are “grandfathered”, there will be less strident

opposition to the scheme.  Such a proposal can initially exempt industrial customers, who have the power

to “break” any such proposal as they did when they all received free permits under the European cap and

trade system.270

Concurrent with a plan to sharply increase prices is the mandatory requirement for vehicle makers to

introduce new vehicles on the new format, and the implementation of building standards that sharply

reduce energy use.   On a policy level, it may make sense to have the consumer realize a net saving in

energy costs (e.g. a cut of 10%) despite the much higher prices charged for new customers.    Of course,

the new lower energy consuming Net Zero homes and half width vehicles will mean many other major

changes.   Net Zero homes will be more expensive to build and it is not clear that a compulsory change in

the building code can be easily be done.  Much of the objection by builders will be muted if it is

understood that it affects all builders equally in an entire jurisdiction.  Indeed, it is possible to deliberately

drive up the price of non-Net Zero homes by refusing non-Net Zero compliant buildings government

supported loans.271

Bringing forward a new architecture, e.g. the half width cars, or Net Zero construction, will not be a
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smooth transition.  Many problems will need to be solved to smooth the path to consumer acceptance.

Some of the problems that will need to be solved may include whether the users of this new format will be

charged the same insurance rate as a regular car?  Or how to handle the expense of having to keep a

second “standard” car around for when additional capacity is required.272 Seemingly simple problems like

parking --- whether this new format will be granted favorable rates --- or the availability of incremental

new spaces especially if the vehicle is a “second” car to supplement an existing “standard” car, are just

some of the problems that must be solved on the pathway to consumer acceptance.273 In the past,

acceptance of different technologies or behavior, like hybrids or car-pooling, was supported by large per

unit subsidies as well as things like access to scarce “car pool” lanes.   No doubt such “push” will be

necessary for this program to succeed.

5.8 Why Bother Change?

The idea that architectural change can substantially alter mankind’s need for natural resources is not new.

Ernst von Weizackere, in Factor 5 (Club of Rome), identified that it is possible for the world to restructure

the economy to improve resource productivity by 80%.274 The question is, why bother when for the

moment, there is an abundance of resources? There is no known way, using current technologies, to have

a significant fraction of the world move quickly275 to the present modern energy system without making

the predictions of alarmists about resource depletion or explosive price increases come true.276 Whether

there will or will not be a resource depletion problem for the future is difficult to say without speculation

on technical progress and the art of the possible.  However it is known for certain that any reduction in

resource intensity and usage will create options. Thus, a compelling reason to sharply lower energy use,

and with it GHG emissions, is that by lowering resource intensity, it creates options for the future. By

doing so, it also enhances security of supply because in the event of a true emergency, it is always

possible to fall backward to more resource intensive methods. Industries with compelling security needs

have always paid a premium price for security of supply.277 Suppose for a moment that optimistic

projections of man’s ability to invent and implement resource extraction techniques were to falter or fail --

- that can lead to crisis in short order.   By expanding the supply of presently necessary resources

economically recoverable at a given time, we can provide future generations with options.    Options

require a premium to be paid in the present for a future requirement, which may or may not be needed.

The broader and longer the option, the more costly it must to be.
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Options are expensive. They are costly because it normally requires an “up front” payment of a

premium in order to secure it.    In terms of natural resources, stockpiles have historically been costly and

in many cases, become obsolete as supplies of once scarce resources become plentiful or the need for the

material is superseded.278 Salt, for example, was scarce right up to the discovery of large underground

deposits in the Great Lakes.   The creation of a world market for many commodities further undermined

the rationale for paying premiums for improvements for security of supply.279 The world resource

industry has done an admirable job of providing resources.    Since industrialization, prices of resources in

general have fallen over time in real terms.  Thus, the historical trend informs us that paying a premium

for an option to purchase natural resources at above market prices that presume an increase in the real

price is likely to be a bad bet --- so why make one?

There is no compelling argument for rapid change based on neoclassical economics except via the value

of purchasing options.280 A more compelling argument than to create options for the future is “because

we can.” We have seen how under the present economic system, increasing wealth leads to increased

consumption of energy because we can afford it.   The OECD nations have another pivotal role in the

world economy --- which is the role as world leaders in setting the standards and architectures for the rest

of the world combined.281 The power of developed industrialized economies can be seen by how every

economy that followed by and large adopted Western standards in most fields, from the idea of the public

sewers, highways, airports, and the “standard” car, and with rare exceptions, the West have basically

created and defined the architectures of modernity for the world.  To date, no major non-western nation

has imagined a different future and successfully implemented it.282 OECD nations, by taking the

leadership role in this endeavor, will revolutionize not only energy consumption in OECD, but also

provide a different definition of development that is both more sustainable and affordable to the rest of the

world.   How?

Suppose the half width vehicle and Net Zero architecture became OECD standards for new construction

and new vehicles.  That, in turn, will define elite tastes,283 and make the “reach” goals of using less

resources be a positive, rather than the current economic system’s implicit denigration of  using less as

something for those who are less wealthy.284 Such a transformation has gradually taken place in the

“standard” car segment, where once upon a time, the industry expressly equated small cars with small

profits.285 That was until automakers like Lexus demonstrated how relatively small cars can earn large

per unit profits.    Once the truly efficient half width vehicles become a standard, it can gain acceptance in
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the rest of the world, which may or may not elect to implement the differential energy price system

discussed above immediately.  Without the higher fuel prices, the vehicles in that format can become very

affordable.286 This kind of architectural change can happen without any apparent economic need to do

so.  It can happen for many of the wrong reasons --- such as the obsolescence of an entire infrastructure so

as to create jobs by building a new one.   With the OECD economies mired in slow or stagnant growth,

such a broad program of new ultra efficient energy infrastructure building will be a major drive of growth

like how rearmament and war boosted the world economy out of the Great Depression.  Historically, there

is a precedent for change not because it is needed, but because we can, when the Royal Navy, at the turn

of the 20th century, obsoleted the world’s largest fleet of modern warships by building a new, modern ship

called the H.M.S. Dreadnought.    Likewise, America, at the onset of World War II, obsoleted its own

fleet of battleships with Aircraft Carriers, and are now in the process of obsoleting their manned platforms

with autonomous unmanned craft.287
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Chapter 6
Conclusion:

Leveraging Defense Energy Strategy into the Civilian Economy

In a world of networks with relatively limited geographic and logistical barriers, the weakest node will be

the highest value targets.   During the cold war, the US and Soviet Union was able to come to agreements

that largely prevented attacks on the “homeland” except by nuclear weapons systems in an all out war.

The degree of cooperation and accommodation is such that both sides expressly agreed to not make

provocative moves and took steps to prevent accidental war --- knowing that both nations were within less

than 1 hour’s flight time by Intercontinental Ballistic Missiles (ICBMs) and much less by Submarine

Launched Ballistic Missiles (SLBM).  This unwillingness to risk war extended to conscious decisions to

not launch weapons like ballistic missiles armed with conventional, as opposed to nuclear warheads

because it is impossible for the other side to determine whether the “en route” missile is nuclear tipped or

not --- and is likely to react by pre-emptively launching nuclear tipped ICBMs before they are destroyed.

The consensus extended as far as to, until recently, limit the deployment of anti ballistic missile systems

(ABM) to one city each.   In the aftermath of the cold war, this comfortable arrangement became obsolete,

and the US unilaterally withdrew from the treaty in 2002 and started to develop and deploy ABM

systems. Additional players have now joined the nuclear “club”, including China and others that were

outside of the US-Soviet consensus who do not share these concerns. Still others are developing

conventional and nuclear tipped ballistic missiles, and hypersonic and supersonic cruise missiles; it is

clear that within a few decades, North America cannot count on the restraint exercised by the Soviet

Union in preventing accidental nuclear war.   Countries like China are expressly developing ICBMs that

are as likely to be conventional as well as nuclear armed.    It is no longer possible to believe that in the

event of the US and NATO allies using force against a middle power, that North America will be safe

from attack unless one were to assume the widespread deployment of nearly “leak proof” ABM systems.

Thus, vulnerabilities in the civilian sector are very much the weakest link in the US and allied defense

complex.
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How fragile are the energy systems of Canada and the US?  With the exception of specially hardened and

protected parts of the system, much of the civilian sector is unprotected. As was illustrated by 9/11, it is

possible to cause widespread disruption by targeting a few vulnerable civilian nodes. For example,

conventional precision attacks on the infrastructure of a few staging areas (ports, airports, etc.) in North

America can disrupt US and allied efforts to mount an expeditionary force.   In the past, countries capable

of doing that were nuclear-armed powers, but within a matter of decades, many other middle powers will

have the capability to mount such a strike by conventional and nuclear means.   The idea that the North

American continent can be subject to nuclear as well as precision conventional attack by another state (as

opposed to terrorist attacks like 9/11) is something that Americans have not grappled with since WWII,

when US shipping was attacked off the coasts, and a very few minor instances of attack on the North

American mainland occurred. How to reduce this vulnerability?

North America has not seen war at home in over a half century.  Thus, virtually every installation outside

of the select hardened installations (e.g. Command and Control bunkers for nuclear war) is ill prepared.

Moreover, with the extensive electronization of life, something as simple as disruption of the internet -

not just via cyber attacks, but via physical attacks at key nodes – can result in major disruptions in an

economy that takes reliable internet as a given.   Energy systems are no different, as the past century of

reliable power and fuel supplies resulted in almost every civilian installations designed with the

assumption that power is rarely out, fuel rarely unavailable.

As discussed earlier, there is not an economically compelling reason to change the civilian sector.  The

present energy system works, it is inexpensive, supply of economically practical to recover mineral fuels

are assured for over a century, and GHGs can be mitigated with any number of means while remaining on

existing hydrocarbon fuels or coal.   “What will it take?” to architecture a new set of resource conserving

solutions that can conserve energy while greatly expanding opportunities for economic growth.   This

work demonstrated that once an architectural solution is created and gains acceptance, it becomes an

institution, and as such, it co-develops along with its own sets of rules, regulations, economics, logistics,

and interests.   Once established, even as the reasons are no longer appropriate, it is very difficult to alter

architectures.  Yet at the same time, architectural changes, especially if it is done with existing technology

and infrastructure, are the quickest, lowest risk pathways to change to a lower energy, and resource
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consuming system if the engineering / architectural “design lock in” gradient can be overcome.   The

thesis demonstrated that it is practical to change at least two areas, personal commuter transportation and

single family residential housing, that slash their energy consumption to a fraction of pervious levels.

Furthermore, it is possible to get a buy in from conventional energy producers for such a program if the

rules of the economic game were altered in their favor.   Likewise, public opposition to large-scale change

can be mitigated by phasing in changes slowly with proven technologies that can be deployed to much

better manage energy / resource use and tie it to economic effect.   Whether such change will come,

however, is a function of not economics, but whether leaders of the industrialize world can imagine a

vision of a better future, and implement the plans to realize it. Since there is little political or economic

reason to drive the change, the question is, can other major institutions drive the change?

Historically, the DoD has shown keen interest in energy in terms of security of supply.   From the outset,

petroleum was deemed to be the most critical of supplies as distinct from coal, hydro, and other sources of

stationary energy.  Petroleum was important because the American forces relied on it for mobility from

the 20th Century onwards.  During World War I (and WWI), in order to ensure adequate supply of war

materials and petroleum, President Wilson created the War Industries Board in July, 1917, under which

the National Petroleum War Service Committee (NPWSC) was established.288 After WWI, this

organization was reorganized as the American Petroleum Institute (API), which continued the function of

ensuring adequate supply by creating the first definitions of proved oil reserves which was in turn, used in

the annually published estimates of US oil reserves.   During World War II (WWII), the US established

the Petroleum Administration for War under EO 9276, which in turn, separated the nation into Petroleum

Administration for Defense Districts (PADD) 289 which became Petroleum Administration for Defense

(PAD) during the Korean War, which became a part of the US Department of Interior in 1954.290 Thus,

military leaders have historically been keenly aware that America’s military forces and that of NATO

allies are dependent on the availability of liquid fuels to accomplish their mission.

The US-Department of Defense ranks as one of the largest consumers of energy in the world, using about

5 billion gallons of fuel in 2010.  Consumption by service breaks down as Air Force, 57%, Navy, 34%,

Army 9%.291 Consumption at this level is during peacetime, with modest operations in the Middle East.

Operational Energy Strategy is jointly managed by DoD with each of the service arms operating their own

programs.   DoD is perhaps the only organization large and influential enough to establish new
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architectures in energy, and then easing it into the civilian economy as the infrastructure is proven and

manufacturing tooled up to build out the civilian sector.

What can the DoD do? The DoD, especially the US Marine Corps (USMC), is currently the world leader

in reducing their needs for energy for expeditionary forces.   Many of their “off-the-shelf” ideas such as

solar cells to recharge batteries in the field, can readily be adopted in the civilian sector --- for example,

by making every auto/truck roof top, or every hand held electronic device equipped with solar panels.   A

DoD requirement for such gear can ultimately percolate down to the civilian sector.   Likewise,

expeditionary forces consume large amounts of energy for things like making potable water and hot water

heating.   The ideas being currently implemented can be readily moved to the civilian sector providing

that there is an impetus (either market or regulatory) to make such changes in regimes like the building

code, or similar standards like the Energy Star rating system or the Corporate Average Fuel Economy

(CAFE) program.

The DoD is a leader in recognizing that the commodification of energy is a major problem in mis-

allocation of resources.  The Fully Burdened Cost of Energy (FBCE) literature demonstrated that in fact,

fuel delivered to remote areas, way stations, rack up along the way costs that in fact, make many

alternatives (e.g. solar, wind) economical even before defense specific considerations like enemy action

and causalities are factored in.   Widespread adoption of these concepts in decommodification of energy

and routinely looking at the economics alternatives is something that is not only feasible, but doable

within a relatively short time --- a decade or less if it is rolled out as standard considerations for all new

construction of buildings, vehicles, etc.

To conclude, the question is not whether DoD can play a leading role to transform the US economy into a

far more energy efficient, and secondly, more resilient economy.  It is whether or not the DoD recognizes

the opportunity to do so and act on it.
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Notes

1 Andrew F. Krepinevich, President of the Center for Strategic and Budgetary Assessments, identified the major
downward change in resources, rather than catastrophic failure, as the more likely reason for the Pentagon to
change its behavior. See: Sweetman, B., 2013. Defense Cuts? Bring Them On. While budgetary pressures are
reducing resources, the cost to project power is rising.  See: Krepinevich, A., 20121. Strategy in a Time of
Austerity. Foreign Affairs.
2 For the purposes of this study, conservation and efficiency are limited to issues of energy, but the concepts are
widely applicable to resources in general and, in particular, natural resources.
3 See: SECDEF Memo ''Specifications & Standards - A New Way of Doing Business'', DTD 29 Jun 94
https://acc.dau.mil/CommunityBrowser.aspx?id=32397
4 Gansler, J.S., Lucyshyn, W., 2008. Commercial-Off-the-Shelf (COTS): Doing It Right. DTIC Document.
5 Alic, J.A., 1992. Beyond spinoff : military and commercial technologies in a changing world. Harvard
Business School Press, Boston, Mass.
6 Gansler, J.S., Lucyshyn, W., 2008. Commercial-Off-the-Shelf (COTS): Doing It Right. DTIC Document.
7 Wilson, C., 2006. Improvised explosive devices (IEDs) in Iraq and Afghanistan: effects and countermeasures.
DTIC Document.
8 Stillion, J., Perdue, S., 2008. Air Combat Past, Present and Future. RAND Project Air Force, August, 6.
9 Moore’s law is explained as a forecast of the rate of progress via silicon scaling.  See:
http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
10 Bracken, P., 2012. The Second Nuclear Age: Strategy, Danger, and the New Power Politics. Times Books.
11 One of the mutual agreements reached by the US and Soviets was to eliminate “intermediate range” nuclear
forces (INF: Intermediate-range Nuclear Forces defined as 500-5,500 km (300-3,400 miles)) such as ballistic
missiles.
12 Most areas of the US have plentiful water.
13 Security of other raw material supplies is typically handled through a combination of supply diversification,
stockpiling, etc. Oil is unique in that storage is expensive, and stores of petroleum are relatively modest.
14 A necessary condition to the Coase theorem is perfect competition.
15 “Renewable” energy sources, such as wind, renewable biomass (as distinct from non-renewable use of
biomass), and hydro power account for only a small share of total energy consumption in modern industrial
economies.
16 The definition of “fossil” fuels is problematic. The International Energy Agency’s statistics manual defines it
as follows: “Primary energy commodities may also be divided into fuels of fossil origin and renewable energy
commodities. Fossil fuels are taken from natural resources, which were formed from biomass in the geological
past. By extension, the term fossil is also applied to any secondary fuel manufactured from a fossil fuel.
Renewable energy commodities, apart from geothermal energy, are drawn directly or indirectly from current or
recent flows of the constantly available solar and gravitational energy.” IEA, 2005. Energy Statistics Manual.
P. 19.   The manual, last updated in 2005, also distinguishes between primary and secondary energy, but does
not address other characteristics as the quality / gradient of energy, nor the issue of embodied energy.    The
juxtaposition of “fossil” vs. “renewable” is flawed because there are only degrees of renewability rather than
absolute, exclusionary definitions.  Furthermore, current machines that capture so-called “renewable” energy
are themselves reliant on the availability of nonrenewable resources.   At the same time, so-called “finite” fossil
resources have demonstrated tremendous resilience as improved methods of extraction have enabled greater
supply.  See: Agency, I.E., World Energy Outlook 2012. OECD Publishing. And also, Maugeri, L., 2012. Oil:
The Next Revolution. Belfert Center for Science and International Affairs, Harvard Kennedy School,
Cambridge.
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17 Agency, I.E., World Energy Outlook 2012. OECD Publishing. P. 81.  The report presents three scenarios,
with the most aggressive “450” scenario seeing fossil fuels decline to 63% of primary energy production in
2030 by 2035.
18 At the household level in OECD nations the total household energy budget ranks well below that of housing.
19 Raupach, M.R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J.G., Klepper, G., Field, C.B., 2007. Global
and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 104,
10288-10293.
20 “Fossil” fuels like hydrocarbons can, in theory, be synthesized from renewable and carbon neutral sources,
like sunlight, in biomass to hydrocarbon liquids, which would be net carbon neutral sources of energy.
21 Agency, P.N.E.A., 18-07-2012. Trends in global CO2 emissions; 2012 Report. Current data from NASA
Earth Systems Research Library: US Department of Commerce, N., Earth System Research Laboratory, 2012.
Trends in Carbon Dioxide. (Accessed Nov 13, 2012)
22 Kaya, Y., 1990. Impact of carbon dioxide emission control on GNP growth: interpretation of proposed
scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris, Kaya, Y., 1995.
The role of CO2 removal and disposal. Energy Conversion and Management 36, 375-380.
23 See: OECD, OECD Economic Surveys: European Union 2012. OECD Publishing. Unemployment rates
were reported to be over 25% in Greece in August 2012, and over 25% in Q3 2012.  See: 2012a. Greece
Unemployment Rate. (Accessed Nov 13, 2012)
24 China and India’s annual growth rate is averaging below 10% since 2009.  See: TradingEconomics.com,
2012. China GDP Annual Growth Rate. (Accessed Nov 13, 2012)
25 "The rarest resource in Europe is money," said Michael Kauch, a German parliamentarian and environmental
spokesman of the business-friendly Free Democratic Party. "It's even rarer than energy or rare earth minerals."
In nschutz. Quagmire in the Sahara: Desertec's Promise of Solar Power for Europe Fades - SPIEGEL ONLINE.
(Accessed Dec 1, 2012)
26 Eichengreen, B., O’Rourke, K., 2012. A tale of two depressions redux | vox, Eichengreen, B., O’Rourke,
K.H., 2010. A tale of two depressions: What do the new data tell us? VoxEU. org 8.
27 The 2011 UNCCC (COP17) held at Durban, South Africa with the aim to reach agreement on legally binding
targets adjourned with an agreement to prepare a legally binding agreement in 2015 to take effect in 2020. See:
COP17/CMP7, U., 2012. COP17 | CMP7. (Accessed Nov. 23, 2012)
28 Kent, P., 2012. Environment Canada - Statement by Minister Kent. (Accessed Nov. 23, 2012)
29 Anderson, K., Bows, A., 2012. A new paradigm for climate change. Nature Clim. Change 2, 639-640.
30 Few outside the economics profession challenge assumptions made in the practice of comparative statistics
based methodologies of neoclassical economics.  For a review of the assumptions n general equilibrium theory,
see: Howard, M.C., 2011. Modern theories of income distribution. Economists have long known that the
assumptions, for example in consumer choice theory, are flawed but continue to use these models while
ignoring the flaws.  See: Cozzarin, B.P., Gilmour, B.W., 1998. A methodological evaluation of empirical
demand systems research. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 46,
297-316.
31 Framework conventions or agreements are agreements to agree to act that contain major parameters but not
specifics.  This kind of agreement is typically used in situations where it is difficult to initially secure the
specifics but broad agreement on goals, objectives and means can be achieved.  For a look at the history of
UNFCCC, see: Hecht, A.D., Tirpak, D., 1995. Framework agreement on climate change: A scientific and
policy history. Climatic Change 29, 371-402.
32 Institutional failures are behind many of the disasters in world history.  Examples: i) The 9/11 Commission
outlined how a failure of imagination was the issue in preventing the attack because officials failed to foresee
the method of using hijacked aircraft as a weapon. Kean, T., 2004. The 9/11 commission report: Final report of
the national commission on terrorist attacks upon the United States. US Government Printing Office. ii) Ireland
was a net exporter of food during the Irish potato famine. iii) The Imperial Ching court of China failed to
respond with a comprehensive program of modernization during the 19th Century leading to its collapse. Têng,
S., Fairbank, J.K., 1979. China's response to the West: a documentary survey, 1839-1923. Harvard University
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Press. iv) The US failed to act on early warnings of the Pearl Harbor attack. Wohlstetter, R., 1962. Pearl
Harbor: warning and decision. Stanford University Press.
33 “Rapid” is defined as reaching international consensus on the outline (Framework Agreement) within 3 years,
and implementation within 5 years of that date with material results that can be empirically validated and
independently audited within 10 years.
34 Critical constraints will determine how to overcome the flawed architecture of the UNFCCC, which divided
the world arbitrarily into Annex I/II (Developed) countries and Developing countries, the fiscal situation of the
OECD in the aftermath of the 2008 economic crash, and the availability of solutions that can be rapidly
implemented without impacting economic growth, and conflicts with other established institutional
arrangements like the World Trade Organization (WTO).
35 An engineering solution has the benefit that it does not necessarily have to rely solely on proven science, but
can operate on the level of heuristics as long as it works.   As an engineering problem first, it is also freed from
the constraints of sole reliance on dominant neoclassical economics.   Engineering, as a profession, is subject to
professional liability while no comparable system exists for economists.  It is unheard of for economists to be
charged with malpractice and the profession has never required liability insurance.
36 At the risk of being accused of proposing “uneconomic” solutions, it is worth noting that, historically, many
problems that were regarded as “uneconomic” to solve, such as how to alleviate the Irish potato famine
(solvable by confiscating wheat destined for export) ended up being even more expensive problems to solve
later.  While one needs to be informed by prudent economics (so as not to propose entirely uneconomic or
unfeasible solutions like Al Gore Plan See: Couric, K., Feb. 11, 2009. Al Gore: Energy Crisis Can Be Fixed.
(Accessed Nov. 23, 2012), there are theoretical and practical limitations to the ability of neoclassical economics
to project the future (discussed below).
37 The University of Waterloo’s Civil and Environmental Engineering Department defined their domain as,
“The profession …..  involved with the creation, operation, and maintenance of structures associated with water
resources, transportation, power generation, and a wide range of industrial, commercial and institutional
buildings and complexes including whole urban structures. The activities include investigation, planning design,
construction, and evaluation.”  Furthermore, it states:  “The Civil Engineer, regardless of whether she or he is a
generalist or a specialist, draws heavily upon the work of the physical and social sciences, other professions and
other branches of engineering. Moreover, as engineers have become involved in many interdisciplinary
activities over the last decade, the job demarcation between boundaries of engineering has become much less
restrictive.”  See: CIVE, U., 2012. Undergraduate Studies Calendar | University of Waterloo. (Accessed Nov.
23, 2012)
38 For example, the Ozone layer depletion caused by Chlorofluorocarbons (CFCs) was identified as an
environmental issue by Rowland and Molina, et. al. in 1973/74 and confirmed by the National Academy of
Science (NAS) in 1976.  See: Assembly of, M., Physical Sciences . Panel on Atmospheric, C., National
Research Council . Panel on Atmospheric, C., 1976. Halocarbons, effects on stratospheric ozone. National
Academy of Sciences. These findings were strongly disputed by DuPont Inc., the leading manufacturer of CFCs
at the time, until DuPont obtained a patent on CFC replacements.
39 The availability of large labor forces that are supplied by non-market mechanisms is an enabler for regimes to
undertake large civil projects on a basis / scale that would be difficult to accomplish with labor that is free to
bargain for “compensation”.  For the same reason, certain professions, such as the military, extensively make
use of non-market means of inducement to recruit and retain personnel.
40 Encyclopedia Britannica, 2012. Engineering (science) -- Britannica Online Encyclopedia. The practice of
professional engineering is defined in Ontario as “any act of planning, designing, composing, evaluating,
advising, reporting, directing or supervising that requires the application of engineering principles and concerns
the safeguarding of life, health, property, economic interests, the public welfare or the environment, or the
managing of any such act” under Section 1 of the Province of Ontario, 2012. Professional Engineers Act,
R.S.O. 1990, c. P.28.
41 A review of economic history would lead one to wonder whether theories that are convenient to the powers
that be are selected and popularized to justify elite agendas rather than belief in an immutable science like
physics.
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42 The history of economic thought is blurry, but there are large differences in major strands like Mercantilism
(Pre-Adam Smith) and Classical economics (Adam Smith, Ricardo, etc.) and Marxian economics, and a more
blurry line toward the Neo-Classical synthesis.  See: Blaug, M., 1997. Economic theory in retrospect.
Cambridge University Press.
43 Non-market methods and means in allocation are widely used in engineering.  For example, the material /
energy / mass balances approach is widely used in the physical sciences and does not require a “price” to be set
for calculations.   In economics, input-output analysis using Leontief Tableau is an accepted method of non-
market forms of allocations.
44 Civilian nuclear reactors are required to have “fail safe” devices.  Military reactors on vessels are often
designed to have no safety device that cannot be overridden. The rationale for this is that destruction of the
vessel may be a necessary cost to achievement of the mission, which is valued above all including the loss of
life and property.
45 As an example, RGAGEP is formally included and required in many rules and regulations.  See:
1910.119(d)(3)(ii) Osha, U.S.D.o.L., Process safety management of highly hazardous chemicals. - 1910.119.
46 It is beyond the scope of this work to elaborate on the different branches of institutionalism and, in particular,
the institutionalist economics perspective.  For an overview, see Kaufman, B.E., 2007. The institutional
economics of John R. Commons: complement and substitute for neoclassical economic theory. Socio-Economic
Review 5, 3-45. And Furubotn, E.G., Richter, R., 2005. Institutions and economic theory: The contribution of
the new institutional economics. University of Michigan Press.
47 The standard engineering curriculum is not required to teach standards and the standardization process.  See:
Hunter, R.D., 2009. Standards, conformity assessment, and accreditation for engineers. CRC, Murphy, C.N.,
2009. ISO, the International Organization for Standardization: Global Governance through Voluntary
Consensus. Routledge, Zuckerman, A., 1997. International Standards Desk Reference: Your Passport to World
Markets, ISO 9000, CE Mark, QS-9000, SSM, ISO 14000, Q 9000, American, European, and Global Standards
Systems. Amacom New York.
48 Architectures are distinct from technologies as they are expressions of technologies applied in a package.
E.g. Windows x86 is a distinct architecture from Linux; while both do essentially the same thing, they are
designed to implement similar ideas differently.   For discussion on the relationship between architect and
client, see: Farenhorst, 2012. Why Good Architects Act As Chameleons.
49 As a theoretical perspective, institutionalism largely lost sway in many fields after the round of institution
building from the beginning of the 20th Century to the end of World War II (WWII).  The era of institutional
stability characterized by the Post-War period up until the 2008 crash became the golden age of social science
facilitated by technological enablers like the spread of Information Technology (IT) and exponentially
increasing data processing and storage capabilities.  Remarkably, in Engineering, with its close ties to practical
applied knowledge, it too, became enamored by the social science quest and largely left behind, at least in terms
of formal educational requirements, training for operating within and changing institutional arrangements.  That
instruction is left in the hands of tutelage or informal training in the field.
50 The dominance of the standard is evident in parts of the world whose language is not based on the Arabic
alphabet, such as China.
51 QWERTY keyboards remain standard in most handheld devices, such as smartphones, tablet computers, etc.
52 The minimum of effort in many applied engineering practices is to simply copy over a generally accepted set
of specifications and design and implement it rather than doing the calculations from known principles.
53 Many examples exist of well-known technical and scientific principles being applied improperly for simple
machines, with the result of not only wiping out the “savings” but incurring large costs.  For example, Ford
Motor Company deployed a Cruise Control Switch with a seal that was designed (improperly) to withstand
pressure from only one direction. The flaw was not recognized as a cause of failure until it was identified by the
NHTSA-ODA, which demonstrated the seal leaked when subject to pressure in the opposite direction.  Because
the switch was standardized across many vehicles, it became one of the largest recalls in history.  See:
Wakabayashi, D., 2010. How lean manufacturing can backfire. Wall Street Journal.
54 Many ostensibly well-engineered products have met their doom despite being technical successes.  For
examples, see: CIO Magazine, 2009. Apple Disasters: A Look at the Products that Flopped CIO.com.
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55 The great civil engineering projects of antiquity, from the Great Wall of China, the Pyramids, and Hadrian’s
Wall, among many others, are examples where the basic task of resource acquisition and its diversion to achieve
a technically and logistically daunting goal were accomplished without the necessity of rational economic
actors.  Indeed, it can be argued that the projects would not have been possible had considerations inherent to
“economic man” entered into the picture.   The Book of Exodus describes the history of difficult labor relations
issues in the building of these projects in ancient Egypt.
56 Myrdal, G., 1939. Monetary equilibrium. Hodge.
57 Gansler, J.S., 2011. Democracy's arsenal : creating a twenty-first-century defense industry. MIT Press,
Cambridge, Mass.
58 In the US, the Army Corps of Engineers is the federal agency responsible for flood control civil engineering-
related projects, as well as building hydroelectric facilities.
59 US-EPA began regulating GHGs as a pollutant beginning in 2009 after finding increasing concentrations
caused by human activity that “threaten[ed] the public health and welfare of the American people”.   See: US-
EPA, Cause or Contribute Findings for Greenhouse Gases Under Section 202 (a) of the Clean Air Act, 74 Fed.
Reg.
60 Myrdal, G., 1939. Monetary equilibrium. Hodge. Outlines the classical distinction between planned and
market-based economic coordination.
61 The largest firms in the world (based on revenue) includeExxon-Mobile, Royal Dutch Shell, and Walmart,
which have revenues above USD $400billion, putting them roughly on a par with economies ranked in the 20-
25th in the world, but well behind countries like Switzerland, Turkey, and the Netherlands.  In terms of
mobilizable resources, these firms are drafted by any major industrial nation, who, in times of war, can readily
mobilize half of its economy toward a specific purpose – winning a war.  The US spent 42% of GDP at the peak
of WWII, and 22% for WWI. Debt, U.S.G., 2012. USGovernmentSpending.com Past Debt Briefing. No
private corporation diverts such percentages of its resources so readily without giving up its franchises.
62 Public-Private partnerships have a mixed record and can be controversial.
63 Interests, in this context, do not have to be limited to economic. They can involve many domains, ranging
from political, to sociological, and emotional, and even to more culturally specific motivators, such as “face” in
China.  See: Hwang, K., 1987. Face and favor: The Chinese power game. American journal of Sociology, 944-
974. Or organizational factors in Allison, G.T., 1999. Essence of decision : explaining the Cuban Missile
Crisis. New York : Longman, New York. Or March, J.G., Olsen, J.P., 1984. The new institutionalism:
organizational factors in political life. The American Political Science Review, 734-749.
64 The issue of interests and climate change mitigation looms large in terms of policy making.  Yet, there is little
concern about the importance of bringing existing interests in “fossil” fuels aboard proposals for change.  At the
same time, interests in “renewable” resources have become adept at obtaining large subsidies for projects
through a variety of mechanisms like Feed-in-tariffs (FIT) and Renewable Portfolio Standards (RFS), while
“fossil” fuels are subject to Carbon Taxes or Cap and Trade programs.
65 RPS / RFS are strongly supported by agricultural interests, which tend to disproportionately command
political power in most industrialized economies. In turn, solar and wind interests have developed into
powerful lobbies on the backs of subsidies for their product and output.  Carbon taxes are typically enacted at
levels well below the econometric projected cost necessary to actually alter consumer behavior.  E.g. Australia
implemented it at A$23/ton in 2012.
66 Alexander the Great had the benefit of the best logistics team of his era, and his campaigns are closely tied to
the harvest and availability of fodder and supplies.  See: Engels, D.W., 1978. Alexander the Great and the
Logistics of the Macedonian Army. Berkeley : University of California Press, C1978, Berkeley : University of
California Press, C1978
Berkeley.
67 Jacobson, M.Z., Delucchi, M.A., 2009. A plan to power 100 percent of the planet with renewables. originally
published as" A Path to Sustainable Energy by 2030, 58-65.
68 Smil, V., 2010a. Energy transitions : history, requirements, prospects. Praeger, Santa Barbara, Calif.
69 Germany was not mobilized for “total” war until 1943 (and did not fully implement this capability until
1944), retaining many archaic practices such as working only a single shift at factories, or retaining many
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domestic servants. The Soviet Union, having decimated its military in the 1930s, rose to the occasion and
fielded a winning army that defeated Germany.
70 Norman Augustine lays out the extent to which major programs fail to meet cost targets. The administrative
overhead for any government funded or sponsored program is another factor in this struggle:  The difficulty of
securing approvals from multiple layers of players and agencies and how it impacts logistics is discussed in
Norman Augustine’s classic.   Augustine’s Law XIV states, “If a sufficient number of management layers are
superimposed on top of each other, it can be assured that disaster is not left to chance.” Augustine, N.R., 1983.
Augustine's Laws and major system development programs. New York, N.Y. : American Institute of
Aeronautics and Astronautics, New York, N.Y. p.86.
71 Economists prefer simple solutions, such as a simple carbon tax paid by consumers, to more complicated
ones; however, that nothing is simple. Few economic textbooks, let alone economists, are aware of the
complexities of rules that underpin seemingly simple markets like the stock market.
72 It can be shown that very minor institutional changes can have major impacts on how an industry is arrayed.
For example, the passing of a law called the Semiconductor Protection Act (SPA), originally intended to protect
intellectual property by making the designs of integrated circuits embodied in lithographic masks entitled to
copyright, had the effect of splitting the value chain and creating two distinct industry segments: i) design
houses, which did not own manufacturing facilities, and ii) foundries, who did not need to design and market
their own devices.    Prior to that, an even more obscure change in tariffs by the United States to ad valorem
duties for imports enabled semi-finished components to be exported to a foreign duty free zone, processed using
local labor, and then re-imported to the United States while only paying duty on the value added outside of the
US.    The net result of these changes is the explosion of a semiconductor industry that grew at a sustained
compound average growth rate of 16% from 1960 to 1994, resulting in cheap and widely available electronics
devices in every corner of the world.
73 Efficiency here refers to the weeding out of “bad” choices over time – a process that economists assume will
happen from agents that find optimality. See: Kuhn, T.S., 1996. The structure of scientific revolutions.
University of Chicago press.
74 Fairley, P., May 2012. Why Japan's Fragmented Grid Can't Cope - IEEE Spectrum. IEEE Spectrum.
75 Hong Kong retained its left side drive system after it was handed over to China in 1997.
76 Classifications of authority systems based on the degree of centralization of power dates from Aristotle.  See:
Saunders, T.J., 2002. Aristotle: Politics. Clarendon Press. The very notion that power is universal and means
the same thing everywhere is challenged by the late Lucian Pye, in Pye, M.W., Pye, L.W., 1985. Asian power
and politics: The cultural dimensions of authority. Harvard University Press.
77 Graham T. Allison’s classic “Essence of Decision” outlines three different models:  Rational actor,
organizational process, and governmental politics.  The book has since been updated and reissued by Allison
and Zelikow. Allison, G.T., 1999. Essence of decision : explaining the Cuban Missile Crisis. New York :
Longman, New York. Pluralism is a phenomenon in most organizations and groups, even in those classed as
“totalitarian” or “authoritarian” systems of organizational governance.
78 Norman Augustine notes that historically, most major program costs and scheduling tends to
exceedprojections by a wide margin.  Details of cost overruns from Thucydides onwards suggest that there is a
systemic inability of architects, engineers, and tradespeople to meet cost and schedule targets in proposals,
which speaks to either an innate capacity for optimism unjustified by history, or other systemic failures in the
profession from antiquity.
79 International multilateral treaties normally operate by consensus.  Thus, in theory, even the smallest party can
block a change. Boyle, A.E., Chinkin, C.M., 2007. The making of international law. Oxford University Press
Oxford.
80 The League of Nations was made obsolete by its failure to prevent World War II, and superseded by the
United Nations after the League was officially liquidated in 1946 and its functions transferred to the new United
Nations. Ibid, Walters, F.P., 1986. A History of the League of Nations. Greenwood Press.
81 Disruptions to systems architecture in energy rarely happen; however, when they do, as seen in the
Fukushima Diaichi incident, broken consensus are extremely difficult to repair, even as major interests (e.g.,
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large industrial power customers in Japan), threaten to shut down and leave.  See: Conca, J., 2012. Fukushima
Slugfest -- Japan's New Nuclear Regulation Authority - Forbes.
82 The Dutch transitioned to natural gas very quickly after the discovery of gas near Slochteren.  See: Smil, V.,
2010a. Energy transitions : history, requirements, prospects. Praeger, Santa Barbara, Calif. P. 84.
83 The slowness of transitions has variously been blamed on immitigable circumstances like power plants
having an economic life of 30 years or longer.
84 For the current status of renewable technology markets, please see Bloomberg New Energy Finance (BNEF)
at bnef.com.  Their quarterly “Clean Energy Policy and Market Briefing” provides a succinct summary of world
trends.  See: Bloomberg New Energy Finance, 2012. Clean Energy Policy & Market Briefing Q3 2012, p.
Clean Energy Solutions Center. The issue raises concerns about the commitment of policy makers in the US,
UK and Italy despite lower prices for photovoltaic and wind technologies. In 2012, Chinese multicrystalline
PV modules fell to USD .77/W while the world price was USD .88/W. Wind turbines are now at USD
1.23m/MW.
85An overview of hydraulic fracturing is here: King, G.E., 2012. Hydraulic Fracturing 101: What Every
Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer
Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil
Wells, SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers, The Woodlands,
Texas, USA.
86 The technological ramifications of fracking in unlocking heretofore-unexploited sources of hydrocarbon
resources (natural gas and petroleum) is not fully understood at this time.  See: Kuuskraa, V., 2011. World
shale gas resources: an initial assessment of 14 regions outside the United States. Energy Information
Administration.
87 The extent to which advocates for “renewable” energy failed to understand the depth of opposition to wind
farms and their unwillingness to acknowledge the legitimacy of the opposition is illustrated by: Pasqualetti,
M.J., 2012. The Misdirected Opposition to Wind Power. Learning from Wind Power: Governance, Societal and
Policy Perspectives on Sustainable Energy, 133. Also see: Murphy, K., 2012. Hawaii's solar power flare-up:
Too much of a good thing?, LA Times. And Cart, J., 2012. Solar power plants burden the counties that host
them, LA Times.
88 Abernathy, W.J., Utterback, J.M., 1978. Patterns of innovation in technology. Technology review 80, 40-47.
And Utterback, J.M., 1994. Mastering the dynamics of innovation : how companies can seize opportunities in
the face of technological change. Harvard Business School Press, Boston, Mass. These works describe the
classical model on how architectures standardize, which has not happened for solar and wind renewables as of
this time.
89 Geels, F.W., 2002. Technological transitions as evolutionary reconfiguration processes: a multi-level
perspective and a case-study. Research Policy 31, 1257-1274.
90 Turnheim, B., Geels, F.W., 2012. Regime destabilisation as the flipside of energy transitions: Lessons from
the history of the British coal industry (1913–1997). Energy Policy 50, 35-49. And Geels, F.W., 2002.
Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study.
Research Policy 31, 1257-1274.
91 Arapostathis, S., Carlsson-Hyslop, A., Pearson, P.J.G., Thornton, J., Gradillas, M., Laczay, S., Wallis, S.,
2013. Governing transitions: Cases and insights from two periods in the history of the UK gas industry. Energy
Policy 52, 25-44.
92 The world energy system remains “unchanged” in the narrow sense of the term; it is recognized that in many
jurisdictions, major changes, such as the phase out of coal in UK and the adoption of natural gas in the
Netherlands, have occurred.
93 The notion of public vs. private is intensely culturally and societally nuanced. Ideas of what constitutes one
vs. the other, how property rights are created, altered or removed, are beyond the scope of this research.  Suffice
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Medium: ED.
178 From China to India to Africa, elites, adjusted for incomes, share similar tastes for cars, air conditioning, etc.
Jaffrelot, C., Van der Veer, P., 2008. Patterns of middle class consumption in India and China. Sage
Publications Pvt. Ltd.
179 There are exceptions; for example, China has a relatively low uptake of clothes dryers --- a major energy
user in OECD economies.
180 Perhaps the best illustration of prejudice is how the 1997 Kyoto Protocol placed China and India in the
category of “developing countries with no binding targets”.
181 Suppose the first steam engines installed on vessels were judged by the metrics of sailing ships, they would
score poorly on logistics (need regular coaling), reliability (frequent breakdowns), and ascetics (coal is dirty). In
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188 Edison Center, 2012. Arc Lamps - How They Work - History. (Accessed Dec 1, 2012)
189 It was considered an advantage to generate electricity far away from population centers via hydro
installations until high voltage / power DC transmission became economically practical decades later.
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