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Abstract

In recent years quantum algorithms have become a popular area of mathe-
matical research. Farhi and Gutmann introduced the concept of a quantum
walk in 1998. In this thesis we investigate mixing properties of continuous-
time quantum walks from a mathematical perspective. We focus on the
connections between mixing properties and association schemes.

There are three main goals of this thesis. Our primary goal is to
develop the algebraic groundwork necessary to systematically study mixing
properties of continuous-time quantum walks on regular graphs. Using
these tools we achieve two additional goals: we construct new families of
graphs that admit uniform mixing, and we prove that other families of
graphs never admit uniform mixing.

We begin by introducing association schemes and continuous-time quan-
tum walks. Within this framework we develop specific algebraic machinery
to tackle the uniform mixing problem. Our main algebraic result shows
that if a graph has an irrational eigenvalue, then its transition matrix has
at least one transcendental coordinate at all nonzero times.

Next we study algebraic varieties related to uniform mixing to determine
information about the coordinates of the corresponding transition matrices.
Combining this with our main algebraic result we prove that uniform mixing
does not occur on even cycles or prime cycles. However, we show that the
probability distribution of a quantum walk on a prime cycle gets arbitrarily
close to uniform.

Finally we consider uniform mixing on Cayley graphs of elementary
abelian groups. We utilize graph quotients to connect the mixing properties
of these graphs to Hamming graphs. This enables us to find new results
about uniform mixing on Cayley graphs of Zd3 and Zd4.
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Chapter 1

Introduction

In recent years quantum algorithms have become a popular area of math-
ematical research. The continuous-time quantum walk was introduced
in 1998 by Farhi and Gutmann [25]. Subsequently this model has been
harnessed for a variety of applications within the realm of quantum com-
puting. For example, quantum walks have been used in a black box graph
transversal algorithm [21] and as a universal quantum computation model
[20]. In this thesis we investigate continuous-time quantum walks from a
mathematical perspective. We focus on the connections between the mixing
properties of continuous-time quantum walks and association schemes. We
are particularly interested in walks that reach uniform probability densities
at a particular times. If a continuous-time quantum walk on a graph has
this property, then we say that the graph admits uniform mixing.

There are three main goals of this thesis. Our primary goal is to
develop the algebraic groundwork necessary to systematically study mixing
properties of continuous-time quantum walks on regular graphs. Using our
algebraic tools we achieve two additional goals: we construct new families
of graphs that admit uniform mixing, and we prove that other families of
graphs never admit uniform mixing.

Our methods heavily rely on the framework of association schemes.
There are several reasons why this is a suitable approach. First, all of the
graphs that are currently known to admit uniform mixing are intrinsically
related to association schemes. Towards our goal of finding additional
graphs that admit uniform mixing, it makes sense to begin our search
with graphs within this realm. Moreover, association schemes are endowed
with algebraic properties that directly relate to the mixing properties of
continuous-time quantum walks. Using these properties, we derive necessary
algebraic properties of graphs that admit uniform mixing. In turn, this
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1. INTRODUCTION

enables us to show that certain infinite families of graphs do not admit
uniform mixing.

Finally, and perhaps most importantly, association schemes are a natural
framework because they provide a unifying language for the wide assortment
of mathematical tools that we use. These tools include classical results in
transcendental number theory, properties of algebraic varieties, and duality
theory in coding theory. Thus, in a purely abstract light, this thesis can be
viewed as a case study of the usefulness of association schemes.

1.1 Main Results

We summarize the main new results in this thesis, and we attempt to give a
perspective on their significance. For an undirected graph X with adjacency
matrix A, we let

U(t) = exp(itA)

denote the transition matrix corresponding the the continuous-time quantum
walk. The mixing matrix of a graph is an n× n matrix whose (j, k)-entry
is given by

M(t)j,k = |U(t)j,k|2.

The probability densities of the walk are given by the columns of the mixing
matrix M(t). One of our main goals in this thesis is to develop general
machinery for detecting whether or not there exists some t such that the
columns of M(t) correspond to the uniform distribution. If such a time
exists, we say that the graph X admits uniform mixing.

The following result is one of the most important results in this thesis.
It is due to the author, and its proof relies heavily on the Gelfond-Schneider
theorem of transcendental number theory.

Theorem 4.2.4. Let X denote a graph. If the entries of the transition
matrix U(t) are all algebraic for some nonzero time t, then the ratio of any
two eigenvalues of X must be rational.

This result does not require the graph to be in an association scheme.
However, when the graph is in an association scheme, it is often possible
to use the additional structure to show that U(t) must have all algebraic
entries at time t if uniform mixing occurs. This contradicts Theorem 4.2.4
and proves that the corresponding graph does not admit uniform mixing.

Prior to the work presented in this thesis, it was known that the cycles
of length three and four admit uniform mixing, while the cycle of length five

2



1.1. MAIN RESULTS

does not admit uniform mixing [16]. Also, Adamczak et al. [1] showed that
Cn does not admit uniform mixing if n = 2u for u ≥ 3, or if n = 2um where
m is not the sum of two integer squares and u ≥ 1. It was conjectured
by Ahmadi, Belk, Tamon, and Wendler in [3] that uniform mixing does
not occur on the cycle of length n if n ≥ 5. Using Theorem 4.2.4 we make
significant progress towards proving this conjecture. First we show that
uniform mixing does not occur on cycles of even length greater than four.
This theorem is a joint result of the author and Godsil.

Theorem 5.3.1. The cycle of length four is the unique even cycle that
admits uniform mixing.

Next we show that uniform mixing cannot occur on cycles of prime
length greater than three. This result is due to the author.

Theorem 5.4.1. The cycle of length three is the unique cycle of odd prime
order that admits uniform mixing.

We also consider cycles that come very close to admitting uniform
mixing. Graphs with this property are said to admit ε-uniform mixing. The
precise definition is given in Section 3.3. The following result is due to the
author. Its proof relies heavily on Kronecker’s Theorem.

Theorem 5.5.2. Let p denote an odd prime. The cycle of length p admits
ε-uniform mixing.

Another goal of this thesis is to describe new families of graphs that
admit uniform mixing. The Hamming graph H(d, n) is the graph whose
vertex set is the set of all elements of Zdn. Two vertices in H(d, n) are
adjacent if and only if they differ in exactly one coordinate. If n = 2, then
we say the graph is a binary Hamming graph. The first family of graphs
discovered to admit uniform mixing were the binary Hamming graphs [40].
Subsequent work considers variations of binary Hamming graphs ([7], [24],
[18]). In this thesis we focus on quotients of Hamming graphs. The following
new result is due to the author, and it is an extension of the work of [7].

Theorem 8.3.7. Let Γ denote a subgroup of Zd2 such that every pair of
elements in Γ differs in at least three coordinates. Further suppose that
|Γ| = 4. The graph H(d, 2)/Γ admits uniform mixing at time t = π/4 if
and only if Γ = 〈v1, v2〉 for some v1, v2 in Zd2 such that one of the following
holds:
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1. INTRODUCTION

(i) wt(v1) ≡ wt(v2) (mod 4) and wt(v1 + v2) ≡ 2 (mod 4)

(ii) wt(v1) ≡ wt(v2) + 2 (mod 4) and wt(v1 + v2) ≡ 0 (mod 4).

We also consider Hamming graphs H(d, n) for n ≥ 3. Aside from the
Hamming graphs themselves, the mixing properties of these graphs have
not been studied before. We completely characterize quotients of H(d, 3)
and H(d, 4) that admit uniform mixing at times t = 2π/9 and t = π/4,
respectively. As a consequence, we obtain infinite families of graphs that
admit uniform mixing. Two particular families are given in the pair of
following results. Both of these results are new and due to the author.

Theorem 8.4.4. Let d ≥ 3. The folded Hamming graph over H(d, 3)/〈1〉
admits uniform mixing at t = 2π/9 if and only if d ≡ 1, 2 (mod 3).

Theorem 8.5.5. Let d ≥ 3. The folded Hamming graph H(d, 4)/〈1〉 admits
uniform mixing at t = π/4 if and only if d is odd.

1.2 Graph Theory Tools

There are standard graph theory tools that we utilize throughout this thesis.
In this section, we briefly recall some of the background results that we
assume in our work. If we do not explicitly mention otherwise, the graphs
we are considering in this thesis are simple and undirected. A multigraph
is a graph that possibly has multiple edges between certain pairs of vertices
and loops. Let X = (V,E) denote a graph on n vertices. If each vertex of
X has k neighbours, then we say that X is k-regular or that X has valency
k. We let Kn denote the complete graph on n vertices. This is a graph
on n vertices such that every pair of vertices is adjacent. The adjacency
matrix A of X is an n× n matrix indexed by elements of V such that

Au,v =

{
1 if u is adjacent to v

0 otherwise

for each pair of u and v in V . Since X is undirected, we see that A is
symmetric.

Theorem 1.2.1. Every real symmetric matrix is diagonalizable.

4



1.2. GRAPH THEORY TOOLS

This result implies that the adjacency matrix of X has n eigenvalues.
We often refer to the eigenvalues of the adjacency matrix simply as the
eigenvalues of the graph.

Corollary 1.2.2. The sum of the eigenvalues of a graph, with multiplicity,
is 0.

In addition to these basic linear algebra tools, we also utilize group
theory tools. For two graphs X = (V1, E1) and Y = (V2, E2), we say that
X is isomorphic to Y if there exists a bijection from V1 to V2 such that

{u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2,

for all vertices u and v in V1. An isomorphism from X to itself is called an
automorphism, and the set of all isomorphisms forms a group, which we
denote by Aut(X). If the automorphism group of a graph acts transitively on
its vertices, then we say the graph is vertex transitive. If the automorphism
group of a graph acts transitively on the arcs of the graphs, then we say
the graph is arc transitive. And finally, if a graph is isomorphic to its
complement, then we say the graph is self-complementary .
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Chapter 2

Association Schemes

2.1 Introduction

Association schemes provide a framework to study a wide range of combi-
natorial problems, including graph theory and coding theory. For practical
purposes, association schemes provide a convenient unifying language for
the different tools used in this thesis. In a deeper sense, the underlying
structure of the association schemes enables us to use such a diverse range
of tools.

Association schemes were first studied by Bose and others in the realm
of design theory. In 1973 Delsarte recognized that association schemes were
a unifying object underlying coding theory and design theory. Delsarte’s
PhD thesis [23] led to association schemes being regarded as one of the
foundations of combinatorics.

This chapter provides useful background material concerning the struc-
ture of association schemes. We begin by introducing Cayley graphs, which
serve as useful building blocks of association schemes. Then we investigate
the association schemes with two classes. The non-trivial examples of such
schemes are called strongly regular graphs. Next we formally introduce
general association schemes. Finally, we investigate several important ex-
amples — namely Hamming schemes and cyclic schemes. We pay particular
attention to the inherent duality of cyclic association schemes.

The results in this chapter are not new, but they are essential to
establishing our algebraic viewpoint. The association scheme notation
introduced in this chapter will be used throughout the rest of the thesis,
and the examples we see will be essential to our subsequent work.

7



2. ASSOCIATION SCHEMES

2.2 Cayley Graphs

We start by introducing Cayley graphs. For our purposes, Cayley graphs
are a tool for using the structure of a finite group to construct a graph. We
use them as the building blocks of certain association schemes. We follow
the treatment given in Godsil and Royle [31].

Definition 2.2.1. Let G denote a group, and let C denote an inverse-closed
subset of G. The X(G,C) is a graph whose vertex set is identified with
the elements of G. Two vertices u and v in G are adjacent if and only if

vu−1 ∈ C.

From the definition, we see that every Cayley graph must be regular.
In fact, every Cayley graph has a transitive group of automorphisms. We
call such graphs vertex-transitive.

Lemma 2.2.2. Cayley graphs are vertex transitive.

Proof. Let X denote the Cayley graph X(G,C). The group G acts
regularly on the vertices of X as

θg : x→ xg.

It is straightforward to verify that G is a subgroup of the automorphism
group of X. Therefore X is vertex transitive.

Conversely, a result due to Sabidussi implies that every graph with a
regular automorphism group acting on it is a Cayley graph for that group
[44]. Next we focus on some examples of Cayley graphs. First we see that
cycles are Cayley graphs.

(2.2.3) Let Cn denote a cycle of length n, and let Zn denote the integers
modulo a positive n. The cycle Cn is a Cayley graph over Zn, and in
particular

Cn ∼= X(Zn, {−1, 1}).

Now we consider a slightly more complicated family of Cayley graphs:
the Paley graphs. Let q denote a prime power, and let Fq denote the finite
field of order q. Further let ω denote a multiplicative generator of F∗q. Recall
that F∗q is a cyclic group for all q. The set of nonzero squares of Fq is the
multiplicative subgroup generated by ω2. In terms of ω we note that

−1 = ω(q−1)/2.

8



2.3. STRONGLY REGULAR GRAPHS

This implies that −1 is a square if and only if q ≡ 1 (mod 4), and equiva-
lently S is closed under multiplication by −1 if and only if q ≡ 1 (mod 4).
This leads to the following definition. Suppose that q is a prime power
such that q ≡ 1 (mod 4), the Paley graph of order q is the Cayley graph
X(F+

q , S), where S denotes the set of nonzero squares. We let Pq denote
the Paley graph of order q. As an explicit example, we consider the Paley
graph of order five. The nonzero squares of F5 are {−1, 1}, and so we have

P5
∼= C5.

Since the Paley graphs are Cayley graphs, by Lemma 2.2.2 we know that
Paley graphs are vertex transitive. In fact, the Paley graphs possess
additional symmetry properties: the Paley graphs are arc-transitive and
self-complementary.

Suppose X is an arc-transitive graph. All pairs of adjacent vertices in X
must have a constant number of common neighbours. Likewise all pairs of
adjacent vertices must have a constant number of common non-neighbours.
Since Paley graphs are self-complementary, the automorphism group of Pq
acts transitively on the ordered pairs of vertices that are not adjacent to
each other. Therefore all pairs of non-adjacent vertices must have a constant
number of common neighbours and common non-neighbours. Graphs with
these extra regularity conditions are called strongly regular. We investigate
these graphs in more detail in the next section.

2.3 Strongly Regular Graphs

Strongly regular graphs are an important family of graphs. Aside from the
Paley graphs, other famous strongly regular graphs include the Petersen
graph and line graphs of Kn,n. In this section, we formally introduce
strongly regular graphs and determine their spectrum. We emphasize the
connection between the algebraic properties of the adjacency matrix and
the combinatorial properties of the graph. These properties are shared with
the more general family of association schemes. Strongly regular graphs
are a well-studied class of graphs and there is a wealth of knowledge about
them that extends far beyond what is included in this thesis. See Cameron’s
survey [14] or Brouwer and Haemer’s book [11], for example.

Definition 2.3.1. A graph X of order n is strongly regular if it is not
complete or edgeless and there exist constants k, a and c such that:

(i) X is k-regular;

9



2. ASSOCIATION SCHEMES

(ii) Every pair of adjacent vertices has a common neighbours;

(iii) Every pair of nonadjacent vertices has c common neighbours.

We express the parameters of a strongly regular graph with the array
(n, k, a, c). For example, the cycle of length five has parameter set (5, 2, 0, 1),
and the Petersen graph has parameter set (10, 3, 0, 1).

Suppose that X is a strongly regular graph with parameters (n, k, a, c)
and adjacency matrix A. Further let X denote the complement of X, and let
Ā denote the adjacency matrix of X. Counting the common non-neighbours
of pairs of vertices shows that X is also strongly regular with parameters

(n, n− k − 1, n− 2k + c− 2, n− 2k + a).

In terms of A, we can express Ā as

Ā = J − I − A, (2.1)

where I is the identity matrix, and J is the all-ones matrix.
Recall that the (u,w)-entry of A2 is equal to the number of walks of

length two from vertex u to vertex w in X. Combining this observation
with Equation 2.1 enables us to express A2 as

A2 = aA+ cĀ+ kI

= aA+ c(J − A− I) + kI

= (a− c)A+ (k − c)I + cJ.

Any strongly regular graph with parameters (n, k, a, c) satisfies the equation
above. The converse also holds, as we see in the next well-known result. A
proof of this result appears in [31], for example.

Lemma 2.3.2. A graph X is strongly regular with parameters (n, k, a, c)
if and only if its adjacency matrix A satisfies

A2 − (a− c)A− (k − c)I = cJ.

Note that Lemma 2.3.2 can be taken as an algebraic definition of strongly
regular graphs. It is also useful to note that we compute the following
matrix products:

A2 = kI + aA+ cĀ

Ā2 = (n− k − 1)I + (n− 2k + c− 2)A+ (n− 2k + a)Ā

10



2.3. STRONGLY REGULAR GRAPHS

ĀA = (J − A− I)A = (k − a− 1)A+ (k − c)Ā = AĀ.

Now we shift our focus to the spectral properties of strongly regular graphs.
If X is a regular and connected graph, then the all-ones vector is a simple
eigenvector of X with eigenvalue k. Building from this, we completely
determine the spectrum of X in terms of its parameters. The following
result is well-known. A proof is given in Godsil and Royle [31]. For
completeness, we include a proof here.

Lemma 2.3.3. Let X denote a connected strongly regular graph with pa-
rameters (n, k, a, c). The nontrivial eigenvalues of X are given by

θ, τ =
1

2

(
a− c±

√
(a− c)2 + 4(k − c)

)
.

For notational convenience, we assume θ > τ . The multiplicities of these
eigenvalues are

mθ =
1

2

(
n− 1− (n− 1)(a− c) + 2k√

(a− c)2 + 4(k − c)

)

mτ =
1

2

(
n− 1 +

(n− 1)(a− c) + 2k√
(a− c)2 + 4(k − c)

)
.

Proof. Suppose that v is an eigenvector of A corresponding to a nontrivial
eigenvalue θ. Then 1Tv = 0, and so(

A2 − (a− c)A− (k − c)I
)
v =

(
θ2 − (a− c)θ − (k − c)

)
v = 0.

This implies that θ is a root of

x2 − (a− c)x− (k − c) = 0.

We solve this equation using the quadratic formula, and we assume that θ
and τ are the two roots with θ ≥ τ . Let mθ and mτ denote the multiplicities
of θ and τ , respectively. Since the trace of A is zero, we know that the
sum of the eigenvalues with multiplicity is equal to zero. Therefore the
multiplicities satisfy

1 +mθ +mτ = n

k +mθθ +mττ = 0.

We solve this system directly to determine mθ and mτ in terms of θ and τ ,
and then we substitute our expression of θ and τ in terms of the strongly
regular graph parameters to obtain our desired result.

11



2. ASSOCIATION SCHEMES

Of course, the multiplicities of the eigenvalues of a graph must be
positive integers, and so our expression for mτ and mθ in Lemma 2.3.3
implies that either (a− c)2 + 4(k − c) is a square or (n− 1)(a− c) = −2k.
These two cases imply that either θ and τ are integers or mτ = mθ. (We
note that both cases could occur simultaneously.) A strongly regular graph
with mτ = mθ is called a conference graph.

Let X denote a strongly regular graph. Now that we know the spectrum
of X, we determine the spectrum of its complement X. Suppose that X is
also connected. Then the all-ones vector is an eigenvector of X with simple
eigenvalue n − k − 1, which is the valency of X. The other eigenvalues
can be deduced from Equation 2.1. If v is an eigenvector of X with the
nontrivial eigenvalue θ, then 1Tv = 0 and

Āv = (J − A− I) v = −Av − v = (−θ − 1)v.

This implies that−1−θ is an eigenvalue with multiplicity mθ of X. Similarly,
we see that −1− τ is an eigenvalue with multiplicity mτ of X. We highlight
the fact that X and X share the same eigenspaces. This is the key property
of association schemes, which we will see in the next section.

2.4 Association Schemes

Recall that a strongly regular graph X on n vertices and its complement
partition the edges of Kn in such a way that they share the same eigenspaces.
We wish to generalize this desirable algebraic property. Suppose that we
have an edge decomposition of Kn into d graphs {X1, . . . , Xd}. Let Ar
denote the adjacency matrix of Xr for 1 ≤ r ≤ d, and let A0 = I, the
n× n identity matrix. Further let A = {A0, A1, . . . , Ad}. Since the graphs
partition the edges set of the complete graph, we note that

d∑
r=0

Ar = J,

where J is the n× n all-ones matrix.

Definition 2.4.1. The matrices in A form a symmetric d-class association
scheme if and only if there exist constants pj,k(r) for 0 ≤ j, k, r ≤ d such
that

AjAk =
∑
r

pj,k(r)Ar.

12



2.5. BOSE-MESNER ALGEBRA

The constants pj,k(r) are called intersection parameters. Combinatori-
ally, the intersection parameters pj,k(r) exist if and only if for every edge
{x, y} in Xr there are a constant number of vertices z such that {x, z} is
an edge of Xj and {z, y} is an edge of Xk. In particular, their existence
implies every graph Xj in the scheme is regular with valency pj,j(0). For
convenience, we let nj denote the valency pj,j(0).

As a point of notation, we refer to the graphs {X1, . . . , Xd} as an
association scheme if their adjacency matrices, together with the identity
matrix, form an association scheme as defined above.

From the definition of a strongly regular graph, we see that if A is the
adjacency matrix of a strongly regular graph, then A = {I, A, Ā} is an
association scheme.

We offer another important family of association schemes. Suppose that
X = (V,E) is a connected graph. For any two vertices u and v in V , let
dist(u, v) denote the length of the shortest path in X between u and v. A
distance-regular graph is a regular graph such that the number of common
neighbours of u and v is determined by the distance dist(u, v) between
u and v. For example, every strongly regular graph is a distance-regular
graph with diameter two. The cycle graphs are also distance-regular graphs.
Refer to [10] for more information about distance-regular graphs.

LetX denote a distance-regular graph with diameter d, and letA0, . . . , Ad
denote the (0, 1)-matrices indexed by vertices of X such that

(Aj)u,v =

{
1 if dist(u, v) = j

0 otherwise.

It is useful to note that the matrices {A0, A1, . . . , Ad} form an association
scheme.

2.5 Bose-Mesner Algebra

Let A = {A0, A1, . . . , Ad} denote an association scheme. From an algebraic
viewpoint, the existence of the intersection parameters guarantees that the
real vector space spanned by {A0, . . . , Ad} is closed under multiplication
and multiplication among elements in the vector space is commutative.
Hence C[A] is a commutative algebra of dimension d+ 1. We refer to C[A]
as the Bose-Mesner algebra of the scheme. Bose and Mesner [9] introduced
what is now called the Bose-Mesner algebra of an association scheme.

13



2. ASSOCIATION SCHEMES

Suppose that A and B are two m × n matrices. The Schur product
A ◦B is the m× n matrix given by

(A ◦B)j,k = Aj,kBj,k.

Since the matrices in A are adjacency matrices of edge-disjoint graphs, we
see that

Aj ◦ Ak = δj,kAj,

where δj,k is the Kronecker delta. Let A denote a d-class association
scheme. The matrices in A are idempotents under Schur multiplication.
Since C[A] is spanned by A, we see that the entire Bose-Mesner algebra
is closed under Shur multiplication. Furthermore, each matrix in A is
a real symmetric matrix, and so the spectral decomposition theorem of
linear algebra ensures that each matrix Ai is individually diagonalizable.
The additional properties of an association scheme guarantees that the
matrices in A are simultaneously diagonalizable. Therefore it is possible to
decompose Rn into d+ 1 pairwise orthogonal common eigenspaces. Refer
to Godsil [28] for further details on these observations.

For a d-class association scheme, we let {E0, E1, . . . , Ed} denote the
projections onto the common eigenspaces of Rn. We refer to these matrices
as the spectral idempotents of the scheme. For notational convenience, we
always assume that E0 = 1

n
J is the projection onto R1. We define the

eigenvalues of the scheme to be the constants pj(k) for 0 ≤ j, k ≤ d such
that

AjEk = pj(k)Ek.

The d + 1 spectral idempotents form a basis of C[A]. See Chapter 12 of
[28] for the proof of this observation. For this reason, we often refer to the
spectral idempotents as the dual basis of the scheme. Since the Bose-Mesner
algebra is closed under Schur multiplication, there exists coordinates qj(k)
in R for 0 ≤ j, k ≤ d such that

Aj ◦ Ej =
1

n
qj(k)Ak.

These coordinates qj(k) are called the dual eigenvalues of the association
scheme. Let P and Q denote (d+ 1)× (d+ 1) matrices such that

Pj,k = pk(j) and Qj,k = qk(j).

Note that P is the change of basis matrix from A to the dual basis, and
1
n
Q is the inverse of P . 9 There are a couple useful tricks for relating Shur

14
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multiplication and regular multiplication in the Bose-Mesner algebra. For
a matrix M , let sum(M) denote the sum of each entry of M . First note
that for two square matrices A and B, we have

sum(A ◦B) = tr(ABT ).

For notational convenience, we let mj denote the multiplicity of the eigen-
value corresponding to Ej. Since the trace of a matrix is invariant under
conjugation, we have that mj = tr(Ej). Using these two observations, we
directly relate the eigenvalues and dual eigenvalues of the scheme.

Lemma 2.5.1. The eigenvalues and dual eigenvalues of the scheme satisfy

qk(j) =
mk

nj
pj(k).

Proof. From the definition of the eigenvalues of the scheme, we have

AjEk = pj(k)Ek. (2.2)

Taking the trace of both sides of this equality we obtain

tr(AjEk) = pj(k)tr(Ek) = pj(k)mk.

Alternatively, we derive the following expression for tr(AjEk) in terms of
the dual eigenvalues:

tr(AjEk) = sum(Aj ◦ Ek)

=
qk(j)

n
sum (Aj)

= qk(j)nj.

Substituting this back into Equation 2.2 gives us our desired expression.

2.6 Krein Parameters

In this section we introduce additional association scheme parameters. Once
again we rely on the fact that the spectral idempotents {E0, E1, . . . , Ed}
form a basis of the Bose-Mesner algebra C[A]. Since C[A] is closed under
Schur multiplication, there exist coordinates qi,j(k) for 0 ≤ j, k, r ≤ d such
that

Ej ◦ Ek =
1

n

d∑
r=0

qj,k(r)Er.

15
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The coordinates qj,k(r) are called the Krein parameters of the scheme. They
are dual to the intersection parameters. Certain trivial Krein parameters
are easy to compute. The following is well-known. A proof is given in [28],
for example.

Lemma 2.6.1. The Krein parameters of any association scheme satisfy
the following:

(i) qj,k(r) = qk,j(r);

(ii) qj,0(r) = δj,r;

(iii) qj,k(0) = δj,kmj.

Proof. Shur multiplication is commutative, which implies (i). Since
E0 = 1

n
J , we see that

Ej ◦ E0 =
1

n
Ej.

This proves (ii). Next observe that since the columns and rows of E1, . . . , Ed
are orthogonal to 1, we have

qj,k(0) = 1T (Ej ◦ Ek) 1.

But we also have

1T (Ej ◦ Ek) 1 = sum(Ej ◦ Ek) = tr(EjEk) = δi,jmj,

which proves (iii).

General Krein parameters are more complicated to compute. However,
if the eigenvalues of the scheme are known, then we can use the following
result to determine the Krein parameters. This result is well-known.

Lemma 2.6.2. Let A denote a d-class association scheme with eigenvalues
pj(r) for 0 ≤ j, r ≤ d. The Krein parameters of a d-class association
scheme are given by

qj,k(r) =
mjmk

n

d∑
s=0

ps(j)ps(k)ps(r)

n2
s

.

Proof. We begin by noting that

1

n
qj,k(r)Er = Er (Ej ◦ Ek) .
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Taking the trace of both sides of this equation yields

1

n
qj,k(r)mr = sum (Er ◦ Ej ◦ Ek)

=
1

n3

d∑
l=0

qr(l)qj(l)qk(l)sum (Al)

=
1

n2

d∑
l=0

qr(l)qj(l)qk(l)nl.

This implies that the Krein parameters can be written in terms of the dual
eigenvalues as

qj,k(r) =
1

nmr

d∑
l=0

qr(l)qj(l)qk(l)nl.

Now recalling Lemma 2.5.1, we can rewrite this expression for qj,k(r) in
terms of the eigenvalues of the scheme as

qj,k(r) =
mjmk

n

d∑
l=0

pl(r)pl(j)pl(k)

n2
l

.

The Krein parameters can be shown to be the eigenvalues of a positive
semi-definite matrix, and therefore they are nonnegative. This provides a
feasibility test for potential parameters of an association scheme. It is also
useful to note that in special cases, the Krein parameters coincide with the
intersection parameters. An association scheme is formally self-dual if

pj(k) = qj(k)

for 1 ≤ j, k ≤ d for some ordering of the basis matrices A and the spectral
idempotents. In the following sections, we introduce the Hamming schemes
and cyclic schemes, both of which have this property.

2.7 Hamming Schemes

In this section we investigate the Hamming schemes. They provide an
in-depth illustration of an association scheme, and they are also important
in our later work. For more information about Hamming schemes, see [15]
and [28].

We begin by introducing some coding theory terminology. Let Q be an
alphabet with n symbols, and let u and v be two words of length d. The

17
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Hamming distance dist(u, v) between two words u and v is the number of
coordinates in which they differ. For example, if Q = {0, 1}, then

dist(0001, 1011) = 2.

Suppose that S is a subset of all possible words of length d. We say that S
has minimum Hamming distance t, if the distance between any two words
in S is at least t.

The Hamming graph H(d, n) is the graph whose vertex set is the set
of all words of length d. Two words in H(d, n) are adjacent if and only if
they differ in exactly one coordinate. If n = 2, then we say the graph is a
d-cube. The family of d-cubes are also referred to as hypercubes or binary
Hamming graphs. For example, H(2, 2) is isomorphic to C4, and H(3, 2) is
isomorphic to the classic cube on eight vertices. More generally, H(2, n) is
isomorphic to the line graph L(Kn,n).

In practice, it is convenient to assume that Q = Zn. This endows
our set of words with natural addition and subtraction operations. The
Hamming graph H(d, n) is a Cayley graph over Zdn with scalar multiples of
the standard basis vectors e1, . . . , ed as its connection set. We define the
Hamming weight wt(v) of an element in Zdn to be the number of nonzero
coordinates of v. The Hamming distance can be rephrased in terms of the
Hamming weight as

dist(u, v) = wt(u− v).

Often it is useful to keep track of the indices of the nonzero coordinates of
an element of Zdn. For a vector u in Zdn, we let supp(u) denote the set of
indices of nonzero coordinates of u. For example,

supp((1, 2, 2, 0, 0)) = {1, 2, 3}.

With all of this notation under our belt, we are ready to define the Hamming
scheme H(d, n). The vertices of H(d, n) are the elements of Zdn. The
matrices of our scheme are the d+ 1 matrices {A0, A1, . . . , Ad} whose rows
and columns are each indexed by Zdn such that

(Aj)u,v =

{
1 if dist(u, v) = j

0 otherwise
.

Note that A0 = I. If we restrict our consideration to the case when n = 2,
then A1 is the adjacency matrix of the d-cube. The eigenvalues of A1 are
the integers

d− 2i, i = 0, ..., d

18
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with respective multiplicities given by
(
d
i

)
.

There are two other important association schemes that can be derived
from binary Hamming graphs. First we consider the graph X2 whose
adjacency matrix is A2 in the Hamming scheme H(d, 2). Note that two
vertices in A2 are adjacent if and only if the corresponding elements of Zd2
are at Hamming distance two from each other. Since the Hamming graph
H(d, 2) is bipartite, we see that X2 has two connected components. The
halved d-cube is the subgraph of X2 induced by the elements of Zd2 with
even Hamming weight. This graph is distance-regular, and therefore the
distance matrices of the graph form an association scheme.

Our second association scheme is derived from the so-called folded d-
cube. The folded d-cube is the graph obtained from H(d, 2) by adding edges
between vertices at distance d. The folded d-cube is also a distance-regular
graph. Thus the distance matrices of the folded d-cube form an association
scheme.

2.8 Cyclic Schemes

In this section we consider the cyclic association schemes. These schemes
arise naturally from the distance partition of the cycle graphs. We begin
by introducing the cyclic schemes and their parameters. One of our key
observations is that every matrix in the Bose-Mesner algebra of the asso-
ciation scheme can be expressed as a complex polynomial in C, where C
is the adjacency matrix of a directed cycle of order n. The results in this
section are not new. However, the setup and viewpoint we develop in this
section is critical to our subsequent original results about continuous-time
quantum walks on cycles.

We fix an arbitrary positive integer n such that n ≥ 3. Recall that the
cycle of length n, denoted Cn, is a Cayley graph over Zn with connection set
{1, n− 1}. Let d = bn

2
c. For 0 ≤ r ≤ d we define the following adjacency

matrices.

[Ar]j,k =

{
1 if j − k ∈ {r,−r} (mod n)

0 otherwise.

Note that A0 is the n×n identity matrix, and A1 is the adjacency matrix of
the cycle Cn. Let A = {A0, . . . , Ad}. The set of matrices A = {A0, . . . , Ad}
form the cyclic association scheme of order n.

First we show that A is an association scheme. To do this, it is best
to consider a particular underlying permutation matrix C that is the
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adjacency matrix of a directed cycle. We index the rows and columns of C
with elements of Zn such that

Cj,k =

{
1 if j − k = 1

0 otherwise.

Let e1, . . . , en denote the standard basis of Cn such that each subscript is
identified with an element of Zn. Then we have

Cej = ej+1,

where the indices are computed in Zn. This implies that every cyclic matrix
of order n can be expressed as a polynomial in C. In particular, we see
that Cn = I and each matrix in A can be expressed as polynomial in C as

Aj =

{
Cj + C−j if j 6∈ {0, n/2}
1
2
(Cj + C−j) if j ∈ {0, n/2}.

With this in mind, we verify that A satisfies the definition of an association
scheme. Our definition of the matrices in A implies that

d∑
r=0

Ar = J,

where J is the n× n all-ones matrix. Consider two matrices Aj and Ak in
A such that j, k 6∈ {0, n/2}. We note that

AjAk =
(
Cj + C−j

) (
Ck + C−k

)
(2.3)

= Cj+k + C−j+k + Cj−k + C−j−k (2.4)

= Aj+k + Aj−k, (2.5)

where the indices are computed in Zn and Ar is identified with An−r for
all 1 ≤ r ≤ n − 1. Also note that if j ∈ {0, n/2}, then AjAk = Aj+k for
1 ≤ k ≤ d. This confirms that A is an association scheme.

Our work above sheds light on a couple of important properties of the
cyclic association scheme A. First, we explicitly see that the intersection
numbers of the scheme are given by

pj,k(r) =

{
1 if j − k = ±r or j + k = ±r
0 otherwise.

Second, we see that each matrix in the Bose-Mesner algebra C[A] can be
expressed as a complex polynomial in C.
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Lemma 2.8.1. For every matrix M in C[A], there exists a unique polyno-
mial p(x) in C[x] with degree at most n− 1 such that

M = p(C).

Now we consider the eigenvalues of the cyclic scheme A. Let ω denote
the primitive n-th root of unity given by

ω = e2πi/n.

For 1 ≤ r < bn/2c, let Er denote the matrix given by

Er =
n−1∑
j=0

(
ωjr + ω−jr

)
Cj. (2.6)

Otherwise, if r = 0 or r = n/2, then we let Er denote the matrix given by

Er =
1

n

n−1∑
j=0

ωjrCj. (2.7)

For the matrices in our association scheme A, we see that

AjEr =
(
Cj + C−j

)
Er

=
(
ωjr + ω(−jr)Er

=
(
ωjr + ω−jr

)
Er.

Therefore we see that the columns of Er are eigenvectors of A with the
same eigenvalues. For a matrix M , let M∗ denote the conjugate transpose
of M . With this notation we have that

E∗rEr =

{
I if j = k

0 otherwise.

As desired, we note that E0 = 1
n
J . Using the properties of these eigenvectors,

we further note that

E2
r = Er and AjEr =

(
ωjr + ω−jr

)
Er.

Therefore each Er is a projection onto an eigenspace of A. In particular,
the explicit eigenvalues of the cyclic scheme are

pj(r) = ωjr + ω−jr.
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If n is odd, then each of the nontrivial eigenvalues has multiplicity 2.
However, if n is even, then both E0 and Ed are projections onto one-
dimensional eigenspaces.

As an aside, we note that each additive character on Zn gives rise to
an orthogonal idempotent. In general, it is well-known that for a Cayley
graph over a finite abelian group G, the additive characters will give rise to
|G| pairwise orthogonal eigenvectors.

Cyclic schemes are distance-regular. Moreover, a cyclic scheme of odd
order has the interesting property that each of its nontrivial eigenspaces
has the same dimension. Association schemes with this property are called
pseudocyclic schemes. The cyclic schemes of odd order are the only schemes
that are both distance-regular and pseudocyclic [51]. In the next section
we shift our focus to duality properties of cyclic schemes.

2.9 Cyclic Duality

In this section, we consider the discrete Fourier transform on the Bose-
Mesner algebra of the cyclic association scheme. This duality map will be
crucial to our later work with continuous-time quantum walks on cycles.
The work in this section is not original. We closely follow the approach
used in Godsil’s unpublished notes.

Throughout this section, let A denote the cyclic association scheme on
n vertices, and let d = bn/2c. Recall that the Bose-Mesner algebra C[A] is
the set of all complex symmetric circulant matrices of order n. As we saw
in the previous section, each matrix in C[A] can be expressed as complex
polynomial of the form p(C), where C is the adjacency matrix of a directed
cycle of order n. Let ω denote a primitive n-th root of unity. For simplicity,
we assume that

ω = e2πi/n.

This assumption is for computational convenience. In practice, any primitive
n-th root of unity will work. Now we consider an arbitrary matrix M in
C[A]. From our reasoning in the previous section, we know that there
exists a unique polynomial p(x) of degree at most n− 1 in C[x] such that
M = p(C). The discrete Fourier transform Θ is defined such that

Θ(M) =
n−1∑
j=0

p(ωj)Cj.

In particular, we see that map Θ is a linear operator of C[A]. We now
investigate some more useful properties of our duality map Θ.
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Lemma 2.9.1. If M is in C[A], then Θ2(M) = nM .

Proof. Recall that there exists p(x) in C[x] such that p(C) = M . We
proceed by showing that

Θ2(Ck) = n
(
Ck
)T

= nC−k

for all 0 ≤ k ≤ d. Since Θ is a linear map, this proves that Θ2(M) = nMT ,
which implies our desired result when we restrict to the symmetric matrices
in the Bose-Mesner algebra C[A]. To begin, we consider an arbitrary matrix
of the form Ck. We compute the image of Ck under θ2 to be

Θ2(Ck) = Θ

(
n−1∑
j=0

ωjkCj

)

=
n−1∑
j=0

ωjkΘ
(
Cj
)

=
n−1∑
s=0

(
n−1∑
j=0

ωj(k+s)

)
Cs.

Since ω is an n-th root of unity, we know that

n−1∑
j=0

ωj(k+s) =

{
n if k + s ≡ 0 (mod n)

0 otherwise.

Therefore we have Θ2(Ck) = nC−k = n
(
Ck
)T

.

Next we consider the image of the spectral idempotents and Schur
idempotents of the C[A].

Lemma 2.9.2. For each spectral idempotent {E0, . . . , Ed} and Schur idem-
potent {A0, . . . , Ad} of C[A] we have

Θ(Er) = Ar and Θ(Ar) = nEr.

Proof. Suppose that r 6= 0. Using the expression for the spectral
idempotents given in Equation 2.6, we compute that

Θ(Er) =
1

n

n−1∑
k=0

(
n−1∑
j=0

ωj(k+r) + ωj(k−r)

)
Ck

23
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= Cr + C−r = Ar.

If r = 0, then similar reasoning gives us

Θ(E0) =
1

n

n−1∑
k=0

n−1∑
j=0

ωjkCk

= C0 = A0.

Thus if 0 ≤ r ≤ d we have Θ(Er) = Ar. By Lemma 2.9.1, we know that
Θ2(Er) = nEr, and so therefore Θ(Ar) = nEr.

Finally, we see the connection between the duality map and Schur
multiplication.

Lemma 2.9.3. If M and N are two matrices in C[A], then

Θ(MN) = Θ(M) ◦Θ(N) and Θ(M ◦N) =
1

n
Θ(M)Θ(N).

Proof. Let f(x) and g(x) denote polynomials in C[x] such that M = f(C)
and N = g(C). First we compute the image of MN under the duality map
to be

Θ(MN) =
n−1∑
j=0

f(ωj)g(ωj)Cj

=

(
n−1∑
j=0

f(ωj)Cj

)
◦

(
n−1∑
j=0

g(ωj)Cj

)
= Θ(M) ◦Θ(N).

This proves the first claim. Now we consider the first equality applied
to the matrices Θ(M) and Θ(N). Simplifying with Lemma 2.9.1 implies
that

Θ (Θ(M)Θ(N)) = Θ(Θ(M)) ◦Θ(Θ(N))

= nM ◦ nN = n2(M ◦N).

Next we take the image under Θ of both sides of the last equality. Another
application of Lemma 2.9.1 gives us

nΘ(M)Θ(N) = n2Θ(M ◦N),

which is equivalent to the second claim.
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The following corollary will be useful in our later work. If we consider
the special case when the Schur product of two matrices is a scalar multiple
of the all-ones matrix.

Corollary 2.9.4. If M and N are matrices in C[A], then

Θ(M)Θ(N) = nI if and only if M ◦N =
1

n
J

where I and J are the n×n identity matrix and all-ones matrix, respectively.

Proof. By the second claim of that Lemma 2.9.3, we know that

1

n
Θ(M)Θ(N) = Θ(M ◦N). (2.8)

Therefore Θ(M)Θ(N) = nI if and only if

Θ(M ◦N) = I. (2.9)

Taking the image under Θ of both sides of Equation 2.9 and simplifying
using Lemma 2.9.1 and Lemma 2.9.2 results in

M ◦N =
1

n
Θ(I) =

1

n
J. (2.10)

Conversely, assume that Equation 2.10 holds. If we take the image under
Θ of both sides, then we see that Equation 2.9 must hold as well.

We note that the results in this section generalize to all formally self-dual
association schemes. For example, the Hamming schemes are also formally
self-dual, and we can define a duality map with similar properties.
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Chapter 3

Continuous-time
Quantum Walks

3.1 Introduction

In recent years, quantum algorithms have become a popular area of math-
ematical research. Fahri and Gutmann [25] introduced the concept of a
quantum walk in 1998. Following this, Childs et al. found a graph in
which the continuous-time quantum walk spreads exponentially faster than
any classical algorithm for a certain black-box problem [21]. Subsequently
continuous-time quantum walks have been used in quantum search algo-
rithms for other applications [43]. Recent work of Childs shows that the
continuous-time quantum walk model is a universal computational model
[20].

In this chapter, we introduce continuous-time quantum walks using
algebraic language. We begin by defining the transition and mixing matrices
associated with a continuous-time quantum walk. Next we explore various
metrics associated with quantum walks. We pay close attention to the
uniform mixing property. Following this, we investigate continuous-time
quantum walks on complete graphs, and we see that the behaviour of a
quantum walk contrasts starkly with the behaviour of a classical random
walk. To conclude this chapter, in Section 3.6 we establish specific necessary
and sufficient conditions for uniform mixing of a continuous-time quantum
walk to occur on a graph in an association scheme.

Most of the results were previously known. The two exceptions are
Theorem 3.5.3 and Theorem 3.6.1. Both of these results are due to the
author. Much of our understanding of quantum walks comes from the
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surveys of Kempe [36] and Ambainis [4]. We follow the mathematical
notation given in [29].

3.2 Transition Matrices

In this section, we introduce continuous-time quantum walks on graphs,
and we explore some of the basic properties of the corresponding transition
matrices. First we consider classical continuous random walks on graphs.
Suppose that X is an undirected graph, and let A denote its adjacency
matrix. A continuous random walk on X is determined by a family of
matrices of the form M(t), indexed by the vertices of X and parameterized
by a real positive time t. In particular, the probability of starting at vertex
u and reaching vertex v at time t is given by

M(t)u,v.

Let ∆ denote the diagonal matrix indexed by the vertices of X such that
∆u,u denotes the degree of vertex u. We define a continuous random walk
on X by setting

M(t) = exp(t(A−∆)).

Each column of M(t) corresponds to a probability density of a walk whose
initial state is the vertex indexing that column. In particular, the entries
of a column of M(t) are nonnegative numbers that sum to one. Note that
{M(t) : t ∈ R} is a multiplicative group isomorphic to R.

Within the realm of quantum computing, Fahri and Gutmann [25]
proposed an analogous continuous quantum walk. For a real symmetric
matrix A, we define the transition operator of the walk to be

U(t) = exp(itA).

For practical purposes, it is desirable that A is sparse. The entries of
U(t) will not necessarily be real. In this model, the probability densities
of the walk are given by the columns of U(t) ◦ U(t)∗. As we will see later,
these are probability densities since each U(t) is unitary. In this thesis,
we consider the case when A is the adjacency matrix of a graph X. If X
is regular, then this walk is equivalent, up to a phase factor, to a walk
defined using the Laplacian of the same graph. For more information about
continuous-time quantum walks, see [36] and [4].

For a graph X with adjacency matrix A, we say that U(t) = exp(itA)
is the transition matrix of X. If the graph in question is unclear, we
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may use the notation UX(t) to denote the transition matrix of the graph
X. For the rest of this section, we focus on the transition matrix of a
continuous-time quantum walk. First we recall a well-known result about
exponential functions. We provide a proof for completeness.

Lemma 3.2.1. If M and N are a pair of commuting matrices, then

exp(M +N) = exp(M) exp(N).

Proof. Using the definition of the exponential function, we see that

exp(M +N) =
∑
k≥0

1

k!
(M +N)k.

Since M and N commute we can further simplify this expression to

exp(M +N) =
∑
k≥0

1

k!

k∑
j=0

(
k

j

)
M jNk−j

=
∑
k≥0

k∑
j=0

(
1

j!
M j

)(
1

(k − j)!
Nk−j

)

=

(∑
k≥0

1

k!
Mk

)(∑
k≥0

1

k!
Nk

)
.

This yields our desired expression.

This immediately implies the following result.

Corollary 3.2.2.

U(t1 + t2) = U(t1)U(t2).

For a square complex matrix M , we let M∗ denote the conjugate
transpose of M . As usual, I denotes the identity matrix of the same order
as M . We say that a complex matrix M is unitary if

MM∗ = I.

Corollary 3.2.3. Let X denote an undirected graph. The corresponding
transition matrix U(t) is a symmetric unitary matrix.
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3. QUANTUM WALKS

Proof. Let A denote the adjacency matrix of X. Since X is undirected, it
follows that A and U(t) are both symmetric. Furthermore, since A satisfies
A = A∗, we see that U(t)∗ = U(−t). Using Lemma 3.2.1, we deduce that

I = exp(itA− itA)

= exp(itA) exp(−itA)

= U(t)U(−t)
= U(t)U(t)∗.

Thus U(t) is unitary.

Now we use the spectral decomposition of A to determine a useful
re-formulation of the transition matrix U(t). This highlights the connection
between the continuous-time quantum walk and the spectrum of the graph.

Lemma 3.2.4. Let X denote a graph with adjacency matrix A. If the
spectral decomposition of A is

A = θ0E0 + · · ·+ θdEd,

then the spectral decomposition of U(t) is

U(t) =
d∑
r=0

eθritEr. (3.1)

Proof. Suppose that A has the spectral decomposition given above. Recall
that each Er satisfies

E2
r = Er.

Therefore we have that

U(t) = exp(itA)

=
∑
k≥0

1

k!
(itA)k

=
∑
k≥0

1

k!

d∑
r=0

(θrit)
kEr

=
d∑
r=0

(∑
k≥0

1

k!
(θrit)

k

)
Er

=
d∑
r=0

eθritEr.

This yields our desired expression for U(t).
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Now we consider what information we can deduce about the transition
matrix from the automorphism group of the graph. Intuitively, it makes
sense that there is a natural correspondence between the probability distri-
butions of two vertices in the same orbit under the automorphism group of
X. We formalize this intuition in the following lemma.

Lemma 3.2.5. Let X denote a graph, and suppose there exists an au-
tomorphism of X that sends the ordered pair of vertices (j, k) to (v, w).
Then

U(t)j,k = U(t)v,w.

Proof. If there exists an automorphism of X that sends (j, k) to (v, w),
then there exists a corresponding permutation matrix P such that

Pej = ev and Pev = ew.

Let A denote the adjacency matrix of X. Since P corresponds to an
automorphism of X, we see that P satisfies

P TP = I and P TAP = A.

From this we deduce that P TAkP = Ak for all positive integers k. Applying
this to the transition matrix, we see that

P TU(t)P = P T

(∑
k≥0

(it)k

k!
Ak

)
P

=
∑
k≥0

(it)k

k!
(P TAP )k

= U(t).

This implies that
eTj P

TAPek = eTvAew,

and so our result follows.

If we are working with vertex transitive graphs, then the above lemma
tells us that it is sufficient to compute the first row of the transition matrix.

3.3 Mixing Properties

In this section, we explore the mixing properties of continuous-time quantum
walks. As opposed to classical random walks on graphs, the probability
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distribution of a continuous-time quantum walk does not converge to a
stationary distribution. Aharonov, Ambainis, Kempe, and Vazirani first
introduced the average mixing property of a quantum walk, which is the
limit of the average of the probability distributions over time [2]. This is
referred to as average mixing . The work of Aharonov et al. was focused on
a discrete quantum walk. Many of the earlier papers that studied quantum
walks were concerned with average uniform mixing. See [21] and[37], for
example.

Moore and Russell [40] were the first to introduce and study the uniform
mixing property of continuous-time quantum walks. In their work and some
subsequent publications, it is referred to as instantaneous uniform mixing
to differentiate it from average uniform mixing. We say that a complex
matrix A is a flat matrix if each of its entries has the same modulus. A
graph X admits uniform mixing at time t if U(t) is flat. Equivalently, since
U(t) is unitary, we see that a graph X admits uniform mixing if and only if

|U(t)u,v|2 =
1

|X|
,

for each pair of vertices u and v in X. We define the mixing matrix
M(t) = U(t) ◦U(t)∗. In terms of the mixing matrix, uniform mixing occurs
if and only if

M(t) =
1

n
J.

This confirms that the probability distribution of the walk is uniform at
time t if the transition matrix is flat at time t. In their introductory work,
Moore and Russell show that the binary Hamming graphs admit uniform
mixing [40]. They claim that the uniform mixing time is more relevant
for hypercubes than the average mixing time, since the hypercubes does
not admit average uniform mixing. Subsequent works considered uniform
mixing on various graphs. For example, cycles were studied in [3], [1], and
[16]. Also, variants of the Hamming graphs were studied in [24], [18], and
[7], and Cayley graphs of the symmetric group were studied in [27]. In
this thesis, we extend the known results of uniform mixing on cycles and
quotients of Hamming graphs.

We are also interested in when the mixing matrix is close to uniform.
We will see example of graphs that do not admit uniform mixing, although
their mixing matrix gets arbitrarily close to the uniform distribution. We
formalize this notion with the following definition. Let || · || denote the
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3.4. MIXING ON COMPLETE GRAPHS

Frobenius norm. More explicitly, for two n× n matrices A and B we have

||A−B|| =

√√√√ n∑
j=1

n∑
j=1

|Aj,k −Bj,k|2.

We say that a graph X admits ε-uniform mixing if and only if for every
ε > 0, there exists some time t such that the corresponding mixing matrix
U(t) satisfies

||U(t) ◦ U(t)∗ − 1

n
J || < ε.

In the subsequent chapters of this thesis, we focus on detecting whether
or not particular families of graphs admit uniform mixing or ε-uniform
mixing. If we make certain assumptions about the underlying structure
of the graph, then it is feasible to confirm whether or not uniform mixing
occurs. However, our understanding of uniform mixing on general graphs is
still incomplete. For example, it is not known whether or not a graph has
to be regular to admit uniform mixing. For small graphs, we know that a
graph on four or less vertices must be regular in order to admit uniform
mixing. We conjecture that no graphs on five vertices admit uniform mixing,
although we only have empirical evidence to support this claim.

3.4 Mixing on Complete Graphs

In this section we first consider continuous-time quantum walks on complete
graphs. This is a reformulation of the work done by Ahmadi, Belk, and
Tamon [3]. The details are useful for considering uniform mixing on graph
complements and the Hamming graphs. Our approach in this section is
straightforward: first, we derive an expression for the transition matrix of a
continuous-time quantum walk on a complete graph. Next, we compute the
the modulus of its entries and determine necessary and sufficient conditions
for uniform mixing to occur.

For notational convenience, let E0 = 1
n
J . To begin, recall that the

spectral decomposition of Kn is

A(Kn) = (n− 1)E0 − (I − E0) ,

where J and I are the all-ones and identity matrix of order n×n, respectively.
Thus transition matrix is given by

UKn(t) = e(n−1)itE0 + e−it (I − E0)
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=
1

n

(
e(n−1)it + (n− 1)e−it

)
I +

1

n

(
e(n−1)it − e−it

)
(J − I) .

Using this expression, we determine the times at which the transition matrix
of Kn is flat. This reproduces a result due to Ahmadi, Belk, Tamon, and
Wendler [3].

Theorem 3.4.1. The complete graph Kn admits uniform mixing if and
only if n ∈ {2, 3, 4}.

Proof. The transition matrix is flat if and only if the diagonal and off
diagonal terms have the same modulus. From our work above, we see that
UKn(t) is flat at time t if and only if∣∣∣∣ 1n (e(n−1)it − e−it

)∣∣∣∣ =

∣∣∣∣ 1n (e(n−1)it + (n− 1)e−it
)∣∣∣∣ .

This holds if and only if

2−
(
enit + e−nit

)
= 1 + (n− 1)2 + (n− 1)

(
enit + e−nit

)
,

which is equivalent to

enit + e−nit =
1− (n− 1)2

n
= −n+ 2.

Since |enit + e−nit| ≤ 2, this equation has a solution if and only if

|−n+ 2| ≤ 2.

We conclude that Kn admits uniform mixing if and only if n ∈ {2, 3, 4}.
More specifically, K2 and K4 admit uniform mixing at t = π/4, and K3

admits uniform mixing at t = π/9.

Note that the modulus of the diagonal entries of the transition matrix of
Kn is larger than the off-diagonal terms at all times t if n > 4. Therefore if
we consider a quantum walk on Kn with n > 4, the probability of remaining
in the initial state is much higher than the probability of moving to a
different state.

34



3.5. GRAPH COMPLEMENTS

3.5 Graph Complements

In this section we prove two general results that relate uniform mixing on a
regular graph to uniform mixing on its complement. One of these results is
given in [30], and the other result is due to the author. We start by deriving
a convenient expression for the transition matrix of the complement of a
regular graph.

Lemma 3.5.1. Suppose X is a k-regular graph on n vertices. Let UX(t)
denote the transition matrix of X, and let UX(t) denote the transition
matrix of the complement of X. These two transition matrices are related
by the following equation

UX(t) = e−itUX(t) + (ei(n−k−1)t − e(−k−1)it)
1

n
J.

Proof. Let A denote the adjacency matrix of k-regular graph X, and let
Ā denote the adjacency matrix of its complement X̄. Let E0 = 1

n
J . Since

X is regular, we have
UX(t)E0 = ekitE0.

Using this we obtain the following expression for the transition matrix of X

exp(Āit) = exp((J − I − A)it) = exp((J − I)it) exp(−itA)

=
(
ei(n−1)tE0 + e−it (I − E0)

)
UX(−t)

=
(
e−itI + (ei(n−1)t − e−it)E0

)
UX(−t)

= e−itUX(−t) + (ei(n−k−1)t − e(−k−1)it)E0.

Finally we recall that UX(−t) = UX(t).

When t is an integer multiple of 2π/n, the above expression for UX(t)
can be expressed in a simplified form. This leads to the following result,
which appears in [30].

Theorem 3.5.2. Let X denote a regular graph on n vertices, and let t
denote an integer multiple of 2π/n. At time t, uniform mixing occurs on
X if and only if it occurs on the complement X.

Proof. When t is an integer multiple of 2π/n, we have that etin = 1 and so

ei(n−k−1)t − e(−k−1)it = 0.

In this case, Lemma 3.5.1 implies that

UX(t) = e−itU(t).

Therefore UX(t) is flat if and only if UX(t) is flat.
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At other times t, we still obtain useful information about the transition
matrix of X from the transition matrix of X. The following result is due
to the author.

Theorem 3.5.3. If X is regular graph with at least five vertices and X
admits uniform mixing, then X and X must both be connected.

Proof. Let A denote the adjacency matrix of X, and suppose that X is not
connected. Let u and v denote two vertices that lie in different components
of X. Recall that the (j, k)-entry of the r-th power of A is the number of
walks of length r between u and v in A. Since u and v are disconnected,
we deduce that the (u, v)-entry of exp(itA) is 0. Therefore uniform mixing
cannot occur on X.

Of course, it also immediately follows that the (u, v)-entry of UX(t) is 0.
Recall from Lemma 3.5.1 that

UX(t) = e−itUX(t) + (ei(n−k−1)t − e(−k−1)it)
1

n
J.

This implies that the (u, v)-entry of UX(t) is (ei(n−k−1)t− e(−k−1)it)/n. Note
that ∣∣(ei(n−k−1)t − e(−k−1)it)/n

∣∣2 = (2− 2 cosnt) /n2.

If n > 4, then (2− 2 cosnt) /n2 < 1/n. Thus if n > 4, then for all times t
the modulus squared of the (u, v)-entry of UX is strictly less that 1/n. This
implies that uniform mixing does not occur on X either.

As we saw earlier, both C4 and K4 admit uniform mixing, and so the
vertex bound in the above result is tight. Also, the above result provides
an alternative proof of the following, which is originally due to Ahmadi et
al. [3].

Corollary 3.5.4. Any complete multipartite graph with more than four
vertices does not admit uniform mixing.

Proof. If X is a complete multipartite graph, then its complement X
is disconnected. By Theorem 3.5.3, we conclude that X does not admit
uniform mixing.

With the notable exception of K2, K3, K4, and C4, we don’t have
an example of a graph that admits uniform mixing whose complements
doesn’t also admit uniform mixing. This suggests that a stronger result
than Theorem 3.5.2 might be true.
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3.6 Mixing in Association Schemes

Now we focus on uniform mixing in association schemes. In this section we
see that uniform mixing occurs if and only if there is a unimodular solution
to a system of equations in terms of the Krein parameters of the association
scheme.

Let A = {A0, . . . , Ad} denote a d-class association scheme of order n
with dual basis {E0, . . . , Ed}. We consider a graph X denote the graph
with adjacency matrix A in C[A] and eigenvalues θ0, . . . , θd such that

A = θ0A0 + · · ·+ θdAd.

We consider the transition matrix of a continuous-time quantum walk on
X, which is given by

U(t) = exp(itA).

Recall that uniform mixing occurs on X at time t if and only if

U(t) ◦ U(−t) =
1

n
J = E0.

As we saw earlier, the matrices in the Bose-Mesner algebra C[A] are
simultaneously diagonalizable. In terms of the dual basis we have

U(t) ◦ U(−t) =
d∑
i=0

d∑
j=0

e(θi−θj)itEi ◦ Ej.

Using the Krein parameters from Section 2.5 this matrix can be expressed
as a linear combination of {E1, . . . , Ed} as follows:

U(t) ◦ U(−t) =
1

n

d∑
k=0

(
d∑
i=0

d∑
j=0

qi,j(k)e(θi−θj)it

)
Ek. (3.2)

Using Lemma 2.6.1, we compute the coordinate of E0 in the expression for
U(t) ◦ U(−t) in (3.2) and we obtain

d∑
i=0

d∑
j=0

qi,j(0)e(θi−θj)it =
∑
j

mj = n.

With this we further simplify (3.2) to

U(t) ◦ U(−t) = E0 +
1

n

d∑
k=1

(
d∑
i=0

d∑
j=0

qi,j(k)e(θi−θj)it

)
Ek. (3.3)

We formalize these observations into the following theorem.
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Theorem 3.6.1. Let A denote a d-class association scheme. Suppose X
is a graph whose adjacency matrix A is contained in C[A] with eigenvalues
θ0, . . . , θd. Uniform mixing occurs on X at time t if and only if

d∑
i=0

d∑
j=0

qi,j(k)e(θi−θj)it = 0 (3.4)

for all 1 ≤ k ≤ d.

We note that the system of equations given in the theorem above
only depends on the parameters of the scheme. That is to say, given
an association scheme and its parameter set, we can give necessary and
sufficient conditions for uniform mixing to occur in terms of the parameters
of the scheme. However, as we see in later sections, it is not always
straightforward to determine whether or not a solution to the corresponding
system of equations exists.
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Chapter 4

Algebraic Connections

4.1 Introduction

In this chapter we introduce a set of algebraic tools for determining whether
or not uniform mixing occurs on graphs in an association scheme. To
understand the importance of these tools, we rephrase our main problem.
Recall that when uniform mixing occurs on a graph X at the time t, the
corresponding transition matrix U(t) is flat. Thus detecting uniform mixing
in an association scheme is equivalent to finding flat unitary matrices in
the Bose-Mesner algebra that are in exponential form.

If we drop the requirement of exponential form, it is still difficult to
determine whether the Bose-Mesner algebra of a scheme contains a flat
unitary. Flat unitary matrices are a subset of a broader class of matrices
called type-II matrices. With this in mind, we ask the following relaxation
of our original question: are there type-II matrices in the Bose-Mesner
algebra? If the answer to this question is no, then we immediately rule out
the possibility of uniform mixing occurring on the graphs in the scheme.
If the answer is yes, then we try to determine whether or not any of the
type-II matrices are scalar multiples of flat unitaries in exponential form.

There are two distinct advantages to working with type-II matrices.
First, the coordinates of a type-II matrix in an association scheme cor-
respond to solutions in an algebraic variety. This enables an algebraic
formulation of our relaxed problem. In certain cases we cannot explicitly
describe all of the type-II matrices related to a given scheme, but we can
still tease out useful information about their coordinates. Second, there is
a substantial body of literature about type-II matrices, and it is possible to
build upon known results. In particular, our later work with cyclic schemes
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relies heavily upon the classification of cyclic type-II matrices given by
Haagerup [33]. Likewise, the study of uniform mixing on strongly regular
graphs relies heavily upon the classification of type-II matrices given by
Chan and Godsil [19] and Chan [17].

As we proceed through this chapter, our algebraic approach will become
more concrete. We begin this chapter by reviewing the necessary algebraic
and transcendental number theory. Using these observations, we prove
Theorem 4.2.4, which is an essential result for much of our later work. Next
we give an overview of type-II matrices and demonstrate the connection
between type-II matrices and uniform mixing. In particular, we highlight
their connection to uniform mixing.

The main result in this chapter is Theorem 4.2.4. It is due to the author.
At the present time, it is the most useful method known to show that
uniform mixing does not occur on a graph.

4.2 Algebraic vs. Transcendental Numbers

We begin by reviewing some algebraic and transcendental number theory.
In this section, we prove that if the entries of the transition matrix are
all algebraic, then there are significant restrictions on the eigenvalues of
the underlying graph. In later sections, we will see that if uniform mixing
occurs on certain graphs, then the entries of the corresponding transition
matrix must be algebraic.

First recall that an algebraic number is the root of a polynomial in Q[x].
Trivially, all rational numbers are algebraic. Irrational numbers such as

√
2

are also algebraic. The set of algebraic numbers forms a ring under addition
and multiplication. And, perhaps more usefully, the root of a polynomial
whose coefficients are algebraic numbers is also an algebraic number. The
next two lemmas are well-known. For example, proofs can be found in [45].

Lemma 4.2.1. Let M denote an n× n matrix with algebraic entries. The
eigenvalues of M are algebraic numbers.

Proof. The eigenvalues of M are roots of the characteristic equation given
by

det(M − xI) = 0.

The entries of M are algebraic, and so det(M − xI) is a polynomial with
algebraic coefficients. It follows that the eigenvalues of M are algebraic
numbers.
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In particular, if we apply the above lemma to the adjacency matrix of a
graph, we see that the eigenvalues of the graph are roots of a polynomial in
Z[x]. Roots of such polynomials are called algebraic integers. Thus all of
the eigenvalues of an adjacency matrix must be algebraic integers. The only
rational numbers that are algebraic integers are the integers themselves.
From these observations, we immediately deduce the following well-known
result.

Lemma 4.2.2. Let X denote a graph with adjacency matrix A. Each
eigenvalue of A is either irrational or an integer.

A transcendental number is a number in C that is not algebraic. For
example, π and e are well-known transcendental numbers. In general it is
difficult to prove that a number is transcendental. One of the most useful
tools for detecting transcendental numbers is the famous Gelfond-Schneider
Theorem. The following formulation of this theorem is due to Michel
Waldschmidt [13].

Theorem 4.2.3 (Gelfond-Schneider). If x and y are two nonzero complex
numbers with x irrational, then at least one of the numbers x, ey, or exy is
transcendental.

Now apply the Gelfond-Schneider theorem to the entries of a transition
matrix. This result is due to the author, and it appears in [30].

Theorem 4.2.4. Let X denote a graph. If all of the entries of the transition
matrix U(t) are algebraic for a particular nonzero time t, then the ratio of
any two eigenvalues of X must be rational.

Proof. Let A denote the adjacency matrix of X, and let {θ0, . . . , θd}
denote the eigenvalues of A. Recall that each eigenvalue of A is an algebraic
number. Also recall from Lemma 3.2.4 that we can express the transition
matrix as

U(t) =
d∑

k=0

eitθkEk. (4.1)

From this we see that the eigenvalues of U(t) are {eitθ0 , . . . , eitθd}. If all
entries of U(t) are algebraic, then the eigenvalues of U(t) must be algebraic.
Consider two distinct eigenvalues θr and θs. If we suppose that θr/θs is
irrational, then Theorem 4.2.3 implies that one of

{θr/θs, eitθs , eitθs(θr/θs)}
must be transcendental, which is a contradiction. Therefore θr/θs must be
rational for every pair of eigenvalues θr and θs of X.
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If we restrict our consideration to regular graphs, then Theorem 4.2.4
can be reformulated as follows.

Theorem 4.2.5. Suppose that X is a regular graph with transition matrix
U(t). If H is a matrix with all algebraic entries and there exists a nonzero
time t such that

U(t) = γH,

for some γ in C, then X must have integral eigenvalues.

Proof. By a well-known result from linear algebra, we know that for the
complex matrix itA we have

det(U(t)) = det(exp(itA)) = etr(itA) = 1.

Under our assumption that U(t) = γH, this result implies that

γn det(H) = 1.

Since H has all algebraic entries, it follows that det(H) is an algebraic
number. This implies that γ is algebraic, and hence all of the entries of
U(t) must be algebraic. Theorem 4.2.4 shows that the ratio of any two
eigenvalues must be rational. Since X is regular, the largest eigenvalue is an
integer, and so the rest of the eigenvalues of X must be rational. By Lemma
4.2.2, we conclude that all of the eigenvalues of X must be integers.

4.3 Cyclotomic Number Theory

In this section we recall some essential background information about the
number theory related to the eigenvalues of cycles. In turn, this will be
useful for determining information about the eigenvalues of the transition
matrices of cycles. The eigenvalues of a cycle lie in a cyclotomic number
field. For more information about cyclotomic fields see [50], for example.
Recall from Section 2.8 that the eigenvalues of the cycle Cn have the form

θr = ωr + ω−r = 2 cos(2πr/n),

where ω = e2πi/n. If n is even, then θ0 = 2 and θn/2 = −2 are eigenvalues
with multiplicity one. All of the other eigenvalues have multiplicity two and
modulus strictly less that two. If n is odd, then θ0 is the only eigenvalue
with multiplicity one, and every nontrivial eigenvalue has multiplicity two.
The results in this section are not new. In fact, our first result has been
known for quite some time. A proof is given in Olmsted’s 1945 paper [41].
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Theorem 4.3.1. If α is in Q, then cos(απ) is in Q if and only if

cos(απ) ∈ {0,±1/2,±1}.

In particular, if we assume that α = 2π/n for some positive integer n,
then this result restricts the possible values for n such that cos(2π/n) is
rational. We note the following correspondences.

cos(2π/n) = 1/2 =⇒ n = 6 cos(2π/n) = −1/2 =⇒ n = 3

cos(2π/n) = 1 =⇒ n = 1 cos(2π/n) = −1 =⇒ n = 2

cos(2π/n) = 0 =⇒ n = 4.

Therefore cos(2π/n) is rational if and only if n ∈ {1, 2, 3, 4, 6}. As an
immediate consequence of this observation, we deduce that the cycle Cn
has an irrational eigenvalue for all but five values of n.

Lemma 4.3.2. If n = 5 or n ≥ 7, then Cn has an irrational eigenvalue.

Proof. Using the notation above, we note that θ1 = 2 cos(2π/n) is an
eigenvalue of Cn. If we assume n = 5 or n ≥ 7, then Theorem 4.3.1 implies
that θ1 is irrational.

Now we narrow our focus to cycles of prime length. Suppose that p is
an odd prime. Let d = (p− 1)/2, and let θ1, . . . , θd denote the nontrivial
eigenvalues of Cp. Also let φ denote the Euler phi function. As before, ω is
the primitive p-root of unity given by

ω = e2πi/p.

Using this notation, we investigate number fields related to the cyclic
schemes. The following results are well-known. See [45], for example.

Lemma 4.3.3. Each of the eigenvalues θ0, . . . , θd can be expressed as a
polynomial in θ1 with integral coefficients.

Proof. First recall that θ0 = 2 is trivially a polynomial in θ1. Next note
that

(ω + ω−1)2 = ω2 + ω−2 + 2.

Rearranging this equation yields θ2 = θ2
1− 2. More generally, for 2 ≤ k ≤ d,

we see that (ω + ω−1)k can be expressed as an integral linear combination
of 1, θ1, . . . , θk−1. By induction we conclude that each eigenvalue θ0, . . . , θd
can be expressed as a polynomial in θ1 with integral coefficients.
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Using this lemma, we obtain useful information about the smallest
number field containing all of the eigenvalues of the cycle.

Lemma 4.3.4. The extension field Q(θ1, . . . , θd) is isomorphic to Q(θ1),
and

[Q(θ1) : Q] = (p− 1)/2.

Proof. By Lemma 4.3.3, we immediately see that Q(θ1, . . . , θd) is iso-
morphic to Q(θ1). Recall that the cyclotomic field Q(ω) is an algebraic
extension of Q, and

[Q(ω) : Q] = φ(p) = p− 1,

where φ denotes the Euler phi function. Since ω is the root of a quadratic
polynomial over Q(θ1) and θ1 is real, we see that [Q(θ1) : Q] = (p− 1)/2.

Finally, we obtain a very useful theorem about the linear independence
of a subset of the eigenvalues of the cycle.

Theorem 4.3.5. The set {1, θ1, θ2, . . . , θ(p−3)/2} is linearly independent
over Q.

Proof. Suppose, for a contradiction, that there exists some rational
coefficients αk for 0 ≤ k ≤ (p− 3)/2 such that

α0 + α1θ1 + α2θ2 + · · ·+ α(p−3)/2θ(p−3)/2 = 0,

with at least one αk nonzero. Since we have θk = ωk + ω−k, we see can
re-express this equation in terms of ω as

α0 + α1(ω+ ω−1) + α2(ω2 + ω−2) + · · ·+ α(p−3)/2(ω(p−3)/2 + ω−(p−3)/2) = 0.

Multiplying both sides by ω(p−3)/2 yields a polynomial equation in terms of
ω with rational coefficients and degree at most p− 3. This contradicts the
fact that [Q(ω) : Q] = p− 1.

These results about cyclotomic number theory will be crucial in our
later work with cycles.

4.4 Kronecker’s Theorem

In this section, we consider an important result due to Kronecker. We
follow the treatment given in [12]. In addition to this result, we state two
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lemmas related to the Frobenius norm. We apply all of these results to
prime cycles in Section 5.5.

Our work in this section centres around the eigenvalues of the transition
matrix. Let X denote a graph with adjacency matrix A, and suppose that
the spectral decomposition of A is

A = θ0E0 + · · ·+ θdEd.

Recall that the transition matrix of X can be expressed as

U(t) = eitθkE0 + eitθ1E1 + · · ·+ eitθdEd.

For a real number x, we note that

eθjit = eix if and only if 2π divides θjt− x.

Rephrased, we note that

eθjit = eix if and only if
θjt

2π
− x

2π
∈ Z.

For this reason, we wish to consider the scaled exponents of the eigenvalues
of U(t) as elements of the additive group R/Z. Recall that the direct
product of d copies of R/Z is a compact torus. Suppose that t is an element
of a compact torus T . We say that t is a generator if the smallest closed
subgroup of T containing t is T itself.

Theorem 4.4.1 (Kronecker). Let (t1, . . . , tr) denote an element of Rr, and
let t be the image of this point in T = (R/Z)r. Then t is a generator of T
if and only if {1, t1, . . . , tr} are linearly independent over Q.

In Section 5.5 we use Kronecker’s Theorem to show that certain flat
unitary matrices are contained in the closure of the subgroup of unitary
matrices given by

{U(t) : t ∈ R} .

Now we give two basic lemmas that make our application of Kronecker’s
Theorem more straightforward. Our goal is to relate the matrix norms
corresponding to U(t) and U(t) ◦ U(−t).

Intuitively, it makes sense that if the coordinates of U(t) are close
to the coordinates of a flat matrix, then the probability distribution of
U(t) ◦ U(−t) is close to uniform. To show this, we need the following
inequality for complex numbers.
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Lemma 4.4.2. If α and β are two complex numbers such that |α|, |β| ≤ 1,
then ∣∣|α|2 − |β|2∣∣2 ≤ 4|α− β|2.

Proof. Since |α| ≤ 1 and |β| ≤ 1, it follows that |α| + |β| ≤ 2. The
Triangle Difference Inequality implies that

||α| − |β|| ≤ |α− β|.

Combining these two observations gives us∣∣|α|2 − |β|2∣∣ = ||α| − |β|| ||α|+ |β|| ≤ 2 ||α| − |β|| ≤ 2|α− β|.

Squaring both side yields our desired inequality.

Using this lemma, we formalize our intuition that if U(t) is close to
flat at some time t, then U(t) ◦ U(−t) will be close to uniform. This
straightforward result is due to the author.

Lemma 4.4.3. Suppose that A and B are symmetric n×n complex matrices,
such that

||A−B|| ≤ ε,

for some positive real number ε. Then

||A ◦ A∗ −B ◦B∗|| ≤ 2ε.

Proof. From the definition of || · || and our assumptions on A and B, we
have that

||A−B||2 =
n∑
j=1

n∑
j=1

|Aj,k −Bj,k|2 ≤ ε2.

Applying Lemma 4.4.2, we see that

||A ◦ A∗ −B ◦B∗||2 =
n∑
j=1

n∑
k=1

∣∣|Aj,k|2 − |Bj,k|2
∣∣2

≤
n∑
j=1

n∑
j=1

4 |Aj,k −Bj,k|2

≤ 4ε2.

This proves our desired inequality.
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4.5 Type-II Matrices

In this section we introduce type-II matrices. These matrices were first
defined in the study of spin models [34]. We draw attention to a special
subclass of type-II matrices: the complex Hadamard matrices. We see that
uniform mixing occurs on a graph at time t if and only if the transition
matrix at time t is a complex Hadamard matrix. For practical purposes,
though, much of our work is within the more general framework of type-II
matrices.

For an m× n matrix A with all nonzero entries, the Schur inverse A(−)

is given by

A
(−)
i,j =

1

Ai,j
.

As desired, it follows that

A ◦ A(−) = J.

We are now equipped to define the family of matrices we are interested in.

Definition 4.5.1. A complex n× n matrix A is a type-II matrix if

AA(−)T = nI. (4.2)

Using the language of type-II matrices, we reformulate the definition of
uniform mixing.

Lemma 4.5.2. The graph X admits uniform mixing at time t if and only
if
√
nU(t) is a type-II matrix.

Proof. We note that a complex number x satisfies |x| = 1 if and only if
x̄ = x−1. Therefore the transition matrix satisfies

U(t) ◦ U(t)∗ =
1

n
J if and only if

√
nU(t)∗ =

1√
n
U(t)(−)T .

Since U(t) is a symmetric unitary matrix, it follows that U(t)(−)T = U(t)−1.
We conclude that U(t) is flat if and only if

√
nU(t) is type-II.

Now we highlight a special subclass of type-II matrices. If M is a
type-II matrix and each entry of M satisfies |Mj,k| = 1, then the matrix M
is called a complex Hadamard matrix. This is a natural generalization of
the famous real Hadamard matrices whose entries are all in {1,−1}. We
give a standard definition below.
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Definition 4.5.3. A complex n × n matrix M is a complex Hadamard
matrix if and only if

(i) MM∗ = nI.

(ii) M ◦M = J.

Translated into the language of complex Hadamard matrices, Lemma
4.5.2 is equivalent to the following.

Corollary 4.5.4. Uniform mixing occurs on X at time t if and only if√
nU(t) is a complex Hadamard matrix.

For all known examples of graphs that admit uniform mixing, the
corresponding entries of

√
nU(t) are roots of unity. Such matrices are called

Butson-type complex Hadamard matrices. For a survey of known results
about complex Hadamard matrices see [47] and [46]. As we observe in
the next section, the advantage of working with type-II matrices is that
Definition 4.5.1 translates into an equivalent system of polynomial equations.
Generally, if we consider a complex number x, there is no way to express
its conjugate x̄ as a polynomial in x. Thus it is not easy to use an algebraic
approach directly with complex Hadamard matrices.

4.6 Systems of Polynomial Equations

Next we define a system of multivariate polynomials whose common solu-
tions correspond to the coordinates of type-II matrices. We show that a
matrix is type-II if and only if its matrix coordinates are the coordinates of
a point in an algebraic variety. This translation from matrices to algebraic
varieties is crucial for our further characterization of the type-II matrices
in exponential form.

To begin, recall that an n× n complex matrix M is a type-II matrix if
and only if it satisfies MM (−) = nI. First we introduce a variable xj,k for
each entry of M . In terms of these variables, the (u, v)-entry of MM (−) is(

MM (−)
)
u,v

=
∑
j

xu,jx
−1
j,v . (4.3)

We wish to express these equations as a system of polynomial equations,
and so we introduce another n2 variables indexed as yj,k for 1 ≤ j, k ≤ n
such that

xj,kyj,k = 1.
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Putting this together, we see that M is a type-II matrix if and only if the
coordinates xj,k of M correspond to a complex solution to the following
system of polynomial equations:∑

j xu,jyj,u = n for 1 ≤ u ≤ n∑
j xu,jyj,v = 0 for 1 ≤ u, v ≤ n and u 6= v

xu,vyu,v = 1 for 1 ≤ u, v ≤ n.

(4.4)

This is a system of polynomial equations with 2n2 variables and 2n2

equations. However, if M is a type-II matrix, then any scalar multiple αM
with α ∈ C is also a type-II matrix. Thus we can assume that the diagonal
terms satisfy xj,j = 1 for 1 ≤ j ≤ n. If we assume M is in the Bose-Mesner
algebra of an association scheme, then we can further reduce the complexity
of the corresponding system.

The solutions to (4.4) form an algebraic variety. The rest of this section
deals with algebraic varieties. The results and notation we use are given in
Cox, Little, and O’Shea [22].

Let F denote a field, and let f1, . . . , fs denote polynomials in F[x1, . . . , xr].
Further let V (f1, f2, . . . , fs) denote the following set:

{(a1, a2, . . . , ar) ∈ Fr : fj(a1, a2, . . . , ar) = 0 for all 1 ≤ j ≤ s}.

We say that V (f1, f2, . . . , fs) is the affine variety defined by f1, f2, . . . , fs. If
we consider strongly regular graphs, for example, it is possible to determine
all of the type-II matrices in the Bose-Mesner algebra by finding all of the
solutions in the corresponding affine variety. In other cases, such as the
cycles of prime order, it is difficult to explicitly determine all solutions, but
it is known that there are a finite number of solutions in the corresponding
affine variety. With this in mind, we are interested in the following well-
known result.

Theorem 4.6.1. Let f1, . . . , fr denote a set of r polynomials in Q[x1, . . . , xr].
If the affine variety V (f1, f2, . . . , fr) over C has finite number of points,
then the coordinates of each point are algebraic.

Proof. Let I = 〈f1, f2, . . . , fr〉. First we compute a Groebner basis for
I using lexicographic ordering. Since V (I) is a finite set, Theorem 6 on
page 243 of [22] states that for each j in 1 ≤ j ≤ n there is some mj ≥ 0
such that x

mj
j is the leading term of an element in the Groebner basis [22].

This implies that if (a1, a2, . . . , ar) is a solution in V (I), then ar is the root
of univariate polynomial with coefficients in Q. In other words, ar is an
algebraic number. Inductively we see that each aj is an algebraic number
for 1 ≤ j ≤ r.
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In the next section, we compute the system of polynomial equations
corresponding to circulant type-II matrices of prime order. We see that
there are a finite number of solutions to this system, which enables us to
apply Theorem 4.6.1.

4.7 Cyclic n-roots

In this section, we consider circulant type-II matrices. These are commonly
known as cyclic n-roots, and they were introduced by Björck as a method
for studying biunimodular sequences [8]. In terms of matrices, biunimodular
sequences are equivalent to complex Hadamard matrices. To begin, we give
Björck’s original definition of a cyclic n-root and show that it is equivalent to
a circulant type-II matrix with ones down the diagonal. Next we summarize
a key result due to Haagerup that proves there are a finite number of cyclic
p-roots when p is an odd prime. This result is crucial to our work with
uniform mixing on prime cycles given in Section 5.4. We end this section
by briefly discussing what is known about cyclic n-roots for general n. The
results in this section are all due to either Börck or Haagerup or both.

In [8] Björck introduced cyclic n-roots for every n in Z such that n ≥ 2
as the solutions of the form z = (z0, . . . , zn−1) to the following system of
n+ 1 polynomial equations:

z0 + z1 + · · ·+ zn−1 = 0
z0z1 + z1z2 + · · ·+ zn−1z0 = 0

...
z0z1 · · · zn−2 + z1z2 · · · zn−1 + · · ·+ zn−1z0 · · · zn−3 = 0

z0z1 · · · zn−1 = 1.

(4.5)

First we show that a solution to this system is equivalent to a circulant
type-II matrix. Let M denote a circulant matrix of order n with all entries
nonzero. We index the rows and columns of M by elements of Zn. Using the
notation introduced in Section 2.8, we let C denote the cyclic permutation
matrix given by

Cj,k =

{
1 if j − k = 1

0 otherwise.

Recall that Cn = I and every circulant matrix of order n can be expressed
as a polynomial in C. Let x = (x0, x1, . . . , xn−1) denote a vector in Cn such
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that xj = M1,j+1. We express M in terms of C as

M =
n−1∑
j=0

xjC
j and M (−)T =

n−1∑
j=0

x−1
j C−j. (4.6)

Recall that M is a type-II matrix if and only if MM (−)T = nI. Using
the expression for M and M (−)T given above, we compute the following
system in which all of the indices are computed in Zn:

MM (−)T =

(
n−1∑
j=0

xjC
j

)(
n−1∑
j=0

x−1
j C−j

)

=
n−1∑
j=0

n−1∑
k=0

xjx
−1
k Cj−k

=
n−1∑
r=0

(
n−1∑
j=0

xjx
−1
j−r

)
Cr.

Since {I, C, . . . , Cn−1} is a linearly independent set of matrices, we see that
the right hand side of the equation above is equal to nI if and only if the
coordinates with respect to C−r are 0 for all 1 ≤ r ≤ n− 1. This implies
that M is type-II if and only if

n−1∑
j=0

xjx
−1
j−r = 0 for all 1 ≤ r ≤ n− 1. (4.7)

Now we define a corresponding z = (z0, z1, . . . , zn−1) in Cn such that

zj = xj+1x
−1
j ,

where the indices of x are computed in Zn. The next result shows the one-
to-one correspondence between cyclic n-roots and cyclic type-II matrices
with constant diagonal one. This is equivalent to a result given by Björck
[8].

Lemma 4.7.1. The matrix
∑n−1

j=0 xjC
j is a type-II matrix with diagonal

one if and only if (x1x
−1
0 , x2x

−1
1 , . . . , x0x

−1
n−1) is a cyclic n-root.

Proof. For all j and r such that 0 ≤ j, r ≤ n− 1, the coordinates of x and
z satisfy

j−1∏
k=j−r

zk = x−1
j−r
(
xj−r+1x

−1
j−r+1

)
· · ·
(
x−1
j−1xj−1

)
xj = xjx

−1
j−r,
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where again the indices of x and z are computed in Zn. Substituting this
into (4.7) gives us the first n− 1 equations of (4.5). Further note that our
choice of z necessarily satisfies

n−1∏
j=0

zj = 1.

Therefore if x satisfies (4.7), then z is a cyclic n-root. Conversely, suppose
that z is a cyclic n-root and define x0 = 1 and

xj =

j−1∏
r=0

zr

for 1 ≤ j ≤ n− 1. Since z satisfies (4.5), our reasoning above implies that
x satisfies (4.7). Thus M =

∑n−1
j=0 xjC

j is a type-II matrix with constant
diagonal one.

The most important result of this section is due to Haagerup [33].

Theorem 4.7.2. If p is an odd prime, there are only a finite number of
cyclic p-roots.

In light of Lemma 4.7.1, Haagerup’s result tells us that there are only
a finite number of cyclic type-II matrices of order p × p with constant
diagonal one. In the language of association schemes, this result implies
the following.

Corollary 4.7.3. Let p denote an odd prime, and let A denote the cyclic
association scheme of order p. There are a finite number of type-II matrices
in C[A] with constant diagonal one.

Unfortunately this result does not hold for cyclic n-roots when n is not
a prime. It was shown by Backelin that if n is a multiple of a square integer,
then there are infinitely many cyclic n-roots [5].

52



Chapter 5

Bipartite Graphs and Cycles

5.1 Introduction

Following Moore and Russell’s work with uniform mixing on binary Ham-
ming schemes, several researchers considered the uniform mixing properties
of cycles. Ahmadi et al. show that the cycles C3 and C4 admit uniform
mixing [3]. This is as a consequence of their work with complete graphs
and complete multipartite graphs. They also make following conjecture.

Conjecture 5.1.1 (Ahmadi, Belk, Tamon, Wendler 2003). Other than C3

and C4, no cycle Cn admits uniform mixing.

Following this conjecture, in 2007, Adamczak et al. [1] showed that Cn
does not admit uniform mixing if n = 2u for u ≥ 3, or if n = 2um where
m ≡ 3 (mod 4) and u ≥ 1. In the same year, Carlson et al. show that
uniform mixing does not occur on C5 [16]. Prior to the work presented in
this chapter, this was the current state of Conjecture 5.1.1. One of our
main results in this chapter shows that uniform mixing does not occur on
cycles of even length or odd prime length.

We begin this chapter by summarizing Godsil’s work with uniform
mixing on bipartite graphs. We use these results in conjunction with
Theorem 4.2.5 to show that uniform mixing cannot occur on a cycle of even
length other than C4. This is a joint result of Godsil and the author, and it
settles Conjecture 5.1.1 for the even case. Next we consider uniform mixing
on cycles of prime length. Using our algebraic tools from Chapter 4, we
show that uniform mixing does not occur on a cycle of prime length. This
result is due to the author.

Finally, we show that ε-uniform mixing occurs on prime cycles. This
implies that the corresponding probability distribution gets arbitrarily close
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to the uniform distribution. This result is due to the author.

5.2 Bipartite Graphs

In this section we consider uniform mixing on bipartite graphs. We are
primarily concerned with even cycles. However, the results in this section
apply to all bipartite graphs. All of this work in this section appears in
[30].

To begin, suppose that X is a bipartite graph on n vertices with adja-
cency matrix A. We assume the rows and columns of A are ordered such
that

A =

(
0 B
BT 0

)
.

Since A is a block matrix, we easily compute the even and odd powers of A.

A2k =

(
(BBT )k 0

0 (BTB)k

)
A2k+1 =

(
0 (BBT )kB

(BTB)kBT 0

)
.

Now we derive an expression for the transition matrix of X in terms of
these blocks.

U(t) = eitA =
∑
k≥0

1

k!
(itA)k

=
∑
k≥0

(−1)kt2k

(2k)!

(
(BBT )k 0

0 (BTB)k

)
+ i
∑
k≥0

(−1)kt2k+1

(2k + 1)!

(
0 (BBT )kB

(BTB)kBT 0

)

To simplify notation we write U(t) in block form as

U(t) =

(
F1(t) iK(t)
iKT (t) F2(t)

)
.

We pay particular attention to the fact that F1(t), F2(t), and K(t) are all
real matrices for all times t. This observation leads to the following result,
which appears in [30].
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Lemma 5.2.1. Suppose X is a bipartite graph on n > 2 vertices with
transition matrix U(t). If X admits uniform mixing at time t, then each
entry of

√
nU(t) is a fourth root of unity.

Proof. If X admits uniform mixing at time t, then

|U(t)j,k| =
1√
n

for all 1 ≤ j, k ≤ n. In terms of the blocks that comprise U(t), this means
that all of the entries of the real matrices F1(t), F2(t) and K(t) are equal
to ±1/

√
n. Hence all entries of

√
nU(t) are fourth roots of unity.

This observation can be used to rederive Kay’s result [35] concerning
the phase factors for perfect state transfer in bipartite graphs. This proof
appears in [30].

Theorem 5.2.2. If X is a bipartite graph on n > 2 vertices that admits
uniform mixing, then n is divisible by four.

Proof. Let U(t) denote the transition matrix of X, and suppose that X
admits uniform mixing at time t. By Lemma 5.2.1, we know that each
entry of U(t) must be a fourth root of unity.

Let Γ1 and Γ2 denote the two colours classes on X. For convenience,
we assume that the vertices in Γ1 correspond to the first |Γ1| rows of U(t).
Let D denote the diagonal matrix of order n× n such that

Du,u =

{
1 if u ∈ Γ1

i if u ∈ Γ2.

Let H denote the matrix given by

H =
√
nDU(t)D.

In terms of the blocks of U(t), we see that

H =
√
n

(
F1 −K
−KT −C2

)
.

This implies that H is a real matrix with entries equal to 1 or −1. A
straightforward computation also reveals that

HH∗ = nDU(t)DD∗U(t)∗D∗ = nI.

Therefore H is a real Hadamard matrix. It is well known that if H is a real
Hadamard matrix of order n such that n > 2, then n is divisible by four. A
proof of this fact is given in Chapter 18 of Van Lint and Wilson [49], for
example.
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Adamczak et al. [1] show that if uniform mixing occurs on C2m, then m
must be a sum of two squares. Here we show that this is true for all regular
bipartite graphs.

Theorem 5.2.3. If X is a regular, bipartite graph with n vertices that
admits uniform mixing, then n is the sum of two integer squares.

Proof. Suppose X is a regular bipartite graph with transition matrix U(t).
Further suppose that X admits uniform mixing at time t. By Lemma 5.2.1,
each of the entries of

√
nU(t) is a fourth root of unity. In particular, this

implies that

√
nU(t)1 = (a+ ib)1 and

√
nU(t)∗1 = (a− ib)1

for some integers a and b where 1 is the all-ones vector. Taking the product
of both of these expressions yields

nU(t)U(t)∗1 = (a− ib)(a+ ib)1 = (a2 + b2)1.

Since U(t) is unitary, we know that U(t)U(t)∗ = I. We conclude that
n = a2 + b2.

5.3 Even Cycles

In this section we narrow our focus to cycles of even length, which are
precisely the bipartite cycles. Relying on our work from previous sections,
we show that uniform mixing cannot occur on any even cycle other than C4.
This result appears in [30]. This is an extension of the work of Adamczak
et al. [1], which shows that if uniform mixing occurs on C2m, then m must
be a sum of two squares.

Theorem 5.3.1. The cycle C4 is the unique even cycle that admits uniform
mixing.

Proof. First recall that C4 admits uniform mixing at time t = π/4. Now
we consider C2m for m ≥ 3 with transition matrix U(t). Suppose for a
contradiction that C2m admits uniform mixing. From Theorem 5.2.2, it
follows that m must be even, and so we must have m ≥ 4. Furthermore,
by Lemma 5.2.1, we see that each entry of U(t) is algebraic. Theorem
4.2.5 implies that all of the eigenvalues of C2m must be integers. This is
a contradiction to Lemma 4.3.2, which shows that C2m has an irrational
eigenvalue if m ≥ 4.
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We pause for a moment to appreciate the simplicity of the proof given
above. This is our first illustration of the power of our main result from
Chapter 4. We give another application of Theorem 4.2.5 in the next section,
as we attack the more difficult case of cycles of odd prime order.

5.4 Prime Cycles

Dealing with odd cycles in general is a tricky matter. In this section we
restrict our attention to cycles of odd prime order. There are two previously
known results about the mixing properties of odd cycles. First, Ahmadi,
Belk, Tamon, and Wendler show that C3 admits uniform mixing [3]. This is
a consequence of their work on complete graphs. Second, with considerably
more effort, Carlson et al. show that uniform mixing does not occur on C5

[16].
In this section we extend these two results to show that Cp does not

admit uniform mixing for any prime p such that p ≥ 5. This result is due to
the author and appears in [30]. We rely on the framework of cyclic p-roots
introduced in Section 4.7, along with our staple result: Theorem 4.2.5.

Theorem 5.4.1. The cycle C3 is the unique cycle of odd prime order that
admits uniform mixing.

Proof. Let p denote an odd prime such that p ≥ 5, and let U(t) denote the
transition matrix of Cp. Suppose that Cp admits uniform mixing at time t.
This implies that

√
nU(t) is a type-II matrix that is a scalar multiple of

a cyclic p-root. Haagerup’s work, stated in this thesis as Theorem 4.7.2,
shows that there are a finite such number of cyclic p-roots. Applying
Theorem 4.6.1, we know that all of these cyclic p-roots must have algebraic
coordinates. Therefore U(t) must be a scalar multiple of a matrix with
all algebraic entries. In turn, Theorem 4.2.5 implies that Cp must have all
integral eigenvalues. This contradicts the fact that Cp has an irrational
eigenvalue, which we proved in Lemma 4.3.2.

One crucial fact that separates the prime cycle case from general cycles
is Haagerup’s result concerning the finiteness of cyclic p-roots. If we could
show for some n ≥ 5 that there are finite number of cyclic n-roots, then
the machinery used above would be sufficient to show that uniform mixing
does not occur on Cn. Unfortunately this does not seem to be the case if n
is not a prime. For example, there are an infinite number of cyclic 9-roots
[47].
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An alternative approach to dealing with uniform mixing on general
cycles might be to relate the transition matrix of Cn to the transition
matrix Cp for some prime factor p such that p divides n. It might be
possible to do this using graph quotients. We investigate graph quotients
in Chapter 7.

5.5 ε-Uniform Mixing on Prime Cycles

In the last section we saw that uniform mixing does not occur on Cp when
p is an odd prime greater than three. However, our proof does not give
us any insight about whether or not the probability distribution of the
quantum walk gets close to uniform. In this section, we show the probability
distribution of a continuous-time quantum walk on Cp gets close to uniform
at certain times. Graphs with this property are said to admit ε-uniform
mixing. The work in this section is due to the author.

The fact that Cp admits ε-uniform mixing is interesting because it gives
us more information about the nature of a continuous-time quantum walk
on a cycle. Also, it confirms that we cannot bound the modulus of any
entry of U(t) away from 1/

√
n. In a broad sense, it justifies the necessity of

the more sophisticated approach that we took to deal with uniform mixing
on Cp.

Throughout this section we rely on the notation and concepts introduced
in Section 2.8. In particular, we let A = {A0, . . . , Ad} denote the cyclic
association scheme on p vertices. Since p is an odd prime, we see that A
has d = (p− 1)/2 classes. We further let {E0, . . . , Ed} denote the spectral
idempotents of A, and let Θ denote the discrete Fourier transform described
in Section 2.9. Recall that the image of each spectral idempotent under the
duality map is

Θ(Er) = Ar.

To begin our new work, we define

F =
d∑
r=0

ωr
2

Er, (5.1)

where ω = ei2π/p.
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Lemma 5.5.1. The matrix F is a flat unitary matrix.

Proof. First we verify that F is unitary. We do this by a direct computation.
It is convenient to recall that

E2
r = Er and ErEj = 0 if r 6= j.

Using these observations we see that

FF ∗ =

(
d∑
r=0

ωr
2

Er

)(
d∑
r=0

ω−r
2

Er

)
=

d∑
r=0

Er = I.

Next we use the duality map Θ to show that F is flat. Since Θ is linear,
we have

Θ(F )Θ(F ∗) =

(
d∑
r=0

ωr
2

Θ(Er)

)(
d∑
r=0

ω−r
2

Θ(Er)

)

=

(
d∑
r=0

ωr
2

Ar

)(
d∑
r=0

ω−r
2

Ar

)

=

(
p−1∑
j=0

ωj
2

Cj

)(
p−1∑
j=0

ω−j
2

Cj

)

=

p−1∑
k=0

(
p−1∑
j=0

wj
2−(k−j)2

)
Ck

=

p−1∑
k=0

ω−k
2

(
p−1∑
j=0

wjk

)
Ck

= pC0 = pI.

By Corollary 2.9.4, we know that Θ(F )Θ(F ∗) = pI implies that

F ◦ F ∗ =
1

p
J.

Therefore F is flat.

Our goal is to show that U(t) gets arbitrarily close to a complex scalar
multiple of F as t ranges over all real numbers. Since F is a flat matrix,
achieving this goal implies that Cp admits ε-uniform mixing. This result is
due to the author and appears in [30]. The proof of this result relies heavily
on Kronecker’s Theorem and the ideas developed in Section 4.4.
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Theorem 5.5.2. The odd prime cycle Cp admits ε-uniform mixing.

Proof. Let U ′(t) denote the scaled transition matrix given by

U ′(t) = e−2itU(t) = E0 + e(θ1−2)itE1 + · · ·+ e(θd−2)itEd. (5.2)

Note that U ′(t) is a unitary matrix, and U ′(t) is flat if and only if U(t) is
flat. Let ε denote a positive real number. We proceed by showing that
there exists some time t such that

||U ′(t)− F || < ε

2
.

We consider U ′(t) at times that are an integer multiple of 2π/p. For any s
in Z, we see that Equation 5.2 becomes

U ′(2sπ/p) =
d∑
r=0

e2s(θr−2)πi/pEr.

In terms of e, we express Equation 5.1 as

F =
d∑
r=0

e2r2πi/pEr.

Our goal is to find a time t such that the coordinates of F and U ′(t) are
close to the same value. In terms of the exponents of these coefficients, this
is equivalent to finding some integer s such that 1

p
r2 ≈ 1

p
(θr − 2)s in (R/Z)

for 0 ≤ r ≤ d. For two elements x and y in R/Z, we define the distance
|x− y|R/Z to be

|x− y|R/Z = inf
k∈Z
|x− y − k|,

where the norm on the right hand side of the definition is the absolute value
of x− y − k considered as a real number.

From Theorem 4.3.5, we know that 1, θ1, . . . , θd−1 are linearly indepen-

dent over Q, and consequently
{

1, 1
p
(θ1 − 2), . . . , 1

p
(θd−1 − 2)

}
is linearly

independent over the rationals.
By Kronecker’s Theorem (Theorem 4.4.1), we see that

D =

{(
1

p
(θ1 − 2)s, . . . ,

1

p
(θd−1 − 2)s

)
: s ∈ Z

}
is dense in (R/Z)d−1.
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Therefore for any δ > 0, we can find some s in Z such that∣∣∣∣1p(θr − 2)s− r2

p

∣∣∣∣
R/Z

< δ (5.3)

in (R/Z) for all 1 ≤ r ≤ d− 1. It remains to consider the coordinates of
U ′(t) and F with respect to Ed. Recall that for a cyclic association scheme
we have

θd = −1− θ1 − θ2 · · · − θd−1.

We can use this to derive an expression for the d-th coordinate of U ′(t) in
terms of the first d− 1 coordinates.

1

p
(θd − 2)s =

1

p

(
−3−

d−1∑
r=1

θr

)
s

= −1

p
(2(d− 1) + 3)s−

d−1∑
r=1

1

p
(θr − 2)s

= −s−
d−1∑
r=1

1

p
(θr − 2)s.

Now working in R/Z, we see that the exponent of the d-th coordinate of
U ′(t)− F is

1

p
(θd − 2)s− 1

p
d2 = −s−

d−1∑
r=1

1

p
(θr − 2)s− 1

p
d2 (5.4)

=
d−1∑
r=1

(
1

p
(θr − 2)s− 1

p
r2

)
+

1

p

d∑
r=0

r2. (5.5)

Note that

1

p

d∑
r=1

r2 =
d(d+ 1)(2d+ 1)

6p
=

(p− 1)(p+ 1)

24

Since p is an odd prime, we know that both p− 1 and p+ 1 are even, and
exactly one of those values is divisible by 4. Therefore (p − 1)(p + 1) is
divisible by 8. Since we are assuming that p 6= 3, we also know that p− 1
or p+ 1 is divisible by 3. It follows that

(p− 1)(p+ 1)

24
∈ Z.
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must be an integer. We simplify Equation 5.4 in R/Z to

1

p
(θd − 2)s− 1

p
d2 =

d−1∑
r=1

(
1

p
(θr − 2)s− 1

p
r2

)
Now we use this expression and Inequality 5.3 to bound the coefficient d-th
coordinate of U ′(t)− F in terms of δ as follows:∣∣∣∣1p(θd − 2)s− 1

p
d2

∣∣∣∣
R/Z
≤

d−1∑
r=1

∣∣∣∣1p(θr − 2)s− 1

p
r2

∣∣∣∣
R/Z

< (d− 1)δ.

This implies that for any ε > 0, we can find a sufficiently small δ such that

||U ′(2sπ/p)− F || < ε

2
.

By Lemma 4.4.3, it follows that

||U ′(2sπ/p) ◦ U ′(2sπ/p)∗ − 1

n
J || < ε.

Finally, we note that U ′(2sπ/p) ◦ U ′(2sπ/p)∗ = U(2sπ/p) ◦ U(2sπ/p)∗,
which proves that ε-uniform mixing occurs on Cp.

We take note of several aspects of this proof. First, the matrix F is the
dual of a Fourier-type matrix that is well-known to be flat and unitary. It is
very possible that the same approach could be used with a different choice
of a flat unitary matrix. Second, we see from Kronecker’s Theorem that
the first d eigenvalues of the transition matrix are essentially independent
from each other. This tells us that the continuous-time quantum walk on
Cp hits a wide range of probability distributions. One obvious drawback
of this proof is that we do not have any insight into the time at which the
probability distribution will be within ε of the uniform distribution.

Also, it is very possible that this proof could be generalized to show that
ε-uniform mixing occurs on cycles of length p2 for an odd prime p. However,
more care is needed to choose a suitable flat unitary to approximate.

Finally, we note that Theorem 5.5.2 implies that the Cartesian product
of cycles of prime length admit ε-uniform mixing. This yields an infinite
family of non-cycles that admit ε-uniform mixing but do not admit uniform
mixing.
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Chapter 6

Strongly Regular Graphs

6.1 Introduction

In this chapter we consider uniform mixing on strongly regular graphs.
We approach this problem via type-II matrices. We start by formulating
a system of equations whose solutions correspond to type-II matrices in
the Bose-Mesner algebra of a strongly regular graph. Then we summarize
Godsil and Chan’s classification of type-II matrices in Bose-Mesner algebras
of strongly regular graphs [19]. Next we present Chan’s further classification
of flat type-II matrices, which are also known as scaled complex Hadamard
matrices [17]. This leads to the characterization of strongly regular graphs
that admit uniform mixing given in [30].

To provide a more in-depth understanding, we offer an alternative
construction of the strongly regular graphs that admit uniform mixing.
This construction is an unpublished result due to Godsil. We also a offer a
new, direct proof that the Paley graph of order nine is the unique conference
graph that admits uniform mixing.

6.2 Type-II Matrices and SRGs

Throughout this section we focus on the following question: given a partic-
ular strongly regular graph, is there a type-II matrix in its Bose-Mesner
algebra? In 1970, Goethals and Seidel answered this question for flat type-II
matrices with real entries [32]. These matrices are more commonly known
as real Hadamard matrices, or simply Hadamard matrices. We phrase their
result in the language of type-II matrices.
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6. STRONGLY REGULAR GRAPHS

Theorem 6.2.1. If X is a strongly regular graph with adjacency matrix
A, then R[A] contains a flat type-II matrix if and only if X is a Latin
square-type or negative Latin square-type graph.

We begin our work on the general case by describing the affine varieties
corresponding to type-II matrices in the Bose-Mesner algebra of a strongly
regular graph. Suppose that X is a strongly regular graph with parameters
(n, k, a, c). Let A and Ā denote the adjacency matrices of X and its
complement, respectively. Recall that Ā = J − A − I. Also recall from
Section 2.3 that

A2 = kI + aA+ cĀ

Ā2 = (n− k − 1)I + (n− 2k + c− 2)A+ (n− 2k + a)Ā

ĀA = (J − A− I)A = (k − a− 1)A+ (k − c)Ā = AĀ.

Now further suppose that W is a matrix such that

W = I + xA+ yĀ,

for some x, y 6= 0 in C. In terms of these coefficients, we have

WW (−)T =
(
I + xA+ yĀ

) (
I + x−1A+ y−1Ā

)
= I + A2 + Ā2 + (x+ x−1)A+ (y + y−1)Ā+ (xy−1 + x−1y)ĀA.

Substituting in our expressions for A2, Ā2 and AĀ above yields

WW (−)T = nI + w1A+ w2Ā, (6.1)

where we have

w1 = n− 2k + 2a+ (k − a− 1)(xy−1 + x−1y) + x+ x−1

w2 = n− 2k + 2c− 2 + (k − c)(xy−1 + x−1y) + y + y−1.

Note that WW (−)T = nI if and only if w1 = w2 = 0. We summarize this
observation in the following result. This result appears in [19].

Lemma 6.2.2. Let X denote a strongly regular graph with parameters
(n, k, a, c). Let A and Ā denote the adjacency matrices of X and its com-
plement, respectively. The matrix W given by

W = I + xA+ yĀ,

is a type-II matrix if and only if x and y satisfy the following system of
polynomials.

n− 2k + 2a+ (k − a− 1)(xy−1 + x−1y) + x+ x−1 = 0 (6.2)

n− 2k + 2c− 2 + (k − c)(xy−1 + x−1y) + y + y−1 = 0. (6.3)

These polynomial equations define a variety in C2.
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6.2. TYPE-II MATRICES AND SRGS

There is a significant amount of nontrivial work necessary to determine
all of the solutions of the affine variety given in Lemma 6.2.2. This was
accomplished by Godsil and Chan in [19].

Theorem 6.2.3. Let X be a primitive strongly regular graph with parame-
ters (n, k, a, c) and eigenvalues θ and τ such that θ > τ . Let A denote the
adjacency matrix of X and Ā denote the adjacency matrix of its complement.
Suppose

W = I + xA+ yĀ.

Then W is a type-II matrix if and only if one of the following holds, where
x and y are interchangeable:

(a) y = x = 1
2
(2− n±

√
n2 − 4n);

(b) x = 1 and y = 1+ 1
2(k−λ)

(
−n±

√
n2 − 4(k − λ)n

)
and Ā is the matrix

of a symmetric (n, k, λ)-design where k = n− k − 1;

(c) x = −1 and y = 1
2
(λ ±

√
λ2 − 4) where λ = (1 + θτ)−1(2 − 2θτ − n))

and A is the incidence matrix of a symmetric design;

(d) x+ x−1 is a zero of the quadratic z2 − αz + β − 2 with

α =
1

θτ
[n(θ + τ + 1) + (θ + τ)2],

β =
1

θτ
[−n− n(1 + θ + τ)2 + 2θ2 + 2θτ + 2τ 2]

and

y =
1

(x+ x−1)

(
θτx− 1

(θ + 1)(τ + 1)
(x+ x−1 − 2 + n)− (n− 2)x− 2

)
; .

Note that some of the type-II matrices given in this theorem are not
flat. For example, the coordinates given in Theorem 6.2.3 (a) satisfy∣∣∣∣12(2− n+

√
n2 − 4n)

∣∣∣∣ < 1 and

∣∣∣∣12(2− n−
√
n2 − 4n)

∣∣∣∣ > 1,

for n > 4. The type-II matrix with these coordinates is called the Potts
model. In a subsequent paper, Chan determines all of the strongly regular
graphs from Theorem 6.2.3 that contain flat type-II matrices in their Bose-
Mesner algebra [17].
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Theorem 6.2.4. Let X denote a strongly regular graph with parameters
(n, k, a, c) and eigenvalues θ and τ such that θ > τ . Let A and Ā denote
the adjacency matrices of X and its complement, respectively, and suppose
that W is a matrix such that

W = 1 + xA+ yĀ

for some x, y in C with |x| = |y| = 1. The matrix W is a type-II matrix if
and only if X has one of the following parameter sets (n, k, a, c):

(i) (4θ2, 2θ2 − θ, θ2 − θ, θ2 − θ)

(ii) (4θ2, 2θ2 + θ, θ2 + θ, θ2 + θ)

(iii) (4θ2 − 1, 2θ2, θ2, θ2)

(iv) (4θ2 + 4θ + 1, 2θ2 + 2θ, θ2 + θ − 1, θ2 + θ)

(v) (4θ2 + 4θ + 2, 2θ2 + θ, θ2 − 1, θ2).

The corresponding coordinates of the flat type-II matrices in the theorem
above are the (x, y) solutions given in Theorem 6.2.3. In the next section,
we will further distill these flat type-II matrices and determine which of
them correspond to transition matrices of the corresponding graph.

6.3 Uniform Mixing on SRGs

In this section, we present a classification of strongly regular graphs that
admit uniform mixing. This result is a continuation of Chan’s work from the
previous section, and it appears in [30]. In particular, this result determines
which of the matrices listed in Theorem 6.2.4 are scalar multiples of the
corresponding transition matrix.

Let X denote a strongly regular graph with parameters (n, k, a, c) and
nontrivial eigenvalues θ and τ . Further let Eθ and Eτ denote the spectral
idempotents corresponding to θ and τ , respectively. As usual, we have
E0 = 1

n
J . Recall that the transition matrix of X can be expressed as

U(t) = ekitE0 + eθitEθ + eτitEτ . (6.4)

If X admits uniform mixing at time t, then U(t) is a flat unitary. This
implies that

U(t) =
γ√
n
H, (6.5)
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for some flat type-II matrix H and some γ in C such that |γ| = 1. The
matrix H must be in the Bose Mesner algebra of X. Thus, if we suppose
that uniform mixing occurs on X, then the transition matrix must satisfy

U(t) = γ√
n

(
I + xA+ yĀ

)
= γ√

n
((1 + kx+ (n− k − 1)y)E0 + (1 + θx+ (−1− θ)y)Eθ
+(1 + τx+ (−1− τ)y))Eτ ).

(6.6)
By comparing Equation 6.6 and Equation 6.4, we obtain the following
characterizing equations:

ekit =
γ√
n

(1 + kx+ (n− k − 1)y) (6.7)

eθit =
γ√
n

(1 + θx+ (−1− θ)y) (6.8)

eτit =
γ√
n

(1 + τx+ (−1− τ)y). (6.9)

For each of the possible parameter sets given in Theorem 6.2.4, the
corresponding type-II matrices are in exponential form if and only if the
characterizing equations above are satisfied. The following result determines
which of the flat type-II matrices determined by Theorem 6.2.4 arise as
a transition matrix of the underlying strongly regular graph. This result
appears in [30]. The proof requires technical case-by-case analysis.

Theorem 6.3.1. A primitive strongly regular graph X with adjacency
matrix A has uniform mixing if and only if one of the following holds.

(a) J − 2A is a regular symmetric Hadamard matrix of order 4θ2 with
constant diagonal and positive row sum and θ is even.

(b) J − 2A− 2I is a regular symmetric Hadamard matrix of order 4θ2 with
constant diagonal and positive row sum and θ is odd.

(c) The Paley graph of order nine, which has parameters (9, 4, 1, 2).

The proof of this result requires several technical details. One drawback
of the proof is that it fails to shed much light on other mixing properties of
the strongly regular graphs. Essentially the proof is a result about a very
specific family of flat type-II matrices, rather than about the transition
matrices themselves. It would be interesting to prove that uniform mixing
cannot occur without resorting to the technical classification of type-II
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matrices given in Theorem 6.2.3. We partially accomplish this in Section
6.5 by giving a new, direct proof that the Paley graph of order nine is the
unique conference graph that admits uniform mixing.

In the following section, we explicitly construct the graphs described
in Theorem 6.3.1 (a) and (b) that admit uniform mixing. From this
construction we directly verify that these graphs admit uniform mixing.

6.4 Construction from Hadamard Matrices

In this section we further explore the exceptional strongly regular graphs
that admit uniform mixing. We give a construction of these graphs which
makes their mixing properties more apparent. These constructions and
observations are due to Godsil.

Let H denote an n× n symmetric real Hadamard matrix with constant
diagonal and constant row sum. For any pair of distinct rows of H, the
number of entries that are equal must be the same as the number of entries
that are not equal. As a consequence, the order n must be even. The
symmetry of H implies that

HHT = H2 = nI.

Therefore the eigenvalues of H are ±
√
n. Let m1 and m2 denote the

multiplicities of
√
n and −

√
n, respectively, as eigenvalues of H. Since H

is a real symmetric matrix, it is diagonalizable, and therefore the spectrum
has order n.

For the moment, we assume that H has constant diagonal 1. This
implies that tr(H) = n, and so the sum of the eigenvalues with multiplicity
is equal to n. Using this information we determine m1 and m2 in terms of
n by solving the following system.

m1 +m2 = n (6.10)
√
nm1 −

√
nm2 = n. (6.11)

This yields

m1 =
1

2

(
n+
√
n
)

and m2 =
1

2

(
n−
√
n
)
.

On the other hand, if H has constant diagonal −1, then
√
n is an eigenvalue

with multiplicity m2 and −
√
n is an eigenvalue with multiplicity m1. In

either case, the multiplicities of H must be positive integers, and so we
immediately deduce that n must be a perfect square.
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Recall our assumption that H has constant row sum. This implies that
the all-ones vector 1 is an eigenvector of H. Therefore we have either

H1 =
√
n1 or H1 = −

√
n1.

Let ρ denote the eigenvalue of H corresponding to 1, and let A be the
{−1, 0, 1}-matrix such that

A =
1

2
(J −H).

Note that if H has constant diagonal 1, then A is a symmetric {0, 1}-matrix.
On the other hand, if H has constant diagonal −1, then A−I is a symmetric
{0, 1}-matrix. Our aim is to define a strongly regular graph with adjacency
matrix A or A− I depending on the sign of the diagonal of H. Thus we
wish to determine the spectral decomposition of A. Since H has constant
row sum, we immediately deduce that

A1 =
1

2
(n− ρ)1.

As usual, we set E0 = 1
2
J . Next we observe that

(ρI −H)2 = nI − 2ρH + nI = 2ρ(ρI −H)

and thus we have an idempotent

E1 =
1

2ρ
(ρI −H).

Next we compute the eigenvalue of A associated to E1. Multiplying A by
the all-ones vector yields

1

2
(J −H)E1 =

1

4ρ
(ρJ − ρH − ρJ + nI) =

1

4
(ρI −H) =

ρ

2
E1.

This implies that the columns of E1 are eigenvectors of A with eigenvalue
ρ/2. Next we see that

(J −H)(I − E0 − E1) = J −H − (n− ρ)E0 − ρE1

= ρE0 −
1

2
(ρI −H)−H

= ρE0 −
1

2
H − ρ

2
I

69



6. STRONGLY REGULAR GRAPHS

= −ρ (I − E0 − E1) .

Therefore the columns of I−E0−E1 are eigenvectors for A with eigenvalue
−ρ/2. Hence if we define E2 to be

E2 = I − E0 − E1,

then E0, E1, E2 are the idempotents in the spectral decomposition of A.
Now we suppose that H has constant diagonal one. As we saw earlier, A is
a symmetric {0, 1}-matrix with zeros down the diagonal. Hence A is the
adjacency matrix of a graph X. Based on this spectral decomposition of A,
we see that X has exactly two nontrivial eigenvalues, which implies that X
is strongly regular. However, we do not actually need to use this property
of X to see that uniform mixing occurs. Instead we deduce that uniform
mixing occurs directly from the spectral decomposition.

Lemma 6.4.1. Let H denote a symmetric real Hadamard matrix with
constant diagonal 1 and constant row sum ρ. Let X denote the graph with
adjacency matrix 1

2
(J −H). Uniform mixing occurs on X at time t = π

ρ
if

ρ is divisible by four.

Proof. Let E0, E1 and E2 denote the idempotents given above. Our earlier
work shows that the spectral decomposition of A is

A =
1

2
(n− ρ)E0 +

1

2
ρE1 −

1

2
ρE2.

Utilizing this spectral decomposition, we see that the transition matrix of
X is

U(t) = e(n−ρ)it/2E0 + eρ/2itE1 + e−ρ/2itE2.

Conveniently we note that 1
ρ
H is a flat unitary, and

E0 − E1 + E2 = I − 2E1 =
1

ρ
H.

If U(t) is a scalar multiple of 1
ρ
H, then we know that uniform mixing occurs.

In terms of the coordinates of the spectral idempotents, U(t) is a scalar
multiple of 1

ρ
H if and only if

e(n−ρ)it/2 = γ, eρit/2 = −γ, and e−ρit/2 = γ,

for some complex number γ such that |γ| = 1. This system is satisfied if

t = ±π
2

and ρ ≡ 0 (mod 4).

This yields our desired result.
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The theorem above deals with the case when H had constant diagonal
1. Next we consider the case when H has constant row sum and constant
diagonal −1. In this case A − I is a symmetric {0, 1}-matrix with zeros
down the diagonal. Since A − I has two nontrivial eigenvalues, it is the
adjacency matrix of a strongly regular graph.

Lemma 6.4.2. Let H denote a symmetric real Hadamard matrix with
constant diagonal −1 and constant row sum ρ. Let X denote the graph with
adjacency matrix 1

2
(J −H − 2I). Uniform mixing occurs on X at time

t = π/ρ if ρ ≡ 2 (mod 4).

Proof. In terms of our earlier notation, the adjacency matrix of X is A− I.
Let E0, E1 and E2 denote the idempotents given above. Our earlier work
shows that the spectral decomposition of A− I is

A− I =
1

2
(n− ρ− 2)E0 +

1

2
(ρ− 2)E1 −

1

2
(ρ+ 2)E2.

Utilizing this decomposition, we see that the transition matrix of X is

U(t) = e(n−ρ−2)it/2E0 + e(ρ−2)/2itE1 + e−(ρ+2)/2itE2.

Again we recall that 1
ρ
H is a flat unitary, and

E0 − E1 + E2 = I − 2E1 =
1

ρ
H.

If U(t) is a scalar multiple of 1
ρ
H, then we know that uniform mixing occurs.

In terms of the coordinates of the spectral idempotents, U(t) is a scalar
multiple of 1

ρ
H if and only if

e(n−ρ−2)it/2 = γ, e(ρ−2)it/2 = −γ, and e(−ρ−2)it/2 = γ,

for some complex number γ such that |γ| = 1. This system is satisfied if

t = π/2 and ρ ≡ 2 (mod 4).

This yields our desired result.
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6.5 Conference Graphs, Revisited

In this section, we offer a new, direct proof that the only conference graph
that admits uniform mixing is the Paley graph of order nine. This result
was originally proved in [30], as we saw in the previous section. However,
the proof relies on the classification of flat type-II matrices given in [17],
which in turn relies on the classification given in [19]. The alternative proof
we offer in this section cuts out some of these middle steps. Restricting to
conference graphs enables us to take a few shortcuts.

We begin by recalling some useful facts about conference graphs. Recall
that a strongly regular graph X with nontrivial eigenvalues θ and τ is a
conference graph if mθ = mτ . Conference graphs correspond to the similarly
named conference matrices, which were first studied by Belevitch [6]. The
canonical examples of a conference graph are the Paley graphs.

Suppose that X is a conference graph of order n. Using the condition
that mθ = mτ , we can compute the eigenvalues themselves. They are

θ, τ =
−1±

√
n

2
, (6.12)

with θ > τ , as usual. From this we see that any conference graph of order
n must have the parameter set

(n, (n− 1)/2, (n− 5)/4, (n− 1)/4).

From this we see that a strongly regular graph X is a conference graph if
and only if X and X have the same parameters.

Next we mention two interesting results concerning the order of a
conference graph. The first is a classical result due to Belevitch [6]. A
simpler proof is given by Seidel and van Lint [48].

Lemma 6.5.1. If X is a conference graph of order n, then n ≡ 1 (mod 4)
and n must be the sum of two squares.

The next result has an elementary proof, which is given in Godsil and
Royle [31].

Lemma 6.5.2. If X is a strongly regular graph on a prime number of
vertices, then X is a conference graph.

The Paley graphs are examples of conference graphs on a prime power
number of vertices, but it is more difficult to construct conference graphs

72



6.5. CONFERENCE GRAPHS, REVISITED

for other orders. Mathon discovered a general construction for conference
graphs of order pq2 where p is the order of a conference graph and q = p− 2
is a prime power [39]. This construction yields 64 conference graphs on 45
vertices. These are the smallest known conference graphs on a non prime
power number of vertices.

Now we turn our attention to flat type-II matrices in the Bose-Mesner
algebras of conference graphs. The following lemma gives a direct proof of
a result that could be inferred from the work in [19] and [17].

Theorem 6.5.3. Let X denote a conference graph of order n, and let
A = {I, A, Ā} denote the corresponding association scheme. If W is a flat
type-II matrix in C[A] such that

W = I + xA+ yĀ,

for some complex numbers x and y with |x| = |y| = 1, then x = y−1 and

x+ x−1 =
−2± 2

√
n

n− 1
.

Proof. Let c = (n − 1)/4. Substituting the parameters of a conference
graph into Equation 6.1 gives us

WW (−)T = nI + w1A+ w2Ā,

with
w1 = 2c− 1 + c(xy−1 + x−1y) + x+ x−1

w2 = 2c− 1 + c(xy−1 + x−1y) + y + y−1.
(6.13)

Since W is type-II, we must have w1 = w2 = 0. Subtracting w2 from w1

yields

w1 − w2 = x+ x−1 − y − y−1 = 0.

Since |x| = |y| = 1, this implies that either x = y or x = y−1. If x = y,
then the first equation in (6.13) becomes

0 = 4c− 1 + x+ x−1.

However, |x + x−1| ≤ 2, and so if n ≥ 5, then c ≥ 1 and this equation
has no solution. This implies that x = y−1, and both equations in (6.13)
become

0 = 2c− 1 + c(x2 + x−2) + x+ x−1.
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Let ρ = x+ x−1. Since |x| = 1, we have x2 + x−2 = ρ2 − 2. Therefore, in
terms of ρ, our equation above becomes

0 = cρ2 + ρ− 1.

This implies that

ρ =
−1±

√
1 + 4c

2c
=
−2± 2

√
n

n− 1
.

This result tells us that a flat type-II matrix in the Bose-Mesner algebra
of a conference graph must be a scalar multiple of a matrix with all algebraic
entries. With this in mind, we show that uniform mixing does not occur on
conference graphs with non-square number of vertices. This result is given
in [30]. The self-contained proof below is due to the author.

Theorem 6.5.4. If X is a conference graph on a non-square number of
vertices, then X does not admit uniform mixing.

Proof. Let X denote a conference graph on n vertices such that n is not
a square. The nontrivial eigenvalues of X, which we computed in (6.12),
are irrational. Suppose for a contradiction that uniform mixing occurs on
X, or, equivalently, that there exists some time t such that U(t) is a flat
type-II matrix. Theorem 6.5.3 implies that any such flat type-II matrix
must be a scalar multiple of a matrix with algebraic entries. Therefore
Theorem 4.2.5 implies that uniform mixing cannot occur.

Now we consider conference graphs on a square number of vertices.
These conference graphs have all integer eigenvalues. In order to show
uniform mixing cannot occur on these graphs, we utilize the fact that
the association schemes corresponding to conference graphs are formally
self-dual. To be explicit about this duality, we define the following duality
map. Let X denote a conference graph, and let A = {I, A, Ā} denote the
corresponding association scheme. Further let E0, Eθ, and Eτ denote the
spectral idempotents. For any matrix M in C[A], we define a map Θ such
that

Θ(wE0 + xEθ + yEτ ) = wI + xA+ yĀ.

This is analogous to the duality map, namely the discrete Fourier transform,
that we defined for cyclic association schemes. There are several interesting
properties of this duality map, but we only focus on what we need for our
purposes in this section. In particular, the following lemma is a very specific
formulation of a more general result about the duality map.
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Lemma 6.5.5. Let X denote a conference graph on n vertices, and let A
and Ā denote the adjacency matrices of X and its complement, respectively.
Let M denote the matrix given by

M = E0 + xEθ + yEτ .

The matrix M is a flat unitary matrix if and only if its dual Θ(M) is a flat
type-II matrix.

Proof. It is convenient to re-index the eigenvalues and idempotents of
the scheme, because we have been using slightly different indexing for the
special case of strongly regular graphs. Let A0 = I, A1 = A, and let A2 = Ā.
Likewise, let E0 = 1

n
J , E1 = Eθ, and let E2 = Eτ . Let k = (n−1)/2 denote

the valency of X. In terms of these indices, the eigenvalues of the scheme
are given by

P =

1 k k
1 θ τ
1 τ θ

 ,

where pj(k) = Pk,j for 0 ≤ k ≤ 2. Note that P is the change of basis matrix
of C[A] that sends Aj to Ej for 0 ≤ j ≤ 2. It is straightforward to compute
that the inverse of P is given by

P−1 =
1

n

1 k k
1 θ τ
1 τ θ

 .

Thus we have
P 2 = nI.

Note that the entries of P−1 are the dual eigenvalues of the scheme. Let
x = (1, x, y) denote the coordinates of M with respect to {E0, E1, E2}, and
let z = (α, β, γ) denote the coordinates of M with respect to {A0, A1, A2}.
In terms of P , we have

Pz = x.

Our critical observation is that M is a flat unitary matrix if and only if

|x| = |y| = 1 and |α| = |β| = |γ| = 1/
√
n. (6.14)

However, the coordinates of Θ(M) with respect to {A0, A1, A2} are given by
x. This implies that the coordinates of Θ(M) with respect to {E0, E1, E2}
are given by

Px = P 2z = nz.

From this we deduce that Θ(M) is a flat type-II matrix if and only if the
equations in (6.14) hold.
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Armed with this understanding of the duality of conference graphs, we
show that conference graphs on a square number of vertices do not admit
uniform mixing. Again, this result is given in [30]. The self-contained proof
below is due to the author.

Theorem 6.5.6. Suppose that X is a conference graph on n = m2 vertices
for some integer m. If X admits uniform mixing, then n = 9.

Proof. Let X denote a conference graph on n vertices such that n = m2

for some integer m. From Lemma 6.5.1, we know that m ≥ 3. Let θ and
τ denote the nontrivial eigenvalues of X with θ > τ . Recall from (6.12)
that θ and τ are integers when n is square. Let A = {I, A, Ā} denote the
corresponding association scheme.

The transition matrix of X is given by

U(t) = ekitE0 + eθitEθ + eτitEτ ,

where k = (n− 1)/2 is the valency of X. Using Lemma 6.5.5, we see that
U(t) is a flat matrix if and only if

H = I + e(θ−k)itA+ e(τ−k)itĀ

is a flat type-II matrix. By Theorem 6.5.3, this restricts the possible values
of the coordinates of H. In particular, the two nontrivial coordinates must
be inverses of each other, which implies that

e(θ−k)ite(τ−k)it = e(−2k−1)it = e−nit = 1.

Therefore t must be an integer multiple of 2π/n. Furthermore, Theorem
6.5.3 tells us that

e(θ−k)it + e(−θ+k)it = 2 cos(2(θ − k)απ/n) =
−2± 2

√
n

n− 1

for some α in Z. As a consequence, we see that cos(2(θ − k)απ/n) is a
rational number. From the classical trigonometric result given in Theorem
4.3.1, we must have (

−1±
√
n

n− 1

)
∈
{

0,±1

2
,±1

}
.

However, using the fact that n = m2, we see that we must have

−1 +
√
n

n− 1
=

1

m+ 1
or
−1−

√
n

n− 1
=
−1

m− 1
.

We conclude that if m > 3, then H is not a flat type-II matrix.
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We note that the Paley graph of order nine is the unique conference
graph of order nine. Therefore Theorem 6.5.6 implies that the Paley graph
of order nine is the unique conference graph that admits uniform mixing.

If we suppose that X is a conference graph on a square number of
vertices, then U(t) is a periodic function. Therefore if X does not admit
uniform mixing, it does not admit ε-uniform mixing. However, if X is a
conference graph on a non square number of vertices, then ε-uniform mixing
is possible. In fact, our proof of Theorem 6.5.4 hints that ε-uniform mixing
is possible on all conference graphs of non square order. An approach using
Kronecker’s Theorem, similar to our work in Section 5.5, might be sufficient
to prove this result.
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Chapter 7

Products and Quotients

7.1 Motivation and Tools

Graph products are a useful tool for building graphs from other graphs.
For our purposes in this thesis, we are interested in relating the mixing
properties of a quantum walk on a product graph and its factors. It is
well-known that the Cartesian product of a finite number of graphs admits
uniform mixing if and only if each of its factors admits uniform mixing
[7]. Our eventual goal is to derive necessary and sufficient conditions for a
quotient of a graph to admit uniform mixing.

This chapter provides the necessary background to work with graph
products and quotients. Suppose that A is an n ×m matrix and B is a
u × v matrix. Recall that the tensor product A ⊗ B is the block matrix
with n×m blocks of size u× v. The (j, k)-block is given by

(A⊗B)j,k = Aj,kB.

As we will see, the adjacency matrix of a Cartesian product of graphs can
be expressed using tensor products. The following observation is due to
Godsil. It is useful when considering quantum walks on Cartesian products
of graphs.

Lemma 7.1.1. If E and M are a pair of matrices such that E2 = E, then

exp(M ⊗ E) = I ⊗ (I − E) + exp(M)⊗ E.

Proof. Again starting from the definition of the exponential function, we
express exp(M ⊗ E) as follows.

exp(M ⊗ E) = I ⊗ I +
∑
k≥1

1

k!
Mk ⊗ E
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= I ⊗ I − I ⊗ E +
∑
k≥0

1

k!
Mk ⊗ E

= I ⊗ (I − E) + exp(M)⊗ E.

This is our desired expression.

As an immediate consequence, we have the following corollary.

Corollary 7.1.2. If A(X) is the adjacency matrix of a graph X, then

exp(A(X)it⊗ I) = UX(t)⊗ I,

where UX(t) is the transition matrix of X.

This expression will be especially useful when we consider quantum
walks on Cartesian products of graphs in Section 7.2.

7.2 Graph Products

In this section, we consider the direct product and Cartesian product of
graphs. We relate the transition matrix of a direct product to the transition
matrix of its factors. Then we see that the Cartesian product is a useful
tool for constructing large graphs that admit uniform mixing.

Recall that the direct product two graphsX = (V1, E1) and Y = (V2, E2),
denoted X × Y , is a graph on vertex set V1 × V2. Two vertices (u1, v1) and
(u2, v2) in V1 × V2 are adjacent if and only if

{u1, u2} ∈ E1 and{v1, v2} ∈ E2.

Let A(X) and A(Y ) denote the adjacency matrices of X and Y , respectively.
The adjacency matrix of X × Y is given by the following.

A(X × Y ) = A(X)⊗ A(Y ).

We relate transition matrices of X × Y and its factors, X and Y , in the
following result. This result appears in [29].

Lemma 7.2.1. Let A(X) and A(Y ) denote the adjacency matrices of graphs
X and Y , respectively. If A has spectral decomposition

A =
∑
r

θrEr,

then
UX×Y (t) =

∑
r

Er ⊗ UY (θrt).
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Proof. To simplify our notation, let A = A(X) and B = A(Y ). First,

A⊗B =
∑
r

θrEr ⊗B.

Since the matrices Er ⊗B commute, by Lemma 3.2.1 we see

UX×Y (t) =
∏
r

exp (itθrEr ⊗B).

Using Lemma 7.1.1, we have

UX×Y (t) =
∏
r

((I − Er)⊗ I + Er ⊗ UY (θrt)) . (7.1)

Note that ErEs = 0 if r 6= s and
∑

r Er = I. Therefore
∏

r(I − Er) = 0.
Since the cross-terms vanish in (7.1), we obtain our desired result.

Now we turn our attention to continuous-time quantum walks on Carte-
sian products of graphs. We pay close attention to the connection between
uniform mixing and the Cartesian product.

First recall that the Cartesian product of two graphs X = (V1, E1) and
Y = (V2, E2), denoted X�Y , is a graph on vertex set V1×V2. Two vertices
(u1, v1) and (u2, v2) in V1 × V2 are adjacent if and only if

{u1, u2} ∈ E1 and v1 = v2 OR u1 = u2 and {v1, v2} ∈ E2.

For example, the Cartesian product Kn � Kn is isomorphic to L(Kn,n).
In the next section, we will see that the Hamming graph H(d, n) is the
Cartesian product of d copies of Kn. The Cartesian product is commutative
and associative; for all graphs X, Y , and Z we have

X � Y = Y �X and X � (Y � Z) = (X � Y ) � Z.

Let A(X) and A(Y ) denote the adjacency matrices of X and Y , respectively.
The adjacency matrix A(X � Y ) of the Cartesian product of X and Y is
given by the following:

A(X � Y ) = A(X)⊗ I + I ⊗ A(Y ). (7.2)

With this in mind, we compute an expression for the transition matrix of
X �Y in terms of the transition matrices of X and Y . The following result
is well-known.
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Lemma 7.2.2. Let UX(t) and UY (t) denote the transition matrices of X
and Y , respectively. The transition matrix of X � Y is given by

UX�Y (t) = UX(t)⊗ UY (t).

Proof. Since A(X)⊗ I and I ⊗ A(Y ) commute, by Lemma 3.2.1 we have

UX�Y (t) = exp(A(X � Y )it)

= exp(A(X)it⊗ I + I ⊗ A(Y )it)

= exp(A(X)it⊗ I) exp(I ⊗ A(Y )it).

Now using Lemma 7.1.1, we simplify this expression.

= (UX(t)⊗ I) (I ⊗ UY (t))

= UX(t)⊗ UY (t).

This is our desired expression.

Next we prove the following result concerning uniform mixing on the
Cartesian products of graphs. This result is well-known. It shows that
we can build graphs that admit uniform mixing from smaller graphs that
admit uniform mixing.

Lemma 7.2.3. The graph product X � Y admits uniform mixing at time
t if and only if X and Y both admit uniform mixing at time t.

Proof. Recall from Lemma 7.2.2 that

UX�Y (t) = UX(t)⊗ UY (t).

If UX(t) and UY (t) are flat, then so is UX�Y (t). Suppose, without loss of
generality, that UX(t) is not flat. There exists coordinates (u, v) and (w, z)
such that

|UX(t)u,v| 6= |UY (t)w,z|.
Let α denote an arbitrary entry of UY (t). Note that αUX(t)u,v and αUY (t)w,z
are entries of UX�Y (t) with different moduli. Thus UX�Y (t) is not flat.

This result can be applied to Hamming graphs. Recall from Section 2.7,
that the Hamming graph H(d, n) is a Cayley graph over Zdn. Two d-tuples
are adjacent if and only if they differ in exactly one coordinate. Using
graph products, we express the Hamming graph H(d, n) as the Cartesian
product of d copies of the complete graph Kn.

H(d, n) := K�d
n .
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Let U(t) denote the transition matrix of H(d, n). Then by Lemma 7.2.2 we
have

U(t) = UKn(t)⊗d.

The following result is due to Best et al. [7]. We reproduce their proof using
our prior observations.

Theorem 7.2.4. Uniform mixing occurs on H(d, n) if and only if

n ∈ {2, 3, 4}.

Proof. Lemma 7.2.3 tells us that H(d, n) admits uniform mixing if and
only if Kn admits uniform mixing. By Theorem 3.4.1 we know that Kn

admits uniform mixing if and only if n ∈ {2, 3, 4}.

We make an important observation: the proof above does not require an
explicit expression for the transition matrix of the Hamming graph H(d, n).
It only relies upon Theorem 3.4.1, which determines the complete graphs
that admit uniform mixing. For completeness, and for future use, we derive
an expression for the transition matrix now. First recall from Section 3.4
that the transition matrix of the complete graph Kn is

UKn(t) =
1

n

(
e(n−1)it + (n− 1)e−it

)
In +

1

n

(
e(n−1)it − e−it

)
(Jn − In) .

Applying Lemma 7.2.2, we see that the transition matrix of the Hamming
graph is

U(t) = UKn(t)⊗d

=

(
1

n

(
e(n−1)it + (n− 1)e−it

)
In +

1

n

(
e(n−1)it − e−it

)
(Jn − In)

)⊗d
.

We identify the vertices of H(d, n) with elements of Zdn. From this
expression, we see that the (0, u)-entry of the transition matrix is

U(t)0,u =
1

nd
(
e(n−1)it − e−it

)wt(a) (
e(n−1)it + (n− 1)e−it

)d−wt(u)
. (7.3)

These expressions are particularly useful when we consider quotients of
Hamming graphs.
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7.3 Graph Quotients

As we saw in Section 7.2, the Cartesian product is a tool for building graphs
that admit uniform mixing using smaller graphs that admit uniform mixing
as building blocks. In this section we consider the converse approach: we
start with a large graph that admits uniform mixing and then construct a
quotient graph that also admits uniform mixing. This turns out to be a
fruitful way to approach uniform mixing on Cayley graphs over Zd2 and Zd3.
We will see why in the following section. For now we focus on building the
necessary general tools.

There are several related concepts of graph quotients in the literature.
We follow the treatment of quotients and equitable partitions given in
Godsil and Royle [31]. Let X denote a graph, and let B denote a partition
of V (X) into cells {B1, B2, . . . , Br}.

Definition 7.3.1. A partition B is an equitable partition if for every vertex
v in a cell Bj, the number of neighbours of v in Bk is a constant number
bj,k.

Note that j and k are not necessarily distinct, and so every cell Bj

must induce a regular subgraph. If j and k are distinct, then the set of
edges with exactly one end in Bj and one end in Bk induce a semi-regular
bipartite graph.

The quotient graph of X induced by B is the directed graph on the cells
of B such that there are bj,k arcs between cells Bj and Bk. Let A(X/B)
denote the matrix whose (j, k)-entry is bj,k. We refer to this matrix as
the adjacency matrix of the quotient X/B. In general it will not be a
(0, 1)-matrix or a symmetric matrix. The characteristic matrix P of an
equitable partition B is a |V (X)| × r matrix with the characteristic vectors
of the cells of B as columns. The matrix P TP is a diagonal matrix whose
(j, j)-entry is equal to |Bj|. Thus P TP is invertible. The following ideas
appear in Section 9.3 of Godsil and Royle [31].

Lemma 7.3.2. Let B denote an equitable partition of the graph X with
characteristic matrix P . Let A and Â denote the adjacency matrices of X
and X/B, respectively. These adjacency matrices satisfy

AP = PÂ. (7.4)

Proof. Let n denote the number of vertices in X, and let r denote the
number of cell in B. Note that AP and PÂ are both integral matrices of

84



7.3. GRAPH QUOTIENTS

order n× r. The columns of P are indexed by cells of B. Thus the (j, k)-th
cell of AP denotes the number of vertices in X that are neighbours of the
vertex j and also contained in the cell Bk. In terms of the parameters of
the partition, this number is bj,k. Similarly, the (j, k)-th cell of PÂ is(

PÂ
)
j,k

= Âc,k

where Bc is the cell containing vertex j. Recall that Âc,k = bj,k. Since the
indices j and k were chosen arbitrarily, we conclude that Equation 7.4 holds
for the adjacency matrices.

In a sense, we can view Lemma 7.3.2 as an algebraic definition of an
equitable partition. The reason we are interested in equitable partitions,
as opposed to other possible partitions, is that we need the intertwining
property described in Equation 7.3.2. The existence of the bj,k parameters
of the partition is equivalent to Equation 7.3.2 holding. Lemma 7.3.2 also
gives us a convenient formulation of the adjacency matrix of the quotient
in terms of the adjacency matrix of the graph.

Corollary 7.3.3. Let B denote an equitable partition of the graph X with
characteristic matrix P . Let A and Â denote the adjacency matrices of X
and X/B, respectively. These adjacency matrices satisfy

Â = (P TP )−1P TAP.

Proof. Recall that P TP is an invertible matrix. Multiplying both sides of
Equation 7.4 by P T on the left yields our desired result.

Equitable partitions arise naturally from the automorphism group of
a graph. If we consider any group H of automorphisms of a graph X,
then the orbits form an equitable partition. To see this, we consider two
orbits uH and vH . The action of H fixes these orbits set-wise. Thus we
immediately see that if u is adjacent to β vertices in the vH , then every
vertex in uH must be adjacent to β vertices in vH . This implies C is an
equitable partition.

These observations can be applied to quotients of Cayley graphs. In
particular, the following result is well-known. See Theorem 3 in Praeger’s
paper [42], for example. Note that in order to match our assumed definition
of a quotient graph, we temporarily relax our definition of a Cayley graph
to include multigraphs. This is necessary since we are interested in Cayley
graphs of the form X(G/N,CN/N) where CN/N is possibly a multiset.
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Theorem 7.3.4. Let G be a finite group, and suppose that C is an inverse-
closed subset of G \ {1}. If N is a normal subgroup of a group G, then

X(G,C)/N ∼= X(G/N,CN/N),

where CN/N is defined to be the multiset of cosets given by

{cN : c ∈ C}

Proof. Since N is a subgroup of G, we can identify right multiplication
by elements of N with an automorphism group of X(G,C). By our earlier
observation, we see that the orbits of N form an equitable partition. This
implies the quotient X(G,C)/N is well-defined. The orbits of N can be
identified with the left and right cosets of N in G, and since N is normal, this
set of cosets form a group. Thus the vertices of X(G,C)/N can naturally
be identified with elements of the quotient group G/N . Given two cosets
aN and bN , we see that the number of arcs from aN to bN is determined
by the number of elements in the set{

n ∈ N : bna−1 ∈ C
}
.

However bna−1 is in C if and only if bN(aN)−1 is in CN/N .

Quotients of Cayley graphs over a normal subgroup are called normal
quotients. In this thesis, we are interested in quotients of abelian Cayley
graphs. Since every subgroup of an abelian group is normal, this result
applies to all of the quotient cases that we deal with.

Of course, our primary focus is still the transition matrices of the graphs
we are considering. In particular, we wish to relate the transition matrix
of a graph to the transition matrix of its quotient. Using Lemma 7.3.2,
we obtain the following result, due to Ge et al. [26]. This result applies
generally to all quotient graphs.

Theorem 7.3.5. Let B be an equitable partition of the graph X with
characteristic matrix P . Let A denote the adjacency matrix of X, and let
Â denote the adjacency matrix of X/B. The matrices satisfy the following.

exp(Âit) =
(
P TP

)−1
P T exp(itA)P.

Proof. Repeated application of Lemma 7.3.2 yields

P exp(Âit) = P

(∑
k≥0

(it)k

k!
Âk

)
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=

(∑
k≥0

(it)k

k!
AkP

)

=

(∑
k≥0

(it)k

k!
Ak

)
P.

Therefore the exponential functions satisfy

P exp(Âit) = exp(itA)P.

Multiplying both sides by P T yields the desired result.

In this next section, we consider quotients of Hamming graphs as an
illustration of our quotient theory. It turns out that when we quotient
a Cayley graph over a subgroup, the potentially pesky diagonal matrix(
P TP

)−1
reduces to a scalar multiple of the identity, which simplifies our

computations.

7.4 Quotients of Hamming Graphs

Recall that one of the main goals of this thesis is to find new examples of
graphs that admit uniform mixing. With this in mind, we pay particular
attention to the Hamming graphs H(d, n). As we saw earlier, these graphs
are known to admit uniform mixing if n ∈ {2, 3, 4} [40]. In this chapter,
we develop tools for determining when quotients of Hamming graphs admit
uniform mixing.

To begin, we consider some subgroup of Γ of Zdn. Note that Zdn can be
partitioned into nd/|Γ| cosets of Γ. Let C denote this partition into cosets.
Note that C is an equitable partition by the comments given in Section 7.3.
Let P denote the characteristic matrix of the partition. Since each coset of
Γ has the same size, we see that

P TP = |Γ|I,

where I denotes the nr × nr identity matrix. This is a nice simplification of
our expressions relating the adjacency and transition matrices of the graph
and its quotient. Furthermore, if we impose some mild restrictions on Γ,
then the adjacency matrix of the quotient graph H(d, n)/Γ is a symmetric
(0, 1)-matrix with zeros down the diagonal. In this case, the quotient graph
is a simple, undirected graph.
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Lemma 7.4.1. If Γ is a subgroup of Zdn with minimum Hamming distance
at least three, then the adjacency matrix of the quotient H(d, n)/Γ is a
symmetric (0, 1)-matrix with zeros down the diagonal.

Proof. Let H denote the adjacency matrix of H(d, n), and let A denote the
adjacency matrix of H(d, n)/Γ. From Corollary 7.3.3 and our comments
above, these adjacency matrices satisfy

Aj,k =
1

|Γ|
P T
j HPk,

where Pj and Pj denote characteristic vectors of the j-th and k-th cell,
respectively. Since each coset of Γ has distance greater than three, no pair
of vertices in the same coset have a common neighbour. Therefore HPk is
a (0, 1)-vector. Suppose that u is a vertex in the jth coset and v is a vertex
in the kth coset. Since the partition induced by cosets of Γ is equitable, we
know that if one vertex in the j-th coset has a neighbour in the k-th cell,
then all of the vertices on the j-th coset have a neighbour in the k-th coset.
In terms of the adjacency matrix H, this implies that for all j and k we
have

P T
j HPk =

{
|Γ| if u ∼ v in H(d, n)

0 otherwise.

Thus A is a (0, 1)-matrix. In particular, since each coset induces an inde-
pendent set in H(d, n), we see that for all j

P T
j HPj = 0,

which implies A has zeros down the diagonal. Furthermore, since H is a
symmetric matrix, we see that P T

j HPk = P T
k HPj , and so A is symmetric.

We note that the above observation is equivalent to noting that two
distinct cosets in H(d, n) are either disconnected or the edges between them
induce a perfect matching.

We turn our attention to the transition matrices. We assume that Γ is a
subgroup of Zdn with minimum Hamming distance at least three. Let UH(t)
and U(t) denote the transition matrix of the Hamming graph H(d, n) and
the quotient graph H(d, n)/Γ, respectively. By Theorem 7.3.5, we know
that

U(t) =
(
P TP

)−1
P TUH(t)P =

1

|Γ|
P TUH(t)P. (7.5)

Moreover, from Theorem 7.3.4, we know that the quotient graph
H(d, n)/Γ is a Cayley graph and hence is vertex-transitive. Recalling
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Lemma 3.2.5, we see that in order to determine the specific entries of U(t),
it suffices to consider the first row of U(t).

Lemma 7.4.2. Let Γ denote a subgroup of Zdn with Hamming distance at
least three. The transition matrix of the quotient satisfies

U(t)0,v+Γ =
1

nd

∑
u∈v+Γ

(
e(n−1)it + (n− 1)e−it

)d−wt(u) (
e(n−1)it − e−it

)wt(u)
.

Proof. Let P0 and Pv+Γ denote the characteristic vectors of the cosets Γ
and v + Γ. Let UH denote the transition matrix of the Hamming graph
H(d, n) at time t. Starting with Equation 7.5 and simplifying, we have

U(t)0,v+Γ =
1

|Γ|
P T

0 UHPv+Γ

=
1

|Γ|
∑
a∈Γ

∑
b∈v+Γ

(UH)a,b.

Now we apply Lemma 3.2.5 to the term (UH)a,b to obtain the following.

U(t)0,v+Γ =
1

|Γ|
∑
a∈Γ

∑
b∈v+Γ

(UH)0,b−a

=
1

|Γ|
∑
c∈v+Γ

|Γ|(UH)0,c

=
∑
c∈v+Γ

(UH)0,c.

By recalling the expression given for (UH)0,c in Equation 7.3, we arrive at
our desired result.

Now that we have a concrete expression for the entries of the transition
matrix, we have a starting point for analyzing the mixing properties of
quotients of Hamming graphs. We will thoroughly investigate uniform
mixing on quotients of Hamming graphs in Chapter 8. For the remainder
of the current chapter, we highlight the connection between quotients of
H(d, 2) and H(d, 3) and Cayley graphs over Zr2 and Zr3, respectively.
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7.5 Linear Graphs

In this section, we consider Cayley graphs over the additive group of a
vector space. We are particularly interested in the cases when the additive
group is isomorphic to Zr2 or Zr3. Our main result of this section is the proof
of an unpublished result due to Godsil which shows that every linear Cayley
graph over the additive group of a field is isomorphic to the quotient of a
Hamming graph. We use this result to tie together our work in Section 7.4
with the theory of continuous-time quantum walks on Cayley graphs over
Zr2 and Zr3. We begin by introducing linear graphs, which are a particular
family of Cayley graphs.

Definition 7.5.1. Suppose that G is the additive group of a vector space
over a finite field. The Cayley graph X(G,C) is a linear graph if and only
if the connection set C is closed under multiplication by nonzero elements
of the underlying finite field.

Let p denote a prime, and let Fp denote the finite field of order p. Note
that the elementary abelian p-group Zrp is isomorphic to the additive group
of an r-dimensional vector space over Fp. As we see in the next lemma, all
Cayley graphs over Zr2 and Zr3 are linear graphs. This provides two infinite
families of linear graphs.

Lemma 7.5.2. A Cayley graph over Zr2 or Zr3 is a linear graph.

Proof. Note that Zr2 is isomorphic to the additive group of Fr2. Since F2

only has one nonzero element, the connection set of every Cayley graph
over the additive group of Fr2 is trivially closed under multiplication by
nonzero elements of F2.

Likewise, Zr3 is isomorphic to the additive group of Fr3. By our definition
of a Cayley graph, we implicitly assume that a Cayley graph X(Zr3, C) is
undirected and hence C is closed under multiplication by 1 and −1. Thus
it is closed under multiplication by the only two nonzero elements of F3.

Once we extend our consideration to Cayley graphs over Zr5, for example,
we see that non-linear graphs are possible.

As we saw earlier, the Cayley graph X(G,C) is connected if and only
if its connection set C generates the entire group G. This leads to a
useful observation about linear graphs: if G is the additive group of an
r-dimensional vector space V , then X(G,C) is connected if and only if C
contains a basis for V . This implies that the connection sets of connected
linear graphs must contain a basis of the underlying vector space. Note
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that if X(G,C) is a disconnected linear graph, then each of its connected
components will be linear graphs. For this reason it is sufficient to consider
connected Cayley graphs.

For an r-dimensional vector space V , the general linear group GL(V ) is
the set of all r × r invertible matrices. The next result reveals that Cayley
graphs over G are isomorphic if their connection sets are images of each
other under multiplication by an element of GL(V ).

Lemma 7.5.3. Let G denote the additive group of vector space V , and
let X(G,C) denote a Cayley graph over G. For any nonzero matrix M in
GL(V ), we have

X(G,C) ∼= X(G,MC),

where MC = {Mv : v ∈ C}.

Proof. We proceed by showing that left multiplication by M is a graph
isomorphism from X(G,C) to X(G,MC). Since G is the additive group
of V and M is in GL(V ), it follows that left multiplication by M is a
permutation of G. Now suppose that u and v are two elements of G. From
the invertibility of M , we immediately see that

u− v ∈ C if and only if M(u− v) = Mu−Mv ∈MC.

Therefore left multiplication by M is a graph isomorphism.

This lemma implies that every connected linear graph is isomorphic to
a linear graph whose connection set contains the standard basis. Recall
that if n is a prime power, then the Hamming graph H(d, n) is a linear
Cayley graph with nonzero scalar multiples of the standard basis vectors as
its connection set. The following corollary characterizes linear graphs that
are Hamming graphs.

Corollary 7.5.4. Let G denote the additive group of a vector space V over
a finite field F of dimension n. A linear graph X(G,C) is isomorphic to
the Hamming graph H(d, n) if and only if C is the set of all nonzero scalar
multiples of a basis of V .

Proof. From our definition of a Hamming graph, we see that the Hamming
graph H(d, n) is isomorphic to the linear graph X(G,C). On the other
hand, suppose X(G,C) is linear graph and C is the set of all nonzero
scalar multiples of a basis of V . By Lemma 7.5.3, all such linear graphs are
isomorphic to H(d, n).
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Using this connectedness property, we see that certain linear Cayley
graphs are isomorphic to quotients of Hamming graphs. This is an unpub-
lished result due to Godsil.

Theorem 7.5.5. Let G denote the additive group of a vector space V of
dimension r over a finite field F of order n. For every connected linear
graph X(G,C) with valency (n− 1)d, there exists a subgroup Γ of Zdn such
that

X(G,C) ∼= H(d, n)/Γ,

where |Γ| = nd−r and Γ has Hamming distance at least three.

Proof. We assume that X(G,C) is an arbitrary connected linear graph,
and therefore C contains a basis of V . If C is precisely the set of all nonzero
scalar multiples of a basis, then by Corollary 7.5.4 we know that X(G,C)
is isomorphic to H(r, n). Thus we assume that d > r. Since X is linear we
can partition C into equivalence classes {C1, . . . , Cd} such that

x, y ∈ Cj if and only if x = αy for some α ∈ F.

For notational convenience, we assume that the first r cells C1, . . . , Cr
contain the nonzero scalar multiples of a basis of V . Let W denote a vector
space of dimension d− r over F. We wish to lift the vectors in C to vectors
in the direct product space V ×W , and so we consider the following injective
map from C into V ×W .

φ(v) =

{
(v, 0) if v ∈ Cj for j ∈ {1, . . . , r}
(v, ej) if v ∈ Cr+j for j ∈ {r + 1, . . . , d},

where {e1, . . . , ed−r} is a basis of W . Now we define CM to be the following
set of (p− 1)d vectors in V ×W :

CM = {φ(v) : v ∈ C}.

By design, we see that CM is the set of nonzero scalar multiples of a basis
of V ×W . Let H denote the additive group of the vector space W . By
Corollary 7.5.4 we know that the graph X(G×H,CM ) is a Hamming graph,
or more precisely

X(G×H,CM) ∼= H(d, n). (7.6)

However, Theorem 7.3.4 implies that

X(G×H,CM)/H ∼= X(G×H/H,CMH/H) ∼= X(G,C).
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Piecing together these observations, we conclude that

X(G,C) ∼= H(d, n)/Γ.

We note that Γ is the image of H under the appropriate change of basis
map, and so |Γ| = nd−r. Moreover, since the adjacency matrix of X(G,C) is
a (0, 1)-adjacency matrix, we conclude that Γ must have Hamming distance
at least three.

This leads us directly to the following two corollaries.

Corollary 7.5.6. Every connected, undirected Cayley graph over Zr2 with
valency d is a graph quotient H(d, 2)/Γ for some subspace Γ such that
|Γ| = 2d−r and Γ has minimum Hamming distance at least three.

Corollary 7.5.7. Every connected, undirected Cayley graph over Zr3 with
valency 2s is a graph quotient H(d, 3)/Γ for some subspace Γ such that
|Γ| = 3d−r and Γ has minimum Hamming distance at least three.

We note that the proof of Theorem 7.5.5 that we give above is con-
structive. Not only does the proof show that linear graphs are quotients of
Hamming graphs, but it gives us a recipe for constructing the corresponding
quotient.
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Chapter 8

Quotients of Hamming Graphs

8.1 Introduction

The binary Hamming graphs were the first graphs that were shown to
admit uniform mixing [40]. This motivates us to consider uniform mixing
on quotients of Hamming graphs. As an extra incentive, we keep in mind
Corollaries 7.5.7 and 7.5.7, which state that a connected Cayley graph over
Zd2 and Zd3 is a quotient graph of H(d, 2) or H(d, 3), respectively.

In this section we see that the quotient viewpoint is fruitful for finding
new infinite families that admit uniform mixing. We begin by considering
quotients over H(d, 2). These are the so-called cubelike graphs. Uniform
mixing on these graphs has been well-studied. Using a quotient approach,
we reproduce a result due to Fan and Luo [24] that characterizes the
cubelike graphs that admit uniform mixing at time t = π/4. Applying this
characterization it is possible to rediscover a result of Best et al. [7] that
determines the folded d-cubes that admit uniform mixing at time t = π/4.
Theorem 8.3.7 is an extension of these results about cubelike graphs. It is
a new result due to the author.

We also investigate quotients of H(d, n) for n ≥ 3. This work is
new. Most notably, we characterize quotients of H(d, 3) and H(d, 4) that
admit uniform mixing at times t = 2π/9 and t = π/4, respectively. As a
consequence of this characterization, we describe new infinite families of
Cayley graphs over Zd3 and Zd4 that admit uniform mixing. Our approach is
less fruitful when we consider quotients over H(d, n) for q ≥ 5. For these
cases we give a convenient reformulation of the entries of the corresponding
transition matrix, and we give some necessary conditions for uniform mixing
to occur on quotients of H(d, n) at time π/n.
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Throughout this chapter, it is useful to bear in mind the following result
due to Chan [18].

Theorem 8.1.1. The Bose-Mesner algebra of the Hamming scheme H(d, n)
contains a flat type-II matrix if and only if n ∈ {2, 3, 4}.

Consequently, any graph with an adjacency matrix in the Bose-Mesner
algebra of H(d, n) for n ≥ 5, does not admit uniform mixing. However,
graph quotients of H(d, n) with ns vertices will not necessarily have adja-
cency matrices in the Bose-Mesner algebra of H(s, n).

8.2 Linear Codes

In this section we emphasize the connection between the entries of the
transition matrix and the weight enumerator of the related linear code. We
apply MacWilliams Theorem to obtain a useful reformulation of the entries
of the transition matrix of the Hamming graph H(d, n) when n is a prime.

Let Fn denote a finite field of order n. Recall that a linear code of
length d is a linear subspace C of Fdn. Let 〈·, ·〉 denote the non-degenerate
symmetric bilinear form 〈·, ·〉 from Fdn × Fdn → Fn defined by

〈x, y〉 =
d∑
j=1

xjyj,

for x = (x1, . . . , xd) and y = (y1, . . . , yd) in Fdn. The dual code C⊥ is the
subspace given by

C⊥ = {y ∈ Fdn : 〈x, y〉 = 0, for all x ∈ C}.

Let C denote a [d, r]-linear code over Fn, and let cj denote the number
of codewords in C with weight j. Recall that the homogeneous weight
enumerator of C is given as

WC(x, y) =
d∑
j=0

cjx
d−jyj.

We note that WC(x, y) is contained in Z[x, y]. Next we let c⊥j denote the
number of codewords in the dual code C⊥ with weight j. The homogenous
weight enumerator of C⊥ is

WC⊥(x, y) =
d∑
j=0

c⊥j x
d−jyj.
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Using this notation we state MacWilliams’ Theorem for linear codes. See
[38] for further information on MacWilliams’ Theorem.

Theorem 8.2.1. Let C be an [d, r]-linear code over Fn. The weight enu-
merator of the dual code C⊥ satisfies the following.

WC⊥(x, y) =
1

nr
WC(x+ (n− 1)y, x− y).

If n is a prime, then Zn is a finite field and Theorem 8.2.1 applies to the
diagonal terms. This enables the following simplification of the diagonal
terms in terms of Γ⊥.

Lemma 8.2.2. Let p denote a prime, and let Γ denote a subgroup of Zdp
with minimum distance three such that |Γ| = ps. The diagonal entries of
the transition matrix of H(d, p)/Γ are equal to

ed(p−1)it

pd−s

∑
a∈Γ⊥

(
e−pit

)wt(a)
.

Proof. Starting from Lemma 7.4.2 and applying Theorem 8.2.1 we obtain
the following expression for (0, 0 + Γ)-entry of the transition matrix of
H(d, p)/Γ.

U(t)0,0 =
1

pd

∑
a∈Γ

(
e(p−1)it + (p− 1)e−it

)d−wt(a) (
e(p−1)it − e−it

)wt(a)

=
1

pd
WΓ(e(p−1)it + (p− 1)e−it, e(p−1)it − e−it)

=
1

pd−s
WΓ⊥(e(p−1)it, e−it)

=
1

pd−s

∑
a∈C⊥

e(p−1)(d−wt(a))ite−wt(a)it

=
ed(p−1)it

pd−s

∑
a∈C⊥

(
e−pit

)wt(a)
.

Finally, recall that the diagonal of U(t) is constant.

One shortcoming of this theorem is that it only applies to the diagonal
terms of the transition matrix. However, recall that for the complete graphs
Kn and Hamming graphs H(d, n), it is sufficient to consider the diagonal
term to show that uniform mixing does not occur if n ≥ 5. Similarly,
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Lemma 8.2.2 is useful for showing that uniform mixing cannot occur on
certain quotient graphs. We formalize the implicit necessary condition in
the following corollary.

Corollary 8.2.3. Let p denote a prime, and let Γ denote a subgroup of Zdp
with minimum distance three such that |Γ| = ps. If uniform mixing occurs
on H(d, p)/Γ at time t, then∣∣∣∣∣∑

a∈Γ⊥

(
e−pit

)wt(a)

∣∣∣∣∣
2

= pd−s.

Proof. If uniform mixing occurs on H(d, p)/Γ, then |U(t)0,0|2 = 1/pd−s.
From Lemma 8.2.2, we see that

|U(t)0,0+Γ|2 =

∣∣∣∣ed(p−1)it

pd−s

∣∣∣∣2
∣∣∣∣∣∑
a∈Γ⊥

(
e−pit

)wt(a)

∣∣∣∣∣
2

=
1

p2(d−s)

∣∣∣∣∣∑
a∈Γ⊥

(
e−pit

)wt(a)

∣∣∣∣∣
2

Therefore uniform mixing occurs if and only if the modulus squared on the
right hand side is equal to pd−s.

The following sections deal with quotients of H(d, n) separately based
on the value of n. When n is a prime, this result can be applied to eliminate
the possibility of uniform mixing at certain times.

8.3 Cubelike Graphs

Cayley graphs over Zd2 are called cubelike graphs. By Theorem 7.5.6, we
know that any Cayley graph over Zd2 is isomorphic to a quotient graph
H(d, 2)/Γ for an appropriate choice of Γ. In this section we investigate
uniform mixing on cubelike graphs using a quotient perspective. From
this perspective we give an alternative proof of Theorem 8.3.4, which is
originally due to Fan and Luo [24]. As an application of this theorem,
we can determine the folded d-cubes that admit uniform mixing at time
t = π/4, which is the time at which the Hamming graph H(d, 2) admits
uniform mixing. This result was originally proved by Best et al. for all
times t [7]. We extend this result to quotients of the form H(d, 2)/Γ at time
t = π/4 where |Γ| = 4. This result is due to the author. Finally, we briefly

98



8.3. CUBELIKE GRAPHS

describe Chan’s work in [18], which characterizes certain cubelike graphs
whose adjacency matrix is in the Bose-Mesner algebra of the Hamming
scheme H(d, 2).

We begin by computing a convenient expression for the entries of the
transition matrix of a quotient of a binary Hamming graph.

Lemma 8.3.1. Let H(d, 2) denote the binary Hamming graph on Zd2, and
let Γ denote a subgroup of Zd2 with minimum distance at least 3. If t is not
equal to an odd multiple of π/2, then the (0, v + Γ)-entry of the transition
matrix of Zd2/Γ is given by

U(t)0,v+Γ = cos(t)d
∑
a∈v+Γ

(i tan(t))wt(a) .

Proof. Applying Lemma 7.4.2, we can express the (0, v + Γ)-entry of the
transition matrix as

U(t)0,v+Γ =
1

2d

∑
a∈v+Γ

(
eit − e−it

)wt(a) (
eit + e−it

)d−wt(a)

= cos(t)d
∑
a∈v+Γ

(i sin(t))wt(a) cos(t)−wt(a)

= cos(t)d
∑
a∈v+Γ

(i tan(t))wt(a) .

This yields our desired result.

Recall that uniform mixing occurs on H(d, 2) at time t = π/4. We
consider the distribution of the quotient at the same time. This will depend
on the weights of elements in the cosets of Γ in Zd2, and therefore we
introduce some convenient notation to keep track of these weights.

Definition 8.3.2. For a particular coset v + Γ in Zd2, let nj denote the
number of elements a in v + Γ such that wt(a) ≡ j (mod 4).

It is also useful to recall that the parity of the weight of the sum of two
vectors in Zd2 can be determined from the parities of the summands. This
elementary observation is given in the following lemma.

Lemma 8.3.3. For any pair of vectors u, v in Zd2, the following holds.

wt(v + u) = wt(v) + wt(u)− 2| supp(v) ∩ supp(u)|.
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With this language we characterize quotients of H(d, 2) that admit
uniform mixing at time t = π/4. This result was originally proved by Fan
and Luo [24]. We offer a simpler proof using our quotient approach.

Theorem 8.3.4. Let Γ denote a subgroup of Zd2 with minimum distance at
least three. Uniform mixing occurs on H(d, 2)/Γ at time t = π/4 if and
only if the weight distribution of every coset of Γ satisfies

(n0 − n2)2 + (n1 − n3)2 = |Γ|. (8.1)

Proof. From Lemma 8.3.1 we see that

|U(π/4)0,v+Γ|2 = cos(π/4)2d

∣∣∣∣∣ ∑
a∈v+Γ

(i tan(π/4))wt(a)

∣∣∣∣∣
2

=
1

2d

∣∣∣∣∣ ∑
a∈v+Γ

iwt(a)

∣∣∣∣∣
2

=
1

2d
|(n0 − n2) + i(n1 − n3)|2

=
1

2d
(
(n0 − n2)2 + (n1 − n3)2

)
.

Since H(d, 2)/Γ is a graph on 2d/|Γ| vertices, we know that uniform mixing
occurs on H(d, 2)/Γ if and only if

|U(π/4)0,v+Γ|2 =
|Γ|
2d
.

for every coset v + Γ. Therefore uniform mixing occurs if and only if
Equation 8.1 holds for every coset.

Utilizing some elementary number theory we deduce more information
about the weight distribution of Γ for any quotient graph H(d, 2) that
admits uniform mixing.

Corollary 8.3.5. Suppose that Γ is a subgroup of Zd2 of order 2s with
minimum distance at least three. Based on the parity of s, the following
conditions determine whether or not H(d, 2)/Γ admits uniform mixing.
If s is odd, the quotient graph H(d, 2)/Γ admits uniform mixing at time
t = π/4 if and only if every coset satisfies

|n0 − n2| = |n1 − n3| = 2(s−1)/2.
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If s is even, H(d, 2)/Γ admits uniform mixing at time t = π/4 if and only
if every coset satisfies

|n0 − n2| = 0, |n1 − n3| = 2s/2 or |n0 − n2| = 2s/2, |n1 − n3| = 0.

Proof. If s is odd, then 2s is not a square. In this case, 2s is a sum of two
squares if and only if each square is equal to 2s−1. On the other hand, if s
is even, then s2 is a square. Thus one of the squares is equal to 2s, and the
other square is equal to 0.

One major shortcoming to Theorem 8.3.4 is that in order to prove that
uniform mixing occurs, the weight distribution of every coset of Γ needs to
be computed.

As an immediate consequence of Theorem 8.3.4, we detect several
obvious families of quotients that admit uniform mixing. The first family
is the folded d-cubes, which are isomorphic to H(d, 2)/〈1〉 for d ≥ 3. These
were shown to admit uniform mixing by Best, Kliegl, Mead-Gluchacki, and
Tamon [7]. We note that the folded d-cube is isomorphic to the graph
obtained from H(d− 1, 2) by joining pairs of vertices at distance d− 1. The
Clebsch graph is an example of a folded 5-cube.

Theorem 8.3.6. If d ≥ 3, then the quotient graph H(d, 2)/〈1〉 admits
uniform mixing at time t = π/4 if and only if d is odd.

Proof. Since Γ = 〈1〉, we have s = 1 in terms of our notation above. We
consider each of the possible parities of d separately.
(a) d ≡ 0 (mod 2)

If d is also divisible by 4, then Γ satisfies

n0 = 2, n1 = n2 = n3 = 0,

and Equation 8.1 is not satisfied. If d is not divisible by 4, then Γ satisfies

n0 = n2 = 1, n1 = n3 = 0,

and again Equation 8.1 is not satisfied. Theorem 8.3.4 implies that uniform
mixing does not occur if d is even.
(b) d ≡ 1 (mod 2)
The subgroup Γ contains one vector with weight zero and one vector of odd
weight. In particular, Γ satisfies n0 = 1, n2 = 0, and |n1 − n3| = 1. Thus

(n0 − n2)2 + (n1 − n3)2 = 2,
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and so Equation 8.1 is satisfied. For any vector v in Zd2, the coset of v + Γ
contains exactly one vector of even weight and one vector of odd weight.
Thus regardless of the weight of v, we will have

|n0 − n2| = 1 and |n1 − n3| = 1,

and so Equation 8.1 is satisfied for every coset v + Γ. Using Theorem 8.3.4,
we conclude that H(d, 2)/〈1〉 admits uniform mixing if and only if d is
odd.

Every (d+ 1)-regular connected Cayley graph over Zd2 can be expressed
as a Cartesian product of a cube and a folded Hamming graph. In this light,
Theorem 8.3.6 characterizes all of the (d + 1)-regular connected Cayley
graphs over Zd2 that admit uniform mixing at time t = π/4.

Next we apply Corollary 8.3.5 quotients of the form H(d, 2)/Γ with
|Γ| = 4. We characterize the (d+ 2)-regular connected cubelike graphs that
admit uniform mixing at time t = π/4. This result is due to the author,
and it is an extension of the work of Best et al. [7].

Theorem 8.3.7. Let Γ denote a subgroup of Zd2 with four elements and
minimum distance at least three. The graph H(d, 2)/Γ admits uniform
mixing at time t = π/4 if and only if Γ = 〈v1, v2〉 for some v1, v2 in Zd2 such
that one of the following holds:

(i) wt(v1) ≡ wt(v2) (mod 4) and wt(v1 + v2) ≡ 2 (mod 4)

(ii) wt(v1) ≡ wt(v2) + 2 (mod 4) and wt(v1 + v2) ≡ 0 (mod 4).

Proof. By Corollary 8.3.5, we know that uniform mixing occurs at t = π/4
if and only if every coset Γ satisfies one of

|n0 − n2| = 0, |n1 − n3| = 2 or |n0 − n2| = 2, |n1 − n3| = 0.

For the identity coset, namely Γ itself, this conditions holds if and only if
two nonzero vectors v1 and v2 in Γ satisfy (i) or (ii). It remains to show
that every coset of Γ also has a suitable weight distribution modulo 4.

First suppose that v1 and v2 in Γ satisfy either (i) or (ii). We consider
an arbitrary coset u + Γ for some u in Zd2. For notational convenience,
let v3 = v1 + v2 denote the third nonzero element of Γ. We note that
| supp(u) ∩ supp(v3)| can be expressed as:

| supp(u)∩supp(v1)|+| supp(u)∩supp(v2)|−2| supp(u)∩supp(v1)∩supp(v2)|.
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Therefore either 0 or 2 of the following numbers are even:

{| supp(u) ∩ supp(v1)|, | supp(u) ∩ supp(v2)|, | supp(u) ∩ supp(v3)|} .
(8.2)

Using Lemma 8.3.3, we can relate the weights of Γ and u+ Γ as follows.

wt(u) = wt(u)

wt(u+ v1) = wt(u) + wt(v1)− 2| supp(u) ∩ supp(v1)|
wt(u+ v2) = wt(u) + wt(v2)− 2| supp(u) ∩ supp(v2)|
wt(u+ v3) = wt(u) + wt(v3)− 2| supp(u) ∩ supp(v3)|.

Since an even number of the support sizes in (8.2) are even and v1 and v2

satisfy (i) or (ii), we see that either

wt(u) ≡ wt(u+ v3) (mod 4)

and wt(u+ v1) ≡ wt(u+ v2) + 2 (mod 4)

or otherwise

wt(u) ≡ wt(u+ v3) + 2 (mod 4)

and wt(u+ v1) ≡ wt(u+ v2) (mod 4).

Thus the coset u+ Γ also satisfies one of

|n0 − n2| = 0, |n1 − n3| = 2 or |n0 − n2| = 2, |n1 − n3| = 0.

We conclude that uniform mixing occurs on H(d, 2)/Γ if and only if Γ
contains two nonzero vectors v1 and v2 that satisfy (i) or (ii).

We note that the proof above gives a necessary and sufficient condition
for uniform mixing in terms of only Γ. For this special case, if the weight
distribution of Γ satisfies Equation 8.1, then all of the cosets of Γ also satisfy
Equation 8.1. It would be desirable to show that this is true in general.

Our methods above focus on uniform mixing on quotient graphs at time
t = π/4. This is convenient because the underlying Hamming graphs admits
uniform mixing at the same time. Of course, uniform mixing could occur
at other times. Chan has found examples of graphs that admit uniform
mixing at earlier times [18].

Theorem 8.3.8. For r ≥ 2, there exist graphs in the Bose-Mesner algebra
of the Hamming graph H(2k+2 − 8, 2) that admit uniform mixing at time
π/2k.
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This result confirms that for any time t > 0 there exists a graph that
admits uniform mixing at a time prior to t.

In the remainder of this section, we summarize other known families
of cubelike graphs that admit uniform mixing. First we consider graphs
whose adjacency matrix is contained in the Bose-Mesner algebra of a folded
d-cube. This result is due to Chan [18] and generalizes the work in [7].

Theorem 8.3.9. For d ≥ 3, the Bose-Mesner algebra of the folded d-cube
contains a flat type-II matrix if and only if d is odd.

Chan also investigates uniform mixing on graphs in the Bose-Mesner
algebra of the association scheme of the halved d-cube. The following pair
of results are due to Chan [18].

Theorem 8.3.10. For d ≥ 3, the Bose-Mesner algebra of the halved d-cube
contains a flat type-II matrix if and only if d is odd.

Theorem 8.3.11. For d ≥ 3, the halved d-cube contains admits uniform
mixing if and only if d is odd.

Finally, we note that Chan also classifies the so-called folded halved cubes
with flat type-II matrices in their Bose-Mesner algebra [18]. Consequently,
this work also determines which of the folded halved cubes admit uniform
mixing. For more information about folded halved cubes, see page 141 of
[10].

8.4 Quotients of H(d, 3)

In this section, we shift our focus to quotients of H(d, 3). By Corollary
7.5.7, we know that any Cayley graph over Zr3 is isomorphic to a quotient
graph H(d, 3)/Γ for an appropriate choice of Γ and d. Aside from the trivial
cases of K3 and H(d, 3), uniform mixing on these quotients has not been
studied before. Our results in this section are due to the author.

Our earlier work enables us to take care of the small cases with ease. As
we saw in Theorem 3.4.1, the complete graph K3 is the unique connected
Cayley graph over Z3, and K3 admits uniform mixing at time t = 2π/9.
There are three connected Cayley graphs over Z2

3: K9, 3×K3, and K3�K3.
We know that K9 does not admit uniform mixing by Theorem 3.4.1. Fur-
thermore, since 3×K3 is the complement of a disconnected graph, Theorem
3.4.1 implies that uniform mixing does not occur. This leaves us K3�K3,
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which admits uniform mixing at t = 2π/9 by Theorem 3.4.1. Of course, we
note that K3�K3 is isomorphic to the Paley graph P9.

Using SAGE to explore the 20 connected Cayley graphs over Z3
3, we see

that ten of these graphs admit uniform mixing at time t = 2π/9. These
ten graphs are comprised of five complementary pairs of graphs. The other
ten graphs do not admit uniform mixing at t = 2π/9 and do not appear to
admit uniform mixing at any other time. The following work gives necessary
and sufficient conditions on the weight distribution of Γ for uniform mixing
to occur on H(d, 3)/Γ at time t = 2π/9.

We consider quotients of the form H(d, 3)/Γ, where Γ is a subgroup of
order 3s in Zd3 with distance at least three. We identify each vertex in the
quotient graph with a coset of Γ in Zd3. At time t = 2π/9 the entries of the
transition matrix simplify to the following.

Lemma 8.4.1. Let Γ denote a subgroup of Zd3 with minimum distance at
least three, and let U(t) denote the transition matrix of H(d, 3)/Γ. The
(0, v + Γ)-entry of the transition matrix at time t = 2π/9 is given by

U(2π/9)0,v+Γ =
1

3d

(
e

4πi
9 + 2e

−2πi
9

)d ∑
a∈v+Γ

(
e

2πi
3

)wt(a)

.

Proof. From Lemma 7.4.2, we know that

U(t)0,v+Γ =
1

3d

∑
a∈v+Γ

(
e2it − e−it

)wt(a) (
e2it + 2e−it

)d−wt(a)
.

In particular, at time t = 2π/9, we obtain the following simplification.

U(2π/9)0,v+Γ =
1

3d

∑
a∈v+Γ

(
e

4πi
9 − e

−2πi
9

)wt(a) (
e

4πi
9 + 2e

−2πi
9

)d−wt(a)

=
1

3d

(
e

4πi
9 + 2e

−2πi
9

)d ∑
a∈v+Γ

(
e

4πi
9 − e−2πi

9

e
4πi
9 + 2e

−2πi
9

)wt(a)

.

Using the fact that e
2πi
3 = −1/2 + i

√
3/2, we deduce that(

e
4πi
9 + 2e

−2πi
9

)−1

=
(

5 + 2e
2πi
3 + 2e

−2πi
3

)−1 (
e
−4πi

9 + 2e
2πi
9

)
=

1

3

(
e
−4πi

9 + 2e
2πi
9

)
.
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Combining this with our earlier expression for U(2π/9) yields the following.

U(2π/9)0,v+Γ =
1

3d

(
e

4πi
9 + 2e

−2πi
9

)d ∑
a∈v+Γ

(
1

3

(
−1 + 2e

2πi
3 − e

−2πi
3

))wt(a)

=
1

3d

(
e

4πi
9 + 2e

−2πi
9

)d ∑
a∈v+Γ

(
−1

2
+

√
3

2
i

)wt(a)

=
1

3d

(
e

4πi
9 + 2e

−2πi
9

)d ∑
a∈v+Γ

(
e

2πi
3

)wt(a)

.

This is our desired expression for U(2π/9)0,v+Γ.

As we see, the entries of U(t) at time t = 2π/9 are determined by the
weights modulo 3 of the cosets of Γ. Similar to the previous section, we
introduce notation to keep track of the weight distribution of elements in
the cosets of Γ.

Definition 8.4.2. For a particular coset v + Γ, let nj denote the number
of elements a in v + Γ such that wt(a) ≡ j (mod 3).

Using this language we can characterize the quotient H(d, 3)/Γ that
admit uniform mixing at time t = 2π/9.

Theorem 8.4.3. Let Γ denote a subgroup of Zd3 with minimum distance at
least three such that |Γ| = 3s. Uniform mixing occurs on H(d, 3)/Γ at time
t = 2π/9 if and only if the weight distribution of every coset of Γ satisfies

n0n1 + n0n2 + n1n2 = 32s−1 − 3s−1. (8.3)

Proof. We begin by recalling that∣∣∣e 4πi
9 + 2e

−2πi
9

∣∣∣2 = 3d.

Therefore from Lemma 8.4.1 we have

|U(t)0,v+Γ|2 =
1

32d

∣∣∣e 4πi
9 + 2e

−2πi
9

∣∣∣2d ∣∣∣∣∣ ∑
a∈v+Γ

(
e

2πi
3

)wt(a)

∣∣∣∣∣
2

=
1

3d

∣∣∣∣∣n0 −
1

2
(n1 + n2) + i

√
3

2
(n1 − n2)

∣∣∣∣∣
2

.
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The modulus squared on the right hand side of the equation can be further
simplified as follows.∣∣∣∣∣n0 −

1

2
(n1 + n2) + i

√
3

2
(n1 − n2)

∣∣∣∣∣
2

= (n0 −
1

2
(n1 + n2))2 +

3

4
(n1 − n2)2

= n2
0 + n2

1 + n2
2 − n1n2 − n0n1 − n0n2

= (n0 + n1 + n2)2 − 3(n0n1 + n0n2 + n1n2)

= 32s − 3(n0n1 + n0n2 + n1n2).

From an earlier result, we know that uniform mixing occurs on H(d, 3)/Γ
if and only if

|U(2π/9)0,v+Γ|2 =
1

3d−s

holds for every coset v + Γ. This implies that uniform mixing occurs if and
only if

n0n1 + n0n2 + n1n2 = 32s−1 − 3s−1

holds for every coset v + Γ.

Recall that the quotient graph H(d, 3)/〈1〉 is the folded Hamming graph
over Zd−1

3 .

Theorem 8.4.4. The folded Hamming graph over Zd−1
3 admits uniform

mixing at t = 2π/9 if and only if d ≡ 1, 2 (mod 3).

Proof. Let Γ = 〈1〉, which implies s = 1 in our above notation. Note that
each coset of Γ has three elements, and so trivially we have

n0 + n1 + n2 = 3

for every coset v + Γ. We consider the weight distribution of the cosets in
two cases based on d modulo 3.

(a) d ≡ 0 (mod 3)
The weight distribution for Γ satisfies n0 = 3 and n1 = n2 = 0, and so

n0n1 + n0n2 + n1n2 = 0.

Thus Γ does not satisfy (8.3) in this case.

(b) d ≡ 1, 2 (mod 3)
Without loss of generality, the weight distribution of Γ satisfies n0 = 1,
n1 = 2, and n2 = 0, and so

n0n1 + n0n2 + n1n2 = 2.
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Thus Γ satisfies (8.3). Moreover, if we consider the coset v + Γ such
that wt(v) ≡ 1 (mod 3), then the weight distribution of v + Γ satisfies
n0 = 0, n1 = 1, and n2 = 2. Thus the weight distribution for v + Γ
satisfies

n0n1 + n0n2 + n1n2 = 2.

Similarly, (8.3) holds for every coset of Γ.

By Theorem 8.4.3, we conclude that the folded Hamming graph admits
uniform mixing at time t = 2π/9 if and only if d ≡ 1, 2 (mod 3).

Uniform mixing of quotients of H(d, 3) at times other than 2π/9 is
trickier, and we cannot say anything conclusively about general quotients
of the form H(d, 3) at other times.

8.5 Quotients of H(d, 4)

The Hamming graph H(d, 4) is the Cartesian product of d copies of K4.
In this section we consider the graph obtained by taking the quotient of
H(d, 4) over some particular subgroup Γ of Zd4. Our approach is similar
to our work in the previous section. Using the weight distribution of the
cosets of Γ, we determine which quotients of H(d, 4) admit uniform mixing
at time t = π/4. This is a new result due to the author.

We begin by deriving an expression for the entries of the transition
matrix at time t = π/4. Recall that uniform mixing occurs on the Hamming
graph H(d, 4) at time t = π/4.

Lemma 8.5.1. Let Γ denote a subgroup of Zd4 with minimum distance
at least three, and let U(t) denote transition matrix of H(d, 4)/Γ. The
(0, v + Γ)-entry of U(t) at time t = π/4 is given by

U(π/4)0,v+Γ =

(
e3iπ/4

2

)d ∑
a∈v+Γ

(−1)wt(a).

Proof. Applying Lemma 7.4.2, we can express the (0, v + Γ)-entry of the
transition matrix as

U(t)0,v+Γ =
1

4d

∑
a∈v+Γ

(
e3it − e−it

)wt(a) (
e3it + 3e−it

)d−wt(a)

=

(
e3it

4

)d ∑
a∈v+Γ

(
1− e−4it

)d−wt(a) (
1 + 3e−4it

)wt(a)
.
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Substituting in t = π/4 simplifies this expression to the following.

U(π/4)0,v+Γ =

(
e3iπ/4

4

)d ∑
a∈v+Γ

2d−wt(a) (−2)wt(a)

=

(
e3iπ/4

2

)d ∑
a∈v+Γ

(−1)wt(a).

This yields our desired result.

Our expression for the transition matrix at time t = π/4 given above
only depends on the parity of the weights of cosets of Γ. Again it is
convenient to introduce notation to keep track of the number of elements
of each parity.

Definition 8.5.2. For a particular coset v + Γ, let nj denote the number
of elements a in v + Γ such that wt(a) ≡ j (mod 2).

Using this notation, we characterize the quotient graphs of the form
H(d, 4)/Γ that admit uniform mixing at time t = π/4.

Theorem 8.5.3. Let Γ denote a subgroup of Zd4 with minimum Hamming
distance at least three. Uniform mixing occurs on H(d, 4)/Γ at time t = π/4
if and only if the weight distribution of every coset of Γ satisfies

(n0 − n1)2 = |Γ|. (8.4)

Proof. Further simplification of Lemma 8.5.1 yields the following:

|U(π/4)0,v+Γ|2 =
1

4d

∣∣∣∣∣ ∑
a∈v+Γ

(−1)wt(a)

∣∣∣∣∣
2

=
1

4d
|n0 − n1|2 .

Recall that uniform mixing occurs on H(d, 4)/Γ if and only if

|U(t)0,v+Γ)|2 =
|Γ|
4d

for every coset v + Γ. Therefore uniform mixing occurs at t = π/4 if and
only if

(n0 − n1)2 = |Γ|
for every coset v + Γ.

109



8. QUOTIENTS OF HAMMING GRAPHS

As an immediate consequence of this theorem, we have the following
necessary condition on the weight distribution of Γ for any quotient graph
H(d, 4) that admits uniform mixing at time t = π/4.

Corollary 8.5.4. Let Γ denote a subgroup of Zd4 with minimum distance at
least three. If the quotient graph H(d, 4)/Γ admits uniform mixing at time
t = π/4, then |Γ| = 4s for some positive integer s. Moreover, the weight
distribution of Γ must be one of the following:

(i) s is odd: n0 = 22s−1 − 2s−1, n1 = 22s−1 + 2s−1;

(ii) s is even: n0 = 22s−1 + 2s−1, n1 = 22s−1 − 2s−1.

Proof. Recall that n0 and n1 denote the number of elements in Γ with
even and odd weight, respectively. If the quotient graph H(d, 4)/Γ admits
uniform mixing at time t = π/4, then Theorem 8.5.3 implies that

|n0 − n1| =
√
|Γ|.

Since Γ is a subgroup of Zd4 and n0 − n1 is an integer, it must be the case
that |Γ| = 4s for some positive integer s. Therefore one of the following
holds:

−n0 + n1 = 2s or n0 − n1 = 2s.

Since n0 + n1 = 4s, this implies that either

n1 = 2s−1 (2s + 1) or n1 = 2s−1 (2s − 1) .

For each element x in Γ such that wt(x) is odd, there is a subset of three
scalar multiples {x, 2x, 3x} such that

wt(x) = wt(2x) = wt(3x).

Thus the elements in Γ with odd weight can be partitioned into sets of size
three. It follows that n1 is divisible by three. Note that

3| (2s + 1) ⇐⇒ s is odd.

We see n1 is determined by the parity of s. The value of n0 is immediately
determined from n1.

Finally, we apply Theorem 8.5.3 to characterize the folded Hamming
graphs over Zd4 that admit uniform mixing.
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Theorem 8.5.5. The folded Hamming graph H(d, 4)/〈1〉 admits uniform
mixing at t = π/4 if and only if d is odd.

Proof. Since Γ = 〈1〉, we note that s = 1 in terms of our notation above.
We consider two cases based on the parity of d.
(a) d ≡ 0 (mod 2)

In this case Γ = 〈1〉 satisfies n0 = 4. Therefore

n0 6= 22s−1 − 2s−1 = 1.

By Corollary 8.5.4, we see that H(d, 4)/〈1〉 does not admit uniform mixing.
(b) d ≡ 1 (mod 2)

Note that Γ = 〈1〉 satisfies n0 = 1 and n1 = 3, and so

(n0 − n1)2 = 4.

Therefore Γ satisfies (8.4). Next we consider a coset v + Γ. For j in Z4, let
mj denote the number of coordinates of v that are equal to j. The weights
of the four elements of v + Γ satisfy the following:

wt(v) ≡ m1 +m2 +m3 (mod 2);

wt(v + 1) ≡ d−m3 (mod 2);

wt(v + 2) ≡ d−m2 (mod 2);

wt(v + 3) ≡ d−m1 (mod 2).

By the Pigeonhole Principle, at least two of m1,m2, and m3 must have
the same parity. Without loss of generality, we assume m1 ≡ m2 (mod 2).
This implies that

m1 +m2 +m3 ≡ m3 (mod 2).

And since d is odd, we see that

m3 6≡ d−m3 (mod 2).

Thus we conclude that exactly three of the elements in the coset v+ Γ have
the same weight modulo 2, and

(n0 − n1)2 = 4.

Since v + Γ was chosen arbitrarily, by Theorem 8.5.3 we conclude that
H(d, 4)/〈1〉 admits uniform mixing if and only if d is odd.
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8.6 General Quotients

Now we wish to generalize our results from the previous sections to quotients
of H(d, n) for arbitrary n. We consider uniform mixing graph on quotients
of H(d, n) at time t = π/n. We focus on this time since the corresponding
transition matrix entries are greatly simplified. At other times t we are
unable to give any new results about uniform mixing. The following result
is due to the author.

Theorem 8.6.1. Let Γ denote a subgroup of Zdn with minimum Hamming
distance at least three. If uniform mixing occurs on H(d, n)/Γ at time
t = π/n then n must be even and nd/|Γ| must be a square.

Proof. First we see that the (0, v + Γ)-entry of the transition matrix of
H(d, n)/Γ can be expressed as

U(t)0,v+Γ =

(
e−it

n

)d ∑
a∈v+Γ

(
enit − 1

)wt(a) (
enit − 1 + n

)d−wt(a)

=

(
e−it

n

)d ∑
a∈v+Γ

(
enit − 1

)wt(a)
d−wt(a)∑
j=0

(
d− wt(a)

j

)(
enit − 1

)d−wt(a)−j
nj

=

(
e−it

n

)d ∑
a∈v+Γ

d−wt(a)∑
j=0

(
d− wt(a)

j

)(
enit − 1

)d−j
nj.

If we suppose that t = π/n, then this expression further reduces to the
following.

U(π/n)0,v+Γ =

(
e−iπ/n

n

)d ∑
a∈v+Γ

d−wt(a)∑
j=0

(
d− wt(a)

j

)
(−2)d−j nj (8.5)

Recall that uniform mixing occurs on H(d, n)/Γ if and only if

|U0,v+Γ(π/n)| =
√
|Γ|√
nd
.

From Equation 8.5, we see that

|U(π/n)0,v+Γ| =
1

nd

∣∣∣∣∣∣
∑
a∈v+Γ

d−wt(a)∑
j=0

(
d− wt(a)

j

)
(−2)d−jnj

∣∣∣∣∣∣ .
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Therefore if uniform mixing occurs, then for all cosets v + Γ we must have

√
nd|Γ| =

∣∣∣∣∣∣
∑
a∈v+Γ

d−wt(a)∑
j=0

(
d− wt(a)

j

)
(−2)d−jnj

∣∣∣∣∣∣ .
By the integrality of the expression inside the absolute value sign, we see
that this equality implies that nd|Γ| must be a square. Since |Γ| divides nd,
this implies that nd/|Γ| is a square.

Now note that the identity coset v + Γ is the unique coset containing
the identity element. Therefore nd|Γ| must be divisible by 2. However, if
|Γ| is even, then n must also be even.

It would be desirable to generalize this result to restrict the values of d
and n such that H(d, n)/Γ admits uniform mixing at any time t. However,
it is unlikely this type of approach will be sufficient to show that uniform
mixing never occurs on H(d, n)/Γ for n ≥ 5. We consider this problem and
other open problems in Chapter 9.
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Chapter 9

Future Research

We conclude this thesis by discussing five open research problems related to
uniform mixing of continuous-time quantum walks. We pay close attention
to problems that could be approached using the methods described in this
thesis.

9.1 Open Problems

We begin with a fundamental open problem. In this thesis much of our
work focused on uniform mixing on vertex transitive graphs. Intuitively, it
would seem reasonable if uniform mixing only occurs on regular graphs, or
possibly only on vertex transitive graphs. However, it seems to be difficult
to prove this or find a counter example. Thus it would be significant to
answer the following question: does a graph have to be regular in order
for exp(itA) to be flat? A first step might be to give a lower bound on the
size of a counterexample. It is straightforward to see that a graph of order
four or less must be regular in order for exp(itA) to be flat. It would be
reasonable to manually check all connected graphs of order five.

Our second open research problem is to show that uniform mixing does
not occur on the cycle Cn for any n ≥ 5. This conjecture is due to Ahmadi,
Belk, Tamon, and Wendler in [3]. In this thesis, we extend the work in [16]
and [1] and show that uniform mixing does not occur on Cn if n is even or
prime. The smallest open case is C9. One possible method to attack C9

would be to show that there are a finite number of cyclic type-II matrices
in exponential form. It is known that there are an infinite number of cyclic
9-roots [5], and so the assumption of exponential form would be crucial
to this approach. More generally, it might be feasible to use a quotient
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approach to show that if uniform mixing does not occur on Cp and Cq, then
it does not occur on Cpq.

The third open research problem is to consider the least possible time t
for which a particular graph admits uniform mixing. This could be useful
for practical algorithm design. Recall that if the Hamming graph H(d, n)
admits uniform mixing, then t is equal to the least possible mixing time of
the complete graph Kn. However, Chan’s work shows that faster mixing
times are possible for quotients of binary Hamming graphs [18]. Recall
from Theorem 8.4.4 that for certain values of d, the folded Hamming graph
H(d, 3)/〈1〉 admits uniform mixing at time t = 2π/9. For example, it is
unknown whether the folded Hamming graph admits uniform mixing before
time t = 2π/9.

Next we shift our consideration to quotients of Hamming graphs. Cur-
rently we have no examples of quotients of H(d, n) for n ≥ 5 that admit
uniform mixing. Chan’s result in [18] proves that there are no flat type-II
matrices in the Bose-Mesner algebra of the Hamming scheme H(d, n) for
n ≥ 5. This supports our following conjecture.

Conjecture 9.1.1. A Cayley graph over Zdn does not admit uniform mixing
for n ≥ 5.

Of course, Chan’s result is far from sufficient to prove Conjecture 9.1.1.
As we noted earlier, the adjacency matrix of a quotient of a Hamming graph
does not need to be contained in the Bose-Mesner algebra of a Hamming
scheme. Furthermore, Cayley graphs over Zdn for n ≥ 5 are not necessarily
quotients of Hamming graphs. By Theorem 5.5.2, we know that ε-uniform
mixing occurs on certain Cayley graphs over Zdn if n is a prime. This
confirms that it will be difficult to prove Conjecture 9.1.1 by bounding the
modulus of the entries of the transition matrix. Instead, a more viable
approach might be to take into account the algebraic properties of the
entries of the transition matrix.

Our final open research problem is to further study the algebraic prop-
erties of the coefficients of the transition matrix. For all of our known
examples of graphs that admit uniform mixing, we see that if uniform
mixing occurs on the graph at time t, then eit is a root of unity. This
observation gives rise to the following conjecture.

Conjecture 9.1.2. If a graph admits uniform mixing at time t, then eit

must be a root of unity.

As a fair warning, this conjecture should be taken with a grain of salt.
Our main reason for prudence is that we do not have a wide variety of
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examples of graphs that admit uniform mixing. All of the known examples
are closely related to formally self-dual association schemes with integral
eigenvalues, and consequently, uniform mixing occurs at time t on our
known examples if and only if eit is an algebraic integer. All complex roots
of unity are algebraic integers of modulus one. However, the converse is
not true [50]. Thus it would be interesting to prove this conjecture for a
restricted subclass of graphs, such as all graphs with integral eigenvalues.
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