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Abstract 
	
  

	
  	
  	
  	
  	
  The objective of this thesis is to successfully design, fabricate, and characterize an optimum 

metal-insulator-metal diode that can be used as a fast switching diode in various applications 

such as solar energy conversion. The improvements of this type of diode will result in 

rectification of a wider spectrum of AC signals to usable electricity. In this project, several 

proposed designs of MIM diodes were successfully fabricated and characterized. Pt-Al2O3-Al 

metal-insulator-metal diode was fabricated to have high asymmetry in I-V curve. Additionally, in 

an attempt to study the effect of material properties on MIM diode’s performance, four different 

combinations of MIIIIM diode were compared and discussed. Many processes were involved in 

the fabrication of these diodes such as E-beam evaporation, photolithography, reactive ion 

etching RIE, and Atomic Layer Deposition (ALD) technique. The fabricated tunneling diodes are 

intended to operate in the GHz regime and can also operate at higher frequencies (THz) by 

changing and scaling the dimensions. 

      In addition to MIM diode work, this project attempted to engineer the contrast curve of 

polystyrene as a negative resist used for E-beam lithography using multi layer resist stack. If the 

resist stack has a very high contrast and its sensitivity differs between the various layers, it can 

be ideal for the fabrication of multi-level zone-plate/Fresnel lens. 
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Chapter 1 

 

Metal-Insulator-Metal Diode 

 

1.1 Research Motivation 

     There is still a continuous need to develop devices, which can be used for energy harvesting 

without suffering from issues such as low harvested current and high cost. Rectenna (antenna 

coupled with a rectifying element) has attracted attention over the last few years due to its 

powerful efficiency in harvesting energy compared to previous methods such as solar cells. As 

the rectifier used in rectennas is the most important part of this system, any improvement in this 

aspect will lead to a huge development in the rectenna system. Metal-insulator-metal diode is the 

best candidate for rectification in rectenna devices because of its fast response time and high 

efficiency in converting alternating current to direct current. Therefore, over recent years various 

research groups have tried to develop MIM diode in order to enhance the rectification process of 

the electromagnetic radiation. 

 

1.2 Overview of MIM Tunnel Diode 

     Metal-insulator-metal diode is a significant device since it has a large number of applications 

in electronic devices, including energy harvesting systems, infrared photo detection, and 

switching devices. For the purpose of energy harvesting, this device is used to convert solar 

electromagnetic radiation (alternative current) to direct current in a circuit. MIM diode consists 
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of two electrodes and an ultra-thin insulator layer between the two electrodes. Even though MIM 

diode is considered an optimum diode used as a rectifier in rectennas, its fabrication is still 

challenging.  

     MIM diodes are based on the quantum tunneling theory; thus, their basic structure requires 

two electrodes divided by a thin barrier in order to allow current to flow according to the 

tunneling phenomenon 10. In MIM tunneling diodes, the electrons flow between the two metal 

electrodes via a thin insulator layer. Exploiting this concept has led to a reliable rectification in 

microwaves for critical emerging energy harvesting applications. 

 

1.3. Tunnel Junction Theory 

     Metal-insulator-metal (MIM) tunnel junctions have been proposed for over four decades and 

have led to several key studies in condensed matter physics, including the Josephson Effect. In 

the MIM diode, two dominant phenomena - thermionic emission and quantum mechanical 

tunneling - achieve the rectification of electromagnetic radiation induced by the antenna. The 

thickness of the insulator is an important factor for rectification. In other words, the smaller the 

thickness of insulator layer, the higher current delivered. For example, in case of thicknesses less 

than 4nm, rectification is primarily achieved through tunneling. Alternatively, for thicknesses 

more than 4nm, either tunneling or thermionic might predominate depending on the barrier 

height. Asymmetry of MIM diode can be improved by using two different electrodes with 

different work functions and density of states. It is preferred that these two electrodes are metal 

in order to maintain high conductivity. Achieving conduction by tunneling mechanism would 

result in ultrafast response time. 
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1.4 Methodology and Characterization Tools 

     In this thesis, various lithographies and nanofabrication techniques have been utilized to carry 

out the project’s experiments. Fabrication techniques included photolithography, electron-beam 

lithography, electron-beam evaporation, atomic layer deposition (ALD), spin coating, and 

nanoimprint lithography. Characterization was achieved using atomic force microscopy (AFM), 

scanning electron microscopy (SEM), and keithley 4200-SCS-semiconductor characterization 

system connected to a probe station. 

 

1.4.1 Photolithography 

     Photolithography is a main process in micro fabrication used to transfer patterns onto the 

substrate. Exposing a photosensitive material to a light field like ultraviolet radiation transfers 

the desired pattern. The photosensitive material is usually an organic polymer, which is called 

photoresist. Simply, the photoresist is spin coated onto the substrate surface. By using the spin 

coating process, a uniform layer of the photoresist is achieved. Following spin coating, the 

substrate is baked to ensure that no solvents remain. This photoresist is then exposed to 

ultraviolet radiation through a photo mask. Photoresist material can have either a positive tone or 

a negative tone; the difference arises from how light influences them. The positive tone of the 

polymer is insoluble in the resist developer; however, the negative tone is soluble, as shown in 

Figure 1.1. 
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Figure 1.1 Schematic representation of photolithography process using positive and negative 

resist 

 

1.4.2 Nanoimprint Lithography 

     The first proposed replication process was nanoimprint, which relies on heat and press. 

Unlike a hot embossing process that relies on heat and press but is used for microstructure, 

nanoimprint process is used to replicate structures in nano scale. 

sio2% sio2%
substrate% substrate%

nega.ve%resist%posi.ve%resist%
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     The basic procedure of nanoimprint is illustrated in Figure 1.2. First, a thin layer of polymer 

is coated on a substrate and then heated above its transition (Tg) temperature to approximately 

50 ℃–100 ℃. The objective of heating the polymer film is to make it become softened. At a 

pressure of approximately 50-100 bars a surface relief stamp is then pressed into the polymer 

film. Pressure value could be adjusted depending on viscosity of the molten polymer. Typically, 

pressure is released at 108  ℃. and the stamp is separated from the imprinted sample after it cools 

down. Various key factors need to be considered for replication in sub 100nm features including 

the polymer, the stamp, alignment if multi imprinting is needed, and demolding. The final step 

removes the residue of the polymer using reactive ion etching RIE 19. 
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Figure 1.2 Schematic illustrations for nanoimprint process 

 

1.4.3 Electron-beam Evaporation  

     In the electron beam evaporation process, a focused beam of electrons is used to heat and 

evaporate metals. The temperature of these electrons can be approximately 10,000K, and they 

are accelerated by DC 10kV. Evaporation occurs near the beam bombardment spot on the source 

surface at a highly localized point.  

 

Stamp&

Polymer&

Substrate&

1.#

Press%stamp%
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   1.4.4 Scanning Electron Microscopy (SEM)  

     Scanning electron microscopy (SEM) is used to determine the crystal structures of the 

specimen. Different signals are generated in SEM system, including secondary electrons (SE), 

backscattered electrons (BSE), and diffracted backscattered electrons (EBSD). Figure 1.3 shows 

the SEM detection mechanism. 

 

Figure 2.3 Detection mechanism of scanning electron microscopy (SEM) 18  

     Secondary electrons are produced from primary electrons and used for imaging as the near 

surface SE extends to reach the detector. The morphologic and topographic properties of the 

specimen can be demonstrated from detection of secondary electrons18. On the other hand, 

backscattered electrons can identify different phases of the	
  internal structure of the sample as 
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they reveal the small variations of the atomic number on the sample surface by providing 

different contrasts in image. These backscattered electron signals (BSEs) are widely used for the 

investigation of specimen surface 20, 21. The mechanism of the interactions between incident 

beam and sample surface are shown in Figure 2.3 18   . 

 

 1.4.4.1 SEM Images  

     Several SEM parameters should be adjusted in order to obtain a high quality image. One such 

parameter is the working distance, which is known as the distance between the bottom pole piece 

of the objective lens and the sample surface. The working distance affects depth of focus (D), 

expressing the range of depth that an image appears to be in focus. The following equation is 

used to determine the depth of field: 

𝐷 = 2𝑟×𝑊𝐷/𝑅 

Where  𝑟 is the maximum radius of the beam, 𝑊𝐷 represents the working distance, and 𝑅 is 

the final aperture radius.  

 

     Using a lower accelerating voltage can be beneficial for obtaining good SEM image quality 

and finer surface structure images. In contrast, applying higher accelerating voltages could 

reduce the image contrast. The reason behind minimized contrast is the unnecessary signals from 

the large penetration and diffusion area. Figure 1.4 shows the effects of accelerating voltage on a 

sample composed of heavy or light elements 23. 
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Figure 1.4 Accelerating voltage effects on interaction of sample composed of heavy or light 

elements 23 
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Chapter 2 

Design and Fabrication of MIM Diode 

 

2.1 Design and Fabrication of Pt-Al2o3-Al Metal-Insulator-Metal Diode 

In this work, a Pt-Al2O3-Al metal-insulator-metal diode was fabricated to have high 

asymmetry in I-V curve. The fabricated tunneling diode is intended to operate in the GHz 

regime, and can also operate at higher frequencies (THz) by changing the dimensions. The 

asymmetry of the I-V curve is reasonably very high due to a large difference in the work function 

between Aluminum and Platinum metals. 

 

2.1.1 Introduction 

Investigation of new energy sources is vital because of the increasing demand for energy 3. 

These new energy sources should be more efficient, cleaner, safer, and cheaper than traditional 

energy sources. The solar energy based devices are clean and safe, but they are not efficient 

enough, and at the same time they are expensive compared to fossil fuels and nuclear energy. 

Efficiency of traditional solar cells is limited because of the band gap of semiconductors used in 

these cells. This issue along with the huge amount of radiation received from the sun have led 

researchers to investigate new technologies for converting solar energy to electricity. One 

energy-harvesting device used in these systems is a rectifying antenna, also called a rectenna, 

which converts solar radiation directly to electricity. The rectennas consist of an antenna, a 

rectifier system, and frequency filters. The rectifier plays the primary role in converting AC 
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signals to direct current (DC), which can then be used directly or else used to charge batteries. 

The cut-off frequency of the diode should be high enough to respond and be compatible with the 

electromagnetic energy that is being harvested. Tunneling diodes are highly suitable for 

rectification in microwaves and THz regimes (and beyond) because of their fast response time. 

Metal-insulator-metal (MIM) diodes are one of the tunneling diodes used for rectification at high 

frequencies 4.	
  

MIM diode consists of two electrodes and a thin dielectric layer sandwiched in between the 

electrodes 5. Although this type of diode is considered an optimum diode used in rectennas, 

challenges remain in terms of its fabrication. 

Rectennas consist of an antenna, filter circuits, and a rectifier diode. These devices have been 

used for lower microwave frequencies; however, there is a growing interest in harvesting energy 

in the infrared and optical frequency regimes 3, 5, 6, 7, 9. In this study, the fabrication process of 

MIM diode will be discussed along with some challenges related to the fabrication process. 

Some parameters including I-V characteristics, asymmetry, non-linearity, sensitivity, 

coupling efficiency, and response time are important for determining the diode’s efficiency. The 

current density highly depends on the work function of the metals, electron affinity of the 

insulators, and thickness of the insulator layer. To have an efficient tunneling, the insulator layer 

should be ultra-thin (less than 10 nm). Additionally, for operating a MIM diode at high 

frequencies the contact area between the insulator and the metal interface should be very small; 

i.e., the contact area at visible light range should be approximately 20 nm x 20 nm. It is very 

difficult to have these ultra-small structures using current technology. In the next section, Pt-

Al2O3-Al metal-insulator-metal diode will be discussed. 
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2.1.2 Design and Fabrication 

     The area of the diode is an important parameter that determines the operation frequency of the 

diode. The area and the frequency are related according to the following equations: 

          𝑓!=   !
!"!!!!

                       (1) 

     𝐶! =
!!!!!!

!
                     (2)   

 

Where Ra is the antenna’s resistance, Cd is the diode capacitance, and Ad is the diode area 6, 10. 

The design of this diode is a simple structure of four layers on top of the Si substrate. Ti, Pt, and 

Al were the materials chosen for this diode. 

      For operation at 3GHz, the dimensions of the diodes were chosen to be 5 µm x 5 µm by using 

Equations 1 and 2. The resulting Ra is 100Ω, which is close to a typical antenna resistance. The 

thickness of the insulator was chosen to be 4 nm to have efficient tunneling. Although these 

kinds of diodes are used for high frequency (near-IR or visible range), the frequency range was 

not considered since the aim was to have high asymmetry in I-V curve. 

     Many processes were involved in the fabrication of the Pt- 𝐴l2𝑂3 -Al MIM diode including E-

beam evaporation, photolithography, reactive ion etching RIE, and Atomic Layer Deposition 

(ALD) technique. The AFM was used to verify the smoothness of the surface of the diode and 

the thickness of Al pads. 
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a) 

b)  

Figure 2.1 A schematic representation of the fabrication flow steps of the diode: a) Deposition of 

Ti/Pt/Al2O3/Al; b) Patterning 

     The substrate of the diode was chosen to be a bare silicon wafer. The selected materials used 

as the top and bottom electrodes were Platinum and Aluminum, respectively. These materials 

were chosen due to their high difference in work function. They were good candidate metals for 

the diode. The work function of Pt is 5.65 eV and that of Al is 4.28 eV. Electron-beam 

evaporation was then used to deposit 50 nm of Ti onto the Si wafer in order to increase the 
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adhesion of the Pt layer to the substrate. Next, ultra thin layer (4 nm) of aluminum oxide (Al2O3) 

was deposited onto the Pt layer using Oxford Plasma Lab 100 FlexAL ALD. It is preferred to 

deposit insulators using ALD rather than oxygen plasma technique, as ALD is more precise and 

controllable. 

 

Figure 2.2 A schematic representation of the complete diode 

     Next, a 50 nm Al was deposited onto the insulator layer. Figure 2.1(a) shows the schematic of 

the structure up until this step. A positive photoresist (S1813) was spin coated onto the ARC 

under layer prior to photolithography. The conditions of the spin coating process were 2000 

rounds per minute for 40 seconds followed by one minute soft baking at 110 ℃. 

     To carry out photolithography process, Karl Suss MA6 Mask Aligner was used. A glass 

photo-mask with 5-micron diameter dots and 20 micron spacing was used to pattern the device, 

as shown in Figure 2.1(b). The type of exposure was soft contact and G-line was chosen to 

expose the substrate for five seconds. Following the development of the photoresist in AZ 300 

MIF developer for one minute and etching the ARC by Reactive Ion Etching (RIE), Oxford 

Instruments ICP380 plasma-based dry etching system was used to apply dry etching onto the Al 
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layer. A Laser End Point system connected to RIE was used to minimize the exposure of the 

Platinum. The sample was then soaked in acetone in order to clean the photoresist on the top 

followed by a four minute RIE process to clean the rest of the ARC by oxygen plasma. Figure 

2.2 shows the final schematic of the device. 

2.1.3 Results and Discussion 

     An important property of MIM diodes is the asymmetry in their I-V curve. This can be 

achieved by having different metals in both sides of the insulator; however, this will result in a 

high barrier asymmetric diode, which is good for having a large responsivity. Another property 

of MIM diode is low resistance, which requires a low barrier height 1. A significant point that 

needs to be considered prior to fabricating MIM diode is the selection of metals, since the work 

function must be different to ensure asymmetrical and nonlinear characteristics of the diode. The 

asymmetry can basically be described as the magnitude of the ratio of forward (IF) to reverse 

bias (IR) current, as given by Equation 3. 

FASYM=|𝐼!/𝐼! |        (3) 

     Keithley 4200-SCS Semiconductor Characterization System, which was connected to a probe 

station, was used to obtain current versus voltage (I-V) curve. One probe was connected to the 

top of one of the Aluminum dots; another probe was connected to the Platinum surface. The 

current was measured from -1 Volt to +1 Volt applied bias. As shown in Figure 2.3-a, the I-V 

curve is highly asymmetrical. By using Equation 3, the asymmetry of the curve was plotted and 

shown in Figure 2.3(b). The value of the asymmetry reaches approximately 240 when 1 Volt bias 

is applied. A high asymmetric and non-linear I-V curve is illustrated in this study. However, 
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other parameters including tunneling efficiency, resistance, and responsivity should be 

considered during design and fabrication of these diodes. 

     To achieve high responsivity at zero bias, the barrier heights of the electrodes should be high. 

In our study, we used metals that have high work functions. Hence, the responsivity is also 

expected to be high. To obtain efficient quantum tunneling, the insulating layer should be as thin 

as possible; however, by using thick insulator layers, higher non-linearity can be achieved. To 

achieve low resistance, the barrier heights of both sides should be low and the insulator layer 

should be thin enough 11. However, there are always some trade-offs in this concept. By using a 

thin insulator layer, a high non-linear and high asymmetric I-V curve was achieved in this study. 

 

Figure 2.3 a) I-V curve; b) Asymmetry of Pt/Al2O3/Al MIM diodes 

a)	
  

b)	
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2.1.4 Conclusion 

     In this study, the fabrication of Pt-Al2O3-Al MIM diode was discussed in detail. In order to 

increase the frequency of MIM diode operation, the capacitance values should be small. This can 

be achieved either by increasing the thickness of the dielectric layer or by decreasing the contact 

area. Therefore, in this work the thickness of the insulator layer was chosen to be 4nm. The 

current-voltage characteristics of the fabricated diode are perceived to be sufficient for the diode 

to work at the GHz regime. The value of the asymmetry was measured as approximately 240 at 1 

Volt, which represents highly asymmetric and non-linear I-V curve as seen in Figure 2.3(a). 

 

2.2 Comparison of the Effects of Various Materials Properties on Metal-Insulator-Metal 

Diodes 

     This study compares various metal-insulator-metal diodes using the same bottom electrode 

but different top electrodes. New metal-insulator-metal diodes were fabricated with four 

insulators using various materials. Chromium was chosen for the bottom metal electrode while 

Ti, Cr, Al, and Pt were chosen for the top metal electrode. This work indicates the effectiveness 

of choosing the top metal for MIIIIM tunneling junction and its effect on the diode performance. 

 

2.2.1 Introduction 

     The demand for using a sufficient and clean source of energy is continuous. Therefore, 

investigation of a fast response time rectifying element is essential to overcome the issue of 

having insufficient rectification1. The best candidate rectifying diode is metal-insulator-metal 

diode due to its advantages over semiconductor solar cells in terms of response time7. Metal-
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insulator-metal diode is a junction consisting of thin insulating layer (less than 10nm) between 

two metals 1, 3, 6. Even though the architecture of this diode is simple, it is still a challenge to 

determine which material’s properties are most suitable for producing the preferable electrical 

performance of this device. Here, a comparison is provided of four different metal-insulator-

metal diodes with multi-layers of insulators by changing the top metal electrodes and keeping the 

bottom one fixed. This comparison is based on the I-V characteristics and asymmetrical curves 

of the fabricated diodes. Materials chosen for the top electrodes were Ti, Cr, Al, and Pt. I-V 

characteristics are discussed in the next sections. 

 

2.2.2 Experimental Details 

     Silicon oxide was the substrate chosen for all of the fabricated diodes to prevent the 

conductivity of the substrate during electrical measurements. In fabrication of Cr-Tio2 -Al2o3 -Cr, 

Cr-TiO2- Al2O3-Al, Cr-TiO2- Al2O3-Pt, Cr-TiO2- Al2O3-Ti MIIM diode, it was intended to keep 

the first metal and insulator layers fixed while changing the second metal electrode. Chromium 

was used as the fixed metal electrode, and chromium, aluminum, platinum, and titanium were 

chosen for the second electrode. The substrate was cleaned by acetone and isopropanol alcohol 

(IPA) and then dried by nitrogen blow. First, the negative photoresist (AznLOF 2035) was spin 

coated onto the SiO2 substrate with 2000rpm spin speed for 40 sec, and then soft baking at 110°C 

was applied to the sample for one minute to ensure that there were no remaining particles of 

solvents. Following photoresist coating, Karl Suss MA6 Mask Aligner was used to pattern the 

diode through photolithography process. The photo mask was designed with different structures 

in different diameters. Following exposure, the substrate was baked at 110°C to allow for cross-
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linking of the photoresist to occur. Next, the sample was developed by AZ300MIF developer for 

one minute and rinsed by IPA followed by DI water for one minute and then dried with N2 gun. 

     Electron-beam evaporation technique was used to deposit 60nm of chromium. ALD technique 

was utilized to deposit TiO2 and Al2O3, respectively. These two insulators were repeated in order 

to obtain a total number of insulators of four. Each insulator was 0.75nm thick, giving a total of 

3nm barrier thickness. In fact, using ALD is an effective way to deposit a uniform layer of 

insulators due to its preciseness and controllability. Moreover, having a very uniform insulator is 

good for current flow. Another photolithography step was applied to the same sample in order to 

align the square’s structure and complete the whole device. The second metal was then deposited 

with approximately 100nm thickness using electron-beam evaporation technique. The whole 

device’s structure is clearly shown in Figure 2.4, and the overlapping area of metals one and two 

is shown in Figures 2.5 and 2.6. 

 

 

Figure 2.4 SEM image of the device structure showing three different sizes of the overlapping 

area (30, 20, and 10 micron) 
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Figure 2.5 SEM image of the (Cr-TiO2- Al2O3-TiO2- Al2O3-Ti) diode structure 

 

Figure 2.6 SEM image of the overlapping area (diode active area) 
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2.2.3 Results and Discussion  

     In order for MIM diodes to have optimal behaviour, the insulator layer requires a low surface 

roughness, uniform thickness, and stoichiometry. This can be obtained by having a small device 

area (in the order of 𝜇𝑚!  or  less) 4. Four combinations of MIM diode with different work 

function Δ φ (= φ 2 – φ 1) values were fabricated and characterized. The work function of 

chromium as the base metal is 4.5eV(φ1). To improve the device’s performance, a quadra 

insulator diode was fabricated using repeated TiO2 and Al2O3 insulator layers. The same quadra 

insulator diode was repeated but with the second metal changed in order to study the difference 

between different material properties on the metal-insulator-metal diode. Each insulator layer of 

this quadra insulator layer diode was 0.75nm thick. These insulators were deposited by using 

ALD at a rate of 0.105 ± 0.001 nm/cycle for Al2O3 and a rate of 0.0437 ± 0.001 nm/cycle for 

TiO2. 

       Figure. 2.7 shows the current-voltage electrical response for all the fabricated diodes having 

doubled insulator (red curve) and four insulators (blue curve). It is clearly shown that current 

resulted from diodes with four insulators is much larger than that of two insulators. When the 

device is forward biased, the electrons tunnel via the aid of a quantum well formed due to the 

insulator barrier, however, when a reverse biase is applied there is no quantum well formation 

occur and thus electrons must tunnel through all barriers without any assistance2. Therefore a 

highly nonlinear and asymmetric I-V curve results. Since there is a trade off between 

conductivity and nonlinearity, it is hard to achieve both, and hence devices with two insulators 

exhibited more nonlinear curves however conductivity is higher for devices with four insulators 

as shown in figure 3. From this figure also, it is clear that the MIM diodes using Ti and Cr, and 
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Pt as top electrodes perform most asymmetric diodes. This could be attributed to their band 

energy offset at the interface, which affects the tunneling current through insulating layers. 

 

 

FIG.3.  The I-V characteristics curve of the a) Cr-I1I2I1I2  -Ti and Cr-I1I2-Ti , b) Cr- I1I2I1I2 -

Cr and Cr- I1I2-Cr, c) Cr- I1I2I1I2-Al and Cr- I1I2-Al, and d) Cr- I1I2I1I2-Pt  and Cr- I1I2-Pt diode. 

 

     Figure.2.8 compares the asymmetry curve of MIIIIM / MIIM fabricated diodes when a 

voltage range of (0.5-3 volts) is applied to these devices. . As can be seen from this figure the 

highest asymmetry value (40) was achieved at a voltage value of 1volt when using Ti as top 

electrode for the MIIIIM structure (blue curve), but for MIIM structure (red curve) it shows less 

asymmetry. When using the Pt as top electrode the asymmetry was calculated as 6 under 0.5 

voltage, and much less (about 1) for CrIIPt .For the device using Cr for both metal electrodes and 

with four layer of insulators, the I-V curve was highly asymmetric with value of 16 under 

voltage of 2volts. Even though this diode consists of the same metal electrodes (Cr), there is still 
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a work function difference between the two electrodes. The reason of such low barrier height on 

one side might be due to the difference in processing conditions of electrodes s, as explained by 

Hobbs 5. The forward current, which is defined as those electron tunneled from top electrode to 

the base electrode (Cr), was larger than the reverse current, which is those electrons tunneled 

from base electrode to top electrode, and hence there is inherent work function difference. Since 

asymmetry of MIM diode is a function of applied voltage, the amount of voltage bias affects the 

resulted asymmetry values. Figure.2.8 also shows a low asymmetry using a combination of Cr 

and Al as base and top electrode, respectively especially for MIIIIM structures at voltage of 1 

volt. By applying a voltage bias to Al electrons of the Al tunneled through the thin barrier with a 

total thickness of 3nm. The amplitude of the current obtained from Cr electrode depends on the 

barrier heights as well as on the applied voltage. It can be concluded that the increase in 

asymmetry is not linear function of the work function difference between base and top electrodes 

which is in good agreement with other studies2. 

 

! !! !!!!!
!!!!!!!!!!!!!!

!! !! !
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Figure 2.8 Asymmetry curve of the fabricated diodes indicating the two structures MIIM 

and MIIIIM. 

The barrier heights of device’s interface were calculated for difference fabricated diodes 

and were reported in table.1 The electron affinity of 0.75 nm thickness of the TiO2 and Al2O3 

was reported as 4.3 eV, and 3.5 eV, respectively. Since each diodes have five interfaces, the 

barrier heights were calculated as follow: Φ1 = φ1 – χ1 = eV, Φ2 = Φ3 = Φ4 = χ1 – χ2 , and Φ5 = φ2 

– χ2. 

 

Table.1 Barrier height potential of fabricated MI1I2I1I2M diodes. 

MIM# Φ1=ϕ1-χ1(ev)  Φ2=Φ3=Φ4= χ 1-χ2(ev) Φ5= ϕ2-χ2(ev) 
1 0.2 0.8 0.83 
2 0.2 0.8 1 
3 0.2 0.8 0.78 
4 0.2 0.8 2.15 

 

Table.2 shows the list of MIIIIM diodes’ various combinations and the differences in work 

function values between metals one and two. The study of different materials’ properties is 

crucial to determine the suitable material combinations for the optimum metal-insulator-metal 

diode operation performance. 

Table.2 MIIIIM diode combinations and their difference in work function values reported in this 

study 

Metal 1-Insulator 1, 2, 3, 4 –
Metal 2 configuration  

Work function difference value 
Δ φ (= φ 2 – φ 1) 

Cr-Tio2- Al2o3-Tio2 -Al2o3 -Ti	
   -­‐0.17eV	
  
Cr-Tio2- Al2o3-Tio2 - Al2o3 - Cr	
   >0eV	
  
Cr-Tio2- Al2o3-Tio2 - Al2o3 -Al	
   -­‐0.22eV	
  
Cr-Tio2- Al2o3-Tio2 - Al2o3  - Pt	
   1.15eV	
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2.2.4 Conclusion 

    In this work, four new MI1I2I3I4M diodes were compared following successful fabrication. 

Characterization of these various diodes was achieved from their I-V electrical responses. 

MIIIIM diodes using Ti and Cr, and Pt as the second metal electrode exhibited superior 

performance in terms of asymmetry, while a combination of (Cr –Al) shows relatively lower 

asymmetry curve. 
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Chapter 3 

Electron Beam Lithography 

 

3.1 Overview of Electron Beam Lithography  

     Electron beam lithography (EBL) is popular due to its excellent resolution capability, 

significant reliability, and ability to write reproducible structures over large areas, and low cost. 

EBL is capable of achieving sub-10nm resolution patterns 17. EBL, which was generated from 

scanning electron microscopy (SEM), is a mask less lithography technique since it is only based 

on the electron beam source. Because electron beam has a small wavelength and small probe 

size, Electron Beam Lithography has become the most useful nanofabrication tool. 

     The spot size of electron beam can be less than 5nm, and the beam can be focused using 

electron optics. However, the literature has reported the general capabilities of different direct 

lithographies such as (~10 nm) for EBL.  

Table 3. Capabilities of different direct nanofabrication techniques 19 

Technology Capability 

Optical 
lithography 

~30	
  nm	
  

Electron beam 
lithography 

~10	
  nm	
  

Nanoimprint 
lithography  

~10	
  nm	
  

Scanning probe 
lithography  

~1	
  nm	
  

Focused ion beam  ~30	
  nm	
  

 

     By using de Broglie wavelength equation, one can estimate the electron wavelength. 
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EBL system can resolve a minimum feature size depending on many factors such as resist type, 

resist thickness, exposure dosage, beam current level, development process, proximity 

correction, and resistance to etching of the used EBL resist.    

  3.2 Electron Beam Lithography Systems, Operation, and Working Scheme 

3.2.1 Electron Beam Lithography Systems 

EBL has different types of systems that have been developed which are used for both research 

and industry. A schematic of an EBL system is shown in Figure 3.1. Generally, a beam of 

electrons is deflected to a desired area in the substrate surface. This electron beam modifies the 

resist depending on its tone by blanking the beam, moving it to another location, and then turning 

it on in order to expose the resist again. By repeating this process the desired pattern is achieved.  
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Figure 3.1 EBL System based on SEM 22   

 

     Even though sub-10 nm resolution is achieved by EBL, exposures are done serially which reduces 

throughput and also limits to the scientific research applications. 

     Two different types of EBL systems are used for EBL writing: raster and vector scan. In raster scan the 

electron beam is scanned in only one direction and a mechanical translation of the stage occurs in the 

perpendicular direction. Unlike raster scan, in vector scan the electron beam is scanned in both x and y 

directions with beam blanking. Here the pattern writing will be pixel by pixel and without stage movement 

within each writing field, yet the stage or the substrate will move to the next location after each writing field. 
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3.2.2 Working Scheme of EBL 

     An electron beam scans a substrate surface covered with a resist material. This resist 

material is sensitive to electrons, and is chemically modified depending on its tone. 

There are two different tones of EBL resists: positive and negative. The positive tone 

resist is dissolved during the development process, while the negative resist remains, as 

shown in Figure 3.2. 

 

 

                                                    Figure 3.2 A schematic illustration of EBL working scheme 

 

3.3 Proximity Effect  

     Scattering of the electron beam during exposure leads to pattern distortion. The 

incident electrons on the resist film cause the resist molecules chains to break. 
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During the development process, the exposed areas will be dissolvable. When 

electrons expose undesired areas of the resist, this is called proximity effect. Two 

scattering events occur: forward scattering and backscattering. In forward scattering 

event, primary electrons generate secondary electrons along its path but with low 

energy. However, in backscattering event the resist is exposed far from incidence 

(proximity effect), because secondary electrons with higher energy and long travel 

length are generated along backscattered electron path that can expose the resist 

there. 

 

3.3.1 How to Reduce Proximity Effect 

     Using thinner resist can minimize the forward scattering. Moreover higher applied 

voltage can also be used to reduce proximity effect. If it is possible, choosing a 

substrate with smaller atomic mass unit can be useful. In addition, commercial 

software can be used to correct the proximity effect by producing a dose-corrected 

fractured data file. 
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Chapter 4 

 

Gray Scale Lithography 

 

4.1. Motivation 

     The second half of this thesis attempts to engineer the contrast curve of electron-beam 

lithography resist (polystyrene) with a great freedom by using multi-layer of polystyrene. By using 

multi-layer resist stack, an additional degree of tuning the overall contrast curve is offered. 

     Successfully designing the resist stack of polystyrene with higher contrast allows it to be used 

for the fabrication of multi-level zone-plate/Fresnel lens. 

 

4.2. Overview of Gray Scale Lithography 

     In EBL, resist properties are characterized by sensitivity and contrast which can be derived from 

its contrast curve. To a certain degree, resist sensitivity and contrast can be tailored by experimental 

parameters. For example, for positive resist such as PMMA, using lower electron beam energy can 

increase the sensitivity or stronger concentration of the developer (e.g. MIBK:IPA=1:1, instead of 

1:3) and increase the development temperature or the development time. The dependence of 

contrast on those parameters is not obvious, but for typical resist increased sensitivity is always 

accompanied by decreased contrast. Nonetheless, the tailoring of the contrast curve using single 

resist layer is limited. It is proposed that by using polystyrene with different molecular weights 
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(Mw), a multi-layer resist stack can be designed in order to engineer the contrast curve of the stack 

with great freedom.  

     Polystyrene is chosen because its sensitivity is proportional to its Mw 12, 14, which is 

commercially available from ~1 kg/mol up to 2000 kg/mol. Moreover, it is not necessary to have 

polystyrene with many different Mw, as one can “simulate” an arbitrary Mw (actually should be 

Mn, number averaged molecular weight, which is more important than weight averaged molecular 

weight Mw) by mixing two polystyrenes with very different Mw 15. As shown schematically in 

Figure 4.4, if the resist layers have very high contrast - which is the case for low Mw range 

polystyrene - and the sensitivity of the layers differ greatly from each other, a contrast curve with 

roughly a stair-case shape may be achieved, which is ideal for the fabrication of multi-level zone-

plate/Fresnel lens 16.    

 

Figure 4.1 Chemical structure of Polystyrene 
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Figure 4.2 Schematic of contrast curves of five high contrasts resists having decreasing 

sensitivity, as well as the contrast curve for the stack of the five resists (most sensitive on bottom 

and least sensitive on top) 

 

 

 

 

 

Substrate 

	
   Resist 1 

	
   Resist 2 

	
   Resist 3 

	
   Resist 4 

	
   Resist 5 
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4.3. Experimental  

4.3.1 Doubled-layer Resist Stack 

     In the experiment, two PS samples with Mw of 50 kg/mol and 4.5 kg/mol were used. Two 

grams of PS of Mw of 50 kg/mol were dissolved in 100ml toluene solvent. Another 2g of PS of 

Mw of 4.5 kg/mol were dissolved in 100ml toluene solvent. A third solution of 22 kg/mol was 

prepared by mixing the previous two samples of 50 and 4.5 kg/mol. Spin coating of 50 kg/mol 

solution was applied on bare Si wafer, and 22 kg/mol solution was spin coated on another Si 

wafer. Before exposure, the films were baked for one minute for hardening after the spin coating 

step. Dektak-8 program was used to check the thickness of the two films. The pattern was 

exposed at 20kev and 320 PA beam current and developed using xylene for one minute. After 

development, the remaining thickness was measured by AFM.  

       A straightforward way to generate the resist stack is by spin coating the polystyrene layer by 

layer. However, this has not yet been successful because it was found that the solvent dissolved 

the previous layers during the coating of a new layer. It is known that double-layer PMMA can 

be spin coated; thus, the same may be possible for polystyrene if a suitable solvent or mixture of 

solvents can be identified. As proof of concept, a double layer of polystyrene was obtained by 

thermally bonding one layer to the other, with the first layer spin coated on a bare silicon wafer 

and the second layer spin coated on an anti-adhesion treated wafer, as shown in Figure 4.3.  
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Figure 4.3 A schematic representation of thermal bonding of Ps layers 

 

     The contrast curve of two-layer stack, 22 kg/mol on top of 50 kg/mol, is shown in Figure 4.4. 

Here the effective 22 kg/mol is simulated by a mixture of 50 kg/mol and 4.5-kg/mol polystyrene. 

Due to the small difference between the two Mw, the contrast curve has a continuous and smooth 

slope, yet the contrast is decreased to 2.0 which is lower than the single layer resist with similar 

Mw (γ~3.0). 
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Figure 4.4 Contrast curve for a two-layer polystyrene resist stack, with each layer ~180 nm 

thick. Here 22 kg/mol is a calculated effective Mn for a mixture of 4.5 kg/mol and 50 kg/mol 

polystyrene exposed at 20 keV, and resist height measured by AFM. 

 

     In this experiment, polystyrene was dissolved in toluene in order for it to be spin-coated on 

silane-treated wafer having low surface energy. Two polystyrene films were bonded using a 

home-built thermal nanoimprint tool at 130oC and 100psi pressure for 30 min. After thermal 

bonding, exposure was carried out using Raith 150TWO at 10 or 20 keV. Next, development was 

achieved using xylene for 1-2 min, followed by IPA rinse and nitrogen blow-drying. Finally, 

contrast curve was acquired by AFM measurement. 

4.3.2 Tri-layer Resist Stack 

     A tri-layer resist stack was fabricated using polystyrene with three different Mn. The bottom 

layer has a number averaged molecular weight (Mn) of 64kg/mol and weight averaged molecular 
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weight of 282kg/mol (see Figure 4.5). Figure 4.7 clearly shows the two steps. Mn dominates 

exposure properties. 

 

 

Figure 4.5 Contrast curve at 10keV for tri-layer polystyrene, with bottom two layers by thermal 

bonding and the top layer subsequently coated by thermal evaporation of 1.2 kg/mol polystyrene 

 

 

Figure 4.6 SEM image of exposed square patterns 
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Figure 4.7 SEM and AFM images of exposed square patterns which clearly show the two steps. 

The square is 3.5µm in the CAD file. The larger square for the bottom two layers is due to 

proximity over-exposure. 

     To validate the results, a four-layer stack of polystyrene was achieved using thermal bonding 

technique. First, polystyrene with different numbers of averaged molecular weight was dissolved 

in toluene. Each polystyrene film had a thickness of 200-300nm. The first polystyrene film with 

Mn of 170 kg/mol was spin coated on a bare Si wafer, while the second film with Mn of 64 

kg/mol was spin coated onto a PEN sheet coated with a fluorocarbon film. The two polystyrene 

films were bonded using a home-built thermal nanoimprint tool at 130oC and 100psi pressure for 

30 min. Reactive ion etching RIE was used to coat fluorocarbon film on PEN sheet in order to 

facilitate the separation of the two polystyrene films after bonding. By repeating the process of 

spin coating and thermal bonding using polystyrene films with Mn of 18 kg/mol and 6 kg/mol, 

one can achieve four layers of polystyrene with different weight averaged molecular weight 

(Figure 4.8). Exposure was carried out using Raith 150TWO at 20 keV. Next, development was 
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achieved using xylene for 3 min followed by IPA rinse and nitrogen blow-drying. Finally, 

contrast curve was acquired by AFM measurement, as shown in Figure 4.10. 

	
  	
   

 

 

Figure 4.8 Schematic representation of thermal bonding process of the four polystyrene films 

where weight averaged molecular weight is in the following order: (Mw1>Mw2>Mw3>Mw4) 
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Figure 4.9 SEM images of the exposed square patterns showing the height of the resist 

corresponding to the film thickness 
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Figure 4.10 Contrast curve of the four-layer resist stack using polystyrene as negative resist 

 

4.5 Fresnel Lenses 

A Fresnel lens is a thin light magnifier that can be used as an alternative to the conventional 

continuous surface lens. Augustin Jean Fresnel developed this type of lens in the early 1800s. Due 

to its structure that becomes flat in one side and ridged on the other, Fresnel lens is cost effective, 

with much of the optical material removed and the surface curvature still being maintained. This 

concept is illustrated in Figure 4.11.  
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         Figure 4.11 Conceptual illustration (in side-profile) of collapsing a continuous surface 

aspheric lens into an equivalent power Fresnel lens 18 
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Appendix 
 

List of Publications 

 

Papers 

1. M. Alhazmi, M. Yavuz and B. Cui, Contrast curve engineering by using multi-layer polystyrene 

electron beam resist, 57th International Conference on Electron, Ion and Photon Beam 

Technology and Nano-fabrication (EIPBN), Nashville, May 2013. 

 

2. M. Alhazmi, F. Aydinoglu, B. Cui, O. M. Ramahi, M. Irannejad, A. Brzezinski and M. Yavuz, 

"Comparison of various materials properties effect on metal-insulator-metal diodes", under 

preparation for submission. 

 

3. F. Aydinoglu, M. Alhazmi, S, Alqarni, B. Cui, O.M. Ramahi, M. Yavuz, Design and fabrication 

of pt-al2o3-al metal-insulator-metal diode, 24th Canadian Congress of Applied Mechanics 

(CANCAM), Saskatoon, SK, Canada, 2nd June, 2013. 

	
  

4. C. Con, M. Alhazmi, M. yavuz and B. cui, freeze-drying for the reduction of e-beam resist 

collapse, MNE conference in London (UK), September 2013 

 

5. F. Aydinoglu, M. Alhazmi, B. Cui, O. M. Ramahi, M. Yavuz, "Higher Performance Metal-

Insulator-Metal Diodes using Multiple Insulator Layers" Applied Physics Letters (under review, 

Sep 2013. 
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Conference presentations 

1- M. Alhazmi, M. Yavuz and B. Cui, Contrast curve engineering by using multi-layer 

polystyrene electron beam resist, 57th International Conference on Electron, Ion and Photon 

Beam Technology and Nano-fabrication (EIPBN), Nashville, May 2013. 

 

2- F. Aydinoglu, M. Alhazmi, S, Alqarni, B. Cui, O.M. Ramahi, M. Yavuz, Design and 

fabrication of pt-al2o3-al metal-insulator-metal diode, 24th Canadian Congress of Applied 

Mechanics (CANCAM), Saskatoon, SK, Canada, 2nd June, 2013. 
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