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Abstract

The paradigm of separate source-channel coding is inspired by Shannon’s separation result,
which implies the asymptotic optimality of designing source and channel coding indepen-
dently from each other. The result exploits the fact that channel error probabilities can
be made arbitrarily small, as long as the block length of the channel code can be made
arbitrarily large. However, this is not possible in practice, where the block length is either
fixed or restricted to a range of finite values. As a result, the optimality of source and
channel coding separation becomes unknown, leading researchers to consider joint source-
channel coding (JSCC) to further improve the performance of practical systems that must
operate in the finite block length regime. With this motivation, this thesis investigates the
application of JSCC principles for multimedia communications over point-to-point, broad-
cast, and relay channels. All analyses are conducted from the perspective of end-to-end
distortion (EED) for results that are applicable to channel codes with finite block lengths
in pursuing insights into practical design.

The thesis first revisits the fundamental open problem of the separation of source and
channel coding in the finite block length regime. Derived formulations and numerical
analyses for a source-channel coding system reveal many scenarios where the EED reduction
is positive when pairing the channel-optimized source quantizer (COSQ) with an optimal
channel code, hence establishing the invalidity of the separation theorem in the finite
block length regime. With this, further improvements to JSCC systems are considered by
augmenting error detection codes with the COSQ. Closed-form EED expressions for such
system are derived, from which necessary optimality conditions are identified and used in
proposed algorithms for system design. Results for both the point-to-point and broadcast
channels demonstrate significant reductions to the EED without sacrificing bandwidth
when considering a tradeoff between quantization and error detection coding rates. Lastly,
the JSCC system is considered under relay channels, for which a computable measure of the
EED is derived for any relay channel conditions with nonzero channel error probabilities.
To emphasize the importance of analyzing JSCC systems under finite block lengths, the
large sub-optimality in performance is demonstrated when solving the power allocation
configuration problem according to capacity-based formulations that disregard channel
errors, as opposed to those based on the EED.

Although this thesis only considers one JSCC setup of many, it is concluded that consid-
eration of JSCC systems from a non-asymptotic perspective not only is more meaningful,
but also reveals more relevant insight into practical system design. This thesis accom-
plishes such by maintaining the EED as a measure of system performance in each of the
considered point-to-point, broadcast, and relay cases.
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Chapter 1

Introduction

The design of effective information exchange over digital communication systems is most

generally separated into two stages: source coding and channel coding. At the transmitter,

the original source is encoded by a source and channel encoder before transmission over

the communication channel, while at the receiver, channel and source decoders process the

output of the channel to reconstruct the original source. In general, the purpose of source

coding is data compression, accomplished by the removal of redundancies in the original

source to represent it using fewer bits. On the other hand, channel coding generally

inserts redundancies that assist in maintaining data integrity by effectively minimizing

transmission error.

In the first few decades of research into communication systems, the two stages of

source and channel coding were mostly designed independent of each other. In this case,

the source encoder targets to represent the original source in the most compact bitstream

manner regardless of channel statistics. Meanwhile, the channel encoder treats the source

encoder output as only bitstreams without consideration of source statistics in minimizing

information loss or error. This design paradigm, commonly known as separate source-

channel coding, was originally inspired by Shannon’s separation result, which states that for

the point-to-point channel, it is asymptotically optimal to design source and channel coding

independently from each other. The result hinges on the fact that the error probability of
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the channel can be made arbitrarily small, as long as the block length of the channel code

can grow without bound. However, in practice, the block length of the channel cannot be

unbounded, and is often restricted to a particular range of finite values to satisfy delay

constraints of the application or erratic conditions of the communication channel. Without

the assumption of asymptotically large block lengths, channel error probabilities can no

longer be made arbitrarily small, resulting in the unknown optimality of source and channel

coding separation. Hence, researchers have turned to consider joint source-channel coding

to further improve the receiver reconstruction quality of the source over communication

systems.

1.1 Joint Source Channel Coding Systems

In contrast to the separate design paradigm, systems based on joint source-channel coding

(JSCC) allow the source coding and channel coding stages to be jointly designed. While

the degree to which they are jointly designed can widely vary from the minor sharing of

statistics to treating the two stages as a singularity, any system that does not maintain

the strict independence of source and channel coding in its design is considered to employ

JSCC principles.

As an example, Fig. 1.1 depicts a general source-channel coding system. At the trans-

mitter, the original scalar or vector source z is processed by the source and channel encoder

prior to transmission over the channel. At the receiver, the channel and source decoder

eventually outputs ẑ, a reconstruction of the original source z.

For designs based strictly on Shannon’s separation result, the source encoder and de-

coder are designed according to only the statistics of z, and the channel encoder and

decoder are tailored to only the particular channel of the system. Systems based on JSCC

principles allow source coding design based on channel coding information, or vice versa,

leading to designs such as source-optimized channel coding or channel-optimized source

coding. In the former, the channel code is tailored to the source coding of the system while

the latter enables source codes that are tailored to the channel coding. JSCC principles
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Figure 1.1: General point-to-point source-channel coding system.

can be taken further by considering a combination thereof using iterative methods, further

blurring the boundaries between source and channel coding and demonstrating the in-

creased suitability for their treatment as a single source-channel encoder or decoder during

design and operation.

For point-to-point channels, such as those depicted in Fig. 1.1, there are indeed in-

dications in some earlier results that suggest joint as opposed to separate source-channel

coding yields some notable advantages. For example, numerous investigations into systems

employing JSCC have been carried out ([1], [2], [3], [4], [5], [6], [7], and some references

therein), all of which exhibit potential advantages over their separate design counterparts

in terms of end-to-end distortion (EED), defined as the average per-symbol mean-squared

error (MSE) between the original source and its receiver reconstruction to capture the

distortion introduced by the source coding, channel coding, as well as the channel itself.

Motivations of employing JSCC principles span beyond the unknown optimality of

source and channel coding separation in the finite block length regime for point-to-point

channels. For the broadcast channel, JSCC principles have been applied to pair scal-

able source coding (SSC) with superposition channel coding (SPC) through a natural

ordering map of each source code resolution to the corresponding channel code resolu-

tion [8][9][10][11]. As such, multiple resolutions of the source information can be decoded

from the single channel broadcast, resulting in improved utilization of channel resources

under diverse multi-user channel conditions. Moreover, such SSC-SPC pairing enables

evaluation of performance in terms of the source end-to-end distortion introduced by the
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source-channel coding system, which for practical multimedia communications, may be

significantly more meaningful than traditional channel coding metrics such as achievable

rate or channel capacity.

As an example, for the transmission of a two-resolution successively refinable source

over a degraded broadcast channel with two receivers, it is possible to reconstruct the source

at either the lower resolution using only partial information, or the higher resolution using

the complete information. By the exact mapping of the lower resolution source symbol

to the lower resolution of the SPC codeword that is more tolerant to the channel noise,

receivers experiencing poorer channel conditions can better preserve service continuity at

the lower resolution instead of service outage. On the other hand, receivers able to decode

the full SPC codeword obtain the higher resolution of source reconstruction. As a result

of such natural ordering mapping of resolutions between source and channel coding, the

awkward situation where correctly-decoded refinement information cannot be used due to

loss of corresponding lower resolution information is avoided. The architecture whereby

SSC is paired with SPC has also been extended to the transmission of multiresolution

sources over wireless relay networks by using a variety of cooperative strategies to exploit

the successively refinement nature of the source [12][13][14][15][16].

1.2 End-to-End Distortion

Conducting analysis of separate or joint source-channel coding systems for broadcast or

relay channels in a non-asymptotic, practical manner is no easy task. Hence, numerous

research efforts have pursued theoretical results in the asymptotic setting by evaluating per-

formance using metrics such as channel capacity or distortion exponent [12][17][18][19][20].

These performance measures are asymptotic in the sense that they are only applicable

when the block length of the channel code can grow without bound. As such, they do

not include the effects of potentially large error probabilities that applications operating

under finite block lengths must tolerate. Hence, while investigations based on these metrics

reveal some insights into the design of their considered systems in asymptotic scenarios,

4



they are less applicable to practical systems operating in the finite block length regime.

Furthermore, studies based on channel capacity have unclear associations to the distortions

introduced to the source by the entire system in multimedia communication applications,

for which evaluations from the perspective of distortion may be more meaningful.

Some research on JSCC systems have employed distortion as a performance metric,

but relies on other asymptotic assumptions for its evaluation, such as [13], which computes

the expected distortion from outage probabilities based on channel capacity. Efforts in

[14] include rigorous theoretical analyses with results based on outage-based end-to-end

distortion followed by actual simulations, resulting in unclear implications of their theoret-

ical results on the demonstrated gains in their simulations from the perspective of source

distortion. Works in [15][16][21][22] begin with the MSE distortion measure but relies on

the assumption of high SNR for analysis and evaluation, again restricting their results’

applicability from non-asymptotic practical systems.

While the evaluation of system performance using end-to-end distortion is more natural

for multimedia applications, doing so in a non-asymptotic end-to-end manner for systems

that include both source and channel coding may often result in rather complex formu-

lations and hence difficulty in conducting analysis. Consider a JSCC system employing

channel-optimized source quantizers (COSQ), or noisy channel quantizers. In general, the

COSQ is composed of two parts, specifically, a scalar or vector quantizer, and an index

assignment mapping, both of which can impact the average EED of the JSCC system. For

fixed index assignments, earlier works in [1][2][3][4][5][23] presented effective algorithms for

the design of optimal noisy channel quantizers and demonstrated their superiority over

traditional quantizers designed based on Lloyd-Max [24][25]. However, they are unable to

provide strong analytical results because of using a fixed index assignment in their system

setting, resulting in the lack of an analytical closed-form expression for the EED and high

complexity in quantizer design. For example, vector quantizers designed in [1] and [5] are

based on necessary conditions that depend on all transitional probabilities from channel

input symbols to channel output symbols, hence making it difficult to analyze not only the

optimal quantizer itself, but also to compute the EED. On the other hand, earlier work by

Zeger and Manzella [26] investigated the source quantization problem under random index
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assignment (RIA) to transform any discrete memoryless channel (DMC) to a symmetric

channel in pursuing analytical results. However, their results are only valid in the high-rate

asymptotic case. Meanwhile, efforts by Yu et al. and Teng et al. in applying RIA led to

the derivation of closed-form non-asymptotic EED formulae for both the point-to-point

[6] and broadcast [7] channels. With the closed-form EED formula, theoretical analysis of

optimal noisy channel quantizers became tractable, and algorithm design required only the

average channel error probability, as opposed to the entire matrix of transitional probabil-

ities necessary for the fixed case. Although treatment of the COSQ design problem under

the assumption of RIA may initially seem counterintuitive or impractical, RIA has obvious

equivalence to scramblers, which are already widely employed in practical communications

systems such as LTE systems [27]. Furthermore, it was shown in [6] that quantizers de-

signed based on RIA can partially alleviate the poor performance observed in [1] under

channel mismatch.

1.3 Organization and Contributions

This thesis investigates the application of joint source-channel coding principles in broad-

cast and relay channels. The entirety of the thesis maintains the employment of end-to-end

distortion, defined as the exact mean-squared error between the original source and its re-

ceiver reconstruction, as the performance metric for system evaluation. Our derivations of

closed-form EED expressions for JSCC systems are conducted for systems that link source

and channel coding with random index assignment, and holds with full accuracy for any

non-asymptotic channel settings. This is in contrast to some prior literatures that rely

on asymptotic assumptions to proceed with their analyses. We envision that this style of

non-asymptotic analysis allows deeper insight to provide larger implications on practical

system and coding design than the studies conducted under asymptotic and unrealistic

scenarios. Furthermore, the techniques that enable our non-asymptotic theoretical analy-

sis are not limited to the particular considered setup; they can be similarly applied to any

JSCC system, transmission scheme, or relay strategy.

To motivate the consideration of JSCC principles in broadcast or relay scenarios, Chap-
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ter 2 first revisits the fundamental problem of the validity of source and channel coding

separation in the non-asymptotic finite block length regime. This fundamental problem

remains open in general, yet its investigation is necessary to justify the increase in de-

sign and operation complexity of joint source-channel coding over separate source-channel

coding in practical communication systems, for which operation in the finite block length

regime results in channel error probabilities that are strictly greater than zero.

To demonstrate the invalidity of source-channel coding separation, Chapter 2 considers

a JSCC system that employs the channel-optimized source quantizer given channel infor-

mation in the form of transition probabilities between channel input and output symbols,

and show its advantages over separate design counterparts. While there are earlier efforts

that have considered such a problem, they have assumed system settings with either no

channel coding or with a fixed channel code that may be close to or far from optimal,

resulting in potentially large overestimations of channel symbol error probabilities and in

turn, the reductions to EED as well. Hence, their results do not imply the breakdown of

Shannon’s separation theorem in the finite block length regime, even though the fact of

nonzero channel error probabilities for any channel code certainly suggests so. In Chapter

2, our treatment of the problem differs in our employment of optimal channel coding, and

as a result, quantifies the lower bound of the achievable reductions to EED when applying

JSCC principles to the considered source-channel coding setup through the pairing of the

COSQ with an optimal channel code. Our results show that achievable reductions of some

magnitude to the EED are possible when considering the joint versus separate design, even

under optimal channel coding. Hence, the results of the investigation in Chapter 2 firmly

imply that the separation of source and channel coding no longer holds for practical ap-

plications that operate in the finite block length regime. Moreover, the yielded reductions

to the EED may even be fairly large under certain system settings or channel conditions,

hence justifying the employment of joint source-channel coding in practical multimedia

communications. This work was published in [28].

With the potential advantages of employing JSCC principles established even under the

most idealistic scenario of an optimal channel code, Chapter 3 builds upon prior related

work for a particular SSC-SPC pairing, where the noisy multiresolution vector quantizer is
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linked to superposition channel codes with random index assignment to enable the closed-

form derivation of the EED and its rigorous theoretical analysis. Under this setup, we

investigate and analyze further improvements to the performance of such SSC-SPC pairing

through the joint design of the multiresolution source quantizer with added error detec-

tion codes at the application layer when the channel code and error probability statistics

are fixed. The EED for the system with error detection codes are formulated, from which

necessary optimality conditions are derived. Iterative algorithms are proposed for multires-

olution vector quantization design and analysis, with their performance evaluated for both

point-to-point and broadcast channels under the employment of several cyclic redundancy

checks of various polynomial lengths as the error detection code.

Our motivation for including error detection into the consideration of source coding

design in Chapter 3 stems from earlier work that attributed a large portion of distor-

tion contribution to a structural parameter named the scatter factor of the noisy channel

quantizer, and that its contribution to the EED occurs for only undetected symbol errors.

Hence, reductions to the scatter factor’s contribution to the EED may also significantly

reduce the EED itself by transforming any arbitrary discrete memoryless channel to a par-

tial erasure channel, for which the scatter factor’s contribution to the EED are reduced

to only symbol errors that are undetectable by the error detection code as opposed to all

symbol errors. Portions of this work were published in [29] and [30].

Investigations of the SSC-SPC pairing based on JSCC principles are further extended

to the three-node relay network in Chapter 4 from the context of end-to-end distortion per-

formance. In contrast to any previously reported research based on asymptotic capacity-

based distortion (CBD) measures, the study proceeds with the derivation of the EED for

the transmission of a real-valued Gaussian source with error detection codes under ran-

dom index assignment. Maintaining system formulation and analyses using EED under

the non-asymptotic channel coding assumptions serves to achieve better applicability in

practice, where channel codes with predetermined finite block lengths subject the multi-

media application to large error probabilities. Using the derived EED formulation for the

relay network, achievable gains of the SSC-SPC pairing are quantified versus a number

of conventional single-resolution or point-to-point transmission schemes. Portions of this
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work were published in [31], [32], and [33].

To better motivate the analysis of JSCC systems in a non-asymptotic manner using

EED, Chapter 4 further considers the problem of power allocation optimization inherent to

the broadcast channel when solved based on the derived EED formulations in comparison

to using an asymptotic CBD measure, for which symbol losses caused by channel errors

are disregarded. The performance gap between results solved from EED versus CBD are

numerically quantified for a variety of relay channel conditions, and demonstrate that the

SSC-SPC pairing exhibits potential suboptimal and awkward performance when power

allocation configuration is performed based on CBD measures. Portions of this work were

published in [31], [34], and [35].

Chapter 5 concludes the thesis and summarizes potential future work, including on-

going research in furthering the development and analysis of joint source-channel coding

systems from the non-asymptotic perspective of end-to-end distortion.
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Chapter 2

Separation of Source and Channel

Coding

Consider the transmission of a real-valued source z over a general point-to-point source-

channel coding system. By Shannon’s classic separation result, it is asymptotically optimal

to design the source and channel coding of z independently from each other, as long as the

block length of the channel code is allowed to grow without bound. However, in practice,

the block length of the channel code cannot be unbounded, and is often restricted to a

particular range of finite values to satisfy delay constraints of the application or erratic

conditions of the wireless channel. Without the assumption of asymptotically large block

lengths, the question of whether or not the separation theorem holds in the finite block

length regime remains a problem yet to be completely analyzed and solved.

In this chapter, we revisit the validity of source and channel coding separation in

the finite block length regime. To demonstrate the invalidity of source-channel coding

separation for finite block lengths, we employ JSCC principles and consider the usage

of channel-optimized source quantizers under optimal channel coding. Our analyses are

distinguished from prior work that consider either no channel coding or fixed channel codes

that may be close to or far from optimal, and hence do not address the fundamental open

problem of whether or not the separation theorem holds for the finite block length regime.
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2.1 Background and Related Work

There are indeed indications from earlier results that suggest the separation theorem no

longer holds in the finite block length regime; in other words, it is no longer optimal for

source and channel coding to be designed independently of each other when the block length

of the channel code cannot be made arbitrarily large. For example, numerous investigations

into systems employing joint source-channel coding (JSCC) have been carried out, such

as source-optimized channel coding, channel-optimized source coding, or a combination

thereof (see [1], [6], and references therein), all of which exhibit potentially large advantages

over their separate design counterparts in terms of end-to-end distortion (EED). However,

much of these prior works consider system settings either without channel coding, or with

a particular channel code that may be close to or far from optimal. Without considering

the optimal channel code in their system settings, gains yielded from designs based on joint

versus separate source-channel coding cannot imply the breakdown of Shannon’s separation

theorem in the finite block length regime, even though the fact of nonzero channel error

probabilities certainly suggests so.

There has been some recent efforts to analytically establish the performance advantage

of JSCC designs over separate ones in the finite block length regime. In [36], the problem of

lossy compression is considered, where JSCC principles are applied at the decoder side by

decoding the source with available channel information. Their analysis is conducted from

the perspective of excess-distortion probability (EDP), defined as the probability that the

distortion incurred by the source reconstruction exceeds some level d. However, because

their code construction varies as a function of d, their results cannot imply an achievability

from the perspective of EED, which becomes difficult to evaluate for a fixed coding scheme.

This chapter revisits the validity of source and channel coding separation in the finite

block length regime by investigating source quantization when paired with optimal channel

coding. Our treatment of this problem is enabled by recent developments in finite block

length analysis (see [37], [38], and [39]), which accurately characterizes the tradeoff be-

tween coding rate and error probability under optimal channel coding. In contrast to [36],

we investigate the problem from the classical perspective of end-to-end distortion, which
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can be derived in closed-form when source and channel coding are linked via random index

assignment (RIA). Although treatment of the problem under the assumption of RIA may

initially seem counterintuitive or impractical, RIA has obvious equivalence to scramblers,

which are already widely employed in practical communications systems such as LTE sys-

tems [27]. Further, it was shown in [6] that designs of channel-optimized source quantizers

(COSQ) based on RIA are more robust against fluctuating channel conditions, which is

one of the critical reasons for practical systems to operate under finite block lengths.

Given an arbitrary discrete-input memoryless channel (DIMC) and optimal channel

code with a finite block length n to represent k source samples, we seek to disprove the

separation theorem by benchmarking a JSCC system employing COSQs, also known as

noisy channel quantizers, versus one with quantizers following separation principles. Under

RIA, both systems employ the optimal tradeoff between the coding rate k
n

and channel

block error probability ε governed by finite block length analysis to minimize EED, while

the joint case allows for further channel-optimized source quantizer design based on ε for

each
(
k
n
, ε
)

pair. Note that such comparison considers the best possible design based on

separation principles, since completely separate quantizers cannot even exploit the tradeoff

between coding rate and channel error probability.

To ensure optimality of the quantizer in the separate design scenario, we consider a

scalar quantizer that is applied k times to feed channel coding, as seen in Fig. 2.1. A scalar

quantizer is assumed since under separate design, the Lloyd-Max algorithm guarantees

optimality and convergence [24][25] for sources with log-concave probability distribution for

the squared-error distortion; these characteristics are unclear for an arbitrary k-dimensional

vector quantizer and hence would not be suitable to serve as an optimal benchmark.

The rest of the chapter is organized as follows. Section 2.2 details the derivation of

EED given the tradeoff between coding rate and block error probability based on finite

block length analysis. Section 2.3 details the quantizers employed in both joint and separate

design scenarios. To investigate whether or not the separation of source and channel coding

still holds in the finite block length regime, Section 2.4 presents numerical comparisons

between separate and joint designs under a particular DIMC and the binary symmetric

channel (BSC). Closing remarks for the chapter are presented in Section 2.5.
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2.2 End-to-End Distortion in the

Finite Block Length Regime

Let z ∈ Λ ⊂ R be an independent and identically distributed source with zero mean, σ2

variance, and probability density function f(z). With reference to Fig. 2.1, suppose k

samples of z are to be individually quantized and transmitted over a DIMC under optimal

channel coding with block length n. Let (A,Z) represent a particular scalar quantizer

employed in the system, where A = {Ai, 1 ≤ i ≤ N} is the partitioning of Λ into N disjoint

regions {A1, · · · ,AN}, which are respectively represented by the codewords, {z1, · · · , zN},
or simply their indices {1, · · · , N}. Let πt(i

k) = rk be one particular index assignment out

of Nk! that links every k quantizer outputs to the optimal channel encoder in a one-to-one

mapping manner such that {1, · · · , Nk} 7→ {1, · · · , Nk}.

The DIMC concatenated with optimal channel coding takes rk ∈ {1, · · · , Nk} as input

and outputs r̂k ∈ {1, · · · , Nk} to the source decoder with a block error probability ε. We

observe here that based on the results of finite block length analysis developed in [37], [38],

and [40], ε not only depends on the block length n, but also depends on log2(N), the rate

per source symbol of the scalar quantizer. Let εn(R) denote the minimum achievable block

error probability at the rate R bits per channel use with block length n. With reference to

Fig. 2.1, it is easy to see that k log2(N) = nR.

Scalar 
Quantization 

Random Index 
Assignment 

Source 
Decoder 

Reverse Index 
Assignment 

Channel 

Optimal Channel 
Coding and 
Modulation 

Demodulation 
and Decoding 

îk r̂k

xnrkik

yn

zk

ẑk

Figure 2.1: A lossy compression joint source-channel coding system with optimal channel
coding and random index assignment.
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Suppose the DIMC is characterized by the set of transition probability functions P =

{p(y|x), x ∈ X , y ∈ Y}, where X and Y are respectively the channel input and output

alphabets. Let t(x) denote the input distribution of P . Given n and R (in nats), the

block error probability was shown in [37] and [38] to be well-approximated under optimal

channel coding by1

εn(R) ≈ exp
(n

2
λ2σ2

D(λ)
)
Q(
√
nλσD(λ)) exp (−nr−(λ)) , (2.1)

where

r−(λ) = −λR−
∑
x∈X

t(x) ln

∫
Y
p(y|x)

[
p(yx)

q(y)

]−λ
dy,

σ2
D(λ) =

∑
x∈X

t(x)

∫
Y
p(y|x)f−λ(y|x)

[
ln
p(y|x)

q(y)

]2

dy

−
∑
x∈X

t(x)

(∫
Y
p(y|x)f−λ(y|x) ln

p(y|x)

q(y)
dy

)2

,

f−λ(y|x) =

[
p(y|x)
q(y)

]−λ
∫
Y p(v|x)

[
p(v|x)
q(v)

]−λ
dv
,

q(y) =
∑
x∈X

t(x)p(y|x),

Q(x) =

∫ +∞

x

1√
2π

exp

(
−v

2

2
dv

)
,

such that λ satisfies

R =
∑
x∈X

∫
Y
t(x)p(y|x)f−λ(y|x) ln

p(y|x)

q(y)
dy.

1We proceed for a DIMC with continuous output. For discrete output, use summations in place of
integrals.
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Given any n, k, and any DIMC defined in this section, an N -level scalar quantizer in

the system depicted in Fig. 2.1 is associated with a block error probability εn(R) expressed

by (2.1), where R = k
n

log2(N).

Suppose the index assignment πt in Fig. 2.1 is randomly and uniformly selected out of

Nk! possible assignments. The EED under RIA for any N -level scalar quantizer associated

with a block error probability εn(R) is expressed in Theorem 2.1, which is a straightforward

extension of the derivations in [6] to the block coding case.

Theorem 2.1. For any scalar quantizer with N levels paired with optimal channel coding,

where the scalar quantizer is applied k times and mapped to a single channel codeword with

block length n and block error probability εn(R), the end-to-end distortion is expressed as

D̄ =

(
1− εn(R)Nk

Nk − 1

)
DQ +

εn(R)Nk

Nk − 1
(σ2 + SQ), (2.2)

where

DQ =
N∑
i=1

∫
z∈Ai
|z − zi|2f(z)dz, (2.3)

SQ =
1

N

N∑
i=1

|zi|2. (2.4)

Remark 2.1. It was demonstrated in [6] that under the assumption of RIA, an exact closed-

form per-symbol EED expression can be derived for a tandem JSCC system. In this paper,

Theorem 2.1 is a straightforward extension of the tandem EED expression into the block

coding case. As in [6], the EED derived under RIA is dependent on only the average

error probability Pr{r̂k 6= rk} of the channel, as opposed to the entire set of transitional

probability functions {p(r̂k|rk) : r, r̂ ∈ {1, · · · , Nk}}. Observe that due to the employment

of RIA, the average error probability defined for the EED formulation in [6] is actually

exactly equal to the block error probability governed by finite block length analysis for the

optimal channel code with block length n. In other words, we have εn(R) = Pr{r̂k 6= rk}.
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Proof of Theorem 2.1. The techniques applied in the proof of Theorem 3.1 for the tandem

system with error detection codes can be simplified by removing error detection capability

and straightforwardly extended to the block channel case considered here. Hence, the proof

is omitted.

2.3 Quantizers for the Finite Block Lengths Regime

Under the assumption of optimal channel coding, the previous section applied finite block

length analysis to approximate an one-to-one association between N and εn(R) given block

length n. However, the source coding rate becomes discretized due to limitations of the

scalar quantizer, and hence, it is more appropriate to minimize the EED over all possible

values of N , with corresponding values of εn(R), which is approximated by (2.1). We

proceed with our analysis by first seeking the optimal tradeoff between N and εn(R) for

the system employing a separate quantizer.

Let Q∗s(N) denote the class of optimal separate scalar quantizers designed using the

Lloyd-Max algorithm for a source with a log-concave distribution. Formally, given any

block length n, number of source symbols k, DIMC with the set of transition probability

functions P , and Q∗s(N), we wish to solve the following optimization problem:

D̄s , min
N

[(
1− εn(R)Nk

Nk − 1

)
DQ(Q∗s(N)) +

εn(R)Nk

Nk − 1
(σ2 + SQ(Q∗s(N)))

]
, (2.5)

where N ∈ {1, 2, . . . , bαn/kc}, α denotes the cardinality of the channel input alphabet, and

R = k
n

log2(N). Since εn(R) cannot be exactly computed, its approximation as expressed

by (2.1) is employed in (2.5). Let N∗s (or R∗s = k
n

log2(N∗s )) denote the solution to (2.5)

that achieves the minimum EED, D̄∗s(n, k, P ), which is the optimal performance for the

system that pairs the optimal separate quantizer with an optimal channel code through

random index assignments.

For the JSCC case, we seek an N -level channel-optimized scalar quantizer that replaces

the separate quantizer designed independent of εn(R) with one that considers εn(R) in
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minimizing (2.2). From Theorem 2.1, for any N and its corresponding εn(R) governed by

finite block length analysis, (2.2) can be further minimized with respect to (A,Z). Hence,

given εn(R) and N , the joint quantizer should solve

min
A,Z

[(
1− εn(R)Nk

Nk − 1

)
DQ (A,Z) +

εn(R)Nk

Nk − 1
(σ2 + SQ (A,Z))

]
, (2.6)

where the minimization is over all possible pairs of (A,Z).

Given any channel with an optimal channel code with a block error probability εn(R),

and a desired N -level scalar quantizer, the solution to (2.6) is characterized by two neces-

sary optimality conditions that can be derived from (2.2):

1) Given A, the optimal code vectors to minimize D̄ is computed by2

zi =

∫
z∈Ai zf(z)dz

εn(R)
(1−εn(R))Nk + Pr{z ∈ Ai}

, i = 1, · · · , N. (2.7)

2) Given Z, the optimal partitioning of Λ follows the nearest neighbour rule. In other

words, it satisfies

Ai = {z : |z − zi|2 ≤ |z − zj|2, j 6= i}, i = 1, · · · , N. (2.8)

To solve (2.6), the iterative descent algorithm proposed in [6] can be slightly modified

with (2.7)-(2.8) to design our noisy joint quantizer without loss of guaranteed convergence.

Begin with the initial optimal separate quantizer Q0 = Q∗s(N) = (A0,Z0). For each

iteration l > 0, alternate between computing Zl+1 according (2.7) given Al, followed by Al+1

according to (2.8) given Zl+1. Continue for l = 1, 2, . . . until the decrease in EED between

iterations falls below a threshold. Then, output (Al+1,Zl+1) as the desired joint quantizer

based on JSCC principles. Note that such quantizer based on (2.7)-(2.8) targets to solve

(2.6) for a given N and its corresponding εn(R). To further improve the performance of the

2Since Nk is large in general, we have assumed Nk

Nk−1 ≈ 1 for clarity.
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joint quantizer, the objective should be further optimized over N itself. This is considered

in the next section.

2.4 Numerical Analysis

In this section, we investigate the separation of source and optimal channel coding in the

finite block length regime by quantifying the achievable gains of employing the joint noisy

quantizer versus the separate quantizer based on the Lloyd-Max algorithm. The threshold

below which the decrease in EED between iterations is considered small enough to output

the final quantizer is set at 10−7. Numerical analyses are conducted for the transmission of

a one-dimensional Gaussian source with zero mean and unit variance over both the DIMC

and BSC. The separate design case is considered under optimal tradeoffs between N and

εn(R) as the solution to (2.5). The joint quantizer is designed by solving:

D̄j , min
N,A,Z

[(
1− εn(R)Nk

Nk − 1

)
DQ (A,Z) +

εn(R)Nk

Nk − 1
(σ2 + SQ (A,Z))

]
, (2.9)

where the EED is jointly minimized over all possible triples of (N,A,Z). Given a channel

with channel input cardinality α, (2.9) can be solved by individually solving (2.6) for every

N ∈ {1, 2, · · · , bαn/kc}, and then selecting the N and corresponding (A,Z) that minimizes

the EED. Denote the final quantizer by (N∗j ,A
∗
j ,Z

∗
j), and note that N∗j is unique under our

numerical setting such that any N > N∗j cannot be optimal; this fact allows us to largely

reduce the set of possible N when solving (2.9) by enumeration.

2.4.1 Discrete Input Memoryless Channel

We first consider the DIMC depicted in Fig. 2.2 by transmitting using QPSK over an

AWGN channel with noise power N0

2
. The output of the QPSK modulator serves as input

into a DIMC, where the input alphabet X of the channel is exactly the coordinates of the

QPSK signal constellation determined by the channel SNR γ , h2E
N0

. The output alphabet
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Figure 2.2: The considered DIMC: QPSK modulation over an AWGN channel.

is the complex plane, i.e. Y = C. Block lengths of n = 360 and n = 720 are considered,

which are on the same order of those in state-of-the-art wireless systems such as LTE [27].

Further note that the achievability and converse bounds from finite block length analysis

are rather tight for the considered block lengths to reasonably apply (2.1) in approximating

εn(R) [37][38].

Table 2.1-2.2 present the respective results for channel SNR γ = −10 dB and γ =

−7 dB under various bandwidth expansion ratios n
k

in terms of PSNR , 10 log10(σ2/D̄).

Observe that PSNR gains may be large, but could also be rather small in magnitude,

which is due to our consideration of a theoretical setup with optimal channel coding; for

practical systems employing actual channel codes that are not optimal, actual block error

probabilities would likely be larger and yield larger PSNR gains as well.

The most interesting phenomenon seen from Table 2.1-2.2 is the potential increase in

source coding rate when the joint noisy quantizer is employed. As an example, for n = 360,

n/k = 72, and γ = −10 dB, replacing the separate quantizer with the joint quantizer allows

the source rate to be increased from log2 12 = 3.585 to log2 16 = 4 bits per symbol while

yielding a PSNR gain of 0.247 dB, indicating the potential for improved system end-to-

end performance with increased source coding rates and block error probabilities, which

the joint quantizer is designed according to. The scenarios exhibiting such behaviour are

indicated with bold text. Also, note that the results in Table 2.1-2.2 do not contradict the

separation of source and channel coding for asymptotically large block lengths; as suggested

by the general decrease in PSNR gains with increasing n and observed in other experiments,

further increases to n would eventually reduce both the block error probability and the
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Table 2.1: PSNR gains for AWGN with QPSK, n = 360, and various n/k.
γ = −10 dB γ = −7 dB

n/k Gains [dB] N∗j N∗s Gains [dB] N∗j N∗s
45 0.177 8 8 0.088 38 38
60 0.092 10 10 0.173 80 71
72 0.247 16 12 0.200 128 111
90 0.187 19 19 0.223 215 215
120 0.331 32 32 0.284 512 406
180 0.544 64 64 0.181 1024‡ 1024‡

Table 2.2: PSNR gains for AWGN with QPSK, n = 720, and various n/k.
γ = −10 dB γ = −7 dB

n/k Gains [dB] N∗j N∗s Gains [dB] N∗j N∗s
36 0.083 8 7 0.038 45 45
45 0.058 11 10 0.059 90 86
60 0.106 19 19 0.052 228 228
72 0.047 24 24 0.077 477 445
90 0.124 45 41 0.032 1024‡ 1024‡

120 0.145 90 80 O(10−6) 1024‡ 1024‡

180 0.231 256 215 O(10−5) 1024‡ 1024‡

gains of using the joint quantizer to zero, hence supporting the optimality of separate

source and channel coding design in the asymptotic n→∞ case.

The observed PSNR gains in this subsection only suggest that the separation of source

and channel coding no longer holds in the finite block length regime. This is due to two

reasons. First, only an approximation of the block error probability is used to evaluate the

EED and hence, we cannot establish that the PSNR gains will always be larger than the

observed ones. Second, the Lloyd-Max algorithm is only optimal for infinite iterations; as a

result, separate quantizers designed in practice are never strictly optimal for the Gaussian

source. In the next subsection, we overcome these shortcomings and strengthen our claims

to establish the breakdown of Shannon’s separation result in the finite block length regime.

‡Our results are restricted to scalar quantizers with rates of no more than 10 bits per source symbol.
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2.4.2 Lower Bound of Gains – Binary Symmetric Channel

In this subsection, we quantify the lower bound of the gains achievable from using the joint

versus separate quantizer for finite uses of the binary symmetric channel (BSC) with an

optimal channel code. This is accomplished by relying on the largest computable lower

bound and smallest computable upper bound of the block error probability εn(R) for the

BSC, as opposed to an approximation of the actual εn(R), such as that expressed in (2.1)

for the DIMC. We consider the separate quantizer using the lower bound of εn(R) and the

joint quantizer using the upper bound of εn(R), and quantify the performance gap between

them. While computation of the performance gap in this manner sharply underestimates

it, such analysis allows us to draw a stronger conclusion regarding the separation of source

and channel coding in the finite block length regime.

The separate quantizer considered in this subsection solves the following minimization

problem:

D̄l
s , min

N

[(
1− εln(R)Nk

Nk − 1

)
DQ(Q∗s(N)) +

εln(R)Nk

Nk − 1
(σ2 + SQ(Q∗s(N)))

]
, (2.10)

where N ∈ {1, 2, . . . , b2n/kc} and εln(R) is the lower bound of εn(R). The joint noisy

quantizer considered in this subsection solves the following minimization problem:

D̄u
j , min

N,A,Z

[(
1− εun(R)Nk

Nk − 1

)
DQ (A,Z) +

εun(R)Nk

Nk − 1
(σ2 + SQ (A,Z))

]
, (2.11)

where N ∈ {1, 2, . . . , b2n/kc} and εun(R) is the upper bound of εn(R).

As of this writing, the tightest known and computable lower and upper bounds that

capture the tradeoff between R and εn(R) for the BSC are the converse and achievability

results derived in [39]. We employ such bounds on the block error probability given n,

k, and p and present the gap between D̄l
s and D̄u

j in Table 2.3-2.4 for a zero mean unity

variance Gaussian source and Table 2.5-2.6 for a zero mean unit variance uniform source

distributed over [−
√

3,
√

3]. For the uniform source, applying the lower and upper bounds

in the separate and joint quantizers, respectively, allows us to quantify the minimum PSNR

22



Table 2.3: PSNR gains for Gaussian source over BSC with n = 200 and various n/k.
p = 0.17 p = 0.11

n/k Gains [dB] Nu
j N l

s n/k Gains [dB] Nu
j N l

s

28.6 0.037 35 35 18.2 0.039 46 46
33.3 0.076 57 57 22.2 0.019 80 80
40.0 0.057 97 84 25.0 0.017 117 117
50.0 0.069 181 181 28.6 0.020 190 190

Table 2.4: PSNR gains for Gaussian source over BSC with n = 800 and various n/k.
p = 0.25 p = 0.20

n/k Gains [dB] Nu
j N l

s n/k Gains [dB] Nu
j N l

s

40.0 0.022 27 27 26.7 0.027 35 35
50.0 0.022 51 51 33.3 0.013 67 67
57.1 0.024 78 78 36.4 0.019 93 93
66.7 0.032 135 135 40.0 0.011 132 128
72.7 0.033 186 186 44.4 0.021 203 203

gains achievable from using the joint noisy quantizer that solves (2.9) in place of the optimal

separate quantizer that solves (2.5) without needing to evaluate the actual εn(R).

The results for the uniform source in Table 2.5-2.6 reveal that there are indeed scenarios

where D̄l
s > D̄u

j , as the lower bound of the performance gap can now be quantified by

using the uniform quantizer that exactly satisfies the centroid conditions for optimality

when designing a quantizer for a uniform source. Whenever D̄l
s − D̄u

j > 0, we also have

D̄s− D̄j ≥ D̄l
s− D̄u

j > 0 since D̄s ≥ D̄l
s and D̄j ≤ D̄u

j . With this, we have argued the strict

performance gap between the separate and joint quantizers in terms of EED under certain

scenarios in the finite block length regime, hence validating the breakdown of source and

channel coding separation for finite usages of the BSC. Note that it is necessary to to

establish D̄s− D̄j > 0 in this manner as there is currently no exact evaluation of the actual

block error probability εn(R) in the finite block length regime for the BSC.
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Table 2.5: PSNR gains for uniform source over BSC with n = 200 and various n/k.
p = 0.17 p = 0.11

n/k Gains [dB] Nu
j N l

s n/k Gains [dB] Nu
j N l

s

28.6 >0.030 23 23 18.2 >0.003 32 32
33.3 >0.036 32 32 22.2 >0.007 50 50
40.0 >0.028 48 48 25.0 >0.013 69 69
50.0 >0.041 90 90 28.6 >0.022 105 95

Table 2.6: PSNR gains for uniform source over BSC with n = 800 and various n/k.
p = 0.25 p = 0.20

n/k Gains [dB] Nu
j N l

s n/k Gains [dB] Nu
j N l

s

40.0 >0.018 21 21 26.7 >0.006 27 27
50.0 >0.013 36 36 33.3 >0.008 49 49
57.1 >0.020 52 52 36.4 >0.014 62 62
66.7 >0.027 80 80 40.0 >0.011 84 84

2.5 Summary

This chapter investigates the validity of Shannon’s classical result of separate source and

channel coding in the finite block length regime. A joint source-channel coding system is

considered, where the channel-optimized source quantizer is paired with optimal channel

coding to demonstrate achievable reductions to the end-to-end distortion in comparison to

separate design. Under the optimal tradeoff between coding rate and block error proba-

bility, the joint quantizer is shown to outperform the optimal separate quantizer designed

via Lloyd-Max for many scenarios. Although the magnitude of the gains can vary, we are

still able to argue that from the perspective of end-to-end distortion, the separation of

source and channel coding fails to hold in the finite block length regime. The lower bound

of the possible reductions to the end-to-end distortion is also evaluated, and indicates the

potential for performance advantages favouring joint source-channel coding for practical

applications that must always operate in the finite block length regime.
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Chapter 3

Noisy Quantization with Error

Detection for Broadcast Channels

With the potential advantages of joint source-channel coding established in the previous

chapter, this chapter considers the inclusion of error detection codes at the application layer

in the transmission of real-valued sources over the wireless point-to-point or broadcast

channel. Employment of error detection serves to further improve system performance

for applications that must tolerate potentially large channel error probabilities caused by

operation in the finite block length regime. As before, we proceed with a non-asymptotic

end-to-end distortion approach to characterize the JSCC system, followed by further design

and analysis in the joint design of noisy quantization with error detection codes for both

point-to-point and broadcast channels.

3.1 Background and Related Work

Consider applying JSCC principles in the design of quantizers that sample a real-valued

source for transmission over a discrete memoryless channel (DMC). In the literature, this

problem has been well-formulated as a concatenation of quantization with block channel

coding, with such quantizers referred to as channel-optimized source quantizers (COSQ),
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or noisy channel quantizers. In general, the COSQ is composed of two parts, specifically,

a scalar or vector quantizer, and an index assignment mapping, both of which can impact

the average end-to-end distortion (EED) of the JSCC system.

It is no easy task to accomplish both the design and analysis of the optimal quan-

tizer and index assignment to minimize EED. Hence, the majority of the literature have

mainly studied their joint design from the index assignment point of view, i.e., COSQ

design to minimize EED given a fixed index assignment. For example, early works such

as [2] and [3] proposed algorithms to design optimal noisy channel scalar quantizers for a

fixed index assignment. Subsequent work included extension to the vector case by Far-

vardin and Vaishampayan [4] and Kumazawa et al. [5], where optimality conditions under

noisy channels were identified and experimentally demonstrated to outperform their coun-

terparts designed via the Lloyd-Max algorithm [24][25]. Relatively more recent work by

Goldsmith and Effros [1] considered the joint design of channel-optimized vector quan-

tizers with source-optimized rate-compatible punctured convolutional channel codes. For

the broadcast channel, [23] paired multiresolution source quantization with hierarchical

channel coding [41] to investigate the joint design of both to minimize EED under a fixed

transmitter energy constraint. Other more recent advancements on multiresolution quan-

tizer design for the scalar ([42], [43]) or vector [44] case target minimizing the quantization

distortion weighted by the probability of operation at each refinement resolution.

While all of the aforementioned work present effective algorithms for the design of

optimal noisy or noiseless channel quantizers, they are unable to provide strong analytical

results because of using a fixed index assignment in their system setting. For example,

vector quantizers designed in [1] and [5] are based on necessary conditions that depend on

all transitional probabilities from channel input symbols to channel output symbols, hence

making it difficult to analyze not only the optimal quantizer itself, but also the system

performance. Furthermore, an observation was made in [1] that quantizers designed in this

manner may often perform poorly under channel mismatch or variations.

In pursuit of analytical results, earlier work by Zeger and Manzella [26] investigated

the source quantization problem under random index assignment (RIA). However, their

analytical results are for vector quantizers that are designed independent of channel statis-
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tics in the high-rate asymptotic case. On the other hand, efforts by Yu et al. and Teng et

al. in applying RIA led to the derivation of closed-form non-asymptotic EED formulae for

both the point-to-point [6] and broadcast [7] channels. With the closed-form EED formula,

theoretical analysis of optimal noisy channel quantizers became tractable, and algorithm

design required only the average channel error probability, as opposed to the entire matrix

of transitional probabilities necessary for the fixed case. As mentioned before, although use

of RIA may seem counterintuitive or impractical, it has obvious equivalence to scramblers

that are already widely used in practical communications systems such as LTE systems

[27]. Furthermore, it was shown in [6] that quantizers designed based on RIA can partially

alleviate the poor performance observed in [1] under channel mismatch.

From the literature, it is well-known that both quantization distortion and channel

errors contribute to the EED. Under RIA, formulations in [6] and [7] further attributed a

large portion of the distortion contribution from channel errors to a structural parameter

named the scatter factor of the noisy channel quantizer. It was demonstrated in [6] and

[7] that given average channel statistics, this scatter factor is different from and additional

to quantization distortion, and hence it is suboptimal to minimize only the quantization

distortion when designing the quantizer in a source-channel coding system. They also

demonstrated that under RIA, the design of the optimal noisy channel quantizer became a

tradeoff between balancing distortion contributions from the scatter factor and the quan-

tization itself. The result of considering such a tradeoff led to significantly reduced EED

in comparison to a system employing quantizers designed via Lloyd-Max. Although an

optimal noisy channel quantizer partially mitigates distortion contribution from the scat-

ter factor at the expense of larger quantization distortion, it cannot entirely eliminate the

effect of the scatter factor on the EED. An interesting question then naturally arises: when

the error statistics of the channel are fixed, is there any other way to largely reduce or even

eliminate the effect of the scatter factor to further reduce EED?

With this motivation, we observe that in the closed-form EED expression derived in [6],

the scatter factor’s contribution to EED appears in addition to source variance whenever

a source symbol is mapped to some other incorrect symbol during decoder reconstruc-

tion. Meanwhile, the scatter factor is exactly equal to the average distance between each
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Figure 3.1: Partial erasure channel composed of general DMC augmented with CRC.

codeword vector and the source mean vector. Hence, if the decoder had available side infor-

mation on the correctness state of a particular symbol, EED performance can be improved

by using the source mean vector for the reconstruction of incorrect symbols. Decoding in

this manner limits distortion contribution from incorrect symbols to a maximum valued at

the source variance and entirely eliminates the scatter factor’s contribution to EED.

One particular channel that exposes symbol correctness information to the decoder is

the erasure channel. Derivations in [6] can be simplified for this channel and it is indeed

the case that the scatter factor drops from the EED expression since the decoder never

maps to the wrong codeword; it either outputs the correct codeword or declares an erasure

state for each symbol. However, for any general DMC, the erasure state of each symbol

is not readily available at the decoder and must be obtained from other means. Such

an observation leads us to consider augmenting the DMC with cyclic redundancy checks

(CRC) as in Fig. 3.1 to transform the channel into a partial erasure channel.

Inclusion of CRC for error detection impacts the system in two ways. First, we must

reallocate certain bits originally used for source quantization for CRC check bits, resulting

in increased quantization distortion. Second, inclusion of CRC only partially transforms

the DMC channel into an erasure channel; even with the reduction of undetected symbol

errors by proportions dependent on the selected CRC, false negative incorrect symbols

still occur and contribute to the EED. Hence, we observe yet another interesting tradeoff

between quantization design and CRC polynomial selection to further reduce the EED of

the JSCC system. From a high level, such tradeoff can be interpreted as a tradeoff between

source coding (quantization) and channel coding (CRC), which is a problem well-studied

in works such as [1] and [45]. However, it is important to note that the tradeoff considered

by these works varies the channel coding rate to adjust the channel error probability, while

the above motivation of introducing CRC to eliminate scatter factor effects applies for any
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fixed channel error probability given by any channel code.

In this chapter, we focus on the design and analysis of optimal multiresolution vector

quantizers (MRVQ) in tandem with broadcast channels augmented with CRC similar to

that in Fig. 3.1. Like [6] and [7], RIA is adopted to link MRVQ at the source with

superposition coding (SPC) at the CRC-coded broadcast channel. The contributions in

this chapter are summarized as follows. First, a closed-form expression is derived for

the weighted end-to-end distortion of a tandem system of MRVQ, RIA, CRC, and SPC.

Second, two necessary conditions to minimize the weighted EED are presented and used to

design a controlled iterative algorithm for the scalar case. The proposed algorithm is used

for quantization design in both point-to-point and broadcast channels. Numerical results

demonstrate that dramatic reductions to EED are possible, even though a portion of the

bits available for source quantization is replaced with redundancy bits to enable CRC.

The remainder of this chapter is organized as follows. Section 3.2 provides a com-

prehensive derivation of the weighted EED. Given channel and error detection statistics,

Section 3.3 derives two necessary conditions for minimizing the weighted EED and pro-

poses a controlled iterative algorithm for multiresolution quantization design. Section 3.4

is an analysis of optimal quantization design with error detection codes through experi-

ments based on the point-to-point additive white Gaussian noise (AWGN) channel and the

Gaussian broadcast channel. Closing remarks for the chapter are presented in Section 3.5.
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Figure 3.2: The considered source-channel CRC-coded broadcast system.
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3.2 End-To-End Distortion

3.2.1 System and Notation

Let z be a k-dimensional real-valued vector source over the Euclidean space Λ with a prob-

ability density function f(z), 0 mean, and variance per dimension σ2 = 1
k

∫
Λ
‖z‖2f(z)dz.

Suppose z is to be transmitted as a scalably encoded two-resolution source over the tan-

dem source-channel coding broadcast system depicted in Fig. 3.2. For the lower resolution,

the quantizer partitions Λ into N1 disjoint regions denoted by {A1, · · · ,AN1}, and rep-

resents them with respective codeword vectors {z1, · · · , zN1}. For the higher resolution,

the quantizer further partitions each of the N1 regions into N2 subregions denoted by

{Ai1, · · · ,AiN2}, and represents them with respective codeword vectors {zi1, · · · , ziN2}.
Let i = 1, · · · , N1 and j = 1, · · · , N2 index the lower and higher resolution codeword

vectors, respectively. The transmitted scalably coded source z is then represented by the

index pair (i, j), where the first receiver attempts to reconstruct z at a higher resolution

using both i and j while the second receiver only desires a lower resolution reconstruction

using i.

Let πt(i, j) = (πtb(i), πte(j|i)) = (r, s) be a particular index assignment linking the mul-

tiresolution source encoder output (i, j) with the CRC-coded broadcast channel1 input (r, s)

in a one-to-one mapping manner such that i ∈ {1, · · · , N1} = mb and j ∈ {1, · · · , N2} = m2

are mapped to r ∈ mb and s ∈ m2, respectively. Further let m̂b = mb ∪ e1, and

m̂2 = m2 ∪ e2, where e1 and e2 denote the erasure states for r and s.

The CRC-coded broadcast channel takes (r, s) ∈ mb ×m2 = me as input and outputs

m̂e = (r̂, ŝ) ∈ m̂b × m̂2 to the first receiver and m̂b = ˆ̂r ∈ m̂b to the second receiver. The

entire CRC-coded broadcast channel is hence fully characterized by a matrix of transition

probabilities

{p(m̂e,m̂b|(r, s)) : (r, s) ∈ me, m̂b ∈ m̂b, m̂e ∈ m̂b × m̂2},
1Note that since the coded broadcast channel is fixed, CRC is considered here to be at the application

layer.
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where p(m̂e, m̂b|(r, s)) is the conditional probability that the CRC-coded broadcast channel

outputs m̂e and m̂b given the input (r, s). From this matrix, the following transition

probability matrices can be further derived to describe the channel for each of the two

receivers:

{pe(m̂e|(r, s)) : (r, s) ∈ me, m̂e ∈ m̂b × m̂2}; (3.1)

{pb(m̂b|(r, s)) : (r, s) ∈ me, m̂b ∈ m̂b}. (3.2)

In presence of CRC, with reference to Fig. 3.2, let pbd = Pr{ˆ̂r = e1} and pbu = Pr{ˆ̂r 6=
r, ˆ̂r 6= e1} be the respective detected and undetected error probabilities of the second

receiver. The first receiver is associated with five error probabilities based on the error

detection states of r and s: (i) pd1 = Pr{r̂ = e1}; (ii) pd2 = Pr{r̂ = r, ŝ = e2}; (iii)

pud = Pr{r̂ 6= r, r̂ 6= e1, ŝ = e2}; (iv) pu1 = Pr{r̂ 6= r, r̂ 6= e1, ŝ 6= e2}; and (v) pu2 = Pr{r̂ =

r, ŝ 6= s, ŝ 6= e2}. All seven error probabilities are computable from (3.1)-(3.2) under the

assumption that (r, s) is uniformly distributed over me, where |me| = N1N2. For the first

receiver, we have

pd1 =
1

N1N2

N1∑
r=1

N2∑
s=1

pe {r̂ = e1|r, s} ,

pd2 =
1

N1N2

N1∑
r=1

N2∑
s=1

pe {r, ŝ = e2|r, s} ,

pud =
1

N1N2

N1∑
r=1

N1∑
r̂=1,
r̂ 6=r,e1

N2∑
s=1

pe {r̂, ŝ = e2|r, s} ,

pu1 =
1

N1

1

N2

N1∑
r=1

N2∑
s=1

N1∑
r̂=1
r̂ 6=r,e1

N2∑
ŝ=1
ŝ 6=e2

pe {r̂, ŝ|r, s} ,

pu2 =
1

N1N2

N1∑
r=1

N2∑
s=1

N2∑
ŝ=1
ŝ 6=s,e2

pe {r, ŝ|r, s} .
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while for the second receiver,

pbd =
1

N1

1

N2

N1∑
r=1

N2∑
s=1

pb

{
ˆ̂r = e1|r, s

}
,

pbu =
1

N1

1

N2

N1∑
r=1

N2∑
s=1

N1∑
ˆ̂r=1,ˆ̂r 6=r,e1

pb

{
ˆ̂r|r, s

}
.

With reference to Fig. 3.2, CRC introduces per-symbol erasure states for r and s at the

decoder input of both receivers. Upon receiving (r̂, ŝ), the first receiver has three possible

outputs: z îĵ if r̂ 6= e1, ŝ 6= e2; z î if r̂ 6= e1, ŝ = e2; and 0 if r̂ = e1. Given πt, the crossover

error probabilities from codeword vector zij to each of the three outputs are related to the

channel transition error probabilities as follows:

pπte (z îĵ|zij) = pe{r̂, ŝ|r, s}, r̂ 6= e1, ŝ 6= e2;

pπte (z î|zij) = pe{r̂, ŝ = e2|r, s}, r̂ 6= e1;

pπte (0|zij) = pe{r̂ = e1|r, s}.

The EED is defined as the mean squared error distortion between the quantizer input

and the decoder output. Hence, with the codeword crossover probabilities defined above

for some given index assignment πt, the EED for each of the three possible outputs is

expressed as follows:

Dπt
e1

,
1

k

∑
i,j

∫
z∈Aij

∑
î,ĵ

‖z − z îĵ‖2pπte (z îĵ|zij)f(z)dz; (3.3)

Dπt
e2

,
1

k

∑
i,j

∫
z∈Aij

∑
î

‖z − z î‖2pπte (z î|zij)f(z)dz; (3.4)

Dπt
e3

,
1

k

∑
i,j

∫
z∈Aij
‖z‖2pπte (0|zij)f(z)dz. (3.5)
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The total EED for the first receiver is the sum of (3.3)-(3.5), expressed as

Dπt
e , Dπt

e1
+Dπt

e2
+Dπt

e3
. (3.6)

Similarly, upon receiving ˆ̂r, the second receiver outputs zˆ̂i
if ˆ̂r 6= e1 and 0 if ˆ̂r = e1.

Given index assignment πt, the crossover error probabilities from codeword vector zij to

the two possible outputs are related to the channel transition error probabilities as follows:

pπtb (zˆ̂i
|zij) = pb{ˆ̂r|r, s}, ˆ̂r 6= e1;

pπtb (0|zij) = pb{ˆ̂r = e1|r, s}.

Again for the second receiver, the EED for each of the two above decoder outputs given

πt is expressed as

Dπt
b1

,
1

k

∑
i,j

∫
z∈Aij

∑
ˆ̂i

‖z − zˆ̂i
‖2pπtb (zˆ̂i

|zij)f(z)dz, (3.7)

Dπt
b2

,
1

k

∑
i,j

∫
z∈Aij
‖z‖2pπtb (0|zij)f(z)dz, (3.8)

such that the total EED for the second receiver is expressed as Dπt
b , Dπt

b1
+Dπt

b2
.

EED expressions derived in this subsection are visibly dependent on the choice of index

assignment mappings. In this paper, we are tasked to study the achievable gains of em-

ploying error detecting codes as opposed to optimizing index assignment. Hence, we simply

assume a purely random index assignment2 to obtain the average EED. The argument in

favor of using random index assignments instead of fixed assignments was made in Section

3.1. By the random coding argument, the EED based on RIA can also serve as an upper

bound to the EED performance of an optimal index assignment.

2It is worthwhile to point out that scramblers used in practical communication systems such as LTE
systems are actually equivalent to RIA.

33



3.2.2 EED for CRC-Coded Broadcast Channels

Consider a random selection of the index assignment mapping πt. Let DΠ
e = EπtD

πt
e and

DΠ
b = EπtD

πt
b respectively denote the EED for the first and second receiver averaged over

all possible (N1!)(N2!)N1 assignment mappings.

Theorem 3.1. For any k-dimensional multiresolution quantizer in tandem with a CRC-

coded broadcast channel as in Fig. 3.2,

DΠ
b =

(
1− pbd −

N1pbu
N1 − 1

)
DQb

+

(
N1pbu
N1 − 1

)(
σ2 + SQb

)
+ pbdσ

2 (3.9)

DΠ
e =

(
1− pd1 − pd2 − pud − pu1 −

N2pu2
N2 − 1

)
DQe

+

(
pd2 −

pud
N1 − 1

)
DQb +

N1pu1
N1 − 1

(
σ2 + SQe

)
+

(
N2pu2
N2 − 1

− pu1
N1 − 1

)(
σ̄2
Qe + S̄Qe

)
+

N1pud
N1 − 1

(σ2 + SQb) + pd1σ
2, (3.10)

where

DQe ,
1

k

N1∑
i=1

N2∑
j=1

∫
z∈Aij

‖z − zij‖2f(z)dz,

DQb ,
1

k

N1∑
i=1

∫
z∈Ai
‖z − zi‖2f(z)dz,

SQe ,
1

kN1N2

N1∑
i=1

N2∑
j=1

‖zij‖2,

S̄Qe ,
N1∑
i=1

Pr{z ∈ Ai}

 1

kN2

N2∑
ĵ=1

‖ziĵ − yi‖2

 ,
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SQb ,
1

kN1

N1∑
i=1

‖zi‖2,

σ̄2
Qe ,

N1∑
i=1

Pr{z ∈ Ai}σ2
i ,

yi =
1

Pr{z ∈ Ai}

∫
z∈Ai

zf(z)dz,

σ2
i =

1

kPr{z ∈ Ai}

∫
z∈Ai
‖z − yi‖2f(z)dz,

such that yi is the conditional mean of z given Ai, and σ2
i is the conditional variance per

dimension of z given Ai.

Remark 3.1. Observe that DQb and DQe are the conventional quantization distortions for

reconstruction at the lower and higher resolution, respectively. The scatter factors of

the lower and higher resolution are respectively denoted by SQb and SQe , quantifying the

average distance of the codeword vectors from the source mean vector 0. S̄Qe denotes

the conditional scatter factor of the refinement coding given the set of lower resolution

partitions {Ai}.
Remark 3.2. (3.9) and (3.10) serve as a generalization of the scenario without error detec-

tion considered in [7]. The substitution of pbd = pd1 = pd2 = pud = 0 indeed simplifies (3.9)

and (3.10) to the form in [7] without presence of error detection to imply that all errors

are undetectable. On its own, (3.9) is the EED for the point-to-point transmission of a

single-resolution source with error detection, and is the generalization of [6].

Remark 3.3. It is instructive to compare (3.9) to the scenario without error detection.

Suppose high coding rates such that N1

N1−1
≈ 1. (3.9) can then be interpreted on a per-

symbol basis where the per-symbol distortion is weighted by the decoded status of each

symbol. Under this interpretation, detectable symbol errors contribute only σ2 to the EED

as opposed to (σ2 + SQb) for undetectable symbol errors, thus eliminating effects of the

scatter factor for detectable errors. Naturally, there is a tradeoff between this reduction of

the EED with increased DQb , since N1 is halved for each additional bit assigned for error

detection redundancy.
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Remark 3.4. The comparison of (3.10) with no error detection is even more interesting.

Interpreting (3.10) in the same manner as Remark 3.3 indicates that the portion of pd2

symbols with a correct lower resolution index, but an erasure declared for the higher

resolution observe a distortion equal to the quantization distortion of the second receiver,

DQb . Hence, error detection further exploits the advantages of the coded broadcast channel

by introducing an incremental lower resolution quality for the first receiver. From an EED

perspective, these symbols have their distortion dramatically reduced from
(
σ̄2
Qe

+ S̄Qe
)

to

DQb . For the portion of pd1 symbols with error detected in the lower resolution index, they

contribute σ2 to the distortion instead of (σ2 + SQe), again partially eliminating scatter

factor contribution to EED. Lastly for pud, these symbols have their contribution reduced

from (σ2 + SQe) to (σ2 + SQb), since SQe > SQb in general.

Proof of Theorem 3.1. We first prove the EED for the first receiver given by (3.10). For

presentation clarity, the EED for each of the three possible decoder outputs are considered

separately. Given a specific index assignment πt, consider the portions of the EED from

(3.3)-(3.5) as follows:

Dπt
e1

=
1

k

∑
i,j

∫
z∈Aij

∑
î,ĵ

‖z − z îĵ‖2pπte (z îĵ|zij)f(z)dz

=
1

k

∑
i,j

∫
z∈Aij

∑
î,ĵ

[
‖z − zij‖2+2(z − zij)(zij − z îĵ)′ + ‖zij − z îĵ‖2

]
pπte (z îĵ|zij)f(z)dz

=
1

k

∑
i,j

∫
z∈Aij
‖z − zij‖2f(z)dz

∑
î,ĵ

pπte (z îĵ|zij)

+
1

k

∑
i,j

∫
z∈Aij

∑
ĵ 6=j

[
2(z − zij)(zij − ziĵ)′ + ‖zij − ziĵ‖2

]
pπte (ziĵ|zij)f(z)dz

+
1

k

∑
i,j

∫
z∈Aij

∑
î 6=i,ĵ

[
2(z − zij)(zij − z îĵ)′ + ‖zij − z îĵ‖2

]
pπte (z îĵ|zij)f(z)dz;

(3.11)

Dπt
e2

=
1

k

∑
i,j

∫
z∈Aij

∑
î

‖z − z î‖2pπte (z î|zij)f(z)dz
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=
1

k

∑
i,j

∫
z∈Aij

∑
î

[
‖z − zi‖2+2(z − zi)(zi − z î)′ + ‖zi − z î‖2

]
pπte (z î|zij)f(z)dz

=
1

k

∑
i,j

∫
z∈Aij
‖z − zi‖2f(z)dz

∑
î

pπte (z î|zij)

+
1

k

∑
i,j

∫
z∈Aij

∑
î 6=i

[2(z − zi)(zi − z î)′ + ‖zi − z î‖2
]
pπte (z î|zij)f(z)dz; (3.12)

Dπt
e3

=
1

k

∑
i,j

∫
z∈Aij
‖z‖2pπte (0|zij)f(z)dz. (3.13)

In the above expressions, all vectors are row vectors and the prime symbol indicates matrix

transposition. The average EED under random index assignment is thus computed as

follows by taking expectation of Dπt
e with respect to πt:

DΠ
e = Eπt(D

πt
e ). (3.14)

Expectation taken over πt for each of the codeword crossover error probabilities are

summarized as follows for substitution into (3.14). For a correct low resolution index and

undetected high resolution index error such that î = i and (ĵ 6= j, ŝ 6= e2), respectively,

Eπtp
πt
e (ziĵ|zij) =

1

(N1!)(N2!)N1

(N1!)(N2!)N1∑
t=1

pπte (ziĵ|zij)

=
1

(N1!)(N2!)N1

N1∑
r=1

N2∑
s=1

N2∑
ŝ=1
ŝ 6=s,e2

∑
t:πtb(i)=r
πte(j|i)=s
πte(ĵ|i)=ŝ

pπte (ziĵ|zij)

=
(N1 − 1)!(N2 − 2)!(N2!)N1−1

(N1!)(N2!)N1

N1∑
r=1

N2∑
s=1

N2∑
ŝ=1
ŝ 6=s,e2

pe {r, ŝ|r, s}

=
1

N2 − 1

 1

N1N2

N1∑
r=1

N2∑
s=1

N2∑
ŝ=1
ŝ 6=s,e2

pe {r, ŝ|r, s}

 =
pu2

N2 − 1
. (3.15)
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For an undetected low resolution index error such that î 6= i and r̂ 6= e1,

Eπtp
πt
e (z îĵ|zij) =

(N1 − 2)![(N2 − 1)!]2(N2!)N1−2

(N1!)(N2!)N1

N1∑
r=1

N1∑
r̂=1
r̂ 6=r,e1

N2∑
s=1

N2∑
ŝ=1

pe {r̂, ŝ|r, s}

=
1

N2 (N1 − 1)

 1

N1

1

N2

N1∑
r=1

N1∑
r̂=1
r̂ 6=r,e1

N2∑
s=1

N2∑
ŝ=1

pe {r̂, ŝ|r, s}


=

pu1
N2 (N1 − 1)

. (3.16)

When the lower resolution index is correct and erasure is declared for the higher resolution

index such that î = i and ŝ = e2, respectively,

Eπtp
πt
e (zi|zij) =

(N1 − 1)!(N2 − 1)!(N2!)N1−1

(N1!)(N2!)N1

N1∑
r=1

N2∑
s=1

pe {r, ŝ = e2|r, s}

=
1

N1N2

N1∑
r=1

N2∑
s=1

pe {r, ŝ = e2|r, s}

= pd2 . (3.17)

When the lower resolution index is incorrect and undetected such that î 6= i and r̂ 6= e1

while an erasure is declared for the higher resolution index such that ŝ = e2,

Eπtp
πt
e (z î|zij) =

(N1 − 2)!(N2 − 1)!(N2!)N1−1

(N1!)(N2!)N1

N1∑
r=1

N1∑
r̂=1,
r̂ 6=r

N2∑
s=1

pe {r̂, ŝ = e2|r, s}

=
1

N1 − 1

 1

N1N2

N1∑
r=1

N1∑
r̂=1,
r̂ 6=r

N2∑
s=1

pe {r̂, ŝ = e2|r, s}


=

pud
N1 − 1

. (3.18)
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When erasure is declared for the lower resolution index,

Eπtp
πt
e (0|zij) =

(N1 − 1)!(N2 − 1)!(N2!)N1−1

(N1!)(N2!)N1

N1∑
r=1

N2∑
s=1

pe {r̂ = e1|r, s}

=
1

N1N2

N1∑
r=1

N2∑
s=1

pe {r̂ = e1|r, s}

= pd1. (3.19)

Finally, for erasure to not be declared for both lower and higher resolution indices,

Eπt

 N1∑
î=1

N2∑
ĵ=1

pπte (z îĵ|zij)

 = 1− Eπtpπte (0|zij)− Eπt
N1∑
î=1

pπte (z î|zij)

= 1− pd1 − pd2 − pud. (3.20)

Substitution of (3.15)-(3.20) into (3.14) yields

DΠ
e1

= (1− pd1 − pd2 − pud)DQe

+
pu2

k(N2 − 1)

×
∑
i,j

∫
z∈Aij

∑
ĵ 6=j

[
2(z − zij)(zij − ziĵ)′ + ‖zij − ziĵ‖2

]
f(z)dz

+
pu1

kN2 (N1 − 1)

×
∑
i,j

∫
z∈Aij

∑
î 6=i,ĵ

[
2(z − zij)(zij − z îĵ)′ + ‖zij − z îĵ‖2

]
f(z)dz, (3.21)

DΠ
e2

= (pd2 + pud)
1

k

∑
i,j

∫
z∈Aij
‖z − zi‖2f(z)dz

+
pud

k(N1 − 1)

∑
i,j

∫
z∈Aij

∑
î 6=i

[2(z − zi)(zi − z î)′ + ‖zi − z î‖2
]
f(z)dz, (3.22)

DΠ
e3

= pd1σ
2. (3.23)
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First consider simplifying (3.21):

DΠ
e1

= (1− pd1 − pd2 − pud)DQe

+
pu2

k(N2 − 1)

∑
i,j

∫
z∈Aij

∑
ĵ 6=j

[
2(z − zij)(zij − ziĵ)′ + ‖zij − ziĵ‖2

]
f(z)dz

+
pu1

kN2 (N1 − 1)

∑
i,j

∫
z∈Aij

∑
î 6=i,ĵ

[
2(z − zij)(zij − z îĵ)′ + ‖zij − z îĵ‖2

]
f(z)dz

= (1− pd1 − pd2 − pud)DQe

+
pu1

kN2 (N1 − 1)

∑
i,j

∫
z∈Aij

∑
î,ĵ

[
‖z − z îĵ‖2 − ‖z − zij‖2

]
f(z)dz

+

[
pu2

k(N2 − 1)
− pu1
kN2 (N1 − 1)

]∑
i,j

∫
z∈Aij

∑
ĵ

[
‖z − ziĵ‖2 − ‖z − zij‖2

]
f(z)dz

=

(
1− pd1 − pd2 − pud − pu1 −

N2pu2
N2 − 1

)
DQe

+
pu1

kN2 (N1 − 1)

∫
Λ

∑
î,ĵ

‖z − z îĵ‖2f(z)dz

+

[
pu2

k(N2 − 1)
− pu1
kN2 (N1 − 1)

]∑
i

∫
z∈Ai

∑
ĵ

‖z − yi + yi − ziĵ‖2f(z)dz

1
=

(
1− pd1 − pd2 − pud − pu1 −

N2pu2
N2 − 1

)
DQe

+
pu1

kN2 (N1 − 1)

∫
Λ

∑
î,ĵ

[
‖z‖2 + ‖z îĵ‖2

]
f(z)dz

+

[
pu2

k(N2 − 1)
− pu1
kN2 (N1 − 1)

]∑
i

∫
z∈Ai

∑
ĵ

[
‖z − yi‖2 + ‖ziĵ − yi‖2

]
f(z)dz

=

(
1− pd1 − pd2 − pud − pu1 −

N2pu2
N2 − 1

)
DQe

+
N1pu1
N1 − 1

(
σ2 + SQe

)
+

(
N2pu2
N2 − 1

− pu1
N1 − 1

)(
σ̄2
Qe + S̄Qe

)
, (3.24)

where
1
= is by E(z) = 0 and by definition of yi.
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Next, we consider simplifying (3.22) and (3.23) together:

DΠ
e2

+DΠ
e3

= (pd2 + pud)
1

k

∑
i,j

∫
z∈Aij
‖z − zi‖2f(z)dz + pd1σ

2

+
pud

k(N1 − 1)

∑
i,j

∫
z∈Aij

∑
î 6=i

[2(z − zi)(zi − z î)′ + ‖zi − z î‖2
]
f(z)dz

= (pd2 + pud)DQb + pd1σ
2

+
pud

k(N1 − 1)

∑
i,̂i

∫
z∈Ai

[
‖z − z î‖2 −‖z − zi‖2

]
f(z)dz

=

(
pd2 + pud −

N1pud
N1 − 1

)
DQb + pd1σ

2

+
pud

k(N1 − 1)

∫
Λ

∑
î

‖z − z î‖2f(z)dz

2
=

(
pd2 −

pud
N1 − 1

)
DQb + pd1σ

2

+
pud

k(N1 − 1)

∫
Λ

∑
î

[
‖z‖2 + ‖z î‖2

]
f(z)dz

=

(
pd2 −

pud
N1 − 1

)
DQb + pd1σ

2 +
N1pud
N1 − 1

(
σ2 + SQb

)
, (3.25)

where
2
= is again due to E(z) = 0. Combining (3.24) and (3.25) yields (3.10). The proof

of (3.9) follows the same techniques as the above for (3.10), and is hence omitted.

41



3.3 Multiresolution Quantization Design

This section considers MRVQ design and analysis given CRC-coded channel statistics. We

begin with the problem definition and derive its necessary optimality conditions, followed

by the design of a controlled iterative algorithm to yield tree-structured multiresolution

quantizers such as in [42]-[44]. The objective value of the iterative algorithm is shown to

be always convergent, and is hence implementable for use in numerical experiments.

Theorem 3.1 provides explicit expressions for DΠ
b and DΠ

e , the EED for each of the two

receivers in the broadcast channel. Since minimizing DΠ
b does not necessarily minimize

DΠ
e , and vice versa, we assign certain weights to the two receivers and look to minimize a

weighted EED defined as

D̄ , pDΠ
e + (1− p)DΠ

b , (3.26)

where 0 < p < 1 is the weight assigned to the first receiver to represent the percentage of

receivers who are eligible for the higher resolution source reconstruction.

3.3.1 Optimality Conditions for Optimal MRVQ

Let (A,Z1,Z2) be a triple representing a two-resolution vector quantizer employed in the

system depicted in Fig. 3.2, where A = {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} is the partitioning

of Λ into the higher resolution regions in a way such that {Ai = ∪jAij}N1
i=1 is the set of

lower resolution regions, Z1 = {zi, i = 1, ·, N1} is the set of codeword vectors respectively

representing all source vectors in Ai, and Z2 = {zij, i = 1, ·, N1, j = 1, · · · , N2} for all

source vectors in Aij. The design of the optimal quantizer thus has an objective function

expressed as

min
Z1,Z2

min
A

pDΠ
e + (1− p)DΠ

b , (3.27)

where the minimization is over all possible triples of (A,Z1,Z2). The optimal solution to

(3.27) is characterized by two necessary conditions derived from Theorem 3.1.
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Theorem 3.2. Given an error detecting coded broadcast channel with pbd, pbu, pd1, pd2, pud,

pu1, and pu2, the optimal multiresolution vector quantizer to (3.27) satisfies the following

two conditions:

1) Given A, the optimal code vectors to minimize D̄ for the lower and higher resolution

are respectively computed by

zi =

∫
z∈Ai zf(z)dz

(1−p)pbu+ppud
(N1−1)[(1−p)k3+pk4]

+ Pr{z ∈ Ai}
(3.28)

zij =
k1

∫
z∈Aij zf(z)dz + k2

∫
z∈Ai zf(z)dz

pu1
N2(N1−1)

+ k1Pr{z ∈ Aij}+ k2Pr{z ∈ Ai}
(3.29)

for i = 1, · · · , N1, j = 1, · · · , N2.

2) Given Z1 and Z2, the optimal higher resolution partitioning of Λ is defined as

Aij = {z : 2αijz
′ − βij ≥ 2αi′j′z

′ − βi′j′ ∀ (i′, j′) 6= (i, j)} (3.30)

for i = 1, · · · , N1, j = 1, · · · , N2, where

k1 , 1− pu1 −
N2pu2
N2 − 1

− pd1 − pd2 − pud,

k2 ,
pu2

N2 − 1
− pu1
N2(N1 − 1)

,

k3 , 1− N1pbu
N1 − 1

− pbd,

k4 , pd2 −
pud

N1 − 1
,

αij , pk1zij + pk2

N2∑
ĵ=1

ziĵ + [(1− p)k3 + pk4]zi,

βij , pk1‖zij‖2 + pk2

N2∑
ĵ=1

‖ziĵ‖2 + [(1− p)k3 + pk4]‖zi‖2.
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Remark 3.5. It is expected and indeed the case that both 1) and 2) appear similar to the

case for the coded broadcast channel without error detection in [7]. Given a CRC-coded

broadcast channel, the substitution of pbd = pd1 = pd2 = pud = 0 reduces (3.28)-(3.30) into

the forms derived in [7].

Remark 3.6. For the single-resolution case without error detection, it was found in [6] that

earlier optimality conditions based on a fixed index assignment in [5] could be reduced to

those based on a RIA by applying the conditions in [5] to an average symmetric channel.

This, however, does not apply in the case with error detection, as the CRC-coded channel

is no longer a symmetric channel. Furthermore, extension of the optimality conditions from

[5] for a fixed index assignment to the multiresolution case for pairing with a broadcast

channel is not a straightforward problem, even for the case without error detection.

Proof of Theorem 3.2. Proof of (3.28)-(3.29) involves the standard technique of taking the

derivative of (3.26) with respect to and solving for zi and zij. We begin with

∂D̄

∂zi
= [(1− p)k3 + pk4]

∂DQb

∂zi
+ [(1− p)pbu + ppud]

(
N1

N1 − 1

)
∂SQb
∂zi

,

from which ∂D̄
∂zi

= 0 could be solved for zi to yield (3.28). Similarly with respect to zij, we

have

∂D̄

∂zij
= p

[
k1
∂DQe

∂zij
+

(
N1pu1
N1 − 1

)
∂SQe
∂zij

+ k2N2
∂S̄Qe
∂zij

]
,

yielding (3.29) when solving for zij in ∂D̄
∂zij

= 0.

For (3.30), observe that given Z1 and Z2, (3.26) can be rewritten in integral form as

D̄ =

∫
Λ

G(z)f(z)dz + const, (3.31)

where

G(z) = F (z, zi, zij) if z ∈ Aij
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and

F (z, zi, zij) ,
p

k

k1‖z − zij‖2 + k2

N2∑
ĵ=1

‖z − ziĵ‖2

+

[
(1− p)k3 + pk4

k

]
‖z − zi‖2.

For a particular z, G(z) can only take on one value corresponding to the index pair (i, j)

to which z is mapped. Hence, to minimize (3.31), it is sufficient to map that particular z

to the index pair (i, j) for which G(z) is minimized. Precisely stated, we require

Aij = {z : F (z, zi, zij) ≤ F (z, zi′ , zi′j′) ∀ (i′, j′) 6= (i, j)} ,

which can be simplified and shown to be equivalent to (3.30).

3.3.2 Quantization Algorithm Design

The two conditions stated by Theorem 3.2 for the vector case suggest an iterative descent

algorithm to design the optimal multiresolution vector quantizer. With reference to The-

orem 3.2, we propose two algorithms to minimize the EED: a baseline iterative algorithm

based strictly on Theorem 3.2 that may produce non-convex quantization partitions, and

a controlled version that converges faster, is easier to implement, and like [42] and [43],

maintains the convexity of quantization partitions at all resolutions.

The baseline algorithm is stated as follows. Fix all error probabilities pbd, pbu, pd1 ,

pd2 , pud, pu1 , pu2 , and the weight p. First select any initial multiresolution quantizer

Q(0) = (A(0),Z
(0)
1 ,Z

(0)
2 ) with an objective value D̄(0). Then, for each iteration n = 1, 2, . . . ,

alternate between computing Z
(n+1)
1 and Z

(n+1)
2 respectively according to (3.28) and (3.29)

given A(n), followed by computing A(n+1) according to (3.30) given Z
(n+1)
1 and Z

(n+1)
2 . At

the end of each iteration, also compute D̄(n+1). Output Q(n+1) = (A(n+1),Z
(n+1)
1 ,Z

(n+1)
2 ) as

the final quantizer once D̄(n)−D̄(n+1) < ε is satisfied for some constant ε. Note that at each

iteration, the local minimum is found and as a result, D̄(n) is always non-increasing. This

along with its lower boundedness imply convergence of the sequence {D̄(n)} as n→∞.
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The above baseline algorithm is visibly inspired by the Lloyd-Max algorithm for de-

signing the optimal noiseless vector quantizer. However, in contrast with the traditional

centroid rule, we see from (3.28)-(3.29) that the set of zi are forced to move towards the

origin, and the set of zij are forced towards the weighted centroid of the corresponding

Ai. Furthermore, the optimal partition boundaries in (3.30) no longer follow the nearest

neighbour rule (as we shall see later, this is actually only true for the lower resolution

partitions). To see how convexity is violated, consider the scalar case, where the opti-

mal partition boundaries are no longer the midpoints of the nearest codewords. Based

on the updating rules for each iteration defined in (3.28)-(3.30), the updated zi and zij

may not fall inside Ai and Aij, respectively, while certain partitions may cease to exist

at all. If this was allowed to occur, then {z1, . . . ,zN1}, {z11, . . . ,zN1N2}, {A1, . . . ,AN1},
or {A11, . . . ,AN1N2} could become arbitrarily ordered at certain iterations. Since we must

have Ai = ∪jAij by definition, then Ai may no longer be convex. Violating convexity

implies the multiresolution quantizer cannot be modeled by a tree structure.

Now consider the scalar case, i.e., k = 1. Suppose the source z ∈ R is finitely supported

in [Tl, Tu]. Let Q be any two-resolution scalar quantizer represented by three vectors defined

as

b = (b1,1, b1,2, . . . b1,N2 , b2,1, . . . , bN1,N2−1),

g = (g1,1, g1,2, . . . g1,N2 , g2,1, . . . , gN1,N2),

h = (h1, . . . , hN1),

satisfying Tl = b0,N2 < bi,j < bi′,j′ < bN1,N2 = Tu, hi < hi′ , and gi,j < gi′,j′ for any (i, j) and

(i′, j′) with either i′ > i or i = i′, j′ > j. Higher resolution quantization of z proceeds as

follows: Q(z) = g1,1 for any z ∈ L1,1 , [Tl, b1,1]; Q(z) = gi,j for any z ∈ Li,j , (bi,j−1, bi,j],

1 ≤ i ≤ N1, 1 < j ≤ N2; and Q(z) = gi,1 for any z ∈ Li,1 , (bi−1,N2 , bi,1], 1 < i ≤ N1. Lower

resolution quantization of z occurs such that Q(z) = h1 for any z ∈ L1 , [Tl, b1,N2 ] and

Q(z) = hi for any z ∈ Li , (bi−1,N2 , bi,N2 ], 1 < i ≤ N1. Note that by our lengthy definitions

here, the scalar quantizer is restricted to having only convex quantization partitions at both

lower and higher resolutions.
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While (3.28)-(3.30) are necessary optimality conditions of the solution to the general

problem defined in (3.27), we restrict our controlled iterative algorithm to the case of

convex partitions and solve the following optimization problem:

min
g,h,b

D̄ = pDΠ
e + (1− p)DΠ

b

subject to hi < hi′ , gi,j < gi′,j′ ,

Tl < bi,j < bi′,j′ < Tu,

whenever i′ > i or i′ = i and j′ > j.

(3.32)

The controlled iterative algorithm to solve (3.32) is summarized as follows.

1) Initialization: Set n = 0 and pick any quantizer Q(0) with valid b(0), h(0), and g(0)

satisfying the constraints of (3.32). Compute D̄(n).

2) Given b(n), compute h(n+1) by h
(n+1)
i = µ

(n+1)
i , where

µ
(n+1)
i = max

{
min

(
ξ

(n+1)
i , supL

(n)
i

)
, inf L

(n)
i

}
, i = 1, . . . , N1 (3.33)

and

ξ
(n+1)
i =

∫
L
(n)
i
zf(z)dz

(1−p)pbu+ppud
(N1−1)[(1−p)k3+pk4]

+
∫
L
(n)
i
f(z)dz

,

and for any set L, supL = supz∈L z and inf L = infz∈L z. Further compute g(n+1) by

g
(n+1)
i,j = λ

(n+1)
i,j , where

λ
(n+1)
i,j = max

{
min

(
ψ

(n+1)
i,j , supL

(n)
i,j

)
, inf L

(n)
i,j

}
, i = 1, . . . , N1, j = 1, . . . , N2 (3.34)

and

ψ
(n+1)
i,j =

k1

∫
L
(n)
i,j
zf(z)dz + k2

∫
L
(n)
i
zf(z)dz

pu1
N2(N1−1)

+ k1

∫
L
(n)
i,j
f(z)dz + k2

∫
L
(n)
i
f(z)dz

.
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3) Given h(n+1) and g(n+1), update b(n+1) by b
(n+1)
i,j = ν

(n+1)
i,j , where

ν
(n+1)
i,j =



1
2

(
g

(n+1)
i,j + g

(n+1)
i,j+1

)
if i = 1, . . . , N1, j = 1, . . . , N2 − 1,

max
{

min
(
ζ

(n+1)
i,N2

, g
(n+1)
i+1,1 , h

(n+1)
i+1

)
, g

(n+1)
i,N2

, h
(n+1)
i

}
if i = 1, . . . , N1 − 1, j = N2,

(3.35)

and

ζ
(n+1)
i,N2

=
β

(n+1)
i+1,1 − β(n+1)

i,N2

2
(
α

(n+1)
i+1,1 − α(n+1)

i,N2

) ,
α

(n+1)
i,j = pk1g

(n+1)
i,j + pk2

N2∑
ĵ=1

g
(n+1)

i,ĵ
+ [(1− p)k3 + pk4]h

(n+1)
i ,

β
(n+1)
i,j = pk1

[
g

(n+1)
i,j

]2

+ pk2

N2∑
ĵ=1

[
g

(n+1)

i,ĵ

]2

+ [(1− p)k3 + pk4]
[
h

(n+1)
i

]2

.

4) Compute D̄(n+1). Repeat Steps 2 and 3 for n = 1, 2, . . . until D̄(n) − D̄(n+1) < ε

for some predefined ε > 0, then output b(n+1), h(n+1), and g(n+1) as our desired

two-resolution scalar quantizer.

Remark 3.7. The reduction of (3.28)-(3.30) to (3.33)-(3.35) for the one-dimensional case

merits some discussion. As pointed out in [7], two-resolution quantization design ob-

serves impact of channel error probabilities on the quantization partition in contrast to

the single-resolution case, where the nearest neighbour decision rule applies independent

of the channel. However, inspection of (3.35) reveals that while the nearest neighbour

rule does not apply in general, it still applies for only the higher resolution quantization

partitions, but not for the lower resolution partitions. Note that there is actually not a

non-uniformity in the computation of each partition from (3.35) for j = N2 versus j 6= N2;

the equation used to compute b
(n+1)
i,j for j = N2 actually reduces to the nearest neighbour

rule for j 6= N2.
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Remark 3.8. Both the baseline and controlled iterative algorithms proposed in this sub-

section are visibly inspired by the Lloyd-Max algorithm and its generalizations to channel-

optimized source quantization studied in [4], [5], and [23]. However, these previous works

propose algorithms that require complete knowledge of the channel transitional probabil-

ities, in contrast to ours, which require only the average channel information quantified

by the error probabilities pbd, pbu, pd1 , pd2 , pud, pu1 , and pu2 . In practical systems, we

postulate that such average channel statistics are much more readily available than the

complete channel transition matrix. Our algorithms are also significantly less computa-

tionally intensive than prior proposed algorithms for fixed index assignments; due to RIA,

the error probability of the channel is decoupled from the integral in computing the up-

dated codewords. Thus, in contrast to [1], [5], and [23], training sequences are no longer

required for quantization design and the source distribution f(z) can be directly used at

every iteration. Lastly, algorithms designed based on only average channel statistics was

shown for the single-resolution case in [6] to be more robust against channel fluctuations,

an advantage we expect to be carried over to the multiresolution case with error detection.

Remark 3.9. Due to convexity of the quantization partitions at both lower and higher

resolutions, the controlled iterative algorithm is arguably more applicable for practical

implementation than the baseline algorithm based strictly on the necessary optimality

conditions. Maintaining convexity of the quantization partitions at all resolutions enables

efficient encoding and decoding by modeling the quantizer in a tree structure such as in

[43] and [44]. As an example, for the noiseless case, efficient computation of the encoder

partition step in the iterative algorithm proposed by Dumitrescu in [42] also relies on the

convexity of quantization partitions.

Theorem 3.3 (Convergence). Given ki ≥ 0 for i = 1, 2, 3, 4, the controlled iterative

algorithm is guaranteed to locally converge in the sense that the sequence of objective values

D̄(n) converges as n→∞.

Proof. We first prove that the objective function in (3.32) is non-increasing after every

iteration. To do so, D̄ is must be shown to be non-increasing in both Steps 2 and 3 for any

arbitrary iteration. In Step 3, consider the computation of a particular bi,j given h and g.
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As a function of bi,j, observe that the objective function can be written as

D̄ =

∫ Tu

Tl

G(z)f(z)dz + const, (3.36)

where G(z) = F (z, hi, gi,j) if z ∈ Li,j and

F (z, hi, gi,j) = pk1(z − gi,j)2 + pk2

N2∑
ĵ=1

(z − gi,ĵ)2 + [(1− p)k3 + pk4] (z − hi)2

= βi,j − 2zαi,j + z2 [p(k1 + k2N2 + k4) + (1− p)k3] .

Hence we have

∂D̄

∂bi,j
=



[2bi,j(αi,j+1 − αi,j)− (βi,j+1 − βi,j)] f(bi,j),

if i = 1, . . . , N1, j = 1, . . . , N2 − 1,

[2bi,N2(αi+1,1 − αi,N2)− (βi+1,1 − βi,N2)] f(bi,N2),

if i = 1, . . . , N1 − 1, j = N2.

Since f(·) > 0, (αi,j+1−αi,j) > 0, and (αi+1,1−αi,N2) > 0, there exists a unique minimizer

where ∂D̄
∂bi,j

= 0. Computed {bi,j} satisfying ∂D̄
∂bi,j

= 0 is the unique minimizer and hence

cannot increase the objective function. However, careful inspection of (3.35) reveals that

a subset of {bi,N2 : i = 1, . . . , N1 − 1} may not satisfy ∂D̄
∂bi,N2

= 0 but can still be shown to

not increase D̄. With reference to (3.35), suppose ζi,N2 ≤ gi,N2 . Then D̄ is non-increasing

if bi,N2 = gi,N2 since ∂D̄
∂bi,N2

> 0 for all bi,N2 ∈ (gi,N2 , gi+1,1]. Similarly for ζi,N2 > gi+1,1, D̄ is

non-increasing if bi,N2 = gi+1,1 since ∂D̄
∂bi,N2

< 0 for all bi,N2 ∈ (gi,N2 , gi+1,1].

For Step 2, we need to demonstrate that D̄ is non-increasing when computing h and g

given b. Consider only the i and (i, j) for which ∂D̄
∂hi

= 0 and ∂D̄
∂gi,j

= 0 are not respectively

satisfied; otherwise, the non-increase is guaranteed. With reference to (3.33), suppose

ξi ≤ bi−1,N2 . Then D̄ is non-increasing if hi = bi−1,N2 , since it can be shown that ∂D̄
∂hi

> 0

for all hi ∈ (bi−1,N2 , bi,N2 ]. Similarly, suppose ξi > bi,N2 . Then D̄ is non-increasing if

hi = bi,N2 since ∂D̄
∂hi

< 0 for all hi ∈ (bi−1,N2 , bi,N2 ]. The same argument applies for g.

50



With the non-increasing property of the objective function established, the lower bound-

edness of D̄ allows us to conclude that the sequence {D̄(n)} is convergent as n→∞.

3.4 Numerical Experiments

In this section, experiments are conducted to study the tradeoff between source quan-

tization and error detection performance. We first consider the transmission of a one-

dimensional Gaussian source with zero mean and unit variance over the CRC-coded point-

to-point channel with additive white Gaussian noise (AWGN); the point-to-point case

provides effective means to study the performance gains attributed to trading off source

quantization with CRC error detection. Next, we consider the transmission of the same

source over a coded broadcast channel using superposition coding (SPC), which can be im-

plemented using layered modulation, a technique well-studied in the literature [41][46][47]

and defined in a number of standards such as DVB-T [48] and UMB [49].

For the point-to-point AWGN channel, the continuous source is processed by a single-

resolution scalar quantizer and transmitted over two blocks of 16-QAM modulation for a

block size of b1 = 8 bits. Let n1 and l1 respectively denote the number of data and CRC

bits for the quantization index, where n1+l1 = b1. Hence, given a selected CRC polynomial

for error detection purposes, we have a N1 = 2n1-level quantizer, while l1 is selected from

Table 3.1, the list of best-performing polynomials for each CRC size based on [50].

Table 3.1: Considered CRC generator polynomial lengths for source error detection.
l1 or l2 Nickname Polynomial

0 - 0x00 = 1
1 CRC-1/parity 0x01 = (x+ 1)
3 - 0x05 = (x3 + x+ 1)
4 CCITT-4 0x09 = (x4 + x+ 1)
5 CRC-5/USB 0x12 = (x5 + x2 + 1)
6 CRC-6/DARC 0x2c = (x+ 1)(x5 + x4 + x2 + x+ 1)
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For the broadcast channel, suppose each multiresolution source symbol is transmitted

over two uses of a standard 16/64-QAM hierarchical modulation as defined in [41] for a

block size of 12 bits, where b1 = 8 and b2 = 4 bits are respectively available for the lower

and higher resolution indices. In this case, the CRC code is individually applied to both

indices for a pair of CRC polynomials. Let n1 and l1 respectively denote the same but for

the lower resolution index, where n1 + l1 = b1. Similarly, let n2 and l2 denote the same for

the higher resolution index with n2 + l2 = b2. For a particular pair of CRC polynomials,

we then have a multiresolution quantizer with N1 = 2n1 and N2 = 2n2 levels for the lower

and higher resolution, respectively, while l1 and l2 are again selected from Table 3.1.

Suppose the Karnaugh map style Gray mapping [41] is employed to map each channel

symbol to a bit stream such that adjacent points in the QAM signal constellation differ

by one bit. The matrices of transitional probabilities p(m̂b|r) and p(m̂e, m̂b|(r, s)) for the

CRC-coded point-to-point and broadcast channels, respectively, are then given. For each

particular or pair of CRC(s) in Table 3.1, the two matrices allow the exact evaluation of

pbd and pbu for the point-to-point channel and pbd, pbu, pd1 , pd2 , pud, pu1 , and pu2 for the

broadcast channel. With these seven error probabilities that govern the entire CRC-coded

broadcast channel as well as N1 and N2, we apply the controlled iterative algorithm from

Section 3.3 to design the two-resolution scalar quantizer. The single-resolution quantizer

for the point-to-point case is designed by taking N2 = 1 in computing pbd and pbu, and

selectively applying only lower resolution quantization portions of the controlled iterative

algorithm with p = 0 in (3.32).

Although the controlled algorithm is less general than the baseline version, we have

found that even though they converge to drastically different final quantizers, both yield

nearly identical objectives at convergence. Specifically, the baseline algorithm is seen to

outperform the controlled one by no more than 0.001 dB in terms of PSNR , 10 log10(σ2/D̄).

The controlled algorithm also converges faster since the sequence of quantizers can be mod-

eled with a tree structure by convexity of the higher and lower resolution partitions. On

the other hand, for every iteration, the baseline algorithm demands a careful record of each

codeword-to-partition mapping, as well as higher-to-lower resolution partition mapping.
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Figure 3.3: PSNR gains yielded from encoder design with versus without error detection
under optimal CRCs (labeled) for various AWGN channel γ.

3.4.1 Gains from Error Detection

We first study the performance gains from employing CRC error detection versus with-

out. The gains under the point-to-point channel are presented in terms of PSNR gains

to quantify the increase in PSNR when a tradeoff is considered between data and CRC

bits instead of the allocation of all bits for data in the case of no error detection. For the

point-to-point channel employing a single-resolution scalar quantizer, a range of SNRs γ

are considered for the receiver experiencing AWGN power N0

2
. Fig. 3.3 plots the quantity

of the gain up to approximately 2.5 dB, along with corresponding regions marked with the

CRC that achieves the largest PSNR gain.

The overall trend of the PSNR gains in Fig. 3.3 may actually be somewhat surprising

at first glance; as the channel condition improves, one would expect the gains yielded

from CRC to decrease. This is in contrast to the actuality, where gains from employing

CRC initially increases as the channel condition improves. We explain the phenomenon
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observed in Fig. 3.3 by considering the gains in PSNR within three regions of γ employing

the CRCs, 0x2c, 0x01, and 0x00.

In the lowest SNR region employing the CRC polynomial 0x2c, CRC capability dramat-

ically reduces the contribution of the (σ2 +SQb) term to the EED. However, this reduction

is mostly offset by a large increase in quantization distortion, since the region’s high error

probabilities require many bits for CRC, leaving little remaining for source quantization.

As the channel improves and error probabilities decrease, the system gradually requires a

decreasing number of CRC bits to reduce SQb effects. This reduces the increase in quan-

tization distortion sacrificed to implement CRC, allowing the CRC-coded system to yield

much more pronounced gains peaking in the region employing CRC 0x01. The third re-

gion is characterized by a sharp reduction of the PSNR gain to zero when CRC no longer

improves performance; this occurs once the error probabilities are so small that there is

little contribution of SQb to the EED, and thus, it is no longer worthwhile to sacrifice any

quantization bits for error detection capability.

For the broadcast channel, a number of channel SNR combinations (γ1, γ2) are con-

sidered for the first and second receivers experiencing AWGN power N0

2
, where γ1 and γ2

respectively denote the SNRs of the first and second receiver. For each (γ1, γ2), we consider

all combinations of CRC1 and CRC2, which denote the CRC polynomials selected from

Table 3.1 for the lower and higher resolution indices, respectively. The combination of

CRC1 and CRC2 that achieves the largest PSNR gain is employed to evaluate performance

gains in the broadcast scenario.

Fig. 3.4 depicts the impact of employing CRC on the first receiver’s EED in terms of

PSNR gains with optimally configured CRC1 and CRC2 for p = 0.5. The same phenomenon

from the point-to-point case is expected and observed for increasing PSNR gains under

improved γ2. This is because in the broadcast scenario, the second receiver behaves like the

point-to-point case with interest in source reconstruction using only the lower resolution

index. Hence, as before, improving γ2 requires less CRC1 check bits to reduce scatter

factor effects, and as a result, reduces the increase in quantization distortion sacrificed for

error detection of the lower resolution index. Since the lower resolution index is common

information, an increase in PSNR gains is observed at both receivers.
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Figure 3.4: PSNR gains yielded for first receiver from encoder design with versus without
error detection under optimal CRCs for broadcast channels with varying γ1, γ2, and p = 0.5.

The increase in PSNR gains with improving γ1 for a particular fixed γ2 is, however, due

to another phenomenon. Under poorer channel conditions at the first receiver, the lower

resolution index has higher likelihood of being incorrect. Hence, its PSNR gains are mainly

resulted from employing only CRC1, since the higher resolution index is discarded along

with CRC2 when an erasure is declared for the lower resolution index. As γ1 improves,

the decoder has an increasingly higher chance to exploit both CRC1 and CRC2 to yield

larger gains. As in the point-to-point case, PSNR gains drops to zero under sufficiently

good channel conditions.

3.4.2 Gains from Noisy Quantizer Design

In this subsection, we contrast the performance of the noisy and noiseless quantizers under

various bit allocation levels between quantization and CRC error detection. In Fig. 3.5-

3.6, PSNR gains are depicted under several CRC(s) for various channel conditions in the
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Figure 3.5: PSNR gains yielded from joint versus separate quantizer design under fixed
CRCs for various AWGN channel γ.

point-to-point and broadcast channels, respectively. In general, the noisy quantizer always

outperforms the noiseless quantizer for any bit allocation level. This is because CRC

cannot detect all errors and thus cannot entirely eliminate the scatter factor’s contribution

to EED. The magnitude of the gain, however, depends on the particular CRC configuration

and channel condition.

For the point-to-point case, observe in Fig. 3.5 that gains are largest when no error

detection is applied. This is because without error detection, scatter factor contributions

to the EED are at its peak and results in the largest sub-optimality if neglected as in

the noiseless quantizer. On the other hand, allocating the maximum number of bits for

CRC produces the least gains, as the scatter factor’s contribution to EED is reduced by

the most. In this case, quantization distortion dominates the EED, and the structure of

the noisy quantizer would most closely resemble that of the noiseless quantizer. Since

the optimal bit allocation level to minimize EED is mostly in between these two extreme

scenarios, gains from the noisy channel quantizer may be large or small depending on the

56



5 10 15 20 25 30

0

1

2

3

4

5

6

γ 1 [dB]

G
a
in
s
fo
r
D̄

in
P
S
N
R

[d
B
]

 

 

(0x00,0x00)

(0x01,0x01)

(0x05,0x05)

(0x09,0x05)

Figure 3.6: PSNR gains yielded from joint versus separate quantizer design under fixed
(CRC1, CRC2) for broadcast channels with varying γ1, γ2 = 4 dB, and p = 0.5.

channel statistics. For each particular CRC, gains are also reduced with improving channel

conditions, as the overall error probability is reduced.

For the broadcast channel, Fig. 3.6 shows the same trend, i.e., gains are decreased when

more bits are allocated for (CRC1, CRC2). Note that for p = 0.5, DΠ
b contributes largely to

D̄. Hence, we see from Fig. 3.6 that with respect to a fixed γ2, the gain with increasing γ1

remains relatively steady, as there is no impact on the error probability experienced by the

second receiver. The large contribution of DΠ
b relative to DΠ

e in D̄ for p = 0.5 would also

result in decreased PSNR gains for D̄ as in the point-to-point case when γ2 is increased.
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3.5 Summary

This chapter investigates the design of channel-optimized multiresolution quantizers over

CRC-coded channels, for which a closed-form end-to-end distortion formula is derived. The

EED formulation allows for further derivation of necessary optimality conditions, based

upon which an iterative algorithm is proposed and employed in numerical experiments.

Results for both the point-to-point and broadcast channels demonstrate significant reduc-

tions to the EED without sacrificing bandwidth when considering a tradeoff between data

and CRC bits in the application layer.

Counterintuitively, gains yielded from employing the optimal CRC increases at first

with improving channel conditions still exhibiting moderate to large symbol crossover

probabilities. Although gains with CRC vanish as the crossover probability asymptotically

approaches zero, inclusion of error detection with quantization design is still concluded to

be highly advantageous for applications that operate in the finite block length regime and

hence, are constantly subject to non-zero error probabilities. Moreover, for the case of

error detection, gains exhibited by the joint versus separate quantizer are observed to still

hold with varying degrees depending on the system configuration and channel statistics.
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Chapter 4

Transmission of Multiresolution

Sources over Relay Channels

For applications that operate in the finite block length regime, it is demonstrated in Chap-

ter 2 that under certain channel scenarios or system settings, reductions to the end-to-end

distortion of the system can be achieved using joint source-channel coding as opposed to

separate source-channel coding. This result implies that source-channel coding separation

is no longer valid and their separate design is actually suboptimal for channel codes with

finite block lengths.

While the above fact both motivates and justifies the consideration of JSCC for practical

wireless applications, there are other ways for JSCC principles to be exploited for multi-

media communication applications. For example, in Chapter 3, JSCC allows the pairing

of scalable source coding with superposition channel coding for the broadcast channel.

Specifically, the scalably encoded two-resolution quantizer is paired with layered modula-

tion at the channel through a natural ordering map of each quantizer resolution to the

corresponding channel modulation resolution. As such, two resolutions of the source in-

formation can be decoded from the source broadcast and results in improved utilization

of channel resources for the two receivers experiencing different channel conditions. The

SSC-SPC pairing also enables the notion of end-to-end distortion to be employed as an
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end-to-end performance metric that captures the effects of both source quantization and

channel crossover statistics, and as a result, is a more meaningful evaluation of quality for

the transmission of real-valued sources, such as those in multimedia applications.

In this chapter, we extend the consideration of the SSC-SPC pairing to a decode-and-

forward three-node relay network. In contrast to any previously reported research using

asymptotic capacity-based distortion (CBD) measures, we derive the EED of such JSCC

system based on a real-valued Gaussian source, aiming to achieve better precision and

practicality for applications that are subject to large error probabilities caused by oper-

ation in the finite block length regime. The EED evaluation is formulated and applied

to demonstrate achievable gains of the SSC-SPC architecture versus a number of conven-

tional approaches. Power allocation optimization is performed based on the developed

non-asymptotic EED model and compared to that by using an asymptotic CBD measure,

for which symbol losses caused by channel error cannot be considered. We demonstrate the

performance gaps between results solved from the EED versus CBD in our numerical exam-

ple, and conclude that optimization based on the CBD behaves awkwardly in computing

proper power allocation configurations in the considered SSC-SPC architecture.

4.1 Background and Related Work

JSCC has also been proven to be a promising approach for multimedia applications where

service continuity is favoured over maximum quality delivery. In literature such as [8]-

[11], the pairing of scalable source coding with superposition channel coding (SPC) enable

multiple resolutions of receptions to effectively mitigate the vicious impact of multi-user

channel diversity in the broadcast scenario. For the two-resolution scenario, the successive

refinable source allows reconstruction of the original source at either the lower resolution

using the partial information, or the higher resolution using the complete information.

Hence, through the exact mapping of the lower resolution source symbol to the lower

order of the SPC signal constellation that is more tolerant to the channel noise, receivers

experiencing poorer channel conditions can better preserve service continuity at the lower
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resolution instead of channel outage. Furthermore, receivers able to decode the full SPC

signal obtain the higher resolution of source reconstruction.

Although numerous research efforts have been addressed on SPC for multi-layer source

transmissions over wireless networks, most of them have employed formulations based on

abstract asymptotic performance measures such as channel capacity and distortion ex-

ponent. In prior related work such as [17][18][19][20], multi-layer source broadcasting is

considered under the three-node relay network with a number of relaying strategies, with

extension to the multiple relay case in [12]. While they are all solid contributions, their

analyses are based on the information theoretical perspective of channel capacity, thus

causing difficulty in evaluating the end-receiver quality under large error probabilities.

Some research consider a variety of distortion measures but maintains basis on the asymp-

totic case, such as [13], which computes the expected distortions from outage probabilities

based on channel capacity, and [14], which provides rigorous theoretical analyses with re-

sults based on outage-based end-to-end distortion followed by actual simulations. Thus,

there are still unclear implications of their theoretical formulation on the mean-squared

error (MSE) used to demonstrate gains in their simulations. Other works in [15][16][21][22]

begin with the MSE distortion measure but relies on the assumption of high SNR for

analysis and evaluation.

Some literatures further perform power allocation optimization under the asymptotic

case. In [18], improper power allocation is identified to cause severe detriments to the

achievable channel capacity. In [51], the authors consider the joint optimization of power

and rate allocation for layered transmission to minimize the expected distortion, which

is still derived from an outage-style perspective based on channel SNR thresholds. [15]

explores power and rate allocation in a more generalized multiple relay scenario exploiting

spatial diversity based on the distortion exponent.

We emphasize that while the use of asymptotic or capacity-based metrics may be suit-

able for performance evaluation under some circumstances, they are less appropriate for

applications that are constantly subject to or must tolerate large symbol error probabil-

ities. Thus, studies focused on practical coding systems have long utilized the notion of

end-to-end MSE distortion (EED), henceforth simply referred to as EED, or its PSNR
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equivalent, to evaluate performance [52]-[54]. The fundamental difference between the no-

tion of EED and asymptotic or capacity-based metrics lies in the fact that EED includes

distortion caused by both source quantization and channel errors, since it precisely cap-

tures the average MSE distortion per symbol between the original continuous source and

its reconstruction at the end-receiver. Evaluation of the EED from a non-asymptotic, the-

oretical perspective for a JSCC system, however, would cause highly complex formulations

and intractability in theoretical analysis, and hence has remained an open problem without

in-depth research thus far.

In this chapter, we consider the transmission of real-valued and continuous Gaussian

sources over the fundamental three-node relay network under JSCC with possibly large

channel error probabilities. We explore the performance modeling and power allocation

optimization under the pairing of scalable source coding and SPC, or referred to as the SSC-

SPC pairing architecture, where the source is encoded into two resolutions with successive

refinement so as to match two-layer SPC in the physical layer. We take EED as the

performance metric, enabled through the technique of random index assignment (RIA)

that has also been applied in previous chapters to maintain exact MSE characterization

and applicability to any non-asymptotic or asymptotic channel conditions with arbitrarily

large error probabilities. To the best of our survey, this is the first study employing EED

as the target metric for theoretical analysis of the SSC-SPC pairing for relay channels

in a non-asymptotic and practical manner. Through power allocation optimization, we

demonstrate that a significant EED reduction is achievable using the proposed model in

comparison to the aforementioned conventional asymptotic schemes, which are suboptimal

due to the lack of considering potentially large channel error probabilities.

The contributions of this chapter include: 1) a general framework for the transmis-

sion of scalable encoded information sources using SPC in a relay network; 2) a detailed

system model formulation for the proposed framework over the fading relay channel; 3)

generalization of the EED models for all service levels, including service outage at the lower

resolution in evaluating the EED reduction capability of the proposed relay framework; and

4) justification of the generalized EED model over formulations based on channel capacity

by considering the power allocation optimization at the transmitter and the relay.
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The rest of the chapter is organized as follows. Section 4.2 provides a comprehensive

overview of the system model upon which the proposed framework is developed. Section 4.3

derives necessary EED formulations used for the results of numerical experiments presented

in Section 4.4. Closing remarks for the chapter are presented in Section 4.5.

4.2 System Model

With reference to Fig. 4.1, consider the SSC-SPC architecture over a fundamental three-

node relay network, where the s-d, s-r, and r-d channels respectively denote the wireless

channel between the source and destination, source and relay, and relay and destination

nodes. Suppose a real-valued, continuous, Gaussian source is to be scalably encoded and

transmitted to the destination via both the source (s-d) and relay (s-r, r-d) channels. At

the source node, the Gaussian source is scalably encoded into two layers with successive

refinement to enable two reconstruction resolutions at the destination node. Let the base

and enhancement layers refer to specific portions of the source such that the base layer

provides a lower resolution reconstruction, while both the base and enhancement layers

are required to reconstruct the source at the higher resolution. Bitstreams for the base

and enhancement layers are then respectively modulated into layer 1 and layer 2 of the

SPC modulation, and superimposed to yield SPC symbols, each with total power E and

allocation parameter β1 such that β1E and (1 − β1)E are the respective powers for layer

1 and layer 2 of the SPC constellation. Note that although we consider only two layers in

this work, the proposed model can be extended to a system with any number of layers at

the expense of exponentially increased complexity.

Suppose the relay network operates under the most general transmission strategy, in

which SPC broadcast occurs at the source node to both relay and destination nodes in

the first transmission period, and the source keeps silent in the second transmission period

while the relay launches the received data via SPC broadcast to the destination in a

decode-and-forward manner to allow a possibly different power allocation. At the end of

the first transmission period, the relay and destination nodes employ successive interference

cancellation (SIC) to demodulate both layers.
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Figure 4.1: General coding structure of scalably encoded sources with successive refinement
in overall framework for two layers.

An example of SIC decoding for the SCC-SPC pairing is given as follows. Let BPSK

and QPSK be the respective modulation schemes for layer 1 and layer 2 of the SPC signal

to illustrate the three stages of SPC decoding, whose constellation diagram is shown in Fig.

4.2 along with corresponding symbol-to-bit mapping. On the receiver side, the decoding of

the received SPC signal first applies the BPSK demodulation by identifying whether the

abscissa dimension is left or right of the origin. If layer 1 is correctly decoded as identified

by error detection mechanisms, it is subtracted from the original received SPC signal, and

then demodulated using the QPSK demodulator to obtain layer 2.

Once both layers are decoded, further processing occurs at both relay and destina-

tion nodes, as shown in Fig. 4.1. At the destination, bitstreams for the two layers are

respectively stored in the layer 1 and layer 2 source buffers while at the relay, the buffered

two layers are again modulated into SPC symbols at a power allocation parameter β2 for
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Figure 4.2: SPC encoding of BPSK and QPSK signals with corresponding symbol-to-bit
mapping.

broadcast at the beginning of the second transmission period. The outputs from layer 1

and layer 2 decoders during the first and second transmission period are stored in corre-

sponding buffers at the destination node. At the end of the second transmission period,

bitstreams in the four buffers are further fed into individual CRC modules for error detec-

tion and then processed in the symbol selector. Based on the correctness of the layer 1 and

layer 2 bitstreams obtained from the two transmission periods, there can be three possible

outcomes: (i) error for both layers; (ii) error for layer 2 but a valid layer 1 bitstream; (iii)

valid bitstreams for both layers. The source decoder then reconstructs the original source

based on the outcome and valid bitstreams received from the symbol selector output.

By superimposing base layer and corresponding enhancement data in a single SPC

broadcast, a notable advantage is that the enhancement layer data can be decoded only

if the corresponding base layer is obtained, which effectively avoids the awkward situation

where correctly-decoded enhancement layer bits cannot be used due to the loss of corre-

sponding base layer data. This is thanks to the intrinsic nature of SIC-based SPC decoding,

where layer 1 data must be correctly decoded before layer 2 data can be obtained. It has

been well reported in [8] and [10] that such layered SSC-SPC structure yields merits in

overcoming multi-user channel diversity in the scenario of large-scale multicast in which

the transmitter cannot adapt its transmission rate with every receiver.
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In addition to the additional hardware circuitry required for the implementation of

SPC, the operation of the system in Fig. 4.1 is subject to some extra coordination and

synchronization requirements among the three nodes. A real system would require minor

time durations allocated for control signaling, which are necessary for the exchange of

channel state information for each of the three channels in the network. Furthermore, the

source node must also inform the relay on how to optimally configure its power allocation

parameter. Lastly, since perfect time slot synchronization is difficult to achieve, each

source symbol must be either indexed or labeled with added overhead to allow the symbol

selector at the destination to wait for all four buffers to be populated with information

corresponding to the same original source symbol before attempting reconstruction.

4.3 EED Model for Power Allocation

This section derives the EED model for the two-layer SSC-SPC architecture in the three-

node network scenario. Forthcoming formulations are based upon the assumption of ran-

dom index assignment similar to [6], and is positioned as the first analytical model for

EED that exploits the logical mapping between the source and channel coding structures

in relay networks under the SSC-SPC architecture.

4.3.1 Background of EED Derivation

Fading and path loss are the two major elements governing symbol error over wireless

channels. This subsection serves as a background to further EED derivation by first for-

mulating symbol error expressions for SIC-based SPC demodulation in presence of noisy

wireless channels.

Suppose the Nakagami m-distribution [55] is used to model fading in a particular wire-

less channel with an average SNR γ. Note that the m parameter varies the fading rapidity

of the channel, and reduces the m-distribution to the Rayleigh slow fading channel when

m = 1. The pdf and cdf of the Nakagami m-distributed instantaneous channel SNR
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denoted by γ are given by:

fΓ(γ) =

(
m

γ

)m
γm−1

Γ(m)
exp

(
−m
γ
γ

)
; (4.1)

FΓ(γ) =
γ(m, m

γ
γ)

Γ(m)
=

1− Γ(m, m
γ
γ)

Γ(m)
, (4.2)

where γ(·, ·), and Γ(·, ·) are respectively the incomplete lower and upper gamma functions,

and γ is the average attenuated receiver SNR (i.e. average SNR) such that γ = E
N0dα

= E′

N0

once the total power of the SPC broadcast E is subject to AWGN power N0

2
and path loss

constant α at a distance d.

In general, the pdf in (4.1) can be divided into L fading categories indexed by l such

that the receiver decodes up to layer l of the SPC broadcast whenever its channel SNR

belongs to category l. Hence, category l encompasses the realized SNR range [γth,l, γth,l+1)

for 0 ≤ l ≤ L − 1 and [γth,L,∞) for l = L. Each category corresponds to a realization

probability pl at an average categorial SNR γl. Thus, the average channel SNR must satisfy

γ =
L∑
l=0

plγl. (4.3)

For each category, the realization probability pl and average SNR γl can also be derived

using (4.2). Results of the derivations are presented as follows, where αth,l = m
γ
γth,l is

substituted for clarity:

pl =


γ(m,αth,l+1)−γ(m,αth,l)

Γ(m)
if 0 ≤ l < L

Γ(m,αth,l)

Γ(m)
if l = L

(4.4)

The corresponding average SNR for each category are expressed as follows:

γl =


γ

[
1− 1

m

e
−αth,l+1αmth,l+1−e

−αth,lαmth,l
γ(m,αth,l+1)−γ(m,αth,l)

]
if 0 ≤ l < L;

γ

[
1 + 1

m

e
−αth,Lαmth,L
Γ(m,αth,L)

]
if l = L.

(4.5)
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The SNR boundary γth,l that defines the layer l channel category is set to the minimum

SNR such that the error probability of layer l, perr,l, satisfies perr,l < εth, where εth is any

arbitrary maximum error threshold defined or tolerable by the application or hardware

decoder. Note that γth,l is a function of perr,l and hence, is also a function of the power

allocated for layer l in the SPC broadcast.

Symbol error expression governed by the average SNR can now be derived for each

channel category. Although symbol error formulations have been previously derived in [56]

for any general SIC-based multi-level SPC constellations, we only need to consider the

special two-layer SSC-SPC case such that L = 2. Define the error probabilities for layer

1 and layer 2 from SIC-based SPC demodulation as the base layer symbol error (BSE)

and compound symbol error (CSE), respectively. Their expressions have been extensively

studied and derived in [57] and are briefly summarized below for use in conjunction with

further analytical models to appear.

For each channel category, its BSE and CSE can be derived based on the categorial

average SNR γl = E′

N0
subject to AWGN power N0

2
. Let E1 = βE ′ and E2 = (1−β)E ′, where

β is any power allocation configuration for any two-layer SPC transmission employing

m1-QAM and m2-QAM for layers 1 and 2, respectively. Each SPC symbol can thus be

represented by a (xi, x
′
j) pair, respectively denoting the random variable representing the

symbol’s abscissa and ordinate position in a signal constellation illustrated in Fig. 4.3:

xi ∼ N
(
z1(i)

√
E1

αm1
+ z2(i)

√
E2

αm2
, N0

2

)
, (4.6)

x′j ∼ N
(
z′1(j)

√
E1

αm1
+ z′2(j)

√
E2

αm2
, N0

2

)
, (4.7)

for two scenarios

{
i, j ∈ N0|i ≤ I =

√
m2 − 1, j ≤ J = 1

2

√
m2 − 1

}
, (4.8){

i, j ∈ N0|i, j ≤ I = J =
√

m1m2

4
− 1
}
, (4.9)

where αm1 and αm2 are coefficients to normalize the symbol energy for layer 1 and layer 2

to E1 and E2, respectively. αm1 , αm2 and z are summarized in [57].
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Figure 4.3: First quadrant of general m1-QAM/m2-QAM SPC symbol constellation with
decision regions indexed by i and j.

Recall the SIC-based SPC demodulation process. In the first stage, an m1-QAM de-

tector attempts recovery of the layer 1 bitstream. Define Pi,1 and P ′j,1 as the correctness

probability, which is the probability that the respective abscissa and ordinate components

of the SPC symbol, located in region i and j, is found inside its correct layer 1 decision

region, respectively. The average BSE of the SPC symbol is then expressed as:

perr,1 = 1− 4
m1m2

∑
i,j

Pi,1P
′
j,1. (4.10)

If layer 1 is correctly decoded, the m2-QAM detector decodes the post-SIC signal for the

layer 2 bitstream with a conditional error probability denoted by pm2-QAM. The CSE can

then be expressed as follows, reflecting its dependency on the BSE:

perr,2 = 1− (1− pm2-QAM) (1− perr,1) . (4.11)

It should be noted that each SPC symbol has a non-uniform error probability at each point

in the signal constellation diagram. Specifically in Fig. 4.3, points in the set {(xi, x′j) : i <
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I, j < J} have different error probabilities than points located in regions indexed by i = I

or j = J . Hence, (4.10)-(4.11) are simply averages of the error probability of all points,

corresponding to the assumption that each point is equally likely to occur.

The derivations in this subsection are applicable to all channels. To distinguish between

the s-d, s-r, and r-d channels, the superscript notation is adopted such that pyerr,1 and pyerr,2

respectively denotes the BSE and CSE for channel y, where y ∈ {sd, sr, rd}. The same

notation is applied for γyl and pyl to denote the average SNR and realization probability of

category l along channel y.

4.3.2 Proposed EED Model

The proposed EED model aims to quantify the distortion between the original source

and its reconstruction at the destination, which is solely determined by the conditions of

the three wireless channels. Accordingly, the destination node is subject to a number of

channel realization types (RTs) governed by the information received and decoded from

both source and relay channels.

The possible RTs are summarized in Table 4.1, in which three groups are classified

according to the relay channel condition: Group A RTs fail in decoding layer 1 of the

SPC symbol from the relay such that the entire information is lost; Group B RTs can only

decode layer 1 from the relay but fails in decoding layer 2; and Group C RTs can decode

both layers from the relay channel and obtain complete information from the received SPC

symbol. Each group can be further classified according to the s-d channel condition in the

same way, where a total of nine end-to-end RTs exist as shown in the table.

Let each of the RTs be indexed by k. The expected EED is the summation of the EED

of each RT weighted by its corresponding probability:

D̄ =
∑
k

p̃kDk, (4.12)

where p̃k denotes the realization probability of RT k and satisfies
∑
p̃k = 1. Expressions
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for the set of p̃k are expressed as follows in terms of expressions from (4.4):

p̃Ai = psdi
[
psr0 + (1− psr0 )prd0

]
, (4.13)

p̃Bi = psdi
[
psr1 (1− prd0 ) + psr2 p

rd
1

]
, (4.14)

p̃Ci = psdi p
sr
2 p

rd
2 , (4.15)

where i = 0, 1, 2.

Derivation of the EED for each RT, Dk, first requires two EED formulations: one for the

RT that is able to reconstruct the original source at the lower resolution, and the other for

that at the higher resolution. Denote the original real-valued source as z, a k-dimensional

real-valued vector source over the Euclidean space Λ with a probability density function

f(z), zero mean, and variance per dimension σ2 = 1
k

∫
Λ
‖z‖2f(z)dz.

Referring back to Fig. 4.1, suppose z is to be encoded into a scalably encoded two-

resolution source using a two-resolution vector quantizer for transmission over an arbitrary

discrete memoryless broadcast channel with CRC, and characterized by a matrix of tran-

sition probabilities Pr{(r̂, ŝ)|(r, s)}, where (r, s) and (r̂, ŝ) respectively denote the channel

input and output symbols. For the base layer, the source quantizer partitions Λ into N1

disjoint regions denoted by {A1, · · · , AN1}, and represents them with respective codeword

vectors {z1, · · · , zN1}. For the enhancement layer, the quantizer further partitions each of

the N1 regions into N2 subregions denoted by {Ai1, · · · , AiN2}, and represents them with

respective codeword vectors {zi1, · · · , ziN2}. Let i = 1, · · · , N1 and j = 1, · · · , N2 index

Table 4.1: RTs based on base (B) or enhancement (E) layer received (X) or lost (×) from
source or relay channels.

Group: A B C
RT k = A0 A1 A2 B0 B1 B2 C0 C1 C2

B (source) × X X × X X × X X
E (source) × × X × × X × × X

B (relay) × × × X X X X X X
E (relay) × × × × × × X X X
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the codeword vectors of the base and enhancement layers, respectively. The original source

z is thus represented by (i, j) such that the receiver able to decode i reconstructs z at the

lower resolution, while decoding both i and j enables the higher resolution reconstruction

of z.

Let πt(i, j) = (πtb(i), πte(j|i)) = (r, s) be a particular index assignment mapping (i, j)

to (r, s) in a one-to-one manner such that i ∈ {1, · · · , N1} = mb and j ∈ {1, · · · , N2} = m2

are mapped to r ∈ mb and s ∈ m2, respectively. The broadcast channel takes (r, s) ∈
mb×m2 = me as input and outputs (r̂, ŝ) ∈ {r, e}×{s, e}, where e indicates detected error.

Define p̃err,1 , Pr{r̂ = e} and p̃err,2 , p̃err,1 + Pr{r̂ = r, ŝ = e} such that (1 − p̃err,2) =

Pr{r̂ = r, ŝ = s}, where p̃err,w denotes the error probability of decoding up to layer w.

With the assumption that (r, s) is uniformly distributed over me, where |me| = N1N2 given

{Pr((r̂, ŝ)|(r, s))}, we have

p̃err,1 =
1

N1N2

N1∑
r=1

N2∑
s=1

Pr {r̂ = e|(r, s)} ,

p̃err,2 = p̃err,1 +
1

N1N2

N1∑
r=1

N2∑
s=1

Pr {(r, ŝ = e)|(r, s)} .

Based on the symbol selector output given (r̂, ŝ), the receiver has three possible outputs:

zij if r̂ 6= e, ŝ 6= e; zi if r̂ 6= e, ŝ = e2; and E[z] if r̂ = e. Given πt, the crossover error

probabilities from codeword vector zij to each of the three outputs are related to the

channel transition error probabilities as follows:

pπte (zij|zij) = Pr{(r, s)|(r, s)};
pπte (zi|zij) = Pr{(r, ŝ = e)|(r, s)};
pπte (E[z]|zij) = Pr{r̂ = e1|(r, s)}.

Note that output of the source mean E[z] when error is detected in the base layer infor-

mation was shown to be optimal in [6] for random index assignments.

The EED is defined as the mean squared error distortion between z and ẑ ∈ {zij, zi, E[z]}.
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Hence, with the codeword crossover probabilities defined as above for some given index

assignment πt, the EED is expressed as follows:

Dπt
h ,

1

k

∑
i,j

∫
z∈Aij
‖z − zij‖2pπte (zij|zij)f(z)dz

+
1

k

∑
i,j

∫
z∈Aij
‖z − zi‖2pπte (zi|zij)f(z)dz

+
1

k

∑
i,j

∫
z∈Aij
‖z‖2pπte (E[z]|zij)f(z)dz. (4.16)

Now consider an uniform random selection of the index assignment mapping πt over

all possible (N1!)(N2!)N1 assignment mappings. Expectation taken over πt for each of the

codeword crossover error probabilities are summarized as follows:

Eπtp
πt
e (E[z]|zij) =

(N1 − 1)!(N2 − 1)!(N2!)N1−1

(N1!)(N2!)N1

×
N1∑
r=1

N2∑
s=1

Pr {r̂ = e|(r, s)}

= p̃err,1; (4.17)

Eπtp
πt
e (zi|zij) =

(N1 − 1)!(N2 − 1)!(N2!)N1−1

(N1!)(N2!)N1

×
N1∑
r=1

N2∑
s=1

Pr {(r, ŝ = e|(r, s)}

= p̃err,2 − p̃err,1. (4.18)

Finally, substitute (4.17)-(4.18) into Dh , EπtD
πt
h , which denotes the EED averaged
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over all possible πt as follows:

Dh = (1− p̃err,2)
1

k

∑
i,j

∫
z∈Aij
‖z − zij‖2f(z)dz

+ (p̃err,2 − p̃err,1)
1

k

∑
i

∫
z∈Ai
‖z − zi‖2f(z)dz

+ (p̃err,1)
1

k

∑
i,j

∫
z∈Aij
‖z‖2f(z)dz

= DQh(1− p̃err,2) +DQl(p̃err,2 − p̃err,1) + σ2p̃err,1. (4.19)

For the receiver seeking only lower resolution reconstruction, the substitution of p̃err,2 = 1

in the above equation yields

Dl = DQl(1− p̃err,1) + σ2p̃err,1. (4.20)

Under random index assignment, (4.19) and (4.20) are closed-form, non-asymptotic,

evaluations of the EED for the receiver able to reconstruct the source at the lower and

higher resolutions, respectively, with p̃err,w denoting the average error probability for the

receiver to decode up to layer w, and DQl and DQh the quantization distortion from the

reconstruction of z at the lower and higher resolutions, respectively. Note that (4.19)-(4.20)

are applicable to the transmission of any real-valued continuous source with variance σ2

after being scalably encoded into two resolutions characterized by DQl and DQh , and are

obviously variations of the formulations from earlier chapters.

In this chapter, we consider the transmission of a real-valued, unity variance Gaussian

source over the three-node decode-and-forward relay network. As our focus at this point

turns to capture the effect of the relay channel on the system EED, we approximate the

quantization distortion of the source by its rate-distortion function DQ = 2−2R, when R

bits describe each symbol. Although use of the rate-distortion function to describe the

quantization distortion is only achievable in the infinity limit of the source coding rate, we

still maintain our non-asymptotic assumption on the channel side by capturing the nonzero

error probabilities of the channel for channel codes with finite block lengths.
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The channels of the considered three-node relay network are independent and charac-

terized by BSE and CSE expressions as derived in Section 4.3.1. Thus, the EED for a

particular RT k can be expressed by either (4.19) or (4.20) depending on its capability

of decoding up to layer w at the destination node with error probability p̃ k
err,w. At the

destination node, RT k able to decode up to layer w would obtain a rate of
∑w

j=1Rj [9],

where Rj is the rate chosen to represent layer j of the scalably encoded source.

We begin with the most general RT k = C2, where all L = 2 layers of the SSC-SPC

architecture are decodable from both source and relay channels for an EED expressed as:

DC2 = 2−2(R1+R2)
(
1− p̃ C2err,2

)
+ 2−2R1

(
p̃ C2err,2 − p̃ C2err,1

)
+ σ2p̃ C2err,1, (4.21)

where

p̃ C2err,2 = psderr,2
[
1− (1− psrerr,2)(1− prderr,2)

]
, (4.22)

p̃ C2err,1 = psderr,1
[
1− (1− psrerr,1)(1− prderr,1)

]
, (4.23)

and R1 = log2m1 and R2 = log2m2 are the respective number of bits allocated for the base

and enhancement layers per source symbol under the two-layer SSC-SPC architecture.

EED expressions for the remaining eight RTs are in reduced forms of the most general

RT given in (4.21). For RT k = C1, layer 2 is lost along the source channel for an EED

identical to (4.21) with:

p̃ C1err,2 = 1− (1− psrerr,2)(1− prderr,2); (4.24)

p̃ C1err,1 = psderr,1
[
1− (1− psrerr,1)(1− prderr,1)

]
. (4.25)

Similarly for RT k = C0 when both layers are lost on the s-d channel,

p̃ C0err,2 = 1− (1− psrerr,2)(1− prderr,2), (4.26)

p̃ C0err,1 = 1− (1− psrerr,1)(1− prderr,1). (4.27)
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For RTs in Group B, only layer 2 is decodable from the relay channel. For RT k = B2

where both layers are still decoded from the source channel, the EED is given by:

DB2 = 2−2(R1+R2)
(
1− psderr,2

)
+ 2−2R1

(
psderr,2 − p̃ B2err,1

)
+ σ2p̃ B2err,1, (4.28)

where

p̃ B2err,1 = psderr,1
[
1− (1− psrerr,1)(1− prderr,1)

]
. (4.29)

RT k = B1 loses only layer 2 while RT k = B0 loses both layers from the source channel.

The EEDs for each are expressed as:

DB1 = 2−2R1
(
1− psderr,1

[
1− (1− psrerr,1)(1− prderr,1)

])
+ σ2psderr,1

[
1− (1− psrerr,1)(1− prderr,1)

]
; (4.30)

DB0 = 2−2R1(1− psrerr,1)(1− prderr,1)

+ σ2
[
1− (1− psrerr,1)(1− prderr,1)

]
. (4.31)

When the RTs in Group A lose both layers from the relay channel, the EED expressions

simplify further:

DA2 = 2−2(R1+R2)
(
1− psderr,2

)
+ 2−2R1

(
psderr,2 − psderr,1

)
+ σ2psderr,1; (4.32)

DA1 = 2−2R1
(
1− psderr,1

)
+ σ2psderr,1; (4.33)

DA0 = σ2. (4.34)

Although the derived EED model is for only the two-layer SSC-SPC pairing, the system

can be straightforwardly extended to any number of layers at the expense of significantly

higher complexity due to the increased number of channel types with the number of layers.

For example, a system with three or four layers has 16 or 25 channel types, respectively.
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4.3.3 Power Allocation Optimization

Section 4.3.2 detailed a comprehensive EED derivation of the SSC-SPC architecture de-

picted in Fig. 4.1 under the fundamental three-node relay network. From given channel

statistics of the s-d, s-r, and r-d channels as well as the rates of the two layers at the

source, we seek to optimally configure the SPC power allocation parameters at the source

and relay nodes, respectively denoted by β1 and β2. Formally, the optimization problem is

defined as follows:

minimize
β1,β2

∑
k

p̃kDk, (4.35)

where Dk is the EED for RT k. Due to the unfortunate complexity of the EED model,

we solve the power allocation optimization problem through a numerical search method in

the next section.

4.4 Numerical Evaluation

In this section, the proposed EED model is applied from two perspectives to justify a variety

of concepts employed in the entire system model. We first demonstrate its advantage in

EED reductions by using the SSC-SPC architecture in the considered three-node relay

network in comparison to a number of counterparts. We then perform power allocation

optimization based on the developed EED model via numerical analysis, and demonstrate

the performance impairment on the EED in the event that the same task is performed on

a traditional abstract channel capacity formulation.

4.4.1 SSC-SPC versus Conventional Schemes

We first demonstrate achievable gains through the unique application of the SSC-SPC ar-

chitecture in a relay network against a number of variations, including a mono-modulated
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Figure 4.4: Normalized EED under poor source channel majority and relative s-r channel
SNR = −3,+3 dB.

system with and without the relay node, and an SPC-modulated system without the re-

lay. Performance gains are quantified in terms of EED reductions under various network

conditions.

In the numerical evaluation, we consider the employment of two-layered SPC with

BPSK (m1 = 2) and QPSK (m2 = 4) selected as layer 1 and layer 2 to modulate the base

and enhancement layers of the scalably encoded source, respectively. Whenever applicable,

the SPC power allocation parameters β1 and β2 are configured to minimize the EED based

on the optimization problem stated in (4.35). All three s-d, s-r, and r-d channels are

modeled under the Nakagami m-distribution with m = 1. Division of each channel into

categories as outlined in Section 4.3.1 is based on εth = 10−3. When considering schemes

with no relay, the source node transmits each symbol twice to achieve a fair comparison to

the proposed system model.

We examine four scenarios with respect to varying r-d channels as shown in Fig. 4.4-

4.5, each with good (or poor) s-d and s-r channels. Specifically within each figure, results
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Figure 4.5: Normalized EED under good source channel majority and relative s-r channel
SNR = −3,+3 dB.

involving the relay node considers an average SNR along the s-r channel that is−3 dB or +3

dB relative to the s-d channel, while average SNRs for the s-d channel itself are chosen to

vary its proportion of faded channel categories captured through psd0 , psd1 , and psd2 along the

source channel: either the poor channel majority corresponding to psd0 > 2
(
psd1 + psd2

)
, or

good channel majority corresponding to psd2 > 2
(
psd0 + psd1

)
. The system EED is examined

with respect to varying the average SNR of the r-d channel from −5 dB to +5 dB relative

to that of the s-d channel.

Four schemes are examined in each scenario: (i) mono modulation without relay; (ii)

SSC-SPC without relay; (iii) mono modulation with relay; and (iv) SSC-SPC with relay.

All results are normalized according to the results of (i). From Fig. 4.4 and Fig. 4.5, it is

clear that scenario (iv), where deployment of the SSC-SPC architecture is considered over

the three-node relay network, the EED of the system can be considerably reduced from

the other schemes.
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Figure 4.6: Topology of source and relay nodes (4), and considered destination nodes (©).

4.4.2 Power Allocation: EED versus Capacity

This subsection provides comparison results between the proposed EED model and a tra-

ditional distortion model based on the abstract concept of channel capacity through the

optimal configuration of SPC power allocation pair (β1, β2). We demonstrate the degraded

EED performance that results due to the use of the abstract model in disregarding symbol

losses caused by wireless channel conditions. The capacity-based distortion (CBD) model

for the two-layered SSC-SPC architecture is summarized in [58].

We extend the study of the proposed model in the previous section to a practical

network topology shown in Fig. 4.6, where the source and relay nodes are respectively

located at (0, 0) and (8, 8), while considering 16 possible positions for the destination

node within proximity of the semi-circle (due to symmetry). The 16 points in the figure

correspond to 16 pairs of s-d and r-d channel SNRs, which are governed by a path loss

constant of α = 3 and a relay transmit power 3 dB below that of the source node. Let

(β′1, β
′
2) and (β∗1 , β

∗
2) denote the optimizers for the CBD and EED model, respectively.

Analysis of the CBD model is first conducted over all possible power allocation config-
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Figure 4.7: General behaviour of the capacity-based distortion measure.

urations, as shown in Fig. 4.7 for a particular destination node 12. It is representative of

the behaviour of CBD over all possible power allocation configurations for any destination

node in that it is non-convex and has a global optimizer located at one of two possible

local minimizers. As annotated on Fig. 4.7, these two local minimizers for the CBD always

occur under two competing power allocation configurations: (i) β1 ≈ 1, β2 ≈ 1; (ii) β1 ≈ 2
3
,

β2 ≈ 2
3
. In (i), all power is allocated for layer 1, whereas in (ii), the power allocation

favors a balance between layer 1 and layer 2 to minimize distortion while accounting for

the dependency of layer 2 on layer 1.

The minimized CBD for these two configurations vary depending on network channel

conditions, but since the CBD model disregards channel errors, the two local optimizer

pairs always occur very close to the (β1, β2) values defined by the two configurations. The

global optimizer pair (β′1, β
′
2) is thus one of the two above configurations that achieves

a lower distortion depending on the network channel conditions. Configuration (i) yields

lower CBD when the s-d channel is particularly poor (nodes 1-5, 8-11) to focus all available

channel resources to secure layer 1, in contrast to the scenario where either the source or

relay channel are at least in moderate conditions to favor configuration (ii).
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Figure 4.8: Distortion and gap between CBD and EED models for each node.

Fig. 4.8 plots the minimum CBD and EED achieved through the optimal configuration

of the power allocation parameter pair (β1, β2) for each of the 16 destination node positions.

It is immediately clear and expected that the minimized distortion derived in CBD is

significantly lower than that by the proposed EED model for all destinations; since the

CBD is based on the channel capacity without taking symbol losses over the noisy wireless

channels into consideration, it can only serve as a very rough lower bound on the distortion

experienced by the end-receiver.

Fig. 4.8 also demonstrates the suboptimal EED performance that occurs if the opti-

mizers for CBD, (β′1, β
′
2), were awkwardly applied in the derived EED model, yielding gaps

that could be as high as 30% for certain destination locations. Such behaviour is expected,

since solving the power allocation problem according to the CBD model ignores the loss of

source symbols over the wireless channels. Moreover, the CBD model is based on the chan-

nel capacities of each channel as opposed to any specific employed modulation schemes.

Hence, configuration of power allocation based on CBD is demonstrated to be suboptimal

in terms of the EED performance at the destination node, which has been appropriately

quantified by the proposed EED model.
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Table 4.2: Optimal (β1, β2) parameters for the CBD and EED models.

Nodes
Network Channel CBD EED

Conditions (NC) β′1 β′2 β∗1 β∗2

(a) 1-5 poor s-d and r-d ≈ 1 ≈ 1 ≈ 1 ≈ 1

(b) 6-7 good s-d, poor r-d ≈ 2
3
≈ 2

3
0.75 0.77

(c) 8-11 poor s-d, moderate r-d ≈ 1 ≈ 1 0.79-0.85 0.85

(d) 12-13 moderate s-d and r-d ≈ 2
3
≈ 2

3
0.74 0.85

(e) 14-16 good r-d ≈ 2
3
≈ 2

3
0.74-0.82 0.96

Behaviour of the gap from optimality when employing (β′1, β
′
2) as opposed to (β∗1 , β

∗
2) can

be split into five categories according to the network conditions (NCs). Table 4.2 depicts the

five NCs upon which each of the 16 nodes belongs: (a) nodes 1-5; (b) nodes 6-7; (c) nodes

8-11; (d) nodes 12-13; and (e) nodes 14-16. The nodes that belong in NC(a) exhibit zero

gap between the CBD and EED model. In such scenario, the conditions of both the source

and relay channel are very poor such that the optimal solution for both models targets to

allocate nearly all power for layer 1 for β1 ≈ 1 and β2 ≈ 1. Therefore, the resultant EED

performance is the same under identical optimal power allocation configurations, hence

yielding zero gap between the results of the CBD and EED models.

In NC(b), NC(d), and NC(e), the CBD model results in configuration (ii) (i.e., β1 ≈ 2
3
,

β2 ≈ 2
3
) as the global optimizer attempts to a moderate balance between layer 1 and

layer 2 power allocation, which also occurs in the EED model but at different (β∗1 , β
∗
2).

Disregarding symbol loss caused by the noisy channel in CBD yields a suboptimal power

allocation configuration, resulting in potentially non-trivial gaps between the CBD and

EED models. Nodes in NC(c) have the same r-d channel condition as NC(d), but with

poorer s-d channels which forces the CBD to a slightly lower distortion with configuration

(i) (i.e., β1 ≈ 1, β2 ≈ 1) instead of (ii). On the other hand, the accounting for symbol losses

in the EED model results in optimal (β∗1 , β
∗
2) values within the range of NC(b), NC(d),

and NC(e).
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Lastly, β∗2 for the EED model is seen in Table 4.2 to behave in an interesting manner

that warrants some discussion. When the r-d channel is poor, it is expected that β∗2

should occur near unity to better secure layer 1 information. For nodes with a moderate

r-d channel, however, some of the channel resources are transferred from layer 1 to layer

2 for β∗2 to fall within 0.77-0.85. It may thus be surprising that as the r-d channel further

improves, β∗2 begins to asymptotically approach unity once again. This phenomenon occurs

because improving the r-d channel reduces both its BSE and CSE; however, the absolute

reductions to the CSE are much larger than BSE since the BSE is already asymptotically

small in high r-d channel SNRs. Since increasing β2 trades increased CSE for reduced BSE,

β∗2 increases to allow for a more balanced reduction of both BSE and CSE in reducing EED.

Such behavior is observed for nodes in NC(e) with β∗2 = 0.96.

4.5 Summary

This chapter investigates a layered joint source-channel coding architecture realized through

the coupling of scalable source coding (SSC) with superposition coding (SPC) in a decode-

and-forward three-node relay network. Through non-asymptotic theoretical analysis, a

practical and computable measure of EED is derived to enable performance evaluation

of the considered JSCC system under any channel condition with arbitrarily large chan-

nel error probabilities. Based on the derived EED models, numerical experiments over a

wide range of channel conditions demonstrate significant performance gains by using the

considered SSC-SPC architecture over a number of legacy implementations. Furthermore,

solutions to the power allocation optimization problem show significant gaps of achievable

EED in the case that the system operates based on suboptimal power allocation config-

urations derived from asymptotic formulations that disregard channel errors. Insights on

the sensitivity of such EED gaps to suboptimal configurations are provided via exten-

sive discussions in relation to the channel conditions of the fundamental three-node relay

channel.
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Chapter 5

Conclusion and Future Work

This thesis considers the application of joint source-channel coding principles to multimedia

communications over point-to-point, broadcast, and relay channels. From the perspective

of end-to-end distortion, the thesis targets non-asymptotic theoretical analysis to pursue

insights into practical designs. In this final chapter, the motivation, background, and

contributions of this thesis are summarized, along with ongoing open problems that are

left for future investigation.

5.1 Conclusion

The fundamental motivation behind joint source-channel coding is inspired by the unknown

optimality of separate source-channel coding for practical systems that must always operate

in the finite block length regime, thus causing the channel error probability for a system

employing any channel code to be strictly greater than zero. However, such simple fact

does not directly imply the breakdown of Shannon’s separation result of optimality under

separate source and channel coding design. To demonstrate the separation theorem’s

invalidity, we must identify some scenarios in which gains of joint versus separate source-

channel coding can be quantified, and do so under an optimal separate design setting.
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Motivated by the above, Chapter 2 revisits the validity of the separation theorem in

the finite block length regime for point-to-point channels, aiming to disprove the theorem

by demonstrating the performance gains of designing source quantizers that are tailored

to the channel statistics of an optimal channel code. The statistics of the optimal channel

code are governed by recent advancements in finite block length analysis, which provides

an accurate characterization of the tradeoff between the error probability of the channel

under optimal channel coding, and the source coding rate, or equivalently in this thesis, the

quantization rate. Under the optimal tradeoff between the source quantization rate and

channel block error probability, the channel-optimized source quantizer is demonstrated to

outperform the optimal Lloyd-Max separate quantizer from the perspective of end-to-end

distortion, which is computable in closed-form when assuming a random index mapping

between source and channel coding symbols. With this, we can firmly conclude that the

separation of source and channel coding no longer holds in the finite block length regime.

Furthermore, we demonstrate that the application of JSCC techniques may yield significant

reductions to the end-to-end distortion of the system under certain channel conditions or

settings, hence justifying their required increase in design and operation complexity for

their implementation in practical systems.

With the conclusion of the invalidity of separate source and channel coding from Chap-

ter 2 even under optimal channel coding, we are further motivated to improve JSCC

systems for broadcast applications that must tolerate potentially large and fixed channel

error probabilities from operating with finite block lengths. Beyond the advantages of

using channel-optimized source quantizers, we identify room for further reductions to the

end-to-end distortion through the augmentation of error detection codes into source cod-

ing to tradeoff quantization rate and error detection capability under fixed channel coding

statistics. In Chapter 3, we consider the augmentation of cyclic redundancy checks (CRC)

as the error detection code in conjunction with the multiresolution quantizer to serve as

the scalable source coding (SSC) portion of the system. The SSC is paired with layered

modulation to serve as a superposition channel code (SPC). Under the assumption of ran-

dom index assignments, a closed-form formula for the weighted end-to-end distortion is

derived for a JSCC system consisting of MRVQ, RIA, CRC, and SPC. The EED formula

86



allows for further derivation of necessary optimality conditions, which serve as guidelines

for algorithm development in designing the noisy MRVQ in conjunction with CRC.

The numerical results in Chapter 3 show significant EED reductions due to trading off

some quantization rate to enable inclusion of CRC data without loss of bandwidth. The

reductions to EED when employing CRC are observed for both the point-to-point AWGN

channel as well as the Gaussian broadcast channel over a wide range of channel conditions.

Moreover, the results reveal some interesting insights of the system when employing optimal

CRCs, such as the counterintuitive behaviour of increasing EED reductions with improving

channel conditions for both considered channels. In the point-to-point case, this is due to

sacrificing more quantization rate to enable an effective CRC implementation when the

channel is worse; as a result, the reductions to EED are largely offset by the increase

in quantization distortion. As the channel improves, less quantization rate needs to be

sacrificed for CRC, resulting in significantly more reductions to the EED. This behaviour

also applies for the worse channel receiver in the broadcast case, as it behaves like the point-

to-point case with interest in only the lower resolution reconstruction of the original source.

However, the same trend is also observed for the other receiver, due to the increasingly

likelihood for both CRCs to be utilized under better channel conditions, as opposed to

discarding the higher resolution CRC data once an error is detected for the lower resolution.

Nonetheless, from all of the numerical results, it can be concluded that for applications

that are constantly subject to nonzero error probabilities under any channel code, inclusion

of error detection at the application layer is considered to be rather effective in further

improving the end-to-end performance of JSCC systems.

Due to the positive reductions to EED achievable by the pairing of scalable source codes

with superposition channel codes in the broadcast scenario, Chapter 4 further extends their

consideration into a three-node relay network. Maintaining analyses on a non-asymptotic

basis, a practical and computable measure of the end-to-end distortion is derived to eval-

uate the performance for such setting under any relay channel conditions with potentially

large channel error probabilities. The advantages of applying JSCC principles in the relay

network is demonstrated through numerical experiments, revealing significant performance

advantages of the relay-assisted transmission in exploiting the possible increase in trans-
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mission diversity, in addition to the SSC-SPC pairing itself in tackling channel fluctuations

caused by fading.

To demonstrate the importance of analyzing JSCC systems under non-asymptotic tech-

niques and settings, Chapter 4 also considers the problem of power allocation configuration

that is necessary for the optimal performance of superposition coding. We provide some

insight into the relationship between relay channel conditions and power allocation con-

figurations, and quantify the performance gaps between solutions based on capacity-based

metrics that disregard channel errors, and those based on the end-to-end distortion of the

system. Numerical results show that solutions based on the capacity-based metrics result

in a potentially large sub-optimality in the end-to-end distortion performance of the con-

sidered JSCC system. Although our analysis is only one JSCC setup of many, we conclude

that consideration of JSCC systems from a non-asymptotic setting is not only more mean-

ingful, but also reveals more relevant insight into practical system design. In this thesis,

we accomplish analysis under non-asymptotic scenarios by maintaining the end-to-end dis-

tortion as the performance measure for system evaluation throughout the entirety of the

thesis.

5.2 Future Work

The chapters in this thesis tackle a variety of related problems in joint source-channel

coding. For each topic of interest, there are still open problems that have been left for

future investigation. In this section, we briefly discuss them, and include some intermediate

results of currently ongoing investigations.

5.2.1 Separation of Source and Channel Coding

Chapter 2 investigates the validity of Shannon’s separation theorem on the optimality of

separate source and channel coding design in the finite block length regime. From the per-

spective of end-to-end distortion, the results show that there indeed exist scenarios where
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JSCC achieves reductions to the EED of a separate source-channel coding system with

an optimal channel code. Although such results already imply that source and channel

coding separation is no longer valid in the finite block length regime, there is room to

further develop this problem in a mathematically rigorous manner. Doing so would help

characterize the relationship between the quantity of the EED reduction to the system

setting or channel conditions, potentially revealing deeper insight as to when the perfor-

mance advantages of joint source-channel coding justifies the increased design or operation

complexity in practical multimedia communication systems.

To fully solve this problem, one strategy is to derive the converse bound of the separate

source-channel coding system, and show that the EED of such system is strictly greater

than a particular achievability of the JSCC case. Since the derivation of the required

converse and achievability may be difficult for the general case, this subsection summarizes

some initial results for the case of high-rate quantization to allow some analysis using point

density analysis techniques. We provide a derivation of the converse EED bound under

high-rate quantization for the separate design system, where the quantizer only targets the

minimization of the quantization distortion as opposed to the end-to-end distortion. The

achievability of the JSCC system employing channel-optimized vector quantizers remains

an open problem.

Let z be a k-dimensional Gaussian source with a probability density function f(z).

Suppose z is to be quantized by a N -level vector quantizer with N � k for high-rate

quantization. Applying point density analysis as in [59] and [60], the quantization distortion

DQ can be lower bounded as follows:

DQ ≥
1

k

(
k

k + 2

)
(NBk)

− 2
k

[∫
f(z)

k
k+2dz

] k+2
k

=
1

k

(
k

k + 2

)
(NBk)

− 2
k

[(
2πσ2

) k
k+2

(
k + 2

k

) k
2

] k+2
k

=
2πσ2

k

(
k + 2

k

) k
2

(BkN)−
2
k , (5.1)
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where Bk is the volume of the k-sphere, expressed as

Bk =
π
k
2

Γ
(
k
2

+ 1
) ,

and Γ(·) is the gamma function.

Combining the above yields

DQ ≥
2σ2

k

(
k + 2

k

) k
2

[
Γ(k

2
+ 1)

N

] 2
k

. (5.2)

Similarly suppose N � k, use point density analysis to approximate SQ as follows:

SQ ≈
1

k

∫ |z|2Nλ(z)dz

N
=

1

k

∫
|z|2λ(z)dz, (5.3)

where to minimize the quantization distortion, λ(z) is expressed as

λ(z) =
f(z)

k
k+2∫

Λ
f(z)

k
k+2dz

. (5.4)

For a k-dimensional Gaussian source, λ(z) can be computed as

λ(z) =
f(z)

k
k+2

(2πσ2)
k
k+2
(
k+2
k

) k
2

(5.5)

to yield

SQ ≈
(
k + 2

k

)
σ2. (5.6)
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From (2.2), the end-to-end distortion (EED) is expressed as:

D̄ =

(
1− εNk

Nk − 1

)
DQ +

εNk

Nk − 1
(σ2 + SQ), (5.7)

which for N � k, is lower bounded as

D̄ ≥
(

1− εNk

Nk − 1

)
2σ2

k

(
k + 2

k

) k
2

[
Γ(k

2
+ 1)

N

] 2
k

+
εNk

Nk − 1

[
σ2 +

(
k + 2

k

)
σ2

]

≈ (1− ε)2σ2

k

(
k + 2

k

) k
2

[
Γ(k

2
+ 1)

N

] 2
k

+ ε

[
σ2 +

(
k + 2

k

)
σ2

]
. (5.8)

For the highest quantization rate, i.e., k = 1, the above reduces to

D̄ ≥ (1− ε)σ2 2
√

3

4
πN−2 + 4σ2ε

≈ σ2

[√
3π(1− ε)

2N2
+ 4ε

]
. (5.9)

5.2.2 Noisy Quantization with Error Correction Codes

In Chapter 3, the usage of error detection codes is considered for the purpose of reduc-

ing the end-to-end distortion of the system by reducing the effects of the scatter factor

for incorrectly decoded source symbols. In this subsection, we suggest further possible

reductions to the system EED using error correction codes.

Consider the EED for the point-to-point channel under random index assignments in

(3.9), and restated as follows for clarity:

DΠ
b =

(
1− pbd −

N1pbu
N1 − 1

)
DQb +

(
N1pbu
N1 − 1

)(
σ2 + SQb

)
+ pbdσ

2.

Observe from (3.9) that addition of error detection codes significantly reduces the effects

of the scatter factor to only undetected symbol errors, occurring with probability pbu �
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Figure 5.1: A tandem source-channel point-to-point system with error correcting codes
over a channel with both erasures and errors.

pbd + pbu. As a result, the EED is reduced since all detected errors have their distortion

contribution to EED reduced from (σ2 + SQb) to σ2. At this point, due to the addition

of error detection codes, the contribution of the pbdσ
2 term may become significant under

certain channel conditions, hence motivating us to employ error correction codes in hopes

of correcting some of the detected errors, also known as erasures, to further reduce the

EED of the system.

With reference to Fig. 5.1, consider employing Reed-Solomon (RS) codes for only era-

sure correction on top of the original JSCC system with error detection. SupposeK samples

of the vector source z, {z1, . . . ,zK} are each mapped to a particular quantizer index to

yield K quantizer indices denoted by {i1, . . . , iK}. Let Pt ({i1, . . . , iK}) = {a1, . . . , aK}
be a random permutation linking the K outputs of the quantizer output to the RS en-

coder input. The RS encoder outputs N ≥ K symbols, {c1, . . . , cN}, where cx = ax for

x = 1, . . . , K. Each of the N RS encoder outputs are linked to the CRC-coded channel

with random index assignment, as in Chapter 3.

Approximate the CRC-coded channel in Fig. 5.1 as a non-binary erasure channel to

simplify Fig. 5.1 to Fig. 5.2. Due to employment of random index assignments in Fig. 5.1,

the non-binary erasure channel can be characterized by an average erasure probability p1.
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Figure 5.2: A tandem source-channel point-to-point system with error correcting codes
over an erasure channel.

Let An = {â : d(â,a) = n}, where a = a1 . . . aK , â = â1 . . . âK , and d(·, ·) denotes

the Hamming distance between the two arguments. Consider a particular ân ∈ An where

â1 = · · · = ân = e, ân+1 = an+1, . . . , âK = aK ; specifically, the ân corresponds to a with

erasure occurring for the first n elements. For this error pattern, suppose the permutation

Pt linking i and a is randomly and uniformly selected. Taking expectation over all possible

permutations, the probability of zx being erased for â = ân is given by

EPt

[
pPtb

(
îx = e, ân

)]
=

1

K!

K!∑
t=1

pPtb

(
îx = e, ân

)
=

1

K!

n∑
p=1

∑
t:ix=ap

Pr(ân)

=
n

K
Pr(ân). (5.10)

Summing over all possible ân ∈ An for n = 1, . . . , K results in the average probability of

erasure for zx:

EPtp
Pt
b

(
îx = e

)
=

K∑
n=1

∑
ân∈An

EPtp
Pt
b

(
îx = e, ân

)
=

K∑
n=1

∑
ân∈An

n

K
Pr(ân)

=
K∑
n=1

n

K
Pr {d(â,a) = n} , pd1 . (5.11)
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Let ne denote the number of erasures caused by the erasure channel such that ne =

d(ĉ, c), where c = c1 . . . cN and ĉ = ĉ1 . . . ĉN . Suppose the RS code can correct all erasures

if ne ≤ N −K; otherwise, trash ĉK+1 . . . ĉN and let âp = ĉp for p = 1, . . . , K. Hence, any

erasure occurring in â implies RS correction failure. RS decoding in this manner allows

pd1 to be further simplified as follows:

pd1 =
K∑
n=1

n

K
Pr {d(a1 . . . aK , â1 . . . âK) = n}

=
K∑
n=1

n

K
Pr {d(c1 . . . cK , ĉ1 . . . ĉK) = n, d(c1 . . . cN , ĉ1 . . . ĉN) > N −K}

=
K∑
n=1

n

K
Pr {d(c1 . . . cK , ĉ1 . . . ĉK) = n}Pr {d(cK+1 . . . cN , ĉK+1 . . . ĉN) > N −K − n}

=
K∑
n=1

n

K

[(
K

n

)
pn1 (1− p1)K−n

] N−K∑
t=max(0,N−K−n+1)

(
N −K

t

)
pt1(1− p1)N−K−t

 (5.12)

The EED for any single source symbol zx in the system in Fig. 5.2 is expressed as

follows under random permutation assignment.

EPtD
Pt
b =

1

k

N1∑
ix=1

∫
zx∈Aix

‖zx − zix‖2EPtp
Pt
b

(
îx = ix

)
f(zx)dzx

+
1

k

N1∑
ix=1

∫
zx∈Aix

‖zx‖2EPtp
Pt
b

(
îx = e

)
f(zx)dzx

= (1− pd1)DQ + pd1σ
2 (5.13)

From (5.13), we see that the optimal separate quantizer actually minimizes the EED of

the system with RS code under the assumption that the employed CRC detects all errors.

Since there is no closed-form expression for the EED to include the effects of imperfect

CRC error detection, performance evaluations require the use of simulations, which are

generated from Gaussian random variables with sample sizes on the order of O(108).
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Figure 5.3: Results comparing uncoded (UC) with and without CRC for error detection
and Reed-Solomon codes for error correction over various QPSK channel SNR Es/N0.

Fig. 5.3 summarizes the PSNR performance of a number of schemes that can be largely

categorized as: 1) uncoded, where all bits are reserved for source quantization; 2) uncoded

with CRC only, where the optimal tradeoff between quantization and CRC bits are consid-

ered; and 3) RS code with CRC, where the optimal tradeoff between quantization, CRC,

and RS code is considered. For a fair comparison, K = 4 is fixed over 24 uses of the QPSK

modulation scheme for a total block length of 48 bits. For 1) and 2), existing closed-form

expressions from earlier chapters are used to analytically evaluate the EED. Simulation re-

sults for these categories are also included for verification purposes. The analytical results

for 3) are based on (5.13), which is only an approximation as CRC cannot detect all error

patterns, and hence such category relies on simulations for accurate results.

Fig. 5.3 shows that the joint use of RS code and CRCs can significantly increase the

system PSNR performance, as opposed to employing only CRCs. The gains are also

visibility dependent on the channel conditions and as expected, the optimal RS code rate

decreases as the channel condition worsens. These preliminary results show that it is

worthwhile to investigate the addition of error correction codes on top of error detection

codes, especially for scenarios with large channel error probabilities, resulting in the source

variance term dominating the end-to-end distortion of the system with only CRC.
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